
Digital Technical Journal Vol. 9 No. 2 1997 5

The public Internet is fast becoming a ubiquitous and
inexpensive medium for connecting remote employ-
ees or offices to a private intranet or for permitting
impromptu high-speed connections between business
partners. This gain in connectivity is offset by a signifi-
cant loss in security, however. The Internet is notori-
ous for electronic break-ins and eavesdropping. 

The AltaVista Tunnel, a DIGITAL product, offers
network-layer routing over secure Internet connec-
tions. This allows, for example, a mobile user to con-
nect securely to his or her corporate network using the
Internet. Similarly, a corporate network can employ
the AltaVista Tunnel to securely link remote offices
with Internet connections. Although our product uses
the Internet for packet transport, all traffic is encapsu-
lated within cryptographically secured connections.
Because the AltaVista Tunnel is a network-layer
router, client applications can run without modifica-
tion. Moreover, our product is firewall independent
and therefore can be used in concert with most com-
mon firewalls. The AltaVista Tunnel supports both
static connections to remote offices and intermittent
connections to single-user machines. Currently, imple-
mentations exist for the UNIX, Windows 95, and
Windows NT platforms. 

In this paper, we begin with an overview of the ben-
efits and pitfalls presented by using the Internet for 
private network connectivity. Next, we describe the
design of the network protocol used by the AltaVista
Tunnel, with a particular focus on the security concerns
that led to this design. We then discuss how we imple-
mented our design. Finally, we briefly describe our
experience deploying the tunnel product in a large cor-
porate network, provide performance data, and discuss
some of the security risks this technology entails. 

Overview 

Before the Internet became pervasive, corporate net-
works were built from leased and dial-in telephone
lines. Such networks carried substantial costs for both
communications equipment and telephone service.
Usually, security relied on the inaccessibility of the
physical medium, and over the years, the risk of wiretap
has proved to be slight when compared to password

The AltaVista Tunnel:
Using the Internet to
Extend Corporate
Networks 

Kenneth F. Alden
Edward P. Wobber 

The public Internet has become a low-cost 
connection medium for joining remote employ-
ees or offices to a private intranet and for per-
mitting impromptu high-speed connections
between business partners. This connectivity 
is offset by a significant loss in security. The
AltaVista Tunnel, a DIGITAL product, offers
secure network-level routing over Internet 
connections by combining two well-known 
networking technologies: tunneling and secure
channels. This paper discusses the design and
implementation of the AltaVista Tunnel and
describes our experience in deploying the 
product within DIGITAL. 



6 Digital Technical Journal Vol. 9 No. 2 1997

cracking or other higher-level attack. The reason for
this is that most telephone systems are both proprietary
and centrally managed, and they are therefore not easy
to subvert in the large without a substantial budget. 

The Internet brings opportunity and challenge to
the modern corporate network designer. Global con-
nectivity makes it possible to replace expensive leased
lines and communications equipment with Internet
connections. However, such connections lack the
physical security of telephone lines. Furthermore,
direct connection to the Internet poses numerous,
well-documented security problems. Consequently,
many organizations find it necessary to isolate their
private networks behind firewalls—filtering routers
that place constraints on packets allowed to pass
between protected and public networks. The policy
decisions made in configuring firewalls always involve
a difficult trade-off between security and functionality. 

Cryptography makes it possible to emulate most of
the properties of physically secure wire using Internet
connections. When encapsulated at a suitable protocol
level, cryptographically secured data can be allowed to
traverse firewalls without substantially weakening
security policy. However, the encapsulation protocol
must require no implicit trust in the router nodes and
links that make up the fabric of the insecure network.
To solve this problem, the protocol employed by 
the AltaVista Tunnel uses a synthesis of two well-
understood networking constructs: tunneling proto-
cols1 and secure channels.2 

Protocol Design 

In computer networks, tunneling is the act of encapsu-
lating one communications protocol within another.
For example, a DECnet-in-IP tunnel might transport
DECnet datagrams over an Internet Protocol (IP) net-
work using IP datagrams. In this arrangement, IP
datagrams act only as a transport mechanism—there is
no need for the active nodes in the IP network to inter-
pret or to manipulate the encapsulated DECnet pack-
ets. A tunnel alone, however, cannot guarantee that an

intermediate node (“man-in-the-middle”) will not
intentionally read or modify the data portions of tun-
neled packets. To prevent such unwanted tampering,
we cryptographically secure encapsulated packets for
passage over the public network. Abstractly, data
passed over this secure channel appears once and 
only once at the receiver as sent by the sender.
Furthermore, an attacker observing the public net-
work cannot read this data. Thus, tunnel encapsula-
tion ensures that private-network datagrams cannot
interact with the routing algorithms of the public net-
work, whereas secure channels guarantee that the tun-
neled data arrive intact from an authenticated source
and that privacy is maintained. 

