
Digital Technical Journal Vol. 9 No. 1 1997 3

Three factors contribute to the success of a micro-
processor: price, performance, and software availability.
The DIGITAL FX!32 product addresses the third fac-
tor, software availability, by making hundreds of new
applications available on Alpha-based platforms run-
ning the Windows NT operating system. DIGITAL
FX!32 software combines emulation and binary trans-
lation to provide fast, transparent execution of Intel
x86 applications on Alpha systems.

Since its introduction in 1992, the Alpha micro-
processor has been the fastest microprocessor 
available. A large number of native applications are
available on Alpha systems, particularly those applica-
tions that require a high-performance processor. With
the introduction of DIGITAL FX!32 software, 32-bit
programs that can be installed and executed on x86
systems running the Windows NT 4.0 operating sys-
tem can also be installed and executed on Alpha sys-
tems running Window NT 4.0. Except for having to
specify that a program is an x86 application, installing
and running an application is the same on an Alpha
system as on an x86 system. The performance of an
x86 application running on a high-end Alpha system is
similar to the performance of the same application
running on a high-end x86 system. 

A number of systems have successfully used emula-
tors to run applications on platforms for which the
applications were not initially targeted.1,2 The major
drawback has been poor performance.2 Several emula-
tors have used dynamic translation, translating small
segments of a program as it is executed, to achieve better
performance than that obtained by an interpreter
alone.2–4 Dynamic translation involves a basic trade-off
between the amount of time spent translating and the
resulting benefit of the translation. If an emulator spends
too much time on the translation and related processing,
the executing program will be unresponsive. This limits
the optimizations that can be performed by the emula-
tor using dynamic translation. 

FX!32 overcomes the performance problem by not
doing any translation while the application is execut-
ing. Rather, FX!32 captures an execution profile that is
later used by a binary translator5 to translate into native
Alpha code those parts of the application that have
been executed. Since the translator runs in the back-

DIGITAL FX!32:
Combining Emulation
and Binary Translation 

Raymond J. Hookway 
Mark A. Herdeg 

The DIGITAL FX!32 software product uniquely
combines emulation and binary translation 
to enable any 32-bit application that executes
on an Intel x86 microprocessor running the
Windows NT 4.0 operating system to be installed
and to execute on an Alpha microprocessor run-
ning Windows NT 4.0. Benchmark tests indicate
that after translation, x86 applications run as
fast on a 500-MHz Alpha system with DIGITAL
FX!32 software installed as on a 200-MHz Pentium
Pro system. The emulator and its associated run-
time software provide transparent execution 
of applications written for x86-based platforms.
The emulator produces profile data that is used
by the translator and takes advantage of trans-
lation results as they become available. The
translator provides native Alpha code for the
portions of an x86 application that have previ-
ously been executed. A server manages the
translation process for the user, making the
process completely transparent. 



4 Digital Technical Journal Vol. 9 No. 1 1997

ground, it can use computationally intensive algo-
rithms to improve the quality of the generated code.
To our knowledge, FX!32 is the first system to explore
this combination of emulation and binary translation. 

In this paper, we describe how FX!32 works. We begin
with an overview and discuss each of the major compo-
nents in more detail. We then present some benchmark
test results and briefly describe several limitations of the
current version of DIGITAL FX!32 software. 

Overview 

On Alpha systems, the Windows NT operating system
uses an emulator to run 16-bit x86 applications. These
applications can be installed and run in the same way as
they are installed and run on x86 systems, but the exe-
cution is slower. The emulator built into FX!32 pro-
vides a similar capability for 32-bit x86 applications. 

Unlike the emulation software in the 16-bit envi-
ronment, FX!32 provides a binary translator that
translates 32-bit x86 applications into native Alpha
code. The translation is done in the background and
requires no user interaction. Using background trans-
lation allows the translator to perform optimizations
that, in terms of computational resources, would be
too expensive to accomplish while an application is
running. An application translated by means of FX!32
runs up to 10 times faster than the same application
running under the emulator. 

DIGITAL FX!32 software consists of the following
seven major components: 

1. The transparency agent, which provides for trans-
parent launching of 32-bit x86 applications. 

2. The runtime, which loads x86 images and sets up
the run-time environment to execute them. As part

of loading an image, the runtime component jack-
ets imported application programming interface
(API) routines. Jackets are small code fragments
that allow the x86 code to call Alpha Windows NT
API routines. 

