
In the 1960s and early 1970s, people controlled com-
puters using toggle switches, punched cards, and
punched paper tape. In the 1970s, the common con-
trol mechanism was the keyboard on teletypes and on
video terminals. In the 1980s, with the advent of
graphical user interfaces, people found that a new
mode of interaction with the computer was useful.
The concept of a pointer—the mouse—evolved. Its
popularity grew such that the mouse is now a standard
component of every modern computer. In the 1990s,
the time is right to add yet another mode of inter-
action with the computer. As compute power grows
each year, the boundary of the man–machine interface
can move from interaction that is native to the com-
puter toward communication that is natural to
humans, that is, speech recognition. 

DSRS Product Overview

Very simply, DSRS is an application that provides
speech macros. The user speaks a command, phrase, or
sentence (that is, an utterance), and DSRS performs
some actions. The action might be to launch an appli-
cation, for example, in response to the command
“bring up calendar”; or to type something, for exam-
ple, in response to “edit to-do list,” to invoke emacs
\files\projectA\todo.txt. DSRS not only houses the
speech macro capability but also provides a user inter-
face, a speech recognition engine, and interfaces to the
X Window System. 

Following is a high-level description of how the
software functions. Commands are spoken into a
microphone, and the audio is captured and digitized.
The first step in the processing is the speech analysis
system, which provides a spectral representation of the
characteristics of the time-varying speech signal. Next
is the feature-detection stage. Here, the spectral mea-
surements are converted to a set of features that
describe the broad acoustic properties of the different
phonetic units.1 These representations of the speech
signal are then segmented and identified as phonetic
sequences. The speech recognition engine accepts
these phonetic sequences and returns word matches
and confidence values for each match. These data are
used to determine if each match is acceptable. If a

Digital Technical Journal Vol. 8 No. 2 1996 117

The Design of User
Interfaces for Digital
Speech Recognition
Software

Bernard A. Rozmovits

Digital Speech Recognition Software (DSRS) adds
a new mode of interaction between people and
computers—speech. DSRS is a command and
control application integrated with the UNIX
desktop environment. It accepts user commands
spoken into a microphone and converts them
into keystrokes. The project goal for DSRS was
to provide an easy-to-learn and easy-to-use
computer–user interface that would be a power-
ful productivity tool. Making DSRS simple and
natural to use was a challenging engineering
problem in user interface design. Also challeng-
ing was the development of the part of the
interface that communicates with the desktop
and applications. DSRS designers had to solve
timing-induced problems associated with enter-
ing keystrokes into applications at a rate much
higher than that at which people type. The DSRS
project clarifies the need to continue the devel-
opment of improved speech integration with
applications as speech recognition and text-to-
speech technologies become a standard part of
the modern desktop computer. 



match is acceptable, DSRS retrieves keystrokes associ-
ated with each utterance, and the keystrokes are then
sent into the system’s keyboard buffer or to the appro-
priate application. For instances of continuous speech
recognition, a sentence is recognized and keystrokes
are concatenated to represent the utterance. For
example, for the utterance “five two times seven three
four equals,” the keys “52 * 734 =” would be deliv-
ered to the calculator application. 

Although this concept seems simple, its implemen-
tation raised significant system integration issues and
directly affected the user interface design, which was
critical to the product’s success. This paper specifically
addresses the user interface and integration issues and
concludes with a discussion of future directions for
speech recognition products. 

Project Objective

The objective of the DSRS project was to provide a
useful but limited tool to users of Digital’s Alpha
workstations running the UNIX operating system.
DSRS would be designed as a low-cost, speech recog-
nition application and would be provided at no cost to
workstation users for a finite period of time. 

When the project began in 1994, a number of com-
mand and control speech recognition products for
PCs already existed. These programs were aimed at
end users and performed useful tasks “out of the box,”
that is, immediately upon start-up. They all came with
built-in vocabulary for common applications and gave
users the ability to add their own vocabulary. 

