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The PowerStorm 4D40T, 4D50T, and 4D60T mid-
range graphics adapters from DIGITAL have exceeded
the performance of all OpenGL graphics devices cost-
ing as much as $25,000. In addition, these products
achieved twice the price/performance ratio of com-
peting systems at the time they were announced. 

The PowerStorm 4DT series of mid-range graphics
devices was developed in 1996 to replace the com-
pany’s ZLX series. In its search for a vendor to replace
the graphics hardware, DIGITAL found Intergraph
Systems Corporation. This company had been design-
ing three-dimensional (3-D) graphics boards for a 
few years and was then on its second-generation 
chip design. The schedule, cost, and performance of
Intergraph’s new design matched our project’s target
goals. Intergraph was building software for the
Windows NT operating system on its Intel processor-
based workstations, but was not doing any work for
the UNIX operating system or the Alpha platform. 

The goals of the PowerStorm 4DT project were to
develop a mid-range graphics product powered by the
Alpha microprocessor that would lead the industry in
performance and price/performance. 

This paper describes the competitive environment 
in the graphics industry at the conception of the
PowerStorm 4DT project. It discusses our design deci-
sions concerning the graphics subsystem architecture
and performance strategy. The paper concludes with a
performance summary and comparison in the industry. 

Competitive Analysis 

Overall performance of today’s mid-range workstations
is markedly better than that of just two years ago. This
improvement is largely due to the dramatic increases in
CPU speeds, both in the number of instructions exe-
cuted per clock cycle and the number of clock cycles per
second. Without trivializing the efforts of the CPU
architects, such year-over-year increases in CPU perfor-
mance have become the trend of the last decade, espe-
cially with the Alpha microprocessor. 
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The PowerStorm 4DT series of graphics devices
established DIGITAL as the OpenGL performance
leader for mid-range workstations, both on the
DIGITAL UNIX and the Windows NT operating
systems. Achieving this level of success required
combining the speed of the Alpha microprocessor
with the development of an advanced graphics
subsystem architecture focused on exceptional
software performance. The PowerStorm 4DT
series of graphics adapters uses a modified
direct-rendering technology and the Alpha CPU
to perform geometry and lighting calculations. 
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More astounding is the central role that the graphics
component of the workstation is playing in defining
the overall performance of the workstation. We are in
the age of visual computing. Whether or not an appli-
cation requires 3-D graphics, even the most primitive
applications often rely on a graphical user interface
(GUI). As such, the graphical components of today’s
system-level benchmarks now carry significant weight. 

More importantly, a prospective buyer often looks
at results from standard graphics benchmarks as a gen-
eral indication of a machine’s overall performance. In
the computer-aided design/computer-aided manu-
facturing (CAD/CAM) market, a customer typically
buys a workstation to run a set of applications that has
a large 3-D component. Performance is measured by
how fast a workstation can create and manipulate 3-D
objects. For the most part, this performance is deter-
mined wholly by the graphics subsystem. The hard-
ware components of the graphics subsystem, however,
vary from vendor to vendor and may or may not
include the CPU. 

Performance Metrics 
Simply stated, the primary goal of the PowerStorm
4DT graphics device series was to provide the fastest
mid-range OpenGL graphics performance while offer-
ing the best price/performance ratio. OpenGL is the
industry-standard 3-D graphics application program-
ming interface (API) and associated library that pro-
vides a platform-independent interface for rendering
3-D graphics.1

Quantifying performance can be an elusive goal.
Product managers in our Workstation Graphics Group
chose two metrics to compare the performance of the
PowerStorm 4DT adapter to our competitors’ prod-
ucts. The first metric was performance on the industry-
standard OpenGL Viewperf benchmark, Conceptual
Design and Rendering Software (CDRS).2 This bench-
mark was chosen for its universal acceptance in the
CAD/CAM and process control markets. When buyers
compare graphics performance of two systems running
OpenGL, the Viewperf scores are among the first 
measurements they seek. The second measurement
was performance on the Pro/ENGINEER application
from Parametric Technology Corporation (PTC). 

The CDRS benchmark, as shown in Figure 1, was
established by the OpenGL Performance Characteri-
zation (OPC) organization as one of several Viewperf
viewsets. It emulates the variety of operations a user
typically executes when running a CAD/CAM applica-
tion. Specifically, this benchmark uses a series of tests
that rotate a 3-D model on the screen in a variety of
modes, including wireframe vectors, smooth-shaded
facets, texturing, and transparency. Performance is
measured by how many frames per second can be 
generated. Higher frame rates equate to faster and
smoother rotations of the model. Each test carries a

weight determined to roughly correspond to how
important that operation is in a real-world CAD/CAM
package. The test results are geometrically averaged to
produce a composite score. This single number is a
representation of the graphics performance of any
given system. 

