
Digital entered into an agreement with a major
French bank to develop an automated software
deployment facility, i.e., to provide centralized
control of software installations and upgrades
for a large network of computer systems. Inde-
pendently, Digital had developed a set of models
designed to guide the design of solutions to 
this type of complex management problem. 
The bank project team, which had considerable
experience building distributed system manage-
ment applications, was able to take advantage
of these models. The result was a versatile,
scalable application for distributed software
deployment, validation of the models, and a
clearer sense of the usefulness of such models 
to complex application problems. 
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A large French bank purchased a DECnet network
from Digital and was in the process of deploying the
network to support all its banking operations. The
network topology included approximately 3,000
OpenVMS VAX systems and about 18,000 MS-DOS
PC workstations. As illustrated in Figure 1, these sys-
tems were arranged in a branch structure that roughly
followed the geographical distribution of the bank
branch offices and their roles in the branch hierarchy.
At the bank’s headquarters, an OpenVMS cluster and
an Ethernet local area network (LAN) linked the
mainframe data center with the rest of the banking
network. The cluster was connected to the first tier of
approximately 200 branch group servers. The second
tier consisted of approximately 1,800 branches, each
with between one and four branch servers, for a total
of about 3,000 branch servers. Each branch server, in
turn, provided Digital’s PATHWORKS and applica-
tion services to the PC workstations. 

For its nationwide backbone network, the customer
was using a public X.25 network, which was its only
available option.1,2 The cost for X.25 service was based
on usage, so each packet of data transmitted increased
the operation cost. Therefore, the need to minimize
this X.25 expense was a fundamental factor in specify-
ing requirements for virtually all software deployed in
the network. 

The bank’s business depended on the correct, reli-
able, and efficient operation of the network. Conse-
quently, network management was crucial. From the
customer’s viewpoint, such an undertaking meant
management of systems and applications, as well as the
communications infrastructure. By extrapolating its
overall experience with the hardware deployment, and
its initial experience with software deployment, the
customer foresaw potentially unacceptable labor costs
for software deployment using the available methods.
The customer therefore gave high priority to improv-
ing the software deployment process. 

In this paper, the term deployment (or deployment
operation) represents a process that deploys a set 
of software components to a set of systems. A deploy-
ment is described by a deployment plan and requires 
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a deployment program, deployment automation soft-
ware to execute the program, and an operations staff to
schedule and monitor deployment program execution
and, when necessary, respond to run-time problems. 

The Software Deployment Problem

Ideally, the bank wanted networkwide consistency in
its software, with automated, nondisruptive upgrades
administered from a central point. Given the scale of
the network and the number and variety of software
components in use, however, this was not a realistic
goal. The challenge of building a system of automated
deployment tools that is capable of maintaining con-
sistency across 3,000 widely distributed, frequently
updated systems is significant in itself. Adding the
problems of maintaining consistency in detailed busi-
ness practices and user training in every branch greatly
increases the difficulty. Actually, the business required
software configurations tailored to and maintained
consistently within individual business units such as
branches and branch groups. Software upgrade plan-
ning and deployment activities would be essentially
continuous, with numerous planning and deployment
operations under way concurrently. The bank’s busi-
ness would not tolerate network malfunctions caused
by ongoing upgrade operations or version mismatches
among systems in a business unit, nor would it provide
for on-site support at branches or branch groups. 
To implement a fully automated software deployment
process would require rigorously managed, central-
ized planning and operational control. 

The bank had already implemented a system that
automated significant parts of the deployment
process, using a variety of existing tools and ad hoc
integration. These tools included Digital Command
Language (DCL) command procedures, the Infor-
mation Distribution Controller (IDC) product, which
distributes files in batch mode, and a system event
reporter. The process, however, was still labor inten-
sive. The customer concluded that the only way to
achieve acceptable operational costs was to increase
substantially the degree and quality of automation in
the process. 

Customer Requirements

A solution to this software deployment problem
would have to support (1) sophisticated, carefully
managed planning, (2) a means of determining the
current state of target systems for use in planning, 
(3) rigorous software certification, and (4) a highly
reliable means of automating software distribution
and installation. The bank’s planning and certification
processes were already developed, staffed, and in oper-
ation. An inventory control database for tracking sys-
tem configurations was under development. However,
the means to distribute and install software effectively
was lacking and would have to be developed and then
integrated with the other system components. The
customer emphasized this need for distribution and
installation automation when it first presented the
problem to Digital. 
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Figure 1 
DECnet Network Topology in a Banking Environment



All new software must be evaluated, acquired, pack-
aged in kits that can be installed automatically, tested,
and certified. Since software interdependencies may
exist, multiple software components may need to be
processed together to ensure proper installation and
operation as a set. (In this paper, the term component
refers to any software that might be distributed as a kit,
e.g., a commercial layered product, an in-house appli-
cation, or a patch.) Planners must determine which of
the certified components to install, the branch group
to install them in, and the scheduling constraints. The
result is a carefully documented, uniquely named
deployment plan. Deployment execution consists of
performing all the steps necessary to distribute and
install the software on the target group and to report
the results for incorporation in the planning for the
next deployment. 

The operations staff, i.e., those who monitor and
control the network on a continuous basis, keep a
repository of data that reflects the current state of soft-
ware on the systems in the network. Planners use this
data to plan new states for parts of the network; they
store these plans in the repository also. As many as 10
planners may be developing plans simultaneously. For
each plan, an application analyzes the differences
between the planned state and the current state of the
network and produces a deployment program. 

A deployment operation may involve multiple prod-
ucts. This set of products must include all those neces-
sary to satisfy the prerequisites of the other mem-
bers of the set (if they are not already satisfied by prod-
ucts on the target system). The members of the set
must be installed in the proper order. The planners
determine the proper membership for any product 
set and create representations of those sets in the
repository. They also represent the product installa-
tion order in the repository in the form of installation
precedence relationships. The deployment software
uses this precedence information to determine the
order of installation for members of a product set. 

