
During the last few years, significant research and
development has been undertaken in both academia
and industry in an effort to reduce the cost of high-
performance computing (HPC). The method most
frequently used was to build parallel systems out of
clusters of commodity workstations or servers that
could be used as a virtual supercomputer.1 The moti-
vation for this work was the tremendous gains that
have been achieved in reduced instruction set com-
puter (RISC) microprocessor performance during the
last decade. Indeed, processor performance in today’s
workstations and servers often exceeds that of the indi-
vidual processors in a tightly coupled supercomputer.
However, traditional local area network (LAN) per-
formance has not kept pace with microprocessor
performance. LANs, such as fiber distributed data
interface (FDDI), offer reasonable bandwidth, since
communication is generally carried out by means of
traditional protocol stacks such as the user datagram
protocol/internet protocol (UDP/IP) or the trans-
mission control protocol/internet protocol (TCP/IP),
but software overhead is a major factor in message-
transfer time.2 This software overhead is not reduced
by building faster LAN network hardware. Rather, a
new approach is needed—one that bypasses the pro-
tocol stack while preserving sequencing, error detec-
tion, and protection.

Much current research is devoted to reducing this
communications overhead using specialized hardware
and software. To this end, Digital has been working
to make commercial Alpha clusters, descended from
the original VAXcluster technology, available to scien-
tific and technical users.3,4 This cluster technology
uses available commodity hardware and software to
implement a high-performance communications sub-
system.5 The hardware interconnect that supports
clustered operation is Encore Computer Corporation’s
patented MEMORY CHANNEL technology.6 This
interconnect provides a mechanism that allows the vir-
tual address space of a process to be mapped so that
a store instruction in one system is directly reflected in
the physical memory of another system. We have
developed software application programming inter-
faces (APIs) that provide user-level applications with
this capability in a controlled and protected manner.

96 Digital Technical Journal Vol. 8 No. 2 1996

Building a High-performance
Message-passing System for
MEMORY CHANNEL Clusters

James V. Lawton
John J. Brosnan
Morgan P. Doyle
Seosamh D. Ó Riordáin
Timothy G. Reddin

The new MEMORY CHANNEL for PCI cluster
interconnect technology developed by Digital
(based on technology from Encore Computer
Corporation) dramatically reduces the over-
head involved in intermachine communica-
tion. Digital has designed a software system,
the TruCluster MEMORY CHANNEL Software ver-
sion 1.4 product, that provides fast user-level
access to the MEMORY CHANNEL network and
can be used to implement a form of distributed
shared memory. Using this product, Digital has
built a low-level message-passing system that
reduces the communications latency in a MEMORY

CHANNEL cluster to less than 10 microseconds.
This system can, in turn, be used to easily build
the communications libraries that programmers
use to parallelize scientific codes. Digital has
demonstrated the successful use of this message-
passing system by developing implementations
of two of the most popular of these libraries,
Parallel Virtual Machine (PVM) and Message
Passing Interface (MPI).

Data may then be transferred between the machines
using simple memory read and write operations, with
no software overhead, essentially utilizing the full per-
formance of the hardware. This approach is similar to
the one used in the Princeton SHRIMP project, where
this process is described as Virtual Memory-Mapped
Communication (VMMC). 7–10

Figure 1 shows the relationship between the various
components of our message-passing system. The first
phase of our work involved designing a program-
ming library and associated kernel components to pro-
vide protected, unprivileged access to the MEMORY
CHANNEL network. Our objective in creating this
library was to provide a facility much like the standard
System V interprocess communication (IPC) shared
memory functions available in UNIX implementations.
Programmers could use the library to set up operations
over the MEMORY CHANNEL interconnect, but they
would not need to use the library functions for data
transfer. In this way, performance could be maximized.
This product, the TruCluster MEMORY CHANNEL
Software, provides programmers with a simple, high-
performance mechanism for building parallel systems.

TruCluster MEMORY CHANNEL Software delivers
the performance available from the MEMORY
CHANNEL network directly to user applications but
requires a programming style that is different from
that required for shared memory. This different pro-
gramming style is necessary because of the different
access characteristics between local memory and mem-
ory on a remote node connected through a MEMORY
CHANNEL network. To make programming with the
MEMORY CHANNEL technology relatively simple
while continuing to deliver the hardware performance,
we built a library of primitive communications func-
tions. This system, called Universal Message Passing
(UMP), hides the details of MEMORY CHANNEL
operations from the programmer and operates seam-
lessly over two transports (initially): shared memory
and the MEMORY CHANNEL interconnect. This
allows seamless growth from a symmetric multipro-
cessor (SMP) to a full MEMORY CHANNEL cluster.
Development can be done on a workstation, while
production work is done on the cluster. The UMP

Digital Technical Journal Vol. 8 No. 2 1996 97

layer was designed from the beginning with perfor-
mance considerations in mind, particularly with
respect to minimizing the overhead involved in send-
ing small messages.

Two distributed memory models are predominantly
used in high-performance computing today:

1. Data parallel, which is used in High Performance
Fortran (HPF).11 With this model, the programmer
uses parallel language constructs to indicate to the
compiler how to distribute data and what opera-
tions should be performed on it. The problem is
assumed to be regular so that the compiler can use
one of a number of data distribution algorithms.

2. Message passing, which is used in Parallel Virtual
Machine (PVM) and Message Passing Interface
(MPI).12–15 In this approach, all messaging is per-
formed explicitly, so the application programmer
determines the data distribution algorithm, making
this approach more suitable for irregular problems.

It is not yet clear whether one of these approaches
will predominate in the future or if both will continue
to coexist. Digital has been working to provide com-
petitive solutions for both approaches using MEMORY
CHANNEL clusters. Digital’s HPF work has been
described in a previous issue of the Journal.16,17 This
paper is primarily concerned with message passing.

Building on the UMP layer, we constructed imple-
mentations of two common message-passing systems.
The first, PVM, is a de facto standard for programmers
who want to parallelize large scientific and technical
applications. In addition to messaging functions, PVM
also provides process control functions. The second,
MPI, represents the efforts of a large group of acade-
mic and industrial users who are working together
to specify a standard API for message passing. At this
time, MPI does not provide any process control facili-
ties. The performance of these PVM and MPI systems
on MEMORY CHANNEL clusters exceeds that of the
public-domain implementations.

MEMORY CHANNEL Overview

Encore’s MEMORY CHANNEL technology is a high-
performance network that implements a form of
clusterwide shared virtual memory. In Digital’s first
implementation of this technology, it is a shared,
100-megabyte-per-second (MB/s) bus that provides
a write-only path from a page of virtual address space
on one node to a page of physical memory on another
node (or multiple other nodes). The MEMORY
CHANNEL network outperforms any traditional LAN
technology that uses a bus topology. For example, a
peak bandwidth of between 35 MB/s and 70 MB/s is
possible with the current 32-bit peripheral component
interconnect (PCI) MEMORY CHANNEL adapters,

PARALLEL APPLICATION

SHARED

MEMORY

TRUCLUSTER

MEMORY CHANNEL

SOFTWARE

OTHER

TRANSPORT

PVM MPI

UMP

Figure 1
Message-passing System Architecture

98 Digital Technical Journal Vol. 8 No. 2 1996

depending on the bandwidth of the I/O subsystem
into which the adapter is plugged. Although the cur-
rent MEMORY CHANNEL network is a shared bus, the
plan for the next generation is to utilize a switched
technology that will increase the aggregate bandwidth
of the network beyond that of currently available
switched LAN technologies. The latency (time to send
a minimum-length message one way between two
processes) is less than 5 microseconds (ms). The
MEMORY CHANNEL network provides a communica-
tions medium with a low bit-error rate, on the order of
10216. The probability of undetected errors occurring
is so small (on the order of the undetected error rate of
CPUs and memory subsystems) that it is essentially
negligible. A MEMORY CHANNEL cluster consists of
one or more PCI MEMORY CHANNEL adapters on
each node and a hub connecting up to eight nodes.

The MEMORY CHANNEL cluster supports a
512-MB global address space into which each adapter,
under operating system control, can map regions of
local virtual address space.18 Figure 2 illustrates the
MEMORY CHANNEL operation. Figure 2a shows
transmission, and Figure 2b shows reception. A page
table entry (PTE) is an entry in the system virtual-
to-physical map that translates the virtual address of
a page to the corresponding physical address. The
MEMORY CHANNEL adapter contains a page control
table (PCT) that indicates for each page of MEMORY
CHANNEL global address space if that page is mapped
locally and whether it is mapped for transmission or
reception. Thus, to map a page of local virtual mem-
ory for transmission, all that is required is to

■ Set up an entry in the system virtual-to-physical
map to point to a page in the MEMORY CHANNEL
adapter’s PCI I/O address space window, which
is directly mapped to the page in MEMORY
CHANNEL space

■ Enable the corresponding page entry in the PCT
for transmission

Any write to the mapped virtual page will then
result in a corresponding write to the MEMORY
CHANNEL network.

To complete the circuit, the page of MEMORY
CHANNEL space must be mapped to virtual memory
on another node. This is accomplished on the other
node by

■ Making a page of physical memory nonpageable
(wired)

■ Creating a virtual region whose PTE points to the
wired page

■ Setting up the I/O direct memory access (DMA)
scatter/gather map to point to the physical page

■ Enabling the appropriate entry in the adapter’s
PCT for reception

Thus, when a MEMORY CHANNEL network packet
is received that corresponds to the page that is mapped
for reception, the data is transferred directly to the
appropriate page of physical memory by the system’s
DMA engine. In addition, any cache lines that refer to
the updated page are invalidated.

