
Digital’s Spiralog product is a log-structured, cluster-
wide file system with integrated, on-line backup and
restore capability and support for multiple file sys-
tem personalities. It incorporates a number of recent
ideas from the research community, including the
log-structured file system (LFS) from the Sprite file
system and the ordered write back from the Echo
file system.1,2

The Spiralog file system is fully integrated into the
OpenVMS operating system, providing compatibility
with the current OpenVMS file system, Files-11. It
supports a coherent, clusterwide write-behind cache
and provides high-performance, on-line backup and
per-file and per-volume restore functions.

In this paper, we first discuss the evolution of file
systems and the requirements for many of the basic
designs in the Spiralog file system. Next we describe
the overall architecture of the Spiralog file system,
identifying its major components and outlining their
designs. Then we discuss the project’s results: what
worked well and what did not work so well. Finally, we
present some conclusions and ideas for future work.

Some of the major components, i.e., the backup
and restore facility, the LFS server, and OpenVMS
integration, are described in greater detail in compan-
ion papers in this issue.3–5

The Evolution of File Systems

File systems have existed throughout much of the his-
tory of computing. The need for libraries or services
that help to manage the collection of data on long-
term storage devices was recognized many years ago.
The early support libraries have evolved into the file
systems of today. During their evolution, they have
responded to the industry’s improved hardware capa-
bilities and to users’ increased expectations. Hardware
has continued to decrease in price and improve in its
price/performance ratio. Consequently, ever larger
amounts of data are stored and manipulated by users
in ever more sophisticated ways. As more and more
data are stored on-line, the need to access that data 24
hours a day, 365 days a year has also escalated.

Digital Technical Journal Vol. 8 No. 2 1996 5

Overview of the Spiralog
File System

James E. Johnson
William A. Laing

The OpenVMS Alpha environment requires a
file system that supports its full 64-bit capabili-
ties. The Spiralog file system was developed to
increase the capabilities of Digital’s Files-11 file
system for OpenVMS. It incorporates ideas from
a log-structured file system and an ordered write-
back model. The Spiralog file system provides
improvements in data availability, scaling of the
amount of storage easily managed, support for
very large volume sizes, support for applications
that are either write-operation or file-system-
operation intensive, and support for heteroge-
neous file system client types. The Spiralog
technology, which matches or exceeds the relia-
bility and device independence of the Files-11
system, was then integrated into the OpenVMS
operating system.

Significant improvements to file systems have been
made in the following areas:

■ Directory structures to ease locating data
■ Device independence of data access through the file

system
■ Accessibility of the data to users on other systems
■ Availability of the data, despite either planned or

unplanned service outages
■ Reliability of the stored data and the performance

of the data access

Requirements of the OpenVMS File System

Since 1977, the OpenVMS operating system has
offered a stable, robust file system known as Files-11.
This file system is considered to be very successful in
the areas of reliability and device independence.
Recent customer feedback, however, indicated that
the areas of data availability, scaling of the amount of
storage easily managed, support for very large volume
sizes, and support for heterogeneous file system client
types were in need of improvement.

The Spiralog project was initiated in response to
customers’ needs. We designed the Spiralog file system
to match or somewhat exceed the Files-11 system in
its reliability and device independence. The focus of
the Spiralog project was on those areas that were due
for improvement, notably:

■ Data availability, especially during planned opera-
tions, such as backup.
If the storage device needs to be taken off-line
to perform a backup, even at a very high backup
rate of 20 megabytes per second (MB/s), almost
14 hours are needed to back up 1 terabyte. This
length of service outage is clearly unacceptable.
More typical backup rates of 1 to 2 MB/s can take
several days, which, of course, is not acceptable.

■ Greatly increased scaling in total amount of on-line
storage, without greatly increasing the cost to man-
age that storage.
For example, 1 terabyte of disk storage currently
costs approximately $250,000, which is well within
the budget of many large computing centers.
However, the cost in staff and time to manage such
amounts of storage can be many times that of the
storage.6 The cost of storage continues to fall, while
the cost of managing it continues to rise.

