
All people share the need to find and assimilate infor-
mation. Data from which information is created is
increasingly available electronically, and that data 
is becoming more and more accessible with the prolif-
eration of computer networks. Therefore, the world 
is quickly becoming abstracted as a collection of net-
worked data spaces, where a data space is a data source
or repository whose access is controlled by means of 
a well-defined software interface. Some examples 
of data spaces are a database managed by a database
management system, the World Wide Web (WWW or
Web), and any data object that resides in a computer’s
main memory and whose components are accessible
through the object’s methods. 

The need to locate data and then map it to a form
that is readily understood lies at the core of learning,
conducting commerce, and being entertained. To
address this need, interactive tools are required for
exploring data spaces. These tools should allow any
end user to browse the contents of data spaces and to
inspect, measure, compare, and identify patterns in
selected data sets. Combining both tasks into one tool
is both elegant and utile in that end users need to learn
only one system to seamlessly switch back and forth
between browsing for data and assimilating it. Before
such applications can be constructed, however, a firm
foundation must be defined that provides an interface
to data spaces, helps map data into a visual representa-
tion, and manages user interactions with elements in
the visualizations. 

This paper describes one such software platform,
called Tecate, which has been implemented as a
research prototype to help understand the issues
involved in exploring data spaces. With Tecate, the
emphasis has been on developing the tools needed to
build end-to-end applications. Such applications can
access data spaces, automatically create virtual worlds
that represent data found in data spaces, and give end
users the ability to navigate and interact with those
worlds as the mechanism for exploring data spaces.
Because of this emphasis, Tecate’s development con-
centrated on understanding what system components
are needed to create end-to-end applications and how
those components interact rather than on the func-
tionality of individual components. As a consequence,
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Tecate is a new infrastructure on which applica-
tions can be constructed that allow end users 
to browse for and then visualize data within
networked data sources. This software platform
capitalizes on the architectural strengths of cur-
rent scientific visualization systems, network
browsers like Netscape, database management
system front ends, and virtual reality systems.
Applications layered on top of Tecate are able 
to browse for information in databases man-
aged by database management systems and for
information contained in the World Wide Web.
In addition, Tecate dynamically crafts user inter-
faces and interactive visualizations of selected
data sets with the aid of an intelligent system.
This system automatically maps many kinds of
data sets into a virtual world that can be explored
directly by end users. In describing these virtual
worlds, Tecate uses an interpretive language that
is also capable of performing arbitrary compu-
tations and mediating communications among
different processes. 



the tools provided by Tecate can be used to build
applications of only modest capabilities. 

Historically, Tecate grew out of the Sequoia 2000
project, which was initiated jointly by Digital Equip-
ment Corporation and the University of California 
in 1991. The primary purpose of the Sequoia 2000
project was to develop information systems that would
allow earth scientists to better study global envi-
ronmental change. Sequoia 2000 participants needed
to browse for data sets on which to test scientific
hypotheses and then to interactively visualize the data
sets once found. The data can be quite varied in con-
tent and structure, ranging from text and images 
to time-varying, multidimensional, gridded or poly-
hedral data sets. Such data may stream from many dif-
ferent sources, e.g., databases managed by a database
management system, a running simulation of some
physical process, or the WWW. Therefore, a tool was
required that could interface to any such source. To be
of maximum use, though, the tool had to be easy 
to use so that the scientists themselves could make
sophisticated data queries and then experiment with
the query results using a wide variety of data visualiza-
tion techniques. 

Generalizing from its Sequoia 2000 roots, the
design of Tecate is intended to achieve four goals: 

1. Interface to general data spaces wherever they may
reside. 

2. Saliently visualize most kinds of data, e.g., scientific
data and the listings in a telephone book. 

3. Dynamically craft user interfaces and interactive
visualizations based on what data is selected, who is
doing the visualizing, and why the user is exploring
the data. 

4. Allow end users to interact with elements in visual-
izations as a means to query data spaces, to explore
alternate ways of presenting information, and to
make annotations. 

There are systems available today that have some of
these capabilities, but no one system possesses all four.
Data visualization systems such as AVS, Khoros, or
Data Explorer are capable of visualizing scientific data;
however, they are poor at interfacing to general data
spaces, they provide only limited interactivity within
visualizations themselves, and they require visualiza-
tions to be crafted by hand by knowledgeable end
users.1,2,3 Network browsers such as Netscape are good
at fetching data from certain types of data spaces but
are limited in the variety of data they can directly visu-
alize without having to rely on external viewer pro-
grams. Moreover, most network browsers offer a
restricted type of interactivity where only hyperlinks
can be followed and text can be submitted through
forms. Finally, front ends to database management
systems provide elaborate querying mechanisms for

selecting data from a database, but they lack a sophisti-
cated means for visualizing and further exploring
query results. 

The Tecate architecture borrows from that of visu-
alization systems, network browsers, and database
management systems as well as from virtual reality sys-
tems like Alice and the Minimal Reality Toolkit/
Object Modeling Language (MR/OML).4,5 One
major contribution of the Tecate system is that it
incorporates the architectural strengths of these
systems into a coherent whole. In addition, Tecate
possesses at least two novel features that are not found
in other data visualization systems. One feature is
Tecate’s use of an interpretive language that can
describe three-dimensional (3-D) virtual worlds. This
language is more than a markup language in that it is
capable of performing arbitrary computations and
facilitating communication among different processes.
The second novel component of Tecate is the presence
of an expert system that automatically crafts interactive
visualizations of data. This system is intended to make
data space exploration easier to perform by having end
users simply state their goals while leaving the details
of implementing a visualization to attain those goals to
the expert system. 

The remainder of the paper outlines Tecate’s sys-
tem model and architecture and then identifies and
describes Tecate’s major components. Finally, the
paper sketches Tecate’s capabilities by discussing two
simple applications that have been implemented on top
of the Tecate software framework. The first application
is a tool for visualizing earth science data residing in 
a database managed by a database management system.
The second application is a Web browser that uses 3-D
graphics as an underlying browsing paradigm rather
than depending solely on the medium of hypertext. 

