
In January 1993, Digital began research on a tool for
visualizing large sets of data. The design of the Data
Visualizer tool was complete in March 1995, and the
tool is scheduled for inclusion with the next major ver-
sion of the DEC FUSE software. DEC FUSE is a pro-
gramming environment for UNIX that provides an
integrated suite of graphically oriented tools built on
the commonly used UNIX programming tools. For
more information on the DEC FUSE environment,
see the paper “DEC FUSE: Building a Graphical
Software Development Environment from UNIX
Tools” in this issue.1

In this paper, we focus on the technology that was
used in the data visualization tool and the process by
which this tool was taken from an advanced develop-
ment project to become a part of an existing product.
We start with a discussion of the problems encoun-
tered when visualizing large sets of data, the various
graphical techniques that are used to solve these prob-
lems, and the implementation of these techniques in 
a demonstration tool. We then describe the design of
the final tool, its evolution from the prototype into a
product, and its integration with the other DEC FUSE
tools. We then give a functional overview of the tool
and scenarios of how it can be used. We conclude with
comments on the process from advanced development
work into final product. 

Development of a Data Visualization Tool

Software development of even a moderately sized
project typically involves working with many files and
hundreds of thousands of lines of source code.
Working with so much data in so many files is difficult
because most software tools are written to work on a
single file at a time (like a compiler or an editor). Those
tools that do operate on multiple files (like a grep tool
used with wildcards) produce a stream of output that
can be large and that can only be associated with the
source code by identifying a line number or by display-
ing a single line of source in context. Although these
tools do provide the requested answer, they provide lit-
tle of the context that would help the user see how this
answer relates to the source code or how it would relate

Digital’s Data Visualizer tool uses condensed 
file views to display thousands of lines of source
code. These displays can include the output 
of many other tools. As part of the DEC FUSE
programming environment, the tool helps soft-
ware developers by providing capabilities for
displaying large bodies of text with associated
events or statistics. The Data Visualizer tool
combines the results of other tools into a single
display, keeps track of work items, and scales 
up to support large software projects. 

20 Digital Technical Journal Vol. 7 No. 2 1995

Adding a Data
Visualization Tool 
to DEC FUSE 

Donald A. Zaremba 



to other answers. It is often hard to see how these
detailed answers fit into the large picture. 

One technique for solving this problem is to use
computer graphics in the display portion of software
development tools. Graphics are used to display infor-
mation such as build dependencies, cross-reference
data, call tree data, and class hierarchies. 

Unfortunately, when the application becomes large,
the graphic displays become too dense to provide any
real insight into the relationships between the com-
ponents in the application. The screen is simply not
large enough to display all the information. The lay-
out of nodes on a two-dimensional display is often
inadequate to effectively represent the complexity 
of the underlying structure and relationships in the
code. The common use of overlapping windows of
data actually hides data, preventing users from see-
ing important relationships among the windows or
even knowing which windows contain relevant data.
In effect, programmers who must work on today’s
complex software applications are confronted with 

a situation similar to entering a large dark room with a
complicated piece of machinery in it. Current technol-
ogy hands the engineers a penlight and says figure out
what the machine is, how its parts work, and then
make enhancements to it. 

The Data Visualizer tool addresses some of these
problems by providing a condensed view of source
code; the tool is capable of displaying thousands of
lines of code in a single view. This condensed display is
used as a backdrop for showing the output from tools
and how it relates to the source code. Figure 1 is a
sample screen output from the Data Visualizer tool
being used in conjunction with a search tool to find
occurrences of a particular string. This simple example
shows many of the features of the Data Visualizer. The
rendering of each file in the view shows the indenta-
tion of the source code. Source code is colored to
show comments in green, the beginning of functions
or procedures in red, and the actual code in gray. The
sizes of files and functions are readily apparent. The
results of the search inquiry are highlighted. 

Digital Technical Journal Vol. 7 No. 2 1995 21

Figure 1 
Main Window of the Data Visualizer



Graphical Techniques

During the early phases of this work, research was
done to find appropriate graphical techniques. This
section describes in detail three techniques that influ-
enced our design and appear in some form in the Data
Visualizer tool. It also gives references to related work. 

