
The Alpha Architecture and its initial implementations
were limited in their ability to manipulate data values
at the byte and word granularity. Instead of allowing
single instructions to manipulate byte and word val-
ues, the original Alpha Architecture required as many
as sixteen instructions. Recently, DIGITAL extended
the Alpha Architecture to manipulate byte and word
data values with a single instruction. The second gen-
eration of the Alpha 21164 microprocessor, operating
at 400 megahertz (MHz) or greater, is the first imple-
mentation to include the new instructions.

This paper presents the results of an analysis of
the effects that the new instructions in the Alpha
Architecture have on the performance, code size, and
dynamic instruction distribution of a consistent execu-
tion path through a commercial database. To exercise
the database, we modified the Transaction Processing
Performance Council’s (TPC) obsolete TPC-B bench-
mark. Although it is no longer a valid TPC bench-
mark, the TPC-B benchmark, along with other TPC
benchmarks, has been widely used to study database
performance.1–5

We began our project by rebuilding Microsoft
Corporation’s SQL Server product to use the new
Alpha instructions. We proceeded to conduct a static
code analysis of the resulting images and dynamic link
libraries (DLLs). The focus of the study was to investi-
gate the impact that the new instructions had upon a
large application and not their impact upon the oper-
ating system. To this end, we did not rebuild the
Windows NT operating system to use the new byte
and word instructions.

We measured the dynamic effects by gathering
instruction and function traces with several profiling
and image analysis tools. The results indicate that
the Microsoft SQL Server product benefits from the
additional byte and word instructions to the Alpha
microprocessor. Our measurements of the images and
DLLs show a decrease in code size, ranging from neg-
ligible to almost 9 percent. For the cached TPC-B
transactions, the number of instructions executed
per transaction decreased from 111,288 to 106,521
(a 4 percent reduction). For the scaled TPC-B trans-
actions, the number of instructions executed per

Digital Technical Journal Vol. 8 No. 4 1996 89

Measured Effects of
Adding Byte and Word
Instructions to the Alpha
Architecture

David P. Hunter
Eric B. Betts

The performance of an application can be
expressed as the product of three variables:
(1) the number of instructions executed, (2) the
average number of machine cycles required to
execute a single instruction, and (3) the cycle
time of the machine. The recent decision to
add byte and word manipulation instructions
to the DIGITAL Alpha Architecture has an effect
upon the first of these variables. The perfor-
mance of a commercial database running on
the Windows NT operating system has been
analyzed to determine the effect of the addition
of the new byte and word instructions. Static
and dynamic analysis of the new instructions’
effect on instruction counts, function calls, and
instruction distribution have been conducted.
Test measurements indicate an increase in per-
formance of 5 percent and a decrease of 4 to
7 percent in instructions executed. The use of
prototype Alpha 21164 microprocessor-based
hardware and instruction tracing tools showed
that these two measurements are due to the
use of the Alpha Architecture’s new instructions
within the application.

transaction decreased from 115,895 to 107,854
(a 7 percent reduction).

The rest of this paper is divided as follows: we begin
with a brief overview of the Alpha Architecture and its
introduction of the new byte and word manipulation
instructions. Next, we describe the hardware, software,
and tools used in our experiments. Lastly, we provide
an analysis of the instruction distribution and count.

Alpha Architecture

The Alpha Architecture is a 64-bit, load and store,
reduced instruction set computer (RISC) architecture
that was designed with high performance and longev-
ity in mind. Its major areas of concentration are
the processor clock speed, the multiple instruction
issue, and multiple processor implementations. For a
detailed account of the Alpha Architecture, its major
design choices, and overall benefits, see the paper
by R. Sites.6 The original architecture did not define
the capability to manipulate byte- and word-level
data with a single instruction. As a result, the first
three implementations of the Alpha Architecture, the
21064, the 21064A, and the 21164 microprocessors,
were forced to use as many as sixteen additional
instructions to accomplish this task. The Alpha
Architecture was recently extended to include six new
instructions for manipulating data at byte and word
boundaries. The second implementation of the 21164
family of microprocessors includes these extensions.

The first implementation of the Alpha Archi-
tecture, the 21064 microprocessor, was intro-
duced in November 1992. It was fabricated in a
0.75-micrometer (mm) complementary metal-oxide
semiconductor (CMOS) process and operated at
speeds up to 200 MHz. It had both an 8-kilobyte
(KB), direct-mapped, write-through, 32-byte line
instruction cache (I-cache) and data cache (D-cache).
The 21064 microprocessor was able to issue two
instructions per clock cycle to a 7-stage integer
pipeline or a 10-stage floating-point pipeline.7 The
second implementation of the 21064 generation was
the Alpha 21064A microprocessor, introduced in
October 1993. It was manufactured in a 0.5-mm
CMOS process and operated at speeds of 233 MHz to
275 MHz. This implementation increased the size of
the I-cache and D-cache to 16 KB. Various other dif-
ferences exist between the two implementations and
are outlined in the product data sheet.8

The Alpha 21164 microprocessor was the second-
generation implementation of the Alpha Architecture
and was introduced in October 1994. It was manu-
factured in a 0.5-mm CMOS technology and has the
ability to issue four instructions per clock cycle. It
contains a 64-entry data translation buffer (DTB) and
a 48-entry instruction translation buffer (ITB) com-
pared to the 21064A microprocessor’s 32-entry DTB

and 12-entry ITB. The chip contains three on-chip
caches. The level one (L1) caches include an 8-KB,
direct-mapped I-cache and an 8-KB, dual-ported,
direct-mapped, write-through D-cache. A third
on-chip cache is a 96-KB, three-way set-associative,
write-back mixed instruction and data cache. The
floating-point pipeline was reduced to nine stages, and
the CPU has two integer units and two floating-point
execution units.9

The Exclusion of Byte and Word Instructions

The original Alpha Architecture intended that opera-
tions involved in loading or storing aligned bytes and
words would involve sequences as given in Tables 1
and 2.10 As many as 16 additional instructions are
required to accomplish these operations on unaligned
data. These same operations in the MIPS Architecture
involve only a single instruction: LB, LW, SB, and
SW.11 The MIPS Architecture also includes single
instructions to do the same for unaligned data. Given
a situation in which all other factors are consistent, this
would appear to give the MIPS Architecture an advan-
tage in its ability to reduce the number of instructions
executed per workload.

Sites has presented several key Alpha Architecture
design decisions.6 Among them is the decision not to
include byte load and store instructions. Key design
assumptions related to the exclusion of these features
include the following:

■ The majority of operations would involve naturally
aligned data elements.

90 Digital Technical Journal Vol. 8 No. 4 1996

Table 1
Loading Aligned Bytes and Words on Alpha

Load and Sign Extend a Byte

LDL R1, D.lw(Rx)
EXTBL R1, #D.mod, R1

Load and Zero Extend a Byte

LDL R1, D.lw(Rx)
SLL R1, #56-8*D.mod, R1
SRA R1, #56, R1

Load and Sign Extend a Word

LDL R1, D.lw(Rx)
EXTWL R1, #D.mod, R1

Load and Zero Extend a Word

LDL R1, D.lw(Rx)
SLL R1, #48-8*D.mod, R1
SRA R1, #48, R1

■ In the best possible scheme for multiple instruction
issue, single byte and write instructions to memory
are not allowed.

■ The addition of byte and write instructions would
require an additional byte shifter in the load and
store path.

These factors indicated that the exclusion of specific
instructions to manipulate bytes and words would be
advantageous to the performance of the Alpha
Architecture.

The decision not to include byte and word manipu-
lation instructions is not without precedents. The
original MIPS Architecture developed at Stanford
University did not have byte instructions.12 Hennessy
et al. have discussed a series of hardware and software
trade-offs for performance with respect to the MIPS
processor.13 Among those trade-offs are reasons for
not including the ability to do byte addressing opera-
tions. Hennessy et al. argue that the additional cost
of including the mechanisms to do byte addressing
was not justified. Their studies showed that word ref-
erences occur more frequently in applications than do
byte references. Hennessy et al. conclude that to make
a word-addressed machine feasible, special instruc-
tions are required for inserting and extracting bytes.
These instructions are available in both the MIPS and
the Alpha Architectures.

Reversing the Byte and Word Instructions Decision

During the development of the Alpha Architecture,
DIGITAL supported two operating systems, OpenVMS
and ULTRIX. The developers had as a goal the ability
to maintain both customer bases and to facilitate their
transitions to the new Alpha microprocessor-based
machines. In 1991, Microsoft and DIGITAL began
work on porting Microsoft’s new operating system,

Windows NT, to the Alpha platform. The Windows
NT operating system had strong links to the Intel x86
and the MIPS Architectures, both of which included
instructions for single byte and word manipulation.14

This strong connection influenced the Microsoft devel-
opers and independent software vendors (ISVs) to
favor those architectures over the Alpha design.