■ Effective scaling as more processing and storage
resources become available.
For example, OpenVMS Cluster systems allow pro-
cessing power and storage capacity to be added
incrementally. It is crucial that the software support-

ing the file system scale as the processing power,
bandwidth to storage, and storage capacity increase.

■ Improved performance for applications that are
either write-operation or file-system-operation
intensive.
As file system caches in main memory have
increased in capacity, data reads and file system read
operations have become satisfied more and more
from the cache. At the same time, many applica-
tions write large amounts of data or create and
manipulate large numbers of files. The use of
redundant arrays of inexpensive disks (RAID) stor-
age has increased the available bandwidth for data
writes and file system writes. Most file system oper-
ations, on the other hand, are small writes and are
spread across the disk at random, often negating
the benefits of RAID storage.

■ Improved ability to transparently access the stored
data across several dissimilar client types.
Computing environments have become increas-
ingly heterogeneous. Different client systems, such
as the Windows or the UNIX operating system,
store their files on and share their files with server
systems such as the OpenVMS server. It has
become necessary to support the syntax and seman-
tics of several different file system personalities on
a common file server.

These needs were central to many design decisions we
made for the Spiralog file system.

The members of the Spiralog project evaluated
much of the ongoing work in file systems, databases,
and storage architectures. RAID storage makes high
bandwidth available to disk storage, but it requires
large writes to be effective. Databases have exploited
logs and the grouping of writes together to minimize
the number of disk I/Os and disk seeks required.
Databases and transaction systems have also exploited
the technique of copying the tail of the log to effect
backups or data replication. The Sprite project at
Berkeley had brought together a log-structured file
system and RAID storage to good effect.1

By drawing from the above ideas, particularly the
insight of how a log structure could support on-line,
high-performance backup, we began our development
effort. We designed and built a distributed file system
that made extensive use of the processor and memory
near the application and used log-structured storage in
the server.

Spiralog File System Design

The main execution stack of the Spiralog file system
consists of three distinct layers. Figure 1 shows the
overall structure. At the top, nearest the user, is the file

6 Digital Technical Journal Vol. 8 No. 2 1996

system client layer. It consists of a number of file
system personalities and the underlying personality-
independent services, which we call the VPI.

Two file system personalities dominate the Spiralog
design. The F64 personality is an emulation of the
Files-11 file system. The file system library (FSLIB)
personality is an implementation of Microsoft’s New
Technology Advanced Server (NTAS) file services for
use by the PATHWORKS for OpenVMS file server.

The next layer, present on all systems, is the clerk
layer. It supports a distributed cache and ordered write
back to the LFS server, giving single-system semantics
in a cluster configuration.

The LFS server, the third layer, is present on all des-
ignated server systems. This component is responsible
for maintaining the on-disk log structure; it includes
the cleaner, and it is accessed by multiple clerks. Disks
can be connected to more than one LFS server, but
they are served only by one LFS server at a time. Trans-
parent failover, from the point of view of the file sys-
tem client layer, is achieved by cooperation between
the clerks and the surviving LFS servers.

The backup engine is present on a system with an
active LFS server. It uses the LFS server to access the
on-disk data, and it interfaces to the clerk to ensure
that the backup or restore operations are consistent
with the clerk’s cache.

Figure 2 shows a typical Spiralog cluster configura-
tion. In this cluster, the clerks on nodes A and B are
accessing the Spiralog volumes. Normally, they use the
LFS server on node C to access their data. If node C
should fail, the LFS server on node D would immedi-
ately provide access to the volumes. The clerks on
nodes A and B would use the LFS server on node D,
retrying all their outstanding operations. Neither user
application would detect any failure. Once node C had
recovered, it would become the standby LFS server.

File System Client Design
The file system client is responsible for the traditional
file system functions. This layer provides files, directo-
ries, access arbitration, and file naming rules. It also
provides the services that the user calls to access the file
system.

