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Integrating the Spiralog
File System into the
OpenVMS Operating
System

Digital’s Spiralog file system is a log-structured
file system that makes extensive use of write-
back caching. Its technology is substantially
different from that of the traditional OpenVMS
file system, known as Files-11. The integration
of the Spiralog file system into the OpenVMS
environment had to ensure that existing appli-
cations ran unchanged and at the same time had
to expose the benefits of the new file system.
Application compatibility was attained through
an emulation of the existing Files-11 file system
interface. The Spiralog file system provides an
ordered write-behind cache that allows applica-
tions to control write order through the barrier
primitive. This form of caching gives the benefits
of write-back caching and protects data integrity.
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The Spiralog file system is based on a log-structuring
method that offers fast writes and a fast, on-line backup
capability."® The integration of the Spiralog file system
into the OpenVMS operating system presented many
challenges. Its programming interface and its extensive
use of write-back caching were substantially different
from those of the existing OpenVMS file system,
known as Files-11.

To encourage use of the Spiralog file system, we had
to ensure that existing applications ran unchanged in
the OpenVMS environment. A file system emulation
layer provided the necessary compatibility by mapping
the Files-11 file system interface onto the Spiralog file
system. Before we could build the emulation layer, we
needed to understand how these applications used the
file system interface. The approach taken to under-
standing application requirements led to a file system
emulation layer that exceeded the original compatibil-
ity expectations.

The first part of this paper deals with the approach
to integrating a new file system into the OpenVMS
environment and preserving application compatibility.
It describes the various levels at which the file system
could have been integrated and the decision to emu-
late the low-level file system interface. Techniques
such as tracing, source code scanning, and functional
analysis of the Files-11 file system helped determine
which features should be supported by the emulation.

The Spiralog file system uses extensive write-back
caching to gain performance over the write-through
cache on the Files-11 file system. Applications have
relied on the ordering of writes implied by write-
through caching to maintain on-disk consistency in
the event of system failures. The lack of ordering
guarantees prevented the implementation of such
careful write policies in write-back environments. The
Spiralog file system uses a write-behind cache (intro-
duced in the Echo file system) to allow applications to
take advantage of write-back caching performance
while preserving careful write policies.* This feature is
unique in a commercial file system. The second part of
this paper describes the difficulties of integrating write-
back caching into a write-through environment and
how a write-behind cache addressed these problems.



Providing a Compatible File System Interface

Application compatibility can be described in two
ways: compatibility at the file system interface and
compatibility of the on-disk structure. Since only spe-
cialized applications use knowledge of the on-disk
structure and maintaining compatibility at the inter-
face level is a feature of the OpenVMS system, the
Spiralog file system preserves compatibility at the file
system interface level only. In the section Files-11 and
the Spiralog File System On-disk Structures, we give
an overview of the major on-disk differences between
the two file systems.

The level of interface compatibility would have a
large impact on how well users adopted the Spiralog
file system. If data and applications could be moved to
a Spiralog volume and run unchanged, the file system
would be better accepted. The goal for the Spiralog
file system was to achieve 100 percent interface com-
patibility for the majority of existing applications. The
implementation of a log-structured file system, how-
ever, meant that certain features and operations of the
Files-11 file system could not be supported.

The OpenVMS operating system provides a number
of file system interfaces that are called by applications.
This section describes how we chose the most compat-
ible file system interface. The OpenVMS operating
system directly supports a system-level call interface
(QIO) to the file system, which is an extremely com-
plex interface.” The QIO interface is very specific to
the OpenVMS system and is difficult to map directly
onto a modern file system interface. This interface is
used infrequently by applications but is used exten-
sively by OpenVMS utilities.

OpenVMS File System Environment
This section gives an overview of the general
OpenVMS file system environment, and the existing

OpenVMS and the new Spiralog file system interfaces.
To emulate the Files-11 file system, it was important to
understand the way it is used by applications in the
OpenVMS environment. A brief description of the
Files-11 and the Spiralog file system interfaces gives an
indication of the problems in mapping one interface
onto the other. These problems are discussed later in
the section Compatibility Problems.

