
The Internet and the World Wide Web (WWW) 
have changed the scope of network computing. As 
the Internet user population has grown, so has the
demand for better ways to collaborate on the Internet.
Some examples include the ability to share and discuss
issues of common interest, coauthor documents, and
track project status. Although today’s WWW is ideal
for publishing information, it requires considerable
customized programming to support collaboration.
The AltaVista Forum version 2.0 product is both a set
of collaborative applications and a toolkit (platform)
that facilitates easy, efficient, and rapid development of
collaborative applications for the Internet for both
UNIX and Windows NT systems. 

In this paper, we describe our experiences in build-
ing collaboration software for the Internet. We begin
with a brief discussion of WWW technology and
groupware applications. Then we present our design
philosophy and the framework of the software and dis-
cuss the applications supplied by AltaVista Forum.
Following that, we discuss the various experiences
gained in developing software for the new Internet
paradigm. We conclude the paper by discussing our
plans for future development efforts. 

World Wide Web Technology

Today’s Internet was originally a government-funded
computer network that facilitated collaboration
among academic researchers. Information exchange
was conducted by means of electronic mail (e-mail)
and file transfer. Over time, bulletin-board style
discussions were supported by the Network News
Transfer Protocol (NNTP), which propagated textual
discussion threads to a large number of NNTP servers
for viewing. With the development of the WWW tech-
nology, collaborating over the Internet has become
even easier. 

The WWW technology consists of the following
elements: 

■ Universal resource locator (URL), a convention for
information naming and linking 

■ Hypertext markup language (HTML), a text-based
language for information rendering 

Collaboration software for the Internet’s World
Wide Web involves the development of shared
information systems for network computing.
The AltaVista Forum version 2.0 software from
Digital contains extensions to World Wide Web
technology that facilitate collaboration on the
Internet. The extensions consist of a toolkit 
and a set of collaboration applications. The
toolkit components include a built-in data-
base with an indexing and search capability.
Generic applications include discussion, docu-
ment sharing, and calendar applications and
administrative functions for managing users,
teams, and access control. 

66 Digital Technical Journal Vol. 8 No. 3 1996

Building Collaboration
Software for the Internet 

Dah Ming Chiu 
David M. Griffin 



Today, several computer applications facilitate such
collaboration. Collectively, these applications are
known as groupware. Lotus Notes is a popular group-
ware application. Typically, groupware applications
support the following capabilities: 

■ Management of a set of users and groups 
■ Storage of shared information in a database (some-

times with replication capability) 
■ Viewing information stored in the databases by

means of a graphical interface 
■ Protection of the collaboration environment when

necessary through authentication and access control 

Groupware systems are built to run in homoge-
neous client environments, such as the Microsoft
Windows environment. They rely on specific client-
server technology, which is often proprietary, to sup-
port remote operations. 

The popularity and rapid growth of the Internet and
the WWW have created an open, universal, and easy-to-
program infrastructure that can readily serve several
groupware functions. Engineers at Digital’s Internet
Software Business Group recognized the potential of
using the WWW as the underlying infrastructure for
groupware solutions and at the same time saw that the
groupware applications available today have features
that the WWW lacks. Our goal was to add groupware
features to the WWW to facilitate collaboration. 

We started exploring the idea of using the Internet
and the WWW for groupware applications in the sum-
mer of 1994. By the end of that year, we had built 
a prototype that supported the simplified discussion
(bulletin-board) features of an internal product known
as DEC Notes.1 This prototype generated considerable
interest among active DEC Notes users who were
seeking a similar solution built around an Internet
infrastructure. Based on their feedback, the prototype
was redesigned and became a product.2

By September 1995, we had built several collabora-
tive applications to run over the WWW. In a workshop
organized by the World Wide Web Consortium and
the Massachusetts Institute of Technology, we par-
ticipated in discussions on how to extend the WWW
technology to support collaboration. All the work-
shop participants presented their ideas to the WWW
Consortium for review.3

Design

In this section, we summarize our design philosophy
and discuss the framework and applications developed
for the AltaVista Forum product. For our design, we
adopted an object-oriented approach, which meant
that we would have to modularize the various compo-
nents for reuse and modification. 