VPI Services Layer The VPI layer provides an underly-
ing primitive file system interface, based on the UNIX
VFS switch. The VPI layer has two overall goals:

1. To support multiple file system personalities
2. To effectively scale to very large volumes of data

and very large numbers of files

To meet the first goal, the VPI layer provides

■ File names of 256 Unicode characters, with no
reserved characters

■ No restriction on directory depth
■ Up to 255 sparse data streams per file, each with

64-bit addressing
■ Attributes with 255 Unicode character names, con-

taining values of up to 1,024 bytes
■ Files and directories that are freely shared among

file system personality modules

To meet the second goal, the VPI layer provides

■ File identifiers stored as 64-bit integers
■ Directories through a B-tree, rather than a simple

linear structure, for log(n) file name lookup time

The VPI layer is only a base for file system personali-
ties. Therefore it requires that such personalities are
trusted components of the operating system.
Moreover, it requires them to implement file access
security (although there is a convention for storing
access control list information) and to perform all nec-
essary cleanup when a process or image terminates.

Digital Technical Journal Vol. 8 No. 2 1996 7

CLERK

VPI SERVICES

BACKUP USER
INTERFACE

LFS SERVER BACKUP ENGINE

F64 FSLIB FILE
SYSTEM
CLIENT

Figure 1
Spiralog Structure Overview

USER APPLICATION

ACTIVE LFS SERVER

SPIRALOG CLERK SPIRALOG CLERK

NODE A NODE B

ETHERNET

STANDBY LFS SERVER

NODE C NODE D

SPIRALOG VOLUMES

USER APPLICATION

Figure 2
Spiralog Cluster Configuration

F64 File System Personality As previously stated, the
Spiralog product includes two file system personalities,
F64 and FSLIB. The F64 personality provides a service
that emulates the Files-11 file system.5 Its functions,
services, available file attributes, and execution
behaviors are similar to those in the Files-11 file sys-
tem. Minor differences are isolated into areas that
receive little use from most applications.

For instance, the Spiralog file system supports the
various Files-11 queued I/O ($QIO) parameters for
returning file attribute information, because they are
used implicitly or explicitly by most user applications.
On the other hand, the Files-11 method of reading
the file header information directly through a file
called INDEXF.SYS is not commonly used by applica-
tions and is not supported.

The F64 file system personality demonstrates that
the VPI layer contains sufficient flexibility to support
a complex file system interface. In a number of cases,
however, several VPI calls are needed to implement
a single, complex Files-11 operation. For instance, to
do a file open operation, the F64 personality performs
the tasks listed below. The items that end with (VPI)
are tasks that use VPI service calls to complete.

■ Access the file’s parent directory (VPI)
■ Read the directory’s file attributes (VPI)
■ Verify authorization to read the directory
■ Loop, searching for the file name, by

– Reading some directory entries (VPI)
– Searching the directory buffer for the file name
– Exiting the loop, if the match is found

■ Access the target file (VPI)
■ Read the file’s attributes (VPI)
■ Audit the file open attempt

FSLIB File System Personality The FSLIB file system
personality is a specialized file system to support the
PATHWORKS for OpenVMS file server. Its two major
goals are to support the file names, attributes, and
behaviors found in Microsoft’s NTAS file access proto-
cols, and to provide low run-time cost for processing
NTAS file system requests.

The PATHWORKS server implements a file service
for personal computer (PC) clients layered on top of
the Files-11 file system services. When NTAS service
behaviors or attributes do not match those of Files-11,
the PATHWORKS server has to emulate them. This
can lead to checking security access permissions twice,
mapping file names, and emulating file attributes.

Many of these problems can be avoided if the VPI
interface is used directly. For instance, because the
FSLIB personality does not layer on top of a Files-11
personality, security access checks do not need to be
performed twice. Furthermore, in a straightforward
design, there is no need to map across different file

naming or attribute rules. For reasons we describe
later, in the VPI Results section, we chose not to pur-
sue this design to its conclusion.

Clerk Design
The clerks are responsible for managing the caches,
determining the order of writes out of the cache to the
LFS server, and maintaining cache coherency within
a cluster. The caches are write behind in a manner that
preserves the order of dependent operations.

The clerk-server protocol controls the transfer of
data to and from stable storage. Data can be sent as
a multiblock atomic write, and operations that change
multiple data items such as a file rename can be made
atomically. If a server fails during a request, the clerk
treats the request as if it were lost and retries the
request.

