58

Performance Analysis
Using Very Large
Memory on the 64-bit
AlphaServer System

Optimization techniques have been used to
deploy very large memory (VLM) database tech-
nology on Digital’s AlphaServer 8400 multi-
processor system. VLM improves the use of
hardware and software caches, main memory,
the I/0 subsystems, and the Alpha 21164 micro-
processor itself, which in turn causes fewer
processor stalls and provides faster locking.
Digital’s 64-bit AlphaServer 8400 system running
database software from a leading vendor has
achieved the highest TPC-C results to date, an
increased throughput due to increased database
cache size, and an improved scaling with sym-
metric multiprocessing systems.

Digital Technical Journal Vol.8 No.3 1996

Tareef S. Kawaf
D. John Shakshober
David C. Stanley

Digital’s AlphaServer 8400 enterprise-class server com-
bines a 2-gigabyte-per-second (GB/s) multiprocessor
bus with the latest Alpha 21164 64-bit microprocessor.*
Between October and December 1995, an AlphaServer
8400 multiprocessor system running the 64-bit Digital
UNIX operating system achieved unprecedented results
on the Transaction Processing Performance Council’s
TPC-C benchmark, surpassing all other single-node
results by a factor of nearly 2. As of September 1996,
only one other computer vendor has come within 20
percent of the AlphaServer 8400 system’s TPC-C
results.

A memory size of 2 GB or more, known as very
large memory (VLM), was essential to achieving these
results. Most 32-bit UNIX systems can use 31 bits
for virtual address space, leaving 1 bit to differentiate
between system and user space, which creates diffi-
culties when attempting to address more than 2 GB
of memory (whether virtual or physical).

In contrast, Digital’s Alpha microprocessors and the
Digital UNIX operating system have implemented
a 64-bit virtual address space that is four billion times
larger than 32-bit systems. Today’s Alpha chips are
capable of addressing 43 bits of physical memory. The
AlphaServer 8400 system supports as many as 8 physi-
cal modules, each of which can contain 2 CPUs or
as much as 2 GB of memory.? Using these limits, data-
base applications tend to achieve peak performance
using 8 to 10 CPUs and as much as 8 GB of memory.

The examples in this paper are drawn primarily from
the optimization of a state-of-the-art database appli-
cation on AlphaServer systems; similar technical con-
siderations apply to any database running in an Alpha
environment. As of September 1996, three of the
foremost database companies have extended their
products to exploit Digital’s 64-bit Alpha environ-
ment, namely Oracle Corporation, Sybase, Inc., and
Informix Software, Inc.

The sections that follow describe the TPC-C work-
load and discuss two database optimizations that are
useful regardless of memory size: locking intrinsics
and OM instruction-cache packing. (OM is a post—
link time optimizer available on the Digital UNIX
operating system.)* VLM experimental data is then
presented in the section VLM Results.

TPC-C Benchmark

The TPC-C benchmark was designed to mimic com-
plex on-line transaction processing (OLTP) as speci-
fied by the Transaction Processing Performance
Council.* The TPC-C workload depicts the activity of
a generic wholesale supplier company. The company
consists of a number of distributed sales districts and
associated warchouses. Each warchouse has 10 districts.
Each district services 3,000 customer requests. Each
warchouse maintains a stock of 100,000 items sold by
the company. The database is scaled according to
throughput (that is, higher transaction rates use larger
databases). Customers call the company to place new
orders or request the status of an existing order.

Method

The benchmark consists of five complex transactions
that access nine different tables.® The five transactions
are weighted as follows:

1. Forty-three percent—A new-order transaction
places an order (an average of 10 lines) from a ware-
house through a single database transaction and
updates the corresponding stock level for each item.
In 99 percent of the new-order transactions, the
supplying warehouse is the local warechouse and only
1 percent of the accesses are to a remote warchouse.

2. Forty-three percent—A payment transaction
processes a payment for a customer, updates the cus-
tomer’s balance, and reflects the payment in the
district and warehouse sales statistics. The customer
resident warehouse is the home warehouse 85 per-
cent of the time and is the remote warehouse
15 percent of the time.

3. Four percent—An order-status transaction returns
the status of a customer order. The customer order is
selected 60 percent of the time by the last name and
40 percent of the time by an identification number.

