
HP MAILbus 400
Message Transfer Agent
Tuning and Problem Solving

October 2006

Revision/Update Information: This is a revised manual.

Operating System and Version: OpenVMS Alpha Version 7.3-2 and above
OpenVMS VAX Version 7.3

Software Version: HP Mailbus 400 Message Transfer Agent
V3.2-12 for OpenVMS

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

cc:Mail is a registered trademark of cc:Mail, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

ISOCOR and ISOGATE are trademarks of ISOCOR.

ISOPLEX 800 is a registered trademark of ISOCOR.

Lotus Notes is a registered trademark of Lotus Development Corp.

OpenServer 400 is a trademark of Retix.

OSI is a registered trademark of CA Management, Inc.

PostScript is a registered trademark of Adobe Systems Incorporated.

Retix is a registered trademark of Retix.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

X/Open is a trademark of the X/Open Company Limited.

Printed in the US

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1B.

Contents

Preface . xix

Part I How the MTA Works

1 The MAILbus 400 MTA

1.1 MTA Functional Design . 1–1
1.1.1 The Interface Region . 1–2
1.1.2 The Message Processor . 1–3
1.1.3 The Relayer . 1–3
1.2 Queues . 1–4
1.2.1 Expiry Time . 1–6
1.3 The MTA Module . 1–6
1.3.1 Agent Entities . 1–7
1.3.2 Bodypart and Converter Entities . 1–9
1.3.3 Peer MTA Entities . 1–9
1.3.3.1 Automatically-Configured Peer MTA Entities 1–9
1.3.3.2 Manually-Configured Peer MTA Entities 1–10
1.3.4 Activity Entities . 1–10
1.3.5 Deferred Message Entities . 1–11
1.3.6 MPDU Entities . 1–11
1.3.7 Processed Message Entities . 1–11
1.3.8 Creating Entities During MTA Startup 1–12

2 How MPDUs Enter the MTA

2.1 Types of Entry into the MTA . 2–1
2.2 MPDUs Entering Through the Interface Region 2–2
2.2.1 Deferred Delivery . 2–3
2.3 MPDUs Entering Through the Relayer . 2–4
2.4 Storing Inbound MPDUs . 2–4

iii

3 Message Processing

3.1 Overview of Message Processing . 3–1
3.2 Looking up Addresses for Routing . 3–3
3.3 Expanding Distribution Lists . 3–4
3.4 Redirecting MPDUs . 3–4
3.5 Sending Messages Between Different X.400 Management

Domains . 3–5
3.6 Adding and Removing Trace Information 3–6
3.6.1 Adding External Trace Information . 3–6
3.6.2 Adding and Removing Internal Trace Information 3–7
3.7 Detecting Loops . 3–7
3.8 Checking Message Format and Converting IPM Bodyparts 3–7
3.8.1 Criteria for Conversion . 3–8
3.8.2 Converters Available to the MTA . 3–9
3.9 Downgrading Message Content . 3–10
3.10 Splitting MPDUs . 3–10

4 How MPDUs Leave the MTA

4.1 Types of Exit from the MTA . 4–1
4.2 MPDUs Leaving Through the Interface Region 4–1
4.2.1 Registered Agents Using the XAPI Interface 4–2
4.2.2 Unregistered Agents Using the XAPI Interface 4–2
4.2.3 Registered Agents Using the Shared File Interface 4–3
4.2.4 All Agents . 4–3
4.3 MPDUs Leaving Through the Relayer . 4–4
4.3.1 Selecting MPDUs from the Relay Queue 4–6
4.3.2 Outbound Transfer Retries . 4–8

5 Keeping Records of MPDUs

5.1 Journaling and Recovery . 5–3
5.1.1 Journaling . 5–3
5.1.2 Recovery . 5–4
5.2 Accounting . 5–5
5.3 Archiving . 5–5
5.4 Message History Logging . 5–6
5.5 Bad Messages . 5–6

iv

6 Downgrading

6.1 How the MAILbus 400 MTA Downgrades Messages 6–1
6.1.1 Downgrading the Message Envelope 6–1
6.1.2 Downgrading O/R Address Attributes 6–2
6.1.2.1 Mapping Between Common Name and Personal

Name . 6–2
6.1.2.2 Mapping Between a Common Name and a DDA 6–3
6.1.2.3 How the Mappings for Common Name Work During

Routing . 6–4
6.1.3 Downgrading IPMS Message Content 6–5
6.1.3.1 Downgrading an IPM . 6–5
6.1.3.2 Downgrading an Interpersonal Notification 6–6
6.1.3.3 Downgrading Externally Defined Bodyparts 6–6
6.2 When the MTA Downgrades the Message Envelope 6–7
6.3 When the MTA Downgrades the Message Content 6–8
6.4 How to Set Up Your MTS to Support Downgrading 6–8
6.4.1 Registering Personal Names . 6–8
6.4.2 Setting up Boundary MTAs . 6–8
6.4.3 Setting up Content Information . 6–9

Part II Tuning

7 Tuning an MTA

7.1 Why You Need to Tune an MTA . 7–2
7.2 Monitoring Message Traffic . 7–4
7.2.1 Using Counters to Monitor Message Traffic 7–4
7.2.2 Monitoring MPDUs in an MTA . 7–6
7.2.3 Events That Indicate Congestion in an MTA 7–7
7.3 Improving the Flow of Messages . 7–10
7.3.1 Increasing Connections and Associations 7–10
7.3.1.1 Maximum Agent Connections . 7–11
7.3.1.2 Maximum Transfer Associations 7–12
7.3.1.3 Maximum Inbound Transfer Associations 7–13
7.3.1.4 Maximum Inbound Parallel Transfer Associations 7–14
7.3.1.5 Maximum Outbound Transfer Associations 7–15
7.3.1.6 Maximum Outbound Parallel Transfer Associations to

Peer MTAs Within Your Routing Domain 7–16
7.3.1.7 Maximum Outbound Parallel Transfer Associations to

Peer MTAs in Other Routing Domains 7–16
7.3.2 Increasing the Number of Message Processors 7–17

v

7.3.3 Modifying Association Idle Intervals 7–18
7.3.3.1 Maximum Idle Outbound Transfer Association

Interval . 7–18
7.3.3.2 Maximum Idle Inbound Transfer Association Interval . . . 7–19
7.3.4 Changing the Way an MTA Selects MPDUs for Transfer 7–20
7.3.4.1 Maximum Transfer Lookahead Attribute 7–20
7.3.5 Modifying Retry Intervals . 7–21
7.3.6 Changing MPDU Expiry Intervals . 7–24
7.3.6.1 Local MPDU Expiry Interval . 7–25
7.3.6.2 Nonurgent MPDU Expiry Interval 7–25
7.3.6.3 Normal MPDU Expiry Interval . 7–26
7.3.6.4 Urgent MPDU Expiry Interval . 7–26
7.4 Controlling the Number of Peer MTA Entities 7–26
7.5 Controlling Message Transfer to Other Routing Domains 7–27
7.6 Inserting Warning Text into Messages Received from Other

X.400 Management Domains . 7–28
7.6.1 Creating Your Warning Text . 7–28
7.7 Customizing the MTA’s Use of the Transport Service 7–29
7.7.1 How MTAs Use the Transport Service 7–30
7.7.1.1 The DECnet/OSI Transport Service 7–30
7.7.1.2 The TCP/IP Transport Service . 7–30
7.7.2 How an MTA Selects a Transport Service 7–31
7.7.3 Modifying the Transport Service Options Attributes 7–32
7.7.4 MTA OSI Transport Templates . 7–33
7.7.4.1 Inbound Communication . 7–34
7.7.4.2 Outbound Communication . 7–35
7.7.4.3 Within the Routing Domain . 7–35
7.7.4.4 At Boundary MTAs . 7–36
7.7.5 Modifying Template Name Attributes 7–36

8 Accounting

8.1 Examples of Using Accounting . 8–2
8.1.1 Charging a Third Party for Message Transfer Services 8–2
8.1.2 Controlling Charges for Message Transfer Services 8–2
8.1.3 Cross-Charging Between Departments 8–3
8.1.4 Creating Statistics About the Workload of an MTA 8–3
8.2 How to Tune Accounting . 8–4
8.2.1 Enabling or Disabling Accounting . 8–4
8.2.2 Choosing Accounting Filter Settings 8–5
8.2.3 Changing the Accounting Purge Interval 8–8
8.2.4 Processing Accounting Files . 8–9
8.3 Accounting File Format . 8–11

vi

8.3.1 ASN.1 in Accounting Files . 8–13

9 Archiving

9.1 Example of Using Archiving . 9–1
9.2 How to Tune Archiving . 9–2
9.2.1 Enabling and Disabling Archiving . 9–2
9.2.2 Processing Archived Messages . 9–3
9.3 Archived Message Format . 9–5
9.3.1 ASN.1 in Archived Message Headers 9–6

10 Message History Logging

10.1 Examples of Using Message History Logging 10–1
10.1.1 Tracing Messages in your Routing Domain 10–1
10.1.2 Establishing Whether a Message Was Passed to Another

Routing Domain . 10–2
10.2 How to Tune Message History Logging . 10–3
10.2.1 Enabling, Disabling and Viewing Message History

Logging . 10–3
10.2.2 Changing the Message History Purge Interval 10–3

11 Content Information and IPM Bodypart Converters

11.1 Content Information . 11–2
11.1.1 Effects of Specifying Content Information 11–3
11.2 Content Type and Content Length . 11–5
11.2.1 Bodypart Translation . 11–7
11.3 Encoded Information Types (EITs) . 11–8
11.4 Bodypart Converters Supplied with the MTA 11–13
11.4.1 Converting Externally Defined and File Transfer Bodyparts

to Bilaterally Defined Bodyparts . 11–16
11.4.1.1 Interworking Between MailWorks Server for Tru64 UNIX

and the Poste/X.400 Gateway . 11–17
11.5 Entering Content Information in the Directory 11–17
11.5.1 Entering Content Information in the Directory for

Individuals Using a 1984 Based User Agent 11–18
11.5.2 Entering Content Information in the Directory for

Individuals Using a 1992 Based User Agent 11–19
11.5.3 Entering Content Information for the MAILbus 400 SMTP

Gateway . 11–20
11.5.4 Entering Content Information for the MAILbus 400 Message

Router Gateway . 11–21

vii

11.5.5 Agents Using the Shared File 1984 Interface 11–22
11.5.6 Agents Using the Shared File 1992 Interface 11–24
11.5.7 Messages Transferred Across an MTS Based on the 1984

MHS Standards . 11–25

12 Proprietary Content Information and IPM Bodypart
Converters

12.1 Assigning Object Identifiers to Proprietary Content Types, Data
Formats or Bodyparts . 12–1

12.2 Proprietary Bodyparts and Converters . 12–2
12.2.1 How New Bodyparts are Recognized 12–3
12.2.2 How New Bodyparts are Defined and Encoded 12–3
12.2.3 Creating a Bodypart Entity . 12–4
12.2.4 Converter Requirements . 12–5
12.2.5 Integrating a Converter with an MTA 12–7
12.2.6 Creating a Converter Entity that Describes a Converter

Image . 12–7
12.2.7 Creating a Converter Entity that Specifies a Sequence of

Converters . 12–8

13 Event Dispatching

13.1 The Event Dispatching Mechanism . 13–1
13.2 How to Tune Dispatching of MTA Events 13–3

Part III Solving Problems

14 Overview of MTS Problems

14.1 Your Scope for Solving MTS Problems . 14–1
14.2 How You Become Aware of Problems . 14–4
14.2.1 Problems Notified by MHS Users . 14–4
14.2.2 Problems Revealed by Events and Counter Attributes 14–5
14.3 MTA Changes in State . 14–10

viii

15 Problems Accessing Routing Information

15.1 The MTS Entity and the Access Denied Error 15–1
15.2 MTS Dump Command Failures . 15–2
15.3 Defining a New Password . 15–3

16 Problems with Associations

16.1 Using the Activity Entity to Find Out When an Association
Fails . 16–2

16.2 Events Relating to Problems with Associations and the
Transport Service . 16–4

16.2.1 Outbound Establishment Failure . 16–5
16.2.2 Outbound Hard Rejection . 16–15
16.2.3 Inbound Transfer Hard Rejection . 16–17
16.2.4 Outbound Soft Rejection . 16–25
16.2.5 Inbound Transfer Soft Rejection . 16–26
16.2.6 Inbound Failure . 16–30
16.2.7 Outbound Failure . 16–35
16.2.8 Transport Interface Error . 16–39
16.3 Events Relating to Protocol Violations . 16–42
16.3.1 RTSE Protocol Violation . 16–42
16.3.2 Lower Layer Protocol Violation . 16–44
16.4 Recording Protocol Information . 16–45
16.4.1 Protocol Recording by the Initiating MTA 16–47
16.4.2 Protocol Recording by the Receiving MTA 16–48
16.5 Analyzing the Protocol Trace File . 16–49

17 How the MTA Makes Connections Over X.25

17.1 Management Entities . 17–2
17.1.1 Outbound Connection Requests at an X.25 Server or X.25

Native System . 17–3
17.1.2 Additional X.25 Management Entities Required for an X.25

Server, Outbound . 17–6
17.1.3 Additional X.25 Management Entities Required for an X.25

Gateway Client, Outbound . 17–8
17.1.4 Management of Inbound Connections at an X.25 Server or

Native System . 17–10
17.1.5 X.25 Entities Required at an X.25 Server for an X.25

Gateway Client, Inbound . 17–13
17.1.6 How the MTA Listens for Incoming Connections 17–14
17.2 Problems Related to X.25 That Affect the MTA 17–17

ix

17.3 Isolating Failed Connections . 17–17
17.3.1 Failed Outbound Connections . 17–18
17.3.2 Failed Inbound Connections . 17–19

18 Problems with Messages

18.1 How to Diagnose a Message Failure . 18–1
18.2 Non-delivery Reports . 18–2
18.2.1 Diagnostic Codes Relating to Unable to Transfer 18–4
18.2.2 Diagnostic Codes Relating to Conversion Not Performed 18–7
18.2.3 Failure to Receive a Non-Delivery Report 18–8
18.3 Bad Messages . 18–9
18.4 Tracing a Message . 18–9
18.4.1 Messages in the MTA . 18–14
18.4.2 Deleted, Expired, or Corrupt Messages 18–15
18.4.3 Messages Sent to an Agent . 18–15
18.4.4 Messages Transferred to a Peer MTA in the Same Routing

Domain . 18–16
18.4.5 Messages Transferred to Another Routing Domain 18–17
18.4.6 Problems Tracing Messages . 18–17
18.5 Tracing Deferred Messages . 18–19
18.6 Tracing Probes and Reports . 18–20
18.7 Events Related to Problems with Messages 18–22
18.7.1 Expiry Alarm Threshold Exceeded . 18–22
18.7.2 Invalid MPDU Detected . 18–23
18.7.3 MPDU Expired . 18–24
18.7.4 Report Discarded . 18–25
18.7.5 Report Generation Failed . 18–26
18.7.6 Deferred Message Deleted . 18–26
18.7.7 MPDU Deleted . 18–27
18.7.8 Converter Unavailable . 18–27
18.8 Recovering Messages From an MTA’s Workspace 18–32
18.8.1 Limitations to Using Recovery . 18–33
18.8.2 Setting Up Recovery of an MTA’s Workspace 18–33
18.8.3 Recovery Command . 18–34
18.8.4 Recovery Finished Event . 18–35
18.8.5 Information Not Recovered About Messages 18–36

x

19 Problems with Routing

19.1 Discrepancies in Routing Information . 19–1
19.2 Finding an O/R Address Entry in the Directory 19–2
19.3 Events Related to Problems with Routing 19–3
19.3.1 Rejected Agent Connection . 19–4
19.3.2 Unknown Agent . 19–8
19.3.3 Unknown Peer Domain . 19–9
19.3.4 Directory Configuration Error . 19–11
19.3.5 Loop Detected . 19–12

20 Problems with Resources

20.1 System Interface Error . 20–1
20.2 Directory Service Error . 20–3

21 Problems Collecting Information

21.1 Problems Collecting Events . 21–1
21.2 Events Related to Problems with Collecting Information 21–2
21.2.1 Accounting Data Lost . 21–2
21.2.2 Message History Data Lost . 21–2
21.2.3 Archive Failed . 21–3

22 Software Problems

22.1 MTA Permanently in the Disabling or Enabling State 22–1
22.2 Events Related to Problems with Software 22–2
22.2.1 Internal Error . 22–2
22.2.2 Forced Exit . 22–3
22.3 Events Related to License Problems . 22–3

23 Reporting Your Problems

23.1 Contacting HP . 23–1
23.2 Gathering Information . 23–1

xi

A Standards Information

A.1 Brief Overview of the 1992 MHS Standards A–1
A.1.1 The 1992 Revisions to the 1988 MHS Standards A–2
A.2 Listing of Individual Standards and Recommendations A–3

B X.400 Elements of Service and Extensions

B.1 Elements of Service . B–1
B.2 Extensions . B–7

C Conformance to Regional Profiles

C.1 The International Standardized Profiles (ISPs) C–2
C.1.1 How the MAILbus 400 MTA Conforms C–2
C.1.1.1 Conformance to ISO/IEC ISP 10611 C–3
C.1.1.2 Conformance to ISO/IEC ISP 12062 C–5
C.2 The OIW Stable Implementation Agreements C–6
C.2.1 How the MAILbus 400 MTA Conforms C–7
C.2.1.1 Conformance to 1984 MHS Protocols C–7
C.2.1.2 Conformance to 1988 MHS Protocols C–8
C.3 US GOSIP . C–8
C.3.1 How the MAILbus 400 MTA Conforms C–9
C.4 UK GOSIP Version 4.1 . C–9
C.4.1 How the MAILbus 400 MTA Conforms C–10
C.4.1.1 Conformance to 1984 MHS Protocols C–10
C.4.1.2 Conformance to 1988 MHS Protocols C–12
C.5 CEN/CENELEC European Prestandards (ENVs) C–14
C.5.1 How the MAILbus 400 MTA Conforms C–15
C.5.1.1 Conformance to ENV 41201 of February 1988 C–16
C.5.1.2 Conformance to ENV 41202 of August 1987 C–16
C.5.1.3 Conformance to ENV 41214 of May 1992 C–17

D The Tru64 UNIX Implementation of the MTA

D.1 Privileges . D–1
D.2 Directories Used by the MTA . D–1
D.3 Files Installed on Your System . D–2
D.4 Tools Supplied with the MTA . D–6
D.4.1 Accounting Decoder Tool . D–6
D.4.2 Message Decoder Tool . D–6
D.5 Executing NCL Scripts . D–7
D.6 Port Number for Agents Using the API Server Over TCP/IP D–8

xii

D.7 Stopping and Starting the MTA . D–8
D.8 Restarting an MTA that is Not Responding to Management D–9

E The OpenVMS Implementation of the MTA

E.1 Privileges . E–2
E.2 Files You Can Use . E–2
E.3 Executing NCL Scripts . E–5
E.4 Directories Used by the MTA . E–5
E.5 Logical Names for Accounting, Archiving, Bad Message and

Trace Directories . E–5
E.6 Logical Defining CLNS Address for Agents E–6
E.7 Tools Supplied with the MTA . E–6
E.7.1 Accounting Decoder Tool . E–6
E.7.2 Message Decoder Tool . E–7
E.8 Port Number for Agents Using the API Server Over TCP/IP E–8
E.9 Stopping and Starting the MTA . E–8
E.10 Restarting an MTA That is Not Responding to Management E–8
E.11 Files on Your System After Installation . E–9

F Routing Examples

F.1 Routing a Message Within a Routing Domain F–1
F.2 Routing a Message to Another Routing Domain F–2
F.3 Routing a Message to a Postal Routing Domain F–4

G MTA Module Entities and Attributes

H Characters in Character Sets

H.1 Printable String . H–1
H.2 IA5 Graphic Subset . H–2
H.3 Teletex String . H–3
H.4 Numeric String . H–7
H.5 Octet String . H–8

xiii

Index

Figures

1–1 Functional Overview of the MAILbus 400 MTA 1–1
1–2 The MTA Module in the EMA Entity Hierarchy 1–7
1–3 How Entities are Created . 1–8
2–1 Management of the Interface Region - Inbound 2–3
2–2 Management of the Relayer - Inbound 2–5
3–1 Management of the MAILbus 400 MTA’s Main MPDU

Processing Activities . 3–2
4–1 Management of the Interface Region - Outbound 4–4
4–2 Management of the Relayer - Outbound 4–7
5–1 Management of Accounting, Archiving, and History

Logging . 5–2
5–2 Processed Message Entity - MPDU State Values 5–7
8–1 Accounting Used for the ADMD Connection 8–3
9–1 Archiving Used at a Gateway Connection 9–2
10–1 Message History Logging for the ADMD Connection 10–2
14–1 Your Scope for Problem Solving . 14–2
17–1 Entities Used for Outbound Connections 17–4
17–2 X.25 Entities Required at X.25 Server for Outbound

Connections . 17–7
17–3 X.25 Entities Required for an X.25 Gateway Client for

Outbound Connections . 17–8
17–4 Entities Used for Inbound Connections at an X.25 Server or

X.25 Native System . 17–11
17–5 X.25 Server Entities for Inbound Connections to an X.25

Gateway Client . 17–13
17–6 Entities Used When Listening for Connections 17–15

xiv

Tables

7–1 Counters that Record the MPDUs an MTA Receives 7–4
7–2 Counters that Record the MPDUs an MTA Sends 7–5
7–3 MPDU States and MTA Entity Attributes 7–7
7–4 Example of How the MTA Calculates the Retry Interval 7–22
8–1 MTA Accounting Filters . 8–5
8–2 Information Logged about Messages and Probes 8–6
8–3 Information Logged about Reports . 8–7
8–4 Timestamps in Accounting Filter Settings 8–8
8–5 Accounting Filter Settings in Messages and Probes and

Corresponding X.411 and ISO/IEC 100021-4 Message
Attributes . 8–11

8–6 Accounting Filter Settings in Reports and Corresponding
X.411 and ISO/IEC 10021-4 Message Attributes 8–12

11–1 Content Types . 11–6
11–2 Data Formats and IPM Bodyparts . 11–9
11–3 Examples of Converter Entities Supplied with the MTA 11–14
14–1 Problems Notified by MHS Users . 14–4
14–2 Events and Related Counter Attributes 14–7
14–3 Counters not Related to Events . 14–9
16–1 Problems at Different Stages of an Association 16–1
18–1 Non-Delivery Reason and Diagnostic Codes 18–2
B–1 The MAILbus 400 MTA’s Support of MT Elements of

Service . B–3
B–2 The MAILbus 400 MTA’s Support of MH/PD Elements of

Service . B–6
B–3 The MAILbus 400 MTA’s Support of 1988 X.400

Extensions . B–8
C–1 MTA Conformance to ISO/IEC ISP 10611-3 (AMH11) ISPICS:

Global Statement of Conformance and Profile Conformance
. C–4

C–2 MTA Conformance to ISO/IEC ISP 10611-3 (AMH11) ISPICS:
Supported Application Contexts . C–5

C–3 MTA Conformance to ISO/IEC ISP 12062-3 (AMH22)
ISPICS: Statement of Profile Conformance C–5

C–4 MTA Conformance to Service Support in UK GOSIP
MHS(84) Procurement PICS Appendix C–11

xv

C–5 MTA Conformance to Required MTA Capability in UK
GOSIP MHS(84) Procurement PICS Appendix C–11

C–6 MTA Conformance to O/R Name Form Support in UK GOSIP
MHS(84) Procurement PICS Appendix C–11

C–7 MTA Conformance to System/Service Configuration in UK
GOSIP MHS(88) Procurement PICS Appendix C–13

C–8 MTA Conformance to Common Messaging Functional Groups
in UK GOSIP MHS(88) Procurement PICS Appendix C–14

C–9 MTA Conformance to Application Contexts in ENV 41214 . . C–17
C–10 MTA Conformance to Abstract Operations in ENV 41214 . . . C–18
C–11 MTA Conformance to Functional Groups in ENV 41214 C–18
D–1 The MTA’s Directories . D–2
D–2 The Files Installed from a MAILbus 400 MTA Management

Subset . D–3
D–3 The Files Installed from a MAILbus 400 MTA Server Subset

. D–3
D–4 The Files Installed from a MAILbus 400 MTA Base Subset

. D–5
E–1 Node Specific NCL Scripts and Warning Text File E–2
E–2 MTA Setup and Startup Procedures . E–3
E–3 Decoder Tool Procedures . E–4
E–4 Bodypart Mapping Table . E–4
E–5 Location of the MTA’s Work Area, Accounting, and Archive

Directories . E–5
E–6 Files on Your System After You have Installed MAILbus 400

MTA Mgt . E–9
E–7 Files on Your System After You have Installed the MAILbus

400 MTA Server . E–10
E–8 Files on Your System After You have Installed MAILbus 400

MTA Base . E–12
G–1 MTA Entity Attributes . G–2
G–2 Agent Entity Attributes . G–3
G–3 Bodypart Entity Attributes . G–4
G–4 Converter Entity Attributes . G–4
G–5 Deferred Message Entity Attributes . G–4
G–6 Processed Message Entity Attributes G–5
G–7 MPDU Entity Attributes . G–5
G–8 Peer MTA Entity Attributes . G–6

xvi

G–9 Activity Entity Attributes . G–7
H–1 Printable String Characters . H–1
H–2 IA5 Graphic Subset Characters . H–2
H–3 Teletex String Graphic Characters . H–4
H–4 Accents in the Teletex Character Set H–7
H–5 Numeric String Characters . H–8

xvii

Preface

Purpose of this Guide
This guide describes how a MAILbus 400 Message Transfer Agent works, how
to optimize the performance of a MAILbus 400 MTA and how to solve problems
that can occur in your Message Transfer System (MTS).

This guide provides the information that you require to support a MAILbus
400 MTA, within a mixed MTS of:

• Other vendors’ messaging products

• Other MTAs

This guide does not describe how to solve problems in an MTS consisting solely
of other vendors’ products, or other HP products.

Structure of this Guide
This guide is divided into three parts:

• Part I, How the MTA Works

This part describes how a MAILbus 400 MTA works and outlines the
management of a MAILbus 400 MTA.

• Part II, Tuning

This part describes how to modify the performance of a Message Transfer
System made up of MAILbus 400 MTAs so that it fulfills your system
or management requirements. This part also describes how to collect
information about the message traffic in your routing domain and how to
collect events.

• Part III, Solving Problems

This part describes the problems that you might encounter in an MTS
consisting of MAILbus 400 MTAs and how to solve them.

xix

The following appendixes describe information that is specific to the operating
system where the MTA is installed:

• Appendix D for Tru64 UNIX specific information.

• Appendix E for OpenVMS specific information.

Where appropriate, the text within this guide references this as "the appendix
describing the operating system specific information".

Prerequisites
To manage and tune one or more MAILbus 400 MTAs and to solve problems
that can occur in an MTS, you should have knowledge of DECnet/OSI®. You
should also be familiar with HP’s Network Control Language (NCL) and with
the concepts of HP’s Enterprise Management Architecture (EMA).

Related Documents
In addition to this guide, the documentation provided with the MAILbus 400
MTA comprises:

• MAILbus 400 Getting Started

• HP MAILbus 400 MTA Planning and Setup

• HP MAILbus 400 MTA installation documentation

• HP MAILbus 400 MTA Software Product Description (SPD) for the
appropriate operating system

• HP MAILbus 400 MTA Cover Letter, where applicable, for the appropriate
operating system

• Online Release Notes

Reference information is available in the MTA Module Online Help and MTS
Module Online Help.

Release notes are also available online. For information about how to access
the release notes, see the MAILbus 400 MTA installation documentation.

All the standards, recommendations, and profiles that are referenced in the
MAILbus 400 MTA documentation set are listed in Appendix A.

You are advised to have available the following associated documentation:

• The HP Enterprise Directory Service documentation set and Directory
Module Online Help.

• The HP DECnet-Plus documentation.

xx

Conventions
The following conventions are used in this guide:

this typeface Indicates prompts and messages from the computer and
command examples.

this typeface Indicates commands or responses that you type. Unless
otherwise stated, press Return after each command or response.

variable Represents a variable.

UPPERCASE and
lowercase

The Tru64 UNIX operating systems differentiate between
lowercase and uppercase characters. Literal strings that appear
in text, examples, syntax descriptions, and function descriptions
must be typed exactly as shown.

newterm Indicates the introduction of a new term.

A number sign (#) is the default Tru64 UNIX superuser prompt.

$ A dollar sign ($) is the default OpenVMS prompt.

�
Tru64
UNIX

Indicates the start of information that is applicable only to the
Tru64 UNIX operating systems.

OpenVMS
Indicates the start of information that is applicable to the
OpenVMS Alpha and OpenVMS VAX operating systems.

OpenVMS
VAX

Indicates the start of information that is applicable only to the
OpenVMS VAX operating systems.

xxi

OpenVMS
Alpha

Indicates the start of information that is applicable only to the
OpenVMS Alpha operating systems.

♦ Indicates the end of information that is applicable to a particular
operating system.

(Tru64 UNIX) Where text that refers exclusively to the Tru64 UNIX operating
system is minimal, the operating system is indicated in brackets
after the text.

(OpenVMS) Where text that refers exclusively to the OpenVMS Alpha or
OpenVMS VAX operating systems is minimal, the operating
system is indicated in brackets after the text.

Examples Used in This Guide

Command Examples:

In this guide, all command examples are Network Control Language
(NCL) commands unless otherwise stated.

The component NODE "node-id" within Network NCL examples refers
to the node where the MTA that you want to manage is located.

If the MTA that you want to manage is located on your node, you can
omit NODE "node-id" from NCL commands, or use NODE 0. See the
DECnet/OSI documentation for more information about NCL command
syntax.

Examples of Events and Entities:

The layout of events and entities on a screen varies according to the
operating system that the MTA is running on. Therefore, the examples
given in this guide may differ from the way events and entities are
displayed on your system.

xxii

Abbreviations
The following abbreviations are used in this guide:

ACSE Association Control Service Element

ADMD Administration Management Domain

ANSI American National Standards Institute

API Application Program Interface

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules

CCITT1 International Telegraph and Telephone Consultative Committee

CEN Comité Européen de Normalisation

CENELEC Comité Européen de Normalisation Electrotechnique

CLNS Connectionless Network Service

CONS Connection Oriented Network Service

CDA Compound Document Architecture

DAP Document Application Profile

DDA Domain Defined Attribute

DDIF Digital Document Interchange Format

DIS Draft International Standard

DISP Draft International Standardized Profile

DL Distribution List

DOTS Data Object Transport Syntax

DSA Directory System Agent

DTE Data Terminal Equipment

DTIF Digital Tabular Interchange Format

DUA Directory User Agent

EDI Electronic Data Interchange

EIT Encoded Information Type

ENV Europa Norm Vorläufig (European Prestandard)

ETSI European Telecommunications Standards Institute

1The CCITT is now the ITU–T (International Telephone Union—Telecommunications). Their
published documents still have CCITT identification material, and to avoid confusion this book still
uses the term CCITT.

xxiii

EWOS European Workshop for Open Systems

GDI Global Domain Identifier

GOSIP Government OSI Profiles

IEC International Electrotechnical Commission

INTAP Interoperability Technology Association for Information Processing
Japan

IPM Interpersonal Message

IPMS Interpersonal Messaging System

IRV International Reference Version

ISO International Organization for Standardization

ISP International Standardized Profile

ISPICS International Standardized Profile Implementation Conformance
Statement

LAN Local Area Network

MHS Message Handling System

MOTIS Message Oriented Text Interchange System

MPDU Message Protocol Data Unit

MTA Message Transfer Agent

MTS Message Transfer System

NIST National Institute for Standards and Technology

NSAP Network Service Access Point

ODA Office Document Architecture

ODIF Office Document Interchange Format

OIW OSE Implementors’ Workshop

O/R Originator/Recipient

OSE Open Systems Environment

OSI Open Systems Interconnection

PICS Protocol Implementation Conformance Statement

PRMD Private Management Domain

PTT Post Telegraph and Telephone Authority

RFC Request For Comments

RTSE Reliable Transfer Service Element

xxiv

SCID Session Connection Identifier

TCP/IP Transport Control Protocol/Internet Protocol

TSEL Transport Service Selector

WAN Wide Area Network

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

However, any software problem that requires action on the part of HP must be
reported to your HP support center, as described in Chapter 23. Do not report
such problems to the above addresses or those listed on the template.

How To Order Additional Documentation
For information about how to order additional documentation and for online
versi on of this documentation, visit the following World Wide Web address:

http://www.hp.com/go/openvms/doc/

xxv

Part I
How the MTA Works

This part describes how a MAILbus 400 MTA works. Its purpose is to provide
background knowledge to help you manage and support the product.

Chapter 1 gives an overview of the functions of a MAILbus 400 MTA and the
entities of the MTA module that are used to manage them.

Chapter 2 describes the different ways in which messages enter an MTA.

Chapter 3 describes the sequence of operations performed by the message
processing functions of the MTA.

Chapter 4 describes the different ways in which messages leave an MTA.

Chapter 5 gives an overview of the record keeping functions of the MTA during
message transfer.

Chapter 6 describes how an MTA downgrades a message encoded according to
the 1992 MHS Standards so that it is compatible with 1984 MHS Standards.

1
The MAILbus 400 MTA

This chapter introduces the main functions of the MAILbus 400 MTA. The
functions are described in more detail in later chapters. This chapter also
describes the hierarchy of the MTA module entities, and shows how you use
attributes of these entities to manage MTA functions.

1.1 MTA Functional Design
The main functions of a MAILbus 400 MTA are represented in Figure 1–1.

Figure 1–1 Functional Overview of the MAILbus 400 MTA

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

MTA

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0200

The MAILbus 400 MTA 1–1

Although, for the purposes of this guide, it is useful to represent the MTA in
terms of its functions, it is important to note that you cannot manage the MTA
directly in terms of these functions. You manage the MTA through the MTA
module by setting attributes of the MTA entity and its subordinate entities, as
described in Section 1.3.

1.1.1 The Interface Region
The Interface Region is the interface between Agent applications (User
Agents, Gateways, and Message Stores) and the MTA. For inbound MPDUs,
the Interface Region is responsible for submission and import. (An MPDU
is an instance of a message, probe, or report in the MAILbus 400 MTA.) For
outbound MPDUs, the Interface Region is responsible for delivery and export.
HP supplies the MAILbus 400 Application Program Interface (API), which
is a callable interface that enables users to write new User Agents or Gateways
that can communicate with the MTA through the Interface Region.

An Agent written using the MAILbus 400 Application Program Interface can
connect to the Interface Region of the MTA either directly or through the API
server.

The API Server is provided with the MTA on the system where the MTA is
running and it works on behalf of the Agent to issue calls to the MTA. This
reduces the amount of memory and processing capacity required on the system
where the Agent is located, as most of the processing is done on the system
where the MTA is located.

Whether an Agent connects to the MTA directly or through the API Server is
determined by how the Agent is linked against the MAILbus 400 API when it
is built, and by where the Agent is running in relation to the MTA:

• If the Agent is linked against the full shareable image or library, it can
connect directly to the MTA or through the API Server.

• If the Agent is linked against the reduced shareable image or library, it can
only connect to the MTA through the API Server.

• If the Agent is running on a system remote from the MTA, it can only
connect to the MTA through the API Server.

You can find out how Agents connect to your MTA by examining the
/var/mta/mta_api_server_address file on Tru64 UNIX systems, or the value
for the MTA_NODE logical on OpenVMS systems. Refer to Part III of HP
MAILbus 400 MTA Planning and Setup for more information about setting up
connections from Agents to the MAILbus 400 MTA.

1–2 The MAILbus 400 MTA

Also provided with the MAILbus 400 MTA is the Shared File interface. When
an Agent connects to the MTA using this interface, the Interface Region reads
incoming messages, in the form of files, from an Input queue, and writes
outgoing messages to files in an Output queue.

HP MAILbus 400 MTA Planning and Setup describes how to set up Agents for
use with the MAILbus 400 MTA.

The Interface Region also deals with MPDUs that cannot be delivered
immediately and those that cannot be delivered successfully within their
defined expiry interval.

1.1.2 The Message Processor
The Message Processor is responsible for taking each incoming MPDU
from the Processing Queue and preparing it for transfer to the next point
in the MPDU’s route to the eventual recipient. This involves obtaining
routing data from the directory and, if necessary, converting and splitting
the MPDU according to the information obtained. Once it has processed an
MPDU, the Message Processor places it either on the Delivery Queue for use
by the Interface Region or on the Relay Queue for use by the Relayer (see
Section 1.1.3).

1.1.3 The Relayer
The Relayer is responsible for communicating with other MTAs. Other MTAs
with which an MTA can communicate are known as peer MTAs. The Relayer
can call a peer MTA to initiate an outbound association, or respond to a call
from a peer MTA to establish an inbound association.

The MTA uses associations to transfer data, including MPDUs, to or from
a peer MTA. An association is a connection between two applications in
the Application layer, as defined by the OSI Reference Model. The OSI
Reference Model is a conceptual model that describes an open systems
architecture based on seven layers that handle the communications process.

The Relayer supports the Reliable Transfer Service Element (RTSE) of the
OSI reference model. RTSE supports two types of dialogue mode – monologue
and two-way alternate. The MAILbus 400 MTA supports only monologue
mode. This means that it uses a single association either to send or to receive
MPDUs, but not both at the same time.

Associations are created when necessary to transfer MPDUs between MTAs
and can be used more than once. The Relayer can maintain associations in
an idle state ready for further use, thus saving on the time and resources
involved in establishing a new association. You can tune the MTA to modify
the maximum period over which an association can remain idle. You can also

The MAILbus 400 MTA 1–3

modify other characteristic attributes of the MTA entity to optimize the flow of
messages through it. Chapter 7 describes how to do this.

While transferring an MPDU, the Relayer keeps RTSE checkpoint information
about the association in volatile storage. If, during transfer of an MPDU, an
association fails and is later re-established, the Relayer can normally recover
and complete the transfer by restarting it from the point where the checkpoint
information shows it has been interrupted. Thus, checkpoint information is
of use when an association fails due to network problems. However, because
checkpoint information is held in volatile storage, it does not survive a failure
or shutdown of the system supporting the MTA. In these circumstances, the
Relayer cannot restart the transfer from the point at which it was interrupted.
In the case of outbound transfer, the Relayer restarts transfer from the
beginning of the MPDU. In the case of inbound transfer, it informs the other
MTA that transfer must be restarted from the beginning of the MPDU.

If a peer MTA aborts an association recovery attempt, the Relayer discards the
recovery information and restarts transfer from the beginning of the MPDU.

The Relayer also queues MPDUs that cannot immediately be transferred, and
deals with MPDUs that cannot successfully be transferred within their defined
expiry interval.

1.2 Queues
The MAILbus 400 MTA maintains a number of queues in memory, which hold
MPDUs that are waiting to be processed, transferred, or delivered. These
queues are:

• The Processing Queue, which holds MPDUs waiting to be processed by the
Message Processor

• The Relay Queue, which holds MPDUs waiting to be transferred by the
Relayer to another X.400 MTA

• The Delivery Queue, which holds MPDUs waiting to be delivered or
exported through the Interface Region to the appropriate Agent

MPDUs are held in queues in order of their priority and arrival time. Queues
are headed by MPDUs of the highest priority. For MPDUs of equal priority,
those that arrive at the MTA first are at the front of the queue. The MPDU
currently at the front of the queue is normally the first to be processed.

If the MAILbus 400 MTA fails to process an MPDU as intended, it returns the
MPDU to the relevant queue for a further attempt.

1–4 The MAILbus 400 MTA

Depending on the cause of the failure, the MAILbus 400 MTA tries to process
the MPDU again until:

• Processing the MPDU has failed three times.

If processing stops unexpectedly while the MPDU is being processed (for
example, because of a problem within the MPDU), the MAILbus 400 MTA
makes no further attempts to process the MPDU after failing three times.

• The MPDU expires.

If the failure is due to a recognizable state, the MAILbus 400 MTA
continues to attempt to process the MPDU until the MPDU reaches its
expiry time (see Section 1.2.1).

When returning an MPDU to a queue, the MTA decides whether to assign a
retry time to the MPDU to indicate the time at which the MTA can attempt
to process the MPDU again. This depends on the queue to which an MPDU is
returned and on the reason why the MPDU failed to be processed. Generally,
the MTA assigns a retry time to all MPDUs returned to the Processing Queue
and Relay Queue, while MPDUs are returned to the Delivery Queue without a
retry time. However, the MTA can decide differently in certain circumstances
where failure is due to a recognizable state.

Examples of recognizable states include the following:

• The directory is unavailable when the Message Processor attempts to look
up address information. The MTA assigns a retry time to the MPDU and
returns it to the Processing Queue.

• A peer MTA is unavailable when the Relayer attempts to transfer an
MPDU. When the Relayer fails to transfer an MPDU to a peer MTA
because the peer MTA is unavailable, a more complex retry mechanism is
used. This is described in Section 4.3.2.

• During delivery an Agent requests that the MPDU be delivered at a later
time. In this case the MTA assigns a retry time to the MPDU and returns
it to the Delivery Queue.

If processing an MPDU fails unexpectedly three times, or if an MPDU in a
queue expires, the MAILbus 400 MTA removes the MPDU from the queue
and attempts to send a non-delivery report to the originator. In the former
case, the MAILbus 400 MTA also copies the failed MPDU to a bad messages
directory so that you can examine it using the Message Decoder utility (see
Section 5.5).

The MAILbus 400 MTA 1–5

1.2.1 Expiry Time
The expiry time of an MPDU depends on:

• The time set for the Local MPDU Expiry Interval attribute of the MTA.

• The CCITT domain expiry interval associated with the priority value of the
MPDU. These expiry intervals are set by the following attributes of the
MTA: Nonurgent MPDU Expiry Interval, Normal MPDU Expiry Interval,
and Urgent MPDU Expiry Interval.

Priority-based MPDU expiry times are calculated from when the MPDU enters
the first administration management domain (ADMD) on its route. Local
expiry time is calculated from when the MPDU enters each MTA.

When an MTA has received an MPDU, the MTA periodically compares the
expiry intervals with the time when the MPDU entered the MTA and the time
when the MPDU entered the first ADMD. When one of the expiry intervals is
reached, the MTA deletes the MPDU and sends a non-delivery report to the
originator, if possible.

Guidelines for setting expiry intervals are given in Chapter 7.

1.3 The MTA Module
Within the Enterprise Management Architecture (EMA), you manage the MTA
through the MTA module. There is one MTA module subordinate to the global
entity NODE. The hierarchy of the MTA module is shown in Figure 1–2.

You manage the MTA by assigning values to characteristic attributes of
the MTA entity and its subordinate entities. For example, you manage
communication between the Interface Region of the MTA and Agent
applications through attributes of the MTA entity and Agent entities.
Similarly, you manage communication between the Relayer and peer MTAs
in other routing domains through characteristic attributes of the MTA entity
and Peer MTA entities.

You can obtain information about the status and performance of an MTA by
showing the current values of status and counter attributes of the MTA entity
and its subordinate entities.

EMA enables you to use Network Control Language (NCL) to manage an MTA
from any node in a network. You need appropriate privileges or access rights
to show or modify certain attributes. The MTA Module Online Help describes
the specific commands used for MTA management.

1–6 The MAILbus 400 MTA

Figure 1–2 The MTA Module in the EMA Entity Hierarchy

Agent
entities

Activity
entities

Deferred
Message
entities

Processed
Message
entities

MPDU
entities

Peer MTA
entities

MTA
entity

Bodypart
entities

Converter
entities

 NODE
(global entity)

MTA module

MIG0284

The remaining sections of this chapter describe the entities subordinate to the
MTA entity. Figure 1–3 gives an overview of how and when the MTA entity
and its subordinate entities are created.

1.3.1 Agent Entities
You use Agent entities to record information about registered Agent
applications (User Agents, Gateways, or Message Stores) with which the MTA
can connect. Registered Agents can support one or more O/R addresses and
can be of two types. One type uses the XAPI interface, as implemented by the
MAILbus 400 Application Program Interface; the other uses the Shared File
interface (see MAILbus 400 MTA Introduction and Glossary or Section 1.1.1).
Only Gateway Agents can use the Shared File interface.

The MAILbus 400 MTA 1–7

Figure 1–3 How Entities are Created

 Some are created during
startup. Others can be

added later.

Created at MTA
startup. Default values of

characteristic attributes can
be changed to provide
management of overall

MTA performance.

 Created automatically
during message

processing.

Created
manually for management

of communications with peer
MTAs outside your routing

domain. Automatically
created for peer MTAs in your

routing domain.

Created manually
for management of

communication between
the MTA and Agent

applications.

Agent
entities

Activity
entities

Deferred
Message
entities

Processed
Message
entities

MPDU
entities

Peer MTA
entities

MTA
entity

Bodypart
entities

Converter
entities

MIG0745

1–8 The MAILbus 400 MTA

Note

The MAILbus 400 MTA can also communicate with unregistered Agent
applications that support only a single O/R address. These have no
corresponding Agent entity and use the XAPI interface to identify
themselves to the MTA using the O/R address they represent.

You have to create an Agent entity to record details (such as name and
password) of a registered Agent. You can then use management directives to
enable and disable the Agent entity in order to control the Agent’s connection
to the MTA.

1.3.2 Bodypart and Converter Entities
The contents of an interpersonal message (IPM) can consist of a number of
IPM bodyparts. To make a bodypart acceptable to a recipient’s Agent, it is
sometimes necessary to convert it to a different format. The MTA has several
converters that it uses to convert IPM bodyparts from one format to another.
The MTA startup script that is supplied with the MAILbus 400 MTA creates
corresponding Bodypart and Converter entities for these converters. You can
create additional Bodypart and Converter entities for converters that you
write. See the MTA Module Online Help, Chapter 11 and Chapter 12 for more
details.

1.3.3 Peer MTA Entities
Peer MTA entities are created and configured either automatically or manually.
They enable the management and monitoring of MPDU transfer between
MTAs.

1.3.3.1 Automatically-Configured Peer MTA Entities
When two MTAs in the same routing domain first communicate with each
other, each of them automatically creates a Peer MTA entity relating to
the other peer MTA. These Peer MTA entities record information about
communications between the two MTAs. Automatically-configured Peer MTA
entities remain in existence until a limit on their total number is reached.
Therefore, if two MTAs in the same routing domain have communicated in the
past, the required Peer MTA entities might already exist.

The limit on the total number of Peer MTA entities is set by the Maximum
Automatically Configured Peer MTAs attribute of the MTA (see Section 7.4).
However, this is not a definitive limit. When the MTA needs to create a new
Peer MTA entity, and the limit on the total number of Peer MTA entities is
already reached, the MTA can delete existing automatically-configured Peer
MTA entities. The MTA only deletes an automatically-configured Peer MTA

The MAILbus 400 MTA 1–9

entity if the Peer MTA entity does not have subordinate Activity entities (see
Section 1.3.4 and Figure 1–3).

If all the MTA’s automatically-configured Peer MTA entities have subordinate
Activity entities, the MTA is unable to delete one. In this case, the MTA
overrides the specified limit on the total number of automatically-configured
Peer MTA entities.

If there are automatically-configured Peer MTA entities that can be deleted,
the MTA deletes the Peer MTA entity that has been inactive for the longest
time. A Peer MTA entity is considered inactive when it has no subordinate
Activity entities.

1.3.3.2 Manually-Configured Peer MTA Entities
Boundary MTAs are MTAs in your routing domain that can communicate with
peer MTAs in other routing domains. A boundary MTA can only communicate
with a peer MTA in another routing domain if it has essential information
about the peer MTA, such as its name, address, and password. To make
this information available to the boundary MTA, you manually create and
configure a Peer MTA entity with the required characteristic attributes at your
boundary MTA. See HP MAILbus 400 MTA Planning and Setup for details of
the information you need to plan in order to set up a Peer MTA entity, and the
MTA Module Online Help for information about creating a Peer MTA entity.

Once you have created and configured a Peer MTA entity, you must enable it
before the boundary MTA can communicate with the peer MTA in the other
routing domain. You can subsequently disable and enable the Peer MTA entity
to control the connection status of your MTA with the peer MTA in the other
routing domain. When a manually-configured Peer MTA entity is enabled, it
records information about communications with the peer MTA in the other
routing domain.

You can modify a manually-configured Peer MTA entity if some information,
such as the peer MTA password, changes. You can delete a manually-
configured Peer MTA entity when it is inactive and communication with
the relevant peer MTA is no longer needed.

1.3.4 Activity Entities
Activity entities are created automatically during MPDU transfer between
peer MTAs. These entities provide information about the current state of
the association and about a single MPDU being transferred. Although the
MTA can use a single association with a peer MTA to transfer a number of
MPDUs in succession, each Activity entity applies only to a single MPDU
transfer. When the transfer is complete, the state of the corresponding Activity
entity changes from active to idle. An idle Activity entity is deleted, and a

1–10 The MAILbus 400 MTA

new Activity entity is created, when another MPDU is transferred over the
association.

If an association is broken during transfer of an MPDU, the state of the
current Activity entity changes from active to interrupted, and the Activity
entity remains in existence, to provide information for management and
recovery purposes, until the association is re-established and the MPDU is
transferred over it.

1.3.5 Deferred Message Entities
When a deferred message is submitted to the MTA, a Deferred Message entity
is created automatically. Each Deferred Message entity represents an MPDU
that has been marked by its originator for deferred delivery (see Section 2.2.1).
The MTA holds such an MPDU, without processing it, until the deferred
delivery time specified by the originator of the message.

1.3.6 MPDU Entities
An MPDU entity is created automatically when an MPDU enters the MTA.
When processing an MPDU, the MTA may have to split the MPDU in order to
create an individual occurrence of the MPDU for each conversion, O/R address
or set of O/R addresses that represent a single destination (see Section 3.10).
For each additional MPDU that the MTA creates in this way, the MTA also
creates an MPDU entity.

1.3.7 Processed Message Entities
The MTA automatically creates Processed Message entities to record
information about all messages (not probes or reports) from the time they
enter the MTA. The MTA updates the attributes of Processed Message entities
to record the current status of all MPDUs derived from an incoming message
as they are processed and pass through the MTA.

If Message History logging is enabled, the information about the MPDUs that
the MTA processes remains in stable disk storage until automatically purged.
You can use the Message History Purge Interval attribute of the MTA entity to
set the frequency with which the MTA purges Message History information.

If Message History logging is not enabled, the MTA does not keep records of
MPDUs after it has finished dealing with them.

The MAILbus 400 MTA 1–11

1.3.8 Creating Entities During MTA Startup
An MTA startup script is supplied with the MAILbus 400 MTA. You can
customize the startup script so that it creates additional Agent, Peer MTA,
Bodypart, and Converter entities specific to your particular requirements.

For the location of the MTA’s startup script, refer to the appendix describing
the operating system specific information. See the MTA Module Online Help
and Part III of HP MAILbus 400 MTA Planning and Setup for information
about how to edit this file.

The MTA startup script is not automatically updated with changes you make
through management of the MTA. If, during interactive management of the
MTA, you modify any entity attributes, you should reflect all these changes
in the startup script if you want them to remain in effect next time the MTA
is started up. If you do not update the MTA startup script, in the event of
a system failure, you will not be able to restore the MTA automatically to
the state it was in before the failure. Any MTA created will have only those
settings contained in the latest copy of the startup script. It is therefore
important to keep a secure copy of your latest customized version of the MTA
startup script.

1–12 The MAILbus 400 MTA

2
How MPDUs Enter the MTA

This chapter describes the different ways in which MPDUs enter the MTA and
how the MTA takes responsibility for them.

2.1 Types of Entry into the MTA
A message, probe, or report enters the MTA by one of the following routes:

• Submission

This is where an MPDU, representing a message or a probe, enters the
MTA through the Interface Region from a User Agent or Message Store
(see Section 2.2). Because the MPDU is entering the message transfer
system (MTS) for the first time, its envelope carries no trace information
relating to previous routing stages.

• Import

This is where an MPDU, representing a message, probe, or report, enters
the MTA through the Interface Region from a Gateway (see Section 2.2).

The envelope of an imported MPDU can contain trace information that
identifies previous stages in its transfer through the message handling
system (MHS).

• Inbound transfer

This is where an MPDU, representing a message, probe, or report, enters
the MTA through the Relayer from another MTA (see Section 2.3).