Figure 1 depicts a secure tunnel in operation. Nodes
A and B are tunnel endpoints, that is, packet routers
that forward to and from tunneled routes. Node A
processes datagrams in private network X and deter-
mines which, if any, should be routed to private net-
work Y. Node A then encapsulates all such datagrams
and sends them securely across its tunnel connection
to node B. Node B checks the integrity of each trans-
mission and then decapsulates and forwards the 
datagrams to network Y. The process is symmetric,
although this is not pictured. 

These methods can be used to connect any sort of
private network; however, our product is specifically
designed to connect IP networks by tunneling IP data-
grams. Given the dominance of IP in the network mar-
ketplace, the choice of network type is easy. The choice
of protocol from which to construct tunnel connec-
tions is more difficult. There are three obvious can-
didates: IP, User Datagram Protocol (UDP), and
Transmission Control Protocol (TCP). 

Since IP is a network protocol, there is no notion of
port-level addressing. This implies that IP-in-IP tun-
nels must be implemented very close to the operating
system, and any multiplexing of tunnel connections
must be explicitly added. Since our goal was for our
tunneling product to be firewall and operating system
independent, we rejected IP in favor of a higher-level
protocol. 
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A Secure Tunnel in Operation



The choice between UDP and TCP depends on
whether datagrams or byte streams best apply to tun-
neling. Since our application is inherently connection
oriented, TCP offers a natural fit, while any UDP
design must include an explicit means for reliable con-
nection maintenance. In addition, byte streams elimi-
nate constraints caused by packet boundaries, so
fragmentation and maximum size determination pose
few difficulties. Furthermore, byte streams enable
forms of cryptography and data compression that
would be awkward to implement using datagrams. Of
course this flexibility does not come without cost. TCP
adds an extra layer of reliable transmission, and per-
packet headers are large. 

The previous discussion lends no clear advantage to
either protocol option. We chose to implement the
AltaVista Tunnel using IP-in-TCP in order to simplify
firewall security policy. As shown in Figure 2, a tunnel
connection usually traverses at least one firewall. In
practice, a tunnel virtual connection is composed of
several distinct TCP connections laid end-to-end.
Where TCP connections meet, there is a bidirectional
relay process that shuffles packets in either direction.
Such a relay service is included with most firewalls.3

We also offer an intelligent relay that participates in the
tunnel connection protocol and therefore allows more
flexibility in choosing destination endpoints. 

By using TCP connections and relays, we minimize
the policy changes required to permit tunnel traversal.
All that is necessary is to enable TCP connections
between the tunnel endpoint, which is on the private
network, and the relay, which is just outside the fire-
wall. (Note that relays are logically outside the firewall,
although they might be implemented on the firewall
machine.) Whether a generic or an intelligent relay is
used, firewall-traversal connections always originate
on a locally controlled network. Furthermore, TCP
connection requests are infrequent, and therefore
TCP traversals are more tractable to log at the firewall
than are datagrams. Although the firewall industry has
begun to develop standards for IP-in-IP tunnels,4–6 our
choice of IP-in-TCP gives us the clear advantage 

that tunnel endpoints need not be packaged with 
or dependent on a specific firewall implementation.
Eventually, the emerging standards will probably pre-
vail for static tunnels; however, no standards exist for
transient (mobile) users and our solution remains
quite viable. 

Implementation 

As with many tunnel implementations,1 we provide
tunneling by tricking the operating system’s routing
layer into forwarding packets to an emulated network
device. This device does not transmit packets directly,
but rather it encapsulates them as data within a higher-
level protocol. The AltaVista Tunnel implementation
contains three major components: the tunnel applica-
tion, the protocol handler, and the pseudo-device dri-
ver. The main function of the tunnel application is to
interact with the user or system administrator and to
modify the system routing tables to make tunneled
routes available. This code also maintains a database of
acceptable partner endpoints and matching crypto-
graphic keys. The protocol handler implements the
tunnel encapsulation protocol and all associated cryp-
tography. The pseudo-device driver is responsible for
redirecting packets from the local IP stack to the
encapsulation protocol handler and vice versa. 

