
The increasing quality and cost-effectiveness of com-
puter application software has revolutionized the way
organizations share and manage their information.
Rather than develop custom information systems with
their internal programming staffs, many businesses
now purchase software available in standard “off-the-
shelf ” packages. A well-chosen standard package can
save development time and cost. Before it can be use-
ful, however, it must be integrated with other new
software and with the mature (legacy) applications
that hold current business data and processes. 

Application integration can be a substantial effort. 
If business changes are not anticipated during the
planning phase, an integrated system can be inflex-
ible. The existing applications, both legacy and new,
rarely meet current requirements. An ad hoc inte-
gration that starts with the existing applications’
interfaces will seldom be flexible in ways that accom-
modate future business changes without widespread
program changes. 

An integration derived from a clear model of
current and expected business processes provides 
a basis for growth and flexible change. Digital has
developed the Framework-based Environment (FBE),
consisting of reference models, methodologies, and 
a toolkit. Together, these products provide flexible
systems integration. 

In this paper, we provide a brief overview of FBE
and characterize the projects that can benefit from
using it. We describe flexible application integration
and the benefits of model-driven integration. Finally,
we discuss our experience using FBE. 

Overview of the Framework-based Environment

FBE consists of the following components. 

■ MethodF is an object-oriented methodology based
on two systems integration methodologies recog-
nized in the industry: Jacobson’s use case analysis
and Rumbaugh’s Object Modeling Technique.1,2,3,4

These methodologies are explained in the section
Model-driven Integration with FBE. 

Digital Technical Journal Vol. 7 No. 2 1995 47

Integrating Applications
with Digital’s
Framework-based
Environment 

James R. Kirkley 
William G. Nichols 

Digital has developed the Framework-based
Environment to address the integration 
and interoperability needs of manufacturing 
and other business systems. FBE consists of 
a method for integrating existing applications,
frameworks of industry models, and tools that
use Digital’s CORBA-compliant ObjectBroker
integration software to manage the exchange
of information between cooperating servers 
on the network. Using these products, Digital
Consulting and its partner systems integrators
provide FBE application integration services 
to large organizations. 



■ ObjectPlus is a modeling tool from Protosoft, 
Inc. that has been tailored for MethodF with an 
FBE-specific code generator. In addition to the
methodologies described above, the tool has exten-
sions that provide the ability to create an imple-
mentation model. The implementation model
describes how objects are distributed among the
various applications. 

■ ObjectBroker, Digital’s object-oriented integration
software product, is compliant with the Common
Object Request Broker Architecture (CORBA)
specification from the Object Management Group
(OMG).5,6

■ A suite of supporting libraries and tools includes
reference models and associated code libraries that
have been abstracted from previous projects and
made available for reuse. The reference models 
and associated code libraries are organized into
frameworks of industry-oriented business objects,
as given in Table 1. 
The tools include two important components: 
(1) The FBE Design Center is an extensible work-
bench architecture that supports the analysis,
design, and implementation of CORBA-based
distributed object systems. (2) The FBE Adapter
Development System, which fits into the FBE
Design Center, automatically generates CORBA-
or ObjectBroker-compliant code and the necessary
files to compile and link the code into platform-
specific executables. 

Integration Projects Appropriate for FBE

Any integration project automates previously manual
processes involving existing applications. FBE and its
flexible approach to systems integration allow a busi-
ness to replace or add component applications effi-
ciently as business conditions change. 

FBE provides the most benefits when many differ-
ent kinds of well-defined business transactions occur
between a mixture of commercial and custom applica-
tions. Not all projects can benefit from FBE or its style
of development. For example, if the primary task is to
integrate data sources for decision support, a database
integrator or a data warehouse may solve the problem

quickly. If a company is not trying to gain an advan-
tage by automating accounting more cheaply or
completely than its competition, an off-the-shelf
accounting package may be the right choice. At the
other extreme, if the task to be automated is com-
pletely new, there may be no appropriate packages
available, even as components of an integrated solu-
tion. New development would also be preferable if
high-performance or real-time operation were more
important than the flexibility to plug in existing,
unmodified applications. 