Although standard benchmarks are good perfor-
mance indicators, they cannot substitute for actual
performance on an application. To ensure that the
PowerStorm 4DT adapter realized exceptional real-
world performance, the second metric chosen was the
CAD/CAM industry’s market share leader, the Pro/
ENGINEER application. PTC provides the industry
with a set of playback files called trail files. As shown in
Figure 2, each file contains a recording of a session in
which a user has created and rotated a 3-D part. The
recordings typically have large wireframe and smooth-
shading components and little or no texture mapping.
Performance is measured by how quickly a system can
play back a trail file. The CDRS benchmark stresses
only the graphics subsystem, but the Pro/ENGINEER
trail file stresses the CPU and the memory subsystem
as well. 

Graphics Hardware Standards 
In 1996, Silicon Graphics Inc. (SGI) captured the
mid-range graphics workstation market with its
Indigo2 Maximum IMPACT graphics subsystem pow-
ered by the MIPS R10000 microprocessor. DIGITAL,
Sun Microsystems, and International Business Machines
(IBM) Corporation had yet to produce a product with
the performance SGI offered; instead, they competed
in the low to lower mid-range graphics arena.

Figure 1
CDRS Viewperf Benchmark of OpenGL Performance
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Hewlett-Packard was notably absent from either
bracket due to its lack of a mid-range workstation with
OpenGL graphics capability. Mid-range workstations
can be loosely classified as costing from $15,000 to
$40,000. Graphics performance in this price range dif-
fers, sometimes dramatically, from vendor to vendor. 

Considering only raw graphics hardware perfor-
mance, a vendor had to offer a certain level of perfor-
mance to be competitive with SGI. By 1996 standards,
a competitive device needed to be capable of achieving
the following: 

■ 1 million Gouraud-shaded, 25-pixel, Z-buffered
triangles per second 

■ 2 million flat-shaded, antialiased, 10-pixel vectors
per second 

■ Trilinear, mipmapped, texture fill rates of 30 mega-
pixels per second 

■ 24-bit deep color buffer 
■ 4-bit overlay buffer 
■ 4-MB dedicated or unified texture memory 

■ Dedicated hardware support for double buffering
and Z-buffering 

■ Screen resolution of 1,280 by 1,024 pixels at 72 hertz 

In 1996, the PowerStorm 4D60T, the most
advanced graphics adapter in the new series, was capa-
ble of the following: 

■ 1.1 million Gouraud-shaded, 25- to 50-pixel, 
Z-buffered triangles per second 

■ 2.5 million flat-shaded, antialiased, 10-pixel vectors
per second 

■ Trilinear, mipmapped, texture fill rates of greater
than 30 megapixels per second 

■ 32-bit deep color buffer 
■ 8-bit overlay buffer 
■ 0- to 64-MB dedicated texture memory 
■ Dedicated hardware support for double buffering

(including overlay planes) and Z-buffering 
■ Screen resolution up to 1,600 by 1,200 pixels at 76

hertz 

Figure 2
Screen Capture from the Pro/ENGINEER Trail File Used to Stress the PowerStorm 4DT Series
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It is important to understand that these are hard-
ware maximums. The interesting work is not in
achieving these rates under the best of conditions, but
in achieving these rates under most conditions. To
reiterate, building hardware that can theoretically per-
form well and building a system that performs well in
benchmark applications are two distinctly different
goals. The latter requires the former, but the former in
no way guarantees the latter. 

Different viewpoints on the best way to provide the
highest level of performance have divided the industry
into several camps. Workstation vendors must decide
which approach best exploits the competitive advan-
tages of their systems. In the mid-range workstation
market, our graphics philosophy is decidedly different
from that of our competitors. For the most part, 
DIGITAL is alone in its choice of a CPU-based, direct-
rendering graphics architecture. 

In the next section, we discuss the various graphics
design architectures in the industry, focusing on the
design of the PowerStorm series and comparing it
with SGI’s approach. 

Graphics Subsystem Architectures 

The two essential choices for graphics subsystem design
are deciding between indirect and direct rendering and
choosing whether the CPU or an application-specific
integrated circuit (ASIC) performs the geometry and
lighting calculations. In this section, we discuss the
advantages and disadvantages of both rendering
schemes and calculation devices and explore designers’
decisions for graphics subsystem architectures. 

