
The OpenVMS Alpha operating system, version 7.0,
has extended the address space accessible to applica-
tions beyond the traditional 32-bit address space. This
new address space is referred to as 64-bit virtual mem-
ory and requires a 64-bit pointer for memory access.1

The operating system has an additional set of new
memory allocation routines that allows programs to
allocate and release 64-bit memory. In OpenVMS
Alpha version 7.0, this set of routines is the only mech-
anism available to acquire 64-bit memory.

For application programs to take advantage of these
new OpenVMS programming interfaces, high-level
programming languages such as C had to support
64-bit pointers. Both the C compiler and the C run-
time library required changes to provide this support.
The compiler needed to understand both 32-bit and
64-bit pointers, and the run-time library needed to
accept and return such pointers.

The compiler has a new qualifier called /pointer_size,
which sets the default pointer size for the compilation
to either 32 bits or 64 bits. Also added to the compiler
are pragmas (directives) that can be used within the
source code to change the active pointer size. An
application program is not required to compile each
module using the same /pointer_size qualifier; some
modules may use 32-bit pointers while others use
64-bit pointers. Benson, Noel, and Peterson describe
these compiler enhancements.2 The DEC C User’s
Guide for OpenVMS Systems documents the qualifier
and the pragmas.3

The C run-time library added 64-bit pointer sup-
port either by modifying the existing interface to a
function or by adding a second interface to the same
function. Public header files define the C run-time
library interfaces. These header files contain the pub-
licly accessible function prototypes and structure defi-
nitions. The library documentation and header files
are shipped with the C compiler; the C run-time
library ships with the operating system.

This paper discusses all phases of the enhancements
to the C run-time library, from project concepts
through the analysis, the design, and finally the imple-
mentation. The DEC C Runtime Library Reference
Manual for OpenVMS Systems contains user documen-
tation regarding the changes.4

Digital Technical Journal Vol. 8 No. 2 1996 83

Adding 64-bit Pointer
Support to a 32-bit
Run-time Library

Duane A. Smith

A key component of delivering 64-bit addressing
on the OpenVMS Alpha operating system, ver-
sion 7.0, is an enhanced C run-time library that
allows application programmers to allocate and
utilize 64-bit virtual memory from their C pro-
grams. This C run-time library includes modified
programming interfaces and additional new
interfaces yet ensures upward compatibility
for existing applications. The same run-time
library supports applications that use only
32-bit addresses, only 64-bit addresses, or
a combination of both. Source code changes
are not required to utilize 64-bit addresses,
although recompilation is necessary. The new
techniques used to analyze and modify the
interfaces are not specific to the C run-time
library and can serve as a guide for engineers
who are enhancing their programming inter-
faces to support 64-bit pointers.

Starting the Project

We devoted the initial two months of the project to
understanding the overall OpenVMS presentation of
64-bit addresses and deciding how to present 64-bit
enhancements to customers. Representatives from
OpenVMS engineering, the compiler team, the run-
time library team, and the OpenVMS Calling Standard
team met weekly with the goal of converging on the
deliverables for OpenVMS Alpha version 7.0.

The project team was committed to preserving both
source code compatibility and the upward compati-
bility aspects of shareable images on the OpenVMS
operating system. Early discussions with application
developers reinforced our belief that the OpenVMS
system must allow applications to use 32-bit and
64-bit pointers within the same application. The team
also agreed that for a mixed-pointer application to
work effectively, a single run-time library would need
to support both 32-bit and 64-bit pointers; however,
there was no known precedent for designing such
a library.

One implication of the decision to design a run-
time library that supported 32-bit and 64-bit pointers
was that the library could never return an unsolicited
64-bit pointer. Returning a 64-bit pointer to an
application that was expecting a 32-bit pointer would
result in the loss of one half of an address. Although
typically this error would cause a hardware exception,
the resulting address could be a valid address. Storing
to or reading from such an address could result in
incorrect behavior that would be difficult to detect.

The OpenVMS Calling Standard specifies that argu-
ments passed to a function be 64-bit values.5 If a
32-bit address is used, it is always sign extended to
form a 64-bit address that can be used by the Alpha
hardware. The C run-time library team exploited this
fact when creating the 64-bit interface to the library.

The team also agreed that using 64-bit pointers
should be as simple as possible; the simplest mode
would allow the application to compile using the
qualifier /pointer_size=64 without making source
code changes. The design of 64-bit support must
appear as a logical extension to the C programming
environment in use today. Furthermore, applications
written to conform strictly to the ANSI standard must
be able to use 64-bit pointers while remaining confor-
mant. For example, allocating 64-bit virtual memory
would be an extension to the standard C memory man-
agement functions malloc, calloc, realloc, and free.

