
42 Digital Technical Journal Vol. 9 No. 1 1997

An object request broker (ORB) is a distributed soft-
ware layer that translates abstract service requests
from a client application into requests for specific
servers, regardless of where those servers actually
reside on the network.1 In this way, ORBs provide 
a middle tier in multitiered client-server systems. The
ObjectBroker software, developed and distributed 
by strategic partners DIGITAL and BEA Systems, is 
an implementation of the Common Object Request
Broker Architecture (CORBA) specified by the Object
Management Group (OMG).2

Security is a growing concern for those who manage
distributed computing systems, and the security options
available to the CORBA community have been quite
limited until recently. In the past year, OMG has
adopted a specification for a CORBA Security Service,
although few commercially available implementations
exist at the time of this writing. 

Outside the CORBA community, one widely accepted
standard for security in distributed, heterogeneous
systems is the Generic Security Service Application
Programming Interface (GSS-API),3,4 as specified by
The Open Group (which was formed by the merger 
of the Open Software Foundation and X/Open
Company Ltd.).5 The GSS-API provides the ability for
software entities in a distributed application to authen-
ticate one another and to protect ongoing communi-
cation between them. The Distributed Computing
Environment (DCE) Security Service provides an
implementation of the GSS-API as one way to access
its security services. 

Plans are under way to implement the CORBA
Security Service in the ObjectBroker software, but 
the implementation specifications were not complete
when ObjectBroker version 2.6 was designed. At 
present, by integrating support for GSS-API imple-
mentations, the ObjectBroker software provides its
customers state-of-the-art distributed system security
with the widest choice of security technologies and
products. The first commercially available GSS-API
implementation was the Kerberos-based DCE Security
Service itself, but other implementations, which use 
a variety of security technologies and are produced by
various independent software vendors, are expected to
follow soon. 

Integrating ObjectBroker
and DCE Security

John H. Parodi
Fred W. Burgher

The integration of the ObjectBroker software
product with the Distributed Computing
Environment (DCE) Security Service makes
ObjectBroker the most secure object request 
broker (ORB) in the industry. ObjectBroker and
DCE Security together allow client-to-server,
server-to-client, and mutual authentication. 
The integrated software provides these security
functions, as well as message integrity protec-
tion, transparently to the applications. Integra-
tion has been accomplished in a way that allows
plug-in replacement of the ObjectBroker security
subsystem by DCE Security, Kerberos, or any third-
party software security product that supports 
the DCE’s Generic Security Service Application
Programming Interface (GSS-API). This approach
supports future GSS-API–compliant third-party
security products based on Kerberos and also prod-
ucts that may address other security technologies
such as biometrics and smart cards. In addition,
the approach places responsibility for compliance
with International Traffic in Arms Regulations in
the hands of the purveyors and owners of GSS
libraries rather than with the ORB vendor. Note
that the ObjectBroker product is middleware
jointly developed and distributed by DIGITAL and
BEA Systems, who have formed a worldwide tech-
nology and distribution partnership. 



Security 

Ensuring secure communication among entities in a
distributed computer system is a challenging task. The
term security normally includes three broad classes 
of system requirements:6

1. Secrecy/privacy—the ability to protect information
from unauthorized access 

2. Integrity—the ability to protect information from
unauthorized alteration or destruction 

3. Availability—the ability to ensure that valid access to
information can be accomplished in a timely manner 

Enforcement of a security policy is accomplished by
way of the following security functions: 

■ Authentication—the verification of the identity of a
security principal 

■ Authorization—the determination of which princi-
pals can perform which actions 

■ Access control—the enforcement of the security
policy, based on authentication and authorization
information, to determine whether to allow or dis-
allow a particular action 

The Distributed Computing Environment 

The Open Group’s Distributed Computing Environ-
ment is an integrated, standard set of technologies,
tools, and services that enables the development and
deployment of distributed applications in a heteroge-
neous, multivendor computing environment.7 Typic-
ally, system vendors implement the DCE on their own
platforms. The DCE has been endorsed by virtually all
system vendors, including IBM, HP, DIGITAL, NCR,
Stratus, Cray, HAL, Hitachi, Siemens Nixdorf, NEC,
Data General, Bull, Tandem, Transarc, SCO, Gradient,
Siemens Pyramid, and Olivetti. 