As an example of an appropriate FBE integration,
consider a manufacturing operation automating 
a manual procedure that collects orders from an order
processing system, schedules production runs, and
passes the schedule to the manufacturing floor. In this
example, the company wants to obtain a competitive
advantage by dynamically rescheduling production
based on new customer orders, at once reducing
inventory costs, and improving delivery performance.
This is more than a decision support system: the
integration requires that applications interact with
each other. Although finding a turnkey package that
can operate the entire factory is unlikely, factory
scheduling applications are readily available. Buying
one would be more cost-effective than writing one 
in-house. The project would then need to integrate
the legacy order processing system with the newly
purchased scheduling application. The order process-
ing system is too important to the company to risk
modifying it significantly at the same time as introduc-
ing new automation. 

After the integration project has been completed,
though, the order processing system might be made
more cost-effective by moving its function from 
a mainframe application developed in-house to a stan-
dard client-server product. Perhaps business condi-
tions will have changed and the order processing
system needs to be augmented so customers can sub-
mit orders directly by electronic data interchange
(EDI). The project manager might decide to purchase
an EDI processor to augment or replace the existing
order processing system. 

Later, after the manual processes have been auto-
mated on the factory floor, another project could
extend the integration to send the schedule directly 

48 Digital Technical Journal Vol. 7 No. 2 1995

Table 1 
Frameworks of Industry-oriented Business Objects 

Base Business Models Manufacturing Business Models Industry Business Models 

Activity management Order management Semiconductor 
Production management Schedule management Oil and gas 
Resource management Product management Pharmaceutical 

Process management Batch process 
Quality management Banking and finance 



to factory cell controllers. Then, if a more efficient
scheduling package becomes available, it could be sub-
stituted for the older one. The modular design of FBE
would minimize the programming changes required
for this substitution and give the organization the flex-
ibility to use the most cost-effective solutions. 

Model-driven Integration with FBE

An integration project needs a clear process and a
means to avoid being biased by the assumptions built
into its component applications. We use object model-
ing to plan and document an integrated system in 
a uniform manner. The abstraction inherent in object
modeling hides detail. This makes the model mean-
ingful and allows modeler and client alike to ensure
that the model matches the intended business 
processes. The abstraction also helps to separate the
interface from the implementation. The interface
describes what is to be done; the implementation
describes how. The what of a business process changes
comparatively little over time: a factory takes orders
and schedules production runs, a stockbroker trades
stock, a mail-order business ships packages. The how
changes dramatically from year to year. 

In the following sections, we trace the steps of 
a typical systems integration project as conducted by
Digital Consulting or by Digital’s partner systems
integrators. We show how a modeler might use the
FBE method, tools, and frameworks to provide appli-
cation integration services. 

Object Modeling 
Before we start object modeling, we ensure that 
a business process model, or its equivalent, is com-
pleted. Sometimes a business process model results
from a formal business process reengineering. More
often it comes from a less formal understanding of
existing processes and required changes. In both cases,
the modeler will cooperate closely with someone 
who understands the process well. As always, the
better we understand our goals, the more likely we 
are to achieve them. 

With this knowledge, we can start FBE’s object-
oriented analysis and design process, known as
MethodF. MethodF begins with Jacobson’s use case
analysis method. A use case traces a chain of events ini-
tiated by a single person (or other entity), acting in 
a single role, as he, she, or it works through some task.
For example, we might trace what happens when 
a customer calls an order desk through the clerk’s
responses, catalog checks, inventory checks, order
placement, picking list generation, and finally, package
shipment. As we do this, we note all the objects and
the uses that the actors make of them. Then we follow
another use case. Perhaps this time the customer asks

for a product that is out of stock. We follow the discus-
sions about back-ordering and price guarantees that
will make our business attractive to this customer.
After analyzing many use cases, we have a list of busi-
ness analysis objects (objects that describe require-
ments in business terms) and a list of the functions and
attributes of each object. 