Another factor contributed to this issue: the major-
ity of code being run on the new operating system
came from the Microsoft Windows and MS-DOS envi-
ronments. In designing software applications for these
two environments, the manipulation of data at the
byte and word boundary is prevalent. With the Alpha
microprocessor’s inability to accomplish this manipu-
lation in a single instruction, it suffered an average of
3:1 and 4:1 instructions per workload on load and
store operations, respectively, compared to those
architectures with single instructions for byte and
word manipulation.

To assist in running the ISV applications under the
Windows NT operating system, a new technology was
needed that would allow 16-bit applications to run as
if they were on the older operating system. Microsoft
developed the Virtual DOS Machine (VDM) environ-
ment for the Intel Architecture and the Windows-
on-Windows (WOW) environment to allow 16-bit
Windows applications to work. For non-Intel architec-
tures, Insignia developed a VDM environment that
emulated an Intel 80286 microprocessor-based com-
puter. Upon examining this emulator more closely,
DIGITAL found opportunities for improving perfor-
mance if the Alpha Architecture had single byte and
word instructions.

Based upon this information and other factors, a
corporate task force was commissioned in March 1994
to investigate improving the general performance of
Windows NT running on Alpha machines. The further
DIGITAL studied the issues, the more convincing the
argument became to extend the Alpha Architecture to
include single byte and word instructions.

This reversal in position on byte and word instruc-
tions was also seen in the evolution of the MIPS
Architecture. In the original MIPS Architecture devel-
oped at Stanford University, there were no load or
store byte instructions.12 However, for the first com-
mercially produced chip of the MIPS Architecture, the
MIPS R2000 RISC processor, developers added
instructions for the loading and storing of bytes.11 One
reason for this choice stemmed from the challenges
posed by the UNIX operating system. Many implicit
byte assumptions inside the UNIX kernel caused per-
formance problems. Since the operating system being
implemented was UNIX, it made sense to add the byte
instructions to the MIPS Architecture.15

In June 1994, one of the coarchitects of the Alpha
Architecture, Richard Sites, submitted an Engineering

Digital Technical Journal Vol. 8 No. 4 1996 91

Table 2
Storing Aligned Bytes and Words on Alpha

Store a Byte

LDL R1, D.lw(Rx)
INSBL R5,#D.mod, R3
MSKBL R1, #D.mod, R1
BIS R3, R1, R1
STL R1, D.1w(Rx)

Store a Word

LDL R1, D.lw(Rx)
INSWL R5,#D.mod, R3
MSKWL R1, #D.mod, R1
BIS R3, R1, R1
STL R1, D.1w(Rx)

Change Order (ECO) for the extension of the archi-
tecture to include byte and word instructions. It was
speculated at the time that an increase of as much as
4 percent in overall performance would be achieved
using the new instructions. In June 1995, six new
instructions were added to the Alpha Architecture.
The new instructions are outlined in Table 3. The first
implementation to include support for the new
instructions was the second generation of the Alpha
21164 microprocessor series. This reimplementation
of the first Alpha 21164 design was manufactured
in a 0.35-mm CMOS process and was introduced in
October 1995.

Testing Environment
We set up tests to measure the performance of equip-
ment with and without the new instructions. To con-
duct our experiments, we used prototype hardware
that included the second-generation Alpha 21164
microprocessor, and we devised a method to enable
and disable the new instructions in hardware. At the
same time, we investigated the projected performance
of the software emulation mechanism to execute the
new instructions on older processors. Finally, we built
two separate versions of the Microsoft SQL Server
application, one that used the new instructions and
one that did not. For the purposes of discussing the
different scenarios under study, we summarize the
three execution schemes in Table 4. We use the associ-
ated nomenclature given there in the rest of this paper.
In the remainder of this section, we describe each of
the hardware, software, compiler, and analysis tools.

Prototype Hardware
As previously mentioned, our machine was capable
of operating with and without the new instructions.
By using the same machine, we were able to mini-
mize effects that could be introduced from variations
in machine designs or processor families that could
cause an increase in the executed code path through
the operating system. All experiments were run

on a prototype of the AlphaStation 500 work-
station that was based upon the second-generation
21164 microprocessor operating at 400 MHz. (The
AlphaStation 500 is a family of high-performance,
mid-range graphics workstations.) The prototype was
configured with 128 megabytes (MB) of memory and
a single, 4-gigabyte (GB) fast-wide-differential (FWD)
small computer systems interface (SCSI-2) disk.

New firmware allowed us to alternate between
direct hardware execution and software emulation of
the new byte and word instructions. We modified the
Advanced RISC Consortium (ARC) code to allow us
to switch between the two firmware versions through
a simple power-cycle utility, called the fail-safe loader.16

When the machine is powered on, it loads code from
a serial read-only memory (SROM) storage device.
This code then loads the ARC firmware from non-
volatile flash ROM. The fail-safe loader allowed the
ARC firmware to be loaded into physical memory and
not into the flash ROM. The new firmware was initial-
ized by a reset of the processor and was executed as
if it were loaded from the flash ROM. When the
machine was turned off and then back on, the version
of firmware that was stored in nonvolatile memory was
loaded and executed.

Operating System
We used a beta copy of the Microsoft Windows NT
version 4.0 operating system. We chose this operating
system for its capability to allow us to examine the
impact of emulating the new byte and word instruc-
tions in the operating system.

By default, version 4.0 of the Windows NT operat-
ing system disables the trap and emulation capability
for the new instructions. This approach is similar to
the one Windows NT provides for the Alpha micro-
processor to handle unaligned data references. For
testing purposes, we enabled and disabled the trap and
emulation capability of the new instructions. When
this option is enabled, the operating system treats each
new instruction listed in Table 3 as an illegal instruc-
tion and emulates the instruction. The trap and emu-
late strategy takes approximately 5 to 7 microseconds

92 Digital Technical Journal Vol. 8 No. 4 1996

Table 3
New Byte and Word Manipulation Instructions

Mnemonic Opcode Function

stb 0E Store byte from register
to memory

stw 0D Store word from register
to memory

ldbu 0A Load zero-extended byte
from memory to register

ldwu 0C Load zero-extended word
from memory to register

sextb 1C.0000 Sign extend byte
sextw 1C.0001 Sign extend word

Table 4
Three Methods for Execution of the New Instructions

Nomenclature Description

Original Compiled with instructions
that can execute on all Alpha
implementations

Byte/Word Compiled using the new
instructions that will execute
on second-generation 21164
implementations at full speed

Emulation Compiled with new instructions
and emulated through software

per emulated instruction. When it is disabled or not
present, the action taken depends upon the hardware
support for the new instructions. If disabled in hard-
ware, the instruction is treated as an illegal instruction;
if enabled, it is executed like any other instruction.

Microsoft SQL Server

To observe the effects of the new instructions, we
chose the Microsoft SQL Server, a relational database
management system (RDBMS) for the Windows NT
operating system. Microsoft SQL Server was engi-
neered to be a scalable, multiplatform, multithreaded
RDBMS, supporting symmetric multiprocessing
(SMP) systems. It was designed specifically for distrib-
uted client-server computing, data warehousing, and
database applications on the Internet.

In an earlier investigation, Sites and Perl present a
profile of the Microsoft SQL Server running the TPC-B
benchmark.4 They identify the executables and DLLs
that are involved in running the benchmark and break
down the percentage of time that each contributes to
the benchmark. Their results, summarized in Figure 1,
show that only a few SQL Server executables and
DLLs were heavily exercised during the benchmark.
After verifying these results with the SQL Server devel-
opment group at Microsoft, we decided to rebuild
only the images and DLLs identified in Figure 1 to use
the new byte and word instructions.

Table 5 lists the executables and DLLs that we modi-
fied and their correlation to the ones identified by Sites
and Perl. The variations exist because of name changes
of DLLs or the use of a different network protocol. We
changed network protocols for performance reasons.

Sites and Perl used an early version of the Microsoft
SQL Server version 6.0, in which the fastest network
transport available at that time was Named Pipes. In
the final release of SQL Server version 6.0 and sub-
sequent versions of the product, the Transmission
Control Protocol/Internet Protocol (TCP/IP)
replaced Named Pipes in this category. Based upon
this, we rebuilt the libraries associated with TCP/IP
instead of those associated with Named Pipes. Other
networking libraries, such as those for DECnet and
Internetwork Packet Exchange/Sequenced Packet
Exchange (IPX/SPX), were not rebuilt.

Digital Technical Journal Vol. 8 No. 4 1996 93

0.01

0.10

1.00

10.00

100.00

T
IM

E
 S

P
E

N
T

 IN
 R

O
U

T
IN

E
, P

E
R

C
E

N
T

LA
N

C
E

.S
Y

S

U
P

S
.C

P
L

U
S

E
R

32
.D

LL

S
S

N
M

P
N

T
W

.D
LL

N
D

IS
.S

Y
S

R
D

R
.S

Y
S

M
S

A
C

M
32

.D
R

V

A
F

D
.S

Y
S

N
B

T.
S

Y
S

N
E

T
B

IO
S

.S
Y

S

D
B

N
M

P
N

T
W

.D
LL

C
LI

E
N

T.
E

X
E

W
S

O
C

K
32

.D
LL

S
C

S
ID

IS
K

.S
Y

S

A
H

A
17

4X
.S

Y
S

T
C

P
IP

.S
Y

S

Q
V.

