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The development of efficient algorithms on today’s
high-performance computers can be a challenge. One
major issue in implementing high-performing algo-
rithms is to take full advantage of the deep memory
hierarchy. To better understand a program’s perfor-
mance, two things need to be considered: computa-
tional intensiveness and the amount of memory traffic
involved. In addition to the latter, the pattern of the
memory references is important because the success of
hierarchy is attributed to locality of reference and
reuse of data in the user’s program. 

In this paper, we investigate the memory access pat-
tern of Fortran programs. We begin by presenting an
experimental Atom1 tool that analyzes how the pro-
gram is executed. We developed the tool to help us
understand how different compiler switches impact
the algorithm implemented and to determine if the
algorithm is doing what it is intended to do. In addi-
tion, our tool helps the process of translating an algo-
rithm into an efficient implementation on a specific
machine. The work presented in this paper focuses 
primarily on a better understanding of the behavior 
of technical applications. Related work for Basic
Linear Algebra Subroutine implementations has been
described.2 In most scientific programs, the data ele-
ments are matrix-elements that are usually stored in two-
dimensional (2-D) arrays (column-major in Fortran).
Knowing the order of array referencing is important in
determining the amount of memory traffic. 

In the final section of this paper, we present an
example of a memory access pattern study and illus-
trate how the use of our program analysis tool
improved the considered algorithm’s performance.
Guidelines on how to use the tool are given as well as
comments about conclusions to be derived from the
histograms generated. 

Memory Access Profiling Tool 

Our experimental tool generates a set of histograms
for each reference in the program or in the subroutine
under investigation. The first histogram measures
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strides from the previous reference, the second his-
togram gives the stride from the second-to-last refer-
ence, and so on, for a total of MAXEL histograms for
each memory reference in the part of the program we
investigate. By stride, we mean the distance between
two memory references (load or store). We chose a
MAXEL of five for our case study, but MAXEL can be
given any value. 

Two variants of this tool were implemented. 

1. The first version takes all memory references into
account in all histograms. 

2. The second version takes into account in the next
histogram those memory references whose stride 
is more than 128 bytes. It does not consider in the
(i + 1)th histogram (i = 1,…,5) strides that are less
than 128 bytes in the ith histogram. 

The second version of the tool has proven to be
more useful in understanding the access patterns. It
highlights memory accesses that are stride one for a
while and then have a stride greater than 128 bytes.
The choice of 128 bytes was arbitrary; the value can be
changed. 

The following bins are used in the histograms: 0-
through 127-byte strides are accounted for separately.
Strides greater than or equal to 128 bytes are grouped
into the following intervals: [128 through 255], [256
through 511], [512 through 1,023], [1,024 through
2,047], [2,048 through 4,095], [4,096 through
8,191], [8,192 through 16,383], [16,384 through
32,767], and [32,768 through infinity]. 

In the next section, we present the output his-
tograms obtained with the second version of this
experimental tool for a Fortran loop. In our case study,
we chose to perform the histograms on a single array
instead of all references in the program. This method
provided a clearer picture of the memory access pat-
tern for each array in the piece of the program under
consideration. We present separate histograms for the
loads and the stores of each array in the memory traffic
of the subroutine we investigated. 

When looking at memory access patterns, it is
important not to include load instructions that per-
form prefetching. Even though prefetching adds to
the memory traffic, its load instructions pollute the
memory access pattern picture. 

Case Study 

In this section, we study and compare different ver-
sions of the code presented in Figure 1 using our
experimental memory access profiling tool. We show
that the same code is not executed in the same way for
different compiler switches. Often a developer has to
delve deeply into the assembler of the given loop to
understand how and when the different instructions

are executed. The output histograms from our tool
ease that process and give a clear picture of the refer-
ence patterns. The loop presented in Figure 1 imple-
ments a sparse matrix-vector multiplication and is part
of a larger application. Ninety-six percent of the appli-
cation’s execution time is spent in that loop. We ana-
lyze the loop compiled with two different sets of
compiler switches. To illustrate the effective use of the
tool, we present the enhanced performance results
due to changes made based on the output histograms. 