Condensed File View 
One technique that looked promising from the very
beginning was the condensed file representation done
by Stephen Eick in 1993. In his paper “Graphically
Displaying Text,” he describes a program called
SeeSoft that is used to display statistics associated with
lines of text.2,3 He has used this technique to show
statistics about lines of program source code and other
text files, such as text from the Bible or revision history
of text paper. He also uses the technique to analyze
computer log files and describes that work in a sepa-
rate paper.4

The idea behind the SeeSoft program is to create
small pictures of files that reveal information about 
a file in a nontextual manner. The size of the rectangle
is scaled to the number of lines in the file. Each line of
text is shown with the correct indentation and length.
In addition, lines can be color-coded either to reveal
program structure or to highlight some point of inter-
est. As an example, green lines could be used for com-
ments, red lines to indicate the start of each function,
and gray lines for executable code. As can be seen in
Figure 2, the information reveals the size of each file
and some information about the file contents. It is easy
to see where function definitions begin, because the
red lines stand out. Also, the indentation of the code

helps the viewer recognize programming structures
like if then else statements or case statements. 

One of the appeals of this method was the ability to
display many lines of source code. (Eick’s SeeSoft tool
claims to display as many as 50,000 lines of code.)
Programmers can get a clear and complete overview of
their code. From the simple view shown in Figure 2,
with no additional data, we can see the size of each file,
the relative size of individual functions in a file, and the
frequency and distribution of comments. 

Multiple Levels of Details 
We investigated a second technique that seemed
appropriate: the drawing of objects in multiple sizes
and in multiple levels of details. The concept of adjust-
ing the amount of detail presented to the user as a func-
tion of the apparent size of an object is a technique
developed in a unique computer interface model
called Pad.5 Pad provides an infinite two-dimensional
information plane that the user can browse using por-
tals (analogous to magnifying glasses) to zoom into
the data. 

The larger the object, the more details are revealed.
This corresponds to the notion that things that inter-
est us are the ones we bring closest to us; they require
the greatest amount of detail. Those items of lesser
interest are placed in the background and drawn
smaller. As can be seen from the pictures in Figure 3,
as the size of the file increases, more details are shown
about the file. The smallest picture reveals only the
major structural parts of the file; we call this chunk
level. Each chunk is drawn as a colored rectangle and
represents either a group of comments (green), the
start of a function (red), or lines of executable source
code (gray). The next picture shows line-level detail
like that shown in Figure 2, and the last picture shows
each line large enough to be drawn as readable text.
Note also that the largest picture begins to look like 
a text editor and that the scroll bar on the right is a
chunk-level rendering of the file. 

22 Digital Technical Journal Vol. 7 No. 2 1995

Figure 2 
Condensed File View

Figure 3 
Multiple Sizes of Files



Digital Technical Journal Vol. 7 No. 2 1995 23

The Use of the Third Dimension 
We also chose to investigate the use of the third
dimension for ways to better visualize large, dense
graphs. We did not pursue this work for several rea-
sons, which we describe later in this paper. 

We did find a simple use of three-dimensional (3-D)
viewing that was beneficial when trying to visualize
certain types of data. We converted the condensed file
pictures into 3-D views by adding a small side to each
picture. We could use that area to show line-related
data as in Figure 4. This example shows a numeric
value (the blue lines) associated with a line of source
code. The horizontal dotted line is a threshold, and
values that exceed the threshold are drawn in red. 
We use this type of graphic to show source code profil-
ing data, like execution counts and CPU time. Even
though it is a simple drawing, it uses a 3-D effect that
helps the user visually organize a great deal of infor-
mation. It is relatively easy for a user to look at the
front data at one moment and put the side data off
into the background, and then change focus and
examine the side data. The effect is even more notice-
able and useful when many of these 3-D file pictures
appear in the same display. An example of this is given
later in the section on the SoftVis Program. 

The Advanced Development Project

This section describes the advanced development
phase of the project. It discusses the process used, the
software prototypes produced, and the major design
decisions made during this phase. 

The Advanced Development Process at Digital 
The type of work done in Digital’s Advanced
Development Group, working with new technologies
and implementing new ideas, is difficult to do within 

a schedule-constrained product development organi-
zation. Although the goals of advanced development
work may be well specified, only a vague idea of a pos-
sible solution and of the time needed to find the solu-
tion is known. These two facts make it impossible to
schedule advanced development work in a product’s
project plan. At Digital, the Advanced Development
Group is a separate organization that operates outside
the product schedule constraints of other groups. It is
staffed by engineers from the development groups,
who rotate into the Advanced Development Group,
perform their work, and then return to their sponsor-
ing group to transfer the technology into a product. 