This paper shows that each of the C run-time library
interfaces examined falls into one of the following
four categories (listed in order of added complexity
to library users):

1. Not affected by the size of a pointer
2. Enhanced to accept both pointer sizes

3. Duplicated to have a 64-bit-specific interface
4. Restricted from using 64-bit pointers

One last point to come from the meetings was
that many of the C run-time library interfaces are
implemented by calling other OpenVMS images. For
example, the Curses Screen Management interfaces
make calls to the OpenVMS Screen Management
(SMG) facility. It is important that the C run-time
library defines the interfaces to support 64-bit
addresses without looking at the implementation of
the function. Consistency and completeness of the
interface are more important than the complexity
of the implementation. In the SMG example, if the
C run-time library needs to make a copy of a string
prior to passing the string to the SMG facility, this
is what will be implemented.

Analyzing the Interfaces

The process of analyzing the interfaces began by creat-
ing a document that listed all the header files and the
definitions in these files. A total of 50 header files that
contained approximately 50 structures and 500 proto-
types needed to be analyzed. Each structure or pro-
totype had to be examined to see if a change in pointer
size would affect the interface. Keep in mind that
we analyzed only the interfaces; we did not examine
the underlying implementation changes that would
be required.

Analyzing the Structures
It is necessary to distinguish between a structure,
which may contain pointers, and a pointer to the struc-
ture itself. For example, the div_t structure contains
two integer fields. Although the size of the pointer
to div_t does not affect the contents of the structure,
the entire structure may be allocated in 32-bit or 64-bit
virtual memory. Functions that accept a pointer to such
a structure may need to be modified to accommodate
the 64-bit case. The div_t structure is

typedef struct {
int quot, rem;

} div_t;

Many structures used in the C run-time library
interfaces are allocated by the run-time library in
response to a function call. For example, a call to the
fopen function returns the following pointer to
the FILE structure:

FILE *fopen(const char *filename,
const char *mode);

The C run-time library always allocates FILE struc-
tures in 32-bit virtual memory and returns a 32-bit
pointer to the calling program. This important con-
cept can dramatically impact the use of 64-bit pointers

84 Digital Technical Journal Vol. 8 No. 2 1996

in structures. If a FILE pointer is always a 32-bit
pointer, structures that contain only FILE pointers are
not affected by the choice of pointer size. We use this
information when we look at the layout of structures
and examine function prototypes that accept pointers
to structures.

In this paper, structures that are always allocated in
32-bit virtual memory are referred to as structures
bound to low memory. After determining which
structures are bound to low memory, we examine the
layout of each structure to decide if the structure
is affected by pointer size. We keep in mind that
pointer size does not affect a structure that is bound
to low memory.

For upward compatibility, the analysis must always
consider existing software that depends on the layout
of the structure. In the case of public header file analy-
sis, such dependence will probably always be present.
An application may have executable code that, for
example, fetches 4 bytes beginning at byte 12 of the
structure and dereferences those 4 bytes as the address
of a string.

For these public structures, the analysis must weigh
the impact of forcing these structures to be 32-bit
pointers. If the decision is made to allocate two differ-
ent structure types, each function that either returns
or is passed such a structure must have a pointer-size-
specific implementation. The case analysis and further
details appear in the section Pointer to Pointer-size-
sensitive Structures.

Analyzing the Function Prototypes
Analyzing functions only requires looking at the func-
tion prototypes. To determine the effect of pointer
size on a function, we look at each parameter and
return value that involves a pointer. This section
describes the types of situations that are affected by
pointer size, from the simplest type to the most com-
plex. Note that when a program passes an array of any
type to a function, the array is passed as a pointer and
must be considered.

Making 64-bit-friendly Parameters As mentioned in
the section Starting the Project, the OpenVMS Calling
Standard specifies that a 32-bit address is sign
extended to a 64-bit address when passed as an
argument to a function. This implies that existing
programs that pass addresses as parameters are already
sign extending those 32-bit addresses to be passed as
64-bit quantities. Each 32-bit address can, therefore,
be expressed as a 64-bit address in which the top
32 bits are zero.

This sign-extending scheme allows the run-time
library to have a single implementation that can be
used by both 32-bit and 64-bit calling programs. This

implementation would be modified to accept only
64-bit addresses. An implementation that supports
parameters of either pointer size is referred to as being
64-bit friendly. The function strlen is an example of
a 64-bit-friendly function.

size_t strlen(const char *string);

The string parameter is the only part of the strlen func-
tion that the pointer size affects. To support 64-bit
addressing, the strlen function had to be modified to
accept a 64-bit pointer.

Parameters Bound to Low Memory In structures bound
to low memory, the addresses that the programs pass
are always 32-bit addresses. One explanation is that
the structures are managed by the run-time library,
and the only method of creating, destroying, or
obtaining the addresses of these structures is by calling
a library routine. Given that a single library services
both 32-bit and 64-bit calling programs, the library
does not change the structures based on command
qualifiers, nor does it allocate the structures in 64-bit
virtual memory. For user convenience, the C run-time
library implemented these pointers as 32-bit return
values but 64-bit-friendly parameters.