Subsequently, any writes to the mapped page of vir-
tual memory on the first node result in corresponding
writes to physical memory on the second node. This
means that when a region in MEMORY CHANNEL
space has been allocated and attached to a process,
writes to that region are just simple stores to a process
virtual address. The virtual address translates to a phys-
ical address that is mapped for transmission. Reads
from that region are simply loads from a process virtual
address, so the operating system is not involved in data
transfer, with consequent reduction in overhead.

To use the MEMORY CHANNEL hardware, the
operating system must provide certain basic services.
Digital’s cluster software includes a set of low-level
primitives that can be used in the UNIX kernel. The
functionality that these services provide includes

■ Allocating and deallocating regions of MEMORY
CHANNEL space for transmission or reception

■ Allocating and deallocating cluster spinlocks
■ Providing the capability to be notified when a page

has been written (i.e., a notification channel)

TruCluster MEMORY CHANNEL Software

We designed the TruCluster MEMORY CHANNEL
Software product to provide user-level access to the
kernel functions that control the MEMORY CHANNEL
hardware. The target audience for this technology is
parallel software library builders and parallel compiler
implementers. As shown in Figure 3, the product con-
sists of two components layered on top of the kernel
MEMORY CHANNEL functions:

1. A kernel subsystem that interfaces to the low-level
kernel functions

2. A user-level API library

There were two choices in developing the product:
provide simple user-level access to the basic functional-
ity or build a more sophisticated system (e.g., a distrib-
uted shared memory [DSM] system). We chose to
make a subset of the functionality of the operating sys-
tem kernel primitives available to applications for two
reasons. First, we did not initially know the degree
of functionality required to provide generic user-
level access to the MEMORY CHANNEL network
for the long term. Second, the original purpose of
the work was to give scientific and technical cus-
tomers, rather than commercial cluster users, early
access to the MEMORY CHANNEL network. As a
result, the functionality we built into the product is

a set of simple building blocks that are analogous to the
System V IPC facility in most UNIX implementations.
The advantage is that while a very simple interface is
provided initially, the interface can later be extended as

Digital Technical Journal Vol. 8 No. 2 1996 99

required, without losing compatibility with applications
based on the initial implementation. Table 1 details the
MEMORY CHANNEL API library functions that the
product provides. An important feature to note is that
when a MEMORY CHANNEL region is allocated using
TruCluster MEMORY CHANNEL Software, a key is
specified that uniquely identifies this region in the clus-
ter. Other processes anywhere in the cluster can attach
to the same region using the same key; the collection of
keys provides a clusterwide namespace.

The MEMORY CHANNEL API library communi-
cates with the kernel subsystem using kmodcall, a sim-
ple generic system call used to manage kernel
subsystems. The library function constructs a com-
mand block containing the type of command (i.e.,

USER

SPACE

TRANSMIT

REGION

VIRTUAL-TO-

PHYSICAL

ADDRESS

TRANSLATION

MEMORY CHANNEL

ADAPTER

PAGE CONTROL

TABLE

EXECUTES STORE INSTRUCTION

TO VIRTUAL ADDRESS IN

TRANSMIT REGION

VIRTUAL

ADDRESS

PAGE TABLE ENTRY

PHYSICAL ADDRESS

IN PCI I/O SPACE

MEMORY

CHANNEL

ADDRESS

DATA

(a) Transmission

USER

SPACE

RECEIVE

REGION

VIRTUAL-TO-

PHYSICAL

ADDRESS

TRANSLATION

MEMORY CHANNEL

ADAPTER

PAGE CONTROL

TABLE

EXECUTES LOAD INSTRUCTION

FROM VIRTUAL ADDRESS IN

RECEIVE REGION

VIRTUAL

ADDRESS

PAGE TABLE ENTRY

WIRED PHYSICAL

PAGES

MEMORY

CHANNEL

ADDRESS

DATA

(b) Reception

DMA SCATTER/

GATHER MAPCACHE

INVALIDATE

DATA RETURNED FROM

PHYSICAL MEMORY

Figure 2
MEMORY CHANNEL Operation

LOW-LEVEL KERNEL

MEMORY CHANNEL FUNCTIONS

TRUCLUSTER MEMORY CHANNEL

KERNEL SUBSYSTEM

TRUCLUSTER MEMORY

CHANNEL API LIBRARY

USER SPACE

KERNEL SPACE

Figure 3
TruCluster MEMORY CHANNEL Software Architecture

which library function has been called) and any para-
meters and sends it to the kernel subsystem using
kmodcall. The kernel subsystem has a matching func-
tion for each of the library calls. When a command
block is received, it is parsed and the appropriate func-
tion is called to service the request. All security and
resource checks are performed inside the kernel.

Figure 4 shows some of the data structures that the
kernel services use. A clusterwide region of MEMORY
CHANNEL space is allocated to store these manage-
ment structures. This region contains a control struc-
ture and six linked lists of descriptors. The control
structure manages MEMORY CHANNEL resources
allocated using TruCluster MEMORY CHANNEL
Software. Each region of MEMORY CHANNEL address
space and each set of MEMORY CHANNEL spinlocks
allocated using the product have a corresponding
descriptor in the kernel data structure.

For each region of MEMORY CHANNEL address
space allocated in the cluster, there is a cluster region
descriptor (CRD) that contains information describ-
ing the region, including its clusterwide region identi-
fication number (ID), its size, key, permissions,

creation time, and the UNIX user ID (UID) and group
ID (GID) of the creating process. For an individual
CRD, there is a host region descriptor (HRD) for each
node that has the region mapped. This HRD contains
the cluster ID of the node and other node-specific
information. Finally, for a specific HRD, there is a
process region descriptor (PRD) for each process on
that node that is using the region. The PRD contains
the UNIX process ID (PID) of the process that created
the region and any process-specific information, such
as virtual addresses.

Similarly, for each set of spinlocks allocated on the
cluster there is a cluster lock descriptor (CLD) that
contains information describing the spinlock set,
including its clusterwide lock ID, the number of spin-
locks in the set, the key, permissions, creation time,
and the UID and GID of the creating process. For an
individual CLD, there is a host lock descriptor (HLD)
for each node that is using the spinlock set. The HLD
contains the cluster ID of the node and other node-
specific information about the spinlock set. For a spe-
cific HLD, there is a process lock descriptor (PLD) for
each process on that node that is using the spinlock

100 Digital Technical Journal Vol. 8 No. 2 1996

Table 1
TruCluster MEMORY CHANNEL API Library Functions

Function
Name Description

imc_asalloc Allocates a region of MEMORY CHANNEL address space of a specified size and permissions and
with a user-supplied key; the ability to specify a key allows other cluster processes to rendezvous
at the same region. The function returns to the user a clusterwide ID for this region.

Imc_asattach Attaches an allocated MEMORY CHANNEL region to a process virtual address space. A region
can be attached for transmission or reception, and in shared or exclusive mode. The user can also
request that the page be attached in loopback mode, i.e., any writes will be reflected back to the
current node so that if an appropriate reception mapping is in effect, the result of the writes can
be seen locally. The virtual address of the mapped region is assigned by the kernel and returned
to the user.

Imc_asdetach Detaches an allocated MEMORY CHANNEL region from a process virtual address space.
imc_asdealloc Deallocates a region of MEMORY CHANNEL address space with a specified ID.
imc_lkalloc Allocates a set of clusterwide spinlocks. The user can specify a key and the required permissions.

Normally, if a spinlock set exists, then this function just returns the ID of that lock set; otherwise
it creates the set. If the user specifies that creation is to be exclusive, then failure will result if the
spinlock set exists already. In addition, by specifying the IMC_CREATOR flag, the first spinlock in
the set will be acquired. These two features prevent the occurrence of races in the allocation of
spinlock sets across the cluster.

imc_lkacquire Acquires (locks) a spinlock in a specified spinlock set.
imc_lkrelease Releases (unlocks) a spinlock in a specified spinlock set.
imc_lkdealloc Deallocates a set of spinlocks.
imc_rderrcnt Reads the clusterwide MEMORY CHANNEL error count and returns the value to the user. This

value is not guaranteed to be up-to-date for all nodes in the cluster. It can be used to construct
an application-specific error-detection scheme.

imc_ckerrcnt Checks for outstanding MEMORY CHANNEL errors, i.e., errors that have not yet been reflected in
the clusterwide MEMORY CHANNEL error count returned by imc_rderrcnt. This function checks
each node in the cluster for any outstanding errors and updates the global error count accordingly.

imc_kill Sends a UNIX signal to a specified process on another node in the cluster.
imc_gethosts Returns the number of nodes currently in the cluster and their host names.

set. The PLD contains the PID of the process that cre-
ated the spinlock set and any process-specific informa-
tion about the spinlock set.

All these cluster data structures have pointers that
cannot be updated atomically. In our implementation,
they actually consist of two copies (old and new) and
a toggle that indicates which of the two copies is valid.
The toggle is switched from an old copy to a new copy
only when the new copy is known to be consistent, so
that failure of a cluster member while modifying the
structures can be tolerated.

Figure 4a illustrates a hypothetical situation in which
four regions of MEMORY CHANNEL space have been
allocated on the cluster. The first region, with descrip-
tor CRD 0, is mapped on three nodes: host 4, host 6,
and host 3. The diagram also shows four processes on
host 3 with the region mapped and lists the PID of each
process. Figure 4b shows a similar situation for spin-
locks. Two sets of spinlocks have been allocated. The

first, with descriptor CLD 0, is mapped on two nodes
of the cluster: host 2 and host 0. One process on each
of these nodes is currently using the spinlock set.

