
The AlphaServer 4100 is a symmetric multiprocess-
ing system based on the Alpha 21164 64-bit RISC
microprocessor. This midrange system supports one
to four CPUs, one to four 64-bit-wide peer bridges to
the peripheral component interconnect (PCI), and
one to four logical memory slots. The goals for the
AlphaServer 4100 system were fast CPU performance,
low memory latency, and high memory and I/O
bandwidth. One measure of success in achieving these
goals is the AIM benchmark multiprocessor perfor-
mance results. The AlphaServer 4100 system was
audited at 3,337 peak jobs per minute, with a sus-
tained number of 3,018 user loads, and won the AIM
Hot Iron price/performance award in October 1996.1

The subject of this paper is the contribution of the
I/O subsystem to these high-performance goals. In an
in-house test, I/O performance of an AlphaServer
4100 system based on a 300-megahertz (MHz)
processor shows a 10 to 19 percent improvement in
I/O when compared with a previous-generation
midrange Alpha system based on a 350-MHz proces-
sor. Reduction in CPU utilization is particularly bene-
ficial for applications that use small transfers, e.g.,
transaction processing.

I/O Subsystem Goals

The goal for the AlphaServer 4100 I/O subsystem was
to increase overall system performance by

■ Reducing CPU and system bus utilization for all
applications

■ Delivering full I/O bandwidth, specifically, a band-
width limited only by the PCI standard protocol,
which is 266 megabytes per second (MB/s) on
64-bit option cards and 133 MB/s on 32-bit
option cards

■ Minimizing latency for all direct memory access
(DMA) and programmed I/O (PIO) transactions

Our discussion focuses on several innovative
techniques used in the design of the I/O subsystem
64-bit-wide peer host bus bridges that dramatically
reduce CPU and bus utilization and deliver full PCI
bandwidth:

Digital Technical Journal Vol. 8 No. 4 1996 61

High Performance I/O
Design in the AlphaServer
4100 Symmetric
Multiprocessing System

Samuel H. Duncan
Craig D. Keefer
Thomas A. McLaughlin

The DIGITAL AlphaServer 4100 symmetric multi-
processing system is based on the Alpha 64-bit
RISC microprocessor and is designed for fast
CPU performance, low memory latency, and
high memory and I/O bandwidth. The server’s
I/O subsystem contributes to the achievement
of these goals by implementing several innova-
tive design techniques, primarily in the system
bus-to-PCI bus bridge. A partial cache line write
technique for small transactions reduces traffic
on the system bus and improves memory latency.
A design for deadlock-free peer-to-peer transac-
tions across multiple 64-bit PCI bus bridges reduces
system bus, PCI bus, and CPU utilization by as
much as 70 percent when measured in DIGITAL
AlphaServer 4100 MEMORY CHANNEL clusters.
Prefetch logic and buffering supports very large
bursts of data without stalls, yielding a system
that can amortize overhead and deliver perfor-
mance limited only by the PCI devices used in
the system.

■ A partial cache line write technique for coherent
DMA writes. This technique permits an I/O device
to insert data that is smaller than a cache line, or
block, into the cache-coherent domain without first
obtaining ownership of the cache block and per-
forming a read-modify-write operation. Partial
cache line writes reduce traffic on the system bus
and improve latency, particularly for messages
passed in a MEMORY CHANNEL cluster.2

■ Support for device-initiated transactions that target
other devices (peers) across multiple (peer) PCI
buses. Peer-to-peer transactions reduce system
bus utilization, PCI bus utilization, and CPU uti-
lization by as much as 70 percent when measured in
MEMORY CHANNEL clusters. In testing, we ran
a MEMORY CHANNEL application without peer-
to-peer DMA, and observed 85 percent CPU
utilization; running the same application with peer-
to-peer DMA enabled, we observed 15 percent
CPU utilization. The peer-to-peer technique is
successfully implemented on the AlphaServer 4100
system without causing deadlocks.

■ Large bursts of PCI-device-initiated DMA data to
or from system memory. I/O subsystem support
for large bursts of DMA data enables efficient PCI
bus utilization because fixed bus latency can be
amortized over these large transactions.

■ Prefetched read data and posted write data buffer-
ing designed to keep up with the highest perfor-
mance PCI devices. When used in combination
with the PCI delayed-read protocol, the buffering
and prefetching approach allows the system to
avoid PCI bus stalls introduced by the bridge dur-
ing PCI-device-initiated transactions.

The following overview of the system concentrates
on the areas in which these techniques are used to
enhance performance, that is, efficiency in the system
bus and in the PCI bus bridge. In subsequent sections,
we describe in greater detail the performance issues,
other possible approaches to resolving the issues, and
the techniques we developed. We conclude the paper
with performance results.

AlphaServer 4100 System Overview

The AlphaServer 4100 system shown in Figure 1
includes four CPUs connected to the system bus,
which comprises the data and error correction code
(ECC) and the command and address lines. Also
connected to the system bus are main memory and
a single module with two independent peer PCI bus
bridges. The single module, the PCI bridge module,
provides the physical and the logical bridge between
the system bus and the PCI buses. Each independent
peer PCI bus bridge is constructed of a set of three

application-specific integrated circuit (ASIC) chips,
one control chip, and two sliced data path chips.

The two independent PCI bus bridges are the inter-
faces between the system bus and their respective PCI
buses. A PCI bus is 64 or 32 bits wide, transferring
data at a peak of 266 MB/s or 133 MB/s, respectively.
In the AlphaServer 4100 system, the PCI buses are
64 bits wide.

The PCI buses connect to a PCI backplane module
with a number of expansion slots and a bridge to the
Extended Industry Standard Architecture (EISA) bus.
In Figure 1, each PCI bus is shown to support up to
four devices in option slots.

The AlphaServer 4000 series also supports a config-
uration in which two of the CPU cards are replaced
with two additional independent peer PCI bus
bridges. In the quad PCI bus configuration, there are
16 option slots available for PCI devices, at the cost
of bounding the system to a maximum of two CPUs
and two logical memory slots. This quad PCI bus con-
figuration is shown in Figure 2.

Most of the techniques described in this paper are
implemented in the PCI bus bridge. The partial cache
line write technique, presented next, is also designed
into the protocol on the system bus and into the CPU
cards.