The DCE provides the following six technology
components: 

1. Remote Procedure Call (RPC), which facilitates
distributed communication 

2. Directory Service, which provides a single naming
model throughout the distributed environment 

3. Security Service, which provides reliable authenti-
cation, authorization, and data protection 

4. Distributed Time Service, which synchronizes the
network system clocks 

5. Distributed File Service, which provides access to
networkwide files 

6. Threads Service (The DCE uses POSIX threads
where available; on operating systems where POSIX
is not available, the DCE supplies a threads package
that provides the same interface as POSIX threads.) 

Digital Technical Journal Vol. 9 No. 1 1997 43

DCE users can be characterized by their need to
deploy and/or integrate large-scale applications on
multiple heterogeneous platforms. The most common
reasons given for choosing the DCE are its security
features, its scalability, and its robustness. 

DCE Security provides the following services: 

■ The DCE Authentication Service allows users and
resources to prove their identity to each other. This
service is currently based on Kerberos, which requires
that all users and resources possess a secret key.

■ The DCE Authorization Service verifies operations
that users may perform on resources. A DCE Registry
contains a list of valid users. An access control list asso-
ciated with each resource determines valid users and
the types of operations a user may perform. 

■ The DCE Data Integrity Service protects network
data from tampering. Automatically generated
cryptographic checksums are appended to network
transmissions, allowing the DCE to determine if
data has been corrupted in transit. The encrypted
checksum is a message authentication code (MAC)
based on the Data Encryption Standard (DES). 

ObjectBroker uses the DCE Authentication and Data
Integrity services. 

ObjectBroker Security 

Although DCE Security provides three basic levels 
of protection (None, Data Integrity, and Privacy),
ObjectBroker uses only the Data Integrity level. 
This level provides a mechanism that computes an
encrypted, time-stamped checksum and attaches it 
to the message so that any attempt to change or 
replay the information can be detected. In addition,
ObjectBroker uses explicit calls to the DCE Security
library’s GSS-API to accomplish authentication but
maintains its own access control lists and authorization
database and mediates access control itself.8

Note that within a DCE cell, it is possible to use the
DCE RPC with the DCE Security Service to protect
communication at the wire protocol level. However,
because ObjectBroker does not use the DCE RPC
wire protocol, its use of the DCE Security Service 
is accomplished by means of explicit calls by
ObjectBroker to the GSS-API implementation. 

ObjectBroker’s use of the DCE Security Service
provides data integrity protection, authentication of
clients to servers and servers to clients, and protection
against replay and sequencing attacks. Although
encryption is used to create the digital signatures 
that provide these protections at the network Data
Integrity level, ObjectBroker does not directly sup-
port the capability to encrypt data, even on nodes that
have Privacy-level DCE Security Service support.
ObjectBroker provides no protection from denial of
service attacks either. 



44 Digital Technical Journal Vol. 9 No. 1 1997

Of course, a customer’s use of DCE Security is
entirely optional, and the security mechanism used in
previous versions of the ObjectBroker software is still
supported. With this mechanism, called trusted secu-
rity, the node/username associated with a request
from a remote node is accepted to be as claimed. For
trusted security, ObjectBroker uses a proxy approach
in which the node/username associated with a remote
request is mapped to a proxy identity on the server’s
system. An access control decision is thus based on 
the authorization information for the proxy identity.
The proxy approach to the trusted security mechanism
was necessary because there was no concept of global
identity for a user, that is, an identity known to all
computer nodes in a distributed system. 

To implement DCE Security on a particular plat-
form, a Security Integration Architecture accomplishes
the mapping of a globally understood username (e.g., a
user or a security principal defined within a DCE cell or
a Kerberos realm) to a login of a local user on a particu-
lar system. Some implementations of DCE Security and
some systems (for example, the OpenVMS operating
system) use the notion of integrated or global login, in
which a local user login also causes a global user login
to be performed. For the OpenVMS system, the global
realm is the cluster. For the implementation of DCE
Security on the DIGITAL UNIX system, the global
realm is the DCE cell. 

