
Digital’s Parallel Software Environment (PSE) was
designed to support the development and execution
of scalable parallel applications on clusters (farms) of
distributed- and shared-memory Alpha processors
running the Digital UNIX operating system. PSE
version 1.0 supports the High Performance Fortran
(HPF) language; it also supplies generic facilities
required by other parallel languages and systems. PSE
provides tools to define a cluster of processors and to
manage distributed parallel execution. It also contains
development tools for debugging and profiling paral-
lel HPF programs. PSE supports optimized message
passing over multiple interconnect types, including
fiber distributed data interface (FDDI), asynchronous
transfer mode (ATM), and shared memory.1

In this paper, we present an overview of PSE version
1.0 and explain why it was designed and selected
for use with HPF programs. We then discuss cluster
definition and management, describe the PSE appli-
cation model, and discuss PSE’s message-passing com-
munication options, including an optimized transport
for message passing. We conclude with our perfor-
mance results.

Overview of PSE

Many researchers and computer industry experts
believe that to achieve cost-effective scalable parallel
processing, systems must be built using off-the-
shelf components and not specialized CPUs and
interconnects.2,3 In accordance with this view, we
have designed Digital’s PSE to support the building
of a consistent yet flexible and easy-to-use parallel-
processing environment across a networked collection
of AlphaGeneration workstations, servers, and sym-
metric multiprocessors (SMPs). Layered on top of the
Digital UNIX operating system, PSE provides the sys-
tem software and tools needed to group collections of
machines for parallel processing and to manage trans-
parently the distribution and running of parallel appli-
cations. PSE is implemented as a set of run-time
libraries and utilities and a daemon process.

PSE version 1.0 is designed to support clusters con-
sisting of 1 to 256 machines interconnected with any
networking fabric that Digital UNIX supports with the

Digital’s Parallel Software Environment was
designed to support the development and exe-
cution of scalable parallel applications on clus-
ters (farms) of distributed- and shared-memory
Alpha processors running the Digital UNIX oper-
ating system. PSE supports the parallel execu-
tion of High Performance Fortran applications
with message-passing libraries that meet the
low-latency and high-bandwidth communica-
tion requirements of efficient parallel comput-
ing. It provides system management tools to
create clusters for distributed parallel process-
ing and development tools to debug and pro-
file HPF programs. An extended version of dbx
allows HPF-distributed arrays to be viewed,
and a parallel profiler supports both program
counter and interval sampling. PSE also supplies
generic facilities required by other parallel lan-
guages and systems.

24 Digital Technical Journal Vol. 7 No. 3 1995

Design of Digital’s
Parallel Software
Environment

Edward G. Benson
David C.P. LaFrance-Linden
Richard A. Warren
Santa Wiryaman

transmission control protocol/internet protocol
(TCP/IP). Networking technologies can range from
simple Ethernet to FDDI, ATM, and MEMORY
CHANNEL. Parallel execution is most efficient when
the interconnect technology offers high-bandwidth
and low-latency communications to the user at the
process level. When building a cluster for parallel pro-
cessing, the bisectional bandwidth of the communica-
tions fabric should scale with the number of processors
in the cluster. In practice, such a configuration can be
achieved by building clusters using Alpha processors
and Digital’s GIGAswitch/FDDI as components in a
multistage switch configuration.4,5 Figures 1 and 2
show two examples of PSE cluster configurations.
Although the design center for PSE is a set of machines
connected by a high-speed local area interconnect, a
cluster can be constructed that includes remote
machines connected by a wide area network.

PSE is a collection of many interrelated entities that
support parallel processing. PSE’s model is to collect
machines (called members) into a set (called a cluster).
The members are generally all the machines at a site or
within an organization that have or might have PSE
installed. One then subsets the cluster into named
(partitions) that may overlap. The members of a parti-
tion usually share some common attribute, which
could be administrative (e.g., the machines of the
development group), geographic (e.g., connected to
the same FDDI switch), or relevant to the configura-
tion (e.g., large memory, SMP).

The members of a cluster, the partitions, and other
related data form a configuration database that can be
maintained in different ways, but preferably by a sys-
tem administrator. The configuration database can be
distributed using the Domain Name System (DNS) or
as a simple file distributed by Network File System
(NFS).6 A daemon process farmd runs on each mem-
ber to provide per-member dynamic information,

such as availability and system load average. The static
database plus the dynamic information allow applica-
tions to perform tasks such as load balancing.

HPF Program Support

PSE was designed to be largely language-independent;
it currently supports the HPF programming language.
HPF allows programmers to express data parallel com-
putations easily using Fortran 90 array-operation syn-
tax. As a result, users can obtain the benefits of parallel
processing without becoming systems programmers
and developing message passing or threads-based pro-
grams. The HPF language and compiler are discussed
elsewhere in this issue of the Digital Technical
Journal.7

Writing parallel applications in HPF is significantly
less complex than decomposing a problem and coding
a solution using explicit message passing, but good
development tools are required. To allow the viewing
of HPF distributed arrays, we developed an extended
version of dbx and a parallel profiler that supports both
program counter and interval sampling. These tools
are discussed later in this paper.

High performance and efficient communication are
essential to success in parallel processing. PSE includes
a private message-passing library for use with compiler-
generated code. Thus it avoids overhead such as buffer
alignment and size checking that are required with
user-visible programming interfaces, such as Parallel
Virtual Machine (PVM).8 The message-passing library
supports shared memory and both TCP/IP and user
datagram protocol (UDP)/IP protocols on many
types of media, including FDDI and ATM. PSE also
includes an optional subset implementation of the
UDP, known as UDP_prime, that has been optimized
to reduce latency and improve efficiency. This opti-
mization is discussed later in this paper.

Digital Technical Journal Vol. 7 No. 3 1995 25

DEC 3000
MODEL 900
WORKSTATION

DEC 3000
MODEL 900
WORKSTATION

DEC 3000
MODEL 900
WORKSTATION

DEC 3000
MODEL 900
WORKSTATION

DEC 3000
MODEL 900
WORKSTATION

DEC 3000
MODEL 900
WORKSTATION

ALPHASERVER
8400
SMP SERVER

ALPHASERVER
2100 SERVER

BRIDGE

GIGASWITCH FDDI

FULL-DUPLEX
FDDI

ETHERNET NETWORK

Figure 1
PSE Basic Configuration

26 Digital Technical Journal Vol. 7 No. 3 1995

Before developing PSE for use with HPF programs,
Digital considered two major alternatives: the distrib-
uted computing environment (DCE) and PVM.8,9

(At that time, the message-passing interface [MPI]
standard effort was in progress.10)

Although a good model for client-server application
deployment, DCE is designed for use with remote CPU
resources via procedure calls to libraries. This model
is very different from the data-parallel and message-
passing nature of distributed parallel processing. Its
synchronous procedure call model requires the exten-
sive use of threads. In addition, DCE contains a signif-
icant number of setup and management tasks. For
these reasons, we rejected the DCE environment.