Digital Technical Journal Vol. 8 No. 3 1996 67

■ Hypertext Transfer Protocol (HTTP), a simple
client-server protocol to transport information
associated with a URL 

■ Web browser, a program that renders HTML docu-
ments, provides URL caching, and supports a
directory for URLs 

■ Web server, a server that responds to requests for
information from the Web browsers 

Information Access 
WWW technology has transformed the way users
access information through computer networks.
Access to information on the Internet was primarily
text-based; with the WWW, users are able to access
information in multimedia format. The combination
of functionality (information linking, graphical inter-
face, and caching), extensibility (for dealing with new
protocols and new information types), ease-of-use,
and low cost appealed to a wide range of users in
homes, offices, and corporations. In addition, the
Mosaic-style of “point-and-click” graphical Internet
browser has become the most widely accepted user
interface for network computing. 

The most popular use of the WWW today is for pub-
lishing information, and the process is comparable to
the way a newspaper publishes or a television station
broadcasts information. The roles of the information
provider and the information consumer are clearly
defined. The information provider gathers and orga-
nizes the pertinent information, converts it to the
HTML scripting format, and makes it available on a
Web server. The information consumer, after obtain-
ing initial access to the Web server (as one might tune
into the correct television station), can then browse
and search for various types of information available
on that server. The linking capability of URL and
HTML allows the references or links to additional
information on various servers to be easily published
along with the original information. 

In contrast, multiple information providers work 
in collaboration to generate the content of shared
information. For the purposes of this paper, we will
assume that there is only one type of user—informa-
tion collaborators. 

Collaboration and Groupware 
The WWW is useful for many types of collaboration.
For example, a project team may need to keep track of
project status and individual progress; people with 
a common interest (e.g., film enthusiasts) may want to
share and discuss their views on that topic; a customer
support group may need a system to provide on-line
answers to real-world customer problems; or several
authors may wish to work on a document together. 



Design Philosophy 
Our fundamental design philosophy required using
the Internet and its infrastructure as building blocks
for our collaboration software. After years of experi-
menting and collaborating to develop an open
process, the Internet developers realized that the
Internet had reached a state of critical mass. In the case
of networks and connectivity, reaching critical mass is 
a tremendous impetus for agreeing on a common
standard. As more and more users access the Internet,
the need for software development for the Internet
also increases. In addition, the very nature of the
Internet demands an open standardization process to
ensure the long-term viability of a product. 

Our philosophy also included the reuse of existing
open software as building blocks whenever possible.
In addition to our choice of building upon the
Internet and the WWW technology, we selected 
the Tool Command Language (Tcl) as the primary
language for developing most of our application and
user interface functions.4 We also took advantage of
the database library in the Berkeley UNIX distribution
for built-in database support.5

Another objective was to make sure our software
would be easy to port to all the relevant operating
system platforms. This principle guided our selection
of components and helped us isolate a small set of plat-
form-dependent functions into a special library for
porting the software. 

As stated earlier, we tried to take an object-oriented
approach whenever possible. The advantages of our
approach became increasingly apparent as more peo-
ple became involved with the software development.
The object-oriented approach made component reuse
feasible. 

Framework 
Our framework organizes the AltaVista Forum soft-
ware into two layers: toolkit and applications. The tools
required to build the applications overlap each other.
We have used them to build generic applications,
including a discussion application that supports users
discussing a set of related topics, much like newsgroups
do; a calendar application that supports users’ abilities
to schedule events on a specific date and at a particular

time; and a newspaper application that provides a per-
sonalized news filtering service. We envision that, over
time, the framework we have developed will support 
a number of diverse applications. Figure 1 shows the
AltaVista Forum toolkit and application layers. 

The toolkit is a combination of both C and Tcl code
that creates the following interface components: 

■ Built-in database. The application uses a built-in
database to store its object instances. The database
is a very simple relational model with an object
hierarchy relationship facility available to those
applications that need it. The library also provides
inversions on certain attributes to support fast
retrieval and sorting based on attribute values. 

