
Digital Technical Journal Vol. 9 No. 1 1997 27

In computing, a cluster is loosely defined as a parallel
system comprising a collection of stand-alone comput-
ers (each called a node) connected by a network. Each
node runs its own copy of the operating system, and
cluster software coordinating the entire parallel system
attempts to provide users with a unified system view.
Since each node in the cluster is an off-the-shelf 
computer system, clusters offer several advantages
over traditional massively parallel processors (MPPs)
and large-scale symmetric multiprocessors (SMPs).
Specifically, clusters provide1

■ Much better price/performance ratios, opening a
wide range of computing possibilities for users who
could not otherwise afford a single large system. 

■ Much better availability. With appropriate software
support, clusters can survive node failures, whereas
SMP and MPP systems generally do not. 

■ Impressive scaling (hundreds of processors), when
the individual nodes are medium-scale SMP systems.

■ Easy and economical upgrading and technology
migration. Users can simply attach the latest-
generation node to the existing cluster network. 

Despite their advantages and their impressive peak
computational power, clusters have been unable to
displace traditional parallel systems in the marketplace
because their effective performance on many real-
world parallel applications has often been disappoint-
ing. Clusters’ lack of computational efficiency can be
attributed to their traditionally poor communication,
which is a result of the use of standard networking
technology as a cluster interconnect. The develop-
ment of the MEMORY CHANNEL network as a cluster
interconnect was motivated by the realization that the
gap in effective performance between clusters and
SMPs can be bridged by designing a communication
network to deliver low latency and high bandwidth all
the way to the user applications. 

Over the years, many researchers have recognized
that the performance of the majority of real-world par-
allel applications is affected by the latency and band-
width available for communication.2–5 In particular, 
it has been shown2,6,7 that the efficiency of parallel 
scientific applications is strongly influenced by the 
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system’s architectural balance as quantified by its 
communication-to-computation ratio, which is some-
times called the q-ratio.2 The q-ratio is defined as 
the ratio between the time it takes to send an 8-byte
floating-point result from one process to another
(communication) and the time it takes to perform a
floating-point operation (computation). In a system
with a q-ratio equal to 1, it takes the same time for a
node to compute a result as it does for the node to
communicate the result to another node in the system.
Thus, the higher the q-ratio, the more difficult it is to
program a parallel system to achieve a given level of
performance. Q-ratios close to unity have been
obtained only in experimental machines, such as
iWarp8 and the M-Machine,9 by employing direct 
register-based communication. 

Table 1 shows actual q-ratios for several commercial
systems.10,11 These q-ratios vary from about 100 for a
DIGITAL AlphaServer 4100 SMP system using shared
memory to 30,000 for a cluster of these SMP systems
interconnected over a fiber distributed data interface
(FDDI) network using the transmission control 
protocol/internet protocol (TCP/IP). An MPP
system, such as the IBM SP2, using the Message
Passing Interface (MPI) has a q-ratio of 5,714. The
MEMORY CHANNEL network developed by Digital
Equipment Corporation reduces the q-ratio of an
AlphaServer-based cluster by a factor of 38 to 82 to be
within the range of 367 to 1,067. Q-ratios in this
range permit clusters to efficiently tackle a large class
of parallel technical and commercial problems. 

The benefits of low-latency, high-bandwidth 
networks are well understood.12,13 As shown by many
studies,14,15 high communication latency over tradi-
tional networks is the result of the operating system
overhead involved in transmitting and receiving mes-
sages. The MEMORY CHANNEL network eliminates
this latency by supporting direct process-to-process
communication that bypasses the operating system.

The MEMORY CHANNEL network supports this type
of communication by implementing a natural exten-
sion of the virtual memory space, which provides
direct, but protected, access to the memory residing in
other nodes. 

Based on this approach, DIGITAL developed 
its first-generation MEMORY CHANNEL network
(MEMORY CHANNEL 1),16 which has been shipping
in production since April 1996. The network does not
require any functionality beyond the peripheral com-
ponent interconnect (PCI) bus and therefore can be
used on any system with a PCI I/O slot. DIGITAL
currently supports production MEMORY CHANNEL
clusters as large as 8 nodes by 12 processors per node
(a total of 96 processors). One of these clusters was
presented at Supercomputing ’95 and ran clusterwide
applications using High Performance Fortran (HPF),4

Parallel Virtual Machine (PVM),17 and MPI18 in
DIGITAL’s Parallel Software Environment (PSE). This
96-processor system has a q-ratio of 500 to 1,000,
depending on the communication interface. A 4-node
MEMORY CHANNEL cluster running DIGITAL
TruCluster software19 and the Oracle Parallel Server
has held the cluster performance world record on the
TPC-C benchmark20—the industry standard in on-line
transaction processing—since April 1996. 

We next present an overview of the generic 
MEMORY CHANNEL network to justify the design
goals of the second-generation MEMORY CHANNEL
network (MEMORY CHANNEL 2). Following this
overview, we describe in detail the architecture of 
the two components that make up the MEMORY
CHANNEL 2 network: the hub and the adapter. Last,
we present hardware-measured performance data. 