Because an ObjectBroker configuration can include
platforms that have no implementation of the DCE,
and because the Security Integration Architecture is
different on every DCE platform, there was no com-
mon mechanism for ObjectBroker to use to imple-
ment an integrated global login across all supported
platforms. Thus, ObjectBroker is limited by the inte-
grated login capabilities available on other platforms’
implementations of the DCE. 

For this reason, ObjectBroker retains a proxy mech-
anism, even for use by nodes that support the DCE.
For authentication between such nodes, a generic
remote host definition (called SecGlobalName) is
mapped to a local user on the local system. Should a
server receive a request that requires authentication
from a client node, the server uses SecGlobalName to
attempt to match the corresponding global principal
name to a local user name. 

In other words, because there is no common global
identity mechanism, ObjectBroker’s proxy implemen-
tation maps either a trusted remote user or a global
user identity to a local system identity to accomplish 
a generic mapping between global and local users.
Rather than map multiple host/username pairs to the
local proxy, the ObjectBroker software maps a single
SecGlobalName, known to all nodes in the DCE cell,
to that proxy whenever possible. 

Mechanism for Global Authentication 
The DCE Security Service provides the mechanism 
for global identity. The mechanism is based on
Kerberos encryption, which is a private or symmetric
key scheme (as opposed to a public or asymmetric key
scheme). A private key scheme requires some trusted
third-party node to act as a distribution center for
encryption keys or credentials. Each node or user has a
key that is known only to the user and the distribution
center. In DCE Security, the distribution center is
known as a privilege server.9

The following is a simplified description of the
encryption key protocol between the privilege server
and a client. The actual key exchange protocol, which
uses three exchanges and conversion keys, results in a
Privileged Access Certificate (PAC) in the possession
of a client. The PAC, which is appended to each request,
contains the authorization information to be com-
pared with the access control information stored with
the application server. 

When a client wishes to communicate with a server,
each must acquire a time-stamped session key for
secure communication. The session key is protected in
several ways. The time stamp means that the key is
only valid for a limited time (the amount of time is
configurable), which protects against brute-force
attempts to break the key and reuse it. Also, each key is
host-specific and can only be used from the node for
which it is issued. Finally, the session key is never sent
over the network in unencrypted form. 

For a user to initiate a DCE_login, the client must
enter its DCE_login password. To register as an initia-
tor and acceptor of security contexts, a server uses a
SERVTAB key file. This file contains an encrypted key
that permits the server to obtain a set of credentials
similar to those given to a user. These credentials allow
the server to accept security contexts from clients or to
initiate requests (that is, become a client) to other
servers. The reason for having servers acquire creden-
tials through the SERVTAB mechanism is that servers
may be started on demand by the ObjectBroker Agent
(the component that locates the appropriate server 
to satisfy a client request) or by system administrators
who do not want to be burdened by having to know 
a server password. 

In either case, the client or the server specifies the
principal name to be authenticated. The node sends
the specified principal’s name to the privilege server.
The privilege server returns a session key that is
encrypted using the principal’s password or SERVTAB
key. The DCE run-time software running on the local
system decrypts the session key using the password or
SERVTAB key. Once the client and the server have
decrypted session keys, they can use the keys to initiate
secure communication with each other. 



Digital Technical Journal Vol. 9 No. 1 1997 45

Thus, if a server is configured to require authentica-
tion, then before invoking a method on that server, 
a client must successfully perform a DCE_login and
obtain the credentials needed to establish a security
context with that server. A client may also require
authentication from the server to ensure that some
malicious software is not masquerading as a real server. 

Note that the operations for acquiring credentials
are accomplished outside the server executable. The
operations are performed by the ObjectBroker run-
time software, based on configuration settings in the
ObjectBroker Security Registry. The goal is to avoid
burdening applications with the knowledge of security
mechanisms. 

Authentication requirements can apply to the
ObjectBroker Agent as well as to clients and servers.
The Agent is in fact a separate security principal, 
and one can require client-to-Agent, Agent-to-client,
Agent-to-server, and server-to-Agent authentication
in an ObjectBroker configuration—in addition to
authentication between the client and the server. The
client or the server can independently set these modes,
or the ObjectBroker system can require that modes 
be set nodewide. 