D
LL

W
IN

S
R

V.
D

LL

C
R

T
D

LL
.D

LL

H
A

L.
D

LL

N
P

F
S

.S
Y

S

S
C

S
IP

O
R

T.
S

Y
S

K
E

R
N

E
L3

2.
D

LL

O
P

E
N

D
S

50
.D

LL

N
T

F
S

.S
Y

S

N
T

W
D

B
LI

B
.D

LL

N
T

D
LL

.D
LL

N
TO

S
K

R
N

L.
E

X
E

S
Q

LS
E

R
V

E
R

.E
X

E

Figure 1
Images/DLLs Involved in a TPC-B Transaction for Microsoft SQL Server Based on Sites and Perl’s Analysis

Table 5
Images and DLLs Modified for the Microsoft SQL
Server

Sites V6.0 Function
DLL/EXE DLL/EXE

sqlserver.exe sqlservr.exe SQL Server Main
Executable

ntwdblib.dll ntwdblib.dll Network
Communications
Library

opends50.dll opends60.dll Open Data Services
Networking Library

dbnmpntw.dll N/A V4.21A Client Side
Named Pipes Library

ssnmpntw.dll N/A V4.21A Named Pipes
Library

N/A dbmssocn.dll V6.5 Client Side
TCP/IP Library

N/A ssmsso60.dll V6.5 Netlibs TCP/IP
Library

Compiling Microsoft SQL Server to
Use the New Instructions

Our goal was to measure only the effects introduced
by using the new instructions and not effects intro-
duced by different versions or generations of compil-
ers. Therefore, we needed to find a way to use the same
version of a compiler that differed only in its use or
nonuse of the new instructions. To do this, we used
a compiler option available on the Microsoft Visual
C11 compiler. This switch, available on all RISC plat-
forms that support Visual C11, allows the generation
of optimized code for a specific processor within a
processor family while maintaining binary compatibil-
ity with all processors in the processor family. Processor
optimizations are accomplished by a combination of
specific code-pattern selection and code scheduling.
The default action of the compiler is to use a blended
model, resulting in code that executes equally well
across all processors within a platform family.

Using this compiler option, we built two versions
of the aforementioned images within the SQL
Server application, varying only their use of the code-
generation switch. The first version, referred to as the
Original build, was built without specifying an argu-
ment for the code-generation switch. The second one,
referred to as Byte/Word, set the switch to generate
code patterns using the new byte and word manipula-
tion instructions. All other required files came from the
SQL Server version 6.5 Beta II distribution CD-ROM.

The Benchmark
The benchmark we chose was derived from the TPC-B
benchmark. As previously mentioned, the TPC-B
benchmark is now obsolete; however, it is still useful
for stressing a database and its interaction with a com-
puter system. The TPC-B benchmark is relatively
easy to set up and scales readily. It has been used by
both database vendors and computer manufacturers
to measure the performance of either the computer
system or the actual database. We did not include all
the required metrics of the TPC-B benchmark; there-
fore, it is not in full compliance with published guide-
lines of the TPC. We refer to it henceforth simply as
the application benchmark.

The application benchmark is characterized by sig-
nificant disk I/O activity, moderate system and applica-
tion execution time, and transaction integrity. The
application benchmark exercises and measures the effi-
ciency of the processor, I/O architecture, and RDBMS.
The results measure performance by indicating how
many simulated banking transactions can be com-
pleted per second. This is defined as transactions per
second (tps) and is the total number of committed
transactions that were started and completed during
the measurement interval.

The application benchmark can be run in two dif-
ferent modes: cached and scaled. The cached, or in-
memory mode, is used to estimate the system’s
maximum performance in this benchmark environ-
ment. This is accomplished by building a small database
that resides completely in the database cache, which in
turn fits within the system’s physical random-access
memory (RAM). Since the entire database resides in
memory, all I/O activity is eliminated with the excep-
tion of log writes. Consequently, the benchmark only
performs one disk I/O for each transaction, once the
entire database is read off the disk and into the database
cache. The result is a representation of the maximum
number of tps that the system is capable of sustaining.

The scaled mode is run using a bigger database with
a larger amount of disk I/O activity. The increase in
disk I/O is a result of the need to read and write data to
locations that are not within the database cache. These
additional reads and writes add extra disk I/Os. The
result is normally characterized as having to do one
read and one write to the database and a single write to
the transaction log for each transaction. The combina-
tion of a larger database and additional I/O activity
decreases the tps value from the cached version. Based
upon our previous experience running this benchmark,
the scaled benchmark can be expected to reach approx-
imately 80 percent of the cached performance.

For the scaled tests, we built a database sized to
accommodate 50 tps. This was less than 80 percent
of the maximum tps produced by the cached results.
We chose this size because we were concentrating
on isolating a single scaled transaction under a moder-
ate load and not under the maximum scaled perfor-
mance possible.

Image Tracing and Analysis Tools
Collecting only static measurements of the executables
and DLLs affected was insufficient to determine the
applicability of the new instructions. We collected the
actual instruction traces of SQL Server while it exe-
cuted the application benchmark. Furthermore, we
decided that the ability to trace the actual instructions
being executed was more desirable than developing or
extending a simulator. To obtain the traces, we needed
a tool that would allow us to

■ Collect both system- and user-mode code.
■ Collect function traces, which would allow us to

align the starting and stopping points of different
benchmark runs.

■ Work without modifying either the application or
the operating system.

In the past, the only tool that would provide
instruction traces under the Windows NT operating
system was the debugger running in single-step mode.

94 Digital Technical Journal Vol. 8 No. 4 1996

Obtaining traces through either the ntsd or the
windbg debugger is quite limited due to the following
problems:

■ The tracing rate is only about 500 instructions per
second. This is far too slow to trace anything other
than isolated pieces of code.

■ The trace fails across system calls.
■ The trace loops infinitely in critical section code.
■ Register contents are not easily displayed for each

instruction.
■ Real-time analysis of instruction usage and cache

misses are not possible.

Instruction traces can also be obtained using the
PatchWrks trace analysis tool.4 Although this tool
operates with near real-time performance and can
trace instructions executing in kernel mode, it has the
following limitations:

■ It operates only on a DIGITAL Alpha AXP personal
computer.

■ It requires an extra 40 MB of memory.
■ All images to be traced must be patched, thus

slightly distorting text addresses and function sizes.
■ Successive runs of application code are not repeat-

able due to unpredictable kernel interrupt behavior
(the traces are too accurate).

The solution was Ntstep, a tool that can trace user-
mode instruction execution of any image in the
Windows NT/Alpha environment through an innov-
ative combination of breakpointing and “Alpha-on-
Alpha” emulation. It has the ability to trace a
program’s execution at rates approaching a million
instructions per second. Ntstep can trace individual
instructions, loads, stores, function calls, I-cache and
D-cache misses, unaligned data accesses, and anything
else that can be observed when given access to each
instruction as it is being executed. It produces sum-
mary reports of the instruction distribution, cache line
usage, page usage (working set), and cache simulation
statistics for a variety of Alpha systems.

Ntstep acts like a debugger that can execute single-
step instructions except that it executes instructions
using emulation instead of single-step breakpoints
whenever possible. In practice, emulation accounts for
the majority of instructions executed within Ntstep.
Since a single-step execution of an instruction with
breakpoints takes approximately 2 milliseconds and
emulation of an Alpha instruction requires only 1 or 2
microseconds, Ntstep can trace approximately 1,000
times faster than a debugger. Unlike most emulators,
the application executes normally in its own address
space and environment.

Results

We collected data on three different experiments. In
the first investigation, we looked at the relative perfor-
mance of the three different versions of the Microsoft
SQL Server outlined in Table 4. We compared the
three variations using the cached version of the appli-
cation benchmark.

In the second experiment, we observed how the
new instructions affect the instruction distribution in
the static images and DLLs that we rebuilt. We com-
pared the Byte/Word versions to the Original versions
of the images and DLLs. We also attempted to link the
differences in instruction counts to the use of the new
instructions.

Lastly, we investigated the variation between the
Original and the Byte/Word versions with respect to
instruction distribution on the scaled version of the
benchmark. This comparison was based upon the code
path executed by a single transaction.

Cached Performance
In the first experiments, we compared the relative per-
formance impact of using the new instructions. We
chose to measure performance of only the cached ver-
sion of the application benchmark because the I/O
subsystem available on the prototype of the
AlphaStation 500 was not adequate for a full-scaled
measurement. We ensured that the database was fully
cached by using a ramp-up period of 60 seconds and a
ramp-down period of 30 seconds. This was verified as
steady state by observing that the SQL Server buffer
cache hit ratio remained at or above 95 percent. The
measurement period for the benchmark was 60 sec-
onds. We ran the benchmark several times and took
the average tps for each of the three variations outlined
in Table 4.

