Technical Description of
the DECsafe Available
Server Environment

The DECsafe Available Server Environment (ASE)
was designed to satisfy the high-availability
requirements of mission-critical applications
running on the Digital UNIX operating system.
By supplying failure detection and failover
procedures for redundant hardware and soft-
ware subsystems, ASE provides services that
can tolerate a single point of failure. In addition,
ASE supports standard SCSI hardware in shared
storage configurations. ASE uses several mecha-
nisms to maintain continuous operation and to
prevent data corruption resulting from network
partitions.

Lawrence S. Cohen
John H. Williams

The advent of shared storage interconnect support
such as the small computer system interface (SCSI) in
the Digital UNIX operating system provided the
opportunity to make existing disk-based services more
available. Since high availability is an important feature
to mission-critical applications such as database and file
system servers, we started to explore high-availability
solutions for the UNIX operating system environ-
ment. The outcome of this effort is the DECsafe
Available Server Environment (ASE), an integrated
organization of computer systems and external disks
connected to one or more shared SCSI buses.

In the first section of this paper, we review the many
product requirements that needed to be explored. We
then define the ASE concepts. In the next section, we
discuss the design of the ASE components. In subse-
quent sections, we describe some of the issues that
needed to be overcome during the product’s design
and development: relocating client-server applications,
event monitoring and notification, network partition-
ing, and management of available services. Further, we
explain how ASE deals with problems concerning mul-
tihost SCSI; the cross-organizational logistical issues of
developing specialized SCSI hardware and firmware
features on high-volume, low-priced standard com-
modity hardware; and modifications to the Network
File System (NFS) to be both highly available and back-
ward compatible.!

Requirements of High-availability Software

The availability concept is simple. If two hosts can
access the same data and one host fails, the other host
should be able to access the data, thus making the
applications that use the data more available. This
notion of loosely connecting hosts on a shared storage
interconnect is called high availability. High availability
lies in the middle of the spectrum of availability solu-
tions, somewhere between expensive fault-tolerant sys-
tems and a well-managed, relatively inexpensive, single
computer system.’

By eliminating hardware single points of failure, the
environment becomes more available. The goal of the

Digital Technical Journal Vol.7 No.4 1995

89

90

ASE project was to achieve a product that could be
configured for no single point of failure with respect to
the availability of services. Thus we designed ASE
to detect and dynamically reconfigure around host,
storage device, and network failures.

Many requirements influenced the ASE design. The
most overriding requirement was to eliminate the pos-
sibility for data corruption. Existing single-system
applications implicitly assumed that no other instance
was running on another node that could also access
the same data. If concurrent access did happen, the
data would likely be corrupted. Therefore the preemi-
nent challenge for ASE was to ensure that the applica-
tion was run only once on only one node.

Another requirement of ASE was to use industry-
standard storage and interconnects to perform its
function. This essentially meant the use of SCSI
storage components, and this did pose some chal-
lenges for the project. In a later section, we discuss the
challenge of ensuring data integrity in a multihosted
SCSI environment. Also, the limitation of eight SCSI
devices per SCSI storage bus confined the scaling
potential of ASE to relatively small environments of
two to four nodes.

Less obvious requirements affected the design. ASE
would be a layered product with minimal impact on
the base operating system. This decision was made for
maintainability reasons. This is not to say we did not
make changes to the base operating system to support
ASE; however, we made changes only when necessary.

ASE was required to support multiple service types
(applications). Originally, it was proposed that ASE sup-
port only the Network File System (NES), as does the
HANTFS product from International Business Machines
Corporation.* Customers, however, required support
for other, primarily database applications as well. As a
result, the ASE design had to evolve to be more general
with respect to application availability support.

ASE was also required to allow multiple service
types to run concurrently on all nodes. Other high-
availability products, e.g., Digital’s DECsafe Failover
and Hewlett-Packard’s SwitchOver UX, are “hot-
standby” solutions. They require customers to pur-
chase additional systems that could be idle during
normal operation. We felt it was important to allow all
members of the ASE to run highly available applications
as well as the traditional, hot-standby configuration.

The remaining requirement was time to mar-
ket. IBM’s HA/6000 and Sun Microsystems’
SPARCclusterl products were in the market, offering
cluster-like high availability. We wanted to bring out
ASE quickly and to follow with a true UNIX cluster
product.

One last note for readers who might try to compare
ASE with the VMScluster, a fully functional cluster
product. ASE addresses the availability of single-

Digital Technical Journal Vol.7 No.4 1995

threaded applications that require access to storage.
For example, it does not address parallel applica-
tions that might need a distributed lock manager
and concurrent access to data. Another effort was
started to address the requirements of clusters in the
UNIX environment.*

ASE Concepts

To understand the description of the ASE design, the
reader needs to be familiar with certain availability
concepts and terms. In this section, we define the ASE
concepts.

