
The DIGITAL AlphaServer 4100 series of servers repre-
sents the third generation of Alpha microprocessor-
based, mid-range computer systems. Among the
technical goals achieved in the system design were the
use of four CPU modules, 8 gigabytes (GB) of memory,
and partial block writes to improve I/O performance.

Unlike the previous generation of mid-range servers,
the AlphaServer 4100 series can accommodate four
processor modules, while retaining the maximum
memory capacity. Using multiple CPUs to share the
workload is known as symmetric multiprocessing
(SMP). As more CPUs are added, the performance 
of an SMP system increases. This ability to increase
performance by adding CPUs is known as scalability.
To achieve perfect scalability, the performance of four
CPUs would have to be exactly four times that of a sin-
gle CPU system. One of the goals of the design was to
keep scalability as high as possible yet consistent with
low cost. For example, the AlphaServer 4100 system
achieves a scalability factor of 3.33 on the Linpack
1000 3 1000, a large, parallel scientific benchmark.
The same benchmark achieved 3.05 scalability on the
previous-generation platform.1

The 8-GB memory in the AlphaServer 4100 system
represents a factor of four improvement compared with
the previous generation of mid-range servers.2 The new
memory is also faster in terms of the data volume flow-
ing over the bus (bandwidth) and data access time
(latency). Again, compared with the previous genera-
tion, available memory bandwidth is improved by a fac-
tor of 2.7 and latency is reduced by a factor of 0.6.

In systems of this class, memory is usually addressed
in large blocks of 32 to 64 bytes. This can be ineffi-
cient when one or two bytes need to be modified
because the entire block might have to be read out
from memory, modified, and then written back into
memory to achieve this minor modification. The abil-
ity to modify a small fraction of the block without hav-
ing to extract the entire block from memory results in
partial block writes. This capability also represents an
advance over the previous generation of servers. 

To take full advantage of the Alpha 21164 series of
microprocessors, a new system bus was needed. The bus
used in the previous generation of servers was not fast
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The DIGITAL AlphaServer 4100 processor module
uses the Alpha 21164 microprocessor series com-
bined with a large, module-level backup cache
(B-cache). The cache uses synchronous cache
memory chips and includes a duplicate tag store
that allows CPU modules to monitor the state 
of each other’s cache memories with minimal
disturbance to the microprocessor. The synchro-
nous B-cache, which can be easily synchronized
with the system bus, permits short B-cache
access times for the DIGITAL AlphaServer 4100
system. It also provides a smooth transition 
from accessing the B-cache to transferring data
to or from main memory, without the need for
re-synchronization or data buffering.



enough, and the cost and size of the bus used in high-
end servers was not adaptable to mid-range servers. 

Three separate teams worked on the project. One
team defined the system architecture and the system
bus, and designed the bus control logic and the mem-
ory modules.3 The second team designed the periph-
eral interface (I/O), which consists of the Peripheral
Component Interconnect (PCI) and the Extended
Industry Standard Architecture (EISA) buses, and its
interface to the system bus (I/O bridge).4 The third
team designed the CPU module. The remainder of
this paper describes the CPU module design in detail.
Before delving into the discussion of the CPU module,
however, it is necessary to briefly describe how the sys-
tem bus functions.

The system bus consists of 128 data bits, 16 check
bits with the capability of correcting single-bit errors,
36 address bits, and some 30 control signals. As many
as 4 CPU modules, 8 memory modules, and 1 I/O
module plug into the bus. The bus is 10 inches long
and, with all modules in place, occupies a space of 
11 by 13 by 9 inches. With power supplies and the
console, the entire system fits into an enclosure that is
26 by 12 by 17.5 inches in dimension.

CPU Module

The CPU module is built around the Alpha 21164
microprocessor. The module’s main function is to
provide an extended cache memory for the micro-
processor and to allow it to access the system bus. 

The microprocessor has its own internal cache
memory consisting of a separate primary data cache
(D-cache), a primary instruction cache (I-cache), and 
a second-level data and instruction cache (S-cache).
These internal caches are relatively small, ranging in
size from 8 kilobytes (KB) for the primary caches to 
96 KB for the secondary cache. Although the internal
cache operates at microprocessor speeds in the 400-
megahertz (MHz) range, its small size would limit
performance in most applications. To remedy this, the
microprocessor has the controls for an optional exter-
nal cache as large as 64 megabytes (MB) in size. As
implemented on the CPU module, the external cache,
also known as the backup cache or B-cache, ranges
from 2 MB to 4 MB in size, depending on the size 
of the memory chips used. In this paper, all references
to the cache assume the 4-MB implementation.

The cache is organized as a physical, direct-mapped,
write-back cache with a 144-bit-wide data bus consist-
ing of 128 data bits and 16 check bits, which matches
the system bus. The check bits protect data integrity
by providing a means for single-bit-error correction
and double-bit-error detection. A physical cache is one
in which the address used to address the cache mem-
ory is translated by a table inside the microprocessor
that converts software addresses to physical memory

locations. Direct-mapped refers to the way the cache
memory is addressed, in which a subset of the physical
address bits is used to uniquely place a main memory
location at a particular location in the cache. When the
microprocessor modifies data in a write-back cache, it
only updates its local cache. Main memory is updated
later, when the cache block needs to be used for a dif-
ferent memory address. When the microprocessor
needs to access data not stored in the cache, it performs
a system bus transaction (fill) that brings a 64-byte
block of data from main memory into the cache. Thus
the cache is said to have a 64-byte block size.

