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The Sequoia 2000 project requires a high-speed
network and I/O software for the support of
global change research. In addition, Sequoia
distributed applications require the efficient
movement of very large objects, from tens to
hundreds of megabytes in size. The network
architecture incorporates new designs and
implementations of operating system I/O soft-
ware. New methods provide significant per-
formance improvements for transfers among
devices and processes and between the two.
These techniques reduce or eliminate costly mem-
ory accesses, avoid unnecessary processing, and
bypass system overheads to improve through-
put and reduce latency. 

In the Sequoia 2000 project, we addressed the prob-
lem of designing a distributed computer system that
can efficiently retrieve, store, and transfer the very
large data objects contained in earth science applica-
tions. By very large, we mean data objects in excess 
of tens or even hundreds of megabytes (MB). Earth
science research has massive computational require-
ments, in large part due to the large data objects often
found in its applications. There are many examples: an
advanced very high-resolution radiometer (AVHRR)
image cube requires 300 MB, an advanced visible and
infrared imaging spectrometer (AVIRIS) image
requires 140 MB, and the common land satellite
(LANDSAT) image requires 278 MB. Any throughput
bottleneck in a distributed computer system becomes
greatly magnified when dealing with such large
objects. In addition, Sequoia 2000 was an experiment
in distributed collaboration; thus, collaboration tools
such as videoconferencing were also important appli-
cations to support. 

Our efforts in the project focused on operating sys-
tem I/O and the network. We designed the Sequoia
2000 wide area network (WAN) test bed, and we
explored new designs in operating system I/O and
network software. The contributions of this paper are
twofold: (1) it surveys the main results of this work
and puts them in perspective by relating them to the
general data transfer problem, and (2) it presents 
a new design for container shipping. (For a complete
discussion of container shipping, see Reference 1.)
Since container shipping is a new design, this paper
devotes more space to it in relation to the other sur-
veyed work (whose detailed descriptions may be found
in References 2 to 9). In addition to this work, we con-
ducted other network studies as part of the Sequoia
2000 project. These include research on protocols to
provide performance guarantees and multicasting.10–17

To support a high-performance distributed comput-
ing environment in which applications can effectively
manipulate large data objects, we were concerned with
achieving high throughput during the transfer of these
objects. The processes or devices representing the data
sources and sinks may all reside on the same work-
station (single node case), or they may be distributed
over many workstations connected by the network
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(multiple node case). In either case, we wanted appli-
cations, be they earth science distributed computa-
tions or collaboration tools involving multipoint
video, to make full use of the raw bandwidth provided
by the underlying communication system. 

In the multiple node case, the raw bandwidth is
from 45 to 100 megabits per second (Mb/s), because
the Sequoia 2000 network used T3 links for long-
distance communication and a fiber distributed data
interface (FDDI) for local area communication. In the
single node case, the raw bandwidth is approximately
100 megabytes per second, since the workstation of
choice was one of the DECstation 5000 series or the
Alpha-powered DEC 3000 series, both of which use
the TURBOchannel as the system bus. 

Our work focused only on software improvements,
in particular how to achieve maximum system software
performance given the hardware we selected. In fact,
we found that the throughput bottlenecks in the
Sequoia distributed computing environment were
indeed in the workstation’s operating system software,
and not in the underlying communication system
hardware (e.g., network links or the system bus). This
problem is not limited to the Sequoia environment:
given modern high-speed workstations (100+ millions
of instructions per second [mips]) and fast networks
(100+ Mb/s), performance bottlenecks are often
caused by software, especially operating system soft-
ware. System software throughput has not kept up
with the throughputs of I/O devices, especially net-
work adapters, which have improved tremendously 
in recent years. These technology improvements are
being driven by a new generation of applications, such
as interactive multimedia involving digital video and
high-resolution graphics, that have high I/O through-
put requirements. Supporting these applications and
controlling these devices have taxed operating system
technology, much of which was designed during times
when intensive I/O was not an issue. 

In the next section of this paper, we describe the
Sequoia 2000 network, which served as an experimen-
tal test bed for our work. Following that, we analyze
the data transfer problem, which serves as the context
for the three subsequent sections. There we describe
our solutions to the data transfer problem. Finally, we
present our conclusions. 

