Internet Protocol
Version 6 and the Digital
UNIX Implementation
Experience

In the early 1990s, the Internet community rec-
ognized that the current TCP/IP architecture was
not capable of sustaining the explosive growth
of the Internet. In July 1994, the Internet Protocol
next generation (IPng) directorate responded to
the problem with the Internet Protocol version 6
(IPv6) as the replacement network layer proto-
col. Working groups of the Internet Engineering
Task Force (IETF) then began to build specifications
that would address the needs for an expanded
Internet address space, an increase in router table
size, and new technology features. As a contrib-
utor to these efforts, Digital has implemented
IPv6 on the Digital UNIX platform. The primary
goal of Digital’s efforts has been to evaluate the
technical feasibility of the proposed architecture
and provide critical feedback to the standards
development process in the IETF. The secondary
goal has been to evaluate system design alter-
natives to gain the experience needed to allow
Digital to incorporate this new architecture into
existing products.

Daniel T. Harrington
James P. Bound

John J. McCann
Matt Thomas

As one of its ongoing advanced development efforts in
networking technology, Digital has built an Internet
Protocol version 6 (IPv6) prototype for the Digital
UNIX operating system. In this paper, we describe the
design of the Digital UNIX IPv6 prototype and its his-
tory relevant to the Internet Protocol next generation
(IPng) effort in the Internet Engineering Task Force
(IETF). We also compare its relationship with the
existing Transmission Control Protocol/Internet
Protocol (TCP/IP) suite. We emphasize techniques
and technologies that were developed to accommo-
date particular aspects of the IPv6 architecture and
issues that required further discussion in the IETF. In
particular, we discuss the modifications to the trans-
port layer modules to use two distinct network layer
protocols, along with the implications to the UNIX
socket layer and applications. In addition, we describe
the new IPv6 and Internet Control Message Protocol
(ICMP) network layer modules, including their inter-
actions with both the data link layer and the IPv4
protocol. We review the new Neighbor Discovery
Protocol and its algorithms and give details of its
implementation.

To accommodate the dynamic nature of future net-
works, IPv6 includes mechanisms to do both stateless
and stateful address configuration, as well as router
discovery; we explain the design of a user-mode
process that implements these functions. The paper
includes a discussion of enhancements to well-known
1Pv4 services, such as dynamic updates to the domain
naming service (DNS), as well as general techniques
to support the transition of existing applications. The
paper concludes with an overview of what we have
learned in this project and summarizes our current sta-
tus and future work, including efforts in nonbroadcast
multiple access (NBMA) data link technologies such as
asynchonous transfer mode (ATM) and resource reser-
vation protocols.

Internet Protocol Next Generation

In the early 1990s, the members of the Internet com-
munity realized that the address space and certain
aspects of the current TCP/IP architecture were not
capable of sustaining the explosive growth of the

Digital Technical Journal Vol.8 No.3 1996

Internet. Within the TETF, several efforts were under-
taken to both study and improve the use of the 32-bit
Internet Protocol (IPv4) addresses, as well as to iden-
tify and replace protocols and services that would limit
growth. The 32-bit addressing architecture in the net-
work layer was quickly determined to be the crux of
the problem, with both hardware and human limits
approaching fundamental boundaries.! IPv4 addresses
are unevenly allocated in blocks that are often too
large or too small; they are also difficult to change
within any existing network.

When the IETF called for replacement proposals,
Digital participated in this industry-wide effort by
submitting white papers outlining issues and by devel-
oping and evaluating prototypes of the various pro-
posals. Digital also participated in the IETF working
groups and in the IPng directorate, which had the
responsibility for making the ultimate decision. In July
1994, the IPng directorate selected the Internet
Protocol version 6 (IPv6) as the replacement network
layer protocol, and IETF working groups began to
build specifications. “The Recommendation for the
IP Next Generation Protocol” summarizes the candi-
dates and explains the selection of this protocol.?

Digital UNIX Prototype

The current Digital UNIX IPv6 prototype project is
Digital’s most recent addition to an ongoing effort to
develop and evaluate the competing IPng proposals.
This began with the Simple Internet Protocol (SIP),
which used eight octet addresses. SIP was later melded
with another early proposal and became known as
Simple Internet Protocol Plus (SIPP), the direct
antecedent of IPv6.* The primary goal of Digital’s
efforts has been to evaluate the technical feasibility of
the proposed architecture and provide feedback to the
IETF working groups. This is critical to the standards
development process in the IETF, which requires mul-
tiple independent and interoperable implementations
of a specification before it may become an Internet
standard. An additional goal has been to evaluate sys-
tem design alternatives to gain the experience needed
to allow Digital to incorporate this new architecture
into existing products. Digital has made the prototype
available to researchers within the company as a source

code distribution and more recently has begun to sup-
ply binary kits for early adopters and evaluators in the
Internet community. As the IPv6 protocol and archi-
tecture matures, we have begun to focus on how to
best integrate the code into the Digital UNIX product.

IPv6 Overview

To understand the system-wide impact of IPv6, we
review some of its new features and contrast them with
the IPv4 model. IPv6 is both a completely new
network layer protocol and a major revision of the
Internet architecture. At both levels, it builds upon
and incorporates experiences gained with IPv4.

Figure 1 shows the evolution of the packet format
into the new IPv6 header. It retains some fields (ver-
sion, source, and destination address), clarifies the role
of others (for example, the Time To Live [TTL] field
is renamed the Hop Limit), and introduces new ones
(such as Flow ID) with as yet untapped potential. The
next header field allows for modular construction of
complex packets: different header types can be chained
together to provide specialized functionality, includ-
ing security and source routing. Finally, all headers are
structured to allow 64-bit alignment, which should
allow optimal processing both at source and destina-
tion systems, as well as in transit.*

The most striking departure from IPv4 is the
address size: it has increased from 32 bits to 128 bits.
The IPv6 addressing architecture is rich, with prefixes
for multicast addresses and predefined scopes for both
unicast and multicast addresses. One special type of
unicast address is the link-local address, which permits
communications with only those systems directly con-
nected on the same link. This allows a standard boot-
strapping mechanism, so that systems can learn about
neighbors and services before a routable address is
assigned to an interface. Various address assignment
options have been defined, including hierarchical
models based upon regional registries and service
provider identifiers.*® In each case, care has been taken
to ensure proper route aggregation, which will help
yield more efficient backbone router performance.

Multiple means of acquiring addresses have been
defined for IPv6 addressing, with the goals of allowing
flexibility through different administrative policies

VERSION | PRIORITY| FLOW LABEL
PAYLOAD LENGTH NEXT HEADER HOP LIMIT
SOURCE ADDRESS

DESTINATION ADDRESS

Figure 1
I1Pv6 Header

Digital Technical Journal Vol.8 No.3 1996

and, perhaps more important, of demanding that net-
work address reassignment be supported throughout
the architecture. The two new addressing services are
Stateless Address Autoconfiguration and the stateful,
transaction-based Dynamic Host Configuration Pro-
tocol version 6 (DHCPv6).”* In the stateless model,
address prefixes are learned by listening for router
advertisement packets. Addresses are formed by com-
bining the prefix with a link-specific token such as the
48-bit Ethernet hardware address. In the stateful pro-
cedure, hosts may request addresses, configuration
information, and services from dedicated configura-
tion servers, with routers potentially serving as relay
stations during the initial phase. In both cases, the
resulting addresses have associated lifetimes, and sys-
tems must be prepared to both learn new addresses
and release expired addresses. Combined with the
ability to register updated address information with
DNS servers, these mechanisms provide a path toward
network renumbering, a goal that has proved difficult
to achieve in the 1Pv4 world.

Finally, the Internet Control Message Protocol ver-
sion 6 (ICMPv6) was developed.® This specification
aimed to merge the functions of two distinct IPv4 pro-
tocols for reporting errors and status, ICMP for uni-
cast packet transmission and the Internet Group
Message Protocol (IGMP) for multicast traffic.