Command Relay
The command relay is a kernel-level framework that
enables the execution of a generic service routine on
another node within the cluster. It functions as a sim-
ple kernel remote procedure call (RPC) mechanism
based on fixed unidirectional message locations (mail-
boxes) and MEMORY CHANNEL notification chan-
nels to awaken the server kernel thread. Figure 5
shows the major components of the command relay
and illustrates its operation between two hosts in a
cluster. A client kernel thread on one host invoking a
service and the corresponding server kernel thread on
another cluster host communicate data using a defined
bidirectional command/response block, known as a
parameter structure. The client and server routines

Digital Technical Journal Vol. 8 No. 2 1996 101

CRD 0

(a) Regions

CRD 1

CRD 2

CRD 3

HRD 0: HOST 4

HRD 1: HOST 6

HRD 2: HOST 3

HRD 1: HOST 1

HRD 0: HOST 6

PRD 0: PID 2001

PRD 1: PID 2340

PRD 2: PID 4458

PRD 3: PID 6583

CLD 0

(b) Spinlocks

CLD 1

HLD 0: HOST 2

HLD 1: HOST 0

HLD 1: HOST 6

HLD 0: HOST 4

PLD 0: PID 3346

PLD 3: PID 4072

HLD 2: HOST 3

KEY:

CLD

CRD

HLD

CLUSTER LOCK DESCRIPTOR

CLUSTER REGION DESCRIPTOR

HOST LOCK DESCRIPTOR

HRD

PLD

PRD

HOST REGION DESCRIPTOR

PROCESS LOCK DESCRIPTOR

PROCESS REGION DESCRIPTOR

Figure 4
TruCluster MEMORY CHANNEL Kernel Data Structures

corresponding receive region. If another process on
another cluster node subsequently maps the same
region for reception, the contents of its receive region
are indeterminate; i.e., the two processes do not have
a coherent view of that region. This situation is known
as the initial coherency problem. For an application
developer, this problem makes it difficult to treat
MEMORY CHANNEL address space as another form
of shared memory. Applications can overcome this dif-
ficulty by using some form of start-up synchronization.
However, all developers would have to implement
these solutions separately. To increase the usability of
TruCluster MEMORY CHANNEL Software, the design
team decided to build in the ability to request coherent
allocation of MEMORY CHANNEL address space
across the cluster. Developers can specify this as an
option in the call to imc_asalloc. As a result, a process
can attach a MEMORY CHANNEL region for reception
following any updates and still share a common view of
the region with other processes in the cluster.

A special process, called the mapper, is used to pro-
vide the virtual address space to hold the coherent user
space mappings. When the kernel subsystem receives
a request for coherent allocation, it allocates the
MEMORY CHANNEL region as normal and then maps
the region for reception into the virtual address space
of the mapper process. The command relay mecha-
nism then causes all the other nodes in the cluster to
allocate the same region and map it for reception into
the address space of the mapper process on each node.
Since multiple user-level processes on a node that
attach a particular region for reception share the same
physical memory, all updates to the region are seen by
late-joining processes on any node in the cluster. If
the requesting process exits, the region will still be
allocated to the mapper, so that another allocation of
the same region on that node will result in a coherent
picture of that region. The region is fully deallocated
(i.e., from all the mapper processes) when the last
application process allocating the region either exits or
explicitly deallocates the region.

102 Digital Technical Journal Vol. 8 No. 2 1996

must conform to this interface and must be reliable,
i.e., they must always return to the caller. The server
can call any kernel function. Server routines are regis-
tered (step 1 in Figure 5) using a clusterwide service
ID. A kernel thread invoking a remote service passes
a packed parameter structure to the command relay,
together with a destination node ID and a service ID
(step 2). This command relay then adds process creden-
tials and builds a service protocol data unit (SPDU).
Using a MEMORY CHANNEL notification channel, it
signals the remote node and passes the SPDU by means
of a mailbox in MEMORY CHANNEL space (step 3).
The server parses the SPDU and calls the requested ser-
vice function, passing it the parameter structure (step
4). When the service function completes (step 5), its
return status and any data values are packed into an
SPDU and placed into the mailbox, and the initiating
relay is signaled (step 6). The initiator then unpacks the
data from the SPDU and returns the appropriate status
and values to the client kernel thread (step 7).

All calls to the command relay are synchronous and
serialized. The invoking kernel thread blocks until the
server returns. Requests to the command relay subsys-
tem are treated on a first-come first-served basis, and
calls to a busy relay block until the relay becomes free.
Relays are automatically created between all nodes in
the cluster.

The command relay mechanism makes it possible
to send a UNIX signal to a process on another node
within the MEMORY CHANNEL cluster. The imc_kill
library function uses the command relay to invoke
the registered kernel server routine for cluster signals
on the remote node, which, in turn, calls the kernel kill
function directly with the PID supplied.

Initial Coherency
When a process on a cluster member maps a region of
MEMORY CHANNEL address space for both recep-
tion and transmission, any writes to the transmit
region by that process are reflected as changes to the

INITIATOR RELAY

INVOKE RETURN

SLAVE RELAY

CALL COMPLETE
REGISTER

SERVICE

SERVER

1 4 5

HOST BHOST A

2 7

MEMORY CHANNEL

NOTIFICATION CHANNEL

6

3

CLIENT

Figure 5
Command Relay Operation

Given the usefulness of coherent allocations, it may
seem unusual that we made this feature an option
rather than the default. There are several reasons for
this. With coherent allocations, the associated physical
memory becomes nonpageable on all nodes within the
cluster, and, as such, it consumes physical resources.
In addition, every outbound write to such a region
results in an inbound write to the physical memory of
each node in the cluster. For some application designs,
it may be more desirable to create a region that is writ-
ten by one node and only read by other nodes. Also,
automatically reflecting all writes back to a node, as
is done for coherent regions, consumes twice as much
bandwidth on the PCI bus.

Late Join and Failure Resilience
To provide an operational environment in which
nodes can join or leave the cluster at any time, the ker-
nel subsystem needs to overcome a number of prob-
lems resulting from late join and node failure. In fact,
the kernel subsystem is subject to the same difficulties
of initial coherency as application-level processes. To
manage user space allocations, late-joining nodes
require a coherent view of the cluster data structures.
Moreover, failure of an existing node can result in out-
of-date or, even worse, corrupt data structures in the
subsystem’s control region. To contain the failure,
corrupt data structures must be repaired.

Low-level kernel routines detect cluster membership
change and wake up a management service thread on
each node that performs operations local to that node.
The first management service thread to acquire a spe-
cific spinlock is elected to manage clusterwide updates.

In the case of late join, the management service
thread updates local state to reflect the new configura-
tion. The thread that has been designated to manage
clusterwide updates is responsible for providing the
late-joining node with an up-to-date copy of the clus-
ter data structures. When triggered by the new node,
the thread retransmits the contents of the data struc-
tures so that the late-joining node has a fully up-to-
date view of allocations and resource usage.

When a node fails, the thread elected to manage
clusterwide updates must examine the entire manage-
ment data structure and repair it appropriately. Repair
is necessary when the failing node that is in the process
of updating the global data structures has left these
clusterwide updates in an unstable state. Repair is pos-
sible because all updates to global data structures use
two copies of the structure (old and new, as described
previously), which means that the structures can be
reset easily to a stable state. If the failed node was not
actively updating the data structures at the time of the
failure, the management thread simply removes all
resources allocated to the failed node.

Error Management
The MEMORY CHANNEL hardware provides a very
low error rate, ordering guarantees, and an ability to
detect remote error situations quickly, making it possi-
ble to construct simple error detection and recovery
protocols. A kernel interrupt service routine detects
cluster errors and updates an error counter that reflects
the clusterwide error count. A low-level kernel routine
returns the value of this counter. Due to timing consid-
erations, it is not possible to guarantee that this count
will be up-to-date with respect to possible errors on
remote nodes. A low-level kernel routine that effi-
ciently reads the error status of remote MEMORY
CHANNEL adapters and detects unprocessed errors
is provided. This routine uses a hardware feature,
known as an ACK page, that is specifically designed to
facilitate error detection. A write to such a page results
in the error status of each MEMORY CHANNEL
adapter being written to successive locations of the
corresponding reception mapped region.

During development, we built simple interfaces
to access these low-level routines, thereby allowing
message-passing libraries to build in error manage-
ment. Because the method of getting into and out of
the kernel is a generic one, the overhead is high—
approximately 30 ms. This compares poorly with the
raw latency for short messages, which is less than 5 ms.
To provide suitable performance, we reimplemented
the functions to execute totally in user space. As a
result, when an application reads the error count for
the first time (using imc_rderrcnt), the kernel value of
the error count is mapped for read-only access into the
virtual address space of the process. Subsequent reads
of the error count are then simply reads of a memory
location. Similarly, when an application calls the check
error service (using imc_ckerrcnt) for the first time,
ACK pages are transparently mapped into the virtual
address space of the process, and the error detection is
performed at hardware speeds directly from user
space. This has been measured at less than 5 ms.

The following sequence can be used to guarantee
detection of intervening errors by the transmitter:

1. Save the error count.
2. Write the message.
3. Check the error count (using imc_ckerrcnt).

If the transmitter writes the saved error count at the
end of the message, the message receiver can deter-
mine if any intervening errors have occurred by simply
comparing the error count in the message with the
current value using imc_rderrcnt. This is possible
because of the sequencing guarantees built into the
MEMORY CHANNEL network. Using imc_rderrcnt
and imc_ckerrcnt, the programmer can build an appro-
priate error detection and/or recovery scheme that
meets the performance requirements of the application.

