Parasight: Debugging
and Analyzing Real-time
Applications under
Digital UNIX

Conventional UNIX debug and analysis tools,
with their static debugging model and low-
resolution-sampling profiling techniques, are
not effective in dealing with real-time applica-
tions. Encore Computer Corporation has devel-
oped Parasight, a set of debug and analysis
tools for real-time applications. The Parasight
tool set can debug running programs, debug
multiple programs, constantly monitor local
and global variables, and perform on-the-fly
execution analysis. Thus, Parasight provides
much improved debug and analysis capabilities,
which application developers can use on both
static and dynamic applications. Parasight can
be used on any of Digital’s Alpha platforms run-
ning under the Digital UNIX operating system.

Michael Palmer
Jeffrey M. Russo

Because of their time-critical nature, real-time applica-
tions do not respond well to the perturbations that
conventional UNIX debug and analysis tools cause.
For instance, the static debugging model of the dbx
debugger requires that a program be stopped before it
can be debugged. Also, execution analysis using the
profiling techniques of the prof profiler often provide
erroneous results for real-time applications because of
the low-resolution sampling employed.

This paper describes the critical aspects of debugging
real-time applications, the deficiencies found in con-
ventional UNIX tools, and the methodology Encore
Computer Corporation used to develop Parasight,
a set of easy-to-use graphical user interface tools that
debug and perform execution analysis on real-time
programs while they are running. Parasight can be
used on any of Digital’s Alpha platforms that operate
under the Digital UNIX operating system.

Real-time Applications

Real-time applications perform a wide variety of
functions, from flying state-of-the-art military aircraft
to controlling nuclear power plants. All real-time appli-
cations have one common denominator: They must
complete their calculations before a deadline expires.
Taking too long to calculate the correct answer can
have just as detrimental an effect as arriving at an incor-
rect answer; either result could cause an aircraft to crash
or a nuclear power plant to experience a meltdown.

Most real-time applications consist of one or more
programs that are scheduled to run in response to an
event. The triggering event is usually transmitted in the
form of an interrupt and can be generated randomly by
an external event or regularly by a interval timer run-
ning at a fixed rate, such as 60 times per second. Once
the interrupt is received, the application must perform
the allotted task before the next interrupt occurs.

The elements of a real-time application communi-
cate with each other dynamically; that is, the results of
the calculations of one element are used immediately
for the calculations of another element. Real-time
applications are often referred to as dynamic applica-
tions, since they react dynamically to changes in their

Digital Technical Journal Vol.7 No.4 1995

101

102

environment and often refer to elapsed time in their
calculations. In contrast, static applications have
results that rarely depend on changes in their environ-
ment or on elapsed time.

The Problems Associated with Debugging and
Analyzing Real-time Applications Using
Conventional UNIX Tools

Debugging a real-time application during execution,
debugging and analyzing multiple programs, con-
stantly monitoring variables, and analyzing program
execution are all activities that debug and analysis tools
have to deal with. This section discusses the capabili-
ties and limitations of conventional UNIX tools and
describes the features required of effective real-time
debug and analysis tools.

Running Programs

Debugging a static program typically involves control-
ling the execution flow and examining the values of
variables within the program. Stopping a real-time
program or even delaying it by single stepping, how-
ever, is usually not possible without adversely affecting
the application. Debugging real-time applications is
therefore limited to examining the values of program
variables while the program is still running.

Conventional UNIX debuggers are not able to
examine variables during program execution and
therefore cannot be employed on running real-time
applications. Consequently, these debuggers are useful
only in the early stages of real-time program develop-
ment, essentially while the program is still static.

The traditional methods of debugging real-time
applications involve placing all the critical data into
one or more global, shared memory regions. A data-
monitoring tool, usually written by the user, runs as
a normal UNIX process and attaches to the global
region. The tool can then be used to inspect and /or
change the values of the global variables. This tech-
nique is nonintrusive in that it does not affect the real-
time application programs in any way. Unfortunately,
the debugging is restricted to global data, and, unless
the programs are designed with this in mind, this
restriction can be a severe limitation. Modifying exist-
ing programs to change local data into global data for
debugging purposes can result in a whole new set of
problems in managing the separation of data.