■ Built-in indexing and search. An indexing and
search function complements the database by
providing a high-speed query facility. For less-
structured objects, it is often easier to index them
and look them up using a search tool. 

■ Graphical user interface support. The use of a graph-
ical user interface insulates applications from hav-
ing to deal with HTML directly and cope with its
changes over time. Abstract definitions of user inter-
face objects also tend to simplify and clarify the code
and create a more uniform appearance on the screen. 

■ Access control. All applications require some form
of access control to regulate who can access, create,
modify, and delete various objects. 

■ Internationalization. An internationalization facil-
ity gathers strings that appear in the user interface
into message catalogs for later translation to differ-
ent languages. 

■ Platform-specific support. A special library isolates
those operating system—dependent functions that
vary from platform to platform. Certain file system
accesses and date/time library accesses are exam-
ples of this component. 

Armed with all the components in the toolkit, an
AltaVista Forum application consists of a set of func-
tions, each responding to a different user request. The
organization of an application is modular. A function
can call various objects that are defined separately as
part of the application, including the following: 

68 Digital Technical Journal Vol. 8 No. 3 1996

DATABASE, INDEXING/SEARCH, GUI LIBRARY,
ACCESS CONTROL, INTERNATIONALIZATION SUPPORT,
PLATFORM-SPECIFIC FILE SYSTEM, AND TIME SUPPORT...

DISCUSSION
APPLICATION

DOCUMENT
APPLICATION

USER LISTING,
REGISTRATION

CALENDAR
APPLICATION

TOOLKIT
LAYER

APPLICATION
LAYER

Figure 1 
AltaVista Forum Toolkit and Application Layers



■ Graphical objects such as definitions of buttons,
toolbars, various objects that are part of a form
(e.g., select boxes, radio buttons, check boxes, text
boxes), and icons. 

■ Database entries, the definitions of their attributes,
and default values. 

■ User interface aggregate objects such as forms,
views, dialogs, and error messages. 

■ Default access control policies, including default
groups, access rights, and their mappings, to con-
trol who can access individual forums and what
actions they can take within them. 

This approach encapsulates the details in low-level
modules, making the software more readable and
maintainable. It also makes it easy for different func-
tions to reuse the objects. 

To further facilitate code sharing, the framework
also allows applications to inherit a set of functions 
and objects that have been grouped together as a
pseudoapplication. For example, the access control
management functions can be grouped into a
pseudoapplication and certain button and toolbar
definitions can be grouped into another pseudo-
application. All applications that need access control
and the common graphical objects that lend a consis-
tent “look-and-feel” can inherit those functions and
objects from pseudoapplications. 

The AltaVista Forum product works in conjunction
with the Web browser and the Web server. The Web
browser submits requests to the Web server whenever
the user opens a link. If the link points to a file, then
the Web server sends the file to the browser, which is
the normal interaction. The link can also point to pro-
grams on the server; in this case, the Web server
invokes the program and then the program responds
to the user. 

When the link points to the AltaVista Forum, the
Web server invokes the AltaVista Forum dispatcher
program through the common gateway interface
(CGI). Based on the information passed along with
the user request, the dispatcher invokes a specific
application, which, in turn, calls various tools in the
toolkit to respond to the user’s request. Figure 2 illus-
trates the interaction of the AltaVista Forum software
with the Web browser and server. 

Parameters are passed to the dispatcher from seg-
ments of the URL. The dispatcher parses the URL into
the pieces that provide the overall control of the pro-
gram: (1) the forum name, (2) the access control area
name, (3) the message name, and (4) the message
arguments. 

Each forum is an instance of an application object.
For example, many discussion forums are available on
various topics. Each discussion forum has its own name
at the time of creation; however, the same discussion
application can be used to manage all the forums. 

An access control area contains a set of forums and 
a common user/group database. An administrator
group helps administer the user/group database and
establish overall access control policies for the environ-
ment. A user registers only once with an access control
area. Based on the access control area location, the
hypertext server not only knows where to find the
user’s credentials for authentication purposes but also
knows how to authenticate the user and pass the
authenticated user identity to the AltaVista Forum
environment. Given the user identity and the access
control location, AltaVista Forum software can also
look up the user profile, check access control, and per-
form other user-specific functions. 