Digital Technical Journal Vol. 8 No. 2 1996 103

104 Digital Technical Journal Vol. 8 No. 2 1996

Performance
The performance of TruCluster MEMORY CHANNEL
Software on a pair of AlphaServer 4100 5/300
machines is presented in Table 2. These measurements
were made using version 1.5 MEMORY CHANNEL
adapters. The bandwidth (64 MB/s) and latency
(2.9 ms) achieved using this system are essentially that
of the hardware, since no system overhead is involved.
The times required to perform the error-checking
functions indicate that the overhead of calling
imc_rderrcnt is much less than that of imc_ckerrcnt.
This is because the latter has to synchronize with all
other members of the cluster. Protocols that rely on
receiver-only error detection (using imc_rderrcnt) will
therefore have a lower overhead.

Programming with TruCluster
MEMORY CHANNEL Software
The MEMORY CHANNEL network imposes some
unique restrictions on the programmer. Since the net-
work requires separate transmit and receive regions,
any read-write memory location that is to be visible
clusterwide must have two addresses: a read address
and a write address. Attempts to read from a write
address typically cause a segmentation violation.
MEMORY CHANNEL address space can be used like
shared memory. Unlike shared memory, though, its
latency is visible to the programmer, who must consider
latency effects when writing to a clusterwide location.

As an example of programming with TruCluster
MEMORY CHANNEL Software, Figure 6 shows a
simple program that implements a global counter,
performs some work, and then decrements the global
counter and exits. For the purposes of this example,
assume that multiple copies of the program are run
concurrently on different machines in a cluster. Such
operation requires synchronization to ensure safe
access to shared data in MEMORY CHANNEL space.
The example program first allocates MEMORY
CHANNEL regions for transmission and reception and
attaches them to process virtual addresses. Next, a
set of spinlocks is created (unless it already exists). The
first copy of the program to create the spinlock set
acquires the first lock in the set and initializes the
global region, whereupon it releases the spinlock and
continues. All other copies of the program wait in
imc_lkacquire until the spinlock is released by the first

copy. Each copy in turn acquires the lock itself, incre-
ments the process counter, and releases the lock. The
copies then perform some work in parallel. When each
program has finished its portion of the work, it decre-
ments the global process counter (using the spinlock
to control access again). Finally, the spinlock set and
shared regions are deallocated. Several examples of
code illustrating these topics are contained in the
TruCluster MEMORY CHANNEL Software Programmer’s
Manual.19 We have found that implementing a simple
message-passing layer on top of TruCluster MEMORY
CHANNEL Software is a more effective solution than
programming directly with MEMORY CHANNEL
regions, as described in the next section.

Several features described above were not initially
present in the TruCluster MEMORY CHANNEL
Software product. As a result of our experience imple-
menting UMP and the higher PVM and MPI layers,
we added the following features:

■ Initial coherency
■ Command relay
■ Cluster signals
■ User-level error checking

Universal Message Passing
The Universal Message Passing (UMP) library is
designed to provide a foundation for implementing
efficient message-passing systems on the MEMORY
CHANNEL network. From the outset, we were aware
that there would be a demand for PVM and MPI
implementations and that other implementations
might follow. We felt that it would be easier to con-
struct high-performance message-passing systems if
we provided a thin layer that could efficiently handle
the restrictions that the MEMORY CHANNEL net-
work imposes.

The goals in developing UMP were to

■ Simplify the construction of message-passing sys-
tems utilizing the MEMORY CHANNEL network
by hiding the details of the underlying commu-
nications transport (initially, shared memory or
MEMORY CHANNEL).

■ Optimize performance and exploit the low latency
of the MEMORY CHANNEL network; the initial
goal for latency over the MEMORY CHANNEL net-
work using PVM was to achieve less than 30 ms.

■ Ease the development of parallel message-passing
libraries by providing a simple set of message-
passing functions.

■ Perform only basic communications; any more
complex operations (e.g., process control) would
be performed by a higher layer.

■ Act as a convergence center for possible future
interconnects.

Table 2
TruCluster MEMORY CHANNEL Software Performance

Sustained bandwidth 64 MB/s
Latency 2.9 ms
Read error count (imc_rderrcnt) ,1 ms
Check error count (imc_ckerrcnt) ,5 ms

Digital Technical Journal Vol. 8 No. 2 1996 105

Figure 6
Programming with TruCluster MEMORY CHANNEL Software

extern long asm(const char *, ...);
#pragma intrinsic(asm)
#define mb() asm(”mb“)

#include <sys/types.h>
#include <sys/imc.h>

main ()
{

int status, i, locks=4, temp, errors;
imc_asid_t region_id; /* MC region ID */
imc_lkid_t lock_id; /* MC spinlock set ID */
typedef struct { /* Shared data structure */

volatile int processes;
volatile int pattern[2047];

} shared_region;
shared_region *region_read, *region_write;
caddr_t read_ptr = 0, write_ptr = 0;

/* Allocate a region of coherent MC address space and attach to */
/* process VA */
imc_asalloc(123, 8192, IMC_URW, IMC_COHERENT, ®ion_id);
imc_asattach(region_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK, &write_ptr);
imc_asattach(region_id, IMC_RECEIVE, IMC_SHARED, 0, &read_ptr);

region_read = (shared_region *)write_ptr;
region_write = (shared_region *)read_ptr;

/* Allocate a set of spinlocks and atomically acquire the first lock */
status = imc_lkalloc(456, &locks, IMC_LKU, IMC_CREATOR, &lock_id);
errors = imc_rderrcnt();
if (status == IMC_SUCCESS) {

do {
region_write->processes = 0; /* Initialize the global region */
for (i=0; i<2047; i++)

region_write->pattern[i] = i;
i--;
mb();

} while (imc_ckerrcnt(&errors) || region_read->pattern[i] != i) ;
imc_lkrelease(lock_id, 0);

} else if (status == IMC_EXISTS) {
imc_lkalloc(456, &locks, IMC_LKU, 0, &lock_id);
imc_lkacquire(lock_id, 0, 0, IMC_LOCKWAIT);
temp = region_read->processes + 1; /* Increment the process counter */
errors = imc_rderrcnt();
do {

region_write->processes = temp;
mb();

} while (imc_ckerrcnt(&errors) || region_read->processes != temp) ;
imc_lkrelease(lock_id, 0);

}

.

. (Body of program goes here)

.

/* clean up */
imc_lkacquire(lock_id, 0, 0, IMC_LOCKWAIT);
temp = region_read->processes - 1; /* Decrement the process counter */
errors = imc_rderrcnt();
do {

region_write->processes = temp;
mb();

} while (imc_ckerrcnt(&errors) || region_read->processes != temp) ;

imc_lkrelease(lock_id, 0);
imc_lkdealloc(lock_id); /* Deallocate spinlock set */
imc_asdetach(region_id); /* Detach shared region */
imc_asdealloc(region_id); /* Deallocate MC address space */

}

These goals placed some important constraints on
the architecture of UMP, particularly with regard to
performance. This meant that design decisions had
to be constantly evaluated in terms of their performance
impact. The initial design decision was to use a dedi-
cated point-to-point circular buffer between every pair
of processes. These buffers use producer and consumer
indexes to control the reading and writing of buffer
contents. The indexes can be modified only by the
consumer and producer tasks and allow fully lockless
operation of the buffers. Removing lock requirements
eliminates not only the software costs associated with
lock manipulation (in the initial implementation of
TruCluster MEMORY CHANNEL Software, acquiring
and releasing an uncontested spinlock takes approxi-
mately 130 ms and 120 ms, respectively) but also the
impact on processor performance associated with
Load-locked/Store-conditional instruction sequences.

Although this buffering style eliminates lock manip-
ulation costs, it results in an exponential demand for
storage and can limit scalability. If there are N processes
communicating using this method, that implies N 2

buffers are required for full mesh communication.
MEMORY CHANNEL address space is a relatively
scarce resource that needs to be carefully husbanded.
To manage the demand on cluster resources as fairly as
possible, we decided to do the following:

■ Allocate buffers sparsely, i.e., as required up to
some default limit. Full N 2 allocation would still be
possible if the user increased the number of buffers.

■ Make the size of the buffers configurable.
■ Use lock-controlled single-writer, multiple-reader

buffers to handle both the overflow from the N 2

buffer and fast multicast. One of these buffers,
called outbufs, would be assigned to each process
using UMP upon initialization.

Note that while the channel buffers are logically
point-to-point, they may be implemented physically as
either point-to-point or broadcast. For example, in the
first version of UMP, we used broadcast MEMORY
CHANNEL mappings for the sake of simplicity. We are
currently modifying UMP to use point-to-point
MEMORY CHANNEL mappings, both to increase
available bandwidth and to exploit a switched
MEMORY CHANNEL network.