The messages defined in this protocol are catego-
rized as either error or informational, with a family of
messages in the second group used to provide the
Neighbor Discovery Protocol.”® Neighbor discovery
serves multiple purposes with the overall theme of
providing a system with topological and environmen-
tal hints. For example, link-layer address resolution,
router discovery, destination address redirection, and
address autoconfiguration mechanisms are all specified
using neighbor discovery packet types.

Although the network layer did experience the largest
amount of change, Figure 2 shows that the effects of
this work touch nearly all aspects of the Digital UNIX
system. We point out examples of decisions made due to
our fundamental design philosophy, which is based
upon integration with the UNIX system framework,
modular and extensible software, support for multiple
operational policies, and a desire to take advantage of
the Alpha platform without compromising portability.

In the following sections, we study these topics in
depth, beginning with the network layer, then cover-
ing the transport layer modifications and the new
neighbor discovery algorithms. After that, we discuss
address autoconfiguration mechanisms and their
effects upon the system. We conclude with services
that will be affected by the transition from IPv4 to
IPv6 such as the socket application programming
interface (API) and DNS.

DNS DHCP IP-BASED NETWORK
APPLICATIONS COMMANDS
AND UTILITIES
APIs TRANSITION
MECHANISMS
USER
KERNEL
SOCKET LAYER SECURITY
TRANSITION
MECHANISM
TCP uDP
ROUTING TABLE
DYNAMIC é/NA(D:,L\‘EE'GHBOR
ADDRESS NETWORK LAYER
IPV6/IPV4 LINK-LAYER NEIGHBOR
TUNNELS MODULES DISCOVERY
Figure 2

Base Platform Changes

Network Layer

In this section, we review the processing requirements
of the IPv6 modules, including ICMPv6, extension
header options, and fragmentation. An early design
decision was made to base the networking subsystem
on the Berkeley Standard Distribution (BSD) 4.4
model and code base, which allows great flexibility in
dealing with multiple network layers." This also has
the advantage of providing support for variable-bit-
length netmasks (also known as CIDR-style netmasks,
from Classless Inter-Domain Routing), which are
appropriate to both IPv4 and IPv6."? We have also
tried to take maximum advantage of the 64-bit Alpha
architecture when implementing IPv6, while making
certain that this implementation would run on 32-bit
CPUs as well. For example, the checksum routines
operate on 32-bit quantities (allowing the carry to
overflow into the upper 32 bits of a 64-bit register).
The checksum routine is also designed to allow it to be
issued to multiple Alpha execution units, which
remains a topic for further investigation.

Adaptations to Existing IP and ICMP Routines

The IPv6 and ICMPv6 routines are completely
independent of the corresponding IPv4 and ICMPv4
routines, and the processing styles have distinct differ-
ences. In IPv6, the incoming packet is treated as being
read-only, while the BSD IPv4 code manipulates fields
within the IPv4 header. We also avoid unnecessary use
of the m_pullup routine (which consolidates chained
memory buffers into a single large buffer) because this
could cause the packet to be needlessly lost. Finally,
instead of passing numerous arguments when calling
from function to function, a common data structure is

Digital Technical Journal Vol.8 No.3 1996

used to store necessary data and pointers; for most
function calls, it is only necessary to pass a pointer
to this structure. This reduces the stack overhead and
also yields modular and easily extensible subroutines.

IPv6 has a dedicated interrupt processing thread,
and received IPv6 packets are placed onto their own
interface input queue (ifqueue). When an IPv6 packet
is taken off the ifqueue, basic validity tests are done;
only after passing them is the packet tested to see if it
is directed to a unicast or a multicast address.

If the packet is to a multicast address, the destina-
tion is compared to the enabled IPv6 multicasts for the
interface over which the packet was received. If the
destination matches, the packet is passed up to normal
packet processing; otherwise, a copy of the packet is
passed to the multicast forwarder.

Similarly, unicast packets are checked to see that the
destination matches one of the system’s addresses. In
the special case of the packet being targeted to a link-
local address, only the link-local address for the receiv-
ing interface is compared. If there is an exact match,
the packet is processed normally; otherwise, it is
passed to the unicast packet forwarding routine.

Header Processing

After a packet has been matched to a local address, the
IPv6 headers must be processed, independently of
whether the packet is multicast or unicast. This pro-
cessing is done in a common routine that handles all
types of IPv6 headers. A number of actions may result
from the verification and analysis phase, including an
ICMPv6 packet being sent back to the source, the
packet being silently dropped, or being forwarded to
another node due to a source route. If none of these
possibilities occurs, the next IPv6 header in the packet
is processed.

If the header is a known IPv6 header type, the
appropriate routine is called. If not, this packet is
probably destined for another protocol module such
as TCP, the User Datagram Protocol (UDP), or
ICMPv6. The header type is looked up in the list of
active protocols and passed to the matching protocol
input routine. If no entry is found, an ICMPv6 error
may be sent back.

Header Options

Since the hop-by-hop and destination node headers
have the same format, a common routine processes
both types. As the routine processes each option,
it validates the option. If this fails, it checks whether
an ICMPv6 parameter problem error should be
sent, whether the packet should be discarded, or the
option ignored.

ICMPv6 Processing and Checksums
Upon receipt of an ICMPv6 packet from a node in the
network reporting an error or other information, it is

Digital Technical Journal Vol.8 No.3 1996

first validated for correct packet format and checksum.
The packet is then further processed based upon its
ICMPV6 type value. Ifit has an ICMPv6 error type (i.c.,
type value less than 128), the appropriate notifications
are sent to the affected protocol. Neighbor discovery
packets, which are all informational, have a number of
additional consistency checks, and the packet is
dropped if it fails them. After the ICMPv6 packet has
been processed, it is also sent to any ICMPv6 raw sock-
ets that have requested reception of that type. The
exception to this rule is an ICMPv6 echo request
packet, which is not copied to the raw sockets.

When an ICMPv6 echo request is received and
validated, the ICMPv6 echo response packet is pre-
pared. In the typical case, it is identical to the echo
request except for the ICMPv6 type and checksum
value. The exception would be an echo request sent to
a multicast address, in which case a source address
must also be selected. Rather than computing the
checksum on the new packet, the received checksum is
simply adjusted down by 1, since the sole difference
between the two packets is the value of the ICMPv6
type fields, and ICMPv6 echo request and echo
response types differ by 1.

IPv6 requires all nodes to support multicasting,
specifically level 2 as defined in “Host Extensions for
IP Multicasting.”** Although this was written for IPv4,
the same general algorithms are used for IPv6. One
notable exception to this is that the multicast addresses
used for neighbor solicitions and the predefined link-
local multicasts such as all-nodes and all-routers do
not require periodic status reports.

Path Maximum Transmission Unit Discovery

One of the significant differences between IPv4 and
IPv6 concerns fragmentation. In IPv6, fragmentation
may be done only by the node from which a packet
originates. Forwarders, which may be routers or hosts
acting upon source routing headers, are not permitted
to fragment packets. The burden is on the originating
node to send packets that are small enough to fit
through all the links along the paths to their destina-
tions, where each link type may have a different maxi-
mum transmission unit (MTU). To ease this burden,
IPv6 defines a minimum link MTU of 576 bytes. A
node may use this as the upper limit on packet size and
be assured that its packets are sufficiently small to
reach their destinations.

The minimum MTU of all the links in a path
between two nodes is referred to as the path MTU.* In
many cases, the path MTU will exceed 576 bytes, and it
is desirable to send the largest possible packets. IPv6
provides a mechanism by which a node may discover
a path’s MTU." When a forwarder cannot forward a
packet because the packet is too large for the next hop’s
link MTU, it sends an ICMPv6 Packet Too Big (PTB)
message back to the source of the packet. The PTB

message contains the MTU of the constricting link.
The source node adjusts its packet size to fit through
this link.

Path MTU information is kept on a per-destination
basis and is stored in the routing table entry for a given
destination. Packets sent on that route will be sized
according to the path MTU value. When a PTB mes-
sage is received, the appropriate route is updated to
contain the new path MTU value as reported in the
PTB message, and a timer is started. When the timer
expires, the path MTU value is increased to the
(known) MTU of the first hop link. This allows the
node to detect increases in the path MTU.