By order of occurrence, 3-D graphics can be divided
into three stages: (1) transferal of OpenGL API calls to
the rendering library, (2) geometry and lighting, and
(3) rasterization. In the next section, we compare
direct and indirect image rendering. 

Direct Versus Indirect Rendering 
Before the popularization of the Windows NT operat-
ing system and the personal computer, almost all
graphics workstations used the X Window System or 
a closely related derivative. The typical X Window
System implementation is a standard client-server
model.3 An application that draws to the screen
requests the X server to manage the graphics hardware
on its behalf. 

The graphics API, either Xlib for two-dimensional
(2-D) applications or OpenGL for 3-D, was the func-
tional breaking point. Traditionally, client applications
would make graphics API calls to do drawing or
another graphics-related operation. These calls would
be encoded and buffered on the client side. At some
point, either explicitly by the client or implicitly by the
API library, the encoded and buffered requests would
be flushed to the X server. These commands would

then be sent to the X server over a transport such as
the Transmission Control Protocol/Internet Protocol
(TCP/IP), a local UNIX domain socket, or local
shared memory. 

When the requests arrived at the X server, it would
decode and execute them in order. Many requests
would then require the generation of commands to be
sent to the hardware. This client-server model was
named indirect rendering because of the indirect way
in which clients interacted with the graphics hardware. 

Direct rendering is a newer method often employed
in the design of high-end graphics systems.4,5 In this
scheme, the client OpenGL library is responsible for all
or most 3-D rendering. Instead of sending commands
to the X server, the client itself processes the com-
mands. The client also generates hardware command
buffers and often communicates directly with the
graphics hardware. In this rendering scheme, the X
server’s role is greatly diminished for 3-D OpenGL
requests but remains the same for 2-D Xlib requests. 

The designers chose to support direct rendering for
the PowerStorm 4DT adapter. Direct rendering offers
considerably better performance than indirect render-
ing. Note, however, direct rendering does not pre-
clude indirect rendering. All devices that support
direct rendering under the X Window System also
support indirect rendering. 

In the following subsections, we discuss the advan-
tages and disadvantages of direct and indirect render-
ing. We also explain the impetus for making the
PowerStorm 4DT adapter the first graphics device
from DIGITAL capable of direct rendering. 

Indirect Rendering One advantage of indirect ren-
dering that should never be underestimated is its proven
track record. This technology is widely accepted and
understood. It offers network transparency, which
means a client and server need not reside on the same
machine. A client can redirect its graphics to any
machine running an X server as long as the two
machines are connected on a TCP/IP network. This
model worked well until faster CPUs and graphics
devices were developed. The protocol encode, copy,
and decode overhead associated with sending requests
to the server became a bottleneck. 

The increased use of display lists provided an inter-
mediate solution to this problem. Display lists are a
group of OpenGL commands that can be sent to the X
server once and executed multiple times by referenc-
ing the display list ID instead of sending all the data
each time. Display lists dramatically reduced commu-
nication overhead and returned graphics to the point
at which communication to the X server was no longer
the bottleneck. 

Unfortunately, display lists had significant disadvan-
tages. Once defined, they could not be modified. To
achieve performance using indirect rendering, almost
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all OpenGL commands had to be collected into dis-
play lists. This caused resource problems because 
display lists could be quite large and had to be stored
in the X server until explicitly deleted by the client.
Probably the greatest disadvantage was that display
lists were generally awkward for application programs
to use. Application programmers prefer the more
straightforward method of immediate-mode pro-
gramming by which commands are called individually.
For these reasons, indirect rendering proved to be
insufficient, even with the advent of display lists. 

Direct Rendering The PowerStorm 4DT project
team was committed to designing a product with lead-
ership performance for both the display-list-mode and
immediate-mode rendering. The designers realized
early that they would have to adopt direct rendering to
address the performance problems with immediate-
mode indirect rendering. 

As mentioned earlier, the philosophy behind classi-
cal direct rendering is that each client handles all
OpenGL processing, creates a buffer of hardware
commands for the device, and then sends the com-
mands to the device without any X server interaction.
This model has several drawbacks. First, access to the
graphics hardware is difficult to synchronize between
clients and the X server. Second, windows and their
properties such as position and size have to be main-
tained by the clients, which also requires a complex
synchronization design. SGI used this model for its
IMPACT series of graphics devices. 