Figure 3 shows how the components of the
AltaVista Tunnel cooperate to process tunneled IP
packets. The diagram depicts a single-user client and a
tunnel server. Although the same basic structure
applies to all tunnel endpoint software, there are sub-
stantial differences between single-user and server con-
figurations, and between the UNIX and Windows
implementations. For example, the single-user version
usually runs only while the user is actively connected.
On the server side, the tunnel application is a daemon
process that continuously waits for connection requests
and services existing connections. The following three
sections discuss the individual system components in
detail and, where appropriate, point out the differences
between the various software configurations. 
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The Tunnel Application 

The primary function of the tunnel application is to
present a user interface (UI). Although each instantia-
tion of the user interface is slightly different, the func-
tion of the application remains the same. The
AltaVista Personal Tunnel ’97, a single-user configura-
tion, offers a straightforward graphical user interface
(GUI) (see Figure 4) that allows the user to register a
set of target tunnel servers, select from this set, and
then establish and tear down connections. The
emphasis is on simplicity. A tunnel connection may be
started from either a command line interface or the
GUI. If the GUI is used to start a tunnel, the GUI win-
dow can be minimized and ignored until the end of
the tunnel session. The application logs all interesting
events, reflects current state through the user inter-
face, and notifies the user of exceptional events. In this
configuration, only traffic from local applications is
directed over the tunnel, and no inbound tunnel con-
nection requests are accepted. 

In the server configuration, the tunnel application is
significantly more complicated. The primary function
of the server code is to restrict tunnel access to autho-
rized clients. To achieve this, the server application is
also responsible for issuing cryptographic credentials
and maintaining an authorization database. In addi-
tion to accepting connections, a tunnel server is capa-
ble of initiating them. In the “workgroup” tunnel
configuration, two servers cooperate to maintain a
permanent connection, for example between a corpo-
rate network and a remote office local area network
(LAN). A tunnel server is a full-fledged router—its job
is to forward packets from the protected network into
the tunnel and vice versa. We offer servers for both the
UNIX and the Windows NT environments. 

Routing 
As mentioned in the Implementation section, our tun-
nel works by manipulation of the system routing table.
In some environments, such as Windows 95, there is
no fully integrated notion of packet routing (some-
times called IP forwarding). However, there is support
for multiple network devices. Each network device has
a uniquely assigned IP address so that the IP stack can
determine which device to use when transmitting
packets. The AltaVista Tunnel pseudo-device appears
to the operating system as just another network
device. There is a one-to-one relationship between
tunnel connections and pseudo-devices. During con-
nection establishment, the tunnel application activates
a pseudo-device and modifies the routing table to
include any newly reachable private network or net-
works. The application then restores the original state
upon termination of the connection. 

The tunnel server is implemented in a richer routing
environment. Each server typically routes an entire IP
class-C subnetwork (254 addresses) but may support
partial subnetworks or multiple networks as well. A
tunnel server can maintain multiple connections, and
this is accomplished by assigning a different IP address
to each pseudo-device/tunnel connection. IP pseudo-
device addresses at both ends of the tunnel are assigned
dynamically or statically from a pool of IP addresses
controlled by the server. The operating system, com-
bined with a routing management program such as
gated,7 performs all necessary route propagation. As
discussed in the next section, each tunnel user can be
restricted to a specific set of IP addresses. This approach
allows network managers to establish routing policy
based on user class. To obtain fine-grain control over 
a given tunnel connection, the server can also run a
packet-filtering program such as screend8 to restrict the
IP protocols entering and exiting that tunnel. 
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Key Management and Access Control 
In practice, a secure channel protocol is only as strong
as the techniques it employs for naming and key distri-
bution. In the AltaVista Tunnel system, we must name
both tunnel servers and human users. (Tunnel users
must be authenticated by name, not by IP address,
since many users acquire IP addresses dynamically from
their Internet service provider.) Because no ubiquitous
infrastructure exists to support such a namespace, our
software currently assumes a flat, server-specific nam-
ing structure, much in the style of PGP.9 We use RSA
public-key cryptography10 to establish secure connec-
tions. Each tunnel endpoint maintains a key file that
contains a sequence of names and matching public
keys—one (name, key) pair per potential destination.
Each key file also contains the password-encrypted pri-
vate key of its maintainer. The key file is signed by this
private key to prevent tampering. Note that the com-
promise of any given (nonserver) key file does not
affect the security of other endpoints. Although we

could have obtained a similar result with symmetric key
encryption, we believe that the current design will
allow our system to scale up gracefully through the
addition of public key certification. 

