
The goal of the Spiralog file system project team was
to produce a high-performance, highly available, and
robust file system with a high-performance, on-line
backup capability for the OpenVMS Alpha operating
system. The server component of the Spiralog file sys-
tem is responsible for reading data from and writing
data to persistent storage. It must provide fast write
performance, scalability, and rapid recovery from sys-
tem failures. In addition, the server must allow an 
on-line backup utility to copy a consistent snapshot of
the file system to another location, while allowing nor-
mal file system operations to continue in parallel. 

In this paper, we describe the log-structured file sys-
tem (LFS) technology and its particular implementation
in the Spiralog file system. We also describe the novel
way in which the Spiralog server maps the log to pro-
vide a rich address space in which files and directories are
constructed. Finally, we review some of the opportuni-
ties and challenges presented by the design we chose. 

Background

All file systems must trade off performance against
availability in different ways to provide the throughput
required during normal operations and to protect data
from corruption during system failures. Traditionally,
file systems fall into two categories, careful write and
check on recovery. 

■ Careful writing policies are designed to provide a
fail-safe mechanism for the file system structures in
the event of a system failure; however, they suffer
from the need to serialize several I/Os during file
system operations. 

■ Some file systems forego the need to serialize file
system updates. After a system failure, however,
they require a complete disk scan to reconstruct a
consistent file system. This requirement becomes 
a problem as disk sizes increase. 

Modern file systems such as Cedar, Episode,
Microsoft’s New Technology File System (NTFS), 
and Digital’s POLYCENTER Advanced File System
use logging to overcome the problems inherent in
these two approaches.1,2 Logging file system metadata
removes the need to serialize I/Os and allows a simple
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and bounded mechanism for reconstructing the file
system after a failure. Researchers at the University of
California, Berkeley, took this process one stage fur-
ther and treated the whole disk as a single, sequential
log where all file system modifications are appended to
the tail of the log.3

Log-structured file system technology is particularly
appropriate to the Spiralog file system, because it is
designed as a clusterwide file system. The server must
support a large number of file system clerks, each of
which may be reading and writing data to the disk. The
clerks use large write-back caches to reduce the need to
read data from the server. The caches also allow the
clerks to buffer write requests destined for the server. 
A log-structured design allows multiple concurrent
writes to be grouped together into large, sequential
I/Os to the disk. This I/O pattern reduces disk head
movement during writing and allows the size of the
writes to be matched to characteristics of the underlying
disk. This is particularly beneficial for storage devices
with redundant arrays of inexpensive disks (RAID).4

The use of a log-structured, on-disk format greatly
simplifies the implementation of an on-line backup
capability. Here, the challenge is to provide a consis-
tent snapshot of the file system that can be copied to
the backup media while normal operations continue
to modify the file system. Because an LFS appends all
data to the tail of a log, all data writes within the log
are temporally ordered. A complete snapshot of the
file system corresponds to the contents of the sequen-
tial log up to the point in time that the snapshot was
created. By extension, an incremental backup corre-
sponds to the section of the sequential log created
since the last backup was taken. The Spiralog backup
utility uses these features to provide a fast, on-line, full
and incremental backup scheme.5

We have taken a number of features from the exist-
ing log-structured file system implementations, in par-
ticular, the idea of dividing the log into fixed-sized
segments as the basis for space allocation and clean-
ing.6 Fundamentally, however, existing log-structured
file systems have been built by using the main body of
an existing file system and layering on top of an under-
lying, log-structured container.3,7 This design has been
taken to the logical extreme with the implementation
of a log-structured disk.8 For the Spiralog file system,
we have chosen to use the sequential log capability
provided by the log-structured, on-disk format through-
out the file system. The Spiralog server combines log-
structured technology with more traditional B-tree
technology to provide a general server abstraction.
The B-tree mapping mechanism uses write-ahead log-
ging to give stability and recoverability guarantees.9 By
combining write-ahead logging with a log-structured
on-disk format, the Spiralog server merges file system
data and recovery log records into a single, sequential
write stream. 

The Spiralog file system differs from existing log-
structured implementations in a number of other
important ways, in particular, the mechanisms that we
have chosen to use for the cleaner. In subsequent sec-
tions of this paper, we compare these differences with
existing implementations where appropriate. 

Spiralog File System Server Architecture 

The Spiralog file system employs a client-server archi-
tecture. Each node in the cluster that mounts a
Spiralog volume runs a file system clerk. The term
clerk is used in this paper to distinguish the client com-
ponent of the file system from clients of the file system
as a whole. Clerks implement all the file functions asso-
ciated with maintaining the file system state with the
exception of persistent storage of file system and user
data. This latter responsibility falls on the Spiralog
server. There is exactly one server for each volume,
which must run on a node that has a direct connection
to the disk containing the volume. This distribution of
function, where the majority of file system processing
takes place on the clerk, is similar to that of the Echo
file system.10 The reasons for choosing this architecture
are described in more detail in the paper “Overview of
the Spiralog File System,” elsewhere in this issue.11

Spiralog clerks build files and directories in a struc-
tured address space called the file address space. This
address space is internal to the file system and is only
loosely related to that perceived by clients of the file
system. The server provides an interface that allows
the clerks to persistently map to file space addresses.
Internally, the server uses a logically infinite log struc-
ture, built on top of a physical disk, to store the file
system data and the structures necessary to locate 
the data. Figure 1 shows the relationship between the
clerks and the server and the relationships among 
the major components within the server. 
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The mapping layer is responsible for maintaining
the mapping between the file address space used by
the clerks to the address space of the log. The server
directly supports the file address space so that it can
make use of information about the relative perfor-
mance sensitivity of parts of the address space that is
implicit within its structure. Although this results in
the mapping layer being relatively complex, it reduces
the complexity of the clerks and aids performance.
The mapping layer is the primary point of contact with
the server. Here, read and write requests from clerks
are received and translated into operations on the log
address space. 