The stated goal at the beginning of our project was
to enhance the software browsers available in the 
DEC FUSE product by adapting the results of current
research in visualization techniques. Of particular
interest was the ability to browse large software sys-
tems containing large amounts of source code. We
were also looking for techniques that would provide
new information about source code and new ways of
looking at source code. Our objective was to add fea-
tures to DEC FUSE that were not currently available
in other products. 

The process we used was to research as many dif-
ferent techniques as possible and select those that
appeared most promising for prototyping. The proto-
types gave us experience in the technology and helped
us in our evaluation. We then sought input from our
sponsoring group to determine which prototypes
were feasible to add to the product, and we continued
to develop and refine these. 

Using 3-D Computer Graphics 
At the beginning of the project, we wanted to explore
the 3-D graphics technique. For this research, we used
a DECstation 5000/20 workstation with a 3-D graph-
ics accelerator option installed. The code was written
in C11. We used the Motif standard to build the win-
dows and menu part of the user interface and the pro-
grammers hierarchical interactive graphical standard
(PHIGS) to write the 3-D graphics code. 

We quickly built three demonstration programs to
gain experience in 3-D graphics programming. The
first program was an instrumented C11 class library
that created and destroyed color-coded cubes in 3-D
space as constructors and destructors were called.
Message passing was shown by connections between
the cubes. The z-axis was used for time: the older an
object became, the farther back it would appear on the
z-axis. The second demonstration drew hierarchies in
3-D space and gave the user limited capabilities for
manipulation in 3-D. The third demonstration visual-
ized a C11 class as a cube in 3-D space, with different
sides being assigned different types of data. One sideFigure 4 

3-D File Picture



24 Digital Technical Journal Vol. 7 No. 2 1995

contained a class inheritance graph, another contained
a condensed view of the interface to the class, and the
third side contained a window into the source code of
the class. 

After a short period, for several reasons, we stopped
working with 3-D graphics. We realized that the types
of visualizations we were doing would require 3-D
accelerators on users’ workstations, and we knew that
would not be acceptable. In addition, development of
this technology would take a great deal of time, and
we felt we could make better progress working on
other graphics techniques. 

Early Prototypes 
Having seen the work done by Stephen Eick, we
decided to experiment using his technique. We also
started to think about the concept of building a frame-
work that we could use to build prototypes of different
techniques. Eventually, this evolved into the design we
describe later in this paper. At this time, we also con-
sidered what platform to use. Our sponsoring group
had developed the DEC FUSE product for the UNIX
environment, but other groups were starting to work
on the Windows NT operating system for personal
computers. Since we were interested in learning more
about the Windows programming environment, we
decided to produce code that would work on either
platform and to build prototypes on both platforms.
In hindsight, our decision to support multiple win-
dowing systems was a diversion that did not directly
contribute to the project goals, but it was a valuable
learning experience. 

To achieve cross-window system portability, we
developed a class library that encapsulated parts of the
programming interfaces on the MS Windows system
and the X Window System. We decided to restrict our
class library, collectively referred to as the “ZWindow”
or “ZWIN component,” to encapsulate only the low-
level graphics drawing routines (e.g., line and rectan-
gle) and avoid trying to encapsulate all the graphical
interface components like windows, icons, and menus.
We encapsulated at the level of the graphics device
interface (GDI) on MS Windows and the X library
interface (Xlib) on the X Window System. This
worked well; we achieved portability of our graphics
drawing code, which was our area of concentration.
The fact that we had to do separate implementations
for the remainder of our user interface (that is, the
menus, toolbars, and dialog boxes) was not a hin-
drance since the bulk of our code was still portable. 

Designing the ZWIN interface was fairly straight-
forward. The line and shape drawing routines were
easy to encapsulate because they existed on both plat-
forms. The drawing contexts were different. The MS
Windows system has color pens and brushes to control

drawing attributes; but on the X Window System, all
drawing attributes are defined in a single data struc-
ture, the graphics context (GC). We decided to create
classes for pens and brushes and to handle the X
Window System implementation by encapsulating an
appropriate GC in the pen and brush classes. The
largest class in the ZWIN component was the canvas
class. It encompassed a DrawingArea Widget on the X
Window System and a window on MS Windows. It
had member functions that provided all the drawing
functions available (e.g., line or rectangle), as well as
functions to select the appropriate drawing object
(pen or brush). 