Three major considerations in our choice to develop
PSE instead of using PVM were stability, performance,
and transparency. At the start of the PSE project, the
publicly available version of PVM did not meet the sta-
bility, performance, and transparency goals of the PSE
project.

Cluster Definition and Management

PSE is designed to operate in a common system envi-
ronment where systems are organized so that user
access, file name space, host names, and so on are con-
sistent. The ultimate goal for the systems in a distrib-
uted parallel-processing environment is to approach

Figure 2
PSE Multistage Switch Configuration

Digital Technical Journal Vol. 7 No. 3 1995 27

the transparent usability of a symmetric multiproces-
sor. Facilities such as NFS (to mount/share file systems
among machines, in particular working directories)
and network information service (NIS) (also known as
“yellow pages” and used to share password files) are
frequently used to set up a common system environ-
ment. In such an environment, users can log into any
machine and see the same environment. Other distrib-
uted environments such as Load Sharing Facility
(LSF) make this same design assumption.11

A consistent file name space allows all processes that
make up an application to have the same file system
view by simply changing directory to the working
directory of the invoking application. Consistent user
access allows PSE to use the standard UNIX remote
shell facility to start up peer processes with standard
security checking.

Systems in a common system environment are can-
didates to become members of a cluster. A cluster is
often the largest set of machines running PSE and
sharing a common system environment within an
organization or site. A cluster is divided into partitions
that can overlap. A partition consists of a set of
machines grouped together to meet the needs of an
application or user. Although partitions may be
defined in many ways, systems in a partition usually
share common attributes.

Partitions
Parallel programs run most efficiently on a balanced
hardware configuration. Typically, organizations have
a varied collection of machines. Over time, organiza-
tions often acquire new hardware with different net-
work adapters, faster CPUs, and more memory. Such
situations can easily lead to increasing difficulty in
predicting application performance if scheduling
and load-balancing algorithms treat all machines in
a cluster equivalently. In addition to hardware differ-
ences, individual machines can have different software
installed that affects the ability to run applications.

The PSE engineering team recognized that the
number of characteristics that users might want to
manage for processor allocation and load-balancing
purposes would be overwhelming. To limit the prob-
lem, a design was chosen that allows machines to be
grouped arbitrarily into named partitions. A partition
can be thought of as a parallel machine. Although
a system can be a member of two different partitions
and therefore cause overlap, PSE does not attempt to
load balance or schedule processes beyond partition
boundaries. Overlapping partitions can therefore cre-
ate a complex and potentially conflicting scheduling
situation. Well-defined and managed partitions allow
for flexibility and predictability.

In addition to identifying machine membership,
partition definition allows various execution-related

characteristics to be set. Examples include the specifi-
cation of a default communication type, the default
execution priority, the upper bound on the execution
priority, and access control to partition resources.
Access control is enforced only on PSE-related activity
and does not affect the use of the machine for other
applications.

Configuration Database
PSE cluster configuration information is captured in
a database. The database includes a list of cluster mem-
bers, partitions, and partition members. Additional
attributes such as the default partition of a cluster, user
access lists for a partition, and preferred network
addresses for members of a partition can be encoded in
the database.

The PSE configuration database can be distributed
to all cluster members in two ways: by storing it in
a file that is accessible from all cluster members, or by
storing it as a Domain Name System (DNS) database.
The usage patterns of the cluster database fit well with
the usage patterns of a DNS database. In particular,
DNS provides central administrative control with
version numbering to maintain consistency during
updates. It is designed for query-often, update-seldom
usage; it is distributed and allows secondary servers to
increase availability. Applications linked with the PSE
run-time libraries transparently access the database to
obtain configuration information.

In the DNS database, each PSE configuration
token-value pair is stored as DNS TXT records. The
original specification for DNS did not have TXT
records, but additional general information was
attached to domain names at the request of MIT’s
Project Athena.12 The list of the TXT records, along
with DNS header information such as version number,
forms a DNS domain whose name is the PSE cluster
name. To facilitate the creation and setup of a PSE
cluster, we built the psedbedit utility for editing and
maintaining configuration databases.

A simple file that is available on all members of the
cluster can also be used as the cluster configuration
database. The file could be made available through
NFS or copied to all nodes using rdist. This alternative
might be appropriate for very simple clusters where
the services of DNS are not warranted or in cases
where local policy precludes the use of DNS.

Dynamic Information and Control
In addition to the static information of the configura-
tion database, there are also several pieces of dynamic
information that optimize usage of clusters and parti-
tions. At the most fundamental level is availability, i.e.,
is a machine running? Other information includes the
number of CPUs, load average, number of allowed
PSE jobs, and number of active PSE jobs. All these

factors can help an application choose the best set of
members for parallel execution. This dynamic informa-
tion is collected by a daemon process (farmd). The
farmd daemon process executes as a privileged (root)
process on each cluster member and listens for requests
on a well-known cluster-specific UDP/IP port.

Multiple cluster members defined in the configura-
tion database are designated as load servers. The load
servers are the central repository for the dynamic
information for the entire cluster. Their farmd process
periodically receives time-stamped updates from the
individual daemons. Applications query the load
servers for both static and dynamic information.
Applications do not themselves parse the database nor
query the individual farmd daemons running on each
cluster member.

Once PSE is installed and configured, farmd is
started each time the system is booted. The name of
the cluster that farmd will service and the number of
PSE jobs (job slots) that will be allowed to run are set.
The inetd facility is used to restart farmd in response to
UDP/IP connection requests, if farmd is not run-
ning.13 Use of the inetd facility to start farmd improves
the availability of machines to run PSE applications by
transparently restarting farmd in the case of a failure.

As farmd daemons are started, they attempt to
establish TCP/IP connections with their neighbors as
defined by the PSE configuration database.14 This
process is undertaken by all cluster members and
quickly results in a configuration ring whose purpose
is the detection of node or network failures. We chose
a simple ring of TCP/IP connections because the
mechanism is passive, i.e., it relies on the loss of
TCP/IP connectivity and does not impose any addi-
tional load on the system or network under normal
conditions. When connectivity to a member is lost,
neighboring cluster members report the member
being unavailable. This prevents PSE from attempting
to schedule new applications on the failed member.