How MPDUs Enter the MTA 2–1

2.2 MPDUs Entering Through the Interface Region
When an Agent has a message for transfer, it initiates an inbound
communication to its MTA in the form of a submission or an import. When
handling a submission or import, the Interface Region does the following:

1. Creates an MPDU with a local identifier and arrival timestamp.

2. Writes the MPDU to stable disk storage so that it can be recovered, if
necessary (see Section 2.4 and Section 5.1).

3. Accepts responsibility for the MPDU.

4. Creates a Deferred Message entity, if an MPDU submitted from a User
Agent has a deferred delivery time.

If there is a deferred delivery time specified in the envelope of the MPDU,
the Interface Region holds the MPDU until the specified time before adding
it to the MTA’s Processing Queue. See Section 2.2.1 for further information
about MPDUs with deferred delivery times.

5. Adds the MPDU to the MTA’s Processing Queue.

This occurs as soon as the deferred delivery time has been reached, or
immediately if no deferred delivery time has been specified.

Inbound communications with Agents are subject to conditions set by the
values of some characteristic attributes of the MTA entity and Agent entities
as shown in Figure 2–1. These may be values supplied with the product, or
values you set when tuning the MTA. You can set a limit on the total permitted
number of concurrent connections with Agent applications by setting the
Maximum Agent Connections attribute of the MTA entity.

Figure 2–1 also shows counter attributes that you can show to monitor inbound
communications with Agent applications.

If there are problems with a connection from an Agent, or with an MPDU
already received, the MTA generates appropriate events (see Chapter 18 and
Chapter 19).

2–2 How MPDUs Enter the MTA

Figure 2–1 Management of the Interface Region - Inbound

Agent Entity
Agent Type
Password
MPDUs In (counter)

MTA Entity
Maximum Agent Connections
Rejected Agent Connections (counter)
Deleted Deferred Messages (counter)
Imported MPDUs (counter)
Submitted MPDUs (counter)

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

MTA

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0203

2.2.1 Deferred Delivery
Deferred delivery allows the originator of a message to specify a future date
and time at which MPDUs should be processed for transfer to the recipients.

If, during submission, the Interface Region detects a deferred delivery value
in the MPDU envelope, it automatically creates a Deferred Message entity. It
then holds the message to await processing at the time specified for delivery.
When this time is reached, the Interface Region passes the message to the
Processing Queue, as described in Chapter 3.

You can display the attributes of Deferred Message entities, but you cannot
change them. You can delete a Deferred Message entity up to the time at
which the message would be processed.

How MPDUs Enter the MTA 2–3

2.3 MPDUs Entering Through the Relayer
When the Relayer receives an inbound transfer association, it does the
following:

1. Creates an MPDU with a local identifier and creation timestamp.

2. Writes the MPDU to stable disk storage so that it can be recovered if
necessary (see Section 2.4 and Section 5.1).

3. Adds the MPDU to the Processing Queue.

4. Accepts responsibility for the MPDU.

An inbound association is initiated by a peer MTA that has an MPDU for
transfer to the MTA. Inbound associations with peer MTAs are subject to
conditions set by the values of the characteristic attributes of the MTA entity
shown in Figure 2–2. These may be values that are supplied with the MTA
or those that you set when tuning the MTA. For example, you can set a limit
on the total permitted number of concurrent associations with peer MTAs by
setting the Maximum Transfer Associations attribute of the MTA entity. In
the case of boundary MTAs, associations with MTAs in other routing domains
are also subject to conditions set by some characteristic attributes of manually
configured Peer MTA entities.

Figure 2–2 also shows counter attributes of the MTA entity and of Peer MTA
entities that you can show to monitor inbound associations with peer MTAs.

If there are problems with a connection between two MTAs, or with a
received MPDU, the MTA generates appropriate events (see Chapter 16 and
Chapter 18).

2.4 Storing Inbound MPDUs
When the MTA receives an MPDU through the Relayer, or through the
Interface Region by means of the Shared File interface, the MPDU is already
encoded in a standardized form, ASN.1 Basic Encoding Rules (BER), so the
MTA writes it to disk unchanged. When the MTA receives an MPDU from
the Interface Region through the XAPI interface, the MPDU is not encoded as
ASN.1, so the MTA first encodes it before writing it to disk.

2–4 How MPDUs Enter the MTA

Figure 2–2 Management of the Relayer - Inbound

MTA entity
Password
Maximum Transfer Associations
Maximum Inbound Transfer Associations
Maximum Idle Inbound Transfer Associations Interval
Inbound Transfer Hard Rejections (counter)
Inbound Transfer Soft Rejections (counter)

Peer MTA entity
* Peer Name * Local Password * Local Name
* Application Context * Direction
* Maximum Inbound Parallel Transfer Associations
* Session Address or Presentation Address
 (depending on application context)
Inbound Acceptances (counter)
Inbound Failures (counter) MPDUs In (counter)
Inbound Disconnections (counter) Octets In (counter)
Lower Layer Protocol Violations (counter)
RTSE Protocol Violations (counter)

Activity entity
Application Context Direction SCID
Interruption Reason Port State

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

MTA

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0743

* Only applicable to
 Peer MTA entities
 representing MTAs in
 other routing domains

How MPDUs Enter the MTA 2–5

Writing MPDUs to disk provides stable storage in case they need to be
recovered, as, for example, after a system failure (see Section 5.1). Because
writing to disk can be interrupted, the MTA ensures that the MPDU is
completely received and written to disk before accepting responsibility for it
and placing a corresponding MPDU in the Processing Queue.

The MTA processes MPDUs in volatile memory. During processing, an MPDU
has a different type of encoding from that of the MPDU written to disk. This
alternative representation of the MPDU contains only those parts of the
MPDU that are necessary for processing. Other parts of the MPDU, such as
bodyparts with content, are more efficiently represented by references to the
MPDU stored on disk, and are used only when required for operations such as
conversion or transfer of the complete MPDU.

When an MPDU has been fully processed and has left the MTA, the MTA
deletes the disk copy of that MPDU. The information about the MPDU that
is then available to the MTA depends on whether or not the optional Message
History logging, Accounting, and Archiving functions have been enabled. If
none of these functions are enabled, all record of the MPDU disappears from
the MTA.

The exception to this is a bad message. This is an MPDU that is recognized
as semantically or syntactically incorrect, or that cannot be transferred
for some reason other than the unavailability of routing information. The
MTA copies such MPDUs to the bad messages directory so that you can
examine them later, using the Message Decoder utility provided with the MTA.
For information about how to run the Message Decoder, see the appendix
describing the operating system specific information.

The MTA automatically creates a Processed Message entity to record
information about the current status of all the MPDUs derived from an
incoming MPDU as they are processed. If you have enabled Message History
logging, the data applicable to Processed Message entities remains in stable
storage until automatically purged after an interval that you can set using the
Message History Purge Interval attribute of the MTA entity.

2–6 How MPDUs Enter the MTA

3
Message Processing

This chapter describes the operations of the Message Processor, which is
responsible for processing MPDUs that it takes from the Processing Queue.

The entity attributes relevant to the management of message processing are
shown in Figure 3–1.

3.1 Overview of Message Processing
When the MAILbus 400 MTA has taken an MPDU from the Processing Queue,
it uses routing information held in the directory and recipient information
contained in the MPDU itself to determine how to route the MPDU and what
further processing it must do to the MPDU (see Section 3.2). In addition to
routing, when necessary, the Message Processor:

• Expands distribution lists (see Section 3.3)

• Redirects MPDUs (see Section 3.4)

• Checks whether the originator of the MPDU is permitted to send messages
to users in a routing domain that is in a different X.400 management
domain (see Section 3.5)

• Adds and removes trace information (see Section 3.6)

• Detects Loops (see Section 3.7)

• Checks whether the message format can be accepted by the recipient’s User
Agent and converts IPM bodyparts (see Section 3.8)

• Downgrades the message content (see Section 3.9)

• Splits MPDUs (see Section 3.10)

Message Processing 3–1

Figure 3–1 Management of the MAILbus 400 MTA’s Main MPDU Processing
Activities

Bodypart Entity
Encoded Information Types
Identifier
Converter Entity
Lossy
Source
Steps
Target

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

MTA

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0205

MTA Entity
MPDU Expiry Intervals: Local, Nonurgent,
 Normal, Urgent
Maximum Message Processors
Expiry Alarms (counter)
Deleted MPDUs (counter)
Directory Configuration Errors (counter)
Directory Service Errors (counter)
Expired MPDUs (counter)
Internal Errors (counter)
Invalid MPDUs Detected (counter)
Loops Detected (counter)
Reports Discarded (counter)
Report Generation Failures (counter)
Unavailable Converters (counter)
System Interface Errors (counter)

The Message Processor can process a number of MPDUs in parallel. You can
use the Maximum Message Processors attribute of the MTA entity to specify
the maximum number of Message Processors that the MTA can have at any
one time.

3–2 Message Processing

Increasing the number of Message Processors will increase the throughput of
MPDUs, provided that the following conditions are met:

• There are sufficient connections to the Directory System Agent (DSA)
available, and the DSA has sufficient capacity.

• There are sufficient resources available on the system on which the
MAILbus 400 MTA is running.

• Enough MPDUs pass through the MAILbus 400 MTA to take advantage of
parallel processing.

When the Message Processor has finished processing an MPDU, it places the
MPDU on the Delivery or Relay Queue. Chapter 4 describes how MPDUs leave
the MAILbus 400 MTA through the Interface Region or the Relayer.

3.2 Looking up Addresses for Routing
To understand how the MAILbus 400 MTA uses the directory to look up
address information, you need to be familiar with the way in which address
and routing information is organized within the directory. The information in
the directory is created and maintained using the entities of the MTS module.
See Part II of HP MAILbus 400 MTA Planning and Setup and the MTS
Module Online Help for more information about the MTS module.

The MAILbus 400 MTA identifies recipients by their O/R addresses. O/R
addresses are stored as entries in the directory, and routing information is
stored as attributes of the O/R address entries. Therefore, the first stage of
MPDU processing is for the Message Processor to access the directory for
information relating to the recipients whose O/R addresses are given in the
envelope of the MPDU.

The Message Processor reads the directory for the entry corresponding to the
recipient O/R address. If it fails to find such an entry, it ignores the last term
from the recipient O/R address, then tries again. It continues to ignore terms
and to retry until it either finds a matching O/R address entry or runs out of
terms. When it finds a matching address, it checks that the entry contains a
routing instruction. If no routing instruction is present, the Message Processor
continues the process of ignoring terms and trying to find a matching entry. If
it fails to find a matching entry with a routing instruction, it cannot deliver
the MPDU for that recipient, and so attempts to send a non-delivery report to
the originator of the message.

Message Processing 3–3

When the MAILbus 400 MTA receives a message with a recipient O/R address
containing a Personal Name attribute but no Common Name attribute, it
searches the directory for an O/R address entry with the Personal Name as an
attribute. If it finds such an O/R address entry, it routes the message according
to the routing instruction in that entry. If the MAILbus 400 MTA does not
find such an entry, it routes the message according to the partial O/R address
formed as a result of ignoring the Personal Name attribute.

Appendix F gives simple examples of different O/R addresses that contain
routing information, and explains how MTAs find the routing information
contained in the directory.

3.3 Expanding Distribution Lists
An O/R address can represent an individual or a distribution list containing a
number of members. Distribution lists can be nested within other distribution
lists. When the Message Processor encounters an O/R address that represents
a distribution list, it expands the distribution list, unless the originator has
prohibited the expansion of the distribution list. When the Message Processor
expands a distribution list, it creates a new MPDU containing only the
members of the distribution list as the recipients.

If the expanded distribution list includes the O/R address of any distribution
list that has already been processed (including its own O/R address) as a
member, the Message Processor does not process those O/R addresses. It
processes the other members of the distribution list as previously described.

3.4 Redirecting MPDUs
A recipient can specify a redirection address. This information is held in
the directory, in the recipient’s O/R address entry. Unless the originator has
prohibited redirection, the Message Processor follows any redirections, which
replace the original recipient address in the message envelope.

The originator of a message can specify an alternative recipient O/R address
in the message envelope. If routing to the intended recipient O/R address
fails, the Message Processor attempts to route the MPDU to the alternative
recipient O/R address specified in the message envelope. If routing to the
alternative recipient succeeds, the Message Processor does not generate a
non-delivery report in respect of the intended recipient O/R address. However,
if routing to the alternative recipient fails, the Message Processor generates a
non-delivery report for the alternative recipient O/R address. This non-delivery
report includes information about the redirection of the original MPDU, and is
returned to the originator

3–4 Message Processing

Note that a non-delivery report cannot be redirected. If an originator has a
redirection specified in their own O/R address entry, any non-delivery reports
that are destined for this originator are discarded by the MTA and the MTA
generates a Report Discarded event.

3.5 Sending Messages Between Different X.400 Management
Domains

When the Message Processor receives a message or probe addressed to a
recipient in another routing domain, the Message Processor checks the
Different CCITT Domain attribute of the Domain entity in the directory that
represents the other routing domain. The Domain entity is an entity of the
MTS module. The Different CCITT Domain attribute is used to indicate
whether or not the routing domain represented by the Domain entity is part of
an X.400 management domain that is different from your X.400 management
domain.

If a recipient’s routing domain is in a different X.400 management domain,
(that is, if the Different CCITT Domain attribute is set to TRUE) the Message
Processor checks the May Cross CCITT Boundaries attribute of the user’s O/R
address entry in the directory. The May Cross CCITT Boundaries attribute
indicates whether a user with this O/R address is permitted to send messages
to users in routing domains that are part of an X.400 management domain
that is different from your X.400 management domain. In other words, this
attribute indicates whether the user is permitted to send messages that cross
X.400 management domain boundaries.

If the originator is permitted to send messages that cross X.400 management
domain boundaries, the Message Processor processes the message so that
it can be transferred to the recipient’s routing domain. If the originator
is not permitted to send messages that cross X.400 management domain
boundaries, the Message Processor does not process the message for transfer to
the recipient’s routing domain, but instead sends a non-delivery report to the
originator.

See the MTS Module Online Help for more information about ORaddress and
Domain entities.

Message Processing 3–5

3.6 Adding and Removing Trace Information
There are two types of trace information that are recorded in the message
envelope:

• External trace information

External trace information identifies each X.400 management domain that
has transferred the message.

• Internal trace information

Internal trace information identifies each MTA that has transferred the
message within an X.400 management domain.

The Message Processor is responsible for adding and removing trace
information. Section 3.6.1 describes when the Message Processor adds
external trace information and Section 3.6.2 describes when the Message
Processor adds and removes internal trace information.

3.6.1 Adding External Trace Information
The Message Processor uses the GDI information specified by the Global
Domain Identifiers attribute of the MTA entity in the MTS module as the
external trace information. If there is a list of GDIs in the Global Domain
Identifiers attribute, that is, the routing domain is multi-homed, the Message
Processor uses the first GDI in the list as external trace information.

The Message Processor adds external trace information to messages in two
circumstances:

• When it receives a message that has been submitted from a User Agent or
Message Store.

• When it detects that a message originated from another X.400 management
domain, as indicated by the Different CCITT Domain attribute of the
relevant Domain entity.

The Message Processor does not remove external trace information from
messages.

3–6 Message Processing

3.6.2 Adding and Removing Internal Trace Information
The MTA uses the MTA name (including area name(s)) as the internal trace
information.

The Message Processor adds internal trace information to the envelope of all
messages it processes. It removes internal trace information when it detects
that the message will be transferred to another X.400 management domain,
as indicated by the Different CCITT Domain attribute of the relevant Domain
entity.

3.7 Detecting Loops
The MTA uses trace information to detect loops in the route taken by a
message. When the Message Processor receives a message, it checks the GDIs
in the external trace information and the number of MTAs in the internal trace
information. The Message Processor detects an external trace loop when it
receives a message that has previously been relayed to the X.400 management
domain of which the MTA is a part. The Message Processor detects an internal
trace loop when it receives a message that has been handled by 50 MTAs
within the same X.400 management domain.

When the Message Processor detects a loop, it does not transfer the message,
and instead sends a non-delivery report to the originator. The Message
Processor copies the message that has been sent through a loop to the bad
messages directory.

3.8 Checking Message Format and Converting IPM
Bodyparts

The envelope of an MPDU specifies the MPDU’s content type (for example,
IPMS, EDI, Undefined) and, where relevant, the constituent data formats or
bodyparts.

When the Message Processor receives a message, it checks its content type,
content length, and the constituent data formats or bodyparts, against content
information stored in the directory. The content information in the directory
is held in a recipient’s O/R address entry. The Message Processor checks the
O/R address entry for each recipient that is specified in the message envelope.
Using the content information the Message Processor decides what actions to
perform for each message recipient. If the content type or the content length of
the message are not acceptable to a recipient, the Message Processor does not
deliver the message and returns a non-delivery report to the originator.

Message Processing 3–7

If the content type of an MPDU is IPMS, and IPMS content type is acceptable
to the message recipients, the Message Processor determines whether the
bodyparts of the MPDU are also acceptable or whether any of the bodyparts
must be converted. The Message Processor determines which bodyparts are
acceptable to each recipient from the content information in the recipient’s O/R
address entry in the directory.

Note that the MAILbus 400 MTA attempts to convert only IPMS content types.
Messages containing content types other than IPMS are either transferred
without conversion, or not delivered. When the Message Processor does not
deliver a message, it returns a non-delivery report to the originator.

IPM bodypart converters enable the MAILbus 400 MTA to convert the
constituent bodyparts of IPM contents into other bodyparts. A converter is a
software tool that translates data from one encoding format or character set to
another. An example of a conversion requirement is when an IPM containing
a bodypart in Teletex arrives at the MAILbus 400 MTA, but the User Agent of
one of the recipients can only handle IA5 text. In this situation, the Teletex
bodypart needs to be converted to IA5 text for that recipient.

3.8.1 Criteria for Conversion
The MAILbus 400 MTA converts the bodyparts of IPM contents according to
the following criteria:

• The instructions contained in the MPDU envelope

The MPDU envelope can contain instructions set by the originator as to
whether or not conversions are permitted. If conversions are permitted,
the envelope of the MPDU indicates whether any loss of data is permitted
during these conversions.

• The types of bodypart acceptable to recipients

These are indicated by the Content Information attribute of the recipient’s
O/R address entry stored in the directory.

• The converters available to the MTA

Section 3.8.2 describes the types of IPM bodypart converters available.

3–8 Message Processing

If the content type of an MPDU is IPMS, and the MPDU includes bodyparts
that are not acceptable to a recipient, the MAILbus 400 MTA uses the relevant
converter, or converter sequence, to convert each bodypart as necessary:

• If a bodypart is acceptable to a recipient, the MTA transfers it without
conversion.

• If a bodypart is not acceptable to a recipient and the MTA can convert it
to an acceptable IPM bodypart, the Message Processor performs the most
acceptable conversion it can, based on the recipient’s preferences specified
in the O/R address entry.

• If a bodypart is not acceptable to a recipient and the Message Processor
cannot access an appropriate converter, the bodypart is transferred without
conversion, unless this is the last MTA in the route of the MPDU.

If the MPDU is at the MTA which is to deliver or export the MPDU,
the MTA delivers, exports, or does not deliver the MPDU according to
the content information specified in the recipient’s O/R address entry. If
the content information includes a list of preferred bodyparts, and that
list includes a value signifying that any bodypart is acceptable, the MTA
delivers or exports the MPDU without conversion. Otherwise, the MTA
does not deliver the MPDU and attempts to send a non-delivery report to
the message originator.

To maximize the probability of successful transfer, MPDUs are converted
as early as possible during routing; that is, by the first MTA in the routing
domain that receives the MPDU and has an appropriate IPM bodypart
converter available.

For more information about converting IPM bodyparts, see Chapter 11.

3.8.2 Converters Available to the MTA
A set of IPM bodypart converters for common messaging formats (such as
IA5, T.61 (Teletex) and DDIF) is supplied with the MAILbus 400 MTA. A set
of corresponding Converter and Bodypart entities is created as part of the
MTA startup procedure. For the MAILbus 400 MTA to convert IPM bodyparts,
these entities must exist. Therefore, if you modify the part of the MTA startup
procedure that creates these entities, or if you delete any of these entities, you
prevent particular conversions.

You can write or obtain additional IPM bodypart converters, and define new
IPM bodypart types. This means that the MTA can do a potentially unlimited
range of IPM bodypart conversions. If you install a new converter or define a
new IPM bodypart type, you must use MTA management commands to create
corresponding Converter and Bodypart entities (see Chapter 11).

Message Processing 3–9

Where there is no converter available to convert one bodypart directly to
another, the MAILbus 400 MTA can use a number of converters in sequence to
complete the conversion. See Section 12.2.7 for details of how to do this.

3.9 Downgrading Message Content
The interpersonal messaging (IPMS) content type is defined in both the 1984
and 1992 MHS Standardss. If the information in the directory indicates
that the recipient can only accept message contents of the type Interpersonal
messaging 1984, the Message Processor downgrades the message content.
Downgrading the message content is described in Chapter 6. Downgrade is
invoked only when all other requested conversions are complete.

3.10 Splitting MPDUs
When an MPDU is sent to more than one recipient, or an MPDU is converted,
it must eventually be split into as many occurrences as there are destinations.
To maximize routing efficiency, an MPDU is split as late as possible in its
route, thus avoiding unnecessary copies of MPDUs being transferred over
a network. An MPDU is not split until it reaches an MTA where there are
recipients that cannot be reached by a common route, or where the content has
been converted or downgraded in different ways for different recipients.

The Message Processor always splits an MPDU into the minimum possible
number of related MPDUs consistent with available routing possibilities and
the requirements of recipients. Having split the MPDU, the Message Processor
places each resultant MPDU on a queue. If an MPDU is for delivery or export
to an Agent, the Message Processor sends it to the Delivery Queue.

If the MPDU is for one or more recipients at another MTA, the Message
Processor sends it to the Relay Queue for transfer to the next MTA in the
MPDU’s route.

MPDUs representing reports are never split, because, by definition, they have
only a single destination.

3–10 Message Processing

4
How MPDUs Leave the MTA

This chapter describes the different ways in which MPDUs leave the MTA for
forwarding to one or more destinations in an MHS.

4.1 Types of Exit from the MTA
An MPDU leaves the MTA by one of the following routes:

• Delivery

This is where the MPDU, representing a message or report, leaves through
the Interface Region of the MTA and is delivered to a User Agent or
Message Store (see Section 4.2).

• Export

This is where an MPDU, representing a message, probe, or report, leaves
the MTA through the Interface Region and is transferred through a
Gateway to another messaging system (see Section 4.2). An exported
MPDU leaves the MAILbus 400 MTA, but it does not necessarily leave the
MTS.

• Outbound transfer

This is where the MPDU leaves the MTA through the Relayer and is
transferred to another X.400 MTA in your routing domain or in another
routing domain (see Section 4.3).

4.2 MPDUs Leaving Through the Interface Region
When the MTA has an MPDU for an Agent, the Interface Region takes the
MPDU from the Delivery Queue and makes it available for either delivery or
export.

The MPDUs in the Delivery Queue are maintained in the order of their priority
and arrival time. The Delivery Queue is headed by the MPDUs of the highest
priority. For MPDUs of equal priority, those that have waited at the MTA the
longest are at the front of the queue. The MPDU currently at the front of the

How MPDUs Leave the MTA 4–1

queue is the first that the MTA passes to the Agent when the Agent connects
to the MTA to collect its messages. The Interface Region can process outbound
MPDUs for several Agents at the same time.

A registered Agent of the MTA can use either the XAPI interface, or the
Shared File interface. The Shared File interface is only used by Gateways.

An unregistered Agent of the MTA can only use the XAPI interface.

4.2.1 Registered Agents Using the XAPI Interface
For registered Agents using the XAPI interface, the Interface Region does the
following:

1. Activates, if possible, the appropriate Agent application

If the Agent is based on the 1984 MHS Standards, the Interface Region
downgrades the message envelope (see Chapter 6).

The Interface Region tries to make known the availability of an MPDU
and bring the application into action to fetch the MPDU. You can use the
Invocation Filename attribute of the Agent entity to specify a shell script
or image (Tru64 UNIX), or command procedure (OpenVMS), to be run in
order to start up the Agent.

The Interface Region tries to run the invocation file, but to avoid over-
frequent communication with any particular Agent, it does not try more
than once for any particular MPDU. In addition, the Interface Region will
never run the invocation file for the same Agent more than once within
a minute. If there is an existing connection to a particular Agent, the
invocation file for the Agent is not used.

2. Holds the MPDU in the Delivery Queue until it is collected or expires

Whether or not the Agent has been notified of the availability of an
MPDU, it must initiate a connection to the MTA in order to collect any
available MPDUs from the Delivery Queue. The Agent can be permanently
connected, or make a connection only infrequently. If the MPDU is not
collected from the Delivery Queue, it eventually expires. In this case,
the MTA attempts to send a non-delivery report to the originator of the
message and deletes the MPDU from the Delivery Queue.

4.2.2 Unregistered Agents Using the XAPI Interface
For unregistered Agents using the XAPI interface, the Interface Region cannot
use an Invocation File and only performs the actions described in step 2 of
Section 4.2.1.

4–2 How MPDUs Leave the MTA

4.2.3 Registered Agents Using the Shared File Interface
For registered Agents using the Shared File 1984 interface, the Interface
Region downgrades the message envelope and writes the MPDU to a file in
the Output Queue, which is then accessed by the Agent (see Chapter 6). For
registered Agents using the Shared File 1992 interface, the Interface Region
writes the MPDU to a file in the Output Queue, which is then accessed by the
Agent.

Thereafter, the Interface Region treats the MPDU as having been exported,
and the Agent is responsible for any further processing.

4.2.4 All Agents
When an MPDU has been written to a file for an Agent using the Shared File
interface, or has been collected by an Agent using the XAPI interface, the
Interface Region does the following:

• Ends its responsibility for the MPDU

• Writes a journal record for the MPDU

• Deletes the original version of the MPDU from stable storage on disk (see
Section 2.4)

The Interface Region generates reports in respect of MPDUs that it cannot
deliver. It then places these reports on the Processing Queue for delivery to
the originator of the message.

Outbound communications with Agents are subject to conditions set by the
values of the characteristic attributes of Agent entities and the MTA entity
shown in Figure 4–1. These may be values supplied with the product, or values
you set when tuning the MTA. Figure 4–1 also shows counter attributes that
you can show to monitor outbound communications with Agents.

If there are problems with a connection to an Agent, the MTA generates
appropriate events (see Chapter 19).

How MPDUs Leave the MTA 4–3

Figure 4–1 Management of the Interface Region - Outbound

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

MTA

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0206

Agent Entity
Agent Type
Invocation Filename
MPDUs Out (counter)

MTA Entity
Maximum Agent Connections
Delivered MPDUs (counter)
Exported MPDUs (counter)
Rejected Agent Connections (counter)

4.3 MPDUs Leaving Through the Relayer
When the MTA has an MPDU for a peer MTA, the Relayer takes it from the
Relay Queue and does the following:

1. Seeks or initiates an outbound association

If the MTA has an existing idle association to the appropriate peer MTA,
it uses this association to transfer the MPDU. If no idle association is
available, the MTA attempts to create a new association. (Section 7.3.4
describes the conditions under which the MTA is unable to create a new
association to a peer MTA.)

4–4 How MPDUs Leave the MTA

If a new association can be initiated, the Relayer operates the RTSE
protocol to establish communication with the peer MTA. The type of X.400
connection that the Relayer uses depends on whether or not the peer MTA
is in the same routing domain. If it is in the same routing domain, the
Relayer uses OSI ACSE associations. If the peer MTA is in a different
routing domain, the type of connection that the Relayer uses is determined
by the Application Context attribute of the appropriate Peer MTA entity.
This attribute can have one of the following values:

• MTS Transfer

This indicates that the peer MTA fully supports 1992 MHS Standards,
and uses OSI ACSE associations.

• MTS Transfer Protocol

This indicates that the peer MTA accepts 1992 X.400 messages, using
OSI Session connections.

• MTS Transfer Protocol 1984

This indicates that the peer MTA accepts only 1984 X.400 messages,
using OSI Session connections. In this case, the boundary MTA
downgrades messages before it transfers them to the peer MTA (see
Chapter 6).

2. Transfers the MPDU

When the Relayer starts to transfer an MPDU, it creates an Activity entity,
which it uses to provide information about the state of the association and
its activity in transferring the MPDU. (See Section 1.3.4 for information
about Activity entities.)

While transferring an MPDU, the Relayer keeps checkpoint information
about the progress of the transfer. This information can be used in case of
a need to recover the association and resume the transfer of the MPDU.

3. Queues the MPDU for retry if transfer fails or no association could be
established

It can happen that the Relayer fails to establish an association or fails to
complete the transfer of an MPDU to a peer MTA. This could be because
the peer MTA is not operational and so cannot be reached, or because a
communications failure causes the peer MTA to become unavailable before
the transfer of the MPDU is complete. In such instances, the Relayer tries

How MPDUs Leave the MTA 4–5

again to transfer the MPDU. If this fails the Relayer takes the following
action according to reason for failure;

• If the Relayer has failed to establish an association, the Relayer
continues trying to transfer the MPDU at intervals, as described in
Section 4.3.2, until the MPDU expires.

• If the Relayer fails to complete the transfer of an MPDU, the
Relayer attempts to transfer the MPDU at intervals, as described
in Section 4.3.2.

If the transfer fails to complete three times, the Relayer discards any
recovery information and attempts to transfer the MPDU at one minute
intervals, three more times. If transfer still fails, the Relayer issues an
Invalid MPDU event and sends a non-delivery report to the originator.

4. Ends its responsibility for the MPDU

Once the MPDU has been successfully transferred and the peer MTA has
accepted responsibility for it, the Relayer writes a journal record for the
MPDU.

5. Deletes the MPDU

After the Relayer has ended its responsibility for the MPDU, it deletes the
MPDU from volatile memory and, if no other MPDUs refer to it, deletes the
original version of the MPDU from stable storage on disk (see Section 2.4).

Outbound associations with peer MTAs are subject to conditions set by the
values of the characteristic attributes of the MTA entity and Peer MTA entities
shown in Figure 4–2. These may be values that are supplied with the MTA
or those that you set when tuning the MTA. Figure 4–2 also shows counter
attributes that let you monitor outbound associations with peer MTAs.

If there are problems with a connection between two MTAs, the MTA generates
appropriate events (see Chapter 16).

4.3.1 Selecting MPDUs from the Relay Queue
The MTA maintains MPDUs in the Relay Queue in the order of their priority
and arrival time. The Relay Queue is headed by MPDUs of the highest priority.
For MPDUs of equal priority, those that arrive at the MTA first are at the front
of the queue. The MPDU currently at the front of the queue is normally the
first to be considered for transfer by the Relayer.

4–6 How MPDUs Leave the MTA

Figure 4–2 Management of the Relayer - Outbound

MTA Entity
Maximum Transfer Associations
Maximum Outbound Transfer Associations
Maximum Idle Outbound Transfer Associations Interval
Maximum Outbound Parallel Transfer Associations
Maximum Transfer Lookahead
Initial Transfer Retry Interval
Maximum Transfer Retry Interval
Transport Service Options Template Name
Peer MTA Entity
* Peer Name * Local Password * Local Name
* Application Context * Direction * Session Address
* Presentation Address * Peer Domain
* Transport Service Options * Template Name
* Maximum Outbound Parallel Transfer Associations
Retry Count Retry Time
Outbound Establishment Failures (counter)
Outbound Failures (counter)
MPDUs Out (counter) Outbound Acceptances (counter)
Outbound Hard Rejections (counter)
Outbound Soft Rejections (counter)
Lower Layer Protocol Violations (counter)
RTSE Protocol Violations (counter)
Activity Entity
Application Context Current MPDU Direction
Interruption Reason Port SCID State

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

MTA

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0744

* Only applicable to
 Peer MTA entities
 representing MTAs in
 other routing domains

How MPDUs Leave the MTA 4–7

Strict adherence to the principle of choosing MPDUs for transfer does not
make optimum use of established associations. Sometimes the Relayer has an
idle association that is unsuitable for the MPDU at the head of the queue but
which could be used for an MPDU later in the queue. You can set a value for
the Maximum Transfer Lookahead attribute of the MTA to allow the Relayer
to select MPDUs that are not at the head of the Relay Queue, in order to take
advantage of existing associations. The value of this attribute determines
how far down the queue the Relayer can look in order to select an MPDU for
transfer across an existing association.

4.3.2 Outbound Transfer Retries
When a peer MTA cannot be reached, or a transfer fails to complete, the
Relayer establishes a retry set for MPDUs destined for the unavailable peer
MTA. It also starts a timer associated with the retry set, with a value derived
from the Initial Transfer Retry Interval attribute of the MTA entity. Whenever
the Relayer selects an MPDU from the Relay Queue to begin a transfer, it
checks whether a retry set exists for the MTA to which the MPDU is to be
sent. If a retry set exists for that MTA, the Relayer adds the MPDU to the set.
If not, it tries to transfer the MPDU.

When the timer associated with a retry set expires, all the MPDUs in the set
are placed on the Relay Queue again. If transfer of the first MPDU of the retry
set is successful, the Relayer transfers the other MPDUs in the usual way. If
transfer of the first MPDU of the retry set fails, the retry timer is restarted,
with double the initial retry interval, and MPDUs again accumulate in the
retry set. The Relayer maintains the retry set and retries the MPDUs until it
successfully transfers them to the peer MTA or until the MPDUs eventually
expire.

Each time the Relayer restarts the timer for a retry set for a particular
unavailable peer MTA, the Relayer doubles the transfer retry interval. When
the retry interval reaches the value of the Maximum Transfer Retry Interval
attribute of the MTA entity, or if it would exceed this value when doubled
again, the Relayer stops increasing the interval between retries. Eventually,
the MPDU expires; the MTA attempts to send a non-delivery report to the
originator of the message and deletes the MPDU from the Relay Queue.
For information about modifying to the retry interval, see Section 7.3.5 and
Table 7–4.

4–8 How MPDUs Leave the MTA

5
Keeping Records of MPDUs

The MAILbus 400 MTA has several methods of keeping records of its activities
in handling MPDUs. This chapter gives an overview of:

• Journaling

Journaling enables the MAILbus 400 MTA to keep track of the transfer
status of all MPDUs for which it is currently responsible (see Section 5.1.1).
The MTA uses Journaling to reconstruct and transfer MPDUs whose
processing or transfer was interrupted by system failure or disabling of an
MTA.

• Accounting

This optionally-enabled function allows the MAILbus 400 MTA to record
information about its own MPDU traffic (see Section 5.2). It is useful for
managing or costing the work load of the MTA. Accounting enables you to
choose the details of information to be recorded.

• Archiving

This optionally-enabled function allows the MAILbus 400 MTA to put
complete copies of selected MPDUs into the Archive directory (see
Section 5.3). Archiving enables you to choose the registered Agents or peer
MTAs for which all MPDUs are archived. You can also choose whether to
archive incoming or outgoing MPDUs, or both.

• Message History logging

This optionally-enabled function allows the MAILbus 400 MTA to record
historical data about all the MPDUs representing messages (not probes
or reports) that it has processed (see Section 5.4). It is useful for tracing
messages when solving MTS problems, and is most useful when enabled at
the boundary MTAs in an MTS.

Keeping Records of MPDUs 5–1

Figure 5–1 Management of Accounting, Archiving, and History Logging

MTA

MTA Entity
Delivery Accounting Filter
Export Accounting Filter
Agent Entity
Archive (Off, Outbound, or
Inbound and Outbound)
Failed Archives (counter)

Peer MTA Entity (manually
configured only)
Archive (Off, Outbound, or
Inbound and Outbound)
Failed Archives (counter)
Transfer Out Accounting
 Filter

Peer MTA Entity (manually
configured only)
Archive (Off, Inbound, or Inbound and
Outbound)
Transfer In Accounting Filter
Failed Archives (counter)

MTA Entity
Import Accounting Filter
Submission Accounting Filter
Agent Entity
Archive (Off, Inbound, or Inbound and Outbound)
Failed Archives (counter)

MTA Entity
Accounting State (On or Off)
Accounting Purge Interval
Accounting Data Losses (counter)
Message History State (On or Off)
Message History Purge Interval
Message History Data Losses
 (counter)

MIG0208

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

Figure 5–1 provides an overview of the entity attributes that you use to control
and monitor the Accounting, Archiving, and Message History logging functions
of the MAILbus 400 MTA.

5–2 Keeping Records of MPDUs

5.1 Journaling and Recovery
The MTA stores MPDUs for which it is responsible in stable disk storage. In
this way, the messages can survive a system failure. If the system that the
MTA is running on fails and is restarted, the MTA automatically recovers from
the system failure and continues the processing and transfer of MPDUs whose
processing or transfer was interrupted by the system failure.

5.1.1 Journaling
MPDUs are frequently split into a number of MPDUs. This means that a
system failure can affect some MPDUs, split from a single MPDU, while they
are still in the course of processing, delivery, or transfer. Only those MPDUs
that have not been completely transferred need to be recovered. If the disk
copy of an MPDU were to be processed again for every recipient, any recipient
to whom a copy of the MPDU had already been transferred would receive
a duplicate. To minimize such duplication, the MTA maintains, on disk, an
active journal file of completed operations. Journal records are appended to the
journal under the following circumstances:

• When another MTA acknowledges the transfer of an MPDU representing a
message, probe, or report.

• When an Agent acknowledges the delivery of a message or a report.

• When the MTA discards a report that it has generated from a message
because it cannot route the report.

The MTA automatically purges the journal file when it reaches a certain size.
It determines this size on the basis of previous MPDU traffic. This purging
releases disk space and reduces the time needed to process the journal file
during recovery.

The MTA purges the journal file by a rollover process which involves the
following:

1. Creating a new journal file.

2. Copying journal records from the old journal file to the new one.

This happens if the MTA has processed only part of the MPDUs that were
split from a single MPDU in stable disk storage. The MTA copies the
journal records for those split MPDUs that were processed completely at
the time of journal rollover.

Keeping Records of MPDUs 5–3

3. Deleting the old journal file (or files, if the MTA failed during a previous
journal rollover).

The MTA continues to function during rollover. Rollover cannot take place
while recovery is in progress (see Section 5.1.2).

5.1.2 Recovery
The MTA uses its journal file to recover from a system failure or reboot, or
when it is enabled after having been disabled. During recovery, the MTA uses
the journal file, in conjunction with the disk copy of MPDUs the MTA has
responsibility for, to recover MPDUs for destinations that have not yet received
them.

The MTA first determines whether there is more than one journal file. This
could occur if a system failed during journal rollover, and each of the files could
contain valid records. In this case, the MTA processes all files.

The MTA then reads, from disk, the MPDUs for which it is currently
responsible, and determines whether or not there are relevant journal file
records. If the journal file does not contain a record for every recipient of
an MPDU, the MPDU was not completely processed. The MTA annotates
incompletely processed MPDUs so that they are put into the Processing Queue
in order to complete processing for the remaining recipients. Meanwhile,
normal operation of the MTA begins and new MPDUs are accepted and
processed in parallel with the recovery operation, including the writing of new
journal records to the journal file.

If, for any reason, the MAILbus 400 MTA is stopped, a small number of journal
records may be lost. The effect of this is that a few recipients of an MPDU
receive an extra copy of it after MTA recovery.

Because recovery involves a step-by-step resumption of normal processing,
including journaling, it does not matter if a system failure occurs during
MPDU recovery.

In addition to an MTA recovering its own messages, it can also recover
messages from a peer MTA that is in the same routing domain. You might
want an MTA to recover a peer MTA’s messages when the peer MTA is
unavailable for some time, for example, because the system that the peer MTA
is running on is shut down for maintenance. An MTA recovers messages from
a peer MTA by copying them from the peer MTA and subsequently deleting
them from the peer MTA’s disk. As a result, the MTA takes responsibility for a
message it copies from the peer MTA and attempts to process the message in
the same way as the peer MTA would have done. For more information about
using an MTA to recover messages from a peer MTA see Section 18.8.

5–4 Keeping Records of MPDUs

5.2 Accounting
The MTA can record data about the MPDUs it processes. You can use
Accounting data to determine MPDU traffic in and out of an MTA for the
purpose of billing MTS users, or for statistical analysis of aspects of the MTA
work load.

To use Accounting, you must first switch it on by means of the Accounting
State attribute of the MTA entity. Figure 5–1 shows where Accounting
information is captured during MPDU transfer through the MTA. Note that
Accounting information relating to communications with peer MTAs applies
only to peer MTAs in other routing domains.

There are Accounting filters that you can set to choose the data items that are
written to the Accounting log. See Chapter 8 for details of Accounting filters.
The data items written to the Accounting log include, for each MPDU, the
originator, recipients, priority, and size. If Accounting is switched on and an
item of Accounting data cannot be logged, the MTA generates an event and
increments a corresponding counter.

Accounting data is held on disk and is retained for a time period that you
set with the Accounting Purge Interval attribute of the MTA entity. The
MTA writes Accounting data to disk in ASN.1 (BER). The MTA includes an
Accounting Decoder tool for converting this data to text in a file which can be
used to generate invoices or for analysis.

For information on management of Accounting files see Chapter 8. For
information about how to use the Accounting Decoder tool see the appendix
describing the operating system specific information.

5.3 Archiving
The MTA can retain, on disk, complete copies of MPDUs it processes. To use
Archiving, you must first switch it on by means of the Archive attributes of
the Agent and Peer MTA entities for which you require MPDUs to be kept.
Archiving can be used for registered Agents, and for peer MTAs in other
routing domains. You can set Archiving to operate for inbound or outbound
communications, or both. Figure 5–1 shows the stages in MPDU transfer
through the MTA at which Archive data is captured.

Archive copies of MPDUs are stored in ASN.1 (BER) format. The MAILbus 400
MTA includes a Message Decoder tool which you can use to decode archived
messages in order to produce a readable copy of them.

Keeping Records of MPDUs 5–5

The MTA does not automatically purge archived files. If you do not regularly
transfer files from the disk to some other storage medium, the archive area
becomes full and Archiving stops working. If the MTA fails to archive an
MPDU, it generates an event and increments the corresponding counter.

For information about the management of archived files see Chapter 9. For
information about how to use the Message Decoder tool see the appendix
describing the operating system specific information.

5.4 Message History Logging
The MTA automatically creates a Processed Message entity for every message
that enters the MTA. It then updates the Recipient Information status
attribute of the Processed Message entity for each MPDU derived from the
incoming message as it passes through the MTA (see Figure 5–2).

The MTA can retain Message History information on all MPDUs that represent
messages (not probes or reports) for which it has taken responsibility. This
enables you to trace what happened to a particular MPDU at the MTA. If
Message History logging is switched on at other MTAs in the MTS, you can
also trace the MPDU through other MTAs (see Chapter 10).

The MTA retains Message History information only if Message History logging
is switched on. To switch on Message History logging, you must enable it
by means of the Message History State attribute of the MTA entity (see
Figure 5–1). Message History information is held on disk and is retained for
a time period that you can set by using the Message History Purge Interval
attribute of the MTA entity.

If Message History logging is switched on and fails for a particular MPDU, the
MTA generates an event and increments the corresponding counter.

5.5 Bad Messages
A bad message is any MPDU which the MTA recognizes as semantically or
syntactically incorrect, or which it cannot deliver or transfer for some reason
other than the unavailability of routing information. The MTA copies such
MPDUs to a file in a directory assigned to bad messages. You can examine bad
messages by means of the Message Decoder tool, provided with the MTA, as
described in the appendix describing the operating system specific information.

5–6 Keeping Records of MPDUs

Figure 5–2 Processed Message Entity - MPDU State Values

Being
Processed

Awaiting
Delivery or Export

Awaiting Delivery or
Export Retry

Awaiting Transfer
Awaiting Transfer

Retry

Being
Transferred

Being
Delivered or

Exported

TransferredDelivered or
Exported

Awaiting Processing
Awaiting Processing

Retry

Deleted
Expired
Corrupt

Interface
 Region

Out-
bound

Interface
 Region

In-
bound

Processing
Queue

Relayer
Out-

bound

Relayer
In-

bound

Relay
Queue

Message
Processor

Delivery
Queue

Copies of messages written to
stable disk storage

Peer
MTAs

Agents

MIG0209

Keeping Records of MPDUs 5–7

6
Downgrading

A MAILbus 400 MTA can interwork with a peer MTA, or an Agent, that
conforms to the 1984 MHS Standards. The 1992 MHS Standards define rules
for downgrading a message so that it is compatible with the CCITT 1984 X.400
Series of Recommendations. The MAILbus 400 MTA implements these rules.
In addition, it implements extra procedures, not defined in the Standards,
to facilitate interworking with a 1984 X.400 MHS. These procedures are
concerned with the use of the Common Name O/R address attribute and the
use of the IPMS content type. This chapter describes:

• How the MAILbus 400 MTA downgrades messages (Section 6.1).

• When the MAILbus 400 MTA downgrades (Section 6.2 and Section 6.3).

• How to set up your MTS to support downgrading (Section 6.4).

6.1 How the MAILbus 400 MTA Downgrades Messages
The following sections describe how the MAILbus 400 MTA downgrades the
envelope, the O/R address attributes, and the content of a message.

To fully understand these sections, you need an understanding of the MHS
standards. You may also need to refer to copies of the standards and their
corresponding profiles. See Appendix A for information about how to obtain
these standards and profiles.

6.1.1 Downgrading the Message Envelope
The MAILbus 400 MTA implements the following downgrading procedures for
the message envelope:

• Those defined in:

Annex B of CCITT Recommendation X.419

International Standard ISO/IEC 10021-6

Downgrading 6–1

• Those defined in:

Annex D of ISO/IEC ISP 10611-1 (1994)

Chapter 8 of the OIW Stable Implementation Agreements, December
1993

CEN/CENELEC profile ENV 41214

• Those defined in RFC 1328 X.400 1988 to 1984 Downgrading

The way in which the MAILbus 400 MTA downgrades the Common Name
attribute of an O/R address exceeds the requirements defined in the standards;
see Section 6.1.2.1 and Section 6.1.2.2 for details.

The MAILbus 400 MTA also downgrades the Internal Trace Information field,
which is defined in the 1992 MHS Standards, so that it is compatible with that
used by 1984 MOTIS implementations that conform to the CEN/CENELEC
profile ENV 41201 and Chapter 7 of the OIW Stable Implementation
Agreements. When the MAILbus 400 MTA receives a message containing
Internal Trace Information from an MHS based on the 1984 MHS standards, it
upgrades the Internal Trace Information similarly.

6.1.2 Downgrading O/R Address Attributes
The MAILbus 400 MTA implements all the downgrading procedures for
removing O/R address attribute extensions as defined in Annex B of CCITT
Recommendation X.419 and International Standard ISO/IEC 10021-6.

The Common Name attribute is recommended for naming users within an MTS
based on the 1992 MHS Standards. However, the Common Name attribute
is not present in the 1984 MHS Standards. When the MAILbus 400 MTA is
communicating with systems based on the 1984 MHS Standards, in addition to
mapping the Common Name attribute to a Domain Defined attribute (DDA) (as
defined in the 1992 MHS Standards), it maps the Common Name to a Personal
Name. The following sections describe the mapping procedures in detail and
explain how they work together.

6.1.2.1 Mapping Between Common Name and Personal Name
Users in an MHS based on the 1992 MHS Standards are normally identified
by a mnemonic O/R address that contains a Common Name attribute. This is
a single O/R address field that contains any name by which the user is known;
for example, William Davies or Bill Davies.

6–2 Downgrading

Users in an MHS based on the 1984 X.400 MHS are normally identified by a
mnemonic O/R address that contains a Personal Name attribute. This attribute
contains the following four fields:

• Surname

• Given name

• Initials

• Generation

The differences between Common Name and Personal Name attributes mean
that it may not be possible to exchange messages between an MHS based
on the 1992 MHS Standards and an MHS based on the 1984 X.400 MHS,
that is, unless you provide appropriate information in the directory to allow
the MAILbus 400 MTA to map between Common Name and Personal Name
attributes (see Section 6.4 for details of the information you need to provide).

When the MAILbus 400 MTA transfers a message destined for either a
peer MTA or an Agent based on the 1984 standards, and the message has
a recipient or originator O/R address that contains a Common Name attribute
but no Personal Name attribute, the MAILbus 400 MTA looks up the O/R
address in the directory to see if there is a corresponding Personal Name
registered. If a corresponding Personal Name is registered, the MAILbus 400
MTA adds it to the O/R address on the message. The MAILbus 400 MTA then
deletes the Common Name attribute, and, if possible, places the Common
Name value in a DDA (see Section 6.1.2.2).

6.1.2.2 Mapping Between a Common Name and a DDA
When mapping a Common Name attribute to a DDA, the MAILbus 400 MTA
follows the procedure defined in the CEN/CENELEC profile ENV 41214 and
the 1992 MHS Standards. This procedure preserves the Common Name
attribute value of an O/R address in a DDA of type ‘‘common’’. A message with
a recipient O/R address that has been modified in this way can pass through
a 1984 MTS and reach an MTA based on the 1992 MHS Standards, where the
Common Name value will be restored to the Common Name attribute.

For this procedure to work successfully, the following conditions must apply:

• All MTAs based on the 1992 MHS Standards in the MTS make use of it.

• All 1984 MTAs and User Agents involved in handling the message are able
to process O/R addresses containing DDA attributes.

Downgrading 6–3

• There is a DDA available in the O/R address to use for this purpose.

• The characters used in the Common Name attribute value all belong to
the printable string character set and can therefore be placed in a DDA
attribute.

6.1.2.3 How the Mappings for Common Name Work During Routing
This example describes how a MAILbus 400 MTA routes a message to an MTA
based on the 1984 MHS Standards and maps the Common Name attribute. It
also describes how any replies to the message are routed back to the MAILbus
400 MTA:

A user in your routing domain uses the Personal Name attribute to address
a recipient in a 1984 X.400 MHS. When the MAILbus 400 MTA receives a
message destined for a 1984 X.400 MHS user, it normally uses the partial
O/R address formed as a result of ignoring the Personal Name attribute to
route the message. This is because you do not normally register all of the
1984 MHS users in the directory.

On this message, the O/R address of the originator in your routing domain
is likely to contain a Common Name attribute, but no Personal Name.
The MAILbus 400 MTA searches the directory for a Personal Name that
corresponds to the originator’s Common Name attribute, and adds the
Personal Name to the message. The MAILbus 400 MTA also replaces the
Common Name attribute with the ‘‘common’’ DDA, so that the recipients
can reply to the message.

When the MAILbus 400 MTA receives a reply to the message from a user
in the 1984 X.400 MHS, the O/R address of the recipient (that is, the user
within your routing domain) has both a Personal Name attribute and
a ‘‘common’’ DDA attribute. The MAILbus 400 MTA copies the ‘‘common’’
DDA value to the Common Name attribute, and deletes this DDA attribute.
The MAILbus 400 MTA then uses the Common Name to find the recipient’s
routing information in the directory. This saves time, because the MAILbus
400 MTA does not have to search the directory to find a match for the
Personal Name on the message. However, if the ‘‘common’’ DDA attribute
is missing from the O/R address, the MAILbus 400 MTA searches the
directory for a match for the Personal Name.

This example describes the action of the MAILbus 400 MTA when receiving a
message sent from a user in an MTS based on the 1984 MHS standards:

Users in a 1984 X.400 MHS use the Personal Name attribute to address
a recipient in your routing domain. Alternatively, if they can enter DDA
attributes, they can use the ‘‘common’’ DDA attribute to address the
recipient. When the MAILbus 400 MTA receives a message addressed to

6–4 Downgrading

the recipient in your routing domain, it routes the message in the same
way as for a reply to a user in your routing domain, using either the
Personal Name or the ‘‘common’’ DDA attribute.

6.1.3 Downgrading IPMS Message Content
The 1992 MHS Standards do not define downgrading procedures for the IPMS
message content.

However, the 1992 IPMS content type may not be acceptable to some 1984
messaging systems. The MAILbus 400 MTA therefore implements some
downgrading procedures, which are not standardized, for IPMS message
contents.

Note that these procedures are aligned with those specified in Annex C of the
International Standard Profile ISO/IEC ISP 12062-1 and RFC 1328 X.400 1988
to 1984 Downgrading.

The MAILbus 400 MTA does not execute these procedures if any of the
following conditions apply:

• The recipient O/R address is registered in the directory as receiving IPMS
1992 content type.

• The recipient O/R address is registered in the directory as receiving ‘‘any’’
content type.

• The originator has set the Implicit Conversion Prohibited flag on the
message.