Storage Availability Domain

A storage availability domain (SAD) is the collection of
nodes that can access common or shared storage
devices in an ASE. Figure 1 shows an example of a
SAD. The SAD also includes the hardware that con-
nects the nodes such as network devices and the stor-
age interconnects. The network device can be any
standard network interface that supports broadcast.
This usually implies either Ethernet or a fiber distrib-
uted data interface (FDDI). Although the SAD may
include many networks, only one is used for commu-
nicating the ASE protocols in the version 1.0 product.
To remove this single point of failure, future versions
of ASE will allow for communication over multiple
networks. Other networks can be used by clients to
access ASE services. The storage interconnect is either
a single-ended or a fast, wide-differential SCSI. The
shared devices are SCSI disks or SCSI storage products
like HSZ40 controllers.

Symmetric versus Asymmetric SADs

There are many ways a SAD may be configured
with respect to nodes and storage. In a symmetric
configuration (see Figure 1), all nodes are connected

CLIENT CLIENT

NETWORK

SERVER 1
TT SHARED SCSI BUS TT

0 O

STORAGE STORAGE

SERVER 2

Figure 1
Simple Available Server Environment

to all storage. An asymmetric configuration exists
when all nodes are not connected to all the storage
devices. Figure 2 shows an asymmetric configuration.

The use of asymmetric configurations improves
performance and increases scalability. Performance is
better because fewer nodes share the same bus and
have less opportunity to saturate a bus with1/0. Scal-
ability is greater because an asymmetric configuration
allows for more storage capacity. On the other hand,
asymmetric configurations add significant implemen-
tation issues that are not present with symmetric
configurations. Symmetric configurations allow for
simplifying assumptions in device naming, detecting
network partitions, and preventing data corruption.
By assuming fully connected configurations, we were
able to simplify the ASE design and increase the
software’s reliability. For these reasons, we chose to
support only symmetric configurations in version 1.0
of ASE.

Service

We use the term service to describe the program
(or programs) that is made highly available. The
service model provides network access to shared
storage through its own client-server protocols.
Examples of ASE services are NFS and the ORACLE7
database. Usually, a set of programs or processing
steps needs to be executed sequentially to start up
or stop the service. If any of the steps cannot be exe-
cuted successfully, the service either cannot be pro-
vided or cannot be stopped. Obviously, if the shared
storage is not accessible, the service cannot begin.
ASE provides a general infrastructure for specifying
the processing steps and the storage dependencies of
cach service.

CLIENT CLIENT CLIENT
NETWORK
SERVER 1 SERVER 2 SERVER 3 SERVER 4

SHARED SCSI SHARED SCSI
BUS 1 BUS 2

STORAGE 1 STORAGE 2

Figure 2
Asymmetric Configuration of ASE

Events and Failure Modes

ASE monitors its hardware and software to determine
the status of the environment. A change in status is
reported as an event notification to the ASE software.
Examples of events include a host failure and recovery,
a failed network or disk device, or a command from
the ASE management utility.

Service Failover

The ASE software responds to events by relocating
services from one node to another. A relocation due to
a hardware failure is referred to as service failover.
There are reasons other than failures to relocate a ser-
vice. For example, a system manager may relocate a
service for load-balancing reasons or may bring down
a node to perform maintenance.

Service Relocation Policy

Whenever a service must be relocated, ASE uses con-
figurable policies to determine which node is best
suited to run the service. The policy is a function of the
event and the installed system-management prefer-
ences for each service. For example, a service must be
relocated if the node on which it is running goes down
or if a SCSI cable is disconnected. The system manager
may specify the node to which the service should be
relocated. Preferences can also be provided for node
recovery behavior. For example, the system manager
can specify that a service always returns to a specified
node if that node is up. For services that take a long
time to start up, the system manager may specify that a
service relocate only if its node should fail. Additional
service policy choices are built into ASE.

Centralized versus Distributed Control

The ASE software is a collection of daemons (user-level
independent processes run in the background) and
kernel code that run on all nodes in a SAD. When we
were designing the service relocation policy, we could
have chosen a distributed design in which the software
on each node participated in determining where a ser-
vice was located. Instead, we chose a centralized design
in which only one of the members was responsible for
implementing the policy. We preferred a simple design
since there was little benefit and much risk to develop-
ing a set of complex distributed algorithms.

Detectable Network Partition versus

Undetectable Full Partition

A detectable network partition occurs when two or
more nodes cannot communicate over their networks
but can still access the shared storage. This condition
could lead to data corruption if every node reported
that all other nodes were down. Each node could
try to acquire the service. The service could run

Digital Technical Journal Vol.7 No.4 1995

91

92

concurrently on multiple nodes and possibly corrupt
the shared storage. ASE uses several mechanisms to
prevent data corruption resulting from network parti-
tions. First, it relies on the ability to communicate sta-
tus over the SCSI bus. In this way, it can detect
network partitions and prevent multiple instances of
the service. When communication cannot occur over
the SCSI bus, ASE relies on the disjoint electrical con-
nectivity property of the SCSI bus. That is, if Server 1
and Server 2 cannot contact each other on the SCSI
bus, it is impossible for both servers to access the same
storage on that bus.

As a safeguard to this assumption, ASE also applies
device reservations (hard locks) on the disks. The hard
lock is an extreme failsafe mechanism that should
rarely (if ever) be needed. As a result, ASE is able to
adopt a nonquorum approach to network partition
handling. In essence, if an application can access the
storage it needs to run, it is allowed to run. Quorum
approaches require a percentage (usually more than
half) of the nodes to be available for proper operation.
For two-node configurations, a tiebreaker would be
required: if one node failed, the other could continue
to operate. In the OpenVMS system, for example, a
disk is used as a tiebreaker. We chose the nonquorum
approach for ASE because it provides a higher degree
of availability.