The condensed file view was implemented in two sets
of classes. A set of file-type–dependent scanner classes
was developed to handle the parsing of C, C11, Ada,
makefiles, etc. Once scanned, a single file visualization
class could perform the rendering of the object on the
display. Speed was a concern since we wanted to be
able to visualize an entire directory of files very
quickly. To do this, we wrote a small, efficient scanner
for each type of file that could pick out only the rele-
vant information as quickly as possible. Throughout
our work on all the prototypes and into the final prod-
uct, we found that we could always fill a complete dis-
play without any noticeable delay to the user. 

Figure 5 shows part of the first prototype. It displays
a condensed file view of all the text files in the default
directory. Files were sized to fit within the size of the
window, with an appropriate level of detail shown.
Files could also be individually selected and resized.
Files are shown in the three different levels of detail
described in Figure 3. Most of the files are drawn at
the chunk level and reveal only the relative size and
location of each function in the file. Two of the files
have been enlarged to show line-level details, and one
file has been fully enlarged to be a readable size. 

Later prototypes improved upon the design of this
condensed file view. We also implemented other views
that we thought would be useful. The C11 class view
rendered a condensed picture of a C11 class with its
member functions and data members. It is described
later in this section. 

SoftVis Program 
Throughout the process of creating the first few pro-
totypes, we kept in mind the concept of building a
framework that we could use to speed up the delivery
of new graphical techniques. The SoftVis demonstra-
tion program used that design. Based on a View-
Object-Tool architecture, its concept was that a view
would set the backdrop and style for the display, such
as the condensed file view. We would render objects
into that view style and support many different types
of objects per view. Tools would then be written to



Digital Technical Journal Vol. 7 No. 2 1995 25

interact with the objects in the view. Our objective was
to develop a “plug-and-play” architecture that sup-
ported the following: 

■ View 
– Condensed file view 
– Condensed file 3-D view 
– C11 class view 

■ Object 
– C11 source code 
– C source 
– Ada source 
– .o (object files) 
– .a (library files) 
– executable files 

■ Tool 
– Magnify tool 
– Probe tool 
– Cross-reference tool 
– Search tool 
– IF-DEF lens tool 

The goal was to be able to create a view containing all
the files in a directory and displaying an appropriate
visualization for each of the file types (either a text file
or a binary file), and to enable the tools to operate on
all the objects in the view. For example, the magnify
tool would show a readable view of the text in a source
file; however, when used on a binary object file, it
would show information about the size, address, and
type of segments in the file. 

Figure 5
First Demonstration Program



Figures 6 and 7 are screen captures from the proto-
type. Figure 6 shows a cross-reference tool being used
on C11 source files. The list box shows functions from
all the source programs, and the highlighted function
color-coded lines point to where that function is first
declared, implemented, and called. Figure 7 shows the
magnify tool used in the 3-D file view to show source
code details and profiling data. In this case, the profiling
data is a mock-up of line execution counts; the real tool
will use this space to report actual data. 

Figure 8, also a screen shot from the prototype,
shows the C11 class view. This view uses a condensed
representation of a C11 class. Each line in the class
corresponds to either a member function or a data
attribute of the class. These are grouped together as
public, protected, and private members. Member
functions are shown in red; data elements are shown in
blue. Inheritance is shown by connected arcs. 

SoftVis Design 
The system is divided into several components. Each
component can be built separately; has its own make-
file; and, in most cases, its own test programs. Table 1
gives an overview of these components and their rela-
tive sizes as of the latest base level. 

The SoftVis design begins by supporting the desired
prototype architecture of View-Object-Tool. A com-
ponent was developed for each of these; it contained 
a base class, derived classes, and supporting classes. 

From Advanced Development to End Product

This section describes the effort required to turn parts
of the final advanced development prototype into 
a product-quality tool for release with DEC FUSE. 

Finding a Place for the Work 
At the conclusion of the advanced development proj-
ect, we returned to our sponsoring group and
attempted to introduce the data visualization technol-
ogy into the product. A number of obstacles had to be
overcome: The SoftVis program was written in C11,
and DEC FUSE had been written almost entirely in C.
The requirements for the next release of DEC FUSE
had been gathered, and the goals were set. Where
exactly would the new data visualization technology fit
into the DEC FUSE product set? 