In the OpenVMS environment, applications inter-
act with the file system through various interfaces,
ranging from high-level language interfaces to direct
file system calls. Figure 1 shows the organization of
interfaces within the OpenVMS environment, includ-
ing both the Spiralog and the Files-11 file systems.

The following briefly describes the levels of interface
to the file system.

= High-level language (HLL) libraries. HLL libraries
provide file system functions for high-level
languages such as the Standard C library and
FORTRAN 1/0 functions.

= OpenVMS language-specific libraries. These
libraries offer OpenVMS-specific file system func-
tions at a high level. For example, lib$create_dir( )
creates a new directory with specific OpenVMS
security attributes such as ownership.

= Record Management Services. The OpenVMS
Record Management Services (RMS) are a set of
complex routines that form part of the OpenVMS
kernel. These routines are primarily used to access
structured data within a file. However, there are
also routines at the file level, for example, open,
close, delete, and rename. The RMS parsing rou-
tines for file search and open give the OpenVMS
operating system a consistent syntax for file names.
These routines also provide file name parsing oper-
ations for higher level libraries. RMS calls to the file
system are treated in the same way as direct applica-
tion calls to the file system.

APPLICATIONS

HIGH-LEVEL LANGUAGE
LIBRARIES, e.g., C LIBRARY

OPENVMS LANGUAGE-
SPECIFIC LIBRARIES

RECORD MANAGEMENT SERVICES — SYSTEM CALLS

OPENVMS FILE SYSTEM INTERFACE — SYSTEM CALLS (QIO)

FILES-11 FILE SYSTEM
EMULATION LAYER

SPIRALOG FILE SYSTEM

FILES-11 FILE SYSTEM

Figure 1
The OpenVMS File System Environment
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= Files-11 file system interface. The OpenVMS oper-
ating system has traditionally provided the Files-11
file system for applications. It provides a low-level
file system interface so that applications can request
file system operations from the kernel.

Each file system call can be composed of multiple
subcalls. These subcalls can be combined in numer-
ous permutations to form a complex file system
operation. The number of permutations of calls and
subcalls makes the file system interface extremely
difficult to understand and use.

= File system emulation layer. This layer provides
a compatible interface between the Spiralog file
system and existing applications. Calls to export
the new features available in the Spiralog file system
are also included in this layer. An important new
feature, the write-behind cache, is described in the
section Overview of Caching.

= The Spiralog file system interface. The Spiralog
file system provides a generic file system interface.
This interface was designed to provide a superset
of the features that are typically available in file sys-
tems used in the UNIX operating system. File
system emulation layers, such as the one written for
Files-11, could also be written for many different
file systems.® Features that could not be provided
generically, for example, the implementation of
security policies, are implemented in the file system
emulation layer.

The Spiralog file system’s interface is based on the
Virtual File System (VES), which provides a file
system interface similar to those found on UNIX
systems.” Functions available are at a higher level
than the Files-11 file system interface. For example,
an atomic rename function is provided.

Files-11 and the Spiralog File System

On-disk Structures

A major difference between the Files-11 and the
Spiralog file systems is the way data is laid out on
the disk. The Files-11 system is a conventional,
update-in-place file system.® Here, space is reserved for
file data, and updates to that data are written back to
the same location on the disk. Given this knowledge,
applications could place data on Files-11 volumes to
take advantage of the disk’s geometry. For example,
the Files-11 file system allows applications to place files
on cylinder boundaries to reduce seek times.

The Spiralog file system is a log-structured file
system (LFS). The entire volume is treated as a con-
tinuous log with updates to files being appended to
the tail of the log. In effect, files do not have a fixed
home location on a volume. Updates to files, or cleaner
activity, will change the location of data on a volume.
Applications do not have to be concerned where their
data is placed on the disk; LFS provides this mapping.
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With the advent of modern disks in the last decade,
the exact placement of data has become much less crit-
ical. Modern disks frequently return geometry infor-
mation that does not reflect the exact geometry of
the disk. This nullifies any advantage that exact place-
ment on the disk offers to applications. Fortunately,
with the Files-11 file system, the use of exact file place-
ment is considered a hint to the file system and can be
safely ignored.