4. Four percent—A delivery transaction processes
orders corresponding to 10 pending orders for each
district with 10 items per order. The corresponding
entry in the new-order table is also deleted. The
delivery transaction is intended to be executed in
deferred mode through a queuing mechanism.
There is no terminal response for completion.

5. Four percent—A stock-level transaction examines
the quantity of stock for the items ordered by each
of the last 20 orders in a district and determines the
items that have a stock level below a specified
threshold. This is a read-only transaction.

The TPC-C specification requires a response time
that is less than or equal to 5 seconds for the 90th
percentile of all but the delivery transaction, which
must complete within 20 seconds.

In addition, the TPC-C specification requires that
a complete checkpoint of the database be done. A
checkpoint flushes all transactions committed to the
database from the database cache (memory) to non-
volatile storage in less than 30 minutes. This impor-
tant requirement is one of the more difficult parts
to tune for systems with VLM.®

Results

Table 1 gives the highest single-node TPC-C results
published by the Transaction Processing Performance
Council as of September 1, 1996.*

For a complete TPC-C run, a remote terminal
emulator must be used to simulate users making trans-
actions. For performance optimization purposes, how-
ever, it is convenient to use a back-end-only version
of the benchmark in which the clients reside on the
server. The transactions per minute (tpm) derived in
this environment are called back-end tpm in Table 2
and cannot be compared to the results of audited runs
(such as those given in Table 1). However, when a per-
formance improvement is made to the back-end-only
environment, performance improvements are clearly
seen in the full environment.

Tuning for the system is iterative. For each data
point collected, clients were added to try to saturate
the server; then the amount of memory was varied for
the database cache. A trade-off between database mem-
ory, system throughput, and checkpoint performance
required us to tune each data point individually. The
system was configured with a sufficient number of
disk drives and 1/0 controllers to ensure that it was
100-percent CPU saturated and never 1/0 limited.
The experiments reported in this paper use database
sizes of approximately 100 GB, spread over 172 RZ29
spindles and 7 KZPSA adapter/HSZ40 controller pairs,
with each HSZ40 controller using 5 small computer
systems interface (SCSI) buses.

Tuning Specific to Alpha

UNIX databases on Digital’s Alpha systems were first
ported in 1992. For database companies to fully use
the power of Alpha’s 64-bit address space, each data-
base vendor had to expand the scope of its normal
32-bit architecture to make use of 64-bit pointers.
Thus, each database could then address more than
2 GB of physical memory without awkward code seg-
ments or other manipulations to the operating system
to extend physical address space.

By 1994, most vendors of large databases were offer-
ing 64-bit versions of their databases for Digital’s Alpha
environment. As a group chartered to measure database
performance on Alpha systems, Digital’s Computer
Systems Division (CSD) Performance Group worked
with each database vendor and with the Digital System
Performance Expertise Center to improve performance.

Digital Technical Journal Vol.8 No.3 1996

59

60

Table 1
TPC-C Results

Price/ Number
System Throughput Performance of CPUs Date
AlphaServer 8400 5/350, 14,227 tpmC $269/tpmC 10 May 1996
Oracle Rdb7 V7.0, OpenVMS V7.0
AlphaServer 8400 5/350, 14,176 tpmC $198/tpmC 10 May 1996
Sybase SQL Server 11.0, Digital UNIX,
iTi Tuxedo
AlphaServer 8400 5/350, 13,646.17 tpmC $277/tpmC 10 March 1996
Informix V7.21, Digital UNIX, iTi Tuxedo
Sun Ultra Enterprise 5000, 11,465.93 tpmC $191/tpmC 12 April 1996
Sybase SQL Server V 11.0.2
AlphaServer 8400 5/350, 11,456.13 tpmC $286/tpmC 8 December 1995
Oracle7, Digital UNIX, iTi Tuxedo
AlphaServer 8400 5/300, 11,014.10 tpmC $222/tpmC 10 December 1995
Sybase SQL Server 11.0, Digital UNIX,
iTi Tuxedo
AlphaServer 8400 5/300, 9,414.06 tpmC $316/tpmC 8 October 1995
Oracle?, Digital UNIX, iTi Tuxedo
SGI CHALLENGE XL Server, 6,313.78 tpmC $479/tpmC 16 November 1995
INFORMIX-OnLine V7.1, IRIX, IMC Tuxedo
HP 9000 Corporate Business Server, 5,621.00 tpmC $380/tpmC 12 May 1995
Sybase SQL Server 11,
HP-UX, IMC Tuxedo
HP 9000 Corporate Business Server, 5,369.68 tpmC $535/tpmC 12 May 1995
Oracle7, HP-UX, IMC Tuxedo
Sun SPARCcenter 2000E 5,124.21 tpmC $323/tpmC 16 April 1996
Oracle?, Solaris, Tuxedo
Sun SPARCcenter 2000E, 3,534.20 tpmC $495/tpmC 20 July 1995
INFORMIX-OnLine 7.1,
Solaris, Tuxedo
IBM RS/6000 PowerPC R30, 3,119.16 tpmC $355/tpmC 8 June 1995
DB2 for AlX, AlX, IMC Tuxedo
IBM RS/6000 PowerPC J30, 3119.16 tpmC $349/tpmC 8 June 1995