Figure 7 shows several tasks communicating in
a cluster and illustrates how the two types of UMP
buffers are used. Task 1 and task 2 are executing
on node 1, while task 3 is executing on node 2. In the
diagram, the channel buffers are located under the task
in whose virtual address space they reside to indicate
visually that they reside in the virtual address space of
the destination task. In the figure, task 1 communicates

106 Digital Technical Journal Vol. 8 No. 2 1996

TASK 1

2 1 3 1 1 2

SHARED

MEMORY

MEMORY

CHANNEL

SHARED

MEMORY

CHANNEL BUFFERS

TASK 2 TASK 3

1 3

MEMORY

CHANNEL

MEMORY

CHANNEL

MEMORY

CHANNEL

MEMORY

CHANNEL

1 3

OUTBUF

NODE 1 NODE 2

KEY:

DIRECT WRITE TO CHANNEL BUFFER

LOCK-CONTROLLED READ OF OUTBUF

Figure 7
Cluster Communication Using UMP

At the programmer’s level, UMP operation is based
on duplex point-to-point links called channels, which
correspond to the N 2 buffers already described.
A channel is a pair of unidirectional buffers used to
provide two-way communication between a pair of
process endpoints anywhere in the cluster. UMP pro-
vides functions to open a channel between a pair of
tasks. While the resources are allocated by the first task
to open the channel, the connection is not complete
until the second task also opens the same channel.
Once a channel has been opened by both sides, UMP
functions can be used to send and receive messages on
that channel. It is possible to direct UMP to use shared
memory or MEMORY CHANNEL address space for
the channel buffers, depending on the relative location
of the associated processes. In addition, UMP provides
a function to wait on any event (e.g., arrival of a mes-
sage, creation or deletion of a channel). In total, UMP
provides a dozen functions, which are listed in Table 3.
Most of the functions relate to initialization, shut-
down, and miscellaneous operations. Three functions
establish the channel connection, and three functions
perform all message communications.

UMP channels provide guaranteed error detection
but not recovery. Through the use of TruCluster
MEMORY CHANNEL Software error-checking rou-
tines, we were able to provide efficient error detection
in UMP. We decided to let the higher layers implement
error recovery. As a result, designers of higher layers can
control the performance penalty they incur by specify-
ing their own error recovery mechanisms, or, since
reliability is high, can adapt a fail-on-error strategy.

Performance
UMP avoids any calls to the kernel and any copying of
data across the kernel boundary. Messages are written
directly into the reception buffer of the destination
channel. Data is copied once from the user’s buffer
to physical memory on the destination node by the
sending process. The receiving process then copies the
data from local physical memory to the destination
user’s buffer. By comparison, the number of copies
involved in a similar operation over a LAN using sock-
ets is greater. In this case, the data has to be copied
into the kernel, where the network driver uses DMA to
copy it again into the memory of the network adapter.
At this point the data is transmitted onto the LAN.

The first version of UMP used one large shared
region of MEMORY CHANNEL space to contain its
channel buffers and a broadcast mapping to transmit
this simultaneously to all nodes in the cluster. This
version of UMP also used loopback to reflect transmis-
sions back to the corresponding receive region on the
sending node, which resulted in a loss of available
bandwidth. Using our AlphaServer 2100 4/190
development machines, we measured

Digital Technical Journal Vol. 8 No. 2 1996 107

with task 2 using UMP channel buffers in shared mem-
ory, shown as 1→2 and 2→1. Task 1 and task 3 com-
municate using UMP channel buffers in MEMORY
CHANNEL space, shown as 1→3 and 3→1. Task 3 is
reading a message from task 1 using an outbuf. The
outbuf can be written only by task 1 but is mapped for
transmission to all other cluster members. On node 2,
the same region is mapped for reception. Access to
each outbuf is controlled by a unique cluster spinlock.

Our rationale for taking this approach is that a short
software path is more appropriate for small messages
because overhead dominates message transfer time,
whereas the overhead of lock manipulation is a small
component of message transfer time for large mes-
sages. We felt that this approach helped to control the
use of cluster resources and maintained the lowest pos-
sible latency for short messages yet still accommodated
large messages. Note that outbufs are still fixed-size
buffers but are generally configured to be much larger
than the N 2 buffers.

This approach worked for PVM because its message
transfer semantics make it acceptable to fail a mes-
sage send request due to buffer space restrictions
(e.g., if both the N 2 buffer and the outbuf are full).
When we analyzed the requirements for MPI, how-
ever, we found that this approach was not possible. For
this reason, we changed the design to use only the N 2

buffers. Instead of writing the message as a single
operation, the message is streamed through the buffer
in a series of fragments. Not only does this approach
support arbitrarily large messages, but it also improves
message bandwidth by allowing (and, for messages
exceeding the available buffer capacity, requiring) the
overlapped writing and reading of the message.
Deadlock is avoided by using a background thread
to write the message. Since overflow is now handled
using the streaming N 2 buffers, outbufs were not nec-
essary to achieve the required level of performance for
large messages and were not implemented. Outbufs
are retained in the design to provide fast multicast
messaging, even though in the current implementa-
tion they are not yet supported.

Achieving the performance goals set for UMP was
not easy. In addition to the buffer architecture
described earlier, several other techniques were used.

■ No syscalls were allowed anywhere in the UMP
messaging functions, so UMP runs completely in
user space.

■ Calls to library routines and any expensive arith-
metic operations were minimized.

■ Global state was cached in local memory wherever
possible.

■ Careful attention was paid to data alignment issues,
and all transfers are multiples of 32-bit data.

■ Latency: 11 ms (MEMORY CHANNEL), 4 ms
(shared memory)

■ Bandwidth: 16 MB/s (MEMORY CHANNEL),
30 MB/s (shared memory)

To increase bandwidth, we modified UMP to use
transmit-only regions for its channel buffers, thus
eliminating loopback. The performance measured for
the revised UMP using the same machines was

■ Latency: 9 ms (MEMORY CHANNEL), 3 ms
(shared memory)

■ Bandwidth: 23 MB/s (MEMORY CHANNEL),
32 MB/s (shared memory)

Figure 8 shows the message transfer time and Figure
9 shows the bandwidth for various message sizes for the
revised version of UMP using both blocking and non-
blocking writes over shared memory and the MEMORY
CHANNEL network. Using newer AlphaServer 4100
5/300 machines, which have a faster I/O subsystem
than the older machines, and version 1.5 MEMORY
CHANNEL adapters, the measured latency is 5.8 ms
(MEMORY CHANNEL), 2 ms (shared memory). The
peak bandwidth achieved is 61 MB/s (MEMORY
CHANNEL), 75 MB/s (shared memory). In the non-
blocking cases, the buffer size used was 256 kilobytes
(KB) for shared memory and 32 KB for MEMORY
CHANNEL. Further work is under way to improve the
performance using shared memory as the transport.
This work is aimed at eliminating the high-end falloff in
bandwidth in the blocking case and the notch when the
message size exceeds the buffer size in the nonblocking

case. Note that these effects are not displayed in the
MEMORY CHANNEL results.

Message-passing Libraries

Message-passing libraries provide the programmer
with a set of facilities to build parallel applications.
Typically, these services include the ability to send and
receive a variety of data types to and from other peer
processes in a variety of modes, as well as collective
operations that span a set of peer processes. Other
facilities may be provided in addition to the basic set,
e.g., PVM provides functions for managing PVM
processes (spawning, killing, signaling, etc.), whereas
MPI (at least in its first revision, MPI-1) does not. PVM
is probably the most widely used message-passing sys-
tem. It has been available for approximately five years,
and implementations are available for a wide variety of
platforms. MPI is an emerging standard for message
passing that is growing rapidly in popularity; many
new applications are being written for it.

Parallel Virtual Machine
Parallel Virtual Machine (PVM) is supported on a
wide variety of platforms, including supercomputers
and networks of workstations (NOWs). PVM uses
a variety of underlying communications methods:
shared memory on multiprocessors, various native
message-passing systems on massively parallel proces-
sors (MPPs), and UDP/IP or TCP/IP on NOWs. The
large software overhead in the IP stacks makes it diffi-
cult to provide high-performance communications for

108 Digital Technical Journal Vol. 8 No. 2 1996

Table 3
UMP API Functions

Function
Name Description

ump_init Initializes UMP and allocates the necessary resources.
ump_exit Shuts down UMP and deallocates any resources used by the calling process.
ump_open Opens a duplex channel between two endpoints over a given transport (shared memory or

MEMORY CHANNEL). Channel endpoints are identified by user-supplied, 64-bit integer handles.
ump_close Closes a specified UMP channel, deallocating all resources assigned to that channel as necessary.
ump_listen Registers an endpoint for a channel over a specified transport. This can be used by a server process

to wait on connections from clients with unknown handles. This function returns immediately,
but the channel is created only when another task opens the channel. This can be detected using
ump_wait.

ump_wait Waits for a UMP event to occur, either on one specified channel to this task or on all channels
to this task.

ump_read Reads a message from a specified channel.
ump_write Writes a message to a specified channel. This function is blocking, i.e., it does not return until

the complete message has been written to the channel.
ump_nbread Starts reading a message from a channel, i.e., it returns as soon as a specified amount of the

message has been received, but not necessarily all the message.
ump_nbwrite Starts writing a message to a specified channel, i.e., it returns as soon as the write has started.

A background thread will continue writing the message until it is completely transmitted.
ump_mcast Writes a message to a specified list of channels.
ump_info Returns UMP configuration and status information.

PVM when using networks like Ethernet or FDDI.
The high cost of communications for these systems
means that only the more coarse-grained parallel appli-
cations have demonstrated performance improvements
as a result of parallelization using PVM. Using the
MEMORY CHANNEL cluster technology described
earlier, we have implemented an optimized PVM that
offers low latency and high-bandwidth communica-
tions. The PVM library and daemon use UMP to pro-
vide seamless communications over the MEMORY
CHANNEL cluster.

When we began to develop PVM for MEMORY
CHANNEL clusters, we had one overriding goal: to use
the hardware performance the MEMORY CHANNEL
interconnect offers to provide a PVM with industry-
leading communications performance, specifically with
regard to latency. Initially, we set a target latency for
PVM of less than 15 ms using shared memory and less
than 30 ms using the MEMORY CHANNEL transport.

