
Most computer users want to be able to recover data
lost through user error, software or media failure, or
site disaster but are unwilling to devote system
resources or downtime to make backup copies of the
data. Furthermore, with the rapid growth in the use of
data storage and the tendency to move systems toward
complete utilization (i.e., 24-hour by 7-day operation),
the practice of taking the system off line to back up
data is no longer feasible.

The Spiralog file system, an optional component of
the OpenVMS Alpha operating system, incorporates
a new approach to the backup process (called
simply backup), resulting in a number of substantial
customer benefits. By exploiting the features of log-
structured storage, the backup system combines the
advantages of two different traditional approaches
to performing backup: the flexibility of file-based
backup and the high performance of physically ori-
ented backup.

The design goal for the Spiralog backup system was
to provide customers with a fast, application-consistent,
on-line backup. In this paper, we explain the features
of the Spiralog file system that helped achieve this goal
and outline the design of the major backup functions,
namely volume save, volume restore, file restore, and
incremental management. We then present some per-
formance results arrived at using Spiralog version 1.1.
The paper concludes with a discussion of other design
approaches and areas for future work.

Background

File system data may be lost for many reasons, includ-
ing
■ User error—A user may mistakenly delete data.
■ Software failure—An application may execute

incorrectly.
■ Media failure—The computing equipment may

malfunction because of poor design, old age, etc.
■ Site disaster—Computing facilities may experience

failures in, for example, the electrical supply or cool-
ing systems. Also, environmental catastrophes such
as electrical storms and floods may damage facilities.

The Spiralog file system for the OpenVMS
operating system incorporates a new tech-
nical approach to backing up data. The fast,
low-impact backup can be used to create
consistent copies of the file system while
applications are actively modifying data.
The Spiralog backup uses the log-structured
file system to solve the backup problem. The
physical on-disk structure allows data to be
saved at near-maximum device throughput
with little processing of data. The backup
system achieves this level of performance
without compromising functionality such as
incremental backup or fast, selective restore.

32 Digital Technical Journal Vol. 8 No. 2 1996

Designing a Fast,
On-line Backup System
for a Log-structured
File System

Russell J. Green
Alasdair C. Baird
J. Christopher Davies

The ability to save backup copies of all or part of
a file system’s information in a form that allows it to be
restored is essential to most customers who use com-
puting resources. To understand the backup capability
needed in the Spiralog file system, we spoke to a num-
ber of customers—five directly and several hundred
through public forums. Each ran a different type of sys-
tem in a distinct environment, ranging from research
and development to finance on OpenVMS and other
systems. Our survey revealed the following set of cus-
tomer requirements for the Spiralog backup system:

1. Backup copies of data must be consistent with
respect to the applications that use the data.

2. Data must be continuously available to applica-
tions. Downtime for the purpose of backup is unac-
ceptable. An application must copy all data of
interest as it exists at an instant in time; however,
the application should also be allowed to modify
the data during the copying process. Performing
backup in such a way as to satisfy these constraints is
often called hot backup or on-line backup. Figure 1
illustrates how data inconsistency can occur during
an on-line backup.

3. The backup operations, particularly the save opera-
tion, must be fast. That is, copying data from the
system or restoring data to the system must be
accomplished in the time available.

4. The backup system must allow an incremental
backup operation, i.e., an operation that captures
only the changes made to data since the last backup.

The Spiralog backup team set out to design and
implement a backup system that would meet the four
customer requirements. The following section dis-
cusses the features of the implementation of a log-
structured file system (LFS) that allowed us to use
a new approach to performing backup. Note that
throughout this paper we use disk to describe the

physical media used to store data and volume to
describe the abstraction of the disk as presented by the
Spiralog file system.

Spiralog Features

The Spiralog file system is an implementation of a log-
structured file system. An LFS is characterized by the
use of disk storage as a sequential, never-ending repos-
itory of data. We generally refer to this organization of
data as a log. Johnson and Laing describe in detail the
design of the Spiralog implementation of an LFS and
how files are maintained in this implementation.1

Some features unique to a log-structured file system
are of particular interest in the design of a backup
system.2–4 These features are

■ Segments, where a segment is the fundamental
unit of storage

■ The no-overwrite nature of the system
■ The temporal ordering of on-disk data structures
■ The means by which files are constructed

This section of the paper discusses the relevance of
these features; a later section explains how these fea-
tures are exploited in the backup design.

Segments
In this paper, the term segment refers to a logical
entity that is uniquely identified and never overwrit-
ten. This definition is distinct from the physical stor-
age of a segment. The only physical feature of interest
to backup with regard to segments is that they are effi-
cient to read in their entirety.

Using log-structured storage in a file system allows
efficient writing irrespective of the write patterns or
load to the file system. All write operations are
grouped in segment-sized chunks. The segment size is
chosen to be sufficiently large that the time required
to read or write the segment is significantly greater
than the time required to access the segment, i.e., the
time required for a head seek and rotational delay on
a magnetic disk. All data (except the LFS homeblock
and checkpoint information used to locate the end of
the data log) is stored in segments, and all segments
are known to the file system. From a backup point of
view, this means that the entire contents of a volume
can be copied by reading the segments. The segments
are large enough to allow efficient reading, resulting in
a near-maximum transfer rate of the device.

No Overwrite
In a log-structured file system, in which the segments
are never overwritten, all data is written to new, empty
segments. Each new segment is given a segment iden-
tifier (segid) allocated in a monotonically increasing

Digital Technical Journal Vol. 8 No. 2 1996 33

1 2

1’ 2’

1

1 2’

FILE BACKUP EXPLANATION

The initial file contains two blocks.

Backup starts and copies the first
block.

The application rewrites the file.

Backup proceeds and copies the
second block. The resulting backup
copy is corrupt because the first
block is inconsistent with the latest
rewritten file.