Improvements in CPU and System Bus Utilization
through Use of Partial Cache Line Writes

Inefficient use of system resources can limit perfor-
mance on heavily loaded systems. System designers
must be attentive to potential performance bottle-
necks beyond the commonly addressed CPU speed,
cache loop time, and CPU memory latency. Our focus
in the I/O subsystem design was to balance system
performance in the face of a wide range of I/O device
behaviors. We therefore implemented techniques that
minimize the load on the PCI bus, the system bus, and
the CPUs. The technique described in this section—
partial cache line writes—reduces the load on the sys-
tem bus and improves overall system performance.

Many first- and second-generation PCI controller
devices were designed to operate in platforms that
support 32-byte cache lines and 16-byte write buffers.
It is common for an older PCI device to limit the
amount of DMA data it reads or writes to match this
characteristic of computers that were on the market at
the time those devices were designed. Some classes of
devices will, by their nature, always limit the amount
of data in a burst transaction.

As do most Alpha platforms, the AlphaServer 4100
system supports a 64-byte cache line that is twice that
of other common systems. When a PCI device per-
forms a memory write of less than a complete cache
line, the system must merge the data into a cache line
while maintaining a consistent (coherent) view of

62 Digital Technical Journal Vol. 8 No. 4 1996

Digital Technical Journal Vol. 8 No. 4 1996 63

STANDARD I/O PORTS

PCI BUS BRIDGE

CPU CARD

CD-ROM

PCI BUS BRIDGE

EISA
BRIDGE

CPU CARD CPU CARD CPU CARD

MEMORY

FOUR PCI
EXPANSION
SLOTS

PCI BACKPLANE MODULE

ONE DEDICATED
PCI AND THREE
SHARED PCI/EISA
SLOTS

PCI BRIDGE MODULE

COMMAND/ADDRESS
DATA AND ECC

SYSTEM BUS

64-BIT PCI 1 64-BIT PCI 0

Figure 1
AlphaServer 4100 System with Four CPUs, Two 64-bit Buses

STANDARD I/O PORTS

PCI BUS BRIDGE

CPU CARD

CD-ROM

PCI BUS BRIDGE

EISA
BRIDGE

CPU CARD

MEMORY

FOUR PCI
EXPANSION
SLOTS

PCI BACKPLANE MODULE

ONE DEDICATED
PCI AND THREE
SHARED PCI/EISA
SLOTS

PCI BRIDGE MODULE

PCI BUS BRIDGE PCI BUS BRIDGE

PCI BRIDGE MODULE

64-BIT PCI 1 64-BIT PCI 0

FOUR PCI
EXPANSION
SLOTS

FOUR PCI
EXPANSION
SLOTS

64-BIT PCI 3 64-BIT PCI 2

COMMAND/ADDRESS
DATA AND ECC

SYSTEM BUS

Figure 2
AlphaServer 4000 System with Two CPUs, Four 64-bit Buses

memory for all CPUs on the system bus. This merging
of write data into the cache-coherent domain is typi-
cally done on the PCI bus bridge, which reads the
cache line, merges the new bytes, and writes the cache
line back out to memory. The read-modify-write must
be performed as an atomic operation to maintain
memory consistency. For the duration of the atomic
read-modify-write operation, the system bus is busy.
Consequently, a write of less than a cache line results
in a read-modify-write that takes at least three times as
many cycles on the system bus as a simple 64-byte-
aligned cache line write.

For example, if we had used an earlier DIGITAL
implementation of a system bus protocol on the
AlphaServer 4100 system, an I/O device operation
on the PCI that performed a single 16-byte-aligned
memory write would have consumed system bus
bandwidth that could have moved 256 bytes of data,
or 16 times the amount of data. We therefore had to
find a more efficient approach to writing subblocks
into the cache-coherent domain.

We first examined opportunities for efficiency gains
in the memory system.3 The AlphaServer 4100 mem-
ory system interface is 16 bytes wide; a 64-byte cache
line read or write takes four cycles on the system bus.
The memory modules themselves can be designed to
mask one or more of the writes and allow aligned
blocks that are multiples of 16 bytes to be written to
memory in a single system bus transaction. The prob-
lem with permitting a less than complete cache line
write, i.e., less than 64 bytes, is that the write goes to
main memory, but the only up-to-date/complete
copy of a cache line may be in a CPU card’s cache.

To permit the more efficient partial cache line
write operations, we modified the system bus cache-
coherency protocol. When a PCI bus bridge issues
a partial cache line write on the system bus, each CPU
card performs a cache lookup to see if the target of
the write is dirty. In the event that the target cache
block is dirty, the CPU signals the PCI bus bridge
before the end of the partial write. On dirty partial
cache line write transactions, the bridge simply per-
forms a second transaction as a read-modify-write. If
the target cache block is not dirty, the operation com-
pletes in a single system bus transaction.

Address traces taken during product development
were simulated to determine the frequency of dirty
cache blocks that are targets of DMA writes. Our sim-
ulations showed that, for the address trace we used,
frequency was extremely rare. Measurement taken
from several applications and benchmarks confirmed
that a dirty cache block is almost never asserted with
a partial cache line write.

The DMA transfer of blocks that are aligned
multiples of 16 bytes but less than a cache line is four
times more efficient in the 4100 system than in earlier
DIGITAL implementations.

Movement of blocks of less than 64 bytes is
important to application performance because there
are high-performance devices that move less than
64 bytes. One example is DIGITAL’s MEMORY
CHANNEL adapter, which moves 32-byte blocks in a
burst.2 As MEMORY CHANNEL adapters move large
numbers of blocks that are all less than a cache line of
data, the I/O subsystem partial cache line write feature
improves system bus utilization and eliminates the
system bus as a bottleneck. Message latency across the
fabric of an AlphaServer 4100 MEMORY CHANNEL
cluster (version 1.0) is approximately 6 microseconds
(ms). There are two DMA writes in the message: the
first is a message, and the second is a flag to validate the
message. These DMA writes on the target AlphaServer
4100 contribute to message latency. The improve-
ment in latency provided by the partial cache line write
feature is approximately 0.5 ms per write. With two
writes per message, latency is reduced by approxi-
mately 15 percent over an AlphaServer 4100 system
with the partial cache line write feature. With version
1.5 of MEMORY CHANNEL adapters, net latency
will improve by about 3 ms, and the effect of partial
cache line writes will approach a 30 percent improve-
ment in message latency.