DB2 for AlX, AlX, IMC Tuxedo

Table 2

Amount of Memory versus Back-end tpm, Database-cache Miss Rate, and Instructions per Transaction
Database Back-end Relative Relative
Memory (Normalized Database-cache Instructions per
(GB) tpm) Miss (Percentage) Transaction
1 1.0 1.0 1.0

2 1.3 0.73 0.75

3 1.5 0.58 0.63

4 1.6 0.50 0.57

5 1.7 0.42 0.50

6 1.8 0.40 0.45

Two optimizations generally realized 20 percent gains
on Alpha systems.” These were

1. Optimization of spinlock primitives supported now
by DEC C compiler intrinsics

2. OM profile-based link optimization, which per-
forms instruction-cache packing during the final

link of the database

Digital Technical Journal

Vol. 8 No. 3

1996

In addition, the Digital UNIX operating system
version 3.2 and higher versions have optimized 1/0
code paths and support advanced processor affinity
and other scheduling algorithms that have been opti-
mized for enterprise-class commercial performance.
With these optimizations, database performance on
Digital’s Alpha systems has been significantly improved.

Lock Optimization

Locks are used on multiprocessor systems to synchro-
nize atomic access to shared data. A lock is either
unowned (clear) or owned (set). A key design decision
leading to good multiprocessor performance and scal-
ing is partitioning the shared data and associated locks.
The discussion of how to partition data and associated
locks to minimize contention and the number of locks
required is beyond the scope of this paper.

The implementation of locks requires an atomic
test-and-set operation. On a particular system, the
implementation of the lock is dependent on the primi-
tive test-and-set capabilities provided by the hardware.

Locks are used to synchronize atomic access to
shared data. A shared data element that requires
atomic access is associated with a lock that must be
acquired and held while the data is modified. On mul-
tiprocessing systems, locks are used to synchronize
atomic access to shared data. A sequence of code that
accesses shared data protected by a lock is called a crit-
ical section. A critical section begins with the acquisi-
tion of a lock and ends with the release of that lock.
Although it is possible to have nested critical sections
where multiple locks are acquired and released, the
discussion in this section is limited to a critical section
with a single lock.

To provide atomic access to shared data, the critical
section running on a given processor locks the data by
acquiring the lock associated with the shared data. In
the simplest case, if a second processor tries to acquire
access to shared data that is already locked, the second
processor loops and continually retries the access
(spins) until the processor owning the lock releases it.
In a complex case, if'a second processor tries to acquire
access to shared data that is already locked, the second
processor loops a few times and then, if the lock is still
owned by another processor, puts itself into a wait
state until the processor owning the lock releases it.

The Alpha Architecture Reference Manual specifies
that “...the order of reads and writes done in an Alpha
implementation may differ from that specified by the
programmer.” Therefore, process coordination
requires a special test-and-set operation that is imple-
mented through the load-locked/store-conditional
instruction sequence. To provide good performance
and scaling on multiprocessor Alpha systems, it is
important to optimize the test-and-set operation to
minimize latency. The test-and-set operation can be
optimized by the following methods:

= Use an in-lined load-locked/store-conditional
sequence through an embedded assembler or com-
piler intrinsics.