Security Design Issues for ObjectBroker 
The security issues associated with the design of
ObjectBroker versions 2.6, 2.7, and 3.0 were primar-
ily those of increasing the security capabilities and
preserving upward compatibility with previous
ObjectBroker versions. While compatibility is always
a concern when upgrading software, ObjectBroker’s
requirements in this area are particularly stringent
because customers have mission-critical applications
running in very large configurations. In some cases, it
is difficult or impossible to upgrade all ObjectBroker
nodes at one time, so it must be possible to do a
rolling upgrade that minimizes the disturbance to the
configuration and allows uninterrupted operation 
of applications. 

The need for dynamic, plug-in replaceability of 
the security subsystem was an important issue for two
reasons. First, to provide standards-based solutions to
computing problems, the ObjectBroker design had to
allow the integration of any security product that
implements the GSS-API. The second reason has to do
with export controls. 

United States government export regulations specify
that hardware, software, and documentation for cryp-
tographic products may be exported by license only.
Specifically, the Department of State’s International
Traffic in Arms Regulations (22 Code of Federal
Regulations Subchapter M) require that an export
license be obtained from the department before any
cryptographic hardware, software, or documentation is

exported from the United States. An ObjectBroker
design goal was not to encumber the product with
export restrictions. Therefore, ObjectBroker itself does
not include any cryptographic security mechanism. An
ObjectBroker customer must provide an appropriate
GSS library; whatever package is available on the system
is the one ObjectBroker will use. 

ObjectBroker Security Features 
The security features that have been successfully imple-
mented in the ObjectBroker software include 

■ Client-to-server, server-to-client, and mutual
authentication 

■ Protection from replay and sequencing attacks and
integrity protection 

■ Fine-grain control over the authentication mecha-
nism (per-host, per-server, or per-method) 

■ Ability to demand a new security context for an
invocation 

■ Ability to apply new security features to applica-
tions without rebuilding them 

■ Dynamically loadable security libraries 

Usage 
One of the most important characteristics of a secure
ORB is that applications (clients and servers) need not
be aware of security operations undertaken on their
behalf. For ORBs, as well as for other support soft-
ware, the goal is to avoid burdening applications with
the need to deal with the complexities of a distributed
system so that they can concentrate on the application
problem at hand. 

Therefore, most of ObjectBroker’s security-relevant
operations are invisible to applications. ObjectBroker’s
management utilities are used to specify the rules for
authenticating clients and servers. These rules are
stored in the ObjectBroker Security Registry, and the
required authentications are performed automatically. 

There are two exceptions to the general rule of
keeping security operations invisible to the applica-
tion. The first is that a client or a server (when acting as
a client) can explicitly make a call to an ObjectBroker
API to toggle mutual authentication on or off. This
operation is allowed as long as it does not diminish the
security level specified for the ObjectBroker node as a
whole. In other words, a client can demand mutual
authentication on a node that does not require such
authentication but cannot disable mutual authentica-
tion if the node does require it. This feature was imple-
mented to make it possible for clients to enable mutual
authentication for specific operations that have secu-
rity relevance. 



46 Digital Technical Journal Vol. 9 No. 1 1997

The second exception is that a server can demand
the creation of a new security context for an invoca-
tion, which immediately tests the authentication of 
the principal making the request. This is important
because the GSS-API allows the initiation of a security
context that has no expiration. Clearly, if a security
context exists for a long enough period, there may be
a concern that it is no longer valid. For example, when
a user’s account is revoked from the DCE Security
Registry, it is possible that the user’s credentials are still
valid in some existing security context. Establishing a
new security context forces the DCE run-time software
to go back to the security server and verify the validity
of the principal. 

Figure 1 illustrates the interaction of ObjectBroker
and the DCE Security Service components in the
establishment of a security context. Once the security
context is established, it is used in the verification of
MAC-sealed messages between the server and the
client. In this illustration, access to the DCE security
subsystem is depicted as a local call, though accessing
these services could also be done remotely. 

The sequence of operations in Figure 1 is as follows: 

1. A method invocation (a client request for a remote
operation) results in a call to ObjectBroker’s secu-
rity subsystem. 

2. The ObjectBroker security subsystem in turn
invokes a GSS routine in the DCE Security library.
This call determines whether a new security con-
text needs to be established, which can happen for
one of two reasons: either it is the first invocation
of this server from this client or the context refresh
rate has been specified as per-invocation. 