The results of the three schemes are as follows: 444
tps for the Original version, 460 tps for the Byte/
Word version, and 116 tps for the Emulation ver-
sion. The new instructions contributed a 3.5 percent
gain in performance. The impact of emulating the
instructions is a loss of 73.9 percent of the potential
performance.

Static Instruction Counts
To analyze the mixture of instructions in the images
and DLLs, we disassembled each image and DLL in
the Original and Byte/Word versions. We then looked
at only those instructions that exhibited a difference
between the two versions within the images or DLLs.
The variations in instruction counts of these are shown
in Table 6.

To examine the images more closely, we disassem-
bled each image and DLL and collected counts of code

Digital Technical Journal Vol. 8 No. 4 1996 95

size, the number of functions, the number and type of
new byte and word instructions, and lastly, nop and
trapb instructions. The results are presented in Tables
7 through 10.

We expected that the instructions used to manipulate
bytes and words in the original Alpha Architecture
(Tables 1 and 2) would decrease proportionally to the
usage of the new instructions. These assumptions held
true for all the images and DLLs that used the new
instructions. For example, in the original Alpha
Architecture, the instructions MSKBL and MSKWL are
used to store a byte and word, respectively. In the
sqlservr.exe image, these two instructions showed a
decrease of 3,647 and 1,604 instructions, respectively.
Compare this with the corresponding addition of 3,969
STB and 2,798 STW instructions in the same image.
Looking further into the sqlservr.exe image, we also saw
that 10,231 LDBU instructions were used and the
usage of the EXTBL instruction was reduced by 10,656.
Although these numbers do not correlate on a one-for-
one basis, we believe this is due to other usage of these
instructions. Other usage might include the compiler
scheme for introducing the new instructions in places
where it used an LDL or an LDQ in the Original image.

Of the rebuilt images and DLLs, sqlservr.exe and
opends60.dll showed the most variations, with the new
instructions making up 3.73 percent and 3.9 percent
of these files. The most frequently occurring new
instruction was ldbu, followed by ldwu. The least-
used instructions were sextb and sextw. The size of
the images was reduced in three out of five images.
The image size reduction ranged from negligible to
just over 4 percent. In all cases, the size of the code
section was reduced and ranged from insignificant
to approximately 8.5 percent. There was no change in
the number of functions in any of the files.

Dynamic Instruction Counts
We gathered data from the application benchmark
running in both cached and scaled modes. We ran at
least one iteration of the benchmark test prior to gath-
ering trace data to allow both the Windows NT oper-
ating system and the Microsoft SQL Server database to
reach a steady state of operation on the system under
test (SUT). Steady state was achieved when the SQL
Server cache-hit ratio reached 95 percent or greater,
the number of transactions per second was constant,
and the CPU utilization was as close to 100 percent as
possible. The traces were gathered over a sufficient

96 Digital Technical Journal Vol. 8 No. 4 1996

Table 6
Instruction Deltas (Normal Minus Byte/Word) for the SQL Server Images and DLLs

Instruction dbmssocn.dll ntwdblib.dll opends60.dll sqlservr.exe ssmsso60.dll Instruction dbmssocn.dll ntwdblib.dll opends60.dll sqlservr.exe ssmsso60.dll

lda 0 23 2247 28524 24 xor 0 0 22 1119 0
ldah 0 0 227 18218 0 sll 0 0 12 22359 0
ldl 29 211 2597 213133 246 sra 0 0 215 23534 24
ldq 0 0 229 22980 0 srl 0 0 0 2295 0
ldq_l 0 0 0 29 0 cmpbge 0 0 21 218 0
ldq_u 210 22 2311 28529 218 mskbl 23 21 2196 23647 28
stl 25 211 2278 27932 211 mskwl 0 25 241 21604 0
stb 13 11 1216 13969 17 zapnot 25 0 2115 22135 233
stw 12 15 159 12798 13 addl 0 0 0 28 0
stq 0 0 24 253 0 addq 0 0 0 13 0
stq_c 0 0 0 29 0 s4addl 0 0 0 24 0
beq 0 5 11 21236 0 cmovge 0 0 0 11 0
bge 0 0 0 18 0 cmovne 0 0 0 12 0
bgt 0 0 0 13 0 cmovlt 0 0 0 21 0
blbc 0 0 21 219 0 cmovlbc 0 0 0 22 0
blbs 0 0 0 24 0 callsys 0 0 0 0 0
blt 0 0 0 0 0 extqh 0 0 214 2426 24
bne 0 0 11 124 0 ldwu 14 0 1193 16320 135
br 0 24 11 21120 0 ldbu 19 13 1464 110231 118
bsr 0 0 0 26 0 mull 0 0 0 11 0
ret 0 0 14 115 0 subl 0 0 11 16 0
cmpeq 0 0 0 19 0 subq 0 0 0 13 0
cmplt 0 0 0 115 0 insll 0 0 0 121 0
cmple 0 0 0 15 0 inswl 22 23 254 22647 23
cmpult 0 0 21 121 0 call_pal 12 11 11 1161 0
cmpule 0 25 22 1183–1183 0 extlh 0 0 0 214 0
and 22 26 2364 26435 28 insbl 22 21 2135 23163 26
bic 23 211 2287 27242 28 extll 0 0 0 220 0
bis 24 27 2208 27097 29 extbl 210 26 2367 210656 214
ornot 0 0 0 14 0 extwl 21 0 284 2324 21

D
igital Technical Journal

Vol. 8
N

o. 4
1996

97

Table 7
Byte/Word Images and DLLs

Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB

sqlservr.exe 8053624 2981148 2884776 3364 26869 3.73 10231 38.077 6320 23.5215 3969 14.7717 2798 10.4135 139 0.517325 3412 12.6986 5929 2219
dbmssocn.dll 13824 5884 5520 13 18 1.3 9 50 4 22.2222 3 16.6667 2 11.1111 0 0 0 0 21 0
ntwdblib.dll 318464 246316 231688 429 9 0.02 3 33.333 0 0 1 11.1111 5 55.5556 0 0 0 0 767 10
opends60.dll 212992 104204 97240 243 948 3.9 464 48.945 193 20.3586 216 22.7848 59 6.22363 9 0.949367 7 0.738397 391 128
ssmsso60.dll 70760 9884 9128 19 67 2.94 18 26.866 35 52.2388 7 10.4478 3 4.47761 4 5.97015 0 0 25 0

Table 8
Original Build of Images and DLLs

Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB

sqlservr.exe 8337248 3264108 3153480 3364 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6207 2252
dbmssocn.dll 13824 6012 5656 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0
ntwdblib.dll 318464 246620 231904 429 0 0 0 0 0 0 0 0 0 0 0 0 0 0 770 10
opends60.dll 222720 114012 105536 243 0 0 0 0 0 0 0 0 0 0 0 0 0 0 405 128
ssmsso60.dll 71284 10300 9424 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0

Table 9
Numerical Differences of Original Minus Byte/Word Images and DLLs

Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB

Isqlservr.exe 2283624 2282960 2268704 0 126869 14 110231 138 16320 124 13969 115 12798 110 1139 11 13412 113 2278 233
dbmssocn.dll 0 2128 2136 0 118 11 19 150 14 122 13 117 12 111 0 10 0 0 15 0
ntwdblib.dll 0 2304 2216 0 19 10 13 133 0 0 11 111 15 156 0 10 0 0 23 0
opends60.dll 29728 29808 28296 0 1948 14 1464 149 1193 120 1216 123 159 16 19 11 17 11 214 0
ssmsso60.dll 2524 2416 2296 0 167 13 118 127 135 152 17 110 13 14 14 16 0 0 17 0

Table 10
Percentage Variation of Original Minus Byte/Word Images and DLLs

Image/DLL Total Total Total Number Total
File Text Code of Byte/ % Byte/ LDBU LDBU LDWU LDWU STB STB STW STW SEXTB SEXTB SEXTW SEXTW Total Total
Bytes Bytes Bytes Functions Word Word Count % Count % Count % Count % Count % Count % NOPs TRAPB

sqlservr.exe 23.402% 28.669% 28.521% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 24.479% 21.465%
dbmssocn.dll 0.000% 22.129% 22.405% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 131.250% N/A
ntwdblib.dll 0.000% 20.123% 20.093% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 20.390% 0.000%
opends60.dll 24.368% 28.603% 27.861% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 23.457% 0.000%
ssmsso60.dll 20.735% 24.039% 23.141% 0.000% N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 138.889% N/A

period of time to ensure that we captured several
transactions. The traces were then edited into separate
individual transactions. The geometric mean was
taken from the resulting traces and used for all subse-
quent analysis.