In summary, the challenge is to efficiently move a
block of data of a common size (multiple of 16 bytes)
that is smaller than a cache line into the cache-coherent
domain. Without any further improvement, the tech-
nique reduces system bus utilization by as much as a
factor of four. This technique allows subblocks to be
merged without incurring the overhead of read-modify-
write, yet maintains cache coherency. The only draw-
back to the technique is some increased complexity in
the CPU cache controller to support this mode. We
considered the alternative of adding a small cache to the
PCI bridge. Writes into the same memory region that
occur within a short period of time could merge directly
into a cache. This approach adds significant complexity
and increases performance only if transactions that tar-
get the same cache line are very close together in time.

Peer-to-Peer Transaction Support

System bus and PCI bus utilization can be optimized
for certain applications by limiting the number of times
the same block of data moves through the system.
As noted in the section AlphaServer 4100 System
Overview, the PCI subsystem can contain two or four
independent PCI bus bridges. Our design allows exter-
nal devices connected to these separate peer PCI bus
bridges to share data without accessing main memory
and by using a minimal amount of host bus bandwidth.
In other words, external devices can effect direct access
to data on a peer-to-peer basis.

64 Digital Technical Journal Vol. 8 No. 4 1996

In conventional systems, a data file on a disk that is
requested by a client node is transferred by DMA from
the disk, across the PCI and the system bus, and into
main memory. Once the data is in main memory, a net-
work device can read the data directly in memory and
send it across the network to the client node. In a 4100
system, device peer-to-peer transaction circumvents
the transfer to main memory. However, peer-to-peer
transaction requires that the target device have certain
properties. The essential property is that the device tar-
get appear to the source device as if it is main memory.

The balance of this section explains how conven-
tional DMA reads and writes are performed on the
AlphaServer 4100 system, how the infrastructure for
conventional DMA can be used for peer-to-peer trans-
actions, and how deadlock avoidance is accomplished.

Conventional DMA
We extended the features of conventional DMA on the
AlphaServer 4100 system to support peer-to-peer
transaction. Conventional DMA in the 4100 system
works as follows.

Address space on the Alpha processor is 2,40 or 1 tera-
byte; the AlphaServer 4100 system supports up to
8 gigabytes (GB) of main memory. To directly address
all of memory without using memory management
hardware, an address must be 33 bits. (Eight GB is
equivalent to 233 bytes.)

Because the amount of memory is large compared to
address space available on the PCI, some sort of mem-
ory management hardware and software is needed to
make memory directly addressable by PCI devices.
Most PCI devices use 32-bit DMA addresses. To pro-
vide direct access for every PCI device to all of the sys-
tem address space, the PCI bus bridge has memory
management hardware similar to that which is used on

a CPU daughter card. Each PCI bridge to the system
bus has a translation look-aside buffer (TLB) that con-
verts PCI addresses into system bus addresses. The use
of a TLB permits hardware to make all of physical
memory visible through a relatively small region of
address space that we call a DMA window.

A DMA window can be specified as “direct
mapped” or “scatter-gather mapped.” A direct-
mapped DMA window adds an offset to the PCI
address and passes it on to the system bus. A scatter-
gather mapped DMA window uses the TLB to look up
the system bus address.

Figure 3 is an example of how PCI memory address
space might be allocated for DMA windows and for
PCI device control status registers (CSRs) and memory.

A PCI device initiates a DMA write by driving an
address on the bus. In Figure 4, data from PCI devices
0 and 1 are sent to the scatter-gather DMA windows;
data from PCI device 2 are sent to the direct-mapped
DMA window. When an address hits in one of the
DMA windows, the PCI bus bridge acknowledges
the address and immediately begins to accept write
data. While consuming write data in a buffer, the PCI
bus bridge translates the PCI address into a system
address. The bridge then arbitrates for the system bus
and, using the translated address, completes the write
transaction. The write transaction completes on the
PCI before it completes on the system bus.

A DMA read transaction has a longer latency than
a DMA write because the PCI bus bridge must first
translate the PCI address into a system bus address and
fetch the data before completing the transaction. That
is to say, the read transaction completes on the system
bus before it can complete on the PCI.

Figure 5 shows the address path through the PCI
bus bridge. All DMA writes and reads are ordered

Digital Technical Journal Vol. 8 No. 4 1996 65

8 MB PCI DEVICE CSRs

PCI DEVICE CSRs

PCI DEVICE PREFETCHABLE
MEMORY SPACE

DIRECT-MAPPED WINDOW 2

SCATTER-GATHER WINDOW 3

(UNUSED)

SCATTER-GATHER WINDOW 0

SCATTER-GATHER WINDOW 1

8 MB

112 MB

384 MB

512 MB

1 GB

1 GB

1 GB

1 GB

PCI MEMORY ADDRESS SPACE
(232 BYTES)

SYSTEM ADDRESS SPACE
(240 BYTES)

Figure 3
Example of PCI Memory Address Space Mapped to DMA Windows

through the outgoing queue (OQ) en route to the sys-
tem bus. DMA read data is passed through an incom-
ing queue (IQ) bypass by way of a DMA fill data buffer
en route to the PCI.

Note that the IQ orders CPU-initiated PIO transac-
tions. The IQ bypass is necessary for correct, dead-
lock-free operation of peer-to-peer transactions, which
are explained in the next section.

Following is an example of how a conventional
“bounce” DMA operation is used to move a file from a
local storage device to a network device. The example
illustrates how data is written into memory by one
device where it is temporarily stored. Later the data is
read by another DMA device. This operation is called
a “bounce I/O” because the data “bounces” off

66 Digital Technical Journal Vol. 8 No. 4 1996

DIRECT-
MAPPED
DMA
WINDOW

PCI DEVICE 1

PCI DEVICE 0

PCI DEVICE 2

PCI MEMORY
ADDRESS SPACE

SCATTER-GATHER
DMA WINDOWS

SYSTEM ADDRESS
SPACE

Figure 4
Example of PCI Device Reads or Writes to DMA Windows and Address Translation to System Bus Addresses

DMA
FILL
DATA

DMA WRITE
OR READ

PIO FILL

64-BIT PCI

DMA READ
PREFETCH
ADDRESS

INTERRUPTS

PCI BUS
BRIDGE

POSTED PIO
WRITES BYPASS
PENDED PIO
READS

IQ

OQ

SYSTEM BUS

Figure 5
Diagram of Data Paths in a Single PCI Bus Bridge

memory and out a network port, a common operation
for a network file server application.

Assume PCI device A is a storage controller and PCI
device B is a network device:

1. The storage controller, PCI device A, writes the file
into a buffer on the PCI bus bridge using an
address that hits a DMA window.