The log driver (LD) creates the illusion of an infinite
log on top of the physical disk. The LD transforms read
and write requests from the mapping layer that are cast
in terms of a location in the log address space into read
and write requests to physical addresses on the underly-
ing disk. Hiding the implementation of the log from
the mapping layer allows the organization of the log to
be altered transparently to the mapping layer. For
example, parts of the log can be migrated to other
physical devices without involving the mapping layer.

Although the log exported by the LD layer is con-
ceptually infinite, disks have a finite size. The cleaner 
is responsible for garbage collecting or coalescing free
space within the log. 

Figure 2 shows the relationship between the various
address spaces making up the Spiralog file system. In
the next three sections, we examine each of the com-
ponents of the server. 

Mapping Layer 

The mapping layer implements the mapping between
the file address space used by the file system clerks 
and the log address space maintained by the LD. 
It exports an interface to the clerks that they use to
read data from locations in the file address space, 
to write new data to the file address space, and to spec-
ify which previously written data is no longer required.
The interface also allows clerks to group sets of depen-
dent writes into units that succeed or fail as if they
were a single write. In this section, we introduce the
file address space and describe the data structure used
to map it. Then we explain the method used to handle
clerk requests to modify the address space. 
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File Address Space

The file address space is a structured address space. At
its highest level it is divided into objects, each of which
has a numeric object identifier (OID). An object may
have any number of named cells associated with it and
up to 21621 streams. A named cell may contain a vari-
able amount of data, but it is read and written as a sin-
gle unit. A stream is a sequence of bytes that are
addressed by their offset from the start of the stream,
up to a maximum of 26421. Fundamentally, there are
two forms of addresses defined by the file address
space: Named addresses of the form 

<OID, name> 

specify an individual named cell within an object, and
numeric addresses of the form 

<OID, stream-id, stream-offset, length>

specify a sequence of length contiguous bytes in an
individual stream belonging to an object. 

The clerks use named cells and streams to build files
and directories. In the Spiralog file system version 1.0,
a file is represented by an object, a named cell contain-
ing its attributes, and a single stream that is used 
to store the file’s data. A directory is represented by 
an object that contains a number of named cells. 
Each named cell represents a link in that directory and
contains what a traditional file system refers to as a
directory entry. Figure 3 shows how data files and
directories are built from named cells and streams. 

The mapping layer provides three principal opera-
tions for manipulating the file address space: read,
write, and clear. The read operation allows a clerk to
read the contents of a named cell, a contiguous range
of bytes from a stream, or all the named cells for a par-
ticular object that fall into a specified search range. The
write operation allows a clerk to write to a contiguous
range of bytes in a stream or an individual named cell.

The clear operation allows a clerk to remove a named
cell or a number of bytes from an object. 

Mapping the File Address Space 
We looked at a variety of indexing structures for mapping
the file address space onto the log address space.1, 12 We
chose a derivative of the B-tree for the following reasons.
For a uniform address space, B-trees provide predictable
worst-case access times because the tree is balanced
across all the keys it maps. A B-tree scales well as the
number of keys mapped increases. In other words, as
more keys are added, the B-tree grows in width and in
depth. Deep B-trees carry an obvious performance
penalty, particularly when the B-tree grows too large to
be held in memory. As described above, directory entries,
file attributes, and file data are all addresses, or keys, in
the file address space. Treating these keys as equals and
balancing the mapping B-tree across all these keys intro-
duces the possibility that a single directory with many
entries, or a file with many extents, may have an impact
on the access times for all the files stored in the log. 

To solve this problem, we limited the keys for an
object to a single B-tree leaf node. With this restric-
tion, several small files can be accommodated in a sin-
gle leaf node. Files with a large number of extents (or
large directories) are supported by allowing individual
streams to be spawned into subtrees. The subtrees are
balanced across the keys within the subtree. An object
can never span more than a single leaf node of the
main B-tree; therefore, nonleaf nodes of the main 
B-tree only need to contain OIDs. This allows the
main B-tree to be very compact. Figure 4 shows the
relationship between the main B-tree and its subtrees. 
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To reduce the time required to open a file, data for
small extents and small named cells are stored directly in
the leaf node that maps them. For larger extents (greater
than one disk block in size in the current implementa-
tion), the data item is written into the log and a pointer
to it is stored in the node. This pointer is an address in
the log address space. Figure 5 illustrates how the B-tree
maps a small file and a file with several large extents. 

Processing Read Requests 
The clerks submit read requests that may be for a
sequence of bytes from a stream (reading a data from a
file), a single named cell (reading a file’s attributes), or
a set of named cells (reading directory contents). To
fulfill a given read request, the server must consult the
B-tree to translate from the address in the file address
space supplied by the clerk to the position in the log
address space where the data is stored. The extents
making up a stream are created when the file data 
is written. If an application writes 8 kilobytes (KB) 
of data in 1-KB chunks, the B-tree would contain 
8 extents, one for each 1-KB write. The server may
need to collect data from several different parts of the
log address space to fulfill a single read request. 