Switches are provided to disable path MTU discov-
ery system-wide, on a per-destination basis and on
a per-socket basis. When path MTU discovery is dis-
abled, packets are limited to 576 bytes.

Fragmentation

A packet that is larger than the MTU of the path on
which it is to be sent must be fragmented. Unlike IPv4,
the IPv6 header contains no fields to carry fragmenta-
tion information. Instead, this information is carried
in a specialized extension header, called the fragment
header. As shown in Figure 3, the fields in the frag-
ment header include an offset, in eight octet units, and
an identifier common to all fragments of the original
packet. The M (managed) flag is used to indicate inter-
mediate fragments; the terminal fragment has the bit

RESERVED

\
NEXT HEADER | RESERVED | FRAGMENT OFFSET | |M

IDENTIFICATION

Figure 3
Fragment Header

ORIGINAL PACKET

cleared. Note that the amount of data in a fragment
packet is derived from the total packet length.

The first step in the fragmentation process is
to identify the fragmentable and unfragmentable parts
of the original packet (see Figure 4). The unfrag-
mentable part of the packet consists of the IPv6 header
and any extension headers that must be processed by
each node traversed by the packet (e.g., hop-by-hop
header, routing header). The fragment header is
appended to the unfragmentable part. The rest of the
packet is divided into fragments, and each fragment is
appended to a copy of the unfragmentable part plus
fragment header.

When the fragment header is appended to the
unfragmentable part, two fields in the unfragmentable
part must be updated. First, the payload length field in
the IPv6 header must be updated to reflect the length
of the fragment packet. Second, the next header field
in the last header of the unfragmentable part must be
changed to indicate that a fragment header follows.

A copy of the unfragmentable part is created for
cach fragment packet. As an optimization, Digital
UNIX allows portions of a packet to be shared among
copies of the packet, to avoid an actual data copy. As
with IPv4, care must be taken to ensure that fields
being updated are not contained in shared buffers.
This is typically accomplished by copying the portions
that must be updated into a private memory bufter
(mbuf). Unlike IPv4, the unfragmentable part may
not fit in a single mbuf, and the IPv6 fragmentation
code must be capable of handling this case.

To reduce the possibility of fragment loss at the
source node, all the fragment packets are built before
any is passed to the data link for transmission.

A question that arises here is how big should
the fragment packets be? Should they be sized accord-
ing to the path MTU, or should they be limited to
576 bytes? The former yields the desirable larger

FRAGMENTABLE PART

))
(
UNFRAGMENTABLE | FIRST SECOND LAST
PART FRAGMENT | FRAGMENT ” FRAGMENT
(q
FRAGMENT PACKETS
UNFRAGMENTABLE | FRAGMENT | FIRST
PART HEADER FRAGMENT
UNFRAGMENTABLE | FRAGMENT | SECOND
PART HEADER FRAGMENT
UNFRAGMENTABLE | FRAGMENT | LAST
PART HEADER FRAGMENT

Figure 4
Fragmentation

Digital Technical Journal Vol.8 No.3 1996

9

10

packets, while the latter avoids undesirable fragment
loss (due to the fragment packet being too big). The
Digital UNIX IPv6 prototype supports either choice
on a system-wide, per-destination, or per-socket basis.
This is an example of separation of mechanism from
policy, a basic guideline being used across this project.

Reassembly

The reassembly process reconstructs the original
packet from fragment packets. Fragments belonging
to the same packet are identified by a combination of
source IP address, next header type (first header of the
fragmentable part) and fragment identifier. Individual
fragments are queued within the network layer until the
original packet can be completely reassembled, at which
point it is passed to the appropriate protocol module.

When all fragments have arrived, the original packet
can be reassembled. A single copy of the unfragment-
able part is kept, and the data from each fragment
packet is appended. The payload length field of the IPv6
header is updated to reflect the length of the reassem-
bled packet, and the next header field of the last header
of the unfragmentable part is restored to reflect the first
header in the fragmentable part.

As with the fragmentation code, care must be taken
so that fields being updated are not in buffers shared
with other copies of the packet.

When the first fragment of a packet arrives, a timer
is started. If the timer expires before that packet is
complete, the fragments are discarded. If the offset
zero fragment has been received, an ICMPv6 error
message is sent.

Forwarding and Routing

If'a received packet does not match one of the system’s
addresses and the system is not acting as a router, the
packet is silently dropped. Otherwise, an attempt is
made to forward the packet. The first step in forward-
ing is to do a lookup in the routing table; the type of
lookup depends on whether the packet contains a
nonzero flow label. If it does, the lookup is based on
both the source address and the flow label; otherwise
the destination address is used. If the lookup succeeds
and the length of the packet fits within the MTU of the
resultant route and interface, the packet is transmitted
to the next hop as indicated by the route. Otherwise
an appropriate ICMPV6 error is sent back to the origi-
nating node.

Tunnels

Tunneling is a mechanism that allows packets of one
network type to be encapsulated and forwarded within
a network layer packet of the same or a different type.
IPv6 packets can be tunneled over either IPv4 or IPv6
networks, as may IPv4 packets.’*” The tunneling rou-
tine takes as input a packet, prepends the appropriate

Digital Technical Journal Vol.8 No.3 1996

IP header for the network over which the packet will
be tunneled, and transmits the resultant packet over
that network. Tunnels are unidirectional; there need
not be a corresponding tunnel in the reverse direction.

Rather than having multiple tunnel interfaces (one
for each possible combination of protocol Y over
protocol X), the Digital UNIX implementation uses
a single tunnel interface. This method was the sugges-
tion of Keith Sklower of the University of California
at Berkeley."® When the interface is initialized, only
automatic tunneling of IPv6 over IPv4 is enabled.”
To configure a static tunnel, where fixed end points
are used, a static route is added to the routing tables
with the proper destination and gateway (tunnel end
point) addresses.

When a packet is presented to the tunnel interface,
it looks up the route entry of the destination address.
The route contents tells the tunneling routine how the
packet is to be encapsulated and forwarded. The route’s
gateway address indicates what underlying network to
use, and the route’s destination address indicates what
type of packet is being tunneled.

When a tunneled packet is received, the initial
header is stripped and the resulting packet is placed on
the appropriate IPv6 or IPv4 ifqueue.

Transports

One of the strengths of the IPng effort was the com-
mitment to preserve the well-understood transports,
TCP and UDP, upon which a wealth of applications
have been built.

The IPv6 specification calls for three particular
requirements of upper-layer protocols:

1. The pseudoheader checksum must accommodate
larger addresses.

2. The maximum packet lifetime is no longer
computed.

3. The larger IPv6 header(s) must be taken into
account when computing the maximum payload
size (e.g., TCP’s maximum segment size [MSS]).*

In addition to these mandated modifications, we had
to make a fundamental design choice. With two differ-
ent network layer protocols in the system, each using a
different size address, our design choice could have
been to use two independent transport modules, one
for each network layer. Figures 5 and 6 show the inde-
pendent versus the integrated transport design options.

Although the independent model offers an element
of design simplicity, it wastes memory by duplicating
each transport layer function. In the Digital UNIX
implementation, these modules are implemented in
the kernel, and duplication would be expensive. Also,
the design and use of a single programming interface
to access both sets of services would be complicated.

SOCKET
LAYER
USER /
KERNEL
AF_INET AF_INET6
V4 TRANSPORT V6 TRANSPORT
PCB PCB
LIST LIST
IPV4 IPV6
Figure 5
Independent Transport Implementation
SOCKET
LAYER
USER /
KERNEL
AF_INET/AF_INET6
V4 AND V6 TRANSPORT
PCB
LIST
IPV4 IPV6
Figure 6

Integrated Transport Implementation

The ability to maintain, let alone extend, the code base
would also suffer. Fortunately, due to the fact that
IPv4 addresses are a well-defined subset of the entire
IPv6 address space, it is relatively straightforward to
implement the transports so that a single set of mod-
ules can be used over both network layers.** To accom-
plish this, we increased the storage space allocated
for addresses and separated those functions that are
dependent upon a particular network layer. We discuss
cach of these issues in this section.