When a new user is registered, the tunnel server
generates a new RSA key and key file for that user. The
user’s public key is inserted into the server’s key file,
and conversely, the server’s key is inserted into the
user’s key file. To obtain enough randomness for key
generation, we carefully measure the elapsed time (in
machine instructions) to perform each of a sequence
of disk seeks. These results are then hashed to provide
a seed for a pseudorandom number generator. There is
substantial evidence that the air turbulence between
hard-disk heads and platters contributes sufficient ran-
domness for such purposes.11

Both single-user and server tunnel applications use
key files, and the credentials stored therein, as a mini-
mum requirement for successful authentication and
authorization. Our server software places additional

Figure 4
The AltaVista Personal Tunnel ’97 User Interface 



Figure 5 describes our key exchange protocol; K-1( )
signifies encryption with the public component of an
RSA key pair. Suppose tunnel nodes A and B wish to
share an encryption key. Both can determine their
partner’s public key from their local key file. As shown
in Figure 5, node A invents a random number Sa,
encrypts it with node B’s public key, and sends it to
node B’s network address. This message also includes
{Pab}, a set of proposed cryptographic algorithms and
key lengths that node A considers acceptable for com-
municating with node B. Upon receipt of message 1,
node B similarly constructs and sends response 2.
Now nodes A and B can choose Pk, a negotiated
choice of key length and algorithm, by intersecting
sets {Pab} and {Pba} and then selecting the best available
option using an a priori ranking. Both parties can also
compute S, a shared key seed, by decryption and
exclusive OR. Finally, nodes A and B can produce a
shared key by reducing the shared seed to a key in a
manner specific to Pk. For simplicity, this protocol is
executed for every new connection, and by default, a
new connection is established every 30 minutes. This
technique guarantees that the active key is updated
frequently. 

Our protocol succeeds because only node B can
decrypt message 1, and only node A can decrypt mes-
sage 2. As a result, both parties can believe that K is
known only to each other. An intermediate node can-
not control the negotiated key by intercepting mes-
sage 1 and then retransmitting a modified version to
node B. (Note that this represents a denial-of-service
attack.) Both node A and node B, however, must take
some care in choosing their algorithm proposals. An
intermediate node can force the resultant connection
parameters P to be the weakest proposal jointly accept-
able to both parties. This problem would be elimi-
nated if messages 1 and 2 were cryptographically
signed at their origin. 

Once the key exchange is complete, it is easy to see
how to achieve the essential properties of secure con-
nections. We sign all transmitted data by appending
the output of a keyed hash function under K, where a
keyed hash function (such as the one described by

Figure 5
Tunnel Key Exchange Protocol

1. A sends to B: A, B, {Pab}, Kb
-1(Sa) 

2. B sends to A: B, A, {Pba}, Ka
-1(Sb) 

A and B compute: Pk = Best ({Pab} ̂ {Pba}) 
A and B compute: S = Sa 1 Sb

A and B compute: K = Reduce (Pk, S) 

10 Digital Technical Journal Vol. 9 No. 2 1997

constraints on incoming connection requests. In addi-
tion to recording a new user’s public key, tunnel
servers maintain a small set of tunnel configuration
parameters for each user. These parameters define the
range of IP address pairs that can be assigned to the
server and client pseudo-device, the set of network
routing entries that are passed from server to client at
tunnel formation, and the minimum level of encryp-
tion strength permitted for a tunnel connection. 

Creating or initiating a tunnel connection can be a
complex task, considering the network path the tunnel
connection might traverse. This path can include two
intelligent relays, any number of generic TCP/IP
relays, and a final tunnel endpoint. Requiring the user
to remember such a path would have made the tun-
nel exceedingly difficult to operate. Therefore, the
AltaVista Tunnel stores this information in an external
configuration file. Each new user receives both a con-
figuration file and a key file to initialize a newly
installed tunnel application. These files provide all the
data necessary to run the tunnel application—the user
need only press the connect button. 