Read requests share access to the B-tree in much 
the same way as processes share access to the CPU of 
a multiprocessing computer system. Read requests

arriving from clerks are placed in a first in first out
(FIFO) work queue and are started in order of their
arrival. All operations on the B-tree are performed by
a single worker thread in each volume. This avoids
the need for heavyweight locking on individual
nodes in the B-tree, which significantly reduces the
complexity of the tree manipulation algorithms and
removes the potential for deadlocks on tree nodes.
This reduction in complexity comes at the cost of 
the design not scaling with the number of processors
in a symmetric multiprocessing (SMP) system. So far
we have no evidence to show that this design deci-
sion represents a major performance limitation on
the server. 

The worker thread takes a request from the head 
of the work queue and traverses the B-tree until it
reaches a leaf node that maps the address range of 
the read request. Upon reaching a leaf node, it may
discover that the node contains 

■ Records that map part or all of the address of the
read request to locations in the log, and/or 

■ Records that map part or all of the address of the
read request to data stored directly in the node,
and/or 

■ No records mapping part or all of the address of the
read request 
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Data that is stored in the node is simply copied 
to the output buffer. When data is stored in the log, 
the worker thread issues requests to the LD to read the
data into the output buffer. Once all the reads have
been issued, the original request is placed on a pend-
ing queue until they complete; then the results are
returned to the clerk. When no data is stored for all or
part of the read request, the server zero-fills the corre-
sponding part of the output buffer. 

The process described above is complicated by the
fact that the B-tree is itself stored in the log. The map-
ping layer contains a node cache that ensures that com-
monly referenced nodes are normally found in memory.
When the worker thread needs to traverse through a
tree node that is not in memory, it must arrange for the
node to be read into the cache. The address of the node
in the log is the value of the pointer to it from its parent
node. The worker thread uses this to issue a request to
the LD to read the node into a cache buffer. While the
node read request is in progress, the original clerk oper-
ation is placed on a pending queue and the worker
thread proceeds to the next request on the work queue.
When the node is resident in memory, the pending read
request is placed back on the work queue to be
restarted. In this way, multiple read requests can be in
progress at any given time.

Processing Write Requests 
Write requests received by the server arrive in groups
consisting of a number of data items corresponding to
updates to noncontiguous addresses in the file address
space. Each group must be written as a single failure
atomic unit, which means that all the parts of the write
request must be made stable or none of them must
become stable. Such groups of writes are called wun-
ners and are used by the clerk to encapsulate complex
file system operations.11

Before the server can complete a wunner, that 
is, before an acknowledgment can be sent back to 
the clerk indicating that the wunner was successful, 
the server must make two guarantees: 

1. All parts of the wunner are stably stored in the log
so that the entire wunner is persistent in the event
of a system failure. 

2. All data items described by the wunner are visible to
subsequent read requests. 

The wunner is made persistent by writing each data
item to the log. Each data item is tagged with a log
record that identifies its corresponding file space
address. This allows the data to be recovered in the
event of a system failure. All individual writes are made
as part of a single compound atomic operation (CAO).
This method is provided by the LD layer to bracket 
a set of writes that must be recovered as an atomic
unit. Once all the writes for the wunner have been

issued to the log, the mapping layer instructs the LD
layer to end (or commit) the CAO. 

The wunner can be made visible to subsequent read
operations by updating the B-tree to reflect the loca-
tion of the new data. Unfortunately, this would cause
writes to incur a significant latency since updating the
B-tree involves traversing the B-tree and potentially
reading B-tree nodes into memory from the log.
Instead, the server completes a write operation before
the B-tree is updated. By doing this, however, it must
take additional steps to ensure that the data is visible to
subsequent read requests. 

Before completing the wunner, the mapping layer
queues the B-tree updates resulting from writing the
wunner to the same FIFO work queue as read requests.
All items are queued atomically, that is, no other read
or write operation can be interleaved with the individ-
ual wunner updates. In this way, the ordering between
the writes making up the wunner and subsequent read
or write operations is maintained. Work cannot begin
on a subsequent read request until work has started on
the B-tree updates ahead of it in the queue.

Once the B-tree updates have been queued to the
server work queue and the mapping layer has been
notified that the CAO for the writes has committed,
both of the guarantees that the server gives on write
completion hold. The data is persistent, and the writes
are visible to subsequent operations; therefore, the
server can send an acknowledgment back to the clerk. 

Updating the B-tree 
The worker thread processes a B-tree update request
in much the same way as a read request. The update
request traverses the B-tree until either it reaches the
node that maps the appropriate part of the file address
space, or it fails to find a node in memory. 

Once the leaf node is reached, it is updated to point at
the location of the data in the log (if the data is to be
stored directly in the node, the data is copied into the
node). The node is now dirty in memory and must 
be written to the log at some point. Rather than writing
the node immediately, the mapping layer writes a log
record describing the change, locks the node into the
cache, and places a flush operation for the node to 
the mapping layer’s flush queue. The flush operation
describes the location of the node in the tree and
records the need to write it to the log at some point 
in the future.

If, on its way to the leaf node, the write operation
reaches a node that is not in memory, the worker
thread arranges for it to be read from the log and the
write operation is placed on a pending queue as with a
read operation. Because the write has been acknowl-
edged to the clerk, the new data must be visible to sub-
sequent read operations even though the B-tree has
not been updated fully. This is achieved by attaching
an in-memory record of the update to the node that is
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being read. If a read operation reaches the node with
records of stalled updates, it must check whether any
of these records contains data that should be returned.
The record contains either a pointer to the data in the
log or the actual data itself. If a read operation finds 
a record that can satisfy all or part of the request, the
read request uses the information in the record to
fetch the data. This preserves the guarantee that the
clerk must see all data for which the write request has
been acknowledged. 