We used Ntstep to gather complete instruction and
function traces of both versions of the SQL Server data-
base while it executed the application benchmark.
Figure 2 shows an example output for an instruction

trace, and Figure 3 shows an example output for a
function trace from Ntstep. Since Ntstep can attach to
a running process, we allowed the application bench-
mark to achieve steady state prior to data collection.
This approach ensured that we did not see the effects of
warming up either the machine caches or the SQL
Server database cache. Each instruction trace consisted
of approximately one million instructions, which was
sufficient to cover multiple transactions. The data was

98 Digital Technical Journal Vol. 8 No. 4 1996

Figure 2
Example of Instruction Trace Output from Ntstep

0 ** Breakpoint (Pid 0xd1, Tid 0xb2) SQLSERVR.EXE pc 77f39b34
0 ** Trace begins at 242698

opends60!FetchNextCommand
1 00242698: 23deffb0 lda sp, -50(sp) // sp now 72bff00
2 0024269c: b53e0000 stq s0, 0(sp) // @072bff00 = 148440
3 002426a0: b55e0008 stq s1, 8(sp) // @072bff08 = 0
4 002426a4: b57e0010 stq s2, 10(sp) // @072bff10 = 5
5 002426a8: b59e0018 stq s3, 18(sp) // @072bff18 = 1476a8
6 002426ac: b5be0020 stq s4, 20(sp) // @072bff20 = 2c4
7 002426b0: b5de0028 stq s5, 28(sp) // @072bff28 = 41
8 002426b4: b5fe0030 stq fp, 30(sp) // @072bff30 = 0
9 002426b8: b75e0038 stq ra, 38(sp) // @072bff38 = 242398

10 002426bc: 47f00409 bis zero, a0, s0 // s0 now 148440
11 002426c0: 47f1040a bis zero, a1, s1 // s1 now 72bffa0
12 002426c4: 47f2040b bis zero, a2, s2 // s2 now 72bffa8
13 002426c8: d3404e67 bsr ra, 00256068 // ra now 2426cc

opends60!netIOReadData
14 00256068: 23deffa0 lda sp, -60(sp) // sp now 72bfea0
15 0025606c: 43f10002 addl zero, a1, t1 // t1 now 72bffa0
16 00256070: b53e0000 stq s0, 0(sp) // @072bfea0 = 148440
17 00256074: b55e0008 stq s1, 8(sp) // @072bfea8 = 72bffa0
18 00256078: b57e0010 stq s2, 10(sp) // @072bfeb0 = 72bffa8
19 0025607c: b59e0018 stq s3, 18(sp) // @072bfeb8 = 1476a8
20 00256080: b5be0020 stq s4, 20(sp) // @072bfec0 = 2c4
21 00256084: b5de0028 stq s5, 28(sp) // @072bfec8 = 41
22 00256088: b5fe0030 stq fp, 30(sp) // @072bfed0 = 0
23 0025608c: b75e0038 stq ra, 38(sp) // @072bfed8 = 2426cc
24 00256090: a1d01140 ldl s5, 1140(a0) // @00149580 1479e8
25 00256094: 47f00409 bis zero, a0, s0 // s0 now 148440
26 00256098: a1f001d0 ldl fp, 1d0(a0) // @00148610 dbba0
27 0025609c: 47e0340d bis zero, #1, s4 // s4 now 1
28 002560a0: a0620000 ldl t2, 0(t1) // @072bffa0 155c58
29 002560a4: b23e004c stl a1, 4c(sp) // @072bfeec = 72bffa0
30 002560a8: b25e0050 stl a2, 50(sp) // @072bfef0 = 72bffa8
31 002560ac: b27e0054 stl a3, 54(sp) // @072bfef4 = 1476a8
32 002560b0: e460001d beq t2, 00256128 // (t2 is 155c58)
33 002560b4: 220303e0 lda a0, 3e0(t2) // a0 now 156038
34 002560b8: 47f00404 bis zero, a0, t3 // t3 now 156038
35 002560bc: 63ff4000 mb //
36 002560c0: 47e03400 bis zero, #1, v0 // v0 now 1
37 002560c4: a8240000 ldl_l t0, 0(t3) // @00156038 0
38 002560c8: b8040000 stl_c v0, 0(t3) // @00156038 = 1
39 002560cc: e40000b6 beq v0, 002563a8 // (v0 is 1)
40 002560d0: 63ff4000 mb //
41 002560d4: e4200001 beq t0, 002560dc // (t0 is 0)

opends60!netIOReadData+0x74:
42 002560dc: a1be004c ldl s4, 4c(sp) // @072bfeec 72bffa0
43 002560e0: a00d0000 ldl v0, 0(s4) // @072bffa0 155c58
44 002560e4: a04003dc ldl t1, 3dc(v0) // @00156034 0
45 002560e8: 20800404 lda t3, 404(v0) // t3 now 15605c
46 002560ec: 405f05a2 cmpeq t1, zero, t1 // t1 now 1
47 002560f0: e4400003 beq t1, 00256100 // (t1 is 1)
48 002560f4: a0600404 ldl t2, 404(v0) // @0015605c 15605c
49 002560f8: 406405a3 cmpeq t2, t3, t2 // t2 now 1
50 002560fc: 47e30402 bis zero, t2, t1 // t1 now 1
51 00256100: 47e2040d bis zero, t1, s4 // s4 now 1

Digital Technical Journal Vol. 8 No. 4 1996 99

then reduced to a series of single transactions and ana-
lyzed for instruction distribution. For both the cached-
and the scaled-transaction instruction counts, we com-
bined at least three separate transactions and took the
geometric mean of the instructions executed, which
caused slight variations in the instruction counts. All
resulting instruction counts were within an acceptable
standard deviation as compared to individual transac-
tion instruction counts.

We collected the function traces in a similar fashion.
Once the application benchmark was at a steady state,
we began collecting the function call tree. Based on
previous work with the SQL Server database and con-
sultation with Microsoft engineers, we could pinpoint
the beginning of a single transaction. We then began
collecting samples for both traces at the same instant,
using an Ntstep feature that allowed us to start or stop
sample collection based upon a particular address.

The dynamic instruction counts for both the scaled
and the cached transactions are given in Tables 11 and
12. We also show the variation and percentage varia-
tion between the Original and the Byte/Word versions
of the SQL Server. Two of the six new instructions,
sextb and sextw, are not present in the Byte/Word

trace. The remaining four instructions combine to
make up 2.6 percent and 2.7 percent of the instruc-
tions executed per scaled and cached transaction,
respectively. Other observations include the following:

■ The number of instructions executed decreased
7 percent for scaled and 4 percent for cached
transactions.

■ The number of ldl_l/stl_c sequences decreased
3 percent for scaled transactions.

■ All the instructions that are identified in Tables 1
and 2 show a decrease in usage. Not surprisingly,
the instructions mskwl and mskbl completely disap-
peared. The inswl and insbl instructions decreased
by 47 percent and 90 percent, respectively. The sll
instruction decreased by 38 percent, and the sra
instruction usage decreased by 53 percent. These
reductions hold true within 1 to 2 percent for both
scaled and cached transactions.

■ The instructions ldq_u and lda, which are used
in unaligned load and store operations, show a
decrease in the range of 20 to 22 percent and 15 to
16 percent, respectively.

Figure 2 (continued)
Example of Instruction Trace Output from Ntstep

52 00256104: e4400005 beq t1, 0025611c // (t1 is 1)
53 00256108: a0a00000 ldl t4, 0(v0) // @00155c58 204200
54 0025610c: 24df0080 ldah t5, 80(zero) // t5 now 800000
55 00256110: 48a07625 zapnot t4, #3, t4 // t4 now 4200
56 00256114: 40a60005 addl t4, t5, t4 // t4 now 804200
57 00256118: b0a00000 stl t4, 0(v0) // @00155c58 = 804200
58 0025611c: a0fe004c ldl t6, 4c(sp) // @072bfeec 72bffa0
59 00256120: a0e70000 ldl t6, 0(t6) // @072bffa0 155c58
60 00256124: b3e703e0 stl zero, 3e0(t6) // @00156038 = 0
61 00256128: e5a00061 beq s4, 002562b0 // (s4 is 1)
62 0025612c: 257f0026 ldah s2, 26(zero) // s2 now 260000
63 00256130: 216b62f8 lda s2, 62f8(s2) // s2 now 2662f8
64 00256134: 5fff041f cpys f31, f31, f31 //
65 00256138: a21e0054 ldl a0, 54(sp) // @072bfef4 1476a8
66 0025613c: 225e0040 lda a2, 40(sp) // a2 now 72bfee0
67 00256140: a00b0000 ldl v0, 0(s2) // @002662f8 77e985a0
68 00256144: 227e0048 lda a3, 48(sp) // a3 now 72bfee8
69 00256148: a23e0050 ldl a1, 50(sp) // @072bfef0 72bffa8
70 0025614c: 47ef0414 bis zero, fp, a4 // a4 now dbba0
71 00256150: a2100000 ldl a0, 0(a0) // @001476a8 2c0
72 00256154: 6b404000 jsr ra, (v0),0 // ra now 256158