TIME

Figure 1
Example of an On-line Backup That Results in Inconsistent
Data

manner. At any point in time, the entire contents and
state of a volume can be described in terms of a (check-
point position, segment list) pair. At the physical level,
a volume consists of a list of segments and a position
within a segment that defines the end of the log.
Rosenblum describes the concept of time travel, where
an old state of the file system can be revisited by creat-
ing and maintaining a snapshot of the file system for
future access.3 Allowing time travel in this way requires
maintaining an old checkpoint and disabling the reuse
of disk space by the cleaner. The cleaner is a mecha-
nism used to reclaim disk space occupied by obsolete
data in a log, i.e., disk space no longer referenced in
the file system. The contents of a snapshot are inde-
pendent of operations undertaken on the live version
of the file system. Modifying or deleting a file affects
only the live version of the file system (see Figure 2).
Because of the no-overwrite nature of the LFS, previ-
ously written data remains unchanged.

Other mechanisms specific to a particular backup
algorithm have been developed to achieve on-line con-
sistency.5 The snapshot model as described above allows
a more general solution with respect to multiple con-
current backups and the choice of the save algorithm.

A read-only version of the file system at an instant
in time is precisely what is required for application
consistency in on-line backup. This snapshot approach
to attaining consistency in on-line backup has been
used in other systems.6, 7 As explained in the following
sections, the Spiralog file system combines the snap-
shot technique with features of log-structured storage
to obtain both on-line backup consistency and perfor-
mance benefits for backup.

Temporal Ordering
As mentioned earlier, all data, i.e., user data and file
system metadata (data that describes the user data in
the file system), is stored in segments and there is no
overwrite of segments. All on-disk data structures that
refer to physical placement of data use pointers,
namely (segid, offset) pairs, to describe the location of
the data. Each (segid, offset) pair specifies the segment
and where within that segment the data is stored.
Together, these imply the following two properties of
data structures, which are key features of an LFS:

1. On-disk structure pointers, namely (segid, offset)
pairs, are relatively time ordered. Specifically, data
stored at (s2, o2) was written more recently than
data stored at (s1, o1) if and only if s2 is greater
than s1 or s2 equals s1 and o2 is greater than o1.
Thus, new data would appear to the right in the
data structure depicted in Figure 3.

2. Any data structure that uses on-disk pointers stored
within the segments (the mapping data structure
implementing the LFS index) must be time
ordered; that is, all pointers must refer to data writ-
ten prior to the pointer. Referring again to Figure 3,
only data structures that point to the left are valid.

These properties of on-disk data structures are of
interest when designing backup systems. Such data
structures can be traversed so that segments are read
in reverse time order. To understand this concept, con-
sider the root of some on-disk data structure. This root
must have been written after any of the data to which
it refers (property 2). A data item that the root refer-
ences must have been written before the root and so
must have been stored in a segment with a segid less
than or equal to that of the segment in which the root
is stored (property 1). A similar inductive argument can
be used to show that any on-disk data structure can be
traversed using a single pass of segments in increasing
segment age, i.e., decreasing segid. This is of particular
interest when considering how to recover selective
pieces of data (e.g., individual files) from an on-disk
structure that has been stored in such a way that only
sequential access is viable. The storage of the segments
that compose a volume on tape as part of a backup is an
example of such an on-disk data structure.

File Construction
Whitaker, Bayley, and Widdowson describe the persis-
tent address space as exported by the Spiralog LFS.8

Essentially, the interface presented by the log-
structured server is that of a memory (various read and
write operations) indexed using a file identifier and an
address range. The entire contents of a file, regardless
of type or size, are defined by the file identifier and all
possible addresses built using that identifier.

This means of file construction is important when
considering how to restore the contents of a file. All

34 Digital Technical Journal Vol. 8 No. 2 1996

DIRECTION IN WHICH THE LOG IS WRITTEN

This data is
visible to only
the snapshot.

This data is
shared by the
snapshot and the
live file system.

This is new live
data written since
the snapshot was
taken.

Figure 2
Data Accessible to the Snapshot and to the Live File
System

DIRECTION IN WHICH THE LOG IS WRITTEN

All pointers specify
previously written segments.

S1 S2 S3

Figure 3
A Valid Data Structure in the Log

Digital Technical Journal Vol. 8 No. 2 1996 35

data contained in a file defined by a file identifier can be
recovered, independent of how the file was created,
without any knowledge of the file system structure.
Consequently, together with the temporal ordering of
data in an LFS, files can be recovered using an ordered
linear scan of the segments of a volume, provided the
on-disk data structures are traversed correctly. This
mechanism allows efficient file restore from a sequence
of segments. In particular, a set of files can be restored
in a single pass of a saved volume stored on tape.

Existing Approaches to Backup

The design of the Spiralog backup attempts to com-
bine the advantages of file-based backup tools such as
Files-11 backup, UNIX tar, and Windows NT backup,
and physical backup tools such as UNIX dd, Files-11
backup/PHYSICAL, and HSC backup (a controller-
based backup for OpenVMS volumes).9

File-based Backup
A file-based backup system has two main advantages:
(1) the system can explicitly name files to be saved, and
(2) the system can restore individual files. In this paper,
the file or structure that contains the output data of
a backup save operation is called a saveset. Individual
file restore is achieved by scanning a saveset for the file
and then recreating the file using the saved contents.
Incremental file-based backup usually entails keeping
a record of when the last backup was made (either on a
per-file basis or on a per-volume basis) and copying
only those files and directories that have been created
or modified since a previous backup time.

The penalty associated with these features of a file-
based backup system is that of save performance.
In effect, the backup system performs a considerable
amount of work to lay out data in the saveset to allow
simple restore. All files are segregated to a much greater
extent than they are in the file system on-disk struc-
ture. The limiting factor in the performance of a file-
based save operation is the rate at which data can be
read from the source disk. Although there are some
ways to improve performance, in the case of a volume
that has a large number of files, read performance is
always costly. Figure 4 illustrates the layouts of three
different types of savesets.