On UNIX systems, however, speech recognition
products existed only in the form of programmable
recognizers, such as BBN Hark software. Our objec-
tive was to build a speech recognition product for the
UNIX workstation that had the characteristics of the
PC recognizers, that is, one that would be functional
immediately upon start-up and would allow the non-
programmer end user to customize the product’s
vocabulary. 

We studied several speech recognition products,
including Talk➝To Next from Dragon Systems, Inc.,
VoiceAssist from Creative Labs, Voice Pilot from
Microsoft, and Listen from Verbex. We decided to
provide users with the following features as the most
desirable in a command and control speech recogni-
tion product: 

■ Intuitive, easy-to-use interface 
■ Speaker-independent models that would eliminate

the need for extensive training 
■ Speaker-adaptive capability to improve accuracy 

of words 
■ Continuous speech recognition capability
■ Prompts for active vocabulary 

■ Minimum use of screen area 
■ User control over the user interface configuration 
■ Simple mechanism to modify and create new

vocabulary 
■ Integration with the X Window System 
■ Support for out-of-the-box desktop applications

provided with the UNIX operating system 
■ Support for vi and emacs editors, and for C

programming 

The DSRS Architecture

DSRS comprises several major components which are
outlined below and illustrated in Figure 1. Of these
components, three are licensed from Dragon Systems,
Inc.: the front-end processor, the recognizer engine,
and the speaker-independent speech models. 

Dragon Systems, Inc. was chosen as the provider of
the speech recognition engine based on the accuracy
of their technology, their products and expertise in
other local languages, and their long-term commit-
ment to speech recognition. 

Data acquisition consists of the microphone, audio
card, and the multimedia services application pro-
gramming interface (API) that provides support for
the sound card. 

The front-end processor analyzes a stream of digi-
tized data and differentiates between silence, noise,
and speech; it then extracts a set of computed features
from the speech signals. 

The recognizer, or speech recognition engine,
accepts the computed representation of the speech 
in the form of feature packets which drive the Hid-
den Markov Models to recognize utterances. Hidden
Markov Models are basically state machines that tran-
sition from a beginning state to a number of internal
states and then to a final state based on input data and
probabilities.2 Each transition carries two sets of prob-
abilities: a transition probability, which provides the
probability of this transition being taken, and an out-
put probability density function (PDF), which is the
conditional probability of emitting each output sym-
bol from a finite alphabet given that a transition is
taken.3 The PDFs are adapted when the model 
is “trained,” that is, customized, by the individual user. 

The finite state grammar is a state machine that
contains a representation of the vocabulary supported
by DSRS. Each state contains words, phrases, or sen-
tences; their associated actions; and the information
needed to transition to the next state. The current
state is used to control the Active words. 

The speech models are a set of utterance models
used by the recognizer. DSRS provides vocabulary and
speaker-independent models for the applications sup-
ported by DSRS. Users who wish to include their own

118 Digital Technical Journal Vol. 8 No. 2 1996



words can create models using the Vocabulary
Manager user interface. 

The Speech Manager is the main user-interface
component. The Speech Manager window provides
visual feedback to users. It also keeps track of the cur-
rent window in focus and acts as the agent to control
focus in response to users’ speech commands. 

The Vocabulary Manager user-interface window
displays the current hierarchy of the finite state gram-
mar file. The Vocabulary Manager allows the user to
customize using the functions for addition, deletion,
and modification of words or macros. Also in this win-
dow, the command-utterance to keystroke translations
are displayed, created, or modified. 

In the Training Manager user interface, the user
may train newly created words or phrases in the 
user vocabulary files and retrain, or adapt, the product-
supplied, independent vocabulary. 

The DSRS Implementation

As the design team gained experience with the DSRS
prototypes, we refined user procedures and interfaces.
This section describes the key functions the team
developed to ensure the user-friendliness of the prod-
uct, including the first-time setup, the Speech
Manager, the Training Manager, the Vocabulary
Manager, and the finite state grammar. 