The reason for this design became apparent while
testing the 64-bit interfaces to the library. Consider
the following code fragment, which exists in many
applications:

FILE *fp;
char buffer[100];
fp = fopen(“the_file”, “r”);
fread(array, sizeof(buffer), 1, fp);

The C run-time library always allocates a FILE
structure in 32-bit virtual memory. When the previous
code fragment is compiled using /pointer_size=64, fp
is declared as a 64-bit pointer to a FILE structure,
because using this qualifier specifies the default pointer
size to be used. When the fopen function returns the
32-bit pointer, the return value is sign extended into
the 64-bit FILE pointer. If the fourth parameter of the
fread function had been declared as a 32-bit FILE
pointer, the compiler would report an error when the
64-bit FILE pointer fp was passed as an argument.
This example explains why the C run-time library
declares structures bound to low memory as 32-bit
return values but 64-bit parameters.

Parameters Restricted to Low Memory Structures
restricted to low memory are similar to those bound to
low memory except that the user allocates the struc-
tures and can allocate the structures in high memory.
The C run-time library cannot support the allocation
of such structures in 64-bit virtual memory.

Digital Technical Journal Vol. 8 No. 2 1996 85

An example of a parameter being restricted to a
low memory address is the buffer being passed as the
parameter to the function setbuf. The parameter
defines this buffer to be used for I/O operations. The
user expects to see this buffer change as I/O opera-
tions are performed on the file. If the run-time library
made a copy of this buffer, the changes would appear
in the copy and not in the original buffer that the user
supplied. When the C run-time library begins to use
the 64-bit OpenVMS Record Management Services
(RMS) interface, this low-memory restriction will be
removed.

In most cases, the run-time library is able to hide
the fact that the 32-bit RMS interface is not able to
interpret a 64-bit virtual memory address. Consider
the filename parameter to the fopen function. If the
parameter is a 64-bit virtual memory address, the run-
time library copies this parameter to 32-bit virtual
memory and passes the address of the copy to RMS.
Neither the user nor RMS is aware that this copy has
been made. The library may copy the data if and only if
such a copy operation does not change functionality or
significantly degrade performance.

Size-independent Structure Pointers Many functions
receive the address of a structure whose layout is not
affected by pointer size. The simplest address in this
category is that of an array of integers. This array may
be in either 32-bit or 64-bit virtual memory, but only
one interface is needed to determine the layout of the
structure. If the structure layout is independent of
pointer size, then pointer-size-specific entry points are
not required for this parameter. The developer would
still make the parameter 64-bit friendly so that the user
would have the freedom to make the allocation that is
best for the application.

Pointer to Pointer Parameters It is common practice
for a function to be passed a pointer to a pointer. If the
pointer being pointed to is not bound or restricted to
a 32-bit address, then two implementations of the
function are necessary.

To understand why some functions require two
implementations, consider the following strtod
function:

double strtod(const char *string,
char **endptr);

The strtod function converts a string to a floating-
point double-precision number. The second parame-
ter to this function, endptr, is a pointer to a memory
location into which the address of the first unrecog-
nized character is to be placed. The caller of this func-
tion has allocated either 4 or 8 bytes to store this
address. Without pointer-size-specific entry points,

the function has no way of determining how many
bytes to write. Writing 4 bytes may truncate a pointer;
writing 8 bytes may overwrite 4 bytes of user data that
follows the pointer. The strtod function, therefore, has
two implementations. The first expects endptr to be
the address of a 32-bit pointer, and the second expects
endptr to be the address of a 64-bit pointer.

Pointer to Pointer-size-sensitive Structures Many func-
tions receive the address of a structure. If the analysis
reveals that the layout of this structure is dependent
upon pointer size, the functions that receive or return
this structure must have pointer-size-specific entry points.

Note that the layout of the structure is separate
from whether the structure is allocated in low memory
or in high memory. The 32-bit-specific entry point is
needed to understand the layout of the structure, but
the parameter should allow this structure to be allo-
cated in high memory.

Functions that receive the address of an array of
addresses are treated in the same way, assuming that
the addresses in the array are neither bound nor
restricted to low memory. The function being called
needs to know if the array contains 32-bit addresses or
64-bit addresses. Unlike the address of the array, the
individual members of the array are not sign extended
to 64-bit values.

Separate implementations are necessary only to
determine the layout of what is being pointed to. The
32-bit interface handles pointers to structures contain-
ing 32-bit addresses, and the 64-bit interface handles
pointers to structures containing 64-bit addresses.

Functions That Return Pointers Many functions return
pointers as the value of the function. These pointers are
either pointer-size specific or they are not affected by
the pointer size. Similar to its specifications for 64-bit-
friendly parameters, the OpenVMS Calling Standard
indicates that return values on the OpenVMS Alpha
operating system are always sign extended to 64-bit
values and returned in register zero (R0).

To make an address parameter 64-bit friendly, a
function allows a 64-bit address to be passed, thus
enabling both 32-bit and 64-bit calling programs to
use a single interface. Conversely, if a function returns
a 64-bit address to a 32-bit calling program, the
address is safely returned in R0 but is truncated when
moved from R0 into the user’s data area. A 64-bit-
friendly address return value is always 32 bits. When
moved from R0 into the calling program’s variable,
it is sign extended when the calling program is using
64-bit addresses.