3. The emulator, which runs an x86 application mak-
ing use of translated code when it is available. 

4. The translator, which produces a translated image
using profile information received from the emulator.

5. The database, which stores execution profiles pro-
duced by the emulator and used by the translator.
Translated images are also stored in the database,
along with configuration information. 

6. The server, which maintains the database and runs
the translator as appropriate. 

7. The manager, which allows the user to control
resources used by the DIGITAL FX!32 software. 

Figure 1 shows the relationships between these
major components, each of which is discussed in more
detail in the sections that follow. 

The Transparency Agent 

The transparency agent provides for transparent
launching of 32-bit x86 applications. Launching an
application on the Windows NT operating system
always results in a call to the CreateProcess API routine.
By hooking calls to this routine, the transparency agent
can examine every image as it is about to be executed.
If a call to CreateProcess specifies that an x86 image is
to be executed, the transparency agent invokes the run-
time component to execute the image. 

FX!32 inserts the transparency agent into the address
space of each process. A process that contains the trans-

RUNTIME
AND
EMULATOR

TRANSPARENCY
AGENT

BINARY
TRANSLATOR

SERVER

DATABASE
<REGISTRY>

TRANSLATED
IMAGES

X86 IMAGE

EXECUTION
PROFILES

Figure 1 
DIGITAL FX!32 System Components



Digital Technical Journal Vol. 9 No. 1 1997 5

parency agent is said to be enabled. Once a process is
enabled, any attempt to execute an x86 image causes
the runtime to be invoked to execute the process. The
agent is propagated through the system because each
attempt to create a process to run an Alpha image
results in that created process being enabled. 

By the time a user is logged on, FX!32 has enabled
all the top-level processes, and any attempt to execute
a 32-bit x86 application invokes the runtime compo-
nent. The initial processes that are enabled are the
Windows shell (explorer.exe), the service control man-
ager (services.exe), and the remote procedure call
server (rpcss.exe). When FX!32 is installed, the
fx32strt.exe file is registered as the Windows shell.
When a user logs on, fx32strt.exe runs and enables the
real Windows shell, explorer.exe. The FX!32 server
enables the service control manager when it starts,
usually when the system is booted. Currently, any ser-
vice process that is started by the service control man-
ager before the server is started is not enabled. (The
only exception is rpcss.exe, which is explicitly enabled
by the server). We hope to alleviate this limitation in a
future version of the DIGITAL FX!32 software. 

Processes are enabled using a technique described
by Jeffrey Richter in Chapter 16 of his book
Advanced Windows NT 6 to inject a copy of the trans-
parency agent into the process’ address space. 

The Runtime 

The transparency agent invokes the runtime whenever
an attempt is made to execute an x86 image. The 
runtime loads the image into memory, sets up the run-
time environment required by the emulator, and then
calls the emulator to execute the image. 

The runtime replaces the Windows NT loader,
which can only load Alpha images; the Windows NT
loader returns an error reporting an image of the
wrong architecture if it is invoked to load an x86
image. The runtime duplicates the functionality of the
Windows NT loader, which includes relocating images
that are not loaded at their preferred base address, set-
ting up shared sections, and processing static thread
local storage sections. 

The runtime registers each image it processes with
the Windows NT operating system by inserting point-
ers to that image into various lists that are used inter-
nally by the system. Maintaining these lists allows the
native Windows NT code to correctly implement API
routines, such as LoadResource and GetModuleHandle,
which require access to images that have been loaded.
The registration also ensures that the DllMain func-
tions of the loaded dynamic link libraries (DLLs) are
called as appropriate. (The entry points of x86 DLLs
are jacketed by the runtime.) 

Fortunately, the image lists that FX!32 must modify
are in the user’s address space, and no modification of

the Windows NT operating system was required to
register images with the system. Unfortunately, the
structure of these lists is not part of the documented
Win32 interface, and using them creates a dependency
on the Windows NT version that is being run. FX!32
has dependencies on a number of undocumented fea-
tures of the Windows NT operating system. Although
the DIGITAL FX!32 product is more dependent on a
particular version of the operating system than a typi-
cal layered application is, it is remarkable that the
implementation of FX!32 did not require any changes
to the Windows NT operating system. 