= Preload a lock using a simple load operation prior
to a load-locked operation.

= Ifalock is held, spin on a simple load instruction
rather than a load-locked instruction sequence.

The basic hardware building block used to imple-
ment the acquisition of a lock is the test-and-set
operation. On many microprocessors, an atomic test-
and-set operation is provided as a single instruction.
On an Alpha microprocessor, the test-and-set opera-
tion needs to be built out of load-locked (LDx_L) and
store-conditional (STx_C) instructions. The LDx_L
... STx_C instructions allow the Alpha microprocessor
to provide a multiprocessor-safe method to implement
the test-and-set operation with minimal restrictions on
read and write ordering. The load-locked operation
sets a locked flag on the cache block containing the
data item. The store-conditional operation ensures
that no other processor has modified the cache block
before it stores the data. If no other processor has
modified the cache block, the store-conditional opera-
tion is successful and the data is written to memory. If
another processor has modified the cache block, the
store-conditional operation fails, and the data is not
written to memory. Optimizing the test-and-set
sequence on Alpha systems is a complex task that pro-
vides significant performance gains.

Figure 1 shows code sequences that Digital’s CSD
Performance Group has given to database vendors to
improve locking intrinsics in the Alpha environment.
These code sequences can be used to implement spin-
locks in the DEC C compiler on the Digital UNIX
operating system.

Using OM Feedback

As previously mentioned, OM is a post-link time opti-
mizer available on the Digital UNIX operating system.
It performs optimizations such as compression of
addressing instructions and dead code elimination
through the use of feedback. The performance
improvement provided by OM on Alpha 21164
systems is dramatic for the following two reasons.?

= The 21164 microprocessor has an 8-kilobyte (KB)
direct-mapped instruction cache, which makes
code placement extremely important. In a direct-
mapped cache, the code layout and linking order
maps one for one to its placement in cache. Thus
a poorly chosen instruction stream layout or sim-
ply unlucky code placement within libraries can
alter performance by 10 to 20 percent. Routines
are frequently page aligned, which can increase
the likelihood of cache collisions.

= The high clock rate of the Alpha 21164 micro-
processor (300 to 500 megahertz [MHz])
requires a cache hierarchy to attempt to keep the
CPU pipelines filled. The penalty of a first-level
cache miss is 5 to 9 cycles, which means that an

Digital Technical Journal Vol.8 No.3 1996

61

62

//TEST_AND_SET
//the load-locked
//function

store-conditional

implements the Alpha version of a test and set operation using
instructions.
is to check the value pointed to by spinlock_address and,

//value is 0, set it to 1 and return success (1) in RO. If either the spinlock
//value is already 1 or the store-conditional failed, the value of the spinlock
//remains unchanged and a failure status (0,2, or 3) is returned in RO.
//
//The status returned in RO is one of the following:
// 0 - failure (spinlock was clear; still clear, store-conditional failed)
// 1 - success (spinlock was clear; now set)
// 2 - failure (spinlock was set; still set, store-conditional failed)
// 3 - failure (spinlock was set; still set)
//
#define TEST_AND_SET (spinlock_address) asm("LdLl_L $0,(3%$16),; " \
"or $0,1,%1; " \
"stl_c $1,(816); " \
"slLL $0,1,%0; " \
"or $0,%1,%0 ", \
(spinlock_address));
// BASIC_SPINLOCK_ACQUIRE implements the simple case of acquiring a spinlock. If

The purpose of this
if the

// the spinlock is already owned or the store-conditional fails, this function
// spins until the spinlock is acquired. This function doesn't return until the
// spinlock is acquired.
//
#define BASIC_SPINLOCK_ACQUIRE(spinlock_address) \
{ long status = 0; \
\
while (1) \
{ \
if (*(spinlock_address) == 0) \
{ \
status = TEST_AND_SET (spinlock_address); \
if (status == 1) \
{ \
MB; \
break; \
} \
} \
} \
}
Figure 1

Code Sequences for Locking Intrinsics

instruction-cache miss rate of 10 to 12 percent can
effectively stall the CPU 70 to 80 percent of the
time. Conversely, decreasing the miss rate by
2 percent can increase throughput by 10 percent.