At first we tried to build a class of reusable software
components that DEC FUSE tools could use to incor-
porate the new technology. This would be a set of
Motif widgets that encompassed the techniques pro-
totyped in the SoftVis program. Although progress
was made on building the widgets, no progress was
made incorporating these into any of the DEC FUSE
tools. Their incorporation would have required major
changes to the user interfaces of these tools, and it was
not clear that the benefits would justify these changes. 

In hindsight, we realize that the plug-and-play
design we used for the prototype did not match the
DEC FUSE design of loosely coupled separate tools
that passed data by means of simple messages.
Although the plug-and-play approach made it easy to
add new components into the model, its tightly cou-
pled design made it difficult for us to take parts of that
design and use them in the DEC FUSE product. 

The proposal that was finally accepted was to develop
a new, separate tool, called the Data Visualizer, that

26 Digital Technical Journal Vol. 7 No. 2 1995

Figure 6 
Demonstration of the Cross-reference Tool

Figure 7 
Demonstration of the 3-D View with Profiling Data



Digital Technical Journal Vol. 7 No. 2 1995 27

Figure 8 
Demonstration of the C++ Class View 

Table 1 
Components in the Prototype Design 

Lines 
Component Description of Code Classes 

VO Base classes, voObject, and voEditor. Also, voFile class and other classes 5,000 10 
derived from voObject. Implements features for selecting, moving, 
resizing, and drawing objects. 

TOOL Base tool class, voTool, and classes derived from it. Includes voLens, 2,500 10 
voProbe, voMagTool, and voXRefTool. 

VIEW The vBaseView class is derived from voEditor. The three main views 2,400 4 
of the tool are then derived from vBaseView. The main views are 
vFileView, vFile3dView, and vClassView. This component also contains 
executable test programs for each view. 

SDM The software data model component contains the language-specific 4,500 15 
scanners and parsers. The base class AnnotatedFile is used by text 
and binary files. 

ZWIN Portable graphics interface. A single class interface for windowing and 11,000 30 
drawing functions is provided. Two separate implementations of the 
interface exist, one for MS Windows and one for the X Window System. 

UTIL Various miscellaneous classes for data structures, file access, etc. It also 3,300 12 
contains an interface to some common operating-system–dependent 
routines. 

Total 28,700 81 



would build upon our advanced development work.
Building a separate tool had a number of advantages:
We could develop a data visualization tool apart from
the other DEC FUSE tools. We could implement it in
C11 and thus use some of the design from the
SoftVis tool, if not the code. The impact on current
tools was minimal: only small changes to their user
interfaces and an added capability for sending data to
the Data Visualizer were needed. By implementing a
separate tool that receives messages from other tools,
we would be following the style of tool integration
used in the DEC FUSE environment. 

Many changes had to be made to the prototype 
to move this work from advanced development into 
a product. Functions had to be added and removed.
The design was changed in a number of places. Some
changes resulted from the requirement to follow the
tool integration standards for the DEC FUSE product.
Other changes were merely good ideas that came
about once we started the work of integration. 

Data Visualizer Tool 
Two major features were added to integrate the Data
Visualizer tool into the DEC FUSE programming
environment. First, all the data that composed the
view was coming from outside the tool, unlike the
prototype where data for the view was generated inter-
nally by analyzing source files. Now activities per-
formed in other tools would generate this data and
send it to the Data Visualizer. Second, multiple tools
would be sending data that would need to be merged
within the Data Visualizer into a single view. The
remainder of this section summarizes the features in
the Data Visualizer tool. 

The Visualization DataSet File The Visualization DataSet
file is used to pass information to the Data Visualizer
for display. It contains two types of data. Software
component data describes the files, directories,
libraries, and functions to be visualized. Event data
describes the data to be associated with these compo-
nents. The types of events are defined in the file by the
tool creating the file, but they must adhere to one of
the predefined formats. An example of an event is 
a memory leak detected by a memory analysis tool. In
the file, the memory analysis tool defines an event type
for memory leaks and then passes as many events of
this type as there are leaks detected. By allowing event
types to be defined in the Visualization DataSet file,
the Data Visualizer can easily support any tool that
creates a file in this format. 

Each set of events sent to the Data Visualizer from 
a particular tool is logically grouped into an entity
called a DataSet. For example, a single DataSet con-
tains all the results from a single search tool inquiry.
Subsequent searches yield separate DataSets. 