The operations or configuration staff store the certi-
fied software kits in a library at the management cen-
ter. When the kits need to be installed on a system, the
deployment software compresses the kits and then
copies them across the X.25 backbone to staging areas
on servers. From these areas, the deployment software
copies the kits to the target system or systems or, if
necessary, to servers closer to the target systems and
then to the target systems, where the kits are decom-
pressed and used. By staging kit distribution in this
way, each kit is copied only once over each link, which
avoids wasting bandwidth. When all the target nodes
have the required kits, the kits at the staging points 
are deleted. The copy operations must proceed con-
currently whenever possible. Table 1 shows possible
states and transitions for a software component kit on
a target system. 
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Table 1 
States and Transitions for a Software Component Kit
on a Target System 

Initial State Action New State 

(Null) Copy Distributed 
Distributed Delete (Null) 

Installation is a multistep process designed to allow
the synchronized change of operating software on all
related systems. Once the required kit is present on the
target system, the product can be installed, i.e., the
files put in place and any other necessary steps taken 
so that the product is ready to be activated. Activa-
tion, i.e., making the new product the current operat-
ing version, is the last step. A product can also be
deactivated and deinstalled. To upgrade a product
requires installing the new version, deactivating the
old version, and then activating the new version. 
If the activation is successful, the previous version 
can be deinstalled. Only one version of a product can
be active at any given time. Table 2 shows the states
and transitions for a software component on the target
system. 

Table 2 
States and Transitions for a Software Component 
on a Target System 

Initial State Action New State 

(Null) Install Installed 
Installed Activate Active 
Active Deactivate Installed 
Installed Deinstall (Null) 

Table 3 shows the state transitions to be managed
between the new version product kit, the new version
product, and the previous version product on the tar-
get system. Note that the deployment process should
minimize the time a target system must spend in step
4, when both versions of the product are installed but
neither is active. 

Table 3 
State Transitions to Be Managed on a Target System 

New Version Old Version New Version 
Step Product Kit Product Product 

1 (Null) Active (Null) 
2 Distributed Active (Null) 
3 Distributed Active Installed 
4 Distributed Installed Installed 
5 Distributed Installed Active 
6 Distributed (Null) Active 
7 (Null) (Null) Active 
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A planner can specify to the deployment software
that an upgrade must be carried out as an atomic
transaction. That is, the activation transition must
either succeed or be rolled back. In a rollback, steps 3,
4, and 5 in Table 3 are reversed. Most commercial
software is not packaged with installation procedures
that support installation, activation, deactivation, and
deinstallation steps. Therefore, the bank must package
its own software and repackage software from manu-
facturers so that upgrades behave this way. The
deployment software invokes the individual steps 
by executing DCL command procedures provided 
in each such customized kit. 

The activation of all products in a deployment may
be transactional, in which case all the products must
activate successfully or all activations will be rolled
back. The installation steps for all the products are
completed first, so all the products are ready for acti-
vation at the same time. The activations are then
attempted. If all succeed, the newly activated products
remain as the current operating versions. If a product
activation fails, it and all the preceding activations 
are rolled back, in reverse order of activation, and 
the previous versions are likewise reactivated. When
the rollback completes, the deployment stops and the
management center receives a status report. Once 
the operations staff has corrected the problem that
caused the failure of the activation phase, a new
deployment program may be generated. It will exe-
cute only the activation steps, not any of the preceding
steps that had succeeded. That is, the new deployment
program picks up where the earlier one left off. 

This transactional behavior applies to all activations
across all systems in a given deployment and may
involve different sets of products for different systems.
The transactional characteristic applies to the deploy-
ment operation, not to a product or set of products.
Thus, the deployment can accommodate interde-
pendencies among products on different systems. 
If an activation of any product fails in a transactional
deployment, all current or completed activations will
be rolled back in reverse order of activation, regardless
of location. This requirement is specifically for client-
server applications whose client and server compo-
nents must be upgraded both simultaneously and
atomically. 

The deployment software must maintain the state of
the deployment in stable storage so that the state can
be restored and the processing continued despite tran-
sient failures of systems or networks. The software
must report the state of processing to the manage-
ment center at some reasonable interval and also when
the deployment completes. The software then updates
the repository with the status of all the individual
operations in the deployment. 

The deployment implementation must provide
management directives to start, suspend, resume,
stop, and abort the deployment, without leaving it in
an inconsistent state or disrupting business operations.
Suspension prohibits any new command procedure
executions from starting but does not interrupt ongo-
ing ones, thus allowing the deployment to quiesce.
Suspension does not affect transactions. The resume
directive restarts execution of a deployment that has
been suspended. Stopping is the same as suspension
except that once stopped, the deployment cannot 
be restarted. The abort directive stops ongoing com-
mand procedure executions by terminating their
processes and thus forces the rollback of any transac-
tion that is executing at the time the directive arrives.
An aborted deployment cannot be restarted. There is
also an update directive, which forces the current
details of operation state to be rolled up to the man-
agement center. A show directive reports the overall
state of each deployment at a particular host. 

The management directives allow an external entity,
e.g., a batch scheduler or an operator, to intervene in
what would otherwise be a self-contained, automated
operation. A batch scheduler can suspend all ongoing
deployments at some time before bank branches open
and resume the deployments when the branches close.
It can force a deployment to stop at a predetermined
time, whether or not it has completed. An operator
can use the update directive to roll up the state to
determine how far a remote part of a large deployment
has progressed. It can also issue suspend and resume
directives to subsets of the network affected by 
a deployment to allow for emergency manual inter-
vention without suspending the entire deployment. 

Digital’s Response to the Requirements

Digital’s decision to undertake the project of develop-
ing an automated software deployment facility for the
bank was based on two goals. First, Digital wanted to
meet the needs of an existing customer. Second, in
solving the customer’s problem, Digital could validate
the set of network and system management models 
it had already developed. The following sections
provide an overview of the models and details of the
automated software deployment implementation. 