From lines 5 and 6 in the loop shown in Figure 1,
we would expect the array COLSTR to be read stride
one 100 percent of the time. Line 30 of the figure
indicates that YTEMP is accessed stride one through
the whole j loop. From lines 33 through 36, we expect
YTEMP’s stride to be equal to one most of the time and
equal to the number of columns in the array every
time k1 is incremented. Q should be referenced 100

Figure 1
Original Loop 

1 Q(i)=0, i=1, n 
2 do k1= 1, 4 
3 index = (k1-1) * numrows 
4 do j=1,n 
5 p1=COLSTR(j,k1) 
6 p2=COLSTR(j+1,k1)-1 
7 p3= [snip] 
8 sum0=0.d0 
9 sum1=0.d0 
10 sum2=0.d0 
11 sum3=0.d0 
12 x1 = P(index+ROWIDX(p1,k1)) 
13 x2 = P(index+ROWIDX(p1+1,k1)) 
14 x3 = P(index+ROWIDX(p1+2,k1)) 
15 x4 = P(index+ROWIDX(p1+3,k1)) 
16 do k = p1, p3, 4 
17 sum0 = sum0 + AA(k,k1) * x1 
18 sum1 = sum1 + AA(k+1,k1) * x2 
19 sum2 = sum2 + AA(k+2,k1) * x3 
20 sum3 = sum3 + AA(k+3,k1) * x4 
21 x1 = P(index+ROWIDX(k+4,k1)) 
22 x2 = P(index+ROWIDX(k+5,k1)) 
23 x3 = P(index+ROWIDX(k+6,k1)) 
24 x4 = P(index+ROWIDX(k+7,k1)) 
25 enddo 
26 do k = p3+1, p2 
27 x1=P(index+ROWIDX(k,k1)) 
28 sum0 = sum0 + AA(k,k1)*x1 
29 enddo 
30 YTEMP(j,k1)=sum0+sum1+sum2+sum3 
31 enddo 
32 do i = 1, n, 4 
33 Q(i) = Q(i) + YTEMP(i,k1) 
34 Q(i+1) = Q(i+1) + YTEMP(i+1,k1) 
35 Q(i+2) = Q(i+2) + YTEMP(i+2,k1) 
36 Q(i+3) = Q(i+3) + YTEMP(i+3,k1) 
37 enddo 
38 enddo 

where n = 14000, 
real*8 AA(511350,4), YTEMP(n,4) 
real*8 Q(n), P(n) 
integer*4 ROWIDX(511350,4), COLSTR(n,4) 
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percent stride one for both the loads and the stores
(lines 33 through 36). As illustrated in lines 12
through 15, 21 through 24, and 27, ROWIDX is
expected to be accessed with a stride of one between
the p1 and p2 bounds of the k loop. Even though it
looks like the k loop is violating the array bounds of
ROWIDX in lines 21 through 24 for the last iteration of
the loop, this is not the case. We expect array P to have
nonadjacent memory references since we have deliber-
ately chosen an algorithm that sacrifices this array’s
access patterns to improve the memory references of
Q and AA. 

Original Code 
We investigate the memory access patterns achieved
by the loop in Figure 1 when compiled with the fol-
lowing switches: 

f77 -g3 -fast -O5 

The -g3 switch is needed to extract the addresses 
of the arrays from the symbol table. For more infor-
mation on DIGITAL Fortran compiler switches, see
Reference 3. 

From Figures 2 and 3, we see that array Q is accessed
as we expected, 100 percent stride one for the loads
and the stores. Since Q is accessed contiguously in 100
percent of its memory references, we will not have any
entries in the next four histograms. As described in 

the previous section, we only record in the next his-
togram the strides that are greater than 128 bytes in
the current histogram. 