Our first task was to build a prototype using the
public-domain PVM implementation. We used an
early prototype of the MEMORY CHANNEL system
jointly developed by Digital and Encore. The proto-
type had a hardware latency of 4 ms. We modified the
shared-memory version of PVM to use the prototype
hardware and achieved a PVM latency of 60 ms.
Profiling and straightforward code analysis revealed
that most of the overhead was caused by

■ PVM’s support for heterogeneity (i.e., external data
representation [XDR] encoding)

■ Messages being copied multiple times inside PVM
■ A large number of function calls in the critical com-

munications path
■ Inefficient coding of the low-level data copy routines

Since we wanted to achieve the maximum possible
performance available from the hardware, we decided
to reimplement the PVM library, eliminating support
for heterogeneity from the communications functions
of PVM and focusing on maximum performance
inside a Digital cluster.20 Heterogeneity would then be
supported by using a special PVM gateway process.

The overall architecture of the Digital PVM imple-
mentation is shown in Figure 10. To maximize per-
formance, we decided that, wherever possible, an
operation should be executed in-line rather than be
requested from a remote task or daemon. This con-
trasts with PVM’s traditional approach of relaying such
requests to the PVM daemon for service. For example,
when a PVM task starts, often it first calls pvm_mytid to
request a unique task identifier (TID). Previously, this
would have involved sending a message to a PVM dae-
mon, which would then allocate a TID to the process
and return another message. In our design, we could
use global data structures in MEMORY CHANNEL
space (e.g., the list of all PVM tasks and associated
data). Now, for example, pvm_mytid simply involves
acquiring a cluster lock on a global table, getting the
new TID, and releasing the lock—all executed in-line
by the calling process rather than a daemon. Executing
PVM services in-line with the requesting process
increases multiprocessing capability and eliminates
daemon bottlenecks and associated delays.

We reimplemented the PVM library with the empha-
sis on performance rather than heterogeneity, although
we plan to eventually allow interoperation with het-
erogeneous implementations of PVM using a special

Digital Technical Journal Vol. 8 No. 2 1996 109

UMP NONBLOCKING (SHARED MEMORY)
UMP NONBLOCKING (MEMORY CHANNEL)

UMP BLOCKING (SHARED MEMORY)
UMP BLOCKING (MEMORY CHANNEL)

M
E

S
S

A
G

E
 T

R
A

N
S

F
E

R
 T

IM
E

(M

IC
R

O
S

E
C

O
N

D
S

)

1,000,000100,00010,0001,000100101

10

100

1,000

10,000

100,000

MESSAGE SIZE (BYTES)

KEY:

Figure 8
UMP Communications Performance: Message Transfer
Time

B
A

N
D

W
ID

T
H

 (
M

E
G

A
B

Y
T

E
S

 P
E

R
 S

E
C

O
N

D
)

80

70

60

50

40

30

20

10

0 200,000 400,000 600,000 800,000 1,000,000

MESSAGE SIZE (BYTES)

UMP NONBLOCKING (SHARED MEMORY)
UMP NONBLOCKING (MEMORY CHANNEL)

UMP BLOCKING (SHARED MEMORY)
UMP BLOCKING (MEMORY CHANNEL)

KEY:

Figure 9
UMP Communications Performance: Bandwidth

gateway daemon. The PVM API library is a complete
rewrite of the standard PVM version 3.3 API, with
which full functional compatibility is maintained.
Emphasis has been placed on optimizing the perfor-
mance of the most frequently used code paths. In
addition, all data structures and data transfers have
been optimized for the Alpha architecture. As stated
earlier, the amount of message passing between tasks
and the local daemon has been minimized by perform-
ing most operations in-line and communicating with
the daemon only when absolutely necessary. Inter-
mediate buffers are used for copying data between the
user buffers. This is necessary because of the semantics
of PVM, which allow operations on buffer contents
before and after a message has been sent. The one
exception to this is pvm_psend; in this case, data is
copied directly since the user is not allowed to modify
the send buffer.

The purpose of our PVM daemon is different from
that of the daemon in the standard PVM package. Our
daemon is designed to relay commands between dif-
ferent nodes in the PVM cluster. It exists solely to

perform remote execution of those commands that
cannot be performed in-line by UNIX calls in the PVM
API library or by directly manipulating global data
structures. Commands to be executed on a remote
node are sent to the daemon on that node, which then
executes the command directly. Note that this
removes a level of indirection that exists in standard
PVM. Daemon-to-daemon communications are mini-
mized. Since there is no master daemon, the PVM
cluster has no single point of failure. All daemons are
equal. When not in use, the daemon sleeps, being
awakened as required by a signal from the calling task.
For a local task, UNIX signals are used. If the task is on
another node in the cluster, then MEMORY CHANNEL
cluster signals are used. As a result, the daemon uses
minimal cluster resources.

The PVM group or collective functions operate on
a group of PVM tasks. For example: pvm_barrier
synchronizes multiple PVM processes; pvm_bcast
sends a message to all members of a particular group;
pvm_scatter distributes an array to the members of
a group; pvm_gather reassembles the array from the

110 Digital Technical Journal Vol. 8 No. 2 1996

KEY:

A PVM application on host 1 performs local control functions using UNIX signals.

A PVM application on host 1 communicates with another PVM task on the same host using

UMP (via shared memory).

A PVM application on host 1 communicates with another PVM task on a different host in the

cluster (host 2) using UMP (via MEMORY CHANNEL).

A PVM application on host 1 requires a control function (e.g., a signal) to be executed on

another host in the cluster (host 3); it sends a request to a PVM daemon on host 3.

The PVM daemon on host 3 executes the control function.

A PVM application on host 1 sends a message to a PVM task on a host outside the MEMORY CHANNEL

cluster; the message is routed to the PVM gateway task on host 3.

The PVM gateway translates the cluster message into a form compatible with the external PVM

implementation and forwards the message to the external task via IP sockets.

PVM DAEMON

PVM API LIBRARY

UMPUNIX

PVM APPLICATION

PVM API LIBRARY

UMPUNIX

PVM APPLICATION

PVM API LIBRARY

UMPUNIX

PROCESS 2PROCESS 1DAEMON 1

PVM DAEMON

PVM API LIBRARY

UMPUNIX

PVM APPLICATION

PVM API LIBRARY

UMPUNIX

PROCESS 3DAEMON 2

HOST 2HOST 1

B

C

A

PVM DAEMON

PVM API LIBRARY

UMPUNIX

DAEMON 3

PVM APPLICATION

PVM API LIBRARY

UMPUNIX

PROCESS 4

PVM GATEWAY

PVM API LIBRARY

UMPUNIX

GATEWAY

E

PVM3 DAEMON

INTERFACE

HOST 3

D

F

MEMORY CHANNEL CLUSTER

G

A

B

C

D

E

F

G

Figure 10
Digital PVM Architecture

contributions of each of the group members, etc. The
group functions are implemented separately from the
other PVM messaging functions. They use a separate
global structure (the group table) to manage PVM
group data. Access to the group table is controlled
by locks. Unlike other PVM implementations, there is
no PVM group server, since all group operations can
manipulate the group table directly.

Performance
Table 4 compares the communications latency achieved
by various PVM implementations. As the table indi-
cates, the latency between two machines with Digital
PVM over a MEMORY CHANNEL transport is much
less than the latency of the public-domain PVM
implementation over shared memory, which validates
our approach of removing support for heterogeneity
from the critical performance paths. Figure 11 shows
the message transfer time and Figure 12 shows the
bandwidth for Digital PVM over shared memory and
MEMORY CHANNEL transports for various message
sizes. Two AlphaServer 4100 5/300 machines were
used for these measurements. The peak bandwidth
reached by Digital PVM is about 66 MB/s (shared
memory) and 43 MB/s (MEMORY CHANNEL).
By comparison, PVM 3.3.10 achieves a bandwidth of
24 MB/s (shared memory) and 3 MB/s (FDDI LAN).
A version of PVM developed at Digital’s Systems
Research Center (SRC) using a specially adapted asyn-
chronous transfer mode (ATM) driver achieved a
latency of approximately 60 ms and a bandwidth of
approximately 16 MB/s using the AN2 ATM LAN.21

The performance results for PVM latency over the
MEMORY CHANNEL transport given in Reference 6
were obtained using an earlier version of
Digital PVM. Since those results were measured,
latency has been halved, mostly due to improvements
in UMP performance.

Figure 13 compares the performance of an unmod-
ified PVM application using the public-domain PVM
3.3.7 implementation and Digital PVM version 1.0.
The application is a parallel molecular modeling pro-
gram. The bar chart shows the elapsed time for a vari-
ety of configurations. The application ran for 220
seconds on 2 two-processor SMP machines connected

with FDDI. By replacing FDDI with a MEMORY
CHANNEL network and PVM 3.3.7 with Digital
PVM, we were able to speed up performance by a fac-
tor of approximately 3.4 for the same number of pro-
cessors: the run time dropped from 220 seconds to 65
seconds. For comparison, we also ran the program
on a four-processor SMP; the application completed in
64.5 seconds. This time was just marginally faster than
the MEMORY CHANNEL configuration for the same
number of processors, demonstrating that Digital PVM
scales well from SMP to the MEMORY CHANNEL
cluster. Finally, 2 four-processor SMP machines con-
nected in a two-node MEMORY CHANNEL cluster ran
the program in 38 seconds, demonstrating a speedup
of 1.7.