Physical Backup
In contrast to the file-based approach to backup, a
physical backup system copies the actual blocks of data
on the source disk to a saveset. The backup system is
able to read the disk optimally, which allows an imple-
mentation to achieve data throughput near the disk’s
maximum transfer rate. Physical backups typically
allow neither individual file restore nor incremental

backup. The overhead required to include sufficient
information for these features usually erodes the per-
formance benefits offered by the physical copy. In
addition, a physical backup usually requires that the
entire volume be saved regardless of how much of the
volume is used to store data.

How Spiralog Backup Exploits the LFS

Spiralog backup uses the snapshot mechanism to
achieve on-line consistency for backup. This section
describes how Spiralog attains high-performance
backup with respect to the various save and restore
operations.

Volume Save Operation
The save operation of Spiralog creates a snapshot and
then physically copies it to a tape or disk structure
called a savesnap. (This term is chosen to be different
from saveset to emphasize that it holds a consistent
snapshot of the data.) This physical copy operation
allows high-performance data transfer with minimal
processing.10 In addition, the temporal ordering of
data stored by Spiralog means that this physical copy
operation can also be an incremental operation.

The savesnap is a file that contains, among other
information, a list of segments exactly as they exist
in the log. The structure of the savesnap allows the
efficient implementation of volume restore and file
restore (see Figure 5 and Figure 6).

The steps of a full save operation are as follows:

1. Create a snapshot and mount it. This mounted
snapshot looks like a separate, read-only file system.
Read information about the snapshot.

DIRECTION IN WHICH THE TAPE IS WRITTEN

1 2 3 4 5 6 7 8 9 10 11

In a physical backup saveset, blocks are laid out contiguously on tape.
File restore is not possible without random access.

FILE 1 FILE 2

In a file backup saveset, files are laid out contiguously on tape.
To create this sort of saveset, files need to be read individually
from disk, which generally means suboptimal disk access.

DIR

FILE 3

SEGT SEG SEG SEG

In a Spiralog backup saveset, directory (DIR) and segment table
(SEGT) allow file restore from segments. Segments are large
enough to allow near-optimal disk access.

Figure 4
Layouts of Three Different Types of Saveset

36 Digital Technical Journal Vol. 8 No. 2 1996

2. Write the header to the savesnap, including snap-
shot information such as the checkpoint position.

3. Copy the contents of the file system directories to
the savesnap.

4. Write the list of segids that compose the snapshot
to the savesnap as a segment table in decreasing
segid order.

5. Copy these segments in decreasing segid order
from the volume to the savesnap (see Figure 6).

6. Dismount and delete the snapshot, leaving only the
contents of the live volume accessible. The effect of
deleting the snapshot is to release all the space used
to store segments that contain only snapshot data.
All segments that contain data in the live volume
are left intact.

The Spiralog backup system is primarily physical.
The system copies the volume (snapshot) data in
segments that are large enough to allow efficient
disk reading, regardless of the number of files in the
volume. To save a volume, the Spiralog backup sys-
tem has to read all the directories in the volume and
then all the segments. In comparison, a file-based
backup system must read all the directories and then
all the files. On volumes with large file populations,
file-based backup performance suffers greatly as a
result of the number of read operations required to
save the volume. Our measurements showed that the
directory-gathering phase of our copy operation was
insignificant in relation to the data transfer during the
segment copy phase.

Incremental Save Operation
The incremental save operation in Spiralog is very
different from that in a file-based backup. We use the
temporal ordering feature of the LFS to capture only
the changes in a volume’s data as part of the incremen-
tal save. The temporal ordering provides a simple way
of determining the relative age of data. To be precise,
data in the segment with segid s2 must have been writ-
ten after data in the segment with segid s1 if and only
if s2 is greater than s1.

Consider the lifetime of a volume as an endless
sequence of segments. A backup copy of a volume at
any time is a copy of all segments that contain data
accessible in that volume. Segments in the volume’s
history that are not included in the backup copy are
those that no longer contain any useful data or those
that have been cleaned. An incremental backup con-
tains the sequence of segments containing accessible
data written since a previous backup.

This is different from an incremental save operation
in a file-based backup scheme. The Spiralog incremen-
tal save operation copies only the data written since
the last backup. In comparison, a file-based backup

SEGMENTS (DECREASING SEGID)

HEADER SP ST SEGMENT
TABLE SEGMENT SEGMENT

METADATA

KEY:

PHYSICAL SAVESNAP
RECORD (FIXED SIZE FOR
ENTIRE SAVESNAP)

ZERO PADDING

SAVESNAP INFORMATION

SNAPSHOT INFORMATION

SP

ST

DIRECTORY
INFO

Figure 5
Savesnap Structure

DIRECTION IN WHICH THE LOG IS WRITTEN

101 102 104 106 108103 105 107

TAIL OF THE LOG

ROOT OF THE
SNAPSHOT

THE LOG

105 104 102 101

SAVESNAP

DIRECTION IN WHICH
THE TAPE IS WRITTEN

KEY:

UNUSED SEGMENT

USED SEGMENT

Figure 6
Correspondence between Segments on Disk and in the
Savesnap

utility, where a level 0 save is a full backup (it requires
no other savesnaps for a restore), and a level 1 save
is an incremental backup since the full backup (it
requires one additional savesnap for a restore, namely
the full backup).

Figure 7 shows the savesnaps produced from
full and incremental save operations. Note that the
most recently written segment may appear in two
different savesnaps that supposedly contain disjoint
data. For example, segment 4, the youngest segment
in Monday’s savesnap, appears in the savesnaps made
on both Monday and Wednesday. The youngest seg-
ment is not guaranteed to be full at the time of a snap-
shot creation, and therefore a later savesnap may
contain data that was not in the first savesnap.
Consequently, incremental savesnaps recapture the
oldest segment in their segment range.