If, for any reason, the downgrade procedures fail, the MAILbus 400 MTA
proceeds as if it had not invoked them, and transfers the 1992 IPMS content
without modification. However, if downgrade fails at the MAILbus 400 MTA
that delivers or exports the message, the MAILbus 400 MTA does not deliver
the message, because the IPMS 1992 content is registered as unacceptable to
the user. In this case, the MAILbus 400 MTA attempts to send a non-delivery
report to the originator.

6.1.3.1 Downgrading an IPM
The MAILbus 400 MTA downgrades a 1992 IPM as follows:

1. Downgrades all O/R addresses in the IPM Heading, in the same way as for
the message envelope (see Section 6.1.2.1 and Section 6.1.2.2).

2. Removes all extension fields from the IPM Heading.

Downgrading 6–5

3. Where possible, converts all Externally Defined bodyparts to bodyparts
that are compatible with 1984 MHS Standards (see Section 6.1.3.3).

4. Unpacks all forwarded message bodyparts and applies the downgrading
procedures to any nested IPM contents and delivery envelopes.

6.1.3.2 Downgrading an Interpersonal Notification
The MAILbus 400 MTA downgrades a 1992 interpersonal notification as
follows:

1. Downgrades all O/R addresses in the Common Name field, in the same way
as for the message envelope (see Section 6.1.2.1).

2. Downgrades all object identifiers in the Original and Converted EITs fields
(according to the standardized procedure used for message envelopes).

3. Unpacks any Returned IPM field and applies the downgrading procedures
described in Section 6.1.3.1.

6.1.3.3 Downgrading Externally Defined Bodyparts
The MAILbus 400 MTA converts Externally Defined bodyparts as follows:

1. Converts Externally Defined bodyparts with corresponding Basic bodypart
definitions defined in the CCITT Recommendation X.420 and International
Standard ISO/IEC 10021-7 into their basic encoding. (Bodyparts that the
1992 MHS Standards refer to as ‘‘Basic’’ are those defined by 1984 CCITT
Recommendation X.420.)

2. Converts Externally Defined bodyparts containing ODIF format to the ODA
bodypart defined in the CEN/CENELEC profile ENV 41510 and Chapter 7
of the OIW Stable Implementation Agreements, December 1993.

3. Converts all remaining Externally Defined bodyparts (including General
Text bodyparts) in one of the following ways:

Either by encapsulating Externally Defined bodyparts, in a HP-
registered instance (bodypart number 62) of the USA Nationally
Defined bodypart defined in Chapter 7 of the OIW Stable
Implementation Agreements, December 1993.

Note that Annex C of the International Standards Profile ISO/IEC
ISP 12062-1 suggests that remaining Externally Defined bodyparts
are encapsulated in basic bodyparts, such as one of the Nationally
Defined bodyparts or a Bilaterally Defined bodypart. However, the
MAILbus 400 MTA uses a HP-registered bodypart instead. This avoids
collision with the use of other bodypart types, such as the Nationally
Defined bodypart, within the 1984 MTS. This also means that the MTA
can preserve Externally Defined bodyparts when they are transferred

6–6 Downgrading

across an MTS based on the 1984 MHS standards, specifically in cases
where these MTAs do not support the Interpersonal messaging 1992
content type.

From the USA Nationally Defined bodypart (number 62) the MAILbus
400 MTA can then regenerate the Externally Defined bodypart to
deliver to those recipients using User Agents based on the 1992 MHS
Standards.

Note

This assumes both the originator and recipient are using a User
Agent based on the 1992 MHS Standards and both User Agents are
connecting to a MAILbus 400 MTA. The MAILbus 400 MTA and the
HP MAILbus 400 SMTP Gateway products are the only products
that recognize the HP-registered instance of USA Nationally Defined
bodypart (number 62).

Or by converting Externally Defined bodyparts to Bilaterally Defined
bodyparts.

The MTA does this only if the recipient O/R address entry has the
correct EIT information specified in the Content Information, see
Chapter 11.

6.2 When the MTA Downgrades the Message Envelope
The MAILbus 400 MTA downgrades the message envelope when one of the
following occurs:

• The Relayer is about to send a message to a peer MTA in another routing
domain that uses the application context MTS Transfer Protocol 1984.

The application context that the peer MTA uses is specified in the Peer
MTA entity that holds information about the peer MTA.

• The Interface Region is about to deliver or export a message to an Agent
based on the 1984 MHS standards that uses the XAPI interface.

• The Interface Region is about to export a message to an Agent that uses
the Shared File 1984 interface.

Downgrading 6–7

6.3 When the MTA Downgrades the Message Content
The MAILbus 400 MTA downgrades the message content when the Message
Processor detects that the message is for a recipient requiring 1984 IPMS
content type and the conditions in Section 6.1.3 do not apply. The Message
Processor performs MPDU splitting appropriately for the recipients of the
message according to their content type requirements, as described in
Section 3.10.

6.4 How to Set Up Your MTS to Support Downgrading
The following sections describe what you must do to allow your MTS to
interwork with a peer MTA, or Agent, that conforms to the 1984 MHS
Standards.

6.4.1 Registering Personal Names
Users in your routing domain can exchange mail with users in a 1984 MHS
provided that all users in your routing domain have a Personal Name
registered in the directory. You can register a Personal Name for a user
as components of the user’s Common Name entry in the directory. Use the
following command to specify a Personal Name for user Bill Davies:

NCL> SET MTS "/MTS=ACME" -
_NCL> ORADDRESS "C=NZ;A=0;P=ACME;O=ACME;OU1=AUCK;CN=Bill Davies" -
_NCL> PERSONAL NAME "S=Davies;G=Bill;I=BHD;Q=Snr"

Alternatively, if you plan to use DDAs to map Common Name attribute values,
and the 1984 systems have sufficient support for DDA O/R address attributes,
the values that you register for the Common Name attribute for your users
must contain only characters that are part of the printable string character
set.

6.4.2 Setting up Boundary MTAs
In your routing domain, any boundary MTA that connects to a peer MTA in a
routing domain based on 1984 MHS Standards must have a Session address.
This is set up automatically as an attribute of the MTA entity if, when you run
the MTA setup procedure, you answer Yes to the question that asks whether
the MTA is a boundary MTA connected to 1984 MTAs.

The Peer MTA entity for a peer MTA in a 1984 routing domain must have the
following:

• An application context of MTS Transfer Protocol 1984, to reflect the
application context used by the peer MTA.

6–8 Downgrading

• A Session address that corresponds to the Session address used by the
1984 peer MTA.

6.4.3 Setting up Content Information
In order to ensure that the MTA downgrades IPMS message contents such that
the message is acceptable to recipients with User Agents based on the 1984
MHS standards, you must make sure that the content information stored in
the directory specifies the requirements of the recipient. See Section 11.5.1
for an example of entering content information in the directory for a recipient
using a User Agent based on the 1984 MHS standards.

Downgrading 6–9

Part II
Tuning

This part describes how to tune a MAILbus 400 MTA. Within this guide,
tuning means:

• Optimizing the way a MAILbus 400 MTA works.

This involves modifying the characteristics of the entities in the MTA
module. This is described in Chapter 7.

• Customizing how the MTA collects information about messages.

This is described in the following chapters:

Chapter 8, which describes Accounting.

Chapter 9, which describes Archiving.

Chapter 10, which describes Message History logging.

• Customizing IPM bodypart conversions for your MTA or MTS.

This is described in Chapter 11.

• Adding your own converters.

This is described in Chapter 12.

• Customizing MTA event dispatching.

This is described in Chapter 13.

7
Tuning an MTA

When you first run an MTA, it uses the characteristic attribute values that
are either supplied with the MTA or the values you have entered in the MTA’s
startup script. However, after you have been running the MTAs in your
routing domain for a time, you may find that you need to modify some of these
attributes according to your own requirements.

Also, you may want to implement features of MTA management that do not
directly relate to message throughput, for example, inserting warning text into
a message received from another X.400 management domain.

This chapter explains the following:

• When to tune an MTA, see Section 7.1.

• How to monitor the message traffic in your routing domain, see Section 7.2.

• How to improve the flow of messages in your routing domain and change
MPDU expiry intervals, see Section 7.3.

• How to limit the number of concurrent Peer MTA entities that are
automatically created by the MTA, see Section 7.4.

• How to control the direction of message transfer between your routing
domain and other routing domains, see Section 7.5.

• How to incorporate warning text into every interpersonal message (IPM)
received from another X.400 management domain, see Section 7.6.

• How to control the type of network that an MTA connects to and how to
use Transport characteristics other than those provided with the MTA, see
Section 7.7.

Note that you can modify the MTA’s characteristic attributes while the MTA
is running; you do not have to disable the MTA first. These are dynamic
modifications. In order to make your modifications permanent, incorporate
all the appropriate commands in the MTA’s startup script. For the location
of this script, refer to the appendix describing the operating system specific
information.

Tuning an MTA 7–1

See the MTA Module Online Help for a description of the entities and
attributes of the MTA module. The MTA Module Online Help also gives the
values of the MTA’s characteristic attributes. These are the values that are
supplied with the MTA.

Note

The efficiency of an MTA depends on the capacity of the system that
the MTA is running on and on the topography of your routing domain.
It is therefore only possible to give general advice about modifying the
characteristics of the MTA entity that improve message throughput.

7.1 Why You Need to Tune an MTA
The main reason for modifying the characteristic attributes of an MTA entity,
is to enable the MTA to handle more messages simultaneously. If an MTA
receives more messages than it is able to transfer, export, or deliver, then the
flow of messages through the MTA slows down. When this happens the MTA
becomes congested. There are several reasons why messages can be delayed
inside an MTA, for example:

• An MTA reaches the limit of its outbound associations.

An MTA can set up associations to peer MTAs until it reaches the limit
specified by the Maximum Outbound Transfer Associations attribute.
When an MTA is unable to create new associations, MPDUs that are
awaiting transfer are delayed in the MTA.

• The MTA is having difficulty accessing the directory.

This slows down message processing and MPDUs remain in the Processing
Queue.

• An Agent or peer MTA is unavailable.

An MPDU for that Agent or peer MTA remains in the MTA until the Agent
or peer MTA is available or until the MPDU expires.

Problems relating to delays in message throughput are reported by specific
events, for example, the Expiry Alarm Threshold Exceeded event. You need
to investigate every occurrence of such events to find out if there is a problem
with either the MTA that generated the event, the directory service, an Agent,
or a peer MTA (see Section 7.2.3).

7–2 Tuning an MTA

Even if a particular MTA does not generate any events relating to congestion,
it might be necessary to tune one or more MTAs in your routing domain. This
is because an MTA can become very busy during peak periods and occasionally
reach the limits of some of its attribute values. For example, if an MTA
reaches the limit specified by its Maximum Inbound Transfer Associations
attribute, this temporarily prevents the MTA from accepting new associations
from peer MTAs. This could cause congestion at other MTAs that have MPDUs
for transfer to the MTA.

You need to identify potential congestion in your routing domain and tune one
or more MTAs to prevent serious delays in the flow of messages. To identify
potential congestion, you need to monitor the message traffic in your routing
domain (see Section 7.2).

When you have information about the level of message traffic in your routing
domain you can decide:

• Whether or not tuning is necessary.

• Which MTAs in your routing domain to tune.

• Which characteristic attributes of the MTA entity you need to modify.

Before modifying the characteristics of an MTA so that it can handle more
messages concurrently, you need to be aware of:

• How changes to one attribute can affect each stage of message processing.

If you modify one attribute so that the flow of messages from one part
of the MTA is increased, then more messages are available for the next
stage of message processing within the MTA. The relationship between
individual attributes and each stage of message processing is explained in
Section 7.3.

• How tuning one MTA is likely to affect the other MTAs in the same routing
domain.

Increasing one MTA’s ability to transfer out more messages concurrently
is only effective if the other MTAs in the same routing domain are able
to transfer in more messages concurrently. To find out what effect tuning
a single MTA has on the other MTAs in the routing domain, continue to
monitor the message traffic at all the MTAs in your routing domain after
you have tuned an MTA.

Tuning an MTA 7–3

7.2 Monitoring Message Traffic
You can monitor the level of message traffic in your routing domain to detect
any congestion by:

• Monitoring the counters that record message traffic at each MTA in your
routing domain (Section 7.2.1).

• Monitoring MPDUs and the length of queues within an MTA
(Section 7.2.2).

• Monitoring event sinks for specific events that indicate an MTA is
congested (Section 7.2.3).

7.2.1 Using Counters to Monitor Message Traffic
You can determine the level of traffic in your routing domain by monitoring
specific counters of each MTA, Agent, and Peer MTA entity in your routing
domain. You monitor a counter by recording the increase in its value at
frequent intervals; for example every 30 minutes, over the period of a working
day. It may be necessary to repeat your observations over several days to
obtain a better understanding of the flow and level of message traffic in your
routing domain. To find out how many messages an MTA handles, monitor the
counters listed in either Table 7–1 or in Table 7–2.

Table 7–1 Counters that Record the MPDUs an MTA Receives

Counter Entity Description

Submitted MPDUs MTA The number of messages submitted
to the MTA by its User Agents and
Message Stores.

Imported MPDUs MTA The number of messages imported by
the MTA from its Gateways.

MPDUs In Agent The number of messages sent to the
MTA by a particular Agent.

MPDUs In Peer MTA The number of messages the MTA has
transferred in from a particular peer
MTA.

Octets In Peer MTA The number of octets (bytes) contained
in the MPDUs that the MTA has
transferred in from a particular peer
MTA.

7–4 Tuning an MTA

Table 7–2 Counters that Record the MPDUs an MTA Sends

Counter Entity Description

Delivered MPDUs MTA The number of messages the MTA
has delivered to its User Agents and
Message Stores.

Exported MPDUs MTA The number of messages the MTA
has exported to its Gateways.

MPDUs Out Agent The number of messages sent by the
MTA to a particular Agent.

MPDUs Out Peer MTA The number of messages that the
MTA has transferred to a particular
peer MTA.

Octets Out Peer MTA The number of octets (bytes)
contained in the MPDUs that the
MTA has transferred to a particular
peer MTA.

The important counters to monitor are the ones that, between them, count all
the MPDUs that the MTA either sends or receives. The following commands
display all the MPDUs that an MTA has received. The first command displays
the counters that record all the MPDUs an MTA has received from its Agents.
The second command displays the counters that record all the MPDUs an MTA
has received from peer MTAs.

SHOW NODE "node-id" MTA SUBMITTED MPDUs, IMPORTED MPDUs

SHOW NODE "node-id" MTA PEER MTA * MPDUS IN, CREATION TIME

It is recommended that you display the Creation Time attribute when you
display the counters of a Peer MTA entity that represents a peer MTA in your
routing domain. This attribute specifies the time when the entity was created
and when the counters were initialized. It is important to know when the
MTA created a Peer MTA entity. This is because an MTA can delete a Peer
MTA entity that it created and then create a new one with the same name.
See Section 7.4 for more information about why and how an MTA creates and
deletes Peer MTA entities. Note that when a Peer MTA entity is deleted, the
MTA generates the Entity Deleted event. This event contains the final values
of the deleted Peer MTA entity’s counters. You will find this information useful
to supplement the counters that you are displaying.

Tuning an MTA 7–5

From the information that you obtain by monitoring the counters you can
determine:

• How many messages enter and leave your routing domain over the period
of your observations.

• Which are the busiest MTAs in your routing domain.

• When the peak periods occur.

If your observations reveal that an MTA is very busy, and potentially could
become congested with an increase in message traffic, then you can tune it so
that it can handle more messages simultaneously, see Section 7.3.

7.2.2 Monitoring MPDUs in an MTA
If you suspect that an MTA is becoming congested you can use the MPDU
entity to find out about the MPDUs that are in the MTA. For example, if you
receive several Expiry Alarm Threshold Exceeded events from a particular
MTA, then MPDUs could be remaining in the MTA longer than they should.
By finding out about the MPDUs in the MTA you might be able to identify the
problem that is causing the MPDUs to be delayed.

Use the following command to display information about all the MPDUs in an
MTA:

SHOW NODE "node-id" MTA MPDU * ALL ATTRIBUTES

You can also use the MPDU entity to find out about the MPDUs in a particular
part of the MTA. The information supplied by an MPDU entity includes the
location of the MPDU in the MTA. The location of the MPDU is provided by
the State attribute of the MPDU entity.

Use the following command to find out how many MPDUs are in a particular
part of the MTA:

SHOW NODE "node-id" MTA MPDU *, WITH STATE = value

where value is one of:

AWAITING PROCESSING
BEING PROCESSED
AWAITING PROCESSING RETRY
AWAITING TRANSFER
BEING TRANSFERRED
AWAITING TRANSFER RETRY
AWAITING DELIVERY OR EXPORT
BEING DELIVERED OR EXPORTED
AWAITING DELIVERY OR EXPORT RETRY

7–6 Tuning an MTA

You can prevent MPDUs being delayed in the MTA by improving the flow
of messages through the MTA. You can do this by increasing the value of
one or more attributes of the MTA entity and one attribute of the Peer MTA
entity. Table 7–3 lists the MPDU states that refer to parts of the MTA and the
characteristic attributes that affect the flow of MPDUs through each part of
the MTA.

Table 7–3 MPDU States and MTA Entity Attributes

MPDU State
Location in the
MTA Entity Attribute

Awaiting
Processing

Processing Queue Maximum Message Processors1 (see Section 7.3.2).

Being Processed Message Processor Not applicable.

Awaiting Transfer Relay Queue Maximum Transfer Associations1 (see Section 7.3.1.2),
Maximum Outbound Transfer Associations1

(see Section 7.3.1.5),
Maximum Outbound Parallel Transfer Associations2

(see Sections 7.3.1.6 and 7.3.1.7),
Maximum Transfer Lookahead1 (see Section 7.3.4).

Awaiting Delivery
or Export

Delivery Queue Maximum Agent Connections1 (see Section 7.3.1.1).

1Attribute of the MTA entity
2Attribute of the MTA entity and the Peer MTA entity

7.2.3 Events That Indicate Congestion in an MTA
Some events, if they occur frequently, can indicate that an MTA is working to
the limits specified by one or more of its characteristic attributes. For example,
an MTA can accept the maximum number of inbound associations allowed by
the value of its Maximum Inbound Transfer Associations attribute. When an
MTA reaches the limit specified by this attribute, the MTA rejects association
requests from peer MTAs. Consequently, peer MTAs that have MPDUs for that
MTA can become congested because they are unable to transfer MPDUs to that
MTA. If an MPDU is unable to leave an MTA, it eventually expires.

Tuning an MTA 7–7

The following events indicate that MPDUs are being delayed in an MTA or
peer MTA:

• Inbound Transfer Soft Rejection (see also Section 16.2.2)

Different error messages contained in this event indicate which limit the
MTA has reached, as follows:

The error message Maximum Associations Reached indicates that
the MTA has reached the limit specified by the Maximum Transfer
Associations attribute of the MTA entity. The MTA is temporarily
unable to accept new inbound associations.

The error message Maximum Inbound Transfer Associations Reached
indicates that the MTA has reached the limit specified by the Maximum
Inbound Transfer Associations attribute of the MTA entity. The MTA is
temporarily unable to accept new inbound associations.

The error message Maximum Inbound Parallel Transfer Associations
Reached indicates that the MTA has reached the limit specified by
the Maximum Inbound Parallel Transfer Associations attribute of the
Peer MTA entity that represents the peer MTA that is attempting to
establish an association. This error message is only generated when
the peer MTA requesting the association is in another routing domain.
The MTA is temporarily unable to accept new inbound associations
from the peer MTA.

If this event occurs frequently, then increase the value of the relevant
characteristic attribute at the MTA that generated the event (see Sections
7.3.1.2 to 7.3.1.4).

• Outbound Soft Rejection (see also Section 16.2.4)

If this event has the error message RTSE Busy, then the peer MTA with
which the MTA is trying to set up an association is congested. If the peer
MTA continues to reject association requests from the MTA, then MPDUs
for that peer MTA can remain in the MTA until they expire.

If the peer MTA that is rejecting association requests is in your routing
domain, then tune the peer MTA and increase the value of its Maximum
Inbound Transfer Associations attribute, see Section 7.3.1.3.

7–8 Tuning an MTA

If the peer MTA that is rejecting association requests is in another routing
domain, then inform the person responsible for managing the peer MTA.
Possible ways to prevent association requests being rejected by the peer
MTA could involve:

Tuning the peer MTA in the other routing domain so that it can accept
more concurrent associations from the boundary MTA.

Increasing the number of MTAs in the other routing domain that the
boundary MTA can communicate with.

• Rejected Agent Connection (see also Section 19.3.1)

If this event has the error message Maximum Connections Exceeded,
then the MTA has reached the limit specified by its Maximum Agent
Connections attribute. When the number of Agent connections reaches
the limit specified by this attribute, Agents are unable to connect to the
MTA until an existing connection from an Agent is released. Any MPDUs
that the MTA has for delivery or export to Agents that are unable to make
connections remain in the MTA.

If this event occurs frequently, then tune the MTA by increasing the value
of its Maximum Agent Connections attribute, see Section 7.3.1.1.

• Expiry Alarm Threshold Exceeded (see also Section 18.7.1)

This is a warning that an MPDU in the MTA is about to expire. This event
provides the following information:

The MPDU’s target; that is, the next destination of the MPDU.

The state of the MPDU; that is, the location of the MPDU in the MTA.

If you receive several Expiry Alarm Threshold Exceeded events, each
identifying the same target, then this could indicate that a particular peer
MTA or Agent is unavailable. See if there are any other events in the event
sink that might provide information about why the target identified by this
event is unavailable.

If you receive several Expiry Alarm Threshold Exceeded events each
identifying different targets, then the MTA that generated the event could
be congested. The information provided about the state of the MPDU
corresponds to the values of the State attribute of the MPDU entity. You
can use the MPDU entity to find out how many MPDUs are in that part of
the MTA, see Section 7.2.2.

• MPDU Expired (see also Section 18.7.3)

Investigate each occurrence of this event and find out what is causing an
MPDU to remain in the MTA long enough for it to expire.

Tuning an MTA 7–9

7.3 Improving the Flow of Messages
You can improve the flow of messages through an MTA by:

• Increasing the number of connections and associations that the MTA can
have at any one time.

• Increasing the number of Message Processors available to the MTA.

• Decreasing the amount of time the MTA waits between attempts to
establish an association.

• Improving the way the MTA selects MPDUs for transfer.

• Decreasing the amount of time that associations remain idle.

Before modifying the characteristics that affect an MTA’s ability to handle
more messages concurrently, you need to consider how your changes are going
to affect the operation of the MTA as a whole. For example, if you enable more
messages to enter the MTA concurrently, then the Processing Queue might
become congested. To prevent this, you must also increase the number of
Message Processors so that the MTA can process more messages concurrently.
To do this, you might need more system resources or more directory capacity.
See Section 3.1 for more information about the conditions that affect the
efficiency of running Message Processors in parallel. However, enabling more
Message Processors might mean that the Relay Queue becomes congested.
Therefore, you may also need to enable more messages to leave the MTA
concurrently.

After you make one or more changes to the attributes that determine message
throughput, find out how your changes have affected the MTA. Do this
by monitoring the various queues in the MTA, using the MPDU entity, as
described in Section 7.2.2.

7.3.1 Increasing Connections and Associations
The number of MPDUs that can enter an MTA concurrently and leave an MTA
concurrently is controlled by the following attributes:

• The Maximum Agent Connections attribute of the MTA entity
(Section 7.3.1.1)

• The Maximum Transfer Associations attribute of the MTA entity
(Section 7.3.1.2)

• The Maximum Inbound Transfer Associations attribute of the MTA entity
(Section 7.3.1.3)

7–10 Tuning an MTA

• The Maximum Inbound Parallel Transfer Associations attribute of the Peer
MTA entity (Section 7.3.1.4)

• The Maximum Outbound Transfer Associations attribute of the MTA entity
(Section 7.3.1.5)

• The Maximum Outbound Parallel Transfer Associations attribute of the
MTA entity (Section 7.3.1.6) and of the Peer MTA entity (Section 7.3.1.7)

The MTA uses a large number of Transport connections. You are advised to set
the Maximum Transport Connections attribute of the OSI Transport module,
based on the sum of the following MTA entity attributes:

• Twice the value of the Maximum Transfer Associations attribute

• Three times the value of the Maximum Agent Connections attribute

• The value of the Maximum Message Processors attribute

If you modify any of these MTA entity attributes, you are advised to modify the
value of the Maximum Transport Connections attribute accordingly.

Note that the value of the Maximum Remote NSAPs attribute must be
greater than the value of Maximum Transport Connections, both of which are
attributes within the OSI Transport module.

OpenVMS
On OpenVMS systems, you also need to set the SYSGEN
parameter CHANNELCNT to at least:

(2 x Maximum Transport Connections) + 160.
♦

7.3.1.1 Maximum Agent Connections
This attribute specifies the number of User Agents or Gateways that can be
connected to the MTA at any one time.

If possible, set the value of this attribute to equal the total number of
registered and unregistered Agents of the MTA.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM AGENT CONNECTIONS value

where value is the maximum number of Agents that can be connected to the
MTA at any one time.

Tuning an MTA 7–11

7.3.1.2 Maximum Transfer Associations
This MTA entity attribute specifies the total number of concurrent associations
that an MTA can have. This applies to all associations, both to and from peer
MTAs, either within the routing domain or in another routing domain.

If an MTA reaches the limit set by this attribute, it cannot create or accept a
new association until one of the following occurs:

• An association to a peer MTA is released or aborted.

• An idle association from a peer MTA is either released or aborted by the
peer MTA that initiated it or is aborted by the MTA.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM TRANSFER ASSOCIATIONS value

where value is the maximum number of concurrent associations.

The value of this attribute overrides the values of the following attributes if,
either individually or collectively, they are set higher:

• Maximum Inbound Transfer Associations

In turn, the value of the Maximum Inbound Transfer Associations attribute
overrides the value of the Maximum Inbound Parallel Transfer Associations
attribute of the Peer MTA entity if the latter attribute is set higher.

• Maximum Outbound Transfer Associations

In turn, the value of the Maximum Outbound Transfer Associations
attribute overrides the value of the following attributes if they are set
higher:

The Maximum Outbound Parallel Transfer Associations attribute of the
MTA entity

The Maximum Outbound Parallel Transfer Associations attribute of the
Peer MTA entity

The following examples show the relationship between the attributes that
control the number of concurrent associations to and from an MTA:

1. The following attribute values enable the MTA to operate more efficiently
than in example 2:

Maximum Transfer Associations = 20
Maximum Inbound Transfer Associations = 10
Maximum Outbound Transfer Associations = 10
Maximum Outbound Parallel Transfer Associations = 5

7–12 Tuning an MTA

Using these attribute values, the MTA can accept and create associations
up to the number that you specify for each individual attribute. For
example, at any one time, the MTA can have ten inbound associations
and ten outbound associations. Note that the Maximum Outbound
Parallel Transfer Associations attribute value is a subset of the Maximum
Outbound Transfer Associations attribute value. This means that
concurrently the MTA could have associations to a maximum of ten
different peer MTAs, one association to each, or to a minimum of two
peer MTAs, five associations to each.

2. An MTA that is set up with the following attribute values could create
delays in the transfer of messages:

Maximum Transfer Associations = 15
Maximum Inbound Transfer Associations = 25
Maximum Outbound Transfer Associations = 25
Maximum Outbound Parallel Transfer Associations = 25

Note that the maximum value of all attributes is 15 not 25, this is because
the value of the Maximum Transfer Associations attribute overrides the
other attributes. Also, the following problems could occur:

The MTA could accept 15 concurrent inbound associations and be
unable to create any outbound associations.

The MTA could create 15 concurrent outbound associations and be
unable to accept any inbound associations.

The MTA could set up 15 concurrent outbound associations to the same
peer MTA and be unable to accept or create any associations to or from
other peer MTAs.

7.3.1.3 Maximum Inbound Transfer Associations
This MTA entity attribute specifies the maximum number of concurrent
associations that an MTA can have from any number of peer MTAs either
within the routing domain or in another routing domain. This affects the
number of messages that the MTA can transfer in concurrently.

If an MTA reaches the limit set by this attribute, it cannot accept a new
association from a peer MTA until an idle inbound association is either released
by the peer MTA that initiated it or is aborted by the MTA.

It is important to set similar values for this attribute and the Maximum
Outbound Transfer Associations attribute. If you set a high value for
this attribute and a very low value for the Maximum Outbound Transfer
Associations attribute, the MTA is likely to become congested. The effect is to
cause the MTA to transfer in more messages than it can transfer out.

Tuning an MTA 7–13

Always set the value of this attribute to be higher than the value of the
Maximum Inbound Parallel Transfer Associations attribute of any Peer MTA
entity.

See Section 7.3.1.2 for examples of the relationship between this attribute and
the other attributes that specify the maximum number of associations.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM INBOUND TRANSFER ASSOCIATIONS value

where value is the maximum number of concurrent inbound transfer
associations.

7.3.1.4 Maximum Inbound Parallel Transfer Associations
This Peer MTA entity attribute specifies the maximum number of concurrent
associations that a boundary MTA can have from a specific peer MTA in
another routing domain. This affects the number of messages that the
boundary MTA can transfer in concurrently from the specified peer MTA.

For each peer MTA in a routing domain, this attribute and its outbound
equivalent (the Maximum Outbound Parallel Transfer Associations attribute
of the Peer MTA entity, described in Section 7.3.1.7) limit the flow of traffic
between the boundary MTA and the specific peer MTA. These limits have most
significance on the boundary between X.400 management domains, where
the cost of MPDU transfer is important. See Section 7.3.1.6 for details of the
attribute that limits the flow of traffic between your MTA and any single peer
MTA within your routing domain.

If the number of associations to a boundary MTA from a particular peer MTA
in another routing domain reaches the limit set by this attribute, the MTA
cannot accept any more associations from the peer MTA.

If possible, set the value of this attribute to be the same as, or higher than,
the outbound association capacity of the peer MTA. This avoids unnecessary
failures when the Peer MTA is establishing associations.

Set the value of this attribute to be lower than the value of the Maximum
Inbound Transfer Associations attribute of the MTA entity. This prevents the
MTA using up its quota of inbound associations for one peer MTA.

See Section 7.3.1.2 for examples of the relationship between this attribute and
the other attributes that specify the maximum number of associations.

7–14 Tuning an MTA

Use the following command to modify this attribute:

SET NODE "node-id" MTA PEER MTA -
[TYPE = MANUALLY CONFIGURED, NAME = "peer-mta-name"] -
MAXIMUM INBOUND PARALLEL TRANSFER ASSOCIATIONS value

where peer-mta-name is the name of the Peer MTA entity and value is the
maximum number of concurrent inbound associations that the boundary MTA
can accept from the peer MTA.

7.3.1.5 Maximum Outbound Transfer Associations
This MTA entity attribute specifies the maximum number of concurrent
associations that an MTA can have to any number of peer MTAs either within
the routing domain or in another routing domain. This affects the number of
messages that the MTA can transfer out concurrently.

If an MTA reaches the limit set by this attribute, it cannot create a new
outbound association until an association to a peer MTA becomes idle. When
an association to a peer MTA becomes idle and the MTA has an MPDU
awaiting transfer to this particular peer MTA, then the MTA re-uses the
association. When an association to a peer MTA becomes idle and the MTA
has an MPDU for transfer to another peer MTA, the MTA releases the idle
association immediately in order to set up a new association to the other peer
MTA.

It is important to set similar values for this attribute and the Maximum
Inbound Transfer Associations attribute. If you set a low value for this
attribute and a very high value for the Maximum Inbound Transfer
Associations attribute, the MTA is likely to become congested. The effect is
to cause the MTA to transfer in more messages than it can transfer out.

Always set the value of this attribute to be higher than the value of the
Maximum Outbound Parallel Transfer Associations attributes (of both the
MTA entity and any Peer MTA entity). This prevents the MTA using up its
quota of outbound associations on transferring messages to a single peer MTA.

See Section 7.3.1.2 for examples of the relationship between this attribute and
the other attributes that specify the maximum number of associations.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM OUTBOUND TRANSFER ASSOCIATIONS value

where value is the maximum number of concurrent outbound transfer
associations.

Tuning an MTA 7–15

7.3.1.6 Maximum Outbound Parallel Transfer Associations to Peer MTAs Within Your
Routing Domain
This MTA entity attribute specifies the maximum number of concurrent
associations that an MTA can have to a single peer MTA within the same
routing domain.

This attribute limits the flow of traffic between your MTA and any single peer
MTA within your routing domain. Within your routing domain, all MTAs are
MAILbus 400 MTAs, so the setting for this attribute specified at the other
MTAs in the routing domain (that is the peer MTAs within the routing domain)
implicitly controls the number of inbound parallel transfer associations for this
MTA. See Section 7.3.1.4 and Section 7.3.1.7 for details of the attributes that
limit the flow of traffic between your MTA and specific peer MTAs in other
routing domains.

If the number of associations from an MTA to a particular peer MTA within
the routing domain reaches the limit set by this attribute, the MTA cannot
establish another association to the peer MTA.

Set the value of this attribute to be lower than the value of the Maximum
Outbound Transfer Associations attribute. This prevents the MTA using up its
quota of outbound associations for one peer MTA.

See Section 7.3.1.2 for examples of the relationship between this attribute and
the other attributes that specify the maximum number of associations.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM OUTBOUND PARALLEL TRANSFER ASSOCIATIONS value

where value is the maximum number of concurrent outbound associations to
the same peer MTA.

7.3.1.7 Maximum Outbound Parallel Transfer Associations to Peer MTAs in Other
Routing Domains
This Peer MTA entity attribute specifies the maximum number of concurrent
associations that a boundary MTA can have to a single peer MTA in another
routing domain. This affects the number of messages that the boundary MTA
can transfer concurrently to a single peer MTA in another routing domain.

For each peer MTA in a routing domain, this attribute and its inbound
equivalent (the Maximum Inbound Parallel Transfer Associations attribute
of the Peer MTA entity, described in (Section 7.3.1.4)) limit the flow of traffic
between the boundary MTA and the specific peer MTA. These limits have most
significance on the boundary between X.400 management domains, where
the cost of MPDU transfer is important. See Section 7.3.1.6 for details of the

7–16 Tuning an MTA

attribute that limits the flow of traffic between the boundary MTA and any
single peer MTA within your routing domain.

If the number of associations from a boundary MTA to a particular peer MTA
in another routing domain reaches the limit set by this attribute, the MTA
cannot establish another association to the peer MTA.

Set the value of this attribute to be lower than the value of the Maximum
Outbound Transfer Associations attribute of the MTA entity. This prevents the
MTA using up its quota of outbound associations for one peer MTA.

If the peer MTA is in the same X.400 management domain as your MTA, you
may want to set the value of this attribute to be the same as the value for
the Maximum Outbound Parallel Transfer Associations attribute of the MTA
entity. This ensures that all peer MTAs within the X.400 management domain
have the same capacity for transferring messages, irrespective of the routing
domain in which they are located.

See Section 7.3.1.2 for examples of the relationship between this attribute and
the other attributes that specify the maximum number of associations.

Use the following command to modify this attribute:

SET NODE "node-id" MTA PEER MTA -
[TYPE = MANUALLY CONFIGURED, NAME = "peer-mta-name"] -
MAXIMUM OUTBOUND PARALLEL TRANSFER ASSOCIATIONS value

where peer-mta-name is the name of the Peer MTA entity and value is the
maximum number of concurrent outbound associations to the peer MTA.

7.3.2 Increasing the Number of Message Processors
The number of MPDUs that an MTA can process concurrently is determined
by the number of Message Processors that the MTA can have at any one time.
The number of concurrent Message Processors is specified by the Maximum
Message Processors attribute of the MTA entity.

Note that increasing the number of Message Processors increases the
throughput of MPDUs, provided that certain conditions are met. For example,
if an MTA is converting several messages, then increasing the number of
Message Processors can increase the throughput of messages. This is because
a Message Processor does not access the directory when converting messages.
A Message Processor that is converting messages will therefore not compete for
directory access with other Message Processors.

Increasing the number of Message Processors also improves the message
handling capacity of an MTA that serves a large number of local users and
does not transfer messages to peer MTAs or export messages to Gateways.

Tuning an MTA 7–17

However, running several Message Processors could decrease message
throughput if all Message Processors try to access the directory concurrently.
See Section 3.1 for more information about the conditions that affect the
efficiency of running Message Processors in parallel.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM MESSAGE PROCESSORS value

where value is the number of Message Processors.

7.3.3 Modifying Association Idle Intervals
An MTA can maintain associations after they become idle. An association
becomes idle after a complete MPDU has been transferred over the association.
The MTA maintains the association for use later on as this saves time and
resources setting up a new association when there is another MPDU to
transfer over the association.

The following attributes specify the length of time that associations can be
maintained by an MTA after the transfer of a complete MPDU:

• Maximum Idle Outbound Transfer Association Interval (Section 7.3.3.1)

• Maximum Idle Inbound Transfer Association Interval (Section 7.3.3.2)

7.3.3.1 Maximum Idle Outbound Transfer Association Interval
This attribute specifies how long the MTA maintains an idle association to
a peer MTA. The MTA releases the association before the specified time has
elapsed if it needs to set up an association to a different peer MTA but has
reached its quota of outbound associations.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM IDLE OUTBOUND TRANSFER ASSOCIATION -
INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the maximum time that the MTA can maintain the
association.

Set this attribute to zero (0-00:00:00) if you want the MTA to release outbound
associations as soon as an MPDU has been transferred and there are no other
MPDUs queued for the peer MTA.

7–18 Tuning an MTA

7.3.3.2 Maximum Idle Inbound Transfer Association Interval
This attribute specifies how long the MTA maintains an idle association from
a peer MTA. Once this time has elapsed, the MTA aborts the association and
generates the Inbound Failure event (see Section 16.2.6). The MTA does not
abort the association before this time has elapsed. Consequently, if the number
of concurrent associations to the MTA reaches the limit set by the Maximum
Inbound Transfer Associations attribute, then the MTA cannot accept a new
association until one of the following occurs:

• A peer MTA releases an association it has made to the MTA.

• The MTA aborts an idle inbound association when the time specified by
this attribute has elapsed.

Set the value of this attribute to be higher than the time specified by the
Maximum Idle Outbound Transfer Association Interval at each MTA in your
routing domain. This ensures that inbound associations from peer MTAs in
your routing domain are released by the initiating MTA before they can be
aborted by the receiving MTA.

When setting this attribute at a boundary MTA, find out how the peer MTA
in the other routing domain responds when an association it initiated becomes
idle. If the peer MTA maintains the association after it becomes idle, then set
this attribute to be higher than the idle interval used by the peer MTA for its
outbound associations.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM IDLE INBOUND TRANSFER ASSOCIATION -
INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the time interval.

Set this attribute to zero (0-00:00:00) if you want the MTA to wait until the
peer MTA releases the association.

Tuning an MTA 7–19

7.3.4 Changing the Way an MTA Selects MPDUs for Transfer
An MTA selects an MPDU for transfer to a particular peer MTA according to
the priority of the MPDU and how long the MPDU has been in the MTA. This
is an unbiased way of selecting MPDUs, provided that the MTA can transfer
the MPDU that it selects. However, an MTA is unable to transfer the most
eligible MPDU when both the following occur:

• The MTA does not have an idle association to the target peer MTA.

• The MTA is unable to create a new association to the target peer
MTA because it has reached the limit specified by one of the following
attributes:

Maximum Transfer Associations (Section 7.3.1.2)

Maximum Outbound Transfer Associations (Section 7.3.1.5)

Maximum Outbound Parallel Transfer Associations (Section 7.3.1.6)

The MTA must wait until it can either create a new association to the target
peer MTA or an existing association to the target peer MTA becomes idle. The
MTA then re-uses this association.

To prevent delays occurring, the MTA can search for an alternative MPDU to
transfer to a different peer MTA. Note that the MTA only needs to search for
an alternative MPDU when it is prevented from transferring the most eligible
MPDU. The extent of the MTA’s search is controlled by the Maximum Transfer
Lookahead attribute of the MTA entity.

7.3.4.1 Maximum Transfer Lookahead Attribute
The Maximum Transfer Lookahead attribute does not come into effect unless
all of the following conditions are true:

1. An existing association becomes idle.

2. The value set for either Maximum Transfer Associations or Maximum
Outbound Transfer Associations is reached.

3. There is an MPDU in the Transfer Queue awaiting transfer.

Use the Maximum Transfer Lookahead attribute to specify the maximum
number of MPDUs that can be overlooked in favor of an MPDU further down
the Transfer Queue whose target matches that of the idle association.

An MPDU is overlooked if the associations to the target are at their limit.
The overlooked MPDU will be transferred when an existing association to the
target becomes idle.

7–20 Tuning an MTA

The MTA starts counting MPDUs, against the Maximum Transfer Lookahead
value, from the first MPDU that is eligible for transfer, and that requires a
new association, but cannot be transferred as the values set for Maximum
Transfer Associations and Maximum Outbound Associations have already been
reached.

The MTA looks for an MPDU whose target matches the target of the idle
association. If no MPDU is found, the idle association is disconnected and a
new association is set up to the target for the most eligible MPDU.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM TRANSFER LOOKAHEAD value

where value is the number of MPDUs, in addition to the MPDU at the head of
the queue, that the MTA can include in its search.

Set this attribute to zero to prevent the MTA from making a search for an
MPDU to transfer to a different peer MTA.

7.3.5 Modifying Retry Intervals
When an MTA is unable to establish an association to a peer MTA or when an
established association to a peer MTA fails, the MTA places MPDUs for that
peer MTA in a retry set. See Section 4.3.2 for more information about retry
sets. The MPDUs remain in the retry set until one of the following occurs:

• The MTA establishes or recovers the association and transfers the MPDUs
to the peer MTA.

• The MPDUs expire.

How frequently the MTA makes a retry attempt to establish an association or
to recover an association to the peer MTA depends on the value of the retry
interval. The retry interval is the time that the MTA waits before making the
first and any subsequent retry attempts. The retry interval has a minimum
and maximum value that you can set. The retry interval is increased each time
a retry attempt fails, until the maximum value is reached. The minimum and
maximum values of the retry interval are specified by the following attributes
of the MTA entity:

• Initial Transfer Retry Interval

This attribute specifies the length of time that the MTA waits before
making the first retry attempt.

Use the following command to specify this interval:

SET NODE "node-id" MTA INITIAL TRANSFER RETRY INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the time interval.

Tuning an MTA 7–21

• Maximum Transfer Retry Interval

This attribute specifies the maximum length of time that the MTA can wait
between retry attempts.

Use the following command to specify this interval:

SET NODE "node-id" MTA MAXIMUM TRANSFER RETRY INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the time interval.

The MTA doubles the retry interval after each failed retry attempt until one of
the following occurs:

• The retry interval reaches the value specified by the Maximum Transfer
Retry Interval attribute.

• If the retry interval were doubled, it would exceed the value specified by
the Maximum Transfer Retry Interval attribute.

When one of these conditions occurs, the retry interval remains at the value
specified by the Maximum Transfer Retry Interval attribute.

For example, an MTA is set up with the following values:

Initial Transfer Retry Interval = 5 minutes
Maximum Transfer Retry Interval = 30 minutes

When an association fails and the MTA makes several attempts to recover that
association, then the retry interval varies according to Table 7–4:

Table 7–4 Example of How the MTA Calculates the Retry Interval

Retry
Attempt

Retry
Interval
(minutes)

Result
of Retry
Attempt Comment

1 5 Fails The MTA waits until the time specified by the Initial
Transfer Retry Interval attribute has elapsed before
trying to recover the association. Because the first
retry attempt fails, the MTA doubles the retry
interval to 10 minutes.

2 10 Fails Because the second retry attempt fails, the MTA
doubles the retry interval to 20 minutes.

(continued on next page)

7–22 Tuning an MTA

Table 7–4 (Cont.) Example of How the MTA Calculates the Retry Interval

Retry
Attempt

Retry
Interval
(minutes)

Result
of Retry
Attempt Comment

3 20 Fails Because the third retry attempt fails, the MTA tries
to double the retry interval. However, if the MTA
were to double the retry interval it would exceed
the value specified by the Maximum Transfer Retry
Interval attribute. Therefore, the MTA sets the retry
interval to 30 minutes. This is the value specified by
the Maximum Transfer Retry Interval attribute.

4 30 Fails Because the fourth retry attempt fails and the
Maximum Retry Interval has already been reached,
the retry interval remains at 30 minutes.

5 30 Succeeds The MTA starts to transfer the first MPDU in the
retry set. If the transfer is successful, then the
MTA sets the retry interval to 5 minutes. This is
the value specified by the Initial Transfer Retry
Interval. If the transfer of the first MPDU in the
retry set fails, then the MTA does not change the
retry interval but makes another retry attempt to
the peer MTA after a further retry interval of 30
minutes has elapsed.

The values that you should use for the Initial Transfer Retry Interval or the
Maximum Transfer Retry Interval attributes depend on the type of network
that the MTA is part of. If the MTA is part of a wide area network (WAN),
then use values of several minutes. If the MTA is part of a local area network
(LAN), then you can use values of less than a minute.

Tuning an MTA 7–23

You can monitor retry attempts to a particular peer MTA using the following
attributes of the Peer MTA entity that represents the peer MTA:

• Retry Count

This attribute records the number of retry attempts made by the MTA to
establish or recover an association to the peer MTA. When a retry attempt
to the peer MTA is successful, the MTA resets this attribute to zero.

• Retry Time

This attribute holds the time of the next retry attempt. If there are no
MPDUs in the Retry Queue for the peer MTA, then this attribute has the
same value as the Creation Time attribute.

Use the following command to display these attributes:

SHOW NODE "node-id" MTA PEER MTA identifier RETRY COUNT, RETRY TIME

where identifier is either:

• [TYPE = MANUALLY CONFIGURED, NAME = "peer-mta-name"]

where peer-mta-name is the name of the Peer MTA entity.

• [TYPE = AUTOMATICALLY CONFIGURED, NAME = "name"]

where name is the name of the peer MTA’s entry in the directory.

7.3.6 Changing MPDU Expiry Intervals
You can specify a limit for the local processing of an MPDU. This time is
calculated from when the complete MPDU enters the MTA. The MPDU expires
if it is in the MTA longer than the time you specify. When the MPDU expires,
the MTA attempts to send a non-delivery report to the originator of the MPDU.
See Section 1.2.1 for details of how the MTA uses MPDU expiry times.

To specify how long an MPDU can remain in the MTA, modify the Local MPDU
Expiry Interval attribute of the MTA entity, as described in Section 7.3.6.1.

To ensure that message transfer is consistent throughout your routing domain,
apply the same Local MPDU Expiry Interval at all MTAs in your routing
domain.

7–24 Tuning an MTA

You can also specify how long an MPDU is allowed to take to reach its
destination. The time is calculated from when the MPDU enters the first
ADMD on its route. The length of time can be varied for MPDUs that have
different priorities. The following attributes of the MTA entity specify the
appropriate expiry interval:

• Nonurgent MPDU Expiry Interval (Section 7.3.6.2)

• Normal MPDU Expiry Interval (Section 7.3.6.3)

• Urgent MPDU Expiry Interval (Section 7.3.6.4)

Setting CCITT Expiry Intervals

The MTA’s startup script contains NCL commands that set these
attributes to the expiry times recommended by the CCITT. To use the
commands in the startup script remove the ‘‘!’’ from the start of each
command.

For the location of this script, refer to the appendix describing the
operating system specific information.

7.3.6.1 Local MPDU Expiry Interval
This attribute specifies how long an MPDU can remain in the MTA. Use the
following command to modify this attribute:

SET NODE "node-id" MTA LOCAL MPDU EXPIRY INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the time interval.

The time that you specify for the Local MPDU Expiry Interval attribute
determines the expiry alarm threshold. The MTA automatically sets this
threshold to be half the value of the Local MPDU Expiry Interval attribute.
The MTA generates the Expiry Alarm Threshold Exceeded event when an
MPDU remains in the MTA longer than this threshold. The Expiry Alarm
Threshold Exceeded event provides a warning that an MPDU is about to
expire.

7.3.6.2 Nonurgent MPDU Expiry Interval
This attribute specifies how long MPDUs that have a nonurgent priority can
take to reach their destinations.

The MTA’s startup script contains an NCL command that sets this attribute to
the expiry time recommended by the CCITT. If you want to use the command,
then edit the MTA’s startup script, as described in the note in Section 7.3.6.

Tuning an MTA 7–25

Otherwise, use the following command to set this attribute:

SET NODE "node-id" MTA NONURGENT MPDU EXPIRY INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the expiry interval.

7.3.6.3 Normal MPDU Expiry Interval
This attribute specifies how long MPDUs that have a normal priority can take
to reach their destinations.

The MTA’s startup script contains an NCL command that sets this attribute to
the expiry time recommended by the CCITT. If you want to use this command,
then edit the MTA’s startup script, as described in the note in Section 7.3.6.

Otherwise, use the following command to set this attribute:

SET NODE "node-id" MTA NORMAL MPDU EXPIRY INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the expiry interval.

7.3.6.4 Urgent MPDU Expiry Interval
This attribute specifies how long MPDUs that have an urgent priority can take
to reach their destinations.

The MTA’s startup script contains an NCL command that sets this attribute to
the expiry time recommended by the CCITT. If you want to use this command,
then edit the MTA’s startup script, as described in the note in Section 7.3.6.

Otherwise, use the following command to set this attribute:

SET NODE "node-id" MTA URGENT MPDU EXPIRY INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the expiry interval.

7.4 Controlling the Number of Peer MTA Entities
The Maximum Automatically Configured Peer MTAs attribute of the MTA
entity limits the number of Peer MTA entities that the MTA can have and
that are created by the MTA. This attribute has no effect on the number of
concurrent Peer MTA entities manually created to represent peer MTAs in
other routing domains.

An MTA creates a Peer MTA entity automatically when it first communicates
with a particular peer MTA in the same routing domain. The MTA creates
a Peer MTA entity to hold information about the messages that it exchanges
with the peer MTA. The maximum number of Peer MTA entities that the MTA
needs to create is related to the number of MTAs in the routing domain. For
example, if a routing domain contains ten MTAs, then each MTA could create
up to nine Peer MTA entities.

7–26 Tuning an MTA

It is not possible to manually delete Peer MTA entities that are automatically
created by the MTA. You can control the number of concurrent Peer MTA
entities created by the MTA by specifying the maximum number that can exist
concurrently.

The maximum number of concurrent Peer MTA entities that are automatically
created by the MTA is specified by the Maximum Automatically Configured
Peer MTAs attribute. When the number of Peer MTA entities, created by the
MTA, reaches the limit specified by this attribute, the MTA deletes the oldest
Peer MTA entity that has no subordinate Activity entities. See Section 1.3.3
for more information about how the MTA applies the limit specified by this
attribute.

When an MTA deletes a Peer MTA entity, it generates the Entity Deleted
event. This event contains the final values of the counters for the deleted Peer
MTA entity.

Note

The value of the Maximum Automatically Configured Peer MTAs
attribute does not affect potential or existing associations with peer
MTAs.

Use the following command to modify this attribute:

SET NODE "node-id" MTA MAXIMUM AUTOMATICALLY CONFIGURED PEER MTA value

where value is the maximum number of concurrent Peer MTA entities
automatically created by the MTA.

7.5 Controlling Message Transfer to Other Routing Domains
At a boundary MTA, you can control the direction of message transfer to and
from another routing domain that the boundary MTA is connected to. The
direction of message transfer is specified by the Direction attribute of the Peer
MTA entity that holds information about a peer MTA in the other routing
domain. This attribute has one of the following values:

• Inbound

The boundary MTA can receive messages from the peer MTA in the other
routing domain but cannot send messages to this peer MTA.

• Outbound

The boundary MTA can send messages to the peer MTA in the other
routing domain but cannot receive messages from this peer MTA.

Tuning an MTA 7–27

• Inbound and Outbound

The boundary MTA can send messages to and receive messages from the
peer MTA in the other routing domain.

Use the following command to specify the direction of transfer to and from a
peer MTA in another routing domain:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] DIRECTION value

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA in the other routing domain and value
is the direction of transfer.

7.6 Inserting Warning Text into Messages Received from
Other X.400 Management Domains

The MTA can insert text, written by you, into each interpersonal message
(IPM) that it receives from routing domains in other X.400 management
domains. Your text appears at the start of the IPM. Use your warning text to
notify your users that a particular message they have received is from another
organization, for example:

WARNING: This message has originated outside of your
organization. Keep this in mind when replying.

Note that inserting your text into an IPM is an optional feature that has to be
manually set up. If you tune an MTA to insert your text, it inserts it into all
the IPMs it receives from all other X.400 management domains.