The EMA Configuration Management Model

When Digital began discussions with the bank about
automating software upgrades, in the Enterprise
Management Architecture (EMA) group, Paul Kelsey
was developing a comprehensive general model of
configuration management for information systems.
Like the influential EMA entity model that preceded
it, the EMA configuration management model (CMM)
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defines a consistent set of concepts and terms for
working in its particular problem domain.3 The entity
model broke new ground by applying what would
come to be known as object-oriented concepts to the
problem of managing the many types of objects found
in a network. The CMM goes on to address the rela-
tionships among those objects that, in combination
with the objects themselves, constitute an information
system’s configuration. 

Configuration management concerns a broad range
of activities over the lifetime of an engineered sys-
tem. The larger or more complex the system to be
managed, the greater the need for a configuration
management discipline. The U.S. Air Force defines
configuration management as “a discipline applying
technical and administrative direction and surveillance
to (a) identify and document the functional and physi-
cal characteristics of a configuration item, (b) control
changes to those characteristics, and (c) record and
report change processing and implementation status.
It includes configuration identification, control, status
accounting, and audits. Configuration management is
thus the means through which the integrity and conti-
nuity of the design, engineering, and cost trade-off
decisions made between technical performance, pro-
ducibility, operability, and supportability are recorded,
communicated, and controlled by program and func-
tional managers.”4

The CMM provides a conceptual framework for
automating information system management, cover-
ing the entire scope defined in the preceding para-
graph. For example, consider a disk drive. The EMA
entity model provides a conceptual framework for
describing the drive as an object with certain attributes
(e.g., storage capacity) and operations (e.g., format)
such that developers can build software that allows
monitoring and control of the object by means of 
a management protocol. Any object in the network
that presents a conforming management interface 
is called a managed object. 

The CMM proposes a framework for describing the
disk drive’s role in a system configuration over the
drive’s lifetime. The framework covers 

1. The services that the disk drive provides and the
clients of these services, e.g., the logical storage
volume that the drive supports 

2. The services that the disk drive consumes 
3. The objects that compose the drive 
4. The drive’s current and previous attribute values 
5. The attribute values that the drive should presently

have 
6. Plans for future drive configurations 
7. The way software should interpret and act on list

items 1 through 6 

The following discussion emphasizes the aspects of
the CMM that influenced the design of the Project
Gabriel software. 

Persistent Configuration Model 
In the CMM, all users and management applications
deal with managed objects in an information system,
whether physical or abstract, in the abstract: they
manipulate their representations in a repository, and
automatic mechanisms carry out the implied opera-
tions transparently. The repository maintains a per-
sistent representation, i.e., model, of the entire
information system’s state; it is called the persistent
configuration model (PCM). The PCM provides 
a common level of abstraction for all users and man-
agement applications because all management actions
are taken through it. Since the model persists, the
PCM can provide this abstraction in multiple temporal
divisions. 

Temporal Divisions 
Managed objects indicate their state through attrib-
utes and through relationships with other objects.
Object state is relative to the temporal division of the
PCM through which the state is viewed. Each tempo-
ral division can provide a consistent view of all the
objects in the network as they were at some point in
the past, as they are now, or as they will be. 

The historical temporal division records past system
states. The present is represented in the observed and
expected temporal divisions, where the observed divi-
sion provides the most recent information available on
actual object state, i.e., what is now. The observed
division is populated by automated census services
that collect current state information as directly as pos-
sible from the objects. The expected division main-
tains what is currently intended for the object state,
i.e., what should be. This division is based on the
observed division but modified as necessary to repre-
sent the state sanctioned by the system or network
administrator. 

The planned and committed temporal divisions rep-
resent future object states. States that may be realized
at some time are planned, whereas those that will be
realized are committed. The distinction permits simu-
lating, analyzing, and evaluating future states in the
planned division without implying any commitment
to realize them. 

Realization 
Differences between object states in the expected and
the committed divisions indicate changes that need to
take place to realize the new committed configuration.
This is the task of the realization services. The job of
identifying the required changes and generating a pro-
gram to realize these changes is called configuration



generation (CGN). Other realization services execute
the program and update the repository based on the
results. A software deployment operation would be
called a realization in CMM terms. The ultimate vision
of the CMM is to allow the user to define the desired
state of an information system and, with a single com-
mand, to realize it. 

Once the planned state has been realized, auto-
mated services can maintain that state by monitoring
the differences between object states in the observed
and the expected divisions. These differences repre-
sent possible faults and trigger fault-handling actions. 

Implementation

Digital and the bank agreed that Digital would imple-
ment the critical deployment automation part of the
bank’s requirements and integrate it with the bank’s
established processes. The focus of the discussion in
this section is the engineering team’s efforts to arrive
at an effective, implementable system design. 

System Design 
The CMM provided an effective conceptual frame-
work for thinking and talking about the system
requirements and possible design choices. As one
would expect from a general model, however, the
CMM did not address important design and imple-
mentation issues. In particular, it did not prescribe in
any detail the PCM design or how the realization ser-
vices should work. The Project Gabriel engineering
team, which included the CMM author, had to quickly
answer the following basic questions: 

■ How should the team implement the PCM? Is it an
object-oriented database, or will it require func-
tionality beyond what the team can implement in
such a database? What schema should the team use?
How much of the PCM as described in the CMM 
is really necessary for this project? 

■ How will CGN convert the PCM state data to 
a deployment program? Is CGN a rule-based
application or a conventional, sequential program?
What will CGN require of the objects in the PCM?
How will CGN communicate to the other, as-yet-
undesigned realization services what needs to 
be done to carry out a deployment? How should
the team trade off the complexity of CGN versus
the complexity of the services that will execute the
programs? 