MEMORY CHANNEL Overview 

The MEMORY CHANNEL network is a dedicated
cluster interconnection network, based on Encore’s
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Table 1 
Comparison of Communication and Computation Performance (q-ratio) for Various Parallel Systems 

Communication Computation Communication-
Performance Performance Based on to-computation 
Latency LINPACK 100 3100 Ratio 

System (Microseconds) (Microseconds/FLOP) (q-ratio) 

AlphaServer 4100 Model 300 configurations
SMP using shared memory messaging 0.6 0.006 100
SMP using MPI 3.4 0.006 567
FDDI cluster using TCP/IP 180.0 0.006 30,000
MEMORY CHANNEL cluster using 

native messaging 2.2 0.006 367
MEMORY CHANNEL cluster using MPI 6.4 0.006 1,067

IBM SP2 using MPI 40.0 0.006 5,714



MEMORY CHANNEL technology, that supports 
virtual shared memory space by means of internodal
memory address space mapping, similar to that used 
in the SHRIMP system.21 The MEMORY CHANNEL
substrate is a flat, fully interconnected network 
that provides push-only message-based communica-
tion.16,22 Unlike traditional networks, the MEMORY
CHANNEL network provides low-latency communi-
cation by supporting direct user access to the network.
As in Scalable Coherent Interface (SCI)23 and Myrinet24

networks, connections between nodes are established
by mapping part of the nodes’ virtual address space to
the MEMORY CHANNEL interface. 

A MEMORY CHANNEL connection can be opened
as either an outgoing connection (in which case an
address–to–destination node mapping must be pro-
vided) or an incoming connection. Before a pair of
nodes can communicate by means of the MEMORY
CHANNEL network, they must consent to share part
of their address space—one side as outgoing and the
other as incoming. The MEMORY CHANNEL net-
work has no storage of its own. The granularity of the
mapping is the same as the operating system page size. 

MEMORY CHANNEL Address Space Mapping 
Mapping is accomplished through manipulation of
page tables. Each node that maps a page as incoming
allocates a single page of physical memory and makes
it available to be shared by the cluster. The page is
always resident and is shared by all processes in the
node that map the page. The first map of the page
causes the memory allocation, and subsequent

reads/maps point to the same page. No memory is
allocated for pages mapped as outgoing. The mapper
simply assigns the page table entry to a portion of the
MEMORY CHANNEL hardware transmit window and
defines the destination node for that transmit sub-
space. Thus, the amount of physical memory con-
sumed for the clusterwide network is the product of
the operating system page size and the total number 
of pages mapped as incoming on each node. 

After mapping, MEMORY CHANNEL accesses are
accomplished by simple load and store instructions, as
for any other portion of virtual memory, without any
operating system or run-time library calls. A store
instruction to a MEMORY CHANNEL outgoing
address results in data being transferred across the
MEMORY CHANNEL network to the memory allo-
cated on the destination node. A load instruction from
a MEMORY CHANNEL incoming channel address
space results in a read from the local physical memory
initialized as a MEMORY CHANNEL incoming chan-
nel. The overhead (in CPU cycles) in establishing a
MEMORY CHANNEL connection is much higher than
that of using the connection. Because of the memory-
mapped nature of the interface, the transmit or receive
overhead is similar to an access to local main memory.
This mechanism is the fundamental reason for the low
MEMORY CHANNEL latency. Figure 1 illustrates an
example of MEMORY CHANNEL address mapping. 

The figure shows two sets of independent connec-
tions. Node 1 has established an outgoing channel to
node 3 and node 4 and also an incoming channel 
to itself. Node 4 has an outgoing channel to node 2.
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Figure 1 
MEMORY CHANNEL Mapping of a Portion of the Clusterwide Address Space 



All connections are unidirectional, either outgoing 
or incoming. To map a channel as both outgoing and
incoming to the same shared address space, node 1
maps the channel two times into a single process’ vir-
tual address space. The mapping example in Figure 1
requires a total of four pages of physical memory, one
for each of the four arrows pointed toward the nodes’
virtual address spaces. 

MEMORY CHANNEL mappings reside in two page
control tables (PCTs) located on the MEMORY
CHANNEL interface, one on the sender side and one
on the receiver side. As shown in Figure 2, each page
entry in the PCT has a set of attributes that specify 
the MEMORY CHANNEL behavior for that page. 

The page attributes on the sender side are 

■ Transmit enabled, which must be set to allow trans-
mission from store instructions to a specific page 

■ Local copy on transmit, which directs an ordered
copy of the transmitted packet to the local memory 

■ Acknowledge request, which is used to request
acknowledgments from the receiver node 

■ Transmit enabled under error, which is used in
error recovery communication 

■ Broadcast or point-to-point, which defines the 
type of packet to all nodes or to a single node 
in the cluster 

■ Request acknowledge, which requests a reception
acknowledgment from the receiver 

The page attributes on the receiver side are 

■ Receive enabled, which must be set to allow recep-
tion of messages addressed to a specific virtual page 

■ Interrupt on receive, which generates an interrupt
on reception of a packet 

■ Receive enabled under error, which is asserted for
error recovery communication pages 

■ Remote read, which identifies all packets that arrive
at a page as requests for a remote read operation 

■ Conditional write, which identifies all packets that
arrive at a page as conditional write packets 
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MEMORY CHANNEL Ordering Rules 
The MEMORY CHANNEL communication paradigm
is based on three fundamental ordering rules: 

1. Single-sender Rule: All destination nodes will
receive packets in the order in which they were gen-
erated by the sender. 