Tecate’s System Model

After presenting an overview of Tecate’s system model,
this section provides details of the object model and the
interpretive, object-oriented language used to describe
virtual world objects. 

Overview 
From the standpoint of an applications programmer,
Tecate is a distributed, object-oriented system. All
major components of Tecate, as well as entities appear-
ing in virtual worlds created by Tecate, are objects that
communicate with one another by means of message
passing. The main focus within Tecate is on object-
object interactions. These interactions occur primarily
when objects send messages to one another. An object
can also send a message to itself, which has the effect of
making a local function call. Unlike with graphics
systems such as Open Inventor, rendering is not a cen-
tral activity within Tecate; rather it is just a side effect
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of object-object interactions.6 In this sense, Tecate is
like virtual reality programming systems such as Alice
and MR/OML, although Tecate is far more flexible. 

In the Tecate system, objects can create and destroy
other objects and can alter the properties of existing
objects on-the-fly. Such capabilities make Tecate very
extensible and give it great power and flexibility. These
capabilities can also cause problems for applications
programmers, however, if care is not taken when writ-
ing programs. Presently, all of an object’s properties
are visible to all other objects, and hence those proper-
ties can be manipulated from outside the object. In the
future, some form of selective property hiding needs
to be added so that designated properties of an object
cannot be altered by other objects. 

A powerful feature of Tecate is its ability to dynami-
cally establish object-subobject relationships. This fea-
ture provides a mechanism for building assemblies of
parts similar to the mechanisms in classical hierarchical
graphics systems like Doré or Open Inventor.7 This
feature also provides the capability of creating sets or
aggregates of objects that share some trait, such as
being highlighted. Tecate allows all objects within a set
to be treated en masse by providing a means of selec-
tively broadcasting messages to groups of objects. 
A message that is sent to an object can be forwarded 
to all the object’s subobjects. Thus, for example, one
object can serve as a container for all other objects that
are highlighted; the highlighted objects are merely sub-
objects of the container. To unhighlight all highlighted
objects, a single unhighlight message can be sent to the
container object, which then forwards the message to
all its subobjects. In general, an object can be the sub-
object of any number of other objects and thus simulta-
neously be a member of many different sets. 

The handling of user input within Tecate is
intended to appear the same as ordinary object-object
interactions. All physical input devices that are known
to Tecate have an agent object associated with them
that acts as a device handler. All objects that wish to 
be informed of a particular input event register with
the appropriate agent. When an input event occurs,
the agent sends all registered objects a message notify-
ing them of the event. Complex events, such as the
occurrence of event A and event B within a specified
time period, can easily be defined by creating new han-
dler objects. These handlers register to be informed of
separate events but then, in turn, inform other objects
of the events’ conjunction. 

The Object Model 
Tecate uses an object model in which no distinction 
is made between classes and instances, as is done in
languages like C11.8 In Tecate, there is a single object
creation operation called cloning. Any object in the
system can serve as a prototype from which a copy can
be made through the clone operation. A clone inherits

properties from its prototype by copying the proto-
type’s properties, but any such property can be altered
or removed, either by another object or by the clone
itself, so that a clone can take on an identity of its own. 

The object model is based on delegation. When
Tecate clones an object to produce a new object, 
the prototype’s properties are not explicitly copied.
Instead, the new object retains a reference to the
object from which it was cloned. When a reference to
a property is made within an object, the system looks
for the property value locally within the object. If no
property value is found locally, then the object’s pro-
totype is searched to associate a value with the refer-
ence. If the prototype is itself a clone, the prototype’s
prototype is recursively searched to resolve the refer-
ence, and so on. This type of “lazy” evaluation of
property references is called delegation. 

Note that with delegation, a change in value for 
a property in an object may affect the values of all
other objects that can trace their ancestry through
prototype-clone relationships to the original object.
This type of semantics is useful for establishing class-
instance-like relationships between objects. For exam-
ple, one object may represent a particular class of
automobile tire, and all clones of the object would
represent class instances. If a class-level change is
needed that would affect all instances, e.g., a new tread
pattern is to be introduced, only the object represent-
ing the tire class needs to change. 

The clone-prototype chaining implied by delega-
tion can be overridden by changing the property
values locally. Thus, if one particular tire instance is 
to have a new tread pattern, then the pattern is altered
in that instance only. References to the tread pattern
for that object will use the local tread value rather than
chain back to the tire class object. All other instances
will continue to reference the value present in the tire
class object. 

All Tecate objects possess four classes of properties: 

1. Appearance—attributes that affect an object’s
visual appearance, such as geometric and topologi-
cal structure, color, texture, and material properties 

2. Behaviors—a set of methods that are invoked upon
receipt of messages from other objects 

3. State—a collection of variables whose values repre-
sent an object’s state 

4. Subobjects—a list of objects that are parts of a
given object, just as a wheel is part of a car 

Although most users of the system uniformly see
communicating objects, a distinction is actually made
between two kinds of objects based on how they are
implemented by applications programmers. Resource
objects are implemented primarily as external processes
using some compilable, general-purpose program-
ming language such as C or Fortran. Objects that have
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compute-intensive behaviors or whose behavior execu-
tions are time-critical are generally implemented as
resource objects. For instance, most Tecate objects that
provide system services, such as rendering or database
management, are implemented as resource objects. 

Objects populating virtual worlds that represent
data features are implemented differently than
resource objects by using an interpretive program-
ming language called the Abstract Visualization Lan-
guage (AVL). Such objects are called dynamic objects
because they may be created, destroyed, and altered
on-the-fly as a Tecate session unfolds. Nonetheless,
the ability to dynamically add, remove, and alter object
properties is not solely endemic to dynamic objects.
Resource properties may also be changed on-the-fly
because resources are actually implemented with a
dynamic object that interfaces to the portion of the
resource that is implemented as an external process. 

The Abstract Visualization Language 
AVL is essential to the Tecate system; it is through AVL
that applications programmers write applications that
use Tecate’s features.9 AVL is an interpretive, object-
oriented programming language that is capable of
performing arbitrary computations and facilitating
communication among different processes. Through
this language, applications programmers specify and
manipulate object properties and invoke object behav-
iors by sending messages from one object to another. 