We then compare the analysis objects with the busi-
ness design objects in FBE’s reference model library.
Here, we may well find similar objects that use differ-
ent names and detailed constructs to describe the same
functions and attributes. The next step in MethodF 
is to merge these design objects into the model. By
using objects from the reference library, we take
advantage of previous modeling experience built into
the reference models and prepare to reuse code associ-
ated with the reference models as well. 

We use the ObjectPlus modeling tool to capture 
use cases in diagrams according to Jacobson’s con-
ventions. We prefer the Rumbaugh Object Modeling
Technique (OMT) notation, however, for describ-
ing the business objects. OMT diagrams, with FBE
extensions, define objects and the interfaces between
them in enough detail that a tool can use them to gen-
erate interface definitions that can be compiled. The
ObjectPlus tool also captures OMT diagrams. 

A direct connection exists from the use case models,
through the business models, to the design models,
and to the code. We use the term model-driven to
describe the FBE approach, because necessary changes
are first made to the models and new code is then gen-
erated from the models. 

Generating Interface Code 
Once we have completed the design objects, we 
use FBE tools that work with the ObjectPlus model-
ing tool to generate CORBA Interface Definition
Language (IDL) from the design object definitions.6
We chose CORBA because it is an emerging industry
standard designed to build distributed object-oriented
systems that include existing non–object-oriented appli-
cations. A CORBA implementation, such as Digital’s
ObjectBroker product, generates interface stub rou-
tines that marshal data to be sent to an object, whether
the object is on the same computer or across a network.
For example, the stubs convert integers sent from big-
endian to little-endian computers. A CORBA imple-
mentation also provides an object request broker: 
a run-time library that routes requests to objects in a
distributed system. This allows applications running on
different systems to communicate without the need for
applications to know which systems will be involved. 

We use the IDL interface definitions to guide pro-
grammers as they develop adapters between this
object interface and the existing application’s inter-
face. For example, an existing program might take its

Digital Technical Journal Vol. 7 No. 2 1995 49



input as a formatted file and deliver its output in
another type of file. Since the rest of the integration
should not know about these files or their formats, we
write an adapter that translates between these files and
the methods and attributes of the objects defined 
in our model. Perhaps an alternative application uses 
a remote procedure call for I/O instead of the files our
existing application uses. When we replace the existing
application, we write new adapters using the same
object interfaces. As a result, the rest of the integration
needs no changes. Writing these adapters is not neces-
sarily easy; application integration requires substantial
effort, whether the integrator uses FBE or not. By
restricting the changes to a single module, FBE mini-
mizes the development and testing effort required to
replace component applications. 

We usually write the adapters in C, rather than C11
or a pure object-oriented language, because much of
their interaction is with the applications being
adapted. The existing applications were seldom built
with object-oriented principles. In many cases, useful
tools such as database translation programs and
“screen scrapers” are available to communicate with
applications that expect terminal I/O. These tools also
were seldom built for object-oriented languages. 

In some cases, an adapter needs to be so large that it
is a small application in itself. In these cases, we might
use an object-oriented language for the bulk of the
code. A factory scheduler might generate production
tasks based on a customer order, but the cell con-
trollers in the factory might expect only a single task
for each type of part produced. The adapter needs to
combine the tasks for a given part type from several
orders before it sends a message to the cell controller.
As the cell controller reports progress on each task, the
adapter allocates completed parts to the original cus-
tomer orders. The cell controller simply makes parts,
the factory scheduler simply fulfills orders, and the
adapter bridges the gap between them. 