The Protocol Handler 

The AltaVista Tunnel protocol handler is responsible
for establishing secure virtual connections between tun-
nel endpoints and for encapsulating and transmitting
redirected IP packets as data. These connections are vir-
tual in that they are composed of several distinct TCP
connections joined by relays. Upon the establishment of
each new virtual connection, the tunnel endpoints
engage in a dialog to agree on security parameters for
that connection. For our purposes, a secure connection
must have at least the following properties: 

■ Authenticity—Data received over the channel orig-
inates at a known sender. 

■ Integrity—Data received over the channel cannot
be modified in transit. 

■ Exactly-once delivery—Each datum is received once
and only once. 

■ Privacy—An attacker may not learn the contents of
transmitted data by observing the network. 

We use cryptography to provide these properties. As
discussed in the previous section, key files form the
long-term basis for trust between tunnel endpoints.
Prior to transmitting data, the parties must perform
mutual authentication and agree on a key length, a set
of cryptographic algorithms, and a shared encryption
key. It is important that keys be negotiated periodi-
cally, since this minimizes the benefit an attacker can
gain from breaking a specific key. In the current
AltaVista Tunnel, we perform the very simple key
exchange shown in Figure 5.2

1
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Krawcyzk et al.12) is a cryptographic hash of data that
incorporates a shared secret. This signature guarantees
the authenticity of the data (more specifically, the
signer must know K) and ensures that any in-transit
modification will be detected. Once-only delivery is
guaranteed by including a monotonically increasing
sequence number in the keyed hash. Since TCP
sequence numbers are not secure, an attacker could
otherwise insert previously sent data into the data
stream. Finally, privacy is obtained by applying a sym-
metric cipher, such as the RC4 algorithm,13 to all tun-
neled datagrams using K to initialize the keying
material. Note that since our transport is reliable, hav-
ing no missing data or out-of-order delivery, it is easy
to use a stream cipher for this purpose. Similarly, com-
pression state can be maintained over the lifetime of 
a connection. This allows for efficient compression of
data prior to encryption, although we have yet to
implement this. 

To implement virtual connection establishment and
data encapsulation, we segment the data stream into
typed command frames. Using these command frames,
we implement a straightforward protocol for relay
activation, connection establishment, key exchange,
data transmission, failure detection, and connection
teardown. Since the data stream is reliable, this proto-
col is quite simple. Moreover, the data carried by key
exchange packets is opaque from the point of view of
the connection protocol, and key exchange can
encompass multiple round-trips. Therefore, the basic
mechanism we use to establish tunnel connections
should support other forms of cryptographic creden-
tials and negotiation as new standards for naming,
trust management, and key exchange emerge. 

In the UNIX server, the protocol handler is imple-
mented as part of the tunnel server daemon, which
runs in user space. In the Windows environment, we
found that tunneling could not be implemented in user
space. Under certain circumstances, the Windows file
system can perform remote operations while holding
critical system locks. Since the tunnel application can-
not run while these locks are held, deadlock ensues.
Therefore, we implement the Windows protocol han-
dler in kernel space, alongside the pseudo-device driver.
This approach also improves performance by eliminat-
ing the need to copy data to user space. 

The Pseudo-Device Driver 

In the AltaVista Tunnel, the pseudo-device driver’s
sole purpose is to redirect outgoing IP packets to the
tunnel protocol handler and to reintroduce incoming
packets from the protocol handler to the IP stack.
Once the tunnel application has set up and authenti-
cated a tunnel connection, it activates the pseudo-
device driver to enable redirection of the tunnel
packets into and out of the connection. During activa-

tion, the IP stack recognizes the new network device
and updates the routing table to reflect any newly
available routes. 

Because of differences in networking architectures,
the implementation of this driver is very simple on the
UNIX platform and quite complex on the Windows
95 and Window NT platforms. Our initial attempt to
implement the Windows pseudo-device emulated an
Ethernet LAN. This design became overly baroque
due to the need to emulate LAN services such as the
Address Resolution Protocol (ARP).14 Recently, the
pseudo-device in AltaVista Tunnel ’97 was redesigned
to closely resemble a dial-up network adapter, thereby
eliminating the need for LAN emulation. We describe
all these implementations in this section. 

