
The UNIX operating system originated at Bell
Laboratories in 1969 and rapidly grew more popular,
first within Bell Labs, then at universities and, since the
early 1980s, at commercial enterprises. One reason
cited for its success is that it is a good operating system
for programmers.1 The wealth of simple tools and the
ability to combine them easily into new tools provides
an attractive environment for software development.
Projects organize their development processes around
the capabilities of UNIX tools like sccs for version con-
trol and make for application building. Developers
build project-specific tools using UNIX commands
in shell scripts and have become proficient in the use
of tools like the dbx debugger and the emacs and vi edi-
tors.2 Developers have also become accustomed to
commands for text manipulation (sed, awk), searching
(grep), and comparing (diff), and the use of these in
combination with other commands to do special tasks.

In the late 1980s, workstations came into common
use for software development. Workstations provided
additional compute power and were capable of display-
ing complex graphics and providing point-and-click
interfaces. The UNIX tools and shell environment,
designed around character-cell video terminals and
hard-copy devices, did not make effective use of these
workstation capabilities. Different tools and a different
approach to combining them were needed to provide
an effective workstation-based development environ-
ment that would take advantage of the additional
compute power available to workstation users and the
graphical interfaces available using the X Window
System.3

In this paper, we define the characteristics of
some integrated software development environments
designed to take advantage of modern UNIX work-
stations. We describe the DEC FUSE product as an
example of one of these environments and present two
methods used to create the DEC FUSE product. With
the first method, we show how tools are built as
graphical user interfaces (GUIs) on top of existing
UNIX commands. Then, we show how messaging
enables these tools to work together. We present
trade-offs and design alternatives for each method.

Digital Technical Journal Vol. 7 No. 2 1995 5

DEC FUSE: Building
a Graphical Software
Development
Environment from
UNIX Tools

Richard O. Hart
Glenn Lupton

DEC FUSE is an integrated programming envi-
ronment for UNIX systems. It is an evolution
of the FIELD environment developed at Brown
University. To take advantage of the features
of workstations developed during the 1980s,
these environments were designed to provide
graphical user interfaces for commands com-
monly used by UNIX software developers. DEC
FUSE uses two methods to create an environ-
ment from smaller and simpler software com-
ponents. These methods are sending messages
between components and layering graphical
interfaces on top of UNIX commands. DEC FUSE
uses these methods to create an easy-to-use,
integrated environment with more features
than its individual components.

Integrated Software Development Environments

Integrated software development environments are
collections of software programs, or tools, that are used
together to accomplish one or more phases of soft-
ware development. DEC FUSE and other integrated
software development environments, including HP
SoftBench from Hewlett-Packard and SPARCworks
from Sun Microsystems, are based on a control inte-
gration model.4–7 Control integration enables tools
to make requests of other tools for information or to
do required tasks.8

The DEC FUSE, HP SoftBench, and SPARCworks
environments were strongly influenced by work done
at Brown University on the FIELD programming
environment by Steven P. Reiss.8,9 DEC FUSE, in fact,
continues to use some code originally written as part
of FIELD. These environments share the following
features with FIELD:

■ Environments are collections of cooperating tools.
Each tool addresses a single aspect of the software
development process such as editing, searching,
debugging, or building. This follows the UNIX
philosophy of making tools or commands simple
and focused on a single problem. As a result, they
are easier to build, maintain, and use. The tools
cooperate with each other by performing opera-
tions at the request of other tools. For example, the
builder tool can request that the source code cor-
responding to an error be displayed, and the text
editor will present the code.

■ Tools use a selective broadcasting communications
method. Tools send simple, usually textual, mes-
sages to communicate with other tools.10 A message
may be either a request for a service or a notification
of the occurrence of an event. Tools register their
interest in receiving particular messages. A message is
then broadcast without requiring the sender to spec-
ify who will receive it. Since requests are not directed
to a particular tool, a tool can be replaced with a sim-
ilar tool that responds to the same messages without
making changes to the sender. Because messages are
broadcast, multiple tools can receive a notification
and each can take appropriate action.

■ Source files and annotations are viewed using a sin-
gle text editor. Each tool that needs to present
source text to the user does so by sending request
messages that are processed by a single source text
editor. The text editor displays the desired source
files, and it may also place annotations next to
source lines of interest. Annotations are used to link
the sources with other parts of the environment.
For example, the location of breakpoints is pro-
vided by the debugger, the location of build errors
by the builder, and the location of strings matching
a pattern by the search tool. Each of these locations

is identified with an annotation symbol next to
a line of source code in the editor display.

■ GUIs are built on top of UNIX tools. Many of the
tools in the environment are GUIs fitted to existing
UNIX commands such as make, grep, and dbx.
These interfaces provide menu and button access to
these commands and their options; they also inter-
pret the results of the commands, presenting them
in formatted, interactive displays.

■ Program information is presented pictorially. The
graphical display capabilities of the workstation are
used to pictorially present information that may be
complex or extensive. For DEC FUSE, this includes
a program’s function call graph, the dependencies
in a makefile, or the execution times of each func-
tion in a program. This issue of the Digital
Technical Journal presents another example of
displaying information pictorially with DEC FUSE
in the paper “Adding a Data Visualization Tool
to DEC FUSE.”11

■ Users continue to use familiar tools and methods.
Because the FIELD and DEC FUSE environments
are built using existing tools such as make, sccs, and
dbx, users can continue to use tools with which they
are familiar. They can also use existing makefiles
and source libraries in the environment. In addi-
tion, users can make a gradual switch to an environ-
ment such as DEC FUSE. They can use DEC FUSE
when it is most advantageous and continue to use
older tools and methods when that is preferable.