The Sequoia 2000 Network Test Bed

The Sequoia 2000 network is a private WAN that we
designed to span five campuses at the University of
California: Berkeley, Davis, Los Angeles, San Diego,
and Santa Barbara. The topology is shown in Figure 1.
The backbone link speeds are 45 Mb/s (T3) with 
the exception of the Berkeley-Davis link, which is 
1.5 Mb/s (T1). At each campus, one or more FDDI

local area networks (LANs) that operate at 100 Mb/s 
are used for local distribution. At some campuses, 
the configuration is a hierarchical set of rings. For
example, at UC San Diego, one FDDI ring covered
the campus and joined three separate rings: one at 
the Computer Systems Lab (our laboratory) in the
Department of Computer Science and Engineering,
one at the Scripps Institution of Oceanography, and
one at the San Diego Supercomputer Center. 

We used high-performance general-purpose com-
puters as routers, originally DECstation 5000 series
and later DEC 3000 series (Alpha-powered) work-
stations. Using workstations as routers running the
ULTRIX or the DEC OSF/1 (now Digital UNIX)
operating system provided us with a modifiable soft-
ware platform for experimentation. The T3 (and T1)
interface boards were specially built by David Boggs at
Digital. We used off-the-shelf Digital products for
FDDI boards, both models DEFTA, which supports
both send and receive direct memory access (DMA),
and DEFZA, which supports only receive DMA. 

The Data Transfer Problem

Since a data source or sink may be either a process or
device, and the operating system generally performs
the function of transferring data between processes
and devices, understanding the bottlenecks in these
operating system data paths is key to improving
performance. These data paths generally involve tra-
versing numerous layers of operating system software.
In the case of network transfers, the data paths are
extended by layers of network protocol software. 
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To understand the performance problem we were
trying to solve, consider a common client-server inter-
action in which a client has requested data from a 
server. The data resides on some source device, e.g., a
disk, and must be read by the server so that it may send
the data to the client over a network. At the client, the
data is written to some sink device, e.g., a frame buffer
for display. 

Figure 2 shows a typical end-to-end data path where
the source and sink end-point workstations are running
protected operating system kernels such as UNIX. The
source device generates data into the memory of its
connected workstation. This memory is generally only
addressable by the kernel; to allow the server process
to access the data, it is physically copied into memory
addressable via the server process’s address space, i.e.,
user space. Physically copying data from one memory
location to another (or more generally, touching the
data for any reason) is a major bottleneck in modern
workstations. 

In travelling through the kernel, the data generally
travels over a device layer and an abstraction layer. The
device layer is part of the kernel’s I/O subsystem and
manages the I/O devices by buffering data between
the device and the kernel. The abstraction layer com-
prises other kernel subsystems that support abstrac-
tions of devices, providing more convenient services
for user-level processes. Examples of kernel abstraction
layer software include file systems and communication
protocol stacks: a file system converts disk blocks into
files, and a communication protocol stack converts
network packets into datagrams or stream segments.
Sometimes, a kernel implementation may cause physi-
cal copying of data between the device layer and the
abstraction layer; in fact, copying may even occur
within these layers. 

From kernel space, the data may travel across several
more layers in user space, such as the standard I/O
layer and the application layer. The standard I/O layer
buffers I/O data in large chunks to minimize the
number of I/O system calls. The application layer gen-
erally has its own buffers where I/O data is copied. 

From the server process in user space, the data is
then given to the network adapter; this may cause
transfers across user process layers and then across the
kernel layers. The data is then transferred over the net-
work, which generally consists of a set of links con-
nected by routers. If the routers have kernels whose
software structure is like that described above, a simi-
lar (but typically simpler) intramachine data transfer
path will apply. 

Finally, the data arrives at the client’s workstation.
There, the data travels in a similar way as was described
for the server’s workstation: from the network adapter,
across the kernel, through the client process’s address
space, and across the kernel again, finally reaching the
sink device. 