Figure 4 illustrates that COLSTR is accessed 50 
percent stride zero and 50 percent stride one. This is
unexpected since lines 5 and 6 in Figure 1 suggest that
this array would be accessed stride one 100 percent of
the time. The fact that we have entries only for the
strides between the current and the previous loads
indicates that the elements of COLSTR are accessed in a
nearly contiguous way. A closer look at Figure 1 tells
us that the compiler is loading COLSTR twice. We
expected the compiler to do only one load into a regis-
ter and reuse the register. The work-around is to per-
form a scalar replacement as described by Blickstein et
al.4 We put p2 = COLSTR(1,k1) –1 outside the j loop
and substituted inside the j loop p1 = COLSTR(j,k1)
with p1 = p2 + 1. Inside the j loop, p2 remains the
same. Eliminating the extra loads did not enhance per-
formance, and a possible assumption is that the analy-
sis done by the compiler concluded that no gain would
result from that optimization. 

Figures 5 and 6 show the strides for the loads and the
strides for the stores for the array YTEMP. One more
time, the implementation is not being executed the
way we thought it would. In Figure 1, lines 33 through
36 suggested that YTEMP would be referenced stride
one through the whole i loop as well as with a stride
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Strides for Array Q between the Current Load and the Load One through Five Steps Ago
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Figure 3
Strides for Array Q between the Current Store and the Store One through Five Steps Ago
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Strides for Array COLSTR between the Current Load and the Load One through Five Steps Ago
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Figure 5
Strides for Array YTEMP between the Current Load and the Load One through Five Steps Ago
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Figure 6
Strides for Array YTEMP between the Current Store and the Store One through Five Steps Ago
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tiate the access patterns of the two arrays. Figure 8
confirms that assumption. ROWIDX is referenced with
controlled strides. Because ROWIDX is accessed close
to contiguously, we will not have any entries in the
next four histograms. As described in the previous sec-
tion, we only record in the next histogram the strides
that are greater than 128 bytes in the current his-
togram. ROWIDX is referenced 24 percent of its total
loads in stride one and 34 percent in stride two. 

As illustrated in Figure 9, array P is accessed exactly
the way we expected it. When designing this algorithm,
we had to make some compromises. We decided to
have AA and Q referenced as closely as possible to stride
one, thus giving up the control of P’s references. 

By examining these arrays’ access patterns, we can see
how they are accessed and whether or not the imple-
mentation is doing what it is supposed to do. If the loop
in Figure 1 is used on a larger matrix [n = 75,000 and
AA(204427,12) has 15 million nonzero elements], the
execution time for the total application on a single
21164 processor of an AlphaServer 8400 5/625 system
is 1,970 seconds. The application executes 26 x 75 
(= 1,950) times the considered loop. When profiling
the program, we measured that the loop under investi-
gation takes 96 percent of the total execution time. It is
therefore a fair assumption to say that any improvement
in this building block will improve the overall perfor-
mance of the total program. 

equal to the number of columns in the array when k1 is
incremented. By considering Figure 5 along with lines
33 through 36 in Figure 1, we conclude that YTEMP is
unrolled by four in the k1-direction in the i loop. The
fact that all strides between the current load and the
load two loads back or three loads back or four loads
back have a stride between 32K and infinity is consis-
tent with traversing a matrix along rows. Figure 6
shows that the j loop is not unrolled by four in the 
k1-direction, because all the loads of YTEMP are 100
percent stride one. The compiler must split the k1 loop
into two separate loops, the first consists of the j loop
and the second consists of the i loop. The latter has
been unrolled by four in the k1-direction thereby elim-
inating the extra overhead from the k1 loop. 

Figure 7 shows that the matrix AA is accessed as we
expected. The strides are not greater than 128 bytes
or, in other words, a maximum stride of 16 elements.
The fact that there is no stride other than the one
between the current load and the previous load in the
histograms shows that AA is referenced in a controlled
way. In this case, AA is accessed 39 percent of its total
loads in stride one and 23 percent in stride two. 