If the return value of a function can be a 64-bit
address, this function must have pointer-size-specific
entry points. If the function returns the address of a

86 Digital Technical Journal Vol. 8 No. 2 1996

structure that is bound to low memory, such as a FILE
or WINDOW pointer, the return value does not force
separate entry points.

Certain functions, such as malloc, allocate memory
on behalf of the calling program and return the address
of that memory as the value of the function. These
functions have two implementations: the 32-bit inter-
face always allocates 32-bit virtual memory, and the
64-bit interface always allocates 64-bit virtual memory.

Many string and memory functions have return val-
ues that are relative to a parameter passed to the same
routine. These addresses may be returned as high
memory addresses if and only if the parameter is a
high memory address.

The following is the function prototype for strcat,
which is found in the header file <string.h>:

char *strcat(char *s1, const char *s2);

The strcat function appends the string pointed to by
s2 to the string pointed to by s1. The return value is
the address of the latest string s1.

In this case, the size of the pointer in the return
value is always the same as the size of the pointer
passed as the first parameter. The C programming lan-
guage has no way to reflect this. Since the function
may return a 64-bit pointer, the strcat function must
have two entry points.

As discussed earlier, the pointer size used for para-
meter s2 is not related to the returned pointer size.
The C run-time library made this s2 argument 64-bit
friendly by declaring it a 64-bit pointer. This declara-
tion allows the application programmer to concate-
nate a string in high memory to one in low memory
without altering the source code. The following strcat
function statement shows this declaration:

char *strcat(char *s1, __char_ptr64 s2);

The data type __char_ptr64 is a 64-bit character
pointer whose definition and use will be explained
later in this paper.

High-level Design

The /pointer_size qualifier is available in those
versions of the C compiler that support 64-bit point-
ers. The compiler has a predefined macro named
__INITIAL_POINTER_SIZE whose value is based on
the use of the /pointer_size qualifier. The macro
accepts the following values:

■ 0, which indicates that the /pointer_size qualifier is
not used or is not available

■ 32, which indicates that the /pointer_size qualifier
is used and has a value of 32

■ 64, which indicates that the /pointer_size qualifier
is used and has a value of 64

The C run-time library header files conditionally
compile based on the value of this predefined macro.
A zero value indicates to the header files that the com-
puting environment is purely 32-bit. The pointer-size-
specific function prototypes are not defined. The user
must use the /pointer_size qualifier to access 64-bit
functionality. The choice of 32 or 64 determines the
default pointer size.

The header files define two distinct types of declara-
tions: those that have a single implementation and
those that have pointer-size-specific implementations.
The addresses passed or returned from functions that
have a single implementation are either bound to low
memory, restricted to low memory, or widened to
accept a 64-bit pointer.

Those functions that have pointer-size-specific
entry points have three function prototypes defined.
Using malloc as an example, prototypes are created for
the functions malloc, _malloc32, and _malloc64. The
latter two prototypes are the pointer-size-specific pro-
totypes and are defined only when the /pointer_size
qualifier is used. The malloc prototype defaults to call-
ing _malloc32 when the default pointer size is 32 bits.
The malloc prototype defaults to calling _malloc64
when the default pointer size is 64 bits. Applica-
tion programmers who mix pointer types use the
/pointer_size qualifier to establish the default pointer
size but can then use the _malloc32 and _malloc64
explicitly to achieve nondefault behavior.

In addition to being enhanced to support 64-bit
pointers, the C compiler has the added capability of
detecting incorrect mixed-pointer usage. It is the
function prototype found in the header files that tells
the compiler exactly what pointer size is permitted or
expected in a call. Proper use of the header files helps
prevent pointer truncation.

The actual functions called in the C run-time library
are either decc$malloc or decc$_malloc64, depending
on the pointer size. The C run-time library does not
contain an entry point called decc$_malloc32. This
naming scheme was selected so that applications that
link on older systems always get the 32-bit interface.

The C compiler has always looked at a table within
the C run-time library shareable image for assistance in
name prefixing. Using this table, the compiler knows
to change calls to the malloc function into calls to the
decc$malloc function and not to change calls to xyz,
which is not a C run-time library function, into calls to
decc$xyz.

The C run-time library and the C compiler have
added new information to the table that tells the com-
piler which functions have pointer-size-specific entry
points. When the compiler sees a call to the function
_xyz32, it looks it up in the name table. If the name of
the function is found, the compiler then looks at

Digital Technical Journal Vol. 8 No. 2 1996 87

prototype and was immediately moved to the section
“Functions that support 64-bit pointers.”

Organizing <header.h> in this way gave us an accu-
rate reading of how many more functions needed
64-bit support. If any of the sections became empty,
we did not remove the section. This approach worked
well because while some engineers were doing 64-bit
work, others were adding new functions. Any new
functions added to a header file after the 64-bit work
was done would be placed in the section “Functions
that need 64-bit support.” Prior to shipping the
header files, we removed the empty sections.