The MTA identifies a routing domain in another X.400 management domain
from the information about that routing domain held in the directory. The
Different CCITT Domain attribute of the Domain entity indicates whether or
not a particular routing domain is part of another X.400 management domain.
This attribute must be set to ‘‘TRUE’’ in order for the MTA to recognize that
the routing domain is in another X.400 management domain.

7.6.1 Creating Your Warning Text
Your warning text is held in the MTA’s warning text file. This is one of the files
that is installed with the MTA. Refer to the appendix describing the operating
system specific information for the name and location of this file.

OpenVMS
After you have set up the MTA, MTA$IA5_WARNING_TEXT.TXT is
moved from SYS$COMMON to the device and directory used by the
MTA, and specified when the MTA is set up: device:MTA$node.
♦

7–28 Tuning an MTA

After installation, the MTA’s warning text file does not contain any text; this
means that no warning text is inserted by the MTA. If you want the MTA to
automatically insert your warning text into an IPM do the following:

1. Edit the file so that it contains your warning text.

Your warning text can be of any length, but must contain only IA5
characters to ensure that it can be received by all users. Also note that the
MTA inserts the complete contents of the file. It is not possible to comment
out any of the text in the file.

2. Stop and restart the MTA.

See the appropriate appendix for information about how to stop and start
the MTA.

If you want to stop the MTA inserting your warning text into messages, either
remove the text or delete the MTA’s warning text file, then stop and start the
MTA.

Note

If you delete the MTA’s warning text file, and, in the future, you want
the MTA to insert your warning text into an IPM, recreate the file so
that it has the same file specification as the warning text file installed
with the MTA. See the appropriate appendix for the location of the
MTA’s warning text file.

OpenVMS
Note that if you create a new warning text file you should
ensure that the filename and location are those given
in Table E–1 and that the new file has the RMS record
format Stream_LF.
♦

7.7 Customizing the MTA’s Use of the Transport Service
There are two types of Transport Service that the MTA can use:

• DECnet/OSI Transport Service

• TCP/IP Transport Service

The TCP/IP Transport Service is provided by use of the RFC 1006 protocol,
which emulates the OSI Transport Service Class 0 over a TCP/IP network.
The RFC 1006 protocol enables OSI applications, such as the MTA, to use the
TCP/IP network.

Tuning an MTA 7–29

7.7.1 How MTAs Use the Transport Service
The address of an MTA can be either a Presentation or Session address. A
Presentation or Session address can contain several network service access
points (NSAPs). Each NSAP contains a network address that is associated
with a particular type of network service. An MTA connects to a peer MTA
using the appropriate network address provided by an NSAP in the peer MTA’s
address.

Section 7.7.1.1 describes the DECnet/OSI Transport Service connections.
Section 7.7.1.2 describes the TCP/IP Transport Service connections.

7.7.1.1 The DECnet/OSI Transport Service
There are two network services available for DECnet/OSI Transport
connections:

Connectionless Network Service (CLNS), used for a local area network
(LAN)

For local area network connections to a peer MTA, the peer MTA’s
Presentation or Session address must contain a CLNS NSAP.

Connection-oriented Network Service (CONS), used for a wide area network
(WAN)

For wide area network connections to a peer MTA, the peer MTA’s
Presentation or Session address must contain a CONS NSAP.

Note that a peer MTA’s address can contain both a CLNS and CONS NSAP.
The MTA selects the NSAP to use according to the value of the Network
Service attribute supplied in a Transport Template entity. For example, if
the Transport Template entity specified by the MTA defines the network
service as CLNS, the Transport Service uses a CLNS NSAP in the peer MTA’s
Presentation or Session address. For more information about the MTA’s use of
Transport Templates see Section 7.7.4.

7.7.1.2 The TCP/IP Transport Service
For TCP/IP Transport Service connections to a peer MTA, the peer MTA’s
Presentation or Session address must contain an RFC 1006 NSAP.

The TCP port number defined in RFC 1006 to listen for RFC 1006 connections
is 102. RFC 1006 NSAPs that are generated when the MTA is set up contain
102 as defined in RFC 1006.

As an example, if you have the TCP/IP address 1.2.3.4 the NSAP is:

RFC1006+1.2.3.4+102,RFC1006

7–30 Tuning an MTA

The following are examples of how an RFC 1006 NSAP can be expressed:

RFC1006+1.2.3.4+102
RFC1006+1.2.3.4,RFC1006
RFC1006+1.2.3.4+102,RFC1006

These RFC 1006 NSAPs are equivalent. You can omit the port number, in
which case the TCP port number 102 is assumed, and ‘‘RFC1006’’ at the end
of the NSAP is optional. When displayed using NCL the form of the RFC1006
NSAP is always:

NS+5400728722031880000110340010200001,RFC1006"

Refer to the DECnet-Plus documentation set for the rules for encoding
RFC1006 NSAPs.

7.7.2 How an MTA Selects a Transport Service

�
Tru64
UNIX

On Tru64 UNIX, the MTA entity contains a Transport Service
Options attribute that specifies the Transport Service that an
MTA can use for outbound connections to peer MTAs in the same
routing domain.

A Peer MTA entity also contains a Transport Service Options
attribute. Use this attribute to specify the Transport Service
to be used by a boundary MTA for connections to a peer MTA
in another routing domain. If the Transport Service Options
attribute of a Peer MTA entity is set to null, the boundary MTA
uses the Transport Service specified by its MTA entity.

The Transport Service Options attribute can contain the values
OSI and TCPIP. The value OSI refers to the DECnet/OSI
Transport Service; the value TCPIP refers to the TCP/IP Transport
Service. When you set up the MTA, the Transport Service Options
attribute of the MTA entity is automatically set up.

The order of the values in the Transport Service Options attribute
is important. For example, if the attribute specifies OSI before
TCPIP, the MTA always tries to use the DECnet/OSI Transport
Service first.

For information about changing the order of the Transport
Services specified by the MTA’s Transport Service Options
attribute, and how to set the Transport Service Options attribute
of a Peer MTA entity, see Section 7.7.3.
♦

Tuning an MTA 7–31

OpenVMS
On OpenVMS, you can define Transport Template entities for each
type of DECnet/OSI network on a particular node including an
RFC1006 network type; see Section 7.7.4.

On OpenVMS the MTA does not use the Transport Service Options
attribute. If you want to specify a preference in the order that
the MTA uses each Transport Service, you must modify either the
MTA or the peer MTA attribute ‘‘Template Name’’ and include the
individual Transport Templates in the order that you want the
connection attempts tried; see Section 7.7.5.
♦

7.7.3 Modifying the Transport Service Options Attributes

�
Tru64
UNIX

This section explains how to modify the Transport Service Options
attribute of the MTA entity and the Peer MTA entity on Tru64
UNIX.

You can modify the Transport Service Options attribute to either
change the order of the Transport Services it specifies or to specify
only one Transport Service.

Use the following command to set the Transport Service Options
attribute of an MTA entity:

SET NODE "node-id" MTA TRANSPORT SERVICE OPTIONS -
(value[, value])

where value is one of TCPIP or OSI.

Do not set this attribute to null; if you do, the MTA is unable to
make outbound connections to peer MTAs in the same routing
domain.

For connections to a peer MTA in another routing domain, use
the Transport Service Options attribute of a Peer MTA entity to
specify a different Transport Service or order of Transport Services
than that specified by the MTA entity.

Use the following command to set the Transport Service Options
attribute of a Peer MTA entity:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY -
CONFIGURED, NAME = "peer-mta-name"] TRANSPORT SERVICE -
OPTIONS (value[, value])

7–32 Tuning an MTA

where peer-mta-name is the name of the Peer MTA entity that
holds information about the peer MTA in the other routing domain
and value is one of TCPIP or OSI.

Note

Any changes you make to the Transport Service Options
attribute in the MTA or Peer MTA entities must also be
included in the MTA’s startup script.

OpenVMS
On OpenVMS, as the MTA does not use the Transport Service
Options attribute, if you try to use the following NCL commands,
NCL returns an Invalid Attribute error:

• SET MTA TRANSPORT SERVICE OPTIONS

• SET PEER MTA TRANSPORT SERVICE OPTIONS

• SHOW MTA TRANSPORT SERVICE OPTIONS

• SHOW PEER MTA TRANSPORT SERVICE OPTIONS

♦

7.7.4 MTA OSI Transport Templates
Within DECnet/OSI Transport management, the characteristics of OSI
Transport communication over a particular type of network service are defined
by a Transport Template entity. Transport Template entities are set up on
each node that is connected to the network as entities of the OSI Transport
module. See the DECnet/OSI network management documentation for more
information about the OSI Transport module.

An individual node can be connected to more than one type of network service,
and there must be at least one Transport Template entity set up for each type
of DECnet/OSI network on the node. For example, if a node is connected to a
local area network and a wide area network there is:

• A Transport Template entity with the Network Service attribute set to
CLNS.

This Transport Template entity describes the Transport characteristics for
a local area network.

• A Transport Template entity with the Network Service attribute set to
CONS.

Tuning an MTA 7–33

This Transport Template entity describes the Transport characteristics for
a wide area network.

• A Transport Template entity with the Network Service attribute set to
RFC1006 (OpenVMS).

When a DECnet/OSI application, in this case an MTA, makes use of the
DECnet/OSI Transport Service to set up a Transport connection to a peer MTA
located at another node, it can specify the name of a Transport Template entity.
This Transport Template entity defines the characteristics of the OSI Transport
connection. One of the characteristics of a connection is the Transport Class
(TP0, TP2, or TP4) to be used. In the case of the MTA, these Transport
Template entities are specific to the MTA and are created when an MTA is
installed and set up. The MTA then uses its own Transport Template entities
in preference to the Transport Template entities defined by DECnet/OSI.

7.7.4.1 Inbound Communication
For inbound connections using the DECnet/OSI Transport Service, the MTA’s
use of a Transport Template depends on the operating system that the MTA is
running on.

�
Tru64
UNIX

When the MTA is installed on a Tru64 UNIX system, a script
is installed and executed that defines the Transport Template
entity ‘‘mta_any’’ for all inbound communications. The ‘‘mta_any’’
Transport Template entity supports Transport protocol classes 0
and 4 for a CONS network connection and Transport protocol class
4 for a CLNS network connection. The ‘‘mta_any’’ Template entity
has no associated attribute in the MTA entity or subentities, so
you cannot change the name of this template.
♦

OpenVMS
On OpenVMS systems, the MTA does not use a Transport
Template entity for inbound communication but can accept
Transport protocol classes 0, 2, and 4 for inbound CONS and
CLNS network connections.
♦

7–34 Tuning an MTA

7.7.4.2 Outbound Communication
For outbound connections using the DECnet/OSI Transport Service, a script is
executed that defines one or both of the following Transport Template entities
within the MTA’s routing domain:

• ‘‘mta_clns’’ for outbound communications across a LAN

• ‘‘mta_cons’’ for outbound communications across a WAN

• ‘‘mta_rfc1006’’ for outbound communications over TCP/IP (OpenVMS)

You can modify the attributes of all the MTA’s Transport Template entities
with the exception of the Network Service attribute. As an example, you might
want to change the Transport Class defined in the Transport Template. See
the DECnet/OSI documentation for information about how to modify these
attributes.

Note

Any changes you make to the OSI Transport Templates automatically
created by the MTA must be included in the MTA’s Transport Template
scripts. For the name and location of these scripts, refer to the
appendix describing the operating system specific information.

Section 7.7.4.3 describes the use of Transport Templates within the routing
domain and Section 7.7.4.4 describes the use of Transport Templates at
boundary MTAs.

7.7.4.3 Within the Routing Domain
The names of the Transport Template entities used for outbound communica-
tion within the routing domain are defined in the Template Name attribute of
the MTA entity. This is done when the MTA startup file is executed. Note that
the ‘‘mta_cons’’ Transport Template name is included in the Template Name
attribute even if the corresponding Transport Template entity is not created.
This does not cause a problem if your network service is CLNS only. The
sequence of Transport Template entity names in the Template Name attribute
is significant; the first Transport Template entity specified by the MTA is the
one that the Transport Service attempts to use first.

There are circumstances where you might want to change the sequence in
which the templates appear in the Template Name attribute. For example, if
the MTAs in your routing domain are connected to a CONS network, and you
never want your MTAs to use the CLNS network, you can remove the

Tuning an MTA 7–35

‘‘mta_clns’’ Transport Template entity name specified in the Template Name
attribute at each MTA in your routing domain. Section 7.7.5 describes the
commands that you use to modify the Template Name attribute at each MTA.

7.7.4.4 At Boundary MTAs
You can also specify the names of the Transport Template entities that a
boundary MTA uses for outbound communication with a peer MTA in another
routing domain. You specify these in the Template Name attribute of the Peer
MTA entity that represents the peer MTA. If you do not specify the name of a
Transport Template entity in the Template Name attribute of the Peer MTA
entity, the boundary MTA uses the Transport Template entities specified in the
Template Name attribute of it’s MTA entity.

Be aware that if you modify a boundary MTA’s use of Transport Template
entities in any way, and there are no Transport Template entities specified in
Peer MTA entities, you might find that a boundary MTA can no longer make
connections to a peer MTA. For example, the MTAs in your routing domain are
using CLNS. You have decided to remove the ‘‘mta_cons’’ Transport Template
entity name from each MTA’s Template Name attribute and at the boundary
MTA there is no Template Name attribute set up for the Peer MTA entities.
This boundary MTA can therefore only make connections to peer MTAs in the
other routing domains using CLNS. In this case, in order to use CONS to a
particular MTA, you must include the ‘‘mta_cons’’ Transport Template entity
name in the Template Name attribute of the Peer MTA entity that represents
the peer MTA in the other routing domain. This is then used in preference
to the Template Name provided for the boundary MTA. Alternatively, you can
name another suitable Transport Template entity with the Network Service
attribute set to CONS.

7.7.5 Modifying Template Name Attributes
The Template Name attribute of the MTA entity specifies the DECnet/OSI
network services that can be used by the MTA within the local routing domain.
Note that this attribute is automatically set up to contain the values
‘‘mta_clns’’, ‘‘mta_cons’’ and ‘‘mta_rfc1006’’ (OpenVMS). Modify this attribute if
you want the MTA to use a different sequence of network services or another
Transport Template entity that exists on the node. Use the following command
to modify this attribute:

SET NODE "node-id" MTA TEMPLATE NAME ("template-name", "template-name")

where template-name is the name of a Transport Template entity. Note that
this attribute can specify any number of OSI Transport Templates.

If, for any reason, the MTA entity’s Template Name attribute does not contain
a value, outbound communication is affected as follows:

7–36 Tuning an MTA

�
Tru64
UNIX

On Tru64 UNIX systems, the Template Name attribute can be
null. If no value is supplied for the Template Name attribute,
the MTA uses the DECnet/OSI network service specified by
the Transport Template entity called ‘‘DEFAULT’’ for outbound
communication.
♦

OpenVMS
On OpenVMS systems, the Template Name attribute must
contain the name of a Transport Template entity for DECnet/OSI
connections, otherwise the MTA is unable to make outbound
connections over DECnet/OSI.
♦

The type of DECnet/OSI network service to be used by the MTA to connect
to a particular peer MTA in another routing domain is specified by the
Template Name attribute of the Peer MTA entity. Note that this attribute is
not automatically set up. Use the following command to modify the Template
Name attribute of the Peer MTA entity:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] TEMPLATE NAME ("template-name", "template-name")

where:

• peer-mta-name is the name of the Peer MTA entity that holds information
about the peer MTA in the other routing domain.

• template-name is the name of an OSI Transport Template entity.

This attribute can specify any number of OSI Transport Templates.

If the Peer MTA entity’s Template Name attribute does not contain a value,
the MTA uses the network services specified by the Template Name attribute
of the MTA entity.

Note

Any changes you make to the Template Name attributes of the MTA
and Peer MTA entities must be included in the MTA’s startup script.

Tuning an MTA 7–37

8
Accounting

This chapter describes how you can use Accounting in your routing domain.

Accounting is a feature that is used to record certain items of information
about the messages exchanged between an MTA and its Agents and also
between the MTA and peer MTAs in other X.400 routing domains.

Note

No Accounting information is logged about messages transferred
between the MTAs within a routing domain. You can obtain
information about such message traffic by monitoring the following
counters: MPDUs In, MPDUs Out, Octets In, and Octets Out.

Section 7.2 describes how to do this in more detail.

To record Accounting information you need to enable Accounting. Enabling
Accounting activates the Accounting filters, which are characteristic attributes
of the MTA entity and its relevant Peer MTA entities. The Accounting filters
are listed in Table 8–1. They determine the specific items of information that
are recorded from the messages that enter and leave an MTA. If required, this
information can be used as a basis for generating message traffic statistics.

An MTA provides automatic management for Accounting in that it purges
Accounting information at regular intervals. However, you should be aware
that the process of writing Accounting information can reduce an MTA’s
performance. Accounting files also reduce the disk space available on the
system where the MTA is running.

Section 8.1 gives examples of why you might want to collect Accounting
information and where in your routing domain you would enable Accounting.
Section 8.2 describes how to use Accounting in your routing domain.

Accounting 8–1

8.1 Examples of Using Accounting
Use the examples in this section as a guide for assessing whether and where to
collect Accounting information at your routing domain boundaries.

8.1.1 Charging a Third Party for Message Transfer Services
An organization providing a message transfer service for third parties can use
Accounting information as a basis for invoicing its customers. Such invoices
could be based on Accounting information reflecting the amount of message
traffic, and the size and priority of each message. In this case, Accounting is
enabled at the MTAs which handle messages for the third party. These could
be the MTAs that receive third party messages, the MTAs that pass these on
to the target routing domain, or both.

The following example uses the ACME Shoe Corporation, a fictitious shoe
manufacturer in New Zealand. The message transfer between the ACME Shoe
Corporation and other organizations is handled by the ADMD New Zealand
PTT. To collect the information required for invoicing ACME, the New Zealand
PTT has enabled Accounting at the MTA that connects to the ACME routing
domain. Figure 8–1 illustrates the New Zealand PTT’s use of Accounting with
regard to ACME.

8.1.2 Controlling Charges for Message Transfer Services
An organization using the service of a third party for message exchange with
other organizations (for example ACME Shoe Corporation as described in
Section 8.1.1) can use Accounting as a means of ensuring that it is invoiced
correctly. In this case, Accounting needs to be enabled at each MTA that
connects to the third party providing the message transfer service.

ACME Shoe Corporation uses Accounting for this purpose. See Figure 8–1.

8–2 Accounting

Figure 8–1 Accounting Used for the ADMD Connection

MTA in the ADMD routing
domain; Accounting
enabled

ACME routing domain

New Zealand PTT

Key:

MTA

MTA MTA MTA

MTA MTA

MTAMTAMTA

WELL.MTA-NODE6 in the
ACME routing domain;
Accounting enabled

Messages for which
Accounting information
is kept.

MIG0196

(ADMD routing domain)

8.1.3 Cross-Charging Between Departments
An organization can use Accounting to record internal message traffic, for
example, if one department in the organization is responsible for handling
inter-departmental message transfer for the entire routing domain. Accounting
information identifies the originator of a message, and therefore the cost for
the transfer of a message can be charged to the originator’s department. In
this case, Accounting information would be collected at all MTAs that are
connected to User Agents.

8.1.4 Creating Statistics About the Workload of an MTA
You can use Accounting to obtain statistical information about the amount
of message exchange between an MTA and its Agents, and peer MTAs in
other routing domains. For example, an organization may have set up an
MTS based on the MAILbus 400 MTA and wants to establish whether it is
operating properly and is laid out efficiently. In this case, Accounting could be
enabled temporarily at all relevant MTAs in the routing domain. Evaluating
the resulting data can help to plan modifications to the routing domain.

Accounting 8–3

You can also use an MTA’s counter attributes to obtain information about the
volume of internal message traffic (see Section 7.2). However, Accounting
information contains more details about the individual messages that are
processed by your MTAs (for example message size).

8.2 How to Tune Accounting
You can tune Accounting as follows:

• Enable or disable Accounting at an MTA (Section 8.2.1).

• Choose the information that is logged by modifying Accounting filter
settings (Section 8.2.2).

• Change the interval at which Accounting information is purged
(Section 8.2.3).

• Process Accounting files (Section 8.2.4).

To ensure that Accounting information is reliable and consistent, change
Accounting settings as part of a policy that spans your entire routing domain.
This means making identical changes to the Accounting settings of all MTAs
where Accounting is enabled, unless you have specific reasons to change
Accounting settings at a particular MTA only.

8.2.1 Enabling or Disabling Accounting
When you enable Accounting at the MTA entity, each of the filters listed in
Table 8–1 is activated and logs information, if a corresponding connection
exists. When you disable Accounting, these filters are deactivated.

Use the following command to enable or disable Accounting at an MTA:

SET NODE "node-id" MTA ACCOUNTING STATE value

where value is either ON (enable) or OFF (disable).

You cannot switch individual Accounting filters off, but you can set these filters
so that no information is being logged (see Section 8.2.2).

8–4 Accounting

Table 8–1 MTA Accounting Filters

Filter Description

Submission Accounting Filter1 Determines the information logged at message
submission from a User Agent.

Delivery Accounting Filter1 Determines the information logged at message
delivery to a User Agent.

Import Accounting Filter1 Determines the information logged at message
import from a Gateway.

Export Accounting Filter1 Determines the information logged at message
export to a Gateway.

Transfer In Accounting Filter2 Determines the information logged when a message
is transferred in from a particular peer MTA in
another routing domain.

Transfer Out Accounting Filter2 Determines the information logged when a message
is transferred out to a particular peer MTA in
another routing domain.

1Characteristic attribute of the MTA entity
2Characteristic attribute of the Peer MTA entity

Accounting filters have settings that determine the items of information that
are logged from a message. These are listed in Table 8–2 and Table 8–3.

8.2.2 Choosing Accounting Filter Settings
To modify the information that is logged by an Accounting filter, add or remove
Accounting filter settings, as required. The Accounting filter settings are listed
in Table 8–2 and Table 8–3.

Use the ADD and REMOVE commands as described in the MTA Module Online
Help to add or remove Accounting filter settings, or use the SET command to
replace existing settings.

For example, use the following command to remove filter settings from the
Export Accounting filter:

REMOVE NODE "node-id" MTA EXPORT ACCOUNTING FILTER -
{setting, setting}

where setting is an Accounting filter setting.

To enable a particular Accounting filter to log all possible items of information,
include all unused filter settings in the ADD command. To prevent a particular
Accounting filter from logging any information, include all used filter settings
in the REMOVE command.

Accounting 8–5

Table 8–2 and Table 8–3 list all Accounting filter settings and show:

• The filter settings that log information about messages, probes and reports

• The filter settings that are used in a particular Accounting filter

• The filter settings that are the defaults supplied with the MTA

Use these tables to decide which Accounting filter settings to add or remove.
Some filter settings log information from message fields on the X.400 message
envelope (as defined in CCITT Recommendation X.411 and in International
Standard ISO/IEC 10021-4). Other filter settings log information related
particularly to the MTA where Accounting is used.

Table 8–2 Information Logged about Messages and Probes

Settings Relating to the MAILbus 400 MTA

Filter Setting Applicable Filter

Message Size1 All

Agent 1 Submission, Delivery, Import and Export
Accounting Filter

Domain 1 Transfer In and Transfer Out Accounting
Filter

Settings Corresponding to Message Fields Defined in X.411 and ISO/IEC 10021-4

Filter Setting Applicable Filter

Message Originator 1 All

Message DL2 Expansion History All except Submission Accounting Filter

Message Recipient Information 1 All

Message Recipient Redirection History All except Submission Accounting Filter

Message Flags All

Message External Trace Information All

Message Internal Trace Information All

Message Priority 1 All

Message Content Type All

1Default supplied with the MTA
2DL = Distribution list

(continued on next page)

8–6 Accounting

Table 8–2 (Cont.) Information Logged about Messages and Probes

Settings Corresponding to Message Fields Defined in X.411 and ISO/IEC 10021-4

Filter Setting Applicable Filter

Message EITs All

Table 8–3 Information Logged about Reports

Settings Relating to the MAILbus 400 MTA

Filter Setting Applicable Filter

Report Size 1 All

Agent 1 Submission, Delivery, Import and Export
Accounting Filter

Domain 1 Transfer In and Transfer Out Accounting
Filter

Settings Corresponding to Message Fields Defined in X.411 and ISO/IEC 10021-4

Filter Setting Applicable Filter

Report Subject Identifier All

Reported Originator and DL2 Expansion
History 1

All except Submission Accounting Filter

Report Destination Name 1 All

Reported Actual and Intended Recipient1 All

Report External Trace Information All

Report Internal Trace Information All

1Default supplied with the MTA
2DL = Distribution list

Some of the Accounting filter settings contain timestamps. These are listed
in Table 8–4. Use these filter settings if you want to use timestamps when
processing Accounting files (see Section 8.2.4 for information about processing
Accounting files).

Accounting 8–7

Table 8–4 Timestamps in Accounting Filter Settings

Filter Setting Timestamp

Message DL1 Expansion History Records time when expansion occurred

Message Recipient Redirection History Records time when redirection occurred

Message External Trace Information Records time of arrival at X.400
management domain

Message Internal Trace Information Records time of arrival at MTA

Report External Trace Information Records time of arrival at X.400
management domain

Report Internal Trace Information Records time of arrival at MTA

1DL = Distribution list

8.2.3 Changing the Accounting Purge Interval
An MTA creates new Accounting files as required. The Accounting Purge
Interval attribute automatically purges Accounting files that exceed a certain
age. Unless modified, the value of this attribute is seven days, which means
that Accounting files older than seven days are deleted.

For Accounting files to be purged, the MTA must be enabled and the purge
interval must not be zero (0-00:00:00). When the Accounting Purge Interval is
zero, purging is disabled.

Before you change the Accounting Purge Interval, you need to find out how
much disk space Accounting files occupy at an MTA in a day. You then need
to check this figure against the availability of disk space at that MTA. Set the
Accounting Purge Interval to purge Accounting files so that there is always
sufficient disk space available.

If you are already using Accounting, monitor the size of Accounting files in
the Accounting directory. For the location of the Accounting directory, see the
appendix describing the operating system specific information.

If you have not used Accounting, you can use the following method to
determine the disk space that may be required for your Accounting files:

Estimate the average size of Accounting records in Accounting files (in bytes)
and the average number of messages that the relevant MTAs handle in a day.
If your MTS is already operational, you can use the following counters to help
you determine the number of messages:

8–8 Accounting

• Counters of the MTA entity:

Delivered MPDUs
Exported MPDUs
Imported MPDUs
Submitted MPDUs

• Counters of Peer MTA entities that are manually configured:

MPDUs In
MPDUs Out

To determine the average Accounting record size, decode an Accounting file,
using the Accounting Decoder tool, and count the number of records in it.
Divide the total size of the Accounting file by the number of records within it to
obtain an average Accounting record size. Multiplying the number of messages
with the average Accounting record size gives you an indication of the amount
of disk space that Accounting files can occupy in a day. Refer to the appendix
describing the operating system specific information for information about how
to use the Accounting Decoder tool.

When you decide to change the Accounting Purge Interval, make identical
changes at all MTAs where Accounting is enabled, unless you have specific
reasons to change the setting at a particular MTA only. When modifying the
Accounting Purge Interval, ensure that you do not cause the MTA to delete
Accounting information before it is used.

Use the following command to modify the Accounting Purge Interval:

SET NODE "node-id" MTA ACCOUNTING PURGE INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the desired purge interval in binary relative time. Only
the value you enter for d is used; that is, the value you supply for the number
of days.

8.2.4 Processing Accounting Files
Accounting information is stored in ASN.1 Basic Encoding Rules (BER) format
in Accounting files. ASN.1 is a standard form of notation used to represent
data and is described in CCITT Recommendations X.208 and X.209 as well as
International Standards ISO 8824 and ISO 8825 (see Appendix A). Section 8.3
describes the ASN.1 BER in Accounting files.

The Accounting Decoder tool enables you to translate the ASN.1 BER data in
Accounting files to text.

Accounting 8–9

You can build a utility that processes Accounting information, either in ASN.1
format or in translated text format, to compile invoices and statistics reflecting
the number of messages processed by your routing domain. See Section 8.3
if you intend to write a utility that reads the ASN.1 BER data stored in
Accounting files.

Accounting files are kept in a specific directory. For the location of the
Accounting directory, refer to the appendix describing the operating system
specific information. The unique name of an Accounting file is ensured by
mapping the current date to the file name.

The following are examples of Accounting file names:

�
Tru64
UNIX

1994032101
♦

OpenVMS
1994032101.

Note that the file name is terminated by a period.
♦

In the above examples 1994 is the year, 03 is the month, and 21 is the day
when the Accounting file was created. The last two digits (01 in the above
examples) are incremented throughout the day as new Accounting files are
created.

An MTA requires disk space to store Accounting information. You may
therefore consider copying Accounting files to another storage medium
regularly for post-processing. This enables you to have Accounting files
purged immediately after they have been copied. Alternatively, you could
process Accounting information while it is still on an MTA’s disk before it is
purged.

If you receive the System Interface Error event in combination with other
events indicating data losses, and if counters indicating such data losses
increase suddenly and substantially, investigate whether this is due to
Accounting files occupying too much disk space. If this is the case Accounting
files must be purged or moved to another storage medium more frequently.

8–10 Accounting

8.3 Accounting File Format
Accounting information in an Accounting file is in ASN.1 (BER) format. To
use the information in this section you must already be familiar with handling
encoded ASN.1 data.

The information that is written to Accounting files is determined by Accounting
filter settings, such as Message Originator or Message Content Type. These
Accounting filter settings cause information to be logged from message
attributes as defined in CCITT Recommendation X.411 and International
Standard ISO 10021-4. In addition, the Accounting filter settings log
information that is specific to the MTA where Accounting is used.

Table 8–5 lists the message attributes that are defined in X.411 and ISO/IEC
10021-4 and that are written to Accounting files for messages or probes.

Table 8–5 Accounting Filter Settings in Messages and Probes and Corresponding
X.411 and ISO/IEC 100021-4 Message Attributes

Accounting Filter Setting
X.411 and ISO/IEC 10021-4 Message
Attribute

No particular setting required1 message-identifier, probe-identifier

Message Originator originator-name

Message DL2 Expansion History dl-expansion-history

Message Recipient Redirection History redirection-history

Message Flags per-message-indicators

recipient-reassignment-prohibited

dl-expansion-prohibited

conversion-with-loss-prohibited

Message External Trace Information trace-information

Message Internal Trace Information3 internal-trace-information

Message Priority4 priority

Message Content Type content-type

1The message-identifier and probe-identifier attributes are always logged when Accounting is
enabled
2DL = Distribution list
3ISO DIS 8883 MOTIS 84 Internal Trace elements are not recorded in the Trace Information
4For messages only

(continued on next page)

Accounting 8–11

Table 8–5 (Cont.) Accounting Filter Settings in Messages and Probes and
Corresponding X.411 and ISO/IEC 100021-4 Message
Attributes

Accounting Filter Setting
X.411 and ISO/IEC 10021-4 Message
Attribute

Message EITs original-encoded-information-types or trace-
information

Message Recipient Information recipient-name

per-recipient-indicators

requested-delivery-method

physical-forwarding-prohibited4

physical-forwarding-address-request4

physical-delivery-modes4

registered-mail-type4

physical-delivery-report-request4

proof-of-delivery-request4

4For messages only

Table 8–6 lists the message attributes that are defined in X.411 and ISO/IEC
10021-4 and that are written to Accounting files for reports.

Table 8–6 Accounting Filter Settings in Reports and Corresponding X.411
and ISO/IEC 10021-4 Message Attributes

Accounting Filter Setting
X.411 and ISO/IEC 10021-4 Message
Attribute

No particular setting required report-identifier1

Report Subject Identifier subject-identifier

Reported Originator and DL2 Expansion
History

originator-and-dl-expansion-history

Report Destination Name report-destination-name

1The report-identifier attribute is always logged when Accounting is enabled
2DL = Distribution list

(continued on next page)

8–12 Accounting

Table 8–6 (Cont.) Accounting Filter Settings in Reports and Corresponding
X.411 and ISO/IEC 10021-4 Message Attributes

Accounting Filter Setting
X.411 and ISO/IEC 10021-4 Message
Attribute

Reported Actual and Intended Recipient actual-recipient-name and originally-
intended-recipient-name

Report External Trace Information trace-information

Report Internal Trace Information3 internal-trace-information

3ISO DIS 8883 MOTIS 84 Internal Trace elements are not recorded in the Trace Information

8.3.1 ASN.1 in Accounting Files
This section does not provide a complete specification of the ASN.1 for the MTA
accounting files. Definitions not included in this section can be found in the
X.400 standard X.411 and ISO/IEC 10021-4.

The following ASN.1 describes the format of Accounting files as used by the
MTA.

-- ASN.1 taken from Recommendation X.419 and ISO/IEC 10021-6
-- MTS application protocol data units

MTS-APDU ::= CHOICE {
message [0] Message,
probe [2] Probe,
report [1] Report }

-- ASN.1 taken from Recommendation X.411 and ISO/IEC 10021-4 and annotated
-- for use in Accounting files

Message ::= SEQUENCE {
envelope MessageTransferEnvelope }

Probe ::= ProbeTransferEnvelope
Report ::= SEQUENCE {

envelope ReportTransferEnvelope,
content ReportTransferContent }

-- Message transfer envelope

MessageTransferEnvelope ::= SET {
COMPONENTS OF PerMessageTransferFields,
per-recipient-fields [2] SEQUENCE SIZE (1..ub-recipients) OF

PerRecipientMessageTransferFields }

PerMessageTransferFields ::= SET {
accounting-information AccountingInformation,
-- not taken from Recommendation X.411;
-- Accounting information for the MTA

Accounting 8–13

message-identifier MessageIdentifier,
originator-name OriginatorName OPTIONAL,
original-encoded-information-types OriginalEncodedInformationTypes

OPTIONAL,
content-type ContentType OPTIONAL,
priority Priority DEFAULT normal,
per-message-indicators PerMessageIndicators DEFAULT {},
trace-information TraceInformation OPTIONAL,
extensions [3] EXTENSIONS CHOSEN FROM {

recipient-reassignment-prohibited,
dl-expansion-prohibited,
conversion-with-loss-prohibited,
dl-expansion-history,
internal-trace-information } DEFAULT {} }

PerRecipientMessageTransferFields ::= SET {
recipient-name RecipientName,
per-recipient-indicators [1] PerRecipientIndicators,
extensions [3] EXTENSIONS CHOSEN FROM {

requested-delivery-method,
physical-forwarding-prohibited,
physical-forwarding-address-request,
physical-delivery-modes,
registered-mail-type,
physical-delivery-report-request,
proof-of-delivery-request } DEFAULT {} }

-- Probe transfer envelope

ProbeTransferEnvelope ::= SET {
COMPONENTS OF PerProbeTransferFields,
per-recipient-fields [2] SEQUENCE SIZE (1..ub-recipients) OF

PerRecipientProbeTransferFields }

PerProbeTransferFields ::= SET {
accounting-information AccountingInformation,
-- not taken from Recommendation X.411;
-- Accounting information for the MTA

probe-identifier ProbeIdentifier,
originator-name OriginatorName OPTIONAL,
original-encoded-information-types OriginalEncodedInformationTypes

OPTIONAL,
content-type ContentType OPTIONAL,
per-message-indicators PerMessageIndicators DEFAULT {},
trace-information TraceInformation OPTIONAL,
extensions [3] EXTENSIONS CHOSEN FROM {

recipient-reassignment-prohibited,
dl-expansion-prohibited,
conversion-with-loss-prohibited,
dl-expansion-history,
internal-trace-information } DEFAULT {} }

8–14 Accounting

PerRecipientProbeTransferFields ::= SET {
recipient-name RecipientName,
per-recipient-indicators [1] PerRecipientIndicators,
extensions [3] EXTENSIONS CHOSEN FROM {

requested-delivery-method } DEFAULT {} }

-- Report transfer envelope

ReportTransferEnvelope ::= SET {
accounting-information AccountingInformation,
-- not taken from Recommendation X.411;
-- Accounting information for the MTA

report-identifier ReportIdentifer,
report-destination-name ReportDestinationName OPTIONAL,
trace-information TraceInformation OPTIONAL,
extensions [1] EXTENSIONS CHOSEN FROM {

originator-and-DL-expansion-history,
internal-trace-information } DEFAULT {} }

-- Report transfer content

ReportTransferContent ::= SET {
COMPONENTS OF PerReportTransferFields,
per-recipient-fields [0] SEQUENCE SIZE (1..ub-recipients) OF

PerRecipientReportTransferFields }

PerReportTransferFields ::= SET {
subject-identifier SubjectIdentifier OPTIONAL }

PerRecipientReportTransferFields ::= SET {
actual-recipient-name [0] ActualRecipientName,
originally-intended-recipient-name [4] OriginallyIntendedRecipientName

OPTIONAL }

Accounting Information Particular to the MTA
AccountingInformation ::= [PRIVATE 0] IMPLICIT AccountingSequence

AccountingSequence ::= SEQUENCE {
1 accounting-time INTEGER,
2 accounting-point AccountingPoint,
3 content-size [0] IMPLICIT INTEGER OPTIONAL,
4 message-source [1] IMPLICIT MsgSource OPTIONAL,

5 CHOICE {
domain-name [2] IMPLICIT PrintableString,
registered-agent-name [3] IMPLICIT PrintableString,
mta-or-set-name [4] IMPLICIT PrintableString,
unregistered-agent-name [5] IMPLICIT ORName
} OPTIONAL
}

Accounting 8–15

AccountingPoint ::= ENUMERATED {
submission (0),
delivery (1),
import (2),
export (3),
transfer-in (4),
transfer-out (5)
}

MsgSource ::= SET {
type [0] IMPLICIT MsgSourceType,
string [1] IMPLICIT IA5String
}

MsgSourceType ::= ENUMERATED {
domain (1),
registered-agent (2),
MTA (3),
unregistered-agent (5)
}

where

1 accounting-time is time in seconds since 00:00:00 Greenwich Mean Time
(GMT), January 1, 1970.

2 accounting-point indicates where data has been logged during message
processing. It can take any of the values defined in the AccountingPoint
enumeration.

3 content-size is logged only if the Accounting filter settings Message Size
or Report Size are used. The content size is in Kilobytes.

4 message-source indicates from where a message entered the MTA. The
message source is indicated by:

type, which can take any of the values defined in the MsgSourceType
enumeration

string, which is the name of the domain, MTA, registered Agent or
unregistered Agent indicated in type.

Note that message source information is only logged for instances where
the AccountingPoint is either submission (0), import (2), or transfer in (4),
and that no destination information is logged in these instances.

8–16 Accounting

5 The elements of the CHOICE indicate the destination of a message.

Note that destination information is only logged for instances where the
AccountingPoint is either delivery (1), export (3), or transfer out (5), and
that no message source information is logged in these instances.

For definitions of any elements not defined in this section refer to CCITT
Recommendation X.411.

Accounting 8–17

9
Archiving

This chapter describes how you can use Archiving in your routing domain. It
also describes the format of an archived message (see Section 9.3).

Archiving is a method of keeping disk copies of messages that are exchanged
between an MTA and its registered Agents and between the MTA and peer
MTAs in other routing domains.

By default, Archiving is disabled. If you require disk copies of messages
exchanged with a particular registered Agent, or peer MTA in another routing
domain, enable Archiving for that particular Agent or peer MTA.

You should be aware that archived message copies reduce the availability of
disk space to the MTA and that the process of writing these copies to disk can
reduce MTA performance. The MTA provides no automatic management for
Archiving. This means that archived messages can accumulate and occupy a
large amount of disk space.

Section 9.1 gives an example of why you might want to archive messages
and where in your routing domain you would enable Archiving. Section 9.2
describes how to use Archiving.

9.1 Example of Using Archiving
The messages exchanged between organizations might be considered legally
binding documents. Examples are the exchange of electronic data interchange
(EDI) documents or the exchange of messages with a Telex Gateway. In this
case an organization may want to save copies of such messages by using
Archiving at the MTAs that exchange messages with such Gateways or with
peer MTAs in other X.400 routing domains.

Figure 9–1 illustrates how ACME Shoe Corporation would use Archiving.
In this example ACME exchanges messages which constitute legally binding
documents with another organization through a Gateway. Therefore, Archiving
is enabled at the relevant Agent entity of the MTA that connects to the
Gateway.

Archiving 9–1

Figure 9–1 Archiving Used at a Gateway Connection

Gateway ACME-GWKey
Message traffic archived

CEMA Group

WELL.MTA-NODE7 in the ACME
routing domain;
Archiving enabled at Agent entity
representing the Gateway
ACME-GW

MIG0198

ACME routing domain

MTA MTA MTA

MTA MTA

MTAMTAMTA

GW

9.2 How to Tune Archiving
You can tune Archiving as follows:

• Enable or disable Archiving and set the direction of message traffic that is
archived (Section 9.2.1).

• Process archived message copies (Section 9.2.2).

9.2.1 Enabling and Disabling Archiving
You enable Archiving for a particular registered Agent or peer MTA in another
routing domain using the relevant Agent or Peer MTA entity. When you
enable Archiving you also specify the direction of message traffic that is to be
archived, as follows:

• Outbound

Message copies sent from your routing domain through delivery, export or
outbound transfer.

• Inbound

Message copies sent to your routing domain through submission, import or
inbound transfer.

9–2 Archiving

• Inbound and outbound

Message copies sent to and from your routing domain.

Use the SET command as described in the MTA Module Online Help to enable
or disable Archiving. For example, use the following command to enable or
disable Archiving for a particular registered Agent:

SET NODE "node-id" MTA Agent "agent-name" ARCHIVE value

where agent-name is the name of the registered Agent and value is one of the
following:

• OUTBOUND

• INBOUND

• INBOUND AND OUTBOUND

• OFF

9.2.2 Processing Archived Messages
When Archiving is enabled, the MTA creates disk copies of messages that it
exchanges with the selected peer MTAs and registered XAPI Agents. These
message copies are stored in ASN.1 BER format. The MTA adds a header of
512 bytes to each archived message. See Section 9.3 for a description of the
ASN.1 BER in the headers of archived messages.

A Message Decoder tool that decodes messages and displays them as readable
text is provided with the MTA. Refer to the appendix describing the operating
system specific information for details of how to use the Message Decoder tool.

�
Tru64
UNIX

Archived message copies are stored in a specific directory. For the
location of the Archive directory see Appendix D. The file names
of archived messages have the following syntax:

2034ECC0A05FCA11860508002307347IACME-GW

The filename starts with a unique identifier (UID). The last
part of the file name, in the above example the string ACME-GW,
indicates the name of the registered Agent or peer MTA from
which the message was received or to which it was passed.

The one or two letters in the file name before the name of the
Agent or Peer MTA (I in the above example) indicate how the
message entered or left the MTA, where:

S indicates submission
D indicates delivery

Archiving 9–3

I indicates import
E indicates export
TI indicates inbound transfer
TO indicates outbound transfer

♦

OpenVMS
Archived message copies are stored in one or more specific
directories. See Appendix E for the logical to use to access the
Archive directories. The file names of archived messages have the
following syntax:

2034ECC0A05FCA11860508002307347TO.EMAC-MTA

The file name starts with a unique identifier (UID), which
encompasses all characters except the one or two characters
before the period. The one or two characters before the period (TO
in the above example) indicate how the message entered or left
the MTA, where:

S indicates submission
D indicates delivery
I indicates import
E indicates export
TI indicates inbound transfer
TO indicates outbound transfer

The file extension following the period, in the above example the
string EMAC-MTA, indicates the name of the registered Agent or
peer MTA from which the message was received or to which it was
passed.
♦

Remove archived message copies from the MTA’s disk regularly before they
occupy too much disk space and affect MTA operation. This is especially
important as the MTA does not purge archived messages.

To find out how often to remove archived messages from an MTA’s disk,
you need to find out how much disk space archived messages occupy. If you
are already using Archiving, monitor the size of archived messages in the
Archive directory (Tru64 UNIX) or directories (OpenVMS). If you have not used
Archiving, you can use the following method to determine the disk space that
may be required for your archived messages:

9–4 Archiving

Estimate the number of messages the relevant MTAs would archive and the
average size of an archived message. If your MTS is already operational, you
can use the following counters to help you determine the number of messages
and in the case of a peer MTA connection, the message size:

• Counters of Agent entities:

MPDUS In
MPDUS Out

• Counters of Peer MTA entities that are manually configured:

MPDUS In
MPDUS Out
Octets In
Octets Out

Section 7.2 describes this in more detail.

Multiplying the number of messages with the average message size gives you
an indication of the amount of disk space that archived messages can occupy.
Check the figures that you have determined against the availability of disk
space at each relevant MTA. Set up a method of removing archived messages
before they occupy a large amount of disk space and affect MTA operation.

If you receive the System Interface Error event in combination with other
events indicating data losses, and if counters indicating such data losses
increase suddenly and substantially, you should investigate whether this is due
to archived messages occupying too much disk space. If this is the case you
must copy archived messages to another storage medium more frequently.

9.3 Archived Message Format
When a MAILbus 400 MTA archives a message, it creates a file which consists
of an ASN.1 BER archive header followed by the ASN.1 BER encoding of the
message. The archive header is of a fixed size and always occupies the first
512 bytes of an archived message. The ASN.1 BER in the archive header is
described in Section 9.3.1. To use the information in Section 9.3.1 you must
already be familiar with handling encoded ASN.1 data.

The ASN.1 BER in a message is defined in CCITT Recommendation X.411.
Note that a 1992 X.400 message can be encapsulated in an EXTERNAL
encoding. The EXTERNAL datatype is defined in CCITT Recommendation
X.208 and International Standard ISO 8824.

Use the Message Decoder tool to decode the header of an archived message.
See the appendix describing the operating system specific information for the
commands to run this tool.

Archiving 9–5

9.3.1 ASN.1 in Archived Message Headers

header ::= [PRIVATE 1] IMPLICIT ArchiveMessageHeader;

ArchiveMessageHeader ::= SET {
1 archive-time INTEGER,
2 archive-point ArchivePoint,
CHOICE {

3 agent-name [0] IMPLICIT PrintableString,
4 mta-name [1] IMPLICIT PrintableString

}
}

ArchivePoint ::= ENUMERATED {
submission (0),
delivery (1),
import (2),
export (3),
transfer-in (4),
transfer-out (5)

}

where

1 archive-time indicates when the message was archived. The value is the
time in seconds since 00:00:00 Greenwich Mean Time (GMT), January 1,
1970.

2 archive-point indicates the process during which the message was
archived. The value is either submission, delivery, import, export, transfer-
in or transfer-out.

3 agent-name indicates the name of the submitting, delivering, importing or
exporting Agent. The value is the identifier of the relevant Agent entity.

4 mta-name indicates the name of the transferring peer MTA. The value is
the identifier of the relevant Peer MTA entity.

9–6 Archiving

10
Message History Logging

This chapter describes how you can tune Message History logging to suit your
management requirements.

Use Message History logging to keep information at an MTA about the
messages that it has processed. This information can be used to trace
messages in your routing domain as described in Section 18.4. By default,
Message History logging is disabled; if you require Message History
information you must enable Message History logging at the respective MTA.
You can access Message History information through the Processed Message
entity. You can control how long Message History information remains
available at an MTA. Note that Message History information is not kept about
probes and reports.

The MTA automatically purges Message History information at regular
intervals. However, you should be aware that the process of writing
Message History information can reduce MTA performance. Message History
information also reduces the disk space available to the MTA.

Section 10.1 gives examples of why you might want to collect Message History
information and where in your routing domain you would enable Message
History logging. Section 10.2 describes how to use Message History logging.

10.1 Examples of Using Message History Logging
Use the examples in this section as a guide for assessing whether and where to
use Message History logging in your routing domain.

10.1.1 Tracing Messages in your Routing Domain
An organization may need Message History information in order to trace a
message in its routing domain that did not reach an intended recipient.

Although it is impossible that a message is ‘lost’ without a corresponding non-
delivery report or event, you may want to have history information available
to trace the path a message has taken. To have relevant information available,
Message History logging could be used at all MTAs in the routing domain. If

Message History Logging 10–1

you decide to enable Message History logging at all MTAs, ensure that each
MTA has sufficient disk space available to store Message History information.

10.1.2 Establishing Whether a Message Was Passed to Another
Routing Domain
An organization that connects to other routing domains may need to be able to
establish whether a message has been passed to another domain. For example,
if a message failed to reach a recipient in another routing domain, you may
need to find out whether that message is still in your routing domain.

To have relevant information available, Message History information needs to
be collected at the MTAs that exchange messages with Gateways or with peer
MTAs in other routing domains.

Figure 10–1 shows that ACME Shoe Corporation uses Message History logging
at the boundary MTA connecting to the ADMD.

Figure 10–1 Message History Logging for the ADMD Connection

ACME routing domain

New Zealand PTT

Key:

MTA

MTA MTA MTA

MTA MTA

MTAMTAMTA
Messages for which
Message History
information is kept.

WELL.MTA-NODE6 in the
ACME routing domain;
Message History logging
enabled

MIG0197

(ADMD routing domain)

10–2 Message History Logging

10.2 How to Tune Message History Logging
You can tune Message History logging as follows:

• Enable or disable Message History logging at an MTA (Section 10.2.1).

• Change the interval at which Message History information is purged
(Section 10.2.2).

10.2.1 Enabling, Disabling and Viewing Message History Logging
If you require Message History information, for example to trace messages as
described in Section 18.4, you must enable Message History logging.

When Message History logging is enabled at an MTA, this MTA retains the
following information about each message (excluding probes and reports) that
it processes. This information is held in the Processed Message entity:

• The message identifier

• The O/R addresses of all recipients

• Information indicating whether the message was expanded from a
distribution list (the information includes the O/R addresses of the
recipients in the distribution list) or redirected (the information contains
the O/R address to which the message was redirected)

• The state of the message for each recipient that the MTA knows about

• The next destination of the message

You can display the Message History logged by an MTA using the Processed
Message entity. See Section 18.4 for an example output of the Processed
Message entity.

Use the following command to enable or disable Message History logging at an
MTA:

SET NODE "node-id" MTA MESSAGE HISTORY STATE value

where value is either ON (enable) or OFF (disable).

10.2.2 Changing the Message History Purge Interval
Message History information is stored in a specific workspace. For the
location of this workspace, refer to the appendix describing the operating
system specific information. The Message History Purge Interval attribute
automatically purges Message History information after a certain period of
time. Unless modified, the setting of this attribute is seven days.

Message History Logging 10–3

For purging to take place, the MTA must be enabled and the purge interval
must not be zero (0-00:00:00). When the Message History Purge Interval is
zero, purging is disabled.

Before you change the Message History Purge Interval at an MTA, decide
what service you want to offer your MHS users; for example, how long after a
message was submitted do you want to be able to investigate its ‘loss’. Also,
find out how much disk space your current Message History files use. You
must then find a compromise between the degree of service you want to offer
and the amount of disk space that you have available for Message History files.

To ensure that Message History information is reliable and consistent, set the
Message History Purge Interval to the same value at all MTAs where Message
History logging is enabled.

Use the following command to modify the Message History Purge Interval:

SET NODE "node-id" MTA MESSAGE HISTORY PURGE INTERVAL d-hh:mm:ss

where d-hh:mm:ss is the desired purge interval in binary relative time. Only
the value you enter for d is used; that is, the value you supply for the number
of days.

If you receive the System Interface Error event in combination with other
events indicating data losses, and if counters indicating such data losses
increase suddenly and substantially, investigate whether this is due to Message
History information occupying too much disk space. If this is the case you must
either purge Message History information more frequently or otherwise ensure
that sufficient disk space remains available for the MTA to operate.

10–4 Message History Logging

11
Content Information and IPM Bodypart

Converters

The MAILbus 400 MTA can transfer messages of any content length and
content type, containing any data format. In addition, MAILbus 400 MTAs
can convert bodyparts in messages of the interpersonal messaging (IPM)
content type, if suitable converters are available. Unless you specify otherwise,
MAILbus 400 MTAs deliver all messages regardless of their content length,
and the data formats or IPM bodyparts they carry. If you want your Agents to
receive only messages of a certain content type and content length, containing
only certain IPM bodyparts or data formats, you need to indicate such
restrictions specifically. Messages are then delivered or exported on the basis
of these restrictions.