First-time Setup 
DSRS requires a setup process when used for the first
time. The user must create user-specific files and set-
tings. The user begins by selecting the microphone
and by testing and adjusting the microphone input
volume to usable settings. The user is then prompted
to speak a few words, which are presented on the

screen. DSRS uses the speech data to choose the
speaker-independent model that most closely matches
the speaker’s voice. There are models for lower- and
higher-pitched voices. The software copies the selected
model to the user’s home directory; the model is then
modified when the user makes changes to the provided
models and vocabulary. After setup is complete, the
next step is the Training Manager which presents the
user with a list of 20 words to train; when this step is
completed, DSRS is ready for use. The Training
Manager is described in more detail later in this section. 

The procedure above was developed to take a new
user through the entire setup process without the
need to refer to any documentation. Once the user
files are created, DSRS bypasses these steps and comes
up ready to work. A notable change that we made to
the setup was instigated by our own use of the soft-
ware. We found that inconsistent microphone volume
settings were a frequent problem. When systems were
rebooted, volume settings were reset to default values.
Consequently, we created an initialization file that
records the volume settings as well as all user-definable
characteristics of the graphical user interface. 

Speech Manager 
Once DSRS is ready and in its idle state, it presents the
user with the Speech Manager window, an example of
which is shown in Figure 2. The Speech Manager pro-
vides the following critical controls: 

■ Microphone on/off switch. 
■ A VU (volume units) meter that gives real-time

feedback to the audio signal being heard. A VU
meter is a visual feedback device commonly used on
devices such as tape decks. Users are generally very
comfortable using them. 

Digital Technical Journal Vol. 8 No. 2 1996 119

TRAINING
MANAGER
USER
INTERFACE

VOCABULARY
MANAGER
USER
INTERFACE

SPEECH
MODELS*

FINITE STATE
GRAMMAR

MICROPHONE

AUDIO CARD

DIGITIZED
AUDIO FRONT-END

PROCESSOR*

FEATURE
PACKETS SPEECH

RECOGNITION
ENGINE*

COMMANDS
AND ACTIONS

SPEECH
MANAGER
USER
INTERFACE

STATE
TRANSITIONS

X WINDOW
SYSTEM

X WINDOW
EVENTS

KEYSTROKES
AND WINDOW
ACTIONS* Denotes a component licensed from Dragon Systems, Inc.

Figure 1 
DSRS Architectural Block Diagram 



■ Two user-controllable panes that display the Always
Active and Active vocabulary sets. The Always Active
vocabulary words are recognized regardless of 
the current application in focus. The Active vocabu-
lary words are specific to the application in focus 
and change dynamically as the current application
changes. The vocabularies are designed in this way so
that a user can speak commands both within an
application context and in order to switch contexts. 

■ Three small frames that provide status information
to the user. 
– The Mode frame indicates the current state of 

the Speech Manager: command and control or
sleeping.

– The Context frame displays the class name of the
application currently in focus. This context also
determines the current state of the Active word list.

– The history frame displays the word, phrase, or
sentence last heard by the recognizer. The history
frame is set up as a button. When pressed, it drops
down to reveal the last 20 recognized utterances. 

■ A menu that provides access to the management of
user files, the Vocabulary Manager, the Training
Manager, and various user-configurable options. 

Training Manager 
The Training Manager adapts the speaker-indepen-
dent speech models to the user’s speech patterns and
creates new models for added words. Our study of 
PC-based speech recognizers led us to the conclusion
that the design of a training interface is critical to
obtain good results. For example, the training compo-
nent of one PC-based recognizer we examined did not
provide clear feedback to the user when an utterance
had been processed, thus causing the user confusion
about when to speak. This confusion lead to training
errors and frustration. Another recognizer did not
allow the user to pause while training, a major incon-
venience for the user who, for example, needed to
clear his throat or speak to someone. 

We developed the following list of design character-
istics for a good training user interface. 

■ Strong, clear indications that utterances are pro-
cessed. We added a series of boxes that are checked
off as each utterance is processed and a VU meter
that shows the system is picking up audio signals. 