An effective real-time debugging tool must be able
to attach to a running program without stopping it
and then be able to nonintrusively inspect and/or
change the global data.

Debugging and Analyzing Multiple Programs
Real-time applications typically consist of several pro-
grams working together. Invoking multiple copies of

Digital Technical Journal Vol.7 No.4 1995

the dbx debugger to debug each program individually
is cumbersome and precludes studying the interaction
between programs.

A real-time debugger must be able to work with
one or more programs at the same time, providing
the user with an integrated and cobesive debugging
environment.

Monitoring Variables

The one-shot variable evaluation capability of conven-
tional UNIX debuggers is of limited use for programs
that are running. These debugging tools provide the
user with only one previous value of a variable, not
necessarily the current value.

A real-time debugger must be able to constantly
monitor the values of global variables. The minimum
and maximum values that each variable attained
should optionally be available as a record of transient
conditions.

Execution Analysis (Profiling)
Since performance is important in real-time applica-
tions, program execution analysis is often needed to
locate areas of a program where the performance
could be improved. A real-time application may have
a strict execution order requirement, whereby one
routine must run prior to the execution of another
routine. This requirement may be accomplished easily
if the routines are in the same program; however, often
the routines are in different programs or are executing
on different CPUs in a symmetric multiprocessing
(SMP) environment.

The Digital UNIX profiling tools provide two kinds
of execution analysis:

1. PC sampling, which involves interrupting the
program periodically to record the value of the
program counter.

2. Block counting, which inserts profiling code at key
points in the program to count the number of times
each basic block of code executes. (A basic block
is a region of the program that can be entered only
at the beginning and exited only at the end.)

Both techniques involve the following basic steps:
1. Preprocess the program to produce the desired
profiling information.

2. Execute the program to produce a profiling data
file.

3. Postprocess the program with the profiling tools
to view the data collected.

The normal sampling period employed by the
PC-sampling method is based on the hard clock
(CLOCK_REALTIME) of the Digital UNIX operating
system. This method results in 1,024 samples being

taken per second, which provides a timing resolution
of 976 microseconds, or approximately 1 millisecond.

The routines that make up a real-time application
typically take from a few microseconds to several
milliseconds to execute. Attempting to measure the
execution time of routines that take less than 1 mil-
lisecond to execute with a clock resolution of 1 milli-
second can lead to erroneous results. A test on a
150-megahertz (MHz) Alpha 21064 CPU showed
that the prof tool, using the normal PC-sampling rate,
reported the execution time of a routine to be 4 milli-
seconds when the true execution time was 20 micro-
seconds. (The true execution time was measured using
the Parasight tool set.)

It is possible to increase the sampling rate using the
uprofile utility, but doing so also proportionally
increases the number of interrupts per second that the
system must handle. For instance, to obtain even
10-microsecond resolution would require the system to
handle 100,000 interrupts per second. This amount of
interrupt activity would rapidly swamp the system, leav-
ing little or no CPU time to execute the program being
instrumented. The PC-sampling method of execution
analysis is therefore not suitable for the short execution
times typical in real-time application routines.

The block-counting method, although capable of
high-resolution measurement, suffers from the inabil-
ity of the pixie utility to work with programs that
receive signals. Most real-time applications use signals
for program scheduling and are therefore disqualified
from using the block-counting method.

In addition to the problems just discussed, the tradi-
tional UNIX profiling tools are unsuitable for real-
time program execution analysis for the following
reasons:

= A program must be preprocessed for profiling
prior to execution. Adding or removing profil-
ing requires stopping, processing, and restarting
the program. This assumes that the problem area is
known before the application starts to run. If
a problem suddenly develops after an uninstru-
mented program has been running for 24 hours,
the user will have lost the opportunity to determine
which routine is causing the problem.

* A program must be profiled as a whole, unless
source code modifications are made to the program
to control the profiling. This can cause excessive
overhead, which real-time programs usually cannot
tolerate.

= The profiling results cannot be seen until the pro-
gram terminates, unless source code modifications
are made to the program to permit the results to
be dumped on command. The user needs to see
the results while the program is running and often
needs to repeat a test several times to get the

desired results. Stopping and restarting the applica-
tion once for each test could be laborious.

