
DTF (DIGITAL Trace Facility)
User Guide
Order Number: AA-R85DA-TE

Revision/Update Information: This is a new manual

Software Version: DTF V2.5

First Printing, August 1997

Possession, use, or copying of the software described in this publication is authorized only pursuant to a
valid written license from Digital or an authorized sublicensor.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights,
nor do the descriptions contained in this publication imply the granting of licenses to make,
use, or sell equipment or software in accordance with the description.

© Digital Equipment Corporation 1996, 1997

All rights reserved.

The following are trademarks of Digital Equipment Corporation: Bookreader, clearVISN, DEC,
DECnet, DECNIS, DECrouter, Digital, OpenVMS, RouteAbout, ULTRIX, VAX, VMS, and the
DIGITAL Logo.

AppleTalk is a registered trademaek of Apple Computer, Inc.

IBM is a registered trademark of International Business Machines Corporation.

Liause is a registered trademark of William R. Della Croce, Jr.

MS-DOS is a registered trademark of Microsoft Corporation.

OSI is a registered trademark of CA Management, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

Windows NT is a trademark, and Windows, MS-DOS, and Windows 95 are registered trademarks of
Microsoft Corporation.

All other trademarks and registered trademarks are the property of their respective holders.

Preface

Overview . v
Audience. v
Returning Comments About this Documentation . v

1 Introduction

1.1 Abstract .1-1
1.2 What Is DTF?. .1-1
1.3 Tracepoints .1-2

1.3.1 Example Tracepoints .1-3
1.3.2 Multiple Tracepoints. .1-3

1.4 Events. .1-3
1.4.1 Command-Line Interface .1-4
1.4.2 Example Events .1-4

1.5 Names. .1-4
1.6 How Does It Work ? .1-5

1.6.1 Session Parameters. .1-6
1.6.2 Minimizing Trace Data Loss .1-6

2 Installation Instructions and Platform Differences

2.1 OpenVMS and OpenVMS Alpha. .2-1
2.1.1 Command-Line Interface .2-3
2.1.2 Restriction: DECnet Addresses .2-5

2.2 Digital UNIX, ULTRIX and Linux .2-5
2.3 Windows 95/NT .2-7

2.3.1 Restrictions .2-7

3 Common Command Line and Configuration

3.1 Command-Line Interface .3-1
3.1.1 Example Command Lines. .3-6

3.2 Supplying Node Names and Addresses .3-7
3.3 Output Customization. .3-8

3.3.1 Output Coloring .3-8
3.3.2 Separator Character .3-10
3.3.3 Brief Header Format. .3-11

3.4 What Does the Output Mean? .3-11
3.4.1 Brief Mode .3-11
 iii

3.4.2 Verbose Mode. 3-12
3.5 Time Formats . 3-15

A Compatibility and Regular Expressions

A.1 Compatibility with CTF. A-1
A.2 Regular Expression Syntax . A-1

A.2.1 Ambiguity. A-2
iv

Preface

Overview

This manual describes how to install and use the DIGITAL Trace Facility
(DTF) software. This is a host-based facility that allows you to trace
packets within the protocol layers of a DTF-capable router.

Audience

This manual is intended for network managers.

The manual assumes that you understand and have some experience of
multiprotocol networks.

Returning Comments About this Documentation

We would like to know what you think about this document and associated
online help.

If you have any comments, or suggestions, please return them in any of the
following ways:

• Send an electronic mail message to the Internet address
books@reo.mts.dec.com

• Send an electronic mail message to the X.400 address S=IDC BOOKS;
O=digital; OU1=reo; P=digital; A=CWMail; C=gb

• Send a fax to (+44)134 206018
 v

Chapter 1

Introduction

 1.1 Abstract

DTF is a facility which traces packets as they traverse the protocol layers
within a router. DTF is a superset of Digital's CTF (Common Trace
Facility), which supports multiple platforms and TCP/IP networks.

 1.2 What Is DTF?

DTF is a host-based facility which allows packets to be traced as they
traverse the protocol layers within a DTF-capable router. The packets can
be analysed "live" as they are processed by each router software module, or
they can be recorded in a data file and analysed later. DTF can be used in
either DECnet or TCP/IP networks, and supports the following host
platforms:

• Digital UNIX Alpha (formerly called DEC OSF/1)

• Alpha Linux V1.2.8

• Intel Linux V1.2.8

• OpenVMS VAX V6.0

• OpenVMS Alpha V6.1

• Windows 95, all releases

• Windows NT, V3.5-1 and above

(The Windows version of DTF (WinDTF) uses a graphical user interface,
rather than a command-line interface.)

DTF supports the following routers:

• DEC RouteAbout family and DECSwitch 900EF (software version 2.0
or later required, TCP access only).

• DECNIS 500/600 (software version 3.1 or later required for TCP
 Introduction 1-1

access)

• DEC WANrouter 90

There is a bug in versions 1.3.2 and earlier of the WANrouter software,
such that only a capture size of 188 and a buffer size of 512 are guaranteed
to work (other sizes may or may not work). Since by default DTF uses
larger sizes than these, you will need to set the capture and buffer size
explicitly when tracing a WANrouter 90.

 1.3 Tracepoints

The points within a router which can be traced are known as Tracepoints.
Each protocol module within the router may have 0 or more tracepoints, for
example, the PPP data link module may have a tracepoint for each
interface. A tracepoint is either active or inactive. Whenever a packet
passes through an active tracepoint it is traced. The tracepoints specified
by a user are activated when DTF connects to the router, and de-activated
when DTF disconnects from the router. Tracepoints are named according
to a class/instance scheme.

The general form of a tracepoint name is:

class [instance] [[sub-class instance]...]

where:

• class is the node class. Typically, this is the name of the protocol
module, for example, ROUTING, PPP, MODEM_CONNECT.