■ Reduced amount of eye movement needed for the
training to proceed smoothly and quickly. We
placed visual feedback objects in positions that
allow users to focus their eyes on a limited area of
the screen and not have to look back and forth
across the screen at each utterance. 

■ A glimpse of upcoming words. A list of words is dis-
played on the user interface and moves as words are
processed. 

■ A progress indicator. Text is displayed and updated
as each word is processed, indicating progress, for
example, Word 4 of 21. 

■ Option to pause, resume, and restart training. 
■ Large, bold font display of the word to be spoken

and a small prompt, “Please continue,” displayed
when the system is waiting for input. 

■ Automatic addition of repeated utterances that are
“bad” or do not match the expected word. 

■ Control over the number of repetitions. 

As the example in Figure 3 shows, the Training
Manager presents a word from a list of words to be
trained. The word to be spoken is presented in a large,

120 Digital Technical Journal Vol. 8 No. 2 1996

Figure 2 
DSRS Speech Manager Window 



bold font to differentiate it from the other elements in
the window. To train the words, the user repeats an
utterance from one to six times. The user must speak
at the proper times to make training a smooth and effi-
cient process. DSRS manages the process by prompt-
ing the speaker with visual cues. Right below the word
is a set of boxes that represent the repetitions. The
boxes are checked off as utterances are processed, pro-
viding positive visual feedback to the speaker. When
one word is complete, the next word to be trained is
displayed and the process is repeated. When all the
words in the list are trained, the user saves the files, and
DSRS returns to the Speech Manager and its active
mode with the microphone turned off. 

Vocabulary Manager 
The Vocabulary Manager, an example of which is
shown in Figure 4, enables users to modify speech
macros by changing the keystrokes stored for each
command and by adding new commands to existing
applications. Users can also add speech support for
entirely new applications. The vocabularies are repre-
sented graphically as hierarchies of application vocabu-
laries, groups of words, and individual words. The
Vocabulary Manager provides an interface that allows
manipulation of this database of words without resort-
ing to text editors. The Always Active vocabularies are
accessible here and are manipulated in the same man-
ner as the application-specific vocabularies. With the
Vocabulary Manager, the user may import and export

vocabularies or parts of vocabularies in order to share
commands and thus enable speech recognition in
applications not supported by default in DSRS. 

Finite State Grammar 
The finite state grammar (FSG) is a state machine with
all the vocabulary required to transition between states
and conditions. The FSG has two distinct sets of
vocabulary, which have already been mentioned: the
Always Active, or global vocabulary, and the Active, or
context-specific, vocabulary. 

In creating the FSG, we found that we needed spe-
cial functions for interaction with the windowing sys-
tem and representations for all keyboard keys. While
creating these special functions, we designed the inter-
action for maximum convenience. For example, when
a user speaks the phrase “go to calculator” or “switch
to calculator” or simply “calculator,” the meaning is
readily interpreted by the software. For the user’s con-
venience, these phrases trigger the following condi-
tional actions. 

■ If a window of class “calculator” is present on the
system, then set focus to it. This is done regardless
of its state; the window may be in an icon state,
hidden, or on another work space such as may be
found in the Common Desktop Environment
(CDE). 

■ If the window does not exist, then create one by
launching the application. 

Digital Technical Journal Vol. 8 No. 2 1996 121

Figure 3 
Training Manager Window 



The simple logic of this special function enhances
user productivity. Often workstation and PC screens
are littered with windows or applications icons and
icon boxes through which the user must search.
Speech control eliminates the steps between the user
thinking “I want the calculator” and the application
being presented in focus, ready to be used. The DSRS
team created a function called FocusOrLaunch, which
implements the behavior described above. The func-
tion is encoded into the FSG continuous-switching-
mode sentences in the Always Active vocabulary
associated with the spoken commands “switch to
<application name>,” “go to <application name>,”
and just plain “<application name>.” 

Applications like calculator and calendar are not
likely to be needed in multiple instances. However,
applications such as terminal emulator windows are.
DSRS defines the specific phrase “bring up <application
name>” to explicitly launch a new instance of the appli-
cation; that is, the phrase “bring up <application
name>” is tied to a function named Launch. 