Storing Large Addresses

Two specific data structures must be modified to
accommodate addresses larger than the 32-bit IPv4
type. The first of these is the sockaddr struct, which is
used when dealing with the BSD socket layer and
passed along to user applications. The second is the
Internet Protocol Control Block (PCB) data struc-
ture, the in_pcb. In this section, we review the modifi-
cations to each structure.

A program that uses a transport does so by means of
the BSD sockets interface and passes addressing infor-
mation in a sockaddr structure. For IPvo6, this is a
sockaddr_in6. Internally, the structure is defined so
that 64-bit alignment is preserved; however, it has the
following public definition:

struct sockaddr_iné {
u_char siné_Llen;
u_char siné_family;
u_short siné_port;
u_int siné_flowlabel;
struct iné_addr siné_addr;

Although the concept of a sockaddr is generic in the
BSD architecture, the flow label and in6_addr mem-
bers of this structure are unique to IPv6 and would be
used only in the AF_INET6 address family. The details
of this are specified in Reference 21.

The in_pcb data structure is created for each socket
using TCP, UDP, or other clients of the network layer.
In addition to storing the source and destination
addresses, various other pieces of information required
for proper communication are stored here, including
the port numbers, options and flags, a pointer to the
socket receiving the data, a header template, and a
pointer to the routing entry for the given destination.
For IPv6, this basic model has been retained, and addi-
tional information is stored. This information includes
local and remote flow labels and indicators of which
address family the application is using and which net-
work layer the transport communication is using.
Finally, a partial checksum of the transport pseudo-
header is stored here as well; its use is described in the
following section.

In addition to the explicit storage of the network
layer and address family, the fundamental technique
that facilitates the use of a common transport is the
storage of IPv4 addresses in an IPv6 format. This is
known as an IPv4-mapped address and is described
in “IP Version 6 Addressing Architecture.”” This
address format is explicitly reserved to store addresses
of systems that are capable of using only the IPv4
protocol, and thus is an appropriate form of storage
in the PCB for communications that will be sent using
the IPv4 protocol, as opposed to IPv4-compatible
addresses, which are sent using IPv6 packets. These
mapped addresses are of the following form:

0000:0000:0000:0000:0000:FFFF:204.123.2.75

These addresses are manipulated within the IPv4
TCP and UDP protocols by means of macros that
allow the IPv4 addresses to be inserted, extracted,
or compared while in an IPv6 address structure
(in6_addr). As an example, the code fragment in
Figure 7 shows an address being extracted for use
in evaluating a configurable IPv4 socket option.

Special Transport/Network Layer Interactions
Within the integrated transport layers, the transport
protocol is treated independently of the particular
network layer being used, and network-layer-specific
functions are used to interface to either IPv4 or IPv6.
There are two particular instances in which the
transport layer has interactions with the IPv6 network
layer over and above the exchange of data packets for
input or output. These are the notification and update
of path MTU, which is required in IPv6, and the
potential to refresh the neighbor discovery cache
based on forward progress; i.e., if the transport knows
that data is reaching its destination, it can validate the

Digital Technical Journal Vol.8 No.3 1996

11

12

/*

*/
if (inp->inp_netlayer

tmp.s_addr =

* Test address for IPv4 characteristic

struct in_addr tmp;

== AF_INET) {

IN6_EXTRACT_V4ADDR(inp->inp_faddr);

if (lin_Llocaladdr(tmp))

Figure 7
Code Fragment of a IPv4-mapped Address

current network layer path. We investigate each of
these issues in turn.

Path MTU discovery, as previously described, is
triggered by ICMP messages processed in the network
layer, with learned information stored in the routing
table. In the course of processing a PTB message, the
transport layer is notified through its control input
(ctlinput) path. This is required because the reception
of such an ICMP message indicates that the packet in
transit has been discarded, thus the protocol may need
to take appropriate action. In the case of TCP, it is
necessary to recompute the maximum segment size
and retransmit the affected data. Although this is not
required for UDP, which is a pure datagram service,
this knowledge can be made available to the corre-
sponding socket owner.

The other interaction between an upper layer and
the IP layer occurs when the upper layer, specifically
the TCP transport, wishes to indicate that communi-
cations with a destination host has made forward
progress, for the purpose of resetting the timer in the
neighbor discovery cache. This positive feedback
mechanism is described in the neighbor unreachability
detection portion of the “Neighbor Discovery for IP
Version 6” specification and prevents unnecessary
probing of the current path.” When acknowledg-
ments to previously sent data have been received, the
TCP updates the routing table entry by means of an
RTM_CONFIRM message. This call is handled by the
neighbor discovery module, which resets the internal
neighbor discovery state for appropriate route entries,
as described later in this section.

Source Address Selection

Many applications do not specify a particular source
address to use when initiating communications
with a remote host but instead use the symbol
INADDR_ANY, which allows the transport to select
a source address (and corresponding interface) to use.
For most IPv4 systems, this is a trivial exercise if only
a single address on a single interface exists. However,
multiple addresses per interface will be a common

Digital Technical Journal Vol.8 No.3 1996

occurrence on IPv6 hosts, and so the process of
choosing a source address to use becomes important.
The source address selection is typically done when
the PCB is bound to the application’s socket, but this
function is also available to users of raw sockets and to
other network-layer users such as ICMPv6.

The source address selection function takes as argu-
ments a destination address and an optional interface
pointer. The latter is used when known, but in the case
of initiating a transport connection it is null. The
destination address is first checked against the list of
current prefixes that have been advertised on the
host’s links, which would indicate which interface to
use. (It also indicates that the destination is a potential
neighbor, but this knowledge is not used at this
point.) Next, the address is tested for multicast versus
unicast, and then the scope (link-local, site-local,
organization-local, and global) is evaluated. Finally,
a local address of equivalent (or greater) scope than
the destination with the longest prefix match is
returned. The scope must be taken into consideration
to ensure that the destination system will be able to
successfully respond to the communication. The
longest prefix match is an attempt to ensure a reason-
able routing path between the two systems, which
could involve a complex mix of service providers.

Checksum Optimization
Although the IPv6 header itself does not contain a
checksum, the TCP, UDP, and ICMPv6 protocols do
require a 16-bit one’s complement checksum calcu-
lation to validate the integrity of transmitted and
received data. Performing this checksum can be an
expensive operation. While this prototype was being
developed, some alternative mechanisms were investi-
gated, such as varying the size of the sum variables and
operand units and tight versus expanded loops. The
selected algorithm offered the best performance for
the Alpha processors, while retaining the ability to be
used on 32-bit processors.

At the point where the PCB is established for trans-
port communications, a partial checksum is calculated

for the IPv6 pseudoheader, which consists of the source
and destination addresses, the packet payload length,
and the next header value. This partial checksum, with
the exception of the payload length (which varies per
packet), is then stored in the PCB, to be passed along
with the pointer to user data within the memory buffer
to the checksum function. The initial checksum calcu-
lations are done using 32-bit values in 64-bit registers,
and later are collapsed to the final 16-bit sum. This is
coded as one large C statement, adding the various
pseudoheader components in piecemeal fashion. This
allows the compiler to schedule the instructions for
optimal performance. The final packet checksum can
then be computed by adding the partial checksums for
the pseudoheader with the checksum values for the
data itself, plus the payload length.

Neighbor Discovery Overview

The Neighbor Discovery specification describes sev-
eral important aspects of an IPv6 node’s behavior in
relation to other IPv6 nodes connected to a common
link. IPv6 nodes on the same link use neighbor discov-
ery to discover each other’s presence, to determine
cach other’s link-layer addresses, to find routers, and
to maintain reachability information about the paths
to active neighbors and remote destinations." These
functions are performed with several ICMPv6 mes-
sages and options, as shown in Figure 8. The same
messages are also used for address autoconfiguration
and duplicate address detection, as described in “IPv6
Stateless Address Autoconfiguration.””