Preparing the Source Code
After several false starts, we settled on a design for
modifying the source code for 64-bit support. The
expected starting design was to modify the source
code by adding pointer_size pragmas and compile the
source modules using the /pointer_size qualifier.
Some modules would use /pointer_size=32; others
would use /pointer_size=64. The major drawback to
this approach was that looking at a variable declared as
a pointer requires an understanding of the context in
which that variable appears. No longer would “char *”
be simply a character pointer. It could be a 32-bit or a
64-bit character pointer, and the implementer needed
to know which one.

The design on which we decided overcomes the
readability problem. By default, source files are not
compiled with the /pointer_size qualifier. This means
that no pointer-size manipulation occurs when includ-
ing the header files. The readability of the source code
is improved in that the implementers can see which
pointers are 32-bit pointers and which are 64-bit
pointers.

whether the function is the 32-bit-specific entry point.
If it is, the compiler forms the prefixed name by
adding “decc$” to the beginning of the name but
also removes the “_” and the “32.” Consequently, the
function name _malloc32 becomes decc$malloc, but
the function name _xyz32 does not change.

Implementation

To illustrate changes that needed to be made to the
header files, we invented a single header file called
<header.h>. This file, which is shown in Figure 1, illus-
trates the classes of problems faced by a developer who
is adding support for 64-bit pointers. The functions
defined in this header file are actual C run-time library
functions.

Preparing the Header File
The first pass through <header.h> resulted in a num-
ber of changes in terms of formatting, commenting,
and 64-bit support. Realizing that many modifications
would be made to the header files, we considered
readability a major goal for this release of these files.

The initial header files assumed a uniform pointer
size of 32 bits for the OpenVMS operating system.
During the first pass through <header.h>, we added
pointer-size pragmas to ensure that the file saved the
user’s pointer size, set the pointer size to 32 bits, and
then restored the user’s pointer size at the end of the
header.

Next we formatted <header.h> to show the various
categories that the structures and functions fall into.
The categories and the result of the first pass through
<header.h> can be seen in Figure 2. For example,
the function rand had no pointers in the function

88 Digital Technical Journal Vol. 8 No. 2 1996

Figure 1
Original Header File <header.h>

#ifndef __HEADER_LOADED
#define __HEADER_LOADED 1

#ifndef __SIZE_T
define __SIZE_T 1

typedef unsigned int size_t;
#endif

int execv(const char *, char *[]);
void free(void *);
void *malloc(size_t);
int rand(void);
char *strcat(char *, const char *);
char *strerror(int);
size_t strlen(const char *);

#endif /* __HEADER_LOADED */

Digital Technical Journal Vol. 8 No. 2 1996 89

#ifndef __HEADER_LOADED
#define __HEADER_LOADED 1

/*
** Ensure that we begin with 32-bit pointers.
*/
#if __INITIAL_POINTER_SIZE
if (__VMS_VER < 70000000)
error "Pointer size added in OpenVMS V7.0 for Alpha“
endif
pragma __pointer_size __save
pragma __pointer_size 32
#endif

/*
** STRUCTURES NOT AFFECTED BY POINTERS
*/
#ifndef __SIZE_T
define __SIZE_T 1

typedef unsigned int size_t;
#endif

/*
** FUNCTIONS THAT NEED 64-BIT SUPPORT
*/
int execv(const char *, char *[]);
void free(void *);
void *malloc(size_t);
char *strcat(char *, const char *);
char *strerror(int);
size_t strlen(const char *);

/*
** Create 32-bit header file typedefs.
*/

/*
** Create 64-bit header file typedefs.
*/

/*
** FUNCTIONS RESTRICTED FROM 64 BITS
*/

/*
** Change default to 64-bit pointers.
*/
#if __INITIAL_POINTER_SIZE
pragma __pointer_size 64
#endif

/*
** FUNCTIONS THAT SUPPORT 64-BIT POINTERS
*/
int rand(void);

/*
** Restore the user’s pointer context.
*/
#if __INITIAL_POINTER_SIZE
pragma __pointer_size __restore
#endif

#endif /* __HEADER_LOADED */

Figure 2
First Pass through <header.h>

32-bit character pointer, whereas 64-bit pointers use
typedefs whose names begin with “__wide.” The
name of the new typedef is __wide_char_ptr, which is
read as a 64-bit character pointer.

The C run-time library design also requires that the
implementation of a function include all header files
that define the function. This ensures that the imple-
mentation matches the header files as they are modi-
fied to support 64-bit pointers. For functions defined
in multiple header files, this ensures that header files
do not contradict each other.

We created a C run-time library private header
file called <wide_types.src>. This header file has the
appropriate pragmas to define 64-bit pointer types used
within the C run-time library, as shown in Figure 3.

This header file also contains the definitions of macros
used in the implementations of the functions. Figure 4
shows the macros declared in <wide_types.src>.