Failures that do not break the configuration ring, but
prevent updated load information from being sent to
the load server, are detected by checking the time-
stamps on previously received load information. As
soon as a “time-to-live” period expires for a particular
member’s load information, the load servers disable fur-
ther use of the suspect node. System managers are also
able to set the number of job slots to zero at any time,
thus disabling the host for new PSE-related activities.
This has no effect on currently executing applications.

Pseudo-gang Scheduling
The start-up sequence for a PSE application includes
the potential modification of execution priority and
scheduling policy. These changes are made in accor-
dance with the user command-line options and/or the
default characteristics defined by the PSE configura-
tion database. To allow nonroot UID processes to

elevate scheduling priorities and/or alternate sched-
uling policies, farmd modifies the user process’s
scheduling priority or policy. Processes scheduled at
a high real-time priority using a first in, first out
(FIFO) queue with preemption policy achieve a
pseudo-gang-scheduling effect. (Gang scheduling
ensures that all processes associated with a job are
scheduled simultaneously.) This effect occurs because
of the scheduling preference given high-priority jobs
and because PSE polls for messages for a period of
time before giving up the CPU.

Using PSE

Parallel applications are developed for PSE using the
Digital Fortran 90 compiler. When the Fortran 90
compiler is invoked with the -wsf N flag, HPF source
codes are compiled and then linked with a PSE library
for parallel execution on N processors. After defining a
partition in which to run, a PSE application can be run
simply by typing the name of the application. The fol-
lowing example shows the compilation and execution
of a four-process program called myprog on a set of
cluster members in the partition named fast.

csh> setenv PSE_PARTITION fast
csh> f90 -wsf 4 myprog.f90 -o myprog
csh> myprog > myprog.out < myprog.dat &

Transparently, PSE starts up four processes on
members of the partition fast; creates communications
channels between the processes; supports redirected
standard input, output, and error (standard I/O); and
controls the execution and termination of the applica-
tion. Several environment variables and run-time flags
are available to control how an application executes.
Figure 3 shows how to use PSE.

PSE Application Model

PSE implements an application as a collection of inter-
connected processes. The initial process created when a
user runs an application is called the controlling process.
It provides application distribution and start-up services
and preserves UNIX user-interface semantics (i.e., stan-
dard I/O), but does not participate in the HPF parallel
computation. The controlling process usually deter-
mines which partition members to use for the parallel
computation by getting system load information from
a load server and then distributing the new processes
across the partition. As an alternative, users can direct
computation onto specific partition members.

The controlling process starts a process called the
io_manager on each partition member participat-
ing in the parallel execution. Each io_manager then
starts one or more application peer processes that
perform the user-specified computation. The use of
an io_manager is necessary to create a parent-child

28 Digital Technical Journal Vol. 7 No. 3 1995

process relationship between the io_manager and peer
processes. This relationship is used for exit status report-
ing and process control. It also enables or eases other
activities, such as signal handling and propagation. Peer
processes create communication channels between
themselves and perform standard I/O through a desig-
nated peer. Standard I/O is forwarded to and from the
controlling process through the io_manager. Figure 4
shows a PSE application structure.

Application Initialization
Prior to the execution of any user code, an initializa-
tion routine executes automatically through function-
ality provided by the linker and loader. The
initialization routine implements both the controlling
process functions and the HPF-specific peer initializa-
tion. Because no explicit call is required, parallel HPF
procedures can be used within non-HPF main pro-
grams, and proper initialization will occur. A simple
HPF main program can also be used with PSE to start
up and manage a task-parallel application that uses
PVM or MPI for message passing.

In general, the controlling process places peer
processes onto members of a partition, although hand
placement of individual peers onto selected members

is possible. To achieve efficiency and fairness in map-
ping a set of peers, the controlling process consults
with a load server for load-balancing information.
Which members are used and the order in which they
are used is based on each member’s load average,
number of CPUs, and number of available job slots.

As an alternative, PSE may map peer processes onto
members based upon a user-selected mode of opera-
tion. In the default physical mode of operation, PSE
maps one peer process per member. In virtual mode,
PSE allows more than one peer process per member,
thereby enabling large virtual clusters. This is useful
for developing and debugging parallel programs on
limited resources. Virtual clusters also improve appli-
cation availability: when the requested number of peer
processes is greater than the available set of partition
members, applications continue to run; however, they
may suffer performance degradation.

Application Peer Execution
Each application peer process has an io_manager
parent process that provides it with environment
initialization, exit value processing, I/O buffering,
signal forwarding, and potential scheduling priority
and policy modification. Rather than include the

Digital Technical Journal Vol. 7 No. 3 1995 29

COMPILATION
OPTIONS
(E.G., -WSF 4)

FORTRAN 90
COMPILER

SOURCE
“MYPROG.F90”

OBJECT FILE
“MYPROG.O”

STANDARD
LINKER (LD)

LIBRARIES:
• FORTRAN
• RUN-TIME
• PSE

EXECUTABLE
“MYPROG”

EXECUTION
(E.G., SHELL)

CONTROLLING
PROCESS

COMMAND LINE
SWITCHES AND
ENVIRONMENT
VARIABLES

HOST [SMP]
(CLUSTER MEMBER)

HOST
(CLUSTER MEMBER)

HOST
(CLUSTER MEMBER)

HOST
(CLUSTER MEMBER)

PARTITIONS

CLUSTER

PEER SPAWN
AND CONTROL

STATIC
DATABASE
(E.G., DNS)

LOAD SERVER

DYNAMIC INFORMATION
(E.G., LOAD)

Figure 3
PSE Use

io_manager’s functions in each PSE executable,
the io_manager is implemented as a simple utility.

Application peers run the same binary image as the
controlling process. They inherit their current working
directory, resource usage limits, and an augmented set
of environment variables from their controlling process
through their parent io_manager. When started, the
initialization process described for the controlling
process is repeated, but peers do not become control-
ling processes because they detect that a controlling
process already exists. Instead, peer processes return
from the initialization routines with communication
links established and are ready to run user-application
code. Figure 5 represents a controlling process, four
application peers running on three members, and the
communications between processes.