Note that with this design a slowly changing file
can be spread across many incremental savesnaps.
Restoring such a file accordingly may require access
to many savesnaps. The file restore section shows that
the design of file restore allows efficient tape traversal
for these files.

Volume Restore Operation
The Spiralog backup volume restore operation takes a
set of savesnaps and copies the segments that make up
a snapshot onto a disk. Together, this set of segments
and the location of the snapshot checkpoint define
a volume. The steps involved in a volume restore from
a full savesnap are

1. Open the savesnap, and read the snapshot check-
point position from the savesnap header.

2. Initialize the target disk to be a Spiralog volume.
3. Copy all segments from the savesnap to the tar-

get disk. Note that the segments written to the
target disk do not depend in any way on the tar-
get disk geometry. This means that the target disk
may be completely different from the source

Digital Technical Journal Vol. 8 No. 2 1996 37

incremental save comprises entire files that contain
new or modified data. For example, consider an incre-
mental save of a volume in which a large database file
has had only one record updated in place since a full
backup. Spiralog’s incremental save copies the seg-
ments written since the last full backup that contain
the modified record with other updated file system
index data. A file-based backup copies the entire data-
base file.

The following steps for the incremental save opera-
tion augment the six process steps previously
described for the save operation. Note that steps 3a,
4a, and 5a follow steps 3, 4, and 5, respectively.

3a. Write dependent savesnap information. This is a
list of the savesnaps required to complete the
chain of segments that constitutes the entire snap-
shot contents. The savesnap information includes
a unique savesnap identifier (volume id, segment
id, segment offset). This is the checkpoint position
of the snapshot and is unique across volumes.

4a. Determine the segment range to be stored in this
savesnap. This range is calculated by reading the
segment range of the last backup from a file stored
on the source volume.

5a. Record the minimum segid stored in this save-
snap with the segment table. The segment table
contains the segids of all segments in the saved
snapshot. The incremental savesnap contains
segments identified by a subset of these segids.
The segid of the last segment stored in the save-
snap is recorded as the minimum segid held in the
savesnap.

7. Record on the source volume the segment range
stored in the savesnap.

The implementation provides an interface that
allows the user to specify the maximum number of
savesnaps required for a restore operation. This feature
is similar to specifying the levels in the UNIX dump

TIME LIVE SEGMENTS IN VOLUME SAVESNAPS

Monday 1 3 4

Wednesday 1 3 4 5 7

Friday 1 4 5 7 9

Full save on
Monday

Wednesday
since Monday

Friday since
Wednesday

4 3 1

7 5 4

9 7

Figure 7
Snapshot Contents in Incremental Savesnaps

disk from which the savesnap was made, providing
the target container is large enough to hold the
restored segments.

4. Backup declares the volume restore as complete
(no more segments will be written to the volume).
Backup tells the file system how to mount the vol-
ume by supplying the snapshot checkpoint location.

A Spiralog restore operation treats an incremental
savesnap and all the preceding savesnaps upon which it
depends as a single savesnap. For savesnaps other than
the most recent savesnap (the base savesnap), the
snapshot information and directory information are
ignored. The sole purpose of these savesnaps is to pro-
vide segments to the base savesnap.

To restore a volume from a set of incremental save-
snaps, the Spiralog backup system performs steps 1
and 2 using the base savesnap. In step 3, the restore
copies all the segments in the snapshot defined by
the base savesnap to the target disk. (Note that there
is a one-to-one correspondence between snapshots
and savesnaps.) The savesnaps are processed in reverse
chronological order. The contents of the segment
table in the base savesnap define the list of segments in
the snapshot to be restored. Although the volume
restore operation copies all the segments in the base
savesnap, not all segments in the savesnaps processed
may be required. Savesnaps are included in the restore
process if they contain some segments that are needed.
Such savesnaps may also contain segments that were
cleaned before the base savesnap was created.

The structure of the savesnap allows the efficient
location and copying of specific segments. The segment
table in the savesnap describes exactly which segments
are stored in the savesnap. Since the segments are of
a fixed size, it is easy to calculate the position within
the savesnap where a particular segment is stored, pro-
vided the segment table is available and the position of
the first segment is known. This will always be the case
by the time the segment table has been read because
the segments immediately follow this table.

Most savesnaps are stored on tape. This storage
medium lends itself to the indexing just described. In
particular, modern tape drives such as the Digital
Linear Tape (DLT) series provide fast, relative tape
positioning that allows tape-based savesnaps to be
selectively read more quickly than with a sequential
scan.11 Similarly, on random-access media such as
disks, a particular segment can be read without strict
sequential scanning of data.

The volume restore operation is therefore a physical
operation. The segments can be read and written effi-
ciently (even in the case of incremental savesnaps from
sequential media), resulting in a high-performance
recovery from volume failure or site disaster.

38 Digital Technical Journal Vol. 8 No. 2 1996

File Restore Operation
The purpose of a file restore operation is to provide
a fast and efficient way to retrieve a small number of
files from a savesnap without performing a full volume
restore. Typically, file restore is used to recover files
that have been inadvertently deleted. To achieve high-
performance file restore, we imposed the following
requirements on the design:

■ A file restore session must process as few savesnaps
as possible; it should skip savesnaps that do not
contain data needed by the session.

■ When processing a savesnap, the file restore must
scan the savesnap linearly, in a single pass.

The process of restoring files can be broken down
into three steps: (1) discover the file identifiers for all
the files to be restored; (2) use the file identifiers to
locate the file data in the saved segments, and then
read that data; and (3) place the newly recovered data
back into the current Spiralog file system.

Discovering the File Identifiers The user supplies the
names of the files to be restored. The mapping
between the file names and the file identifiers associ-
ated with these names is stored in the segments, but
this information cannot be discovered simply by
inspecting the contents of the saved segments. A
corollary of the temporal ordering of the segments
within a savesnap is that hierarchical information, such
as nested directories, tends to be presented in precisely
the wrong order for scanning in a single pass. To over-
come this problem, the save operation writes the com-
plete directory tree to the savesnap before copying any
segments to the savesnap. This tree maps file names to
identifiers for every file and directory in the savesnap.
The file restore session constructs a partial tree of the
names of the files to be restored. The partial tree is
then matched, in a single pass, against the complete
tree stored in the savesnap. This process produces the
required file identifiers.