Once the node is read in from the log, the stalled
updates are restarted. Each update removes its log
record from the node and recommences traversing the
B-tree from that point. 

Writing B-tree Nodes to the Log 
Writing nodes consumes bandwidth to the disk that
might otherwise be used for writing or reading user
data, so the server tries to avoid doing so until
absolutely necessary. Two conditions make it neces-
sary to begin writing nodes: 

1. There are a large number of dirty nodes in the
cache. 

2. A checkpoint is in progress. 

In the first condition, most of the memory available
to the server has been given over to nodes that are
locked in memory and waiting to be written to the
log. Read and update operations begin to back up,
waiting for available memory to store nodes. In the
second condition, the LD has requested a checkpoint
in order to bound recovery time (see the section
Checkpointing later in this paper). 

When either of these conditions occurs, the mapping
layer switches into flush mode, during which it only
writes nodes, until the condition is changed. In flush
mode, the worker thread processes flush operations
from the mapping layer’s flush queue in depth order,
that is, starting with the nodes furthest from the root 
of the B-tree. For each flush operation, it traverses the
B-tree until it finds the target node and its parent. The
target node is identified by the keys it maps and its
level. The level of a node is its distance from the leaf of
the B-tree (or subtree). Unlike its depth, which is its
distance from the root of the B-tree, a node’s level does
not change as the B-tree grows and shrinks.

Once it has reached its destination, the flush opera-
tion writes out the target node and updates the parent
with the new log address. The modifications made to
the parent node by the flush operation are analogous
to those made to a leaf node by an update operation.
In this way, a modification to a leaf node eventually
works its way to the root of the B-tree, causing each
node in its path to be rewritten to the log over time.
Writing dirty nodes only when necessary and then in
deepest first order minimizes the number of nodes

written to the log and increases the average number of
changes that are reflected in each node written. 

Log Driver

The log driver is responsible for creating the illusion of
a semi-infinite sequential log on top of a physical disk.
The entire history of the file system is recorded in the
updates made to the log, but only those parts of 
the log that describe its current or live state need to 
be persistently stored on the disk. As files are overwrit-
ten or deleted, the parts of the log that contain the
previous contents become obsolete. 

Segments and the Segment Array 
To make the management of free space more straight-
forward, the log is divided into sections called
segments. In the Spiralog file system, segments are 
256 KB. Segments in the log are identified by their seg-
ment identifier (SEGID). SEGIDs increase monotoni-
cally and are never reused. Segments in the log that
contain live data are mapped to physical, segment-sized
locations or slots on the disk that are identified by their
segment number (SEGNUM) as shown in Figure 6.
The mapping between SEGID and SEGNUM is main-
tained by the segment array. The segment array also
tracks which parts of each mapped segment contain live
data. This information is used by the cleaner. 

The LD interface layer contains a segment switch
that allows segments to be fetched from a location
other than the disk.13 The backup function on the
Spiralog file system uses this mechanism to restore files
contained in segments held on backup media. Figure 7
shows the LD layer. 
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The Segment Writer 
The segment writer is responsible for all I/Os to the
log. It groups together writes it receives from the map-
ping layer into large, sequential I/Os where possible.
This increases write throughput, but at the potential
cost of increasing the latency of individual operations
when the disk is lightly loaded. 

As shown in Figure 8, the segment writer is respon-
sible for the internal organization of segments written
to the disk. Segments are divided into two sections, a
data area and a much smaller commit record area.
Writing a piece of data requires two operations to the
segment at the tail of the log. First the data item is
written to the data area of the segment. Once this I/O
has completed successfully, a record describing that
data is written to the commit record area. Only when
the write to the commit record area is complete can
the original request be considered stable. 

The need for two writes to disk (potentially, with a
rotational delay between) to commit a single data
write is clearly a disadvantage. Normally, however, the
segment writer receives a set of related writes from 
the mapping layer which are tagged as part of a single
CAO. Since the mapping layer is interested in the com-
pletion of the whole CAO and not the writes within it,
the segment writer is able to buffer additions to the
commit records area in memory and then write them
with a single I/O. Under a normal write load, this
reduces the number of I/Os for a single data write to
very close to one. 

The boundary between the commit record area and
the data area is fixed. Inevitably, this wastes space in
either the commit record area or data area when the
other fills. Choosing a size for the commit record area
that minimizes this waste requires some care. After
analysis of segments that had been subjected to a typi-
cal OpenVMS load, we chose 24 KB as the value for
the commit record area. 

This segment organization permits the segment
writer to have complete control over the contents of
the commit record area, which allows the segment
writer to accomplish two important recovery tasks: 

■ Detect the end of the log 
■ Detect multiblock write failure 

When physical segments are reused to extend the
log, they are not scrubbed and their commit record
areas contain stale (but comprehensible) records. The
recovery manager must distinguish between records
belonging to the current and the previous incarnation
of the physical slot. To achieve this, the segment writer
writes a sequence number into a specific byte in every
block written to the commit record area. The original
contents of the “stolen” bytes are stored within the
record being written. The sequence number used for 
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a segment is an attribute of the physical slot that is
assigned to it. The sequence number for a physical slot
is incremented each time the slot is reused, allowing
the recovery manager to detect blocks that do not
belong to the segment stored in the physical slot. 
The cost of resubstituting the stolen bytes is incurred
only during recovery and cleaning, because this is 
the only time that the commit record area is read. 