The phrases “next <application name>” and “previ-
ous <application name>” were chosen for navigating
between instances of the same application. DSRS
remembers the previous state of the application. For

instance, if the calendar application is minimized when
the user says “switch to calendar,” the calendar
window is restored. When the user says “switch to
emacs,” the calendar is returned to its former state. In
this case, it is minimized. 

DSRS also adds speech control to the common win-
dow controls such as minimize, maximize, and close.
These functions operate on whatever window is cur-
rently in focus. 

Another convenient command is “Speech Manager
go to sleep.” When the user speaks this command,
DSRS transitions into a special standby state. In this
state, termed “sleeping,” the recognizer is still listen-
ing but will return to command and control mode
only when the command “Speech Manager wake up”
is spoken. The “go to sleep” command puts DSRS
into a standby state, allowing normal conversation to
take place without words being recognized as com-
mands and causing unwanted events to occur. 

Version 1.1 of DSRS adds even more functions,
such as the “microphone off ” command, which goes a
step beyond “go to sleep.” With “microphone off,”
the input audio section is completely released and
DSRS will no longer listen until the microphone is
manually turned back on. This function allows the

122 Digital Technical Journal Vol. 8 No. 2 1996

Figure 4 
Vocabulary Manager Window 



user to launch an audio-based application that will
record, such as a teleconferencing session. Version 1.1
also includes a function that allows the user to play 
a “wave,” or digitized audio clip. Audio cues may thus
be played as part of speech macros. The “say” com-
mand invokes DECtalk Text-to-Speech functionality
so that audio events can be spoken.4

Since speech recognition is a statistical process and
prone to errors, the design team deemed “confirm” an
important function to protect user data and prevent
unwanted actions. The “confirm” function protects
certain sensitive actions, such as exiting an editor, with
a confirmation dialog box. Simply adding the “con-
firm” syntax within a speech macro causes the dialog
box “are you sure?” to appear. The vocabulary is
switched to respond to only yes and no so that a higher
reliability can be achieved. If the user says no or presses
the no button, the computer returns to its previous
state. If the user says yes, the action following the
“confirm” function is executed. 

Another concept encoded in the FSG for user con-
venience is menu flattening. Menu displays are hierar-
chical because the number of menu entries that can 
be shown on the screen at one time is limited. A good
example is the File menu. When the user clicks the
mouse button on File, a drop-down menu appears
containing actions such as Open file, Save file, Save 
file as …, Print, and Exit. However, hierarchical menus
do not really represent the way people normally 
think about actions; for example, when the user thinks
“exit,” he or she must then take the steps file and 
exit. With speech recognition, the computer can take
the interim steps. The FSG in DSRS was built to han-
dle two cases: (1) The user says “file” and “exit,” and
(2) the user says only “exit” and DSRS performs the
file and exit sequence transparently. This second mode
connects the actions more closely with the user’s
thought processes and does not force a sequence of
actions in order for tasks to be performed. The menu-
flattening feature of DSRS was encoded into the FSG
file. While the example given may seem trivial, the
concept is an important one and can be used to flatten
many levels of menus. For instance, users take several
steps to change the font or type size on a region of
highlighted text in a word processing program. The
following could conceivably be invoked as a speech
macro: “Change to Helvetica Bold Italic 24 points.” 

Integrating Speech Recognition in Applications

As described in the section Overview, DSRS feeds key-
strokes to applications. Therefore, the preferred appli-
cation development method for allowing access to
functions—one that will allow integration of speech
recognition—is accelerator keys. Typically, accelerator

keys are in the form of CTRL 1 <key> bindings that
allow direct access to a function, regardless of menu
hierarchies. It should be noted that this lack of hierar-
chy limits the number of directly accessible functions. 