From this analysis, one can surmise why throughput
bottlenecks often occur at the end points of the end-
to-end data transfer path, assuming sufficiently fast
hardware devices and communication links. At the end
points, there may be significant data copying as the 
data traverses the various software layers, and there is
protection-domain crossing (kernel to user to kernel),
among other functions. The overheads caused by these
functions, directly and indirectly, can be significant. 

Consequently, we focused on improving operating
system I/O and network software, including opti-
mizations for the four possible process/device data
transfer scenarios: process to process, process to device,
device to process, and device to device, with special
care in addressing cases where either source or sink
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device is a network adapter. In this paper, we use 
the term data transfer problem to refer to the problem
of reducing these overheads to achieve high through-
put between a source device and a sink device, either
of which can be a network adapter within a single
workstation. 

Although the data transfer problem may also exist in
intermediate routers, it does so to a much lesser
degree than with end-user workstations (assuming
modern router software and hardware technology).
This is because of a router’s simplified execution envi-
ronment and its reduced needs for transfers across
multiple protected domains. However, there is noth-
ing that precludes the application of the techniques
discussed in this paper to router software. In fact, since
we used general-purpose workstations for routers to
support a flexible, modifiable test bed for experimen-
tation with new protocols, our work was also applied
to router software. 

In the next three sections, we describe various
approaches to solving the data transfer problem. Since
data copying/touching is a major software limitation
in achieving high throughput, avoiding data copying/
touching is a constant theme. Much of our work
involves finding ways to avoid or limit touching the data
without sacrificing the flexibility or protection com-
monly provided by most modern operating systems. 

We describe two solutions to the data transfer prob-
lem that avoid all physical copying and are based on
the principle of providing separate mechanisms for
I/O control and data transfer.18–21 The reader will see
that while these two solutions are based on different
approaches (indeed, they can even be viewed as com-
peting), they fill different niches based on differing
assumptions of how I/O is structured. In other words,
each is appropriate and optimal for different situations.
In addition to the data transfer problem, we address a
special problem—the bottleneck created by the check-
sum computation for I/O on a network using the trans-
mission control protocol/internet protocol (TCP/IP). 

Container Shipping

Container shipping is a kernel service that provides
I/O operations for user processes. High performance
is obtained by eliminating the in-memory data copies
traditionally associated with I/O. Additional gains are
achieved by permitting the selective accessing (map-
ping) of data. Finally, the design we present makes
possible specific optimizations that further improve
performance. 

The goals of the container shipping model of data
transfer for I/O are to provide high performance with-
out sacrificing protection and to fully support the prin-
ciple of general-purpose computing. Full access to
I/O data by user-level processes has long been a stan-
dard feature of operating systems. This ability has

traditionally been provided by copying data to and
from process memory at each instance when data is
transferred. The divergence of CPU and dynamic ran-
dom access memory (DRAM) speeds makes this in-
memory copying more inefficient and costly every
year. This problem is often attacked with application-
specific silicon or kernel modifications. A less-costly
and longer-lasting solution is to redesign the I/O sub-
system to provide copy-free I/O. Container shipping
provides this ability, as well as additional performance
gains, in a uniform, general, and practical way. 

Containers 
A container is one or more pages of memory. In these
pages, it may contain a single block of data, whose
location is identified by an offset and a length. When 
a container is mapped into an address space, the pages
form a contiguous region of memory, where the data
can be manipulated. A container can be owned by one
and only one domain, e.g., some user process or the
kernel itself, at any single point in time. The owning
domain may map the container for access. When
access is not required, mapping can be avoided, which
saves time. 

User-level processes use container shipping system
calls to perform the following functions: 

■ Allocation: cs_alloc and cs_free allocate and deallo-
cate containers and their resources (e.g., physical
pages). 

■ Transfer: cs_read and cs_write perform I/O using
containers. 

■ Mapping: cs_map and cs_unmap allow a process to
access the data in a container. 

The cs_read and cs_write calls take as parameters an
I/O path identifier (such as a UNIX file descriptor), 
a data size, and parameters describing a list of contain-
ers, or a return area for such a list. Several options are
also available, such as one for cs_read that immediately
maps all the resulting containers. Data is never copied
within memory to satisfy cs_read and cs_write, so all
I/O performed this way is copy-free. 