In hindsight, the partitioning of segments into data
and commit areas was probably a mistake. A layout 
that intermingles the data and commit records and that
allows them to be written in one I/O would offer bet-
ter latency at low throughput. If combined with careful
writing, command tag queuing, and other optimiza-
tions becoming more prevalent in disk hardware and
controllers, such an on-disk structure could offer sig-
nificant improvements in latency and throughput.

Cleaner

The cleaner’s job is to turn free space in segments in
the log into empty, unassigned physical slots that can
be used to extend the log. Areas of free space appear in
segments when the corresponding data decays; that is,
it is either deleted or replaced. 

The cleaner rewrites the live data contained in par-
tially full segments. Essentially, the cleaner forces the
segments to decay completely. If the rate at which data
is written to the log matches the rate at which it is
deleted, segments eventually become empty of their
own accord. When the log is full (fullness depends on
the distribution of file longevity), it is necessary to
proactively clean segments. As the cleaner continues 
to consume more of the disk bandwidth, performance
can be expected to decline. Our design goal was that
performance should be maintained up to a point at
which the log is 85 percent full. Beyond this, it was
acceptable for performance to degrade significantly. 

Bytes Die Young 
Recently written data is more likely to decay than old
data.14,15 Segments that were written a short time ago
are likely to decay further, after which the cost of
cleaning them will be less. In our design, the cleaner
selects candidate segments that were written some
time ago and are more likely to have undergone this
initial decay.

Mixing data cleaned from older segments with data
from the current stream of new writes is likely to pro-
duce a segment that will need to be cleaned again once
the new data has undergone its initial decay. To avoid
mixing cleaned data and data from the current write
stream, the cleaner builds its output segments sepa-
rately and then passes them to the LD to be threaded in
at the tail of the log. This has two important benefits:

■ The recovery information in the output segment is
minimal, consisting only of the self-describing tags
on the data. As a result, the cleaner is unlikely to
waste space in the data area by virtue of having filled
the commit record area. 

■ By constructing the output segment off-line, the
cleaner has as much time as it needs to look for data
chunks that best fill the segment. 

Remapping the Output Segment 
The data items contained in the cleaner’s output seg-
ment receive new addresses. The cleaner informs the
mapping layer of the change of location by submitting
B-tree update operation for each piece of data it
copied. The mapping layer handles this update opera-
tion in much the same way as it would a normal over-
write. This update does have one special property: 
the cleaner writes are conditional. In other words, the
mapping layer will update the B-tree to point to 
the copy created by the cleaner as long as no change
has been made to the data since the cleaner took its
copy. This allows the cleaner to work asynchronously
to file system activity and avoids any locking protocol
between the cleaner and any other part of the Spiralog
file system. 

To avoid modifying the mapping layer directly, the
cleaner does not copy B-tree nodes to its output seg-
ment. Instead, it requests the mapping layer to flush
the nodes that occur in its input segments (i.e., rewrite
them to the tail of the log). This also avoids wasting
space in the cleaner output segment on nodes that
map data in the cleaner’s input segments. These nodes
are guaranteed to decay as soon as the cleaner’s B-tree
updates are processed. 

Figure 9 shows how the cleaner constructs an output
segment from a number of input segments. The cleaner
keeps selecting input segments until either the output
segment is full, or there are no more input segments.
Figure 9 also shows the set of operations that are gener-
ated by the cleaner. In this example, the output segment
is filled with the contents of two full segments and part
of a third segment. This will cause the third input seg-
ment to decay still further, and the remaining data and
B-tree nodes will be cleaned when that segment is
selected to create another output segment. 

Cleaner Policies 
A set of heuristics governs the cleaner’s operation.
One of our fundamental design decisions was to sepa-
rate the cleaner policies from the mechanisms that
implement them. 

When to clean? 
Our design explicitly avoids cleaning until it is
required. This design appears to be a good match for 
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a workload on the OpenVMS system. On our time-
sharing system, the cleaner was entirely inactive for the
first three months of 1996; although segments were
used and reused repeatedly, they always decayed
entirely to empty of their own accord. The trade-off 
in avoiding cleaning is that although performance is
improved (no cleaner activity), the size of the full
savesnaps created by backup is increased. This is
because backup copies whole segments, regardless of
how much live data they contain. 

When the cleaner is not running, the live data in the
volume tends to be distributed across a large number of
partially full segments. To avoid this problem, we have
added a control to allow the system manager to manu-
ally start and stop the cleaner. Forcing the cleaner to
run before performing a full backup compacts the live
data in the log and reduces the size of the savesnap. 

In normal operation, the cleaner will start cleaning
when the number of free segments available to extend
the log falls below a fixed threshold (300 in the cur-
rent implementation). In making this calculation, the
cleaner takes into account the amount of space in 
the log that will be consumed by writing data currently
held in the clerks’ write-behind caches. Thus, accepting
data into the cache causes the cleaner to “clear the way”
for the subsequent write request from the clerk. 

When the cleaner starts, it is possible that the
amount of live data in the log is approaching 
the capacity of the underlying disk, so the cleaner may
find nothing to do. It is more likely, however, that
there will be free space it can reclaim. Because the
cleaner works by forcing the data in its input segments

to decay by rewriting, it is important that it begins
work while free segments are available. Delaying the
decision to start cleaning could result in the cleaner
being unable to proceed. 