• sub-class is a specific subclass of the node class. Typically this might
be a LINE, CIRCUIT or INTERFACE.

• instance is the entity instance name that uniquely identifies the
particular tracepoint from others in the same sub-class.

The node class may have a null instance name but each sub-class must be
followed by a sub-class instance name. For example, to trace the packets
passing through the ROUTING module on the interface named interface-
0, the tracepoint would be named:

class = ROUTING

sub-class = CIRCUIT

instance = Interface-0

That is,
1-2 Introduction

ROUTING CIRCUIT Interface-0

The instance name can contain the wildcard character *, which will cause
any tracepoint with a matching instance name to be traced. All known
tracepoints for the sub-class can be traced by specifying a single * as the
instance name. The class and sub-class names can be abbreviated; DTF
will take the first matching valid name it finds. The tracepoints are defined
in the DTF_TRACEPOINTS.DAT file. Note that this filename may be
different on other platforms.

 1.3.1 Example Tracepoints
The following are some example tracepoints. The wildcard forms are shown
but you could substitute a specific tracepoint name for the * character.

• ROUTING CIRCUIT *.

Trace all the routing circuits on the router.

• PPP LINK *.

Trace all the PPP links on the router.

• ETHERNET INTERFACE Eth/*

Trace all the Ethernet interfaces whose names match the wildcard
string Eth/* (that is, Eth/0, Eth/1, etc.).

• NSP PORT *.

Trace all the NSP ports on the router. Since NSP ports are created
dynamically when an NSP connection is created these tracepoints may
appear after the DTF trace session has started and may be deleted
during the session.

 1.3.2 Multiple Tracepoints
With version 2.1 of DTF, up to 4 tracepoints can be specified for the same
trace session. DTF instructs the router to activate each tracepoint at the
start of the trace session. The output from all tracepoints is displayed in
the same order in which the data was traced.

 1.4 Events

Each tracepoint defines a number of events (up to 64) and each packet
traced is marked with one of these events by the router. When DTF initially
connects to the router it can optionally instruct the router to filter the
packets passing through the specified tracepoint and only trace the ones
which match the specified events list. Typically, a tracepoint would define
Introduction 1-3

an event for a transmitted packet and another for a received packet.
However, it may also define events for particular packet types (e.g. the
"ROUTING CIRCUIT *" tracepoint has a unique event for OSPF, ARP, OSI
and RIP packets). The events for each tracepoint are defined in the
DTF_EVENTS.xxx files (where xxx is the id of the router, by default an id
of 000 is assumed). Each router platform may support a different set of
events for any particular tracepoint. Note that this filename may be
different on other platforms. All the events files (including the router
identifier to name mapping file DTF_EVENTS.DAT) must be in the same
directory.

 1.4.1 Command-Line Interface
By default, events are passed (that is, when a particular event is specified
on the command line, it is traced; if it is not specified, it is not traced).
However, an event can be blocked by prefixing its name with the “!”
character. The special event name “*” is used to mean “all events”. If a
filter list (event list) is not specified, then DTF acts as if the “*” event had
been specified (that is, all events are traced). If an event list is supplied,
then DTF first initializes the event list to block all events before processing
the list. Therefore in order to specify any blocking events, all events must
first be turned back on.

When multiple tracepoints are used, the user interface allows a separate
event list to be specified for each of the tracepoints.

 1.4.2 Example Events
The following are example events:

• “ospfRx” - Trace only received OSPF packets

• “* !ospfRx !ospfTx” - Trace everything except OSPF packets

• “*” - Trace everything (this is equivalent to not supplying an events list)

• “!*” - Trace nothing (this is equivalent to an empty events list, not very
useful)

 1.5 Names

DTF stores its value-to-name translation tables in the DTF_NAMES.DAT
file. These tables provide name translations for such things as MAC
addresses, Ethernet OUIs, UDP/TCP ports, etc. Users can supplement
these name tables by providing a DTF_LOCAL_NAMES.DAT file (which
must reside in the same directory as the DTF_NAMES.DAT file) which
contains additions or replacements for the tables. The format for the names
1-4 Introduction

file is described in the comments in the file itself. The following is an
example of a local names file which defines the node names of three locally
used MAC addresses and a definition for the UDP and TCP ports used by
a local application.

#

dtf_local_names.dat

#

[UnicastMacNames]! MAC address to Name

08-00-2B-B6-D8-E8 “JohnsNode”

08-00-2B-B3-6C-5A “tonysNode”

[UdpPorts ! UDP ports to Names]

5999 “My Application”

[TcpPorts] ! TCP ports to Names

5999 “My Application”

 1.6 How Does It Work ?

DTF uses a transport protocol (TCP or DECnet) to set up a reliable data
connection between the host (running DTF) and the router. When the
connection is made, DTF sends the parameters to use for the trace session
to the router together with a list of tracepoints which are to be activated.

The router allocates the resources needed for the session (based on the
parameters supplied by the host) and activates the tracepoints if they are
available. Any tracepoints which are not available immediately will be
activated later when they become available (assuming the trace session is
still alive). Once this has been done, the trace data passing through an
activated tracepoint is copied into a trace buffer (if one is available) and if
the trace buffer is full it is queued for transmission to the host. When a
transmit opportunity arises, the contents of the trace buffer are sent to the
host where it is decoded and displayed (and possibly recorded), and the
trace buffer is again available to be used for tracing.
Introduction 1-5

 1.6.1 Session Parameters
The following parameters are given to the router by the host at the start of
the session. These parameters determine how much router resource is
allocated to the trace session and how much of the data passing through the
tracepoints is captured.