Two types of cache chips are in common use in
modern computers: synchronous and asynchronous.
The synchronous memory chips accept and deliver
data at discrete times linked to an external clock. The
asynchronous memory elements respond to input
signals as they are received, without regard to a clock.
Clocked cache memory is easier to interface to the
clock-based system bus. As a result, all transactions
involving data flowing from the bus to the cache (fill
transactions) and from the cache to the bus (write
microprocessor-based system transactions) are easier
to implement and faster to execute.

Across the industry, personal computer and server
vendors have moved from the traditional asynchro-
nous cache designs to the higher-performing synchro-
nous solutions. Small synchronous caches provide 
a cost-effective performance boost to personal com-
puter designs. Server vendors push synchronous-
memory technology to its limit to achieve data rates 
as high as 200 MHz; that is, the cache provides new
data to the microprocessor every 5 nanoseconds.5,6

The AlphaServer 4100 server is DIGITAL’s first prod-
uct to employ a synchronous module-level cache.

At power-up, the cache contains no useful data, 
so the first memory access the microprocessor 
makes results in a miss. In the block diagram shown 
in Figure 1, the microprocessor sends the address out
on two sets of lines: the index lines connected to the
cache and the address lines connected to the system
bus address transceivers. One of the cache chips, called
the TAG, is not used for data but instead contains 
a table of valid cache-block addresses, each of which is
associated with a valid bit. When the microprocessor
addresses the cache, a subset of the high-order bits
addresses the tag table. A miss occurs when either of
the following conditions has been met.

1. The addressed valid bit is clear, i.e., there is no valid
data at that cache location.

2. The addressed valid bit is set, but the block address
stored at that location does not match the address
requested by the microprocessor.

Upon detection of a miss, the microprocessor
asserts the READ MISS command on a set of four
command lines. This starts a sequence of events 
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that results in the address being sent to the system bus.
The memory receives this address and after a delay
(memory latency), it sends the data on the system bus.
Data transceivers on the CPU module receive the 
data and start a cache fill transaction that results in 
64 bytes (a cache block) being written into the cache
as four consecutive 128-bit words with their associated
check bits. 

In an SMP system, two or more CPUs may have the
same data in their cache memories. Such data is known
as shared, and the shared bit is set in the TAG for that
address. The cache protocol used in the AlphaServer
4100 series of servers allows each CPU to modify entries
in its own cache. Such modified data is known as dirty,
and the dirty bit is set in the TAG. If the data about to be
modified is shared, however, the microprocessor resets
the shared bit, and other CPUs invalidate that data in
their own caches. The need is thus apparent for a way 
to let all CPUs keep track of data in other caches. This 
is accomplished by the process known as snooping,
aided by several dedicated bus signals. 

To facilitate snooping, a separate copy of the TAG is
maintained in a dedicated cache chip, called duplicate
tag or DTAG. DTAG is controlled by an application-
specific integrated circuit (ASIC) called VCTY. VCTY
and DTAG are located next to each other and in close
proximity to the address transceivers. Their timing is
tied to the system bus so that the address associated
with a bus transaction can easily be applied to the
DTAG, which is a synchronous memory device, and
the state of the cache at that address can be read out. 
If that cache location is valid and the address that is
stored in the DTAG matches that of the system bus

command (a hit in DTAG), the signal MC_SHARED
may be asserted on the system bus by VCTY. If that
location has been modified by the microprocessor,
then MC_DIRTY is asserted. Thus each CPU is aware
of the state of all the caches on the system. Other
actions also take place on the module as part of this
process, which is explained in greater detail in the sec-
tion dealing specifically with the VCTY. 

Because of the write-back cache organization, a spe-
cial type of miss transaction occurs when new data
needs to be stored in a cache location that is occupied
by dirty data. The old data needs to be put back into
the main memory; otherwise, the changes that the
microprocessor made will be lost. The process of
returning that data to memory is called a victim write-
back transaction, and the cache location is said to be
victimized. This process involves moving data out of
the cache, through the system bus, and into the main
memory, followed by new data moving from the main
memory into the cache as in an ordinary fill transac-
tion. Completing this fill quickly reduces the time that
the microprocessor is waiting for the data. To speed up
this process, a hardware data buffer on the module is
used for storing the old data while the new data is
being loaded into the cache. This buffer is physically 
a part of the data transceiver since each bit of the trans-
ceiver is a shift register four bits long. One hundred
twenty-eight shift registers can hold the entire cache
block (512 bits) of victim data while the new data is
being read in through the bus receiver portion of the
data transceiver chip. In this manner, the microproces-
sor does not have to wait until the victim data is trans-
ferred along the system bus and into the main memory
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before the fill portion of the transaction can take place.
When the fill is completed, the victim data is shifted
out of the victim buffer and into the main memory.
This is known as an exchange, since the victim write-
back and fill transactions execute on the system bus in
reverse of the order that was initiated by the micro-
processor. The transceiver has a signal called BYPASS;
when asserted, it causes three of the four bits of the
victim shift register to be bypassed. Consequently, for
ordinary block write transactions, the transceiver oper-
ates without involving the victim buffer.

B-Cache Design

As previously mentioned, the B-cache uses synchro-
nous random-access memory (RAM) devices. Each
device requires a clock that loads signal inputs into 
a register. The RAM operates in the registered input,
flow-through output mode. This means that an input
flip-flop captures addresses, write enables, and write
data, but the internal RAM array drives read output
data directly as soon as it becomes available, without
regard to the clock. The output enable signal activates
RAM output drivers asynchronously, independently of
the clock.

One of the fundamental properties of clocked logic
is the requirement for the data to be present for some
defined time (setup time) before the clock edge, and to
remain unchanged for another interval following the
clock edge (hold time). Obviously, to meet the setup
time, the clock must arrive at the RAM some time after
the data or other signals needed by the RAM. To help
the module designer meet this requirement, the micro-
processor may delay the RAM clock by one internal
microprocessor cycle time (approximately 2.5 nanosec-
onds). A programmable register in the microprocessor
controls whether or not this delay is invoked. This
delay is used in the AlphaServer 4100 series CPU mod-
ules, and it eliminates the need for external delay lines.