From lines 12 through 15, 17 through 20, and 21
through 24 in Figure 1, we know that the arrays AA
and ROWIDX should have relatively similar behaviors.
Only the four extra prefetches of ROWIDX in lines 21
through 24 for the last iteration in the j loop differen-
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Figure 9
Strides for Array P between the Current Load and the Load One through Five Steps Ago
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Strides for Array ROWIDX between the Current Load and the Load One through Five Steps Ago
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Modified Code 
In this section, we describe a new experiment in which we
used different compiler switches and changed the original
loop to the loop in Figure 10. The code changes were
based on the analysis in the previous section as well as on a
more extended series of investigations. 

In this example, we used the following compiler
switches: 

f77 -g3 -fast -O5 -unroll 1 

Lines 3, 5, and 6 from Figure 10 show that we imple-
mented the scalar replacement technique as described by
Blickstein et al.4 to avoid COLSTR being loaded twice. From
Figure 11, we see that array COLSTR is now behaving as we
expect: 100 percent of the strides for the loads are stride one. 

In our first attempt to optimize the original loop, we
split the k1 loop into two loops in the same way the com-
piler did as described in the previous section. We then hand
unrolled the YTEMP array in the k1 direction. Further
analysis showed that a considerable gain could be made 
by removing the YTEMP array and writing the results
directly into Q. By replacing the zeroing out of the Q array

(Figure 1, line 1) with an IF statement (Figure 10, line 30),
we further improved the performance of the loop. The last
two changes were possible because we decided that, for
performance enhancement issues, the serial version of the
code was going to be different from its parallel version. 

Figures 12 and 13 show that Q’s load and store access
pattern is 100 percent stride one as we expected it to be.
For both ROWIDX and AA, we see a significant increase in
stride one references. Figure 14 shows that AA is now
accessed 69 percent stride one instead of 39 percent.
ROWIDX ’s stride one increased to 52 percent from 24
percent as illustrated in Figure 15. These two arrays are
the reason for using the -unroll 1 switch. Without it,
stride one for both arrays would stay approximately the
same as in the previous study. The pattern of accesses of
array P in Figure 16 is similar to the prior pattern of
accesses in Figure 9 as expected. 

To better understand the effects of the unrolling, we
counted the number of second-level cache misses for 26
calls to the loop, using an Atom tool1 that simulated a 
4-megabyte direct-mapped cache. By considering only these
26 matrix-vector multiplications, we do not get a full picture
of what is going on and how the different arrays interact.
Nevertheless, it gives us hints about what caused the
improvement in performance. Use of the cache tool on the
whole application would increase the run time dramatically. 

Twenty-six calls to the original loop (Figure 1) have a
total of 1,476,017,322 memory references, of which
77,638,624 are cache misses. The modified loop (Figure
10), on the other hand, has fewer references due to the fact
that we eliminated an expensive array initialization at each
step and removed the temporary array YTEMP. The number
of cache misses dropped from 77,638,624 to 72,384,348
or a reduction in misses of 7 percent. If we compile the
modified loop without the -unroll 1 switch, the number
of cache misses increases slightly. On the 21164 Alpha
microprocessor, all the misses are effectively performed in
serial. This means that for memory-bound codes like the
loop we are currently investigating, execution time primar-
ily depends on the number of cache misses. 

The histograms illustrating the access strides for the dif-
ferent arrays helped us design a more suitable algorithm for
our architecture. By increasing the stride one references in
the loads for the arrays AA and ROWIDX, eliminating the
extra references in COLSTR and Q, and improving the strides
for Q, we increased the performance of this application dra-
matically. Counting the number of cache misses gave us a
better understanding as to why the new access patterns
achieve enhanced performance. It also helped us under-
stand that not allowing the compiler to unroll the already
hand-unrolled loops in the modified loop decreased the
number of cache misses. The execution time for this appli-
cation [n = 75,000 and AA(204427,12) has 15 million
nonzero elements] decreased from 1,970 seconds to 1,831
seconds on a single 625-megahertz (MHz) 21164 Alpha
microprocessor of an AlphaServer 8400 5/625 system.
This is an improvement of 139 seconds or 8 percent. Figure 10