A second method for integrating speech within an
application is through menu mnemonics. Mnemonics
are the keyboard equivalents signified in application
menus by an underlined letter. The first mnemonic is
invoked by a combination of the ALT key and the
underlined letter, which can be followed by another
underlined letter. For example, pressing ALT 1 f
invokes the file menu item; pressing x immediately
thereafter invokes the “exit” entry for the application. 

Integrating speech recognition becomes difficult
when application functions are not accessible through
the keyboard. Applications designed to allow access to
functions only by means of the mouse cannot be
speech enabled as DSRS is currently implemented.
Although DSRS can send mouse clicks into the system,
consistently locating the mouse pointer on applica-
tions is difficult. The next sections further illustrate the
issues that stemmed from these integration issues as
we implemented and tested DSRS. 

Client–Server Protocols 
Applications such as emacs and Netscape Navigator
have protocols that allow other processes to send 
commands to them. For example, a file name or a
universal resource locator (URL) may be sent via 
the command line. DSRS exploits this facility in
Netscape Navigator to allow Web surfing by voice. 
For example, in the Netscape context, the speech
macro “Digital home page” would translate to the
following command issued to a window: netscape-
remote openURL(“http://www.digital.com”). Although
this command string seems a bit awkward, the result is
that the actions being taken are all transparent to the
user and they work very well. 

Problems Encountered in Implementation 
Unlike the applications discussed in this paper, some
applications are not developed with good program-
ming practices. Neither are the keyboard interfaces
well-tested. We encountered the following types of
problems when using the keyboard as the main input
mechanism. 

■ Applications had multiple menu mnemonics
mapped to the same key sequence. This approach
could not work even if the keyboard were used
directly. 

■ Application functions controlled by graphic but-
tons were accessible only by mouse. 

■ Keyboard mapping was incomplete, that is, mnem-
onics were only partially implemented. 

Digital Technical Journal Vol. 8 No. 2 1996 123



In the implementation of DSRS, we encountered
one unexpected problem. When a nested menu
mnemonic was invoked, the second character was lost.
The sequence of events was as follows: 

■ A spoken word was recognized, and keystrokes
were sent to the keyboard buffer. 

■ The first character, ALT 1 <key>, acted normally
and caused a pop-up menu to display. 

■ The menu remained on display, and the last key was
lost. 

We determined that the second keystroke was being
delivered to the application before the pop-up menu
was displayed. Therefore, at the time the key was
pressed, it did not yet have meaning to the application.
It is apparent that such applications are written for 
a human reaction–based paradigm. DSRS, on the
other hand, is typing on behalf of the user at computer
speeds and is not waiting for the pop-up menu to
display before entering the next key. 

To overcome this problem, we developed a syn-
chronizing function. Normally the Vocabulary
Manager notation to send an ALT 1 f followed by an
x would be ALT 1 f x. This new synchronizing func-
tion was designated as sALT 1 f x. The synchronizing
function sends the ALT + f and then monitors events
for a map-notify message indicating that the pop-up
menu has been written to the screen. The character
following ALT 1 f is then sent, in this case, the x. 
The synchronizing function also has a watchdog timer
to prevent a hang in the event a map-notify message.
This method is included in the final product. 

Guidelines for Writing Speech-friendly
Applications

Several guidelines for enabling speech recognition in
applications became apparent as we gained experience
using DSRS. Coincidentally, a guideline recently pub-
lished by Microsoft Corporation documents some 
of the very same points.5

■ Provide keyboard access to all features. 
■ Provide access keys for all menu items and controls. 
■ Fully document the keyboard user interface. 
■ Whenever possible, use accelerator keys; they are

more reliable than using menu mnemonics.
Mnemonics can be overloaded or non-functional 
if the menu is not active. 

■ Client–server protocols can work well for enabling
speech recognition; document fully. 

■ Do not depend on human reaction times for dis-
played windows or on slow typing rates. 

■ Provide user-friendly titles for all windows, even if
the title is not visible. 

■ Avoid triggering actions or messages by mouse
pointer location. 

■ Give dialog boxes consistent keyboard access; for
instance, boxes should close when the ESC key is
pressed. The dialog box responses yes and no
should correspond to the y and n keys. 