Interface Decision

Many features of the Spiralog file system and the
Files-11 file system are not directly compatible. To
enable existing applications to use the Spiralog file
system, a suitable file system interface had to be
selected and emulated. The file system emulation layer
would need to hook into an existing kernel-level file
system interface to provide existing applications with
access to the Spiralog file system.

Analysis of existing applications showed that the
majority of file system calls came through the RMS
interface. This provides a functionally simpler interface
onto the lower level Files-11 interface. Most applica-
tions on the OpenVMS operating system use the RMS
interface, either directly or through HLL libraries, to
access the file system.

Few applications make direct calls to the low-level
Files-11 interface. Calls to this interface are typically
made by RMS and OpenVMS utilities that provide
a simplified interface to the file system. RMS supports
file access routines, and OpenVMS utilities support
modification of file metadata, for example, security
information. Although few in number, those applica-
tions that do call the Files-11 file system directly are
significant ones. If the only interface supported was
RMS, then these utilities, such as SET FILE and
OpenVMS Backup, would need significant modifica-
tion. This class of utilities represents a large number of
the OpenVMS utilities that maintain the file system.

To provide support for the widest range of applica-
tions, we selected the low-level Files-11 interface for
use by the file system emulation layer. By selecting this
interface, we decreased the amount of work needed
for its emulation. However, this gain was offset by the
increased complexity in the interface emulation.

Problems caused by this interface selection are
described in the next section.

Interface Compatibility

Once the file system interface was selected, choices
had to be made about the level of support provided by
the emulation layer. Due to the nature of the log-
structured file system, described in the section Files-11
and the Spiralog File System On-disk Structures, full
compatibility of all features in the emulation layer was
not possible. This section discusses some of the deci-
sions made concerning interface compatibility.



An initial decision was made to support docu-
mented low-level Files-11 calls through the emula-
tion layer as often as possible. This would enable all
well-behaved applications to run unchanged on the
Spiralog file system. Examples of well-behaved appli-
cations are those that make use of HLL library calls.
The following categories of access to the file system
would not be supported:

= Those directly accessing the disk without going
through the file system

» Those making use of specific on-disk structure
information

* Those making use of undocumented file system
features

A very small number of applications fell into these
categories. Examples of applications that make use of
on-disk structure knowledge are the OpenVMS boot
code, disk structure analyzers, and disk defragmenters.

The majority of OpenVMS applications make file
system calls through the RMS interface. Using file sys-
tem call-tracing techniques, described in the section
Investigation Techniques, a full set of file system calls
made by RMS could be constructed. After analysis of
this trace data, it was clear that RMS used a small set
of well-structured calls to the low-level file system
interface. Further, detailed analysis of these calls
showed that all RMS operations could be fully emu-
lated on the Spiralog file system.

The support of OpenVMS file system utilities that
made direct calls to the low-level Files-11 interface was
important if we were to minimize the amount of code
change required in the OpenVMS code base. Analysis
of these utilities showed that the majority of them
could be supported through the emulation layer.

Very few applications made use of features of the
Files-11 file system that could not be emulated. This
enabled a high number of applications to run
unchanged on the Spiralog file system.

Table 1
Categorization of File System Features

Compatibility Problems

This section describes some of the compatibility prob-
lems that we encountered in developing the emulation
layer and how we resolved them.

When considering the compatibility of the Spiralog
file system with the Files-11 file system, we placed the
features of the file system into three categories: sup-
ported, ignored, and not supported. Table 1 gives
examples and descriptions of these categories. A feature
was recategorized only if it could be supported but was
not used, or if it could not be easily supported but
was used by a wide range of applications.

The majority of OpenVMS applications make sup-
ported file system calls. These applications will run as
intended on the Spiralog file system. Few applications
make calls that could be safely ignored. These applica-
tions would run successfully but could not make use of
these features. Very few applications made calls that
were not supported. Unfortunately, some of these
applications were very important to the success of the
Spiralog file system, for example, system management
utilities that were optimized for the Files-11 system.