Application Exit
Multiple peer exits can have potentially conflicting exit
values. Coordinating them into a single meaningful
application exit value is the most challenging trans-
parency issue faced by PSE. Under normal circum-
stances, all peer processes exit without error and at
approximately the same time. The resulting exit values
are reported to the application controlling process by
the io_managers. The application (i.e., the controlling
process) is allowed to exit without error only when all
exit values are recorded and standard I/O connections
are drained and closed. The HPF compiler generates
synchronization code to guarantee the roughly syn-
chronous exit for all nonerror conditions. This pre-
sumption allows PSE to implement a timely exit
model, i.e., one by which we can reasonably assume

30 Digital Technical Journal Vol. 7 No. 3 1995

CONTROLLING
PROCESS

IO_MANAGER

PEER
PROCESS

PEER
PROCESS

MEMBER

IO_MANAGER

PEER
PROCESS

MEMBER

IO_MANAGER

PEER
PROCESS

MEMBER

STANDARD I/O

KEY:

PEER-TO-PEER COMMUNICATIONS

Figure 4
PSE Application Structure

farmd
LOADSERVER

HOST A

LIBPHPF

APPLICATION

CONTROLLING
PROCESS

LOAD INFORMATION

STANDARD I/O
AND SIGNALS

HOST B

farmd

IO_MANAGER

PEER PROCESS

OTHER HOSTS/PEERS

HPF
COMMUNICATIONS

LIBPHPF

APPLICATION

Figure 5
Communications between PSE Processes

Digital Technical Journal Vol. 7 No. 3 1995 31

normal activity will cease after receiving the last exit
notification from an io_manager.

Peers that exit abnormally make it difficult to
provide a meaningful exit value for the application.
Consider one peer process that exits due to a segmen-
tation fault and another that exits due to a floating-
point exception. There is no single exit value possible
for the application; PSE chooses the first abnormal
value it sees. Furthermore, as a result of error detec-
tion in the communication library, the other peer
processes will exit with lost network connections. It is
possible that the controlling process will see an exit
value for this effect before it sees an exit value for one
of the causes, resulting in a misleading application exit
value. To understand a faulting parallel application
running under PSE, the core files associated with each
peer process must be examined.

PSE includes support for capturing the entire appli-
cation core state and for discriminating the multiple
core files of a parallel application. Because peer pro-
cesses share the same working directory, any core files
generated would be inconsistent and overwrite one
another due to N processes writing to the same core
file name. PSE solves this problem by establish-
ing a signal handler that catches core-generating sig-
nals, creates a peer-specific subdirectory, changes to
the new directory, and resignals the signal to cause the
writing of the core file. The root for the core directo-
ries can be set through an environment variable.

Issues
Although PSE achieves the standard UNIX look-and-
feel for most application situations, complete trans-
parency is not achieved. For example, timing an
application-controlling process using the c-shell’s
built-in time command, does not time user code or
provide meaningful statistics other than the elapsed
wall clock time to start a parallel application and to tear
it down. Another situation that highlights the parallel
nature of PSE occurs during application debugging:
multiple debug sessions are started by running the
application with a debugger flag rather than by using
dbx directly.

Tools for HPF Programming

The development model for HPF-based applications
is a two-step process. First, a serial Fortran 90 program
is written, debugged, and optimized. Then it is paral-
lelized with HPF directives and again debugged and
optimized. The development tools supplied with PSE
address profiling and debugging. Unlike most of PSE,
which is language-independent, both the pprof profil-
ing facility and the “dbx in n windows” debugging
facility are specific to HPF programming.

Profiling
Several issues in profiling parallel HPF programs do
not apply to Fortran programs that execute serially.
HPF execution occurs through multiple processes on
multiple processors simultaneously and therefore pro-
duces multiple profiling data sets. The storage and
analysis of these data sets must be coordinated to pro-
duce accurate and comprehensive program profiles.
Unlike typical Fortran programs, significant time can
be spent communicating in an HPF program. The
Digital UNIX prof and pixie utilities do not handle
either of these issues.15 In addition, the prof utility has
coarse-grained (1-millisecond resolution) program
counter (PC) sampling and reports only down to the
procedure level. To address these issues, Digital added
profiling support to the Fortran 90 compiler and
developed the pprof analysis tool.

Data Collecting The PSE parallel profiling facility
handles profiling data collection in parallel by writing
data to a set of files that are uniquely named. It
encodes the application name, the type of data collec-
tion, and the peer number of the process. The analysis
tool pprof merges the data in the file set when per-
forming analysis and producing reports.

It supports two types of data collecting: nonin-
trusive traditional PC sampling and intrusive interval
profiling. PC sampling simply records the program
counter at each occurrence of the system clock inter-
val interrupt. To achieve an accurate execution profile
with PC sampling, programs must be long running
to become statistically significant. Also, it is difficult to
gather do-loop iteration data using PC sampling.

We developed interval profiling support to overcome
the deficiencies of PC sampling. Interval profiling is
achieved with compiler-inserted functions that record
the entry and exit times for the execution of each event.
This produces an accurate execution profile. Events
include routines, array assignments, do loops, FORALL
constructs, message sends, and message receives.
Because the entry and exit times are recorded, time
spent executing other events within an event is
included, which gives a hierarchical profile. To achieve
fine-resolution timings (single-digit nanoseconds), the
Alpha process cycle counter is used to measure time.16

Analysis The pprof utility provides many different
ways to examine and report on a large set of profiling
data from a parallel program execution. Different
approaches include focusing on routines, statements,
or communications. In contrast, prof reports on proce-
dures only. With pprof, the scope of the analysis can be
limited to a single peer process or encompass all appli-
cation processes. The range of reports generated can be
comprehensive or limited to a number of events or

The PSE message-passing model assumes that the
application peers are running on systems with the same
CPU architecture and networking capabilities. Each
peer process can send or receive binary messages
directly to or from any other peer. This is different from
the PVM model, where messages might be routed to
a pvmd daemon to be multiplexed to another peer, or
messages might be converted to external data represen-
tation (XDR) to allow for data passing between
machines with different architectures.17

Buffer allocation and deallocation routines are spe-
cific to each of the communication options that PSE
supports. (These options are discussed in the follow-
ing sections.) Before a message can be sent, a buffer
must be allocated. The send primitive sends the mes-
sage and implicitly deallocates the buffer. The receive
primitive implicitly allocates a buffer containing the
newly arrived message. Receive buffers have to be
deallocated explicitly after they are used. Our initial
design allowed a received message buffer to be reused
for sending a new message, possibly to a different peer.
This design was inefficient, especially when a commu-
nication option such as shared memory optimizes
buffer allocation on a peer-by-peer basis. The current
design uses a peer number as a parameter to the buffer
allocation routine and does not allow reuse of the
received message buffer.