■ What services will the team need to carry out the
programs CGN generates? What form will these
services take? 

■ How can the team minimize the complexity of the
system to arrive at a design that the team can actu-
ally implement? 
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The last question was in many ways the most impor-
tant. The team had to break down the problem 
into manageable pieces and at the same time devise 
an integrated whole. The team did not have time for 
a sequential process of analysis, design, and imple-
mentation and, therefore, had to find ways to start
development before the design was complete. CGN
presented the pivotal problem; it might ultimately be
the most difficult part of the system to design, but the
components on which it depended had not yet been
designed. In addition, these components could not 
be designed effectively without some reasonable idea
of how CGN would work. To efficiently use the time
allotted, the team began to search for the key design
abstractions while it evaluated technologies and tools. 

Actions and States PCM configuration data represent
multiple actual or possible states of the systems in the
network. CGN would generate a deployment program
based on the differences between the expected and
planned states represented in the repository. This idea
led to the development of a state table, which pre-
scribed the state transitions that would have to occur
to change each product on each system from its pre-
sent state (as shown in the expected temporal division)
to its planned future state. CGN could associate an
action with each transition and program those actions.
When the PCM received status from the actions taken
on the target systems, the transition identifier would
be included and would be used to update the PCM.
This became one of the key design concepts of Project
Gabriel: to model the target of a deployment opera-
tion as a collection of finite state machines. 

CGN needed a way to program the actions so 
the other realization services could carry them out.
The team chose to model the actions in a consistent
manner for all foreseeable variations, regardless of how
they are implemented or what state change they effect,
as follows: 

1. All actions consist of invoking a command, with
some list of arguments, on some object, and within
a discrete process. 

2. Actions are associated with state transitions.
Actions themselves have state (e.g., running) and
finite duration. Actions can be started, and at some
point they complete. When they complete success-
fully, they change the state of an object; when they
fail, they do not. 

3. The implementation of the command should
behave such that an action’s failure has no undesir-
able side effects, e.g., disabling a system component
or causing large amounts of disk space to be occu-
pied needlessly. This behavior cannot actually be
guaranteed, however, so some failures may require
human intervention to correct side effects. 



An operator submits a complete deployment pro-
gram to its designated control point. (Submission
consists of copying the program file to a well-known
place on the management center host system and issu-
ing a RUN command with the file name as an argu-
ment.) The control point breaks down the program
into its component subprograms and submits the indi-
vidual subprograms to their own designated control
points, thereby delegating responsibility for the sub-
programs. The delegation ends when a subprogram
has been broken down to the level of individual
actions, which are delivered to the agent on the target
system for execution. In the original model developed
for POLYCENTER Software Distribution, program
structure did not influence how operations were
decomposed and delegated. Instead, a target could 
be a group of targets, allowing recursive delegation of
subprograms according to the nesting of the groups.
The Project Gabriel innovation was to use nested sub-
programs within the deployment program rather than
nested target groups. Both approaches are built on 
the notion of distributing control by following a tree
whose nodes are managed objects and whose edges
are control relationships. This is how they were ulti-
mately represented in the PCM. 

The second idea relates to program state. The team
modeled the deployment program and each of its
component subprograms as finite state machines.
Each subprogram goes through a definite series of
transitions from ready to completed, stopped, or
aborted. The state of the program as a whole reflects
the state of the processing of its component subpro-
grams, and the state of each component reflects the
state of the processing of its components, and so on.
At any time, an operator can issue a show directive for
a control point and determine the local state of all
deployment programs. Understanding the collective,
distributed state of a deployment may be difficult at
times, because a given control point may have out-
dated information about a delegated subprogram. For
example, a program may be running when none of its
components are running yet, when some are running,
and when all have completed but notice has not yet
rolled up to the root of the control tree. This latency 
is natural and avoidable in such a system. 

The deployment software maintains program state
on disk. When a component subprogram is delegated,
the state is reflected at the sender by a placeholder sub-
program that stands in for the one created at the
receiver. The state is updated at the sender only after
the receiver acknowledges receiving the subprogram
and securing it in stable storage. Given this conserva-
tive approach to recording state changes, and logic
that makes redundant delegations harmless, a control
point server can be stopped or restarted without losing
program state. 
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In most respects, this model of command proce-
dure execution is the same one used by both the
OpenVMS batch facility and the POLYCENTER
Scheduler. The principal difference is that in Project
Gabriel, a user does not simply program an arbitrary
sequence of actions. Rather, each action corresponds
to a specific meaningful state transition of an object.
When the PCM receives completion status for an
action, the PCM update program can use the transi-
tion identifier to determine what state an object has
attained and modify its representation in the reposi-
tory accordingly. 

By hiding the implementation internals behind 
a consistent interface in this manner, the software
designed for controlling actions does not have to 
be concerned with those internals. This is a straight-
forward application of the principle of encapsulation,
which separates the external aspects of an object from
its internal implementation details.5 Encapsulation
allows a system designer to separate the question of
how an action, such as copying a file or invoking an
installation procedure, is implemented from the ques-
tion of what interface the control system will use to
invoke the action. This is obviously a simplification of
the implementation issue, because the team had to
deal with preexisting implementations, which cannot
always be made to follow new rules. From a design
point of view, however, the simplification is essential. 

Control Distribution A deployment operation consists
of multiple actions, performed in various complex
sequences. The team understood intuitively that every
host system would have to run software to execute 
the deployment program and that the management
center would distribute the program to the other 
host systems in the network. An advanced develop-
ment team working on a more scalable design for the
POLYCENTER Software Distribution product had
previously developed a model for this kind of distrib-
uted control. The Project Gabriel team adopted two
related design ideas from its work. 

The first idea is recursive program decomposition
and delegation. Assume that the control system is
implemented by servers called control points, whose
task it is to coordinate operations. Assume also that
each target system has an agent that carries out the
action. Assign to each target agent a control point, and
assign to each control point its own control point, such
that these control relationships form a tree structure. 