2. Multisender Rule: Packets from multiple sender
nodes will be received in the same order at all desti-
nation nodes. 

3. Ordering-under-errors Rule: Rules 1 and 2 must
apply even when an error occurs in the network. 

Let PjM➝X be the j th point-to-point packet from 
a sender node M to a destination node X, and let BjM

be the j th broadcast packet from node M to all other
nodes. If node M sends the following sequence of
packets, 

P2M➝X, P1M➝Y, B1M, P1M➝X,
(last) (first)

Rule 1 dictates that nodes X and Y will receive the
packets in the following order: 

at node X, P2M➝X, B1M, P1M➝X

(last) (first) 

at node Y, P1M➝Y, B1M. 
(last) (first) 

If a node N is also sending a sequence of packets, in
the following order, 

P3N➝X, P2N➝X, B2N, P2N➝Y, B1N, P1N➝Y, P1N➝X, 
(last) (first) 

there is a finite set of valid reception orders at destina-
tion nodes X and Y, depending on the actual arrival
time of the requests to the point of global ordering.
Rule 1 dictates that all packets from node M (or N) to
node X (or Y) must arrive at node X (or Y) in the order
in which they were transmitted. Rule 2 dictates that,
regardless of the relative order among the senders,
messages destined to both receivers must be received
in the same order. For example, if X receives B2N, B1M,
and B1N, then Y should receive these packets in the
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MEMORY CHANNEL Page Control Attributes



same order. One arrival order congruent with both of
these rules is the following: 

at node X, 
P3N➝X, P2N➝X, P2M➝X, B2N, B1M, B1N, P1N➝X, P1M➝X

(last) (first) 

at node Y, 
B2N, P2N➝Y, P1M➝Y, B1M, B1N, P1N➝Y. 

These rules are independent of a particular intercon-
nection topology or implementation and must be
obeyed in all generations of the MEMORY CHANNEL
network. 

On the MEMORY CHANNEL network, error han-
dling is a shared responsibility of the hardware and the
cluster management software. The hardware provides
real-time precise error handling and strict packet
ordering by discarding all packets in a particular path
that follow an erroneous one. The software is respon-
sible for recovering the network from the faulty state
back to its normal state and for retransmitting the lost
packets. 

Additional MEMORY CHANNEL Network Features 
Three additional features of the MEMORY CHANNEL
network make it ideal for cluster interconnection:

1. A hardware-based barrier acknowledge that sweeps
the network and all its buffers 

2. A fast, hardware-supported lock primitive 
3. Node failure detection and isolation 

Because of the three ordering rules, the MEMORY
CHANNEL network acknowledge packets are imple-
mented with little variation over ordinary packets. To
request acknowledgment of packet reception, a node
sends an ordinary packet marked with the request-
acknowledge attribute. The packet is used to sweep
clean the network queues in the sender destination
path and to ensure that all previously transmitted pack-
ets have reached the destination. In response to the
reception of a MEMORY CHANNEL acknowledge
request, the destination node transmits a MEMORY
CHANNEL acknowledgment back to the originator.
The arrival of the acknowledgment at the originating
node signals that all preceding packets on that path
have been successfully received. 

MEMORY CHANNEL locks are implemented using
a lock-acquire software data structure mapped as both
incoming and outgoing by all nodes in the cluster.
That is, each node will have a local copy of the page
kept coherent by the mapping. To acquire a lock, a
node writes to the shared data structure at an offset
corresponding to its node identifier. MEMORY
CHANNEL ordering rules guarantee that the write
order to the data structure—including the update of

the copy local to the node that is setting the lock—
is the same for all nodes. The node can then determine
if it was the only bidder for the lock, in which case 
the node has won the lock. If the node sees multiple
bidders for the same lock, it resorts to an operating 
system–specific back-off-and-retry algorithm. Thanks
to the MEMORY CHANNEL guaranteed packet order-
ing, even under error the above mechanism ensures
that at most one node in the cluster perceives that 
it was the first to write the lock data structure. To
guarantee that data structures are never locked indefi-
nitely by a node that is removed from a cluster, the
cluster manager software also monitors lock acquisi-
tion and release. 

The MEMORY CHANNEL network supports a
strong-consistency shared-memory model due to its
strict packet ordering. In addition, the I/O operations
used to access the MEMORY CHANNEL are fully
integrated within the node’s cache coherency scheme.
Besides greatly simplifying the programming model,
such consistency allows for an implementation of 
spinlocks that does not saturate the memory system.
For instance, while a receiver is polling for a flag 
that signals the arrival of data from the MEMORY
CHANNEL network, the node processor accesses only
the locally cached copy of the flag, which will be
updated whenever the corresponding main memory
location is written by a MEMORY CHANNEL packet. 