Modified Loop 

1 do k1= 1, 4 
2 index = (k1-1) * numrows 
3 p2=COLSTR(1,k1)-1 
4 do j=1,n 
5 p1=p2+1 
6 p2=COLSTR(j+1,k1)-1 
7 p3= [snip] 
8 sum0=0.d0 
9 sum1=0.d0 
10 sum2=0.d0 
11 sum3=0.d0 
12 x1 = P(index+ROWIDX(p1,k1)) 
13 x2 = P(index+ROWIDX(p1+1,k1)) 
14 x3 = P(index+ROWIDX(p1+2,k1)) 
15 x4 = P(index+ROWIDX(p1+3,k1)) 
16 do k = p1, p3, 4
17 sum0 = sum0 + AA(k,k1) * x1 
18 sum1 = sum1 + AA(k+1,k1) * x2 
19 sum2 = sum2 + AA(k+2,k1) * x3 
20 sum3 = sum3 + AA(k+3,k1) * x4 
21 x1 = P(index+ROWIDX(k+4,k1)) 
22 x2 = P(index+ROWIDX(k+5,k1)) 
23 x3 = P(index+ROWIDX(k+6,k1)) 
24 x4 = P(index+ROWIDX(k+7,k1)) 
25 enddo 
26 do k = p3+1, p2 
27 x1=P(index+ROWIDX(k,k1)) 
28 sum0 = -sum0 + AA(k,k1)*x1 
29 enddo 
30 if(k1.eq.1) then 
31 Q(j) = sum0 + sum1 + sum2 + sum3 
32 else 
33 Q(j) = Q(j) + sum0 + sum1 + sum2 + sum3
34 endif 
35 enddo 
36 enddo 

where n = 14000, 
real*8 AA(511350,4) 
real*8 Q(n), P(n) 
integer*4 ROWIDX(511350,4), COLSTR(n,4) 
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Figure 11
Strides for Array COLSTR between the Current Load and the Load One through Five Steps Ago
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Figure 12
Strides for Array Q between the Current Load and the Load One through Five Steps Ago
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Figure 13
Strides for Array Q between the Current Store and the Store One through Five Steps Ago
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Figure 14
Strides for Array AA between the Current Load and the Load One through Five Steps Ago
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Figure 15
Strides for Array ROWIDX between the Current Load and the Load One through Five Steps Ago
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Figure 16
Strides for Array P between the Current Load and the Load One through Five Steps Ago



32 Digital Technical Journal Vol. 9 No. 4 1997

Conclusion 

The case study shows that, given the right program
analysis tools, a program developer can take better
advantage of his or her computer system. The experi-
mental tool we designed was very useful in providing
insight into the algorithm’s behavior. The approach
considered yields an improvement in performance of 
8 percent on a 625-MHz 21164 Alpha microproces-
sor. This is definitely a worthwhile exercise since a sub-
stantial reduction in execution time was obtained
using straightforward and easy guidelines. 

The data collected from a memory access profiling
tool helps the user understand a given program as well
as its memory access patterns. It is an easier and faster
way to gain insight into a program than examining the
listing and the assembler generated by the compiler.
Such a tool enables the programmer to compare mem-
ory access patterns of different algorithms; therefore,
it is very useful when optimizing codes. Probably its
most important value is that it shows the developer if
his or her implementation is doing what he or she
thinks the algorithm is doing and highlights potential
bottlenecks resulting from memory accesses. Optimiz-
ing an application is an iterative process, and being able
to use relatively easy-to-use tools like Atom is a very
important part of the process. The major advantage of
the tool presented in this paper is that no source code
is needed, so it can be used to analyze the performance
of program executables. 
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