A fixed number was chosen for the cleaning thresh-
old rather than one based on the size of the disk. The
size of the disk does not affect the urgency of cleaning
at any particular point in time. A more effective indica-
tor of urgency is the time taken for the disk to fill at the
maximum rate of writing. Writing to the log at 10 MB
per second will use 300 segments in about 8 seconds.
With hindsight, we realize that a threshold based on a
measurement of the speed of the disk might have been
a more appropriate choice. 

Input Segment Selection 
The cleaner divides segments into four distinct groups:

1. Empty. These segments contain no live data and are
available to the LD to extend the log. 

2. Noncleanable. These segments are not candidates
for cleaning for one of two reasons: 
■ The segment contains information that would

be required by the recovery manager in the event
of a system failure. Segments in this group are
always close to the tail of the log and therefore
likely to undergo further decay, making them
poor candidates for cleaning. 

■ The segment is part of a snapshot.5 The snapshot
represents a reference to the segment, so it can-
not be reused even though it may no longer con-
tain live data. 
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3. Preferred noncleanable. These segments have
recently experienced some natural decay. The sup-
position is that they may decay further in the near
future and so are not good candidates for cleaning. 

4. Cleanable. These segments have not decayed for
some time. Their stability makes them good candi-
dates for cleaning. 

The transitions between the groups are illustrated in
Figure 10. It should be noted that the cleaner itself
does not have to execute to transfer segments into the
empty state. 

The cleaner’s job is to fill output segments, not to
empty input segments. Once it has been started, the
cleaner works to entirely fill one segment. When that
segment has been filled, it is threaded into the log; 
if appropriate, the cleaner will then repeat the process
with a new output segment and a new set of input 
segments. The cleaner will commit a partially full 
output segment only under circumstances of extreme
resource depletion. 

The cleaner fills the output segment by copying
chunks of data forward from segments taken from the
cleanable group. The members of this group are held
on a list sorted in order of emptiness. Thus, the first
cleaner cycle will always cause the greatest number of
segments to decay. As the output segment fills, the
smallest chunk of data in the segment at the head of
the cleanable list may be larger than the space left in
the output segment. In this case, the cleaner performs
a limited search down the cleanable list for segments
containing a suitable chunk. The required information
is kept in memory, so this is a reasonably cheap opera-
tion. As each input segment is processed, the cleaner

temporarily removes it from the cleanable list. This
allows the mapping layer to process the operations the
cleaner submitted to it and thereby cause decay 
to occur before the cleaner again considers the seg-
ment as a candidate for cleaning. As the volume fills,
the ratio between the number of segments in the
cleanable and preferred noncleanable groups is
adjusted so that the size of the preferred noncleanable
group is reduced and segments are inserted into the
cleanable list. If appropriate, a segment in the clean-
able list that experiences decay will be moved to the
preferred noncleanable list. The preferred nonclean-
able list is kept in order of least recently decayed.
Hence, as it is emptied, the segments that are least
likely to experience further decay are moved to the
cleanable group. 

Recovery

The goal of recovery of any file system is to rebuild the
file system state after a system failure. This section
describes how the server reconstructs state, both in
memory and in the log. It then describes checkpoint-
ing, the mechanism by which the server bounds the
amount of time it takes to recover the file system state. 

Recovery Process 
In normal operation, a single update to the server can
be viewed as several stages: 

1. The user data is written to the log. It is tagged with
a self-identifying record that describes its position in
the file address space. A B-tree update operation is
generated that drives stage 2 of the update process.
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2. The leaf nodes of the B-tree are modified in mem-
ory, and corresponding change records are written
to the log to reflect the position of the new data. 
A flush operation is generated and queued and then
starts stage 3. 

3. The B-tree is written out level by level until the root
node has been rewritten. As one node is written to
the log, the parent of that node must be modified,
and a corresponding change record is written to the
log. As a parent node is changed, a further flush
operation is generated for the parent node and so
on up to the root node. 

Stage 2 of this process, logging changes to the leaf
nodes of the B-tree, is actually redundant. The self-
identifying tags that are written with the user data are
sufficient to act as change records for the leaf nodes of
the B-tree. When we started to design the server, we
chose a simple implementation based on physiological

write-ahead logging.9 As time progressed, we moved
more toward operational logging.9 The records writ-
ten in stage 2 are a holdover from the earlier imple-
mentation, which we may remove in a future release of
the Spiralog file system. 

At each stage of the process, a change record is writ-
ten to the log and an in-memory operation is generated
to drive the update through the next stage. In effect,
the change record describes the set of changes made 
to an in-memory copy of a node and an in-memory
operation associated with that change. 

Figure 11 shows the log and the in-memory work
queue at each stage of a write request. The B-tree
describing the file system state consists of three nodes:
A, B, and C. A wunner, consisting of a single data
write is accepted by the server. The write request
requires that both leaf nodes A and B are modified.
Stage 1 starts with an empty log and a write request for
Data 1. 
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After a system failure, the server’s goal is to recon-
struct the file system state to the point of the last write
that was written to the log at the time of the crash.
This recovery process involves rebuilding, in memory,
those B-tree nodes that were dirty and generating any
operations that were outstanding when the system
failed. The outstanding operations can be scheduled in
the normal way to make the changes that they repre-
sent permanent, thus avoiding the need to recover
them in the event of a future system failure. The recov-
ery process itself does not write to the log. 

The mapping layer work queue and the flush lists
are rebuilt, and the nodes are fetched into memory by
reading the sequential log from the recovery start
position (see the section Checkpointing) to the end of
the log in a single pass. 