Application developers who wish to design a speech
interface directly into their applications now have this
option. Several speech APIs are available. Microsoft
offers the Speech Software Development Kit, and the
Speech Recognition API Committee, chaired by
Novell, offers SRAPI. Computer–human speech
interaction is the subject of ongoing research. Much of
the government-sponsored research is now being
commercialized. Several groups, such as ACM CHI,6

have been and continue to study speech-only
interfaces. They are discovering that “translating a
graphical interface into speech is not likely to produce
an effective interface. The design of the Speech User
Interface must be a separate effort that involves study-
ing the human–human conversations in the applica-
tion domain.” 6

Future Directions for Speech Recognition

In addition to uncovering points for developers to
build speech-enabled applications, we also gained a
perspective on how speech recognition may develop in
the future. A brief overview of these insights is pre-
sented in this section. 

Integrating speech and audio output—The addi-
tion of a two-way interface of speech and audio that
gives users feedback will move the user interface to a
new level. 

Telephone access—Telephone access can make
workstations more valuable communications devices
by connecting users to information such as e-mail
messages and appointment calendars. The telephone
can extend the reach of our desktop computers.6

Dictation—Discrete dictation products with capa-
bilities of 60,000 words are commercially available
now; in the not-too-distant future, continuous-
recognition dictation products will become viable. 
A command and control recognizer that can be seam-
lessly switched to dictation mode is a very powerful tool. 

Speech recognition integrated with natural lan-
guage processing—The field of natural language
processing deals with the extraction of semantic infor-
mation contained in a sentence. Machine understand-
ing of natural language is an obvious next step. Users
will be able to speak in a less restricted fashion and still
have their desired actions carried out. 

A new paradigm for applications—A new class of
applications needs to be created, one that is modeled
more on human thought processes and natural lan-
guage expression than on the functional partitioning

124 Digital Technical Journal Vol. 8 No. 2 1996



in today’s applications. A user agent or secretary pro-
gram that could process common requests delivered
entirely by speech is not out of reach even with the
technology available today, for example: 

User: What time is it? 
Computer: It is now 1:30 p.m. 

User: Do I have any meetings today? 
Computer: Staff meeting is ten o’clock to twelve

o’clock in the corner conference room. 

Computer: Mike Jones is calling on the phone.
Would you like to answer or transfer the
call to voice mail? 

User: Answer it. 

User: Do I have any new mail? 
Computer: Yes, two messages. One is from Paul

Jones, the other from your boss. 
User: Read message two. 

User: What is the price of Digital stock? 
Computer: Digital stock is at $721/2, up 1/4. 

The example above shows the user agent providing
information and interacting with e-mail, telephone,
stock quote, and calendar programs. As we move into
the future, the computer–user interface should move
closer to the interaction model humans use to com-
municate with each other. Speech recognition and
text-to-speech software help in a significant way to
move in this direction.6

Performance

DSRS word recognition, which is the primary perfor-
mance measure, is as good as comparable command
and control recognizers found on PCs. Training trou-
blesome and acoustically similar words improves the
performance. The vocabulary, because of the targets
chosen, that is, UNIX commands, does have acoustic
collisions, for example, escape and Netscape. Further,
we had to use the vocabularies supporting the UNIX
shell commands, and commands such as vi can be pro-
nounced in different ways, for example, vee-eye or vie.
The shell commands are also full of very short utter-
ances that tend to result in higher error rates. 

On the slower, first-generation Alpha workstations,
DSRS has noticeable delays, on the order of a few hun-
dred milliseconds. However, on the newer and faster
Alpha workstations, DSRS responds within human
perceptual limits, less than 100 milliseconds. 

Another interesting phenomenon associated with
the speed of the workstation is the improvement DSRS
makes in user productivity. On a slow machine, the
speech interface has little impact if the application is
slow in performing its tasks. In other words, the time it
takes to perform a certain task is not greatly affected

unless the human input of commands is a significant
portion of that time. However on a fast machine, the
application performs tasks as quickly as the commands
are spoken, and the productivity enhancement, there-
fore, is great. 