AVL is a typeless language that manipulates char-
acter strings; it is based on the Tcl embeddable
command language.10 AVL extends Tcl by adding
object-oriented programming support, 3-D graphics,
and a more sophisticated event-handling mechanism.
Although AVL is a proper superset of Tcl, the relation-
ship between AVL and Tcl is much like that between 
C and C11. By adding a small set of new constructs
to Tcl, the way applications programmers structure
AVL programs differs markedly from how they struc-
ture Tcl programs, just as the C11 language exten-
sions to C greatly alter the C programming style. 

One use of AVL is to describe virtual worlds that
represent data sets. Through AVL, objects that popu-
late these worlds can be assigned behaviors that are
elicited through user interaction. For instance, select-
ing a 3-D icon can cause a Universal Resource Locator
(URL) to be followed out into the WWW. In this
sense, AVL is somewhat like the Hypertext Markup
Language (HTML) that underlies all Web browsers
today, or, more fitting, it is similar to the Virtual
Reality Modeling Language (VRML) that has been
proposed as a 3-D analog of HTML.11 AVL does, how-
ever, differ markedly from HTML and VRML, which
are only markup languages. Because AVL is a full-
fledged programming language that has sophisticated
interaction handling built in, it is philosophically more
similar to interpretive languages like Telescript,

NewtonScript, and PostScript.12,13,14 Like Telescript,
for instance, AVL programs can encode “smart
agents” that can be sent across a network to perform
user tasks at a remote machine, if an AVL interpreter
resides there. Note, however, that in the present ver-
sion of Tecate, there is no notion of security when
arbitrary AVL code runs on a remote machine. 

AVL includes some additional commands that aug-
ment the Tcl instruction set, for instance, clone and
delete. The clone command is the object creation com-
mand within AVL, and the delete command is the com-
plementary operation to delete objects from the
system. Object properties are specified and manipu-
lated using the add command and deleted using the
remove command. Behaviors in one object are initiated
by another object using the send command, which
specifies the behavior to invoke and the arguments to
be passed. Queries about object properties can be
made using the inquire command. The which com-
mand is used to determine where an object’s properties
are actually defined in light of Tecate’s use of delega-
tion to resolve property references. Finally, AVL pro-
vides a rich set of matrix and vector operators that are
useful when positioning objects within 3-D scenes. 

As an example of how AVL is used in practice,
Figure 1 depicts a code fragment similar to one that
appears in the WWW application described later in the
paper. The code fragment creates a 3-D Web site icon
that is positioned on a world map. The code begins
with the definition of the Hyperlink object from which
all Web site icons are cloned. The Hyperlink object is
itself cloned from the Visual object that is predefined
by Tecate at system start-up. The Visual object con-
tains properties that relate to the viewing of objects
within scenes. For instance, objects that are cloned
from the Visual object inherit behaviors to rotate
themselves and to change their color. To the proper-
ties that are inherited from the Visual object, the
Hyperlink object adds the state variables url and desc,
which will be used to store respectively a URL and its
textual description. In addition, objects cloned from
the Hyperlink object will inherit the default appear-
ance of a solid blue sphere having unit radius. 

The specification for the Hyperlink object also
defines three behaviors: init, openUrl, and showDesc.
The init behavior replaces the init method inherited
from the Visual object. When an object cloned from
the Hyperlink object receives an init message, it sets its
url and desc state variables, positions itself within the
scene whose name is given by the argument scene, and
registers itself with the mouse handler agent to receive
two events. When mouse button 1 is depressed, the
agent sends the object the openUrl message, which in
turn requests the WWW Interface to fetch the data
pointed to by the object’s URL. Depressing button 2
invokes the showDesc message, causing the Web site
URL and description to be displayed by a previously
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Tecate’s Architecture

The general structure of Tecate and how it relates to
application programs is depicted in Figure 2. Tecate
consists of a kernel, a set of basic system services, and a
toolkit of predefined objects. The Tecate kernel, which
is shown in Figure 3, is an object management system
called the Abstract Visualization Machine; AVL is its
native language. The Abstract Visualization Machine
is responsible for creating, destroying, altering, ren-
dering, and mediating communication between
objects. The two major components of the Abstract
Visualization Machine are the Object Manager and
the Rendering Engine. 

The Object Manager is the primary component of
the Abstract Visualization Machine. It is responsible for
interpreting AVL programs, managing a database of

defined interface widget called the metaViewer. The
AVL command getself, which is used within the init
behavior body, returns the name of the object on
which the behavior was called, thus allowing applica-
tions programmers to write generic behaviors. The
other AVL commands, getstate and addstate, are
shorthand for “get [getself] state …” and “add [getself]
{state …}.” 

Once the Hyperlink object is defined, a scene, a dis-
play window, and a Web site icon are created. The
Tecate scene object is cloned from the Visual object.
The window object, cloned from the predefined
Viewer object, is the viewport into which the scene is
to be rendered. Finally, hlink is a Web site icon whose
appearance differs from that which is inherited from
the Hyperlink object. Rather than being spherical, the
shape of the hlink icon is a unit cube. 

# Define a prototype for all Web icons 
clone Hyperlink Visual 

add Hyperlink { 
state { 

url "“ 
desc "“ 

} 
appearance { 

shape {sphere} 
diffuseColor {0.0 0.0 1.0} 
repType {surface} 

} 
behavior { 

# Initialize hyperlink 
init {url desc pos scene window} { 

addstate url $url 
addstate desc $desc 
send [getself] move "add $pos“
add $scene "subobject [getself]“ 
send $window addEvent "[getself] {Button-1 {openUrl {}}} {Button-2 {showDesc {}}}“

}

# Open the URL 
openUrl {} {send www fetch "[getstate url]“} 

# Display the description 
showDesc {} {send metaViewer display "[getstate desc]“} 

} 
} 

# Initialize an informational landscape 
clone scene Visual 
clone window Viewer 
send window init {scene} 

# Create a Web site icon 
clone hlink Hyperlink 
send hlink init {"http://www.sdsc.edu/Home.html“ 

"SDSC home page“ "-2.3 -2.0 1.0“ scene window} 

# Use the SDSC model geometry 
add hlink {appearance {shape {box}}} 
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objects, mediating communication between objects,
and interfacing with input devices. The Object
Manager is itself a resource object that is distinguished
by the fact that all other resource objects are spawned
from this one object. In addition, the Object Manager
is responsible for creating a distinguished dynamic
object, called Root, from which all other dynamic
objects can trace their heritage through prototype-
clone relationships. 