The PowerStorm 4DT designers took a more con-
servative approach, based largely on the same model.
One fundamental difference is that each client gener-
ates hardware command buffers in shared memory.
The client then sends requests to the X server telling it
where to locate the hardware commands. The X server
sets up the hardware to deal with window position and
size and then initiates a direct memory access (DMA) of
the hardware command buffer to the graphics device.
Essentially, the X server becomes an arbitrator of hard-
ware buffers. This approach worked quite well, because
the X server was the logical place for synchronization to
occur and it already maintained window properties. We
were able to have all the performance benefits of classi-
cal direct rendering without the pitfalls. 

One implication of direct rendering is that the client
and the server have to be on the same physical machine.
When first evaluating direct rendering, designers were
curious to determine how often our customers used
this configuration; that is, did most users perform their
work and display their graphics on the same computer?
Our surveys showed that more than 95 percent of
users did display their graphics locally. The remaining
5 percent rarely cared about performance. Today, this
may seem obvious; two years ago, it could not be
assumed. 

Direct rendering offered a huge performance
improvement to nearly all our customers. The perfor-
mance gains were two to four times the performance
of indirect rendering. 

Direct-rendering 2-D Most graphics device imple-
mentations use direct rendering only for OpenGL,
because indirect rendering of immediate-mode
OpenGL is protocol rich. As mentioned previously,
the transferal of this protocol to the X server can be
quite expensive. One interesting aspect of our design
is its support for direct rendering of 2-D Xlib calls. 

Other graphics vendors consider 2-D performance
important only for 2-D benchmarks. These bench-
marks, which largely stress the graphics hardware’s
ability to draw 2-D primitives quickly, can generate a
lot of work for the hardware with relatively few
requests. Unlike 3-D, these requests do not need
much geometry processing before they can be sent to
the hardware. This means that very little protocol is
needed to saturate the hardware. As long as the proto-
col generation does not produce a bottleneck, indirect
rendering performs as well as direct rendering. In
addition, given that OpenGL benchmarks like CDRS
have almost no 2-D component, it seems reasonable
to conclude that indirect-rendered 2-D should suffice. 

Benchmarks often are not sufficiently representative
of real applications, especially when they isolate 2-D
and 3-D operations. CAD/CAM applications typically
have a substantial 2-D GUI, which interacts closely
with the 3-D components of the application. A bench-
mark that exercises both 2-D and 3-D by emulating a
user session on an application will provide results that
more accurately reflect the performance witnessed by
an end user. These benchmarks simply measure how
long it takes to complete a session, so both 3-D and 
2-D performance impact the overall score. 

Our research showed that with a highly optimized
OpenGL implementation, in many cases it was no
longer the 3-D components that slowed down a
benchmark, but the 2-D components. Further exam-
ination revealed that it was the same protocol bottle-
neck evident with indirect-rendered OpenGL.
Applications were generating relatively small drawing
operations with many drawing attribute changes
intermixed, such as draw line, change color, draw
line, change color, and so forth. This type of request
stream tends to generate tremendous amounts of
protocol, unlike 2-D benchmarks that rarely change
drawing attributes. 

Accordingly, 2-D direct rendering presented itself as
the logical solution. With the direct-rendering infra-
structure and design already in place, developers sim-
ply needed to extend it for 2-D/Xlib. This required
the development of two additional libraries: the
Vectored X library and the Direct X library (unrelated
to Microsoft’s DirectX API). 
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Host CPU Geometry and Lighting Traditionally,
DIGITAL has chosen the host CPU to perform the
geometry and lighting calculations. The PowerStorm
project designers chose this approach because of the
Alpha microprocessor’s exceptional floating-point
speed, and because almost all 3-D calculations involve
floating-point values. At the time this project was con-
ceived, the only general-purpose, widely available
processor capable of feeding more than 1 million
transformed and lit vertices per second to the hard-
ware was the Alpha CPU. An additional benefit of 
having the Alpha CPU do the work was an overall cost
reduction of the graphics device. Custom ASICs are
expensive to develop and manufacture. 

Another important and related advantage is that our
software becomes proportionally faster as clock speeds
rise on available Alpha microprocessors. This results 
in a near linear performance increase without any 
additional engineering cost. For example, using the
same software, a 500-megahertz (MHz) Alpha micro-
processor is able to produce 25 percent more vertices
per second than a 400-MHz Alpha microprocessor.
Because of this, developers can write optimized Alpha
code once and reuse it for successive generations of
Alpha CPUs, reaping performance improvements with
virtually no further invested effort. 