For increased data bandwidth, the cache chips used
on CPU modules are designed to overlap portions of
successive data accesses. The first data block becomes
available at the microprocessor input after a delay
equal to the BC_READ_SPEED parameter, which is
preset at power-up. The following data blocks are
latched after a shorter delay, BC_READ_SPEED—
WAVE. The BC_READ_SPEED is set at 10 micro-
processor cycles and the WAVE value is set to 4, so that
BC_READ_SPEED—WAVE is 6. Thus, after the first
delay of 10 microprocessor cycles, successive data
blocks are delivered every 6 microprocessor cycles.
Figure 2 illustrates these concepts.

In Figure 2, the RAM clock at the microprocessor is
delayed by one microprocessor cycle. The RAM clock
at the RAM device is further delayed by clock buffer
and network delays on the module. The address at the
microprocessor is driven where the clock would have

occurred had it not been delayed by one microproces-
sor cycle, and the address at the RAM is further delayed
by index buffer and network delays. Index setup at the
RAM satisfies the minimum setup time required by the
chip, and so does address hold. Data is shown as
appearing after data access time (a chip property), and
data setup at the microprocessor is also illustrated.

VCTY 

As described earlier, a duplicate copy of the micro-
processor’s primary TAG is maintained in the DTAG
RAM. If DTAG were not present, each bus address
would have to be applied by the microprocessor to the
TAG to decide if the data at this address is present in
the B-cache. This activity would impose a very large
load on the microprocessor, thus reducing the amount
of useful work it could perform. The main purpose of
the DTAG and its supporting logic contained in the
VCTY is to relieve the microprocessor from having to
examine each address presented by the system bus.
The microprocessor is only interrupted when its pri-
mary TAG must be updated or when data must be
provided to satisfy the bus request.

VCTY Operation
The VCTY contains a system bus interface consisting of
the system bus command and address signals, as well as
some system bus control signals required for the VCTY
to monitor each system bus transaction. There is also
an interface to the microprocessor so that the VCTY
can send commands to the microprocessor (system-to-
CPU commands) and monitor the commands and
addresses issued by the microprocessor. Last but not
least, a bidirectional interface between the VCTY and
the DTAG allows only those system bus addresses that
require action to reach the microprocessor.

While monitoring the system bus for commands
from other nodes, the VCTY checks for matches
between the received system bus address and the data
from the DTAG lookup. A DTAG lookup is initiated
anytime a valid system bus address is received by the
module. The DTAG location for the lookup is selected
by using system bus Address<21:6> as the index into
the DTAG. If the DTAG location had previously been
marked valid, and there is a match between the
received system bus Address<38:22> and the data
from the DTAG lookup, then the block is present in
the microprocessor’s cache. This scenario is called a
cache hit. 

In parallel with this, the VCTY decodes the received
system bus command to determine the appropriate
update to the DTAG and determine the correct system
bus response and CPU command needed to maintain
system-wide cache coherency. A few cases are illus-
trated here, without any attempt at a comprehensive
discussion of all possible transactions. 
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Assume that the DTAG shared bit is found to be set
at this address, the dirty bit is not set, and the bus
command indicates a write transaction. The DTAG
valid bit is then reset by the VCTY, and the micro-
processor is interrupted to do the same in the TAG. 

If the dirty bit is found to be set, and the command
is a read, the MC_DIRTY_EN signal is asserted on the
system bus to tell the other CPU that the location it is
trying to access is in cache and has been modified by
this CPU. At the same time, a signal is sent to the
microprocessor requesting it to supply the modified
data to the bus so the other CPU can get an up-to-date
version of the data.

If the address being examined by the VCTY was 
not shared in the DTAG and the transaction was a
write, the valid bit is reset in the DTAG, and no bus
signals are generated. The microprocessor is requested
to reset the valid bit in the TAG. However, if the trans-
action was not a write, then shared is set in the DTAG,
MC_SHARED is asserted on the bus, and a signal is
sent to the microprocessor to set shared in the TAG. 

From these examples, it becomes obvious that only
transactions that change the state of the valid, shared, or
dirty TAG bits require any action on the part of the

microprocessor. Since these transactions are relatively
infrequent, the DTAG saves a great deal of microproces-
sor time and improves overall system performance.

If the VCTY detects that the command originated
from the microprocessor co-resident on the module,
then the block is not checked for a hit, but the com-
mand is decoded so that the DTAG block is updated
(if already valid) or allocated (i.e., marked valid, if not
already valid). In the latter case, a fill transaction fol-
lows and the VCTY writes the valid bit into the TAG at
that time. The fill transaction is the only one for which
the VCTY writes directly into the TAG.

All cycles of a system bus transaction are numbered,
with cycle 1 being the cycle in which the system bus
address and command are valid on the bus. The con-
trollers internal to VCTY rely on the cycle numbering
scheme to remain synchronized with the system bus.
By remaining synchronized with the system bus, all
accesses to the DTAG and accesses from the VCTY to
the microprocessor occur in fixed cycles relative to the
system bus transaction in progress.

The index used for lookups to the DTAG is pre-
sented to the DTAG in cycle 1 of the system bus trans-
action. In the event of a hit requiring an update of the
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DTAG and primary TAG, the microprocessor interface
signal, EV_ABUS_REQ, is asserted in cycles 5 and 6 of
that system bus transaction, with the appropriate
system-to-CPU command being driven in cycle 6. The
actual update to the DTAG occurs in cycle 7, as does
the allocation of blocks in the DTAG.