The send primitive sends a message contained in
a preallocated buffer to a specified peer. It guarantees
reliable in-order delivery of messages. For underlying
protocols, such as UDP/IP that do not provide this
level of service, the message-passing library must pro-
vide it. A broadcast primitive is also provided to send
a single message to all peers.

The receive primitive uses a particular message tag
to receive a message with a matching tag from any
peer. This allows the compiler to use functions that can
perform calculations correctly when data is required
from several peers, regardless of the order in which
messages arrive. The normal operation for receive is
to block the receiving peer until a matching tagged
message arrives. A nonblocking receive is also pro-
vided to poll for messages.

Communication Options

PSE provides applications with several run-time selec-
table communication options. Within a single SMP
system, PSE supports message passing over shared
memory. On multiple system configurations, PSE sup-
ports network message passing using the TCP/IP or
UDP/IP protocols over any network media that the
Digital UNIX operating system supports. Currently,
PSE supports a single communication option within
an application execution, but the design supports
multiple protocols and interconnects. Run-time selec-
tion of the communication options and media, which

32 Digital Technical Journal Vol. 7 No. 3 1995

a percentage of time. Users can specify their reports
from a combination of analysis, report format, and
scoping options. By default, the pprof utility reports on
routine-level activity averaged across all peer processes,
which provides an overall view of application behavior.

Parallel programs execute most efficiently when
there is minimum communication between processes.
The high-level, data parallel nature of the HPF
language reduces the visibility of communication to
the programmer. To make tuning easier, pprof was
designed with the ability to focus tuning on communi-
cation. Reports can be generated that help correlate
the use of HPF data-distribution directives to
observed communication activities.

Debugging
For PSE version 1.0, we are supplying a “dbx in n win-
dows” capability. Each peer is controlled by a separate
instance of dbx that has its own Xterm window. This
capability gives users basic debugging functionality,
including the ability to set breakpoints, get backtraces,
and examine variables on an all-peer or a per-peer
basis. We added a new command to dbx, hpfget, that
allows the viewing of individual elements of a distrib-
uted array. We recognize it as far from meeting the
challenges of an HPF debugger, and we are continuing
the development of a new debugging technology.

Message-passing Model

One of the goals of PSE is to support high-performance,
reliable message passing for parallel applications. At
the start of the project, the HPF language and com-
piler technology were still in their infancy. Even
though no HPF application code base existed, the PSE
team needed to determine the messaging-passing
requirements. To support message passing success-
fully, PSE had to be flexible enough to accommodate
new interconnect technologies and network proto-
cols, adapt to the message-passing characteristics of
future HPF applications, and support the changing
demands of the compiler. A need for high perfor-
mance and efficiency with low latency was assumed.

The PSE message-passing facility provides primi-
tives to initialize and terminate message-passing oper-
ations, to allocate and deallocate message buffers, and
to send and receive messages. A PSE message contains
a tag, a source peer number, and variable-length data.
The higher layers fill in the tag, which is used as a mes-
sage identifier on receive. The data is a stream of bytes
without any data-type information. These primitives
are not intended to be used in the application code.
The HPF compiler implicitly generates calls to these
primitives. Because the message-passing primitives are
tightly coupled to the HPF compiler, overhead such as
data-alignment restrictions and error checking can be
eliminated.

is implemented using a vector of pointers to functions
within a shared library, provides flexibility to introduce
new protocols and media without having to recompile
or relink existing applications.

Shared-memory Message Passing
The use of shared memory as a message-passing
medium allows for very high performance because
data does not have to be copied. When designing
shared-memory messaging, we looked at a variety of
interrelated issues, including coordination mecha-
nisms, memory-sharing strategies, and memory con-
sumption. The use of locks (i.e., semaphores) in the
traditional manner to coordinate access to shared-
memory segments proved problematic. For example,
clients often request a message from any peer, not
from a particular peer. This implies the use of a general
receive semaphore that senders would unlock after
delivering data. Contention for a single lock could be
significant and could become a performance bottle-
neck. Instead of locks, a simple set of producer and
consumer indexes is used to manage a ring buffer of
messages. Senders read the consumer index and
update the producer index, and receivers read the pro-
ducer index and update the consumer index to syn-
chronize. No locking is required.

Several memory-sharing strategies are possible: all
peers may share a single large segment, each pair of
peers may share a segment, and each pair of peers may
have a pair of unidirectional segments. The use of unidi-
rectional pairs of shared-memory segments offers sev-
eral advantages: it simplifies the code by eliminating
multiplexing; it fits in well with the design of MEMORY
CHANNEL hardware, which is unidirectional; and by
creating receive segments with read-only protection, it
promotes robustness.18 A disadvantage to the use of
unidirectional segment pairs is increased memory use
due to limited sharing. Because of its advantages and
because the coordination of the producer/consumer
index does not require segments to be shared between
peers, we selected unidirectional pairs of shared-
memory segments as our memory-sharing strategy.

To enhance performance, a receiver spins, waiting
for a peer to produce a message. If there is no data
after a number of spin iterations, the receiver voluntar-
ily deschedules itself. The number of spin iterations
was chosen to be small enough to be polite, but large
enough to permit scheduling when a peer produced
a message. An additional performance enhancement
allows the user, via command line option, to prevent
peers from migrating between processors, which
results in better cache utilization.

TCP/ IP Message Passing
TCP/IP is the default communication option. It pro-
vides full wire bandwidth for peer-to-peer communi-
cation with large message transfer sizes across a variety

Digital Technical Journal Vol. 7 No. 3 1995 33

of network media. The implementation of the message-
passing primitive operations is relatively straight-
forward since TCP/IP provides reliable, in-order,
connection-oriented delivery of messages. The TCP/
IP initialization routine sets up a vector of bound and
connected socket descriptors, one for each peer. These
sockets are used to send messages to other peers. The
receive primitive uses a blocking select() system call on
all sockets. Because TCP/IP is connection based,
abnormal peer termination and network faults can be
detected by connection loss.

Although TCP/IP provides acceptable bandwidth,
latency-sensitive applications might suffer from the
processing overhead of the TCP/ IP protocol. The
connection-oriented nature of TCP/IP also requires
the application to maintain many socket descriptors,
which reduces scalability and necessitates the use of
expensive select() system calls on receive.

UDP/IP Message Passing
To address the latency and overhead of TCP/IP, PSE
provides UDP/IP as an option that can be selected at
run time. UDP/IP is a connectionless protocol that
provides unordered, best-effort delivery of messages.
Because UDP/IP is connectionless, the initialization
function needs to set up a single locally bound socket
description for all peer-to-peer communication. File
descriptor use is not a scaling issue when UDP/IP
is used for messaging.