Because the mapping of containers is always
optional, a process can move data from one device to
another without mapping it at all. When containers of
data flow through a pipeline of several processes, sub-
stantial additional savings can be obtained if several of
the processes do not map the containers, or if they
map only some of the containers. 

Although container shipping has six different sys-
tem calls versus the two of conventional I/O, read and
write, the actual number of calls a process issues with
container I/O may be no greater than with conven-
tional I/O. When data is not mapped, only cs_read
and cs_write calls are required. Even if data is mapped,
it may be possible to perform the mapping through
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flags to cs_read, without calling cs_map. Unmapping
is automatic in cs_write, so if cs_unmap is not used,
two system calls are still sufficient. 

As shown in Figure 3, a process reads data in a con-
tainer from one device and writes it to another device.
Three pages of memory form one container that stores
two and one-half pages of data. On input (cs_read),
the source device deposits data into physical memory
pages forming the container. The process that owns
the container may then map (cs_map) it so that the
data can be manipulated in its address space. The data
is then output (cs_write) to the sink device. Output
can occur without having mapped the container.
Mapping can also occur automatically on cs_read. 

Eliminating In-Memory Copying 
Unconditionally avoiding the copying of data within
memory during I/O leads to the first of several perfor-
mance gains from container shipping. Other solutions
exist that avoid copies only in limited cases. To be uni-
form and general, copy-free I/O must be possible with-
out restrictions due to the devices used, the order of
operations, or the availability of special device hardware. 

In many I/O operations, the data requested by a
user-level process is already in system memory when
the request is made. This situation can arise when data
is moving between two processes via the I/O system,
such as is done with pipes. Many optimized file sys-
tems perform read-ahead and in-memory caching to
improve performance, so file I/O requests may also be
satisfied with data that is already in memory. Finally,

conventional network adapters transfer entire packets
into memory before they are examined by protocol
layers in the kernel. Only after protocol processing can
this data be delivered to the correct user-level process.
When requested data is already in memory, the only
possible copy-free transfer mechanism that allows full
read/write access in the address space of a process is
virtual memory remapping. Techniques that rely on
device-specific characteristics such as programmable
DMA or outboard protocol processors cannot provide
uniform, device-independent copy-free I/O, because
these mechanisms cannot transfer data that is already
in memory. 

Using virtual memory remapping, container ship-
ping can perform copy-free I/O regardless of when 
or where data arrives in memory, and with or without
any special device hardware that might be available.
Virtual memory hardware is employed to control the
ownership of, and access to, memory that contains
I/O data. Ownership and access rights are transferred
between domains when container I/O is performed,
while data sits motionless in memory. This technique
requires no special assistance from devices and applies
to interprocess communication as well as all physical
I/O. Because user-level processes retain complete
access to I/O data with no in-memory copying, user-
level programming remains a practical solution for
high-performance systems. 

The Gain/Lose Model 
In container I/O, reading and writing are coupled
with the gain and loss of memory. We chose the
gain/lose model because it is simple and provides
higher performance without sacrificing protection.
Shared memory is a more complicated alternative to
the gain/lose model, which also avoids data copying.
The use of shared memory to allow a set of processes
to efficiently communicate, however, reduces the
protection between domains. Shared-memory I/O
schemes also tend to be complicated because of the
close coordination required between a user process and
the kernel when they both manipulate a shared data
pool. Since data is never shared under the gain/lose
model, protection domains need not be compromised,
and less user/kernel cooperation and trust is required. 