The clerk-server protocol is idempotent. Idem-
potent operations can be applied repeatedly with no
effects other than the desired one. Thus, after any
number of server failures or server failovers, it is always
safe to reissue an operation. Clerk-to-server write
operations always leave the file system state consistent.

The clerk-clerk protocol protects the user data and
file system metadata cached by the clerks. Cache
coherency information, rather than data, is passed
directly between clerks.

The file system caches are kept in the clerks. Mul-
tiple clerks can have copies of stabilized data, i.e., data
that has been written to the server with the write
acknowledged. Only one clerk can have unstabilized,
volatile data. Data is exchanged between clerks by
stabilizing it. When a clerk needs to write a block of
data to the server from its cache, it uses a token inter-
face that is layered on the clerk-clerk protocol.

The writes from the cache to the server are deferred
as long as possible within the constraints of the cache
protocol and the dependency guarantees.

Dirty data remains in the cache as long as 30 sec-
onds. During that time, overwrites are combined
within the constraints of the dependency guarantees.
Furthermore, operations that are known to offset one
another, such as freeing a file identifier and allocating
a file identifier, are fully combined within the cache.

Eventually, some trigger causes the dirty data to be
written to the server. At this point, several writes are
grouped together. Write operations to adjacent, or
overlapping, file locations are combined to form
a smaller number of larger writes. The resulting write
operations are then grouped into messages to the
LFS server.

The clerks perform write behind for four reasons:

■ To spread the I/O load over time
■ To remove occluded data, which can result from

repeated overwrites of a data block, from being
transferred to the server

8 Digital Technical Journal Vol. 8 No. 2 1996

■ To avoid writing data that is quickly deleted such as
temporary files

■ To combine multiple small writes into larger transfers

The clerks order dependent writes from the cache
to the server; consequently, other clerks never see
“impossible” states, and related writes never overtake
each other. For instance, the deletion of a file cannot
happen before a rename that was previously issued to
the same file. Related data writes are caused by a partial
overwrite, or an explicit linking of operations passed
into the clerk by the VPI layer, or an implicit linking
due to the clerk-clerk coherency protocol.

The ordering between writes is kept as a directed
graph. As the clerks traverse these graphs, they issue
the writes in order or collapse the graph when writes
can be safely combined or eliminated.

LFS Server Design
The Spiralog file system uses a log-structured, on-disk
format for storing data within a volume, yet presents
a traditional, update-in-place file system to its users.

Recently, log-structured file systems, such as Sprite,
have been an area of active research.1

Within the LFS server, support is provided for the
log-structured, on-disk format and for mapping that
format to an update-in-place model. Specifically, this
component is responsible for

■ Mapping the incoming read and write operations
from their simple address space to positions in an
open-ended log

■ Mapping the open-ended log onto a finite amount
of disk space

■ Reclaiming disk space by cleaning (garbage collect-
ing) the obsolete (overwritten) sections of the log

Figure 3 shows the various mapping layers in the
Spiralog file system, including those handled by the
LFS server.

Incoming read and write operations are based on a
single, large address space. Initially, the LFS server trans-
forms the address ranges in the incoming operations
into equivalent address ranges in an open-ended log.
This log supports a very large, write-once address space.

Digital Technical Journal Vol. 8 No. 2 1996 9

FILE VIRTUAL BLOCKSFILE HEADER

DISK

FILE SYSTEM ADDRESS
SPACE

FILE ADDRESS SPACE

LOG ADDRESS SPACE

PHYSICAL ADDRESS
SPACE

VPI
CLERK

LFS
B-TREE

LFS
LOG
DRIVER
LAYER

LOG GROWS

USER I/Os

NAMED CELL BYTE STREAM

Figure 3
Spiralog Address Mapping

A read operation looks up its location in the open-
ended log and proceeds. On the other hand, a write
operation makes obsolete its current address range
and appends its new value to the tail of the log.

In turn, locations in the open-ended log are then
mapped into locations on the (finite-sized) disk. This
additional mapping allows disk blocks to be reused
once their original contents have become obsolete.

Physically, the log is divided into log segments, each
of which is 256 kilobytes (KB) in length. The log seg-
ment is used as the transfer unit for the backup engine.
It is also used by the cleaner for reclaiming obsolete
log space.