Interface Initialization

When an interface is initialized for use with IPv6, a
link-local address may be created without any external
configuration, allowing the system to begin transmit-
ting and receiving packets to nodes sharing a common
link. This is performed by appending an interface
token to the predefined link-local address prefix,
FE80::. The length and content of the interface token
is link specific. For example, the address token for an
Ethernet interface is the interface’s built-in 48-bit
IEEE 802 address, resulting in a link-local address
such as FE80::0800:2BBE:6260.%

Duplicate Address Detection

Before a unicast address can be assigned to an inter-
face, a process known as duplicate address detection
(DAD) must be performed.” This process provides a
degree of assurance that two nodes do not use the
same address on the same link. The basic mechanism
involves sending an ICMPv6 neighbor solicitation
(NS), where the target address is the address being
tested. If another node is using the address, it will
respond with a neighbor advertisement (NA). Multi-
cast is used for both NS and NA packets, so DAD can

be performed for all unicast addresses, including the
first address assigned to the interface.

While an address is undergoing DAD, it is said
to be a tentative address. It is not used to receive
packets, nor is it used in outbound packets. The
LAG6_TENTATIVE flag in the in6_localaddr structure
identifies addresses in this state. When a duplicate
address is detected, the error is logged and the
LA6_DADFAILED flag is set in the in6_localaddr
structure. If a duplicate address is not detected, the
LAG6_TENTATIVE flag is cleared, making the address
available for use on the interface.

Address Resolution

In IPv6, the function of mapping unicast IPv6
addresses into link-layer addresses is performed using
ICMPv6 messages. This is a departure from IPv4,
which relied on separate protocols (e.g., Address
Resolution Protocol [ARP]) to perform this func-
tion.”® IPv6 unicast address resolution is defined in
a generic manner and can be run over any link layer
that provides a link-layer multicast service (this
includes point-to-point and broadcast links, special
cases of multicast). This protocol may also be used for
nonmulticast-capable media (e.g., nonbroadcast mul-
tiple access [NBMA] media such as ATM), provided
that the link layer provides the necessary services. The
function of mapping multicast IPv6 addresses into
link-layer addresses is specific to each link type.

The unicast address resolution function uses two
ICMPv6 message types: the NS and the NA. When a
node needs to resolve the unicast IPv6 address of
a neighbor to a link-layer address, it builds an NS
containing the IPv6 address to be resolved (target)
and sends it to the solicited-node multicast address
corresponding to the target address. As an optimiza-
tion, the node includes its own link-layer address as
an option in the NS message.

When an address is assigned to an interface, a node
is required to join the solicited-node multicast group
corresponding to that address, so a node will receive
NSs sent to its solicited-node multicast address. Upon
receipt of an NS, the target node builds an NA con-
taining its link-layer address. The NA also contains the
IPv6 target address, so that the soliciting node can
associate the response with the corresponding request.
The NA is then sent back to the soliciting node.

Upon receipt of an NA, the soliciting node can map
the target IPv6 address to the corresponding link-layer
address and send any packets that were queued awaiting
address resolution. Once a node has resolved an IPv6
address, the link-layer address is cached until it must
be replaced or deleted. A different link-layer address
may be received in a subsequent NA packet, with the
O-bit (override flag) set to indicate a new value. If
the neighbor unreachability detection algorithm
(explained in the next section) detects that the cached

Digital Technical Journal Vol.8 No.3 1996

13

ROUTER SOLICITATION

TYPE CODE CHECKSUM
RESERVED
OPTIONS ...
ROUTER ADVERTISEMENT
TYPE CODE CHECKSUM
CURRENT HOP LIMIT [M | (¢] | RESERVED ROUTER LIFETIME
REACHABLE TIME
RETRANSMIT TIMER
OPTIONS ...
NEIGHBOR SOLICITATION
TYPE CODE CHECKSUM
RESERVED
TARGET ADDRESS
OPTIONS ...
NEIGHBOR ADVERTISEMENT
TYPE | CODE CHECKSUM
R | S | O| RESERVED
TARGET ADDRESS
OPTIONS ...
REDIRECT
TYPE CODE CHECKSUM
RESERVED
TARGET ADDRESS
DESTINATION ADDRESS
OPTIONS ...

SOURCE/TARGET LINK-LAYER ADDRESS OPTION

TYPE | LENGTH | LINK-LAYER ADDRESS ...

PREFIX INFORMATION OPTION

TYPE | LENGTH | PREFIX LENGTH | L | A | RESERVED1

VALID LIFETIME

PREFERRED LIFETIME

RESERVED2
PREFIX
REDIRECTED HEADER OPTION
TYPE LENGTH RESERVED
RESERVED

IP HEADER AND DATA

MTU OPTION

TYPE LENGTH RESERVED

MTU

Figure 8
Neighbor Discovery Packets

14 Digital Technical Journal Vol.8 No.3 1996

value is not reachable, the mapping will be deleted.

The address resolution process has several implica-
tions for the implementation. Outbound packets must
be queued pending link-layer address resolution, and
link-layer addresses must be stored somewhere. The
“Neighbor Discovery for IP Version 6” specification
describes a conceptual neighbor cache to hold this
information." The Digital UNIX IPv6 prototype uses
several data structures to implement the neighbor
cache. An nd6_llinfo structure keeps track of each
entry in the neighbor cache. This structure contains
the queue header for packets awaiting link-layer-
address resolution. The link-layer address is stored in
the routing table, in a host route entry for the destina-
tion IPv6 address. The RTF_LLINFO flag in the route
entry indicates the presence of link-layer information.
Each nd6_llinfo structure contains a pointer to the
corresponding routing table entry, and the routing
table entry points back to the nd6_llinfo structure.

The use of routing table entries to hold the link-
layer-address information is an optimization. A rout-
ing table entry is associated with the majority of
packets transmitted for reasons other than address res-
olution. Storing the link-layer address in the routing
table entry avoids the overhead of a separate link-layer-
address table. This approach is modeled after the BSD
4.4 system’s ARP implementation.

Neighbor Unreachability Detection

Neighbor unreachability detection (NUD) has its
roots in the dead gateway detection in IPv4 but has
been generalized in IPv6 to include all neighboring
nodes (not just gateways).** Unlike IPv4, the mecha-
nisms supporting NUD are an integral part of IPv6.
IPv6 nodes monitor the reachability of neighboring
nodes to which packets are being sent. An IPv6 node

relies on reachability confirmations to determine the
reachability state of a neighbor. In the absence of any
reachability indications, an IPv6 node will periodically
use an NS to actively probe the reachability of a neigh-
bor. An NA sent in response to an NS provides reacha-
bility confirmation. The S (solicited) flag in the NA
is provided specifically for this purpose. If neither
method succeeds within a given period of time, a
neighbor is considered unreachable. Figure 9 shows
the neighbor unreachability states.

A reachability confirmation may take several differ-
ent forms. Any packet received from a neighbor can be
viewed as a reachability confirmation, provided that
the packet would only have been sent by the neighbor
in response to a packet sent from the local node.
A TCP acknowledgment is one example: receipt of
a TCP ACK indicates that a packet sent to the neigh-
bor did in fact reach it. Another example is an ICMPVv6
redirect message. Receipt of a redirect message indi-
cates that the neighboring router received a packet
from the local node.

In the Digital UNIX IPv6 prototype, the nd6_llinfo
structure holds NUD state and retransmit count infor-
mation. A field in the routing table entry is used for
NUD timers. The RTF_LLVALID flag in the route
entry is used to indicate that the neighbor is reachable.
A new routing message type (RTM_CONFIRM)
was defined to pass reachability confirmations to the
neighbor cache. This mechanism is used by TCP upon
receipt of new acknowledgments.

Autoconfiguration
One of the goals of IPv6 is to work properly in a

dynamic network environment without the need for
manual intervention on each system attached to the

RECEIVE LINK-LAYER ADDRESS (UNSOLICITED)

RECEIVE LINK-LAYER ADDRESS (UNSOLICITED)
REACHABLE ,
QUEUE RECEIVE NA TIME
PACKET (SOLICITED) EXCEEDED
INCOMPLETE REACHABLE STALE
SEND NS REACHABILITY
(MULTICAST) CONFIRMATION SEND
PACKET
REACHABILITY REACHABILITY
CONFIRMATION CONFIRMATION
NONE MAX_MULTICAST_SOLICIT
RETRIES EXCEEDED
T PROBE DELAY

MAX_UNICAST_SOLICIT
RETRIES EXCEEDED

DELAY_FIRST_PROBE_TIME

l EXCEEDED

SEND NS
(UNICAST)

Figure 9
Neighbor Unreachability States

Digital Technical Journal Vol.8 No.3 1996 15

16

network. The solution is to allow important pieces of
information to be learned and the system to autocon-
figure itself using this data. IPv6 autoconfiguration
encompasses the following items:

= Router discovery

* On-link prefix discovery

= Interface attribute configuration
= Stateless address configuration

= Stateful address configuration

The mechanism for delivering this information to
the hosts is the router advertisement (RA) packet of
the Neighbor Discovery Protocol. In the following
sections, we describe the methods we developed to
process these packets and update the system.