The Object Manager is implemented on a simple,
custom-built thread package. Each object within
Tecate can be thought of as a process that has its own
thread of control. Each thread can be implemented
either as a lightweight process that shares the same
machine context as the Object Manager’s operating
system process or as its own operating system process
separate from that of the Object Manager. Lightweight
processes are so named because their use requires little
system overhead, which enables thousands of such
processes to be active at any given time. Within Tecate,
dynamic objects are implemented as lightweight 

processes, whereas resource objects are implemented
as heavyweight operating system processes, which may
or may not be paired with a lightweight, adjunct
process. A low-level function library is provided to
handle the creation and destruction of threads and 
to handle interthread communication regardless of
how the threads are implemented. 

Closely allied with the Object Manager is the Ren-
dering Engine, which is a special resource object
wholly contained within the Abstract Visualization
Machine. The Rendering Engine is responsible for
creating a graphical rendition of a virtual world that is
specified by AVL programs interpreted by the Object
Manager. When interpreting an AVL program, the
Object Manager strips off appearance attributes of
objects and sends appropriate messages to the Ren-
dering Engine so that it can maintain a separate display
list that represents a virtual world. Display lists are rep-
resented as directed, acyclic graphs whose connectivity
is determined by object-subobject relationships that
are specified within AVL programs. 

The present Rendering Engine implementation
uses the Doré graphics package running on a DEC
3000 Model 500 workstation.7 The display lists that are
created by invoking behaviors within the Rendering
Engine are actually built up and maintained through
Doré. The set of messages that the Rendering Engine
responds to represents an interface to a platform’s
graphics hardware that is independent of both the
graphics package and the display device. 

Layered on top of the Abstract Visualization
Machine are Tecate’s system services and the object
toolkit. The system services consist of a collection of
resource objects that are automatically instantiated at
system start-up. These resources include an expert
system called the Intelligent Visualization System, 
the Database Interface, the WWW Interface, and a
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objects, mediating communication between objects,
and interfacing with input devices. The Object
Manager is itself a resource object that is distinguished
by the fact that all other resource objects are spawned
from this one object. In addition, the Object Manager
is responsible for creating a distinguished dynamic
object, called Root, from which all other dynamic
objects can trace their heritage through prototype-
clone relationships. 

The Object Manager is implemented on a simple,
custom-built thread package. Each object within
Tecate can be thought of as a process that has its own
thread of control. Each thread can be implemented
either as a lightweight process that shares the same
machine context as the Object Manager’s operating
system process or as its own operating system process
separate from that of the Object Manager. Lightweight
processes are so named because their use requires little
system overhead, which enables thousands of such
processes to be active at any given time. Within Tecate,
dynamic objects are implemented as lightweight 

processes, whereas resource objects are implemented
as heavyweight operating system processes, which may
or may not be paired with a lightweight, adjunct
process. A low-level function library is provided to
handle the creation and destruction of threads and 
to handle interthread communication regardless of
how the threads are implemented. 

Closely allied with the Object Manager is the Ren-
dering Engine, which is a special resource object
wholly contained within the Abstract Visualization
Machine. The Rendering Engine is responsible for
creating a graphical rendition of a virtual world that is
specified by AVL programs interpreted by the Object
Manager. When interpreting an AVL program, the
Object Manager strips off appearance attributes of
objects and sends appropriate messages to the Ren-
dering Engine so that it can maintain a separate display
list that represents a virtual world. Display lists are rep-
resented as directed, acyclic graphs whose connectivity
is determined by object-subobject relationships that
are specified within AVL programs. 

The present Rendering Engine implementation
uses the Doré graphics package running on a DEC
3000 Model 500 workstation.7 The display lists that are
created by invoking behaviors within the Rendering
Engine are actually built up and maintained through
Doré. The set of messages that the Rendering Engine
responds to represents an interface to a platform’s
graphics hardware that is independent of both the
graphics package and the display device. 

Layered on top of the Abstract Visualization
Machine are Tecate’s system services and the object
toolkit. The system services consist of a collection of
resource objects that are automatically instantiated at
system start-up. These resources include an expert
system called the Intelligent Visualization System, 
the Database Interface, the WWW Interface, and a
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visualization programming system called BigRiver.
Figure 3 shows these resources in relationship to
Tecate’s kernel. Each resource is a Tecate object that
has a number of predefined behaviors that can be use-
ful to applications programmers. For instance, the
WWW Interface has a behavior that fetches a data file
referred to by a URL and then translates the file’s con-
tents into an appropriate AVL program. 

The toolkit within Tecate is a set of predefined
dynamic objects that programmers can use to develop
applications. These objects are considered abstract
objects in the sense that they are not intended to be
used directly. Rather, they serve as prototypes from
which clones can be created. The toolkit consists of
objects such as viewports, lights, and cameras that are
used to illuminate and render virtual worlds. The
toolkit also contains a modest collection of 3-D user
interface widgets that can be used within virtual
worlds created by an applications programmer. These
widgets include sliders, menus, icons, legends, and
coordinate axes. 

One useful object in the toolkit that aids in simulat-
ing physical processes and helps in performing anima-
tions is a clock. This object is an event generator that
signals every clock tick. If objects wish to be informed
of a clock pulse, those objects register themselves with
the clock object just like objects register themselves
with input device agent objects. The default clock
object can be cloned, and each clone can be instanti-
ated with a different clock period down to a resolution
of one millisecond. Any number of clocks can be tick-
ing simultaneously during a Tecate session. Since new
clocks can be created dynamically, and objects can reg-
ister and unregister to be informed of clock pulses 
on-the-fly, clocks can be used as timers and triggers,
and as pacesetters. 