Usually, it is the capability of your Agents that determines the restrictions that
apply. However, users may also have preferences with regard to the messages
that they receive. You specify Agent restrictions and user preferences by
supplying information in the directory, where it can be shared by all MTAs in
your routing domain. This information is called content information and is
held in the directory as attributes of the O/R address or O/R addresses that
a particular Agent serves. MAILbus 400 MTAs use this content information
to decide whether to deliver or export a message and whether to convert
bodyparts in an IPM. You enter content information in the directory as object
identifiers. An object identifier is a sequence of numbers that uniquely
identifies an object, in this case a content type, IPM bodypart or data format.

Section 11.1 describes content information in more detail and lists the object
identifiers for the content types.

Section 11.2 describes the content types that are most likely to occur in an
MTS.

Section 11.3 describes encoded information types (EITs) and the data formats
and IPM bodyparts that are most likely to occur in an MTS.

Content Information and IPM Bodypart Converters 11–1

Section 11.4 describes the bodypart converters that are supplied with the
MAILbus 400 MTA.

Section 11.5 provides some examples and guidelines for entering content
information in the directory.

Chapter 12 describes how to assign object identifiers to proprietary content
types, data formats or bodyparts. Chapter 12 also describes how to define
or create Bodypart entities for proprietary bodyparts and how to integrate a
proprietary converter with the MTA.

11.1 Content Information
Content information for an O/R address consists of the following:

• One or more identifiers for the message content types that an Agent
supports.

• A value for the maximum content length that an Agent supports.

• Identifiers for the data formats or IPM bodyparts within the supported
content types. These identifiers are called encoded information type
(EIT) identifiers.

When routing a message to a recipient, the MTA compares information held
in the message envelope with the content information in the recipient’s O/R
address entry in the directory, and decides what to do with the message. To
prevent an MTA from passing messages to an Agent that the Agent cannot
support, you must specify which content length, content types, data formats or
IPM bodyparts the Agent can handle. Otherwise, the following situations can
occur:

• Messages of a content type that an Agent does not support can be delivered.
A recipient’s User Agent might not be able to display a message if it is of
an unsupported content type.

• Data formats or IPM bodyparts that an Agent does not support can be
present in a message. A recipient’s User Agent might not be able to display
a certain data format or IPM bodypart.

• Messages of content lengths that an Agent does not support can be
delivered. A recipient’s Agent might not be able to handle a message that
is too large.

11–2 Content Information and IPM Bodypart Converters

11.1.1 Effects of Specifying Content Information
Specifying content information according to Agent restrictions and user
preferences (if applicable) has the following effects:

• The MTA only delivers or exports messages of content types that are
specified in the content information.

Messages of other content types are not delivered or exported, and the
MTA sends a non-delivery report to the message originator, if possible.

• The MTA does not deliver or export messages whose content length exceeds
the value supplied in the content information.

The MTA rounds up the content length of a message to the nearest
Kilobyte and compares it with the value supplied as content information.
If the message content is too big, the MTA does not deliver or export
the message. The MTA then sends a non-delivery report to the message
originator, if possible.

Note that this applies to the content size of unconverted messages only,
as the MTA does not recalculate the content size of a message after a
conversion.

• The MTA attempts to convert unacceptable bodyparts in IPMs.

This applies when the IPMS content type is specified as acceptable in the
content information.

When an MTA receives an IPM with bodyparts whose EITs are not listed
in the recipient’s content information, the MTA attempts to convert these
bodyparts to a bodypart whose EIT is listed in the content information.
Section 11.3 describes EITs in more detail. If an MTA cannot perform
the required conversions, it transfers the unconverted IPM to the next
MTA on the IPM’s route. See Section 3.8 for more information about the
conversion process. The converters provided with the MTA are described in
Section 11.4.

• The MTA does not deliver or export messages containing unacceptable
EITs.

This applies regardless of the content types that are specified as acceptable
in the content information.

If data formats contained in a message do not match the data formats
whose EITs are listed in the content information, the MTA does not
deliver or export the message. The MTA sends a non-delivery report to the
message originator, if possible.

Content Information and IPM Bodypart Converters 11–3

Each MTA that handles a message compares the message format with the
applicable content information and, if the message is an IPM and unacceptable
bodyparts are present, attempts to convert these bodyparts. It is the last
MTA on a message’s route (that is, the exporting or delivering MTA) that
decides whether a message is in the correct format and can be delivered or
exported. An MTA that is not last on a message’s route (that is, a transferring
MTA) transfers a message to another MTA, even if the message format is
unacceptable. This is true for messages that are transferred between MTAs
within your routing domain and between a boundary MTA and a peer MTA in
another X.400 routing domain. Transferring an unacceptable message instead
of non-delivering it maximizes the probability that an unacceptable bodypart
in an IPM can be converted by another MTA on the route.

You need to decide whether to specify content information in your O/R
addresses to reflect your Agents’ capabilities. This depends on how likely
it is that your Agents will receive messages that are unacceptable to them and
how important it is to you or your users that this does not occur. If you do not
specify any content information, the MTA delivers and exports all messages,
irrespective of their length, content type, and the data formats or bodyparts
contained in them.

You also need to decide whether to represent restrictions that you are aware
of in other X.400 routing domains to which you are connecting, even though
boundary MTAs do not make delivery or non-delivery decisions. Specifying
content information for users in other X.400 routing domains is important,
particularly where you have an X.400 routing domain based on the 1984 MHS
Standards connecting to your MAILbus 400 MTA routing domain (which is
based on the 1992 MHS Standards).

Chapter 6 describes in detail the actions of the MTA when downgrading a
message for a 1984 routing domain.

You can add content information at any point in your O/R address hierarchy,
As an example, a group of users in another routing domain is connected to
your routing domain through a Gateway, which supports only messages of one
content type. In this case, you could place the applicable content information
at the partial O/R address entry in the directory that represents these users.

See Section 11.2 for information on how to specify acceptable content types and
content length, and Section 11.3 for information on how to specify acceptable
EITs. Section 11.4 describes the bodypart converters supplied with the MTA
and Section 11.5 describes how to enter this information in the directory using
entities of the MTS module.

11–4 Content Information and IPM Bodypart Converters

11.2 Content Type and Content Length
To identify the content types and the maximum content length that an Agent
supports, refer to the documentation supplied with the Agent.

Some Agents can accept messages of any content type, but actually process
only some content types effectively. Others can accept and process only one
particular content type. As an example, mail User Agents conforming to the
1984 MHS Standards typically accept and support the 1984 IPMS content type
only, while mail User Agents conforming to the 1988 MHS Standards or 1992
MHS Standards must accept and support both the 1984 and the 1992 IPMS
content types. This is because the 1984 IPMS content type is a subset of the
1992 IPMS content type.

Note

The definition of the IPMS (or interpersonal messaging) content
type has not changed significantly between the 1988 and the 1992
MHS Standards. Therefore, the terms ‘‘1992 IPMS content type’’ or
‘‘interpersonal messaging 1992’’ when used in the MTA documentation
include the 1988 definition of the IPMS content type.

Section 11.5 provides some guidelines for the content information that is
applicable to different mail systems.

The content types that are most likely to occur in an MTS are listed in
Table 11–1. This table also lists the object identifiers assigned by HP to the
individual content types. Enter these object identifiers in the O/R address
entries of your users as required.

Content Information and IPM Bodypart Converters 11–5

Table 11–1 Content Types

Content type Object Identifier Description

Any content type {1 3 12 2 1011 5 5 0 0} Allows any content type to be
delivered.

Unidentified {1 3 12 2 1011 5 5 0 1 0} Used by bilateral agreement between
users of an MTS.

Electronic Data
Interchange

{1 3 12 2 1011 5 5 0 1 35} Used for documents of the EDI content
type.

Interpersonal
messaging 1984

{1 3 12 2 1011 5 5 0 1 2} IPMS content type as defined by the
1984 MHS Standards. This setting
causes the MTA to downgrade 1992
interpersonal messages to 1984 IPMS
format. Chapter 6 describes in detail
how the MTA downgrades a message
to 1984 IPMS format.

Interpersonal
messaging 1992
Select one of the
following:

1992 Externally
Defined IPMS

{1 3 12 2 1011 5 5 0 1 22} Use this content type for users who
use applications such as ALL-IN-
1™, MailWorks and the MAILbus
400 Message Router Gateway.
This setting represents the IPMS
content type as defined by the 1992
MHS Standards and includes the
interpersonal messaging 1984 content
type setting. In this setting, File
Transfer bodyparts (FTBPs) in 1992
interpersonal messages are translated
to Externally Defined bodyparts. An
example of an application generating
File Transfer bodyparts is Microsoft®
Exchange Server. See Section 11.2.1
for information on bodypart translation
and how you can modify it according to
your requirements.

(continued on next page)

11–6 Content Information and IPM Bodypart Converters

Table 11–1 (Cont.) Content Types

Content type Object Identifier Description

1992 File Transfer
IPMS

{1 3 12 2 1011 5 5 0 1 22 1} Use this content type for users who
use an application such as Microsoft
Exchange Server. This setting
represents the IPMS content type
as defined by the 1992 MHS Standards
and includes the interpersonal
messaging 1984 content type setting.
In this setting, Externally Defined
bodyparts in 1992 interpersonal
messages are translated to File
Transfer bodyparts. Examples of
applications that generate Externally
Defined bodyparts are ALL-IN-1 and
MailWorks. See Section 11.2.1 for
information on bodypart translation,
and how you can modify it according to
your requirements.

1992 IPMS
Passthrough

{1 3 12 2 1011 5 5 0 1 22 0} Use this setting if you want Externally
Defined bodyparts and File Transfer
bodyparts in 1992 interpersonal
messages to be passed through
untranslated. This setting represents
the IPMS content type as defined by
the 1992 MHS Standards and includes
the interpersonal messaging 1984
content type setting.

It is possible that you are using proprietary content types in your routing
domain for which the MTA documentation cannot supply unique object
identifiers. If these content types are described by object identifiers, you can
use these object identifiers in the content information of your O/R addresses,
otherwise, see Chapter 12.

11.2.1 Bodypart Translation
Some data formats can be transferred in 1992 interpersonal messages either
as Externally Defined bodyparts or as File Transfer bodyparts. While both
types of bodypart can carry the same data, they use different means of
identifying the data. Most recipients’ User Agents can only understand one
type of bodypart, either File Transfer or Externally Defined, and therefore the
bodyparts need to be translated. An example of an application that generates
File Transfer bodyparts is Microsoft Exchange Server. Examples of applications

Content Information and IPM Bodypart Converters 11–7

that generate Externally Defined bodyparts are ALL-IN-1, MailWorks and the
MAILbus 400 Message Router Gateway.

You specify whether and how bodypart translation takes place by specifying
one of the interpersonal messaging 1992 content types listed in Table 11–1 in a
user’s content information in the directory.

When translating a bodypart, the MTA changes the information that identifies
the bodypart, it does not modify the data contained in the bodypart. This
enables a recipient’s User Agent to recognize the type of bodypart in a message
and deal with it appropriately. (This is different from bodypart conversion,
where the MTA changes the format of the data contained in a bodypart.)

To translate between Externally Defined bodyparts and File Transfer bodyparts
in 1992 interpersonal messages, the MTA uses a bodypart mapping table. This
table contains the translations defined for Externally Defined bodyparts and
File Transfer bodyparts.

You can modify bodypart translation if the way the MTA translates between
bodyparts does not suit the requirements in your routing domain. To change
how the MTA translates bodyparts you need to change the information in the
bodypart mapping table. Instructions on how to change the bodypart mapping
table are provided in the bodypart mapping table itself.

The bodypart mapping table is located at
/var/mta/mta_bp_map_table.txt (Tru64 UNIX) or
SYS$COMMON:[MTA]MTA$BP_MAP_TABLE.TXT (OpenVMS).

11.3 Encoded Information Types (EITs)
For each content type that you specify you need to list EITs to indicate which
data formats within that content type, or which bodyparts within IPMs, can be
received by your Agents. To identify which data formats or IPM bodypart types
an Agent supports, see the documentation supplied with the Agent.

Conversion of IPM bodyparts by the MTA is dependent on which EIT
identifiers are supplied in the content information of an O/R address. You
enter the applicable EITs as object identifiers. The order in which EITs are
listed represents the order in which you want an MTA to prioritize the choice
of conversion. HP recommends that you list formats with more features
before formats with fewer features. In doing so, you reduce the risk of losing
information in the conversion process.

11–8 Content Information and IPM Bodypart Converters

If you want an MTA to attempt to convert unsupported IPM bodyparts, but
to still deliver the message if no conversion is possible, add the value for
‘‘any EIT’’ to the list of EITs. You can place this value anywhere in the list of
applicable EITs without affecting the order of preference in which conversions
are performed.

Note that you can set up content information for an O/R address to allow the
Agent to receive the combination of 1984 IPMS content type and EITs defined
for Externally Defined bodyparts which are strictly associated with the 1992
IPMS content type. In this case, the MTA will downgrade these bodyparts as
described in Chapter 6.

You can also set up content information for an O/R address such that messages
can be transferred across an intermediate routing domain based on the 1984
MHS Standards if that routing domain cannot transfer the 1992 IPMS content
type; see Section 11.5.7.

The data formats and IPM bodypart types that are most likely to occur in an
MTS are listed in Table 11–2. This table also lists the EITs that you need to
enter to represent these data formats or IPM bodyparts in your O/R address
entries in the directory.

The MTA’s startup script creates Bodypart entities for each of the bodyparts
listed in Table 11–2. The MTA startup script executes an additional script
which creates additional Externally Defined Bodypart entities that might
be required for the User Agent or Gateway products you are using. For the
location of the MTA’s startup script see the appendix describing the operating
system specific information.

Table 11–2 Data Formats and IPM Bodyparts

Data Format or
Bodypart EITs Description

Any EIT {1 3 12 2 1011 5 5 1 0} Allows delivery of any data format or
bodypart.

ISO 69371 {1 3 12 2 1011 5 5 1 1 11} Contains text created using the ISO
6937 character set.

1Bodypart defined in International Standard ISO DIS 9065 (the obsolete ISO standard corresponding to
CCITT 1984 Recommendation X.420). See Appendix A of this guide.

(continued on next page)

Content Information and IPM Bodypart Converters 11–9

Table 11–2 (Cont.) Data Formats and IPM Bodyparts

Data Format or
Bodypart EITs Description

ODIF2 (any Document
Application Profile
(DAP))

Use the EITs for Externally
Defined ODIF Q111, ODIF
Q112 and ODIF Q121
specified further on in this
table.

Bodypart in 1984 encoding that
contains a document in Open
Document Architecture (ODA). ODA
documents can also occur in a 1992
Externally Defined encoding. See
further on in this table.

USA Nationally Defined {1 3 12 2 1011 5 5 2 0 310} Contains a bodypart defined by the
Stable Implementation Agreements2,
and whose semantics and syntax are
defined by registration within the
U.S.A.

IA5Text3 {2 6 3 4 2} Contains text created using the IA5
international reference version (IRV)
character set. IA5 text characters are
similar to ASCII text characters.

Voice3 {2 6 3 4 7} Contains digitized speech.

G3Fax3 {2 6 3 4 3} Contains data in an encoding
necessary for document transmission
using Group 3 facsimile apparatus.

G4Class13 {2 6 3 4 4} Contains data in an encoding
necessary for document transmission
using Group 4 Class 1 facsimile
apparatus.

Teletex3 {2 6 3 4 5} Contains data suitable for transmis-
sion using teletex terminal equipment.

Videotex3 {2 6 3 4 6} Contains videotex data.

Encrypted3 {1 3 12 2 1011 5 5 2 0 8} Contains another bodypart in
encrypted form.

Message3 No EIT required, the MTA
delivers on the basis of
bodyparts contained in the
forwarded message.

Bodypart that contains an IPM,
enclosed in another, to represent
forwarded messages.

2Bodypart defined in the Stable Implementation Agreements for Open Systems Interconnection Protocols,
Version 7, Edition 1, December 1993, Chapter 7. See Appendix A of this guide.
3Bodypart defined in CCITT Recommendation X.420 and International Standard ISO/IEC 10021-7. See
Appendix A of this guide.

(continued on next page)

11–10 Content Information and IPM Bodypart Converters

Table 11–2 (Cont.) Data Formats and IPM Bodyparts

Data Format or
Bodypart EITs Description

Mixed-mode3 {2 6 3 4 9} Contains a mixed mode document
that contains characters and raster
graphics.

Bilaterally Defined3 {1 3 12 2 1011 5 5 2 0 14} Contains data whose semantics
and syntax are agreed between the
originator of the IPM and all of its
potential recipients.

Nationally Defined3 {1 3 12 2 1011 5 5 2 0 7} Contains data whose semantics and
syntax are agreed on a national basis.

Externally Defined3,
can contain for example:

Used for bodyparts that do not fit into
any of the other categories.

DDIF4 {1 3 12 1011 1 3 1} Contains a document in Digital
Document Interchange Format (DDIF),
as used in HP’s compound document
architecture, CDA.

DECdx4 {1 3 12 1011 1 3 8} Contains data in DECdx™ format.
DECdx is an intermediate data format
generated by HP Gateways (such as
the Message Router/P and Message
Router/S Gateways) and User Agents.

DEC MCS4 {1 3 12 2 1011 5 1 209} Contains characters from the DEC
Multi-national character set (MCS).

DTIF4 {1 3 12 1011 1 3 3} Contains a document in Digital
Tabular Interchange Format (DTIF),
as used in HP’s compound document
architecture, CDA.

DOTS4 {1 3 12 1011 1 3 2} Contains a document in the Data
Object Transport Syntax (DOTS) mail
interchange format. DOTS is used to
encapsulate data elements that have
links between them, for example, a
DDIF document and its references to
external documents.

3Bodypart defined in CCITT Recommendation X.420 and International Standard ISO/IEC 10021-7. See
Appendix A of this guide.
4Bodypart defined by HP.

(continued on next page)

Content Information and IPM Bodypart Converters 11–11

Table 11–2 (Cont.) Data Formats and IPM Bodyparts

Data Format or
Bodypart EITs Description

Postscript4 {1 3 12 1011 1 3 6} Contains a document in the
PostScript® interchange and
presentation format.

ODIF Q1115 {2 8 1 0 1}
{0 0 20 502 0}

Contains a document conforming to
ODA document application profile
(DAP) Q111.

ODIF Q1125 {2 8 1 0 1}
{1 3 16 2 6 0 1}

Contains a document conforming to
ODA document application profile
(DAP) Q112.

ODIF Q1215 {2 8 1 0 1}
{1 3 16 2 6 0 2}

Contains a document conforming to
ODA document application profile
(DAP) Q121.

Message Router
Text4�6

{1 3 12 2 1011 5 1 210} Assumed to contain characters from
the DEC Multi-national character set
(MCS).

WPS-PLUS4 {1 3 12 1011 1 3 7} Contains a document in WPS-PLUS™
format.

SDK {1 3 12 2 1011 5 1 184} Super DEC Kanji Text bodypart.

SJIS {1 3 12 2 1011 5 1 185} Shift JIS Text bodypart.

jpbody88 {1 2 392 6 1 4 0} Bodypart defined by INTAP7 as
Extended JP1. This bodypart is for
IPMS content type Interpersonal
Messaging 1992.

4Bodypart defined by HP.
5Bodypart defined in International Standard ISO 8613 and related profiles Q111, Q112 or Q121. See
Appendix A of this guide.
6This bodypart can be used for a bodypart other than DEC MCS, for example, a National Replacement
Character set; see the MAILbus 400 Message Router Gateway documentation for details.
7INTAP is Interoperability Technology Association for Information Processing Japan

(continued on next page)

11–12 Content Information and IPM Bodypart Converters

Table 11–2 (Cont.) Data Formats and IPM Bodyparts

Data Format or
Bodypart EITs Description

General text3

Examples of
General Text:

Can carry any character set data
registered in ‘‘International Register of
ISO Coded Character Sets’’ published
by ISO. Use the object identifiers stem
{1 0 10021 7 1 0 n}, where n is the
integer defined for the appropriate
character set(s) in above-mentioned
ISO publication.

ISO Latin 1 {1 0 10021 7 1 0 6}
{1 0 10021 7 1 0 100}
{1 0 10021 7 1 0 1}
{1 0 10021 7 1 0 77}

Contains characters from the ISO
Latin 1 character set.

T.61 Latin {1 0 10021 7 1 0 102}
{1 0 10021 7 1 0 103}
{1 0 10021 7 1 0 106}
{1 0 10021 7 1 0 107}

Contains characters from the T.61
Latin character set.

IA5 {1 0 10021 7 1 0 2}
{1 0 10021 7 1 0 1}

Contains characters from the IA5
character set.

jpbody84 {1 3 12 2 1011 5 5 2 0 440} Bodypart defined by INTAP7 as
JPBodyParts. This bodypart is for
IPMS content type Interpersonal
Messaging 1984.

3Bodypart defined in CCITT Recommendation X.420 and International Standard ISO/IEC 10021-7. See
Appendix A of this guide.
7INTAP is Interoperability Technology Association for Information Processing Japan

It is possible that you are using proprietary bodyparts or data formats in your
routing domain for which the MTA documentation cannot supply unique object
identifiers. In this case see Chapter 12.

11.4 Bodypart Converters Supplied with the MTA
A MAILbus 400 MTA is supplied with several converter images that enable it
to convert messages from one bodypart type to another. For example, it can
automatically convert a Teletex bodypart to a General Text bodypart containing
ISO Latin 1 characters if requested.

Content Information and IPM Bodypart Converters 11–13

The MTA’s startup script contains commands that create a Converter entity
for each of the converters supplied with the MTA. A Converter entity does the
following:

• Identifies a particular converter image.

• Identifies the Bodypart entities that describe the input bodypart to the
converter and the output bodypart from the converter.

• Specifies whether data could be lost during conversion.

• If required, specifies the sequence of conversions needed to convert the
input bodypart to the output bodypart.

Table 11–3 lists a selection of Converter entities created by the MTA’s
startup script. A complete list of the Converter entities can be found in the
MTA startup script. Refer to the appendix describing the operating specific
information for the location of the MTA’s startup script. Table 11–3 also lists
the Bodypart entities that these Converter entities reference.

The Lossy column in Table 11–3 attribute indicates whether or not data could
be lost during conversion. This attribute has the value TRUE or FALSE.
TRUE means that data could be lost during the conversion.

Table 11–3 Examples of Converter Entities Supplied with the MTA

Converter entity
Input
(Source Bodypart entity)

Output
(Target Bodypart entity) Lossy

‘‘ia5tolatin1’’ ‘‘ia5text’’ (IA5 text) ‘‘isolatin1’’ (ISO Latin 1) False

‘‘latin1tot61’’1 ‘‘isolatin1’’ (ISO Latin 1) ‘‘teletex’’ (Teletex) False

‘‘latin1togeneralia5’’ ‘‘isolatin1’’ (ISO Latin 1) ‘‘generaltextia5’’ (General Text
containing IA5 characters)

True

‘‘generaltoia5’’ ‘‘generaltextia5’’ (General Text
containing IA5 characters)

‘‘ia5text’’ (IA5 text) False

‘‘generalt61tolatin1’’ ‘‘generaltextt61’’ (General Text
containing T.61 Latin characters)

‘‘isolatin1’’ (ISO Latin 1) True

‘‘t61togeneral’’ ‘‘teletex’’ (Teletex) ‘‘generaltextt61’’ (General Text
containing T.61 Latin characters)

False

‘‘generaltot61’’ ‘‘generaltextt61’’ (General Text
containing T.61 Latin characters)

‘‘teletex’’ (Teletex) False

1T.61 is the name used in the 1984 MHS Standards to describe a Teletex bodypart.

(continued on next page)

11–14 Content Information and IPM Bodypart Converters

Table 11–3 (Cont.) Examples of Converter Entities Supplied with the MTA

Converter entity
Input
(Source Bodypart entity)

Output
(Target Bodypart entity) Lossy

‘‘t61tolatin1’’ ‘‘teletex’’ (Teletex) ‘‘isolatin1’’ (ISO Latin 1) True

‘‘latin1toia5’’ ‘‘isolatin1’’ (ISO Latin 1) ‘‘ia5text’’ (IA5 text) True

‘‘iso6937tolatin1’’ ‘‘iso6937’’ (ISO 6937) ‘‘isolatin1’’ (ISO Latin 1) True

‘‘latin1toiso6937’’ ‘‘isolatin1’’ (ISO Latin 1) ‘‘iso6937’’ (ISO 6937) False

‘‘externaldeftobilatdef’’ ‘‘externallydefined’’ (Externally
Defined)

‘‘bilaterallydefined’’ (Bilaterally
Defined)

False4

‘‘externaldeftoposte’’3 ‘‘externallydefined’’ (Externally
Defined)

‘‘bilaterallydefined’’ (Bilaterally
Defined)

False4

‘‘decdxtolatin1’’ ‘‘decdx’’ (DECdx) ‘‘latin1’’ (ISO Latin 1) True

‘‘wpsplustolatin1’’ ‘‘wpsplus’’ (WPS-PLUS) ‘‘latin1’’ (ISO Latin 1) True

‘‘decmcstolatin1’’ ‘‘decmcs’’ (DEC Multi-national
character set)

‘‘latin1’’ (ISO Latin 1) True

‘‘latin1todecmcs’’ ‘‘isolatin1’’ (ISO Latin 1) ‘‘decmcs’’ (DEC Multi-national
character set)

True

‘‘mrtexttolatin1’’ ‘‘mrtext’’ (Message Router Text) ‘‘isolatin1’’ (ISO Latin 1) True

‘‘latin1tomrtext’’ ‘‘isolatin1’’ (ISO Latin 1) ‘‘mrtext’’ (Message Router Text) True

‘‘j84tosdk’’5 ‘‘jpbody84’’ (JPBodyPart) ‘‘sdk’’ (Super DEC Kanji) False

‘‘sdktoj84’’5 ‘‘sdk’’(Super DEC Kanji) ‘‘jpbody84’’ (JPBodyPart) True

‘‘j88tosdk’’5 ‘‘jpbody88’’(Extended JP1) ‘‘sdk’’ (Super DEC Kanji) False

‘‘sdktoj88’’5 ‘‘sdk’’ (Super DEC Kanji) ‘‘jpbody88’’(Extended JP1) True

‘‘sjistosdk’’5 ‘‘sjis’’ (Shift JIS) ‘‘sdk’’(Super DEC Kanji) False

‘‘sdktosjis’’5 ‘‘sdk’’ (Super DEC Kanji) ‘‘sjis’’(Shift JIS) True

3This entity is not registered as part of the MTA startup, see Section 11.4.1.1
4The descriptive data in the bodypart is lost, but no message data in the bodypart is lost.
5In order to perform this conversion, you will need to install an additional software subset IOSJPBASEnnn,
where n is a number. This subset is part of Tru64 UNIX Japanese Support. You also need to remove the
comment character (!) from the bodypart converter definition in the MTA startup script. The IOSJPBASEnnn
subset is only available on the Tru64 UNIX platform.

If you do not want an MTA to use one or more of its converters, edit the MTA’s
startup script and insert a comment (!) at the start of the relevant create
command. For the location of the MTA’s startup script, refer to the appendix
describing the operating system specific information.

Content Information and IPM Bodypart Converters 11–15

Note

It is recommended that you do not remove a create command for a
Bodypart entity from the MTA’s startup script.

11.4.1 Converting Externally Defined and File Transfer Bodyparts to
Bilaterally Defined Bodyparts
The MTA provides a converter that converts Externally Defined bodyparts and
File Transfer bodyparts to Bilaterally Defined bodyparts. This converter is
called ‘‘externaldeftobilatdef’’.

Bilaterally Defined bodyparts are also known as Unidentified, binary bodyparts
or Bodypart 14. Bilaterally Defined bodyparts are defined in the 1984 MHS
Standards and contain unidentified data. Bilaterally Defined bodyparts are
typically used for exchanging messages where the same application is used to
send and receive the message. An example of the type of bodypart that might
be exchanged between PCs that use a Gateway, or MTA, based on the 1984
MHS Standards, is the Microsoft® Excel® V3.0 Macro bodypart.

Externally Defined bodyparts and File Transfer bodyparts are defined in the
1992 MHS Standards and can contain the same types of data as Bilaterally
Defined bodyparts. However, Externally Defined and File Transfer bodyparts
also include a description of the data in the bodypart, for example, an
Externally Defined bodypart containing Microsoft Excel Version 3.0 data
can be identified as a ‘‘Microsoft Excel Version 3.0’’ bodypart.

When an MTA converts Externally Defined bodyparts or File Transfer
bodyparts to Bilaterally Defined bodyparts, it removes the descriptive
information. This means that the receiving Agent must be able to identify
the type of information contained in the bodypart once the descriptive data has
been removed.

The Externally Defined/File Transfer bodypart to Bilaterally Defined bodypart
converter complements the conversion actions performed by the MTA when
downgrading messages for routing domains based on the 1984 MHS Standards.
It is provided so users with 1984 MHS Standard based User Agents that
support Bilaterally Defined bodyparts can receive Externally Defined or File
Transfer bodyparts, converted to Bilaterally Defined bodyparts. To achieve
this, put the EIT for the Bilaterally Defined bodypart at the end of the list of
acceptable EITS in the users’ content information.

Section 11.5 provides examples of entering content information for this and
other converters in the directory using the entities of the MTS module.

11–16 Content Information and IPM Bodypart Converters

11.4.1.1 Interworking Between MailWorks Server for Tru64 UNIX and the Poste/X.400
Gateway
If your routing domain has both DEC MailWorks for UNIX® and the
Poste/X.400 Gateway User Agents, you can use an alternative Externally
Defined to Bilaterally Defined bodypart converter supplied with the MAILbus
400 MTA. This converter is called ‘‘externaldeftoposte’’ and is commented out
in the MTA’s startup script.

If you remove the comments (!) from the applicable commands in the MTA’s
startup script, this converter converts an Externally Defined bodypart to a
Poste/X.400 Gateway specific Bilaterally Defined bodypart. A Poste/X.400
Bilaterally Defined bodypart contains an encoded header that requires the
MTA to provide a different conversion.

This converter can provide MailWorks Server for Tru64 UNIX and the
Poste/X.400 Gateway with a better service. The MailWorks Server for Tru64
UNIX documentation describes when to use this converter.

Note

You cannot convert between Externally Defined bodyparts and both
Bilaterally Defined and Poste/X.400 specific Bilaterally Defined
bodyparts within the same routing domain. If you register both
converters within the same routing domain, recipients can receive
the wrong type of Bilaterally Defined bodypart.

11.5 Entering Content Information in the Directory
The following sections provide examples of the content information that you
might choose to assign to O/R address entries in the directory.

You can also specify content information that is specific to a particular form
of O/R address, using the Mnemonic Content Information, Postal Content
Information, Numeric Content Information, and Terminal Content Information
attributes. See the MTS Module Online Help for more information about how
to enter specific content information for an O/R address entry.

Content Information and IPM Bodypart Converters 11–17

11.5.1 Entering Content Information in the Directory for Individuals
Using a 1984 Based User Agent
The following is an example of the Content Information that you might
provide for individuals who are served by User Agents based on the 1984 MHS
Standards:

• Content Type

This is Interpersonal messaging 1984.

• Encoded Information Types (EITs)

This is the list of EITs applicable to the user, or group of users, served by
the User Agent.

It is important that you list the EITs in order of preference or priority.
You are advised to order the EITs such that those EITs with more features
appear in the EIT list before those with fewer features. This reduces the
possibility of losing information during conversion.

If you intend to specify Bilaterally Defined in your list of EITs, make sure
that you specify Bilaterally Defined last in the list of EITs.

• Content Length

Whatever is applicable.

The following is an example O/R address entry for an individual served by a
User Agent based on the 1984 MHS Standards. Note that text following an
exclamation mark (!) is not part of the command; it is added to explain the
object identifiers in the command:

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ;A=NZ-PTT;P=ACME;O=ACME;OU1=WELL;CN=Sue Lyn" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 1000, -
CONTENT TYPES = -
("{1 3 12 2 1011 5 5 0 1 2}"), - ! Interpersonal messaging 1984
ENCODED INFORMATION TYPES = (- !
"{2 6 3 4 5}", - ! Teletex
"{1 3 12 2 1011 5 5 1 1 11}", - ! ISO 6937
"{2 6 3 4 2}", - ! IA5Text
"{1 3 12 2 1011 5 5 2 0 14}")] ! Bilaterally Defined

11–18 Content Information and IPM Bodypart Converters

11.5.2 Entering Content Information in the Directory for Individuals
Using a 1992 Based User Agent
The following is an example of the Content Information that you might
provide for individuals who are served by User Agents based on the 1992 MHS
Standards:

• Content Type

This is 1992 Externally Defined IPMS, where any File Transfer bodypart is
translated into an Externally Defined bodypart.

• Encoded Information Types (EITs)

Recipients with 1992 based User Agents should be able to receive any type
of bodypart. If this is the case, you need only include the ‘‘Any’’ EIT as the
preferred EIT. Refer to Section 11.3 for details of using the ‘‘Any’’ EIT.

If individual recipients have preferred EITs, it is important that you list
the EITs in order of preference or priority. You are advised to order the
EITs such that those EITs with more features appear in the EIT list
before those with fewer features. This reduces the possibility of losing
information during conversion. In particular, you are recommended not
to use the Bilaterally Defined EIT. If you do use the Bilaterally Defined
EIT, make sure that you add any Externally Defined EITs to the list of
preferred EITs before the Bilaterally Defined EIT. If you do not specify the
Externally Defined bodyparts explicitly, all Externally Defined bodyparts
are converted to Bilaterally Defined bodyparts, and this might not be what
you intended.

• Content Length

Whatever is applicable.

The following is an example O/R address entry for an individual served by a
User Agent based on the 1992 MHS Standards. Note that text following an
exclamation mark (!) is not part of the command; it is added to explain the
object identifiers in the command:

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ;A=NZ-PTT;P=ACME;O=ACME;OU1=WELL;CN=Sue Lyn" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 1000, -
CONTENT TYPES = (-
"{1 3 12 2 1011 5 5 0 1 22}"), - ! 1992 Externally Defined IPMS
ENCODED INFORMATION TYPES = (- !
"{1 3 12 2 1011 5 5 1 0}")] ! "Any" EIT

Content Information and IPM Bodypart Converters 11–19

11.5.3 Entering Content Information for the MAILbus 400 SMTP
Gateway
The following is an example of the content information that you might choose
to provide for individuals in an Internet network who are served by the HP
MAILbus 400 SMTP Gateway Version 2.0 or later:

• Content Type

This is 1992 Externally Defined IPMS, where any File Transfer bodypart is
translated into an Externally Defined bodypart.

• Encoded Information Types (EITs)

The EITs applicable to an Internet network served by the HP MAILbus 400
SMTP Gateway:

General text ISO Latin 1

ISO 8859-1 to -9

General Text IA5

IA5Text

DDIF

any

• Content Length

Whatever is applicable for the User Agents. The SMTP Gateway itself has
no content length restrictions.

The following is an example of a directory entry for an individual served by the
HP MAILbus 400 SMTP Gateway.

11–20 Content Information and IPM Bodypart Converters

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ; A=NZ-PTT; P=SANDS; O=SANDS; OU1=NORTH; CN=Sue Lyn" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 0, -
CONTENT TYPES = (-
"{1 3 12 2 1011 5 5 0 1 22}"),- ! 1992 Externally Defined IPMS
ENCODED INFORMATION TYPES = (- !
"{1 0 10021 7 1 0 6}", - !
"{1 0 10021 7 1 0 100}", - ! General Text, ISO Latin 1 and
"{1 0 10021 7 1 0 1}", - ! ISO 8859-1
"{1 0 10021 7 1 0 77}", - !
"{1 0 10021 7 1 0 101}", - ! ISO 8859-2
"{1 0 10021 7 1 0 109}", - ! ISO 8859-3
"{1 0 10021 7 1 0 110}", - ! ISO 8859-4
"{1 0 10021 7 1 0 144}", - ! ISO 8859-5
"{1 0 10021 7 1 0 127}", - ! ISO 8859-6
"{1 0 10021 7 1 0 126}", - ! ISO 8859-7
"{1 0 10021 7 1 0 138}", - ! ISO 8859-8
"{1 0 10021 7 1 0 148}", - ! ISO 8859-9
"{1 0 10021 7 1 0 2}", - ! General Text, IA5
"{2 6 3 4 2}", - ! IA5text
"{1 3 12 1011 1 3 1}", - ! DDIF
"{1 3 12 2 1011 5 5 1 0}")] ! Any

11.5.4 Entering Content Information for the MAILbus 400 Message
Router Gateway
The following is an example of the content information that you might choose
to provide for individuals in a Message Router™ network who are served by
the MAILbus 400 Message Router Gateway (XMR):

• Content Type

This is 1992 Externally Defined IPMS, where any File Transfer bodypart is
translated into an Externally Defined bodypart.

• Encoded Information Types (EITs)

The EITs applicable to a Message Router network are:

DDIF

WPS-PLUS

IA5text

General Text, ISO Latin 1

General Text, IA5

DEC MCS

DECdx

Content Information and IPM Bodypart Converters 11–21

Message Router Text

USA Nationally Defined

Any

Note that DDIF must be the first encoded information type specified in the
content information. This ensures that the MTA converts any bodypart
types, such as ISO6937 or ODIF, which cannot be handled by the Gateway,
to bodypart types that the Gateway can handle. You must include Any in
the list of encoded information types.

• Content Length

Whatever is applicable.

The following is an example of a directory entry for an individual served
by the MAILbus 400 Message Router Gateway. Note that text following an
exclamation mark (!) is not part of the command; it is added to explain the
object identifiers in the command:

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ; A=NZ-PTT; P=ACME; O=ACME; OU1=WELL; CN=John Smith" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 0, -
CONTENT TYPES=(-
"{1 3 12 2 1011 5 5 0 1 22}"), - ! 1992 Externally Defined IPMS
ENCODED INFORMATION TYPES = (- !
"{1 3 12 1011 1 3 1 7}", - ! DDIF
"{1 3 12 1011 1 3 7}", - ! WPS-PLUS
"{2 6 3 4 2}", - ! IA5text
"{1 0 10021 7 1 0 2}", - ! General Text, IA5
"{1 0 10021 7 1 0 1}", - ! General Text, IA5
"{1 3 12 2 1011 5 1 209}", - ! DEC MCS
"{1 0 10021 7 1 0 6}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 100}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 1}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 77}", - ! General Text, ISO Latin 1
"{1 3 12 1011 1 3 8}", - ! DECdx
"{1 3 12 2 1011 5 1 210}", - ! Message Router Text
"{1 3 12 2 1011 5 5 2 0 310}", - ! USA Nationally Defined
"{1 3 12 2 1011 5 5 1 0}")] ! Any

11.5.5 Agents Using the Shared File 1984 Interface
This section describes the Retix® OpenServer 400™ cc:MAIL® Gateway to
X.400. The instructions apply to all the PC LAN Gateways developed for the
Retix OpenServer 400.

11–22 Content Information and IPM Bodypart Converters

The OpenServer 400 cc:MAIL Gateway to X.400 is an example of a mail
application that provides electronic mail services for a Local Area Network
(LAN). This Gateway exchanges messages with the MTA using the Shared File
1984 interface.

Note that the OpenServer 400 cc:MAIL Gateway is the interface between the
MTA and a cc:MAIL User Agent.

The following is an example of the Content Information that you might provide
for individuals who are served by Agents using the Shared File 1984 interface:

• Content Type

This is Interpersonal messaging 1984.

• Encoded Information Types (EITs)

Recipients with these types of User Agent can only receive the following
types of bodypart:

IA5text

Teletex

Bilaterally Defined

• Content Length

Whatever is applicable.

The following is an example O/R address entry for an individual served by a
Shared File 1984 Agent. Note that text following an exclamation mark (!) is
not part of the command; it is added to explain the object identifiers in the
command:

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ; A=NZ-PTT; P=ACME; O=ACME; OU1=WELL: CN=Clare Curtis" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 0, -
CONTENT TYPES=(-
"{1 3 12 2 1011 5 5 0 1 2}"),- ! Interpersonal messaging 1984
ENCODED INFORMATION TYPES = (- !
"{2 6 3 4 2}", - ! IA5text
"{2 6 3 4 5}", - ! Teletex
"{1 3 12 2 1011 5 5 2 0 14}")] ! Bilaterally Defined

Content Information and IPM Bodypart Converters 11–23

11.5.6 Agents Using the Shared File 1992 Interface
This section provides an example of the Content Information that you need
to specify for mail applications designed to be used with the ISOPLEX™
800 MTA, for example ISOGATE™ for cc:Mail. This Access Unit exchanges
messages with the MTA using the Shared File 1992 interface.

Read the documentation supplied with the Access Units to find out more
information about the types of bodypart users can receive. The following is an
example of the Content Information that you might provide:

• Content Type

This is 1992 Externally Defined IPMS, where any File Transfer bodypart is
translated into an Externally Defined bodypart.

• Encoded Information Types (EITs)

IA5text

Teletex

Bilaterally Defined

• Content Length

Whatever is applicable.

The following is an example O/R address entry for an individual served
by the ISOGATE Server and Access Units. Note that text following an
exclamation mark (!) is not part of the command; it is added to explain the
object identifiers in the command:

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ; A=NZ-PTT; P=ACME; O=ACME; OU1=WELL: CN=Mari Nedd" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 0, -
CONTENT TYPES=(-
"{1 3 12 2 1011 5 5 0 1 22}"),- ! 1992 Externally Defined IPMS
ENCODED INFORMATION TYPES = (- !
"{2 6 3 4 2}", - ! IA5text
"{2 6 3 4 5}", - ! Teletex
"{1 3 12 2 1011 5 5 2 0 14}")] ! Bilaterally Defined

Recipients served by the ISOCOR X.400 Router for Lotus Notes® can receive
more types of bodypart. The following is an example of the directory entry for
an individual served by the ISOCOR X.400 Router for Lotus Notes. Note that
text following an exclamation mark (!) is not part of the command; it is added
to explain the object identifiers in the command:

11–24 Content Information and IPM Bodypart Converters

SET MTS "/MTS=ACME" ORADDRESS -
"C=NZ; A=NZ-PTT; P=ACME; O=ACME; OU1=WELL: CN=Stan Holland" -
CONTENT INFORMATION [MAXIMUM CONTENT LENGTH = 0, -
CONTENT TYPES=(-
"{1 3 12 2 1011 5 5 0 1 22}"),- ! 1992 Externally Defined IPMS
ENCODED INFORMATION TYPES = (- !
"{2 6 3 4 2}", - ! IA5text
"{2 6 3 4 5}", - ! Teletex
"{1 3 12 2 1011 5 5 1 1 11}", - ! ISO 6937
"{1 0 10021 7 1 0 6}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 100}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 1}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 77}", - ! General Text, ISO Latin 1
"{1 0 10021 7 1 0 102}", - ! General Text, T.61
"{1 0 10021 7 1 0 103}", - ! General Text, T.61
"{1 0 10021 7 1 0 106}", - ! General Text, T.61
"{1 0 10021 7 1 0 107}", - ! General Text, T.61
"{1 0 10021 7 1 0 2}", - ! General Text, IA5
"{1 0 10021 7 1 0 1}")] ! General Text, IA5

11.5.7 Messages Transferred Across an MTS Based on the 1984 MHS
Standards
This section describes what you need to consider if your routing domain
connects to other routing domains based on the 1984 MHS Standards.

If you expect messages to be transferred across an intermediate routing domain
based on the 1984 MHS Standards that cannot transfer the Interpersonal
messaging 1992 content type, complete one of the following according to
whether the recipient belongs to a MAILbus 400 MTA routing domain, or not:

• If the recipient belongs to a MAILbus 400 MTA routing domain, modify
the recipient’s Content Information in the directory such that the recipient
is registered as being able to receive the Interpersonal messaging 1984
content type. You do not need to modify any of the preferred EITs,
including those describing Externally Defined bodyparts.

• If the recipient belongs to a non-MAILbus 400 MTA routing domain, follow
the recommendation described in Section 11.5.1.

Content Information and IPM Bodypart Converters 11–25

12
Proprietary Content Information and IPM

Bodypart Converters

This chapter describes how to assign object identifiers to proprietary content
types and EITs that are used in your MHS. This chapter also describes the
tasks that you must complete in order to set up the MTA to recognize IPM
bodypart converters that you have written.

12.1 Assigning Object Identifiers to Proprietary Content
Types, Data Formats or Bodyparts

Object identifiers uniquely identify an object. In the context of message
transfer they are used, for example, to identify message content types and the
EITs for data formats or bodyparts within these content types.

You may find that you are using proprietary content types, data formats
or bodyparts in your routing domain which are not listed in Table 11–1 or
Table 11–2. It is not possible for HP to supply object identifiers for proprietary
content types, data formats or bodyparts. To be able to represent such formats
in the content information of your O/R addresses, you need to assign object
identifiers yourself, or use those already assigned by the responsible authority
or by your organization.

If your organization has already been allocated object identifiers by a
registration authority, then you can allocate object identifiers within your
organization yourself. Ensure that the numbers you allocate are unique within
your organization. Otherwise, contact a registration authority, such as the
American National Standards Institute (ANSI) or the European Computer
Manufacturers’ Association (ECMA) to be allocated an object identifier for your
organization.

An object identifier consists of a sequence of numbers enclosed in brackets,
for example { 2 6 3 4 2 }. Each number has semantic significance, identifying
an object and its position in a defined hierarchy. The first number in the
sequence is either 0, 1 or 2, indicating that the object identified resides in the

Proprietary Content Information and IPM Bodypart Converters 12–1

hierarchy under CCITT (0), ISO (1) or joint CCITT and ISO (2). For example,
{ 2 6 3 4 2 } is the joint CCITT and ISO object identifier for the IA5 text EIT.

ISO and CCITT are the registration authorities which allocate the second
number in the sequence to another object, for example an organization. This
organization then becomes the registration authority for subsequent numbers
in the hierarchy. This system is similar to the system of allocating unique
O/R address attributes. It makes it possible to order objects in a hierarchical
scheme that is infinitely expandable and that enables the uniqueness of object
identifiers on a global scale.

Using the example of the IA5 text EIT, the object identifier { 2 6 3 4 2 } is
based on the following hierarchy:

Number Identifies

2 A joint ISO CCITT object

6 A MOTIS-based MHS

3 An MTS in the MOTIS-based MHS

4 EITs (generally)

2 IA5 text

For more information about assigning object identifiers, see CCITT X.208
Recommendation, Section 28 and Annex D, as well as International Standard
ISO 8824.

12.2 Proprietary Bodyparts and Converters
An MTA is able to transfer all the bodyparts described in Section 11.3, and can
convert some of these bodyparts to other bodyparts. However, you may want
to define your own bodypart or use a new bodypart that is not described by a
Bodypart entity supplied with the MTA.

You may also want an MTA to do other conversions; for example, to convert
other bodyparts to or from your own bodypart. An MTA can do this, provided
you have written and installed the necessary converter.

The following sections explain how bodyparts are defined and how to integrate
your converter with the MTA.

Note

This section does not explain how to write a converter; this is outside
the scope of this guide.

12–2 Proprietary Content Information and IPM Bodypart Converters

Once you have integrated your converter with the MTA, it is possible to chain
your converter to other converters to extend the range of conversions that the
MTA can do on your bodypart, see Section 12.2.7.

12.2.1 How New Bodyparts are Recognized
An MTA is able to recognize a new proprietary, or a new standardized
bodypart, provided that the bodypart is encoded as an Externally Defined
bodypart type. Externally Defined bodyparts are defined in CCITT
Recommendation X.420 and International Standard ISO/IEC 10021-7, Section
7.3.12.

You might want to use a new bodypart, for example, if the MHS Standards are
enhanced in the future or another organization has defined a bodypart. If you
want an MTA to recognize a new bodypart not mentioned in Section 11.3, then
create a Bodypart entity for the new bodypart definition, see Section 12.2.3.

12.2.2 How New Bodyparts are Defined and Encoded
All bodyparts are encoded using ASN.1 BER (Basic Encoding Rules) as defined
by the CCITT in their Recommendations X.208 and X.209, and by ISO in their
International Standards ISO 8824 and ISO 8825.

X.420 and ISO/IEC 10021-7 provide two definitions of their bodypart types,
a basic bodypart definition and an extended bodypart definition. The
bodypart definition determines how the bodypart is encoded. The basic
definition is used for backwards compatibility with the 1984 MHS Standards.
There is a basic definition for all bodyparts defined in the 1984 MHS
Standards.

Use the extended bodypart definition for an Externally Defined bodypart to
encode a bodypart that you define. The ASN.1 of an extended bodypart starts
with the context-specific tag [15]. The bodypart can consist of two components,
a parameters component, which is optional, and a data component. The
parameters component provides accompanying information for the type of data
contained in the data component. The data component contains the data. Both
components are identified by an object identifier that you must assign.

Section 12.1 explains how to obtain object identifiers for your Externally
Defined bodypart. Also, for advice about defining your own Externally Defined
bodypart, see Part 8, Annex B, of the OIW Stable Implementation Agreements.
For details of how to obtain this document, see Appendix A.

Proprietary Content Information and IPM Bodypart Converters 12–3

Note

Do not use the same object identifier to describe the data components
of different bodypart types.

12.2.3 Creating a Bodypart Entity
So that an MTA can recognize a new bodypart you need to create a Bodypart
entity at the MTA. A Bodypart entity specifies the mapping between the
Encoded Information Types (EITs) that describe the contents of the bodypart
and the identifier for that bodypart.

Use the following command to create a Bodypart entity:

CREATE NODE "node-id" MTA BODYPART "name" -
ENCODED INFORMATION TYPES {"{eit}", "{eit}"}, -
IDENTIFIER "{id}"

where:

• name is the name of the bodypart.

You can use any name, however, the name must be unique within your
routing domain and consist only of alphanumeric characters.

• eit is a set of object identifiers that specify the bodypart’s encoded
information types.

• id is the object identifier that identifies the bodypart.

In the Externally Defined bodypart encoding, this is the object identifier
that describes the bodypart’s data component.

You can use the same object identifier that identifies the data component as
the value for the Encoded Information Types argument, for example:

CREATE NODE "node-id" MTA BODYPART "myformat" ENCODED INFORMATION TYPES -
{"{1 2 3 4 5}"}, IDENTIFIER "{1 2 3 4 5}"

Using the same object identifier for both arguments ensures that the bodypart
is unique and gives a one-to-one mapping between the EIT and the identifier.

Create a Bodypart entity at each MTA in your routing domain, not just at the
MTA that does the conversion. This ensures that all the MTAs in your routing
domain recognize the bodypart.

12–4 Proprietary Content Information and IPM Bodypart Converters

12.2.4 Converter Requirements
You can write a converter to convert one bodypart to another. Your converter
can convert between X.400-defined bodyparts, or proprietary bodyparts, or a
mixture of both. This section describes the interface between the MTA and a
converter and how to integrate a proprietary converter with the MTA. Each
converter is an independent image invoked as a separate process from the
MTA. For a converter to work with the MTA, it must do the following:

• Provide an input and output mechanism for data.

�
Tru64
UNIX

On Tru64 UNIX, the converter reads bodypart data from its
standard input stream ‘‘stdin’’. The converter sends data to
the MTA through its standard output stream ‘‘stdout’’. If your
converter generates error messages, then error messages are sent
to standard error, that is, ‘‘stderr’’.
♦

OpenVMS
For a converter implemented as an OpenVMS image (.EXE file),
the converter reads bodypart data from its standard input stream
SYS$INPUT. The converter sends data to the MTA through
its standard output stream SYS$OUTPUT. If your converter
generates error messages, then error messages are sent to
standard error, that is, SYS$ERROR.

For a converter implemented as an OpenVMS command procedure
(.COM file), the MTA invokes the converter with two arguments:
the first argument is the input file and the second argument is the
output file. The standard error SYS$ERROR is not available for
command procedures.
♦

• Return a specific value when the conversion is successful.

�
Tru64
UNIX

On Tru64 UNIX, when a converter successfully converts a source
bodypart, it returns a 0 (zero) exit status to the MTA. This
indicates to the MTA that the conversion was successful. If the
converter is unsuccessful, the converter must return to the MTA
an exit status of 1.
♦

Proprietary Content Information and IPM Bodypart Converters 12–5

OpenVMS
On OpenVMS, when a converter successfully converts a source
bodypart, the exit status returned to the MTA must have the
least significant bit set to 1. This indicates to the MTA that the
conversion was successful. If the conversion is unsuccessful, then
the converter returns to the MTA an exit status which has the
least significant bit set to 0 (zero). These exit values should be
returned by the VMS SYS$EXIT routine. It is recommended that
you do not use the C runtime library exit() routine.
♦

• Accept a bodypart encoded in ASN.1 (BER), as defined by CCITT
Recommendation X.420 and International Standard ISO/IEC 10021-7.