Analysis of applications that made unsupported calls
showed the following categories of use:

= Those that accessed the file header—a structure
used to store a file’s attributes. This method was
used to return multiple file attributes in one call.
The supported mechanism involved an individual
call for each attribute.

This was solved by returning an emulated file
header to applications that contained the majority
of information interesting to applications.

= Those reading directory files. This method was used
to perform fast directory scans. The supported
mechanism involved a file system call for each name.

This was solved by providing a bulk directory
reading interface call. This call was similar to the
getdirentries( ) call on the UNIX system and was

Category Examples

Notes

Supported. The operation requested
was completed, and a success status
was returned.

Ignored. The operation requested
was ignored, and a success status
was returned.

a file.

Not supported. The operation
requested was ignored, and a
failure status was returned.

Requests to create a file or open

Arequest to place a fileina
specific position on the disk to
improve performance.

A request to directly read the
on-disk structure.

Most calls made by applications
belong in the supported category.

This type of feature is incompatible
with a log-structured file system.

It is very infrequently used and not
available through HLL libraries. It
could be safely ignored.

This type of request is specific to
the Files-11 file system and could
be allowed to fail because the
application would not work on the
Spiralog file system. It is used only
by a few specialized applications.
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straightforward to replace in applications that
directly read directories.

The OpenVMS Backup utility was an example of
a system management utility that directly read
directory files. The backup utility was changed to
use the directory reading call on Spiralog volumes.

= Those accessing reserved files. The existing file sys-
tem stores all its metadata in normal files that can be
read by applications. These files are called reserved
files and are created when a volume is initialized.

No reserved files are created on a Spiralog volume,
with the exception of the master file directory
(MFD). Applications that read reserved files make
specific use of on-disk structure information and
are not supported with the Spiralog file system. The
MED is used as the root directory and performs
directory traversals. This file was virtually emulated.
It appears in directory listings of a Spiralog volume
and can be used to start a directory traversal, but it
does not exist on the volume as a real file.

Investigation Techniques

This section describes the approach taken to investi-
gate the interface and compatibility problems
described above. Results from these investigations
were used to determine which features of the Files-11
file system needed to be provided to produce a high
level of compatibility.

The investigation focused on understanding how
applications called the file system and the semantics of
the calls. A number of techniques were used in lieu
of design documentation for applications and the
Files-11 file system. These techniques were also used
to avoid the direct examination of source code.

The following techniques were used to understand
application calls to the file system:

» Tracing file system operations

Tracing file system operations provided a large
amount of data for applications. A modified
Files-11 file system was constructed that logged all
file operations on a volume. A full set of regression
tests were then run for the 25 Digital and third-
party products most often layered on the Files-11
file system. The data was then reduced to deter-
mine the type of file system calls made by the
layered products. Analysis of log data showed
that most layered products made file system calls
through HLL libraries or the RMS interface. This
technique is useful where source code is not avail-
able, but full code path coverage is available to con-
struct a full picture of calls and arguments.

= Surveying application maintainers on file system use

Surveying application maintainers was a potentially
useful technique for alerting the other maintainers
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about the impact of the Spiralog file system. More
than 2,000 surveys were sent out, but fewer than
25 useful results were returned. Sadly, most appli-
cation maintainers were not aware of how their
product used the file system.

= Automated application source code searching

Automated source code searching quickly checks
a large amount of source code. This technique was
most useful when analyzing file system calls made by
the OpenVMS operating system or utilities. How-
ever, this does not work well when applications
make dynamic calls to the file system at run time.

The following techniques were used to understand
the semantics of file system calls:

= Functional analysis of the Files-11 file system

Functional analysis of the Files-11 file system was
one of the most useful techniques adopted. It
avoided the need to reverse-engineer the Files-11
file system. Whenever possible, the Files-11 file sys-
tem was treated as a black box, and its function was
inferred from interface documentation and appli-
cation calls. This technique avoided duplicating
defects in the interface and enabled the design of
the emulation layer to be derived from function,
rather than the existing implementation of the
Files-11 system.