Unlike other networks, the MEMORY CHANNEL
hardware maintains information on which nodes are
currently part of the cluster. Through a collection of
timeouts, the MEMORY CHANNEL hardware con-
tinuously monitors all nodes in the cluster for illegal
behavior. When a failure is detected, the node is iso-
lated from the cluster and recovery software is
invoked. A MEMORY CHANNEL cluster is equipped
with software capable of reconfiguration when a node
is added or removed from the cluster. The node is 
simply brought on-line or off-line, the event is broad-
cast to all other nodes, and operation continues. To
provide tolerance to network failures, the cluster can
be equipped with a pair of topologically identical
MEMORY CHANNEL networks, one for normal oper-
ation and the other for failover. That is, when 
a nonrecoverable error is detected on the active 
MEMORY CHANNEL network, the software switches
over to the standby network, in a manner transparent
to the application.19

The First-generation MEMORY CHANNEL Network 

The first generation of the MEMORY CHANNEL
network consists of a node interface card and a con-
centrator or hub. The interface card, called an adapter,
plugs into the I/O PCI. To send a packet, the CPU
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writes to the portion of I/O space mapped to the PCI
bus. The store-to-memory is handled by the node’s
PCI interface device, which initiates a PCI transfer tar-
geting the MEMORY CHANNEL adapter transmit
window. When a message is received, the MEMORY
CHANNEL adapter initiates a PCI transfer to write to
the node’s CPU memory, targeting the node’s PCI
interface, which then accesses the node’s main memory.

Besides writing to the node’s CPU, an I/O device
on the PCI bus can transmit directly to a MEMORY
CHANNEL adapter. This allows, for example, a disk
controller to transfer data directly from the disk to a
remote node’s memory. The data transfer does not
affect the host system’s memory bus. The design
choice of interfacing MEMORY CHANNEL to the
PCI bus instead of directly to the node CPU bus is
not an architectural one, but rather one of practical-
ity and universality. The PCI is available on most of
today’s systems of varying performance and size and
is, therefore, an ideal interface point that allows
hybrid clusters to be built. The obvious disadvan-
tages of a peripheral interface bus are the additional
latency incurred because of the extra CPU-to-PCI
hop and a possible limitation on the available bus
bandwidth. 

The MEMORY CHANNEL 1 hub is a broadcast-
only shared bus capable of interconnecting up to 
eight nodes. The MEMORY Channel 1 adapters and
the hub are interconnected in a star topology via 
37-bit-wide (32 bits of data plus sideband signals)
half-duplex channels. The cables can be up to 4 meters
long, and the signaling level is 5-volt TTL. A two-
node cluster can be formed without employing a hub,
by direct node-to-node interconnection. This config-
uration is also known as virtual hub configuration. 

The current release of the MEMORY CHANNEL 1
hardware achieves a sustained point-to-point band-
width of 66 megabytes per second (MB/s) (from user
process to user process). Maximum sustained broad-
cast bandwidth is also 66 MB/s (from a user process 
to many user processes). The cross-section MEMORY
CHANNEL 1 hub bandwidth is 77 MB/s. Small 
message latency is 2.9 microseconds (ms) (from a
sender process STORE instruction to a message
LOAD by a receiver process). The processor overhead
is less than 150 nanoseconds (ns) for a 32-byte packet
(which is also the largest packet size). 

As demonstrated in the literature, standard message-
passing application programming interfaces (APIs)
benefit greatly from these MEMORY CHANNEL
communication capabilities.12,17,25 MPI, PVM, and HPF
on MEMORY CHANNEL 1 all have one-way message
latencies of less than 10 ms. These latency numbers 
are more than a factor of five lower than those for 
traditional MPP architectures (52 to 190 ms).11

Communication performance improvements of this
magnitude translate into cluster performance gains 
of 25 to 500 percent.12

MEMORY CHANNEL 2 Architecture

Based on the experience with the first-generation
product, the design goals for MEMORY CHANNEL 2
were twofold: (1) yield a significant performance
improvement over MEMORY CHANNEL 1, and (2)
provide functional enhancements to extend hardware
support to new operating systems and programming
paradigms. 

The MEMORY CHANNEL 2 performance/hard-
ware enhancement goals were 

■ Network bisection bandwidth scalable with the
number of nodes: 1,000 MB/s for an 8-node clus-
ter and 2,000 MB/s for a 16-node cluster 

■ Improved point-to-point bandwidth, exploiting
the maximum capability of the 32-bit PCI bus: 
97 MB/s for 32-byte packets and 127 MB/s 
for 256-byte packets 

■ Full-duplex channels to allow simultaneous bidirec-
tional transfers 

■ Maximum copper cable length of 10 meters
(increased from 4 meters on MEMORY CHANNEL
1) and fiber support up to 3 kilometers

■ A link layer communication protocol compatible
with future generations of MEMORY CHANNEL
hardware and optical fiber interconnections 

■ Enhanced degree of error detection 

The MEMORY CHANNEL 2 functional/software
enhancement goals were 

■ Software compatible with the first-generation
MEMORY CHANNEL hardware 

■ Receive-side address remapping and variable page
size to better support new operating systems, such
as Windows NT, and non-Alpha microprocessors 

■ Remote read capabilities 
■ Global time synchronization mechanism 
■ Conditional write access to support a faster recover-

able messaging 

These two sets of requirements translate into archi-
tectural and technological constraints that define the
MEMORY CHANNEL 2 design space. To increase the
bisection bandwidth, the hub had to implement an
architecture that supported concurrent transfers. On
MEMORY CHANNEL 1, all senders must arbitrate
for the same hub resource (the bus) on every data
transfer. Every data transmission occupies the entire
MEMORY CHANNEL 1 hub for the duration of its
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transfer, and all message filtering is performed by the
receivers. Substantial network traffic causes conges-
tion because all sender nodes fight for the same
resource. This congestion results in a decrease in the
communication speed and thus an increase in the
effective q-ratio as seen by the applications. 