The runtime also registers the image in the FX!32
database. This database maintains information about
x86 images that have been loaded, including the appli-
cation that loaded the image, profile data that was pro-
duced by the interpreter, and any translation of the
image. The runtime accesses the database with a
unique image identifier (ID), which the runtime
obtains by hashing the image’s header. Therefore, the
image ID is determined by the content of the image,
not by its location in the file system, and the informa-
tion that FX!32 associates with the image can be
accessed independently of the image’s location on the
disk. For example, if an application is installed in one
directory and some of the images loaded by the appli-
cation are subsequently translated by FX!32, the trans-
lated images will be located by FX!32 even if the
application is later installed in a different directory. 

When the runtime finds a translated image in the
database, it loads this image along with the corre-
sponding x86 image. Translated images are normal
DLLs, loaded by the native LoadLibrary API routine.
Translated images contain additional sections that
store information required by the runtime to map x86
routines to the corresponding Alpha code. 

The runtime duplicates the Windows NT loader
function of binding an image’s imports, using sym-
bolic information in the image to locate the address of
the imported routine or data. The runtime treats
imports that refer to entries in Alpha images specially,
however, by redirecting the imports to refer to the
correct jacket entry in the FX!32 DLL, jacket.dll. 

The jacket routines in jacket.dll enable an x86 user
program to call the native Alpha implementation of
the Win32 API. These jacket routines are extremely
important because they allow x86 applications to use
high-performance code that has been tuned to the
Alpha platform. Some x86 applications run faster on
the Alpha platform than on the x86 platform, even
without being translated, because of the large amount
of time the applications spend in native DLLs. 

Each jacket contains an illegal x86 instruction that
serves as a signal to the interpreter that a change is to
be made to the Alpha environment. The interpreter
calls an Alpha jacket routine at a fixed offset from the
illegal x86 instruction. The basic operation of most



6 Digital Technical Journal Vol. 9 No. 1 1997

jacket routines is to move arguments from the x86
stack to the appropriate Alpha registers, as dictated by
the Alpha calling standard. Some jacket routines pro-
vide special semantics for the native routine being
called, as required by FX!32. For example, the jacket
for the GetSystemDirectory routine returns the path
to the FX!32 directory rather than the path to the true
system directory so that x86 applications do not over-
write native Alpha DLLs. 

For an x86 application to run under FX!32, every
image it loads must be either an x86 image or an Alpha
image for which jackets exist. Therefore, FX!32 pro-
vides jackets for all the DLLs that implement the
Win32 interface and for many redistributable DLLs.
FX!32 currently provides jackets for more than 50
native Alpha DLLs, which has enabled the FX!32 devel-
opment team to run almost all the commercial applica-
tions tested. Each new release of DIGITAL FX!32
software provides additional jackets, and the developers
intend to jacket new interfaces as they are released. 

The Emulator 

The fundamental job of the emulator is to run x86
applications before they are translated. The first time
an x86 image executes under FX!32, the image is exe-
cuted by the emulator. 

The emulator also serves as a backup for translated
code. Because it is not possible to statically determine
all the code that can ever be executed by an application
(especially for applications that generate code on-the-
fly), the emulator is always present to execute such
untranslated x86 application code. Previous binary
translators built by DIGITAL also depended on the
presence of an emulator in this role.5 Emulator perfor-
mance is more of an issue for FX!32 because, unlike
those earlier binary translators, all application code is
interpreted when the x86 application is first run. 

The emulator is an Alpha assembly language program
that interprets the subset of x86 instructions that can be
executed by a Win32 application. While an x86 applica-
tion is running, the x86 processor state is kept partially
in Alpha registers and partially in a per-thread data
structure called the CONTEXT. The x86 integer regis-
ters are permanently mapped to Alpha registers, and
Alpha registers store the state of the x86 condition
codes. While the emulator is running, a dedicated Alpha
register points to the CONTEXT. The CONTEXT
stores the x86 per-thread processor context and any part
of the x86 processor state that must be maintained
across calls to other parts of the system, for example,
calls to Alpha API routines. 