The message name and message arguments 
then select particular actions to perform within the
application. 

Generic Applications 
The AltaVista Forum product supplies a set of generic
applications that make the software immediately
usable. The applications are described in this section. 

User and Group Management and Lookup This appli-
cation provides an interface for user registration
(either by the user or by an administrator). Users can
supply and modify their business card information
such as phone numbers and e-mail addresses. Users
can also set certain preference parameters that help 
the AltaVista Forum software tailor its responses 
(e.g., native language and preferred display formats).
In addition, groups can be created and modified as a
set of users. This application also provides the interface
for listing and searching for user and group informa-
tion for all forums. As discussed earlier, the AltaVista

Digital Technical Journal Vol. 8 No. 3 1996 69

WEB
BROWSER

ALTAVISTA
FORUM
DISPATCHER

WEB
SERVER

HTML
FILES

CGI INTERFACE
HTTP

HTTP

Figure 2 
Interaction of AltaVista Forum, Web Browser, and Web Server



Forum product can support all the users that a Web
server can handle since only one repository of users
and groups is necessary. 

Community, Team, and Personal Vistas A vista is
another term for home page, which is a place for the
user to log in to the WWW. Once in the community
vista, the user sees a set of public forums and links to
perform various tasks, e.g., register oneself, look up
teams or join a team, perform AltaVista Forum admin-
istrative tasks (if an administrator), and so on. For this
reason, the community vista is also called the summit.
In much the same way, a team vista keeps track of all
the forums and links for a group of users, and a per-
sonal vista performs this function for a single user.
Both team and personal vistas can own forums that are
not visible to the public community vista. 

Discussion Much like a bulletin-board discussion
group or Digital’s DEC Notes software, this appli-
cation permits users to share ideas on a set of related
topics. Users create topics and replies that form a hier-
archical tree (also known as threaded topics), providing
a way for users to navigate through existing discussions.
Other methods of reading the existing discussion are
also provided. These include chronologically navigat-
ing through items not read; listing unread items only
and selectively reading them; and searching for topics
and replies containing certain words that were entered
during a particular time period by a certain author.
Users can also create multiple discussion forums to
discuss different topics; this is true for the following
applications as well. 

Document Sharing The document sharing applica-
tion enables users to organize documents of the same
type into hierarchically organized folders. In addition,
it keeps track of versions of the documents, attach-
ments, and comments. As with the discussion applica-
tion, users can browse through and search for specific
documents using a variety of methods. 

Newspaper The newspaper application lets users
select a specific source of information and then define
filters to present only those items of potential interest.
A good example of an information source on the
Internet is one of the real-time news feeds. Using the
newspaper application, it is also possible to read and
monitor other information sources, e.g., e-mail sent to
a distribution list or information appearing on a set of
WWW sites. 

Calendar The calendar application permits users 
to enter a set of scheduled events (or a to-do list) and
present the events as a calendar (sometimes called 
a diary). The application supports requests to add
items to the calendar, thus allowing the calendar to be

used as a scheduling tool. Although a calendar forum
can be set up for each person, it is equally useful 
to have a team calendar, a community calendar, or
even a calendar for a specific type of event. 

Experiences

In this section, we summarize some of our experiences
and discuss the lessons we learned along the way. As 
a result of our decision to rely on the Web browser 
as the universal user interface, we had to resolve some
unique user interface issues. Because we chose to use
Tcl for developing higher-level objects, we had to cope
with using an interpretive language. We designed the
database and indexing and search interfaces based 
on extensibility and portability goals. Finally, in the
design of access control, we had to carefully weigh 
the pros and cons of simplicity and flexibility. 