DEC FUSE Overview

The primary goal of the DEC FUSE product was
to create a commercially useful, integrated software
development environment supporting a variety of pro-
gramming languages, including C, C11, and Fortran.
The DEC FUSE environment takes advantage of the
capabilities of the UNIX workstation, while allowing
software developers to preserve their investment in
familiar UNIX tools. DEC FUSE designers adopted
some FIELD components, which were converted to
use Motif. Extensions were also made to the FIELD
environment to create the DEC FUSE product. These
extensions are described in the next sections. Several
tools have been added to the environment through
successive releases of DEC FUSE. The tools supplied
with DEC FUSE version 2.1 are listed in Table 1 and
are described in subsequent sections.

Selective Broadcasting Mechanism
The messaging used by DEC FUSE, called the multi-
cast messaging system, has been extended in two ways
beyond its FIELD origins. First, messages have been
made more functional in nature. In the FIELD envi-
ronment, messages are strings that are assembled by

6 Digital Technical Journal Vol. 7 No. 2 1995

the sending tool and delivered to receiving tools. The
receiving tools have registered an interest in particular
messages by describing them using a pattern string.
DEC FUSE uses a more functional interface that more
closely resembles a remote procedure calling mecha-
nism. Each tool defines the messages that it can send
and receive as function definitions using the DEC
FUSE tool integration language (TIL). Second, a set of
components called the DEC FUSE EnCASE facility has
been developed to support the integration of new tools
and new messages into the DEC FUSE environment.5
These components include the TIL compiler and the
Message Monitor tool, described later in this paper.

Choice of Source Code Editor
Instead of having a different editor as part of each tool,
the FIELD environment provided a single GUI-based
editor. Because most users have strong preferences
about which text editor they use, DEC FUSE
extended the environment to allow each user to
choose from three different editors: emacs, vi, and the
DEC FUSE editor.2 Both emacs and the DEC FUSE
editor support use of annotations supplied through
interactions with other tools. Users of the vi editor do
not see annotations, but other tools can still position vi
on source lines of interest.

DEC FUSE Tools
The tools described in this section are currently available
in DEC FUSE. Figure 1 shows the DEC FUSE C11
class browser, builder, code manager, and profiler tools.

■ The search tool searches files for strings matching
a literal string or regular expression using grep.
Options available through the user interface allow
for specifying whether the search should be case-
sensitive, whether lines matching or not matching

should be displayed, and whether the search should
be limited to a single directory or an entire direc-
tory tree.

■ The builder builds applications using the make
or gnumake commands and existing makefiles or
makefiles generated by the builder. A scrollable
results window shows the output for the build
operation, including diagnostic messages. The build
dependencies between the files for the application
that are described in the makefile are displayed
graphically. The builder also distributes build
actions across hosts on a local area network (LAN)
and provides a user interface for specifying those
hosts and for monitoring the progress of the build.

■ The debugger provides a GUI to command line
debuggers. This interface provides a source display
with annotations for breaks, conditional breaks,
and the current execution point. Debugging com-
mands can be executed using buttons, menus, and
a command line interface. Special windows provide
for viewing and changing variables, breakpoints,
and machine registers, and for monitoring the
values of expressions.

■ The compare tool displays the differences between
two text files in a side-by-side display with related
areas highlighted and graphically connected. The
analysis of the differences is provided by the diff
command.

■ The code manager provides a GUI to the version
management tools rcs and sccs. The code manager
displays the revision history of the managed files.
Details such as author, date created, and comment
can be displayed for each version. In addition, the
code manager uses the compare tool to display dif-
ferences between revisions or revisions and files.

■ The man page browser displays the reference pages
for commands, system calls, subroutines, and spe-
cial files. References to other manual pages in
the text are hot links, and the user can click on a
reference to display the other page. The man
page browser can also display an index of selected
reference pages. Users control the index content
by specifying a keyword to match in the reference
page description or a prefix to match to the refer-
ence page name. These allow users to find reference
pages when they are unsure of the function or com-
mand name.

■ The profiler runs an application to collect run-time
statistics and displays the results at the function and
line level. Statistics include the CPU time used
by functions or source lines, function-call counts,
line-execution counts, and function and line test
coverage.

■ The cross-referencer displays source locations for
declarations, references, and function calls whose

Digital Technical Journal Vol. 7 No. 2 1995 7

Table 1
Tools Supplied with Digital’s DEC FUSE Version 2.1

DEC FUSE Tool UNIX Commands Used

Editors emacs, vi (and a Motif-based
editor)

Debugger dbx or DECladebug (on Digital
platforms)

Search grep, fgrep, egrep
Builder make, gnumake
Code manager sccs, rcs
Man page browser man
Cross-referencer Use common data from
Call graph browser compilers or other
C++ class browser source scanners.
Profiler prof, gprof, pixie
Compare diff
Help HyperHelp
DEC FUSE shell sh, csh, ksh, …

8 Digital Technical Journal Vol. 7 No. 2 1995

Fi
g

u
re

 1

D
E

C
 F

U
SE

 C
1

1
C

la
ss

 B
ro

w
se

r,
B

ui
ld

er
, C

od
e

M
an

ag
er

, a
nd

 P
ro

fil
er

names match a regular expression. Queries can be
constrained by declaration types and locations
among other things.