Although extremely unlikely to occur, there is one
situation in which data could become corrupted: a full
partition could occur during shadowed storage.
Shadowing transparently replicates data on one or
more disk storage devices. In a full partition, two nodes
cannot communicate via a network, and the SCSI buses
are disconnected in a way that the first node sees one
set of disks and the second node sees another set.
Figure 3 shows an undetectable full partition.

Even though this scenario does not allow for com-
mon access to disks, it is possible that storage that is
replicated or shadowed across two disks and buses
could be corrupted. Each node believes the other is
down because there is no communication path. If one
node has access to half of the shadowed disk set and
the other node has access to the other half, the service
may be run on both nodes. The shadowed set would
become out of sync, causing data corruption when its
halves were merged back together. Because the poss-
ibility of getting three faults of this nature is infinite-
simal, we provide an optional policy for running a
service when less than a full shadowed set is available.

Service Management

ASE service management provides three functions:
service setup, SAD monitoring, and service relocation.
The management program assists in the creation of
services by prompting for information such as the type

Digital Technical Journal Vol.7 No.4 1995

CLIENT CLIENT
NETWORK |
>
SERVER 1 SERVER 2
2 {TSHARED scsl > 17
BUS1 ———ccommmmomoo . TT
1 1
1 1
1 1
1 I
1 1
SHARED SCSI | !
BUS » ! STORAGE !
T T
1 1
1 1
1 I
1 1
: STORAGE '
1 1
1 1

1 SHADOWED DISK SET

Figure 3
Full Partition

of service, the disks and file systems that are required,
and shadowing requirements. ASE gathers the require-
ments and creates the command sequences that will
start the service. It thus integrates complex subsystems
such as the local file systems, logical storage manage-
ment (LSM), and NFS into a single service.

ASE version 1.0 supports three service types: user,
disk, and NFS. A wuser service requires no disks and
simply allows a user-supplied script to be executed
whenever a node goes up or down. The disk serviceis
a user service that also requires disk access, that is, disk
and file system information. The disk service, for
example, would be used for the creation of a highly
available database. The NFS serviceis a specialized ver-
sion of the disk service; it prompts for the additional
information that is germane to NFS, for example,
export information.

The monitoring feature provides the status of a ser-
vice, indicating whether the service is running or not
and where. It also provides the status of each node.

The service location feature allows system managers
to move services manually by simply specifying the
new location.

Software Mirroring

Software mirroring (shadowing) is a mechanism to
replicate data across two or more disks. If one disk
fails, the data is available on another disk. ASE relies on
Digital’s LSM product to provide this feature.

ASE Component Design

The ASE product components perform distinct
operations that correspond to one of the following
categories:

1. Configuring the availability environment and
services

2. Monitoring the status of the

environment

availability

3. Controlling and synchronizing service relocation

4. Controlling and performing single-system ASE
management operations

5. Logging events for the availability environment

The configuration of ASE is divided into the instal-
lation and ongoing configuration tasks. The ASE
installation process ensures that all the members are
running ASE-compliant kernels and the required dae-
mons (independent processes) for monitoring the
environment and performing single-system ASE oper-
ations. Figure 4 illustrates these components. The
shared networks and distributed time services must
also be configured on each member to guarantee con-
nectivity and synchronized time. The most current
ASE configuration information is determined from
time stamps. Configuration information that uses time
stamps does not change often or frequently and is pro-
tected by a distributed lock.

The ASE configuration begins by running the ASE
administrative command (ASEMGR) to establish the
membership list. All the participating hosts and

daemons must be available and operational to complete
this task successfully. ASE remains in the install state
until the membership list has been successfully pro-
cessed. As part of the ASE membership processing, an
ASE configuration database (ASECDB) is created, and
the ASE member with the highest Internet Protocol
(IP) address on the primary network is designated to
run the ASE director daemon (ASEDIRECTOR). The
ASE director provides distributed control across the
ASE members. Once an ASE director is running, the
ASEMGR command is used to configure and control
individual services on the ASE members. The ASE agent
daemon (ASEAGENT) is responsible for performing all
the single-system ASE operations required to manage
the ASE and related services. This local system manage-
ment is usually accomplished by executing scripts in a
specific order to control the start, stop, add, delete, or
check of a service or set of services.

The ASE director is responsible for controlling and
synchronizing the ASE and the available services
dependent on the ASE. All distributed decisions are
made by the ASE director. It is necessary that only one
ASE director be running and controlling an ASE to
provide a centralized point of control across the ASE.
The ASE director provides the distributed orchestra-
tion of service operations to effect the desired recov-
ery or load-balancing scenarios. The ASE director
controls the availability services by issuing sets of ser-
vice actions to the ASE agents running on each mem-
ber. The ASE director implements all failover strategy
and control.