BUFFER COUNT specifies the number of trace buffers to be used to capture
trace data during this session. The more trace buffers there are
available, the less trace data will be lost.

BUFFER SIZE specifies the size (in bytes) of the trace buffers. This value
governs the maximum amount of a data packet that can be traced,
since data packets are not generally split across trace buffers.

CAPTURE SIZE specifies the number of bytes in the data packet that
should be copied into the trace buffer. This determines how much of
each data packet is traced.

 1.6.2 Minimizing Trace Data Loss
Trace data loss occurs when there are no more trace buffers available to
trace the next data packet, and so the packet is not traced. The following
factors can reduce the amount of trace data lost. They are listed in order of
effectiveness (that is, the ones most likely to reduce the data loss are listed
first). Note, however, that for high throughput data it may be impossible
to prevent data loss entirely.

FILTERS. Using filters restricts the amount of data being traced by tracing
only the data packets which match the specified events list.

BUFFER COUNT. Increasing this parameter allows more trace data to be
buffered within the router before trace data loss occurs. Note that
allocating more buffers to the trace session will mean less buffers being
available to the rest of the router.

CAPTURE SIZE. Reducing the number of bytes in each packet that are
traced means that more packets can be contained in each trace buffer,
effectively increasing the buffering available.

BUFFER SIZE. Increasing the size of the trace buffers again means more
buffering available to the trace system. Note that this parameter may
not have any effect on routers that use fixed buffer sizes.
1-6 Introduction

RECORD ONLY. Most of the delays introduced at the host end are by
terminal I/O. Therefore, not displaying (and hence not decoding) the
trace data as it arrives can speed up the processing on the host end and
possibly increases the effective throughput of the DTF transport
connection.
Introduction 1-7

Chapter 2

Installation Instructions and Platform
Differences

 2.1 OpenVMS and OpenVMS Alpha

DTF is supplied as a saveset (DTFVMS.A for OpenVMS VAX and
DTFAXP.A for OpenVMS Alpha). This saveset contains the files described
in Table 2-1. The OpenVMS kit supplies a CLD file which provides a
standard DCL-style command line interface to DTF. The common UNIX-
style interface can still be accessed by supplying the /UNIX qualifier
immediately after the DTF command, as follows:

$ DTF/UNIX unix-command-line
 Installation Instructions and Platform Differences 2-1

Table 2-1: OpenVMS File List

Filename Location Description

DTF.EXE SYS$SYSTEM DTF image, activated by the
DCL DTF command. You
may place this file in another
directory, provided that you
define the DTF logical to
point to it.

DTF_VMS_COMMANDS.CLD SYS$SYSTEM DTF CLI definition.

DTF_TRACEPOINTS.DAT SYS$LIBRARY Tracepoints file, containing
the list of supported
tracepoint names. You may
place this file in another
directory.

DTF_EVENTS.DAT SYS$LIBRARY Events file, contains the
mapping between router
identifiers and names. You
may place this file in another
directory provided that you
define the DTF_EVENTS
logical to point to it.

DTF_EVENTS.000 SYS$LIBRARY Events file, contains the list
of supported events for each
tracepoint for the DECNIS
and WANrouter 90 routers
(router identifier 000). You
may place this file in another
directory provided that you
define the
DTF_EVENTS_000 logical
to point to it, otherwise this
file must reside in the same
directory as the
DTF_EVENTS.DAT file.

DTF_EVENTS.001 SYS$LIBRARY Events file for the DEC
RouteAbout family of routers
(see DTF_EVENTS.000 row
for details).
2-2 Installation Instructions and Platform Differences

NOTE

DTF can be installed in a private directory (rather than system wide),
provided that the DTF, DTF_TRACEPOINTS and DTF_EVENTS
logicals are defined to point to the corresponding EXE and DAT files.

 2.1.1 Command-Line Interface
The DCL command-line interface to DTF maps the internal UNIX-style
options to command-line qualifiers and parameters. Table 2-2 describes the
mapping.

The general format for a 'live' trace is:

$ DTF/LIVE [qualifiers] node-name"username
password"::"tracepoint,...”

For an analysis of a pre-recorded data file, it is:

$ DTF/ANALYZE [qualifiers] [data-file]

For pipe mode, it is:

DTF_NAMES.DAT SYS$LIBRARY Names file, contains a list of
name translation tables. You
may place this file in another
directory provided that you
define the DTF_NAMES
logical to point to it,
otherwise this file must
reside in the same directory
as the DTF_EVENTS.DAT
file. Users may add to the
name tables by supplying
their own in a file named
DTF_LOCAL_NAMES.DAT,
which must reside in the
same directory as the
DTF_NAMES.DAT file.

DTF.HTML SYS$HELP DTF Release Notes and
installation instructions in
HTML format.

DTFUG.PS SYS$HELP DTF User Guide.

Filename Location Description
Installation Instructions and Platform Differences 2-3

$ DTF/PIPE/TYPE=packet-type ["hex-string" | /INPUT=input-
file]

Table 2-2: VMS Command Line Syntax

OpenVMS Corresponding UNIX Option

/UNIX Rest of the line is in internal UNIX
format.

/ANALYZE -a

/BACKWARDS -B

/BUFFER -b

/CAPTURE=size -c

/{NO}COLORING -C

/DATA={ASCII|HEX|NONE|<type>} (D=HEX) -Z

/EXCLUDE="regexp" -x

/FILTER="filter-list,..." -f

/FULL -v

/{NO}HEADERS -H

/{NO}HIGHLIGHT -D

/INPUT=input-file -I

/LIVE -l

/MAXIMUM_BUFFERS=number -m

/NARROW _STYLE -N

/OUTPUT=file -o

/PAGE=number (D=0) -w

/PIPE -P

/PROTOCOL=“protocol,...” -p

/RAW -r

/RECORD=file data-file parameter

/RELATIVE_TIME -R

/SEARCH="regexp" -s
2-4 Installation Instructions and Platform Differences

 2.1.2 Restriction: DECnet Addresses
In the OpenVMS version of DTF, translation of DECnet addresses to node
names is not supported.