KERNEL32!GetQueuedCompletionStatus:
73 77e985a0: 23deffc0 lda sp, -40(sp) // sp now 72bfe60
74 77e985a4: b53e0000 stq s0, 0(sp) // @072bfe60 = 148440
75 77e985a8: b55e0008 stq s1, 8(sp) //@072bfe68 = 72bffa0
76 77e985ac: b57e0010 stq s2, 10(sp) // @072bfe70 = 2662f8
77 77e985b0: b59e0018 stq s3, 18(sp) // @072bfe78 = 1476a8
78 77e985b4: b75e0020 stq ra, 20(sp) // @072bfe80 = 256158
79 77e985b8: 47f00409 bis zero, a0, s0 // s0 now 2c0
80 77e985bc: 47f1040a bis zero, a1, s1 // s1 now 72bffa8
81 77e985c0: 47f2040b bis zero, a2, s2 // s2 now 72bfee0
82 77e985c4: 47f3040c bis zero, a3, s3 // s3 now 72bfee8
83 77e985c8: 47f40411 bis zero, a4, a1 // a1 now dbba0
84 77e985cc: 221e0038 lda a0, 38(sp) // a0 now 72bfe98
85 77e985d0: d3405893 bsr ra, 77eae820 // ra now 77e985d4

100 Digital Technical Journal Vol. 8 No. 4 1996

Figure 3
Example of Function Trace Output from Ntstep

0 ** Breakpoint (Pid 0xd7, Tid 0xdb) SQLSERVR.EXE pc 77f39b34
0 ** Trace begins at 00242698
0 ** . opends60!FetchNextCommand
13 ** . . opends60!netIOReadData
72 ** . . . KERNEL32!GetQueuedCompletionStatus
85 ** KERNEL32!BaseFormatTimeOut
99 ** ntdll!NtRemoveIoCompletion
129 ** . . . opends60!netIOCompletionRoutine
272 ** . . opends60!netIORequestRead
285 ** . . . KERNEL32!ResetEvent
290 ** ntdll!NtClearEvent
318 ** . . . SSNMPN60!*0x06a131f0*
348 ** KERNEL32!ReadFile
399 ** ntdll!NtReadFile
412 ** KERNEL32!BaseSetLastNTError
417 ** ntdll!RtlNtStatusToDosError
423 ** ntdll!RtlNtStatusToDosErrorNoTeb
509 ** KERNEL32!GetLastError
560 ** . opends60!get_client_event
665 ** . . opends60!processRPC
682 ** . . . opends60!unpack_rpc
749 ** . opends60!execute_event
762 ** . . opends60!execute_sqlserver_event
802 ** . . . opends60!unpack_rpc
864 ** . . . SQLSERVR!execrpc
911 ** KERNEL32!WaitForSingleObjectEx
937 ** KERNEL32!BaseFormatTimeOut
950 ** ntdll!NtWaitForSingleObject
1024 ** SQLSERVR!UserPerfStats
1038 ** KERNEL32!GetThreadTimes
1055 ** ntdll!NtQueryInformationThread
1173 ** SQLSERVR!init_recvbuf
1208 ** SQLSERVR!init_sendbuf
1227 ** SQLSERVR!port_ex_handle
1263 ** SQLSERVR!_Otssetjmp3
1313 ** SQLSERVR!memalloc
1365 ** SQLSERVR!_OtsZero
1405 ** SQLSERVR!recvhost
1437 ** SQLSERVR!_OtsMove
1500 ** SQLSERVR!memalloc
1577 ** SQLSERVR!rn_char
1580 ** SQLSERVR!recvhost
1612 ** SQLSERVR!_OtsMove
1777 ** SQLSERVR!parse_name
1808 ** SQLSERVR!dbcs_strnchr
2115 ** SQLSERVR!rpcprot
2131 ** SQLSERVR!memalloc
2183 ** SQLSERVR!_OtsZero
2252 ** SQLSERVR!getprocid
2319 ** SQLSERVR!procrelink+0x1250
2546 ** SQLSERVR!_OtsRemainder32
2559 ** SQLSERVR!_OtsDivide32+0x94
2597 ** SQLSERVR!opentable
2642 ** SQLSERVR!parse_name
2673 ** SQLSERVR!dbcs_strnchr
2979 ** SQLSERVR!parse_name
3010 ** SQLSERVR!dbcs_strnchr
3323 ** SQLSERVR!opentabid
3363 ** SQLSERVR!getdes
3493 ** SQLSERVR!GetRunidFromDefid+0x40
3510 ** SQLSERVR!_OtsZero
3658 ** SQLSERVR!initarg
3668 ** SQLSERVR!setarg
3703 ** SQLSERVR!_OtsFieldInsert
3764 ** SQLSERVR!setarg
3799 ** SQLSERVR!_OtsFieldInsert
3857 ** SQLSERVR!startscan
3901 ** SQLSERVR!getindex2
3978 ** SQLSERVR!getkeepslot
4064 ** SQLSERVR!rowoffset
4109 ** SQLSERVR!rowoffset
4170 ** SQLSERVR!_OtsMove
4331 ** SQLSERVR!memcmp
5323 ** SQLSERVR!bufunhold
5436 ** SQLSERVR!prepscan
5550 ** SQLSERVR!match_sargs_to_index

Digital Technical Journal Vol. 8 No. 4 1996 101

Figure 3 (continued)
Example of Function Trace Output from Ntstep

5828 ** SQLSERVR!srchindex
5895 ** SQLSERVR!getpage
5942 ** SQLSERVR!bufget
5976 ** SQLSERVR!_OtsDivide
5985 ** SQLSERVR!_OtsDivide32+0x94
6090 ** SQLSERVR!getkeepslot
6356 ** SQLSERVR!bufrlockwait
6539 ** SQLSERVR!srchpage
6720 ** SQLSERVR!nc__sqlhilo+0x8b0
6912 ** SQLSERVR!nc__sqlhilo+0x8b0
7309 ** SQLSERVR!nc__sqlhilo+0x8b0
7728 ** SQLSERVR!nc__sqlhilo+0x8b0
8125 ** SQLSERVR!nc__sqlhilo+0x8b0
8522 ** SQLSERVR!nc__sqlhilo+0x8b0
8919 ** SQLSERVR!nc__sqlhilo+0x8b0
9410 ** SQLSERVR!index_beforesleep+0x100
9465 ** SQLSERVR!bufrunlock
9641 ** SQLSERVR!trim_sqoff+0xf0
9661 ** SQLSERVR!qualpage
9809 ** SQLSERVR!nc__sqlhilo+0x8b0

10212 ** SQLSERVR!nc__sqlhilo+0x8b0
10616 ** SQLSERVR!rowoffset
10702 ** SQLSERVR!getnext
10769 ** SQLSERVR!_OtsFieldInsert
10822 ** SQLSERVR!getrow2
10838 ** SQLSERVR!getpage
10885 ** SQLSERVR!bufget
10919 ** SQLSERVR!_OtsDivide
10928 ** SQLSERVR!_OtsDivide32+0x94
11033 ** SQLSERVR!getkeepslot
11359 ** SQLSERVR!_OtsMove
11489 ** SQLSERVR!endscan
11557 ** SQLSERVR!bufunkeep
11675 ** SQLSERVR!bufunkeep
11853 ** SQLSERVR!closetable
11907 ** SQLSERVR!endscan
12044 ** SQLSERVR!get_spinlock
12103 ** SQLSERVR!opentabid
12138 ** SQLSERVR!getdes
12291 ** SQLSERVR!_OtsZero
12464 ** SQLSERVR!closetable
12524 ** SQLSERVR!endscan
12661 ** SQLSERVR!get_spinlock
12729 ** SQLSERVR!protect
12756 ** SQLSERVR!port_ex_handle
12792 ** SQLSERVR!_Otssetjmp3
12845 ** SQLSERVR!prot_search
12887 ** SQLSERVR!dbtblfind
12958 ** SQLSERVR!check_protect
13025 ** SQLSERVR!memalloc
13077 ** SQLSERVR!_OtsZero
13127 ** SQLSERVR!memalloc
13179 ** SQLSERVR!_OtsZero
13263 ** SQLSERVR!rn_i2
13267 ** SQLSERVR!recvhost
13299 ** SQLSERVR!_OtsMove
13369 ** SQLSERVR!recvhost
13401 ** SQLSERVR!_OtsMove
13477 ** SQLSERVR!recvhost
13509 ** SQLSERVR!_OtsMove
13562 ** SQLSERVR!recvhost
13594 ** SQLSERVR!_OtsMove
13670 ** SQLSERVR!recvhost
13702 ** SQLSERVR!_OtsMove
13755 ** SQLSERVR!recvhost
13787 ** SQLSERVR!_OtsMove
13847 ** SQLSERVR!bconst
13895 ** SQLSERVR!mkconstant
13921 ** SQLSERVR!memalloc
14046 ** SQLSERVR!memalloc
14098 ** SQLSERVR!_OtsZero
14157 ** SQLSERVR!rn_i4
14161 ** SQLSERVR!recvhost
14193 ** SQLSERVR!_OtsMove

102 Digital Technical Journal Vol. 8 No. 4 1996

For the scaled transaction, a decrease in 58 out of
81 instructions types occurred. Of the remaining 25
instructions, 21 had no change and only 4 instructions,
mull, s8addl, trapb, and subl, showed an increase. For
cached transactions, 22 instruction counts decreased,
29 increased, and 22 remained unchanged.