It is obvious that rendering can proceed no faster
than vertices can be generated. If the OpenGL library
can transform and light only 750,000 vertices per sec-
ond, and the graphics device can rasterize 1 million,
the effective rendering rate will be 750,000. In this
example, the OpenGL geometry and lighting software
stages are the bottleneck. However, if the numbers
were reversed, and the hardware could only rasterize
750,000 vertices while the OpenGL software provided
1 million, the rasterization hardware would become
the bottleneck. 

Thus far, we have discussed two potential bottle-
necks: the OpenGL implementation itself and the ras-
terization hardware. The third and potentially most
damaging bottleneck may be the client’s ability to feed
vertices to the OpenGL library. It should be clear that
this is the top level of vertex processing. The OpenGL
library can render no faster than the rate at which the
client application feeds it vertices. Consequently, the
rasterizer can render primitives no faster than the
OpenGL library can produce them. Thus, a bottleneck
in generating vertices for the OpenGL library will slow
the entire pipeline. Ideally, we would like each level to
be able to produce at least as many vertices as the
lower levels can consume. 

Clearly, the performance of the application, in terms
of handing vertices to the OpenGL library, is a func-
tion of CPU speed. This is only an issue for applica-
tions that have large computation overhead before
rendering. Currently, almost all graphics benchmarks
have little or no computation overhead in getting ver-

The Vectored X library replaced the preexisting Xlib.
It allows devices that support direct rendering to vector,
or redirect, Xlib function calls to direct-rendering rou-
tines instead of generating the X protocol and sending it
to the X server. If a graphics device does not support
direct rendering, it defaults to the generic protocol-
generating routines. It is important to understand that
this is a device-independent library responsible only for
vectoring Xlib calls to the appropriate library. 

The Direct X library, on the other hand, is a device-
dependent library. It contains all the vectored functions
that the Vectored X library calls when the device sup-
ports direct rendering. This library operates in much
the same way as the direct-rendering OpenGL library.
It processes the requests and places graphics hardware
commands in a shared memory buffer. The X server
later sends the buffer to the graphics device by DMA. 

The entire functionality of the X library is not imple-
mented through direct rendering for several reasons. In
many cases, a shared resource resides in the server (e.g.,
the X server performs all pixmap rendering). In other
cases, the hardware is not directly addressable by the
client (e.g., the X server handles all frame buffer reads).
Often the client does not have access to all window
information that the server maintains (e.g., the X server
handles all window-to-window copies). Fortunately,
these operations are either not frequently used, not
expected to be fast, or easily saturate the hardware. 

Further details of the Vectored X library and Direct
X library are beyond the scope of this paper. The con-
cept of direct-rendered 2-D, however, is sound. It has
helped DIGITAL outperform other vendors on many
application benchmarks that were largely focused on
OpenGL but had significant 2-D components. Our 
2-D direct-rendering technology has also enhanced 
2-D performance and response time for the many
thousands of exclusively 2-D applications for the 
X Window System. 

Geometry and Lighting 
The geometry and lighting phase can be performed by
the host CPU or by a specialized, high-speed ASIC,
which is typically located on the graphics device.
Regardless of where these calculations take place, the
general idea is that the user’s vertices are transformed
and lit, then fed to the rasterizer. Since the rasterizer is
on the graphics device, choosing the host to do the
geometry and lighting implies that the transformed
and lit vertices are then sent across the bus to the ras-
terizer. The use of a specialized ASIC implies that the
user’s vertices are sent across the bus, transformed and
lit by the custom ASIC, and then fed directly to the
rasterizer. The information transferred across the bus
is obviously different, but in terms of amount of data
per vertex, it is approximately the same. Therefore,
bus bandwidth does not become a deciding factor for
either design. 
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tices to the OpenGL library. Most attributes are pre-
computed, since they are trying to measure only the
graphics performance and throughput. For the most
part, this holds true for the traditional CAD/CAM
packages. However, some emerging scientific visual-
ization applications as well as some high-end CAD
applications require significant compute cycles to gen-
erate the vertices sent to the OpenGL library. For
these applications, only the DIGITAL Alpha CPU-
based workstations can produce the vertices fast
enough for interactive rates. 

There are some potential disadvantages to this
design. Namely, the CPU is responsible for both the
application’s and the graphics library’s computations. If
the application and the OpenGL implementation must
contend for compute cycles, overall performance will
suffer. Analysis of applications revealed that typical 3-D
and 2-D graphics applications do internal calculations
followed by rendering. Only under rare circumstances
do the two processes mix with a substantial ratio. If the
applications should start mixing their own processing
needs with those of the OpenGL library, the notion of
host-based geometry would need to be revisited. 