2. The PCI bridge translates the PCI memory address
into a system bus address and writes the data into
memory.

3. The CPU passes the network device a PCI memory
space address that corresponds to the system bus
address of the data in memory.

4. The network controller, PCI device B, reads the file
in main memory using a DMA window and sends
the data across the network.

If both controllers are on the same PCI bus segment
and if the storage controller (PCI device A) could
write directly to the network controller (PCI device
B), no traffic would be introduced on the system bus.
Traffic on the system bus is reduced by saving one
DMA write, possibly one copy operation, and one
DMA read. On the PCI bus, traffic is also reduced
because there is one transaction rather than two.
When the target of a transaction is a device other than
main memory, the transaction is called a peer-to-peer.
Peer-to-peer transactions on a single-bus system are
simple, bordering on trivial; but deadlock-free support
on a system with multiple peer PCI buses is quite a bit
more difficult.

This section has presented a high-level description
of how a PCI device DMA address is translated into
a system bus address and data are moved to or from
main memory. In the next section, we show how the
same mechanism is used to support device peer-to-
peer transactions and how traffic is managed for dead-
lock avoidance.

A Peer-to-Peer Link Mechanism
For direct peer-to-peer transactions to work, the target
device must behave as if it is main memory; that is,
it must have a target address in prefetchable PCI mem-
ory space.4 The PCI specification further states that
devices are not allowed to depend on completion of
a transaction as master.5 Two devices supported by
the DIGITAL UNIX operating system meet these
criteria today with some restrictions; these are the
MEMORY CHANNEL adapter noted earlier and
the Prestoserve NVRAM, a nonvolatile memory stor-
age device used as an accelerator for transaction
processing. The PNVRAM was part of the configura-
tion in which the AIM benchmark results cited in the
introduction were achieved.

Both conventional DMA and peer-to-peer trans-
actions work the same way from the perspective of

the PCI master: The device driver provides the master
device with a target address, size of the transfer, and
identification of data to be moved. In the case in which
a data file is to be read from a disk, the device driver
software gives the PCI device that controls the disk a
“handle,” which is an identifier for the data file and the
PCI target address to which the file should be written.
To reiterate, in a conventional DMA transaction, the
target address is in one of the PCI bus bridge DMA
windows. The DMA window logic translates the
address into a main memory address on the system bus.
In a peer-to-peer transaction, the target address is
translated to an address assigned to another PCI device.

Any PCI device capable of DMA can perform peer-
to-peer transactions on the AlphaServer 4100 system.
For example, in Figure 6, PCI device A can transfer
data to or from PCI device B without using any
resources or facilities in the system bus bridge. The use
of a peer-to-peer transaction is controlled entirely by
software: The device driver passes a target address to
PCI device A, and device A uses the address as the
DMA data source or destination.

If the target of the transaction is PCI device C, then
system services software allocates a region in a scatter-
gather map and specifies a translation that maps the
scatter-gather-mapped address on PCI bus 0 to a sys-
tem bus address that maps to PCI device C. This
address translation is placed in the scatter-gather map.
When PCI device A initiates a transaction, the address
matches one of the DMA windows that has been ini-
tialized for scatter-gather. The PCI bus bridge accepts
the transaction, looks up the translation in the scatter-
gather map, and uses a system address that maps
through PCI bus bridge 1 to hit PCI device C. The
transaction on the system bus is between the two PCI
bridges, with no involvement by memory or CPUs. In
this transaction, the system bus is utilized, but the data
is not stored in main memory. This eliminates the
intermediate steps and overhead associated with con-
ventional DMA, traditionally done by the “bounce” of
the data through main memory.

The features that allow software to make a device on
one PCI bus segment visible to a device on another are
all implicit in the scatter-gather mapping TLB. For
peer-to-peer transaction support, we extended the
range of translated addresses to include memory space
on peer PCI buses. This allows address space on one
independent PCI bus segment to appear in a window
of address space on a second independent peer PCI
bus segment. On the system bus, the peer transaction
hits in the address space of the other PCI bridge.

Deadlock Avoidance in Device Peer-to-Peer Transactions
The definition of deadlock, as it is solved in this
design, is the state in which no progress can be made
on any transaction across a bridge because the queues
are filled with transactions that will never complete.

Digital Technical Journal Vol. 8 No. 4 1996 67

A deadlock situation is analogous to highway gridlock
in which two lines of automobiles face each other on
a single-lane road; there is no room to pass and no way
to back up. Rules for deadlock avoidance are analo-
gous to the rules for directing vehicle traffic on a nar-
row bridge.

An example of peer-to-peer deadlock is one in
which two PCI devices are dependent on the comple-
tion of a write as masters before they will accept writes
as targets. When these two devices target one another,
the result is deadlock; each device responds with
RETRY to every write in which it is the target, and
each device is unable to complete its current write
transaction because it is being retried.

A device that does not depend on completion of a
transaction as master before accepting a transaction as
target may also cause deadlocks in a bridged environ-
ment. Situations can occur on a bridge in which multi-
ple outstanding posted transactions must be kept in
order. Careful design is required to avoid the potential
for deadlock.

The design for deadlock-free peer-to-peer transaction
support in the AlphaServer 4100 system includes the

■ Implementation of PCI delayed-read transactions
■ Use of bypass paths in the IQ and in read-return

data

This section assumes that the reader is familiar with
the PCI protocol and ordering rules.4

Figure 6 shows the data paths through two PCI
bus bridges. Transactions pass through these bridges
as follows:

■ CPU software-initiated PIO reads and PIO writes
are entries in the IQ.

■ Device peer-to-peer transactions targeting devices
on peer PCI segments also use the IQ.

■ PCI-device–initiated reads and writes (DMA or
peer-to-peer), interrupts, and PIO fill data are
entries in the OQ.

■ The multiplexer selecting entries in the IQ allows
writes (PIO or peer-to-peer) to bypass delayed
(pended) reads (PIO or peer-to-peer).

■ The read prefetch address register permits read-
return in the OQ data to bypass PCI delayed reads.

The two bypass paths around the IQ and OQ are
required to avoid deadlocks that may occur during
device peer-to-peer transactions. All PCI ordering rules
are satisfied from the point of view of any single device
in the system. The following example demonstrates
deadlock avoidance in a device peer-to-peer write and
a device peer-to-peer read, referencing Figure 7.