UNIX Pseudo-Device 
On the UNIX platform, the pseudo-device driver is a
straightforward emulation of a network device. The
back end of this network device communicates with a
user-level process through a socket interface. The sim-
plicity of this design comes from the fact that the UNIX
IP stack delivers packets to network devices without
additional encapsulation. Since the physical device layer
takes care of Ethernet Media Access Control (MAC)
encapsulation, the emulated network device does not
have to deal with complexities such as ARP14 process-
ing. The UNIX tunnel application uses the ifconfig
program to activate the pseudo-device, assign an IP
address to the device, and insert the address into the
routing table. 

Windows Pseudo-Device 
The first release of the Windows 95 tunnel pseudo-
device was considerably more complex than its UNIX
counterpart. Under the Windows operating system,
most 32-bit network device drivers are implemented
using the Network Device Interface Specification.15

This application programming interface (API) is tai-
lored to handle physical devices, not abstract IP inter-
faces. In the Windows environment, the network stack
must have considerable knowledge of the physical net-
work. For example, the stack must implement the
MAC protocols necessary to transmit a packet on a
supported medium. As a result, our initial implemen-
tation of a network pseudo-device emulated a com-
plete Ethernet LAN, including a gateway host that
provides ARP and dynamic addressing services, as
shown in Figure 6. 

Every Ethernet device has a unique hardware or
MAC address. When IP packets are sent over the
Ethernet, they are transmitted using these hardware
addresses. IP packets with a destination address off the
local LAN must be sent to a gateway host router
located on the LAN. The tunnel pseudo-device creates
an illusion of the complete LAN, including the gate-
way host, within the device driver and assigns the IP
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address of the remote tunnel server pseudo-device to
this emulated host. The IP stack is fooled into believing
there are two nodes on the emulated network LAN—
the tunnel client, which provides the local node, and
the tunnel server as the gateway host to the real net-
work or networks on the other side of the tunnel. 

When the IP stack prepares to transmit a packet, it
must know the MAC address of the destination or the
gateway host. If the stack does not know the MAC
address, it transmits an ARP packet to the pseudo-
device. The pseudo-device responds only to ARP
requests for the gateway host MAC address. To resolve
this ARP request, the driver includes the functionality
of an ARP server. Note that the MAC address must 
be unique to prevent a conflict with the MAC address
of a real device. Clearly, no Ethernet device will ever
contain a MAC address of 08-00-2B-00-00-01 or 
08-00-2B-00-00-02, which are the first two Ethernet
addresses that Digital Equipment Corporation ever
assigned. In the AltaVista Tunnel, the first of these
addresses always serves as the pseudo-device MAC
address; the second serves as the MAC address of the
gateway host. 

The network pseudo-device in AltaVista Tunnel ’97
is simple by comparison. With help from Microsoft,
our implementation is now able to emulate a Windows
dial-up adapter rather than a LAN. Dial-up adapters
are treated specially by the Windows IP stack. No ARP
packets are directed at dial-up devices, only one emu-
lated address must be maintained, and information
about gateways and dynamic IP addressing can be 
supplied after link establishment. This, of course, 
perfectly matches the tunnel’s operating environment.
The control flow outlined in Figure 6 correctly
describes the operation of this new pseudo-device
implementation; however, as noted, ARP and dynamic
address emulation is no longer required. 

Dynamic IP Address Binding 
Each tunnel is uniquely identified by the IP addresses
assigned to the pseudo-device at each endpoint. The
tunnel server uses a separate pseudo-device for each
active tunnel. The tunnel server implementation could
have used a single IP address and pseudo-device for
multiple tunnels, because each client is unaware of any
other’s existence. However, that would have required
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machines. Without using the tunnel, the same config-
uration produced throughput averaging 8.8 megabits
per second. This translates to a tunnel throughput effi-
ciency of about 73 percent. In both tests, processor
usage never exceeded 50 percent. 