Pipelined Dispatch 
The structure of the emulator is a classic fetch-and-
evaluate loop. The emulator dispatches on the first
two bytes of each instruction, performing the lookup

in a table of 64K entries. Each entry contains the
address of the routine to execute to interpret an
instruction and the length of the instruction. 

The structure of the dispatch loop has been care-
fully crafted to make efficient use of 64-bit Alpha reg-
isters and to efficiently schedule the execution of code
in the loop. Software pipelining is used to overlap the
fetch and dispatch table lookup for the next instruc-
tion with the execution of the current instruction. 
At the top of the loop, at least eight bytes, starting at
the address of the current instruction, are in Alpha
registers. Length information from the dispatch table
determines the first two bytes of the next instruction,
allowing the dispatch table lookup to be overlapped
with the execution of the current instruction. A fetch
of additional bytes from the instruction stream is also
initiated. Finally, the loop dispatches to the routine
whose address was obtained from the table on the pre-
vious iteration of the loop. 

The individual routines have been factored by using
subroutines and coroutines to perform operations like
operand fetching, making them as small as possible. As
a result, the emulator code required to execute the
most frequently executed x86 instructions fits in the
first-level cache. 

Condition Code Evaluation 
Condition codes are generated by the execution of
many of the x86 instructions. We have observed that
condition codes are frequently set and relatively
infrequently examined. The emulator takes advan-
tage of this by evaluating the condition codes only
when they are used, that is, by using a “lazy evalua-
tion” technique. The execution of a typical instruc-
tion saves only enough state to allow the evaluation
of condition codes, if required, at a later time. This
takes much less effort than initially evaluating the
condition codes. The additional advantage in defer-
ring the evaluation is that only the condition codes
that are used need to be generated. For example, the
overflow condition code may never be computed if
only the zero flag is used. 

Floating-point Instruction Emulation 
The 80-bit x86 floating-point registers are modeled 
by a stack of 64-bit memory locations that contain
floating-point values. The decision to use 64-bit inter-
mediate values, rather than to faithfully replicate the
80-bit model, was based on the need to achieve good
performance when executing x86 floating-point code
on the Alpha processor. This decision was supported
by the fact that the Windows NT operating system also
uses a 64-bit floating-point model. Although this is an
approximation, our experience to date has shown that
this was a good compromise. Very few applications
rely on the full precision provided by the x86 floating-
point unit’s (FPU’s) 80-bit registers. 



Digital Technical Journal Vol. 9 No. 1 1997 7

The emulator also implements a somewhat simpli-
fied model of the x86 FPU’s register file. Most instruc-
tions use the x86 FPU register file as a traditional
operand stack; however, several instructions can create
a register file state that is not strictly a stack by freeing
registers in the middle of the stack, by moving the
stack pointer without pushing or popping, or by ini-
tializing the register file in a way that breaks the stack
model. Modeling the full complexity of the x86 FPU
register file would be extremely expensive, and experi-
ence has shown that almost all programs use the regis-
ter file strictly as a stack. The current version of the
emulator takes advantage of this. We are investigating
ways to model the floating-point registers in a way that
maintains good performance but does not depend on
their being treated as a stack. 

Generation of Profiles 
While it is interpreting an x86 program, the emulator
generates profile data for use by the translator. The
profile data includes the following information: 

■ Addresses that are the targets of call instructions

■ (Source address, target address) pairs for indirect
control transfers 

■ Addresses of instructions that make unaligned ref-
erences to memory 

The translator uses this information to generate
routines, that is, units of translation that approximate
a source code routine. The emulator generates profile
data by inserting values in a hash table whenever a rel-
evant instruction is interpreted. For example, as part of
interpreting the call instruction, the emulator makes
an entry in a hash table that records the target of the
call. When an image is unloaded (either as a result of a
call on the FreeLibrary routine or when the applica-
tion exits), the runtime processes the hash table to
produce a profile file for that image. This profile is
processed by the server and can result in the server
invoking the translator to create a new translation of
the image. 

To detect available translated code, the emulator
uses the same hash table that it employs to gather the
profile data. The x86 addresses for which there are
translated routines and the address of the correspond-
ing translated code are entered into the hash table by
the runtime when it loads an x86 image that has been
translated. When a call instruction is interpreted, the
emulator looks up the target address. If a correspond-
ing translated address exists, the emulator transfers
control to that address. 