68 Digital Technical Journal Vol. 8 No. 4 1996

DMA
FILL
DATA

DMA WRITE
OR READ

PIO FILL

PCI 0

PCI DEVICE A

PCI 1

DMA READ
PREFETCH
ADDRESS

INTERRUPTS

PCI DEVICE E

PCI DEVICE B

PCI DEVICE F

PCI DEVICE C

PCI DEVICE G

PCI DEVICE D

PCI DEVICE H

BRIDGE 0

POSTED PIO
WRITES BYPASS
PENDED PIO
READS

IQ

OQ
DMA
FILL
DATA

DMA WRITE
OR READ

PIO FILL

DMA READ
PREFETCH
ADDRESS

INTERRUPTS

BRIDGE 1

POSTED PIO
WRITES BYPASS
PENDED PIO
READS

IQ

OQ

CPU 0 CPU 1 CPU 2 CPU 3 MAIN
MEMORY

COMMAND/ADDRESS
DATA AND ECC

SYSTEM BUS

Figure 6
AlphaServer 4100 System Diagram Showing Data Paths through PCI Bus Bridges

The configuration in the example is an AlphaServer
4100 system with four CPUs and two PCI bus bridges.
Devices A and C are simple master-capable DMA
controllers, and devices B and D are simple targets,
e.g., video RAMs, network controllers, PNVRAM, or
any device with prefetchable memory as defined in the
PCI standard.

Example of device peer-to-peer write block comple-
tion of pended PIO read-return data:

1. PCI device A initiates a peer-to-peer burst write
targeting PCI device D.

2. Write data enters the OQ on bridge 0, filling three
posted write buffers.

3. The target bridge, bridge 1, writes data from
bridge 0.

4. When the IQ on bridge 1 hits a threshold, it
uses the system bus flow-control to hold off the
next write.

5. As each 64-byte block of write data is retired out
of the IQ on bridge 1, an additional 64-byte
(cache line size) write of data is allowed to move
from the OQ on bridge 0 to the IQ on bridge 1.

6. If the OQ on bridge 0 is full, bridge 0 will discon-
nect from the current PCI transaction and will
retry all transactions on PCI 0 until an OQ slot
becomes available.

7. PCI device C initiates a peer-to-peer burst write,
targeting PCI device B; the same scenario follows
as steps 1 through 6 above but in the opposite
direction.

8. CPU 0 posts a read of PCI memory space on PCI
device E.

9. CPU 1 posts a read of PCI memory space on PCI
device G.

10. CPU 2 posts a read of PCI memory space on PCI
device F.

11. CPU 3 posts a read of PCI memory space on PCI
device H.

12. Deadlock:
– Both OQs are stalled waiting for the corre-

sponding IQ to complete an earlier posted write.
– The design has two PIO read-return data (fill)

buffers; each is full.
– The PIO read-return data must stay behind the

posted writes to satisfy PCI-specified posted
write buffer flushing rules.

– A third read is at the bottom of each IQ, and it
cannot complete because there is no fill buffer
available in which to put the data.

To avoid this deadlock, posted writes are allowed
to bypass delayed (pended) reads in the IQ, as

shown in Figure 6. In the AlphaServer 4100 deadlock-
avoidance design, the IQ will always empty, which in
turn allows the OQ to empty.

Note that the IQ bypass logic implemented for
deadlock avoidance on the AlphaServer 4100 system
may appear to violate General Rule 5 from the PCI
specification, Appendix E:

A read transaction must push ahead of it through
the bridge any posted writes originating on
the same side of the bridge and posted before the
read. Before the read transaction can complete on
its originating bus, it must pull out of the bridge
any posted writes that originated on the opposite
side and were posted before the read command
completes on the read-destination bus.4

In fact, because of the characteristics of the CPUs
and the flow-control mechanism on the system bus, all
rules are followed as observed from any single CPU or
PCI device in the system. Because reads that target
a PCI address are always split into separate request and
response transactions, the appropriate ordering rule
for this case is PCI Specification Delayed Transaction
Rule 7 in Section 3.3.3.3 of the PCI specification:

Delayed Requests and Delayed Completions
have no ordering requirements with respect to
themselves or each other. Only a Delayed Write
Completion can pass a Posted Memory Write. A
Posted Memory Write must be given an oppor-
tunity to pass everything except another Posted
Memory Write.4

Also note that, as shown in Figure 6, the DMA fill
data buffers bypass the IQ, apparently violating
General Rule 5. The purpose of General Rule 5 is to
provide a mechanism in a device on one side of a bridge
to ensure that all posted writes have completed. This
rule is required because interrupts on PCI are side-
band signals that may bypass all posted data and signal
completion of a transaction before the transaction has
actually completed. In the AlphaServer 4100 system,
all writes to or from PCI devices are strictly ordered,
and there is no side-band signal notifying a PCI device
of an event. These system characteristics allow the PCI
bus bridge to permit DMA fill data (in PCI lexicon, this
could be a delayed-read completion, or read data in a
connected transaction) to bypass posted memory
writes in the IQ. This bypass is necessary to limit PCI
target latency on DMA read transactions.

We have presented two IQ bypass paths in the
AlphaServer 4100 design. We describe one IQ bypass
as a required feature for deadlock avoidance in peer-
to-peer transactions between devices on different
buses. The second bypass is required for performance
reasons and is discussed in the section I/O Bandwidth
and Efficiency.

Digital Technical Journal Vol. 8 No. 4 1996 69

Required Characteristics for Deadlock-free Peer-to-Peer
Target Devices
PCI devices must follow all PCI standard ordering
rules for deadlock-free peer-to-peer transaction. The
specific rule relevant to the AlphaServer 4100 design
for peer-to-peer transaction support is Delayed
Transaction Rule 6, which guarantees that the IQ will
always empty:

A target must accept all memory writes
addressed to it while completing a request using
Delayed Transaction termination.4

Our design includes a link mechanism using scatter-
gather TLBs to create a logical connection between two
PCI devices. It includes a set of rules for bypassing data
that ensures deadlock-free operation when all partici-
pants in a peer-to-peer transaction follow the ordering
rules in the PCI standard. The link mechanism provides
a logical path for peer-to-peer transactions and the
bypassing rules guarantee the IQ will always drain.
The key feature, then, is a guarantee that the IQ will
always drain, thus ensuring deadlock-free operation.