On MEMORY CHANNEL 2, the hub has been
designed as an N-by-N nonblocking full-duplex cross-
bar with broadcast capabilities, with N = 8 or N = 16.
Such an architecture provides a bisection bandwidth
that scales with the number of nodes and thus remains
matched to the point-to-point bandwidth of the indi-
vidual channels while avoiding congestion among
independent communication paths. Therefore, an
increase in network traffic will have little effect on the
effective q-ratio. 

The MEMORY CHANNEL ordering rules are easily
met on a crossbar of this type, as follows: 

1. The single-sender ordering rule is naturally obeyed
by the fact that the architecture provides a single
path from any source to any destination. 

2. The multisender ordering rule is enforced by taking
over all the crossbar routing resources during
broadcast. Although less efficient than broadcast 
by packet replication, this technique ensures a strict
common ordering for all destinations. 

Finally, crossbar switches are practical to implement
for a modest number of nodes (8 to 32), but given 
the availability of medium-size SMPs, they provide a
satisfactory degree of scaling for the great majority of 
practical clustering applications. For instance, cluster
technology can easily provide a 1,000-processor 
system simply by connecting 32 nodes, each one a 
32-way SMP. 

The requirement for a higher point-to-point band-
width called for a shift from half-duplex to full-duplex
links. A longer cable length imposed the choice of a
signaling technique other than the TTL employed in
the MEMORY CHANNEL 1 network. The design
team adopted low-voltage differential signaling
(LVDS)26 as the signaling technique for the second and
future generations of the MEMORY CHANNEL 
network on copper. One of the major decisions that
faced the team was whether to maintain the parallel
channel of MEMORY CHANNEL 1 or to adopt a ser-
ial channel to minimize skew transmission problems
for large communication distances. The bandwidth
demands of future cluster nodes indicated that serial
links would not provide sufficient bandwidth expan-
sion capabilities at reasonable cost. Thus, the channel
data path width was chosen to be 16 bits, a suitable
compromise that would offer a manageable channel-
to-channel skew while providing the required band-
width. Figure 3 illustrates the distinctions between the
first- and second-generation MEMORY CHANNEL
architectures. 

MEMORY CHANNEL 2 Link Protocol 
The MEMORY CHANNEL 2 communication proto-
col was engineered with the goal of ensuring compati-
bility with optical fiber’s unidirectional medium. The
interconnection substrate consists of a pair of unidirec-
tional channels, one incoming and one outgoing.
Each channel consists of a 16-bit data path, a framing
signal, and a clock. The channel carries two types of
packets: data and control. Data packets vary in size and
carry application data. Control packets are used to
exchange flow control, port state, and global clock
information. Control packets take priority over data
packets. They are inserted immediately when flow
control state change is needed and, otherwise, are
generated on a regular interval (millisecond) to update
less time-critical state. The MEMORY CHANNEL 2
data packet format is shown in Figure 4a. The header
of the data packet contains a packet type (TP), a 
destination identifier (DNID), a remote command
(CMD), and a sender identifier (SID). The data pay-
load starts with the destination address and can vary
in length from 4 to 256 bytes (two to one hundred
twenty-eight 16-bit cycles). It is followed by two 
16-bit cycles of Reed-Solomon error detection code. 

The control packet format is shown in Figure 4b.
The packet is identified by a distinct TP and carries
network and flow control information such as port 
status (PSTAT), configuration (CFG), DNID, hub 
status, and global status. 

Similar to MEMORY CHANNEL 1, MEMORY
CHANNEL 2 uses a clock-forwarding technique in
which the transmit clock is sent along with the data
and is used at the receiver to recover the data. Data is
transmitted on both edges of the forwarded clock, and
a novel dynamic retiming technique is used to syn-
chronize the incoming packets to the node’s local
clock. The retiming circuit locks onto a good sample
of the incoming data at the start of every packet and
ensures accurate synchronization for the packet dura-
tion, as long as predefined conditions on maximum
packet size and clock drifts are maintained. 

The MEMORY CHANNEL 2 link protocol has 
an embedded autoconfiguration mechanism that is
invoked whenever a node goes on-line. The hub port
and the adapter use this autoconfiguration mechanism
to negotiate the mode of operation (link frequency,
data path width, etc.). The same mechanism allows a
two-node hubless system (a virtual hub configuration)
to consistently assign node identifiers without any
operator intervention or module jumpers. 

MEMORY CHANNEL 2 Enhanced Software Support 
MEMORY CHANNEL 2 provides four major addi-
tions to application and operating system support: 
(1) receive-side address remapping, (2) remote reads,
(3) a global clock synchronization mechanism, and 
(4) conditional writes. 
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Characteristics MEMORY CHANNEL 1 MEMORY CHANNEL 2 

Channel data path width 37 bits 16 bits 
Channel communication Half duplex Full duplex 
Electrical signaling TTL LVDS
Optical fiber compatible No Yes 
Link operating frequency 33 MHz 66 MHz 
Peak raw data transfer rate 133 MB/s 133 + 133 MB/s 
Sustained point-to-point bandwidth 66 MB/s 100 MB/s 
Maximum packet size 32 bytes 256 bytes 
Remote read support No Yes 
Packet error detection Horizontal and vertical parity 32-bit Reed-Solomon 
Address space remapping None Receive 
Supported page sizes 8 KB 4 KB and 8 KB
Hub architecture Shared bus Crossbar 
Network bisection bandwidth 77 MB/s 800 to 1,600 MB/s 

Figure 3 
Comparison of First- and Second-generation MEMORY CHANNEL Architectures
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CHANNEL 1, the simplest implementation of general-
purpose recoverable messaging requires a round-trip
acknowledge delay to validate the message transfer,
which adds to the communication latency. The 
MEMORY CHANNEL 2’s newly introduced condi-
tional write transaction provides a more efficient
implementation that requires a single acknowledge
packet, thus practically reducing the associated latency
by more than a factor of two. 