■ The call graph browser graphically displays the
call relationships within a program. Relationships
between functions, source files, and source direc-
tories can be shown. The user can constrain the
display to selected parts of the program.

■ The C11 class browser displays the C11-class
hierarchy graphically. Inheritance paths and
detailed information about each member and class
can be displayed.

■ Editors include the DEC FUSE text editor, emacs,
and vi. The DEC FUSE and emacs editors allow
other DEC FUSE tools to supply annotations
on source text lines of interest. In addition, other
DEC FUSE tools can be invoked from the editor,
including the builder, the code manager, and the
man page browser. The DEC FUSE emacs editor is
a standard emacs, with additional keys defined for
DEC FUSE functions.

■ The help tool works with the HyperHelp tool from
Bristol Technology, Inc. to display on-line help and
training.

■ The DEC FUSE shell supplies a terminal emulator
window running a standard UNIX shell in the
context of the user’s DEC FUSE development
environment.

In addition to the tools listed above, DEC FUSE
includes a control panel tool that starts tools and
manages their environment.

Using the DEC FUSE Tools Together
The messaging mechanism allows each of the tools to
make selected operations available to other tools. For
example, the editor makes its ability to open and dis-
play a source file and to position to a specific line avail-
able to the other DEC FUSE tools through messages.
The man page browser accepts a message that causes it
to display a manual page for a specified topic. The fol-
lowing scenario, summarized in Figure 2, shows how
messaging ties together DEC FUSE tools into an inte-
grated environment.

1. To locate places in an application that need to be
changed, the developer starts the DEC FUSE
search tool and looks through C source files for
occurrences of a particular name. The files and lines
containing a match are displayed in the search tool.
By double-clicking on a line, the corresponding file
is loaded into the DEC FUSE editor, and the line is
displayed with an annotation that the search tool
provided the location. (The search tool is used in
this scenario, but the cross-referencer can also be
used to do this task.)

2. After inspecting the source, the user decides to
modify the code, but must first check it out using
rcs. By choosing the “check out” menu item in the
editor, the user starts the DEC FUSE code man-
ager, which shows the user the revision being
checked out and allows the user to browse the
library before confirming the check-out operation.

3. The code manager sends a message to the editor
telling it to load the file to ensure that the user is
editing the latest version.

4. The user edits the file and then starts a compilation
using the “compile file” menu item in the editor.
This starts the DEC FUSE builder, which runs
make and displays compiler diagnostics.

5. By double-clicking on a diagnostic, the user gets
back into the editor on the line containing the error.

The messaging mechanism allows for automated
switching between the tools. Information is passed
between the tools, thus eliminating retyping or cut-
ting and pasting. Other features also contribute to the
feeling of an integrated environment in DEC FUSE.
These include consistent GUIs for all tools, global
preference setting, saving and restoring of state infor-
mation, and centralized help and training. However, it
is the messaging that ties tools together, making DEC
FUSE an integrated environment rather than a simple
collection of tools.

We have now examined the features of integrated
software development environments in general and
the DEC FUSE environment as an example of these
environments. In the next two sections, we examine
two important aspects of the design of DEC FUSE.
First, we discuss the mechanisms used to add graphical
interfaces to existing UNIX commands. Then we pre-
sent the design of DEC FUSE messaging.

Digital Technical Journal Vol. 7 No. 2 1995 9

EDITOR

CODE

MANAGER

rcs

SEARCH

grep

BUILDER

make

1. POSITION

 TO LINE

4. COMPILE

 FILE

2. CHECK

 OUT FILE

3. OPEN FILE

5. POSITION

 TO LINE

Figure 2
DEC FUSE Tool Communications

Building Graphical Interfaces for Existing
UNIX Commands

Most DEC FUSE tools consist of a graphical program
that provides a point-and-click interface for invoking
UNIX commands. This program interprets the results
from the execution of the commands and presents
these results graphically. This approach has several
advantages over building a completely new tool.
These are examined in this section, along with the
implementation techniques used.

Rationale for Building a Graphical Interface for
Existing Commands
Using an existing command to perform functions
needed by a new command is a technique that is often
used on UNIX systems. DEC FUSE tools use existing
commands for the following reasons:

User Investment Protection Two types of investments
must be made in software development environments.
One investment is training: software developers have
learned the concepts and capabilities of the underlying
tools. Since the graphical interfaces of an integrated
environment are built on tools that are familiar to
users, they can be learned in considerably less time.
For example, the concept of revisions, the semantics of
revision numbers, and the capabilities of rcs are the
same whether rcs is invoked from the command line or
selected from the DEC FUSE code manager.

Second, a project may have invested in procedures
and software that depend on project tools such as
make and sccs. Users often use many makefiles that
have been tailored to meet the needs of their project.
Likewise, most projects use sccs and rcs in ways that
must be supported by scripts. By building the code
manager and builder on the existing rcs, sccs, and make
utilities, this investment is preserved. (The DEC FUSE
code manager provides mechanisms to support user-
written scripts used in combination with sccs and rcs.)