Reliable in-order delivery of messages is imple-
mented at the library level. Each peer maintains a set of
send and receive ring buffers, one for each peer. The
ring buffers have producer and consumer indexes
to indicate positions in the ring where messages can
be read or written. The buffer-allocation primitive
allocates buffers from the send ring whenever possible,
or from a pool of overflow buffers when the ring is full.
The use of an overflow buffer eliminates the need for
upper levels to provide flow control or to block sends.
The send and receive primitives manipulate the pro-
ducer and consumer indexes of the send and receive
rings. In-order delivery of messages is guaranteed
through the use of a sliding window protocol with
sequentially numbered messages. For efficiency, piggy-
backed acknowledgments are used.

To improve scheduling synchronization among
multiple peers, especially when a high-priority FIFO
scheduling policy is used, the UDP/IP option uses a
nonblocking socket. On receive, it loops calling the
recvfrom() system call many times before calling the
expensive select() system call to wait for a message to
arrive. Abnormal peer termination and network faults
cannot be detected since the socket layer does not
maintain a connection state. The UDP/IP option con-
tains a user-specifiable time-out value by which the peer
application will exit when there is no socket activity.

The UDP/IP option provides better bandwidth
than the TCP/IP with smaller messages and matches
the TCP/IP bandwidth at large message size. The
user-level latency reduction, however, was less than
expected. The next two sections discuss our investiga-
tion into ways to optimize the latency of UDP/IP and
the performance of the message-passing options.

Optimizing UDP/IP

Our initial approach to improve latency was to reex-
amine the standard UDP/IP code path within the
Digital UNIX kernel for unnecessary overhead. Our
idea was to create a faster path, optimized for a
UDP/IP over a local area network (LAN) configura-
tion by reducing numerous conditional checks in the
path. Although this work yielded some improvement,
it was not enough to justify supporting a deviation
from the standard code path. An overhaul of the origi-
nal code path would have been necessary for this
approach to gain significant improvement in latency.

UDP/IP provides a general transport protocol,
capable of running across a range of network inter-
faces. We realize the value in retaining the generality
of UDP/IP. For optimal performance, however, we
anticipate typical cluster configurations being con-
structed using a high-performance switched LAN
technology such as the GIGAswitch/FDDI system.5

In such configurations, the IP family of protocols
presents unnecessary protocol-processing overhead.
A messaging system using a lower-level protocol, such
as native FDDI, would offer better latency, but its
implementation requires the use of nonstandard mech-
anisms to access the data link layer directly, which is less
general and portable than a UDP/IP implementation.

Based on the above observations, we designed a new
protocol stack in the kernel, called UDP_prime, to
coexist with the standard UDP/IP stack. UDP_prime
packets conform to the UDP/IP specification.19 To
reduce the amount of per-packet processing and
approach that of a lower-level protocol, UDP_prime
imposes several restrictions on its use. These restric-
tions optimize the typical switched LAN cluster config-
urations. To retain the generality of UDP/IP,
UDP_prime falls back to the standard UDP/IP stack
when these restrictions are not applicable.

Restrictions on UDP_ prime
The LAN nature of the cluster configuration imposes
a restriction on UDP_prime. Each cluster member has
to be within the same IP subnet, which is directly
accessible from any other member. With this restric-
tion, routing decision and internet-to-hardware
address resolution can be done once for each peer-
to-peer connection rather than on a per-packet basis.
Per-packet UDP/IP checksum processing can also
be eliminated, because intermediate routing is not

involved and the data link cyclic redundancy check
(CRC) is sufficient to guarantee error-free packets.

The next restriction is the maximum length of the
message. PSE message passing uses fixed-size buffers.
UDP_prime restricts the maximum buffer size to be
the maximum transmission unit (MTU) of the underly-
ing network interface. This eliminates per-message IP
fragmentation and defragmentation overhead. Since
the messaging clients have to fragment the messages
into fixed-size buffers at the higher layer, there is no
need for the IP layer to perform further fragmentation.

One complication in our current implementation
occurs when multiple peers are running on a single
system while others are on remote systems. The
default behavior for peers within a single system is
to communicate across the loopback interface. In this
situation, there are two MTU values, one for the net-
work interface and one for the loopback interface.
Our current implementation of UDP_prime does not
allow communication over the loopback interface so
that a single-size MTU can be used. Further studies
need to be done to find an optimal maximum buffer
size, taking into account multiple MTU values, page
alignment, and so forth.

Based on the above restrictions, UDP_prime opti-
mizes the per-packet processing overhead of sending a
packet by constructing a UDP, IP, and data link packet
header template for each peer at initialization. Except
for a few fields, the content of these headers is static
with respect to a particular peer. UDP_prime defines a
new IP option, IP_UDP_PRIME, for the setsockopt()
system call, to allow the messaging system to define
the set of peers and their Internet addresses involved in
the application execution.20 The IP option processing,
done prior to sending any message, makes routing
decisions, performs Internet-to-hardware address res-
olution, and fills in the static portion of the header
fields. When sending a packet, UDP_prime simply
copies the header template to the beginning of the
packet, minimizing the per-packet processing over-
head and increasing the likelihood of the templates
being in the CPU cache. Several header fields, such as
the IP identification, header checksum, and packet
length fields, are then filled dynamically, and the com-
plete packet is presented to the interface layer.

UDP_ prime Packet Processing
Since a UDP_prime packet is a UDP/IP packet, the
standard UDP/IP receive processing can handle the
packet and deliver it to the messaging client. To trig-
ger the use of UDP_prime optimized receive process-
ing, the sending system uses the type of service (TOS)
field within the IP header to specify priority delivery of
the packet.21 The priority delivery indication does not
by itself uniquely differentiate between UDP_prime
and UDP/IP packets, as any other IP packets can
also have the TOS field set to priority. As a result, the

34 Digital Technical Journal Vol. 7 No. 3 1995

station contained a 225-megahertz (MHz) Alpha
21064 microprocessor and was running the Digital
UNIX version 3.0 operating system.

Figure 6 shows the message-passing bandwidth for
TCP/IP, UDP/IP, and UDP_prime transports at dif-
ferent message sizes. The bandwidth was measured at
the message-passing application programmer interface
(API) level, taking into account allocation and deallo-
cation of each message buffer in addition to the data
transmission. TCP/IP, UDP/IP and UDP_prime
bandwidth peaks at approximately 95 megabits per
second at a 4,224-byte message, approaching the
FDDI peak bandwidth. UDP/IP approaches the peak
bandwidth at a 1,400-byte message, and UDP_prime
at a 1,024-byte message. Reaching the peak band-
width using small messages is a measure of protocol
processing efficiency.