Memory Channel 2 Hardware 
As suggested in the previous architectural description,
MEMORY CHANNEL 2 hardware components are
similar to those in MEMORY CHANNEL 1, namely
a PCI adapter card (one per node), a cable, and a 
central hub. 

The MEMORY CHANNEL 2 PCI Adapter Card The PCI
adapter card is the hardware interface of a node to the
MEMORY CHANNEL network. A block diagram of
the adapter is shown in Figure 5. The adapter card is
functionally partitioned into two subsystems: the PCI
interface and the link interface. First in, first out (FIFO)
queues are placed between the two subsystems. The
PCI interface communicates with the host system,
feeds the link interface with data packets to be sent, and
forwards received packets on to the PCI bus. The link
interface manages the link protocol and data flow: It
formats data packets, generates control packets, and
handles error code generation and detection. It also
multiplexes the data path from the PCI format (32 bits
at 33 megahertz [MHz]) to the link protocol (16 bits
at 66 MHz). In addition, the link interface implements
the conversion to and from LVDS signaling.

The transmit (TX) and receive (RX) data paths,
both heavily pipelined, are kept completely separate
from each other, and there is no resource conflict
other than the PCI bus access. A special case occurs
when a packet is received with the acknowledge
request bit or the loopback bit set: the paths in both
directions are coordinated to transmit back the
response packet while still receiving the original one
(employing the gray path in Figure 5). During a nor-
mal MEMORY CHANNEL 2 transaction, the transmit
pipeline processes a transmit request from the PCI
bus. The transmit PCT is addressed with a subset of
the PCI address bits and is used to determine the
intended destination of the packet and its attributes.
The transmit pipeline feeds the link interface with data
packets and appropriate commands through the trans-
mit FIFO queue. The link interface formats the pack-
ets and sends them on the link cable. At the receiver,
the link interface disassembles the packet in an inter-
mediate format and stores it into the receive FIFO
queue. The PCI interface performs a lookup in the

On MEMORY CHANNEL 1 clusters, the network
address is mapped to a local page of physical memory
using remapping resources contained in the system’s
PCI-to-host memory bridge. All AlphaServer systems
implement these remapping resources. Other sys-
tems, particularly those with 32-bit addresses, do not
implement this PCI-to-host memory remapping
resource. On MEMORY CHANNEL 2, software has
the option to enable remapping in the receiver side 
of the MEMORY CHANNEL 2 adapter on a per-
network-page basis. When configured for remapping,
a section of the PCT is used to store the upper address
bits needed to map any network page to any 32-bit
address on the PCI bus. Such enhanced mapping
capability will also be used to support remote access
to PCI peripherals across the MEMORY CHANNEL
network. 

A simple remote read primitive was added to
MEMORY CHANNEL 2 to support research into
software-assisted shared memory. The primitive
allows a node to complete a read request to another
node without software intervention. It is imple-
mented by a new remote read–on–write attribute in
the receive page control table. The requesting node
generates a write with the appropriate remote address
(a read-request write). When the packet arrives at the
receiver, its address maps in the PCT to a page marked
as remote read. After remapping (if enabled), the
address is converted to a PCI read command. The
read data is returned as a MEMORY CHANNEL write
to the same address as the original read-request write.
Since read access to a page of memory in a remote
node is provided by a unique network address, privi-
leges to write or read cluster memory remain com-
pletely independent. 

A global clock mechanism has been introduced to
provide support for clusterwide synchronization.
Global clocks, which are highly accurate, are extremely
useful in many distributed applications, such as parallel
databases or distributed debugging. The MEMORY
CHANNEL 2 hub implements this global clock by
periodically sending synchronization packets to all
nodes in the cluster. The reception of such a pulse 
can be made to trigger an interrupt or, on future
MEMORY CHANNEL–to–CPU direct-interface sys-
tems, may be used to update a local counter. The
interrupt service software updates the offset between
the local time and the global time. This synchroniza-
tion mechanism allows a unique clusterwide time to
be maintained with an accuracy equal to twice the
range (max – min) of the MEMORY CHANNEL net-
work latency, plus the interrupt service routine time. 

Conditional write transactions have been intro-
duced in MEMORY CHANNEL 2 to improve the speed
of a recoverable messaging system. On MEMORY



receiver PCT to ensure that the page has been enabled
for reception and to determine the local destination
address. 

In the simplest implementation, packets are subject
to two store-and-forward delays—one on the transmit
path and one on the receive path. Because of the
atomicity of packets, the transmit path must wait for
the last data word to be correctly taken in from the
PCI bus before forwarding the packet to the link inter-
face. The receive path experiences a delay because the
error detection protocol requires the checking of the
last cycle before the packet can be declared error-free.
A set of control/status MEMORY CHANNEL 2 regis-
ters, addressable through the PCI, is used to set vari-
ous modes of operation and to read local status of the
link and global cluster status. 