Assume that deployment programs are composed of
nested subprograms, which, in turn, are composed of
nested subprograms, and so on. Assume also that each
program (or subprogram) has an attribute identifying
the designated control point to which the program
must be sent for processing. Such programs can be
decomposed, distributed, and executed using a recur-
sive distribution algorithm, as follows. 



■ The PCM, which contains systems and a catalog 
of software configurations, software components,
materials, and precedence relationships—all in
temporal divisions. 

■ Software component state table. 
■ Actions, which change the state of objects in the

network. 
■ Managed objects (e.g., software components and

kits) as finite state machines whose transitions result
from actions. 

■ A control tree to partition control responsibil-
ity. This tree consists of relationships between
control points and between control points and
target agents. 

■ A distribution tree to define the path for distrib-
uting software to target systems. This tree consists
of relationships between distribution points and
target agents. 

■ Deployment programs as finite state machines
whose nested structure is decomposed and distrib-
uted according to the control tree. 

■ Control point servers that execute deployment pro-
grams and target servers that execute actions. 

Given these abstractions, the key problem of
designing CGN was to determine the optimal order 
of traversing and analyzing an interrelated set of 
trees connected with a plan in the PCM. The solution
had to address 

■ The PCM temporal divisions, to locate expected
and committed states of system configurations in
the plan 

■ The software catalog, to determine materials and
precedence relationships 

■ The precedence relationships, to determine the
processing order for the products in the plan 

■ The control tree, to determine how control must
be distributed 

■ The distribution tree, to determine how software
kits must be distributed 

For each system, CGN must determine what prod-
ucts will undergo which state transitions based on the
state table. The same set of abstractions made it clear
what form SYREAL should take and the nature of the
processing that the control point and target servers
would perform. 

Reducing the problem to a small number of abstrac-
tions, many of which shared a similar structure, was a
major step in the process of defining an implementable
system. Although the overall problem was still com-
plex and required a nontrivial effort to solve, at least
the problem was bounded and could be solved using
conventional programming techniques. 

Digital Technical Journal Vol. 7 No. 2 1995 63

Data Distribution The team borrowed the notion of 
a distribution map from the IDC product mentioned
in the section The Software Deployment Problem.
The Project Gabriel concept is a distribution tree,
which is formed in the same fashion as the control
tree. Each host system is assigned a distribution point
from which it gets its copies of software kits to be
installed. A system that hosts a distribution point has
its own assigned distribution point, and so on, for as
many levels as necessary. This assignment takes the
form of relationships between system objects in 
the PCM. CGN uses the distribution tree to determine
the software distribution path for each target system. 

The control and distribution trees need not be 
the same, and they should not be confused with 
one another. The control tree uniquely defines the
path by which all other services, e.g., kit distribution,
are managed. 

SYREAL Programming Language To communicate 
a deployment plan to the servers that were to execute
it, the team invented a simple textual representation
called the system realization language (SYREAL). This
language was easy for the developers and users to
analyze in case problems developed and could easily 
be produced by programs, by DCL command pro-
cedures, or by hand. Although SYREAL is verbose
(e.g., installing a few products on a dozen systems
requires hundreds of lines of text), it clearly reflects the
structure of the deployment operation. 

PCM Implementation The development team believed
that an object-oriented repository would provide the
most natural mapping of the PCM abstractions onto 
a data model. The team used an internal tool kit called
AESM, which was layered on the CDD/Repository
software product. The user interface is based on
DECwindows Motif software, using facilities provided
by AESM. 

AESM uses membership, i.e., containment, rela-
tionships to connect objects in a meaningful way. All
relationships are derived by inheritance from this basic
type. Thus, the PCM contains temporal divisions,
which contain groups of systems, which contain soft-
ware configurations, which contain specific software
components with certain state attributes. A software
catalog contains configurations, software compo-
nents, and materials objects that describe the kits used
to install these components. A plan in the PCM is an
object within the planned domain that contains sys-
tems and configurations. 

Configuration Generation Processing Thus far, the
paper has described the following abstractions avail-
able for CGN: 
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Overview and Example of Deployment Processing 
A user, i.e., planner, begins the deployment process by
populating the repository with objects to be managed
using an application that reads from the inventory
database. The objects in the repository represent a
software catalog, expected and planned temporal divi-
sions, computer systems, software products, software
configurations, software materials (kits), and product
pick lists. By specifying the relationships between the
objects, i.e., by actually drawing the relationships, the
user develops a model of the network configuration.
For example, a model may represent a system that has
a particular software configuration and is contained in
one of the temporal divisions. 

In addition to allowing the user to model the
network, the deployment software represents policy
information by means of relationships. A software
product may have precedence relationships with other
software products that prescribe the installation order.
Each system has a relationship that indicates its distrib-
ution point, i.e., the file service that provides staging
for software distribution to that system. Each system
also has a relationship that indicates its control point,
i.e., the management entity that controls deployment
operations for that system. 

Using the graphical user interface, a planner derives
new configurations from approved configurations 
in the repository and assigns the new configurations to
systems or groups of systems. A planner can view the
differences between the current and the proposed
configurations and see which systems will be affected.
If the observed changes are acceptable, the planner
can run CGN to produce a program to realize the
changes. Once the program has been generated, 
the planner can launch it immediately, schedule it for
execution later, or just review it. 

Deployment programs normally run under the con-
trol of a batch scheduler. For large-scale deployments,
which can continue for days, the scheduler automati-
cally suspends execution while branch offices are open
for business, resumes execution when the branches
close, and repeats the cycle until the operation has
completed. Operators oversee the execution of the
deployment, intervening to suspend, resume, stop, or
abort the process, or to observe the program’s state.
Actions on individual systems that fail may suspend
themselves, thus allowing an operator to intervene and
correct the problem and then, if desirable, restart the
operation. 