* Only the average and cumulative times for each
routine are available. That is, the individual execu-
tion times for each call to a routine are not avail-
able. This also precludes the examination of the
calling sequence.

* The results cannot be cross-correlated between
programs to provide information about the rela-
tive calling sequences between programs or across
processors.

A real-time execution analysis tool must operate
with sufficient resolution to measure the execution
time of a routine that may take 10 microseconds to
execute. The instrumentation should be dynamically
insertable into the current areas of interest and
should be able to move to new areas of interest as
required—all without stopping and restarting the
real-time application.

Parasight: A Solution for Real-time Debugging
and Program Analysis

Parasight is an integrated set of real-time debugging
and analysis tools with a graphical user interface. The
tool set consists of a debugger (Debug), a data monitor
(DataMon), and a program analysis tool (Paragraph).
The Parasight tool set solves the real-time deficiencies
found in dbx, prof, and the other conventional UNIX
debug and analysis tools used under the Digital UNIX
operating system. Parasight is able to debug applica-
tions in either a dynamic (running) or a static (stopped)
state; it can perform debugging and program execu-
tion analysis on several programs simultaneously, with-
out adversely affecting the dynamics of time-critical
applications.

Parasight’s Foundation
The Parasight tool set features the use of'a symbol table,
the /prof file system, global memory, and scanpoints.

The Symbol Table, .pg File, and /proc File System
Parasight’s source of knowledge about the target
application is derived from the symbol table and the
.pg file. Both are generated at compile time as a result
of the -para special compiler option.

Parasight manipulates target applications by using
the /proc file system services available under the Digital
UNIX operating system. The /proc file system enables
Parasight to control the program flow and to read and
write any memory address in the target application.

Global Data Just as the traditional means of debug-
ging real-time applications depends on global memory
regions, Parasight uses the global memory access

Digital Technical Journal Vol.7 No.4 1995

103

104

concept as the basis for accomplishing most of its
advanced capabilities. Parasight either accesses the
target program data directly, through the use of/proc,
or uses global memory to access data gathered for
Parasight by one of its scanpoints.

Scanpoints The Parasight tool set uses global mem-
ory access whenever possible to provide nonintrusive
access to the target application. Certain functions,
however, require access to data that is local to a pro-
gram. Parasight accesses this data through small seg-
ments of code called scanpoints.

A scanpoint is a function that is dynamically inserted
into the target program by Parasight. The scanpoint
function then runs in the same context as the target
program and thus has access to all the local data of the
program. The scanpoint function works as an agent
for Parasight, gathering data that Parasight does not
have direct access to. The Parasight tool set uses two
principal types of scanpoints: datamon-scanpoints,
which are used by DataMon to perform local data
monitoring, and sensor-scanpoints, which are used by
Paragraph to perform program execution analysis.

Inserting the scanpoints does not require modifying
the application’s source code or preprocessing the
application’s object code. The only requirement is to
link each program with the special -para option. This
adds a memory bulffer to the target program for use by
Parasight. The buffer is benign until used by Parasight.

Parasight dynamically inserts scanpoints by using
the /proc service to build a scanpoint template in the
special buffer of the target program. This can occur
even while the program is running. The template code
contains the functionality to

= Save the register state that existed when the pro-
gram counter was at the scanpoint insertion location

= Set up the arguments to the scanpoint function,
including the register state

= Call the scanpoint function
= Restore the register state

= Execute the instruction that was originally at the
insertion location

= Branch back to the instruction following the inser-
tion location

Parasight then dynamically alters the template code
according to the insertion location and the instruction
contained therein. If the instruction was a branch con-
trol instruction, Parasight alters the instruction’s dis-
placement so that the location corresponds to the
instruction’s new displaced location within the tem-
plate. All other instructions, including jump control
instructions, do not require altering and are simply
copied to the new displaced location.

Once this code is constructed in the buffer,
Parasight completes the scanpoint insertion process by

Digital Technical Journal Vol.7 No.4 1995

overwriting the instruction at the insertion location
with a branch to the newly generated scanpoint
template. The fixed instruction length of Digital’s
Alpha microprocessors simplifies this step enormously.