Figure 3 shows the timing relationship of a system
bus command to the update of the DTAG, including
the sending of a system-to-CPU command to the
microprocessor. The numbers along the top of the
diagram indicate the cycle numbering. In cycle 1, 
when the signal MC_CA_L goes low, the system bus
address is valid and is presented to the DTAG as the
DTAG_INDEX bits. By the end of cycle 2, the DTAG
data is valid and is clocked into the VCTY where it is
checked for good parity and a match with the upper
received system bus address bits. In the event of a hit, as
is the case in this example, the microprocessor interface
signal EV_ABUS_REQ is asserted in cycle 5 to indicate
that the VCTY will be driving the microprocessor com-
mand and address bus in the next cycle. In cycle 6, the
address that was received from the system bus is driven
to the microprocessor along with the SETSHARED
command. The microprocessor uses this command
and address to update the primary tag control bits for
that block. In cycle 7, the control signals DTAG_OE_L
and DTAG_WE1_L are asserted low to update the con-
trol bits in the DTAG, thus indicating that the block is
now shared by another module. 

DTAG Initialization
Another important feature built into the VCTY design
is a cursory self-test and initialization of the DTAG.
After system reset, the VCTY writes all locations of the
DTAG with a unique data pattern, and then reads the
entire DTAG, comparing the data read versus what
was written and checking the parity. A second write-
read-compare pass is made using the inverted data pat-
tern. This inversion ensures that all DTAG data bits are
written and checked as both a 1 and a 0. In addition,
the second pass of the initialization leaves each block
of the DTAG marked as invalid (not present in the 
B-cache) and with good parity. The entire initializa-
tion sequence takes approximately 1 millisecond per
megabyte of cache and finishes before the micro-
processor completes its self-test, avoiding special han-
dling by firmware.

Logic Synthesis
The VCTY ASIC was designed using the Verilog
Hardware Description Language (HDL). The use of
HDL enabled the design team to begin behavioral
simulations quickly to start the debug process.

In parallel with this, the Verilog code was loaded
into the Synopsys Design Compiler, which synthe-
sized the behavioral equations into a gate-level design.
The use of HDL and the Design Compiler enabled the
designers to maintain a single set of behavioral models
for the ASIC, without the need to manually enter
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schematics to represent the gate-level design. The syn-
thesis process is shown in a flowchart form in Figure 4.
Logic verification is an integral part of this process,
and the flowchart depicts both the synthesis and verifi-
cation, and their interaction.

Only the synthesis is explained at this time. The ver-
ification process depicted on the right side of the flow-
chart is covered in a later section of this paper.

As shown on the left side of the flowchart, the logic
synthesis process consists of multiple phases, in which
the Design Compiler is invoked repeatedly on each
subblock of the design, feeding back the results from
the previous phase. The Synopsys Design Compiler
was supplied with timing, loading, and area constraints
to synthesize the VCTY into a physical design that met
technology and cycle-time requirements. Since the
ASIC is a small design compared to technology capa-
bilities, the Design Compiler was run without an area
constraint to facilitate timing optimization.

The process requires the designer to supply timing
constraints only to the periphery of the ASIC (i.e., the

I/O pins). The initial phase of the synthesis process cal-
culates the timing constraints for internal networks that
connect between subblocks by invoking the Design
Compiler with a gross target cycle time of 100 nanosec-
onds (actual cycle time of the ASIC is 15 nanoseconds).
At the completion of this phase, the process analyzes 
all paths that traverse multiple hierarchical subblocks
within the design to determine the percentage of time
spent in each block. The process then scales this data
using the actual cycle time of 15 nanoseconds and
assigns the timing constraints for internal networks at
subblock boundaries. Multiple iterations may be
required to ensure that each subblock is mapped to
logic gates with the best timing optimization.

Once the Design Compiler completes the subblock
optimization phase, an industry-standard electronic
design interchange format (EDIF) file is output. The
EDIF file is postprocessed by the SPIDER tool to gen-
erate files that are read into a timing analyzer, Topaz. A
variety of industry-standard file formats can be input
into SPIDER to process the data. Output files can then
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be generated and easily read by internal CAD tools
such as the DECSIM logic simulator and the Topaz
timing analyzer.

Topaz uses information contained in the ASIC tech-
nology library to analyze the timing of the design as it
was mapped by the Design Compiler. This analysis
results in output data files that are used to constrain
the ASIC layout process and obtain the optimal layout.
Logic paths are prioritized for placement of the gates
and routing of the connections based on the timing
margins as determined by Topaz. Those paths with the
least timing margin are given the highest priority in
the layout process.

Logic Verification

This section of the paper discusses logic verification
and focuses on the use of behavioral model simulation.
It should also be noted that once the Design Compiler
had mapped the design to gates, SPIDER was also
used to postprocess the EDIF file so that DECSIM
simulation could be run on the structural design. This
process allowed for the verification of the actual gates
as they would be built in the ASIC.

The right-hand side of Figure 4 illustrates the logic
verification process using a behavioral simulation
model. To verify the logic, the system must be per-
forming transactions that exercise all or most of its
logic. Ideally, the same software used in physical sys-
tems should be run on the design, but this is not prac-
tical because of the long run times that would be
required. Therefore, specialized software tools are used
that can accomplish the task in a shorter time. The ver-
ification team developed two such tools: the Random
Exerciser and the Functional Checker. They are
described in detail in this section.

Random Exerciser
Verification strategy is crucial to the success of the
design. There are two approaches to verification test-
ing, directed and random. Directed or focused tests
require short run times and target specific parts of the
design. To fully test a complex design using directed
tests requires a very large number of tests, which take 
a long time to write and to run. Moreover, a directed
test strategy assumes that the designer can foresee
every possible system interaction and is able to write 
a test that will adequately exercise it. For these reasons,
random testing has become the preferred methodol-
ogy in modern logic designs.7 Directed tests were not
completely abandoned, but they compose only a small
portion of the test suite.