The MTA always supplies a source bodypart encoded in ASN.1 (BER) to a
converter.

• Generate a bodypart encoded in ASN.1 (BER), as defined by CCITT
Recommendation X.420 and International Standard ISO/IEC 10021-7.

The MTA expects to receive a target bodypart encoded in ASN.1 (BER)
from a converter.

• Accept the context-specific tag of a bodypart.

An MTA always supplies source bodyparts with their leading context-
specific tag to a converter; for example, an IA5 bodypart has the leading
context-specific tag [0]. The MTA also expects to receive a bodypart
that starts with a leading context-specific tag from a converter. For your
own proprietary bodyparts, you would use the context-specific tag [15]
introducing the Externally Defined bodypart definition.

• Accept an X.400-defined bodypart that is encoded as a basic bodypart.

When there is a choice of bodypart encoding, as defined in X.420 and
ISO/IEC 10021-7, the MTA always supplies a basic bodypart. As an
example, an IA5 bodypart can be encoded as either a basic bodypart or as
an extended bodypart.

Note that there is one exception to this rule - ODA bodyparts are always
encoded as extended bodyparts.

• Generate an X.400-defined bodypart encoded as a basic bodypart when
appropriate.

When there is a choice of bodypart encoding, as defined in X.420 and
ISO/IEC 10021-7, then your converter must output a basic bodypart. This
ensures that your converter can be used in a sequence of converters, see
Section 12.2.7. As an example, an IA5 bodypart can be encoded as either a
basic bodypart or as an extended bodypart.

12–6 Proprietary Content Information and IPM Bodypart Converters

Note that there is one exception to this rule - ODA bodyparts are always
encoded as extended bodyparts.

12.2.5 Integrating a Converter with an MTA
To integrate your converter with the MTA do the following:

1. Install your converter image at the MTA that is to do the conversion, for
example the MTA where the Agent requiring the conversion is located.

Converter images are held in the MTA’s converter image directory. Your
converter image should have the same file ownership and file protection as
the converters that are supplied with the MTA.

For the location of the MTA’s converter image directory and the applicable
ownership and protection values, refer to the appendix describing the
operating system specific information.

2. Create Bodypart entities, if they do not already exist, that describe the
bodyparts that are referenced by your converter at each MTA in your
routing domain, see Section 12.2.3.

3. Create a Converter entity that describes the converter image at the MTA
where you have installed your converter, see Section 12.2.6.

4. Include the commands that create your Converter and Bodypart entities in
the MTA’s startup script.

Note

You must create the Bodypart entities referenced by your converter
before you can create the Converter entity that describes your
converter.

12.2.6 Creating a Converter Entity that Describes a Converter Image
At the MTA where you have installed your converter, create a Converter entity
that describes your converter image.

Note

The name of the Converter entity must match the name of the
converter image. On OpenVMS systems, the name of a converter
image has the file extension .EXE, for example, IA5TOLATIN1.EXE.
Do not include the .EXE extension in the name of the Converter entity.

Proprietary Content Information and IPM Bodypart Converters 12–7

Use the following command to create a Converter entity:

CREATE NODE "node-id" MTA CONVERTER "name", SOURCE "source", -
TARGET "target", STEPS (steps), LOSSY lossy

where:

• name is the name of the Converter image.

You can use any name, but the name must consist only of alphanumeric
characters and identify an image file in the MTA’s converter image
directory. For the location of the MTA’s converter image directory, refer to
the appendix describing the operating system specific information.

• source is the name of the Bodypart entity that describes the input
bodypart to the converter.

• target is the name of the Bodypart entity that describes the output
bodypart from the converter.

• steps is a list of converter names that defines a sequence of conversions;
this value must be empty when you create a Converter entity that describes
a converter image.

• lossy specifies whether data loss during conversion is possible, its value is
either TRUE or FALSE.

12.2.7 Creating a Converter Entity that Specifies a Sequence of
Converters
You can include your converter in a sequence of converters. You do this by
creating a Converter entity that specifies the names of the converters to be
called in sequence in the Steps argument. The following rules apply when you
specify a sequence of converters:

• The input bodypart to the sequence must be different from the output
bodypart from the sequence.

• The input bodypart to the sequence must correspond to the Bodypart entity
specified in the Source attribute of the first converter in the sequence.

• The output bodypart from the sequence must correspond to the Bodypart
entity specified as the Target attribute of the last converter in the sequence.

• Each converter named in the sequence must have a corresponding
Converter entity.

• Each Converter entity named in the sequence must describe a converter
image that converts directly from one bodypart to another.

12–8 Proprietary Content Information and IPM Bodypart Converters

For example, supposing you are using a proprietary bodypart called
‘‘myformat’’. You have also written and installed a converter called
‘‘myformattolatin1’’, which converts ‘‘myformat’’ to ISO Latin 1 characters.
You could run your converter in sequence with any of the MTA’s converters
that take ISO Latin 1 as their input, for example, ‘‘latin1tot61’’. To do this
you need to create a Converter entity that specifies the appropriate sequence
of conversions in its Steps argument. You must create this Converter entity
at the MTA where your converter image, and the other converter images in
the sequence, are installed. Use the following command to create a Converter
entity:

CREATE NODE "node-id" -
MTA CONVERTER "myformattot61", -
SOURCE "myformat", -
TARGET "teletex", -
STEPS ("myformattolatin1", "latin1tot61"), -
LOSSY = TRUE

Once you have created this Converter entity, the MTA is able to convert
bodyparts containing ‘‘myformat’’ data to bodyparts containing teletex data.

Proprietary Content Information and IPM Bodypart Converters 12–9

13
Event Dispatching

This chapter describes where events issued by entities of the MTA module are
dispatched and gives information about how to tune MTA event dispatching to
suit your management requirements.

13.1 The Event Dispatching Mechanism
The MTA entity and some of its subentities post events whenever something
noteworthy happens. While some MTA events are informational, most MTA
events indicate that an error has occurred. See the MTA Module Online Help
or Part III for a description of the events that the MTA issues. Note that the
entities of the MTS module do not issue events.

To distribute events, the MTA uses the HP DECnet-Plus event dispatching
mechanism. All events issued by HP DECnet-Plus applications, including
the MTA, are dispatched to the HP DECnet-Plus Event Dispatcher module.
The entities of the Event Dispatcher module are responsible for dispatching
events to event sinks that you can specify. The Event Dispatcher module and
the event dispatching mechanism for all HP DECnet-Plus applications are
described in the HP DECnet-Plus documentation. This section on MTA events
complements, but does not repeat, the information in these documents.

Note

You tune dispatching of MTA events through the entities of the Event
Dispatcher. You cannot use MTA management to tune the dispatching
of MTA events.

Event Dispatching 13–1

�
Tru64
UNIX

On Tru64 UNIX, each MTA has its own NCL script that enables
MTA event dispatching. For the name and location of this script,
refer to the appendix describing the operating system specific
information. Unless modified, this script creates and enables
an outbound event stream for all MTA events and issues these
to all sinks on the local system. You can change the default
settings; Section 13.2 shows possible ways of setting up MTA
event dispatching to suit your specific management requirements.

During installation of an MTA, the script to start MTA event
dispatching is automatically executed. To ensure that this script
is executed at a system reboot, a command is automatically added
to the OSI applications startup file which executes the script to
start MTA event dispatching.
♦

OpenVMS
On OpenVMS, events issued by most applications, including the
MTA, are automatically passed by the Event Dispatcher to the
PhaseV_Sink event sink on the local system, unless you have
modified event dispatching on your system.

The MTA provides an NCL script that you can use to create and
enable an outbound stream and event sink specifically for MTA
events. The commands in the MTA’s event dispatching script are
commented out; should you want to use these commands, remove
the comment (!) from each command line. For the name and
location of the MTA’s event dispatching script see Appendix E.
You can modify the commands in this script; see Section 13.2 for
possible ways of setting up MTA event dispatching to suit your
specific management requirements.

If you are using the MTA’s event dispatching script, ensure that
this script is automatically executed at a system reboot. To do
so, check that you have added the command which executes the
MTA’s server initialization procedure to the system startup file
(as described in Part III of HP MAILbus 400 MTA Planning and
Setup).
♦

For more detailed information on how to view events see MAILbus 400 Getting
Started.

13–2 Event Dispatching

The MTA’s event dispatching script is not automatically executed if the
Event Dispatcher or DECnet is stopped and restarted. Therefore, if you stop
and restart the Event Dispatcher or DECnet, you must re-enable MTA event
dispatching by manually executing this script. Refer to the appendix describing
the operating system specific information for the command to use.

13.2 How to Tune Dispatching of MTA Events
You can tune the dispatching of MTA events in the following ways:

• Specify event sinks that are different from the local event sink.

This depends on your method of network management:

Centralized network management

If you manage your network and the MTAs in your routing domain
from one central node, you can have events from all MTAs in your
routing domain dispatched to the event sinks located on that central
node. Alternatively, you can create a new event sink on the central
node exclusively for MTA events.

Decentralized network management

If you have decentralized network management by dividing your
network into management regions, you may have an event sink in each
region. Then, events from all MTAs in a management region could be
dispatched to one selected event sink. Alternatively, you can create
new event sinks exclusively for MTA events.

The script to start MTA event dispatching contains a command that is
commented out and that redirects the outbound event stream to another
node. If you intend to redirect MTA events to the event sinks on a
particular remote node, supply the name of the node in the applicable
command and remove the comment. MTA events will then be dispatched to
the event sinks on the node that you have specified.

This script also contains a section that is commented out and that contains
commands that create an MTA-specific event sink. If you want to create
an event sink on a node specifically for MTA events, supply the required
information in the commands, as indicated in the script, and remove the
comments from the section.

• Prevent certain MTA events from being dispatched.

Information about how to block individual events is provided in the
HP DECnet-Plus documentation.

• Dispatch specific MTA events to specific event sinks.

Event Dispatching 13–3

You may want to do this, for example, if you have divided network
management by task rather than by region. You could then report one
type of event to one event sink, for example, events indicating problems
with the directory, while system-related events such as disk space problems
could be reported to another.

Information about how to redirect specific events to specific event sinks
is provided in the appendix describing the operating system specific
information.

• Add events from the OSI Transport module.

The events issued by the entities of the OSI Transport module are of
interest to MTA management. They indicate problems that affect MTA
operation and that cannot be reported by the MTA itself.

If you have set up an event sink specifically for MTA events, you can have
events from the OSI Transport module reported to the MTA event sink.
Note that in this case, you may receive multiple copies of OSI Transport
events, in the MTA event sink and in other event sinks you may be using.

If you monitor events issued by a group of MTAs from a centralized, remote
event sink, you can have events issued by the OSI Transport module from
the MTA nodes reported to this centralized sink. You do this by setting up
the MTA event stream to include OSI Transport events.

Information about the OSI Transport module can be accessed as a
topic in the NCL Online Help. Information about how to add events
to event streams and event sinks is provided in the HP DECnet-Plus
documentation.

In order to permanently modify the way an MTA’s events are dispatched, you
must enter your changes in the script to start MTA event dispatching. This
ensures that these changes take effect whenever this script is executed.

13–4 Event Dispatching

Part III
Solving Problems

This part explains how you can solve message transfer problems within your
routing domain. This part contains the following chapters:

• Chapter 14, which gives an overview of the problems that can occur in your
routing domain and your scope for solving them.

• Chapter 15, which describes the circumstances when you can receive the
Access Denied error when modifying entries in the directory.

• Chapter 16, which explains how to solve problems with associations and
the protocols of the OSI protocol stack on which the X.400 messaging
protocols operate, that is, RTSE, ACSE, Presentation Layer and Session
Layer. The chapter also explains how to record protocol information so that
you can trace protocol errors.

• Chapter 17, which explains the MTA’s use of OSI Transport module and
X.25 modules when making inbound and outbound connections.

• Chapter 18, which explains how to solve problems with messages. The
chapter also describes how to trace a message in your routing domain.

• Chapter 19, which explains how to solve problems with the routing of
messages.

• Chapter 20, which explains how to solve problems with the resources
available to an MTA.

• Chapter 21, which explains how to solve problems related to receiving
events, collecting Accounting information, Archiving, and Message History
logging.

• Chapter 22, which explains the events that report failure of the MTA.

• Chapter 23, which explains how to report problems that you cannot solve
to HP.

14
Overview of MTS Problems

This chapter defines the scope of MTS problem solving and describes how you
determine that a problem exists. This chapter helps you recognize the type of
problem and tells you where to look for the information you need to solve it.

14.1 Your Scope for Solving MTS Problems
The problems you can solve within an MTS are determined by:

• The topography of the MTS

An MTS can be divided into a number of routing domains. If you have
the required privileges you can manage any MAILbus 400 MTA from any
node on the network that has MAILbus 400 MTA management installed.
However, problem solving is applicable only within HP routing domain
boundaries (see Figure 14–1).

• The scope of your management responsibilities

A routing domain can be divided into a number of regions for management
purposes. You can solve problems within any routing domain for which you
have management responsibility for all the MTAs. You can also investigate
problems at the routing domain’s boundaries.

• How individual MTAs within the MTS are configured

The scope for problem solving can be limited because one or more MTAs
within a routing domain have been configured in a way that does not
provide the necessary data. For example, if Message History logging has
not been enabled or has failed at an MTA it is not possible to trace the
path of a message through your routing domain. See Section 18.4 for
information about tracing messages.

Your scope for problem solving is illustrated in Figure 14–1. You cannot solve
problems directly if they originate in a different routing domain or in a non-HP
routing domain.

Overview of MTS Problems 14–1

Figure 14–1 Your Scope for Problem Solving

Non-HP X.400 MHS Another HP X.400 MHS

A Non-HP Routing Domain

14–2 Overview of MTS Problems

If a problem is outside your scope for problem solving, you can follow it up
according to where it originates, as follows:

• Another routing domain

Make sure you are familiar with the characteristics of any relevant bound-
ary MTA or Gateway in your own routing domain. Then communicate with
the manager responsible for the other routing domain.

• A peer MTA in another routing domain or management region

Make sure you are familiar with the characteristics of any relevant
MTA in your routing domain or management region. Check for special
bilateral arrangements with any peer MTA which may be involved. Then
communicate with the manager responsible for the peer MTA.

To make it easier to contact managers in other routing domains, set up the
Contact Name attribute of each Peer MTA entity that you create. Use this
attribute to hold the name and telephone number of the person responsible
for managing the peer MTA represented by the Peer MTA entity.

Use the following command to set this attribute:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] CONTACT NAME = "text"

where peer-mta-name is the name of the Peer MTA entity and text is
information that identifies the manager of the peer MTA.

• An Agent served by an MTA for which you are responsible.

Collect any information about the problem that you can. Ask the person
responsible for the Agent to investigate.

• A product from another vendor or a lower OSI layer.

Consult the relevant documentation or the manager of the product or lower
OSI layer and, if necessary, the product vendor.

Overview of MTS Problems 14–3

14.2 How You Become Aware of Problems
You become aware of problems in two ways:

• From MHS users

A user who tells you of a problem may be a message originator or a
recipient. The user may have received a non-delivery report or noticed
something else that was unsatisfactory. For example, an originator could
discover that a message was not correctly transferred because the intended
recipient did not respond as expected. For further information about the
problems likely to be noticed by MHS users, see Section 14.2.1.

• From events and changes in counter attributes

The MTA generates events that are sent to one or more event sinks. Each
occurrence of an event is recorded by a counter attribute, see Section 14.2.2.

14.2.1 Problems Notified by MHS Users
The types of problems that an MHS user might bring to your notice are shown
in Table 14–1.

Table 14–1 Problems Notified by MHS Users

Problem Probable Causes

Multiple copies of a
message received

An MTA on the message’s route failed (for example, because
of an operating system failure which caused the MTA to
stop) and the MTA recovered while that message was being
transferred (see Section 5.1).

Message not delivered There were problems with the message itself, with routing
or with processing. If a message was not received as
expected, and/or if a non-delivery report was not received,
investigate the reasons by tracing the message (see
Section 18.4).

Message content
corrupted

A message contains invalid characters. For example, ‘?’
appears as ‘&’. A bodypart in the message had to be
converted to make it acceptable to the recipient’s Agent.
The conversion took place, but the message contains text
that is still unacceptable to the recipient’s Agent. This error
is due to a problem with either the data supplied to the
converter or to the converter failing to do the conversion
correctly.

(continued on next page)

14–4 Overview of MTS Problems

Table 14–1 (Cont.) Problems Notified by MHS Users

Problem Probable Causes

Distribution list not
expanded

An MTA on the message’s route has had problems accessing
the directory, or the distribution list was unavailable or
incorrect. Reasons can be found by tracing the message
(see Section 18.4) or by using the ORaddress entity of the
MTS module to examine the distribution list entry in the
directory.

Expected redirection
failed

An MTA on the message’s route had problems accessing the
directory entry concerned with redirection or the redirection
instruction is incorrect. Reasons can be found by tracing the
message (see Section 18.4) or by using the ORaddress entity
of the MTS module to examine the redirection information
in the recipient’s O/R address held in the directory.

Probe failed The failure is due to the reason reported to the originator,
or characteristics of the probe were unacceptable to the
recipient. Use the ORaddress entity to check the recipient’s
O/R address information in the directory. In particular,
check the EIT and content length information in the
recipient’s O/R address.

Delivery or Non-delivery
report not received

Reporting was disabled on originator’s instructions, or a
report was redirected or discarded by an MTA on its route.
If a report was not received as expected and not redirected
or discarded, reasons should be investigated. You can use
MPDU entities to trace reports still held in an MTA (see
Section 18.6).

In some circumstances, users may perceive message transfer problems
although the MTAs in your routing domain are functioning normally. A likely
cause of such problems is the specific way that User Agents are being used; for
example, a User Agent has been set up so that is does not deliver reports, such
as non-delivery reports, to users. Another likely cause is inconsistencies in the
information that the MTS requires for routing, see Chapter 19.

14.2.2 Problems Revealed by Events and Counter Attributes
Events are generated and sent to event sinks when a particular problem occurs
in your routing domain or when certain entities are deleted by a management
command. Events, or combinations of events, indicate particular types of
problem, and also indicate MTA state changes.

Overview of MTS Problems 14–5

The following is an example of a typical event:

Rejected Agent Connection,

from: Node NODE6 MTA

at : 1992-06-04-10:58:48.217

Agent =
 [
 Agent Name = "ACME-UA"
]
Reason Code = Unknown Agent

EventUID FA601890-2245-11CA-B185-08002B097347

EntityUID 9B2E46B0-2245-11CA-B185-08002B097347

StreamUID 0BE26820-2183-11CA-B185-08002B097347

 Name of the event

 Name of the Node and entity
that generated the event

The time when the event
 occurred

 Information about the
 problem

 The unique identifier (UID)
 of the event

 The UID of the entity

 The UID of the event stream

MIG0191

See Table 14–2 for the reference section that describes each particular event.

Note that problems are likely to show up as a sequence of related events. For
example, you receive an MPDU Expired event, this event would have been
preceded by an Expiry Alarm Threshold Exceeded event. The MPDU could
have been delayed in the MTA because the MTA was unable to establish an
outbound association to the MPDU’s target peer MTA. When the establishment
of the association failed, the MTA generated the Outbound Establishment
Failure event. If the abort was caused by a protocol error, then the MTA also
generates the RTSE Protocol Violation event or the Lower Layer Protocol
Violation event.

Because of the relationship between events associated with specific problems,
it is important to check the timestamp associated with any events under
investigation. Note that during a forced exit by the MTA, an exceptional
situation occurs in which timestamps can be misleading (see Chapter 22).

Apart from the Forced Exit and Entity Deleted events, each occurrence of an
event is recorded by a corresponding counter. For example, occurrences of the
MPDU Expired event are recorded by the Expired MPDUs counter of the MTA
entity.

14–6 Overview of MTS Problems

This enables you to keep a quantitative check on the frequency of each type of
event for which there is a counter. Some events, such as the Inbound Transfer
Hard Rejection event, are sufficiently serious to require investigation of each
occurrence. Other events, such as the Expiry Alarm Threshold Exceeded event,
indicate problems only if they occur frequently. Counters are, therefore, useful
for checking the frequency of events, but you have to monitor the levels of
counters regularly if you want to use them to help in problem solving.

Use the Show command in NCL to display the value of a counter. You
can display all the counters of a particular entity by including the ALL
COUNTERS qualifier in the Show command. See the MTA Module Online
Help for information about the ALL COUNTERS qualifier.

An entity’s Creation Time attribute shows when the counters were set to zero.
Use this attribute as a reference point to when the counters started recording
information.

Table 14–2 lists each event, its related counter, and the entity that generates
the event.

Table 14–2 Events and Related Counter Attributes

Event Related Counter Reference

MTA Entity

Accounting Data Lost Accounting Data Losses Section 21.2.1

Converter Unavailable Unavailable Converters Section 18.7.8

Deferred Message
Deleted

Deleted Deferred Messages Section 18.7.6

Directory Configuration
Error

Directory Configuration Errors Section 19.3.4

Directory Service Error Directory Service Errors Section 20.2

Expiry Alarm Threshold
Exceeded

Expiry Alarms Section 18.7.1

Forced Exit not counted Section 22.2.2

Inbound Transfer Hard
Rejection

Inbound Transfer Hard Rejections Section 16.2.3

Inbound Transfer Soft
Rejection

Inbound Transfer Soft Rejections Section 16.2.5

(continued on next page)

Overview of MTS Problems 14–7

Table 14–2 (Cont.) Events and Related Counter Attributes

Event Related Counter Reference

MTA Entity

Internal Error Internal Errors Section 22.2.1

Invalid MPDU Detected Invalid MPDUs Detected Section 18.7.2

Licensed Message
Throughput Exceeded

Licensed Message Throughput
Exceeded

Section 22.3

Loop Detected Loops Detected Section 19.3.5

Message History Data
Lost

Message History Data Losses Section 21.2.2

MPDU Deleted Deleted MPDUs Section 18.7.7

MPDU Expired Expired MPDUs Section 18.7.3

Recovery Finished not counted Section 18.8.4

Rejected Agent
Connection

Rejected Agent Connections Section 19.3.1

Report Discarded Reports Discarded Section 18.7.4

Report Generation
Failed

Report Generation Failures Section 18.7.5

State Change State Changes Section 14.3

System Interface Error System Interface Errors Section 20.1

Transport Interface
Error

Transport Interface Errors Section 16.2.8

Unknown Agent Unknown Agents Section 19.3.2

Unknown Peer Domain Unknown Peer Domains Section 19.3.3

Agent Entity

Archive Failed Failed Archives Section 21.2.3

Peer MTA Entity

Archive Failed Failed Archives Section 21.2.3

Entity Deleted not counted Section 7.2.1

(continued on next page)

14–8 Overview of MTS Problems

Table 14–2 (Cont.) Events and Related Counter Attributes

Event Related Counter Reference

Activity Entity

Inbound Failure Inbound Failures1 Section 16.2.6

Lower Layer Protocol
Violation

Lower Layer Protocol Violations1 Section 16.3.2

Outbound Establishment
Failure

Outbound Establishment Failures1 Section 16.2.1

Outbound Failure Outbound Failures1 Section 16.2.7

Outbound Hard
Rejection

Outbound Hard Rejections1 Section 16.2.2

Outbound Soft Rejection Outbound Soft Rejections1 Section 16.2.4

RTSE Protocol Violation RTSE Protocol Violations1 Section 16.3.1

1Peer MTA entity counter

Not all counters are related to events; for example, the MTA, Agent, and
Peer MTA entities have counters that record the number of MPDUs that
are handled by an MTA. Table 14–3 lists the counters that record statistical
information not related to events.

Table 14–3 Counters not Related to Events

Counter Entity

Delivered MPDUs MTA

Exported MPDUs MTA

Imported MPDUs MTA

Inbound Acceptances Peer MTA

Inbound Disconnections Peer MTA

MPDUs In Agent and Peer MTA

MPDUs Out Agent and Peer MTA

Octets In Peer MTA

Octets Out Peer MTA

(continued on next page)

Overview of MTS Problems 14–9

Table 14–3 (Cont.) Counters not Related to Events

Counter Entity

Outbound Acceptances Peer MTA

Outbound Disconnections Peer MTA

Submitted MPDUs MTA

When a Peer MTA entity is deleted, it generates the Entity Deleted event.
This event contains the final values of the counters of the deleted Peer MTA
entity. Section 7.2.1 describes how the information contained in this event can
be useful if you are monitoring the message traffic in your routing domain.

14.3 MTA Changes in State
The State Change event is generated whenever the MTA changes state, for
example, when you issue the DISABLE MTA NCL command.

This event is counted by the MTA entity’s State Changes counter.

The event provides the following information:

Previous State= previous-state.
Current State= current-state.

where previous-state is the MTA state before the State Change was issued,
and current-state is the new state of the MTA.

Action
This event is for your information, you do not need to take any action as a
result of receiving this event.

14–10 Overview of MTS Problems

15
Problems Accessing Routing Information

This chapter describes problems and errors that you might see when accessing
routing information in the directory.

15.1 The MTS Entity and the Access Denied Error
If you receive the error Access Denied when attempting to modify entries in
the directory, check the following:

• That you have the correct privileges.

You must issue commands that modify routing information from a
privileged account.

• That you have specified a password when creating the routing domain
entry in the directory using the MTS entity.

If you using the Create MTS command to create the routing domain entry
for your routing domain in the directory for the first time, follow the
instructions in Part III of HP MAILbus 400 MTA Planning and Setup.
Read the chapter appropriate to your operating system describing how to
set up the MTA.

• That the node is authorized to manage the specified routing information.

Check that the node where you are issuing the MTS module commands
is authorized to access the MTA’s routing information. The password
protecting the routing information might have been modified in the
directory, or the node might not be authorized to manage the routing
information for this MTA. In either case, find out the correct password
to quote with the MTS entity at the node, as it has been modified. If
you cannot find the correct password to use with the MTS entity read
Section 15.3.

The following is an example of the NCL command to use to provide the
necessary authorization to manage the MTA’s routing information from the
node. Issue this command on the node that you want to authorize:

AUTHORIZE MTS "mts_name" PASSWORD "password"

Problems Accessing Routing Information 15–1

where:

mts_name is the identifier of the MTS entity.

password is the password for the MTS entity.

• That the DSA configuration is correct.

If you have set up the MTA to contact a shadow DSA, there might be a
problem with ‘‘Trust’’ between the DSAs. Refer to HP Enterprise Directory
- Problem Solving for information about how to solve problems concerned
with lack of ‘‘Trust’’ between DSAs.

15.2 MTS Dump Command Failures
You also receive the Access Denied error if you specify an incorrect password
with the Dump command.

If the Dump command returns the error Access Denied, you are either not
quoting a password when one is required, or you are quoting the incorrect
password.

Contact the person responsible for managing the routing information and find
out the correct password for your routing information, that is, the MTS entity
password. If you cannot find out the correct password, refer to Section 15.3.

The following is an example of how to use the Dump command to dump the
MTA’s routing information to a named file:

DUMP MTS mts_name FILENAME filename, PASSWORD password

where:

mts_name is the identifier of the MTS entity.

filename is the full pathname (Tru64 UNIX) or file specification
(OpenVMS) where you want to dump your routing information.

password is the password for the MTS entity.

HP MAILbus 400 MTA Planning and Setup provides information about
the MTS entity and directory authorization. The MTS Module Online Help
provides more details about how to use the Dump command.

15–2 Problems Accessing Routing Information

15.3 Defining a New Password
If you have forgotten the password for the MTS entity and need to set a new
one, complete the following steps:

1. Temporarily create a DSA Accessor entity for the routing domain entry at
the DSA that the MTA contacts as follows:

CREATE NODE "node-id" DSA ACCESSOR "mts_name" PASSWORD "temp"

where mts_name is the identifier of the MTS entity.

2. Set a new password for the MTS entity as follows:

SET MTS "mts_name" EXISTING PASSWORD "temp", PASSWORD "rememberthistime"

where mts_name is the identifier of the MTS entity.

3. Delete the DSA Accessor entity:

DELETE NODE "node-id" DSA ACCESSOR "mts_name"

where mts_name is the identifier of the MTS entity.

Problems Accessing Routing Information 15–3

16
Problems with Associations

This chapter describes problems that can occur with associations between
MTAs. Table 16–1 shows how failure at each stage of an association relates to
the events generated.

Note

Within this chapter, the term ‘‘association’’ refers to X.400 1988 OSI
associations; however, the term also refers to X.400 1984 OSI Session
connections when applicable.

Table 16–1 Problems at Different Stages of an Association

Initiation of
Connection

Negotiation
of Validity or
Acceptability

Negotiation
of Availability

Data
Transfer
Readiness Event Generated

Fail — — — Outbound Establishment Failure
(see Section 16.2.1) or Transport
Interface Error (see Section 16.2.8)
and either RTSE Protocol Violation
(see Section 16.3.1) or Lower
Layer Protocol Violation (see
Section 16.3.2).

Pass Fail — — Outbound Hard Rejection (see
Section 16.2.2) or Inbound Transfer
Hard Rejection (see Section 16.2.3)

Pass Pass Fail — Outbound Soft Rejection (see
Section 16.2.4) or Inbound Transfer
Soft Rejection (see Section 16.2.5)

(continued on next page)

Problems with Associations 16–1

Table 16–1 (Cont.) Problems at Different Stages of an Association

Initiation of
Connection

Negotiation
of Validity or
Acceptability

Negotiation
of Availability

Data
Transfer
Readiness Event Generated

Pass Pass Pass Fail Outbound Failure (see Section 16.2.7)
or Inbound Failure (see Section 16.2.6)
and either RTSE Protocol Violation
(see Section 16.3.1) or Lower
Layer Protocol Violation (see
Section 16.3.2)

You can find out about problems with associations or with the establishment of
an association by doing one of the following:

• Monitor an association using the Activity entity that provides information
about the association (Section 16.1).

• Monitoring events that relate to association failures, establishment
failures, or rejected attempts to establish an association (Section 16.2).

• Monitoring events that relate to protocol violations (Section 16.3).

• Monitoring the counters that record occurrences of the events described in
Section 16.2 and Section 16.3.

Some association failures are due to errors in the OSI protocols that are
exchanged between MTAs that are attempting to establish an association. OSI
protocol errors are reported by the appropriate event. Usually, to solve this
type of problem, you need to record the protocol information and trace the
error, see Section 16.4.

16.1 Using the Activity Entity to Find Out When an
Association Fails

The Activity entity provides information about an association and the transfer
of an MPDU over that association. An Activity entity is created when the first
MPDU is transferred over the association. During the establishment phase of
an association, before MPDU transfer has started, no Activity entity exists.
Therefore, you can only use the Activity entity to monitor an association after
it has been established and MPDU transfer has started.

16–2 Problems with Associations

The Activity entity holds information about the association in its State and
Interruption Reason attributes. The State attribute of an Activity entity refers
to the current state of the association. The State attribute can have one of the
following states:

• Active

An MPDU is being transferred over the association.

• Idle

A complete MPDU has been transferred, and the association is waiting for
another MPDU to transfer.

• Interrupted

The association has failed.

• Establishing

The association is in the process of being established.

When an association fails, the Interruption Reason attribute provides
information about the cause of the failure. For example, an MTA detects
a protocol error and aborts an association. The Activity entity that holds
information about the association has the following values in its State and
Interruption Reason attributes:

State = Interrupted

Interruption Reason =
[
RTSE Entity that Initiated Failure = This MTA
Abort Reason Code = Protocol Violation
Local Diagnostic = Not Applicable
]

Use the following command to display the State and Interruption Reason
attributes of all the current Activity entities for all the associations to or from
a particular peer MTA:

SHOW NODE "node-id" MTA PEER MTA identifier ACTIVITY * INTERRUPTION REASON, -
WITH STATE = INTERRUPTED

where identifier is either:

[TYPE = AUTOMATICALLY CONFIGURED, NAME ="name"]

where name is the name of the peer MTA’s entry in the directory.

[TYPE = MANUALLY CONFIGURED, NAME ="peer-mta-name"]

where peer-mta-name is the name of the Peer MTA entity that represents
the peer MTA in the other routing domain.

Problems with Associations 16–3

Note that the Interruption Reason attribute only contains information about
the association failure when the value of the State attribute is Interrupted.

16.2 Events Relating to Problems with Associations and the
Transport Service

The following events relate to problems with associations:

• Outbound Establishment Failure (Section 16.2.1)

• Outbound Hard Rejection (Section 16.2.2)

• Inbound Transfer Hard Rejection (Section 16.2.3)

• Outbound Soft Rejection (Section 16.2.4)

• Inbound Transfer Soft Rejection (Section 16.2.5)

• Inbound Failure (Section 16.2.6)

• Outbound Failure (Section 16.2.7)

• Transport Interface Error (Section 16.2.8)

Note

Events relating to associations can occur when interworking with a
peer MTA in another routing domain. To solve the problems indicated
by these events, it may be necessary for you to contact the person
responsible for managing the peer MTA.

To make it easier to contact a manager in another routing domain,
set up the Contact Name attribute of each Peer MTA entity that you
create. See Section 14.1 for an example of the command you use to set
this attribute.

To solve problems with associations, it may be necessary to stop and start the
MTA that generated the event or a peer MTA in your routing domain that is
named in the event. The procedures for stopping and starting an MTA are
described in the appropriate appendix.

16–4 Problems with Associations

16.2.1 Outbound Establishment Failure
This event occurs whenever an attempt by an MTA to establish an association
to a peer MTA fails. The association can fail because of an error detected by
either the MTA that initiated the association or by the receiving peer MTA.

It is the responsibility of the MTA that generated this event to make further
attempts to establish the association and transfer the MPDU. The MTA
makes another attempt to establish the association after the retry interval has
elapsed.

This event is counted by the Outbound Establishment Failures counter of the
Peer MTA entity that holds information about the peer MTA.

If the attempt to establish the association was aborted by the MTA that
generated the event, then the event contains:

RTSE Entity Initiating Failure = This MTA

This is followed by one of:

1 Reason Code = Local System Problem
Local Diagnostic = Internal Error
Association Type = type

2 Reason Code = Local System Problem
Local Diagnostic = Local Timeout Period Expired
Association Type = type

3 Reason Code = Temporary Problem
Local Diagnostic = This MTA Disabled
Association Type = type

4 Reason Code = Temporary Problem
Local Diagnostic = Peer MTA Entity Disabled
Association Type = type

5 Reason Code = Temporary Problem
Local Diagnostic = Peer MTA Unavailable
Association Type = type

6 Reason Code = Permanent Problem
Local Diagnostic = Transport Disconnect Received
Association Type = type

7 Reason Code = Permanent Problem
Local Diagnostic = Invalid MTA Password
Association Type = type

Problems with Associations 16–5

8 Reason Code = Permanent Problem
Local Diagnostic = Unrecognized MTA Name
Association Type = type

9 Reason Code = Permanent Problem
Local Diagnostic = Mismatch Between Called Address and either
Transport Service or OSI Templates
Association Type = type

1 0 Reason Code = Permanent Problem
Local Diagnostic = Invalid Presentation Context Supplied
Association Type = type

1 1 Reason Code = Protocol Violation
Local Diagnostic = Not Applicable
Association Type = type

1 2 Reason Code = Invalid Parameter
Local Diagnostic = No Diagnostic Available
Association Type = type

1 3 Reason Code = Validation Error
Local Diagnostic = Failed to Decode Bind Information
Association Type = type

If the attempt to establish the association was aborted by the peer MTA, then
the event contains the following:

1 4 RTSE Entity Initiating Failure = Peer MTA
Reason Code = Permanent Problem
Local Diagnostic = No Diagnostic Available
Association Type = type

type can be New or Recover according to whether the association is new, or
being recovered.

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

1 The establishment of the association failed because the MTA was affected
by an error in its own software. Check the event sink for an occurrence of

16–6 Problems with Associations

the Internal Error event from this MTA and take the appropriate action as
described in Section 22.2.1.

2 The establishment of the association failed because the peer MTA took too
long to respond. The time limit that specifies how long the MTA can wait
for a response from the peer MTA expired. Note that it is not possible to
change this time limit. Contact the manager of the peer MTA and find out
why the peer MTA did not respond.

3 The establishment of the association failed because the MTA was disabled
after the MTA started to set up the association.

Display the current state of the MTA, using the following command:

SHOW NODE "node-id" MTA STATE

If the MTA is ON, the MTA was re-enabled after the event occurred. In
this case, no further action is required. If the MTA is OFF, enable the MTA
using the following command:

ENABLE NODE "node-id" MTA

The MTA makes another attempt to establish the association when you
enable it.

4 The establishment of the association failed because the Peer MTA entity
that represents the peer MTA was disabled after the MTA started to set up
the association.

Display the current state of the Peer MTA entity, using the following
command:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] STATE

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

If the Peer MTA entity is ON, the Peer MTA entity was re-enabled after the
event occurred. In this case, no further action is required. If the Peer MTA
entity is OFF, enable the Peer MTA entity, using the following command:

ENABLE NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"]

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

The MTA makes another attempt to establish the association. Retry
attempts by the MTA can only succeed if the Peer MTA entity is in the ON
state.

Problems with Associations 16–7

5 The establishment of the association failed because the peer MTA is not
reachable. The action that you take depends on whether the peer MTA is
in your routing domain or in another routing domain:

• The peer MTA is in your routing domain.

Check that OSI Transport is running at the peer MTA’s node, using the
following command:

SHOW NODE "node-id" OSI TRANSPORT STATE

where node-id is the name of the node where the peer MTA is running.

If OSI Transport is not running on the peer MTA’s node, then restart it,
and stop and start the peer MTA.

If OSI Transport is running, then check that the peer MTA is running,
using the following command:

SHOW NODE "node-id" MTA STATE

where node-id is the name of the node where the peer MTA is running.

If the peer MTA does not exist, then make further investigations at the
node where the peer MTA is located.

If the peer MTA is OFF, then enable it using the following command:

ENABLE NODE "node-id" MTA

where node-id is the name of the node where the peer MTA is running.

If the peer MTA is running, then there is a discrepancy between
the peer MTA’s Presentation address held in the directory and the
Presentation address being used currently by the peer MTA.

Note that this discrepancy can only occur if the peer MTA’s
Presentation address in the directory is changed while the peer MTA is
running.

You need to update the Presentation address used by the peer MTA. To
do this, log into a privileged account on the node where the peer MTA
is located. Stop the peer MTA, then follow the instructions given in
Part III of HP MAILbus 400 MTA Planning and Setup on how to set
up an MTA and create an MTA entry in the directory. Finally, start the
peer MTA.

• The peer MTA is in another routing domain.

Contact the person responsible for managing the peer MTA and find out
if the peer MTA is running. If the peer MTA is running, then validate
its Presentation address, or Session address if it has one. Check that
the peer MTA’s address held by the Peer MTA entity that represents

16–8 Problems with Associations

the peer MTA is correct. Use the following command to display the
peer MTA’s address:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] address

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA and address is either PRESENTATION
ADDRESS or SESSION ADDRESS.

If the peer MTA’s Presentation address, or Session address if it has
one, is incorrect, then correct the error by setting the Peer MTA entity’s
Presentation Address or Session Address attribute.

See the DECnet/OSI network documentation for more information
about Presentation and Session addresses.

6 The establishment of the association failed because of an error in one of the
lower layers, for example the Transport layer, or because the physical line
broke.

If this error occurs frequently because of an error in one of the lower layers,
then investigate it further using the lower layer management entities. See
the HP DECnet-Plus documentation for information about the lower layer
management entities.

7 The establishment of the association failed because the MTA did not
recognize the password supplied by the peer MTA. The action that you take
depends on whether the peer MTA is in your routing domain or in another
routing domain:

• The peer MTA is in your routing domain.

In this case there is a discrepancy between the password supplied by
the peer MTA and the peer MTA’s password held in the directory.

Note that this discrepancy can only occur if the peer MTA’s password in
the directory is changed while the peer MTA is running.

You need to update the password used by the peer MTA. To do this, log
into a privileged account on the node where the peer MTA is located.
Stop the peer MTA, then follow the instructions given in Part III of HP
MAILbus 400 MTA Planning and Setup on how to set up an MTA and
create an MTA entry in the directory. Finally, start the peer MTA.

• The peer MTA is in another routing domain.

In this case, there is a discrepancy between the password supplied
by the peer MTA and the password held in the Peer MTA entity that
represents the peer MTA. Contact the person managing the peer MTA
in the other routing domain and verify the peer MTA’s password.

Problems with Associations 16–9

The peer MTA’s password is held in the Peer Password attribute of
the Peer MTA entity. This is a write-only characteristic attribute, so
you cannot display its value. If you have included the commands that
create and set up the Peer MTA entity in the MTA’s startup script, then
you can obtain the password from this script. Refer to the appendix
describing the operating system specific information for the location of
the MTA’s startup script.

Use the following command to reset the password:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER PASSWORD password

where:

peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

password is one of the following:

* [TYPE = IA5, IA5 String = "string"]

* [TYPE = Octet, Octet String = ’string’h]

where string is the peer MTA’s password in either IA5 graphic
subset characters or hexadecimal octets.

8 The establishment of the association failed because the MTA did not
recognize the peer MTA’s name. The action that you take depends on
whether the peer MTA is in your routing domain or in another routing
domain:

• The peer MTA is in your routing domain.

In this case, there is a discrepancy between the name supplied by the
peer MTA and the peer MTA’s name held in the directory.

Note that this discrepancy can only occur if the name of the peer MTA’s
entry in the directory is changed while the peer MTA is running.

You need to update the name used by the peer MTA. To do this, log
into a privileged account on the node where the peer MTA is located.
Stop the peer MTA, then follow the instructions given in Part III of HP
MAILbus 400 MTA Planning and Setup on how to set up an MTA and
create an MTA entry in the directory. Finally, start the peer MTA.

• The peer MTA is in another routing domain.

In this case there is a discrepancy between the name supplied by the
peer MTA and the name held by the Peer MTA entity that represents
the peer MTA. Contact the person managing the peer MTA in the other
routing domain and verify the peer MTA’s name.

16–10 Problems with Associations

The peer MTA’s name is held in the Peer Name attribute of the Peer
MTA entity. Display the Peer Name attribute and check that there is
an error. Use the following command to reset its value:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER NAME "name"

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA, and name is the name of the peer
MTA.

9 The establishment of the association failed because the peer MTA’s address
does not contain an NSAP that corresponds to the type of Transport Service
used by the MTA for connections to the peer MTA.

For outbound connections to a peer MTA in the same routing domain, the
MTA uses the Transport Service specified by the Transport Service Options
attribute of the MTA entity. The Transport Service Options attribute can
contain one or both of the following values:

• OSI

If the Transport Service Options attribute contains this value, the MTA
can use the DECnet/OSI Transport Service.

• TCPIP

If the Transport Service Options attribute contains this value, the MTA
can use the TCP/IP Transport Service.

Similarly, the Peer MTA entity contains a Transport Service Options
attribute. You can use this attribute to specify the Transport Service used
by the boundary MTA for outbound connections to a peer MTA in another
routing domain. If the Transport Service Options attribute of a Peer MTA
entity is set to null, the boundary MTA uses the Transport Service specified
by the Transport Service Options attribute of the MTA entity.

In order for an MTA to make a connection to the peer MTA, the peer MTA’s
Presentation or Session address must contain an NSAP that corresponds to
the Transport Service used by the MTA.

If an MTA uses the DECnet/OSI Transport Service for outbound
connections to a peer MTA, the following also apply:

• The peer MTA’s Presentation or Session address must contain either a
CLNS or CONS NSAP.

• The MTA must use a Transport Template entity that specifies a
network service that matches the CLNS or CONS NSAP is the peer
MTA’s address.

Problems with Associations 16–11

The action that you take depends on whether the peer MTA is in your
routing domain or in another routing domain:

• The peer MTA is in your routing domain.

Check the value or values specified by the MTA entity’s Transport
Service Options attribute. This attribute is set up in the MTA’s startup
script; however, you may have altered its value since you set up the
MTA. Use the following command to display the value of this attribute:

SHOW NODE "node-id" MTA TRANSPORT SERVICE OPTIONS

Check that the peer MTA’s Presentation and Session addresses contain
an NSAP that corresponds to the Transport Service specified by the
MTA. To do this, issue the following command at the node where the
peer MTA is running:

SHOW NODE node-id MTA PRESENTATION ADDRESS, SESSION ADDRESS

Correct any discrepancy between the Transport Service used by the
MTA and the NSAPs in the peer MTA’s address.

If the MTA’s Transport Service Options attribute specifies OSI, and the
peer MTA’s address contains a CLNS or CONS NSAP, the Transport
Service is unable to find a corresponding Transport Template entity.

Display the MTA’s Template Name attribute to find out what Template
entities it specifies:

SHOW NODE "node-id" MTA TEMPLATE NAME

The Template Name attribute is set up in the MTA’s startup script
and the corresponding Template entities are created by the MTA
installation and setup procedures. You might have modified the
Template Name attribute to name a different Transport Template entity
or reset the attribute to be null. See Section 7.7.5 for information about
the implications of setting the Template Name attribute to null.

Check that the Transport Template entity specified by the Template
Name attribute exists on the node where the MTA is running and that
the value of its Network Service attribute corresponds to an NSAP
in the peer MTA’s address. See Section 7.7.4 for information about
the MTA’s Transport Template entities. See the DECnet/OSI network
documentation for information about creating and modifying Transport
Template entities.

16–12 Problems with Associations

• The peer MTA is in another routing domain.

In this case, check the value of the Peer MTA entity’s Transport Service
Options attribute. Use the following command to display the value of
this attribute:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY -
CONFIGURED, NAME = "peer-mta-name"] TRANSPORT SERVICE OPTIONS

where peer-mta-name is the name of the Peer MTA entity.

If the Peer MTA entity’s Transport Service Options attribute does not
contain a value, the boundary MTA is using the Transport Service
specified its MTA entity. In this case, check the value of the MTA
entity’s Transport Service Options attribute, as described in the action
for a peer MTA in your routing domain.

Find out if the peer MTA’s Presentation or Session address contains
an NSAP that corresponds to the Transport Service being used by the
boundary MTA for outbound connections to the peer MTA. Use the
following command to display the peer MTA’s address:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PRESENTATION ADDRESS, SESSION ADDRESS

where peer-mta-name is the name of the Peer MTA entity.

Note that the Peer MTA entity has either a Presentation Address or
Session Address attribute, not both; this command displays whichever
attribute is present.

If the peer MTA’s address does not contain an NSAP that corresponds
to the Transport Service used by the boundary MTA, contact the
person responsible for managing the peer MTA and verify the peer
MTA’s address. Make sure that the boundary MTA is using the correct
address for the peer MTA and that the Transport Service used by the
boundary MTA corresponds to an NSAP in the peer MTA’s address.
Refer to the DECnet/OSI network documentation for more information
about Presentation and Session addresses.

If the Transport Service Options attribute of the Peer MTA entity or the
MTA entity, whichever is being used, specifies OSI and the peer MTA’s
Presentation or Session address contains a CLNS or CONS NSAP, the
Transport Service is unable to find a corresponding Template entity.

Use the following command to display what Transport Template entities
are specified by the Peer MTA entity:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] TEMPLATE NAME

where peer-mta-name is the name of the Peer MTA entity.

Problems with Associations 16–13

If the Template Name does not specify a Transport Template entity,
then the MTA is using the Transport Template entities specified by the
Template Name attribute of the MTA entity. Check the value of the
MTA entity’s Template Name attribute as described in the action for a
peer MTA in your routing domain.

If you have tuned the Peer MTA entity so that it is specifying
a Transport Template entity that you have created, make sure
that the value of the Transport Template entity’s Network Service
attribute corresponds to an NSAP in the peer MTA’s address. See the
DECnet/OSI network documentation for information about modifying
OSI Transport Template entities.

1 0 The establishment of the association failed because of a protocol error in
the interface between the RTSE and the Presentation layer. Specifically,
one or more Presentation Context Identifiers sent in the RT-OPEN response
protocol from the peer MTA is invalid.

This is due to an error in the peer MTA’s software. Inform the manager
of the peer MTA about the problem. To trace the error, record the protocol
information that is exchanged between the two MTAs, see Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

1 1 The establishment of the association failed because the MTA detected a
protocol error in one of its lower layers.

Check the event sink for an occurrence of the Lower Layer Protocol
Violation event (see Section 16.3.2) or the RTSE Protocol Violation event
(see Section 16.3.1) from this MTA. These events identify the source of the
protocol error. If the information provided by these events is insufficient
to identify the protocol error, then record the protocol information that is
exchanged between the two MTAs, see Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

1 2 The establishment of the association failed because the MTA received
a parameter from the peer MTA that it did not recognize. Inform the
manager of the peer MTA about the problem.

To identify the parameter, record the protocol information that is exchanged
between the two MTAs, see Section 16.4.

16–14 Problems with Associations

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

1 3 The MTA is unable to decode the ASN.1 data part of the name or password
supplied by the peer MTA.

Record the protocol information that is exchanged between the two MTAs
as described in Section 16.4 and inform the person managing the peer MTA
about the problem.

If, after you have consulted with the manager of the peer MTA, you are
unable to correct the error, then contact HP. See Chapter 23 for information
about how to contact HP and the information that you need to provide
about the error.

1 4 The failure is due to a problem reported by the peer MTA.

Contact the manager of the peer MTA who should be able to explain why
the peer MTA failed to accept the association.

16.2.2 Outbound Hard Rejection
This event occurs whenever an attempt by an MTA to establish an association
to a peer MTA is rejected by the peer MTA because of a permanent problem.
For example, the peer MTA rejects the association because it does not recognize
the MTA’s password. Occurrences of this event must be investigated and solved
before an attempt to establish an association to the peer MTA can succeed.

This event is counted by the Outbound Hard Rejections counter of the Peer
MTA entity that holds information about the peer MTA.

The information provided by the event is one of the following:

1 Reason Code = Unacceptable Dialogue Mode

2 Reason Code = Validation Error

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

Problems with Associations 16–15

1 The peer MTA is rejecting RTSE monologue dialogue mode. Contact the
manager of the peer MTA and ensure that the peer MTA is able to accept
RTSE monologue dialogue mode.

2 The peer MTA does not recognize the MTA’s name or password. The action
that you take depends on whether the peer MTA is in your routing domain
or in another routing domain:

• The peer MTA is in your routing domain.

In this case, there is a discrepancy between the name or password
supplied by the MTA and the MTA’s name or password held in the
directory.

Note that this discrepancy can only occur if the name of the MTA’s
entry in the directory or the password in the MTA’s entry is changed
while the MTA is running.

You need to update the name or password used by the MTA. To do this,
log into a privileged account on the node where the MTA is located.
Stop the MTA, then follow the instructions given in Part III of HP
MAILbus 400 MTA Planning and Setup on how to set up an MTA and
create an MTA entry in the directory. Finally, start the MTA.

• The peer MTA is in another routing domain.

In this case, there is a discrepancy between the name or password
supplied by the MTA and the MTA’s name or password expected by the
peer MTA.

Contact the person managing the peer MTA and verify that the peer
MTA is using the correct name and password of the MTA.

The name and password supplied by the MTA is held in the Peer MTA
entity that holds information about the peer MTA. The MTA’s name is
held in the Local Name attribute and the MTA’s password is held in the
Local Password attribute.

Display the Local Name attribute and check that there is no obvious
error. Use the following command to display this attribute:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] LOCAL NAME

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

16–16 Problems with Associations

If there is an error, then use the following command to reset this
attribute:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] LOCAL NAME "name"

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA and name is the name of the boundary
MTA.

The Local Password attribute is a write-only characteristic attribute, so
you cannot display its value. If you have included the commands that
create and set up the Peer MTA entity in the MTA’s startup script, then
you can obtain the password from this script. Refer to the appendix
describing the operating system specific information for the location of
the MTA’s startup script.

Use the following command to reset the password:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] LOCAL PASSWORD password

where:

peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

password is one of the following:

* [TYPE = IA5, IA5 String = "string"]

* [TYPE = Octet, Octet String = ’string’h]

where string is the peer MTA’s password in either IA5 graphic
subset characters or hexadecimal octets.

16.2.3 Inbound Transfer Hard Rejection
This event occurs whenever an MTA rejects an attempt by a peer MTA to
establish an association because of a permanent problem. For example, the
MTA rejects the association because it does not recognize the peer MTA’s
password. Occurrences of this event must be investigated and solved before
an attempt by the peer MTA to establish an association with the MTA can
succeed.

This event is counted by the MTA entity’s Inbound Transfer Hard Rejections
counter.