= Test programs to determine call semantics

Test programs were used extensively to isolate spe-
cific application calls to the file system. Individual
calls could be analyzed to determine how they
worked with the Files-11 file system and with the
emulation layer. This technique formed the basis
for an extensive file system interface regression test
suite without requiring the complete application.

Level of Compatibility Achieved

The level of file system compatibility with applications
far exceeded our initial expectations. Table 2 summa-
rizes the results of the regression tests used to verify
compatibility.

Table 2 illustrates that applications that use the C or
the FORTRAN language or the RMS interface to
access the file system can be expected to work
unchanged. Verification with the top 25 Digital lay-
ered products and third-party products shows that
all products that do not make specific use of Files-11
on-disk features run with the Spiralog file system.
With the version 1.0 release of the Spiralog file system,
there are no known compatibility issues.

Providing New Caching Features

The Spiralog file system uses ordered write-back cach-
ing to provide performance benefits for applications.



Table 2
Verification of Compatibility

Test Suite Number of Tests Result

RMS regression tests ~500 All passed.
OpenVMS regression tests ~100 All passed.
Files-11 compatibility tests ~100 All passed.

C2 security test suite

~2,000
~100

C language tests
FORTRAN language tests

~50 discrete tests

All passed, giving the Spiralog
file system the same potential
security rating as the Files-11
system.

All passed.
All passed.

Write-back caching provides very different semantics
to the model of write-through caching used on the
Files-11 file system. The goal of the Spiralog project
members was to provide write-back caching
in a way that was compatible with existing OpenVMS
applications.

This section compares write-through and write-back
caching and shows how some important OpenVMS
applications rely on write-through semantics to pro-
tect data from system failure. It describes the ordered
write-back cache as introduced in the Echo file system
and explains how this model of caching (known as
write-behind caching) is particularly suited to the envi-
ronment of OpenVMS Cluster systems and the
Spiralog log-structured file system.

Overview of Caching
During the last few years, CPU performance improve-
ments have continued to outpace performance
improvements for disks. As a result, the I/O bottle-
neck has worsened rather than improved. One of
the most successful techniques used to alleviate this
problem is caching. Caching means holding a copy of
data that has been recently read from, or written to,
the disk in memory, giving applications access to that
data at memory speeds rather than at disk speeds.
Write-through and write-back caching are two
different models frequently used in file systems.

= Write-through caching. In a write-through cache,
data read from the disk is stored in the in-memory
cache. When data is written, a copy is placed in
the cache, but the write request does not return
until the data is on the disk. Write-through caches
improve the performance of read requests but not
write requests.

»  Write-back caching. A write-back cache improves
the performance of both read and write requests.
Reads are handled exactly as in a write-through

cache. This time though, a write request returns as
soon as the data has been copied to the cache; some
time later, the data is written to the disk. This
method allows both read and write requests to
operate at main memory speeds. The cache can also
amalgamate write requests that supersede one
another. By deferring and amalgamating write
requests, a write-back cache can issue many fewer
write requests to the disk, using less disk bandwidth
and smoothing the write pattern over time.

Figure 2 shows the write-through and write-back
caching models. The Spiralog file system makes exten-
sive use of caching, providing both write-through and
write-back models. The use of write-back caching
allows the Spiralog file system to amalgamate writes,
thus conserving disk bandwidth. This is especially
important in an OpenVMS Cluster system where disk
bandwidth is shared by several computers. The
Spiralog file system attempts to amalgamate not just
data writes but also file system operations. For example,
many compilers create temporary files that are deleted
at the end of the compilation. With write-back caching,
it is possible that this type of file may be created and
deleted without ever being written to the disk.