ETHERNET

ASE
MANAGEMENT
UTILITY

ACTION ACTION

LOGGER
DAEMON

ASE
DIRECTOR

ACTION ACTION

PROGRAMS PROGRAMS PROGRAMS PROGRAMS
ASE HOST ASE HOST ASE HOST ASE HOST
AeE || sTATus Aol || sTaTus roenT || sTaTus AeEr || sTaTus

MONITOR MONITOR MONITOR MONITOR
Frmmmm————— e ————— g pup—— I g pup—— e ppuupp——— I
\ 1 1 1 1
[AVAILABILITY L AVAILABILITY L AVAILABILITY L AVAILABILITY !
: MANAGER) MANAGER 0 MANAGER o MANAGER |
1 1 1 H |

SCsi

Figure 4
ASE Component Configuration

Digital Technical Journal Vol.7 No.4 1995

93

The ASE agent and the ASE director work as a team,
reacting to component faults and performing failure
recovery for services. The ASE events are generated by
the ASE host status monitor and the availability man-
ager (AM), a kernel subsystem. The ASE agents use
the AM to detect device failures that pertain to ASE
services. When a device failure is detected, the AM
informs the ASE agent of the problem. The ASE agent
then reports the problem to the ASE director if the
failure results in service stoppage. For example, if the
failed disk is part of an LSM mirrored set, the service is
not affected by a single disk failure.

The ASE host status monitor sends host- or member-
state change events to the ASE director. The ASE host
status monitor uses both the networks and shared
storage buses, SCSI buses, configured between the
ASE members to determine the state of each member.
This monitor uses the AM to provide periodic SCSI
bus messaging through SCSI target-mode technology
to hosts on the shared SCSI bus.

The ASE agent also uses the AM to provide device
reservation control and device events. The ASE host
status monitor repeatedly sends short messages, pings,
to all other members and awaits a reply. If no reply is
received within a prescribed time-out, the monitor
moves to another interconnect until all paths have
been exhausted without receiving a reply. If no reply
on the shared network or any shared SCSI is received,
the monitor presumes that the member is down and
reports this to the ASE director. If any of the pings is
successful and the member was previously down, the
monitor reports that the member replying is up. If the
only successful pings are SCSI-based, the ASE host sta-
tus monitor reports that the members are experienc-
ing a network partition. During a network partition,

the ASE configuration and current service locations
are frozen until the partition is resolved.

All ASE operations performed across the members
use a common distributed logging facility. The logger
daemon has the ability to generate multiple logs on
each ASE member. The administrator uses the log to
determine more detail about a particular service
failover or configuration problem.

ASE Static and Dynamic States

As with most distributed applications, the ASE prod-
uct must control and distribute state across a set of
processes that can span several systems. This state takes
two forms: static and dynamic. The static state is dis-
tributed in the ASE configuration database. This state
is used to provide service availability configuration
information and the ASE system membership list.
Although most changes to the ASE configuration data-
base are gathered through the ASE administrative com-
mand, all changes to the database are passed through a
single point of control and distribution, the ASE direc-
tor. The dynamic state includes changes in status of the
base availability environment components and services.
The state of a particular service, where and whether it is
running, is also dynamic state that is held and con-
trolled by the ASE director. Figure 5 depicts the flow of
control through the ASE components.

ASE Director Creation

The ASE agents are responsible for controlling the
placement and execution of the ASE director.
Whenever an ASE member boots, it starts up the ASE
agent to determine whether an ASE director needs
to be started. This determination is based on whether
an ASE director is already running on some member.

ASE
‘:’ ———=] MANAGEMENT
/ ! UTILITY
USER msgs — 1
REQUEST
ASE msgs exec ACTION exec SYSTEM
DIRECTOR ASE AGENT 1 PrRoOGRAMS | L PROGRAMS | U
msgs l.: I':
ASE HOST exec ACTION exec SYSTEM
STATUS ASE AGENT
TONTOR PROGRAMS H PROGRAMS |
select [— [—
|I| Scsl /o AVAILABILITY exec [
ACTION exec SYSTEM
o 22— ?&?A’\)‘AGER ASE AGENT PROGRAMS | PROGRAMS |
HARDWARE
FAILURE
Figure 5
ASE Control Flow

Digital Technical Journal Vol.7 No.4 1995

If no ASE director is running and the ASE host status
monitor is reporting that no other members are up,
the ASE agent forks and executes the ASE director.
Due to intermittent failures and the parallel initiali-
zation of members, an ASE configuration could find
two ASE directors running on two different systems.
As soon as the second director is discovered, the
younger director is killed by the ASE agent on that sys-
tem. The IP address of the primary network is used to
determine which member should start a director when
none is running.

ASE Director Design

The ASE director consists of four major components:
the event manager, the strategist, the environment data
manager, and the event controller. Figure 6 shows the
relationship of the components of the ASE director.

The event manager component handles all incom-
ing events and determines which subcomponent
should service the event. The strategist component
processes the event if it results in service relocation.
The strategist creates an action plan to relocate the ser-
vice. An action plan is a set of command lists designed
to try all possible choices for processing the event. For
example, if the event is to start a particular service, the
generated plan orders the start attempts from the most
desired member to the least desired member accord-
ing to the service policy.