The event provides the name and address of the peer MTA that initiated the
association:

Problems with Associations 16–17

Calling MTA Name = mta-name
Calling Address = address

where mta-name is the name of the peer MTA that initiated the association and
address is the address of that peer MTA.

This is followed by one of:

1 Reason Code = Unacceptable Dialogue Mode
Local Diagnostic = Not Applicable

2 Reason Code = Invalid Application Context
Local Diagnostic = Not Applicable

3 Reason Code = Validation Error
Local Diagnostic = Unrecognized MTA Name

4 Reason Code = Validation Error
Local Diagnostic = Unknown Peer MTA

5 Reason Code = Validation Error
Local Diagnostic = Invalid MTA Password

6 Reason Code = Validation Error
Local Diagnostic = Invalid Presentation Context Supplied

7 Reason Code = Validation Error
Local Diagnostic = Invalid Direction of Transfer

8 Reason Code = Validation Error
Local Diagnostic = Unrecognized MTA Calling Address

9 Reason Code = Validation Error
Local Diagnostic = Failed to Decode Bind Information

1 0 Reason Code = Validation Error
Local Diagnostic = Peer Domain not Configured in the Directory

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

1 The peer MTA is requesting RTSE two-way-alternate dialogue mode.
This dialogue mode is not supported by the MTA. Contact the manager
of the peer MTA and ensure that the peer MTA is able to request RTSE
monologue dialogue mode.

16–18 Problems with Associations

2 There is a problem with the peer MTA’s software. The peer MTA has sent
an incorrect object identifier for the application context in the RT-OPEN
request that does not conform to the MTS Transfer protocol. Notify the
manager of the peer MTA about the problem.

If, after you have consulted with the manager of the peer MTA, you are
unable to correct the error, then contact HP. See Chapter 23 for information
about how to contact HP and the information that you need to provide.

3 The peer MTA’s name is not recognized by the MTA. The peer MTA’s
name is provided in the Calling MTA Name field in the event. There is a
discrepancy between the name supplied in the event and the name held in
the Peer Name attribute of the Peer MTA entity that represents the peer
MTA.

Display the Peer Name attribute and check if there is an obvious error.
Use the following command to display this attribute:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER NAME

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

If there is no obvious error in the value of this attribute, contact the person
managing the peer MTA in the other routing domain and verify the peer
MTA’s name.

If the name used by the peer MTA is incorrect, then it is the responsibility
of the person managing the peer MTA to correct it. If the name of the peer
MTA held by the Peer MTA entity is incorrect, then reset the Peer Name
attribute. Use the following command to set this attribute:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER NAME "name"

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA and name is the amended name of the peer
MTA that it uses in its communication.

4 The MTA is unable to validate the peer MTA’s name and password. The
action that you take depends on whether the peer MTA is in your routing
domain or in another routing domain:

• The peer MTA is in your routing domain.

In this case, the MTA is unable to find information about the peer MTA
in the directory.

Note that this problem can only occur if the peer MTA’s entry was
deleted or modified in the directory while the peer MTA is running.

Problems with Associations 16–19

Recreate the peer MTA’s entry in the directory. To do this, log into a
privileged account on the node where the peer MTA is located. Stop the
peer MTA, then follow the instructions given in Part III of HP MAILbus
400 MTA Planning and Setup on how to set up an MTA and create an
MTA entry in the directory. Finally, start the peer MTA.

• The peer MTA is in another routing domain.

Try to find a Peer MTA entity with the Peer Name attribute that
matches the name supplied in the Calling MTA Name field in the
event. To do this, use the following command:

SHOW NODE "node-id" MTA PEER MTA *, WITH PEER -
NAME = "calling-mta-name"

where calling-mta-name is the name provided in the Calling MTA
Name field in the event.

If this command displays the identifier of a Peer MTA entity, then
check the Presentation and Session Address attributes of that entity.
Use the following command to display these attributes:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PRESENTATION ADDRESS, SESSION ADDRESS

where peer-mta-name is the name of the Peer MTA entity.

Note that the Peer MTA entity has either a Presentation Address or
Session Address attribute, not both; this command displays whichever
attribute is present.

Check with the manager of the peer MTA and find out why the peer
MTA is using a different address from the one that you have entered
in the Peer MTA entity. Ensure that the set of network service access
points (NSAPs) which the peer MTA can use are included in the peer
MTA’s address.

If the peer MTA’s Presentation address, or Session address if it has
one, is incorrect, then correct the error by setting the Peer MTA entity’s
Presentation Address or Session Address attribute.

See the DECnet/OSI network documentation for more information
about Presentation and Session addresses.

If you are unable to find a Peer MTA entity, use the peer MTA’s name
and address provided by the event to identify the peer MTA that is
trying to connect to the MTA. Find out if the peer MTA should be
trying to connect to the MTA. If the peer MTA should not be trying
to connect to the MTA, investigate why the peer MTA is making the
attempt.

16–20 Problems with Associations

If you want the peer MTA to connect to the MTA, then create and set
up a Peer MTA entity to hold information about the peer MTA. See HP
MAILbus 400 MTA Planning and Setup for information about planning
a Peer MTA entity.

Another possible cause of this event is that the Peer MTA entity you
created to represent the peer MTA has been deleted by mistake. When
you delete a Peer MTA entity the MTA generates the Entity Deleted
event. To find out if the Peer MTA entity has been deleted, check the
event sink for an Entity Deleted event.

If the Peer MTA entity had previously existed, check the MTA’s
startup script to see if you have entered the create command and
the commands that set up its characteristic attributes. Refer to the
appendix describing the operating system specific information for the
location of this script. If the script contains the appropriate commands,
then use their values to set up the Peer MTA entity.

5 The peer MTA’s password is not recognized by the MTA. The action that
you take depends on whether the peer MTA is in your routing domain or in
another routing domain:

• The peer MTA is in your routing domain.

In this case, there is a discrepancy between the password supplied by
the peer MTA and the peer MTA’s password held in the directory.

Note that this discrepancy can only occur if the peer MTA’s password in
the directory is changed while the peer MTA is running.

You need to update the password used by the peer MTA. To do this, log
into a privileged account on the node where the peer MTA is located.
Stop the peer MTA, then follow the instructions given in Part III of HP
MAILbus 400 MTA Planning and Setup on how to set up an MTA and
create an MTA entry in the directory. Finally, start the peer MTA.

• The peer MTA is in another routing domain.

In this case, there is a discrepancy between the password supplied
by the peer MTA and the password held in the Peer MTA entity that
represents the peer MTA. Contact the person managing the peer MTA
in the other routing domain and verify the peer MTA’s password.

The peer MTA’s password is held in the Peer Password attribute of
the Peer MTA entity. This is a write-only characteristic attribute, so
you cannot display its value. If you have included the commands that
create and set up the Peer MTA entity in the MTA’s startup script, then
you can obtain the password from this script. Refer to the appendix

Problems with Associations 16–21

describing the operating system specific information for the location of
the MTA’s startup script.

Use the following command to reset the password:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER PASSWORD password

where:

peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

password is one of the following:

* [TYPE = IA5, IA5 String = "string"]

* [TYPE = Octet, Octet String = ’string’h]

where string is the peer MTA’s password in either IA5 graphic
subset characters or hexadecimal octets.

6 The MTA rejected the association because of a protocol error in the
interface between the RTSE and the Presentation layer. Specifically, one
or more Presentation Context Identifiers sent in the RT-OPEN response
protocol from the peer MTA is invalid.

This is due to an error in the peer MTA’s software. Inform the manager of
the peer MTA about the problem.

If, after you have consulted with the manager of the peer MTA, you are
unable to correct the error, then contact HP. See Chapter 23 for information
about how to contact HP and the information that you need to provide.

7 The MTA rejected the association because inbound associations from the
peer MTA are not permitted.

The permitted direction of MPDU transfer between the MTA and the peer
MTA is specified in the Direction attribute of the Peer MTA entity that
represents the peer MTA. You can set this attribute to one of the following
values:

• Outbound

• Inbound

• Inbound and Outbound

In this case, the Direction attribute is set to outbound.

16–22 Problems with Associations

Check with the manager of the peer MTA and find out why the peer MTA
is trying to send a message to the MTA. If the peer MTA is incorrectly
configured, then the peer MTA manager is responsible for correcting the
error. If you want the peer MTA to send messages to the MTA, then reset
the Peer MTA entity’s Direction attribute. Use the following command to
set this attribute:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] DIRECTION direction

where peer-mta-name is the name of the Peer MTA entity and direction
is the direction of MPDU transfer that you want the boundary MTA to use
for this particular peer MTA.

8 The MTA does not recognize the peer MTA’s address. The Calling Address
field of the event contains the address of the peer MTA.

There is a discrepancy between the peer MTA’s Presentation address held
in the directory and the Presentation address being used currently by the
peer MTA.

Note that this discrepancy can only occur if the peer MTA’s Presentation
address in the directory is changed while the peer MTA is running.

You need to update the Presentation address used by the peer MTA. To
do this, log into a privileged account on the node where the peer MTA is
located. Stop the peer MTA, then follow the instructions given in Part III
of HP MAILbus 400 MTA Planning and Setup on how to set up an MTA
and create an MTA entry in the directory. Finally, start the peer MTA.

9 The MTA is unable to decode the ASN.1 data part of the name or password
supplied by the peer MTA. Record the protocol information that is
exchanged between the two MTAs as described in Section 16.4 and inform
the person managing the peer MTA about the problem.

If, after you have consulted with the manager of the peer MTA, you are
unable to correct the error, then contact HP. See Chapter 23 for information
about how to contact HP and the information that you need to provide
about the error.

1 0 The MTA is unable to find a Domain entry in the directory that represents
the routing domain where the peer MTA is located. The MTA was looking
in the directory for a Domain entry that matched the value of the Peer
Domain attribute of the Peer MTA entity that represents the peer MTA.

The error can be caused by one of the following:

• The name of the Domain entry specified in the Peer Domain attribute
is incorrect.

Problems with Associations 16–23

• The Domain entry in the directory is incorrectly named or missing.

When this error occurs, the MTA also generates the Unknown Peer Domain
event.

Find out the correct name of the Domain entry in the directory that
represents the domain where the peer MTA is located. The correct name
is the name that was planned. Check that there is a Domain entry in the
directory with the correct name. Use the following command:

SHOW "/MTS=routing-domain-name" DOMAIN "domain-name" -
ALL ATTRIBUTES

where:

• routing-domain-name is the name of your routing domain

• domain-name is the correct name of the Domain entity that represents
the routing domain where the peer MTA is located

Display the Peer Domain attribute of the Peer MTA entity that holds
information about the peer MTA. Use the following command to display
this attribute:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER DOMAIN

where peer-mta-name is the name of the Peer MTA entity that represents
the peer MTA.

Ensure that there is no discrepancy between the value of the Peer Domain
attribute and the name of the Domain entity. If necessary, correct the Peer
Domain attribute in the Peer MTA entity using the following command:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER DOMAIN "domain-name"

where peer-mta-name is the name of the Peer MTA entity that represents
the peer MTA.

If the Domain entry does not exist in the directory, then create one. See
the MTS Module Online Help for information about creating and setting up
a Domain entity.

Make sure that the Peer Domain attribute in the Peer MTA entity contains
the name of the Domain entity that you create in the directory.

16–24 Problems with Associations

16.2.4 Outbound Soft Rejection
This event occurs whenever an attempt by an MTA to establish an association
is rejected by a peer MTA because of a temporary problem. For example, the
peer MTA rejects the association because it is congested.

The MTA that initiated the association makes another attempt to establish the
association after the retry interval has expired.

This event is counted by the Outbound Soft Rejections counter of the Peer MTA
entity that holds information about the peer MTA.

The event contains one of the following reasons for the rejection:

1 RTSE Reason Code = Cannot Recover

2 RTSE Reason Code = RTSE Busy

3 RTSE Reason Code = Lower Layer Reject Received

4 RTSE Reason Code = No Reason Supplied

5 RTSE Reason Code = Invalid Reason Supplied

Action

1 A previous association from the MTA failed while an MPDU was being
transferred to the peer MTA. The peer MTA is unable to accept the
reconnection attempt because it does not have information that allows
the transfer to be resumed.

Note that in this case the Lower Layer Reason Code is not significant; no
action is required. The MTA initiates a new association and re-sends the
complete MPDU.

2 The peer MTA is congested.

The MTA continues to try to establish an association with the peer MTA
after the retry interval has elapsed. The attempt can succeed only when
the peer MTA is able to accept new inbound associations; therefore, no
action is required. However, if a particular peer MTA in your routing
domain frequently rejects associations from the MTA, then tune the
peer MTA so that it can accept more associations concurrently (see
Section 7.3.1).

If a peer MTA in another routing domain frequently rejects associations
from the MTA, then notify the person responsible for managing the
peer MTA. If possible, the peer MTA needs to be tuned to accept more
associations concurrently. Alternatively, increase the number of MTAs in
the other routing domain that the boundary MTA can communicate with.
Note that in this case the Lower Layer Reason Code is not significant.

Problems with Associations 16–25

3 One of the lower layers of the peer OSI implementation has rejected your
MTA’s request for an association. In this case the Lower Layer Reason
Code gives further details. Pass this information on to the manager of the
appropriate lower layer.

4 If one of the lower layers of the peer OSI implementation rejects the
MTA’s request for an association without supplying a reason, pass this
information on to the manager of the appropriate lower layer.

5 If one of the lower layers of the peer OSI implementation rejects the MTA’s
request for an association, giving an invalid reason, pass this information
on to the manager of the appropriate lower layer.

16.2.5 Inbound Transfer Soft Rejection
This event occurs whenever an MTA rejects an attempt by a peer MTA to
establish an association because of a temporary problem. For example, the
MTA rejects the association because it is congested.

The peer MTA is responsible for setting up the association. If the peer MTA
is a MAILbus 400 MTA, then it makes another attempt to establish the
association after the retry interval has elapsed. If the peer MTA is not a
MAILbus 400 MTA, then contact the manager of the peer MTA and find out
how it is likely to respond.

This event is counted by the MTA entity’s Inbound Transfer Soft Rejections
counter.

The event provides the name and address of the peer MTA that initiated the
association:

Calling MTA Name = mta-name
Calling Address = address

where mta-name is the name of the peer MTA and address is the address of the
peer MTA.

This is followed by one of:

1 Reason Code = Cannot Recover
Local Diagnostic = No Diagnostic Available

2 Reason Code = RTSE Busy
Local Diagnostic = Maximum Associations Reached

3 Reason Code = RTSE Busy
Local Diagnostic = Maximum Inbound Transfer Associations Reached

16–26 Problems with Associations

4 Reason Code = RTSE Busy
Local Diagnostic = Maximum Inbound Parallel Transfer Associations
Reached

5 Reason Code = RTSE Busy
Local Diagnostic = MTA Disabling

6 Reason Code = RTSE Busy
Local Diagnostic = Peer MTA Entity Disabled

7 Reason Code = RTSE Busy
Local Diagnostic = Directory Service Error

8 Reason Code = RTSE Busy
Local Diagnostic = Local System Problem

9 Reason Code = RTSE Busy
Local Diagnostic = Insufficient Resources

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

1 A previous association from the peer MTA failed while an MPDU was being
transferred to the MTA. The MTA is unable to accept the reconnection
attempt because it does not have information that allows the transfer to be
resumed.

Normally, the MTA resumes message transfer when a peer MTA requests
an association recovery. However, this error means that the MTA has
been deleted and then recreated since the initial transfer attempt. The
peer MTA initiates a new association and re-sends the complete MPDU;
therefore, no action is required.

2 The maximum number of associations to and from peer MTAs that the
MTA can have at any one time has been reached. The maximum number of
concurrent associations is specified by the Maximum Transfer Associations
attribute of the MTA entity.

Retry attempts by the peer MTA can only succeed when the MTA is able to
accept new associations. If this problem persists, tune the MTA so that it
can accept more inbound associations concurrently (see Section 7.3.1).

Problems with Associations 16–27

If this problem persists and the peer MTA is in another routing domain,
increase the number of boundary MTAs that communicate with the other
routing domain. This allows more messages from the other routing domain
to enter your routing domain concurrently.

3 The maximum number of inbound associations from any number of peer
MTAs that the MTA can have at any one time has been reached. The
maximum number of concurrent associations is specified by the Maximum
Inbound Transfer Associations attribute of the MTA entity.

Retry attempts by the peer MTA can only succeed when the MTA is able to
accept new associations. If this problem persists, tune the MTA so that it
can accept more inbound associations concurrently (see Section 7.3.1).

If this problem persists and the peer MTA is in another routing domain,
increase the number of boundary MTAs that communicate with the other
routing domain. This allows more messages from the other routing domain
to enter your routing domain concurrently.

4 The maximum number of associations that the MTA can have at any one
time from a specific peer MTA located in another routing domain has been
reached. The maximum number of concurrent associations from a specific
peer MTA in another routing domain is specified by the Maximum Inbound
Parallel Transfer Associations attribute of the associated Peer MTA entity.

Retry attempts by the peer MTA can only succeed when the MTA is able to
accept new associations. If this problem persists, tune the MTA so that it
can accept more inbound associations concurrently from the specific peer
MTA (see Section 7.3.1).

5 The MTA has recently been disabled. When the peer MTA tried to set up
the association, the Disable command had not completed and the MTA was
in the DISABLING state.

Display the current state of the MTA, using the following command:

SHOW NODE "node-id" MTA STATE

If the MTA is ON, the MTA was re-enabled after the event occurred. In
this case, no further action is required. If the MTA is OFF, enable the MTA
using the following command:

ENABLE NODE "node-id" MTA

If the MTA is in any other state, or does not respond to NCL commands,
then stop the MTA and restart it as explained in the appendix describing
the operating system specific information.

Retry attempts by the peer MTA can only succeed when the MTA is in the
ON state.

16–28 Problems with Associations

6 When the peer MTA tried to set up the association, the Peer MTA entity
that holds information about the peer MTA was disabled. Consequently,
the MTA was unable to access the information that it needed to
communicate with the peer MTA.

Display the current state of the Peer MTA entity, using the following
command:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] STATE

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

If the Peer MTA entity is ON, the Peer MTA entity was re-enabled after the
event occurred. In this case, no further action is required. If the Peer MTA
entity is OFF, enable the Peer MTA entity using the following command:

ENABLE NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"]

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

Retry attempts by the peer MTA can only succeed if the Peer MTA entity is
in the ON state.

7 The MTA rejected the association because it was unable to access the
directory and is therefore unable to validate the peer MTA’s name or
password.

Check the event sink for occurrences of the Directory Service Error event
from this MTA and take the appropriate action as described in Section 20.2.

Retry attempts by the peer MTA can only succeed when the MTA is able to
access the directory.

8 The MTA rejected the association because of a temporary problem at the
MTA. Check the event sink for an occurrence of the System Interface
Error event from this MTA and take the appropriate action as described in
Section 20.1.

If no such event exists, then disable and re-enable the MTA. If you cannot
resolve the problem, then contact HP. See Chapter 23 for information about
how to contact HP and the information that you need to supply.

9 The MTA rejected the association because of a problem with one or more
of its resources. This is a temporary problem and the MTA should accept
the association when resources become available. If the MTA continues to
reject the association, then further events should indicate the problem at
the MTA.

Problems with Associations 16–29

16.2.6 Inbound Failure
This event occurs whenever an association initiated by a peer MTA is aborted.
The association can be aborted by either the MTA or the peer MTA.

This event is counted by the Inbound Failures counter of the Peer MTA entity
that holds information about the peer MTA.

The peer MTA is responsible for recovering the association. If the peer MTA is
a MAILbus 400 MTA, then it always attempts to recover the association. If the
peer MTA is not a MAILbus 400 MTA, then contact the manager of the peer
MTA and find out how it is likely to respond.

The event identifies the MTA that aborted the association and provides
information about the cause of the event.

If the association was aborted by the MTA that generated the event, then the
event contains:

RTSE Entity Initiating Failure = This MTA

This is followed by one of:

1 Abort Reason Code = Local System Problem
Local Diagnostic = Internal Error

2 Abort Reason Code = Local System Problem
Local Diagnostic = Local Timeout Period Expired

3 Abort Reason Code = Local System Problem
Local Diagnostic = Inbound Idle Timer Expired

4 Abort Reason Code = Local System Problem
Local Diagnostic = Insufficient Resources

5 Abort Reason Code = Local System Problem
Local Diagnostic = System Interface Error

6 Abort Reason Code = Temporary Problem
Local Diagnostic = This MTA Disabled

7 Abort Reason Code = Temporary Problem
Local Diagnostic = Peer MTA Entity Disabled

8 Abort Reason Code = Temporary Problem
Local Diagnostic = Activity Deleted

9 Abort Reason Code = Permanent Problem
Local Diagnostic = Transport Disconnect Received

16–30 Problems with Associations

1 0 Abort Reason Code = Protocol Violation
Local Diagnostic = Not Applicable

1 1 Abort Reason Code = Invalid Parameter
Local Diagnostic = No Diagnostic Available

1 2 Abort Reason Code = Unrecognized Activity
Local Diagnostic = No Diagnostic Available

1 3 Abort Reason Code = Transfer Completed
Local Diagnostic = No Diagnostic Available

If the association was aborted by the peer MTA the event contains:

1 4 RTSE Entity Initiating Failure = Peer MTA
Abort Reason Code = reason
Local Diagnostic = No Diagnostic Available

where reason is one of the following:

Local System Problem
Temporary Problem
Permanent Problem
Protocol Violation
Invalid Parameter

All occurrences of this event also contain the number of octets and MPDUs
that were transferred from the peer MTA to the MTA before the association
failed:

Octets In = integer
MPDUs In = integer

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

1 The MTA aborted the association because it was affected by an error in
its own software. Check the event sink for an occurrence of the Internal
Error event from this MTA and take the appropriate action as described in
Section 22.2.1.

Problems with Associations 16–31

2 The MTA aborted the association because the peer MTA took too long to
respond. The time limit that specifies how long the MTA can wait for a
response from the peer MTA expired. Note that it is not possible to change
this time limit. Contact the manager of the peer MTA and find out why the
peer MTA did not respond.

3 The MTA aborted the association because the time limit that specifies how
long the association can remain idle after an MPDU has been transferred
expired. On inbound associations, the association idle time is specified by
the MTA entity’s Maximum Idle Inbound Transfer Association Interval
attribute.

If this problem occurs frequently in your routing domain, then it could be
because the MTA’s Maximum Idle Inbound Transfer Association Interval
attribute is set up incorrectly. See Section 7.3.3.2 for information about
how to set this attribute so that associations are released and not aborted.

4 The MTA aborted the association because the operating system could not
provide the MTA with sufficient memory resources. When this error occurs,
the MTA also generates the System Interface Error event with the error
Memory Allocation. The System Interface Error event provides more
information about the problem. Check the event sink for an occurrence of
that event from this MTA and take the appropriate action as described in
Section 20.1.

5 The MTA aborted the association because the operating system was unable
to provide a service requested by the MTA. When this error occurs,
the MTA also generates the System Interface Error event. The System
Interface Error event provides more information about the problem. Check
the event sink for an occurrence of that event from this MTA and take the
appropriate action as described in Section 20.1.

6 The MTA aborted the association because it was disabled after it accepted
the association from the peer MTA.

Display the current state of the MTA, using the following command:

SHOW NODE "node-id" MTA STATE

If the MTA is ON, the MTA was re-enabled after the event occurred. In
this case, no further action is required. If the MTA is OFF, enable the MTA
using the following command:

ENABLE NODE "node-id" MTA

An attempt by the peer MTA to recover the association can only succeed
when the MTA is in the ON state.

16–32 Problems with Associations

7 The Peer MTA entity that holds information about the peer MTA was
disabled after the MTA accepted the association.

Display the current state of the Peer MTA entity, using the following
command:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] STATE

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

If the Peer MTA entity is ON, the Peer MTA entity was re-enabled after the
event occurred. In this case, no further action is required. If the Peer MTA
entity is OFF, enable the Peer MTA entity using the following command:

ENABLE NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"]

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

Attempts by the peer MTA to recover the association can only succeed
when the Peer MTA entity is in the ON state.

8 The MTA aborted the association because the Activity entity that held
information about the association was manually deleted.

An attempt by the peer MTA to recover the association can fail because the
recovery information held in the Activity entity has been deleted. A new
association from the peer MTA will succeed. No action is required.

9 The association was aborted by one of the lower layers, for example the
Transport layer, or because the physical line was broken.

If this error occurs frequently, then investigate it further using the lower
layer management entities. See the HP DECnet-Plus documentation for
information about the lower layer management entities.

1 0 The MTA aborted the association because a protocol error was detected in
one of its lower layers.

Check the event sink for an occurrence of the Lower Layer Protocol
Violation event (see Section 16.3.2) or the RTSE Protocol Violation event
(see Section 16.3.1) from this MTA. These events identify the source of the
protocol error. If the information provided by these events is insufficient
to identify the protocol error, then record the protocol information that is
exchanged between the two MTAs, see Section 16.4.

Problems with Associations 16–33

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

1 1 The MTA aborted the association because it received a parameter from the
peer MTA that it did not recognize. Inform the manager of the peer MTA
about the problem.

To identify the parameter, record the protocol information that is exchanged
between the two MTAs, see Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

1 2 The MTA aborted the association because it did not recognize the recovery
protocol information sent by the peer MTA. This can occur when the peer
MTA tries to recover a failed association and resume the transfer of an
MPDU. If the Activity Identifier in the recovery information does not
match what the MTA is expecting, it aborts the association.

There may be a problem at the peer MTA. An isolated occurrence of
this event can be ignored because the peer MTA eventually re-sends the
complete MPDU. However, if it repeatedly occurs, the manager of the peer
MTA needs to verify the recovery behavior of the peer MTA.

1 3 The MTA aborted the association because it had already received the
MPDU that the peer MTA is sending.

No action is required.

1 4 The abort is due to a problem detected by the peer MTA. Notify the
manager of the peer MTA about the problem, and specify the Abort Reason
Code. If the peer MTA is a MAILbus 400 MTA, then there should be a
corresponding Outbound Failure event generated by the peer MTA. This
event provides more information about why the peer MTA aborted the
association.

If the failure is due to a protocol violation, it may be necessary to record
the protocol information that is exchanged between the two MTAs, see
Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

16–34 Problems with Associations

16.2.7 Outbound Failure
This event occurs whenever an association initiated by an MTA to a peer MTA
is aborted. The association can be aborted by either the MTA that initiated the
association or the peer MTA.

The MTA that initiated the association is responsible for recovering the
association. The MTA makes an attempt to recover the association after the
retry interval has elapsed.

This event is counted by the Outbound Failures counter of the Peer MTA entity
that holds information about the peer MTA.

The event identifies the MTA that aborted the association and provides
information about the cause of the event.

If the association was aborted by the MTA that generated the event, then the
event contains:

RTSE Entity Initiating Failure = This MTA

This is followed by one of:

1 Abort Reason Code = Local System Problem
Local Diagnostic = Workspace Error

2 Abort Reason Code = Local System Problem
Local Diagnostic = Internal Error

3 Abort Reason Code = Local System Problem
Local Diagnostic = System Interface Error

4 Abort Reason Code = Local System Problem
Local Diagnostic = Local Timeout Period Expired

5 Abort Reason Code = Temporary Problem
Local Diagnostic = This MTA Disabled

6 Abort Reason Code = Temporary Problem
Local Diagnostic = Peer MTA Entity Disabled

7 Reason Code = Temporary Problem
Local Diagnostic = MPDU Deleted

8 Reason Code = Temporary Problem
Local Diagnostic = Activity Deleted

9 Abort Reason Code = Permanent Problem
Local Diagnostic = Transport Disconnect Received

Problems with Associations 16–35

1 0 Abort Reason Code = Protocol Violation
Local Diagnostic = Not Applicable

1 1 Abort Reason Code = Invalid Parameter
Local Diagnostic = No Diagnostic Available

If the association was aborted by the peer MTA the event contains:

1 2 RTSE Entity Initiating Failure = Peer MTA
Abort Reason Code = reason
Local Diagnostic = No Diagnostic Available

where reason is one of the following:

Local System Problem
Temporary Problem
Permanent Problem
Protocol Violation
Invalid Parameter
Unrecognized Activity
Transfer Completed

All occurrences of this event also contain the number of octets and MPDUs
that were transferred to the peer MTA before the association failed:

Octets Out = integer
MPDUs Out = integer

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

1 The MTA aborted the association because it was unable to access one of
its workspaces. This is a file access error which also generates a System
Interface Error event. The System Interface Error event provides more
information about the problem. Check the event sink for an occurrence of
that event from this MTA and take the appropriate action as described in
Section 20.1.

2 The MTA aborted the association because it was affected by an error in
its own software. Check the event sink for an occurrence of the Internal
Error event from this MTA and take the appropriate action as described in
Section 22.2.1.

16–36 Problems with Associations

3 The MTA aborted the association because the operating system failed to do
something that the MTA requested. When this error occurs, the MTA also
generates the System Interface Error event. The System Interface Error
event provides more information about the problem. Check the event sink
for an occurrence of that event from this MTA and take the appropriate
action as described in Section 20.1.

4 The MTA aborted the association because the peer MTA took too long to
respond. The time limit that specifies how long the MTA can wait for a
response from the peer MTA expired. Note that it is not possible to change
this time limit. Contact the manager of the peer MTA and find out why the
peer MTA did not respond.

5 The MTA aborted the association because it was disabled after it had
established the association to the peer MTA.

Display the current state of the MTA, using the following command:

SHOW NODE "node-id" MTA STATE

If the MTA is ON, the MTA was re-enabled after the event occurred. In
this case, no further action is required. If the MTA is OFF, enable the MTA
using the following command:

ENABLE NODE "node-id" MTA

The MTA attempts to recover the association when you enable it.

6 The MTA aborted the association because the Peer MTA entity that
holds information about the peer MTA was disabled after the MTA had
established the association.

Display the current state of the Peer MTA entity, using the following
command:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] STATE

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

If the Peer MTA entity is ON, the Peer MTA entity was re-enabled after the
event occurred. In this case, no further action is required. If the Peer MTA
entity is OFF, enable the Peer MTA entity using the following command:

ENABLE NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"]

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA.

Problems with Associations 16–37

An attempt by the MTA to recover the association can only succeed if the
Peer MTA entity is in the ON state.

7 The MTA aborted the association because an MPDU that the MTA was
transferring over the association was manually deleted.

8 The MTA aborted the association because the Activity entity that holds
information about the association was manually deleted.

An attempt by the MTA to recover the association can fail because the
recovery information held in the Activity entity has been deleted. A new
association to the peer MTA will succeed. No action is required.

9 The association was aborted by one of the lower layers, for example the
Transport layer, or because the physical line broke.

If this error occurs frequently, then investigate it further using the lower
layer management entities. See the HP DECnet-Plus documentation for
information about the lower layer management entities.

1 0 The MTA aborted the association because a protocol error was detected in
one of its lower layers.

Check the event sink for an occurrence of the Lower Layer Protocol
Violation event (see Section 16.3.2) or the RTSE Protocol Violation event
(see Section 16.3.1) from this MTA. These events identify the source of the
protocol error. If the information provided by these events is insufficient
to identify the protocol error, then record the protocol information that is
exchanged between the two MTAs, see Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

1 1 The MTA aborted the association because it received a parameter from the
peer MTA that it did not recognize. Inform the manager of the peer MTA
about the problem.

To identify the parameter, record the protocol information that is exchanged
between the two MTAs, see Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

16–38 Problems with Associations

1 2 The abort is due to a problem detected by the peer MTA. In the case of the
abort being due to an unrecognized activity, then no action is necessary
as the initiating MTA recovers the association and re-sends the complete
MPDU. If the reason is Transfer Completed, no further action is required.
The peer MTA has already received the MPDU.

In all other cases, notify the manager of the peer MTA about the problem,
and specify the Abort Reason Code. If the peer MTA is a MAILbus
400 MTA, then there should be a corresponding Inbound Failure event
generated by the peer MTA. This event provides more information about
why the peer MTA aborted the association.

If the failure is due to a protocol violation, it may be necessary to record
the protocol information that is exchanged between the two MTAs, see
Section 16.4.

If, after you have analyzed the protocol trace and consulted with the
manager of the peer MTA, you are unable to correct the error, then contact
HP. See Chapter 23 for information about how to contact HP and the
information that you need to provide about the error.

16.2.8 Transport Interface Error
This event occurs when an MTA is unable to access the Transport Service.

This could be due to one of the following:

• The Transport Service is not running. This prevents the MTA from
initiating or accepting any associations with other MTAs.

• The MTA’s Transport selector is being used by another application.

Each application running on a particular node requires a unique
Presentation or Session address, part of which the Transport Service
uses to identify the application. The part of a Presentation or Session
address used by the Transport Service is called the Transport selector
(TSEL). In this case, the Transport Service is being used by another
application that is using the same TSEL as the MTA. This prevents the
MTA from listening for any incoming connections from peer MTAs.

• The Transport Template entity ‘‘mta_any’’ does not exist on the node.
The MTA uses the ‘‘mta_any’’ Transport Template entity for inbound
connections.

This error can only occur on Tru64 UNIX systems. This error causes
inbound DECnet/OSI connections to fail. Note that the MTA does not use
a Transport Template entity for inbound DECnet/OSI connections when
running on an OpenVMS system.

Problems with Associations 16–39

This event is counted by the MTA entity’s Transport Interface Errors counter.

The event provides one of the following:

1 Transport Interface Error = Transport Service Unavailable
Transport Selector = tsel
Transport Error Code = code
Transport Error Text = error-text

2 Transport Interface Error = Transport Selector Already in Use
Transport Selector = tsel
Transport Error Code = 0
Transport Error Text = No Further Information Available

3 Transport Interface Error = Transport Template Does Not Exist
Transport Selector = tsel
Transport Error Code = 0
Transport Error Text = No Further Information Available

where tsel is the Transport selector part of the MTA’s Presentation or
Session address, code is an error code provided by the Transport Service, and
error-text is information about the error supplied by the MTA.

The error code and corresponding error text is only meaningful when the error
reported by this event is Transport Service Unavailable.

Action
Note

Unless otherwise stated, issue the commands needed to solve the
problems identified by this event at the node where the MTA that
generated the event is running.

1 The error code and error text provided by the event indicates why the
Transport Service is unavailable. For more information about the error
code see the DECnet/OSI programming documentation.

If the MTA is using the DECnet/OSI Transport Service, the Transport
Service could be unavailable because the OSI Transport entity has
been deleted. If the OSI Transport entity has been deleted, when it is
subsequently recreated and enabled you must also recreate the Template
entities used by the MTA. See the appropriate appendix for the commands
you need to run the scripts that create the MTA’s Template entities.

16–40 Problems with Associations

�
Tru64
UNIX

On Tru64 UNIX systems, the MTA could be using the TCP/IP
Transport Service. If the MTA is using the TCP/IP Transport
Service, the Transport Interface Error could be due to the
rfc1006 demon not running. Refer to the DECnet/OSI network
documentation for information about how to check that the
rfc1006 demon is running. If the demon is not running, ask
the person responsible for managing the system to start it.
♦

2 Find out the MTA’s Presentation address, and Session address if it has one.

Check that the MTA’s Presentation Address and Session Address attributes
are correct. Use the following command to display these attributes:

SHOW NODE "node-id" MTA PRESENTATION ADDRESS, SESSION ADDRESS

where node-id is the name of the node where the MTA that generated the
event is running.

If the TSEL is incorrect, in either address, then update the MTA’s address.
To do this, log into a privileged account on the node where the MTA is
located. Stop the MTA, and follow the instructions given in Part III of HP
MAILbus 400 MTA Planning and Setup on how to set up an MTA and
create an MTA entry in the directory. Finally, start the MTA.

If the MTA has the correct Presentation address and Session address, then
check the addresses used by all the other applications running on the same
node as the MTA.

Use the following command to display these addresses:

SHOW NODE "node-id" OSI TRANSPORT PORT * LOCAL TRANSPORT SELECTOR

Compare the value of each Local Transport Selector attribute displayed
with the value of the MTA’s Presentation Address or Session Address
attributes.

Note

The Local Transport Selector attribute always displays its value in
hexadecimal. However, the MTA’s Presentation Address and Session
Address attribute values are displayed in ASCII text if possible.

Identify the application that is using the same TSEL as the MTA. Resolve
the problem with the owner of the application, so that just one application
uses this TSEL value.

Problems with Associations 16–41

3 Note that this error can only occur on Tru64 UNIX systems and only effects
DECnet/OSI inbound connections.

You need to create a Transport Template entity called ‘‘mta_any’’. To do
this, run the MTA’s CLNS Transport Template script. Refer to the appendix
describing the operating system specific information for the command you
need to run this script.

The MTA should start using the Template entity within a few minutes, but
if you want the MTA to use it immediately, then disable and enable the
MTA.

16.3 Events Relating to Protocol Violations
If an MTA sends or receives incorrect protocol information, then an association
is likely to fail. Protocol violations can usually only be solved by recording the
protocol information exchanged between MTAs, see Section 16.4.

When a protocol error is detected, one of the following events is generated by
the MTA:

• RTSE Protocol Violation event, Section 16.3.1

• Lower Layer Protocol Violation event, Section 16.3.2

These events are always generated in conjunction with one of the following
events:

• Outbound Establishment Failure

• Inbound Failure

• Outbound Failure

16.3.1 RTSE Protocol Violation
This event occurs whenever a Reliable Transfer Service Element (RTSE)
generates incorrect protocol. The error can occur in the RTSE of either the
MTA or the peer MTA. When an error occurs, the association is aborted by
the MTA that detects the error. For example, if a peer MTA’s RTSE generates
incorrect protocol that is detected by the MTA, the MTA aborts the association.
This event should only occur when there is a problem interworking with an
MTA that is not a MAILbus 400 MTA.

This event is counted by the RTSE Protocol Violations counter of the Peer MTA
entity that holds information about the peer MTA.

The information provided by the event relates to the Reliable Transfer protocol.

16–42 Problems with Associations

If the MTA that generated the event aborted the association, then the event
contains:

RTSE Entity Observing Protocol Violation = This MTA
Violation Detected = violation-message
Peer Event = RTSE-PDU
Local State = RTSE-state

where:

• violation-message identifies the cause of the protocol error.

• RTSE-PDU identifies the RTSE Protocol Data Unit (PDU) that was
unacceptable to the MTA’s RTSE.

• RTSE-state is the RTSE State Code at the MTA.

If the peer MTA aborted the association, then the event contains:

RTSE Entity Observing Protocol Violation = Peer MTA
Violation Detected = This MTA sent a RTSE event that the Peer MTA has
rejected
Peer Event = Not Applicable
Local State = Not Applicable

Action
If this event occurs when interworking, contact the manager of the peer MTA
in the other routing domain. If the information provided by the event is
insufficient to solve the problem, then record the protocol information that is
exchanged between the two MTAs, see Section 16.4.

Note

You cannot record the protocol information that is exchanged between
two MTAs that are in the same routing domain.

If, after you have analyzed the protocol trace and consulted with the manager
of the peer MTA, you are unable to correct the error, then contact HP. See
Chapter 23 for information about how to contact HP and the information that
you need to provide about the error.

If this event occurs when setting up an association between two MAILbus 400
MTAs, then contact HP. See Chapter 23 for information about how to contact
HP and the information that you need to provide about the error.

Problems with Associations 16–43

16.3.2 Lower Layer Protocol Violation
This event occurs whenever there is a protocol violation in one of the lower OSI
protocol layers of either the MTA or the peer MTA. The protocol layers referred
to are: Association Control Service Element (ACSE), OSI Presentation, OSI
Session, or OSI Transport.

When this event occurs, the MTA that was affected by the error aborts the
association. This event should only occur when there is a problem interworking
with an MTA that is not a MAILbus 400 MTA.

This event is counted by the Lower Layer Protocol Violations counter of the
Peer MTA entity that holds information about the peer MTA.

If the association was aborted by the MTA that generated the event, then the
event contains:

OSI Entity = This MTA
Error Layer = OSI-layer

where OSI-layer is the name of the OSI protocol layer where the protocol error
occurred.

If the association was aborted by the peer MTA, then the event contains:

OSI Entity = Peer MTA
Error Layer = OSI-layer

where OSI-layer is the name of the OSI protocol layer where the protocol error
occurred.

Action
If this event occurs when interworking, contact the manager of the peer MTA
in the other routing domain. Record the protocol information that is exchanged
between the two MTAs, see Section 16.4.

Note

You cannot record the protocol information that is exchanged between
two MTAs that are in the same routing domain.

If, after you have analyzed the protocol trace and consulted with the manager
of the peer MTA, you are unable to correct the error, then contact HP. See
Chapter 23 for information about how to contact HP and the information that
you need to provide about the error.

16–44 Problems with Associations

If this event occurs when setting up an association between two MAILbus 400
MTAs, then contact HP. See Chapter 23 for information about how to contact
HP and the information that you need to provide about the error.

16.4 Recording Protocol Information
MTAs exchange protocol information every time they set up an association
and every time they transfer an MPDU over the association. If an MTA that
is accepting an association detects that the peer MTA is proposing to use a
protocol parameter that the MTA finds unacceptable, then it either rejects or
aborts the association. However, if a protocol error occurs when an association
is being set up or when an MPDU is being transferred, then the association is
aborted. Either the MTA that initiated the association or the peer MTA could
detect the protocol error and abort the association.

Protocol errors cannot occur for associations between MTAs in your routing
domain, unless there is an error in an MTA’s software. However, they could
occur when you are trying to set up interworking with an MTA that is not
a MAILbus 400 MTA. When a protocol error occurs during interworking,
you may need to record the protocol information that is exchanged over the
association in order to trace the problem.

Note

You cannot record the protocol information that is exchanged between
two MTAs that are in the same routing domain.

Before enabling an MTA to record protocol information it is advisable to
restrict the number of associations between the two MTAs. This is because an
MTA records protocol information from all the associations to or from the peer
MTA. It stores the protocol information from each association in a separate
file, known as a trace binary file. If you limit the number of associations,
then you have only a few trace binary files to analyze. See Section 16.4.1 and
Section 16.4.2 for information about restricting the number of associations that
the MTA can initiate or receive.

The Trace attribute of the Peer MTA entity enables an MTA to record protocol
information that it exchanges with a particular peer MTA in another routing
domain. To create a record of the protocol information exchanged between two
MTAs, set the Trace attribute in the Peer MTA entity that represents the peer
MTA to ON, for example:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] TRACE ON

Problems with Associations 16–45

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA in the other routing domain.

Note

You are advised not to permanently record protocol information, as this
consumes disk space and could slow down the system that the MTA is
running on. Only enable the recording of protocol information when
you are trying to find out why an association to or from a particular
peer MTA has failed.

After you have enabled protocol recording, the MTA records protocol
information whenever an association with the peer MTA is either initiated,
accepted, or recovered. The amount of protocol information that is recorded
depends on whether the MTA recording the information initiated the
association. If the MTA initiated the association, it records all the protocol
information exchanged between the two MTAs. If the MTA receives the
association, it records only the protocol information that is exchanged after it
has received the connection request from the peer MTA.

After you have enabled protocol recording, monitor the association to find out if
it fails. You can monitor the association by doing one of the following:

• Monitor the association using the Activity entity that provides information
about the association, see (Section 16.1).

Note that there is no Activity entity created until an association has been
established and an MPDU is being transferred over the association.

• Monitoring the event sink for occurrences of the following events:

Outbound Establishment Failure

Inbound Failure

Outbound Failure

RTSE Protocol Violation

Lower Layer Protocol Violation

• Monitoring the counters that record occurrences of these events.

16–46 Problems with Associations

If the association fails, stop the MTA recording protocol information by setting
the Trace attribute to OFF:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] TRACE OFF

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA in the other routing domain.

Analyze the protocol information that has been recorded, see Section 16.5.

If the association does not fail, then set the Trace attribute to OFF when the
transfer of the message is complete. To find out when the transfer is complete,
monitor the State attribute of the related Activity entity, see Section 16.1.

16.4.1 Protocol Recording by the Initiating MTA
When an association fails, the boundary MTA that initiated the association
places the MPDU that it was trying to transfer in a retry set for the peer MTA.
The boundary MTA attempts to establish or recover the association when the
retry interval has elapsed. See Section 7.3.5 for more information about the
retry interval.

You can find out the time of the next retry attempt from the Retry Time
attribute of the Peer MTA entity that represents the peer MTA. Use the
following command to display this attribute:

SHOW NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] RETRY TIME

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA in the other routing domain.

If there are several MPDUs in the boundary MTA for the peer MTA, then
the boundary MTA could set up more than one association to the peer MTA
and create a trace binary file for each association. You can find out if the
boundary MTA is likely to create more than one association using the following
command:

SHOW NODE "node-id" MTA MPDU * TARGET

Check how many MPDUs have the name of the routing domain where the peer
MTA is located as their target.

If there are several MPDUs for the peer MTA, then it is advisable to restrict
the number of concurrent associations that the boundary MTA can initiate
to the peer MTA. To do this, modify the MTA entity’s Maximum Outbound
Parallel Transfer Associations attribute. This attribute specifies the number of
concurrent associations that the boundary MTA can have to the peer MTA.

Problems with Associations 16–47

Note

This attribute specifies the maximum number of concurrent parallel
associations from the boundary MTA to each peer MTA that it is
connected to. If the boundary MTA has MPDUs for transfer to several
different peer MTAs, then setting this attribute to a low value could
cause a delay in the transfer of MPDUs from the boundary MTA.

Before modifying this attribute, display its current value and make a note of it.
Use the following command to display this attribute:

SHOW NODE "node-id" MTA MAXIMUM OUTBOUND PARALLEL TRANSFER ASSOCIATIONS

To limit the number of concurrent associations to the peer MTA, use the
following command:

SET NODE "node-id" MTA MAXIMUM OUTBOUND PARALLEL TRANSFER -
ASSOCIATIONS 1

When you have finished the protocol recording, reset this attribute to its
previous value.

16.4.2 Protocol Recording by the Receiving MTA
When an inbound association fails, the recovery of the association is the
responsibility of the initiating peer MTA in the other routing domain. Contact
the manager of the peer MTA and find out how the peer MTA is likely to
respond. If the peer MTA is a MAILbus 400 MTA, then it tries to recover the
association.

The peer MTA may initiate more than one association to the boundary MTA
that is recording the protocol information. The boundary MTA produces a trace
binary file for each association from the peer MTA. To reduce the number of
binary trace files that you have to analyze, ask the manager of the peer MTA
to restrict the number of concurrent associations from the peer MTA. If the
peer MTA is a MAILbus 400 MTA, then the peer MTA manager can do this by
modifying the Maximum Outbound Parallel Transfer Associations attribute, as
described in Section 16.4.1.

If it is not possible for the manager of the peer MTA to restrict outbound
associations from the peer MTA, then restrict the number of inbound
associations that the boundary MTA can receive concurrently. The number
of concurrent inbound associations is specified by the MTA entity’s Maximum
Inbound Transfer Associations attribute.

16–48 Problems with Associations

Note

If the boundary MTA is connected to several peer MTAs, then setting
this attribute to a low value prevents the boundary MTA accepting
associations from other peer MTAs. This could cause congestion in your
routing domain.

Before modifying this attribute, display its current value and make a note of it.
Use the following command to display this attribute:

SHOW NODE "node-id" MTA MAXIMUM INBOUND TRANSFER ASSOCIATIONS

Use the following command to set this attribute:

SET NODE "node-id" MTA MAXIMUM INBOUND TRANSFER ASSOCIATIONS value

where value is the maximum number of associations that you want the MTA
to be able to accept.

When you have finished the protocol recording, reset this attribute to its
previous value.

16.5 Analyzing the Protocol Trace File
The boundary MTA records protocol information in binary format. The
information is recorded sequentially as an MPDU is transferred over an
association. The boundary MTA stores the protocol information it records in
a trace binary file. The boundary MTA creates one trace binary file for each
association to or from the peer MTA during the time that protocol recording is
enabled.

The boundary MTA places each trace binary file it creates in its trace directory.
For the location of the boundary MTA’s trace directory, refer to the appendix
describing the operating system specific information.

The boundary MTA assigns a unique name to each trace binary file it creates.
The name of the file depends on whether the boundary MTA that created the
file initiated or received the association:

• name_INIT_****_****

This filename format is used when the boundary MTA that recorded the
protocol information initiated the association.

• name_RCV_****_****

This filename format is used when the boundary MTA that recorded the
protocol information received the association from the peer MTA.

Problems with Associations 16–49

where name is the name of the Peer MTA entity that holds information about
the peer MTA in the other routing domain, and ****_**** represents a
timestamp and some digits derived from the processes identifier. These make
the filename unique.

OpenVMS
On OpenVMS systems, the names of trace binary files are
terminated with a period (.).
♦

An MTA is supplied with a Trace Analyzer utility, this is software that you
invoke from the operating system prompt. The Trace Analyzer analyzes a trace
binary file and converts the protocol information from binary to text.

You must run the Trace Analyzer from a privileged account. For information
about the privileges that you need, refer to the appendix describing the
operating system specific information.

To run the Trace Analyzer, log into a privileged account on the node where the
MTA is running and issue the following command at your operating system
prompt:

�
Tru64
UNIX

osaktrace [options] in_file

where:

• options is one or more of the following qualifiers:

-t Trace Transport events only

-h Trace Transport events without converting contents of the
Transport Service Data Unit (TSDU)

-s Trace Session Layer protocols only

-p Trace Presentation Layer protocols only

-a Trace ACSE protocols only

-u Trace user data only

-e Find errors

-d Convert Define Context Set (DCS) setup and verification
information from binary to text

-f Replace time and date strings with "XXX". For example,
replace
15:24:59.94 on 14-MAY-1991 with XX:XX:XX.XX on
XX-XXX-XXXX

-o Send the output to a named file

16–50 Problems with Associations

• in_file is the name of the trace binary file that you want to
analyze.

If you specify the -o option, then supply the name of the output
file immediately after the -o option qualifier. If you do not specify
an output file, then the output is displayed on the screen. If you
do not specify any options, the Trace Analyzer uses a default set
of options as follows:

-t -s -p -a

If you select the errors option, the Trace Analyzer attempts to
detect protocol errors. This option is most likely to be useful when
you are tracing Presentation layer and ACSE protocol information.
♦

OpenVMS
$ OSAKTRACE [options] in_file

where:

• options is one or more of the following qualifiers:

/TRANSPORT_EVENTS Trace Transport events only

/NOTRANSPORT_EVENTS Do not trace Transport events

/SESSION_PCI Trace Session Layer protocols only

/NOSESSION_PCI Do not trace Session Layer protocols

/PRESENTATION_PCI Trace Presentation Layer protocols only

/NOPRESENTATION_PCI Do not trace Presentation Layer protocols

/ACSE_PCI Trace ACSE protocols only

/NOACSE_PCI Do not trace ACSE protocols

/USER_DATA Trace user data only

/NOUSER_DATA Do not trace user data

/ERRORS Find errors

/NOERRORS Do not find errors

/DCS Convert Define Context Set (DCS) setup
and verification information from binary
to text

/NODCS Do not convert Define Context Set (DCS)

/HEADERS_ONLY Output the Transport event headers
only. This qualifier overrides any of the
previous qualifiers

Problems with Associations 16–51

/FILTER Replace time and date strings with
"XXX". For example, replace
15:24:59.94 on 14-MAY-1991 with
XX:XX:XX.XX on XX-XXX-XXXX

/NOFILTER Do not replace time and date strings with
"XXX"

/OUTPUT Send the output to a named file

• in_file is the name of the trace binary file that you want to
analyze.

If you specify the /OUTPUT qualifier, then supply the name of the
output file immediately after the /OUTPUT qualifier, for example:

$ OSAKTRACE/OUTPUT = my_output_trace_file.txt in_file

If you do not specify an output file, then the output is written to
the device defined by SYS$OUTPUT.

If you do not specify any options, the Trace Analyzer uses the
following qualifiers:

/TRANSPORT_EVENTS
/SESSION_PCI
/PRESENTATION_PCI
/ACSE_PCI
/NOUSER_DATA
/NOFILTER

If you select the /ERRORS qualifier, the Trace Analyzer attempts
to detect protocol errors. This qualifier is most likely to be useful
when you are tracing Presentation layer and ACSE protocol
information.
♦

Check through the readable protocol trace and identify the protocol error.

If, after you have checked the output from the Trace Analyzer you are unable
to identify or correct the error, then contact HP. See Chapter 23 for information
about how to contact HP and the information that you need to supply about
the problem.

16–52 Problems with Associations

17
How the MTA Makes Connections Over

X.25

This chapter describes some of the management entities and attributes used
within OSI Transport and X.25. This information explains how MTA inbound
and outbound connections relate to the entities and attributes in the OSI
Transport module and X.25 modules.