Easier to Invoke Operations Although the UNIX
command line environment is extremely flexible, most
users find themselves frequently referring to reference
pages to check command syntax and option flags. By
replacing commands with menu items and buttons
and by replacing flags with toggle buttons and fill-in-
the-blank dialog boxes, users interact with the tools
faster with less typing and less browsing through refer-
ence pages. This is especially true for novices who have
not defined their own collection of aliases and scripts.

For example, searching all the header files in a direc-
tory hierarchy for the occurrence of a string requires
a command like the following:

find /usr/include -name “*.h”
-exec grep -i FLT_M {} /dev/null \;

This is a typical example of a command that a software
developer might need to use from time to time. The
command would be entered on one line. A first-time
user, however, might not correctly input all the details
of the command for the following reasons:

■ The “*.h” designation includes quotation marks so
that it is not immediately expanded by the shell in
the user’s current directory, but instead expanded
by find in all the subdirectories in the /usr/include
tree.

■ If the search is to be case-insensitive, the -i switch
must be used with the grep command.

■ The grep command supplies the name of the file
where the string is found only if more than one
file is supplied in the grep argument list. /dev/null
is added to make grep include the file names in
the output.

■ The find command requires that subcommands
that it will execute be terminated with a semicolon.
Because a semicolon is also recognized by the shell,
it must be preceded with a backslash (escaped),
so that find will see it.

To do the same operation from the DEC FUSE search
tool, the user fills in some fields and sets a toggle (see
Figure 3). This can be done easily and correctly the
first time by both novice and experienced UNIX users.

10 Digital Technical Journal Vol. 7 No. 2 1995

Figure 3
DEC FUSE Search Tool

When the user spots an interesting occurrence in
the output from a grep command and wants to edit
the file, a command line interface requires the user to
enter the command to edit the file and to type the file
name and line number. Using the DEC FUSE search
interface, the user double-clicks on the interesting line
in the search tool and the editor automatically loads
the file and sets the position to the desired line, saving
typing and eliminating the possibility of errors.

Hiding Details Another advantage of graphical inter-
faces on underlying commands is the ability to hide
details of particular commands. For example, the DEC
FUSE code manager supports both sccs and rcs with the
same graphical interface. A user does not need to know
the differences between rcs and sccs; by using the
graphical interfaces, the user can see similar version his-
tory information from either underlying library format.

Graphical Presentation One advantage of a work-
station is its ability to present information graphically.

A GUI layered on a command line tool can analyze the
output of the tool and present it to the user graphi-
cally, making the information in the output easier to
understand.

An example of this is the dependency graph in
the DEC FUSE builder, as shown in Figure 4. The
graph displays the build dependencies for the user’s
application as specified explicitly or implicitly in the
application’s makefile. This display is an analysis and
presentation of the output provided by make when
run with options that produce debugging information
about makefiles. Nodes designated orange in the
graph represent the files that have changed. Nodes
designated red in the graph represent the files that
need to be rebuilt because of their dependency on the
changed files.

Another example of using the graphical capabilities
of the workstation is the DEC FUSE compare tool,
which is built on the UNIX diff utility. The output of
the UNIX diff utility is textual; an example is shown in
Figure 5. In contrast, Figure 6 shows how the DEC

Digital Technical Journal Vol. 7 No. 2 1995 11

Figure 4
DEC FUSE Builder Tool with Dependency Graph

12 Digital Technical Journal Vol. 7 No. 2 1995

Figure 5
Sample diff Output

csh# diff file1.txt file2.txt
5,9d4
< These are lines that are only in file1.
< These are lines that are only in file1.
< These are lines that are only in file1.
< These are lines that are only in file1.
< These are lines that are only in file1.
11a7,10
> These are lines that are only in file2.
> These are lines that are only in file2.
> These are lines that are only in file2.
> These are lines that are only in file2.
14,17c13,16
< These are lines that are different in file1.
< These are lines that are different in file1.
< These are lines that are different in file1.
< These are lines that are different in file1.

> These are lines that are different in file2.
> These are lines that are different in file2.
> These are lines that are different in file2.
> These are lines that are different in file2.

Figure 6
DEC FUSE Compare Tool

FUSE compare utility displays these differences graph-
ically, using highlighting to indicate the differences
and shapes to connect regions in the two files that
relate. The display allows differences to be viewed in
the context of the lines before and after them and the
lines that correspond to them in the other file.

Reduced Tool Development Work An obvious advan-
tage for the developers of the interface is that building
on a command line tool may involve considerably
less work than designing and implementing a new
tool that includes all the capabilities of the command
line tool. Furthermore, not every capability needs to
be provided through the user interface of the tool,
because users have access to less-used capabilities
through the command line. For example, the seldom-
used administrative features of sccs and rcs can be omit-
ted from the user interface. Thus, with a minimum
amount of effort, it is possible to provide a convenient
interface to the most important underlying capabilities.