The performance gain of 3.5 percent measured for
the cached version of the application benchmark cor-
relates closely to the decrease in the number of

instructions per transaction measured in Table 13. If
this correlation holds true, we would expect to see an
increase in performance of approximately 7 percent
for scaled transactions runs.

Dynamic Instruction Distribution
The performance of the Alpha microprocessor using
technical and commercial workloads has been evalu-
ated.1 The commercial workload used was debit-

Table 11
Instruction Count and Variations for Scaled Transaction

Instruction Original Byte/Word Delta % Delta Instruction Original Byte/Word Delta % Delta

stb 0 174 1174 N/A stt 334 334 0 0%
stw 0 219 1219 N/A cmple 368 358 10 23%
ldwu 0 1215 11215 N/A inswl 390 207 183 247%
ldbu 0 1216 11216 N/A srl 457 398 59 213%
cmpbge 2 0 22 2100% extqh 441 317 124 228%
cmovlbs 2 2 0 0% cmpule 468 450 18 24%
addt 3 3 0 0% cmpult 563 518 45 28%
cmovlbc 5 4 21 220% cmplt 565 534 31 25%
cmovle 5 5 0 0% rdteb 604 597 7 21%
insqh 6 6 0 0% extwl 660 345 315 248%
cmovgt 13 13 0 0% stq_u 688 688 0 0%
callsys 18 14 24 222% blt 784 771 13 22%
mulq 13 13 0 0% bic 771 347 424 255%
s8subq 17 17 0 0% extll 789 761 28 24%
cmovlt 16 16 0 0% extlh 789 761 28 24%
ldt 25 25 0 0% bge 828 819 9 21%
zap 34 33 21 23% mb 961 941 20 22%
umulh 35 35 0 0% sll 949 590 359 238%
mull 60 62 12 13% subl 1052 1061 (9) 11%
ornot 52 52 0 0% br 1160 1080 80 27%
cmpeq 64 61 23 25% sra 1211 562 649 254%
insql 61 61 0 0% bsr 1203 1191 12 21%
blbs 69 69 0 0% s4addl 1176 1166 10 21%
s8addl 71 74 13 14% ret 1282 1264 18 21%
mskwl 74 0 274 2100% zapnot 1262 910 352 228%
jsr 98 89 29 29% addq 1704 1685 19 21%
cpys 104 41 263 261% subq 2159 2140 19 21%
mskqh 155 153 22 21% ldah 2793 2746 47 22%
cmovne 147 141 26 24% extbl 2902 1668 1234 243%
mskbl 163 0 2163 2100% xor 3426 3380 46 21%
cmoveq 183 173 210 25% and 3402 2969 433 213%
insbl 182 19 2163 290% bne 4537 4440 97 22%
extwh 196 196 0 0% addl 4897 4855 42 21%
trapb 203 215 112 16% ldq_u 5046 3933 1113 222%
mskql 204 202 22 21% stl 5753 5301 452 28%
jmp 208 200 28 24% lda 6496 5435 1061 216%
cmovge 291 287 24 21% stq 6778 6713 65 21%
blbc 249 249 0 0% ldq 7018 6519 2499 17%
bgt 331 328 23 21% beq 7607 7455 152 22%
ldl_l 344 335 29 23% bis 11284 10707 577 25%
stl_c 344 335 29 23% ldl 15962 14260 1702 211%
extql 329 327 22 21% Totals 115895 107854 8042 27%

credit, which is similar to the TPC-A benchmark. The
TPC-B benchmark is similar to the TPC-A, differing
only in its method of execution. Cvetanovic and
Bhandarkar presented an instruction distribution
matrix for the debit-credit workload. The Alpha
instruction type mix is dominated by the integer class,
followed by other, load, branch, and store instructions,
in descending order.17 We took a similar approach
but divided the instructions into more groups to
achieve a finer detailed distribution. Table 13 gives the

instruction makeup of each group. Figure 4 shows the
percentage of instructions in each group for the four
alternatives we studied. In all four cases, INTEGER
LOADs make up 32 percent of the instructions exe-
cuted. In the scaled Byte/Word category, the new
ldbu and ldwu instructions compose 1 percent of the
integer instructions, and the new stb and stw instruc-
tions accounted for 18 percent of the integer store
instructions executed.

Digital Technical Journal Vol. 8 No. 4 1996 103

Table 12
Instruction Count and Variations for Cached Transaction

Instruction Original Byte/Word Delta % Delta Instruction Original Byte/Word Delta % Delta

stb 0 174 1174 N/A stt 334 334 0 0%
stw 0 217 1217 N/A cmple 367 374 17 12%
ldwu 0 1189 11189 N/A inswl 381 203 2178 247%
ldbu 0 1333 11333 N/A srl 433 383 250 212%
cmpbge 2 0 22 2100% extqh 434 314 2120 228%
cmovlbs 2 2 0 0% cmpule 450 440 210 22%
addt 3 3 0 0% cmpult 550 572 122 14%
cmovlbc 4 5 11 125% cmplt 561 585 124 14%
cmovle 5 5 0 0% rdteb 587 590 13 11%
insqh 6 6 0 0% extwl 654 340 2314 248%
cmovgt 13 13 0 0% stq_u 689 687 22 0%
callsys 15 16 11 17% blt 751 770 119 13%
mulq 13 13 0 0% bic 759 346 2413 254%
s8subq 13 14 11 18% extll 784 805 121 13%
cmovlt 16 16 0 0% extlh 784 805 121 13%
ldt 25 25 0 0% bge 813 831 118 12%
zap 26 27 11 14% mb 883 901 118 12%
umulh 32 32 0 0% sll 899 569 2330 237%
mull 46 48 12 14% subl 983 995 112 11%
ornot 46 46 0 0% br 1130 1100 230 23%
cmpeq 53 53 0 0% sra 1134 528 2606 253%
insql 61 61 0 0% bsr 1158 1165 17 11%
blbs 63 63 0 0% s4addl 1160 1170 110 11%
s8addl 69 70 11 11% ret 1232 1239 17 11%
mskwl 73 0 273 2100% zapnot 1247 911 2336 227%
jsr 90 92 12 12% addq 1589 1631 142 13%
cpys 87 41 246 253% subq 1994 2046 152 13%
mskqh 152 157 15 13% ldah 2684 2691 17 10%
cmovne 160 165 15 13% extbl 2921 1682 21239 242%
mskbl 163 0 2163 2100% xor 3278 3332 154 12%
cmoveq 182 190 18 14% and 3361 2990 2371 211%
insbl 182 19 2163 290% bne 4328 4376 148 11%
extwh 195 196 11 11% addl 4734 4856 1122 13%
trapb 210 211 11 0% ldq_u 5061 4046 21015 220%
mskql 201 203 12 11% stl 5418 5052 2366 27%
jmp 209 215 16 13% lda 6289 5344 2945 215%
cmovge 226 236 110 14% stq 6464 6588 1124 12%
blbc 238 238 0 0% ldq 6685 6359 2326 25%
bgt 292 302 110 13% beq 7355 7466 1111 12%
ldl_l 314 320 16 12% bis 10890 10668 2222 22%
stl_c 314 320 16 12% ldl 14964 13772 21192 28%
extql 326 329 13 11% Totals 111288 106521 24767 24%

During the scaled transactions, each instruction
group showed a decrease in the number of instruc-
tions executed, ranging from negligible to as much as
54 percent. In addition, the number of byte manipula-
tion and logical shift instructions decreased, because

the method of loading or storing bytes and words
on the original Alpha Architecture made heavy use of
these types of instructions.

In our last examination, we looked at the instruc-
tion variation between a scaled and a cached trans-
action. The major difference between the two
transactions is the additional I/O required by the
scaled version of the benchmark. Table 14 gives the
results. The Original version of the SQL Server data-
base executed an extra 4,596 instructions during the
cached transaction as compared to the scaled trans-
action. For the Byte/Word version, only an additional
1,334 instructions were executed.

Conclusions

The introduction of the new single byte and word
manipulation instructions in the Alpha Architecture
improved the performance of the Microsoft SQL
Server database. We observed a decrease in the num-
ber of instructions executed per transaction, the
elimination of some instructions in the workload, a
redistribution of the instruction mix, and an increase
in relative performance. The results are in line with
expectations when the addition of the new instruc-
tions was proposed.