The environment data manager component is
responsible for maintaining the current state of the
ASE. The strategist will view the current state before
creating an action plan. The event controller compo-
nent oversees the execution of the action plan. Each of
the command lists within the action plan is processed
in parallel, whereas each command within a command
list is processed serially. Functionally, this means that
services can be started in parallel, and each service
start-up can consist of a set of serially executed steps.

ASE Agent Design

The ASE agent is composed of the environment man-
ager, the service manager, a second availability
manager (AVMAN), and the configuration database
manager. Figure 7 shows the ASE agent components.

All the ASE agent components use the message
library as a common socket communications layer that
allows the mixture of many outstanding requests and
replies across several sockets. The environment man-
ager component is responsible for the maintenance
and initialization of the communications channels
used by the ASE agent and the start-up of the ASE host
status monitor and the ASE director. The environment
manager is also responsible for handling all host-status
events. For example, if the ASE host status monitor
reports that the local node has lost connection to
the network, the environment manager issues stop ser-
vice actions on all services currently being served by
the local node. This forced stop policy is based on the
assumption that the services are being provided to
clients on the network. A network that is down implies
that no services are being provided; therefore, the
service will be relocated to a member with healthy
network connections.

If the ASE agent cannot make a connection to the
ASE host status monitor during its initialization,
the ASE host status monitor is started. The start-up
of the ASE director is more complex because the ASE
agent must ensure that only one ASE director is run-
ning in the ASE. This is accomplished by first obtain-
ing the status of all the running ASE members. After
the member status is commonly known across all ASE
agents, the member with the highest IP address on the
primary network is chosen to start up the ASE direc-
tor. If two ASE directors are started, they must both
make connections to all ASE agents in the ASE. In
those rare cases when an ASE agent discovers two
directors attempting to make connections, it will send

EVENT -
MANAGER STRATEGIST
A
1
/ 1
REQUESTS,_| \
MESSAGE - ENVIRONMENT
REPLIES LIBRARY R DATA MANAGER
-]
I
1
1
Y
EVENT
CONTROLLER

Figure 6
ASE Director

Digital Technical Journal Vol.7 No.4 1995

95

96

MEMBER

MAINTENANCE INITIALIZATION
REQUESTS
MESSAGE
REPLIES LIBRARY

ENVIRONMENT REPLIES
MANAGER
)
B AVAILABILITY
1 ---->| MANAGER |
oIooIIid (AVMAN)
REQUESTS
—————— 11 CONFIGURATION
| '-——->| DATABASE —
¥ MANAGER
SERVICE
MANAGER
| REPLIES

Figure 7
ASE Agent

an exit request to the younger director, the one with
the newer start time.

The service manager component is responsible for
performing operations on ASE services. The service
manager performs operations that use specific ser-
vice action programs or that determine and report sta-
tus on services and their respective devices. The service
actions are forked and executed as separate processes,
children of the agent. This allows the ASE agent to
continue handling other parallel actions or requests.
The ASE agent is aware of only the general stop, start,
add, delete, query, or check nature of the action. It is
not aware of the specific application details required to
implement these base availability functions. A more
detailed description of the ASE service interfaces can
be found in the section ASE Service Definition. When
the service manager executes a stop or start service
action that has device dependencies, the ASE agent
provides the associated device reserves or unreserves
to gain or release access to the device. Services and
devices must be configured such that one device may
be associated with only one service. A device may not
belong to more than one service.

The agents’ availability manager (AVMAN) compo-
nent is called by the service manager to process
a reserve or unreserve of a particular device for a ser-
vice stop or start action. The AVMAN uses ioctl() calls
to the AM to reserve the device, to invoke SCSI device
pinging, and to register or unregister for the following
AM events:

1. Device path failure—an I/O attempt failed on
a reserved device due to a connectivity failure or
bad device.

2. Device reservation failure—an I/0 attempt failed
on a reserve device because another node had
reserved it.

Digital Technical Journal Vol.7 No.4 1995

3. Reservation reset—the SCSI reservation was lost
on a particular device due to a bus reset.

A reservation reset occurs periodically as members
reboot and join the ASE. The ASE agent reacts by
rereserving the device and thereby continuing to pro-
vide the service. If the reservation reset persists, the
ASE agent informs the ASE director. If a device path
failure occurs, the ASE agent informs the ASE director
of the device path failure so that another member can
access the device and resume the service. The device
reservation failure can occur only if another member
has taken the reservation. This signifies to the ASE
agent that an ASE director has decided to run this ser-
vice on another member without first stopping it here.

The configuration database manager component
handles requests that access the ASE configuration
database. Working through the configuration database
manager component, the ASE agent provides all access
to the ASE configuration database for all other com-
ponents of the ASE.

ASE Availability Manager Design

The availability manager (AM) is a kernel component
of ASE that is responsible for providing SCSI device
control and SCSI host pinging with target mode. The
AM provides SCSI host pinging to the ASE host status
monitor daemon through a set of ioctl() calls to the
“/dev/am_host*” devices. As has been mentioned,
the AM provides SCSI device control for pings and
event notification to the ASE agent through ioctl()
calls to the “/dev/ase” device. All ASE SCSI device
controls for services and SCSI host pinging assume
that all members are symmetrically configured with
respect to SCSI storage bus addressing.