It is important to note that the scanpoint is built by
Parasight, not the target program. The target program
is affected only by the final step of the scanpoint inser-
tion, when Parasight overwrites the instruction at the
insertion location. This design prevents excessive inter-
ference of the target program. Scanpoints are written in
highly optimized code to minimize the impact on the
target application when they are executed.

Parasight dynamically deletes scanpoints by writing
back the original instruction at the insertion location.
This design allows Parasight to disable a scanpoint
even if the scanpoint function has not completed.

Meeting Requirements
Parasight has the capabilities required of effective real-
time debugging and analysis tools.

Debugging Running Programs Conventional UNIX
debuggers deliberately stop a program when attaching
to it, because these tools do not operate on running
programs. When Parasight’s debugger, Debug, attaches
to a program, there is no impact on the program.

Conventional UNIX debuggers refuse to access any
data while a program is running, even though global
data resides at fixed memory locations that are accessi-
ble at all times through the /proc service. The reason
for this limitation of the conventional UNIX tools is
unclear. Parasight’s debugger is able to examine and to
change the value of any global data while the program
is running or stopped.

Conventional UNIX tools also refuse to set any
breakpoints in a program while the program is run-
ning. Again, the reason for this constraint is unknown.
Parasight’s debugger is able to insert breakpoints into
running programs, a feature that is valuable in debug-
ging error conditions in real-time applications.

Debugging Multiple Programs Parasight’s Debug,
DataMon, and Paragraph components constitute an
integrated set of tools capable of working on one or
more applications simultaneously, as shown in Figure
1. The Parasight main window displays the programs
(and any children they create) attached to Parasight.
The window also provides an easy mechanism to
access the Parasight tool for each specific program.

Monitoring Variables Constantly Parasight’s DataMon
tool allows the user to simultaneously monitor the
values of any local or global variables in one or more
stopped or running programs. Parasight constantly
monitors the values and shows any change on the
DataMon display screen. DataMon is also capable
of displaying the minimum, maximum, and average

(sl
Ais ~ Optiohs Todls Satup Halp |
o) 235 WP A0 TE o
e Dol Drwasr: MO 156 - awoc P
Exer HilC - SEMTIN - CONITE - VIEW - Info- - 3oty HElp
1565 Funi o (LA o i T T 8
ary | DEbug Lrowzer 110 1501 - 153K R
Iﬂ LIII! HE.‘I;I:II (_'nll'l'ﬂl EII'!\AI lnln E’!lll’\ ir!p
1554 R a2 | L, el STTTEITT (% | 655
a4 i Debug Drawser: MO 1557 - 1aak? R
stz b
6 = LIII! Xl!.'I;I:II (_'nmml Ell'!'lll lnln E’!tll’\ 1!'!}]
47 e A
| 3 T ST T
= % = L A e T G O A
il w W =L) Detug Browser: BiD (572 - tas i
1 W2
T e e SBarch COWtFOl - Wiewr Info Setup Holp
5 vl ar Tl B e el I |
Lirika gz 86 ax 5T Debny Bruwser: PID 1573 - Lashl
I L R - e
; A4
Torz puni| oy it 32 Hle - Search Lol - Mlawr - (Wlo - 3al
o o ar o TE G %‘a
- | ARC |
[nz a9 o RS :
i EES ni il I c
na o 5L = =
LU
bh ;13 g% g an raturn microcsclll: i
b6 a2 G Eo) HE
B0 % = o & i
E9 200 s z] acpount_initiint Easknunt
0 G 1 ng] 30 oo Cvaliate: MD | 573
;"2 1wz 5 = i; il 13
73 w o b3 Y dre3cunmitesknm] = i3 Expresion I.“P st Leknum |
4 1 34
3E }SE Eﬁ 3 gg : ElnnrRd_atEarhii g Risadl
w7 .
3; 1% :;g g :g’ uizknad Bl axectirgs — 163 (0xad) E
1y ;
4 110 Eg g A4 int get_useclint tasknunk Fa
o 111 . aw 1 -
0L 112 b4 gt o 1 return ¢ (1ne) - Elmerd_usee Cdp=sepun | 12
H2 113 T dqa I
Hi 14 i = o fandif T R T
114
EI 116 g% % d5 ?.'I:Llllll.‘{jlll— Laskiun} I I
u7z K
o & g; g a7 dre=3stopt inelt azkm] = get_usec{tacknum);
g
ﬂﬂ aﬁ m‘ ;::J =Ll Losbennen 1= lp=Se Lk i el Loeskemin | = ==Ll i el Loslenm 1)
i]
R GE n1 i€ dp=rorosbinaClavknomd 3 du=Praslimsl Laskiun] b
» & 7 dp-bnartinel taskmun] = TEEUERIERITRSIT;
HE1
a1 = 54 1F ¢ dp-rescrtincCtaskmmn] < dn-Snintdactazknm] ¥
I R7 55 dAp=>nintimel taskmain] = dp=rausrtinel Easimond;
5
g 57 dp=*trantineltaglaum] = dp=ietoptineltacknun] = dp=’gbartinell] s
. i Ji=lullinulLaskinn] #= dp=Zugeclinel Lok mn]
]
g B di—pnssenbsLtasknos 5
i § dr—>taskrtotCtasknue] = COMFLETEF
B2
PI Gz P¥ L Lazebnnm == adp=>oeel Lazk ¥
k4 dp=dometineldp=Hrael = pat_ussc(tacknun)t
b 3
FF: 7
e e
Figure 1