Message Passing Interface
Message Passing Interface (MPI) is a message-passing
standard developed by a large group of industrial and
academic users. The standard contains a substantial
number of functions (more than 120) and offers the
same wide range of facilities that many earlier message-
passing APIs provided. In fact, many parallel applica-
tions can be written using only six of the functions, but
a correct implementation must provide the complete
set. Argonne National Laboratory (ANL) has pro-
duced a reference implementation called MPICH.22

This is a robust, clean implementation of the complete
MPI-1 function set. In addition, it has isolated trans-
port-specific components behind an abstract device
interface (ADI).23 The abstract device implements the
communications-related functions and is further lay-
ered on what is called the channel device. The public
domain version comes with channel implementations
for a number of interconnects including shared mem-
ory, TCP/IP, and other proprietary interfaces. This
version also includes a template for building a channel
device, called the channel interface.24 To build a chan-
nel device, the programmer must supply five functions:

1. Indicate if a control message is available on a con-
trol channel

2. Get a control message from a control channel
3. Send a control message to a control channel

Digital Technical Journal Vol. 8 No. 2 1996 111

Table 4
PVM Latency Comparison

PVM Implementation Transport Platform Latency

PVM 3.3.9 Sockets FDDI DEC 3000/800 400 ms
PVM 3.3.9 Shared Memory AlphaServer 2100 4/233 60 ms
Digital PVM V1.0 MEMORY CHANNEL 1.0 AlphaServer 2100 4/233 11 ms
Digital PVM V1.0 MEMORY CHANNEL 1.5 AlphaServer 4100 5/300 8 ms
Digital PVM V1.0 Shared Memory AlphaServer 2100 4/233 5 ms
Digital PVM V1.0 Shared Memory AlphaServer 4100 5/300 4 ms
Digital PVM V1.0 Shared Memory AlphaServer 8400 5/350 3 ms

4. Receive data from a data channel
5. Send data to a data channel

These functions can all be implemented using the
UMP functions ump_read, ump_write, and ump_wait
described earlier. In addition, hooks are added to
the channel initialization and shutdown code to call
ump_init and ump_exit. This approach leaves the
portable MPICH API library unchanged and attempts
to deliver optimum performance. MPICH implements
all its operations, point-to-point and collective, on the
basic point-to-point services that the ADI provides.

Working with the Edinburgh Parallel Computing
Centre (EPCC), we produced an early functional MPI
prototype by building a channel device on UMP, as

shown in Figure 14a. This implementation demon-
strated latencies of 12.5 ms (shared memory) and
29 ms (MEMORY CHANNEL), respectable perfor-
mance for such a quick port of MPI for clusters.
Furthermore, since this implementation uses UMP, it
works transparently on shared memory and MEMORY
CHANNEL. ADI channels typically support only one
interconnect; multiple ADIs are not yet supported by
MPICH. Unlike PVM, the semantics of MPI allow
operation without an intermediate buffer, so that UMP
buffers can be used directly.

To further improve the performance of MPI on
clusters, we eliminated the MPICH channel device and
interfaced UMP directly to the ADI, as shown in
Figure 14b. The abstract device incurs some perfor-
mance penalty in its support for the channel device. In
the UMP implementation, this is unnecessary as UMP
already performs the function of hiding details of the
transport mechanism. This implementation demon-
strated latencies of 9.5 ms (shared memory) and 16 ms
(MEMORY CHANNEL), using an Alpha cluster con-
sisting of two AlphaServer 2100 4/233 machines
connected by a MEMORY CHANNEL network.

Performance
Table 5 compares the communications latency
achieved by MPICH and the Digital MPI implementa-
tion, using an Alpha cluster. Results are shown for both
AlphaServer 2100 4/190 and AlphaServer 4100
5/300 machines connected by a MEMORY CHANNEL
network. Figure 15 shows the message transfer time
and Figure 16 shows the bandwidth of Digital MPI
over shared memory and MEMORY CHANNEL
transports for a variety of message sizes. A pair of
AlphaServer 4100 5/300 machines were used for these
measurements. Digital MPI reaches a peak bandwidth
of about 64 MB/s using shared memory and 61 MB/s

112 Digital Technical Journal Vol. 8 No. 2 1996

M
E

S
S

A
G

E
 T

R
A

N
S

F
E

R
 T

IM
E

(M

IC
R

O
S

E
C

O
N

D
S

)

SHARED MEMORY

MEMORY CHANNEL

KEY:

100,000

10,000

1,000

100

10

1 10 100 1,000 10,000 100,000 1,000,000

MESSAGE SIZE (BYTES)

Figure 11
Digital PVM Communications Performance: Message
Transfer Time

B
A

N
D

W
ID

T
H

 (
M

E
G

A
B

Y
T

E
S

 P
E

R
 S

E
C

O
N

D
)

1,000,000800,000600,000400,000200,0000

10

20

30

40

50

60

70

SHARED MEMORY

MEMORY CHANNEL

KEY:

MESSAGE SIZE (BYTES)

Figure 12
Digital PVM Communications Performance: Bandwidth

E
LA

P
S

E
D

 T
IM

E
 (

S
E

C
O

N
D

S
)

250

200

150

100

50

0

CONFIGURATION

FDDI

2 2

MEMORY

CHANNEL

2 2

SMP

4 1

MEMORY

CHANNEL

4 2

220

65 64.5

38

Figure 13
PVM Application Performance

using MEMORY CHANNEL. By comparison, the
unmodified MPICH achieves a peak bandwidth of
24 MB/s using shared memory and 5.5 MB/s using
TCP/IP over an FDDI LAN.

Figure 17 shows the speedup demonstrated by an
MPI application. The application is the Accelerated
Strategic Computing Initiative (ASCI) benchmark
SPPM, which solves a three-dimensional gas dynamics
problem on a uniform Cartesian mesh.25,26 The same
code was run using both Digital MPI and MPICH
using TCP/IP. The hardware configuration was a two-
node MEMORY CHANNEL cluster of AlphaServer
8400 5/350 machines, each with six CPUs. Digital
MPI used shared memory and MEMORY CHANNEL
transports, whereas MPICH used the Ethernet LAN
connecting the machines. The maximum speedup

obtained using Digital MPI was approximately 7,
whereas for MPICH the maximum speedup was
approximately 1.6.

Future Work

We intend to continue refining the components
described in this paper. The major change envisioned
regarding the TruCluster MEMORY CHANNEL Soft-
ware product is the addition of user-space spinlocks,
which should significantly reduce the cost of acquiring
a spinlock. We intend to increase the performance
of UMP by making more efficient use of MEMORY
CHANNEL in a number of ways: striping large
messages over multiple adapters, supporting next-
generation adapters, and using point-to-point map-
pings with a MEMORY CHANNEL switch. In addi-
tion, we plan to add outbufs to increase multicast
message-passing performance. PVM enhancements
planned include the addition of the gateway daemon to
allow interoperation with other PVM implementations
on external platforms. PVM will also be modified to use
the UMP nonblocking write facility for arbitrarily large
messages so that its performance matches that of
MPI. Since the semantics of PVM force the use of an
intermediate buffer, performance when using shared
memory will be improved by passing pointers to a lock-
controlled buffer for messages whose transfer time
would exceed the overhead associated with a lock. We
will continue to improve MPI performance by optimiz-
ing the UMP ADI for the MPICH implementation.

Summary

We have built a high-performance communications
infrastructure for scientific applications that utilizes a
new network technology to bypass the software over-
head that limits the applicability of traditional net-
works. The performance of this system has been proven
to be on a par with that of current supercomputer tech-
nology and has been achieved using commodity
technology developed for Digital’s commercial cluster
products. The paper demonstrates the suitability of
the MEMORY CHANNEL technology as a communica-
tions medium for scalable system development.

Digital Technical Journal Vol. 8 No. 2 1996 113

MPI PORTABLE API LIBRARY

SHARED

MEMORY

MEMORY

CHANNEL

MPICH ABSTRACT DEVICE

UMP

MPICH CHANNEL INTERFACE

(a) Initial Prototype

MPICH

MPI PORTABLE API LIBRARY

SHARED

MEMORY

MEMORY

CHANNEL

MPICH ABSTRACT DEVICE

FRONT END

UMP

(b) Version 1.0 Implementation

MPICH

ABSTRACT

DEVICE

INTERFACE

ABSTRACT

DEVICE

INTERFACE

Figure 14
Digital MPI Architecture

Table 5
MPI Latency Comparison

MPI Implementation Transport Platform Latency

MPICH 1.0.10 Sockets FDDI DEC 3000/800 350 ms
MPICH 1.0.10 Shared Memory AlphaServer 2100 4/233 30 ms
Digital MPI V1.0 MEMORY CHANNEL 1.0 AlphaServer 2100 4/233 16 ms
Digital MPI V1.0 MEMORY CHANNEL 1.5 AlphaServer 4100 5/300 6.9 ms
Digital MPI V1.0 Shared Memory AlphaServer 2100 4/233 9.5 ms
Digital MPI V1.0 Shared Memory AlphaServer 4100 5/300 5.2 ms

114 Digital Technical Journal Vol. 8 No. 2 1996

Acknowledgments

The authors would like to acknowledge the following
people for their contributions to this project: Gavan
Duffy, whose testing made the TruCluster MEMORY
CHANNEL Software a much more robust product;
Liam Kelleher and Garret Taylor, who contributed
some of the Digital PVM functionality; Wayne
Cardoza and Brian Stevens of UNIX Engineering,
who provided early access to and ongoing support of

kernel MEMORY CHANNEL software; Rick Gillett
and Mike Collins, who provided early MEMORY
CHANNEL hardware; Richard Kaufmann, who gave
us encouragement and support; and Lyndon Clarke
and Kenneth Cameron at Edinburgh Parallel Com-
puting Centre (EPCC), who modified MPICH to use
UMP for Digital MPI.