We limited our investigation to a single commercial
workload and operating system. Testing a workload
with more I/O, such as the TPC-C benchmark, would

104 Digital Technical Journal Vol. 8 No. 4 1996

Table 13
Instruction Groupings

Instruction
Group Group Members

Integer loads ldwu, ldbu, ldl_l, ldah, ldq_u,
lda, ldq, ldl

Integer stores stb, stw, stl_c, stq_u, stl, stq
Integer control blbs, jsr, jmp, blbc, bgt, blt, bge,

br, bsr, ret, bne, beg
Integer arithmetic cmpbge, s8subq, umulh, mull,

cmpeq, s8addl, cmple, cmpule,
cmpult, cmplt, subl, s4addl,
addq, subq, addl

Logical shift cmovlbs, cmovlbc, cmovle,
cmovgt, cmovlt, ornot, cmovne,
cmoveq, cmovge, srl, bic, sll, sra,
xor, and, bis

Byte manipulation insll, inslh, mskll, mskhl, insqh,
zap, insql, mskwl, mskqh, mskbl,
insbl, extwh, insbl, extwh, mskql,
extql, inswl, extqh, extwl, extll,
extlh, zapnot, extbl

Other addt, ldt, stt, mulq, callsys, cpys,
trapb, rdteb, mb

CACHED
BYTE/WORD

CACHED
ORIGINAL

SCALED
BYTE/WORD

SCALED
ORIGINAL

0 10 20 30 40 50 60 70 80 90 100

PERCENT
KEY:

INTEGER LOAD
INTEGER STORE
INTEGER CONTROL
INTEGER ARITHMETIC
LOGICAL SHIFT
BYTE MANIPULATION
OTHER

Figure 4
Instruction Group Distribution

produce a different set of results and would merit
investigation. The use of another database, such as the
Oracle RDBMS, which makes greater use of byte oper-
ations, would possibly result in an even greater perfor-
mance impact. Lastly, rebuilding the entire operating
system to use the new instructions would make an
interesting and worthwhile study.

Acknowledgments

As with any project, many people were instrumental in
this effort. Wim Colgate, Miche Baker-Harvey, and
Steve Jenness gave us numerous insights into the
Windows NT operating system. Tom Van Baak pro-
vided several analysis and tracing/simulation tools for
the Windows NT environment. Rich Grove provided
access to early builds of the GEM compiler back end
that contained byte and word support. Stan Gazaway
built the SQL Server application with the modifica-
tions. Vehbi Tasar provided encouragement and sanity
checking. John Shakshober lent insight into the world
of TPC. Peter Bannon provided the early prototype
machine. Contributors from Microsoft Corporation
included Todd Ragland, who helped rebuild the SQL
Server; Rick Vicik, who provided detailed insights into
the operation of the SQL Server; and Damien
Lindauer, who helped set up and run the TPC bench-
mark. Finally, we thank Dick Sites for encouraging
us to undertake this effort.

References and Notes

1. Z. Cvetanovic and D. Bhandarkar, “Characterization
of Alpha AXP Performance Using TP and SPEC Work-
loads,” 21st Annual International Symposium on
Computer Architecture, Chicago (1994).

2. W. Kohler et al., “Performance Evaluation of Transac-
tion Processing,” Digital Technical Journal, vol. 3,
no. 1 (Winter 1991): 45–57.

3. S. Leutenegger and D. Dias, “A Modeling Study of the
TPC-C Benchmark,” Proceedings of the 1993 ACM
SIGMOD International Conference on Manage-
ment of Data, SIGMOD Record 22 (2), (June 1993).

4. R. Sites and E. Perl, PatchWrks—A Dynamic
Execution Tracing Tool (Palo Alto, Calif.: Digital
Equipment Corporation, Systems Research Center,
1995).

5. W. Kohler, A. Shah, and F. Raab, Overview of TPC
Benchmark C: The Order-Entry Benchmark (San
Jose, Calif.: Transaction Processing Performance
Council Technical Report, 1991).

6. R. Sites, “Alpha AXP Architecture,” Digital Techni-
cal Journal, vol. 4, no. 4 (Special Issue 1992): 19–34.

7. Alpha AXP Systems Handbook (Maynard, Mass.:
Digital Equipment Corporation, 1993).

8. DECchip 21064A-233, -275 Alpha AXP Micro-
processor Data Sheet (Maynard, Mass.: Digital
Equipment Corporation, 1994).

Digital Technical Journal Vol. 8 No. 4 1996 105

Table 14
Instruction Variations (Scaled Minus Cached Transactions)

Instruction Original Byte/Word Instruction Original Byte/Word Instruction Original Byte/Word

stw 0 22 cmplt 24 151 subl 269 266
ldwu 0 226 rdteb 217 27 br 230 120
ldbu 0 1117 extwl 26 25 sra 277 234
cmovlbc 21 11 stq_u 11 21 bsr 245 226
callsys 23 12 blt 233 21 s4addl 216 14
s8subq 24 23 bic 212 21 ret 250 225
zap 28 26 extll 25 144 zapnot 215 11
umulh 23 23 extlh 25 144 addq 2115 254
mull 214 214 bge 215 112 subq 2165 294
ornot 26 26 mb 278 240 ldah 2109 255
cmpeq 211 28 sll 250 221 extbl 119 114
blbs 26 26 cmovge 265 251 xor 2148 248
s8addl 22 24 blbc 211 211 and 241 121
mskwl 21 0 bgt 239 226 bne 2209 264
jsr 28 13 ldl_l 230 215 addl 2163 11
cpys 217 0 stl_c 230 215 ldq_u 115 1113
mskqh 23 14 extql 23 12 stl 2335 2249
cmovne 113 124 cmple 21 116 lda 2207 291
cmoveq 21 117 inswl 29 24 stq 2314 2125
extwh 21 0 srl 224 215 ldq 2333 2160
trapb 17 24 extqh 27 23 beq 2252 111
mskql 23 11 cmpule 218 210 bis 2394 239
jmp 11 115 cmpult 213 154 ldl 2998 2488

Totals 24596 21334

9. Alpha 21164 Microprocessor Hardware Refer-
ence Manual (Maynard, Mass.: Digital Equipment
Corporation, 1994).

10. R. Sites and R. Witek, Alpha AXP Architecture Refer-
ence Manual, 2d ed. (Newton, Mass.: Digital Press,
1995).

11. G. Kane, MIPS R2000 RISC Architecture (Englewood
Cliffs, N.J.: Prentice Hall, 1987).

12. J. Hennessy, N. Jouppi, F. Baskett, and J. Gill, MIPS:
A VLSI Processor Architecture (Stanford, Calif.:
Computer Systems Laboratory, Stanford University,
Technical Report No. 223, 1981).

13. J. Hennessy, N. Jouppi, F. Baskett, T. Gross, J. Gill,
and S. Przybylski, Hardware/Software Tradeoffs for
Increased Performance (Stanford, Calif.: Computer
Systems Laboratory, Stanford University, Technical
Report No. 228, 1983).

14. The original MIPS Architecture at Stanford University
did not contain single byte manipulation instructions;
this decision was reversed for the first commercially
produced MIPS R2000 processor. The Intel x86
Architecture has always included these instructions.

15. C. Cole and L. Crudele, personal correspondence,
December 1996.

16. Microsoft Corporation developed the ARC firmware
for the MIPS platform. During the early days of the
port of Windows NT to Alpha, DIGITAL’s engineers
ported the ARC firmware to the Alpha platform.

17. The Alpha instruction type mix included PALcode
calls, barriers, and other implementation-specific
PALcode instructions.

Biographies

106 Digital Technical Journal Vol. 8 No. 4 1996

David P. Hunter
David Hunter is the engineering manager of the DIGITAL
Software Partners Engineering Advanced Development
Group, where he has been involved in performance investi-
gations of databases and their interactions with UNIX and
Windows NT. Prior to this work, he held positions in the
Alpha Migration Organization, the ISV Porting Group,
and the Government Group’s Technical Program Manage-
ment Office. He joined DIGITAL in the Laboratory Data
Products Group in 1983, where he developed the VAXlab
User Management System. He was the project leader of the
advanced development project, ITS, an executive informa-
tion system, for which he designed hardware and software
components. David has two patent applications pending in
the area of software engineering. He holds a degree in electri-
cal and computer engineering from Northeastern University.

Eric B. Betts
Eric Betts is a principal software engineer in the DIGITAL
Software Partners Engineering Group, where he has been
involved with performance engineering, project manage-
ment, and benchmarking for the Microsoft SQL Server
and Windows NT products. Previously with the Federal
Government Region, Eric was a member of the technical
support group and a technical lead on several government
programs. Before joining DIGITAL in 1990, he worked
in many different software development areas at Martin
Marietta and the Defense Information Systems Agency.
Eric received a B.S. in computer science from North
Carolina Central University.