Random tests rely on a random sequence of events
to create the failing conditions. The goal of the
Random Exerciser was to create a framework that
would allow the verification team to create random

tests quickly and efficiently without sacrificing flexibil-
ity and portability. It consisted of three parts: the test
generator, the exerciser code, and the bus monitor.

Test Generator This collection of DECSIM commands
randomly generates the test data consisting of addresses
(both I/O space and memory space) and data patterns.
The user controls the test data generator by setting test
parameters. For example, to limit the range of working
address space to the uppermost 2 MB of a 4-MB mem-
ory space, the working address space parameter is
defined as [200000, 400000]. It tells the test generator
to choose addresses within that range only—greater
than 2 MB and less than 4 MB.

Exerciser Code This code is a collection of routines or
sequences of Alpha macrocode instructions to be exe-
cuted by the microprocessors. Each routine performs
a unique task using one of the addresses supplied by
the test generator. For example, routine 1 performs 
a read-verify-modify-write sequence. Routine 2 is sim-
ilar to routine 1, but it reads another address that is 
8 MB away from the original address, before writing 
to the cache. Since the B-cache is one-way associative,
the original address is then evicted from the cache.
Lastly, routine 3 performs a lock operation. 

Most routines were of the type described above;
they used simple load and store instructions. A few
routines were of a special type: one generated inter-
processor interrupts, others serviced interrupts,
another routine generated errors (using addresses to
nonexistent memory and I/O space) and checked that
the errors were handled properly, and another routine
exercised lock-type instructions more heavily.

The activity on the system bus generated by the
CPUs was not enough to verify the logic. Two addi-
tional system bus agents (models of system bus devices)
simulating the I/O were needed to simulate a full
system-level environment. The I/O was modeled using
so-called commander models. These are not HDL or
DECSIM behavioral models of the logic but are written
in a high-level language, such as C. From the perspec-
tive of the CPU, the commander models behave like
real logic and therefore are adequate for the purpose of
verifying the CPU module. There were several reasons
for using a commander model instead of a logic/
behavioral model. A complete I/O model was not yet
available when the CPU module design began. The
commander model was an evolution of a model used in
a previous project, and it offered much needed flexibil-
ity. It could be configured to act as either an I/O inter-
face or a CPU module and was easily programmable to
flood the system bus with even more activity: memory
reads and writes; interrupts to the CPUs by randomly
inserting stall cycles in the pipeline; and assertion of
system bus signals at random times. 
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Bus Monitor The bus monitor is a collection of 
DECSIM simulation watches that monitor the system
bus and the CPU internal bus. The watches also report
when various bus signals are being asserted and
deasserted and have the ability to halt simulation if
they encounter cache incoherency or a violation.

Cache incoherency is a data inconsistency, for exam-
ple, a piece of nondirty data residing in the B-cache
and differing from data residing in main memory. 
A data inconsistency can occur among the CPU mod-
ules: for example, two CPU modules may have differ-
ent data in their caches at the same memory address.
Data inconsistencies are detected by the CPU. Each
one maintains an exclusive (nonshared) copy of its
data that it uses to compare with the data it reads from
the test addresses. If the two copies differ, the CPU
signals to the bus monitor to stop the simulation and
report an error.

The bus monitor also detects other violations: 

1. No activity on the system bus for 1,000 consecutive
cycles

2. Stalled system bus for 100 cycles
3. Illegal commands on the system bus and CPU

internal bus
4. Catastrophic system error (machine check)

The combination of random CPU and I/O activity
flooded the system bus with heavy traffic. With the
help of the bus monitor, this technique exposed bugs
quickly.

As mentioned, a few directed tests were also written.
Directed tests were used to re-create a situation that
occurred in random tests. If a bug was uncovered using
a random test that ran three days, a directed test was
written to re-create the same failing scenario. Then,
after the bug was fixed, a quick run of the directed test
confirmed that the problem was indeed corrected.

Functional Checker
During the initial design stages, the verification team
developed the Functional Checker (FC) for the fol-
lowing purposes:

■ To functionally verify the HDL models of all ASICs
in the AlphaServer 4100 system

■ To assess the test coverage

The FC tool consists of three applications: the
parser, the analyzer, and the report generator. The
right-hand side of Figure 4 illustrates how the FC was
used to aid in the functional verification process.

Parser Since DECSIM was the chosen logic simula-
tor, the first step was to translate all HDL code to 
BDS, a DECSIM behavior language. This task was

performed using a tool called V2BDS. The parser’s
task was to postprocess a BDS file: extract information
and generate a modified version of it. The information
extracted was a list of control signals and logic state-
ments (such as logical expressions, if-then-else state-
ments, case statements, and loop constructs). This
information was later supplied to the analyzer. The
modified BDS was functionally equivalent to the origi-
nal code, but it contained some embedded calls to
routines whose task was to monitor the activity of the
control signals in the context of the logic statements.

Analyzer Written in C, the analyzer is a collection of
monitoring routines. Along with the modified BDS
code, the analyzer is compiled and linked to form the
simulation model. During simulation, the analyzer 
is invoked and the routines begin to monitor the activ-
ity of the control signals. It keeps a record of all con-
trol signals that form a logic statement. For example,
assume the following statement was recognized by the
parser as one to be monitored.

(A XOR B) AND C

The analyzer created a table of all possible combina-
tions of logic values for A, B, and C; it then recorded
which ones were achieved. At the start of simulation,
there was zero coverage achieved.