 2.2 Digital UNIX, ULTRIX and Linux

DTF is supplied as a tar file, DTFULTRIX.TAR, DTFOSF.TAR or
DTFLINUX.TAR, which contains the files described in Table 2-3.

Table 2-3: UNIX File List

/TYPE=packet-type -T

/TRANSLATE -t

/WIDTH=number (D=0) -W

Filename Location Description

dtf /usr/dtf DTF image.

dtf_tracepoints.dat /usr/dtf Tracepoints file, contains the list of supported
tracepoint names. You may place this file in
another directory provided that you define
the DTF_TRACEPOINTS environment
variable to point to it.

dtf_events.dat /usr/dtf Events file, contains the mapping between
router identifiers and names. You may place
this file in another directory provided that you
define the DTF_EVENTS environment
variable to point to it.

dtf_events.000 /usr/dtf Events file, contains the list of supported
events for each tracepoint for the DECNIS
and WANrouter 90 routers (router identifier
000). You may place this file in another
directory provided that you define the
DTF_EVENTS_000 environment variable to
point to it,otherwise this file must reside in the
same directory as the dtf_events.dat file.

dtf_events.001 /usr/dtf Events file for the DEC RouteAbout family of
routers (see the dtf_events.000 row for
details).

OpenVMS Corresponding UNIX Option
Installation Instructions and Platform Differences 2-5

dtf_names.dat /usr/dtf Names file, contains a list of name translation
tables. You may place this file in another
directory provided that you define the
DTF_NAMES environment variable to point
to itt. Otherwise this file must reside in the
same directory as the DTF_EVENTS.DAT
file. Users may add to the name tables by
supplying their own in a file named
dtf_local_names.dat, which must reside in
the same directory as the dtf_names.dat file.

dtf.html /usr/dtf DTF Release Notes and installation
instructions in HTML format.

dtfug.ps /usr/dtf DTF User Guide.

Filename Location Description
2-6 Installation Instructions and Platform Differences

NOTE

DTF can be installed in a private directory (rather than system wide)
provided that the DTF_TRACEPOINTS and DTF_EVENTS
environment variables are defined to point to the corresponding DAT
files.

 2.3 Windows 95/NT

WinDTF is supplied as part of the clearVISN DECNIS Configurator and
clearVISN Router Configurator, which are freely available on the Internet
(start at http://www.networks.digital.com). As the name suggests, it has a
windows interface rather than a command-line interface. Once the
configurator is installed, WinDTF can be started by selecting it from the
‘Tools’ menu on the Browser. On-line help is then available to explain how
to select tracepoints, filters, and so on.

 2.3.1 Restrictions
The following restrictions apply to the Windows 95/NT platform version of
DTF:

• DECnet access is not supported. The DTF connection must be made
using TCP/IP.

• Translation of DECnet addresses to node names is not supported.

• Recording of trace data to a binary file, without simultaneously
analysing it, is not supported.

• Negated events such as ‘!ospfRx’ are not explicitly supported.

• VNSwitch tracepoints are not supported.
Installation Instructions and Platform Differences 2-7

Chapter 3

Common Command Line and Configuration

 3.1 Command-Line Interface

DTF uses a UNIX-style command-line interface internally. For the Digital
UNIX and ULTRIX platforms, this is also the interface which is presented
to the user. For OpenVMS, the user is presented with a DCL command-line
interface. For Windows 95/NT there is no command-line interface; instead
the user is presented with a Windows-style interface. This section
documents the UNIX command-line interface.

DTF performs two main functions:

• Analysis of trace data. This function analyses the data from either the
'live' system or from a previously recorded data file.

• Recording of trace data. This function saves the trace data in a file so
that it can be analysed later.

These functions can be performed simultaneously. The format for the
command line changes depending on whether the source of the trace is a
router or a previously recorded data file. When the source is the router, the
format is:

dtf [options] nodename[/username/
password]:[:]"tracepoint,..." [data-file]

When the source is a data file, the format is:

dtf -a [options] [data-file]

When the source is an input file or a pipe, the format is:

dtf -P -T"packet-type" [options] ["hex-string" | -I"input-
file"]

Table 3-1 shows the command-line parameters. Table 3-2 shows the
command-line options.
 Common Command Line and Configuration 3-1

Table 3-1: UNIX Command-Line Parameters

Parameter Default Description

nodename Node name or address (IP or DECnet dotted format)
of router including username/password access control
and the tracepoint name list.

data-file dtf.dat Name of the file in which to record the trace data. This
parameter is optional when analysing a 'live' system,
so if it is not supplied, then the trace data will not be
recorded. The data file can also be specified in the
DTF_DATA environment variable.
3-2 Common Command Line and Configuration

Table 3-2: UNIX Command-Line Options

Option Parameter Description

-a Analyse data file. The data file name is supplied
as the first parameter.

-b size Buffer size the router is to use for its trace buffers.
The default is 1569.

-c size Capture size the router is to use. This is the
number of bytes in each packet which should be
traced. The buffer size (-b option) will be adjusted
accordingly. The default is 1500.

-f "f1 f2 f3, ..." Filter list. This is a space (or semi-colon)
separated list of the filters to apply to each
tracepoint in the tracepoint list. By default, no
filters are applied and so all packets passing
through the tracepoint are traced. Filter names
may be abbreviated; DTF will take the first
matching filter name it finds in the Events file.