In another test, we used two 150-MHz AlphaServer
systems running DIGITAL UNIX version 3.2 as tunnel
endpoints. This tunnel was used to route between two
Pentium 166-MHz processors running Windows 95
and LapLink, a popular remote access program for
portable PCs.17 Tunneled file transfers between these
computers (with LapLink compression turned off)
averaged only 15 percent slower than transfers without
the tunnel. Thus, by using the UDP-based LapLink
protocol, we were able to achieve a substantially better
tunnel throughput efficiency than that reported for
FTP. As before, processor usage never exceeded 50
percent. From these simple tests we conclude that tun-
nel performance is not limited by CPU speed but
instead by the networking environment and payload
protocol. We also believe that TCP/IP window size
may play a role in limiting tunnel throughput. 

The cost of cryptography at the client is not a seri-
ous performance issue. A 133-MHz Pentium proces-
sor can compute RC4 at more than 25 megabits per
second and keyed hashes at twice that speed. The cost
of server cryptography is mitigated by the fact that
most client traffic is bounded by low link speeds and
that servers typically run on fast machines. 

Digital Equipment Corporation is using the
AltaVista Tunnel product to support its mobile work-
force and telecommuters. Previously, the company
used wide-area, dial-up telephone lines at extremely
favorable rates, but more than 30 percent of the IP
traffic that used this service had a destination address
outside the company. This meant that the company
was acting as an Internet service provider (ISP) and
was doing so at long-distance rates! A short-term eval-
uation revealed that users who remotely connected to
the company network for more than 10 hours per
month would achieve substantial cost savings by con-
necting through a public ISP and using the AltaVista
Tunnel. Local calls are still directly dialed to remote
access servers (RAS) located in areas where employee
density is highest. In an early pilot, the top 100 RAS
users were offered ISP accounts and access using the
AltaVista Tunnel. The reduction in monthly tele-
phone costs was dramatic—enough to fund each of
the users’ ISP accounts for more than a year! In addi-
tion, many of these telecommuters can now use
higher-speed options such as cable modems or
Integrated Services Digital Network (ISDN) to con-
nect to the public network, yielding an overall higher-
speed connection into the company than using
traditional directly dialed 28.8 Kbps modem access. 

At the time of this writing, more than 2,000 
DIGITAL employees worldwide use the AltaVista

additional routing complexity at the tunnel server. By
using unique address pairs, the routing tables on both
the client and server can be maintained easily without
platform-specific software. This design also permits
conventional packet filtering on the tunnel server. The
tunnel address space can be a valid, externally visible or
hidden network, thereby supplying an almost unlim-
ited number of addresses. 

To facilitate a very large number of registered users
for any given tunnel server, we implement dynamic
reuse of address pairs. Since dynamic addresses are
negotiated at connect time, we need to bind IP
addresses to pseudo-devices after tunnel connection
establishment. For the Windows platform, we use the
Transport Driver Interface (TDI)16 from within the
pseudo-device driver to perform both dynamic
address assignment and routing table modification. 

Performance and Experience 

Tunneling does add overhead to data transmission.
This overhead falls into two categories. First, the
encapsulating TCP connection adds network overhead
by introducing an extra level of framing, plus any
acknowledgment and retransmission traffic that is
required to support reliable delivery. Second, cryptog-
raphy adds to the per-packet processing cost, although
this does not generally become significant at low
speeds. More to the point, transmission of encrypted
data defeats the compression present in many modems. 

The most significant performance impact is observed
when using the Telnet protocol. Because this protocol
sends few characters per packet, the encapsulation over-
head is quite high. In addition, the overall network path
between Telnet client and server can be long enough to
make character echoing sluggish. Remember that the
round-trip network path may pass through at least two
tunnels, a firewall, and potentially several other routers.
Thus, to properly support interactive applications, it is
essential to choose an Internet path so as to minimize
the round-trip latency to the destination network.

The performance is considerably better for nonin-
teractive applications such as File Transfer Protocol
(FTP) or Hypertext Transfer Protocol (HTTP) where
packets are usually filled to capacity. To prevent IP
packet fragmentation, the tunnel pseudo-device
reduces the maximum transmission unit size by the
amount of the encapsulation overhead. For full pack-
ets, the encapsulation overhead is less than 5 percent.
We have observed a peak rate for tunneled FTP file
transfers as high as 6.4 megabits per second. This mea-
surement was performed over an unloaded switched
Ethernet between a 200-megahertz (MHz) Pentium
Pro client running Windows NT version 4.0 and a
300-MHz DIGITAL AlphaServer system running
DIGITAL UNIX version 3.2. In this case, the FTP client
and server programs ran on the tunnel endpoint
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Tunnel in their daily work. We have observed that a
single tunnel server can handle at least 125 concurrent
users, although the average number of active users is
much smaller. In fact, the ratio of active to registered
users rarely exceeds 1 to 10. Currently, DIGITAL
offers its employees three tunnel access points within
the United States and is planning to deploy additional
tunnels overseas. 