The gain/lose model has three major implications
for programmers. First, a process must dispose of I/O
data that it gains, or memory consumption may grow
rapidly. One way to dispose of data is to perform a
cs_write operation on it, so a process performing
matched reads and writes on a stream of data will not
accumulate any extra memory. Second, to avoid seri-
ously complicating conventional memory models, not
all memory is eligible for use in write operations. For
example, writing data from the stack would leave an
inconvenient hole in that part of the virtual memory,
so this is not allowed. Finally, because data that is
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communication (IPC) within the ULTRIX version
4.2a operating system on a DECstation 5000/200
system.1 With the new DEC OSF/1 implementation
on Alpha workstations, we compared the I/O perfor-
mance of conventional UNIX I/O to that of container
shipping for a variety of I/O devices as well as IPC.
These experiments are described in detail elsewhere.23

Large improvements in throughput were observed,
from 40 percent for FDDI network I/O (despite large
non–data-touching protocol and device-driver over-
heads) to 700 percent for socket-based IPC. 

We devised an experiment that exercises both the
IPC and I/O capabilities of container shipping.
Images (640 3 480 pixels, 1 byte per pixel) are sent by
one process and received by a second process using
socket IPC. The receiver process then does output to a
frame buffer to display the images on the screen. This
is a common application in the Sequoia project: view-
ing an animation composed of images displayed at 
a rate of up to 30 frames per second (fps). In fact, sci-
entists often want to view as many simultaneously
displayed animations as possible. 

We carried out this experiment first using conven-
tional UNIX I/O (i.e., read and write) and then using
container shipping (i.e., cs_read and cs_write). Figure 4
shows the throughput obtained for a sender process
transferring data to a receiver process, which then out-
puts the data to a frame buffer. The improvement of
container shipping over UNIX I/O is almost 400 per-
cent. Assuming the maximum 30 fps rate, conven-
tional I/O supports the full display of one animation
and container I/O supports six. In general, the greater
the relative speed between an I/O device and mem-
ory, the greater the relative throughput of container
shipping versus UNIX I/O will be. 

Related Work 
The use of virtual transfer techniques to avoid the
performance penalty of physical copying goes back 
to TENEX.24 Mach (like TENEX) uses virtual copy-
ing, i.e., transferring a data object by mapping it in 
the new address space, and then physically copying if 

the data is modified (copy-on-write).22 This differs
from container shipping, which uses virtual moving;
i.e., the data object leaves the source domain and
appears in the destination domain, where it can be
read and written without causing fault handling,
which is expensive. If the original domain wants to
keep a copy, it may do so explicitly. Thus, container
shipping places a greater burden on the programmer
in return for improved performance. 

The two systems that are most similar to container
shipping are DASH and Fbufs.25,26 Containers are simi-
lar to the IPC pages used in DASH and the fast buffers
used by Fbufs. DASH provides high-performance
interprocess communication: it achieves fast, local IPC
by means of page remapping, which allows processes
to own regions of a restricted area of a shared address
space. The Fbufs system uses a similar technique,
enhanced by caching the previous owners of a buffer,
allowing reuse among trusted processes and elimi-
nating memory management unit (MMU) updates
associated with changing buffer ownership. The dif-
ferences between these two systems and container
shipping are examined in detail elsewhere.23

Peer-to-Peer I/O

In addition to container shipping, we have investi-
gated an alternative I/O system software model called
peer-to-peer I/O (PPIO). As a direct result of the
structure of this model, its implementation avoids 
the well-known overheads associated with data copy-
ing. Unlike other solutions, PPIO also reduces the
number of context-switch operations required to per-
form I/O operations. In contrast to container ship-
ping, PPIO is based on a streaming approach, where
data is permitted to flow between a producer and con-
sumer (these may be devices, files, etc.) without pass-
ing through a controlling process’ address space. In
PPIO, processes use the splice system call to create
kernel-maintained associations between producer and
consumer. Splice represents an addition to the conven-
tional operating system I/O interfaces and is not a
replacement for the read and write system functions. 

The Splice Mechanism 
The splice mechanism is a system function used to
establish a kernel-managed data path directly between
I/O device peers.2,3 It is the primary mechanism that
processes invoke to use PPIO. With splice, an applica-
tion expresses an association between a data source
and sink directly to the operating system through the
use of file descriptors. These descriptors do not refer to
memory addresses (i.e., they are not buffers): 

sd = splice (fd1, fd2); 

As shown in Figure 5, the call establishes an in-kernel
data path, i.e., a splice, between a data source and sink
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device. If the I/O bus and the devices support hard-
ware streaming, the data path is directly over the bus,
avoiding system memory altogether. Although the
process does not necessarily manipulate the data, 
it controls the size and timing of the dataflow. To
manipulate the data, a processing module can be
downloaded either into the kernel or directly on the
devices if they support processing. 