There are two disadvantages of write-back caching;:
(1) if the system fails, any write requests that have
not been written to the disk are lost, and (2) once in
the cache, any ordering of the write requests is lost.
The data may be written from the cache to the disk in
a completely different order than the order in which
the application issued the write requests. To preserve
data integrity, some applications rely on write ordering
and the use of careful write techniques. (Careful writ-
ing is discussed further in the section below.) The
Spiralog file system preserves data integrity by provid-
ing an ordered write-back cache known as a write-
behind cache.
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Figure 2
Caching Models

Caching is more important to the Spiralog file
system than it is to conventional file systems. Log-
structured file systems have inherently worse read
performance than conventional, update-in-place file
systems, due to the need to locate the data in the log.
As described in another paper in this Journal, locating
data in the log requires more disk I/Os than an
update-in-place file system.? The Spiralog file system
uses large read caches to offset this extra read cost.

Careful Writing

The Files-11 file system provides write-through
semantics. Key OpenVMS applications such as transac-
tion processing and the OpenVMS Record Manage-
ment Services (RMS) have come to rely on the implicit
ordering of write-through. They use a technique
known as careful writing to prevent data corruption
following a system failure.

Careful writing allows an application to ensure that
the data on the disk is never in an inconsistent or
invalid state. This guarantee avoids situations in which
an application has to scan and possibly rebuild the data
on the disk after a system failure. Recovery to a consis-
tent state after a system failure is often a very complex
and time-consuming task. By ensuring that the disk
can never be inconsistent, careful writing removes the
need for this form of recovery.

Careful writing is used in situations in which an
update requires several blocks on the disk to be written.
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Most disks guarantee atomic update of only a single
disk block. The occurrence of a system failure while
several blocks are being updated could leave the blocks
partially updated and inconsistent. Careful writing
avoids this risk by defining the order in which the
blocks should be updated on the disk. If the blocks are
written in this order, the data will always be consistent.

For example, the file shown in Figure 3 represents
a persistent data structure. At the start of the file is an
index block, I, that points to two data blocks within
the file, A and B. The application wishes to update the
data (A, B) to the new data (A’, B'). For the file to be
valid, the index must point to a consistent set of data
blocks. So, the index must point either to (A, B) or to
(A', B'). It cannot point to a mixture such as (A’, B).
Since the disk can guarantee to write only a single
block atomically, the application cannot simply write
(A’, B") on top of (A, B) because that involves writing
two blocks. Should the system fail during the updates,
doing so could leave the data in an invalid state.

To solve this problem, the application writes the
new data to the file in a specific order. First, it writes
the new data (A’, B') to a new section of the file, wait-
ing until the data is written to the disk. Once (A’, B")
are known to be on the disk, it atomically updates the
index block to point to the new data. The old blocks
(A, B) are now obsolete, and the space they consume
can be reused. During the update, the file is never in
an inconsistent state.



START

B' WRITE (A, B')

WAIT UNTIL ON-DISK

B' WRITE (1)

WAIT UNTIL ON-DISK

Figure 3
Example of a Careful Write

Write-behind Caching

A careful write policy relies totally on being able to
control the order of writes to the disk. This cannot be
achieved on a write-back cache because the write-back
method does not preserve the order of write requests.
Reordering writes in a write-back cache would risk cor-
rupting the data that applications using careful writing
were seeking to protect. This is unfortunate because
the performance benefits of deferring the write to the
disk are compatible with a careful write policy. Careful
writing does not need to know when the data is written
to the disk, only the order it is written.

To allow these applications to gain the performance
of the write-back cache but still protect their data on
disk, the Spiralog file system uses a variation on write-
back caching known as write-behind caching. Intro-
duced in the Echo file system, write-behind caching is
essentially write-back caching with ordering guaran-
tees.* The cache allows the application to specify which
writes must be ordered and the order in which they
must be written to the disk.

This is achieved by providing the barrier primitive to
applications. Barrier defines an order or dependency
between write operations. For example, consider the
diagram in Figure 4: Here, writes are represented as
a time-ordered queue, with later writes being added

TIME ——>

to the tail. In the example, the application issues
the writes in the order 1,2,3,4. Without a barrier, the
cache could write the data to the disk in any order (for
example, 1,3,4,2). If a barrier is placed in the write
queue, it specifies to the cache that all writes prior to
the barrier must be written to the disk before (or
atomically with) any write requests after it. In the
example, if a barrier is placed after the second write,
the cache file system guarantees that writes 1 and 2 will
be written to the disk before writes 3 and 4. Writes 1
and 2 may still be written in any order, as could writes
3 and 4, but 3 and 4 will be written after 1 and 2.