More information about the LFS server can be
found in this issue.4

On-line Backup Design
The design goals for the backup engine arose from
higher storage management costs and greater data avail-
ability needs. Investigations with a number of customers
revealed their requirements for a backup engine:

■ Consistent save operations without stopping any
applications or locking out data modifications

■ Very fast save operations
■ Both full and incremental save operations
■ Restores of a full volume and of individual files

Our response to these needs influenced many deci-
sions concerning the Spiralog file system design. The
need for a high-performance, on-line backup led to
a search for an on-disk structure that could support
it. Again, we chose the log-structured design as the
most suitable one.

A log-structured organization allows the backup
facility to easily demarcate snapshots of the file system
at any point in time, simply by marking a point in the
log. Such a mark represents a version of the file system
and prevents disk blocks that compose that version
from being cleaned. In turn, this allows the backup to
run against a low level of the file system, that of the
logical log, and therefore to operate close to the spiral
transfer rate of the underlying disk.

The difference between a partial, or incremental,
and a full save operation is only the starting point in
the log. An incremental save need not copy data back
to the beginning of the log. Therefore, both incre-
mental and full save operations transfer data at very
high speed.

By implementing these features in the Spiralog file
system, we fulfilled our customers’ requirements for
high-performance, on-line backup save operations.
We also met their needs for per-file and per-volume
restores and an ongoing need for simplicity and reduc-
tion in operating costs.

To provide per-file restore capabilities, the backup
utility and the LFS server ensure that the appropriate
file header information is stored during the save oper-
ation. The saved file system data, including file head-
ers, log mapping information, and user data, are
stored in a file known as a saveset. Each saveset,
regardless of the number of tapes it requires, repre-
sents a single save operation.

To reduce the complexity of file restore operations,
the Spiralog file system provides an off-line saveset
merge feature. This allows the system manager to
merge several savesets, either full or incremental, to
form a new, single saveset. With this feature, system
managers can have a workable backup save plan that
never calls for an on-line full backup, thus further
reducing the load on their production systems. Also,
this feature can be used to ensure that file restore oper-
ations can be accomplished with a small, bounded set
of savesets.

The Spiralog backup facility is described in detail in
this issue.3

Project Results

The Spiralog file system contains a number of innova-
tions in the areas of on-line backup, log-structured
storage, clusterwide ordered write-behind caching,
and multiple-file-system client support.

The use of log structuring as an on-disk format is
very effective in supporting high-performance, on-line
backup. The Spiralog file system retains the previously
documented benefits of LFS, such as fast write perfor-
mance that scales with the disk size and throughput
that increases as large read caches are used to offset
disk reads.1

It should also be noted that the Files-11 file system
sets a high standard for data reliability and robustness.
The Spiralog technology met this challenge very well:
as a result of the idempotent protocol, the cluster
failover design, and the recover capability of the log,
we encountered few data reliability problems during
development.

In any large, complex project, many technical deci-
sions are necessary to convert research technology
into a product. In this section, we discuss why certain
decisions were made during the development of the
Spiralog subsystems.

VPI Results
The VPI file system was generally successful in pro-
viding the underlying support necessary for different
file system personalities. We found that it was possi-
ble to construct a set of primitive operations that
could be used to build complex, user-level, file system
operations.

10 Digital Technical Journal Vol. 8 No. 2 1996

By using these primitives, the Spiralog project
members were able to successfully design two dis-
tinctly different personality modules. Neither was a
functional superset of the other, and neither was lay-
ered on top of the other. However, there was an
important second-order problem.

The FSLIB file system personality did not have a full
mapping to the Files-11 file system. As a consequence,
file management was rather difficult, because all the
data management tools on the OpenVMS operating
system assumed compliance with a Files-11, rather
than a VPI, file system.

This problem led to the decision not to proceed
with the original design for the FSLIB personality in
version 1.0 of Spiralog. Instead, we developed an
FSLIB file system personality that was fully compatible
with the F64 personality, even when that compatibility
forced us to accept an additional execution cost.