Another potential disadvantage is the rate at which
Alpha CPU performance increases versus the rate at
which the rasterizer chip’s performance increases. The
emerging generation of graphics devices is capable of
rasterizing more than 4 million triangles per second. It
is unknown whether future generations of the Alpha
CPU will be able to feed the faster graphics hardware. 

ASIC-based Geometry and Lighting Performing geom-
etry and lighting calculations with a custom ASIC on the
graphics device is often referred to as OpenGL in hard-
ware because most of the OpenGL pipeline resides in the
ASIC. The OpenGL library is limited to handing the API
calls to the hardware. SGI has adopted the ASIC-based
approach for many generations of workstations and
graphics devices. In this section, we discuss why this
method works for them and its potential shortcomings. 

SGI workstations use either the R4400 or the R10000
CPU developed by MIPS Technologies. Although these
CPUs have good integer performance, their floating-
point performance cannot generate the number of ver-
tices that the Alpha CPU can. As a consequence, SGI has
to use the custom-graphics ASIC approach. One advan-
tage to the custom ASIC is the decoupling of graphics
from the CPU. Since each can operate asynchronously,
the application has full use of the CPU. 

Typically, custom geometry ASICs, also known 
as geometry engines, perform better than a general-
purpose CPU for several reasons. First, the custom
ASIC must perform only a well-understood and lim-
ited set of calculations. This allows the ASIC designers
to optimize their chip for these specific calculations,
releasing them from the burden and complexity of
general-purpose CPU design. 

Second, the graphics engine and the rasterizer can
be tightly coupled; in fact, they can be located on the
same chip. This allows for better pipelining and
reduced communication latencies between the two
components. Even if the geometry engine and raster-
izer are located on different chips, which is not at all
uncommon, a much stronger coupling exists between
the geometry engine and the rasterizer than does
between the host CPU and rasterizer. 

Third, geometry engines can yield high perfor-
mance when executing certain display lists. The use of
a display list allows an object to be quickly re-rendered
from a different view by changing the orientation of
the viewer and reexecuting the stored geometry. If the
display list can fit within the geometry engine’s cache,
it can be executed locally without having to resend the
display list across the bus for each execution. This
helps alleviate the transportation overhead in getting
the display list data over the bus to the graphics device.
It is unclear how often this really happens since rasteri-
zation is typically the bottleneck. If the display list is
filled with many small area primitives, however, its use
can result in noticeable performance gains. Geometry
engines often have a limited amount of cache. If an
application’s display list exceeds the amount of cache
memory, performance degrades significantly, often to
below the performance attainable without a geometry
accelerator. Our research shows that display list sizes
used by applications increase every year; therefore,
cache size must increase at the same rate to maintain
display list performance advantages. 

The primary disadvantage of using custom ASICs to
perform the geometry and lighting calculations is the
expense associated with their design and manufacture.
In addition, a certain risk is involved with their devel-
opment: hardware bugs can seriously impact a prod-
uct’s viability. Fixing the bugs causes the schedule to
slip and the cost to rise. Hardware bugs discovered by
customers can be devastating. With host-based geom-
etry, a software fix in the OpenGL library can easily be
incorporated and distributed to customers. 

A sometimes unrecognized disadvantage of dedi-
cated geometry engines is that they are bound to fixed
clock rates, with little room for scalability. Although
this is true of most CPU designs, CPU vendors can jus-
tify the engineering effort required to move to a faster
technology, because of competitive pressures and the
larger volume of host CPU chips. 

Rasterization 
During the rasterization phase, primitives are shaded,
blended, textured, and Z-buffered. In the early years
of raster-based computer graphics, rasterization was
done using software. As computer graphics became
more prevalent, graphics performance became an
issue. Because rasterization is highly computational
and requires many accesses to frame buffer memory, 
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it quickly became the performance bottleneck.
Specialized hardware was needed to accelerate the 
rasterization part of graphics. Fortunately, hardware
acceleration of rasterization is well understood and is
now the de facto standard. Today, nearly every graph-
ics device has rasterization hardware. Even low-priced
commodity products have advanced raster capabilities
such as texture mapping and antialiasing. 

In the next section, we relate our strategy for
obtaining optimal graphics software performance
from an Alpha processor-based system. 

Performance Strategy 

The goals of the PowerStorm 4DT program were
largely oriented toward performance. Our strategy
consisted of having a generic code path and then tun-
ing performance where necessary using Alpha assem-
bly and integrated C code. 