Host Autoconfiguration Daemon

To process these RAs, we designed a host daemon
called nd6hostd, which resides in the application space
of the Digital UNIX operating system. We determined
that a user-mode daemon was the most efficient way
to implement IPv6 autoconfiguration for the follow-
ing reasons:

= A user-mode daemon would avoid kernel bloat.
= Maintenance and extensibility would be easier.

= The function is not performance critical.

The autoconfiguration processing is implemented
as a single executable image, as a cohesive set of tightly
coupled modules. The daemon currently is designed
as a single-threaded application that uses a dispatch
mechanism to call each specialized function module in
turn. We will examine the idea of having this daemon
run as a multithreaded application in the future.

The nd6hostd daemon communicates with the
network subsystem in the kernel through multiple
techniques. Figure 10 shows the autoconfiguration
processing modules. The raw socket interface is used to
receive RAs, and 1/0 control messages (ioctls) are used

ON-LINK INTERFACE
ROUTER PREFIX ATTRIBUTE
DISCOVERY DISCOVERY PROCESSING

T T T

to manipulate kernel data structures. Also, the routing
table is updated as necessary, by means of a raw socket
interface to the PF_ROUTE protocol family.

We designed the IPv6 raw socket’s interface with
the ability to pass only specific ICMPv6 messages to
a user and to filter extraneous packets or protocols.
The nd6hostd daemon sets a socket option to receive
only neighbor discovery RAs. It then executes a dis-
patch routine that polls the raw socket, awaiting
packets. When data is available on the socket, the dae-
mon determines the characteristics of the message,
creates a data structure to contain it, and calls the nec-
essary functions to perform autoconfiguration. The
dispatch module, in addition to polling socket descrip-
tors, supports necessary timer management functions
such as creation, deletion, and expiration. Figure 11
shows the application daemon design center.

Kernel Interface Data Structures

In many ways, the data link interface is the focus of
IPv6 autoconfiguration support. The kernel data struc-
tures for IPv4 interfaces are not sufficient to implement
the necessary IPv6 functions. We designed and imple-
mented new interface data structures that encapsulated
the existing IPv4 structures. This allowed us to avoid a
recompilation of the existing data link drivers on the
Digital UNIX operating system. In the future, we will
attempt a design in which the interface structures for
1Pv4 and IPv6 are completely integrated.

As shown in Figure 12, we designed an in6_ifhet
structure to support each data link type (e.g.,
Ethernet, PPP, loopback) and used the existing
ifnet structures to point to those link interfaces. The
in6_ifnet has its own in6_ifaddr structure for each
IPv6 address configured in the data structure
in6_localaddr. We also defined the in6_router struc-
ture to support each router available for the imple-
mentation. The in6_router structure specifies the
interface of the router, neighbor cache route, and
the IPv6 address of the router.

STATELESS STATEFUL
ADDRESS ADDRESS
CONFIGURATION CONFIGURATION (DHCPV6)

T T

RECEIVING INTERFACE

REACHABLE TIME
RETRANSMIT TIME

IPV6 SOURCE PREFIX OPTIONS: | HOP LIMIT
ADDRESS DEFAULT | ON-LINK PREFIX
ROUTER PREFIX LENGTH
LIFETIME VALID LIFETIME LINK MTU

PREFIX OPTIONS:
ADDRESS PREFIX
PREFIX LENGTH
VALID LIFETIME
PREFERRED LIFETIME

MANAGED BIT, OTHER
CONFIGURATION BIT

ROUTER ADVERTISEMENT

Figure 10

Autoconfiguration Processing Modules

Digital Technical Journal

Vol. 8 No. 3

1996

CALL AUTOCONFIGURATION

PROCESSING MODULE
PROCESS
AUTOCONFIGURATION | SET AUTOCONFIGURATION
DISPATCH MODULE
DATA AND UPDATE PROCESSING TIMERS
KERNEL STRUCTURES
A
\ POLL ON SOCKET
OPEN RAW SOCKET DESCRIPTOR
AUTOCONFIGURATION
DATALISTS
IOCTLS
USER SPACE
KERNEL SPACE
ROUTING TABLE NEIGHBOR
AND INTERFACE RAW SOCKET MODULE DISCOVERY
STRUCTURES PROCESSING
Figure 11
Application Daemon Design Center
in6_ifnet
in6_router
ifnet (IPv4)
B \
| ETHERNET, PPP, FDDI, ATM, TUNNEL |
L o m e e e
in6_ifaddr
I ADDRESS CONFIGURATION PARAMETERS : ROUTING
I AND POINTERS TO IPV4 ADDRESSES | TABLE
I Fm——mmm—————— — -
I
| in6_localaddr |
| ADDRESSES
I ADDRESS STATES
DATA LINK INTERFACE !
L__________ _
in6_prefixes

Figure 12
Autoconfiguration Interface Structures and Relationships

Interface Attribute Autoconfiguration

To autoconfigure the interfaces for IPv6, we created
new ioctl functions to create, delete, update, and
access the interfaces. In addition to their use by the
nd6hostd daemon, these ioctls may be used by any
future modules that need to access or manipulate the
interfaces. This might include specialized configura-
tion utilities, Simple Network Management Protocol
(SNMP) management functions, security tools, or
other services.

The interface module to update and maintain inter-
face structures for nd6hostd serves two purposes: to
update data link attributes provided by the RA, and to
maintain the data structures as a set of linked lists for

router discovery, on-link prefixes, and address configu-
ration. Figure 13 shows the interface attribute updates.

Router Discovery

An RA packet has mandatory and optional parts.
Before a default router is added to the routing table,
the following interface attributes must be determined:
1. Receiving interface

2. Current hop limit

3. Reachable and retransmit times for use in NUD

The link-local address from the source link-layer
option of the RA is then added to the routing table,

Digital Technical Journal Vol.8 No.3 1996

17

18

AUTOCONFIGURATION
INTERFACE ATTRIBUTE
PROCESSING

IOCTLs
SIOCIPV6ADDRTR
SIOCIPV6DELRTR
SIOCIPVGIFINIT
SIOCIPVGAIFADDR
SIOCIPV6GSIFATTR

SIOCIPV6GIFATTR

SIOCIPV6MIFADDR
SIOCIPV6GIFADDR
SIOCIPV6DIFADDR

USER SPACE

KERNEL SPACE

IPV6 INTERFACE CONTROL MODULE
ADDRESSES AND STATE
ON-LINK PREFIXES
ROUTE ATTRIBUTES
DATA LINK ATTRIBUTES

Figure 13
Interface Attribute Updates

and the kernel data structures for router information
are updated. The router lifetime field in the RA defines
how long this router may be used as a default router.
The nd6hostd daemon first updates the interface
attributes. A timer is set using the appropriate routine
from the dispatch module. When the timer expires,
the delete default router routine is called, and the
router is deleted from the routing table. The daemon
must also be able to delete the router if it receives an
RA with a zero lifetime value, which can occur when a
node is acting as a router but is reset to be a host.