When using multiple tracepoints, this parameter
consists of a comma separated list of filter lists
(one filter list for each tracepoint).

-h Output brief help information.

-l Live tracing. This option causes the trace data to
be analysed and displayed as it is received. This
option and the -a option are mutually exclusive.

-m number Maximum number of trace buffers the router
should allocate. The default is 5.

-o file Output filename. The default is to display the
analysed data to stdout.
Common Command Line and Configuration 3-3

-p “protocol, ...” Specifies the protocol header tp be displayed. By
default, all protocol headers are displayed. When
specified, this switch causes DTF to display only
those packets which contain the specified
protocol header and to suppress all other headers
in the packet.

When using multiple tracepoints, this parameter
consists of a comma separated list of protocol
names (one for each tracepoint).

The following protocols are supported:

802.2, 802.3, AARP, APPLETALK,
APPLICATION, ARP, ASN1, BGP, BOOTP,
BRIDGE, CHDLC, CMIP, DATALINK, DDCMP,
DECNET, ETHERNET, FR, FDDI, HDLC, ICC,
ICMP, IGMP, IP, IPX, LAPB, LAPBE, LAT, LLC2,
MOP, NSP, OSI, OSPF, PIM, PPP, PRAM, PSL,
RIP, SNMP, TCP, TRANSPORT, UDP, X25L3.

-r Raw data mode. The output data is not formatted
when this option is supplied.

-s "regexp" Regular expression match. Only if the output data
matches the regexp is it displayed; otherwise the
trace output is discarded.

-t Translate addresses. Any IP or DECnet
addresses in the output data will be translated to
node names before being displayed.

-v Verbose mode. When supplied, the packet is
analysed fully and a detailed output produced.
When absent, the output is brief and restricted to
a single line for each packet.

-w number Wait mode. Causes the output to pause between
packets (and prompt the user to press Return
before continuing). In brief mode, the parameter
specifies the number of lines to be output before
the prompt is issued; in verbose mode, the
parameter is ignored and the prompt is issued
after every packet. Supplying a value of 0 in brief
mode is equivalent to supplying a value of 22.

-x "regexp" Regular expression no-match. Only if the output
data fails to match the regexp is it displayed;
otherwise the trace output is discarded. This
option and the -s option act in conjunction, so if
both are supplied then the output is only displayed
if the -s regular expression matches AND the -x
regular expression fails.

Option Parameter Description
3-4 Common Command Line and Configuration

-z Unsupported, use -Za instead (see below).

-B The data from the input stream is presented
backwards (i.e. the last byte in the packet is first
and the first byte in the packet is last). (Pipe mode
only.)

-C Suppresses coloring of output. If coloring is
suppressed then some portions of the output
which would otherwise have been coloured will be
bolded. Use this option if your terminal does not
support ANSI colors since that will cause the
headers to be highlighted instead. Colors can be
modified us-ing the DTF_COLORS environment
variable.

-D Suppresses highlighting and coloring of output.

-H Suppresses the DTF headers on output.

-I input-file Source of the hex string data is the input-file. The
data is stored as hex strings in the input-file. (Pipe
mode only.)

-N Output is in narrow form. The default is wide,
which assumes a 132-column output display.

-P Pipe mode. In this mode, the data is presented as
hex strings, either as the first parameter on the
command line or in the input-file (see -I switch).
End of packet is denoted by the end of the file or
a newline. Packets may be continued onto
another line by terminating the current line with a
'\' character.

-R Time is displayed as relative to the last trace
record received. If this switch is not present, time
is displayed as an absolute time as received from
the router. The time on the first packet is always
shown as an absolute time.

Option Parameter Description
Common Command Line and Configuration 3-5

 3.1.1 Example Command Lines
The following are example command lines and their use:

• dtf -l nis100:"routing circuit *"

Trace all Routing circuits on node NIS100 (use TCP as the transport
protocol), analyse the data (in brief mode) as it arrives and display it on
the standard output device.

• dtf -l -f"ospfTx;ospfRx" nis100:"routing circuit *"

As above, but now apply a filter set which excludes all packets except
transmitted and received OSPF packets.

• dtf -l -f"ospftx;ospfrx" nis100/x/y:"routing circuit *"
ospf.dat

As above, but now supply a username and password of x and y and also
record the trace records to a file called ospf.dat.

• dtf -lvw0 -o output.txt 1.100::"ppp link l601-8-0"

Trace all PPP links on node 1.100 (use DECnet as the transport

-T packet-type The type of packet presented in the hex data
string. The type name can be abbreviated; DTF
will take the first matching type it finds (the valid
types are searched alphabetically). The following
types are supported:

ARP, ASN1, BRIDGE , CMIP, CSMA-CD, DDCMP,
FDDI, FDDIcanonical,FR,HDLC, ICMP, IP, IPX,
LAPB, LAPBE, MOP, NSP, OSI, OSPF, PPP, PSL
(Proteon Serial Link) , PhaseIV, RIP, SNMP, TCP,
UDP, X25L3

(Pipe mode only.)

-Z One of:

a

h

0

packet-type

Specifies the output format for undecoded data.
By default, this data is printed as a series of hex
bytes.

a = output bytes as ASCII

h = output bytes as HEX

0 = suppress undecoded data output

packet-type = initiate a second decode using the
string as a packet-type indication (see -T). This
allows undecodable client data to be
automatically parsed, for example, -Zcmip would
allow an NSP session carrying management
traffic to be completely decoded.

Option Parameter Description
3-6 Common Command Line and Configuration

protocol), analyse the data (in verbose mode) as it arrives and write it
to the file output.txt.

• dtf nis100:"ppp link *" ppp.dat

Trace all PPP links on node NIS100 (use TCP as the transport
protocol), and record the data in the file ppp.dat.