Locating and Reading the File Data After discovering
the file identifiers, the file restore session reads the list
of segments present in the savesnap; this list comes
after the directory tree and before any saved segments.
The file restore then switches focus to discover pre-
cisely which segments contain the file data that corre-
spond to the file identifiers.

The first segment read from the savesnap contains
the tail of the log. The log provides a mapping between
file identifiers and locations of data within segments.
The tail of the log contains the root of the map.

We developed a simple interface for the file restore
to use to navigate the map. Essentially, this interface
permits the retrieval of all mapping information

■ The location contains real file data.
■ The location given by the context holds more

mapping information. In this case, the core func-
tion can be applied repeatedly to determine the
precise location of the file’s data.

A work list of contexts in decreasing segid order
drives the file restore process. The procedure for
retrieving the data for a single file identifier is as fol-
lows. At the outset of the file restore operation, the
work list holds a single context that identifies the root
of the map (the tail of the log). As items are taken from
the head of the list, the file restore must perform one
of two actions. If the context is a pointer to real file
data, then the file restore reads the data at that location.
If the context holds the location of mapping informa-
tion, then the core function must be applied to enu-
merate all possible further mapping information held
there. The file restore operation places all returned
contexts in the work list in the correct order prior to
picking the next work item. This simple procedure,
which is illustrated in Figure 8, continues until the
work list is empty and all the file’s data has been read.

To cope with more than one file, the file restore
operation extends this procedure by converting the
work list so that it associates a particular file identifier

Digital Technical Journal Vol. 8 No. 2 1996 39

relevant to a particular file identifier that is held within
a given segment. The mapping information returned
through this interface describes either mapping infor-
mation held elsewhere or real file data. One character-
istic of the log is that anything to which such mapping
information points must occur earlier in the log, that
is, in a subsequent saved segment. Recall property 2 of
the LFS on-disk data structures. Consequently, the file
restore session will progress through the savesnaps in
the desired linear fashion provided that requests are
presented to the interface in the correct order. The
correct order is determined by the allocation of segids.
Since segids increase monotonically over time, it is
necessary only to ensure that requests are presented in
a decreasing segid order.

The file restore interface operates on an object
called a context. The context is a tuple that contains a
location in the log, namely (segid, offset), and a type
field. When supplied with a file identifier and a con-
text, the core function of the interface inspects the seg-
ment determined by the context and returns the set of
contexts that enumerate all available mapping infor-
mation for the file identifier held at the location given
by the initial context.

The type of context returned indicates one of the
following situations:

A

DIRECTION IN WHICH THE LOG IS WRITTEN

METADATA

633 555 478 195 69 59

A B C

SAVESNAP

TARGET FILE SYSTEM FOR FILE RESTORE

The shaded areas represent the file data to be restored and the file system metadata that
needs to be accessed to retrieve that data. The restore session has thus far processed
segment 478. Part A of the file has been recovered into the target file system. Parts B and C
are still to come. After processing segment 478, the file restore visits the next known parts of
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment
59 will be on the work list. The next segment that the file restore will read is segment 69, so the
session can skip the intervening segment (segment 195).

KEY:

FILE DATA

FILE SYSTEM MAP DATA

EXTENT OF SAVESNAP TRAVERSAL SO FAR

Figure 8
File Restore Session in Progress

40 Digital Technical Journal Vol. 8 No. 2 1996

with each context. File restore initializes the work list
to hold a pointer to the root of the map (the tail of the
log) for each file identifier to be restored. The effect is
to interleave requests to read more than one file while
maintaining the correct segid ordering.

A further subtlety occurs when the context at the
head of the work list is found to refer to a segment
outside the current savesnap. The ordering imposed
on the work list implies that all subsequent items of
work must also be outside the current savesnap. This
follows from the temporal ordering properties of LFS
on-disk structures and the way in which incremental
savesnaps are defined. When this situation occurs, the
work list is saved. When the next savesnap is ready for
processing, the file restore session can be restarted
using the saved work list as the starting point.

During this step, the file restore writes the pieces of
files to the target volume as they are read from the
savesnap. Since the file restore process allocates file
identifiers on a per-volume basis, restore must allocate
new file identifiers in the target volume to accept the
data being read from the source savesnap.

The new file identifiers are hidden from users dur-
ing the file restore until the file restore process has fin-
ished since the files are not complete and may be
missing vital parts such as access permissions. Rather
than allow access to these partial files, the file restore
hides the new file identifiers until all the data is pres-
ent, at which time the final stage of the file restore can
take place.

Making the Recovered Files Available to the User In
the third step of the process, the file restore operation
makes the newly recovered files accessible. At the
beginning of the step, the files exist only as bits of data
associated with new file identifiers—the files do not yet
have names. The names that are now bound to these
file identifiers come from the partial directory tree that
was originally used to match against the directory tree
in the savesnap. This final step restores the original
names and contents to all the files that were originally
requested. The files retain the new file identifiers that
were allocated during the file restore process.

Management of Incremental Saves
One design goal for the Spiralog backup was to reduce
the cost of storage management. The design includes
the means of performing an incremental volume save
that copies only data written since the previous
backup. To implement a backup strategy that never
requires more than one full backup but allows restores
using a finite number of savesnaps, we designed and
implemented the savesnap merge function.

Savesnap merge operates similarly to volume
restore, but instead of copying segments to a disk as

in a volume restore, savesnap merge copies segments
to a new savesnap. As shown in Figure 9, the effect
of merging a base savesnap and all the incremental
savesnaps upon which it depends is to produce a full
savesnap. This savesnap is precisely the one that would
have been created had the base savesnap been specified
as a full savesnap instead of an incremental savesnap.
Spiralog merge copies the savesnap information and
the directory information stored in the base savesnap
to the merged savesnap before it copies the segment
table and the segments.