Parasight’s Debugger Working with Five Tasks Simultaneously

values attained for any variable. A scrolling history
display along with a time stamp is also available for
solving transient problems.

The variables to be monitored can be selected using
the mouse on the Debug browser or entered into a dia-
log box using the keyboard. The DataMon graphical
user interface has a point-and-edit capability, which
allows the user to edit the mnemonic data (i.e., name,
display format, value, location, or comment) directly
on the screen. The user can store mnemonic lists on
disk for fast retrieval when required. Figure 2 shows
a DataMon display screen.

DataMon is able to monitor global data completely
and nonintrusively using the /proc service and uses
a datamon-scanpoint to implement local data moni-
toring. The datamon-scanpoint is attached to the

DataMon database, which is a shared memory region
connecting all the scanpoints and the DataMon display
program. The datamon-scanpoints deposit the values
of local data into the database for the display program
to show on the screen. Datamon-scanpoints are also
used to change the values of local data, depositing the
value from the database into the specified variable.
DataMon uses the Debug tool’s expression evaluator
to parse the required mnemonic to derive the location

of the value to be displayed. This may include register

access for local variables saved on the stack. Multiple
mnemonics can be monitored locally at the same
location since a datamon-scanpoint function can tra-
verse a list of mnemonics to be monitored.

Note that DataMon monitors data asynchronously;
therefore, DataMon cannot guarantee to display every

Digital Technical Journal Vol.7 No.4 1995

105

DataMon

i : J

[}
\

File Options Windows SetUp

Help

CEY

Hnemonic Value Locat ion Comnent
dp->startimeltasknum] 0x152bbfce 15641 ==+ Global == Start time {uSec:
dp->=toptimeltasknum] 0x152bcZad 15641 == Global == Stop time {uSec:
dp-rexectimeltasknum] 735 15641 == Global == Execution time {uSec:

| dp-> mintimeltazknum] Fo9 15641 == Global == listory

| de=>maxtimeltagknum] 22990 15641 == [lobal ==

Hdp—>framtimeltazknum] 730 < 735 < 2064 15641 == Global == [g : i
dp-rpasscntsl0] 4216 15641 account,cibl account :::;:; g::imm;{;;::::-:}: ;3;
dp—rpasscntsll] 4216 15641 account,ciB0 account | 16:07:03 dp-=Tramtime[tasknum] = 799
dp-rpasscntslZ] 4215 15641 account,cibl account) |16:07:04 dp--framtimetasknum] - 804
dp-rpasscntsl3] 4215 15641 account,cibl account| | 18:07:0d4 dp-siramtimetasknum] = 793

| dp—rpasscntsl4] 4214 15641 account,ciBd account 123131 s:::mm:{mmﬂm}: ?gg

| loops 49449067 15721 task3,c:l02 maini) | 16:07:05 dp - ~framtime ftasknum] = 700

i de—>numtasks 10 15651 exec.c:ldd maindi} | 16030 dp->Tramtine [tasknUm] - 51

| tasknum) 157321 account,c:b5l account) |

! Rave Tn Fle

DM History gat

Figure 2

The DataMon Display Screen with History Window

value that the variables reach. For global data,
Parasight records only the minimum and maximum
values that DataMon sees. For local data, however, the
scanpoint keeps track of the minimum, maximum,
and average values, so these can be guaranteed.
Parasight can also monitor global data by using a
datamon-scanpoint to monitor the value at a particu-

lar line of code.