OM performs profile-based optimization. A pro-
gram is first partitioned into basic blocks (that is,
regions containing only one entrance and one exit),
and instrumentation code is added to count the num-
ber of times each block is executed. The instrumented
version of the program is run to create a feedback file
that contains a profile of basic block counts. OM then
uses the feedback to rearrange the blocks in an optimal
way for the first-level caches on the Alpha chip. The
details of the procedure for using OM may be found
in the manpage for cc on the Digital UNIX operating
system but can be summarized as follows:

Digital Technical Journal Vol. 8 No.3 1996

* Build executable with -non_shared -om options,
producing prog.

= Use pixie to produce prog.pixie (the instrumented
executable) and prog.Addrs (addresses).

= Run prog.pixie to produce prog.Counts, which
records the basic block counts.

= Now build prog again with -non_shared -om -WL,
om_ireorg_feedback.

VLM Results

Figure 2 shows the increase in throughput realized
when using VLM. Note that throughput nearly dou-
bles as the amount of memory allocated to the data-
base cache is varied from 1 GB to 6 GB. Of course, the
overall system requires additional memory beyond
the database cache to run UNIX itself and other

20 F
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2

THROUGHPUT IN NORMALIZED tpm

DATABASE CACHE SIZE IN GB

Figure 2
Database Cache Size versus Throughput

processes. For example, an 8-GB system allows 6.6 GB
to be used for the database cache.

Performance Analysis

Why does the use of VLM improve performance by a
factor of nearly 2? Using statistics within the database,
we measured the database-cache hit ratio as memory
was added. Figure 3 shows the direct correlation
between more memory and decreased database-cache
misses: as memory is added, the database-cache miss
rate declines from 12 percent to 5 percent. This raises
two more questions: (1) Why does the database-cache
miss rate remain at 5 percent? and (2) Why does a
small change in database-cache miss rates improve the
throughput so greatly?

The answer to the first question is that with a data-
base size of more than 100 GB, it is not possible to
cache the entire database. The cache improves the
transactions that are read-intensive, but it does not
entirely eliminate I/0 contention.

35

30

25
'_
Z
i 20
O
i
wis

10

5
0
1 2 3 4 5 6
MEMORY IN GB

KEY:
=—a BUS UTILIZATION
4+—+ B-CACHE MISS RATE
A—A |-CACHE MISS RATE
®—e DATABASE CACHE MISS RATE
Figure 3

Cache Miss Rates and Bus Utilization

To answer the second question, we need to look at
the AlphaServer 8400 system’s hardware counters that
measure instruction-cache (I-cache) miss rate, board-
cache (B-cache) miss rate, and the bandwidth used on
the multiprocessor bus. With an increase in throughput
and memory size, the VLM system is spanning a larger
data space, and the bus utilization increases from 24
percent to 32 percent. Intuitively, one might think this
would result in less optimal instruction-and data-stream
locality, thus increasing both miss rates. As shown in
Figure 3, this proved true for instruction stream misses
(I-cache miss rate) but not true for the data stream, as
represented by the B-cache miss rate. The instruction
stream rarely results in B-cache misses, so B-cache
misses can be attributed primarily to the data stream.

Performance analysis requires careful examination
of the throughput of the system under test. The appar-
ent paradox just related can be resolved if we normal-
ize the statistics to the throughput achieved. Figure 4
shows that the instruction-cache misses per transaction
declined slightly as the memory size was increased from
1 GB to 6 GB—and as transaction throughput doubled.
Furthermore, the B-cache works substantially better
with more memory: misses declined by 2X on a per-
transaction basis. Why is this so?

Analysis of the system monitor data for each run
indicates that bringing the data into memory helped
reduce the I /O per second by 30 percent. If the trans-
action is forced to wait for I/O operations, it is done
asynchronously, and the database causes some other
thread to begin executing. Without VLM, 12 percent
of transactions miss the database cache and thus stall
for 1/0 activity. With VLM, only 5 percent of the
transactions miss the database cache, and the time to
perform each transaction is greatly reduced. Thus each
thread or process has a shorter transaction latency. The
shorter latency contributes to a 15-percent reduction
in system context switch rates. We attribute the
measured improvement in hardware miss rates per
transaction when using VLM to the improvement in
context switching.