References and Note

1. T. Anderson, D. Culler, and D. Patterson, “A Case for
NOW (Network of Workstations),” Proceedings of
the Hot Interconnects II Symposium, Palo Alto, Calif.
(August 1994).

2. K. Keeton, T. Anderson, and D. Patterson, “LogP
Quantified: The Case for Low-Overhead Local Area
Networks,” Proceedings of the Hot Interconnects III
Symposium, Palo Alto, Calif. (August 1995).

3. R. Sites, ed., Alpha Architecture Reference Manual
(Burlington, Mass.: Digital Press, Order No.
EY-L520E-DP, 1992).

4. N. Kronenberg, H. Levy, and W. Strecker, “VAXclus-
ters: A Closely Coupled Distributed System,” ACM
Transactions on Computer Systems, vol. 4, no. 2
(May 1986): 130–146.

5. W. Cardoza, F. Glover, and W. Snaman, Jr., “Design of
the TruCluster Multicomputer System for the Digital
UNIX Environment,” Digital Technical Journal,
vol. 8, no. 1 (1996): 5–17.

6. R. Gillett, “MEMORY CHANNEL Network for PCI:
An Optimized Cluster Interconnect,” IEEE Micro
(February 1996):12–18.

M
E

S
S

A
G

E
 T

R
A

N
S

F
E

R
 T

IM
E

(M

IC
R

O
S

E
C

O
N

D
S

)

100,000

10,000

1,000

100

10

1 10010 1,000 10,000 100,000 1,000,000

MESSAGE SIZE (BYTES)

SHARED MEMORY

MEMORY CHANNEL

KEY:

Figure 15
MPI Communications Performance: Message Transfer
Time

B
A

N
D

W
ID

T
H

 (
M

E
G

A
B

Y
T

E
S

 P
E

R
 S

E
C

O
N

D
)

1,000,000800,000600,000400,000200,0000

10

20

30

40

50

60

70

MESSAGE SIZE (BYTES)

SHARED MEMORY

MEMORY CHANNEL

KEY:

Figure 16
MPI Communications Performance: Bandwidth

S
P

E
E

D
U

P

8

7

6

5

4

3

2

1

0
1 2 4 6 8 10 12

NUMBER OF PROCESSORS

DIGITAL MPI

MPICH TCP/IP

KEY:

Figure 17
MPI Application Speedup

20. J. Brosnan, J. Lawton, and T. Reddin, “A High-
Performance PVM for Alpha Clusters,” Proceedings
of the Second European PVM Users’ Group Meeting,
Lyons, France (September 1995).

21. M. Hausner, M. Burrows, and C. Thekkath, “Efficient
Implementation of PVM on the AN2 ATM Network,”
Proceedings of High-Performance Computing and
Networking (May 1995).

22. W. Gropp and N. Doss, “MPICH Model MPI Imple-
mentation Reference Manual,” Draft Technical Report
(Argonne, Ill.: Argonne National Laboratory, June
1995).

23. W. Gropp and E. Lusk, “MPICH ADI Implementation
Reference Manual,” Draft Technical Report (Argonne,
Ill.: Argonne National Laboratory, October 1994).

24. W. Gropp and E. Lusk, “MPICH Working Note: Cre-
ating a New MPICH Device using the Channel Inter-
face,” Draft Technical Report (Argonne, Ill.: Argonne
National Laboratory, June 1995).

25. Accelerated Strategic Computing Initiative (ASCI),
RFP Statement of Work C6939RFP6-3X, Los Alamos
National Laboratory (LANL) (February 12, 1996).
This document is also available on-line at http://
www.llnl.gov/asci_rfp/asci-sow.html.

26. The ASCI SPPM Benchmark Code is available from
Lawrence Livermore National Laboratory at http://
www.llnl.gov/asci_benchmarks/asci/limited /ppm/
asci_sppm.html.

Biographies

Digital Technical Journal Vol. 8 No. 2 1996 115

7. M. Blumrich et al., “Virtual Memory Mapped Net-
work Interface for the SHRIMP Multicomputer,” Pro-
ceedings of the Twenty-first Annual International
Symposium on Computer Architecture (April 1994):
142–153.

8. M. Blumrich et al., “Two Virtual Memory Mapped
Network Interface Designs,” Proceedings of the Hot
Interconnects II Symposium, Palo Alto, Calif.
(August 1994): 134–142.

9. L. Iftode et al., “Improving Release-Consistent Shared
Virtual Memory using Automatic Update,” Proceed-
ings of the Second International Symposium on
High-Performance Computer Architecture (Febru-
ary 1996).

10. C. Dubnicki et al., “Software Support for Virtual
Memory-Mapped Communication,” Proceedings of
the Tenth International Parallel Processing Sympo-
sium (April 1996).

11. High Performance Fortran Forum, “High Perfor-
mance Fortran Language Specification,” Version 1.0,
Scientific Programming, vol. 2, no. 1 (1993).

12. A. Geist et al., PVM 3 User’s Guide and Reference
Manual, ORNL/TM-12187 (Oak Ridge, Tenn.: Oak
Ridge National Laboratory, May 1994). Also available
on-line at http://www.netlib.org/pvm3/ug.ps.

13. A. Geist et al., PVM: Parallel Virtual Machine,
A User’s Guide and Tutorial for Networked Parallel
Computing (Cambridge, Mass.: The MIT Press, 1994).
Also available on-line at http://www.netlib.org/
pvm3/book/pvm-book.html.

14. MPI Forum, “MPI: A Message Passing Interface Stan-
dard,” International Journal of Supercomputer
Applications, vol. 8, no. 3/4 (1994). Version 1.1 of
this document is available on-line at http://
www.mcs.anl.gov/mpi/mpi-repor t-1.1/mpi-
report.html.

15. W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message
Passing Interface (Cambridge, Mass.: The MIT Press,
1994).

16. J. Harris et al., “Compiling High Performance Fortran
for Distributed-memory Systems,” Digital Technical
Journal, vol. 7, no. 3 (1995): 5–23.

17. E. Benson et al., “Design of Digital’s Parallel Software
Environment,” Digital Technical Journal, vol. 7,
no. 3, (1995): 24–38.

18. In the first implementations, the PCI MEMORY
CHANNEL network adapter places a limit of 128 MB
on the amount of MEMORY CHANNEL space that can
be allocated.

19. TruCluster MEMORY CHANNEL Software Program-
mer’s Manual (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-QTN4A-TE, 1996).

James V. Lawton
Jim Lawton joined Digital in 1986 and is a principal engi-
neer in the Technical Computing Group. In his current
position, he contributed to the design of Digital PVM and
the UMP library and was responsible for implementing UMP
and adding support for collective operations to Digital PVM.
Before that, he worked on the characterization and optimi-
zation of customer scientific/technical benchmark codes
and on various hardware and software design projects. Prior
to coming to Digital, Jim contributed to the design of ana-
log and digital motion control systems and sensors at the
Inland Motor Division of Kollmorgen Corporation. Jim
received a B.E. in electrical engineering (1982) and an
M.Eng.Sc. (1985) from University College Cork, Ireland,
where he wrote his thesis on the design of an electronic
control system for variable reluctance motors. In addition
to receiving the Hewlett-Packard (Ireland) Award for Inno-
vation (1982), Jim holds one patent and has published sev-
eral papers. He is a member of IEEE and ACM.

116 Digital Technical Journal Vol. 8 No. 2 1996

John J. Brosnan
John Brosnan is currently a principal engineer in the
Technical Computing Group where he is project leader
for Digital PVM. In prior positions at Digital, he was
project leader for the High Performance Fortran test
suite and a significant contributor to a variety of publish-
ing technology products. John joined Digital after receiv-
ing his B.Eng. in electronic engineering in 1986 from the
University of Limerick, Ireland. He received his M.Eng.
in computer systems in 1994, also from the University of
Limerick.

Morgan P. Doyle
In 1994, Morgan Doyle came to Digital to work on the
High Performance Fortran test suite. Presently, he is an
engineer in the Technical Computing Group. Early on,
he contributed significantly to the design and develop-
ment of the TruCluster MEMORY CHANNEL Software,
and he is now responsible for its development. Morgan
received his B.A.I. and B.A. in electronic engineering
(1991) and his M.Sc. (1993) from Trinity College
Dublin, Ireland.

Seosamh D. Ó Riordáin
Seosamh Ó Riordáin is an engineer in the Technical
Computing Group where he is currently working on
Digital MPI and on enhancements to the UMP library.
Previously, he contributed to the design and implementa-
tion of the TruCluster MEMORY CHANNEL Software.
Seosamh joined Digital after receiving his B.Sc. (1991)
and M.Sc. (1993) in computer science from the University
of Limerick, Ireland.

Timothy G. Reddin
A principal engineer in the Technical Computing Group,
Timothy Reddin currently leads the team responsible for
the TruCluster MEMORY CHANNEL Software, the UMP
library, Digital PVM, and Digital MPI. Prior to coming to
Digital in 1994, Tim worked for eight years as a systems
designer at ICL High Performance Systems in the United
Kingdom. He was responsible for the I/O architecture
of the ICL Goldrush parallel database server, for which
he holds two patents, and the design of an I/O and com-
munications controller. Tim also worked at Raytheon on
the data communications subsystem for the NEXRAD
distributed real-time Doppler weather radar subsystem.
Prior to that, he developed the software architecture for
an integrated executive workstation while working at CPT
Limited. After receiving his B.Sc. (with distinction, 1976)
in computer science and mathematics from University
College Dublin, Ireland, Tim joined the staff of Univer-
sity College Cork, where he was a systems programmer.
Tim is a member of the British Computer Society and is
a Chartered Engineer.