We also found an execution cost to the primitive
VPI operations. Generally, there was little overhead
for data read and write operations. However, for
operations such as opening a file, searching for a file
name, and deleting a file, we found too high an over-
head from the number of calls into the VPI services
and the resulting calls into the cache manager. We
called this the “fan-out” problem: one high-level
operation would turn into several VPI operations, each
of which would turn into several cache manager calls.
Table 1 gives the details of the fan-out problem.

We believe that it would be worthwhile to provide
slightly more complex VPI services in order to com-
bine calls that always appear in the same sequence.

Table 1
Call Fan-out by Level

Revised
F64 VPI Clerk Clerk

Operation Calls Calls Calls Calls

Create file 4 18 29 24
Open file 1 6 18 14
Read block 1 1 3 3
Write block 2 4 7 6
Close file 1 4 13 10

Clerk Results
The clerk met a number of our design goals. First, the
use of idempotent operations allowed failover to
standby LFS servers to occur with no loss of service to
the file system clients, and with little additional com-
plexity within the clerk.

Second, the ordered write behind proved to be
effective at ordering dependent, metadata file system

operations, thus supporting the ability to construct
complex file system operations out of simpler elements.

Third, the clerk was able to manage large physical
caches. It is very effective at making use of unused
pages when the memory demand from the OpenVMS
operating system is low, and at quickly shrinking the
cache when memory demands increase. Although
certain parameters can be used to limit the size of a
clerk’s cache, the caches are normally self-tuning.

Fourth, the clerks reduce the number of operations
and messages sent to the LFS server, with a subsequent
reduction to the number of messages and operations
waiting to be processed. For the COPY command, the
number of operations sent to the server was typically
reduced by a factor of 3. By using transient files with
lifetimes of fewer than 30 seconds, we saw a reduction
of operations by a factor of 100 or more, as long as the
temporary file fit into the clerk’s cache.

In general, the code complexity and CPU path
length within the clerk were greater than we had origi-
nally planned, and they will need further work. Two
aspects of the services offered by the clerk com-
pounded the cost in CPU path length. First, the clerk
has a simple interface that supports reads and writes
into a single, large address space only. This interface
requires a number of clerk operations for a number of
the VPI calls, further expanding the call fan-out issues.
Second, a concurrency control model allows the clerk
to unilaterally drop locks. This requires the VPI layer
to revalidate its internal state with each call.

Either a change to the clerk and VPI service inter-
faces to support notification of lock invalidation, or a
change to the concurrency control model to disallow
locks that could be unilaterally invalidated, would
reduce the number of calls made. We believe such
changes would produce the results given in the last
column of Table 1.

LFS Server Results
The LFS server provides a highly available, robust file
system server. Under heavy write loads, it provides the
ability to group together multiple requests and reduce
the number of disk I/Os. In a cluster configuration,
it supports failover to a standby server.

In normal operation, the cleaner was successful in
minimizing overhead, typically adding only a few per-
cent to the elapsed time. The cleaner operated in a lazy
manner, cleaning only when there was an immediate
shortage of space. The cleaner operations were further
lessened by the tendency for normal file overwrites to
free up recently filled log segments for reuse.

Although this produced a cleaner that operated
with little overhead, it also brought about two unusual
interactions with the backup facility. In the first place,
the log often contains a number of obsolete areas that

Digital Technical Journal Vol. 8 No. 2 1996 11

are eligible for cleaning but have not yet been
processed. These obsolete areas are also saved by the
backup engine. Although they have no effect on the
logical state of the log, they do require the backup
engine to move more data to backup storage than
might otherwise be necessary.

Second, the design initially prohibited the cleaner
from running against a log with snapshots. Conse-
quently, the cleaner was disabled during a save opera-
tion, which had the following effects: (1) The amount
of available free space in the log was artificially
depressed during a backup. (2) Once the backup was
finished, the activated cleaner would discover that
a great number of log segments were now eligible for
cleaning. As a result, the cleaner underwent a sudden
surge in cleaning activity soon after the backup had
completed.

We addressed this problem by reducing the area of
the log that was off-limits to the cleaner to only the
part that the backup engine would read. This limited
snapshot window allowed more segments to remain
eligible for cleaning, thus greatly alleviating the short-
age of cleanable space during the backup and eliminat-
ing the postbackup cleaning surge. For an 8-gigabyte
time-sharing volume, this change typically reduced the
period of high cleaner activity from 40 seconds to less
than one-half of a second.