Performance Architecture 
The designers optimized the software performance 
of the PowerStorm 4DT series within the framework
of a flexible performance architecture. This architec-
ture provided complete functionality throughout the
performance-tuning process, as well as the flexibility
to enhance the performance of selected, performance-
sensitive code paths. 

In this context, code paths refer to the vertex-
handling routines that conduct each vertex through
the geometry, lighting, and output stages. Whereas
most OpenGL API calls simply modify state condi-
tions, these vertex routines perform the majority of
computation. This makes them the most likely choices
for optimization. 

The Generic Path A solid, all-purpose code base
written in C and named the generic path offers full
coverage of all OpenGL code paths. The generic path
incurs a significant performance penalty because its
universal capabilities require that it test for and handle
every possible combination of state conditions. In fact,
under certain conditions, the generic path is incapable
of driving the hardware at greater than 33 percent of
its maximum rendering rate. The generic path assumes
responsibility for the rare circumstances that are not
deemed performance-sensitive and thus not worthy 
of optimization. It also acts as a safety net when high-
performance paths realize mid-stride that they are not
equipped to handle new, unanticipated conditions. 

Multicompiled Speed of Light (SOL) Paths H i g h -
performance SOL paths provide greatly increased per-
formance where such performance is necessary. Under
prescribed conditions, SOL paths replace the generic
path, yielding equivalent functionality with perfor-
mance many times that of the generic path. SOL paths

were written for the combinations of state conditions
exercised most frequently by the target applications
and benchmarks. 

The developers responsible for performance tuning
designed two classes of SOL paths. First, they gener-
ated a large number of SOL paths by compiling a C
code template multiple times. Whereas the generic
path is composed of several routines, each correspond-
ing to a single stage of the pipeline, a multicompiled
SOL path integrates these stages into a monolithic
routine. Each compilation turns on and off a different
subset of state conditions, resulting in integrated paths
for every combination of the available conditions. This
multicompilation of integrated SOL paths yields the
following benefits: 

■ The C compiler is allowed a broader overview of
the code and can more wisely schedule instructions.
In contrast, the generic path is composed of several
individual stages. These relatively short routines do
not provide the C compiler with enough space or
enough scope to make informed and effective,
instruction-ordering decisions. Multicompiling the
various stages into a series of monolithic, integrated
routines relieves each of these problems. 

■ The multicompilation assumes a fixed set of condi-
tions for each generated path. This eliminates the
need for run-time testing of these conditions dur-
ing each execution of the path. Instead, such test-
ing is necessary only when state conditions change.
Validation, as this testing is called, determines
which new path to employ, based on the new state
conditions. With the great number and complexity
of state conditions influencing this decision, valida-
tion can be an expensive process. Performing vali-
dation only in response to state changes, rather
than for every vertex, results in significant perfor-
mance gains. 

■ The SOL path coverage at least doubles every time
that support for a new state condition is added to
the template. Each new condition increases the
number of combinations of conditions being multi-
compiled into SOL paths by a factor of two or
more. An adverse side effect of this strategy is that
the compile time and resulting library size will
increase at the same rate as the SOL path coverage. 

Assembly Language SOL Paths Hand-coded Alpha
assembly language paths constitute the other class of
high-performance SOL paths. These paths, designed
specifically for extremely performance-sensitive condi-
tions, require much more time and attention to pro-
duce. Taking advantage of the many features of the
Alpha microprocessor transforms assembly language
coding from a science into an art form.6 The Alpha
assembly coders kept the following issues foremost in
their minds: 
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Increasing SOL path coverage was the more straight-
forward but the more time-consuming approach. If an
SOL path did not exist for a specific condition, a new
one would have to be written. Adding a new option to
the multicompilation template required a significant
effort in some cases. Implementing a new assembly
language SOL path always required significant effort. 

Improving the performance of an existing SOL
path required an iterative process of profiling and
recoding. We employed the DIGITAL Continuous
Profiling Infrastructure (DCPI) tools to analyze and
profile the performance of our code.7 DCPI indicated
where bottlenecks occurred and whether they were
due to data cache misses, instruction slotting, or
branch misprediction. This information provided the
basis for obtaining the maximum performance from
every line of code. 

Development of 3-D Graphics on Windows NT 

At the start of the PowerStorm 4DT project, the
Windows NT operating system was an emerging tech-
nology. The DIGITAL UNIX platform held the larger
workstation market share, while Windows NT
accounted for only a small percentage of customers.
For that reason, designers targeted performance for
applications running on DIGITAL UNIX and devel-
oped 3-D code entirely under that operating system. 