Certain events, such as a deployment action failure,
roll up to the central control point and trigger the exe-
cution of a user-written event script. Depending on
the type of event, the script may notify an operator,
make a log entry, or perform a PCM update. Normally,
the last event that occurs is the completion of the
program. If the PCM completed successfully, it is

automatically updated. Even if a program does not run
to successful completion, the operator can trigger a
PCM update so that whatever changes were realized
will be reflected in the PCM. A new program, gener-
ated with the same planned configuration, will include
only the changes that were not completed in the previ-
ous attempt. 

The remainder of this section describes the role of
each major Project Gabriel component in the deploy-
ment process. The example presented was intention-
ally kept simple. Its assumptions are as follows: 

■ The repository has been populated with network
information, the product catalog, etc. 

■ The goal is to upgrade the software configurations
of a set of four branch servers, B1 through B4. 

■ Central control points exist at headquarters, HQ,
and on two group servers, G1 and G2 (see Table 4). 

■ Branch servers B1 and B2 have their control point
on G1; B3 and B4 have theirs on G2. HQ hosts the
control points for itself and for G1 and G2. 

■ The branch server systems have distribution points
(file servers), which in this example are on the same
host systems as their respective control points.
(This overlap is not required.) 

■ In the PCM’s expected temporal division, the four
systems B1, B2, B3, and B4 are governed by the
same software configuration. The only layered soft-
ware product is Product X version 1.1, which is in
the active state. 

■ The planners want to have Product Y version 2.0
installed on the four systems and in the active 
state. They create a plan in which a new config-
uration, with Product Y added, governs the sys-
tems (see Table 5). They commit the plan, which
invokes CGN. 

Configuration Generation CGN transforms the
desired future state represented in the PCM to a pro-
gram that can be used to realize that state. CGN deter-
mines the difference between the configurations in the 

Table 4 
Designated Management Control and Distribution
Points 

Control Distribution 
System Point Point 

HQ HQ HQ 
G1 HQ HQ 
G2 HQ HQ 
B1 G1 G1 
B2 G1 G1 
B3 G2 G2 
B4 G2 G2 
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expected and committed temporal divisions, which 
in the example is the addition of Product Y version 2.0 
in the active state. Since the configurations differ by
only one product, the question of installation order
does not arise. If multiple products were involved,
CGN would analyze their dependencies and arrange
them in the correct installation order. 

CGN uses a state table to determine the sequence of
transitions that must occur to bring the software to the
desired state. In the example, Product Y version 2.0 is
not present on any of the target systems, so the kit
must be copied to the appropriate distribution point
and then copied to the target systems, after which it
must be installed and activated. CGN uses the distrib-
ution tree to find the appropriate distribution points
and then uses the control tree to determine which
control point to use for each set of systems, for each
staging copy, and for each transition. Finally, CGN
generates the corresponding text in SYREAL. The
program that CGN writes optimizes throughput by
performing concurrent processing whenever possible. 

SYREAL Program A SYREAL program has two parts:
(1) object declaration and (2) the executable. The first
part declares the objects to be acted upon. The control
point that executes the program has no knowledge of
the software products, files, kits, copy commands, etc.
It knows only that objects exist that have identifiers
and that undergo named state transitions as a con-
sequence of executing commands. SYREAL provides 
a means of declaring objects, their identifiers, the
associated transitions, and the commands that effect
the transitions. Figure 2 is an example of an object

declaration. The program declares the realization
object that represents Product Y version 2.0. The
object name is PY. Note that PY is an ad hoc, purely
local naming scheme. Since there can be only one
instance of any product version on a system, the name
is implicitly distinguished by its locality, in the sense
that it is the unique instance of product PY on system
X. PY inherits the default object characteristics (not
shown) and adds its own kit identifier, product name,
and a definition of the ACTIVATE transition. This
transition has command CMD, which is a DCL com-
mand string. 

The second part of a SYREAL program is the exe-
cutable. (Figure 3 shows the executable part for the
deployment process example.) This part consists of at
least one executable block (i.e., subprogram), which
may contain any number of additional executable
blocks. A block may be defined as concurrent or serial.
Blocks nested within a serial block are executed in
order of appearance. Blocks nested within a concur-
rent block are executed concurrently. 

Any block may have an associated fault action
expressed as one of the following commands: ON
ERROR SUSPEND, ON ERROR CONTINUE, 
or ON ERROR ROLLBACK. A block is executed 
by “USING” a designated control point to control it.
For example, the first executable line in Figure 3, i.e.,
SERIAL BLOCK USING “HQ”;, declares the execu-
tion of the outermost block to be assigned to HQ.
Nested USING blocks may be assigned to other con-
trol points, to the point at which the ultimate action is
called for. The SYREAL program expresses this assign-
ment by an AT block, in the sense that the action 

Figure 2
SYREAL Program—Object Declaration

OBJECT PY CHARACTERISTICS LIKE DEFAULT; 
KIT_ID “PY020”; 
PRODUCT_NAME “PY, 2.0”; 
TRANSITION FETCH 

CMD “$@RLZ$SCRIPTS:RLZ$FETCH”; 
TRANSITION ACTIVATE 

CMD “$@RLZ$SCRIPTS:RLZ$ACTIVATE”; 
END CHARACTERISTICS PY; 

Table 5 
Expected and Committed Configurations 

Temporal Configuration 
Division Name Product Version State 

Expected GoodConfig Product X 1.1 Active 
Committed BetterConfig Product X 1.1 Active 

Product Y 2.0 Active 



66 Digital Technical Journal Vol. 7 No. 2 1995

Figure 3
SYREAL Program—The Executable 

SERIAL BLOCK USING ”HQ“; 
ON ERROR SUSPEND; 
SERIAL BLOCK AT ”HQ“; 

PERFORM FETCH 
OBJECT PY; 

END SERIAL BLOCK AT ”HQ“; 
CONCURRENT BLOCK USING ”HQ“; 