The B-tree update operations are regenerated using
the self-identifying tag that was written with each
piece of data. When the recovery process finds a node,
a copy of the node is stored in memory. As log records
for node changes are read, they are attached to the
nodes in memory and a flush operation is generated
for the node. If a log record is read for a node that has
not yet been seen, the log record is attached to a place-
holder node that is marked as not-yet-seen. The recov-
ery process does not perform reads to fetch in nodes
that are not part of the recovery scan. Changes to 
B-tree nodes are a consequence of operations that
happened earlier in the log; therefore, a B-tree node

log record has the effect of committing a prior modifi-
cation. Recovery uses this fact to throw away update
operations that have been committed; they no longer
need to be applied. 

Figure 12 shows a log with change records and 
B-tree nodes along with the in-memory state of the 
B-tree node cache and the operations that are regener-
ated. In this example, change record 1 for node A is
superseded or committed by the new version of node A
(node A9). The new copy of node C (node C9) super-
sedes change records 3 and 5. This example also shows
the effect of finding a log record without seeing a copy
of the node during recovery. The log record for node B
is attached to an in-memory version of the node that is
marked as not-yet-seen. The data record with self-iden-
tifying tag Data 1 generates a B-tree update record that
is placed on the work queue for processing. As a final
pass, the recovery process generates the set of flush
operations that was outstanding when the system failed.
The set of flush requests is defined as the set of nodes in
the B-tree node cache that has log records attached
when the recovery scan is complete. In this case, flush
operations for nodes A9 and B are generated.

The server guarantees that a node is never written to
the log with uncommitted changes, which means that
we only need to log redo records.9,16 In addition, when
we see a node during the recovery scan, any log
records that are attached to the previous version of the
node in memory can be discarded. 
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Operations generated during recovery are posted to
the work queues as they would be in normal running.
Normal operation is not allowed to begin until the
recovery pass has completed; however, when recovery
reaches the end of the log, the server is able to service
operations from clerks. Thus new requests from the clerk
can be serviced, potentially in parallel with the operations
that were generated by the recovery process.

Log records are not applied to nodes during recov-
ery for a number of reasons: 

■ Less processing time is needed to scan the log and
therefore the server can start servicing new user
requests sooner. 

■ Recovery will not have seen copies of all nodes for
which it has log records. To apply the log records,
the B-tree node must be read from the log. This
would result in random read requests during the
sequential scan of the log, and again would result in a
longer period before user requests could be serviced.

■ There may be a copy of the node later in the recov-
ery scan. This would make the additional I/O oper-
ation redundant. 

Checkpointing

As we have shown, recovering an LFS log is imple-
mented by a single-pass sequential scan of all records
in the log from the recovery start position to the tail of
the log. This section defines a recovery start position
and describes how it can be moved forward to reduce
the amount of log that has to be scanned to recover
the file system state. 

To reconstruct the in-memory state when a system
crashed, recovery must see something in the log that
represents each operation or change of state that was
represented in memory but not yet made stable. This
means that at time t, the recovery start position is
defined as a point in the log after which all operations
that are not stably stored have a log record associated
with them. Operations obtain the association by scan-
ning the log sequentially from the beginning to the
end. The recovery position then becomes the start of
the log, which has two important problems: 

1. In the worst case, it would be necessary to sequen-
tially scan the entire log to perform recovery. For
large disks, a sequential read of the entire log con-
sumes a great deal of time. 

2. Recovery must process every log record written
between the recovery start position and the end of
the log. As a consequence, segments between the
start of recovery and the end of the log cannot be
cleaned and reused. 

To restrict the amount of time to recover the log
and to allow segments to be released by cleaning, the

recovery position must be moved forward from time
to time, so that it is always close to the tail of the log. 

Under any workload, a number of outstanding oper-
ations are at various stages of completion. In other
words, there is no point in the log when all activity 
has ceased. To overcome this problem, we use a fuzzy
checkpoint scheme.9 In version 1.0 of the Spiralog file
system, the server initiates a new checkpoint when 
20 MB of data has been written since the previous
checkpoint started. The process cannot yet move the
recovery position forward in the log to the start of 
the new checkpoint, because some outstanding opera-
tions may have priority. The mapping layer keeps track
of the operations that were started before the check-
point was initiated. When the last of these operations
has moved to the next stage (as defined by the recovery
process), the mapping layer declares that the check-
point is complete. Only then can the recovery position
be moved forward to the point in the log where the
checkpoint was started.

With this scheme, the server does not need to write
all the nodes in all paths in the B-tree between a dirty
node and the root node. All that is required in practice
is to write those nodes that have flush operations
queued for them at the time that the checkpoint is
started. Flushing these nodes causes change records 
to be written for their parent nodes after the start of
the checkpoint. As the recovery scan proceeds from
the start of the last completed checkpoint, it is able to
regenerate the flush operation on the parent nodes
from these change records. 

We chose to base the checkpoint interval on the
amount of data written to the log rather than on 
the amount of time to recover the log. We felt that this
would be an accurate measure of how long it would
take to recover a particular log. In operation, we find
this works well on logs that experience a reasonable
write load; however, for logs that predominantly ser-
vice read requests, the recovery time tends toward the
limit. In these cases, it may be more appropriate to add
timer-based checkpoints. 