The MEMORY CHANNEL 2 Hub The hub is the cen-
tral resource that interconnects all nodes to form 
a cluster. Figure 6 is a block diagram of an 8-by-8
MEMORY CHANNEL 2 hub. The hub implements 
a nonblocking 8-by-8 crossbar and interfaces to eight
16-bit-wide full-duplex links by means of a link inter-
face similar to that used in the adapter. The actual
crossbar has eight input ports and eight output ports,
all 16 bits wide. Each output port has an 8-to-1 multi-
plexer, which is able to choose from one of eight input
ports. Each multiplexer is controlled by a local arbiter,
which is fed decoded destination requests from the
eight input ports. The port arbitration is based on a
fixed-priority, request-sampling algorithm. All requests
that arrive within a sampling interval are considered of
equal age and are serviced before any new requests.
This algorithm, while not enforcing absolute arrival-
time ordering among packets sent from different
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nodes, assures no starvation and a fair age-driven prior-
ity across sampling intervals. 

When a broadcast request arrives at the hub, the
otherwise independent arbiters synchronize them-
selves to transfer the broadcast packet. The arbiters
wait for the completion of the packet currently being
transferred, disable point-to-point arbitration, signal
that they are ready for broadcast, and then wait for all
other ports to arrive at the same synchronization
point. Once all output ports are ready for broadcast,
port 0 proceeds to read from the appropriate input
port, and all other ports (including port 0) select the
same input source. The maximum synchronization
wait time, assuming no output queue blocking, is equal
to the time it takes to transfer the largest size packets
(256 bytes), about 4 ms, and is independent of the
number of ports. As in any crossbar architecture with 
a single point of coherency, such broadcast operation
is more costly than a point-to-point transfer. Our
experience has been that some critical but relatively
low-frequency operations (primarily fast locks) exploit
the broadcast circuit. 

MEMORY CHANNEL 2 Design Process and Physical
Implementation 
Figure 7 illustrates the main MEMORY CHANNEL
physical components. As shown in Figure 7a, two-node
clusters can be constructed by directly connecting two
MEMORY CHANNEL PCI adapters and a cable. This
configuration is called the virtual hub configuration.
Figure 7b shows clusters interconnected by means of 
a hub. 

The MEMORY CHANNEL adapter is implemented
as a single PCI card. The hub consists of a mother-
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board that holds the switch and a set of linecards, one
per port, that provides the interface to the link cable. 

The adapter and hub implementations use a com-
bination of programmable logic devices and off-the-
shelf components. This design was preferred to an
application-specific integrated circuit (ASIC) imple-
mentation because of the short time-to-market

requirements. In addition, some of the new function-
ality will evolve as software is modified to take advan-
tage of the new features. The MEMORY CHANNEL 2
design was developed entirely in Verilog at the regis-
ter transfer level (RTL). It was simulated using the
Viewlogic VCS event-driven simulator and synthe-
sized with the Synopsys tool. The resulting netlist
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was fed through the appropriate vendor tools for
placing and routing to the specific devices. Once the
device was routed, the vendor tools provided a gate-
level Verilog netlist with timing information, which
was then simulated to verify the correctness of the
synthesized design. Boardwide static timing analysis
was run using the Viewlogic MOTIVE tool. The link
interface was fitted to a single Lucent Technologies
Optimized Reconfigurable Cell Array (ORCA) Series
field-programmable gate array (FPGA) device. The
PCI interface was implemented with one ORCA
FPGA device and several high-speed AMD program-
mable array logic devices (PALs). Thanks to the in-
system programmability of PALs and FPGAs, the
MEMORY CHANNEL 2 adapter board is designed
to be completely reprogrammable in the field from
the system console through the PCI interface.

MEMORY CHANNEL 2 Performance 

This section presents MEMORY CHANNEL 2 perfor-
mance data configured in virtual hub mode (direct
node-to-node connection). Wherever possible actual
measured results are presented. A two-node
AlphaServer 4100 5/300 cluster was used for all hard-
ware measurements. 

Network Throughput 
The MEMORY CHANNEL 2 network has a raw data
rate of 2 bytes every 15 ns or 133.3 MB/s. Messages are
packetized by the interface into one or more MEMORY
CHANNEL packets. Packets with data payloads of 4 to
256 bytes are supported. Figure 8 compares, for various

packet sizes, the maximum bandwidth the MEMORY
CHANNEL 2 network is capable of sustaining with the
effective process-to-process bandwidth achieved using a
pair of AlphaServer 4100 systems. With 256-byte pack-
ets, MEMORY CHANNEL 2 achieves 127 MB/s or
about 96 percent of the raw wire bandwidth.

For PCI writes of less than or equal to 256 bytes, the
MEMORY CHANNEL 2 interface simply converts the
PCI write to a similar-size MEMORY CHANNEL
packet. The current design does not aggregate multi-
ple PCI write transactions into a single MEMORY
CHANNEL packet and automatically breaks PCI writes
larger than 256 bytes into a sequence of 256-byte
packets. 