• dtf -avtw0 ppp.dat

Analyse the data in the previously recorded ppp.dat file, use verbose
format output, translate addresses to names and pause between every
22 lines of output.

• dtf -a

Analyse the data in the previously recorded dtf.dat file, use brief
format output.

• dtf -a -s"BGP:"

As above, but now filter the output such that only packets containing
the string "BGP:" are displayed.

• dtf -a -s"BGP:" -x"KEEPALIVE"

As above, but now filter the output further to exclude packets which
contain the string KEEPALIVE.

• dtf -P -T"ip" "45C0005400170000"

Pipe mode. The supplied hex string is decoded as an IP packet.

• dtf -P -T"ip" -I"in.txt"

As above, but now the hex strings are contained in the file in.txt.

• dtf -l -f”ospxtx;ospfrx,,iptx,iprx” nis100:”ospf i
*,ether i *,fddi i *”

This example demonstrates the use of multiple tracepoints. Three
tracepoint classes are being traced: all the OSPF interfaces, all the
Ethernet interfaces and all the FDDI interfaces. The ospftx and ospfrx
filters are applied to the OSPF tracepoints, no filters are applied to the
Ethernet tracepoints, and the ipTx and ipRx filters are applied to the
FDDI tracepoints.

 3.2 Supplying Node Names and Addresses

The format of the router node name supplied determines which transport
protocol is used to connect to the router, what the username and password
is, and also the tracepoint to be traced. The general format is:
Common Command Line and Configuration 3-7

node[/username/password]:[:]"tracepoint, ..."

When an address is supplied (DECnet or IP), DTF determines from the
number of dots (.) present whether to use DECnet or TCP. When a node
name is supplied, DTF uses TCP by default if the name is followed by a
single colon character, and DECnet if the name is followed by a double
colon. For example, the following formats will cause the connection to be
made via DECnet:

1.100

nis100::

The following will cause the connection to be made via TCP:

16.36.16.100

nis100.reo.dec.com

nis100:

nis100

The following example shows a complete nodename specifier for tracing the
tracepoint "ROUTING CIRCUIT *" on node nis100 using TCP as the
transport protocol:

nis100:"routing circuit *"

The next example is the same as the one above but this time a username
and password are supplied and the transport used is DECnet.

nis100/me/hushhush::"routing circuit *"

 3.3 Output Customization

Most customization is done by defining environment variables. The
following sections define these variables.

 3.3.1 Output Coloring
On terminals which support ANSI color escape sequences, DTF will color
various fields in the output. The supported colors (and highlighting
options) are listed in Table 3-3.
3-8 Common Command Line and Configuration

Table 3-3: ANSI Color Escape Sequences

The DTF output can be grouped into named fields, and each field can have
a different color associated with it. Table 3-4 describes the output field
names and the default color used for that field.

Color (Option) ANSI Value

Default 0

Bold 1

Underline 4

Flashing 5

Reverse 7

Black 30

Red 31

Green 32

Blue 33

Yellow 34

Purple 35

Cyan 36

White 37
Common Command Line and Configuration 3-9

Table 3-4: Output Field Names and Default Colors

The colors can be modified by defining the DTF_COLORS environment
variable. The variable is defined to be a string of the form:

"field1=foreground-color;background-color;option1;option2,field2=..."

where field is one of the field names described in Table 3-4 and foreground-
color, background-color, option1, option2 are one of the color or option
names, or the numerical ANSI value for the color or option. Only the
foreground color need be defined; the others can be omitted. The following
example shows the string required to color all rx events in white and to
remove the coloring of protocol headers:

"rx-events=white,protocol=0"

Both the field and color names may be abbreviated.

 3.3.2 Separator Character
The separator character used to separate the label field from the value field
can be changed by defining the DTF_SEPARATOR environment variable
to the desired character. By default, the separator is the SPACE character.

Field Default Description

Headers Green The DTF header, from the -DTF- prefix through
to the underline.

Protocol-headers Cyan The protocol section headers.

Search-strings Reverse Highlighted search strings.

Comments Green Comments. (Used in Pipe mode only.)

Tx-events Normal The body of the output for all event names
which end with the tx string, for example,
OspfTx.

Rx-events Normal The body of the output for all event names
which end with the rx string, for example,
OspfRx.

Labels Green Field labels within the body of the output.

Strings Normal The body of the output which does not come
under any of the above categories.
3-10 Common Command Line and Configuration

 3.3.3 Brief Header Format
The format and contents of the DTF headers output in brief mode can be
customized by specifying the positions and sizes of the various fields in the
DTF_BRIEF_FORMAT environment variable. The format of this variable
is:

 "field1[=width]|field2[=width]|..."

Each field specifier has an optional width and is separated from other field
specifiers by a | character. The field specifiers are shown in Table 3-5. Note
that specifiers cannot be abbreviated in the environment variable.

Table 3-5: Field Specifiers

For instance, the default brief header format can be achieved using the
following DTF_BRIEF_FORMAT string. Note that a negative field width
indicates that the contents of the field should be aligned to the left.

 “time|number|event=-8|name=-8"

 3.4 What Does the Output Mean?

DTF uses two forms of output, brief and verbose. Brief mode uses a single
line for each traced packet and displays a minimum amount of information
about each packet. Verbose mode uses multiple lines for each traced packet
and formats all the fields.