We have not yet experimented with different cleaner
algorithms. More work needs to be done in this area
to see if the cleaning efficiency, cost, and interactions
with backup can be improved.

The current mapping transformation from the
incoming operation address space to locations in the
open-ended log is more expensive in CPU time than
we would like. More work is needed to optimize the
code path.

Finally, the LFS server is generally successful at pro-
viding the appearance of a traditional, update-in-place
file system. However, as the unused space in a volume
nears zero, the ability to behave with semantics that
meet users’ expectations in a log-structured file system
proved more difficult than we had anticipated and
required significant effort to correct.

The LFS server is described in much more detail in
this issue.4

Backup Performance Results
We took a new approach to the backup design in the
Spiralog system, resulting in a very fast and very low
impact backup that can be used to create consistent
copies of the file system while applications are actively
modifying data. We achieved this degree of success
without compromising such functionality as incre-
mental backup or fast, selective restore.

The performance improvements of the Spiralog
save operation are particularly noticeable with the
large numbers of transient or active files that are typi-
cally found on user volumes or on mail server volumes.
In the following tables, we compare the Spiralog
and the file-based Files-11 backup operations on a
DEC 3000 Model 500 workstation with a 260-MB
volume, containing 21,682 files in 401 directories and
a TZ877 tape.

Table 2 gives the results of two save operations,
which are the average of five operations. Although its
saveset size is somewhat larger, the Spiralog save
operation completes nearly twice as fast as the Files-11
save operation.

Table 3 gives the results from restoring a single file
to the target volume. In this case, the Spiralog file
restore operation executes more than three times as
fast as the Files-11 system.

The performance advantage of the Spiralog backup
and restore facility increases further for large, multi-
tape savesets. In these cases, the Spiralog system is able
to omit tapes that are not needed for the file restore;
the Files-11 system does not have this capability.

Observations and Conclusions

Overall, we believe that the significant innovation and
real success of the Spiralog project was the integration
of high-performance, on-line backup with the log-
structured file system model. The Spiralog file system
delivers an on-line backup engine that can run near
device speeds, with little impact on concurrently run-
ning applications. Many file operations are signifi-
cantly faster in elapsed time as a result of the reduction
in I/Os due to the cache and the grouping of write
operations. Although the code paths for a number
of operations are longer than we had planned, their

12 Digital Technical Journal Vol. 8 No. 2 1996

Table 2
Performance Comparison of the Backup Save Operation

Elapsed Time
File System (Minutes:Seconds) Saveset Size (MB) Throughput (MB/s)

Spiralog 05:20 339 1.05
Files-11 10:14 297 0.48

length is mitigated by continuing improvements in
processor performance.

We learned a great deal during the Spiralog project
and made the following observations:

■ Volume full semantics and fine-tuning the cleaner
were more complex than we anticipated and will
require future refinement.

■ A heavily layered architecture extends the CPU
path length and the fan-out of procedure calls. We
focused too much attention on reducing I/Os and
not enough attention on reducing the resource
usage of some critical code paths.

■ Although elegant, the memory abstraction for the
interface to the cache was not as good a fit to file
system operations as we had expected. Further-
more, a block abstraction for the data space would
have been more suitable.

In summary, the project team delivered a new
file system for the OpenVMS operating system. The
Spiralog file system offers single-system semantics in
a cluster, is compatible with the current OpenVMS
file system, and supports on-line backup.

Future Work

During the Spiralog version 1.0 project, we pursued a
number of new technologies and found four areas that
warrant future work:

■ Support is needed from storage and file-
management tools for multiple, dissimilar file
system personalities.

■ The cleaner represents another area of ongoing
innovation and complex dynamics. We believe a
better understanding of these dynamics is needed,
and design alternatives should be studied.

■ The on-line backup engine, coupled with the log-
structured file system technology, offers many areas
for potential development. For instance, one area
for investigation is continuous backup operation,
either to a local backup device or to a remote
replica.