ABC Achieved
000 No
001 No
010 No
011 No
100 No
101 No
110 No
111 No

Achieved coverage 5 0 percent

Further assume that during one of the simulation
tests generated by the Random Exerciser, A assumed
both 0 and 1 logic states, while B and C remained con-
stantly at 0. At the end of simulation, the state of the
table would be the following:

ABC Achieved
000 Yes
001 No
010 No
011 No
100 Yes
101 No
110 No
111 No

Achieved coverage = 25 percent
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Report Generator The report generator application
gathered all tables created by the analyzer and gener-
ated a report file indicating which combinations were
not achieved. The report file was then reviewed by the
verification team and by the logic design team.

The report pointed out deficiencies in the verifica-
tion tests. The verification team created more tests
that would increase the “yes” count in the “Achieved”
column. For the example shown above, new tests
might be created that would make signals B and C
assume both 0 and 1 logic states.

The report also pointed out faults in the design,
such as redundant logic. In the example shown, the
logic that produces signal B might be the same as the
logic that produces signal C, a case of redundant logic.

The FC tool proved to be an invaluable aid to the
verification process. It was a transparent addition to the
simulation environment. With FC, the incurred degra-
dation in compilation and simulation time was negligi-
ble. It performed two types of coverage analysis:
exhaustive combinatorial analysis (as was described
above) and bit-toggle analysis, which was used for vec-
tored signals such as data and address buses. Perhaps
the most valuable feature of the tool was the fact that it
replaced the time-consuming and compute-intensive
process of fault grading the physical design to verify test
coverage. FC established a new measure of test cover-
age, the percentage of achieved coverage. In the above
example, the calculated coverage would be two out of
eight possible achievable combinations, or 25 percent.

For the verification of the cached CPU module, the
FC tool achieved a final test coverage of 95.3 percent.

Module Design Process

As the first step in the module design process, we used
the Powerview schematic editor, part of the Viewlogic
CAD tool suite, for schematic capture. An internally
developed tool, V2LD, converted the schematic to a
form that could be simulated by DECSIM. This process
was repeated until DECSIM ran without errors.

During this time, the printed circuit (PC) layout of
the module was proceeding independently, using the
ALLEGRO CAD tools. The layout process was partly
manual and partly automated with the CCT router,
which was effective in following the layout engineer’s
design rules contained in the DO files.

Each version of the completed layout was translated
to a format suitable for signal integrity modeling,
using the internally developed tools ADSconvert and
MODULEX. The MODULEX tool was used to extract
a module’s electrical parameters from its physical
description. Signal integrity modeling was performed
with the HSPICE analog simulator. We selected
HSPICE because of its universal acceptance by the

industry. Virtually all component vendors will, on
request, supply HSPICE models of their products.
Problems detected by HSPICE were corrected either
by layout modifications or by schematic changes. The
module design process flow is depicted in Figure 5.

Software Tools and Models
Three internally developed tools were of great value.
One was MSPG, which was used to display the
HSPICE plots; another was MODULEX, which auto-
matically generated HSPICE subcircuits from PC
layout files and performed cross-talk calculations.
Cross-talk amplitude violations were reported by
MODULEX, and the offending PC traces were moved
to reduce coupling. Finally, SALT, a visual PC display
tool, was used to verify that signal routing and branch-
ing conformed to the design requirements.

One of the important successes was in data line
modeling, where the signal lengths from the RAMs 
to the microprocessor and the transceivers were very
critical. By using the HSPICE .ALTER statement and
MODULEX subcircuit generator command, we could
configure a single HSPICE deck to simulate as many as
36 data lines. As a result, the entire data line group
could be simulated in only four HSPICE runs. In an
excellent example of synergy between tools, the script
capability of the MSPG plotting tool was used to
extract, annotate, and create PostScript files of wave-
form plots directly from the simulation results, with-
out having to manually display each waveform on the
screen. A mass printing command was then used to
print all stored PostScript files.

Another useful HSPICE statement was .MEASURE,
which measured signal delays at the specified threshold
levels and sent the results to a file. From this, a separate
program extracted clean delay values and calculated the
maximum and minimum delays, tabulating the results
in a separate file. Reflections crossing the threshold
levels caused incorrect results to be reported by 
the .MEASURE statement, which were easily seen in
the tabulation. We then simply looked at the waveform
printout to see where the reflections were occurring.
The layout engineer was then asked to modify those
signals by changing the PC trace lengths to either the
microprocessor or the transceiver. The modified signals
were then resimulated to verify the changes.

Timing Verification
Overall cache timing was verified with the Timing
Designer timing analyzer from Chronology Corpor-
ation. Relevant timing diagrams were drawn using 
the waveform plotting facility, and delay values and
controlling parameters such as the microprocessor
cycle interval, read speed, wave, and other constants
were entered into the associated spreadsheet. All
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delays were expressed in terms of HSPICE-simulated
values and those constants, as appropriate. This
method simplified changing parameters to try various
“what if ” strategies. The timing analyzer would
instantly recalculate the delays and the resulting mar-
gins and report all constraint violations. This tool was
also used to check timing elsewhere on the module,
outside of the cache area, and it provided a reasonable
level of confidence that the design did not contain any
timing violations. 

Signal Integrity
In high-speed designs, where signal propagation times
are a significant portion of the clock-to-clock interval,
reflections due to impedance mismatches can degrade
the signal quality to such an extent that the system will
fail. For this reason, signal integrity (SI) analysis is an
important part of the design process. Electrical con-
nections on a module can be made following a direct

point-to-point path, but in high-speed designs, many
signals must be routed in more complicated patterns.
The most common pattern involves bringing a signal
to a point where it branches out in several directions,
and each branch is connected to one or more
receivers. This method is referred to as treeing.