 3.4.1 Brief Mode
The following is an example of the brief mode output. This output was
generated using the following command line:

 dtf -lw0 -c188 nis100:"routing circuit *"

Field Description

SEQUENCE Trace data sequence number

TIME Trace data timestamp

NUMBER Tracepoint number (when using multiple tracepoints)

NAME Tracepoint instance name

EVENT Event name

SIZE Packet size
Common Command Line and Configuration 3-11

12:23:17.20|0|Rx |L601-8-0 |OSI L2 LAN hello 08-00-2B-A5-F4-40

12:23:17.27|0|Rx |L601-8-0 |OSI L1 LAN hello 08-00-2B-A0-E4-10

12:23:17.29|0|Rx |L601-8-0 |PIV L1 routing 1.191

12:23:17.31|0|Rx |L601-8-0 |PIV LAN Router Hello AA-00-04-00-68-04

12:23:17.34|0|Rx |L601-8-0 |PIV LAN Router Hello AA-00-04-00-CC-04

12:23:17.39|0|ipRx |L601-8-0 |IP 16.36.16.203 224.0.0.2 UDP VRC

The output shows six packets which passed through the tracepoints in the
Routing Circuits on node NIS100. Each trace record is time-stamped (by
the router) and lists the filter name applied to the trace record by the router
(this name can be used in a filter list to restrict the traced packets). The
fields for the sixth packet are described in detail below.

 3.4.2 Verbose Mode
The following is an example of the verbose mode output. This output was
generated using the command line:

dtf -NDlvw0 -f"ospftx" nis100:"routing circuit *"

12:23:17.39| Timestamp applied to the trace record by the
router.

0| This is the tracepoint number. Tracepoints are
numbered starting from zero. Since there was
only one tracepoint specified, this field will
always be zero in this case.

ipRx| Filter name. This particular packet has been
tagged with the "ipRx" filter.

L601-8-0 | Tracepoint name. This is the name of the
tracepoint through which the packet passed.

IP ... Body of the packet. This particular packet is a
UDP packet to the VRC port, sent with a source
IP address of 16.36.16.203 to the multicast
address 224.0.0.2.
3-12 Common Command Line and Configuration

 -DTF- 0 ospfTx 84 of 84 at 09:53:03.46 L601-8-0 3

 Status: 8063DAE0 Context: 00000002 Function: 8000B685

 --

 routing context: IP

 IP: Common

 type of service 0xC0

 total length 84

 packet identifier 0x002D

 time to live 1

 Source Address 16.36.16.100

 Destination Address 224.0.0.5

 IP protocol: OSPF

 Version V2

 Packet Length 64

 Router ID 16.36.16.100

 Area ID 1.1.1.1

 Checksum 0xF406

 Authentication type None

 Authentication 0x0000000000000000

 OSPF type: HELLO

 Options 0x02 E

 Designated router 16.36.16.118

 Backup router 16.36.16.223

 Network mask 255.255.255.0

 Hello interval 10

 Router priority 1
Common Command Line and Configuration 3-13

 Dead interval 40

 OSPF neighbors ... 5

 16.36.16.118

 16.36.16.182

 16.36.16.206

 16.36.16.207

The output shows an OSPF Hello packet transmitted on the L601-8-0
tracepoint. The output consists of two parts, the header and the body:

• The header is above the dashed line and contains general information
about the traced record.

• The body is below the dashed line and contains the formatted packet.

The fields for the header are described in detail below (reading from top to
bottom and left to right).

0 Tracepoint number. Since there was only one
tracepoint specified on the command line, this
field will always be zero in this case.

ospfTx Filter name. This particular packet has been
tagged with the "ospfTx" filter indicating that it is
a transmitted OSPF packet.

84 of 84 This field shows the number of bytes captured
versus the original packet size (the first number
is the captured size and the second the original
size). This example indicates that all of the
original 84 bytes were captured.

 at 09:53:03.46 Timestamp applied by the router. This example
shows that this packet was captured at 9:53
am.

 L601-8-0 Tracepoint name.

 3 Sequence number. This number is incremented
for every packet traced on a particular
tracepoint for this session. In this example, this
is the third packet traced on this tracepoint.

 Status: 8063DAE0 Status field. This value is returned by the router
as part of the trace record, and is used by the
decode routines to help correctly identify the
packet.
3-14 Common Command Line and Configuration

The body of the output is separated into sections for each Protocol header
in the packet. In this example, the first protocol header is IP; this in turn
encapsulates an OSPF protocol header, which is followed by the OSPF
HELLO packet.

 3.5 Time Formats

DTF uses a variety of formats for displaying the time in the output,
depending on the time specification used by the router being traced and
whether the user has requested Absolute or Relative times. The
timestamp is applied to the trace data by the router. This timestamp may
be either an absolute UTC time or a relative count of the number of timer
ticks that have occurred since some event. In the latter case DTF cannot
display an absolute time, so it simply displays the timestamp value
returned from the router. Table 3-6 describes each format

 Context: 00000002 Context field. This value is returned by the
router as part of the trace record, and is used by
the decode routines to help correctly identify
the packet.

 Function: 8000B685 Function field. This value is returned by the
router as part of the trace record, and is used by
the decode routines to help correctly identify
the packet.
Common Command Line and Configuration 3-15

Table 3-6: Timestamp Formats.

Format Description

hh:mm:ss.mm UTC time. This is the time of day at the router
when the trace record was created. If Relative
time was specified on the command line, then
this is the time difference (according to the
router) since the last displayed record.

dddddd The timestamp applied by the router, no units
are implied.

+dddddd As above, but Relative time was specified on
the command line. This shows the number of
timer ticks (according to the router) since the
last displayed record.

hh:mm:ssL Local time (i.e. host time). This is used when
there is no timestamp on the traced data. (Pipe
mode only.)

hh:mm:ss s As above, but the time is expressed as a
relative time since the last displayed record.

Appendix A

Compatibility and Regular Expressions

A.1 Compatibility with CTF

DTF uses the same protocol as CTF; therefore, any router which supports
CTF should also work with DTF. The format of the data file used is the
same for DTF and CTF, so DTF can read a CTF$TRACE.DAT file produced
by CTF (although the converse is not necessarily true).