Security Risks 

Products like the AltaVista Tunnel are not risk free.
The most obvious risks have to do with cryptography.
Cryptographic security is never absolute. One can only
hope to keep the cost of mounting an attack high
when compared to the value of a successful attack.
Thus, any sensible application of cryptography must
be well ahead of any expected attackers in terms of key
length and algorithm strength. Barring fundamental
change in the science of cryptography, prudent engi-
neering is sufficient to provide this advantage. Since
our implementation does not mandate a specific algo-
rithm or key size, the strength of our product’s cryp-
tography can improve over time. 

As discussed earlier, the tunnel encapsulation proto-
col protects against many common threats such as
eavesdropping, impersonation, replay, and man-in-
the-middle attacks. Denial-of-service attacks such as
flooding a tunnel server with connection requests
remain a problem, however, especially since connec-
tion request processing is compute intensive. Newer
key exchange protocols, for example, Oakley,18 preface
such costly operations with exchanges of random val-
ues that then identify subsequent messages. This tech-
nique defeats simple flooding attacks by allowing the
server to control the rate at which identifiers are
issued. Our product might benefit from this approach,
although the benefit would come at the cost of an
additional network round-trip. 

Attacks on password-protected key files are a greater
concern, especially since laptop computers can easily be
stolen. If accessed directly, many password-protected
containers are subject to dictionary attack, and key files
are no exception. If an attacker succeeds in compromis-
ing a key file, the attacker can masquerade as the key
file’s owner. The fact that users are often careless in
choosing passwords exacerbates this problem. 

Of course, tunnel servers must be carefully protected.
A tunnel server not only holds valuable keying informa-
tion but also enjoys special privileges for firewall traver-
sal. An attacker who can compromise such a machine
can compromise an entire network. Therefore, tunnel
servers should be handled as carefully as firewalls. 

Perhaps the greatest threat posed by IP tunneling is
that it extends the perimeter of any firewall it traverses.
Because the tunnel traffics in encrypted IP packets,
auditing at the firewall is difficult. In addition, there

are subtle problems that arise from routine use of
remotely connected machines. In the single-user tun-
nel, we disallow the forwarding of packets not origi-
nating on the local machine, but by definition, this
cannot be the case for tunnel servers. Consider what
happens if a telecommuter uses a tunnel server on his
or her home LAN to access a corporate network. The
home LAN is then automatically part of the corporate
network. Now suppose that a housemate similarly
connects to another private network from a machine
on the same home LAN. This configuration could
allow unintended routing between two private net-
works! Real-time routing is not the only risk. A com-
puter that is exposed to the raw Internet or to a hostile
corporate network could become infected with a virus
or Trojan horse program that becomes active only
upon tunnel connection establishment. 

All these threats are real; however, the benefits to be
gained from tunneling are substantial. Any policy that
involves the deployment of IP tunnels should carefully
counterbalance these risks and benefits. At the very
least, machines that use tunneling, especially if IP for-
warding is enabled, should be more carefully managed
than those directly connected to protected networks. 

Summary 

The AltaVista Tunnel was jointly prototyped by
researchers at two DIGITAL laboratories, the
Cambridge Research Laboratory and the Systems
Research Center. The prototype effectively demon-
strated that the Internet could be used to reduce
telecommuting costs, and within a year, it had grown
into a DIGITAL product.19 Since that time, the
AltaVista Tunnel product has evolved to offer support
for a variety of client and server platforms, as well as
improved performance and enhanced cryptography. 

The AltaVista Tunnel is an effective tool for extend-
ing corporate networks. By combining tunnels and
secure channels, it allows Internet access to supplant
leased telephone lines without substantial loss of 
security. Our deployment of this technology within
DIGITAL has cut costs dramatically without substan-
tially affecting network performance. We expect that
secure tunneling will play an important role in servic-
ing the telecommuters of the future. 
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