The Translator 
The server invokes the translator to translate x86
images for which a profile exists in the database. The
translator uses the profile to produce a translated

image. On subsequent executions of the image, the
translated code is used, substantially speeding up the 
application. 

Structure and Order of Operations 
The translator has eight major components (or phases):
the regionizer, build, the register mangler, the condi-
tion code mangler, improve, the code selector, the
scheduler, and the assembler. (An additional phase
that performs various peephole optimizations is dis-
abled in the DIGITAL FX!32 V1.0 translator.) The
major components function as follows: 

1. The Regionizer—The regionizer uses data in the
profile to divide the source image code into rou-
tines, which are described in the section Generation
of Profiles. Each call target in the profile is used to
generate an entry to a routine. The regionizer rep-
resents routines as a collection of regions. Each
region is a range of contiguous addresses, which
contains instructions that can be reached from the
entry address of the routine. Unlike basic blocks,
regions can have multiple entry points. The small-
est collection of regions that contain all the instruc-
tions that can be reached from the routine entry is
used to represent the routine. Many routines have a
single region. This representation was chosen to
efficiently describe the division of the source image
into units of translation. 
The regionizer builds routines by following the
control flow of the source image. When an indirect
jump instruction is encountered while following
the control flow, the possible targets of the instruc-
tion are obtained from the profile. Without this
profile information, it would be very difficult to
reliably identify these targets, and indirect jumps
would have to be treated as returns from the rou-
tine. The profile information makes it possible to
reliably generate a more complete representation of
routines with correct control flow. 

After the regionizer runs, each of the other major
components is run in sequence for each routine. 

2. Build—Build reparses the x86 instructions in the
routine to create an internal representation (IR) of
the routine for use by the subsequent components.
The IR is a graph of basic blocks and is similar to the
IR used by many optimizing compilers. 

3. The Register Mangler—The initial IR is a straight-
forward representation of the source x86 code.
This representation ignores the overlap of the x86
registers; the IR treats each occurrence of EAX,
AX, AH, and AL as a separate register. The register
mangler adds insert and extract operations as nec-
essary to represent the actual semantics of the x86
registers. 



8 Digital Technical Journal Vol. 9 No. 1 1997

4. The Condition Code Mangler—The effect of x86
instructions on condition codes is represented
implicitly in the initial IR. The condition code man-
gler adds instructions to explicitly generate condi-
tion codes. Since the condition code mangler
understands the control flow of the entire routine,
it knows when condition codes are live and only
adds code to generate condition codes when they
are used later in the routine. 

5. Improve—Improve performs several transforma-
tions that produce code more suited to the Alpha
architecture. In the initial IR, each push and pop
instruction is explicitly represented as a decrement/
increment of the x86 stack pointer, accompanied by
a store/load. Improve collects all the manipulation
of the x86 stack pointer into a single decrement at
the beginning of a basic block and a single incre-
ment at the end of that block. Improve also uses
simple value numbering and analysis of memory
references to try to eliminate loads and stores to
both the x86 stack and the floating-point stack and
to perform constant folding. Although Improve
performs only relatively simple optimizations on a
single basic block, we have found it to be quite
effective in improving the quality of the code that is
generated. 

6. The Code Selector—The code selector transforms
the IR from a representation that contains mostly
x86 instructions to one that contains only Alpha
instructions. This transformation is done instruction
by instruction, with each x86 instruction being
replaced by a sequence of Alpha instructions that
produce the same effect. The implementation of the
code selector is based on the TWIG code generator.7

Although the code selector is capable of dealing
with much more complicated patterns of instruc-
tions, this capability is not currently used.

7. The Scheduler—After the code selector is run, all
the instructions in the IR are Alpha instructions.
The scheduler reorders the instructions within a
basic block to minimize the cycle count for the tar-
get processor. 

8. The Assembler—The assembler builds the output
translated image. 

Use of Profile Data 
The regionizer is the only component of the current
translator that uses the control flow information in the
profile. The regionizer uses the profile to determine
which parts of the source image are translated. Future
versions of the translater will use the profile to perform
path-directed optimizations and to place code so as to
reduce cache misses. Those changes will improve the
performance of translated code. 