ASE Host Status Monitor Design

The ASE host status monitor (ASEHSM) component
is responsible for sensing the status of members and
interconnects used to communicate between members.
As previously mentioned, this monitor is designed to
provide periodic pinging of all network and SCSI
interconnects that are symmetrically configured
between ASE members. The ping rate is highest, 1 to 3
seconds per ping, on the first configured ASE network
and SCSI bus. All other shared interconnects are
pinged at a progressively slower rate to decrease the
overhead while still providing some interconnectivity
state. The ASE host status monitor provides member-
state change events to both the ASE agent and the ASE
director. The ASE agent initializes and updates the
monitor when members are added or deleted from the
ASE configuration database. The ASE host status
monitor is designed to be flexible to new types of net-
works and storage buses as well as extensible to
increased numbers of shared interconnects.

ASE Service Definition

ASE has provided an interface framework for available
applications. This framework defines the availability
configuration and failover processing stages to which
an application must conform. The application inter-
faces consist of scripts that are used to start, stop, add,
delete, query, check, and modify the particular service.
Each script has the ability to order or stack a set of
dependent scripts to suit a multilayered application.
The NFS Service Failover section in this paper pro-
vides an example of a multilayered service that ASE
supports “out of the box.” ASE assumes that a service
can be in one of the following states:

1. Nonexistent—not configured to run
2. Off-line—not to be run but configured to run
3. Unassigned—stopped and configured to run

4. Running—running on a member

At initialization, the ASE director presumes all con-
figured services should be started except those in the
off-line state. Whenever a new member joins the ASE,
the add service action script is used to ensure that the
new member has been configured to have the ability
to run the service. The delete service script is used to
remove the ability to run the service. The delete scripts
are run whenever a service or member is deleted. The
start service script is used to start the service on a par-
ticular member. The stop service is used to stop a ser-
vice on a particular member. The check script is used
to determine if a service is running on a particular
member. The query script is used to determine if a par-
ticular device failure is sufficient to warrant failover.

ASE strives to keep a service in a known state. Con-
sequently, if a start action script fails, ASE presumes

that executing the stop action will return the service to
an unassigned state. Likewise, if an add action fails, a
delete action will return the service to a nonexistent
state. If any action fails in the processing of an action
list, the entire request has failed and is reported as such
to the ASE director and in the log. For more details
on ASE service action scripts, see the Guide to the
DECsafe Available Server?

NFS Service Failover

In this section, we present a walk-through of an NFS
service failover. We presume that the reader is familiar
with the workings of NFS.! The NFS service exports a
file system that is remotely mounted by clients and
locally mounted by the member that is providing the
service. Other ASE members may also remotely
mount the NFS file system to provide common access
across all ASE members.

For this example, assume that we have set up anNFES
service that is exporting a UNIX file system (UFES)
named /foo_nfs. The UES resides on an LSM disk
group that is mirroring across two volumes that span
four disks on two different SCSI buses. The NES ser-
vice is called foo_nfs and has been given its own IP
address, 16.140.128.122. All remote clients who want
to mount /foo_nfs will access the server using the
service name foo_nfs and associated IP address
16.140.128.122. This network address information
was distributed to the clients through the Berkeley
Internet Name Domain (BIND) service or the net-
work information service (NIS). If several NFS mount
points are commonly used by all clients, they can be
grouped into one service to reduce the number of IP
addresses required. Although grouping directories
exported from NFS into a single service reduces the
management overhead, it also reduces flexibility for
load balancing.

Further, assume that the NES service foo_nfs has
four clients. Two of the clients are the members of the
ASE. The other two clients are non-Digital systems.
For simplicity, the Sun and HP clients reside on the
same network as the servers (but they need not). The
ASE NEFS service foo_nfs is currently running on the
ASE member named MUNCH. The other ASE mem-
ber is up and named ROLAIDS.

Enter our system administrator with his afternoon
Big Gulp Soda. He places the Big Gulp Soda on top of
MUNCH to free his hands for some serious console
typing. Oh! We forgot one small aspect of the sce-
nario. This ASE site is located in California. A small
tremor later, and MUNCH gets a good taste of the Big
Gulp Soda. Seconds later, MUNCH is very upset and
fails. The ASE host status monitor on ROLAIDS stops
receiving pings from MUNCH and declares MUNCH
to be down. If the ASE director had been running on

Digital Technical Journal Vol.7 No.4 1995

97

MUNCH, then a new director is started on ROLAIDS
to provide the much-needed relief. The ASE director
now running on ROLAIDS determines that the
foo_nfs service is not currently being served and issues
a start plan for the service. The start action is passed to
the local ASE agent since no other member is available.
The ASE agent first reserves the disks associated with
the foo_nfs service and runs the start action scripts.
The start action scripts must begin by setting up LSM
to address the mirrored disk group. The next action is
to have UFS check and mount the /foo_nfs file system
on the ASE hidden mount point /var/ase/mnt/
foo_nfs. The hidden mount point helps to ensure that
applications rarely access the mount point directly.
This safeguard prevents an unmounting, which would
stop the service. The next action scripts to be run are
related to NFS. The NFS exports files must be adjusted
to include the foo_nfs file system entry. This addition
to the exports files is accomplished by adding and
switching exports include files.