Once a module includes the file <wide_types.src>,
the compilation of that module changes to add the
qualifier /pointer_size=32. This change improves the
readability of the code because “char *” is read as a

90 Digital Technical Journal Vol. 8 No. 2 1996

/*
** This include file defines all 32-bit and 64-bit data types used in
** the implementation of 64-bit addresses in the C run-time library.
**
** Those modules that are compiled with a 64-bit-capable compiler
** are required to enable pointer size with /POINTER_SIZE=32.
*/
#ifdef __INITIAL_POINTER_SIZE
if (__INITIAL_POINTER_SIZE != 32)
error “This module must be compiled /pointer_size=32”
endif
#endif

/*
** All interfaces that require 64-bit pointers must use one of
** the following definitions. When this header file is used on
** platforms not supporting 64-bit pointers, these definitions
** will define 32-bit pointers.
*/
#ifdef __INITIAL_POINTER_SIZE
pragma __pointer_size __save
pragma __pointer_size 64
#endif

typedef char *__wide_char_ptr;
typedef const char *__wide_const_char_ptr;

typedef int *__wide_int_ptr;
typedef const int *__wide_const_int_ptr;

typedef char **__wide_char_ptr_ptr;
typedef const char **__wide_const_char_ptr_ptr;

typedef void *__wide_void_ptr;
typedef const void *__wide_const_void_ptr;

#include <curses.h>
typedef WINDOW *__wide_WINDOW_ptr;

#include <string.h>
typedef size_t *__wide_size_t_ptr;

/*
** Restore pointer size.
*/
#ifdef __INITIAL_POINTER_SIZE
pragma __pointer_size __restore
#endif

Figure 3
Typedefs from <wide_types.src>

The private header file typedefs are always declared
starting with two underscores and ending in either
“_ptr32” or “_ptr64.” These typedefs are created only
when the header file needs to be in a particular
pointer-size mode while referring to a pointer of the
other size. The return value of strerror is modified to
use the typedef __char_ptr32.

Including the header file, which declares strerror,
allows the compiler to verify that the arguments,
return values, and pointer sizes are correct.

Widening the strlen Argument
The function strlen accepts a constant character
pointer and returns an unsigned integer (size_t).
Implementing full 64-bit support in strlen means
changing the parameter to a 64-bit constant character
pointer. If an application passes a 32-bit pointer to
the strlen function, the compiler-generated code sign
extends the pointer. The required header file mod-
ification is to simply move strlen from the sec-
tion “Functions that need 64-bit support” to the
section “Functions that support 64-bit pointers.”

The steps necessary for the source code to support
64-bit addressing are as follows:

1. Ensure that the module includes header files that
declare strlen.

Implementing the strerror Return Pointer
The function strerror always returns a 32-bit pointer.
The memory is allocated by the C run-time library for
both 32-bit and 64-bit calling programs. As shown
in Figure 5, we moved the function strerror into the
section “Functions that support 64-bit pointers” of
<header.h> to show that there are no restrictions on
the use of this function.

The “Create 32-bit header file typedefs” section of
<header.h> is in the 32-bit pointer section, where the
bound-to-low-memory data structures are declared.
The function returns a pointer to a character string.
We, therefore, added typedefs for __char_ptr32 and
__const_char_ptr32 while in a 32-bit pointer context.
These declarations are protected with the definition of
__CHAR_PTR32 to allow multiple header files to use
the same naming convention. Declarations of the
const form of the typedef are always made in the same
conditional code since they usually are needed and
using the same condition removes the need for a dif-
ferent protecting name.

The strerror function could have been implemented
in <header.h> by placing the function in the 32-bit sec-
tion, but that would have implied that the 32-bit
pointer was a restriction that could be removed later.
The pointer is not a restriction, and the strerror func-
tion fully supports 64-bit pointers.

Digital Technical Journal Vol. 8 No. 2 1996 91

/*
** Define macros that are used to determine pointer size and
** macros that will copy from high memory onto the stack.
*/
#ifdef __INITIAL_POINTER_SIZE

include <builtins.h>

define C$$IS_SHORT_ADDR(addr) \
((((__int64)(addr)<<32)>>32) == (unsigned __int64)addr)

define C$$SHORT_ADDR_OF_STRING(addr) \
(C$$IS_SHORT_ADDR(addr) ? (char *) (addr) \
:(char *) strcpy(__ALLOCA(strlen(addr) + 1), (addr)))

define C$$SHORT_ADDR_OF_STRUCT(addr) \
(C$$IS_SHORT_ADDR(addr) ? (void *) (addr) \
:(void *) memcpy(__ALLOCA(sizeof(* addr)), (addr), sizeof(*addr)))

define C$$SHORT_ADDR_OF_MEMORY(addr, len) \
(C$$IS_SHORT_ADDR(addr) ? (void *) (addr) \
:(void *) memcpy(__ALLOCA(len), (addr), len))

#else

define C$$IS_SHORT_ADDR(addr) (1)
define C$$SHORT_ADDR_OF_STRING(addr) (addr)
define C$$SHORT_ADDR_OF_STRUCT(addr) (addr)
define C$$SHORT_ADDR_OF_MEMORY(addr, len) (addr)