Coping with the User Interface Defined in HTML 
Very early in the design phase, we decided to make
AltaVista Forum client-independent, with the excep-
tion of dependence on the Web browser. This decision
was based on the fact that the Web browser was already
freely available on most of the platforms. We expected
the browser to become a ubiquitous network front
end, allowing us to focus on building groupware func-
tions on the server. This meant that we were faced with
the task of designing the user interface using HTML.6

Since HTML was evolving, our first step was to
define graphical objects in more abstract constructs
supported by our toolkit. Each construct encapsulates
the specifics into a representation of a graphical artifact
in HTML in the toolkit. Thus as HTML evolves, or as
the page design changes, only one area needs to be
updated. For example, a select box object on a form
may be defined as follows: 

forum selectbox s.language \ 
-mapto language \ 
-label ”Select a language:“ \ 
-labelbreak 

s.language add_option English 1 selected 
s.language add_option French 2 

In this example, a select box is defined to begin with
a label and some spacing and then to contain two
options: English and French, with English as the
default. The values 1 and 2 are internal representations
of the selected values. Also, the “map-to” switch spec-
ifies that this object must correspond to the language
attribute in the database, a feature that was included to
simplify database update. 

Note that although a label is specified, no specifica-
tion is provided to represent that label in a particular
font or typeface. Neither is the actual spacing for label
break specified. These decisions are made in the forum

70 Digital Technical Journal Vol. 8 No. 3 1996



select box part of the toolkit procedure, which trans-
lates this object into HTML. 

Most of the early Web browsers were single-window
based. This limitation was especially problematic for us
because most of our applications provide some organi-
zation to the information content. A much more nat-
ural way of browsing for our environment would
include at least two windows: one showing the context
and the other showing the content of a specific item.
For this reason, we introduced multiple navigational
methods. For example, the discussion application 

■ Allows hierarchical navigation (previous, next, up) 
■ Allows navigation in chronological order (next

unseen, what’s new) 
■ Provides a category view that lists topics according

to their category 
■ Supports content-based search or an index-like

function 

Newer versions of Web browsers support frames,
which have multiple window-browsing capabilities
(although the standards in this area are still a bit
vague). We are updating our applications to take
advantage of these new features. 

Usability studies guided our decisions as we were
designing forms and dialog boxes. It is likely that
many potential users of our product are familiar with
Windows-style user interface objects. Because the
early Web browsers (e.g., Mosaic) were UNIX-based,
little attention was given to providing a human–
computer interface that resembled the more widely
used Windows interface. However, our usability
studies indicated that many personal computer (PC)
users had difficulty using Web browsers out-of-the-
box. For example, a user might expect a dialog box to
have certain standard buttons, such as OK, cancel, and
clear. Ideally, the user would know what to do with
these buttons without any training. To make our soft-
ware easy to learn, we tried to follow the same user
interface style that was already familiar to most users.
Since we were limited by HTML and browser design,
this was not a simple task. Thus we were often forced
to produce rough facsimiles of the more well-known
interface artifacts. 

In summary, we found usability studies to be
extremely valuable when designing end-user applica-
tions. For this reason, it is important to allocate
enough time in the product design cycle to collect user
feedback before beginning product development. 

The Pros and Cons of Using an Interpretive Language 
As mentioned earlier, we selected Tcl as the language
for building the AltaVista Forum toolkit. Tcl is a
highly portable, extensible, and freely available lan-
guage that was originally designed to be embedded in
a larger framework.4 However, it is also an interpretive

language, which supported our goal of rapid and
iterative development of collaborative applications 
for the WWW. 

We extended standard Tcl to provide a set of com-
mands and objects that formed the AltaVista Forum
toolkit: database, HTML generation, access control,
internationalization, user profile management, and
platform-specific support. Many of these extensions
supported an object-based environment (i.e., the
environment supported standard Tcl objects and our
simple inheritance mechanism). The use of these
extensions made it easier to develop applications than
it would have been with Tcl (or any other language),
alone. As a result, these extensions form the basis for
future development tools. 