On-the-Fly Execution Analysis Paragraph displays
static source-code call graphs of the application’s
programs, illustrating the hierarchy of function calls,
system calls, and statement-level control flow. Point-
and-click operations allow the user to quickly view the
source code for any program or function, thus simpli-
fying the task of analyzing source code. Figure 3 shows

a Paragraph call graph and browser.

Paragraph
File I_nstrument View Conlext SetUp Help
_uf" L FL] ==y
= ol | warcn| BAR | an (| wacn FF!I:IF

[Terineecy)

[attachp]
RERERE [[zhnatc2] Paragraph Browser
[Terraner o)
Terintro)] Fle Search
{ [eched_setscheduler ()] Cursor 4 MNarifusersimpalmerfexeciest/period.c Top
[Tes=Tvaptinerts]
[Tl messszet] Finclude 7dp. b
| laerbiint_init] T = #include “exec.h”
_r‘intF()
RERTCEE =M int periodcale{int tasknun}
[Tsizenptyseety o ;
static unsigned int last_startine[NAXTASK+11:
[Teizestioncy]
[[mairfH- [set_timer] [tas]_ltimer_signal(] dp->startineltasknun] = get_usec{tasknun}:
: if ¢ dp->passcntsltasknuml > 1 >
el
H
dp~>periodltasknun] = dp->startineltasknun]l - last_startineltasknunl;
dp->totperiodltasknun] += dp->periodltasknunl;
DI:' { [g=t_uzed] if ¢ dp->periodltasknun] < dp->ninperiodltasknun] } 7% Hin period =/
dp-rninpericdltasknun] = dp-rpericdltasknunl;
if ¢ dp->periodltasknun] > dp->nanperiodltasknun] » /% Hax period */
dp->naxperiodltasknun] = dp->periodltasknunl;
DEFINITION: periodcalc - fvarfusers/mp
Contexi: Auto last_startineltasknun] = dp=>startineltasknunl;
W
Figure 3
Paragraph Call Graph and Browser
106 Digital Technical Journal Vol.7 No.4 1995

Call graphs are also used to define where to insert
instrumentation in an application. The instrumenta-
tion is used to perform execution timing analysis on
a part or the whole of one or more of an application’s
programs. The instrumentation is inserted dynami-
cally into a running program, without the need for
source-level changes or object code preprocessing and
without significantly affecting the dynamics of a run-
ning application. The inserted instrumentation may be
deleted or added to at any time.

Paragraph uses sensor-scanpoints to measure
how long a function takes to execute. The sensor-
scanpoint function is placed at a branch-to-subroutine
instruction. The function takes a time stamp from a
nanosecond-resolution timer before and after the
instruction to note the exact time the function started
and ended. The sensor-scanpoints are attached to
the Paragraph database, a shared region accessible
to the sensor-scanpoints and Paragraph. Data is written
into the database each time an instrumented function
is executed. The results of the instrumentation may

be viewed immediately, even while the program is
running. The graphical view shows each function call
as it occurred in time. Each program has a different
bar, so the user can determine the relative time
between functions called in different programs or even
across multiple processors in an SMP environment.
The zoom capability may be used to measure time peri-
ods down to a single microsecond. Figure 4 shows
the Paragraph graphical display, called Bargraph, and
the zoom capability.

Data gathering is continuous until the instrumen-
tation is removed, so new data can be added onto
the previous snapshot’s view at any time. Multiple
Bargraph windows can be used to recall previously
saved timing data to easily compare current results
with past results.