A careful write policy can easily be implemented on
a write-behind cache. As shown in Figure 5, the appli-
cation would use barriers to control the write order-
ing. Two barriers are required. The first (B1) comes
after the writes of the new data (A’, B"). The second
(B2) is placed after the index update I'. B1 is required
to ensure that the new data is on the disk before the
index block is updated. B2 ensures that the index
block is updated before any subsequent write requests.

The use of barriers avoids the need to wait for1/Os
to reach the disk, improving CPU utilization. In addi-
tion, the Spiralog file system allows amalgamation
of superseding writes between barriers, reducing
the number of requests being written to the disk.

NO BARRIER

BARRIER

BARRIER AFTER

SECOND WRITE

Figure 4
Barrier Insertion in Write Queue
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START

B' WRITE (A, B')
BARRIER B1
B' WRITE (I

BARRIER B2

Figure 5
Example of a Careful Write Using Barrier

Internally, the Spiralog file system allows barriers to be
placed between any two write operations, even if they
are to different files. The Spiralog file system uses this
to build its own careful write policy for all changes
to files, including metadata changes. This guarantees
that the file system is always consistent and gives write-
back performance on changes to file metadata as well
as data. One major advantage is that the Spiralog file
system does not require a disk repair utility such as the
UNIX system’s fsck to rebuild the file system following
a system failure.

Barriers are used internally in several places to pre-
serve the order of updates to the file system metadata.
For example, when a file is extended, the allocation of
new blocks must be written to the disk before any
subsequent data writes to the newly allocated region.
A barrier is placed immediately after the write request
to update the file length.

Barriers are also used during complex file operations
such as a file create. These complex operations fre-
quently update shared resources such as parent direc-
tories. The barriers prevent updates to these shared
objects, avoiding the risk of corruption due to the
updates being reordered by the cache.

At the application level, the Spiralog file system pro-
vides the barrier function only within a file. It is not
possible to order writes between files. This was suffi-
cient to allow RMS (described in the section OpenVMS
File System Environment) to exploit the performance
of write-behind caching on most of its file organiza-
tions. RMS was enhanced to use barriers in its own
careful write policy, which ensures the consistency of
complex file organizations, such as indexed files, even
when they are subject to write-behind caching. Since
the majority of OpenVMS applications access the file
system through RMS, gaining write-behind caching
on all RMS file organizations provides a significant
performance benefit to applications.
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Internally, the Spiralog file system supports barriers
between files. The decision to support barriers within
a file was made to limit the complexity of interface
changes, in the belief that a cross-file barrier was of
little use to RMS. In retrospect, this proved to be
wrong. Some key RMS file organizations use secondary
files to hold journal records for the main application
file. These file organizations cannot express the order
in which updates to the two files should reach the disk,
and so are precluded from using write-behind caching.

Application-level Caching Policies

The main problem with the barrier primitive is its
requirement that the application express the depen-
dencies to the file system. Although this is unavoid-
able, it means that the application has to change if
it wishes to safely exploit write-behind caching. Clearly,
many applications were not going to make these
changes. In addition, some applications have on-disk
consistency requirements that tie them to a write-
through environment.

The file system emulation layer provides additional
support for these types of applications by exposing
three caching policies to applications. The policies are
stored as permanent attributes of the file. By default,
when the file is opened by the file system, the perma-
nent caching policy is used on all write requests.

The three policies are described as follows:

1. Write-through caching policy. This policy provides
applications with the standard write-through beha-
vior provided by the Files-11 file system. Each write
request is flushed to the disk before the application
request returns. If an application needs to know
what data is on the disk at all times, it should use
write-through caching.