Reference Models 
As we gain experience working with integrators, we
abstract and merge the models they build into refer-
ence models for the various application domains, such
as discrete manufacturing, process manufacturing, and
financial services. We collect and tailor the reference
models to comply with accepted industry standards
such as ISO STEP in the manufacturing domain and
ISA SP88 in the process industry domain.7,8 These
reference models allow FBE modelers to build on pre-
vious experience. Even if they cannot use the refer-
ence model in its entirety, they can use it as a guide 
to save time and to check their own model for com-
pleteness. We also collect the adapters for frequently
integrated applications into a library. Later, when we
reuse a reference model, we will have corresponding

adapters that can also be reused, usually after modifica-
tion. It is important to note that anyone—Digital, 
the systems integrators (Digital’s partners), and, most
importantly, the customer—can build their own refer-
ence models. 

From Applications to Objects: Experience Gained

Design always involves trade-offs between competing
requirements. The trade-offs in an integration project
are somewhat different from those in a new develop-
ment project: an integration project must take existing
applications into account while trying to implement 
a business model faithfully. 

In this section, we discuss trade-offs due to the
change from a functional view to an object view, then
explore three familiar design topics from the point of
view of an FBE integration project: top-down versus
bottom-up design, improving reliability, and improv-
ing performance. 

Overcoming the Legacy of Functional Decomposition 
The challenge of object-oriented application integra-
tion is to make application programs, which are
designed around individual business functions, sup-
port the unified business object model. 

Figure 1 illustrates a sample mapping of business
objects to application functions. It shows the logical
objects of customer, product, and shipment, with their
data structures and methods mapped to the several dif-
ferent application functions of transportation, ware-
housing, and billing. As the integration project maps
business objects to application functions, it must 

■ Establish routings of requests for individual attrib-
utes or operations of an object to the applications
that contain them 

■ Provide mechanisms to maintain consistency
when multiple applications require the same data 

50 Digital Technical Journal Vol. 7 No. 2 1995

BUSINESS
OBJECTS

TRANSPORTATION
• LOCATION
• SHIPPER

WAREHOUSING
• AVAILABILITY
• MATERIAL

BILLING
• PRICE
• COST

CUSTOMER

PRODUCT

SHIPMENT

APPLICATION
FUNCTIONS

Figure 1 
Sample Mapping of Business Objects to Application
Functions 



Split Instances When we develop the business object
model, we may discover that a single logical object may
be hosted (its underlying data structures and methods
implemented) by more than one physical application.
For example, a product object’s price attribute is
hosted by a billing application, and its availability
attribute is hosted by a warehousing application. When
we integrate these applications according to a business
object model, we achieve a single logical object whose
data and methods are stored in different physical appli-
cations and often in different locations. This is called 
a split instance.

When a client application requests the product’s avail-
ability, the object request broker sends the request to
the warehousing application and forwards a request
for the price to the billing application. The requester
neither knows nor cares where the information is held. 

The notion of the split instance is a central principle
of FBE. It allows us to model the business logically and
independently of the way applications may implement
business functions. The split instance is not without its
problems: Many times the same information is stored
in more than one application. In the above example, 
it is likely that both the manufacturing and the billing
application maintain the product name attribute.
Many other attributes are potentially duplicated as
well. When an attribute of a type exists in two or more
applications, the designer is faced with two questions: 

1. When a get attribute operation is requested, to
which application should it be delivered? 

2. When a set attribute operation is requested, is it
necessary to update only one or more than one
application’s data? 

We cannot answer these questions in a general way,
but we can highlight some points to keep in mind
when addressing them. 

■ Get attribute. Can one application be considered
the primary source for data about an object?
Before any integration was in place, legacy systems
provided a formal or informal process that
updated secondary information sources from a pri-
mary source. The requirements statement is a good
reference here. The designer should discuss this
with the business domain experts to understand
the way data is maintained and distributed. The
primary application is the best source for such
data. As a backup, secondary applications could
serve as sources for the information. The designer
should consider the effect of stale information on
the operation of the business. 