Retranslation of an image is triggered by growth in
the size of the profile. Because profile data is generated
only when the emulator executes previously untrans-
lated parts of the source image, an increase in the size
of the profile indicates that new parts of the program
have been executed. Retranslating with the new pro-
file will cause these additional parts of the image to be
translated. 

Alignment Issues 
On an Alpha system, references to memory locations
that are not naturally aligned result in exceptions that
are handled by the Windows NT kernel. Alignment
exceptions can be avoided by using unaligned code
sequences that use the LDQ_U and STQ_U instruc-
tions. Unaligned code sequences are slower than
aligned sequences for accessing locations that are nat-
urally aligned but much faster for accessing locations
that are not naturally aligned. Native Alpha compilers
always try to generate unaligned code sequences when
referencing unaligned data to avoid the expense of
dealing with alignment exceptions. 

When generating the code for an instruction that
references memory, the code selector must determine
whether to use an aligned sequence or an unaligned
sequence. To make the determination, the code selec-
tor needs to know the alignment of the address being
referenced. In general, this cannot be determined by
static analysis of the x86 code. To solve the problem,
the code selector uses information in the profile about
the alignment of memory addresses. The profile con-
tains the address of every instruction that made an
unaligned reference to memory. The code selector
generates unaligned sequences for those instructions
and aligned sequences for all other memory references.
Although this code generation process is effective most
of the time, some programs exhibit different memory
reference behavior on successive runs. For those pro-
grams, alignment exceptions can still occur. 

Shadow Stack 
Translating return instructions presented particular
problems for the translator. The translation of a call
instruction saves the x86 return address on the x86
stack and then calls the translated code for the routine.
After the translated call, the x86 return address is on
the x86 stack and the corresponding native return
address is in an Alpha register. This maintains the x86
stack in the expected x86 state. One way to translate a
return instruction would be to use the x86 return
address to look up a corresponding Alpha address;
however, it is desirable to avoid the expense of a hash
table lookup on every return. In the usual case, the
return address is not changed by the routine and the
translated code can pop the x86 stack and perform a
native return by using the native return address. Two



Digital Technical Journal Vol. 9 No. 1 1997 9

problems must be solved, though. First, some mecha-
nism is needed to determine if the x86 return address
has been modified. Second, a location is needed to
save the native return address. Both problems are
solved by using the shadow stack. 

The shadow stack resides at the top of the native
Alpha stack and is maintained by the translated code
(with help from the emulator). A shadow stack frame is
created for each call of a translated routine. When one
translated routine calls another, the calling routine saves
the x86 return address and the current x86 stack pointer
in its shadow stack frame. The called routine then saves
the native return address in the calling routine’s shadow
stack frame. On return, the called routine expects to
find the x86 return address and the current x86 stack
pointer in the calling routine’s shadow stack frame. In
this case, the called routine is returning to the environ-
ment that the calling routine expected and performs a
native return. If the value of either the return address 
or the stack pointer has changed from the value
expected by the calling routine, the called routine
returns to the emulator. 

In a similar manner, the emulator uses the informa-
tion in the shadow stack to determine when it can
return to translated code. A number of conditions 
can cause translated code to reenter the emulator. For
example, the emulator is entered if the target of a
translated indirect jump instruction is not known at
translation time. Having the emulator return to trans-
lated code on a return instruction minimizes the
amount of time that is spent in the emulator; however,
the emulator can only return to the translated code if it
knows that it has a valid return address. The shadow
stack provides a mechanism to perform that validation. 

The Database 

The database consists of two parts. As described for
the runtime, the first part of the database is a directory
tree that contains profile files, translator log files, and
translated images. The second part of the database is
kept in the registry and consists of information about
x86 applications and images that the DIGITAL FX!32
software has run on the system, together with config-
uration information. The configuration information
includes the maximum amount of disk space that can
be used by FX!32, the maximum number of images
that can be stored in the database, the default transla-
tion options, the work list that the server uses to
schedule translations, and the DatabaseDirectoryList.
The DatabaseDirectoryList is a list of paths to addi-
tional databases that are to be searched for image pro-
files and translation results when the image is first
executed. Directories on this list can be used to access
information about the image from other machines on
a network, making available to a user translations per-
formed on another, perhaps more powerful, machine. 