Figure 7 shows the minimum message-passing
latency for TCP/IP, UDP/IP, and UDP_prime
transports at different message sizes. The latency was
measured as half of the minimum time to send a mes-
sage and receive the same message looped by the
receiver system over many iterations. The measure-
ment made allowance for the allocation and deallo-
cation of each message buffer, in addition to the
round-trip transmission.

Compared to the TCP/IP option, UDP/IP has a
slightly higher minimum latency. This is not expected,
because the original goal of the UDP/IP option was to
reduce TCP/IP processing overhead. It is, however,
encouraging to see only a slight degradation in latency
when the reliable in-order delivery protocol is imple-
mented at the library level. This prompted us to use
the same protocol engine in the library for
UDP_prime. At a very small message size (4 bytes),

Digital Technical Journal Vol. 7 No. 3 1995 35

optimized receive processing has to check for the
packet’s adherence to the UDP_prime restrictions.
Nonadherence to the restrictions reroutes the packet
to the standard receive processing code.

When a packet arrives at a network interface, the
interface posts a hardware interrupt, and the interface
interrupt service routine processes the packet. The
standard interrupt service routine deletes the data link
header, and hands the packet over to the netisr kernel
thread.22 Netisr demultiplexes the packet based on
the packet header contents and delivers it to the appli-
cation’s socket receive buffer. Netisr, designed to be
a general-purpose packet demultiplexer, runs at a low-
interrupt priority level. The main reason for a thread-
based demultiplexer is extensibility. New protocol
stacks can be registered to the thread. Since there is
no a priori knowledge of the execution and SMP lock-
ing requirements of these stacks, a thread-based low-
interrupt priority demultiplexer is needed so that the
network interrupt processing time can be held to a
minimum. The extensibility feature, however, intro-
duces a context switch overhead.

For UDP_prime, the packet header processing time
on the receive path is almost a small constant. We
modified the interface service routine to demultiplex
the packet by processing the data link, IP, and UDP
headers, and deliver the packet to the socket receive
buffer without handing it over to netisr. This short cir-
cuit path is used only when the packet is a UDP/IP
packet with no IP fragmentation and with priority
delivery indication. If these conditions are not met,
the standard netisr path is chosen. The UDP_prime
receive path eliminates the netisr context switch over-
head. This is a significant advantage, especially when
the receiving application runs with a real-time FIFO
scheduling policy.

SMP Synchronization
One difficulty in designing the UDP_prime stack to
run in parallel with the standard UDP/IP stack was
in SMP synchronization.23 The socket buffer structure
is a critical section guarded by a complex lock.
Requesting a complex lock in Digital UNIX blocks
execution if the lock is taken. To prevent deadlocks,
its use is prohibited at an elevated priority level, such
as the case in the interrupt service routine. To work
around this problem, a new spin lock was introduced
in the short circuit path and in the socket layer where
access to the socket buffer needs to be synchronized.

Performance

To measure message-passing performance, we used
two DEC 3000 Model 700 workstations connected by
a GIGAswitch/FDDI system using TURBOchannel-
based DEFTA full-duplex FDDI adapters. Each work-

M
B

IT
S

/S
E

C
O

N
D

100

90

80

70

60

50

40

30

20

10

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

MESSAGE SIZE (BYTES)

KEY:

UDP_PRIME
TCP/IP
UDP/IP

Figure 6
Peer-to-Peer Bandwidth

The goal of an HPF debugger is to present the
application in source-level terms. Since HPF is roughly
Fortran 90 with data-distribution directives, HPF is
conceptually a single-threaded application with the
compiler transforming pieces of the application to exe-
cute in parallel. As a result, an HPF debugger has to
take the states from the actual peer processes and
recreate a single source-level view of the application. It
is not always possible to do this with complete preci-
sion. Consider the user interrupting the application,
which interrupts the peer processes at different points
within the computation. It is unlikely each peer is at
the same place (e.g., the same program statement),
and it is quite likely that the stack backtraces of the
peers differ! Even if they are at the same place, they
could be in different iterations of their local portions
of a parallelized loop-like operation.

At the start of the HPF debugger project, we sur-
veyed a variety of debuggers and disqualified all of
them for logistical and/or technical reasons. Rather
than modify an existing debugger technology so that
it could debug cluster-style HPF programs, we initi-
ated an effort to build a new debugger technology.
As we continue to design the new HPF debugger to
be general-purpose, portable, and extensible, we will
be able to capitalize on modern programming con-
cepts, paradigms, and techniques.

Summary

PSE contains the tools and execution environment to
debug, tune, and deploy parallel applications written
in the HPF language. From an end user’s perspective,
PSE provides transparency, flexibility, and compati-
bility with familiar tools. Using standard UNIX com-
mand syntax, the same executable can be run serially
or in parallel on hardware ranging from a single-node
system to a cluster of SMP systems. PSE supports sev-
eral high-performance message-passing protocols run-
ning over a variety of network media. From a system
administrator’s perspective, PSE provides the flexibil-
ity to create a cluster from standard components and
to control the cluster by assigning access controls and
setting scheduling policy and priorities. Although it
currently supports only the HPF language, PSE has
the flexibility and generic infrastructure to support
other parallel languages and programming models.

Acknowledgments

The PSE team would like to thank the members of the
Fortran 90 and HPF compiler teams and to acknowl-
edge the contributions of Chuck Wan, Rob Rodon,
Phil Cameron, Israel Gale, Rishiyur Nikhil, Marco
Annaratone, Bert Halstead, and George Surka.

36 Digital Technical Journal Vol. 7 No. 3 1995

protocol processing overhead dominates the latency.
At this point, UDP_prime was 44 percent (103.5
microseconds) better than TCP/IP, even though
UDP/IP and UDP_prime use the same mechanism.

As the message size increases, the protocol processing
time remains constant, but the data copy time becomes
dominant. Despite this, UDP_prime was approximately
12 percent better at a 4-kilobyte message.

Future Work

The current communication options along with the
UDP_prime optimization provide good performance
for HPF-style message passing on SMP systems and
clusters. To remain competitive, however, we need to
consider support for new high-performance commu-
nication media and configurations. We are working on
support for MEMORY CHANNEL, the use of multi-
ple interconnects and protocols within an application
running on a cluster of SMPs, and lightweight proto-
cols for use with ATM at speeds of 622 megabits per
second and higher. The flexibility of the message-pass-
ing design will allow current applications to use future
communication options without relinking.