SERIAL BLOCK USING ”HQ“; 
SERIAL BLOCK AT ”G1“; 

PERFORM COPY 
OBJECT PY 
SERVER ”HQ“; 

END SERIAL BLOCK AT ”G1“; 
CONCURRENT BLOCK USING ”G1“; 

SERIAL BLOCK AT ”B1“; 
PERFORM COPY 
OBJECT PY 
SERVER ”G1“; 

PERFORM INSTALL 
OBJECT PY; 

END SERIAL BLOCK AT ”B1“; 
SERIAL BLOCK AT ”B2“; 
PERFORM COPY 
OBJECT PY 
SERVER ”G1“; 

PERFORM INSTALL 
OBJECT PY; 

END SERIAL BLOCK AT ”B2“; 
END CONCURRENT BLOCK USING ”G1“; 

END SERIAL BLOCK USING ”HQ“; 
SERIAL BLOCK USING ”HQ“; 

SERIAL BLOCK AT ”G2“; 
PERFORM COPY 
OBJECT PY 
SERVER ”HQ“; 

END SERIAL BLOCK AT ”G2“; 
CONCURRENT BLOCK USING ”G2“; 

SERIAL BLOCK AT ”B3“; 
PERFORM COPY 
OBJECT PY 
SERVER ”G2“; 

PERFORM INSTALL 
OBJECT PY; 

END SERIAL BLOCK AT ”B3“; 
SERIAL BLOCK AT ”B4“; 
PERFORM COPY 
OBJECT PY 
SERVER ”G2“; 

PERFORM INSTALL 
OBJECT PY; 

END SERIAL BLOCK AT ”B4“; 
END CONCURRENT BLOCK USING ”G2“; 

END SERIAL BLOCK USING ”HQ“; 
END CONCURRENT BLOCK USING ”HQ“; 
CONCURRENT TRANSACTION USING ”HQ“; 

CONCURRENT BLOCK USING ”G1“; 
SERIAL BLOCK AT ”B1“; 

PERFORM ACTIVATE 
OBJECT PY; 

END SERIAL BLOCK AT ”B1“; 
SERIAL BLOCK AT ”B2“; 

PERFORM ACTIVATE 
OBJECT PY; 

END SERIAL BLOCK AT ”B2“; 
END CONCURRENT BLOCK USING ”G1“; 
CONCURRENT BLOCK USING ”G2“; 

SERIAL BLOCK AT ”B3“; 
PERFORM ACTIVATE 

OBJECT PY; 
END SERIAL BLOCK AT ”B3“; 
SERIAL BLOCK AT ”B4“; 

PERFORM ACTIVATE 
OBJECT PY; 

END SERIAL BLOCK AT ”B4“; 
END CONCURRENT BLOCK USING ”G2“; 

END CONCURRENT TRANSACTION USING ”HQ“; 
END SERIAL BLOCK USING ”HQ“; 



is aimed at an individual system. An AT block 
may contain one or more PERFORM statements,
which perform the action called for. The second exe-
cutable line in Figure 3, i.e., SERIAL BLOCK AT
“HQ”;, calls for the fetch transition on the object PY.
This action results in execution of the command
@RLZ$SCRIPTS:RLZ$FETCH on HQ to fetch the
distribution kit files from the software library. 

A transaction is simply a block that enforces the fault
action ON ERROR ROLLBACK. Nested operations
must complete successfully or all will roll back. 
A transaction may be serial or concurrent and may
contain nested blocks that are serial or concurrent. 
It may not contain a nested transaction. 

Deployment Processing Control point and target
servers are implemented on each OpenVMS system in
the network by a single server daemon called the real-
ization server (RLZ). On receipt of the SYREAL pro-
gram, the first daemon, which is on HQ, converts the
program to a binary representation on disk. This data
file mirrors the nesting structure of the text file but
allows for storage of additional state information. 

The daemon then executes the program by sending
the binary version of each block that is currently eligi-
ble for execution to the block’s designated control
point. Each control point that receives a binary block
repeats this process, until an AT block arrives at its des-
ignated control point. The control point then sends 
to the target system’s daemon a request to perform
the action. The target daemon creates a process to exe-
cute the PERFORM command, captures completion
status when the process exits, and returns the status 
to the control point. If the perform action is success-
ful, the control point sends the next perform request. 
If the perform action fails, the control point decides
whether to send the next perform request, to suspend
processing until an operator can intervene, or to initi-
ate a rollback. This decision depends on the fault
action in effect. 

The RLZ daemon maintains processing state on
disk to allow recovery from system failures, loss of net-
work connectivity, and other transient calamities. As
block processing completes, block status is rolled up to
its containing block, whether local or on a remote
control point. The state of the block changes to reflect
the block’s interpretation of the states of its nested
blocks. At each level, the control point decides if, as 
a result of status reports, one or more additional
blocks should be executed. Ultimately, the central
control point at HQ will have received the status of 
all operations. If all the perform actions completed
successfully, as determined by the fault actions spe-
cified, the deployment completes successfully. Other-
wise, the deployment fails. Completion triggers
execution of a PCM update script. 
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PCM Update The overall status of a Project Gabriel
realization is an interpretation of the results of many
individual operations, some governed by fault actions
different from those of the others. Because CGN
dynamically generates the block structure of a realiza-
tion program, the structure has no direct counterpart
in the PCM. Therefore, only the results of individual
perform actions are of interest for updating the PCM.
The update program examines the completion status
of each perform action completed on each object on
each target system. The program updates the corre-
sponding objects in the PCM based on the results of
the last action completed on each object. 

Note that since object and transition definitions are
specific to a particular SYREAL program, realization
servers are not limited to the object classes that Project
Gabriel’s CGN and PCM update handle. Applications
can be written to perform other kinds of operations
with new object classes, transitions, etc. 