The Server 

The server is a Windows NT service that normally
starts whenever the system is rebooted. The server
automatically runs the translator when appropriate,
thus making the translation process completely trans-
parent to the user. The server also maintains the data-
base to control DIGITAL FX!32 resource usage. 

The Manager 

Usually the operation of DIGITAL FX!32 software is
completely transparent to the user. Like any other pro-
gram, though, FX!32 consumes system resources and a
user must be able to control that resource usage. One
of the roles of the manager is to provide a user interface
to the configuration information kept in the database. 

Figure 2 shows the manager window. The upper
pane contains information about the various applica-
tions that have been run on the system: the total
amount of disk space being used for profiles and trans-
lations of images loaded by the application, the num-
ber of times the application has been run, the date
when it was last run, and the optimizer (translator) 
status. The lower pane contains information about 
the images that have been loaded by the highlighted
application in the upper pane: the total amount of disk
space used to store the profile and translation of the
image, the number of times the image has been
loaded, the date on which it was last loaded, and the
status of the last translation of the image. 

By interacting with the manager, the user can con-
trol various aspects of FX!32 operation, such as the
maximum amount of disk space to use, which informa-
tion to retain in the database, and when the translator
should run. 

Results 

The DIGITAL FX!32 development team had two pri-
mary goals for the software: (1) to achieve transparent
execution of 32-bit x86 applications and (2) to yield
approximately the same performance as a high-end
x86 platform when running applications on a high-
performance Alpha system. The DIGITAL FX!32
product meets both goals. 

Transparency is provided by the transparency agent
and a run-time environment that can load and execute
an x86 application without a translation step. Appli-
cations can be launched and executed on an Alpha 
system that is running FX!32 just as they can on an 
x86 system. We have performed extensive testing 
of more than 75 applications that run using FX!32,
including major commercial applications such as
Microsoft Office 95, Visual Basic 4.0, Photoshop 4.0,
and CorelDRAW 6.0. 



10 Digital Technical Journal Vol. 9 No. 1 1997

DIGITAL FX!32 software also met its performance
goal. Figure 3 shows the relative performance on
BYTE Magazine’s BYTEmark benchmark of a 200-
megahertz (MHz) Pentium Pro system and a 500-
MHz Alpha system running FX!32. For this
benchmark, the Alpha system provides about the
same performance as the 200-MHz Pentium Pro
system. Figure 3 also shows that the Alpha native

version of the benchmark runs twice as fast as the
Pentium Pro version.

Of course, no single benchmark characterizes the
performance of a system. Even so, when running
translated x86 applications, we have consistently mea-
sured performance on a 500-MHz Alpha system to be
in the range between that of a 200-MHz Pentium sys-
tem and that of a 200-MHz Pentium Pro system. For

Figure 2 
The DIGITAL FX!32 Manager

0

2 

4 

6 

8 

200-MHZ PENTIUM PRO 500-MHZ ALPHA 21164A
(NATIVE ONLY)

500-MHZ ALPHA 21164A
RUNNING DIGITAL FX!32

KEY:

INTEGER

FLOATING POINT

Figure 3 
DIGITAL FX!32 Performance on the BYTE Benchmark) 



Digital Technical Journal Vol. 9 No. 1 1997 11

References 

1. B. Case, “Rehosting Binary Code for Software Porta-
bility,” Microprocessor Report (Sebastopol, Calif.:
MicroDesign Resources, January 1989). 

2. T. Halfhill, “Emulation: RISC’s Secret Weapon,” 
BYTE Magazine (April 1994). 

3. R. Bedichek, “Some Efficient Architecture Simulation
Techniques,” USENIX (Winter 1990). 

4. L. Deutsch and A. Schiffman, “Efficient Implementa-
tion of the Smalltalk-80 System,” Record of the
Eleventh Annual ACM Symposium on Principles of
Programming Languages (1983). 

5. R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robin-
son, “Binary Translation,” Digital Technical Journal,
vol. 4, no. 4 (Maynard, Mass.: Digital Equipment 
Corporation, 1992). 

6. J. Richter, Advanced Windows NT, chap. 16 (Red-
mond, Wash.: Microsoft Press, 1994). 

7. A. Aho, M. Ganapathi, and S. Tjiang, “Code Generation
Using Tree Matching and Dynamic Programming,”
ACM Transactions on Programming Languages and
Systems, vol. 11, no. 4 (October 1989). 