Managing Command Interfaces
It is common on UNIX systems to use the output of
one tool as input to another. In the case of DEC
FUSE, the output of command-line tools is being used
as input to DEC FUSE tools. The DEC FUSE tools
construct commands and pass them to a separate
process for execution. The results of these commands
are then interpreted by the DEC FUSE tools so that
desired information can be presented to the user. The
methods used to issue commands and to analyze their
results vary from one DEC FUSE tool to another.

One method used by DEC FUSE tools is to directly
issue commands using the popen library function,
which both starts execution of the command and
creates a pipe to the process running the command.
This is done by tools like the man page browser and
search. Output from the man or grep commands
that they issue is parsed by the DEC FUSE tool, often
using a simple mechanism such as the standard C
library function fscanf, which applies a format string
to a line to parse it. Some tools also make use of lex
with or without yacc to aid in parsing the output of
the commands.12,13

Other tools use PMAT (pattern matching) routines
for examining command output for desired patterns.
The PMAT functions were developed by Steven Reiss
as part of the FIELD environment. They are used in
FIELD both for managing messaging as well as for
interpreting the output of UNIX commands. For DEC
FUSE interfaces to UNIX commands, the patterns
used by the PMAT routines are organized in tables.
Portions of two of these tables are shown in Figure 7.
These examples are for the output of gnumake and
a make program supplied with Digital UNIX.14 For
this analysis, there are two significant parts of each

pattern table entry: a text pattern that may be found
in the command output, and the name of a routine
to be called if the associated pattern is found. For
example, when the error message “Failed to remake
target file ‘%1s’” is recognized, the function named
make_giving_up is called with arguments that match
specifications in the pattern string.

Additional values from the table (omitted in the fig-
ure) are also passed as arguments to the routine. The
string ‘%1s’ in the pattern is similar to the conversion
specifications used by scanf. It represents a field in the
output that will be passed to the recognition routine
when a pattern is recognized. Some of the field specifi-
cation characters used are given in Table 2. The num-
ber preceding most field specification characters tells
the pattern match what position this field should hold
in the argument list passed to the recognition routine.
When there is no number with a field specification
character, that field is not passed to the recognition
routine.

Choosing the Appropriate Command
Interface Method
The DEC FUSE product was designed to be portable
across several hardware platforms and many operating
system versions. DEC FUSE was developed on the
ULTRIX system and has been ported to SunOS, AIX,
HP-UX, and Digital UNIX operating systems. It was
released to customers on all these platforms, except
AIX. Since portability across platforms and versions
is a goal, interfaces for different command implemen-
tations and versions need to be considered. The choice
of interface method is made based on the complexity
of the interface (the number of commands and
expected responses), the number of different inter-
faces needed because of system differences, and the
rate at which the interfaces are evolving.

Most common UNIX commands, such as grep, man,
and diff, have regular output that seldom changes. The
versions of these commands on the desired platforms
and operating systems have few differences, so it is not
difficult to write portable code that can issue these
commands and interpret the output using the lex, yacc,
or the scanf functions.

In cases in which the output is less regular and varies
across commands and platforms, the PMAT facilities
are more appropriate. This includes the DEC FUSE
builder, which must support several different make
programs on the supported platforms. The PMAT
facilities allow for interpreting a large number of dif-
ferent format lines and for selecting tables of patterns
appropriate to the underlying command. This makes it
easier for the builder to accommodate a variety of
make programs and interpret both output from make
and output from compilers.

Digital Technical Journal Vol. 7 No. 2 1995 13

Table 2
Some PMAT Field Specification Characters

Field
Character Data Type

d Decimal number
x Hexadecimal number
c A single character
s A string, delimited by white space
q A string, delimited by quotation marks
r A string, from the current location to

the end of the line
e,f,g Floating-point numbers

The tool with the most complex command interface
is the debugger. The debugger shares the following
issues with other tools, but demonstrates them most
forcefully:

1. Debuggers are big and complex. Debuggers are
more complex than the commands used in other
DEC FUSE tools. Each debugger engine accepts
many commands, all of which have their own out-
put that must be parsed. The debugger engine also
continues to run while the user works. Unlike most
other tools, the debugger engine is not restarted
every time the user wants more information, so the
debugger process must be managed over a long
period of time.

2. Debuggers are evolving more quickly. Debuggers
frequently change to support new needs (for exam-
ple, new languages like C11, threads, or hardware
architectures), so new debugger commands or new
output from old commands can be expected often.

3. Synchronizing the front end and the debugger
engine is a complex task. The graphical front end

14 Digital Technical Journal Vol. 7 No. 2 1995

Figure 7
make PMAT Patterns

/****** Pattern table for gnu make ******/
static MAKE_PAT gnu_pattern_table[] = {

{”Reading makefiles...“, gnuscan_makefile, ...},
{”Considering target file‘%1s’“, gnuscan_consider, ...},
{”Found an implicit rule for‘%1s’“, gnuscan_flags, ...},
{”Updating goal targets....“, gnuscan_makefile, ...},
{”File‘%1s’ was considered already“, gnuscan_done, ...},
{”Must remake target ‘%1s’“, gnuscan_flags, ...},
{”Failed to remake target file‘%1s’“, make_giving_up, ...},
{”No need to remake target ‘%1s’“, gnuscan_flags, ...},
{”# Files“, gnuscan_files, ...},
{”# Not a target:“, gnuscan_notarget, ...},
{”# commands to execute“, gnuscan_setrules, ...},
{”# Phony target“, gnuscan_defflags, ...},
{”# Precious file“, gnuscan_defflags, ...},
{”# VPATH Search Paths“, gnuscan_files, ...},
{”# gnumake: Entering directory‘%1s’“, gnuscan_proj, ...},
{”# gnumake: Leaving directory‘%1s’“, gnuscan_proj, ...},
{”%1s: %2r“, gnuscan_def, ...},
{”%1s:“, gnuscan_def, ...},
....