From the beginning, we knew that the choice of 
an interpretive language was going to involve trade-
offs. In fact, performance, which was our most critical
trade-off, continues to be a concern for the engineer-
ing team. Although the performance of an interpreted
language is lower than that of a compiled language,
fast processors have made the use of an interpreter
worthwhile because of the reduced expense of devel-
oping applications. The use of Tcl in the AltaVista
Forum software certainly takes advantage of this.
Although the applications and part of the toolkit are
written in Tcl, many critical parts are implemented in 
a compiled language (such as C) to stay within per-
formance requirements. The engineering team is con-
tinually searching for ways to improve performance
while accommodating requests for new features and
tracking the rapidly evolving WWW environment. 

The second trade-off was the absence of a sophisti-
cated debugging and profiling environment. Partly
due to the limitations of Tcl and partly due to the
stateless nature of WWW transactions, some of 
the more sophisticated development tools that pro-
grammers expect to see are not readily available.
Despite these shortcomings, rapid development is still
possible; however, we expect even larger gains as we
correct these problems in the future. 

Interfacing to the Database 
Several factors (primarily portability and cost) influ-
enced our decision to build a hybrid database rather
than the more customary relational database. The
database in the AltaVista Forum toolkit consists of a 
B-tree indexed file (from the Berkeley ndbm package)
for storage of basic attributes about documents, which
is backed by the file system for the nonstructured data.
This design, combined with the search engine
(described in the next section), is quite effective for 
the types of applications we initially developed with
the AltaVista Forum toolkit. 

In effect, the database is organized as a collection of
documents (or entries) that have unique identifiers
(document IDs), hierarchical document numbers, and

Digital Technical Journal Vol. 8 No. 3 1996 71



a set of attributes that is similar to a relational database
table. The toolkit provides each entry with a set of
built-in attributes (such as title, creation and modi-
fication dates, and author). The applications can then
deliver additional attributes. 

The toolkit provides the means to retrieve, modify,
and iterate through the collection of entries in a
straightforward manner. Because the attributes are
part of the application description and are not stored
in a separate database, the toolkit can use its knowl-
edge of the attributes to simplify certain common
operations. For example, because transferring data
from HTML forms to the database and back is a basic
operation in collaborative applications, the toolkit can
link fields on forms to database attributes, making it
possible to store them with a single command. To sup-
port a dynamic development environment, the toolkit
also upgrades databases in real time as new attributes
are added or deleted. This permits the application
developer to concentrate on the task at hand rather
than worry about database management tasks. 

Although the primary organization mechanism is a
flat table indexed by document identifiers, the database
integrates a hierarchical relationship between entries
when necessary. Because hierarchies are common in
collaborative applications (e.g., folders/documents
and topics/replies), it was important to reflect this in 
a natural way in the database. 

In addition to attributes, the database offers proper-
ties. Compared to attributes, which are stored for each
entry in the database, properties are stored within 
each forum. Application designers can use these prop-
erties in any way they desire: they are simple key-value
relationships. The AltaVista Forum software uses
properties to implement a variety of features, from
access control policies to the background color of the
screen display. 

User properties are an extension of standard forum
properties. They act like forum properties except that
they are tied to the user who is executing the transac-
tion. User properties keep database locking to a mini-
mum because, in collaborative applications, a user will
typically execute only one transaction at a time. 

Indexing and Search: The Way of the Future? 
One key design decision was to include an indexing
and search engine as a basic component of the prod-
uct. Although the database is often the central piece of
a groupware product, an indexing and search engine
often plays a similar role for a WWW site. This devel-
opment is completely consistent with the philosophy
of the WWW—information is linked as needed, not
necessarily following any structure. Database use is
more suitable for information objects that have some
uniformity in their definitions. 

The basic function of the indexing engine is to map
a set of words to a document containing those words.

(The term document is used in a generic sense. It can
be any logical entity associated with a set or words.)
The indexing information must be stored in such a
way that subsequent searches based on individual
words (and phrases) are efficient and speedy. The
indexing engine in the AltaVista Forum toolkit is
basically the same indexing engine available on the
AltaVista Web site.7 Designed and implemented at
Digital’s System Research Center, it is highly scalable
and efficient. 