I/O Bandwidth and Efficiency

With overall system performance as our goal, we
selected two design approaches to deliver full PCI
bandwidth without bus stalls. These were support for
large bursts of PCI-device-initiated DMA, and suffi-
cient buffering and prefetching logic to keep up with
the PCI and avoid introducing stalls. We open this sec-
tion with a review of the bandwidth and latency issues
we examined in our efforts to achieve greater band-
width efficiency.

The bandwidth available on a platform is dependent
on the efficiency of the design and on the type of
transactions performed. Bandwidth is measured in
millions of bytes per second (MB/s). On a 32-bit
PCI, the available bandwidth is efficiency multiplied
by 133 MB/s; on a 64-bit PCI, available bandwidth is
efficiency multiplied by 266 MB/s. By efficiency, we
mean the amount of time spent actually transferring
data as compared with total transaction time.

Both parties in a transaction contribute to efficiency
on the bus. The AlphaServer 4100 I/O design keeps
the overhead introduced by the system to a minimum
and supports large burst sizes over which the per-
transaction overhead can be amortized.

70 Digital Technical Journal Vol. 8 No. 4 1996

DMA
FILL
DATA

DMA WRITE
OR READ

PIO FILL

DMA READ
PREFETCH
ADDRESS

INTERRUPTS

PCI 0

PCI DEVICE A
MASTER OF
PEER WRITES

PCI DEVICE B
TARGET OF
PEER WRITE

PCI DEVICE F
TARGET OF PIO
READ REQUEST

PCI DEVICE E
TARGET OF
PIO READ

BRIDGE 0

IQ

OQ

CPU 0 CPU 1 CPU 2 CPU 3

PIO READ REQUEST

PEER WRITE
PEER WRITE
PEER WRITE
PEER WRITE
PEER WRITE

PEER WRITE

PEER WRITE
PEER WRITE

PIO READ FILL
PIO READ FILL

DMA
FILL
DATA

DMA WRITE
OR READ

PIO FILL

DMA READ
PREFETCH
ADDRESS

INTERRUPTS

PCI 1

PCI DEVICE C
MASTER OF
PEER WRITES

PCI DEVICE D
TARGET OF
PEER WRITE

PCI DEVICE H
TARGET OF PIO
READ

PCI DEVICE G
TARGET OF
PIO READ

BRIDGE 1

IQ

OQ

PIO READ REQUEST

PEER WRITE
PEER WRITE
PEER WRITE
PEER WRITE
PEER WRITE

PEER WRITE

PEER WRITE
PEER WRITE

PIO READ FILL
PIO READ FILL

COMMAND/ADDRESS
DATA AND ECC

SYSTEM BUS

Figure 7
Block Diagram Showing Deadlock Case without IQ Bypass Path

Support for Large Burst Sizes
To predict the efficiency of a given design, one must
break a transaction into its constituent parts. For exam-
ple, when an I/O device initiates a transaction it must

■ Arbitrate for the bus
■ Connect to the bus (by driving the address of the

transaction target)
■ Transfer data (one or more bytes move in one or

more bus cycles)
■ Disconnect from the bus

Time actually spent in an I/O transaction is the
sum of arbitration, connection, data transfer, and
disconnection.

The period of time before any data is transferred
is typically called latency. With small burst sizes, band-
width is limited regardless of latency. Latency of
arbitration, connection, and disconnection is fairly
constant, but the amount of data moved per unit of
time can increase by making the I/O bus wider. The
AlphaServer 4100 PCI buses are 64 bits wide, yielding
(efficiency 3 266 MB/s) of available bandwidth.

As shown in Figure 8, efficiency improves as burst
size increases and overhead (i.e., latency plus stall
time) decreases. Overhead introduced by the
AlphaServer 4100 is fairly constant. As discussed ear-
lier, a DMA write can complete on the PCI before it
completes on the system bus. As a consequence, we
were able to keep overhead introduced by the plat-
form to a minimum for DMA writes. Recognizing that
efficiency improves with burst size, we used a queuing
model of the system to predict how many posted write
buffers were needed to sustain DMA write bursts with-
out stalling the PCI bus. Based on a simulation model
of the configurations shown in Figures 1 and 2, we
determined that three 64-byte buffers were sufficient
to stream DMA writes from the (266 MB/s) PCI bus
to the (1 GB/s) system bus.

Later in this paper, we present measured perfor-
mance of DMA write bandwidth that matches the sim-
ulation model results and, with large burst sizes,
actually exceeds 95 percent efficiency.

Prefetch Logic
DMA writes complete on the PCI before they com-
plete on the system bus, but DMA reads must wait for
data fetched from memory or from a peer on another
PCI. As such, latency for DMA reads is always worse
than it is for writes. PCI Local Bus Specification
Revision 2.1 provides a delayed-transaction mechanism
for devices with latencies that exceed the PCI initial-
latency requirement.4 The initial-latency requirement
on host bus bridges is 32 PCI cycles, which is the max-
imum overhead that may be introduced before the
first data cycle. The AlphaServer 4100 initial latency
for memory DMA reads is between 18 and 20 PCI

cycles. Peer-to-peer reads of devices on different bus
segments are always converted to delayed-read trans-
actions because the best-case initial latency will be
longer than 32 PCI cycles.

PCI initial latency for DMA reads on the
AlphaServer 4100 system is commensurate with
expectations for current generation quad-processor
SMP systems. To maximize efficiency, we designed
prefetching logic to stream data to a 64-bit PCI device
without stalls after the initial-latency penalty has been
paid. To make sure the design could keep up with an
uninterrupted 64-bit DMA read, we used the queuing
model and analysis of the system bus protocol and
decided that three cache-line-size prefetch buffers
would be sufficient. The algorithm for prefetching
uses the advanced PCI commands as hints to deter-
mine how far memory data prefetching should stay
ahead of the PCI bus:

■ Memory Read (MR): Fetch a single 64-byte cache
line.

■ Memory Read Line (MRL): Fetch two 64-byte
cache lines.

■ Memory Read Multiple (MRM): Fetch two
64-byte cache lines, and then fetch one line at
a time to keep the pipeline full.