■ Set attribute. When attributes are set, should all
applications be updated simultaneously? Usually a
category of infrequently changed “reference data”
is accessible. The reference data is more often
added to than changed. Changes to this kind of

data essentially ripple through the company.
Sometimes it is the slow communication of these
changes throughout the organization that drives
the requirements for integration (the push-pull
phenomenon). 

When we must guarantee simultaneous changes to
data on multiple heterogeneous computing platforms
or between applications that hide their data, we would
prefer a two-phase commit transaction between dis-
similar databases. Unfortunately, nothing is commer-
cially available today (June 1995) that works on an
arbitrary combination of databases and applications.
Several products support a limited set of third-party
databases and applications. If these products cannot
address the need, and our applications require multi-
ple application transactions, we may have to write the
two-phase commit code. 

As an alternative, we may be able to use a workflow
to manage the update of several applications. An oper-
ation can be defined that is implemented as a workflow
script. The workflow script can, in turn, perform the
update (through additional method invocations) on
the data stored in a number of different applications.
This is probably closer to the customer’s method and
would be easily automated. A workflow capable of
doing the update must have the capability of compen-
sating for failure to update all applications. A workflow
update is different from two-phase commit, because
the data in the applications may be inconsistent for 
a brief time. 

To our knowledge, Digital’s ObjectBroker integra-
tion software is currently the only CORBA implemen-
tation that is able to route requests for a single object
to multiple servers. 

Bypassing Legacy Applications Sometimes it is
tempting to bypass a legacy application and access its
database directly from an adapter. The application may
have a particularly difficult interface, or the required
function and data may be a small part of a monolith.
For simple applications, bypassing may be appropriate,
but for most we must either use the application
through its intended interface or replace it entirely. 

The use of a legacy system to change data or per-
form a function can produce unwanted side effects
that are not appropriate in the context of the inte-
grated system. For example, most legacy applications
maintain the referential integrity of their data through
code. Invoking the database directly to add, update, or
delete data risks violating this integrity. 

Bypassing the application is also dangerous because
changes may occur when the application is revised.
Typically, application developers feel free to change
the underlying data structures as long as the function-
ality at the user interface or formal program interface 
is maintained. 

Digital Technical Journal Vol. 7 No. 2 1995 51



Top-down versus Bottom-up Design 
Tension always exists between the goals of top-down
and bottom-up designs. The FBE emphasizes top-
down modeling; it starts with the analysis of use cases
and then defines business objects independently of any
existing applications. This keeps the design focused on
the business problem and enhances the flexibility of
our integration. We find that the most common mod-
eling error is to accept an existing application’s
“myopic world view” without considering the overall
system’s needs. Usually, existing applications are a poor
source for business object models, since many no
longer represent desired business processes. 

If we are not conscious of bottom-up demands on
our design, however, we can design a system that
requires needlessly large, complex, or slow adapters
between the existing applications and our ideal model.
Though we have no easy guidelines for balancing the
top-down and bottom-up demands, some issues are
encountered repeatedly. 

The problem of partial implementations provides 
a simple example of this balancing requirement.
Projects that use top-down modeling to derive their
object models sometimes encounter a dilemma: attrib-
utes and operations appear in the model that no appli-
cation in the network can implement. It is reasonable,
for example, for the object model of a factory floor
conveyor to define a stop operation, but the device
control software installed in the factory may not pro-
vide an equivalent function. 

When implementers cannot support a model, they
have two choices: 

1. Modify the model to reflect the capabilities of the
environment. 

2. Implement only the part of the model that is feasible. 

The first option appears to be the easier choice, but
it limits the reusability of models and diminishes the
effectiveness of the top-down approach. A top-down
model of the conveyor should capture the business
users’ expectations; implementations may or may not
meet these expectations. A partial implementation
simply returns an error whenever a user accesses an
attribute or invokes an operation that is not supported. 