Realization Block Diagram Figure 4 illustrates the
complete processing that the RLZ servers carry out 
in response to the example SYREAL program in the
case where no faults occur. Events flow from left to
right. The outermost block contains all the events of
interest except PCM update, which is implicit in every
SYREAL program and carried out automatically by the
RLZ server at the root of a deployment operation. 

The first action to be executed within the outermost
block is fetching PY from the library to staging storage
on HQ, under the control of HQ. Subsequently, HQ
controls concurrent operations to copy PY from HQ
to both G1 and G2. When the copy action is com-
pleted on either G1 or G2, HQ transfers the next
block to the respective control point to perform the
copy and install actions on its two targets. For
instance, the concurrent block using G1 executes the
copy action to B1 and then the install action on B1,
while the same sequence executes on B2. Processing
of these concurrent sequences synchronizes on G1
when both complete. At that time, the status of the
entire concurrent block using G1 rolls up to HQ,
where processing will again synchronize with the con-
current block using G2. 

HQ also executes the concurrent transaction. This
execution flows similarly to the preceding concurrent
block execution except that since no action needs to
be taken on G1 or G2 before proceeding to act on B1,
B2, B3, and B4, the serial blocks at G1 and G2 are
unnecessary. 

Fault Handling In the deployment example, the fault
action represented by the command ON ERROR
SUSPEND governs the steps prior to the transaction.
This means that, if an action fails, no dependent action
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will be performed. Instead, an event message will be
sent up the control tree to HQ. An operator can detect
this condition (either as a result of the event message
or during a periodic status check), intervene to correct
the problem, and restart the action that failed. For
example, if the copy action of PY to B1 from G1 fails,
the first serial block at B1 will be suspended and the
action to install PY on B1 will not be performed. (The
install action follows the copy action in a serial block
because it is dependent upon successful completion of
the copy action.) The blocks in the first part of the
deployment, i.e., the serial block at B2 and the concur-
rent block using G2, continue to execute, however.
No processing will go beyond the first HQ synchro-
nization point until the fault is corrected and the serial
block at B1 completes. If the problem cannot be cor-
rected, the deployment can be stopped and replanned,
perhaps excluding the node that failed. 

If one of the actions in the concurrent transaction
fails, no additional actions within the transaction will
be started and any that completed, including the failed
one, will be rolled back. Each transition may have an
associated ROLLBACK command. The rollback of 
an action consists of executing its ROLLBACK com-
mand. (This command is not shown in the SYREAL
sample.) In this case, the ROLLBACK command deac-
tivates PY. If the transaction has more activations, any
that start before the failure is detected are rolled back
in the reverse order of execution. The RLZ server
effectively runs the transaction in reverse, from the
point at which the failure was detected, executing 
the ROLLBACK command for each action that had
completed. To accomplish this, each control point
that detects a failure within a transaction or receives 
a rollback request from one of its subordinate control
points initiates a rollback in all the parts of the trans-
action under its control. At the same time, the control
point sends a rollback request to its control point. This
process continues until the rollback request reaches
the control point that controls the outermost block of
the transaction. 

A Note about Testing 
Consider the challenge of testing a deployment sys-
tem designed to operate over hundreds or thousands 
of systems. The PCM and CGN components are
centralized, so load testing and boundary testing 
are relatively straightforward. Executing deployment
operations is an inherently distributed process,
however, with one RLZ server per host. The team
designed the RLZ server to isolate all its data, e.g., net-
work object name, log files, deployment program state
data, and command procedures, based on the name
given the server process. This design enabled the team
to run as many copies of the server on a single system

as the system’s resources allowed—one VAXstation
4000 system was able to run more than 250 simulta-
neous servers—and to execute dummy command pro-
cedures. Such a design allowed the team to test
elaborate simulated deployments and forced it to
design the server to deal with a number of unusual
resource shortages. 

Project Gabriel’s performance data indicated that
the overhead of the RLZ server was relatively insignifi-
cant when compared with that of the actions per-
formed by means of command procedures. This data
supported the team’s belief that the system would be
scalable: A target system that has the resources to sup-
port relatively resource-intensive actions like software
installations can support one RLZ server to automate
the installations. 

Conclusions

This paper does not cover topics such as the com-
plex rules regarding the suspension/resumption and
restart of operations, lost server time-outs, and interim
status updates. Also, the PCM data is considerably
more complex than the discussion indicates, as is the
asynchronous processing implemented in the RLZ
server and the logic of CGN. 

A great deal of detail has been omitted in order 
to focus on the usefulness of a particular collection 
of abstractions in solving a difficult problem. The
entity model and the configuration management
model helped to define, partition, and communicate
about the problem. The distribution model from 
the POLYCENTER Software Distribution advanced
development work provided essential ideas that the
other models did not. These intellectual assets were
instrumental in fulfilling the customer’s requirements.
In “What Good are Models, and What Models are
Good?” Fred B. Schneider asserts: “Distributed sys-
tems are hard to design because we lack intuition for
them.”6 By formulating and analyzing an abstract
model, we can develop such intuition, but it is a slow
process. It is easy to underestimate both its difficulty
and its value. 

The model of distributed process control developed
for Project Gabriel has proven useful and versatile. It
could be profitably applied to the design of a process
control service for distributed object technology, such
as the Object Management Group’s Common Object
Request Broker Architecture (CORBA).7 In such a
design, instead of executing a command procedure to
perform an action, a process control daemon would
invoke a CORBA request on an object. Programs
become nested collections of requests with associated
state. Improving distributed object and object-
oriented database technology should make possible



fuller realization of the PCM and a more powerful
CGN. The work accomplished in Project Gabriel just
scratched the surface. 

Summary

By applying relatively well-developed conceptual
models for network and system management, Project
Gabriel successfully implemented automated software
deployment in a large commercial network. The result
is a scalable, distributed system management applica-
tion that can be used to solve a variety of complex
distributed system management problems. 
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