As Figure 8 shows, the bandwidth capability of the
MEMORY CHANNEL 2 network exceeds the sustain-
able data rate of the AlphaServer 4100 system. The
AlphaServer system is capable of generating 32-byte
packets to the MEMORY CHANNEL 2 interface at 
88 MB/s or about 10 percent less than the maximum
network bandwidth at a 32-byte packet size. This rep-
resents a 33 percent bandwidth improvement over the
previous-generation MEMORY CHANNEL, whose
effective bandwidth was 66 MB/s. An ideal PCI host
interface would achieve the full 97 MB/s, but the 
current AlphaServer 4100 design inserts an extra PCI
stall cycle on sustained 32-byte writes to the PCI. The
32-byte packet size is a limitation of the Alpha 21164
microprocessor; future versions of the Alpha micro-
processor will be able to generate larger writes to the
PCI bus. 

Latency 
Figure 9 shows the latency contributions along a
point-to-point path from a sending process on node 
1 to a receiving process on node 2. Using a simple 
8-byte ping-pong test, we determined that the one-
way latency of this path is 2.17 ms. In the test, a user
process on node 1 sends an 8-byte message to node 2.
Node 2 is polling its memory waiting for the message.
After node 2 sees the message, it sends a similar mes-
sage back to node 1. (Node 1 started polling its mem-
ory after it sent the previous message.) One-way
latency is calculated by dividing by two the time it takes
to complete a ping-pong exchange. Approximately
330 ns elapse from the time a sending processor issues
a store instruction until the store propagates to the
sender’s PCI bus. The latency from the sender’s PCI to
the receiver’s PCI over the MEMORY CHANNEL 2
network is about 1.1 ms. Writing the main memory on
the receiver node takes an additional 330 ns. Finally,
the poll loop takes an average of about 400 ns to read
the flag value from memory. 

Table 2 shows the process-to-process one-way 
message latency for different types of communications
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at a fixed 8-byte message size. The first row contains
the result of the ping-pong experiment previously
described. For comparison, the previous generation 
of MEMORY CHANNEL had a ping-pong latency of
2.60 ms. The second row represents the latency for the
simplest implementation of variable-length messaging.
The latencies of standard communication interfaces are
shown in the last two rows, namely, High Performance
Fortran and Message Passing Interface. The results
shown in this table are only between two and three
times slower than the latencies measured for the same
communication interfaces over the SMP bus of the
AlphaServer 4100 system.

The latency of the MEMORY CHANNEL 2 network
increases with the size of the message because of the
presence of store-and-forward delays in the path. As
discussed in the previous hardware description, all
packets are subject to two store-and-forward delays,
one on the outgoing buffer and one on the incoming
buffer (required for error checking). These delays also
play a role in the effective bandwidth of a stream of
packets. On the one hand, smaller packets are less effi-
cient than larger ones in term of overhead. On the
other hand, smaller packets incur a shorter store-and-
forward delay per packet, which can then be over-
lapped with the transfer of previous packets on the
link, making the overall transfer more efficient. The
hub performs cut-through packet routing with an
additional delay of about 0.5 ms. 

Summary and Future Work 

This paper presents an overview of the second-
generation MEMORY CHANNEL network, MEMORY
CHANNEL 2. The rationale behind the major design
decisions are discussed in light of the experience
gained from MEMORY CHANNEL 1. A description
of the MEMORY CHANNEL 2 hardware components
led to the presentation of measured performance results.

Digital Technical Journal Vol. 9 No. 1 1997 39

WRITE
BUFFER

PROCESSOR

MAIN
MEMORY

HOST
BRIDGE
TO PCI

MEMORY
CHANNEL
ADAPTER

CPU BUS

PCI BUS

NODE 1 (SENDER)

PROCESSOR MAIN
MEMORY

HOST
BRIDGE
TO PCI

MEMORY
CHANNEL
ADAPTER

CPU BUS

PCI BUS

NODE 2 (RECEIVER)

400 ns

330 ns
330 ns

1,100 ns

CABLE

Figure 9 
Latency Contributions along the Path from a Sender to a Receiver

Table 2 
MEMORY CHANNEL 2 One-way Message Latency 
in Virtual Hub Mode for Different Communication
Interfaces

One-way Message Latency 
Communication Type (Microseconds) 

Ping-pong 8-byte message 2.17 
8-byte message plus 8-byte flag 2.60 
HPF 8-byte message 5.10 
MPI 8-byte message 6.40 



Compared to other more traditional interconnection
networks, MEMORY CHANNEL 1 provides unparal-
leled performance in terms of latency and bandwidth.
MEMORY CHANNEL 2 further enhances perfor-
mance by providing point-to-point bandwidth of 97
MB/s per second for 32-byte packets, an application-
to-application latency of less than 2.2 microseconds,
and a cross-section bandwidth of 1,000 MB/s for 8
nodes and 2,000 MB/s for 16 nodes. It also provides
enhanced software support to improve the performance
of the most common operations in a cluster environ-
ment, e.g., global synchronization, and reduces the
complexity of the software layer by providing a more
flexible address mapping. In addition, the MEMORY
CHANNEL 2 network has been designed to be both
hardware and software compatible with future genera-
tions on either copper or fiber-optic communication up
to a distance of 3 kilometers. Future generations of the
MEMORY CHANNEL architecture will benefit from the
MEMORY CHANNEL 2 experience and will continue
to provide enhancements to communication perfor-
mance and to further refine those mechanisms intro-
duced to support parallel cluster software. 
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