Application Resources

Tecate’s system services are predefined application
resources that aid in interactively visualizing data. As
mentioned previously, these objects include the Intel-
ligent Visualization System, the Database Interface,
the WWW Interface, and the BigRiver visualization
programming system. In addition, an applications pro-
grammer can easily add new application resources
using tools provided with the base Tecate system. Such
new resources can be built around either user-written
programs or commercial off-the-shelf applications. 
To create a new application resource, a programmer
needs to provide a set of functions that can be invoked
by other Tecate objects. These functions correspond
to behaviors that are called when the resource receives
a message from other objects. Tools are provided 
to register the behaviors with Tecate and to manage
the communication between a resource and other
Tecate objects.15

The Intelligent Visualization System 
The Intelligent Visualization System allows Tecate to
dynamically build interactive visualizations and user
interfaces that aid nonexpert end users in exploring
data spaces. This knowledge-based system is similar in
concept to other expert visualization systems, as the
literature describes.16–21 The Intelligent Visualization
System differs from other expert visualization systems
in two important ways. First, the Intelligent Visualiza-
tion System does not merely create a presentation of
information as do most other systems. Instead, the
Intelligent Visualization System creates virtual worlds
with which end users can interact to alter the way data
is presented, to make queries for additional data, and
to store new data back into data spaces. 

The second way the Intelligent Visualization System
differs from expert visualization systems is that it takes 
a holistic approach to fashioning a visualization. Most
systems decompose data into elementary components,
determine how to visualize each component separately,
and then recompose the individual visualizations into 
a final presentation. In contrast, Tecate’s Intelligent
Visualization System analyzes the full structure of data
by relying on a sophisticated data model based on the
mathematical notion of fiber bundles.22–24 One way to
view fiber bundles is as a generalization of the concept
of graphs of mathematical functions. Depending on
the character of a fiber bundle’s independent and
dependent variables, certain visualization techniques
are more applicable than others. 

In general, the Intelligent Visualization System
automatically crafts virtual worlds based on a task spec-
ification and a description of the data that is to be visu-
alized. A task specification represents a high-level data
analysis goal of what an end user hopes to understand
from the data. For instance, an end user may wish to
determine if there is any correlation between tempera-
ture and the density of liquid water in a climatology
data set. Usually, task specifications must be input by
an end user, although at times they can be inferred
automatically by the system. Tecate provides a simple
task language from which task specifications can be
built, and it provides a point-and-click tool for end
users to create these specifications when needed. Data
descriptions, on the other hand, do not require any
end-user input because they are provided automati-
cally by a data-space interface when data is imported
into the system. 

From the data description and task specification, 
a Planner within the Intelligent Visualization System
produces a dataflow program that when executed
builds an appropriate virtual world that represents 
a selected data set. The Planner uses a collection of
rules, definitions, and relationships that are stored in 
a knowledge base when building a visualization 
that addresses a given task specification. Contents of
the knowledge base include knowledge about data
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models, user tasks, and visualization techniques. The
Planner functions by constructing a sentence within a
dataflow language defined by a context-sensitive graph
grammar. At each step in the construction of the sen-
tence, rules in the knowledge base dictate which pro-
ductions in the grammar are to be applied and when.
Presently, the knowledge base is implemented using
the Classic knowledge representation system; the
Planner is implemented in CLOS.25,26

BigRiver 
The dataflow program produced by the Intelligent
Visualization System is written in a scripting language
that is interpreted by BigRiver, a visualization pro-
gramming system similar to AVS and Khoros.1,2 From 
a technical standpoint, BigRiver is not particularly
innovative and will eventually be reimplemented using
some existing visualization system that has more func-
tionality. The reason that BigRiver was created from
scratch was to better understand how existing visual-
ization programming systems work and to overcome
limitations within those systems. These limitations are
their inability to be embedded within other applica-
tions, their lack of comprehensive data models, and
their inability to work with user-supplied renderers.
The latest generation of visualization programming
systems, such as Data Explorer and AVS/Express,
overcome many of these limitations.3,27

Like most of the existing visualization systems,
BigRiver consists of a collection of procedures called
modules, each of which has a well-defined set of inputs
and outputs. Functional specifications for these mod-
ules represent some of the knowledge contained in the
Intelligent Visualization System’s knowledge base.
Visualization scripts that are interpreted by BigRiver
specify module parameter values and dictate how the
outputs of chosen modules are to be channeled into
the inputs of others. 

BigRiver modules come in three varieties: I/O, data
manipulators, and glyph generators. All modules use
self-describing data formats based on fiber bundles.
One format is used for manipulation within memory;
the other is an on-the-wire encoding intended for
transporting data across a network. An input module 
is responsible for converting data stored in the on-the-
wire encoding into the in-memory format. The data
manipulator modules transform fiber bundles of one
in-memory format into those of another. The glyph
generators take as input fiber bundles in the in-memory
format and produce AVL programs that when executed
build virtual worlds containing objects that represent
features of selected data sets. A single display module
takes as input AVL code and passes it to the Abstract
Visualization Machine. By means of the Rendering
Engine, the Abstract Visualization Machine uses the
appearance attributes of objects to create an image of 
a virtual world that contains the objects. 

The Database Interface 
The Database Interface provides the means to interact
with a database management system, which in the cur-
rent version of Tecate can be either POSTGRES or
Illustra.28,29 Database queries, written in POSTQUEL
for POSTGRES-managed databases or in SQL for
Illustra databases, are sent to the Database Interface by
Tecate objects where they are passed to a database
management system server for execution. The server
returns the query results to the Database Interface,
which then attempts to package them up as an on-the-
wire encoding of a fiber bundle buffered on local disk.
If the result is a set of tuples in the standard format
returned by POSTGRES or Illustra, the Database
Interface performs the fiber bundle translation. For
most other nonstandard results, the so-called binary
large objects (BLOBs) of the database realm, the
Database Interface cannot yet arbitrarily perform the
translation into the on-the-wire fiber bundle encod-
ing. The only BLOBs that the Database Interface can
deal with presently are those that are already encoded
as on-the-wire fiber bundles. The difficult problem of
automated data format translation was not addressed
during Tecate’s initial development, although the
intent is to address this issue in the future. 