};

/****** Pattern table for dec make ******/
static MAKE_PAT dec_pattern_table[] = {

{”doname(%1s,%2d)“, decscan_consider, ...},
{”setvar: @ = %1s noreset“, decscan_flags, ...},
{”setvar: ? = %1r“, decscan_flags, ...},
{”! = %1r“, decscan_adjust, ...},
{”look for explicit deps. %1d“, decscan_flags, ...},
{”look for implicit rules. %1d“, decscan_flags, ...},
{”Current working directory for make is %1s“,

decscan_proj, ...},
{”%1s: %2r“, makescan_def, ...},
{”%1s:“, makescan_def, ...},
{”Reading %1s“, decscan_makefile, ...},
.....

};

must remain synchronized with the debugger
engine it is running. Preserving this synchroniza-
tion is made more difficult for three reasons. First,
users can enter debugger commands directly as
text, making it difficult for the front end to deter-
mine their effect. These commands may require
updates to the graphical displays or the internal
state information used by the front end. Second,
the debugger may not be in a state where it can
accept commands (when the user program is run-
ning for example), so the front end cannot update
displays. Third, spontaneous and unexpected
debugger engine output may occur as the result of
traces or certain breakpoints.

4. Different debuggers use different commands.
Commands on different debuggers can be different
in both name and design. For example, with the
dbx debugger available on SunOS, AIX, and Digital
UNIX, the commands func and file can be used to
find the currently active function and the name of
the source file where that function is defined. The
xdb debugger used on HP-UX, however, uses the L
command to present both the current function and
the name of the file where it is defined, as well as to
display the current source code line.

5. The same debugger commands have different out-
put. Other commands, although similar in name
and design, can produce output that is different
enough to cause problems. One example is the
where command used in dbx on both Digital UNIX
and SunOS platforms. This command returns the
current stack information. The Digital version
includes a pointer character (.) to show which
stack entry is the current scope; however, the
SunOS version does not supply this scope informa-
tion. Therefore, a debugger GUI program must be
carefully designed to get needed scope information
if it must support both debugger engines.

6. The output of some debugger commands is com-
plex, and the results of some debugger commands
are difficult to parse. For example, in the display of
the content of a data structure, the format of the
output will vary depending on the source language
used in the application.

Experiences with DEC FUSE suggest that there is
no easy solution. Addressing these issues results in
many specialized routines in the DEC FUSE debugger
tool to both construct debugger commands and inter-
pret the results. Techniques that help to make the
problems more manageable include the following:

■ Cleanly separate generic-GUI and command-
specific code. The design of the debugger GUI
identifies the operations that it requires of the

debugger engine and the data that it must get from
the engine. These are provided by a set of functions
whose implementation will vary from one engine to
another. These functions will be modified over time
to accommodate the evolution of the engines.
Another method being designed now is to use
C11 classes to encapsulate code for each sup-
ported debugger engine.

■ Limit the details that the GUI depends on. One
way to limit the dependency of the GUI on the
details of the engine is to provide GUI support for
only the most frequently used debugger opera-
tions, while providing a command interface for the
remaining operations. Another technique is to
avoid interpreting the output of the engine when
possible and simply display the output of the com-
mand in a text window.

■ Implement special interface commands in the
engine. When it is possible to change the underly-
ing debugger, special commands and output can be
implemented by the debugger designed exclusively
for use by the GUI front end. For example, the
DECladebug debugger engine has been modified
with the introduction of two new commands for
use by the graphical interface that simplify the task
of displaying data structures in the GUI. Although
other commands display data structures for the
user, the format of the output of these commands is
designed to be easily interpreted by the GUI. These
commands are designed for the exclusive use of the
GUI. They need not be changed for the user, for
example, to improve readability; thus the evolution
is controlled.

Fortunately, most UNIX tools are not as complex as
the debugger. In fact, building a GUI for commands
with output that seldom changes and is consistent
across implementations is a straightforward task.

Using Messaging to Make Independent Tools
Work Together

As described earlier, each DEC FUSE tool focuses on
a single, separate software development task. This
design philosophy, sometimes called “divide and con-
quer,” combined with the DEC FUSE multicast mes-
saging system (MCMS) makes it easier to maintain or
replace tools. DEC FUSE tools can therefore be easily
replaced with alternative tools that provide the same
function.

MCMS is the key to making independent tools work
together. Any message sent by a tool is delivered to all
tools that express an interest in receiving the message.
Some messages, called notifications, are defined to
have no response. Other messages, called requests,

Digital Technical Journal Vol. 7 No. 2 1995 15

have responses for which the sending tool usually waits.
A tool can also eavesdrop on requests that will be han-
dled by other tools. A DEC FUSE component called
the DEC FUSE message server keeps track of the active
tools and which messages each can send and receive.