On-link Prefixes

An on-link prefix in IPv6 defines a subnet and is typi-
cally configured on a router for a specific link by the
network administrator. The router then advertises this
prefix to all nodes connected to that link as a prefix
option, appended to an RA. A prefix option defines a
single prefix only, but an RA may contain more than
one such option. As shown in Figure 8, the prefix
option provides the following information:

= Prefix length

= Link- or L-bit, which is set if the prefix is directly
readable on link (i.e., a neighbor)

= Autonomous- or A-bit, which is set if the prefix can
be used for stateless address configuration

= The length of time the prefix is valid

The daemon adds the prefix to the routing table.
Then a timer routine is called from the dispatch mod-
ule and is set for the time the prefix is valid. When the
dispatch routine calls the delete on-link prefix module,
the prefix is deleted from the routing table. A prefix
can also be deleted when a new RA presents the pre-
fix with a lifetime of zero. In that case, the on-link
prefix module will stop the timer routine and delete
the prefix from the routing table.

Digital Technical Journal Vol.8 No.3 1996

Address Configuration

Address configuration is one of the new paradigms
that must be supported in IPv6. Two configuration
methods, stateless and stateful, are provided to auto-
configure addresses for a host. The M-bit flag in an RA
message determines which method to use and informs
a host. In addition, the other-bit (O-bit) flag is pro-
vided to configure other network parameters required
for the host’s operation on the network when the
stateful configuration is used.

Address autoconfiguration in IPv6 supports the
ability to dynamically renumber a link or a complete
network through the use of lifetimes specified in the
RA message. The valid lifetime is the time the address
has before expiration. When the timer expires, all con-
nections using that address are dropped by the imple-
mentation, and no new connections are permitted.
The preferred lifetime is provided to inform an imple-
mentation that an address is about to expire; it typi-
cally is set to a lower value than the valid lifetime.
When this timer expires, the address is said to enter the
deprecated state, at which point an implementation is
permitted (as a configuration option) to prevent new
communications using this address as a source or des-
tination. This model is designed to provide network
administrators with control over the use of network
addresses without manual intervention of each host on
the network. The stateless model is intended for users
who do not need tight control over address config-
uration; stateful mechanisms will be used where the
administrators want to delegate addresses based on a
client/server method. Figure 14 shows the address
autoconfiguration diagram.

When the daemon receives an RA, and the A-bit is
set, the daemon can use the prefixes provided to per-
form stateless address configuration. The daemon uses
the on-link prefix(es) provided in the RA to configure
addresses for an interface. Addresses are created,

ADDRESS

DAEMON

AUTOCONFIGURATION

STATELESS

AUTOCONFIGURATION:
USE ON-LINK PREFIXES
AND INTERFACE TOKEN

STATEFUL
AUTOCONFIGURATION:
PROCESS CONFIGURATION
INFORMATION, START
DHCPV6 CLIENT

LOCATE

DHCPV6 CLIENT

| ——~ > DHCPV6
SERVER

USER SPACE IPV6 I0CTL

KERNEL SPACE

\
IPV6 IOCTL

INTERFACE

ADMINISTER ADDRESS
CONFIGURATION STATE
FOR THE RECEIVING

Figure 14
Address Autoconfiguration

deleted, or updated on the interface based on the pre-
fixes and lifetimes received in the RA packet.

Interactions with Stateful Address Configuration
When the daemon receives an RA, and the managed
bit flag is set, the host can use stateful address con-
figuration, using DHCPv6. DHCPV6 is implemented
as a separate daemon process in our prototype.
DHCPV6 defines a complete new model from the
existing DHCPv4 implementations in the industry to
dynamically configure addresses. The use of link-local
addresses, multicast, address configuration, and inher-
ent support for dynamic renumbering of hosts in
IPv6 caused a new architecture and design in the
DHCPV6 specification. A comparison of the architec-
tural changes between DHCPv4 and DHCPV6 can be
found in the DHCPV6 specification.®

Application Services

Most TCP and UDP applications can be used with
IPv6 with relatively minor modifications. The primary
issue is the larger address size, both for internal storage
needs in the application and for address transfer across
system interfaces. In this section, we review these
issues and others.

API

Any APT currently in use for IPv4 could be modified
for IPv6, but only the BSD sockets API is being inves-
tigated within the TETF for two reasons.”* First, large
numbers of applications use the sockets interface for

IPv4, which represents a very large investment and a
potential pool of IPv6 applications. Second, this API is
perhaps in the most widespread use in the industry and
is available on a wide variety of platforms: the benefits
of standardization are compelling.

DNS AAAA Support

DNS provides support for mapping names to IP
addresses and mapping IP addresses back to their cor-
responding names.” The type A resource record is
used to hold an IPv4 address. Since its size is fixed
at 4 bytes, a new resource record type, AAAA, was
defined to hold IPv6 addresses.” The Digital UNIX
IPv6 prototype includes a widely used implementation
of the DNS known as Berkeley Internet Name
Domain (BIND), which has been modified to support
AAAA records.

Address Manipulation Routines

A typical IP implementation provides several library
routines for manipulating IP addresses. These include
routines for converting addresses between binary and
textual representations and routines for translating
names to addresses and addresses to names. New rou-
tines had to be provided to perform these functions
for IPv6 addresses. The Digital UNIX IPv6 prototype
provides the routines described in “Basic Socket
Interface Extensions for IPv6.”*

inetd Daemon
The inetd daemon creates sockets on behalf of applica-
tions, invoking the applications only when needed and

Digital Technical Journal Vol.8 No.3 1996

19

20

passing the open sockets to them. With the advent
of the AF_INET6 socket type, inetd was modified
to accept a new application configuration option in
its configuration file. The keyword inet6 is used to
indicate an application that wants to use AF_INET6
sockets. The keyword inet (or the absence of a key-
word) indicates use of AF_INET sockets.

Applications

A typical application needs only minor modification to
use the AF_INET6 address family. Applications that
use addresses as part of their design or protocol, such
as the File Transfer Protocol (FTP), require more
extensive modification. The Digital UNIX IPv6 proto-
type includes several basic applications that have been
modified to support IPv6, including Telnet and FTP.
These programs were modified to use IPv6 sockets,
address structures, and library routines. Note that the
IPv6 sockets also support communications over 1Pv4,
so that applications need not maintain separate sockets
for IPv4 and IPv6, and a single executable image can
interoperate with both types of remote system.

Future Work

Future implementation efforts will include security,
routing, stateful address configuration, dynamic
updates to DNS, IPv6 over PPP and ATM, resource
reservation, and service location. In addition, we will
review elements of our existing design and implemen-
tation architecture to increase performance and to ease
the transition from IPv4 to IPv6. We will continue to
participate in the IPv6 industry multivendor interop-
erability events, which is a practical and concentrated
effort to debug the specifications and the code base.

IPv6 security supports both the authentication and
the encryption of IPv6 packets end-to-end.® The mod-
ule for these functions will reside in the kernel and most
likely will be called at the point where the IPv6 network
layer packet is processed. A key management frame-
work is being developed to support both authentica-
tion and encryption. To access the key management
interface, a sockets API extension will be provided to
supply the keying criteria for the security modules.

To test the interoperability and robustness of
the IPv6 implementations, a test network known as
the 6BONE has been created on the Internet. This
nascent test bed is currently being built with statically
defined tunnels connecting IPv6 networks. Our next
step in IPv6 development will be to implement rout-
ing protocols, starting with Routing Information
Protocol version 6 (RIPv6) for unicast routing.
Subsequent goals will be to support Open Shortest
Path First version 6 (OSPFv6) and to provide multi-
cast routing.

Digital Technical Journal Vol.8 No.3 1996

Stateful address configuration will be implemented
as specified in DHCPv6 and will contain a client, a
server, and a relay-agent. This work will be tightly cou-
pled with dynamic updates to DNS to provide auto-
configuration in conjunction with autoregistration in
the directory service. Even for networks that use state-
less address autoconfiguration, DHCPv6 will be avail-
able to configure other parameters for the host and to
add, delete, and update name information associated
with addresses in DNS.

Additional data link interfaces will be supported for
PPP and ATM. These nonbroadcast architectures will
require some design analysis to implement in order to
support neighbor discovery, autoconfiguration, and
the routing models for IPv6. Digital has been active
within the IETF working groups that are defining the
ATM solutions.