Managing Free Space 
A traditional, update-in-place file system overwrites
superseded data by writing to the same physical loca-
tion on disk. If, for example, a single block is continu-
ally overwritten by a file system client, no extra disk
space is required to store the block. In contrast, a log-
structured file system appends all modifications to the
file system to the tail of the log. Every update to a sin-
gle block requires log space, not only for the data, but
also for the log records and B-tree nodes required to
make the B-tree consistent. Although old copies of the
data and B-tree nodes are marked as no longer live,
this free space is not immediately available for reuse; it
must be reclaimed by the cleaner. The goal is to ensure
that there is sufficient space in the log to write the
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parts of the B-tree that are needed to make the file 
system structures consistent. This means that we can
never have dirty B-tree nodes in memory that cannot
be flushed to the log. 

The server must carefully manage the amount of free
space in the log. It must provide two guarantees: 

1. A write will be accepted by the server only if there is
sufficient free space in the log to hold the data and
rewrite the mapping B-tree to describe it. This guar-
antee must hold regardless of how much space the
cleaner may subsequently reclaim.

2. At the higher levels of the file system, if an I/O oper-
ation is accepted, even if that operation is stored in
the write-behind cache, the data will be written to
the log. This guarantee holds except in the event of
a system failure.

The server provides these guarantees using the same
mechanism. As shown in Figure 13, the free space and
the reserved space in the log are modeled using an
escrow function.17

The total number of blocks that contain live, valid
data is maintained as the used space. When a write
operation is received, the server calculates the amount
of space in the log that is required to complete the
write and update the B-tree, based on the size of 
the write and the current topology of the B-tree. The
calculation is generous because the B-tree is a dynamic
structure and the outcome of a single update has
unpredictable effects on it. Each clerk reserves space
for dirty data that it has stored in the write-behind
cache using the same mechanism. 

To accept an operation and provide the required
guarantees, the server checks the current state of the
escrow function. If the guaranteed free space is suffi-
cient, the server accepts the operation. As operations
proceed, reserved space is converted to used space as
writes are performed. A single write operation may
affect several leaf nodes. As it becomes clear how the
B-tree is changing, we can convert any unrequired
reserved space back to guaranteed free space. 

If the cost of an operation exceeds the free space
irrespective of how the reserved space is converted, the

operation cannot be guaranteed to complete; there-
fore it is rejected. On the other hand, if the cost of the
operation is greater than the guaranteed free space (yet it
may fit in the log, depending on the outcome of the out-
standing operations), the server enters a “maybe” state.
For the server to leave the maybe state and return defini-
tive results, the escrow cost function must be collapsed.
This removes any uncertainty by decreasing the reserved
space figure, potentially to zero. Operations and unused
clerk reservations are drained so that reserved space is
converted to either used space or guaranteed free space.

This mechanism provides a fuzzy measure of how
much space is available in the log. When it is clear that
operations can succeed, they are allowed to continue.
If success is doubtful, the operation is held until a
definitive yes or no result can be determined. This
scheme of free space management is similar to the
method described in reference 7. 

Future Directions

This section outlines some of the possibilities for future
implementations of the Spiralog file system. 

Hierarchical Storage Management 
The Spiralog server distinguishes between the logical
position of a segment in the log and its physical location
on the media by means of the segment array. This map-
ping can be extended to cover a hierarchy of devices
with differing access characteristics, opening up the pos-
sibility of transparent data shelving. Since the unit of
migration is the segment, even large, sparsely used files
can benefit. Segments containing sections of the file not
held on the primary media can be retrieved from slower
storage as required. This is identical to the virtual mem-
ory paging concept. 

For applications that require a complete history of
the file system, segments can be saved to archive media
before being recycled by the cleaner. In principle, this
would make it possible to reconstruct the state of the
file system at any time. 

Disk Mirroring (RAID 1) Improvements 
When a mirrored set of disks is forcefully dismounted
with outstanding updates, such as when a system
crashes, rebuilding a consistent disk state can be an
expensive operation. A complete scan of the members
may be necessary because I/Os may have been out-
standing to any part of the mirrored set. 

Because the data on an LFS disk is temporally
ordered, making the members consistent following 
a failure is much more straightforward. In effect, an
LFS allows the equivalent of the minimerge function-
ality provided by Volume Shadowing for OpenVMS,
without the need for hardware support such as I/O
controller logging of operations.18
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Compression 
Adding file compression to an update-in-place file 
system presents a particular problem: what to do when
a data item is overwritten with a new version that does
not compress to the same size. Since all updates take
place at the tail of the log, an LFS avoids this problem
entirely. In addition, the amount of space consumed
by a data item is determined by its size and is not influ-
enced by the cluster size of the disk. For this reason, an
LFS does not need to employ file compaction to make
efficient use of large disks or RAID sets.19

Future Improvements 
The existing implementation can be improved in a
number of areas, many of which involve resource con-
sumption. The B-tree mapping mechanism, although
general and flexible, has high CPU overheads and
requires complex recovery algorithms. The segment
layout needs to be revisited to remove the need for seri-
alized I/Os when committing write operations and thus
further reduce the write latency. 

For the Spiralog file system version 1.0, we chose to
keep complete information about live data and data that
was no longer valid for every segment in the log. This
mechanism allows us to reduce the overhead of the
cleaner; however, it does so at the expense of memory
and disk space and consequently does not scale well to
multi-terabyte disks.

A Final Word 

Log structuring is a relatively new and exciting tech-
nology. Building Digital’s first product using this
technology has been both a considerable challenge and
a great deal of fun. Our experience during the con-
struction of the Spiralog product has led us to believe
that LFS technology has an important role to play in
the future of file systems and storage management. 
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