The built-in database functions as a repository for
entries with a predefined set of attributes. It provides
fast retrieval when the entries are identified using either
an entry ID or a hierarchical ID, and it provides simple
creating, updating, and sorting functions associated
with retrieval. The indexing and search engine comple-
ments the AltaVista Forum database: it provides a 
content-based search method and functions at higher
speed. Since the search engine is extremely fast and
scalable, we also use it to index some of the attribute
values in the database. This allows us to use the search
engine for certain compute-intensive searches that
otherwise would be performed by the database. 

Based on our experience, we expect the capabilities
of the indexing and search engine to continue to
expand. As the popularity of the WWW technology
continues to grow, the volume of published informa-
tion will also increase. Only a small amount of this
information can be effectively captured in databases.
The indexing and search engine is an invaluable tool
for mining useful information out of the vast amount
of data stored in these databases. 

The Dilemma of Access Control 
Designing access control is very challenging because
users and administrators have different requirements.
On the one hand, administrators want a high degree
of flexibility in controlling access. Their issues include
the following: 

■ What type of information is subject to access control? 
■ Should access control be defined for every possible

access/action type? 
■ Should there be arbitrary flexibility in defining

groups (including nesting)? 

On the other hand, users have stated that they do
not like products in which access control operations
are complex, especially in the case of a product that 
is supposed to help people collaborate. In a majority 
of scenarios, they argue that very little access control 
is needed. 

For this reason, we tried to strike a balance between
administrators’ needs and users’ preferences. Although
we recognize the importance of access control, we did
not give it precedence over product usability. Since
usability was our priority, and the time available to

72 Digital Technical Journal Vol. 8 No. 3 1996



the future as long as it makes management of access
control policies easier. 

Future Directions

To date, we have received encouraging feedback from
users. Of the ways that we can continue to improve 
the AltaVista Forum product, we feel the following
deserve the highest priority. 

First, we need to provide better ways to help users
deal with information overflow. Although we have
built ways to filter and search information into our
application, further simplification is necessary. We 
are working on smart agents that bring the relevant
information to the user’s fingertips. 

Second, a number of the functions that we provide
can be more easily performed on the client machine.
The Java language is the best candidate for providing
these functions since it enables us to handle a wide
variety of client platforms. Initially, we are looking into
using Java to improve certain user interface problems,
such as opening additional windows on the client
machine to notify users of new information. 

Third, synchronous collaboration using video,
audio, and whiteboard will soon become feasible and
cost effective. It is important for us to help bring users
together through both synchronous and asynchro-
nous methods of collaboration. For example, users
should be able to use the calendar application to
schedule a meeting over the Internet, and Windows
should be available to the user automatically. 

Fourth, as the AltaVista Forum software matures,
we hope to add to its performance and increase 
its scalability. As its environment evolves, we are look-
ing into ways to bypass the CGI interface and use a
compiled language for more of the toolkit implemen-
tation. We also hope to add support for large commer-
cial databases. 

Finally, we will continue to add innovative applica-
tions to our product. We recently built a prototype of
a customer-support application that keeps track of
problem reporting. We are looking into other applica-
tions such as project management, group review, and
survey and decision-support systems. 

Acknowledgments

We wish to thank the AltaVista Forum development
and management teams for their contributions to the
product. In particular, we wish to thank Peter Hurley
for his leadership in starting the effort; Ralph DeMent,
Bob Travis, David Marques, and Rick Frankosky, who
have worked with us throughout the lifetime of the
product and with whom we have developed a special
camaraderie; and Dan Kalikow, who was the first
adopter and has cheered us on ever since. 

Digital Technical Journal Vol. 8 No. 3 1996 73

work on it was limited, we divided our efforts between
making access control flexible and choosing default
options that would promote collaboration. 

We defined access control for the whole database
(forum), rather than for individual entries and attrib-
utes of entries. However, some entry-level access con-
trol is necessary. For example, it is preferable to let only
the owner (or the creator) of an entry modify and
delete that entry. As a result, we allowed the group def-
inition to include entry-specific logical users, rather
than provide a general mechanism for entry-level access
control. Therefore, a group may contain a member
who is the owner of the current entry. During access
control checking, the current entry’s owner is looked
up and matched against the currently logged-in user. 