The partial implementation of a conveyor can still
be substituted for a complete one, though the partial
one always fails when a user sends a stop request. The
system must be prepared to receive an error response
from an operation invocation at any time; other errors
could occur during the stop operation’s processing,
even if the implementation were complete. 

A partial implementation opens the way for subse-
quent versions of the software to support the feature. It
provides a placeholder for an attribute or an operation
and preserves the integrity of the object’s specification. 

Improving Reliability 
Finding bugs in an integrated system is often difficult.
Even if we assume that the component applications
work perfectly, bugs can arise from mismatches
between the components. This commonly comes
about because of inconsistent business rules between
applications: what is allowed in one application may be
illegal in another. 

An adapter in an integrated system must be a fire-
wall; that is, it must limit the spread of errors and mis-
understandings from its application. We code pre-
and post-condition checks around calls to component
applications. This is helpful if we code for the right
conditions and leave the checks in the production
code. The use case analysis and business object
descriptions sometimes suggest conditions to test,
but this process is informal. We find that we need
more run-time checks in adapter code than in individ-
ual applications. 

We also need a way to isolate a suspect application
from the integrated system so we can see how the inte-
grated system behaves without it. FBE’s Adapter
Development System can generate simple stubs from
an object’s OMG IDL. The tool generates a client stub
that makes appropriate requests and a server stub that
echoes its input. The stubs are simple enough to be
checked at a desktop device to ensure that they work 
as expected. The stubs are also useful as templates for
starting new adapters. 

Improving Performance 
Without planning and careful monitoring, a large sys-
tem of dissimilar applications can be slower than the
performance of the component applications would
suggest. We have used standard approaches to
improve and monitor performance. It is worth noting
here how these approaches influence FBE design and
development. 

Performance Requirements in Large Systems There 
is often a trade-off between performance and flexi-
bility. Our integrated system would be ideally flexible
if it made separate calls through an adapter to a com-
ponent application for every datum in every differ-
ent circumstance. We could change storage and
behavior almost with abandon. On the other hand, 
if each adapter were an entire rewrite of its underly-
ing application, we could, in principle, store and
manipulate each datum in the most efficient way for 
all accesses. 

Although FBE is designed for systems that require
flexibility at the cost of some performance degrada-
tion, we must be careful to deliver satisfactory perfor-
mance. In the following subsections, we discuss the
trade-offs in caching and object granularity. 

52 Digital Technical Journal Vol. 7 No. 2 1995



Caching Applications frequently generate large quan-
tities of output in response to a command, rather than
the fine-grained results that are appropriate to object-
oriented requests. It is often appropriate for an adapter
to return only a small part of the data it receives from
an application interaction and cache the rest for future
requests. Applications that produce data in batches
typically do not modify their state for long intervals, so
the cached values remain valid long enough to be use-
ful. Of course, there must be a means to invalidate the
cache. In some cases a timer will suffice; in other cases
an event, such as a new batch run, must be extended to
invalidate the cache. 

Adapter caches greatly improve performance and
can give the adapter developer the freedom to orga-
nize and present the data in a form appropriate to the
object model. 

Object Granularity Designing objects that work well
in a distributed system is important to ensure flexibil-
ity. Parts of a distributed system frequently move from
one computer to another. We should not expect our
objects or their underlying component applications 
to remain in one particular place. 

In a pure object-oriented system, for example the
Smalltalk language, everything is an object. In distrib-
uted systems, operations on objects potentially involve
interaction across a network and incur network over-
head. Therefore, it is not practical for everything to be
an object. Some business objects will be implemented
as CORBA objects (those that have object references)
and other business objects will be implemented as
user-defined types (passed by value). This defines the
granularity of the object model. The decision to
implement a business object as a CORBA object or as 
a user-defined type involves balancing flexibility with
system performance. 

There are no hard and fast rules that determine the
most appropriate granularity for an object model.
Decisions need to be based on users’ interactions with
the system and on the way applications use the objects
they share or exchange with each other. Several mat-
ters should be taken into account when determining
the model’s granularity. 