The data source and sink device are specified by the
references fd1 and fd2, respectively. The splice descrip-
tor sd is used in subsequent calls to read or write to
control the flow of data across the splice. For example,
the following call causes size bytes of data to flow from
the source to the sink: 

splice_ctrl_msg sc; 
sc.op = SPLICE_OP_STARTFLOW; 
sc.increment = size; 
write (sd, &sc, sizeof(sc)); 

Data produced by the devices referenced by fd1 is auto-
matically routed to fd2 without user process interven-
tion, until size bytes have been produced at the source.
The increment field specifies the number of bytes to
transfer across a splice before returning control to the
calling user application. When control is returned,
dataflow is stopped. A SPLICE_OP_STARTFLOW
must be executed to restart dataflow. The increment
represents an important concept in PPIO and refers to
the amount of data the user process is willing to have
transferred by the operating system on its behalf. 
In effect, it specifies the level of delegation the user 
process is willing to give to the system. Specifying
SPLICE_INCREMENT_DEFAULT indicates the sys-
tem should choose an appropriate increment. This is
generally a buffer size deemed convenient by the oper-
ating system.

The splice mechanism eliminates copy operations to
user space by not relying on buffer interfaces such as
those present in the conventional I/O functions read
and write. By eliminating the user-level buffering, ker-
nel buffer sharing is possible. More specifically, when
block alignment is not required by an I/O device, a
kernel-level buffer used for data input may be used
subsequently for data output. 

In addition to removing the buffering interfaces,
splice also combines the read/write functionality
together in one call. The splice call indicates to the
operating system the source and sink of a dataflow,
providing sufficient information for the kernel to man-
age the data transfer by itself without requiring user-
process execution. Thus, context-switch operations
for data transfer are eliminated. This is important: con-
text switches consume CPU resources, degrade cache
performance by reducing locality of reference, and
affect the performance of virtual memory by requiring
TLB invalidations.27,28

For applications making no direct manipulation of
I/O data (or for those allowing the kernel to make
such manipulations), splice relegates the issues of man-
aging the dataflow (e.g., buffering and flow control)
to the kernel. Data movement may be accomplished
by a kernel-level thread, possibly activated by comple-
tion events (e.g., device interrupt) or operating in a
more synchronous fashion. Flow control may be
achieved by selective scheduling of kernel threads or
simply by posting reads only to data-producing
devices when data-consuming peers complete I/O
operations. A kernel-level implementation provides
much flexibility in choosing which control abstraction
is most appropriate. 

One criticism of streaming-based data transfer
mechanisms is that they inhibit innovation in applica-
tion development by disallowing applications direct
access to I/O data.29 However, many applications that
do not require direct manipulation of I/O data can
benefit from streaming (e.g., data-retrieving servers
that do not need to inspect the data they have been
requested to deliver to a client). Furthermore, for
applications requiring well-known data manipulations,
kernel-resident processing modules (e.g., Ritchie’s
Streams) or outboard dedicated processors are more
easily exploited within the kernel operating environ-
ment than in user processes.30,31 In fact, PPIO supports
processing modules.4

PPIO Implementation and Performance 
The PPIO design was conceived to support large data
transfers. The decoupling of I/O data from process
address space reduces cache interference and elimi-
nates most data copies and process manipulation.
PPIO and the accompanying splice system call have
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been implemented within the ULTRIX version 4.2a
operating system for the DEC 5000 series work-
stations, and within DEC OSF/1 version 2.0 for DEC
3000 series (Alpha-powered) workstations, each for 
a limited number of devices. 

Three performance evaluation studies of PPIO
have been carried out and are described in our early
papers.2,3,4 They indicate CPU availability improves by
30 percent or more; and throughput and latency
improve by a factor of two to three, depending on 
the speed of I/O devices. Generally, the latency and
throughput performance improvements offered by
PPIO improve with faster I/O devices, indicating that
PPIO scales well with new I/O device technology. 