2. Write-behind caching policy. A pure write-behind
cache provides the highest level of performance.
Dirty data is not flushed to the disk when the file is



closed. The semantics of full write-behind caching
are best suited to applications that can easily regen-
erate lost data at any time. Temporary files from a
compiler are a good example. Should the system
fail, the compilation can be restarted without any
loss of data.

3. Flush-on-close caching policy. The flush-on-close
policy provides a restricted level of write-behind
caching for applications. Here, all updates to the file
are treated as write behind, but when the file is
closed, all changes are forced to the disk. This gives
the performance of write-behind but, in addition,
provides a known point when the data is on the disk.
This form of caching is particularly suitable for appli-
cations that can easily re-create data in the event of
a system crash but need to know that data is on the
disk at a specific time. For example, a mail store-and-
forward system receiving an incoming message must
know the data is on the disk when it acknowledges
receipt of the message to the forwarder. Once the
acknowledgment is sent, the message has been for-
mally passed on, and the forwarder may delete its
copy. In this example, the data need not be on the
disk until that acknowledgment is sent, because that
is the point at which the message receipt is commit-
ted. Should the system fail before the acknowledg-
ment is sent, all dirty data in the cache would be lost.
In that event, the sender can easily re-create the data
by sending the message again.

Figure 6 shows the results of a performance com-
parison of the three caching policies. The test was run
on a dual-CPU DEC 7000 Alpha system with 384
megabytes of memory on a RAID-5 disk. The test
repeated the following sequence for the different file
sizes.

1. Create and open a file of the required size and set
its caching policy.

2. Write data to the whole file in 1,024-byte I/Os.

3. Close the file.

4. Delete the file.

With small files, the number of file operations (create,
close, delete) dominates. The leftmost side of the
graph therefore shows the time per operation for file
operations. With time, the files increase in size, and the
data I/0Os become prevalent. Hence, the rightmost
side of Figure 6 is displaying the time per operation for
dataI/Os.

Figure 6 clearly shows that an ordered write-behind
cache provides the highest performance of the three
caching models. For file operations, the write-behind
cache is almost 30 percent faster than the write-
through cache. Data operations are approximately
three times faster than the corresponding operation
with write-through caching.
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Figure 6
Performance Comparison of Caching Policies

Summary and Conclusions

The task of integrating a log-structured file system
into the OpenVMS environment was a significant
challenge for the Spiralog project members. Our
approach of carefully determining the interface to
emulate and the level of compatibility was important
to ensure that the majority of applications worked
unchanged.

We have shown that an existing update-in-place file
system can be replaced by a log-structured file system.
Initial effort in the analysis of application usage fur-
nished information on interface compatibility. Most
file system operations can be provided through a file
system emulation layer. Where necessary, new inter-
faces were provided for applications to replace their
direct knowledge of the Files-11 file system.

File system operation tracing and functional analysis
of the Files-11 file system proved to be the most useful
techniques to establish interface compatibility. Appli-
cation compatibility far exceeds the level expected
when the project was started. A majority of people use
the Spiralog file system volumes without noticing any
change in their application’s behavior.

Careful write policies rely on the order of updates
to the disk. Since write-back caches reorder write
requests, applications using careful writing have been
unable to take advantage of the significant improve-
ments in write performance given by write-back
caching. The Spiralog file system solves this problem
by providing ordered write-back caching, known as
write-behind. The write-behind cache allows applica-
tions to control the order of writes to the disk through
a primitive called barrier.

Using barriers, applications can build careful write
policies on top of a write-behind cache, gaining all the
performance of write-back caching without risking
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data integrity. A write-behind cache also allows the file
system itself to gain write-back performance on all
file system operations. Since many file system opera-
tions are themselves quickly superseded, using write-
behind caching prevents many file system operations
from ever reaching the disk. Barriers also allow the file
system to protect the on-disk file system consistency
by implementing its own careful write policy, avoiding
the need for disk repair utilities.

The barrier primitive provided a way to get write-
through semantics within a file for those applications
relying on careful write policies. Changing RMS to use
the barrier primitive allowed the Spiralog file system
to support write-behind caching as the default policy
on all file types in the OpenVMS environment.
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