Summary and Conclusions

The DSRS team accomplished its objective of develop-
ing a low-cost speech recognition product. DSRS for
Digital UNIX is being shipped with all Alpha work-
stations at no additional cost. Integration with the 
X Window System was successful. 

With reference to the focus of this paper—develop-
ing the user-friendly interface—we found through
feedback from our user base that most first-time users
perform useful work using DSRS without consulting
the documentation. The first-time setup design that
provides instructions and feedback to users was suc-
cessful. The list of Active and Always Active words and
phrases is a helpful reference for new users until they
learn the “language” they can use to communicate
with their applications. 

Adding vocabulary for new applications is a bit
more challenging because some “reverse engineering”
may be required on a particular application. One
needs to know the class name of each of the windows
and then map the keystrokes for each of the functions
to speech macros. Although this procedure is docu-
mented in the manual, it can be challenging for users. 

Prototypes of DSRS control for sophisticated menu-
driven applications, such as mechanical computer-
aided design, show excellent promise for enhancing
user productivity. For example, with computer-aided
design or drafting software, users can focus their eyes
on the drawing target on the screen while they are
speaking menu functions. 

Speech recognition is an evolutionary step in the
overall computer–user interface. It is not a replace-
ment for the keyboard and mouse and should be used
to complement these devices. Speech recognition
works as an interface because it allows a more direct
connection between the human thought processes
and the applications. 

Speech recognition coupled with natural language
processing, text-to-speech, and a new generation of
applications will make computers more accessible to
people by making them easier to use and understand. 

Acknowledgments

Thanks go to the dedicated team of engineers who
developed this product: Krishna Mangipudi, Darrell
Stam, Alex Doohovskoy, Bill Hallahan, and Bill
Scarborough, and to Dragon Systems, Inc. for being 
a cooperative business and engineering partner. 

Digital Technical Journal Vol. 8 No. 2 1996 125



References

1. L. Rabiner and B. Juang, Fundamentals of Speech
Recognition (Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1993): 45–46. 

2. C. Schmandt, Voice Communication with Computers:
Conversational Systems (New York, N.Y.: Van Nostrand
Reinhold, 1994): 144–145. 

3. K.F. Lee, Large-Vocabulary Speaker-Independent
Continuous Speech Recognition: The SPHINX System
(Pittsburgh, Pa.: Carnegie-Mellon University Computer
Science Department, April 1988). 

4. W. Hallahan, “DECtalk Software: Text-to-Speech Tech-
nology and Implementation,” Digital Technical
Journal, vol. 7, no. 4 (1995): 5–19. 

5. G. Lowney, The Microsoft Windows Guidelines for
Accessible Software Design (Redmond, Wash.:
Microsoft Development Library, 1995): 3–4. 

6. N. Yankelovich, G. Levow, and M. Marx, “Designing
SpeechActs: Issues in Speech User Interfaces,” Pro-
ceedings of ACM Conference on Computer –Human
Interaction (CHI) ’95: Human Factors in Computing
Systems: Mosaic of Creativity, Denver, Colo. (May
1995): 369–376.

Biography 

126 Digital Technical Journal Vol. 8 No. 2 1996

Bernard A. Rozmovits 
During his tenure at Digital, Bernie Rozmovits has worked
on both sides of computer engineering—hardware and soft-
ware. Currently he manages Speech Services in Digital’s
Light and Sound Software Group, which developed the
user interfaces for Digital’s Speech Recognition Software
and also developed the DECtalk software product. Prior 
to joining this software effort, he focused on hardware
engineering in the Computer Special Systems Group 
and was the architect for voice-processing platforms in 
the Image, Voice and Video Group. Bernie received a
Diplôme D’Étude Collègiale (DEC) from Dawson 
College, Montreal, Quebec, Canada, in 1974. He 
holds a patent entitled “Data Format For Packets Of
Information,” U.S. Patent No. 5,317,719. 