Condensed File Views In this paper, software com-
ponents are shown in both the condensed file view
introduced in Figure 2 and the 3-D view depicted in
Figure 4. Each of these gives the tool a concise, infor-
mation-dense representation capable of displaying up
to 30,000 lines of source code. Program structure is
revealed by the indentation and color coding. 

Event Highlighting, Filtering, and Tracking Events in
the DataSet are highlighted on the screen in a number
of ways. Event types are assigned a color, and that
color is used to color the line of the associated event.
The coloring can occur in the foreground of the line
or the background. Once a user’s attention has been
drawn to the line, the user can obtain more informa-
tion about the event at that line from the small
descriptive window that appears whenever a hot cursor
is moved near that line. Figure 9 shows an example
produced by the Data Visualizer tool. In addition,
when the event contains more information than can
be displayed on a single line, for example, when a com-
plete program call stack is logged with the event, a sep-
arate window appears with this information. This is
also shown in Figure 9. 

The tool’s legend/filter control window shown in
Figure 10 serves the dual purposes of providing a color
key to the events that appear in the view and a mecha-
nism for toggling on/off the appearance of events of 
a particular type. This control window also allows the
user to toggle on/off the appearance of all the events
in a DataSet. When multiple DataSets are present, they
are placed on top of each other. Each DataSet can be
thought of as a transparency that contains only the
event’s highlighted coloring. These transparencies are
stacked on top of each other (the user can control the
ordering) to show all the events together. 

The Data Visualizer also provides a mechanism for
keeping track of events that are seen or unseen by the
user. This feature can be used when there are many
events to examine and the user needs assistance in
tracking what work has been finished and what
remains to be done. This information can be saved
between invocations of the tool so that a user can put
this work aside and come back to it at a later date. 

Merging DataSets As mentioned earlier, one of the
important features that was added was the ability to
merge the data received from multiple tools into a sin-
gle displayed view. This allows the combination of the
results of two or more tools that normally could not
be merged or even know of each other. For example,
the output from a memory analysis tool that shows
where memory leaks occur and their size can be com-
bined with the output from a search tool that locates
the occurrence of a function name in the program. 

28 Digital Technical Journal Vol. 7 No. 2 1995



The tool uses a number of methods for merging
DataSets, and the type of merge that is performed
depends on the types of events. The simple trans-
parency model described earlier explains how events
can be additively combined to display the sum of all
events. In this model, when two or more events are
associated with the same line in a file, they are treated
as separate events that pertain to that line. For some
event types, however, this is not the case. The tool sup-

ports the combination of same line events in different
ways. For example, two runs of a performance analysis
tool generate line execution times that can be com-
bined by averaging the execution time values to give
the user a reading on the average performance of the
code. As an alternative, these same two events can be
combined by creating a new event that shows the dif-
ference of the execution times to reveal improvements
that may have occurred between runs. 

Digital Technical Journal Vol. 7 No. 2 1995 29

Figure 9
Highlighted Event with Call Stack

Figure 10 
Event Filtering



Integration with Other DEC FUSE Tools The Data
Visualizer is well integrated with the other tools in the
DEC FUSE programming environment. The profiler,
the heap analyzer, and the search tool all have the abil-
ity to send data to the Data Visualizer at a user’s
request. The Data Visualizer makes good use of the
DEC FUSE editors to examine source code in detail.
From within the Data Visualizer, the user can double-
click at any point in any of the displayed files to have
that source loaded into their preferred editor. This
capability is shown in Figure 11, where the results
obtained from the search tool are used to create a view
in the Data Visualizer and load files into the editor. 

Revised Design 
As seen in Table 2, some of the prototype components
were reused in the final product design. We changed
the SDM component internally to handle more data,
but we retained the basic design. We also retained the
design of the UTIL component. Since portability
between MS Windows and the X Window System was
no longer a concern, we redesigned the ZWIN com-
ponent into the WinDraw component. Due to this
change, the size of this component decreased by 7,600
lines of code. 

In addition to modifying components, we developed
three new components. The FUSETool component
handles the code common to all the DEC FUSE tools.

It contains abstract base classes that can be used to
derive new tools. The DVTool component contains the
main program and the bulk of the user interface code.
The View DataSet File (VDSF) component provides
functions for reading and writing these files. It contains
class libraries for C11 programs and C routines. 