Once query results are buffered on disk, a descrip-
tion of the fiber bundle and the location of the buffer
are sent back to the object that made the query
request of the Database Interface. That object might
then request the Intelligent Visualization System to
structure a virtual world whose image would appear
on the display screen by way of BigRiver and the
Rendering Engine. Objects in the virtual world can be
given behaviors that are elicited by user interactions.
These behaviors might then result in further database
queries and so on. Chains of events such as these pro-
vide a means for browsing databases through direct
manipulation of objects within a virtual world. 

The World Wide Web Interface 
The WWW Interface functions similarly to the
Database Interface but instead of accessing data in 
a database, the WWW Interface provides access to data
stored on the World Wide Web. Messages that contain
URLs are passed to the WWW Interface, which then
fetches the data pointed to by the URLs. In retrieving
data from the Web, the WWW Interface uses the same
CERN software libraries used by Web browsers like
Netscape. 

Once a data file is fetched, the WWW Interface
attempts to translate its contents into an AVL pro-
gram, which is then passed to the Object Manager for
interpretation. AVL either specifies the creation of 
a new virtual world that represents the data file’s con-
tents or specifies new objects that are to populate the
current world being viewed. If the fetched data file
contains a stream of AVL code, the WWW Interface
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merely forwards the file to the Object Manager. If the
file contains general data in the form of an on-the-wire
encoding of a fiber bundle, the WWW Interface
appeals to the Intelligent Visualization System to
structure an appropriate virtual world. If the data file
contains a stream of HTML code, the WWW Interface
invokes an internal translator that translates HTML
code into an equivalent AVL program, which is then
interpreted by the Object Manager. This interpreter
actually understands an extended version of HTML
that supports the direct embedding of AVL within
HTML documents. Through this mechanism, 3-D
objects with which users can interact can be embedded
directly into a hypertext Web page—something that
few if any other Web browsers can do today. 

Example Applications

Applications that browse the contents of data spaces
and then interactively visualize selected results have
the same overall structure. One browser application
component acts as a data space interface, and through
this interface queries are posed, query results are
imported into the application, and data generated by
the application is stored back into a data space. Once
data has been imported into the application, a second
component must map the data into some appropriate
virtual world. Finally, a third component must manage
any interactions that may take place between an end
user and elements that populate the virtual worlds that
are created. 

In creating an application using Tecate, the Database
Interface and the WWW Interface represent resources
that can be used to form the application’s data space
interface. The mapping of data into a representative
virtual world can utilize Tecate’s Intelligent Visuali-
zation System and the BigRiver visualization program-

ming system. Finally, the management of these worlds
can take place through AVL programs that exercise the
features of Tecate’s Abstract Visualization Machine.
The following two examples that were implemented in
AVL illustrate how Tecate can be used to create applica-
tions that browse data spaces. 

Visualizing Data in a Database 
A simple example of an application that exploits
Tecate’s features is one that browses for earth science
data in a database and then provides visualizations of
that data. The initial user interface for this application is
built using a collection of user interface widgets, where
each widget is a Tecate dynamic object. Because the
Tecate system does not yet have a comprehensive 3-D
widget set, some widgets still rely on two-dimensional
(2-D) constructs provided by the Tk widget set that 
is implemented on top of the Tcl language.30

Figure 4 depicts the flow of messages between some
of the more important objects that are used within the
application. One object is the Map Query Tool that 
is used to make certain graphical queries for earth
science data sets whose geographical extents and time
stamps fall within user-specified constraints. The tool
is built around a world map on which regions of inter-
est can be specified (see Figure 5). When a user marks
a region of interest on the map and selects a temporal
range, a query message is sent to the Database
Interface. The result of the query is returned to the
Map Query Tool, which then forwards a description
of the result to the Intelligent Visualization System.
To structure an appropriate visualization, an inferred
select task directive accompanies the result. The ensu-
ing script produced by the Intelligent Visualization
System is executed by BigRiver, which produces a
stream of AVL code that is sent to the Abstract
Visualization Machine for interpretation. 
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This AVL program creates a new virtual world that
consists of a collection of 3-D objects. Each object acts
as an icon that corresponds to one data set that was
returned as the result of the initial query (see Figure
5). The Intelligent Visualization System also builds 
in two behaviors for each icon. Depending on how 
a user selects an icon, either the metadata associated
with the data set represented by the icon is displayed in
a separate window or a query message is sent to the
Database Interface requesting the actual data. In 
the latter case, the Map Query Tool again forwards 
the query result to the Intelligent Visualization System,
and another virtual world containing objects repre-
senting data features is created and displayed with 
the aid of BigRiver and the Abstract Visualization
Machine. In general, data exploration proceeds this
way by creating and discarding virtual worlds based on
interactions with objects that populate prior worlds. 

After selecting an icon to actually view the data asso-
ciated with it, an end user is asked by the Intelligent
Visualization System to input a task specification using
a Task Editor. Generally, data sets can be visualized in

many different ways. The Intelligent Visualization
System uses the task specification to select the one
visualization that best satisfies the stated task. After 
a task specification is entered, a visualization of the
selected data set appears on the screen. The BigRiver
dataflow program that the Intelligent Visualization
System creates to do that visualization can be edited by
hand by knowledgeable end users to override the deci-
sions made by the system. 

Figure 6 shows a Task Editor and a visualization
crafted by the Intelligent Visualization System after an
end user selected a data-set icon. The visualization rep-
resents hydrological data that consists of a collection of
tuples, each corresponding to a set of measurements
made at discrete geographical locations. Based on 
the task specification that the end user entered, the
Intelligent Visualization System chose to map the data
into a coordinate system that has axes that represent
latitude, longitude, and elevation. Each sphere repre-
sents an individual measurement site, whose color is 
a function of the mean temperature. When an end user
selects a sphere, the actual data values associated with

Figure 5 
The Map Query Tool Showing a Visualization of a Query Result



the location represented by the sphere are displayed.
In addition, the Intelligent Visualization System auto-
matically places into the virtual world of the visualiza-
tion a color legend to help relate sphere colors to mean
temperature values. 