After the PCI bus bridge responds to an MRM com-
mand by fetching two 64-byte cache lines and the sec-
ond line is returned, the bridge posts another read; as
the oldest buffer is unloaded, new reads are posted,
keeping one buffer ahead of the PCI. The third
prefetch buffer is reserved for the case in which a DMA

Digital Technical Journal Vol. 8 No. 4 1996 71

512
256

128
64

32
16

8
4

2
1

32282420161284
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

DATA
CYCLES
IN A
BURST

OVERHEAD CYCLES
(LATENCY PLUS STALLS)

PERCENT
AVAILABLE
CYCLES
SPENT
MOVING
DATA
(EFFICIENCY)

KEY:
90% – 100%
80% – 90%
70% – 80%
60% – 70%
50% – 60%

40% – 50%
30% – 40%
20% – 30%
10% – 20%
 0% – 10%

Figure 8
PCI Efficiency as a Function of Burst Size and Latency

MRM completes while there are still prefetch reads
outstanding. Reservation of this buffer accomplishes
two things: (1) it eliminates a time-delay bubble that
would appear between consecutive DMA read trans-
actions, and (2) it maintains a resource to fetch a
scatter-gather translation in the event that the next
transaction address is not in the TLB. Measured DMA
bandwidth is presented later in this paper.

The point at which the design stops prefetching is on
page boundaries. As the DMA window scatter-gather
map is partitioned into 8-KB pages, the interface is
designed to disconnect on 8-KB–aligned addresses.

The advantage of prefetching reads and absorbing
posted writes on this system is that the burst size can
be as large as 8 KB. With large burst size, the overhead
of connecting and disconnecting from the bus is
amortized and approaches a negligible penalty.

DMA and PIO Performance Results

We have discussed the relationship between burst size,
initial latency, and bandwidth and described several
techniques we used in the AlphaServer 4100 PCI bus
bridge design to meet the goals for high-bandwidth
I/O. This section presents the performance delivered
by the 4100 I/O subsystem design, which has been
measured using a high-performance PCI transaction
generator.

We collected performance data under the UNIX
operating system with a reconfigurable interface card
developed at DIGITAL, called PCI Pamette. It is a
64-bit PCI option with a Xilinx FPGA interface to
PCI. The board was configured as a programmable
PCI transaction generator. In this configuration, the
board can generate burst lengths of 1 to 512 cycles.
DMA either runs to a fixed count of words transferred
or runs continuously (software selected). The DMA
engine runs at a fixed cadence (delay between bursts)
of 0 to 15 cycles in the case of a fixed count and at 0 to
63 cycles when run continuously.

The source of the DMA is a combination of a free-
running counter that is clocked using the PCI clock
and a PCI transaction count. The free-running counter
time-stamps successive words and detects wait states
and delays between transactions. The transaction count
identifies retries as well as transaction boundaries.

As the target of PIO read or write, the board can
accept arbitrarily large bursts of either 32 or 64 bits. It
is a medium decode device and always operates with
zero wait states.

DMA Write Efficiency and Performance
Figure 9 shows the close comparison between the
AlphaServer 4100 system and a nearly perfect PCI
design in measured DMA write bandwidth. As
explained above, to sustain large bursts of DMA
writes, we implemented three 64-byte posted write

buffers. Simulation predicted that this number of
buffers would be sufficient to sustain full bandwidth
DMA writes—even when the system bus is extremely
busy—because the bridges to the PCI are on a shared
system bus that has roughly 1 GB/s available band-
width. The PCI bus bridges arbitrate for the shared
system bus at a priority higher than the CPUs, but the
bridges are permitted to execute only a single transac-
tion each time they win the system bus. Therefore, in
the worst case, a PCI bus bridge will wait behind three
other PCI bus bridges for a slot on the bus, and each
bridge will have at least one quarter of the available
system bus bandwidth. With 250 MB/s available but
with potential delay in accessing the bus, three posted
write buffers are sufficient to maintain full PCI band-
width for memory writes.

The ideal PCI system is represented by calculated
performance data for comparison purposes. It is a sys-
tem that has three cycles of target latency for writes.
Three cycles is the best possible for a medium decode
device. The goal for DMA writes was to deliver perfor-
mance limited only by the PCI device itself, and this
goal was achieved. Figure 9 demonstrates that mea-
sured DMA write performance on the AlphaServer
4100 system approaches theoretical maximums. The
combination of optimizations and innovations used
on this platform yielded an implementation that meets
the goal for DMA writes.

DMA Read Efficiency and Performance
As noted in the section Prefetch Logic, bandwidth
performance of DMA reads will be lower than the per-
formance of DMA writes on all systems because there
is delay in fetching the read data from memory. For
this reason, we included three cache-line–size prefetch
buffers in the design.

72 Digital Technical Journal Vol. 8 No. 4 1996

M
E

G
A

B
Y

T
E

S
 P

E
R

 S
E

C
O

N
D

0
32 64 128

BURST SIZE (BYTES)

256 512 1024 2048 4096

50

150

100

200

250

300

IDEAL PCI
MEMORY WRITE (MEASURED)

KEY:

Figure 9
Comparison of Measured DMA Write Performance on an
Ideal 64-bit PCI and on an AlphaServer 4100 System

Figure 10 compares DMA read bandwidth mea-
sured on the AlphaServer 4100 system with a PCI sys-
tem that has 8 cycles of initial latency in delivering
DMA read data. This figure shows that delivered
bandwidth improves on the AlphaServer 4100 system
as burst size increases, and that the effect of initial
latency on measured performance is diminished with
larger DMA bursts.

The ideal PCI system used calculated performance
data for comparison, assuming a read target latency of
8 cycles; 2 cycles are for medium decode of the
address, and 6 cycles are for memory latency of 180
nanoseconds (ns). This represents about the best per-
formance that can be achieved today.

Figure 10 shows memory read and memory read
line commands with burst sizes limited to what is
expected from these commands. As explained else-
where in this paper, memory read is used for bursts of
less than a cache line; memory read line is used for
transactions that cross one cache line boundary but are
less than two cache lines; and memory read multiple
is for transactions that cross two or more cache line
boundaries.

The efficiency of memory read and memory
read line does not improve with larger bursts because
there is no prefetching beyond the first or second
cache line respectively. This shows that large bursts
and use of the appropriate PCI commands are both
necessary for efficiency.

Performance of PIO Operations
PIO transactions are initiated by a CPU. AlphaServer
4100 PIO performance has been measured on a

system with a single CPU, and the results are pre-
sented in Figure 11. The pended protocol for flow
control on the system bus limits the number of read
transactions that can be outstanding from a single
CPU. A single CPU issuing reads will stall waiting for
read-return data and cannot issue enough reads to
approach the bandwidth limit of the bridge. Measured
read performance is quite a bit lower than the theoret-
ical limit. A system with multiple CPUs doing PIO
reads—or peer-to-peer reads—will deliver PIO read
bandwidth that approaches the predicted performance
of the PCI bus bridge. PIO writes are posted and the
CPU stalls only when the writes reach the IQ thresh-
old. Figure 11 shows that PIO writes approach the
theoretical limit of the host bus bridge.