The performance counters on the Alpha micro-
processor were used to collect the number of instruc-
tions issued and the number of cycles.” In Table 2,
the relative instructions per transaction results are the
ratios of instructions issued per second divided by the
number of new-order transactions. (In TPC-C, each
transaction has a different code path and instruction
count; therefore the instructions per transaction
amount is not the total number of new-order trans-
actions.) The relative difference between instructions
per transaction for 1 GB of database memory versus
6 GB of database memory is the measured effect of
eliminating 30 percent of the I/O operations, satisfy-
ing more transactions from main memory, reducing
context switches, and reducing lock contention.

Digital Technical Journal Vol.8 No.3 1996

63

64

4 4
v v v
2 3 4 5 6
MEMORY IN GB

KEY:

4—4 BUS TRAFFIC
m—a B-CACHE MISS RATE

¢—+¢ |-CACHE MISS RATE

Figure 4
Normalized Cache Miss Rates and Bus Traffic

Improved CPU Scaling— More Efficient Locking

A final benefit of using VLM is improved symmetric
multiprocessing (SMP) scaling. Because the TPC-C
workload has several transactions with high read con-
tent, having the data available in memory, rather than
on disk, allows an SMP system to perform more effi-
ciently. More requests can be serviced that are closer in
cycles to the CPU. Data found in memory is less than
a microsecond away, whereas data found on disk is
on the order of milliseconds away.

We have shown how this situation improves the
overall system throughput. In addition, it improves
SMP scaling. Figure 5 shows the relative scaling
between 2 CPUs and 8 CPUs with only 2 GB of system
memory (1.5 GB of database cache) compared to the
same configurations having 8 GB of system memory
(6.6 GB of database cache).

We used the performance counters on the Alpha
21164 microprocessor to monitor the number of
cycles spent on the memory barrier instruction.’
Memory barriers are required for implementing
mutual exclusion in the Alpha processor. They are used
by all locking primitives in the database and the operat-
ing system. With VLM at 8 GB of memory, we mea-
sured a 20-percent decline in time spent in the memory
barrier instruction. Larger memory implied less con-
tention for critical disk and I/O channel resources and
thus less time in the memory barrier instruction.

Conclusions

Open system database vendors are expanding into
mainframe markets as open systems acquire greater
processing power, larger 1/0 subsystems, and the
ability to deliver higher throughput at reasonable
response times. To this end, Digital’s AlphaServer
8400 5,/350 system using VLM database technology
has demonstrated substantial gains in commercial

Digital Technical Journal Vol.8 No.3 1996

NORMALIZED tpm

2 4 6 8
NUMBER OF CPUs

KEY:

4¢—+¢ NORMALIZED tpm AT 2 GB
B—=8& NORMALIZED tpm AT 8 GB

Figure 5
CPU Scaling versus Memory

performance when compared to systems without the
capability to use VLM. The use of up to 8 GB of mem-
ory helps increase system throughput by a factor of 2,
even for databases that span 50 GB to 100 GB in size.

The Digital AlphaServer 8400 5,/350 system com-
bined with the Digital UNIX operating system to
address greater than 2 GB of memory has made possi-
ble improved TPC-C results from several vendors. In
this paper, we have shown how VLM

= Increased the throughput by a factor of nearly 2

» Increased the database-cache hit ratios from 88 per-
cent to 95 percent

By using monitor tools designed for the Alpha plat-
form, we have measured the effect of VLM in issuing
fewer instructions per transaction on the Alpha 21164
microprocessor. When transactions are satisfied by
data that is already in memory, the CPU has fewer
hardware cache misses, fewer memory barrier proces-
sor stalls, faster locking, and better SMP scaling.

Future Digital AlphaServer systems that will be
capable of using more physical memory will be able to
further exploit VLM database technology. The results
of industry-standard benchmarks such as TPC-C,
which force problem sizes to grow with increased
throughput, will continue to demonstrate the realistic
value of state-of-the-art computer architectures.