We are also working on a new HPF debugger tech-
nology. Debugging a cluster-style HPF program is
considerably harder than debugging a uniprocessing
program. HPF’s single-program multiple-data (SPMD)
parallel programming model includes a single-
threaded control structure, a global name space, and
loosely synchronous parallel execution. HPF also sup-
ports the calling of extrinsic procedures that use other
parallel programming styles or nonparallel computa-
tional kernels.

M
IC

R
O

S
E

C
O

N
D

S

1000

900

800

700

600

500

400

300

200

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500

MESSAGE SIZE (BYTES)

KEY:

UDP_PRIME
TCP/IP
UDP/IP

Figure 7
Minimum Peer-to-Peer Latency

Digital Technical Journal Vol. 7 No. 3 1995 37

References

1. Digital High Performance Fortran 90: HPF and
PSE Manual (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-2ATAA-Te, 1995).

2. G. Bell, “Scalable, Parallel Computers: Alternatives,
Issues, and Challenges,” International Journal of
Parallel Programming, vol. 22, no. 1 (1994).

3. H. Kung et al., “Network-based Multicomputers: An
Emerging Parallel Architecture,” Proceedings Super-
Computing 91.

4. W. Michel, FDDI: An Introduction to Fiber Dis-
tributed Data Interface (Newton, Mass.: Digital
Press, 1992).

5. R. Souza et al., “GIGAswitch System: A High-
performance Packet-switching Platform,” Digital
Technical Journal, vol. 6, no. 1 (Winter 1994): 9–22.

6. Internet Engineering Task Force, “Domain Name
System,” RFC 883 (November 1983).

7. J. Harris et al., “Compiling High Performance Fortran
for Distributed-memory Systems,” Digital Technical
Journal, vol. 7, no. 3 (1995, this issue): 5–23.

8. G. Geist et al., PVM: Parallel Virtual Machine—
A Users’ Guide and Tutorial for Networked Parallel
Computing (Cambridge, Mass.: The MIT Press,
1994).

9. W. Rosenberry, Understanding DCE (Sebastopol,
Calif.: O’Reilly & Associates, Inc., 1992).

10. W. Gropp et al., Using MPI: Portable Parallel Pro-
gramming with the Message Passing Interface
(Cambridge, Mass.: The MIT Press, 1994).

11. LSF Administrator’s Guide (Toronto, Ont., Canada:
Platform Computing Corporation, 1994).

12. G. Champine, MIT Project Athena: A Model for
Distributed Campus Computing (Newton, Mass.:
Digital Press, 1991).

13. W. Stevens, UNIX Network Programming (Engle-
wood Cliffs, N.J.: Prentice-Hall, 1990).

14. D. Comer, Internetworking with TCP/IP (Englewood
Cliffs, N.J.: Prentice-Hall, 1991).

15. DEC OSF/1 Programmer’s Guide (Maynard, Mass.:
Digital Equipment Corporation, Order No. AA-
PS30C-TE, 1993).

16. R. Sites, ed., Alpha Architecture Reference Manual
(Burlington, Mass.: Digital Press, Order No.
EY-L520E-DP, 1992).

17. Internet Engineering Task Force, “XDR: External
Data Representation,” RFC 1014 (June 1987).

18. R. Gillett, “Memory Channel Network for PCI: An
Optimized Cluster Interconnect,” Hot Interconnects
(1995).

19. J. Postel, “User Datagram Protocol,” RFC 768 (Menlo
Park, Calif.: SRI Network Information Center, 1980).

20. DEC OSF/1 Reference Pages, Section 2: System Calls
(Maynard, Mass.: Digital Equipment Corporation,
Order No. AA-PS30C-TE, 1993).

21. J. Postel, “Internet Protocol,” RFC 791 (Menlo Park,
Calif.: SRI Network Information Center, 1981).

22. Open Software Foundation, Design of the OSF/1
Operating System (Englewood Cliffs, N.J.: Prentice-
Hall, 1993).

23. J. Denham, P. Long, and J. Woodward, “DEC OSF/1
Version 3.0 Symmetric Multiprocessing Implemen-
tation,” Digital Technical Journal, vol. 6, no. 3
(Summer 1994): 29–43.

Biographies

Edward G. Benson
Ed Benson is a principal engineer and the project leader
for the parallel software environment product. Ed is
a 1981 graduate of Tufts University. He joined Digital
in 1984 after working at Harvard University and ADAC
Corporation. In previous work at Digital, he led the
DECmpp and VAXlab software projects and contributed
to the design and development of the POSIX real-time
extensions in Digital UNIX and OpenVMS.

David C. P. LaFrance-Linden
David LaFrance-Linden is a principal software engineer in
Digital’s High Performance Fortran Group. Since joining
Digital in 1991, he has worked on tools for parallel pro-
cessing and has developed a promising new debugger tech-
nology capable of debugging HPF. He has also contributed
to the PSE implementation and compile-time performance
of the HPF compiler. Before joining Digital, he worked at
Symbolics, Inc. on front-end support, networks, operating
system, performance, and CPU architecture. He received
a B.S. in mathematics from M.I.T. in 1982.

38 Digital Technical Journal Vol. 7 No. 3 1995

Richard A. Warren
Richard Warren is a principal software engineer in the
High Performance Computing Group, where his primary
responsibility is the design and development of Digital’s
parallel software environment. Since joining Digital in
1977, Richard has contributed to PDP-11 systems devel-
opment and VAX 32-bit shared-memory multiprocessor
designs. He has also been a member of Corporate Research,
first as an assignee in parallel processing to the Microelec-
tronics and Computer Technology Corporation (MCC),
and later as a researcher at the Digital Joint Project office
at CERN, where he helped develop high-availability system
software. Richard has a B.S. in electrical and computer
engineering from the University of Massachusetts and is
a co-inventor on several patents relating to coherent write-
back cache design and high-performance bus/memory
designs for SMPs.

Santa Wiryaman
A senior software engineer in the High Performance
Computing Group, Santa Wiryaman develops enhance-
ments to the Digital UNIX kernel and UDP/IP protocol
stack to support optimal performance of message passing
over FDDI and ATM networks. Since joining Digital’s
performance group in 1987, he has also contributed to
many network-related performance characterizations,
benchmarks, and the development of performance tools
for UNIX and Windows NT. Santa received B.S. (1985)
and M.S. (1987) degrees in computer science from
Cornell University and Rensselaer Polytechnic Institute,
respectively.