3. The DCE Security library executes the call, which
sets up the security context. (Note that the process
of deleting an existing security context is not
shown.) 

4. The security subsystem checks the return status of
the GSS routine to determine whether the result-
ing token is to be passed to the invocation layer. 

5. If so, the token is passed to the transport layer for
marshaling. 

6. The client communicates with the server node
through the normal ObjectBroker channel. 

7. The transport layer in the receiving node unmar-
shals the message, examines the transport message
header, and passes control to a dispatcher in the
invocation layer. 

8. Depending on the message type, the message may
then be passed to a special dispatcher, in this case
the security dispatcher in the security subsystem. 

9. The security subsystem determines that the mes-
sage should be handled by the GSS implementa-
tion and passes the message there. 

10. The DCE Security layer checks the received token
and if it is valid, accepts the security context. The
routine generates a context establishment token
to be passed to the client. The call also returns the
server’s context handle for the security context the
server shares with the client. 

11. The security layer passes the token to the invoca-
tion layer for marshaling. 

12. The invocation layer marshals the information and
sends it as an argument to the low-level transport
routine call. 

13. This message is sent to the client. 
14. The data is unmarshaled. 
15. The message is sent to the security subsystem. 
16. The token is passed to the GSS implementation 

to initialize the security context, with the server-
supplied token as an argument. The routine
returns the client’s context handle, which is used
to sign subsequent messages. 

1 4 15 5

14

6

13

7

12

11

10

9

8

SECURITY
SUBSYSTEM

INVOCATION
LAYER

CLIENT

2 3 16

DCE
SECURITY TRANSPORT TRANSPORT DCE SECURITY

DISPATCHER

DISPATCHER

SECURITY
SUBSYSTEM

INVOCATION
LAYER

SERVER

Figure 1
Establishment of a Security Context



Digital Technical Journal Vol. 9 No. 1 1997 47

Performance Considerations 
The benefits of a secure ORB are not free. If authenti-
cation is required when a client and server establish a
connection through a binding, part of that binding
involves the establishment of a security context.
Establishment of a security context requires a round-
trip on the network, during which a token from the
client is passed to the server, and a token is returned
from the server to the client in the mutual authentica-
tion case. 

Once established, the security context is used in
subsequent requests (provided that the configuration
does not require security context deletion after every
method invocation). If the same security context is
reused, the only additional overhead considerations
are (1) the signing and verification of requests and
responses in the client and server, and (2) the security
context handle (32 additional bytes of information)
appended to each message passed between the client
and the server. 

The signing and verification of a signature on a
request or response is different from the verification
of the privileges used when the security context is first
set up, in that verification of a signature does not
require a network round-trip. In contrast, when you
first set up a security context, a network round-trip to
the privilege server is required, and its overhead is 
significantly more costly than that of the verification
and signature operations. 

Note that when a client has multiple object references
to a single method implementation in a server, a single
security context can still be used. For example, a derived
object reference does not require a new security con-
text. This is both an optimization and a functional
requirement, since only one security context is allowed
between a client process and a server implementation. 

Future Work 

The OMG specifies a number of object services in addi-
tion to the CORBA specification itself. One of the most
important specifications is for the CORBA Security
Service. ObjectBroker’s integration with DCE Security
was designed and implemented before the OMG’s
CORBA Security Service specification was complete.
Thus, even though ObjectBroker is the most secure
ORB available today, it is reasonable to ask when and
how its security features will be made compliant with
the latest specifications from the OMG. 

Given sufficient resources, ObjectBroker engineer-
ing could investigate supporting CORBA2 inter-
operability by implementing the OMG’s General 
Inter-ORB Protocol (GIOP). The GIOP architecture
supports both the Internet Inter-ORB Protocol (IIOP)
and the DCE-based Common Inter-ORB Protocol

(DCE-CIOP). Today, ObjectBroker uses a wire proto-
col based on the CORBA version 1.2 specification. 