Acknowledgments

Many people from a variety of groups throughout
Digital helped tune and deliver the TPC-C results. In
particular, we would like to thank Lee Allison, Roger
Deschenes, Joe McFadden, Bhagyam Moses, and
Cheryl O’Neill (CSD Performance Group); Jim
Woodward (Digital UNIX Group); Sean Reilly, Simon
Steely, Doug Williams, and Zarka Cvetanovic (Server

Engineering Group); Mark Davis and Rich Grove
(Compilers Group); Peter Yakutis (I/0 Performance
Group); and Don Harbert and Pauline Nist (project
Sponsors).

References and Notes

1. D. Fenwick, D. Foley, W. Gist, S. VanDoren, and
D. Wissell, “The AlphaServer 8000 Series: High-end
Server Platform Development,” Digital Technical
Journal, vol. 7,no. 1 (1995): 43-65.

2. At the time this paper was written, 2 GB was the largest
size module. Digital has announced that a 4-GB option
will be available in January 1997.

3. L. Wilson, C. Neth, and M. Rickabaugh, “Delivering
Binary Object Modification Tools for Program Analysis
and Optimization,” Digital Technical Journal, vol. 8,
no. 1(1996): 18-31.

4. Transaction Processing Performance Council, 7PC
Benchmark C Standard Specification, Revision 3.0,
February 1995.

5. W. Kohler, A. Shah, and R. Raab, Overview of TPC
Benchmark: The Order Entry Benchmark, Technical
Report (Transaction Processing Performance Council,
December 1991).

6. More information about the TPC-C benchmark may
be obtained from the TPC World Wide Web site,
http:/ /www.tpc.org.

7. J. Shakshober and B. Waters, “Improving Database
Performance on Digital Alpha 21064 with OM and
Spinlock Optimizations” (CSD Performance Group,
Digital Equipment Corporation, July 1995).

8. R. Sites, ed., Alpha Architecture Reference Manual
(Burlington, Mass.: Digital Press, 1992).

9. B. Wibecan, Guide to IPROBE (Digital Equipment
Corporation, December 1994).

Biographies

Tareef S. Kawaf

Tareef Kawaf received a B.S. in computer science (magna
cum laude) from the University of Massachusetts at
Amberst. He is a member of Phi Beta Kappa. Tareef joined
Digital in 1994 to work on performance enhancements
and tuning of high-end systems and is a senior software

engineer in the CSD Performance Group. He worked on
attaining the world record-setting TPC-C results on the
AlphaServer 8400 5,/300 and 5,350 systems and the four-
node AlphaServer 8400 5,350 cluster system running a
state-of-the-art database application. Tareef has received
two excellence awards from Digital for his work in TPC-C
performance measurement on the AlphaServer 8000 series.

D. John Shakshober

John Shakshober is the technical director of the CSD
Performance Group. The Computer Systems Division
Performance Group evaluates Digital’s systems against
industry-standard benchmarks such as those of the Trans-
action Processing Performance Council (TPC) and the
Standard Performance Evaluation Corporation (SPEC).
In this function, John has been responsible for integrat-
ing Digital’s state-of-the-art software technologies with
Digital’s Alpha-based products since their introduction
in 1992. Prior to joining the CSD Performance Group,
John modeled the performance of the 21064 and 21164
Alpha 64-bit VLSI microprocessors and was a member

of the VAX 6000 Hardware Group. He joined Digital in
1984 after receiving a B.S. in computer engineering from
the Rochester Institute of Technology. John also received
an M.S. in electrical engineering from Cornell University
in 1988.

David C. Stanley

Dave Stanley joined Digital in 1984. He is a principal soft-
ware engineer in the CSD Performance Group and was
the project leader for the TruCluster system that achieved
a world-record result for the TPC-C benchmark. Dave has
also led several TPC-C audits on the AlphaServer 8000
series running a state-of-the-art database application. He
is a secondary representative at the TPC General Council
and a member of the TPC-C Maintenance Subcommittee.
Prior to these responsibilities, he was a microprocessor
application engineer at Digital Semiconductor, where he
ran competitive benchmarks on the MicroVAX II processor
chip versus the Motorola 68020. Dave received a B.S.E.E.
from the State University of New York at Buffalo (1981).

Digital Technical Journal Vol. 8 No.3 1996

65