Note that this design maintains some of the plug-
and-play characteristics of the earlier design. Although
the tool component no longer exists, the VO (Visual
Object) and the view components are present and pro-
vide extensibility for future objects and views. 

Conclusions

The last section gives an overview of the software design
from advanced development into final product. The
section concludes with some future plans for this work. 

Project History 
During the process of transferring this work from
advanced development into a product, many impor-
tant features were added to enhance the usefulness 
of this technology. The final product retained the abil-
ity to visualize large amounts of data in a condensed
yet comprehensible format; it also included features,
like event tracking and DataSet merging, that made it
a much more useful productivity tool. Figure 12
shows how the design evolved over time. The events

30 Digital Technical Journal Vol. 7 No. 2 1995

Figure 11
Integration with Other DEC FUSE Tools



described in this paper occurred over the course of two
years and three months. The advanced development
project began in January 1993, and the final design of
the Data Visualizer tool was complete in March 1995. 

In Figure 12, the rectangles represent software
components of the design. A software component is a
collection of C11 classes that was designed to accom-
plish a single function; these components correspond
to the design components described earlier in this
paper. The oval shapes represent prototypes that were
built from these components. Solid arcs connecting
components with prototypes show which components
were used to build that piece of software. Dotted lines
between components show how components evolved
over time. 

Figure 12 indicates that the work involving 3-D
objects and some of the early prototype components
were never used. It also shows that the condensed file
view component and the ZWIN component did
evolve into the final product. Figure 12 further reveals
that toward the end of 1994 several documents were
produced, but no work was done on the design or any
of the components. During this period of negotiation
and redesign, the advanced development technology
was being converted into a product. 

Future Work 
We would like to expand the capabilities of the Data
Visualizer tool in several areas. 

Many of the capabilities for merging DataSets are
not available for selection by the user. We would like to
extend the tool to have the added flexibility of allow-
ing the user to decide how DataSets should be merged
and how events should be combined. For example, the

tool might show only the intersection of two DataSets,
that is, display only those events that point to a file-line
combination that is common in both sets. 

We will also consider other ways of displaying in a
condensed file format and additional types of files to
visualize. The file types might be complete directories
shown as a single, condensed object, or shared and
nonshared libraries as a single object. 

We have an ongoing effort to take the output from
existing tools and visualize it in this tool. 

Final Remarks

The decision to include the Data Visualizer tool in the
next major release of the DEC FUSE programming
environment was not an easy one to make. Many
important features were being considered, but not
enough resources were available to perform the work.
Prioritized goals were established, and all work items
were evaluated against these goals. The Data
Visualizer tool was included for two important rea-
sons. First, it supported the short-term goals of the
project by adding features that current tools could use
in the upcoming release. Second, it provided long-
term benefits by opening up the DEC FUSE product
to new capabilities in the area of software visualization.
We believe that the presence of both these reasons was
necessary for its inclusion in the DEC FUSE product.
Had it provided support for only the short-term prod-
uct goals, it would have been evaluated against the
many other short-term work proposals and probably
would not have been selected. Had it supported only
the long-term goals, it would have been left out for
lack of ties to the current tools. 

Digital Technical Journal Vol. 7 No. 2 1995 31

Table 2 
Components in the Data Visualizer 

Lines 
Component Description of Code Classes 

FUSETool Base class for building a DEC FUSE tool. Contains code common to all 3,000 8 
DEC FUSE tools. 

DVTool The Data Visualizer main classes. Contains the main program and most 2,400 10 
user interface classes. 

VO Contains the svObject base class and its derivations, the svFile, the 2,000 5 
svDirectory, and the svLibrary. 

VIEW Contains the svView class and its derivations, the svFileView and 3,500 8 
svFile3dView classes. 

SDM Software data model component. Contains the language-specific 3,500 15 
scanners and parsers. Defines the program’s internal data model. 

WinDraw Provides C++ encapsulation of graphics drawing functions. 4,100 12 
VDSF The VisualizationDataSet Format component provides reading and 1,000 4 

writing routines for this file format. 
UTIL Various miscellaneous classes for data structures, file access, etc. It also 2,000 8 

contains an interface to some common operating-system–dependent 
routines. 