■ Finally, we do not believe the higher-than-expected
code path length is intrinsic to the basic file system

design. We expect to be working on this resource
usage in the near future.

Acknowledgments

We would like to take this opportunity to thank the
many individuals who contributed to the Spiralog
project. Don Harbert and Rich Marcello, OpenVMS
vice presidents, supported this work over the lifetime
of the project. Dan Doherty and Jack Fallon, the
OpenVMS managers in Livingston, Scotland, had day-
to-day management responsibility. Cathy Foley kept
the project moving toward the goal of shipping. Janis
Horn and Clare Wells, the product managers who
helped us understand our customers’ needs, were elo-
quent in explaining our project and goal to others.
Near the end of the project, Yehia Beyh and Paul
Mosteika gave us valuable testing support, without
which the product would certainly be less stable than it
is today. Finally, and not least, we would like to
acknowledge the members of the development team:
Alasdair Baird, Stuart Bayley, Rob Burke, Ian
Compton, Chris Davies, Stuart Deans, Alan Dewar,
Campbell Fraser, Russ Green, Peter Hancock, Steve
Hirst, Jim Hogg, Mark Howell, Mike Johnson,
Robert Landau, Douglas McLaggan, Rudi Martin,
Conor Morrison, Julian Palmer, Judy Parsons, Ian
Pattison, Alan Paxton, Nancy Phan, Kevin Porter,
Alan Potter, Russell Robles, Chris Whitaker, and Rod
Widdowson.

References

1. M. Rosenblum and J. Ousterhout, “The Design and
Implementation of a Log Structured File System,” ACM
Transactions on Computer Systems, vol. 10, no. 1
(February 1992): 26–52.

2. T. Mann, A. Birrell, A. Hisgen, C. Jerian, and G. Swart,
“A Coherent Distributed File Cache with Directory
Write-behind,” Digital Systems Research Center,
Research Report 103 (June 1993).

3. R. Green, A. Baird, and J. Davies, “Designing a Fast,
On-line Backup System for a Log-structured File Sys-
tem,” Digital Technical Journal, vol. 8, no. 2 (1996,
this issue): 32–45.

4. C. Whitaker, J. Bayley, and R. Widdowson, “Design of the
Server for the Spiralog File System,” Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 15–31.

5. M. Howell and J. Palmer, “Integrating the Spiralog
File System into the OpenVMS Operating System,”
Digital Technical Journal, vol. 8, no. 2 (1996, this
issue): 46–56.

6. R. Wrenn, “Why the Real Cost of Storage is More Than
$1/MB,” presented at U.S. DECUS Symposium,
St. Louis, Mo., June 3–6, 1996.

Digital Technical Journal Vol. 8 No. 2 1996 13

Table 3
Performance Comparison of the Individual File
Restore Operation

Elapsed Time
File System (Minutes:Seconds)

Spiralog 01:06
Files-11 03:35

Biographies

14 Digital Technical Journal Vol. 8 No. 2 1996

James E. Johnson
Jim Johnson, a consulting software engineer, has been
working for Digital since 1984. He was a member of the
OpenVMS Engineering Group, where he contributed
in several areas, including RMS, transaction processing
services, the port of OpenVMS to the Alpha architecture,
file systems, and system management. Jim recently joined
the Internet Software Business Unit and is working on
the application of X.500 directory services. Jim holds two
patents on transaction commit protocol optimizations and
maintains a keen interest in this area.

William A. Laing
Bill Laing, a corporate consulting engineer, is the technical
director of the Internet Software Business Unit. Bill joined
Digital in 1981; he worked in the United States for five
years before transferring to Europe. During his career at
Digital, Bill has worked on VMS systems performance
analysis, VAXcluster design and development, operating
systems development, and transaction processing. He
was the technical director of OpenVMS engineering, the
technical director for engineering in Europe, and most
recently was focusing on software in the Technology and
Architecture Group of the Computer Systems Division.
Prior to joining Digital, Bill held research and teaching
posts in operating systems at the University of Edinburgh,
where he worked on the EMAS operating system. He was
also part of the start-up of European Silicon Structures
(ES2), an ambitious pan-European company. He holds
undergraduate and postgraduate degrees in computer
science from the University of Edinburgh.