Figure 7 depicts another virtual world showing a
visualization of data-set output from a regional climate
model program. The data set is a 3-D array indexed by
latitude, longitude, and elevation. Each array element
is a tuple that contains cloud density, water content,
and temperature values. In this instance, the end user
entered a task specification that stated that the spatial
variation in temperature was of primary importance.
The Intelligent Visualization System responded by
specifying a visualization that represented the temper-
ature data as an isosurface, i.e., a surface whose points
all have the same value for the temperature. Included
in the virtual world is a widget that can be used to
change the isosurface value and the field variable that
is being studied. 

The isosurface widget that appears in the visualiza-
tion shown in Figure 7 is of special interest because of
the way that it is implemented. Embedded in the tool
is a slider that is used to change the isosurface value. As
with most sliders, the slider value indicator automati-
cally moves when a mouse button is held down while

pointing at one of the slider ends. To achieve this sim-
ple animation, Tecate’s clock object is used. When the
mouse button is first depressed while the cursor is over
a slider end, the slider indicator registers itself to be
informed of clock ticks. From then on, at every clock
tick, the indicator receives an update message from the
clock, at which time the indicator repositions itself and
increments or decrements the current slider value.
When the mouse button is released, the slider sends 
a message to BigRiver indicating that a new isosurface
is to be calculated and displayed. In addition, the slider
indicator unregisters itself from the clock signaling
that it no longer is to receive the update messages. In
general, applications can use this same clock mecha-
nism to perform more elaborate animations. 

A 3-D World Wide Web Browser 
In the Tecate Web browser, exploration of the World
Wide Web and its contents occurs by placing an end
user onto an informational landscape. This landscape
is a 3-D virtual world whose appearance reflects the
content and the structure of a designated subset of the
entire Web. Upon application start-up, an end user 
is presented with an initial informational landscape
that consists of a planar map of the earth embedded 
in a 3-D space, as shown in Figure 8. In general, the
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Figure 6 
Task Editor Showing a Visualization of Hydrological Data



initial informational landscape can be any 3-D scene
and does not have to be geographically based. For
instance, an informational landscape might be a virtual
library where books on shelves serve as anchors for
hyperlinks to different Web sites. 

In the present browser application, selected Web
sites appear as 3-D icons on the world map. These
icons are positioned either in locations where Web
servers physically reside or in locations referenced
within Web documents (see Figure 8). A user places
information that describes these sites into a database
that serves as an elaboration of the hot list of current
hypertext-based browsers. When the browser applica-
tion is first started, it sends a query for the initial com-
plement of Web sites to the Database Interface. The
browser application then invokes a BigRiver script that
visualizes the results by placing icons representing
each site onto the world map. 

Suspended above the world map is a 3-D user inter-
face widget that is used to query a database of Web
sites that are of interest to an end user (see Figure 8).
This database, where the initial set of Web sites is
stored, includes information such as URLs, keywords,
geographical locations, and Web site types. Currently,
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Figure 7 
Task Editor Showing a Visualization of Regional Climate Data, Including an Isosurface and a User Interface Widget

Figure 8 
Tecate Web Browser Informational Landscape Showing
WWW Sites Depicted as 3-D Icons on a Map of the World



individual users are responsible for maintaining their
own databases by adding or removing Web site entries
by hand. An automated means for building these data-
bases can be easily added to the browser application so
that Web information could be accumulated based on
where and when an end user travels on the Web. 

During a browsing session, the Web Query Tool
allows arbitrary SQL queries to be posed to the
database by an end user. In addition, the Web Query
Tool has provisions to allow packaged queries to be
initiated by a simple click of a mouse button. In both
cases, queries are sent to the Database Interface for
forwarding to the appropriate database server. The
Database Interface packages up the query results as
on-the-wire fiber bundles which are returned to the
Web Query Tool. The Web Query Tool then invokes 
a BigRiver script, which converts the fiber bundle data
into AVL code. This code, when interpreted by the
Object Manager, creates a visualization of the Web
sites that satisfies the query. Generally, a visualization
such as this consists of placing on the world map a set
of 3-D icons whose appearances are a function of the
Web site type. However, query result visualizations
need not be limited to an organization based on geo-
graphical position. For instance, a query for the con-

tents of an end user’s own file directory results in a
new informational landscape that consists of an evenly
spaced grid of icons suspended within a room, as
shown in Figure 9. 

Each icon that appears within an informational
landscape is cloned from an AVL Hyperlink abstract
object that stores its URL in a state variable. Each Web
site icon inherits from the Hyperlink prototype a
behavior that causes data pointed to by its URL state
variable to be fetched by means of the WWW Interface
when the icon is selected. When the data is drawn
across the Web, Tecate’s WWW Interface attempts to
structure a visualization of it. Figure 10 summarizes
the message flow between the more important objects
within the Web browser application. 

If an end user selects an icon and a Web server
returns a stream of HTML, the WWW Interface trans-
lates the stream into AVL and displays the result on the
base of an inverted pyramid whose apex is centered on
the chosen icon (see Figure 11). The text and imagery
resulting from the HTML appear similarly as they
would when visualized using a hypertext-based
browser like Netscape. Hyperlinks are represented as
highlighted text, which the user can follow by select-
ing the text. These hyperlinks are Tecate objects that
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Sample End-user Nongeographical Informational Landscape
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Figure 11 
Results of a Tecate Browsing Session Showing a Hyperlink and a Forest of Pyramids That Represents the User’s Travels 
on the Web



are cloned from the same Hyperlink prototype as the
Web site icons. If another HTML document is
retrieved by following a hyperlink, that document 
is viewed on the base of another inverted pyramid
whose apex rests on the selected text and so on (see
Figure 11). Rather than having to page back and forth
between hypertext documents as with most hypertext-
based browsers, in Tecate, an end user needs only to
move about the virtual world to gain an appropriate
viewpoint from which to examine a desired document.
Overall, as shown in Figure 11, a browsing session
with Tecate’s Web browser results in a forest of pyra-
midal structures that represent a pictorial history of 
an end user’s travels on the Web. 