Nevertheless, we recognized the potential gains of
developing 3-D graphics for the Windows NT system.
One of the company’s goals was to be among the first
vendors to provide accelerated OpenGL hardware and
software for Windows NT. 

With a concerted effort and a few compromises, the
team developed the PowerStorm 4DT into the fastest
OpenGL device for Windows NT, a title that was held
for more than 18 months. To achieve this capability,
the designers made the following key decisions: 

■ To write code that was portable between the 
DIGITAL UNIX and Windows NT systems. 

■ To dedicate two people to the integration of the
DIGITAL UNIX-based code into the Windows NT
environment. Most OpenGL code was operating-
system independent, but supporting infrastructure
needed to be developed for Windows NT. 

■ To use Intergraph’s preexisting 2-D code and to
avoid writing our own. Intergraph provided us with
a stable 2-D code base for Windows NT. This code
base had room for optimization, but further opti-
mization of the 3-D code took precedence. 

■ To ship the graphics drivers for DIGITAL UNIX
first, and the graphics drivers for Windows NT
three months later. In this way, we allowed the
DIGITAL UNIX development phase to advance
unimpeded by the efforts to port Windows NT. 

■ The 21164 and subsequent Alpha microprocessors
are capable of quad-issuing instructions, which
means that as many as four instructions can be initi-
ated during each cycle. The combination of instruc-
tions that may be issued, however, depends on the
computational pipelines and other resources
employed by each instruction. Coders must care-
fully order instructions to gain the maximum bene-
fit from the multiple-issue capability. 

■ As a consequence of the above restrictions, inte-
ger and floating-point operations must be sched-
uled in parallel. With few exceptions, only two
floating-point and two integer instructions can
be issued per cycle. Efficiency in this case requires
not only local instruction-order tweaking but also
global changes at the algorithmic level. Integer
and floating-point operations must be balanced
throughout each assembly routine. If a particular
computation can be easily performed using either
integer math or floating-point math, the choice is
made according to which pipeline has more free
cycles to use. 

■ Register supply is another factor that affects the
design of an assembly language routine. Although
the Alpha microprocessor has a generous number
of registers (32 integer and 32 floating-point), they
are still considered a scarce resource. The coder
must organize the routine such that some calcula-
tions complete early, freeing registers for reuse by
subsequent calculations. 

■ The crucial performance aspect of assembly coding
is transporting the data where and when it is
needed. The latency of loading data from main
memory or even from cache into a register can eas-
ily become any routine’s bottleneck. To minimize
such latencies, load instructions must be issued well
in advance of a register’s use; otherwise, the
pipeline will stall until the data is available. In an
ideal architecture with an infinite quantity of regis-
ters, all loads could be performed well in advance.
Unfortunately, due to the scarce amount of free
registers, the number of cycles available between
loading a register and its use is frequently limited. 

Each of these assembly language programming con-
siderations requires intense attention but yields
unmatched performance. 

Performance Tuning 
After reviewing benchmark comparisons and recom-
mendations from independent software vendors, we
determined which areas required performance improve-
ment. We approached performance tuning from two
directions: either by increasing SOL path coverage or
improving the existing SOL code. 
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Results and Conclusion 

In August of 1996, the PowerStorm 4D60T graphics
adapter was best in its price category with a CDRS per-
formance number of 49.01 using a 500-MHz Alpha
processor. It yielded a new price/performance record
of $321 per frame per second. At the same time, SGI
attained a CDRS number of only 48.63 on a system
costing nearly three times as much. 

Figure 3 shows the relative performance of the
PowerStorm 4D60T for four of the major Viewperf
benchmarks. The viewsets are based on the following
applications: CDRS, a computer-aided industrial design
package from PTC; Data Explorer (DX), a scientific
visualization package from IBM; DesignReview (DRV),
a model review package from Intergraph; Advanced
Visualizer, a 3-D animation system from Alias/
Wavefront (AWadvs). 

The PowerStorm 4D60T mid-range graphics adapter
easily outperformed the Indigo2 High IMPACT system
from SGI by a wide margin and even surpassed SGI’s
more expensive graphics card, the Indigo2 Maxi-
mum IMPACT, by a factor of more than 2:1 in price/
performance on these benchmarks. Figure 4 shows
that the PowerStorm 4D60T was the performance
leader in three of the four benchmarks. SGI has yet to
produce a graphics product in this price range that
outperforms the PowerStorm 4D60T. 
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