IPv6 now supports flow information in the IPv6
header and in the IPv6 BSD socket API structure. This
inherent quality-of-service (QOS) mechanism in IPv6
meshes well with efforts to support reserve resources
on a network as specified in the Resource Reservation
Protocol (RSVP).” Using RSVP over broadcast and
nonbroadcast data links will encompass a design cen-
ter that supports a wide range of resource reservation
parameters to maintain a consistent performance
model for video- and audio-related applications across
a network path.

Service location is an emerging technology that will
permit a host to query the network about the location
of different services (e.g., NFS, security key manage-
ment, directory services).*® Currently in development
for IPv4, service location holds promise for IPv6 and
may benefit from the greater level of support for basic
technologies, such as security and multicast capabilities.

Summary

Digital has designed a prototype of IPv6 on the Digital
UNIX operating system. Techniques and technologies
have been developed to accommodate aspects of the
IPv6 architecture; in particular, the transport layer
modules were modified to use two distinct network-
layer protocols. The new Neighbor Discovery Protocol
and algorithms have also been implemented in the pro-
totype. IPv6 includes mechanisms to do both stateless
and stateful address configuration as well as router dis-
covery. The Digital UNIX IPv6 prototype contains
a user-mode process that implements these functions.
In addition, enhancements have been made to IPv4
services, and techniques have been developed to sup-
port the transition of existing applications.

References

1. P. Gross and P. Almquist, “IESG Deliberations on Rout-
ing and Addressing,” RFC1380 (November 1992).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

S. Bradner and A. Mankin, “The Recommendation
for the IP Next Generation Protocol,” RFC1752
(January 1995).

R. Hinden, “Simple Internet Protocol Plus White
Paper,” RFC1710 (October 1994).

S. Deering and R. Hinden, “Internet Protocol, Version
6 (IPv6) Specification,” RFC1883 (January 1996).

Y. Rekhter and T. Li, “An Architecture for IPv6 Uni-
cast Address Allocation,” RFC1887 (January 1996).

R. Hinden and J. Postel, “IPv6 Testing Address
Allocation,” RFC1897 (January 1996).

S. Thomson and T. Narten, “IPv6 Stateless Address
Autoconfiguration,” RFC1971 (August 1996).

. J. Bound and C. Perkins, “Dynamic Host Configura-

tion Protocol for IPv6 (DHCPv6),” Work in progress
(August 1996).

A. Conta and S. Deering, “Internet Control Message
Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6),” RFC1885 (January 1996).

T. Narten, E. Nordmark, and W. Simpson, “Neighbor
Discovery for IP Version 6 (IPv6),” RFC1970 (August
1996).

M. McKusick et al., 7he Design and Implementation
of the 4.4 BSD Operating System, (Reading, Mass.:
Addison-Wesley, ISBN: 0-201-54979-4, 1996).

V. Fuller et al.,; “Classless Inter-Domain Routing
(CIDR): An Address Assignment and Aggregation
Strategy,” RFC1519 (September 1993).

S. Deering, “Host Extensions for IP Multicasting,”
RFC1112 (August 1989).

J. Mogul and S. Deering, “Path MTU Discovery,”
RFC1191 (November 1990).

J. McCann et al.,, “Path MTU Discovery for IP
Version 6,” RFC1981 (August 1996).

W. Simpson, “IP in IP Tunneling,” RFCI1853
(October 1995).

A. Contaand S. Deering, “Generic Packet Tunneling in
IPv6 Specification,” Work in progress (October 1996).

K. Sklower, private communication to Matt Thomas,
September 1995.

R. Gilligan and E. Nordmark, “Transition Mecha-
nisms for IPv6 Hosts and Routers,” RFC1933 (April
19906).

S. Deering and R. Hinden, “IP Version 6 Addressing
Architecture,” RFC1884 (January 1996).

R. Gilligan et al., “Basic Socket Interface Extensions
for IPv6,” (Work in progress, April 1996).

M. Crawford, “A Method for the Transmission of IPv6
Packets over Ethernet Networks,” REC1972 (August
19906).

23. D. Plummer, “An Ethernet Address Resolution Proto-
col,” RFC826 (November 1982).

24. D. Clark, “Fault Isolation and Recovery,” RFC816
(July 1982).

25. W. Stevens and M. Thomas, “Advanced Sockets APT
for IPv6,” Work in progress (October 1996).

26. P. Mockapetris, “Domain Names—Concepts and
Facilities,” RFC1034 (November 1987).

27. S. Thomson and C. Huitema, “DNS Extensions to
Support IP Version 6,” RFC1886 (December 1995).

28. R. Atkinson, “Security Architecture for the Internet
Protocol,” (Work in progress, June 1996).

29. “Resource ReSerVation Protocol (RSVP)—Version 1
Functional =~ Specification,” (Work in progress,
August 1996).

30. J. Veizades et al., “Service Location Protocol,” (Work
in progress, June 1996).

General References

S. Bradner and A. Mankin, eds., IPng—Internet Protocol
Next Generation (Reading, Mass.: Addison-Wesley, ISBN:
0-201-63395-7,19906).

S. Thomas, IPng and the TCP/IP Protocols (New York:
John Wiley & Sons, Inc., ISBN: 0-471-13088-5, 1996).

R. Braden, “Requirements for Internet Hosts—Communi-
cation Layers,” RFC1122 (October 1989).

G. Wright and R. Stevens, TCP/IP [llustrated, Volume 2—
The Implementation (Reading, Mass.: Addison-Wesley,
ISBN: 0-201-63354-X, 1995).

Biographies

Daniel T. Harrington

As a principal software engineer in Digital’s IPv6 Program
Office, Dan Harrington participated in the Digital UNIX
IPv6 prototype effort. Prior to this work, he helped develop
the DECnet/OSI products on the ULTRIX and the Digital
UNIX platforms. After joining Digital in 1982, Dan worked
in performance analysis, field support, and software devel-
opment. He received a B.S. in mathematics from Rensselaer
Polytechnic Institute. Dan is currently with Lucent
Technologies.

Digital Technical Journal Vol.8 No.3 1996

21

22

James P. Bound

Jim Bound is a consulting software engineer and the tech-
nical director for IPv6 within the IPv6 Program Office. Jim
is responsible for the overall advanced development archi-
tecture and reference Alpha Digital UNIX code base, which
verifies that the IPv6 specifications are implementable. He
is also Digital’s IETF IPv6 technical leader and one of the
IPv6 advanced development engineers on Alpha Digital
UNIX. In 1993, Jim began his participation in the IETF

to work on the IPng and the advanced development IPng
prototype. As a member of the IETF’s IPng Directorate,
Jim helped determine the requirements and core architec-
ture for IPng’s Internet protocol and related functionality
to support IPng. The result was the selection of a proposal,
now known as the Internet Protocol version 6 (IPv6). Jim
has an A.S. in business management and an A.S. in com-
puter science. He is a coauthor of several IPv6 specifica-
tions and a contributing author to the book /Png: Internet
Protocol Next Generation. He is a member of the IEEE
and the Internet Society.

John J. McCann

Jack McCann is a principal software engineer in the UNIX
Engineering Group and a member of the IPv6 project team.
He contributed to the design and implementation of the
Digital UNIX IPv6 prototype, including router discovery,
autoconfiguration, fragmentation, reassembly, path MTU
discovery, forwarding, and the IPv6 API. He participates in
several IETF working groups and is a coauthor of Internet
RFC 1981, “Path MTU Discovery for IP version 6.” Jack
joined Digital in 1988 to become a member of the Distrib-
uted Systems Technical Evaluation Group. He also worked
in the DECnet/OSI for OpenVMS Engineering Group
before taking his current position. He received a B.S. in
computer science (magna cum laude) from the University
of Lowell in 1988 and an M.S. in computer science from
Boston University in 1995.

Digital Technical Journal Vol. 8 No.3 1996

Matt Thomas

Matt Thomas joined Digital in 1983 with Software Services
in California. Although he is a principal software engineer
in the OpenVMS Systems Software Group, Matt has spent
the last eight years as a developer of networking products
for the Digital UNIX and ULTRIX systems. In addition to
his ongoing involvement with Digital UNIX IPv6 eftorts,
he is responsible for adding IP security to the Digital UNIX
operating system. Matt is an active participant in various IETF
working groups and is a coauthor of several Internet Drafts.