Messaging with MCMS
Messages used by tools are easily defined in a TIL file,
written in the DEC FUSE tool integration language.
An example is the manager.til file used by the DEC
FUSE code manager. Part of manager.til is shown in
Figure 8. Each TIL file can define one or more tool
classes. Each class definition describes how a single
DEC FUSE tool will be integrated with the rest of
DEC FUSE. A class definition contains three parts:

1. Attributes: This is a collection of tool attributes
such as the string to be used in the DEC FUSE tools
menu and the command to invoke the tool.

2. Messages: This section lists definitions for all mes-
sages sent and received by the tool, including their
arguments and return values. Messages that have
return values defined are called requests, and the
returned value is expected by both the message
switch and the tool that sent the request. Messages
with no return value (the type is void) are called
notifications. The keyword trigger is used if the
message should automatically start the tool.

3. States: This section describes when each message
may be used during the execution of the tool. This
section defines one or more states in which the tool

16 Digital Technical Journal Vol. 7 No. 2 1995

Figure 8
DEC FUSE Tool Integration Language File

class MANAGER = {
Attributes {

label = “Code Manager”;
accel = “Meta+M”;
path = “$(FUSE_SH_BIN)/manager”;
.... };

Messages {
/* messages accepted by the FUSE code manager */
char *ToolReconfigure(char *working_directory,

char *target_directory, char *target, char *other);

trigger char *CheckIn (char *libraryname, char *filename,
char *revision, char *comment, int keepfile,
int filemode);

....

/* messages sent by the FUSE code manager */
void CheckInNotification (int instance_id,

char *libraryname, char *workdir, char *filename,
char *revision, int status);

.... };

States {
start {

receives {
ToolReconfigure,
.... };
sends {
.... };

};
running {

receives {
ToolReconfigure,
CheckIn,
CheckOut,
.... };
sends {
ToolReconfigure,
CheckInNotification,
.... };

}; }; };

may exist. Tools can change their state, and within
each state only the listed messages may be used.
Most DEC FUSE tools need only two states: an
initialization or start state used during tool start-up
and a running state. Other states may be needed by
some tools. For example, the builder uses a build-
ing state to advise the message server that a build
is in progress and that some requests (like another
build request) are not allowed.
A TIL compiler translates the TIL files of DEC

FUSE tools into the data files needed to run DEC
FUSE. Figure 9 summarizes how the files generated
by the TIL compiler for a DEC FUSE tool (named
fuse_tool) fit into the architecture of DEC FUSE.

The TIL compiler combines information from the
fuse_tool TIL file with TIL files for tools already
installed on a system. The TIL compiler generates
three files:

1. fuseschema.msl – This file tells the message server
which tools wish to receive which messages.

2. tools.rc – This file tells the control panel how to
start each tool. Tools may be started in response
to a trigger message or manually from the Tools
menu found in each DEC FUSE tool.

3. FUSE_fuse_tool.c – This file contains functions for
each of the messages that the tool wishes to send.
This file is compiled and linked with fuse_tool
along with libfuse.a. Messages are sent by simply
calling these functions. This file also contains an ini-
tialization function in which callback functions for
messages that the tool receives are registered.

The use of the TIL compiler in DEC FUSE provides
a mechanism similar to a remote procedure call facility.

This allows tools to send a message using a single func-
tion call. This contrasts with the messaging mecha-
nisms used in the HP SoftBench and Sun SPARCworks
products, which require a number of calls to the mes-
saging application programming interface (API) to
allocate, assemble, send, and free a message. These
mechanisms also require tools to assemble and register
patterns corresponding to the messages that they want
to receive, a function handled by the initialization func-
tion in the C source file generated by the TIL compiler.

To simplify the task of integrating tools, DEC FUSE
also supplies a DEC FUSE message monitor. This tool
monitors and debugs messages sent by tools and pro-
vides a mechanism for integrating shell scripts as tools
that can send and receive messages.

Simplified Tool Replacement
MCMS does not require the user to specify the tool
that does the work. When a tool sends a message using
MCMS, it does not specify what tool should service
the message. This allows for replacement of the tool
that services the messages with an equivalent tool,
without making any change to the sender. This mech-
anism is used in DEC FUSE to allow users to select
which of three editors they want to use and whether
they want to use a GUI debugger based on dbx or
DECladebug.

This mechanism also facilitates upgrading the DEC
FUSE environment. Recently, the Motif help widget
in DEC FUSE was replaced with the HyperHelp tool.
The replacement was facilitated by continuing to use
the existing messages. This isolated all changes to the
DEC FUSE help tool. The help tool continues to
receive messages of the form

Digital Technical Journal Vol. 7 No. 2 1995 17

TIL

COMPILER

SYSTEM

TIL FILES

fuse_tool TIL

FUSE_fuse_tool.c

libfuse.a

fuse_tool.c

cc

fuseschema.msl

MESSAGE

SERVER

fuse_tool

TIL C-CODE

libfuse.a

CONTROL PANEL

TIL C-CODE

libfuse.a

MESSAGES

tools.rc

MESSAGES

Figure 9
Use of TIL-generated Files in the DEC FUSE Architecture

trigger void HelpShowTopic(char *product,
char *mode,
char *topic);

In the previous version, the message argument, topic,
was a string that identified what kind of help was
desired. The new help tool uses numbers instead of
names to identify help topics. Consequently, a simple
mechanism was designed to translate the strings
received in the HelpShowTopic messages to the
desired HyperHelp topic number.