As an illustration, let us consider a client application
that needs to display a collection of customer names in

a list box. The client sends a request for these names to
an object instance called CustomerList; the client and
object happen to be on different computers. 

In Case 1, the customer is a user-defined type repre-
sented as a C structure: it is passed by value and has 
no object reference. Customer attributes are stored 
in a CORBA-defined structure that the client code
must access directly. In this case, the display of cus-
tomer names may be accomplished in a single request,
e.g., getCustomerNames(aCustomerList). All cus-
tomer names would be passed by value. Figure 2
depicts this scenario. 

In Case 2, the customer is a true object: it has 
an object reference and a set of attributes. The client
calls the server separately for each attribute; thus 
the client is less dependent on the server’s storage
structure or any changes to that structure as it is
modified in the future. In this case, a sequence of
customer object references would be passed, e.g.,
getCustomers(aCustomerList). The client application
then must request getName(aCustomer) for every
customer object in the sequence. (See Figure 3.) 

Clearly, the first case is more efficient in terms of
network utilization; only one request is required. The
second case requires 1 1 n requests, where n is the
number of customers. The first case is also more effi-
cient at the server. Case 1 requires one database query
to construct the name list, whereas Case 2 requires 
a separate database query for each customer. 

At first glance, Case 1 would appear to be the easy
winner in terms of efficiency and effective utilization
of the server. This outcome, however, is not always
true. Let us assume that the client application allows
the user to choose from the list of customers and then
displays attributes address and accountStatus for the
selected customer. Here, we are faced with a choice
between performance and flexibility: 

1. The client could make another request that would
return all information about a customer in a struc-
ture. Then the client application could sort
through this information and display the required
data. The performance is good: one request and
database query provided all the data the client
could want. Unless the volume of data is very large,
sending the data in one message yields better

Digital Technical Journal Vol. 7 No. 2 1995 53

CLIENT
APPLICATION

CustomerList
OBJECT

getCustomerNames(aCustomerList)

CUSTOMER NAMES
PASSED BY VALUE

Figure 2 
Case 1: User-defined Type



performance than sending multiple messages for a
subset of the data. On the other hand, this approach
is inflexible: if the server changes the structure it uses
to represent this data, all client software that reads
the structure must change as well. 

2. The client could make separate requests for each
field. If the server returns an opaque object refer-
ence along with each customer’s name, then the
client can send a request asking for the specific
fields it needs. The performance is worse than in
Case 1, of course, because of the extra network traf-
fic and message parsing. However, this approach is
flexible. Since the client never looks in the object
reference (it is opaque), we preserve the server’s
flexibility to use any data needed to retrieve the
appropriate record. As long as the server continues
to support the fields the client requires, the server
finds them in its own database no matter how the
storage structures have changed. 

To ensure that the system provides the maximum
flexibility, the designer should consider the following
guidelines. 

■ Start with a fine-grained approach for modeling. 
■ Implement the approach using fine-grained

methods. 
■ Change to a coarser grain if performance is an issue. 

Summary and Future Directions

Developing integrated applications is not always a
straightforward process. The applications being inte-
grated are seldom an exact fit to their assigned roles in
an integrated system. If they were, we would probably
be able to purchase the integration from one or more
of the vendors who had engineered the fit. 

Integrated systems built with FBE are clearly docu-
mented with Jacobson use case diagrams, Rumbaugh

OMT object diagrams, and OMG IDL. The existing
applications are used indirectly through object inter-
faces and adapters, so the rest of the system can
address them as if they were the ideal business objects
modeled in the OMT diagrams. We call them business
objects to emphasize their distinction from objects
defined or implied by the existing applications. 

The adapters are constrained by the interfaces that
FBE generates automatically from the business object
representations, so they do not stray from the models
that document their behavior. Adapters are not always
easy to write; they can be quite difficult, depending 
on the existing application’s fit with its intended use.
By restricting this awkward code to object adapters,
we keep the overall integration modular. Thus we give
an organization the flexibility to use the most cost-
effective systems as business conditions change. We
build on our experience by collecting reference mod-
els that help us to reuse the best models and adapters. 