The SI design of this module was based on the
principle that component placement and proper sig-
nal treeing are the two most important elements of 
a good SI design. However, ideal component place-
ment is not always achievable due to overriding factors
other than SI. This section describes how successful
design was achieved in spite of less than ideal compo-
nent placement.

Data Line Length Optimization 
Most of the SI work was directed to optimizing the 
B-cache, which presented a difficult challenge because
of long data paths. The placement of major module
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data bus components (microprocessor and data trans-
ceivers) was dictated by the enclosure requirements
and the need to fit four CPUs and eight memory mod-
ules into the system box. Rather than allowing the
microprocessor heat-sink height to dictate module
spacing, the system designers opted for fitting smaller
memory modules next to the CPUs, filling the space
that would have been left empty if module spacing
were uniform. As a consequence, the microprocessor
and data transceivers had to be placed on opposite
ends of the module, which made the data bus exceed
11 inches in length. Figure 6 shows the placement of
the major components.

Each cache data line is connected to four compo-
nents: the microprocessor chip, two RAMs, and the
bus transceiver. As shown in Table 1, any one of these
components can act as the driver, depending on the
transaction in progress. 

The goal of data line design was to obtain clean sig-
nals at the receivers. Assuming that the microproces-
sor, RAMs, and the transceiver are all located in-line
without branching, with the distance between the two
RAMs near zero, and since the  positions of the micro-
processor and the transceivers are fixed, the only vari-
able is the location of the two RAMs on the data line.
As shown in the waveform plots of Figures 7 and 8,
the quality of the received signals is strongly affected
by this variable. In Figure 7, the reflections are so large
that they exceed threshold levels. By contrast, the
reflections in Figure 8 are very small, and their wave-
forms show signs of cancellation. From this it can 
be inferred that optimum PC trace lengths cause the
reflections to cancel. A range of acceptable RAM posi-
tions was found through HSPICE simulation. The
results of these simulations are summarized in Table 2.
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Table 1
Data Line Components

Transaction Driver Receiver

Private cache read RAM Microprocessor
Private cache write Microprocessor RAM
Cache fill Transceiver RAM and microprocessor
Cache miss with victim RAM Transceiver
Write block Microprocessor RAM and transceiver



In the series of simulations given in Table 2, the
threshold levels were set at 1.1 and 1.8 volts. This was
justified by the use of perfect transmission lines. The
lines were lossless, had no vias, and were at the lowest
impedance level theoretically possible on the module
(55 ohms). The entries labeled SR in Table 2 indicate
unacceptably large delays caused by signal reflections
recrossing the threshold levels. Discarding these
entries leaves only those with microprocessor-to-
RAM distance of 3 or more inches and the RAM-
to-transceiver distance of at least 6 inches, with the total
microprocessor-to-transceiver distance not exceeding
11 inches. The layout was done within this range, and
all data lines were then simulated using the network
subcircuits generated by MODULEX with threshold
levels set at 0.8 and 2.0 volts. These subcircuits
included the effect of vias and PC traces run on several
signal planes. That simulation showed that all but 
12 of the 144 data- and check-bit lines had good sig-
nal integrity and did not recross any threshold levels.
The failing lines were recrossing the 0.8-volt thresh-
old at the transceiver. Increasing the length of the 
RAM-to-transceiver segment by 0.5 inches corrected
this problem and kept signal delays within accept-
able limits.

Approaches other than placing the components 
in-line were investigated but discarded. Extra signal
lengths require additional signal layers and increase
the cost of the module and its thickness.

RAM Clock Design
We selected Texas Instruments’ CDC2351 clock drivers
to handle the RAM clock distribution network. The
CDC2351 device has a well-controlled input-to-output
delay (3.8 to 4.8 nanoseconds) and 10 drivers in each
package that are controlled from one input. The fairly
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Table 2
Acceptable RAM Positions Found with HSPICE Simulations 

PC Trace Length Write Delay Read Delay 
(Inches) (Nanoseconds) (Nanoseconds)

Microprocessor RAM to Microprocessor RAM to RAM to
to RAM Transceiver to RAM Microprocessor Transceiver

Rise Fall Rise Fall Rise Fall
2 7 0.7 2.3 0.9 SR 1.1 1.4
2 8 0.7 2.7 SR SR 1.5 1.4
2 9 0.6 3.1 SR SR 1.7 1.5
3 6 0.9 2.1 1.2 1.1 0.9 1.0
3 7 0.9 2.4 1.0 1.1 1.4 1.3
3 8 0.9 2.9 1.0 1.3 1.5 1.3
4 5 1.1 1.8 1.2 1.4 0.9 SR
4 6 1.3 2.2 1.4 1.4 0.9 1.0
4 7 1.2 2.6 1.3 1.4 1.2 1.2
5 4 1.5 1.7 1.5 1.7 SR SR
5 5 1.4 2.1 1.8 1.7 SR SR
5 6 1.6 2.4 1.7 1.4 0.9 1.2

Note: Signal reflections recrossing the threshold levels caused unacceptable delays; these entries were discarded.



long delay through the part was beneficial because, 
as shown in Figure 2, clock delay is needed to achieve
adequate setup times. Two CDC2351 clock drivers,
mounted back to back on both sides of the PC board,
were required to deliver clock signals to the 17 RAMs. 

The RAMs were divided into seven groups based on
their physical proximity. As shown in Figure 9, there
are four groups of three, two groups of two, and a sin-
gle RAM. Each of the first six groups was driven by
two clock driver sections connected in parallel through
resistors in series with each driver to achieve good load
sharing. The seventh group has only one load, and one
CDC2351 section was sufficient to drive it. HSPICE
simulation showed that multiple drivers were needed
to adequately drive the transmission line and the load.
The load connections were made by short equal
branches of fewer than two inches each. The length of
the branches was critical for achieving good signal
integrity at the RAMs.