PIO bursts are limited by the size of the I/O read
and write merge buffers on the CPU. A single
AlphaServer 4100 CPU is capable of bursts up to
32 bytes. PIO writes are posted; therefore, to avoid
stalling the system with system bus flow control, in the
maximum configuration (see Figure 2), we provide a
minimum of three posted write buffers that may be
filled before flow control is used. Configurations with
fewer than the maximum number of CPUs can post
more PIO writes before encountering flow control.

Summary

The DIGITAL AlphaServer 4100 system incorporates
design innovations in the PCI bus bridge that provide
a highly efficient interface to I/O devices. Partial
cache line writes improve the efficiency of small writes
to memory. The peer link mechanism uses TLBs to

Digital Technical Journal Vol. 8 No. 4 1996 73

M
E

G
A

B
Y

T
E

S
 P

E
R

 S
E

C
O

N
D

0
32

IDEAL PCI (8 CYCLES TARGET LATENCY)
MEMORY READ MULTIPLE (MEASURED)
MEMORY READ LINE (MEASURED)
MEMORY READ (MEASURED)

64 128

BURST SIZE (BYTES)

256 512 1024 2048 4096

50

150

200

300

250

100

KEY:

Figure 10
Comparison of DMA Read Bandwidth on the AlphaServer 4100 System and on an Ideal PCI System

map device address space on independent peer PCI
buses to permit direct peer transactions. Reordering of
transactions in queues on the PCI bridge, combined
with the use of PCI delayed transactions, provides a
deadlock-free design for peer transactions. Buffers and
prefetch logic that support very large bursts without
stalls yield a system that can amortize overhead and
deliver performance limited only by the PCI devices
used in the system.

In summary, this system meets and exceeds the per-
formance goals established for the I/O subsystem.
Notably, I/O subsystem support for partial cache line
writes and for direct peer-to-peer transactions signifi-
cantly improves efficiency of operation in a MEMORY
CHANNEL cluster system.

Acknowledgments

The DIGITAL AlphaServer 4100 I/O design team
was responsible for the I/O subsystem implementa-
tion. The design team included Bill Bruce, Steve Coe,
Dennis Hayes, Craig Keefer, Andy Koning, Tom
McLaughlin, and John Lynch. The I/O design verifi-
cation team was also key to delivering this product:
Dick Beaven, Dmetro Kormeluk, Art Singer, and
Hitesh Vyas, with CAD support from Mark Matulatis
and Dick Lombard.

Several system team members contributed to inven-
tions that improved product performance; most notable
were Paul Guglielmi, Rick Hetherington, Glen Herdeg,
and Maurice Steinman. We also extend thanks to our
performance partners Zarka Cvetanovic and Susan
Carr, who developed and ran the queuing models.

Mark Shand designed the PCI Pamette and pro-
vided the performance measurements used in this
paper. Many thanks for the nights and weekends spent
remotely connected to the system in our lab to gather
this data.

References and Note

1. Winter UNIX Hot Iron Awards, UNIX EXPO Plus,
October 9, 1996, http://www.aim.com (Menlo Park,
Calif.: AIM Technology).

2. R. Gillett, “MEMORY CHANNEL Network for PCI,”
IEEE Micro (February 1996): 12–18.

3. G. Herdeg, “Design and Implementation of the
AlphaServer 4100 CPU and Memory Architecture,”
Digital Technical Journal, vol. 8, no. 4 (1996, this
issue): 48–60.

4. PCI Local Bus Specification, Revision 2.1 (Portland,
Oreg.: PCI Special Interest Group, 1995).

5. In PCI terminology, a master is any device that arbitrates
for the bus and initiates transactions on the PCI (i.e.,
performs DMA) before accepting a transaction as target.

Biographies

74 Digital Technical Journal Vol. 8 No. 4 1996

MEASURED PERFORMANCE
THEORETICAL PEAK PERFORMANCE

KEY:

PIO WRITE, 32-BIT PCI PIO READ, 32-BIT PCI PIO WRITE, 64-BIT PCI PIO READ, 64-BIT PCI

160

140
120

100
80
60
40
20

0M
E

G
A

B
Y

T
E

S
 P

E
R

 S
E

C
O

N
D

Figure 11
Comparison of AlphaServer 4100 PIO Performance with Theoretical 32-byte Burst Peak Performance

Samuel H. Duncan
A consultant engineer and the architect for the AlphaServer
4100 I/O subsystem design, Sam Duncan is currently
working on core logic design and architecture for the next
generation of Alpha servers and workstations. Since join-
ing DIGITAL in 1979, he has been part of Alpha and VAX
system engineering teams and has represented DIGITAL
on several industry standards bodies, including the PCI
Special Interest Group. He also chaired the group that
developed the IEEE Standard for Communicating Among
Processors and Peripherals Using Shared Memory. He has
been awarded one patent and has four patents filed for
inventions in the AlphaServer 4100 system. Sam received
a B.S.E.E. from Tufts University.

Digital Technical Journal Vol. 8 No. 4 1996 75

Craig D. Keefer
Craig Keefer is a principal hardware engineer whose engi-
neering expertise is designing gate arrays. He was the gate
array designer for one of the two 235K CMOS gate arrays
in the AlphaServer 8200 system and the team leader for the
command and address gate array in the AlphaServer 8400
I/O module. A member of the Server Product Development
Group, he is now responsible for designing gate arrays for
hierarchical switch hubs. Craig joined DIGITAL in 1977
and holds a B.S.E.E from the University of Lowell.

Thomas A. McLaughlin
Tom McLaughlin is a principal hardware engineer work-
ing in DIGITAL’s Server Product Development Group.
He is currently involved with the next generation of high-
end server platforms and is focusing on logic synthesis
and ASIC design processes. For the AlphaServer 4100
project, he was responsible for the logic design of the I/O
subsystem, including ASIC design, logic synthesis, logic
verification, and timing verification. Prior to joining the
AlphaServer 4100 project, he was a member of Design
and Applications Engineering within DIGITAL’s External
Semiconductor Technology Group. Tom joined DIGITAL
in 1986 after receiving a B.T.E.E.T. from the Rochester
Institute of Technology; he also holds an M.S.C.S. degree
from the Worcester Polytechnic Institute.