Security for the IIOP is governed by the Secure Inter-
ORB Protocol (SECIOP) specification10, although few
commercially available implementations of the SECIOP
are available at the time of this writing. Also, as men-
tioned previously, security for the DCE-CIOP is accom-
plished by protecting the RPC connections at the wire
protocol level. For the DCE RPC, the DCE does its
own authentication for RPC sessions; here the RPC
connection between the client and the server, rather
than the client and the server themselves, is authenti-
cated. This approach provides the same potential for
security management in the ORB configuration; it
simply accomplishes the security functions at a level in
the protocol stack that does not require the use of the
GSS-API. By building in support for the GIOP,
ObjectBroker gains the capability to provide the secu-
rity features for both the IIOP and the DCE-CIOP
protocols in future releases. 

The SECIOP and the DCE-CIOP both follow the
usage model of minimizing the need for applications
to be aware of security. In the SECIOP, the OMG
has specified APIs for security functions, and these
functions are entirely separate from any mechanism
that implements them. ORB vendors will be free to
provide security features in much the same way that
ObjectBroker provides security today, i.e., by working
from security-related information kept by the ORB.
The SECIOP also provides for administrative objects
and operations that perform security management
functions by means of APIs. 

Conclusion 

ObjectBroker provides state-of-the-art distributed 
system security today. Its security features provide
upward compatibility, as well as the least possible dis-
turbance to existing ObjectBroker applications and
configurations. In addition, ObjectBroker’s imple-
mentation of security by means of the DCE’s Generic
Security Service Application Programming Interface
provides the greatest possible choice among security
mechanisms and security implementation providers. 

References and Notes

1. R. Otte, P. Patrick, and M. Roy, Understanding
CORBA (Upper Saddle River, N.J.: Prentice Hall,
1996). 

2. Information about the Object Management Group is
available at http://www.omg.org. 

3. J. Linn, Generic Security Service Application Pro-
gram Interface, Internet RFC 1508, 1993. 



48 Digital Technical Journal Vol. 9 No. 1 1997

4. J. Wray, Generic Security Service API: Overview and
C-bindings, Internet RFC 1509, 1993. 

5. Information about The Open Group is available at
http://www.opengroup.org. 

6. M. Gasser, Building a Secure Computer System
(New York, N.Y.: Van Nostrand Reinhold, 1988). 

7. X/Open DCE: Authentication and Security Services,
X/Open Preliminary Specification P315, ISBN
1-85912-013-X, electronic version (Reading, U.K.:
X/Open Company Limited, 1995). 

8. ObjectBroker —Designing and Building Applica-
tions, Part No. AA-QX1LA-TK (Maynard, Mass.: 
Digital Equipment Corporation, 1996). 

9. S. Miller, B. Neuman, J. Schiller, and J. Saltzer, Ker-
beros Authentication and Authorization System
(Cambridge, Mass.: Massachusetts Institute of Tech-
nology, Project Athena, 1987). 

10. CORBA Security, Document Number 95-12-01 (Fram-
ingham, Mass.: Object Management Group, 1995).
The OMG members who contributed to the document
were AT&T Global Information Solutions Co., Digital
Equipment Corporation, Expersoft Corporation,
Groupe Bull, Hewlett-Packard Company, International
Business Machines Corporation (in collaboration 
with Taligent Inc.), International Computers Limited, 
Novell Inc., Siemens Nixdorf Informationssysteme AG,
Sunsoft Inc., Tandem Computer Incorporated (in col-
laboration with Odyssey Research Associates Inc.), and
Tivoli Systems Inc. 

Biographies

John H. Parodi 
John Parodi is a consulting technical writer in the
Multiplatform Engineering group. His primary work
involves customer communications and evangelism 
for object technology. In earlier work, John provided 
technical writing support for the Compound Document
Architecture group and Architectural Engineering of
Systems and Software Technical Office. John joined 
DIGITAL in 1979 after working in computer operations 
at Hendrix Electronics and at the University of New
Hampshire. He has received two awards from the Society
for Technical Communication and has more than 30 publi-
cations on various computer science topics, including com-
pound documents, object technology, computer security,
and BASIC. 

Fred W. Burgher 
Principal engineer Fred Burgher is employed by BEA
Systems as a member of the ObjectBroker Engineering
team. He is currently involved in ObjectBroker IIOP
development. Previously, Fred worked at DIGITAL on 
integrating DCE Security and Naming for the OpenVMS
operating system. Earlier in his career, he was employed 
as a principal engineer at Wang Laboratories, where he
worked in the Imaging Engineering Group. Fred studied
computer science at Boston University. 