FBE continues to evolve rapidly, with improvements
in the reference models, the tools, and the support 
for adapter writers. For example, developers have
asked for better integration between the Jacobson 
and Rumbaugh models, between the modeling tools
and the code generation tools, and for reliable queu-
ing and workflow as well as CORBA communication
between objects. In response to these requests, we
now provide better integration between the analysis,
design, and implementation portions of the FBE life
cycle as well as code generation for trace messages and
support for management and debugging of the run-
time system. We would like to organize the reference
libraries into pairs of object models and correspond-
ing modules (applications and adapters) that can be
assembled to build integrated applications, thus creat-
ing truly reusable business components. 

We will be pursuing these and other improvements
as our experience grows with integrated, distributed
applications. 

54 Digital Technical Journal Vol. 7 No. 2 1995

APPLICATION

CustomerList
OBJECT

getCustomers(aCustomerList)

CUSTOMER
OBJECT
REFERENCES

CUSTOMER
OBJECT

getName(aCustomer)

CUSTOMER
OBJECT

getName(aCustomer)

Figure 3 
Case 2: True Object



References

1. The Framework Based Environment: MethodF, Ver-
sion 3.0, FBE Engineering (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QC50A-TH,
1994). 

2. I. Jacobson et al., Object-Oriented Software Engineer-
ing: A Use Case Driven Approach, 4th ed. (Woking-
ham, England: Addison-Wesley Inc., 1992). 

3. I. Jacobson et al., The Object Advantage, Business
Process Reengineering with Object Technology, 1st ed.
(Wokingham, England: Addison-Wesley Inc., 1995). 

4. J. Rumbaugh et al., Object-Oriented Modeling and
Design (Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1991). 

5. ObjectBroker: Overview and Glossary, Version 1.0
(Maynard, Mass.: Digital Equipment Corporation,
Order No. AA-Q9KJA-TK, 1994). 

6. The Common Object Request Broker: Architecture
and Specification, Revision 1.2 (Framingham, Mass.:
Object Management Group, Order No. 93.12.43,
1993). 

7. Industrial Automation Systems and Integration—
Product Data Representation and Exchange—Part
44: Integrated Resources: Product Structure Config-
uration, ISO 10303-44, WG3 N127 (Geneva: Inter-
national Organization for Standardization, 1992). 

8. Batch Control Part 1: Models and Terminology,
Draft 12: 1994 (Research Triangle Park, N.C.: Instru-
ment Society for Measurement and Control, Order No.
ISA-dS88.01, 1994). 

Biographies

Digital Technical Journal Vol. 7 No. 2 1995 55

William G. Nichols 
As a consultant engineer with Digital, Wick Nichols 
was part of a team that reviewed the Framework-based
Environment and provided a report suggesting several
improvements. His familiarity with related networking
products, particularly DCE, enabled Wick to participate in
the delivery of several FBE projects to customers. During
his 15 years with Digital, Wick contributed to several proj-
ects, including the development of distributed file services.
He also served as project leader of a group that developed
the DECnet-10 system and as project leader and supervisor
for the DECnet-20 product. He received an A.B. from
Harvard University in 1973. 

James R. Kirkley III 
Jim Kirkley has been with Digital for 16 years. For the 
last six years, he has been involved in the development 
of object-oriented architectures for business application
integration. A software consulting engineer, Jim is the
technical director for the Applied Objects Group, which 
is currently focused on the development of tools and
methodologies for the integration of business systems. 
He is the principal author of the methodology used by
Digital Consulting to deliver consulting and practice
systems integration using CORBA-compliant middleware.
He received a B.S. in electrical engineering from Colorado
State University in 1971 and an M.S. in computer science
from Colorado University in 1974. 