Savesnap merge provides a practical way of manag-
ing very large data volumes. The merge operation can
be used to limit the number of savesnaps required to
restore a snapshot, even if full backups are never taken.
Merge is independent of the source volume and can be
undertaken on a different system to allow further sys-
tem management flexibility.

Summary of Spiralog Backup Features
A summary of the features and performance provided
by the Spiralog backup system appears in Table 3 at
the end of the Results section. For comparison, the
table also contains corresponding information for the
file-based and physical approaches to backup.

Results

We measured volume save and individual file restore
performance on both the Spiralog backup system and
the backup system for Files-11, the original OpenVMS
file system. The hardware configuration consisted of
a DEC 3000 Model 500 and a single RZ25 source disk
each for Spiralog and Files-11 volumes, respectively.
The target device for the backup was a TZ877 tape.
The system was running under the OpenVMS version
7.0 operating system and Spiralog version 1.1. The
volumes were populated with file distributions that
reflected typical user accounts in our development
environment. Each volume contained 260 megabytes
(MB) of user data, which included a total of 21,682
files in 401 directories.

Volume Save Performance
For both the Spiralog backup and the Files-11 backup,
we saved the source volume to a freshly initialized tape
on an otherwise idle system. We measured the elapsed
time of the save operation and recorded the size of the
output savesnap or saveset. We averaged the results
over five iterations of the benchmark. Table 1 presents
these measurements and the resulting throughput.

The throughput represents the average rate in
megabytes per second (MB/s) of writing to tape over
the duration of a save operation. In the case of
Spiralog, tape throughput varies greatly with the

Digital Technical Journal Vol. 8 No. 2 1996 41

phases of the save operation. During the directory
scan phase (typically up to 20 percent of the total
elapsed save time), the only tape output is a compact
representation of the volume directory graph. In com-
parison, the segment writing phase is usually bound by
the tape throughput rate. In this configuration, the
tape is the throughput bottleneck; its maximum raw
data throughput is 1.25 MB/s (uncompressed).11

Overall, the Spiralog volume save operation is nearly
twice as fast as the Files-11 backup volume save opera-
tion in this type of computing environment. Note that
the Spiralog savesnap is larger than the corresponding
Files-11 saveset. The Spiralog savesnap is less efficient
at holding user data than the packed per-file represen-
tation of the Files-11 saveset. In many cases, though,
the higher performance of the Spiralog save operation
more than outweighs this inefficiency, particularly
when it is taken into account that the Spiralog save
operation can be performed on-line.

File Restore Performance
To determine file restore performance, we measured
how long it took to restore a single file from the
savesets created in the save benchmark tests. The hard-
ware and software configurations were identical to
those used for the save measurements. We deleted
a single 3-kilobyte (KB) file from the source volume
and then restored the file. We repeated this operation
nine times, each time measuring the time it took to
restore the file. Table 2 shows the results.

The Spiralog backup system achieves such good
performance for file restore by using its knowledge of
the way the segments are laid out on tape. The file
restore process needs to read only those segments
required to restore the file; the restore skips the inter-
vening segments using tape skip commands. In the
example presented in Figure 8, the restore can skip
segments 555 and 195. In contrast, a file-based backup
such as Files-11 usually does not have accurate index-
ing information to minimize tape I/O. Spiralog’s
tape-skipping benefit is particularly noticeable when
restoring small numbers of files from very large save-
snaps; however, as shown in Table 2, even with small
savesets, individual file restore using Spiralog backup is
three times as fast as using Files-11.

Table 3 presents a comparison of the save per-
formance and features of the Spiralog, file-based, and
physical backup systems.

Table 1
Performance Comparison of the Spiralog and Files-11 Backup Save Operations

Savesnap or
Elapsed Time Saveset Size Throughput

Backup System (Minutes:seconds) (Megabytes) (Megabytes/second)

Spiralog save 05:20 339 1.05
Files-11 backup 10:14 297 0.48

Table 2
Performance Comparison of the Spiralog and Files-11
Individual File Restore Operations

Elapsed Time
Backup System (Minutes:seconds)

Spiralog file restore 01:06
Files-11 backup 03:35

BACKUPS

9 7 5 4 1

Monday – Full

Wednesday –
Incremental

4 3 1

7 5 4

9 7Friday –
Incremental

Merge three savesets to produce one
new savesnap equivalent to a full
savesnap taken on Friday.

Figure 9
Merging Savesnaps

42 Digital Technical Journal Vol. 8 No. 2 1996

Other Approaches and Future Work

This section outlines some other design options
we considered for the Spiralog backup system. Our
approach offers further possibilities in a number
of areas. We describe some of the opportunities
available.

Backup and the Cleaner
The benefits of the write performance gains in an LFS
are attained at the cost of having to clean segments.8

An opportunity appears to exist in combining the
cleaner and backup functions to reduce the amount of
work done by either or both of these components;
however, the aims of backup and the cleaner are quite
different. Backup needs to read all segments written
since a specific time (in the case of a full backup, since
the birth of the volume). The cleaner needs to defrag-
ment the free space on the volume. This is done most
efficiently by relocating data held in certain segments.
These segments are those that are sufficiently empty to
be worth scavenging for free space. The data in these
segments should also be stable in the sense that the
data is unlikely to be deleted or outdated immediately
after relocation.

The only real benefit that can be exacted by looking
at these functions together is to clean some segments
while performing backup. For example, once a seg-
ment has been read to copy to a savesnap, it can be
cleaned. This approach is probably not a good one
because it reduces system performance in the follow-
ing ways: additional processing required in cleaning
removes CPU and memory resources available to
applications, and the cleaner generates write opera-
tions that reduce the backup read rate.