Improving Network Software Throughput

Network I/O presents a special problem in that the
complexity of the abstraction layer (see Figure 2), a
stack of network protocols, is generally much greater
than that for other types of I/O. In this section, we
summarize the results of an analysis of overheads for
an implementation of TCP/IP we used in the Sequoia
2000 project. The primary bottleneck in achieving
high throughput communication for TCP/IP is due
to data-touching operations: one expected culprit is
data copying (from kernel to user space, and vice
versa); another is the checksum computation. Since we
have already focused on how to avoid data copying in
the previous two sections, we discuss how one can
safely avoid computing checksums for a common case
in network communication. 

Overhead Analysis 
We undertook a study to determine what bottlenecks
might exist in TCP/IP implementations to direct us in
our goal of optimizing throughput. The full study is
described elsewhere.9

First, we categorized various generic functions com-
monly executed by TCP/IP (and UDP/IP) protocol
stacks: 

■ Checksum: the checksum computation for UDP
(user datagram protocol) and TCP

■ DataMove: any operations that involve moving
data from one memory location to another 

■ Mbuf: the message-buffering scheme used by
Berkeley UNIX-based network subsystems 

■ ProtSpec: all protocol-specific operations, such as
setting header fields and maintaining protocol state 

■ DataStruct: the manipulation of various data struc-
tures other than mbufs or those accounted for in
the ProtSpec category 

■ OpSys: operating system overhead 

■ ErrorChk: The category of checks for user and sys-
tem errors, such as parameter checking on socket
system calls 

■ Other: This final category of overhead includes all
the operations that are too small to measure. Its
time was computed by taking the difference
between the total processing time and the sum of
the times of all the other categories listed above. 

Other studies have shown some of these overheads
to be expensive.32–34

We measured the total amount of execution time
spent in the TCP/IP and UDP/IP protocol stacks as
implemented in the DEC ULTRIX version 4.2a kernel,
to send and receive IP packets of a wide range of sizes,
broken down according to the categories listed above.
All measurements were taken using a logic analyzer
attached to a DECstation 5000/200 workstation con-
nected to another similar workstation by an FDDI LAN
attached through a Digital DEFZA FDDI adapter. 

Figure 6 shows the per-packet processing times
versus packet size for the various overheads for UDP
packets. These are for a large range of packet sizes,
from 1 to 8,192 bytes. One can distinguish two differ-
ent types of overheads: those due to data-touching
operations (i.e., data move and checksum) and those
due to non–data-touching operations (all other cate-
gories). Data-touching overheads dominate the pro-
cessing time for large packets that typically contain
application data, whereas non–data-touching opera-
tions dominate the processing time for small packets
that typically contain control information. Generally,
data-touching overhead times scale linearly with
packet size, whereas non–data-touching overhead
times are comparatively constant. Thus, data-touching
overheads present the major limitations to achieving
maximum throughput. 

Data-touching operations, which do identical work
in the TCP and UDP software, also dominate process-
ing times for large TCP packets.9

Minimizing the Checksum Overhead 
As can be seen in Figure 6, the largest bottleneck to
achieving maximum throughput (i.e., which one
achieves by sending large packets) is the checksum
computation. We applied two optimizations to mini-
mize this overhead: improving the implementation of
the checksum computation, and avoiding the check-
sum altogether in a special but common case where we
felt we were not compromising data integrity. 

We improved the checksum computation imple-
mentation by applying some fairly standard tech-
niques: operating on 32-bit rather than 16-bit words,
loop unrolling, and reordering of instructions to
maximize pipelining. With these modifications, we

92 Digital Technical Journal Vol. 7 No. 3 1995



reduced the checksum computation time by more
than a factor of two. Figure 7 shows that the overall
throughput improvement is 37 percent. The through-
put measurements were made between two
DECstation 5000/200 systems communicating over
an FDDI network. Overall throughput is still a frac-
tion of the maximum FDDI network bandwidth 
(100 Mb/s) because of data-copying overheads and

machine-speed limitations. See Reference 6 for
detailed results. 