The action scripts then configure the service address
(ifconfig alias command), which results in a broadcast
of an Address Resolution Protocol (ARP) redirection
packet to all listening clients to redirect their IP
address mapping for 16.140.128.122 from MUNCH
to ROLAIDS.¢ After all the ARP and router tables have
been updated, the clients can resume communications
with ROLAIDS for service foo_nfs. This entire process
usually completes within ten seconds. The storage
recovery process often contributes the longest dura-

tion. Figure 8 summarizes the time-sequenced events
for an NFS service failover.

This scenario works because NFS is a stateless ser-
vice. The server keeps no state on the clients, and the
clients are willing to retry forever to regain access to
their NFS service. Through proper mounting opera-
tions, all writes are done synchronously to disk such
that a client will retry a write if it never receives a suc-
cessful response.

If ASE is used to fail over a service that requires
state, a mechanism has to be used to relocate the
required state in order to start the service. The ASE
product recommends that this state be written to file
systems synchronously in periodic checkpoints. In this
manner, the failover process could begin operation at
the last successful checkpoint at the time the state disk
area was mounted on the new system. If a more
dynamic failover is required, the services must syn-
chronize their state between members through some
type of network transactions. This type of synchro-
nization usually requires major changes to the design
of the application.

Implementation and Development

We solved many interesting and logistically difficult
issues during the development of the ASE product.
Some of them have been discussed, such as the asym-
metric versus symmetric SAD and distributed versus
centralized policy. Others are mentioned in this section.

SUN CLIENT ,// *\\ HP CLIENT
-7 e
,/ To — Initially, MUNCH serves NFS service foo_nfs. N
7/ T1 — NFS clients mount foo_nfs from MUNCH. AN
’ T, — MUNCH goes down. A
)/ T3 — ROLAIDS senses that MUNCH is down and begins \
I failover by acquiring the disk reservations for the \

foo_nfs service.

T4 — ROLAIDS broadcasts an ARP redirection for the IP

Ts — HP and SUN clients update their route tables to
reference ROLAIDS for foo_nfs.
\ Tg — Clients resume access to foo_nfs from ROLAIDS.

1
1
I
: address associated with foo_nfs.
\
\

/
L

COMMON NETWORKS
ASE SERVER MUNCH

SHARED SCSI BUSES

COMMON NETWORKS
ASE SERVER ROLAIDS

SHARED SCSI BUSES

188]
[

Figure 8

Time-sequenced Events for NES Failover

Digital Technical Journal

Vol.7 No.4 1995

The SCSI Standard and High-availability Requirements
The SCSI standard provides two levels of require-
ments: mandatory and optional. The ASE require-
ments fall into the optional domain and are not
normally implemented in SCSI controllers. In particu-
lar, ASE requires that two or more initiators (host SCSI
controllers) coexist on the same SCSI bus. This feature
allows for common access to shared storage. Normally,
there is only one host per SCSI, so very little testing is
done to ensure the electrical integrity of the bus when
more than one host resides. Furthermore, to make the
hosts uniquely addressable, we needed to assign SCSI
IDs and not hardwire them. Lastly, to support its host-
sensing needs, ASE requires that SCSI controllers
respond to commands from another controller. This
SCSI feature is called target-mode operation.

In addition to meeting the basic functional SCSI
requirements, we had to deal with testing and qualifi-
cation issues. When new or revised components were
used in ways for which they were not originally tested,
they could break; and invariably when a controller was
first inserted into an ASE environment, we found
problems. Additional qualifications were required for
the SCSI cables, disks, and optional SCSI equipment.
ASE required very specific hardware (and revisions of
that hardware); it would be difficult to support oft-
the-shelf components.

Note, however, when all was said and done, only
one piece of hardware, the Y cable, was invented for
ASE. The Y cable allows the SCSI termination to be
placed on the bus and not in the system. As a result, a
system can be removed without corrupting the bus.

The challenge for the project was to convince the
hardware groups within Digital that it was worth the
expense of all the above requirements and yet provide
cost-competitive controllers. Fortunately, we did; but
these issues are ongoing in the development of new
controllers and disks. Our investigation continues on
alternatives to the target mode design. We also need to
develop ways to reduce the qualification time and
expense, while improving the overall quality and avail-
ability of the hardware.

NFS Modifications to Support High Availability

The issues and design of NES failover could consume
this entire paper. We discuss only the prominent points
in this section.

NFS Client Notification

The first challenge we faced was to determine how to
tell NES clients which host was serving their files both
during the initial mount and after a service relocation.
The ideal solution would have been to provide an IP
address that all nodes in the SAD could respond to. If

clients knew only one address, all NFS packets would
be sent to that address and we would never have to tell
the client the location had changed. The main prob-
lem with this solution is performance. Each node in
the SAD would receive all NES traftic destined for all
nodes. The system overhead for deciding whether to
drop or keep the packet is very high. Also the more
nodes and NFS services, the more likely it would be to
saturate individual nodes. Unfortunately, this solution
had to be rejected.