There are two other areas in which backup and
the cleaner mechanism interact that warrant further
investigation.

1. The save operation copies segments in their
entirety. That is, the operation copies both “stale”
(old) data and live data to a savesnap. The cost of
extra storage media for this extraneous data is
traded off against the performance penalty in trying
to copy only live data. It appears that the file system
should run the cleaner vigorously prior to a backup
to minimize the stale data copied.

2. Incremental savesnaps contain cleaned data. This
means that an incremental savesnap contains a copy
of data that already exists in one of the savesnaps on
which it depends. This is an apparent waste of effort
and storage space.

It is best to undertake a full backup after a thorough
cleaning of the volume. A single strategy for incremen-
tal backups is less easy to define. On one hand, the size
of an incremental backup is increased if much cleaning
is performed before the backup. On the other hand,
restore operations from a large incremental backup
(particularly selective file restores) are likely to be
more efficient. The larger the incremental backup, the
more data it contains. Consequently, the chance of
restoring a single file from just the base savesnap
increases with the size of the incremental backup.
Studying the interactions between the backup and the
cleaner may offer some insight into how to improve
either or both of these components.

A continuous backup system can take copies of seg-
ments from disk using policies similar to the cleaner.
This is explored in Kohl’s paper. 12

Table 3
Comparison of Spiralog, File-based, and Physical Backup Systems

Spiralog Backup File-based Backup Physical Backup
System System System

Save performance The number of I/Os is The number of I/Os is The number of I/Os
(the number of I/Os O(number of segments that O(number of files) is O(size of the disk)
required to save the contain live data) plus I/Os to read the file
the source volume) O(number of directories) data plus O(number

of directories) I /Os
File restore Yes Yes No
Volume restore Yes, fast Yes Yes, fast but limited

to disks of the same size
Incremental save Yes, physical Yes, entire files that No

have changed

Note that this table uses “big oh” notation to bound a value. O(n), which is pronounced “order of n,” means that the value represented is no
greater than Cn for some constant C, regardless of the value of n. Informally, this means that O(n) can be thought of as some constant multiple
of n.

Digital Technical Journal Vol. 8 No. 2 1996 43

Separating the Backup Save Operation into a
Snapshot and a Copy
The design of the save operation involves the creation
of a snapshot followed by the fast copy of the snapshot
to some separate storage. The Spiralog version 1.1
implementation of the save operation combines these
steps. A snapshot can exist only during a backup save
operation.

System administrators and applications have signifi-
cantly more flexibility if the split in these two functions
of backup is visible. The ability to create snapshots that
can be mounted to look like read-only versions of a file
system may eliminate the need for the large number of
backups performed today. Indeed, some file systems
offer this feature.6,7 The additional advantage that
Spiralog offers is to allow the very efficient copying of
individual snapshots to off-line media.

Improving the Consistency and Availability
of On-line Backup
There are a number of ways to improve application
consistency and availability using the Spiralog backup
design. In addition, some of these features further
reduce storage management costs.

Intervolume Snapshot Creation Spiralog allows a
practical way of creating and managing large volumes,
but there will be times when applications require data
consistency for backup across volumes. A coordinated
snapshot across volumes would provide this.

Application Involvement The Spiralog version 1.1
implementation does not address application involve-
ment in the creation of a snapshot. A snapshot’s con-
tents are precisely the volume’s contents that are on
disk at the time of snapshot creation. This means that
applications accessing the volume have to commit
independently to the file system data they require to
be part of the snapshot.

There is an emerging trend to design system-
level interfaces that allow better application interac-
tion with the file system. For example, the Windows
NT operating system provides the oplock and
NtNotifyChangeDirectory interfaces to advise an
interested application of changes to files and directo-
ries. Similarly, an interface could allow applications to
register an interest with the file system for notification
of an impending snapshot creation. The application
would then be able to commit the data it needs as part
of a backup and continue, thus improving application
consistency and availability and reducing work for sys-
tem administrators.

Minimizing Disk Reads
The Spiralog file restore retrieves the data that
constitutes a number of files in a single pass of

segments read in a specific order. This design was
important to allow the efficient restore of files from
sequential media.

More generally, this way of traversing the file system
allows specific, known parts of a set of files to be
obtained by reading the segments that contain part of
this data only once. This technique is also interesting
for random-access media storage of volumes because
it describes an algorithm for minimizing the number
of disk reads to get this data. Possible applications
of this technique are numerous and are particularly
interesting in the context of data management of very
large volumes.

For example, suppose an application is required
to monitor an attribute (e.g., the time of last access) of
all files on a massive volume. Suppose also that the vol-
ume is too big to allow the application to trawl the file
system daily for this information; this process takes too
long. If the application maintains a database of the
information, it needs only to gather the changes that
have happened to this data on a daily basis. Therefore,
the application could obtain this information by tra-
versing only those segments written since the last time
it updated its database and locating the relevant data
within those segments. Our mechanism for restoring
files provides exactly this capability. An investigation of
how applications might best use this technique could
lead to the design of an interface that the file system
could use for fast scanning of data.

Conclusions

File systems use backup to protect against data loss.
A significant portion of the cost associated with man-
aging storage is directly related to the backup func-
tion.13–17 Log-structured data storage provides some
features that reduce the costs associated with backup.

The Spiralog log-structured file system version 1.1
for the OpenVMS Alpha operating system includes
a new, high-performance, on-line backup system. The
approach that Spiralog takes to obtain data consis-
tency for on-line backup is similar to the snapshot
approach used in Network Appliance Corporation’s
FAServer, the Digital UNIX Advanced File System, and
other systems.6,7 The feature unique to the Spiralog
backup system is its use of the physical attributes of
log-structured storage to obtain high-performance
saving and restoring of data to and from tape. In par-
ticular, the gain in save performance is the result of
a restore strategy that can efficiently retrieve data from
a sequence of segments stored on tape as they are on
disk. This design leads to a minimum of processing
and discrete I/O operations. The restore operation
uses improvements in tape hardware to reduce pro-
cessing and I/O bandwidth consumption; the opera-
tion uses tape record skipping within savesnaps for fast

44 Digital Technical Journal Vol. 8 No. 2 1996

data indexing. The Spiralog backup implementation
provides an on-line backup save operation with signifi-
cantly improved performance over existing offerings.
Performance of individual file restore is also improved.