Conclusion

DEC FUSE provides an integrated programming envi-
ronment for UNIX software development that takes
advantage of the graphical capabilities of workstations.
Two key techniques are used to implement DEC
FUSE:

■ The layering of GUIs on existing UNIX command
line tools

■ A multicast messaging mechanism that permits
tools to interoperate without limiting the environ-
ment to specific tools

The GUIs provide point-and-click interfaces for
invoking operations and specifying options and use
pictures and diagrams in addition to text to display
information. At the same time, the use of traditional
UNIX commands to perform programming tasks pre-
serves the user’s investments in those underlying tools.

The GUIs interpret the output of UNIX commands
and present the information in pictorial and interactive
displays. A variety of techniques can be used to process
the output of a command line tool, depending on the
complexity of the tool output. Simple text-processing
techniques are usually adequate for interpreting the
output of command line tools. When the underlying
tool output is syntactically complex or evolving, or
when considerable state information is frequently
needed from the underlying tool, it becomes difficult
to apply these techniques. Under these conditions,
designs that avoid the processing of human readable
output are preferred.

The use of messaging is consistent with the UNIX
philosophy of creating simple tools and letting the
user combine them in any way that might be useful.
The messaging mechanism ties the individual tools
together into an integrated environment by allowing
tools to invoke operations in other tools on the user’s
behalf. This eliminates steps for the user, and it also
eliminates the potential for errors. Because the tools
are still autonomous and interface solely by means of
the messaging, equivalent tools that accept the same
messages can be substituted, allowing for user and
project preferences.

Acknowledgments

We would like to thank the many past and present
members of the DEC FUSE team who contributed to
the design and implementation of the DEC FUSE
product. We also want to acknowledge the work on
FIELD done at Brown University by Steven P. Reiss
and his students that laid the groundwork for DEC
FUSE and other software development environments.

References

1. B. Kernighan and R. Pike, The UNIX Programming
Environment (Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1984).

2. R. Stallman, GNU Emacs Manual (Cambridge, Mass.:
Free Software Foundation, 1988).

3. R. Scheifler and J. Gettys, “The X Window System,”
ACM Transactions on Graphics, vol. 5, no. 2 (April
1986).

4. DEC FUSE Handbook (Maynard, Mass.: Digital Equip-
ment Corporation, Order No. AA-Q8ZMA-TE, 1994).

5. DEC FUSE EnCASE Manual (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-Q8ZPA-TE,
1994).

6. M. Cagan, “The HP SoftBench Environment: An
Architecture for a New Generation of Software Tools,”
Hewlett-Packard Journal (June 1990): 36–47.

7. Common Desktop Environment: Getting Started
Using ToolTalk Messaging (Mountain View, Calif.:
Sun Microsystems, Inc., 1994).

8. S. Reiss, The Field Programming Environment:
A Friendly Integrated Environment for Learning
and Development (Boston: Kluwer Academic Pub-
lishers, 1995).

9. S. Reiss, “Interacting with the FIELD Environment,”
Software —Practise and Experience, vol. 20 (June
1990): 89–115.

10. S. Reiss, “Connecting Tools Using Message Passing in
the Field Environment,” IEEE Software, July 1990:
57–66.

11. D. Zaremba, “Adding a Data Visualization Tool to
DEC FUSE,” Digital Technical Journal, vol. 7, no. 2
(1995, this issue): 20–33.

12. M. Lesk and E. Schmidt, “Lex—A Lexical Analyzer
Generator,” Computer Science Technical Report
No. 39 (Murray Hill, N.J.: Bell Laboratories, 1975).

13. S. C. Johnson, “Yacc: Yet Another Compiler-
Compiler” (Murray Hill, N.J.: Bell Laboratories).

14. R. Stallman and R. McGrath, GNU Make—A Pro-
gram for Directing Recompilation (Cambridge,
Mass.: Free Software Foundation, 1993).

18 Digital Technical Journal Vol. 7 No. 2 1995

Digital Technical Journal Vol. 7 No. 2 1995 19

Richard O. Hart
Rich Hart joined Digital in 1980 and is currently a member
of the FUSE Group. Prior to his work on the DEC FUSE
programming environment, Rich was a member of UEG
(ULTRIX Engineering Group) and led the first version of
the Palladium distributed printing project at MIT’s Project
Athena. As one of Digital’s representatives to the X/Open,
POSIX, and ANSI standards groups, Rich has contributed
to the development of software standards for transaction
processing, printing, and CASE environments. He earned
a Ph.D. from the University of Connecticut and is a mem-
ber of ACM and IEEE.

Biographies

Glenn Lupton
Glenn Lupton is a consulting software engineer and
has been with Digital for 20 years. During this time,
he has worked primarily on programming environments
and tools, including Bliss compilers and DECset. For the
last two years, he has been the technical director of the
DEC FUSE project with responsibility for the overall tech-
nical content of DEC FUSE. Glenn received B.S.E.E. and
M.E.E.E. degrees from Rensselaer Polytechnic Institute.