Data Line Damping
In the ideal world, all signals switch only once per clock
interval, allowing plenty of setup and hold time. In the
real world, however, narrow pulses often precede valid
data transitions. These tend to create multiple reflec-
tions superimposed on the edges of valid signals. The
reflections can recross the threshold levels and increase
the effective delay, thus causing data errors.

Anticipating these phenomena, and having seen
their effects in previous designs, designers included

series-damping resistors in each cache data line, as
shown in Figure 10. Automatic component placement
machines and availability of resistors in small packages
made mounting 288 resistors on the module a painless
task, and the payoff was huge: nearly perfect signals
even in the presence of spurious data transitions
caused by the microprocessor’s architectural features
and RAM characteristics. Figure 11 illustrates the han-
dling of some of the more difficult waveforms.

Performance Features

This section discusses the performance of the
AlphaServer 4100 system derived from the physical
aspects of the CPU module design and the effects of
the duplicate TAG store.

Physical Aspects of the Design
As previously mentioned, the synchronous cache was
chosen primarily for performance reasons. The archi-
tecture of the Alpha 21164 microprocessor is such that
its data bus is used for transfers to and from main mem-
ory (f ills and writes) as well as its B-cache.8 As system
cycle times decrease, it becomes a challenge to manage
memory transactions without requiring wait cycles
using asynchronous cache RAM devices. For example,
a transfer from the B-cache to main memory (victim
transaction) has the following delay components:

1. The microprocessor drives the address off-chip.
2. The address is fanned out to the RAM devices.
3. The RAMs retrieve data.
4. The RAMs drive data to the bus interface device.
5. The bus interface device requires a setup time. 

Worst-case delay values for the above items might
be the following:

1. 2.6 nanoseconds8

2. 5.0 nanoseconds
3. 9.0 nanoseconds
4. 2.0 nanoseconds
5. 1.0 nanoseconds
Total: 19.6 nanoseconds

Thus, for system cycle times that are significantly
shorter than 20 nanoseconds, it becomes impossible
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to access the RAM without using multiple cycles per
read operation, and since the full transfer involving
memory comprises four of these operations, the
penalty mounts considerably. Due to pipelining, the
synchronous cache enables this type of read operation
to occur at a rate of one per system cycle, which is 
15 nanoseconds in the AlphaServer 4100 system,
greatly increasing the bandwidth for data transfers to
and from memory. Since the synchronous RAM is 
a pipeline stage, rather than a delay element, the win-
dow of valid data available to be captured at the bus
interface is large. By driving the RAMs with a delayed
copy of the system clock, delay components 1 and 2
are hidden, allowing faster cycling of the B-cache.

When an asynchronous cache communicates with
the system bus, all data read out from the cache must
be synchronized with the bus clock, which can add 
as many as two clock cycles to the transaction. The
synchronous B-cache avoids this performance penalty
by cycling at the same rate as the system bus.2

In addition, the choice of synchronous RAMs pro-
vides a strategic benefit; other microprocessor vendors
are moving toward synchronous caches. For example,
numerous Intel Pentium microprocessor-based sys-
tems employ pipeline-burst, module-level caches using
synchronous RAM devices. The popularity of these
systems has a large bearing on the RAM industry.9 It is
in DIGITAL’s best interest to follow the synchronous
RAM trend of the industry, even for Alpha-based
systems, since the vendor base will be larger. These
vendors will also be likely to put their efforts into
improving the speeds and densities of the best-selling
synchronous RAM products, which will facilitate
improving the cache performance in future variants of
the processor modules.

Effect of Duplicate Tag Store (DTAG)
As mentioned previously, the DTAG provides a mech-
anism to filter irrelevant bus transactions from the

Alpha 21164 microprocessor. In addition, it provides
an opportunity to speed up memory writes by the I/O
bridge when they modify an amount of data that is
smaller than the cache block size of 64 bytes (partial
block writes).

The AlphaServer 4100 I/O subsystem consists of 
a PCI mother board and a bridge. The PCI mother
board accepts I/O adapters such as network interfaces,
disk controllers, or video controllers. The bridge pro-
vides the interface between PCI devices and between
the CPUs and system memory. The I/O bridge reads
and writes memory in much the same way as the CPUs,
but special extensions are built into the system bus pro-
tocol to handle the requirements of the I/O bridge.

Typically, writes by the I/O bridge that are smaller
than the cache block size require a read-modify-write
sequence on the system bus to merge the new data
with data from main memory or a processor’s cache.
The AlphaServer 4100 memory system typically trans-
fers data in 64-byte blocks; however, it has the ability
to accept writes to aligned 16-byte locations when the
I/O bridge is sourcing the data. When such a partial
block write occurs, the processor module checks the
DTAG to determine if the address hits in the Alpha
21164 cache hierarchy. If it misses, the partial write is
permitted to complete unhindered. If there is a hit,
and the processor module contains the most recently
modified copy of the data, the I/O bridge is alerted 
to replay the partial write as a read-modify-write
sequence. This feature enhances DMA write perfor-
mance for transfers smaller than 64 bytes since most of
these references do not hit in the processor cache.4

Conclusions

The synchronous B-cache allows the CPU modules 
to provide high performance with a simple architec-
ture, achieving the price and performance goals of 
the AlphaServer 4100 system. The AlphaServer 4100
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CPU design team pioneered the use of synchronous
RAMs in an Alpha microprocessor-based system
design, and the knowledge gained in bringing a design
from conception to volume shipment will benefit
future upgrades in the AlphaServer 4100 server family,
as well as products in other platforms.
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