The nanosecond-resolution timer used by Paragraph
is derived from the process control counter (PCC)
register available on all Alpha microprocessors. This
32-bit, free-running timer operates at the same
rate as the microprocessor and therefore provides a

Bargraph

Fle Zoom Buffer View Setup

Help

Cursor: 44.295% Marker: 44.3015 Difference: 6&15us

Process

77978 =1

29920 [I 0 l
23912 [[f 0
21090 I Il] |
72018 | I I I

22936 [[
22902 [I

Bargraph

File Zoom Buffer Wiew GSetlp

Cursor: 44.281s Marker: 442815 Difference: 107us

0

47 4405

Process 44.278¢

44.2838

729270 - [TTm

22920 account) taskl.c:100 [Lo werzo

wotbd (O ‘

22012
21090
22918
22936
22902

| |wur“k2() || work3cy workd I

Imar-k?()

Figure 4

The Paragraph Graphical Display, Bargraph, Showing Zoom Capability

Digital Technical Journal Vol.7 No.4 1995

107

108

3.6-nanosecond-resolution timer on a 275-MHz
Alpha CPU. Unfortunately, since it is only a 32-bit
timer, it wraps every 15.6 seconds. Parasight keeps
track of the wrap count to create a 64-bit timer that
allows problem-free timing for more than 2,000 years!

Adverse Effects

Although, ideally, the Parasight tool set should
be completely nonintrusive and thus not affect the
application in any way, such operation is not com-
pletely achievable for all functions. Capabilities such as
inspecting (Debug) and monitoring (DataMon) global
variables require no intrusion to implement; however,
monitoring local variables and analyzing program exe-
cution do require a small amount of intrusion.

While most real-time applications cannot tolerate
exceeding the time available for the completion of
the task, they do have some spare time available after
completing the task. Without this spare time, the risk
of exceeding the deadline before program completion
would be too great. This spare time can be used judi-
ciously for the mildly intrusive functions of Parasight.

Summary

This paper discusses several capabilities required to
effectively debug and analyze real-time applications.
These capabilities include debugging of running pro-
grams, constant monitoring of variables, and on-the-fly
execution analysis. The paper also details some of the
problems associated with conventional UNIX tools,
such as the inability to debug running programs, the
adverse effects on target programs, the erroneous pro-
filing results, and the cumbersome operation. Encore
Computer Corporation’s Parasight tool set offers a
solution to these difficult problems. The paper
describes the methodology behind the product and the
capabilities that make Parasight an invaluable tool for
debugging and analyzing real-time applications.

Acknowledgments

The authors would like to acknowledge the efforts of
the following Parasight team members for their contri-
butions to the product: Raghuveer Chakravarthi,
Dileep Katta, Carlos Gonzalez, Deborah Grimstead,
and Ken Shaffer.

General References

Z. Aral, 1. Gertner, and G. Shaffer, “Efficient Debugging
Primitives for Multiprocessors” (Fort Lauderdale, Fla.:
Encore Computer Corporation, 1989).

DEC OSF/1 Programmer’s Guide, Section 6 (Maynard,
Mass.: Digital Equipment Corporation, August 1994).

Digital Technical Journal Vol.7 No.4 1995

Biographies

Michael Palmer

Michael Palmer is a principal member of Encore Computer
Corporation’s technical staft and has led the Parasight team
for the past three years. Prior to joining Encore in 1991,
Mike worked for several major flight simulation vendors
throughout the world, advancing from computer systems
engineer to lead software engineer for a $50 million, dual-
dome tactical fighter simulator. He has used his real-time
simulation background to mold Parasight into a leading
tool set for real-time development. Mike holds a B.Sc.
(Honors) in electronics from Newcastle Polytechnic,
Newecastle upon Tyne, England.

Jeffrey M. Russo

Jeff Russo has been employed by IBM since June 1995.
He is an Advisory Programmer working as a team leader
for the OS/2 operating system. Prior to joining IBM, Jeff
worked at Encore Computer Corporation for 10 years,
advancing from the position of software engineer to that
of Senior Section Manager responsible for several real-time
software groups. He has significant experience with real-
time, microkernel-based operating systems, as well as with
the accompanying critical, real-time tool set. Jeff earned

a B.S. in computer engineering from the University of
Florida in 1985.