Total 21,500 70 



32 Digital Technical Journal Vol. 7 No. 2 1995

C
O

N
T

A
IN

E
D


H

IE
R

A
R

C
H

IE
S

C
O

N
D

E
N

S
E

D


F
IL

E
 V

IE
W

3-
D

 O
B

JE
C

T
S

Z
W

IN
Z

W
IN

T
O

O
LS

V
IS

U
A

L
O

B
JE

C
T

S

Z
W

IN

P
R

O
T

O
T

Y
P

E


2

P
R

O
T

O
T

Y
P

E


1

JA
N

, F
E

B
, M

A
R

 1
99

3
A

P
R

, M
A

Y
, J

U
N

 1
99

3
JU

L,
 A

U
G

, S
E

P
 1

99
3

O
C

T
, N

O
V

, D
E

C
 1

99
3

JA
N

, F
E

B
, M

A
R

 1
99

4
A

P
R

, M
A

Y
, J

U
N

 1
99

4
JU

L,
 A

U
G

, S
E

P
 1

99
4

O
C

T
, N

O
V

, D
E

C
 1

99
4

JA
N

, F
E

B
, M

A
R

 1
99

5

IN
S

T
R

U
M

E
N

T
E

D


C
LA

S
S

E
S

3-
D

 H
IE

R
A

R
C

H
Y

C
LA

S
S

 C
U

B
E

S

P
R

O
T

O
T

Y
P

E


3

C
O

N
D

E
N

S
E

D


F
IL

E
 V

IE
W

C
O

N
D

E
N

S
E

D


F
IL

E
 V

IE
W

3-
D

 F
IL

E
 V

IE
W

C
LA

S
S


V

IE
W

F
U

S
E


V

IS
U

A
LI

Z
A

T
IO

N


D
E

M
O

3-
D

 F
IL

E
 V

IE
W

V
IE

W
 C

LA
S

S

V
IS

U
A

L
O

B
JE

C
T

S

W
IN

D
R

A
W

D
V

T
 P

R
O

P
O

S
A

L

D
V

T
 F

U
N

C
T

IO
N

A
L

S
P

E
C

IF
IC

A
T

IO
N D
V

T
 D

E
S

IG
N


S

P
E

C
IF

IC
A

T
IO

N

F
IN

A
L 

R
E

P
O

R
T

T
H

IR
D

 R
E

P
O

R
T

S
E

C
O

N
D

 R
E

P
O

R
T

F
IR

S
T

 R
E

P
O

R
T

Fi
g

u
re

 1
2 

Pr
oj

ec
t H

is
to

ry



Acknowledgments

I would like to thank a number of people who sup-
ported me during this effort: John Ellenberger for his
continuing guidance throughout the entire process;
Mike Candella for the early work we did together in
the Advanced Development Group; Glenn Lupton for
his help in deciding how this prototype would fit into
the DEC FUSE product; the DEC FUSE management
team for supporting and encouraging this work; and
finally, everyone on the DEC FUSE development
team. 

References

1. R. Hart and G. Lupton, “DEC FUSE: Building a Graph-
ical Software Development Environment from UNIX
Tools,” Digital Technical Journal,vol. 7, no. 2 (1995,
this issue): 5–19. 

2. S. Eick, “SeeSoft—A Tool for Visualizing Line Oriented
Software Statistics,” IEEE Transactions on Software
Engineering, vol. 18, no. 11 (1992): 957–968. 

3. S. Eick, “Graphically Displaying Text,” Journal of
Computational and Graphical Statistics,vol. 3, no. 2
(1994): 127–142. 

4. S. Eick, M. Nelson, and J. Schmidt, “Graphical Analysis
of Computer Log Files,” Communications of the ACM,
vol. 27, no. 12 (1994): 50–56. 

5. K. Perlin and D. Fox, “PAD—An Alternative Approach
to the Computer Interface,” SIGGRAPH 93 Proceed-
ings (1993): 57–64. 

Biography 

Digital Technical Journal Vol. 7 No. 2 1995 33

Donald A. Zaremba 
The project leader of the FUSE Data Visualization team,
Don Zaremba is a principal software engineer in Digital’s
Unix Development Environment Group. He was respon-
sible for designing and implementing the Data Visualizer
tool. Since joining Digital in 1980, Don has contributed to
the DEC Test Manager project and has worked on software
development tools and fault analysis tools. He received a
B.A. in mathematics from the State University of New York
and an M.S. in software engineering from Wang Institute. 