#endif

Figure 4
Macros from <wide_types.src>

92 Digital Technical Journal Vol. 8 No. 2 1996

#ifndef __HEADER_LOADED
#define __HEADER_LOADED 1

/*
** Ensure that we begin with 32-bit pointers.
*/
#if __INITIAL_POINTER_SIZE
if (__VMS_VER < 70000000)
error ”Pointer size added in OpenVMS V7.0 for Alpha“
endif
pragma __pointer_size __save
pragma __pointer_size 32
#endif

/*
** STRUCTURES NOT AFFECTED BY POINTERS
*/
#ifndef __SIZE_T
define __SIZE_T 1

typedef unsigned int size_t;
#endif

/*
** FUNCTIONS THAT NEED 64-BIT SUPPORT
*/

/*
** Create 32-bit header file typedefs.
*/
#ifndef __CHAR_PTR32
define __CHAR_PTR32 1

typedef char *__char_ptr32;
typedef const char *__const_char_ptr32;

#endif

/*
** Create 64-bit header file typedefs.
*/
#ifndef __CHAR_PTR64
define __CHAR_PTR64 1
pragma __pointer_size 64

typedef char *__char_ptr64;
typedef const char *__const_char_ptr64;

pragma __pointer_size 32
#endif

/*
** FUNCTIONS RESTRICTED FROM 64 BITS
*/
int execv(__const_char_ptr64, char *[]);

/*
** Change default to 64-bit pointers.
*/
#if __INITIAL_POINTER_SIZE
pragma __pointer_size 64
#endif

/*
** The following functions have interfaces of XXX, _XXX32,
** and _XXX64.
**
** The function strcat has two interfaces because the return
** argument is a pointer that is relative to the first arguments.
**
** The malloc function returns either a 32-bit or a 64-bit
** memory address.
*/
#if __INITIAL_POINTER_SIZE == 32
pragma __pointer_size 32
#endif

Figure 5
Final Form of <header.h>

2. Add the following line of code to the top of the
module: #include <wide_types.src>.

3. Change the declaration of the function to accept
a __wide_const_char_ptr parameter instead of the
previous const char * parameter.

4. Visually follow this argument through the code,
looking for assignment statements. This particular
function would be a simple loop. If local variables
store this pointer, they must also be declared as
__wide_const_char_ptr.

5. Compile the source code using the directive
/warn=enable=maylosedata to have the compiler
help detect pointer truncation.

6. Add a new test to the test system to exercise 64-bit
pointers.

Restricting execv from High Memory
Examination of the execv function prototype showed
that this function receives two arguments. The first
argument is a pointer to the name of the file to start.
The second argument represents the argv array that is
to be passed to the child process. This array of pointers
to null terminated strings ends with a NULL pointer.

Initially, the execv function was to have had two
implementations. The parameters passed to the execv
function are used as the parameters to the main func-
tion of the child process being started. Because no
assumptions could be made about that child process
(in terms of support for 64-bit pointers), these para-
meters are restricted to low memory addresses.

To illustrate that the argv passing was a restriction,
we place that prototype into the section “Functions
restricted from 64 bits” of <header.h>. The first argu-
ment, the name of the file, did not need to have this
restriction. The section “Create 64-bit header file
typedefs” was enhanced to add the definition of
__const_char_ptr64, which allows the prototypes to
define a 64-bit pointer to constant characters while in
either 32-bit or 64-bit context.

Returning a Relative Pointer in strcat
The strcat function returns a pointer relative to its first
argument. We looked at this function and determined
that it required two entry points. In addition, we
widened the second parameter, which is the address of
the string to concatenate to the second, to allow the
application to concatenate a 64-bit string to a 32-bit
string without source code changes.

Digital Technical Journal Vol. 8 No. 2 1996 93

void *malloc(size_t __size);
char *strcat(char *__s1, __const_char_ptr64 __s2);

#if __INITIAL_POINTER_SIZE == 32
pragma __pointer_size 64
#endif

#if __INITIAL_POINTER_SIZE && __VMS_VER >= 70000000
pragma __pointer_size 32

void *_malloc32(size_t);
char *_strcat32(char *__s1, __const_char_ptr64 __s2);

pragma __pointer_size 64
void *_malloc64(size_t);
char *_strcat64(char *__s1, const char *__s2);

#endif

/*
** FUNCTIONS THAT SUPPORT 64-BIT POINTERS
*/
void free(void *__ptr);
int rand(void);
size_t strlen(const char *__s);

__char_ptr32 strerror(int __errnum);

/*
** Restore the user’s pointer context.
*/
#if __INITIAL_POINTER_SIZE
pragma __pointer_size __restore

#endif

#endif /* __HEADER_LOADED */

Figure 5
Continued

int free(__wide_void_ptr ptr) {
if (!(C$$IS_SHORT_ADDR(ptr)))

return(c$$_free64(ptr));
else return(c$$_free32((void *) ptr);

}

Concluding Remarks

The project took approximately seven person-months
to complete. The work involved two months to deter-
mine what we wanted to do, one month to figure out
how we were going to do it, and four person-months
to modify, document, and test the software.