Acknowledgments

We would like to thank the following people whose
efforts were vital in bringing the Spiralog backup sys-
tem to fruition: Nancy Phan, who helped us develop
the product and worked relentlessly to get it right;
Judy Parsons, who helped us clarify, describe, and doc-
ument our work; Clare Wells, who helped us focus on
the real customer problems; Alan Paxton, who was
involved in the early design ideas and later specifica-
tion of some of the implementation; and, finally,
Cathy Foley, our engineering manager, who sup-
ported us throughout the project.

References

1. J. Johnson and W. Laing, “Overview of the Spiralog
File System,” Digital Technical Journal, vol. 8, no. 2
(1996, this issue): 5–14.

2. M. Rosenblum and J. Ousterhout, “The Design and
Implementation of a Log-Structured File System,”
ACM Transactions on Computer Systems, vol. 10,
no. 1 (February 1992): 26–52.

3. M. Rosenblum, “The Design and Implementation of a
Log-Structured File System,” Report No. UCB/CSD
92/696 (Berkeley, Calif.: University of California,
Berkeley, 1992).

4. M. Seltzer, K. Bostock, M. McKusick, and C. Staelin,
“An Implementation of a Log-Structured File System
for UNIX,” Proceedings of the USENIX Winter 1993
Technical Conference, San Diego, Calif. (January
1993).

5. K. Walls, “File Backup System for Producing a Backup
Copy of a File Which May Be Updated during
Backup,” U.S. Patent No. 5,163,148.

6. D. Hitz, J. Lau, and M. Malcolm, “File System Design
for an NFS File Server Appliance,” Proceedings of
the USENIX Winter 1994 Technical Conference,
San Francisco, Calif. (January 1994).

7. S. Chutani, O. Anderson, M. Kazar, and B. Leverett,
“The Episode File System,” Proceedings of the
USENIX Winter 1992 Technical Conference,
San Francisco, Calif. (January 1992).

8. C. Whitaker, J. Bayley, and R. Widdowson, “Design of
the Server for the Spiralog File System,” Digital
Technical Journal, vol. 8, no. 2 (1996, this issue): 15–31.

9. OpenVMS System Management Utilities Reference
Manual: A–L, Order No. AA-PV5PC-TK (Maynard,
Mass.: Digital Equipment Corporation, 1995).

10. L. Drizis, “A Method for Fast Tape Backups and
Restores,” Software —Practice and Experience,
vol. 23, no. 7 (July 1993): 813–815.

11. “Digital Linear Tape Meets Critical Need for Data
Backup,” Quantum Technical Information Paper,
http://www.quantum.com/products/whitepapers/
dlttips.html (Milpitas, Calif.: Quantum Corporation,
1996).

12. J. Kohl, C. Staelin, and M. Stonebraker, “HighLight:
Using a Log-structured File System for Tertiary
Storage Management,” Proceedings of the USENIX
Winter 1993 Technical Conference (Winter 1993).

13. R. Mason, “The Storage Management Market Part 1:
Preliminary 1994 Market Sizing,” IDC No. 9538
(Framingham, Mass.: International Data Corporation,
December 1994).

14. I. Stenmark, “Implementation Guidelines for Client/
Server Backup” (Stamford, Conn.: Gartner Group,
March 14, 1994).

15. I. Stenmark, “Market Size: Network and Systems
Management Software” (Stamford, Conn.: Gartner
Group, June 30, 1995).

16. I. Stenmark, “Client/Server Backup—Leaders and
Challengers” (Stamford, Conn.: Gartner Group,
May 9, 1994).

17. R. Wrenn, “Why the Real Cost of Storage is More
Than $1/MB,” presented at the U.S. DECUS Sympo-
sium, St. Louis, Mo., June 3–6, 1996.

Biographies

Russell J. Green
Russell Green is a principal software engineer in Digital’s
OpenVMS Engineering group in Livingston, Scotland.
He was responsible for the design and delivery of the
backup component of the Spiralog file system for the
OpenVMS operating system. Currently, Russ is the tech-
nical leader of Spiralog follow-on work. Prior to joining
Digital in 1991, he was a staff member in the computer
science department at the University of Edinburgh. Russ
received a B.Sc. (Honours, 1st class, 1983) in engineering
from the University of Cape Town and an M.Sc. (1986)
in engineering from the University of Edinburgh. He
holds two patents and has filed a patent application for
his Spiralog backup system work.

Digital Technical Journal Vol. 8 No. 2 1996 45

J. Christopher Davies
Software engineer Chris Davies has worked for Digital
Equipment Corporation in Livingston, Scotland, since
September 1991. As a member of the Spiralog team, he
initially designed and implemented the Spiralog on-line
backup system. In subsequent work, he improved the
performance of the file system. Chris is currently working
on further Spiralog development. Prior to joining Digital,
Chris was employed by NRG Surveys as a software engi-
neer while earning his degree. He holds a B.Sc. (Honours,
1991) in artificial intelligence and computer science from
the University of Edinburgh. He is coauthor of a filed
patent application for the Spiralog backup system.

Alasdair C. Baird
Alasdair Baird joined Digital in 1988 to work for the
ULTRIX Engineering group in Reading, U.K. He is
a senior software engineer and has been a member of
Digital’s OpenVMS Engineering group since 1991.
He worked on the design of the Spiralog file system and
then contributed to the Spiralog backup system, particu-
larly the file restore component. Currently, he is involved
in Spiralog development work. Alasdair received a B.Sc.
(Honours, 1988) in computer science from the University
of Edinburgh.