A.2 Regular Expression Syntax

A regular expression is zero or more branches, separated by |. It matches
anything that matches one of the branches.

A branch is zero or more pieces, concatenated. It matches a match for the
first, followed by a match for the second, etc.

A piece is an atom possibly followed by *, +, or ?. An atom followed by *
matches a sequence of 0 or more matches of the atom. An atom followed by
+ matches a sequence of 1 or more matches of the atom. An atom followed
by ? matches a match of the atom, or the null string.

An atom is a regular expression in parentheses (matching a match for the
regular expression), a range (see below), . (matching any single character),
^ (matching the null string at the beginning of the input string), $
(matching the null string at the end of the input string), a \ followed by a
single character (matching that character), or a single character with no
other significance (matching that character).

A range is a sequence of characters enclosed in []. It normally matches any
single character from the sequence. If the sequence begins with ^, it
matches any single character not from the rest of the sequence.
 Compatibility and Regular Expressions A-1

If two characters in the sequence are separated by -, this is short-hand for
the full list of ASCII characters between them (e.g. [0-9] matches any
decimal digit). To include a literal] in the sequence, make it the first
character (following a possible ^). To include a literal - in the sequence,
make it the first or last character.

 A.2.1 Ambiguity
If a regular expression matches two different parts of the input string, it
will match the one which begins earliest. If both begin in the same place
but match different lengths, or match the same length in different ways,
the outcome is more complex, as follows.

In general, the possibilities in a list of branches are considered in left-to-
right order, the possibilities for *, +, and ? are considered longest-first,
nested constructs are considered from the outermost in, and concatenated
constructs are considered leftmost-first.

The match that will be chosen is the one that uses the earliest possibility
in the first choice that has to be made. If there is more than one choice, the
next will be made in the same manner (earliest possibility) subject to the
decision on the first choice. And so forth.

For example, (ab|a)b*c could match abc in one of two ways. The first choice
is between ab and a; since ab is earlier, and does lead to a successful overall
match, it is chosen. Since the b is already spoken for, the b* must match its
last possibility - the empty string since it must respect the earlier choice.

In the particular case where no | characters are present and there is only
one *, +, or ?, the net effect is that the longest possible match will be chosen.
So ab*, presented with xabbbby, will match abbbb. Note that if ab* is tried
against xabyabbbz, it will match ab just after x, due to the begins-earliest
rule. (In effect, the decision on where to start the match is the first choice
to be made, hence subsequent choices must respect it even if this leads
them to less preferred alternatives.)
A-2 Compatibility and Regular Expressions

	DTF (DIGITAL Trace Facility) User Guide
	Preface

	Overview v
	Audience v
	Returning Comments About this Documentation v
	1 Introduction
	1.1 Abstract 1�1
	1.2 What Is DTF? 1�1
	1.3 Tracepoints 1�2
	1.4 Events 1�3
	1.5 Names 1�4
	1.6 How Does It Work ? 1�5

	2 Installation Instructions and Platform Differenc...
	2.1 OpenVMS and OpenVMS Alpha 2�1
	2.2 Digital UNIX, ULTRIX and Linux 2�5
	2.3 Windows 95/NT 2�7

	3 Common Command Line and Configuration
	3.1 Command-Line Interface 3�1
	3.2 Supplying Node Names and Addresses 3�7
	3.3 Output Customization 3�8
	3.4 What Does the Output Mean? 3�11
	3.5 Time Formats 3�15

	A Compatibility and Regular Expressions
	A.1 Compatibility with CTF A�1
	A.2 Regular Expression Syntax A�1

	Preface
	Overview
	Audience
	Returning Comments About this Documentation
	Introduction
	1.1 Abstract
	1.2 What Is DTF?
	1.3 Tracepoints
	1.3.1 Example Tracepoints
	1.3.2 Multiple Tracepoints
	1.4 Events

	1.4.1 Command-Line Interface
	1.4.2 Example Events
	1.5 Names
	1.6 How Does It Work ?

	1.6.1 Session Parameters
	1.6.2 Minimizing Trace Data Loss

	Installation Instructions and Platform Differences...
	2.1 OpenVMS and OpenVMS Alpha
	$ DTF/UNIX unix-command-line
	Table 2-1: OpenVMS File List
	2.1.1 Command-Line Interface
	$ DTF/LIVE [qualifiers] node-name"username passwor...
	$ DTF/ANALYZE [qualifiers] [data-file]
	$ DTF/PIPE/TYPE=packet-type ["hex-string" | /INPUT...
	Table 2-2: VMS Command Line Syntax

	2.1.2 Restriction: DECnet Addresses
	2.2 Digital UNIX, ULTRIX and Linux
	Table 2-3: UNIX File List
	NOTE
	2.3 Windows 95/NT

	2.3.1 Restrictions

	Chapter 3
	Common Command Line and Configuration
	3.1 Command-Line Interface
	Table 3-1: UNIX Command-Line Parameters
	Table 3-2: UNIX Command-Line Options
	3.1.1 Example Command Lines
	3.2 Supplying Node Names and Addresses
	3.3 Output Customization

	3.3.1 Output Coloring
	Table 3-3: ANSI Color Escape Sequences
	Table 3-4: Output Field Names and Default Colors

	3.3.2 Separator Character
	3.3.3 Brief Header Format
	Table 3-5: Field Specifiers
	3.4 What Does the Output Mean?

	3.4.1 Brief Mode
	3.4.2 Verbose Mode
	3.5 Time Formats
	Table 3-6: Timestamp Formats.

	Compatibility and Regular Expressions
	A.1 Compatibility with CTF
	A.2 Regular Expression Syntax
	A.2.1 Ambiguity