The next best solution, in our minds, is per service
IP addresses. Each NFS service is assigned an IP
address (not the real host address). Now each node in
the SAD could respond to its own address and to the
addresses assigned to the NFS services that it is run-
ning. The main issues with this approach are the fol-
lowing: (1) It could use many IP addresses and (2) Itis
more difficult to manage because of its many
addresses. However, there were no performance
trade-offs, and we could move services to locations in
a way that was transparent to the NFS clients.
Notifying the clients after a relocation turned out to
be easy because of a standard feature in the ARP that
we could access through the ifconfig alias command of
the Digital UNIX operating system.® Essentially, all
clients have a cache of translations for IP addresses
to physical addresses. The ARP feature, which we
referred to as ARP redirection, allows us to invalidate a
client-cached entry and replace it with a new one. The
ifconfig command indirectly generates an ARP redi-
rection message. As a result, the client NFS software
believes it is sending to the same address, but the net-
work layer is sending it to a different node.

Similar functionality could have been achieved by
requiring multiple network controllers connected to a
single network wire on the SAD nodes. This solution,
however, requires more expense in hardware and is
less flexible since there is only one address per board.
Essentially, the latter means the granularity of NFS ser-
vices would be much larger and could not be distrib-
uted among many SAD nodes without a great deal of
hardware.

NFS Duplicate Request Cache

The NFS duplicate request cache improves the perfor-
mance and correctness of an NFS server.” Although
the duplicate request cache is not preserved across
relocations, we did not view this as a significant prob-
lem because this cache is not preserved across reboots.

Other Modifications: Lock Daemons and mountd

We modified only two pieces of software related to
NES failover: the lock daemon and the mountd. We
wanted the lock daemon to distinguish the locks asso-
ciated with a specific service address so that only those

Digital Technical Journal Vol.7 No.4 1995

99

100 Digital Technical Journal

locks would be removed during a relocation. After the
service is relocated, we rely on the existing lock
reestablishment protocol. We modified the mountd
to support NFS loopback mounting on the SAD, so
that a file system could be accessed directly on the
SAD (as opposed to a remote client) and yet be relo-
cated transparently.

Future of ASE

Digital’s ASE product was designed to address a small,
symmetrically configured availability domain. The
implementation of the ASE product was constrained
by time, resources, and impact or change in the base
system. Consequently, the ASE product lacks extensi-
bility to larger asymmetric configurations and to more
complex application availability requirements, e.g.,
support of concurrent distributed applications. The
next-generation availability product must be designed
to be extensible to varying hardware configurations
and to be flexible to various application availability
requirements.

Acknowledgments

We thank the following people for contributing to this
document through their consultation and artwork:
Terry Linsey, Mark Longo, Sue Ries, Hai Huang, and
Wayne Cardoza.

References

1. Sun Microsystems, Inc., NFS Network File System
Protocol Specification, REC 1094 (Network Informa-
tion Center, SRI International, 1989).

2. J. Gray, “High Availability Computer Systems,” IEEE
Computer (September 1991).

3. A. Bhide, S. Morgan, and E. Elnozahy, “A Highly
Available Network File Server,” Conference Proceed-
ings from the Usenix Conference, Dallas, Tex.
(Winter 1991).

4. W. Cardoza, F. Glover, and W. Snaman, “Design of
the Digital UNIX Cluster System,” Digital Technical
Journal, forthcoming 1996.

5. Guide to the DECsafe Available Server (Maynard,
Mass.: Digital Equipment Corporation, 1995).

6. D. Plummer, Ethernet Address Resolution Protocol:
Or Conwverting Network Protocol Addresses to 48-bit
Ethernet Address for Transmission on Ethernet
Hardware, REC 0826 (Network Information Center,
SRI International, 1982).

7. C. Juszczak, “Improving the Performance and Cor-
rectness of an NFS Server,” Conference Proceedings
from the Usenix Conference, San Diego, Calif.
(Winter 1989).

Vol.7 No.4 1995

Biographies

Lawrence S. Cohen

Larry Cohen led the Available Server Environment
project. He is a principal software engineer in Digital’s
UNIX Engineering Group, where he is currently working
on Digital’s UNIX cluster products. Since joining Digital
in 1983, he has written network and terminal device drivers
and worked on the original ULTRIX port of BSD sockets
and the TCP/IP implementation from BSD UNIX. Larry
also participated in the implementation of Digital’s1/O
port architecture on ULTRIX and in the port of NES ver-
sion 2.0 to the DEC OSF/1 version of UNIX. Larry was
previously employed at Bell Labs, where he worked on the
UNIX to UNIX Copy Program (UUCP). He has a B.S. in
math (1976) and an M.S. in computer science (1981),
both from the University of Connecticut.

John H. Williams

John Williams is a principal software engineer in Digital’s
UNIX Engineering Group. John led the advanced devel-
opment efforts for the UNIX cluster product and was the
project leader for the DECsafe Available Server Environ-
ment version 1.1 and version 1.2. Before that, John designed
and implemented the security interface architecture for the
DEC OSE/1 operating system. Currently, John is respon-
sible for the UNIX cluster management features. John
received a B.S. in computer science from the Michigan
Technological University in 1978.