Biographies 

some applications, performance can exceed that of a
Pentium Pro system. 

The initial version of the DIGITAL FX!32 software
has some limitations. FX!32 executes only application
code; it does not execute drivers. Consequently, native
drivers are required for any peripheral that is installed
on an Alpha system. Also, as described in the
Transparency Agent section, FX!32 does not provide
complete support for x86 services. Further, FX!32
does not support the Windows NT Debug API.
Supporting that interface would require the capability
to rematerialize the x86 state after every x86 instruc-
tion, thus severely limiting optimizations that the
translator could perform. Optimizing compilers make
a similar trade-off by restricting optimization when
debugging information is required. Since FX!32 does
not support the Debug interface, applications that
require it do not run under FX!32. Those applications
are mostly x86 development environments, and it
probably makes more sense to run them on an x86 
system. The limitations described are not serious, and
most x86 applications that execute on an x86 proces-
sor that is running the Windows NT operating system
also execute on an Alpha system running Windows NT
and DIGITAL FX!32 software. 

Summary 

DIGITAL FX!32 software provides fast, transparent
execution of 32-bit x86 applications on Alpha systems
running the Windows NT operating system. This is
accomplished using a unique combination of emula-
tion and binary translation. The emulator runs an
application, interprets the code, and generates profile
information. For subsequent executions, the translator
uses the profile data to produce translated images that
contain optimized native Alpha code. An application
translated by means of DIGITAL FX!32 software runs
up to 10 times faster than the same application run-
ning under the emulator alone. Moreover, the transla-
tion takes place in the background and is therefore
transparent to the user. 

Acknowledgments 

Building the DIGITAL FX!32 product required some
extremely talented people to perform a lot of difficult
work. The members of the DIGITAL FX!32 develop-
ment team include Jim Campbell, Anton Chernoff,
George Darcy, Tom Evans, Jim Givler, Charlie
Greenman, Pippa Jollie, Mark Herdeg, Ray Hookway,
Maurice Marks, Srinivasan Murari, Brian Nelson,
Scott Robinson, Norm Rubin, Sherry Seskavich, Joyce
Spencer, Tony Tye, and John Yates. Many of these
individuals contributed the ideas described in this
paper. 

Raymond J. Hookway 
Ray Hookway led the DIGITAL FX!32 development team
and was a key contributor to the binary translation compo-
nent of the DIGITAL FX!32 software product. He has been
a member of the AMT group of DIGITAL Semiconductor
since 1993. Ray joined DIGITAL in 1989 and has worked
in the CAD and AD groups of DIGITAL Semiconductor,
where he contributed to the first Alpha PC project. Prior 
to joining DIGITAL , he was Director of Engineering for
Endot, Inc., where he developed one of the first VHDL
simulation environments. He was also an Assistant Professor
at Case Western Reserve University, where he did research
on program verification, and he was a Visiting Professor at
the University of Upsalla, Sweden. Ray received M.S. and
Ph.D. degrees in computer science from Case Western
Reserve University and a B.S. in engineering from Case
Institute of Technology. He has applied for several patents
related to his DIGITAL FX!32 work. 



12 Digital Technical Journal Vol. 9 No. 1 1997

Mark A. Herdeg 
Mark Herdeg has been with DIGITAL since 1985. He is
currently a principal software engineer in the AMT group 
of DIGITAL Semiconductor. Previously, he worked on con-
sole software for the Nautilus (VAX 8500) and Argonaut
projects. The Alpha simulator developed for the Argonaut
project, MANNEQUIN, became the first Alpha system on
which the OpenVMS operating system successfully booted.
Mark contributed to a related project that used the Alpha
simulator and a dual–architecture-aware debugger to allow
development and execution of applications with a mix of
VAX and Alpha code. A founding member of the Alpha
Migration Tools group, Mark worked on its first product,
VEST, the OpenVMS VAX–to–Alpha binary translator. He
then helped design and develop the DIGITAL FX!32 soft-
ware product, with particular focus on the runtime compo-
nent. Currently, he is the project leader for the next release
of DIGITAL FX!32 software. Mark has submitted several
patent applications for work on the multiple-architecture
execution environment and for the DIGITAL FX!32 design. 