A very easy way of significantly raising TCP and
UDP throughput is to simply avoid computing check-
sums; in fact, many systems provide options to do just
this. The Internet checksum, however, exists for a
good reason: packets are occasionally corrupted
during transmission, and the checksum is needed to
detect corrupted data. In fact, the Internet Engineer-
ing Task Force (IETF) recommends that systems not
be shipped with checksumming disabled by default.35

Ethernet and FDDI networks, however, implement
their own cyclic redundancy checksum (CRC). Thus,
packets sent directly over an Ethernet or FDDI net-
work are already protected from data corruption, at
least at the level provided by the CRC. One can argue
that for LAN communication, the Internet checksum
computation does not significantly add to the machin-
ery for error detection already provided in hardware. 

Thus, our second optimization was simply to elimi-
nate the software checksum computation altogether
when computing the checksum would make little
difference. Consequently, as part of the implementa-
tion of the protocol, when the source and destina-
tion are determined to be on the same LAN, the soft-
ware checksum computation is avoided. Figure 7
shows the resulting 74 percent improvement in
throughput over the unmodified ULTRIX version
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4.2a operating system, and a 27 percent improvement
over the implementation with the optimized check-
sum computation algorithm. 

Of course, one must be very careful about deciding
when the Internet checksum is of minimal value. We
believe it is reasonable to turn off checksums when
crossing a single network that implements its own
CRC, especially when one considers the performance
benefits of doing so. In addition, since the destinations
of most TCP and UDP packets are within the same
LAN on which they are sent, this policy eliminates the
software checksum computation for most packets. 

Our checksum elimination policy differs somewhat
from traditional TCP/IP design in one aspect of pro-
tection against corruption. In addition to the protec-
tion between network interfaces given by the Ethernet
and FDDI checksums, we require a software checksum
in host memory as a protection from errors in data
transfer over the I/O bus. For common devices such
as disks, however, data transfers over the I/O bus are
routinely assumed to be correct and are not checked in
software. Therefore, a reduction in protection against
I/O bus transfer errors for network devices does not
seem unreasonable. 

Turning off the Internet checksum protection in
any wider area context seems unwise without consid-
erable justification. Not all networks are protected by
CRCs, and it is difficult to see how one might check
that an entire routed path is protected by CRCs with-
out undue complications involving IP extensions. 
A more fundamental problem is that network CRCs
protect a packet only between network interfaces;
errors may arise while a packet is in a gateway machine.
Although such corruption is unlikely for a single
machine, the chance of data corruption occurring
increases exponentially with the number of gateways 
a packet crosses. 

Summary and Conclusions

We described various solutions to achieving high per-
formance in operating system I/O and network soft-
ware, with a particular emphasis on throughput. Two of
the solutions, container shipping and peer-to-peer I/O,
focused on changes in the I/O system software struc-
ture to avoid data copying and other overheads. The
third solution focused on the avoidance of additional
data-touching overheads in TCP/IP network software. 

Container shipping is a kernel service that provides
I/O operations for user processes. High performance
is obtained by eliminating the in-memory data copies
traditionally associated with I/O, without sacrificing
safety or relying on devices with special-purpose func-
tionality. Further gains are achieved by permitting the
selective accessing (mapping) of data. We measured

performance improvements over UNIX of 40 percent
(network I/O) to 700 percent (socket IPC). 

PPIO is based on the hypothesis that the memory-
oriented model of I/O present in most operating sys-
tems presents a bottleneck that adversely affects overall
performance. PPIO decouples user-process execution
from interdevice dataflow and can achieve improve-
ments in both latency and throughput over conven-
tional systems by a factor of 2 to 3. 

Finally, we considered the special case of network
I/O where data moving/copying is not the only major
overhead. We showed that the checksum computation
is a major source of TCP/IP network processing over-
head. We improved performance by optimizing the
checksum computation algorithm and eliminating 
the checksum computation when communicating over
a single LAN that supports its own CRC, improving
throughput by 37 percent to 74 percent for UDP/IP. 
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