During the initial two months, the technical leaders
met on a weekly basis and discussed the overall
approach to adding 64-bit pointers to the OpenVMS
environment. Since I was the technical lead for the C
run-time library project, this initial phase occupied
between 25 and 50 percent of my time.

The one month of detailed analysis and design con-
sumed more than 90 percent of my time and resulted
in a detailed document of approximately 100 pages.
The document covered each of the 50 header files and
500 function interfaces. The functions were grouped
by type, based on the amount of work required to
support 64-bit pointers.

The first month of implementation occupied nearly
all of my time, as I made several false starts. Once I
worked out the final implementation technique, I
completed at least two of each type of work. As coding
deadlines approached, I taught two other engineers on
my team how to add 64-bit pointer support, pointing
out those functions already completed for reference.
They came up to speed within one week. Together, we
completed the work during the final month of the
project.

Figure 5 shows the changes made to support func-
tions that have pointer-size-specific entry points. The
prototypes of functions XXX, _XXX32, and _XXX64
begin in 64-bit pointer-size mode. Since the unmodi-
fied function name (strcat, XXX) is to be in the pointer
size specified by the /pointer_size qualifier, the
pointer size is changed from 64 bits to 32 bits if and
only if the user has specified /pointer_size=32. At this
point, we are not certain of the pointer size in effect.
We know only that the size is the same as the size of
the qualifier. The second argument to strcat uses the
__const_char_ptr64 typedef in case we are in 32-bit
pointer mode. Notice the declaration of _strcat64
does not use this typedef because we are guaranteed
to be in 64-bit pointer context. Figure 6 shows the
implementation of both the 32-bit and the 64-bit
strcat functions.

The 64-bit malloc Function
The implementation of multiple entry points was dis-
cussed and demonstrated in the strcat implementation.
Although multiple entry points are typically added to
avoid truncating pointers, functions such as memory
allocation routines have newly defined behavior.

The functions decc$malloc and decc$_malloc64
use new support provided by the OpenVMS Alpha
operating system for allocating, extending, and freeing
64-bit virtual memory. The C run-time library utilizes
this new functionality through the LIBRTL entry
points. The LIBRTL group added new entry points for
each of the existing memory management functions.
The LIBRTL includes an additional second entry
point for the free function. Since our implementation
of the free function simply widens the pointer, we end
up with a single, C run-time library function that must
choose which LIBRTL function to call.

94 Digital Technical Journal Vol. 8 No. 2 1996

Figure 6
Implementation of 32-bit and 64-bit strcat Functions

#include <string.h>
#include <wide_types.src>

/*
** STRCAT/_STRCAT64
**
** The ‘strcat’ function concatenates ‘s2’, including the
** terminating null character, to the end of ‘s1’.
*/

__wide_char_ptr _strcat64(__wide_char_ptr s1, __wide_const_char_ptr s2)
{

(void) _memcpy64((s1 + strlen(s1)), s2, (strlen(s2) + 1));
return(s1);

}

char *_strcat32(char *s1, __wide_const_char_ptr s2) {
(void) memcpy((s1 + strlen(s1)), s2, (strlen(s2) + 1));
return(s1);

Acknowledgments

The author would like to acknowledge the others who
contributed to the success of the C run-time library
project. The engineers who helped with various
aspects of the analysis, design, and implementation
were Sandra Whitman, Brian McCarthy, Greg Tarsa,
Marc Noel, Boris Gubenko, and Ken Cowan. Our
writer, John Paolillo, worked countless hours docu-
menting the changes we made to the library.

References

1. M. Harvey and L. Szubowicz, “Extending OpenVMS
for 64-bit Addressable Virtual Memory,” Digital
Technical Journal, vol. 8, no. 2 (1996, this issue):
57–71.

2. T. Benson, K. Noel, and R. Peterson, “The OpenVMS
Mixed Pointer Size Environment,” Digital Technical
Journal, vol. 8, no. 2 (1996, this issue): 72–82.

3. DEC C User’s Guide for OpenVMS Systems (Maynard,
Mass.: Digital Equipment Corporation, Order No.
AA-PUNZE-TK, 1995).

4. DEC C Runtime Library Reference Manual for
OpenVMS Systems (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-PUNEE-TK, 1995).

5. OpenVMS Calling Standard (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBBA-TE,
1995).

Biography

Duane A. Smith
As a consulting software engineer, Duane Smith is currently
architect and project leader of the C run-time library for
the OpenVMS VAX and Alpha platforms. He joined Digital
in 1981 and has worked on a variety of projects, including
the A-to-Z Database Manager and the Language-Sensitive
Editor. Duane received his B.S. in engineering from the
University of Connecticut in 1981 and his M.S. in soft-
ware engineering from Wang Institute of Graduate Studies
in 1987. He pursued his master’s degree through Digital’s
Graduate Engineering Education Program (GEEP). Duane
holds one U.S. patent issued for the DECwindows Structured
Visual Navigation (SVN) widget.

Digital Technical Journal Vol. 8 No. 2 1996 95