Instead of letting the administrator define access
control for each possible incoming access/action, our
framework allows the application definition to group
accesses together into logical access rights. For exam-
ple, for the discussion application, we defined the fol-
lowing access rights: 

■ Read—Includes all read URLs (different views,
whether for a single entry or a list of entries) 

■ Contribute—Includes adding a topic or reply 
■ Modify—Includes any form of modification or

deletion 
■ Moderate—Includes such functions as creating key-

words, polling options, controlling number of levels
of replies, and setting certain entries as hidden 

■ Administrate—Change access control or other
kinds of resource consumption policies 

By defining these access rights, the administrator only
needs to establish who can do these five operations,
rather than define numerous other kinds of opera-
tions. It is still possible to change and add to this
group of access rights by making simple modifications
to the application definition. 

Our basic strategy for making access control easy to
manage is to set up default policies of access control
that apply to as many situations as possible, within rea-
son. The default policy is added to the application def-
inition. If the administrator is satisfied with the default
policies, then the access control can be used as sup-
plied. For the discussion application, the default policy
is the following: 

■ Read—All users, including anonymous 
■ Contribute—All users, excluding anonymous 
■ Modify—Owner (creator) of entry and moderators 
■ Moderate—Owner of the forum 
■ Administrate—Owner of the forum 

To simplify implementation, we chose not to allow
nesting of groups. Our design allows for adding it in



74 Digital Technical Journal Vol. 8 No. 3 1996

References and Notes

1. DEC Notes is a discussion application running primarily
on VAX systems connected on a DECnet network. Still a
very popular tool within Digital, it is used for collaborat-
ing on many topics, ranging from product development,
customer support, and marketing to various personal
interest topics. 

2. The product was originally called Workgroup Web
Forum. It was subsequently merged into a larger family
of products and the product name became AltaVista
Forum. 

3. For more information on the World Wide Web Consor-
tium/MIT Laboratory for Computer Science Workshop
on the World Wide Web and Collaboration held Sep-
tember 11–12, 1995, see http://www.w3.org/pub/
WWW/Collaboration. 

4. J. Ousterhout, Tcl and the Tk Toolkit (Reading, Mass.:
Addison-Wesley Publishing Company, 1994). 

5. NDBM(3), 4.3 BSD Unix Programming Manual Ref-
erence Guide (University of California, Berkeley, 1986). 

6. During this time, Java was still on the drawing board, or at
least not generally supported by Web browsers. We did
expect to use Java to enhance our user interface over time. 

7. For access to Digital’s indexing and search engine, 
visit the AltaVista Web site at http://altavista.software.
digital.com. 

Biographies

Dah Ming Chiu 
Dah Ming Chiu was a consulting engineer in Digital’s
Internet Software Business Unit and a technical leader in
developing the AltaVista Forum groupware product for the
Internet. Before that project, he worked for the Networks
Architecture Group on congestion and flow control, net-
work monitoring, name service, and the X.500 standard.
Previous to that, he worked on performance modeling 
and analysis network protocols and graphical workstation
design. Dah Ming is currently an architect in the Internet
Solutions Group of Sun Microsystems, Inc. He received a
Ph.D. in applied mathematics (1980) from Harvard Uni-
versity and a B.Sc. in electrical engineering (1975) from 
the Imperial College, London University. He holds three
patents in the areas of congestion control and network
monitoring and is a coauthor of Network Monitoring
Explained. 

David M. Griffin 
Dave Griffin joined Digital in 1981. He is a principal soft-
ware engineer in the AltaVista Collaboration Engineering
Group, where he leads the AltaVista Forum Toolkit team
for version 3.0. Dave also led the toolkit team for version
2.0 and was the primary designer and implementer of 
the (Workgroup Web Forum) version 1.0 toolkit and the
author of the document-sharing application for version
1.0. Prior to this work, Dave led the DECdns server proj-
ect (part of the DECnet/OSI program) and designed 
and implemented the hierarchical cells and cell-renaming
facilities in the DCE Cell Directory Service. He has been
involved in the development of a number of distributed
information systems for Digital and other companies. He
holds two patents in distributed systems technology. 