Although Tecate’s Web browser is capable of view-
ing HTML documents, its main purpose is not to
emulate what can currently be done using hypertext-
based browsers, albeit using 3-D. Rather, the new
browser is intended to visualize primarily more com-
plex types of data. When data does not consist of 
a stream of HTML code, the WWW Interface attempts
to visualize what was returned from the Web. These
visualizations can take place in virtual worlds separate
from the informational landscape from where the data

request was initiated, or they can be placed within 
the original informational landscape. Figure 12 depicts 
an example of a Web document that has embedded
within it a miniature virtual world containing a model
of a car. An end user can freely interact with this model
to initiate any behavior defined for objects populating
the subworld. For instance, selecting the car with the
mouse causes the car wheels to spin. Figure 13 shows
the AVL code embedded in the HTML page for the
Web document shown in Figure 12. 

Conclusions

Tecate provides the infrastructure on which applica-
tions can be created for browsing and visualizing data
from networked data sources. Architecturally, Tecate
seeks to bring together into one package useful fea-
tures found in visualization systems, network browsers,
database front ends, and virtual reality systems. As a
first prototype, Tecate was created using a breadth-first
development strategy. That is, developers deemed it
essential to first understand what components were
needed to build a general data space exploration utility
and then determine how those components interact. 
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Figure 12 
Example of a Web Document with Embedded 3-D Virtual World
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Figure 13 
AVL Code Embedded in the HTML Page for the Web Document Example 

<HEAD> 
<TITLE>The Tecate car demo</TITLE> 
</HEAD> 

<BODY> 

<H1>The Tecate car demo</H1> 

<AVL> 
# Global variables 
global TEC_WEB_PARENT TEC_WEB_WIN 
set path "/projects/s2k/sharedata“

# Define car part prototype 
clone CarPart Visual 
add CarPart { 

state {angle 10} 
appearance { 

repType surface 
interpType surface 

} 
behavior { 

around {args} { 
for {set i 0} {$i < 360} {incr i [getstate angle]} { 

send [getself] rotate "add 0 [getstate angle] 0“ 
} 

} 
} 

} 

# Define car body 
clone car_body CarPart 
add car_body { 

appearance { 
replacematrix {rotate {0.0 0.0 90.0}} 
shape {AliasObj "$path/car_body.tri“} 

} 
} 

# Define generic wheel 
clone wheel CarPart 

. 

. 

. 

# Define car’s four wheels 
clone back_right CarPart 

. 

. 

. 

# Assemble car 
clone wheels CarPart 
add wheels {subobject {back_right back_left front_left front_right}} 
clone car CarPart 
add car { 

appearance {replacematrix {translate {28.0 -8.0 3.0} rotate {90.0 90.0 0.0}}} 
subobject {car_body wheels} 

} 
add $TEC_WEB_PARENT {subobject {car}} 

# Bind pick events to car 
send $TEC_WEB_WIN addEvent {wheel {Pick-Shift-Button-1 {rot_wheels {}}}} 
send $TEC_WEB_WIN addEvent {wheel {Pick-Button-1 {around {}}}} 
send $TEC_WEB_WIN addEvent {car {Pick-Button-1 {around {}}}} 
</AVL> 

<PRE> 
Button-1 on car to rotate the car <BR> 
Button-1 on a wheel to rotate the wheels <BR> 
Shift Button-1 on a wheel to change the wheels <BR> 
</PRE> 

<HR> 
<P> 
</BODY>



This development strategy traded off the functionality
of individual components for the completeness of 
a fully running visualization system. 

In terms of achieving its design goals, the Tecate
effort has been moderately successful. Tecate can now
provide interfaces to two kind of data spaces: the
World Wide Web and databases managed by the
POSTGRES and Illustra database management sys-
tems. In addition, interfaces to other data spaces can
be implemented easily by creating new resource
objects using the tools provided by Tecate. Much
work still needs to be done, however. For example, the
attendant data translation problem must be satisfacto-
rily solved; data passing through an interface that 
is stored in one format should be automatically con-
verted into Tecate’s favored format and vice versa. 

When building visualizations of data, Tecate now
understands data that has a specific conceptual struc-
ture, in particular, arbitrary sets of tuples and multi-
dimensional arrays where array elements may be
tuples. Although data types from many different disci-
plines possess such a structure, some types remain that
do not, for instance, data that has a lattice-like or poly-
hedral structure. Furthermore, Tecate can now con-
struct only crude visualizations of the data types that it
does understand. The primary reason for this short-
coming is that the basic module set within the
BigRiver resource is incomplete, and the knowledge
base within the Intelligent Visualization System con-
tains limited knowledge of visualization techniques
that can be used to transform data into virtual worlds. 

At present, Tecate does dynamically craft simple user
interfaces and interactive visualizations using its Intelli-
gent Visualization System. This expert system takes into
account how data is conceptually structured and end-
user tasks regarding what is to be understood from the
data. Still, the Intelligent Visualization System does not
yet consider data semantics, end-user preferences, or
display system characteristics when building visualiza-
tions. Nonetheless, Tecate does provide the capabilities
to create highly interactive applications. Sophisticated
event handling constructs are built into AVL, and the
Intelligent Visualization System uses those features to
automatically place user interface widgets into the
virtual worlds it specifies. 

Regarding future work, hopefully, succeeding gen-
erations of the Tecate system will include many new
features and enhancements. The management of
objects needs to be reworked so that thousands of
objects can be efficiently handled simultaneously.
Although Tecate now builds virtual worlds, virtual
reality gadgetry has yet to be integrated into the sys-
tem. The Abstract Visualization Language needs new
features, and it needs to be streamlined. Tecate can
also benefit greatly from a more complete toolkit of 
3-D widgets that can be used to interact with objects
within virtual worlds. Finally, the Doré graphics sys-

tem that Tecate uses should be replaced with a more
mainstream system like OpenGL, which will allow
Tecate to run on a wide variety of hardware platforms. 

Tecate is an exciting system to use and an excellent
foundation from which to pursue further research and
development in the exploration of general data spaces.
Tecate advances the state of the art by demonstrating a
comprehensive means to graphically browse for data
and then interactively visualize data sets that are
selected. Tecate accomplishes these tasks by using an
expert system that automatically builds virtual worlds
and by exploiting the flexibility of an interpretive,
object-oriented language that describes those worlds. 
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