You can use this information to try and identify problems when X.25
connections fail. The information described in this chapter assumes that
OSI Transport and X.25 have been installed and configured as described in
the documentation related to each of the products. No information about
configuring X.25 or OSI Transport is provided in this chapter. The chapter
also assumes that you have set up your MTA as described in Part III of HP
MAILbus 400 MTA Planning and Setup.

The chapter is intended to help isolate where and why problems occur, it does
not provide instructions for solving problems related to OSI Transport or X.25.
Refer to the documentation related to each of the products for specific trouble
shooting information.

The chapter does not describe the use of LLC2 or X.25 Relay. The chapter
describes how the MTA uses the X.25 Native and X.25 Gateway Client
capabilities of X.25.

Information about how to customize the MTA’s use of the Transport Service is
provided in Section 7.7.

In particular, this chapter describes:

• The management entities that need to exist for the MTA to be able to make
connections and how these entities relate to each other (Section 17.1).

• Potential problems with X.25 impacting the MTA (Section 17.2).

• Isolating failed X.25 connections (Section 17.3).

How the MTA Makes Connections Over X.25 17–1

Within this chapter:

• An X.25 Server or X.25 Native system is a system connected directly to one
or more Packet Switching Data Networks (PSDNs) and conforms to CCITT
Recommendation X.25.

The X.25 Server capability is currently available only on OpenVMS VAX.

Your PTT is responsible for providing access to the PSDN; the PTT also
allocates Data Terminal Equipment (DTE) addresses. It is this DTE
address that is used when contacting another system using X.25.

• An X.25 Gateway Client is a system that is not connected directly to the
PSDN. An X.25 Gateway Client accesses a PSDN through an X.25 Server.
The client connects to the server using DECnet/OSI.

The PTT allocates Data Terminal Equipment (DTE) addresses for the
server. It is this address, plus a subaddress, that is used when the client
contacts another system using X.25.

The X.25 Gateway Client capability is currently only available on
OpenVMS and ULTRIX™.

• Call Data Value (CDV) is a characteristic attribute of the X25 Access Filter
entity. However, within the protocols CDV is defined as Call User Data
(CUD). Throughout this chapter CDV is used to describe the management
attribute and the protocol.

In addition to the information provided in the MAILbus 400 MTA
documentation, you will need to have available the DECnet/OSI
documentation, X.25 documentation and Common Trace Facility
documentation.

17.1 Management Entities
The following sections describe the management entities that hold information
for inbound and outbound connections to and from peer systems using X.25.

Section 17.1.1 describes the management entities required in order that the
MAILbus 400 MTA can make outbound connection requests when installed on
an X.25 Server or X.25 Native system.

Section 17.1.2 describes the additional management entities required at an
X.25 Server in order that it can make outbound connection requests on behalf
of its clients.

Section 17.1.3 describes the management entities required in order that the
MAILbus 400 MTA can make outbound connection requests when installed on
an X.25 Gateway Client.

17–2 How the MTA Makes Connections Over X.25

Section 17.1.4 describes the management entities required in order that the
MAILbus 400 MTA can accept inbound connection requests when installed on
an X.25 Server or X.25 Native system.

Section 17.1.5 describes the management entities required at an X.25 Server in
order that it can accept inbound connection requests on behalf of its clients.

Section 17.1.6 describes the management entities required in order that the
MAILbus 400 MTA can listen for inbound connection requests.

17.1.1 Outbound Connection Requests at an X.25 Server or X.25 Native
System
Figure 17–1 shows the relationship between the different entities when the
MAILbus 400 MTA attempts to make an outbound connection. The callouts in
Figure 17–1 are explained in the following list:

1 The Peer MTA entity, an entity of the MTA module, has a Template
Name attribute. This attribute identifies one or more OSI Transport
Template entities that are used by the OSI Transport Service for outbound
connections to peer MTAs. For CONS connections the OSI Transport
Template must include the ‘‘mta_cons’’ template, or an equivalent template
with the Network Service attribute set to CONS.

2 OSI Transport expects a CONS NSAP for the target to make CONS
connections. This CONS NSAP is taken from the Presentation or Session
Address attribute in the Peer MTA entity; see Section 7.7.

X.25 expects a DTE address and therefore OSI Transport invokes the
conversion of the CONS NSAP to a DTE address through the X25 Access
Reachable Address entity. An attribute of the X25 Access Reachable
Address entity is Address Prefix. The Address Prefix attribute identifies
the X25 Reachable Address entity that most closely matches the CONS
NSAP provided.

The Address Prefix attribute can be a complete or partial CONS NSAP. A
partial CONS NSAP is represented by one X25 Access Reachable Address
entity. If the Address Prefix attribute is a partial CONS NSAP, it must
have the attribute Mapping set to ‘‘X.121’’. You should also check the value
for the Address Extensions attribute in the X25 Access Reachable Address
entity with your PSDN provider, as this value is specific to individual
PSDNs.

How the MTA Makes Connections Over X.25 17–3

Figure 17–1 Entities Used for Outbound Connections

X25
Access
Reachable
Address
entity

Characteristics:
DTE Class,CDV

 OSI
Transport
 module

 X.25
 module

OSI
Transport
Template
entity

1

3

4

X25
Access
Security
DTE Class
entity

X25
Access
Template
entity

 MTA
 module

Peer
MTA
entity

Characteristic:
Presentation
address (NSAP)

5

 Characteristics:
 CONS Template
 Network Service

X25
Access
DTE
Class
entity

Characteristic:
Security DTE
Class

6

2

See Figure
17-2

X25
Access
Security DTE
Class,
Remote DTE
entity

MTA
entity

Characteristic:
 Local DTEs

X25 Protocol
DTE
entity

Characteristic:
RAP,ACL

2

7

DCE Hardware

Characteristic:
Template Name

Characteristic:
Address Prefix

MIG0746

17–4 How the MTA Makes Connections Over X.25

Note

The system making the call must have an OSI Transport CONS NSAP
Addresses attribute that contains at least one valid CONS NSAP
address before an X.25 outbound call can be made.

3 The OSI Transport Template entity is an entity of the OSI Transport
module. One of the attributes of the OSI Transport Template is CONS
Template, which identifies the X.25 Access Template that the MTA will use
for outbound connections. Another attribute of the OSI Transport Template
is Network Service, which must be set to CONS. The MTA’s OSI Transport
Template and characteristics are created when the MTA is set up; see Part
III of HP MAILbus 400 MTA Planning and Setup.

You should also check the value for the Expedited Data attribute in the
OSI Transport Template with your PSDN provider, as this value is specific
to individual PSDNs.

4 The X25 Access Template is an entity of the X25 Access module. Once you
have identified the X25 Access Template, using the CONS Template value
from step 3, you can find out the DTE Class and Call Data Value (CDV)
specific to OSI Transport.

The specific value required by OSI Transport is:

SET X25 ACCESS TEMPLATE "temp-name" CALL DATA = ’03010100’H

The DTE Class is an attribute of the X25 Access Template entity. The
attribute DTE Class is also an attribute of the X25 Access Reachable
Address entity; see step 2. The DTE Class attribute identifies an X25
Access DTE Class entity.

5 The DTE Class attribute identified from the X25 Access Template entity or
the X25 Access Reachable Address entity in step 4 identifies the X25 Access
DTE Class entity. One of the attributes of this entity is the Security DTE
Class, which controls inbound and outbound access (see step 7), another
attribute is Local DTEs (see step 6).

6 The Local DTEs characteristic identifies an X25 Protocol DTE entity that
defines the Data Circuit-terminating Equipment (DCE) hardware to use for
the outbound call.

How the MTA Makes Connections Over X.25 17–5

7 The Security DTE Class identifies an X25 Access Security DTE Class entity
(see step 5), which has a subentity Remote DTE.

There can be more than one Remote DTE entity for each X25 Access
Security DTE Class. The Remote DTE entity with a Remote Address Prefix
(RAP) attribute that most closely matches the DTE address identified in
step 2 is selected. The RAP attribute might be a complete or partial DTE
address.

The selected Remote DTE entity has an ACL attribute that provides details
of whether the caller has the necessary authority to make the outbound
call to the peer system, including the security level allowed for each Rights
Identifier value.

In the case of an X.25 Native or X.25 Server system, the process that
initiates the call has one or more Rights Identifiers; for example, the
MAILbus 400 MTA process.

�
Tru64
UNIX

On Tru64 UNIX systems, the MTA has root privileges and Rights
Identifiers. Rights Identifiers are equivalent to Groups, which are
defined in /etc/group. Any Group that includes root also includes
the MTA.
♦

OpenVMS
On OpenVMS systems, Rights Identifiers are created using the
Authorize utility. Rights Identifiers are granted to a particular
user. The MTA process is started by System, therefore the MTA
inherits the System Rights Identifiers.
♦

In the case of an X.25 Client system, the Rights Identifier is obtained
from the corresponding X25 Server Security Nodes entity (see step 1 in
Section 17.1.2).

17.1.2 Additional X.25 Management Entities Required for an X.25
Server, Outbound
The entities and attributes described in this section are required on the X.25
Server system when making outbound calls on behalf of an X.25 Gateway
Client.

17–6 How the MTA Makes Connections Over X.25

Figure 17–2 X.25 Entities Required at X.25 Server for Outbound Connections

X25
Server
Security
 Nodes
 entity

 Characteristic:
 Nodes
 Rights Identifiers

1 Client
Nodename

 X.25
 modules

X25
Server
Client
Entity

2

X25
Access
DTE
Class
entity

Characteristic:
Filters

See bullet 3
Figure 17-4

See bullet 5
Figure 17-1

DTE Class

MIG0748

The callouts on Figure 17–2 are explained in the following list:

1 Before attempting to make the connection to the peer system, the X.25
Server needs to check that the X.25 Gateway Client is authorized to make
the outbound connection. The X.25 Server does this by completing an
inbound security check as described in Section 17.1.4 steps 1 to 4.

On the X.25 Server system, the X25 Server Security Nodes entity provides
the security information required for the X.25 Gateway Client. The X25
Server Security Nodes entity has an attribute Rights Identifier, which is
used with the ACL attribute of the X25 Access Security Filter entity.

If the inbound security check is successful, an X25 Server Client entity
is selected. The X25 Server Client entity has an attribute Filters that
provides the identity of an X25 Access Filter entity (see step 3 in
Section 17.1.4). The X25 Access Filter entity has an attribute Security
Filter, which provides the identity of an X25 Access Security Filter entity.
The X25 Access Security Filter entity has an attribute ACL, which provides

How the MTA Makes Connections Over X.25 17–7

the access level permitted for the Rights Identifier identified in the X25
Server Security Nodes entity.

2 The X.25 Gateway Client passes the DTE Class name to the X.25 Server.
This DTE Class must exist on both the X.25 Server and the X.25 Gateway
Client. On the X.25 Server the Type attribute has a value ‘‘Local DTE’’,
and on the X.25 Gateway Client, the Type attribute has the value ‘‘remote’’.
The X.25 Server uses the DTE Class to make the outbound call.

The X.25 Server then completes the outbound connection request as
described in Section 17.1.1, step 5 onwards.

17.1.3 Additional X.25 Management Entities Required for an X.25
Gateway Client, Outbound
Figure 17–3 shows the additional entities that are used between X.25 Gateway
Clients and their X.25 Servers when making outbound calls, after steps 1 to 3,
described in Section 17.1.1, are completed successfully.

Figure 17–3 X.25 Entities Required for an X.25 Gateway Client for Outbound
Connections

X25
Access
Template
entity

Characteristic:
Local Subaddress

1

 X.25
 module

Characteristic:
Service NodesX25

Access
Reachable
Address
entity

X25
Access
DTE Class
entity

Characteristic:
Address Prefix

MIG0747

 As Figure 17-1

17–8 How the MTA Makes Connections Over X.25

This section describes the entities and attributes that are required on the X.25
Gateway Client, so the client can forward the outbound connection request to
the X.25 Server.

The following is an explanation of the callout in Figure 17–3:

1 At the node where the X.25 Gateway Client is installed, the X25 Access
Template entity provides the Local Subaddress attribute (DTE address
suffix of the X.25 Gateway Client). The value of the Local Subaddress
should be one of the values specified in the X.25 Access Filter (Subaddress
Range attribute), for the X.25 Client, on the X.25 Server system.

The DTE Class is an attribute of the X25 Access Template entity. The
attribute DTE Class is also an attribute of X25 Access Reachable Address
entity. The attribute DTE class identifies an X25 Access DTE Class entity.
The X25 Access DTE Class entity must exist on both the X.25 Gateway
Client and the X.25 Server. For the X.25 Gateway Client, the Type
attribute of the X25 Access DTE Class entity has the value ‘‘Remote’’,
which indicates that the DTE Class is for an X.25 Gateway Client system,
and the Service Nodes attribute value identifies the X.25 Server system
for the X.25 Gateway Client. For the X.25 Server the Type attribute of the
X25 Access DTE Class entity has the value ‘‘Local DTE’’.

The X.25 Gateway Client completes the security check as described in
Section 17.1.1 step 7, and then the DTE Class, Local Subaddress and
Nodename attribute values are passed in the protocol between the X.25
Gateway Client and the X.25 Server. The attributes are used by the
X.25 Server to make the outbound connection request as described in
Section 17.1.1, step 5 onwards.

Note

Be aware that if, as an X.25 Gateway Client system, you have more
than one X.25 Server system, and you have different subaddresses
on each server system, you will need an X25 Access Template entity
for each system. The Local Subaddress attribute of the X25 Access
Template is set according to the different subaddresses assigned on
each X.25 Server system. You also need an OSI Transport Template
entity for each X25 Access Template entity that you set up.

How the MTA Makes Connections Over X.25 17–9

17.1.4 Management of Inbound Connections at an X.25 Server or
Native System
Figure 17–4 shows the relationship between the different entities when an
inbound connection request is made to the MAILbus 400 MTA. The callouts on
Figure 17–4 are explained in the following list:

1 When an inbound connection is made from a peer system, X.25 takes the
DTE address provided by the caller and searches all the Remote DTE
entities, (subentities of the X25 Security DTE Class entity) for a Remote
Address Prefix (RAP) attribute that most closely matches the DTE address
provided. The RAP can be a complete or partial DTE address.

The DTE address provided can be a DTE address of an X.25 Gateway
Client or the DTE address received directly from the PSDN.

Once the match is made, the Rights Identifier(s) associated with the RAP
is used for authentication (see step 3).

2 The caller also provides a number of parameters. The X25 Access Filter
entity is identified on the basis of, and in the order of:

1. Priority (provided through the management entity)

2. CDV (provided by the caller)

The match on CDV is done using the CDV and Call Data Mask (CDM)
attributes. A null CDV in the X25 Access Filter entity means match on
anything.

OSI Transport requires specific values for these parameters, as shown
in the following example:

SET X25 ACCESS FILTER "temp-name" CALL DATA VALUE=’03010100’H, -
CALL DATA MASK=’ffffffff’H

Note that the Identifier attribute of the X25 Access Filter entity must
match the Name Identifier attribute of the X25 Access Template entity
specified in Section 17.1.1, step 4.

3. Subaddress Range (optional and provided by the caller)

4. Any other parameters provided in the call that are defined in the X.25
Access Filter.

17–10 How the MTA Makes Connections Over X.25

Figure 17–4 Entities Used for Inbound Connections at an X.25 Server or X.25 Native
System

X25
Access
Filter
entity

Rights
Identifier

Calling
DTE
Address

OSI
Transport
entity

5

4

2

3

Characteristics:
Security Filter,

X25
Access
Security
Filter
entity

Characteristic:
 ACL

X25
Access
Security
DTE Class,
Remote
DTE entity

Characteristic:
RAP,
Rights Id

1

Call Data Value (CDV)

Subaddress Range

(plus other parameters)

Characteristics:
 Presentation
 Address (TSAP)

 OSI
Transport
 module

MTA
entity

X25
Server
Client
entity

Characteristic:
 Nodename

OSI
Transport
Port
entity

Status:
Listener =OSI
Transport

Status:
Listener = X25
Server Client
Name

Characteristics: CDV,
CDM, Priority,
Subaddress Range

 MTA
 module

 X.25
 modules

TSAP

MIG0749

How the MTA Makes Connections Over X.25 17–11

Ensure that the X25 Access Filter identified is associated with a listener
and that the filter status is ‘‘In Use’’. For example, the Status attribute
Listener is set to OSI Transport (for an X.25 Server or X.25 Native system),
or the name of a X25 Server Client entity (for an X.25 Gateway Client).

3 The Security Filter attribute of the X25 Access Filter identifies an X25
Access Security Filter entity. An attribute of the X25 Security Access Filter
entity is ACL. The Rights Identifier from step 1 is used to determine if
the connection can be accepted. The Identifier in the ACL must match the
Rights Identifier, and the Access Level must be set in order that the call
can be accepted. If the Access Level is None, the call is not accepted. If
the Rights Identifier does not exist in the ACL the Access Level is taken
as None, and the call is rejected by X.25. The connection is passed to OSI
Transport, or the X.25 Server Client entity, if the validation is successful.

4 When the X.25 connection is validated, the inbound call is passed to the
Listener identified in step 2.

You need to make sure that the OSI Transport entity has an attribute
CONS NSAP Addresses, which contains a list of one or more CONS NSAPs
for your system.

�
Tru64
UNIX

On Tru64 UNIX systems, OSI Transport compares the called
CONS NSAP with the addresses specified in the CONS NSAP
Addresses attribute. If the CONS NSAP for the call does not
match one of the addresses in this attribute, the connection is
rejected by OSI Transport.
♦

OpenVMS
On OpenVMS systems, the Inbound attribute of the OSI Transport
Template entity must be set to ‘‘True’’ for inbound connections. In
addition, the name of the X.25 Access Template must be the same
as the name of the X.25 Access Filter for the call. Be aware that
the template name is case sensitive.
♦

5 OSI Transport compares the TSAP in the called address with the value in
the MTA’s Presentation address, and if it matches, the connection request
is then passed to the MAILbus 400 MTA.

If the comparison fails, OSI Transport rejects the connection. The
connection is also rejected if the MTA is not listening for incoming
connections from OSI Transport. Section 17.1.6 describes how to check
whether or not the MTA is listening for incoming connections.

17–12 How the MTA Makes Connections Over X.25

17.1.5 X.25 Entities Required at an X.25 Server for an X.25 Gateway
Client, Inbound
Figure 17–5 shows the additional entities that are provided at X.25 Servers in
order that the server can accept inbound calls on behalf of its clients. The X.25
Server must verify that the X.25 Gateway Client is authorized to accept the
inbound connection request.

Figure 17–5 X.25 Server Entities for Inbound Connections to an X.25 Gateway Client

Rights
 Identifier

DTE address
of the client

Status:
Listener =
X25 Server
Client Name

X25
Server
Client

Characteristic:
 Nodename1

 X.25
 modules

Characteristic:
Rights Identifier

X25
Access
Filter
entity

2

X25
Server
Security
Node
entity

Characteristic:
 ACL

X25
Access
Security DTE
Class,
Remote DTE

MIG0751

The callouts on Figure 17–5 are explained in the following list:

1 An X25 Server Client entity describes one client that a particular X.25
Server can contact. The Nodename attribute is the DNS name of the client.
See Section 17.1.4 step 2.

How the MTA Makes Connections Over X.25 17–13

The Nodename attribute is used to identify an X25 Server Security Nodes
entity, which has a characteristic attribute Rights Identifiers.

2 When an inbound connection is made, X.25 takes the DTE address provided
by the caller and searches all the Remote DTE entities (subentities of the
X25 Security DTE Class entity) for a RAP attribute that most closely
matches the DTE address provided. There can be more than one Remote
DTE entity for each X25 Access Security DTE Class. The Remote DTE
entity with a Remote Address Prefix (RAP) attribute that most closely
matches the DTE address identified is selected. The RAP may contain a
complete or partial DTE address.

The Rights Identifier from step 1 is used to determine if the connection can
be accepted. The Identifier in the ACL must match the Rights Identifier,
and the Access Level must be set in order that the call can be accepted. If
the Access Level is None, the call is not accepted. If the Rights Identifier
does not exist in the ACL the Access Level is taken as None, and the call is
rejected by X.25.

The X.25 Server then forwards the inbound connection request to the X.25
Gateway Client as described in Section 17.1.1 step 7.

17.1.6 How the MTA Listens for Incoming Connections
In order for an MTA to be able to accept an incoming connection, it must be
able to listen for the connection. Figure 17–6 shows the entities and attributes
that are required for the MTA to listen for connections. The callouts on
Figure 17–6 are explained in the following list:

1 The value of the Presentation address or Session Address attribute of the
MTA entity contains a Transport Selector (TSAP) and a Network Service
Access Point (NSAP).

2 One of the NSAPs in the MTA’s Presentation address or Session address
needs to match one of the NSAPs in the CONS NSAP Address attribute of
the OSI Transport entity (see step 4 in Section 17.1.4).

17–14 How the MTA Makes Connections Over X.25

Figure 17–6 Entities Used When Listening for Connections

4

OSI
Transport
entity

2

X25
Access
Filter
entity

3

1

 OSI
Transport
 Module

OSI
Transport
Port
entity

Status:
Direction=Listening,
Local Transport
Selector

Characteristic:
CONS NSAP
Address (local)

Characteristic:
CONS Filters

State: In Use
Listener: OSI
 Transport

State: In Use
Listener: X25
Server Client Name

Describing local
clients

Describing
Gateway clients
at server node

MTA
entity

OSI
Transport
Template
entity for
mta_any

Characteristic:
 Presentation
 Address (TSAP)

Characteristic:
 Presentation
 Address (NSAP)

OSI
Transport
Application
entity

Identifier: Name
Characteristic:
Called TSELS

 MTA
 Module

 X.25
 Module

MIG0750

�
Tru64
UNIX

On Tru64 UNIX systems, when the MTA is enabled and is
listening, an OSI Transport Port entity is created with a status
attribute Local Transport Selector that contains the hexadecimal

How the MTA Makes Connections Over X.25 17–15

value of the MTA’s TSAP. The OSI Transport Port entity also has
a status attribute Direction with a value of ‘‘Listening’’.

The MTA always uses the ‘‘mta_any’’ Transport Template for
inbound communications (see Section 7.7). OSI Transport rejects
the connection if the OSI Transport Template entity ‘‘mta_any’’
contains a Network Service attribute that does not include
CONS or ANY. OSI Transport also rejects the connection if the
incoming transport class does not include those defined in the OSI
Transport Template entity ‘‘mta_any’’.
♦

OpenVMS
On OpenVMS systems, when the MTA is enabled and is listening,
an OSI Transport Application entity is created with an identifier
attribute Name that contains the value of the MTA’s TSAP.

The OSI Transport Template entity ‘‘mta_cons’’ has the attribute
Inbound set to ‘‘True’’, and the Network Service attribute set to
‘‘CONS’’. The mta_cons OSI Transport Template can therefore be
used for inbound connections if there is no other suitable template
already defined. OSI Transport rejects the inbound connection if
the incoming transport classes do not include those classes defined
in the OSI Transport Template entity being used for the inbound
call.
♦

3 When the OSI Transport entity is enabled and has a CONS Filters
attribute set to identify an X25 Access Filter entity, the X25 Access Filter
entity’s Status attributes are automatically set to Direction ‘‘In Use’’, and
Listener is ‘‘OSI Transport’’. If the Status attribute of the X25 Access Filter
is ‘‘Free’’ the filter is not being used by any listening processes.

OpenVMS
On OpenVMS systems, the name of the X25 Access Filter entity
must be the same as the name of the X25 Access Template entity
that exists on the system.
♦

4 If the node is an X.25 Gateway Client, when the X25 Server Client entity
is enabled at the X.25 Server system, the X25 Access Filter entity’s
Status attribute on the X.25 Server system is ‘‘In Use’’ and its Listener
is identified as the name of the X.25 Gateway Client that it serves. If the
status of the X25 Access Filter is ‘‘Free’’ the filter is not being used by any
listening processes.

17–16 How the MTA Makes Connections Over X.25

17.2 Problems Related to X.25 That Affect the MTA
The setup procedure for X.25 keeps a data file for any commands entered
using the setup procedures. Each time the X.25 setup procedure is executed,
this data file is read to obtain the current setup information. The data file is
used in preference to the NCL scripts that you might also have updated. Be
aware that if you modify X.25 NCL scripts, and subsequently execute the setup
procedure, the modified NCL scripts are overwritten during setup.

You must decide whether to always use the X.25 setup procedure or to edit the
X.25 NCL scripts directly.

The following are problems that might exist on your system after you have
installed and configured X.25 Native:

• Incorrect X25 Access Reachable Address entity.

Check that the X25 Access Reachable Address entity is set up correctly.
The following is an example of the correct command to set up an X25
Access Reachable Address entity:

SET X25 ACCESS REACHABLE ADDRESS name DTE CLASS dte_class

where name is the name provided for the entity and dte_class is the DTE
Class attribute value for the entity. The DTE Class attribute is either
specified in the X25 Access Reachable Address entity, or the X.25 Access
Template entity.

See step 4 in Section 17.1.1.

• X.29 Login not working.

Check that X.29 Login is working; this will confirm that it is possible to
make an X.25 connection when only parts of the system are configured
correctly.

17.3 Isolating Failed Connections
This section describes what you can do if your system is failing to make X.25
connections.

You need to check outbound connections from your system as described in
Section 17.3.1 and inbound connections to the target system as described in
Section 17.3.2.

How the MTA Makes Connections Over X.25 17–17

17.3.1 Failed Outbound Connections
Start by checking whether the connect request is leaving your system
by tracing the connection as described in the Common Trace Facility
documentation.

If the trace on the calling system indicates that the connect request is being
sent by your system, check the inbound connection on the target system as
described in Section 17.3.2.

If the trace on the target system indicates that the connect request is not being
sent by your system, investigate the following:

• Is the CONS Template attribute of the OSI Transport Template entity
correct?

Do this by checking that there is an X25 Access Template with a name
that matches the CONS Template attribute name of the OSI Transport
Template, as follows:

SHOW OSI TRANSPORT TEMPLATE temp-name CONS TEMPLATE
SHOW X25 ACCESS TEMPLATE name ALL

where temp-name is the name of the OSI Transport Template entity used by
your application, for example mta_cons, and name is the value of the CONS
Template attribute for temp-name.

Note that both the OSI Transport Template name and the X25 Access
Template name are case sensitive and that NCL is not case sensitive.

• The X.25 counters on your system.

Use the following command to display the relevant counters on your
system:

SHOW X25 ACCESS ALL

If the counter Outgoing Calls Blocked is incremented each time you make
a connect request, it is an outbound X.25 security problem. Refer to
Section 17.1.1 for an explanation of the management entities that provide
the outbound security.

• The events that your system is issuing.

Each time an outbound connect request is made to X.25, whether successful
or unsuccessful, the X25 Access event Port Terminated is issued. Use the
information provided in the event to check the following:

Is the Target DTE Address specified in the event correct?

17–18 How the MTA Makes Connections Over X.25

If it is not correct, then the wrong address is being used for the
outbound call.

This is because the CONS NSAP to DTE address conversion is not
being completed correctly (see Section 17.1.1, step 2).

Check that the information in the X25 Access Reachable Address entity
is correct. Check that the CONS NSAP and that the DTE address are
correct.

Is there a Call Association in the event?

If there is no Call Association, then the system failed to find an X25
Access Template entity, either because the Template does not exist, or
the system used the wrong Template (see Section 17.1.1 step 4).

If there is a Call Association, check that it contains the name of the
correct X25 Access Template entity.

Is the Protocol Identifier correct in the event?

The Protocol Identifier is specified as the Call Data Value attribute of
the X25 Access Template entity. However, the absence of this attribute
does not prevent a successful outbound call.

Is there a DTE Class in the event?

The DTE Class is specified in the X25 Access Template entity, or X25
Reachable Address entity, see step 5 in Section 17.1.1.

17.3.2 Failed Inbound Connections
An inbound connection can be one of:

• An inbound connection request to the PSDN from an X.25 Gateway Client.

• An inbound connection request from the PSDN to an X.25 Gateway Client.

• An inbound connection request to an X.25 Server from the PSDN.

Start by checking whether the connect request reaches the target system
by tracing the connection as described in the Common Trace Facility
documentation.

If the trace confirms that the connect request is not being received by the
target system, investigate the following:

• That you are using the correct address and where appropriate, subaddress.

• That the X.25 Server for the target system is allowing the X.25 connect
request to be received.

• The X.25 counters on the target system.

How the MTA Makes Connections Over X.25 17–19

Use the following command to show the relevant counters on the target
machine:

NCL> SHOW X25 ACCESS ALL

If the counter Incoming Calls Blocked is incremented each time an
inbound call is attempted, X.25 security is preventing the call from being
received. Check the ACL attribute of the X25 Access Security Filter (see
Section 17.1.4 step 3).

If the counter Incoming Calls Failed is incremented each time an inbound
call is attempted, there is no X25 Access Filter that matches the incoming
connection.

• Check the events that the system is issuing.

Each time a connect request successfully reaches the system, the X25
Access event Port Terminated is issued. Use the information provided in
the event to check the following:

Is the Target DTE Address specified in the event the correct address,
including the correct subaddress in the case of an X.25 Gateway Client.

If it is not correct, then the wrong address is being used for the inbound
call to the client.

The fact that the event is received indicates that the correct DTE
address is being used.

Is there a Call Association in the event?

If there is no Call Association, then the system failed to find an X25
Access Filter entity because the filter does not exist.

If the Call Association contains the wrong filter name, X.25 has chosen
the wrong filter. For the MTA the filter name should be OSI Transport,
and for an X.25 Gateway Client the name of the filter for the X.25
Gateway client.

Check that the filter being used by X.25 is the one you expected.

If there is a Call Association, check that it contains the name of the
correct X25 Access Filter entity; see Section 17.1.6 step 3.

Is the Protocol Identifier correct in the event?

It should match the Call Data Value attribute of the X25 Access Filter
entity.

Does the Calling Address Extension match one of the values in the
CONS NSAP Address attribute of the OSI Transport entity; see
Section 17.1.4 step 4.

17–20 How the MTA Makes Connections Over X.25

18
Problems with Messages

This chapter describes problems that can occur with messages and how you
can solve these problems. A message in this context can be an interpersonal
message (IPM), a probe, or a report.

Section 18.1 explains the problems that can cause a message to fail.
Section 18.2 describes non-delivery reports. Section 18.4 and Section 18.5
describe how to trace the path of a message through your routing domain.
Section 18.6 describes how you can trace a probe or report. Section 18.8
describes how an MTA can take responsibility for the messages in a peer MTA’s
workspace.

18.1 How to Diagnose a Message Failure
If an MTA is unable to transfer or deliver a message, it generates a non-
delivery report that explains why the message failed to reach its intended
recipient. However, there are several causes of message failure that might not
be apparent from a non-delivery report, for example:

• Problems can occur with inconsistencies or omissions in O/R addresses on
messages.

Check the recipient addresses that were used on the message for any
obvious omissions. For example, the Country code is mandatory for all O/R
addresses.

• Problems can occur with incorrect O/R address information held in the
directory.

Check the directory entries for the recipients on the message. The routing
information could be incorrect or the recipients’ O/R address entries may
have been set up incorrectly.

• A message, probe, or report appears to be lost.

You may be able to trace its path in your routing domain and find out what
has happened to it, see Section 18.4, Section 18.5, and Section 18.6.

Problems with Messages 18–1

Problems with messages and reports are also described by events. All events
relating to messages and reports contain the identifier of the message that the
event relates to. See Section 18.7 for a description of the events relating to
messages and reports.

18.2 Non-delivery Reports
MHS users are most likely to become aware of a problem with a message
when they receive a non-delivery report. Table 18–1 lists all the non-delivery
reason and diagnostic codes that are listed in the 1992 MHS Standards. Note
that the MAILbus 400 MTA does not generate all the non-delivery reason and
diagnostic codes listed in Table 18–1

Table 18–1 Non-Delivery Reason and Diagnostic Codes

Code Diagnostic

Reason Codes

0 transfer-failure
1 unable-to-transfer
2 conversion-not-performed
3 physical-rendition-not-performed
4 physical-delivery-not-performed
5 restricted-delivery
6 directory-operation-unsuccessful
7 deferred-delivery-not-performed

Diagnostic Codes

0 unrecognised-OR-name
1 ambiguous-OR-name
2 mts-congestion
3 loop-detected
4 recipient-unavailable
5 maximum-time-expired
6 encoded-information-types-unsupported
7 content-too-long
8 conversion-impractical
9 implicit-conversion-prohibited
10 conversion-not-subscribed
11 invalid-arguments
12 content-syntax-error

(continued on next page)

18–2 Problems with Messages

Table 18–1 (Cont.) Non-Delivery Reason and Diagnostic Codes

Code Diagnostic

Diagnostic Codes

13 size-constraint-violation
14 protocol-violation
15 content-type-not-supported
16 too-many-recipients
17 no-bilateral-agreement
18 unsupported-critical-function
19 conversion-with-loss-prohibited
20 line-too-long
21 page-split
22 pictorial-symbol-loss
23 punctuation-symbols-loss
24 alphabetic-symbols-loss
25 multiple-information-loss
26 recipient-reassignment-prohibited
27 redirection-loop-detected
28 dl-expansion-prohibited
29 no-dl-submit-permission
30 dl-expansion-failure
31 physical-rendition-attributes-not-supported
32 undeliverable-mail-physical-delivery-address-incorrect
33 undeliverable-mail-physical-delivery-office-incorrect-or-invalid
34 undeliverable-mail-physical-delivery-address-incomplete
35 undeliverable-mail-recipient-unknown
36 undeliverable-mail-recipient-deceased
37 undeliverable-mail-organization-expired
38 undeliverable-mail-recipient-refused-to-accept
39 undeliverable-mail-recipient-did-not-claim
40 undeliverable-mail-recipient-changed-address-permanently
41 undeliverable-mail-recipient-changed-address-temporarily
42 undeliverable-mail-recipient-changed-temporary-address
43 undeliverable-mail-new-address-unknown
44 undeliverable-mail-recipient-did-not-want-forwarding
45 undeliverable-mail-originator-prohibited-forwarding
46 secure-message-error
47 unable-to-downgrade
48 unable-to-complete-transfer
49 transfer-attempts-limit-reached

Problems with Messages 18–3

The MAILbus 400 MTA generates a non-delivery report for the following
reasons:

• The MTA is unable to transfer a message or probe.

• The MTA cannot deliver a message because it is unable to convert an IPM
bodypart to a format acceptable to the recipient.

Each non-delivery report contains a reason code, which indicates the reason
why the message failed. Non-delivery reports generated by a MAILbus 400
MTA contain one of the following reason codes:

• Unable to Transfer

• Conversion not Performed

Each non-delivery report also contains a diagnostic code that provides
additional information about why the message or probe was not transferred
or delivered. The reason and diagnostic codes in non-delivery reports that a
MAILbus 400 MTA generates conform to the 1992 MHS Standards.

Section 18.2.1 explains the diagnostic codes relating to the Unable to Transfer
reason code. Section 18.2.2 explains the diagnostic codes relating to the
Conversion not Performed reason code.

18.2.1 Diagnostic Codes Relating to Unable to Transfer
In a non-delivery report generated by a MAILbus 400 MTA, the diagnostic
codes relating to the Unable to Transfer reason code are:

• Unrecognised ORname

This error can be due to one of the following:

The routing instruction in the recipient’s O/R address entry in the
directory explicitly states NONDELIVER.

The MTA is unable to find a routing instruction in the directory
relevant to the recipient’s O/R address.

The routing information in the directory has been set up incorrectly.
In this case, the MTA also generates the Directory Configuration Error
event, which identifies the entries in the directory that are incorrectly
set up.

The MPDU has been routed to an Agent that is not registered with the
MTA. In this case, the MTA also generates the Unknown Agent event.

• Ambiguous ORname

18–4 Problems with Messages

This error can be due to one of the following:

The recipient’s personal name on the message does not match a unique
common name in a complete O/R address entry in the directory (see
Section 6.1.2.1). In this case, the MTA also generates the Directory
Configuration Error event.

The requested delivery method for the recipient does not match
the delivery method specified by the recipient’s O/R address on the
message; for example, the requested delivery method on the message
envelope is ‘‘teletex-delivery’’ but the recipient’s O/R address is not of
the terminal O/R address form.

• MTS Congestion

This error is due to one of the following:

An MPDU has been manually deleted. In this case, the MTA also
generates the MPDU Deleted event.

A deferred message has been manually deleted. In this case, the MTA
also generates the Deferred Message Deleted event.

• Loop Detected

The MPDU is not being routed efficiently and has either been transferred
to the same MTA twice or has been transferred to more than 50 MTAs.
When an MTA detects that an MPDU is taking a circular or prolonged
route it generates the Loop Detected event.

• Recipient Unavailable

The recipient of the MPDU is in a different X.400 management domain
from the originator and the originator’s O/R address entry in the directory
has the May Cross CCITT Boundaries attribute set to ‘‘False’’. This
attribute value prevents the originator sending messages to recipients in
other X.400 management domains.

• Maximum Time Expired

The MPDU has exceeded its expiry time. The expiry time for MPDUs is
specified by the MTA entity in its Local MPDU Expiry Interval attribute
and the appropriate priority-based MPDU Expiry Interval attribute. When
an MPDU expires within an MTA, the MTA generates the MPDU Expired
event.

• Content Too Long

The content of the MPDU exceeds the acceptable length specified in the
Content Information attribute of the recipient’s O/R address entry in the
directory.

Problems with Messages 18–5

• Invalid Arguments

This error can be due to one of the following:

The MTA cannot determine the form of the recipient’s O/R address.

The MTA has made three attempts to process the MPDU, all of which
failed.

The MTA failed to encode the MPDU (this is also an MTA internal
inconsistency). In this case, the MTA also generates the Internal Error
event.

• Content Syntax Error

The MTA failed to decode the MPDU’s content. The MTA also generates
the Invalid MPDU Detected event.

• Protocol Violation

The MTA failed to decode the MPDU’s envelope. The MTA also generates
the Invalid MPDU Detected event.

• Too Many Recipients

The number of recipients for the MPDU exceeds 32,767.

• Unsupported Critical Function

The MPDU contained a P1 extension whose criticality setting was such
that the MTA was obliged to non-deliver the message, according to the P1
protocol. See Appendix B for the MTA’s support of P1 extension fields.

• Recipient Reassignment Prohibited

The routing instruction in the recipient’s O/R address entry in the directory
specifies RECIPIENT REDIRECT, but the MTA is unable to redirect the
message as the recipient-reassignment-prohibited flag is set to ‘‘True’’.

• Redirection Loop Detected

The recipient already appears in the redirection history field of the MPDU.

• DL Expansion Failure

Following the expansion of a distribution list, the MPDU envelope contains
over 32,767 recipients.

• Unable to Downgrade

The MTA failed to downgrade the MPDU’s envelope.

• Transfer Attempts Limit Reached

18–6 Problems with Messages

The MTA has made three attempts to transfer the MPDU, and has failed
each time.

18.2.2 Diagnostic Codes Relating to Conversion Not Performed
Conversion failures are only reported by the MTA that attempts to deliver the
message. Attempts by an MTA to convert an IPM bodypart fail because the
recipient’s requirements regarding IPM bodypart and content types cannot be
met.

In a non-delivery report generated by a MAILbus 400 MTA, the diagnostic
codes relating to the Conversion not Performed reason code are:

• Encoded Information Types Unsupported

One or more encoded information types (EITs) in the MPDU are not
acceptable to the recipient. The EITs that are acceptable to the recipient
are specified in the Content Information attribute of the recipient’s O/R
address entry in the directory.

• Conversion Impractical

The MTA tried to convert the IPM bodyparts in the MPDU but the
conversion failed. In this case, the MTA also generates the Converter
Unavailable event.

• Implicit Conversion Prohibited

The content information in the recipient’s O/R address entry in the
directory specifies EITs different from those in the message. However, the
MTA was unable to convert the IPM bodyparts in the IPMS content of the
MPDU because the implicit-conversion-prohibited flag was set to ‘‘True’’.

• Content Type not Supported

The content type of the MPDU is not acceptable to the recipient. The
content types that are acceptable to the recipient are specified in the
Content Information attribute of the recipient’s O/R address entry in the
directory.

• Conversion with Loss Prohibited

The MTA was unable to convert the IPM bodyparts in the IPMS content of
the MPDU as the conversion could result in data being lost. However, the
MTA was prevented from converting the bodypart because the conversion-
with-loss-prohibited flag was set to ‘‘True’’.

During the conversion of a bodypart, data can be lost if there is no direct
mapping between the data in the bodypart and the bodypart format
acceptable to the recipient, for example, not all Teletex characters can be
represented in an IA5 bodypart.

Problems with Messages 18–7

• Unable to Downgrade

The MTA could not downgrade the IPMS content of the MPDU.

18.2.3 Failure to Receive a Non-Delivery Report
A non-delivery report is delivered to the originator of the message only if the
originator requested a report or is able to receive reports.

A user who has requested a non-delivery report may not receive one if:

• The recipient’s User Agent cannot receive non-delivery reports or has been
set up to not receive non-delivery reports.

• The MTA that detected the problem is unable to generate a non-delivery
report.

• An MTA transferring or delivering a non-delivery report to the originator
of the message that the report refers to, discards the non-delivery report.

When an MTA is unable to process an incorrectly encoded message, it issues
the Invalid MPDU Detected event, places the message in the bad messages
directory (see Section 18.3) and attempts to generate a non-delivery report.
There are some instances when an MTA either cannot create a non-delivery
report or cannot route it to the message originator, for example:

• If the MTA is unable to create a non-delivery report.

In this case, the MTA issues the Report Generation Failed event.

• If the MTA has created a non-delivery report for the originator, but
cannot find a routing instruction in the directory to route the report to the
originator.

In this case, the MTA discards the report it has created and issues the
Report Discarded event.

• If the MPDU that the MTA has received is a non-delivery report, and the
MTA is unable to decode the MPDU or route it.

In this case, the MTA copies the MPDU to its bad messages directory and
issues an event. If the MTA is unable to decode the MPDU, it issues the
Invalid MPDU Detected event. If the MTA is unable to route the MPDU, it
issues the Report Discarded event.

18–8 Problems with Messages

18.3 Bad Messages
The MTA copies messages that it cannot process, and reports that it discards,
to individual files in its bad messages directory. The name of the file containing
the copy of the bad message or report is provided by the event describing the
problem. Bodyparts that cannot be converted by the MTA are also copied to
the bad messages directory (see Section 18.7.8). Use the Message Decoder tool
to examine messages, reports, and IPM bodyparts in the MTA’s bad messages
directory.

For the location of the MTA’s bad messages directory and information about
how to run the Message Decoder tool, refer to the appendix describing the
operating system specific information.

18.4 Tracing a Message
You may need to find out what has happened to a message in order to solve
some problems with a message that a user has received or when a user
complains that a message has not been delivered.

If an MTA fails to transfer, deliver, or export a message, it provides some
information about what has happened to the message through events or a
non-delivery report. If, for any reason, you cannot find out what has happened
to a message, then trace its path in your routing domain or as far as you can.

Processed Message entities, which are automatically created by an MTA, hold
information about the messages that the MTA has received. A Processed
Message entity describes what the MTA is doing or has done to a particular
message. When the message leaves the MTA, the Processed Message entity
identifies the next destination of the message, provided that Message History
logging is enabled. Using the information held in a Processed Message entity
you can trace messages in your routing domain.

Before you can trace a message you need to:

• Have access to a privileged account.

For information about the privileges that you need, refer to the appendix
describing the operating system specific information.

• Know the identifier of the message that you want to trace.

This is provided by the originator’s User Agent or the Gateway that
imported the message.

Problems with Messages 18–9

Note

To trace the path of a message through your routing domain you must
have Message History logging enabled at each MTA in your routing
domain. If you have not, then you can only trace a message at the
MTA that is handling the message or at MTAs that have Message
History logging enabled. See Chapter 10 for information on how to use
Message History logging.

To help you decide whether or not to trace a message you need to find out the
following information:

• Who originated or forwarded the message.

• The name of the node where the message entered your routing domain.

This is either the node where the originator’s MTA is running or where a
Gateway or boundary MTA is running.

• The day and time when the message was sent.

• The name of each intended recipient of the message.

Using this information, you need to consider if there has been enough time for
the message to have arrived. Allow for any known network problems, such as
a node being unavailable, network failure, or busy periods.

If you consider that the message should have arrived, then start to trace its
path through your routing domain. It is best to start tracing a message at the
first MTA that handled the message in your routing domain. This is because
this MTA is able to provide a complete list of all the recipients of the message.
Other MTAs that receive the message from the first MTA may only know about
some of the recipients.

Use the following command to display information about the message:

SHOW NODE "node-id" MTA PROCESSED MESSAGE [COUNTRY = "country",-
ADMINISTRATION DOMAIN = "admd", PRIVATE DOMAIN = "prmd",-
LOCAL IDENTIFIER = "local-id"] ALL ATTRIBUTES

where:

• country is the Country name.

• admd is the name of the Administration Management Domain.

• prmd is the name of the Private Management Domain.

• local-id is a local identifier.

18–10 Problems with Messages

If there is no record of the message in the MTA, then you can also look for
the message in the MTA’s deferred messages workspace. Use the following
command to display the message in the deferred messages workspace:

SHOW NODE "node-id" MTA DEFERRED MESSAGE [COUNTRY = "country",-
ADMINISTRATION DOMAIN = "admd", PRIVATE DOMAIN = "prmd",-
LOCAL IDENTIFIER = "local-id"] ALL ATTRIBUTES

where:

• country is the Country name.

• admd is the name of the Administration Management Domain.

• prmd is the name of the Private Management Domain.

• local-id is a local identifier.

See Section 18.5 for more information about deferred messages.

If there is no record of the message in the MTA or in its deferred messages
workspace, then you may not be able to trace the message. See Section 18.4.6
for information about how to proceed with the message trace.

If there is a record of the message in the MTA, then the following is an
example of a response from the command you issued:

Problems with Messages 18–11

Identifiers

 Name
 [
 Country = "NZ",
 Administration Domain = "NZPTT",
 Private Domain = "ACME",
 Local Identifier = "1C9AC25811"
]

Status

 Recipient Information =
{
 [
 Name = "G=John S=Smith O=Sales
 P=ACME A=NZPTT C=NZ"
 Action = None
 Location =
 [

 State = Delivered or Exported
 Target =

 [
 Type = Agent

Agent Name = "ACME-UA"
]

]
]
}

The Processed Message entity
identifier. (The identifier of the
message that you are tracing.)

This attribute is repeated for each
recipient that the MTA knows about.

The recipient’s O/R address.

This indicates whether the message
is being redirected to another user
or expanded from a distribution list.

This shows what the MTA has
done, or is doing, with the message
for this recipient.

The name of the registered Agent
that received the message.

MIG0190

The information that you need to trace the path of the message is in the
Location field (the shaded area in the example). The Location field is
subdivided into the following fields:

• State

This describes what the MTA is doing or has done with the message; for
example, Being Processed.

• Target

This is the next destination of the message, if known by the MTA.

18–12 Problems with Messages

• Type

This identifies the target, which is one of the following:

Agent

A registered Agent of the MTA. This is identified by the name of the
Agent entity.

Mailbox

An unregistered Agent of the MTA. This is an O/R address.

Domain

Another routing domain. This is identified by the name of the Domain
entity in the MTS module. This name also corresponds to the value of
the Peer Domain attribute of the Peer MTA entity that represents a
peer MTA in that routing domain.

MTA

A peer MTA in your routing domain. This is identified by the name of
the peer MTA.

If an MTA has yet to process the message and determine its target, then
Unknown is displayed in the Type field.

The information in the State and Type fields indicates one of the following:

• The message is within the MTA (Section 18.4.1).

• The message has been manually deleted (Section 18.4.2).

• The message has expired and has not been delivered (Section 18.4.2).

• The message has been corrupted and cannot be processed by the MTA
(Section 18.4.2).

• The message has been delivered or exported to an Agent (Section 18.4.3).

• The message has been transferred to a peer MTA in your routing domain
(Section 18.4.4).

• The message has been transferred to a peer MTA in another routing
domain (Section 18.4.5).

Problems with Messages 18–13

18.4.1 Messages in the MTA
The following combinations of State and Type field values of the Recipient
Information attribute indicate that the message is within this MTA or in the
process of leaving this MTA:

State = Awaiting Processing Type = Unknown

State = Being Processed Type = Unknown

State = Awaiting Processing Retry Type = Unknown

State = Awaiting Transfer Type = MTA

State = Awaiting Transfer Type = Domain

State = Being Transferred Type = MTA

State = Being Transferred Type = Domain

State = Awaiting Transfer Retry Type = MTA

State = Awaiting Transfer Retry Type = Domain

State = Awaiting Delivery or Export Type = Agent

State = Awaiting Delivery or Export Type = Mailbox

State = Being Delivered or Exported Type = Agent

State = Being Delivered or Exported Type = Mailbox

State = Awaiting Delivery or Export Retry Type = Agent

State = Awaiting Delivery or Export Retry Type = Mailbox

The identity of the target, if known by the MTA, is also shown in the Type
field.

Messages that are Awaiting Transfer Retry may be delayed in the MTA because
the MTA is unable to set up an association to a peer MTA. Find out if there are
any relevant events, such as the Outbound Soft Rejection event, in the event
sink from the MTA. Take the appropriate action for the event as described in
Chapter 16.

Messages that are Awaiting Delivery or Export Retry may be delayed in the
MTA because the MTA is unable to connect to an Agent or Mailbox. Find out if
there are any occurrences of the Rejected Agent Connection or Unknown Agent
events in the event sink from the MTA. Take the appropriate action for these
events as described in Chapter 19.

All other states indicate that the MTA is processing the message normally.
You can repeat the trace later on to see if the MTA has finished processing the
message.

18–14 Problems with Messages

18.4.2 Deleted, Expired, or Corrupt Messages
When a message has expired, has been corrupted, or has been manually
deleted, the State field of the Recipient Information attribute contains one of
the following values:

• Deleted

When a message is manually deleted, the MTA generates the MPDU
Deleted event (Section 18.7.7). The MTA also sends a non-delivery report
to the originator of the message.

• Expired

When a message expires, the MTA generates the MPDU Expired event
(Section 18.7.3) and sends a non-delivery report to the originator of the
message.

• Corrupt

When the MTA receives a message that has been corrupted, it copies it
to a file in the bad messages directory and generates the Invalid MPDU
Detected event (see Section 18.7.2).

The Type field of the Recipient Information attribute contains the target as
appropriate.

Note that when the MTA generates a non-delivery report, the non-delivery
report is delivered to the originator of the message only if the originator
requested a report or is able to receive reports.

18.4.3 Messages Sent to an Agent
If the MTA has exported or delivered the message to a registered Agent, the
State and Type fields of the Recipient Information attribute contain:

State = Delivered or Exported Type = Agent

The name of the Agent is also shown in the Type field.

In this case, the MTA no longer has responsibility for the message. The action
you take depends on the type of interface used by the Agent:

• The Agent is a Gateway that uses the Shared File interface

The message could be awaiting collection by the Agent. The MTA exports
a message through the Shared File interface by placing the message
into a file and storing the file in the Output queue for collection by the
Agent. The Output queue for a particular Agent that uses the Shared
File interface is in the MTA’s workspace directory. Refer to the appendix

Problems with Messages 18–15

describing the operating system specific information for the location of the
MTA’s workspace.

If messages stay in the Output queue for some time, then check with the
manager of the Agent that the Agent is running correctly.

Agents that are unable to process messages that they retrieve from the
Output queue may rename the file in the Output queue so that it is
prefixed with the letter ‘‘U’’. The letter ‘‘U’’ indicates that the Agent cannot
deliver the message. The Agent writes an error message into its log file
identifying the file containing the message and the reason it was unable
to deliver the message. Contact the person responsible for managing the
Gateway or consult the Gateway documentation.

You can examine a file in the Output queue using the Message Decoder
tool. See the appropriate appendix for the commands to run the Message
Decoder tool.

If the message is not in a file in the Output queue, then make further
enquiries at the Gateway. See the relevant Gateway documentation or
contact the person responsible for managing the Gateway.

• The Agent uses the XAPI interface.

Make further enquiries at the Agent. See the relevant Agent
documentation or contact the person responsible for managing the Agent.

If the MTA has delivered the message to an unregistered Agent, the State and
Type fields of the Recipient Information attribute contain:

State = Delivered or Exported Type = Mailbox

The O/R address of the person using the unregistered Agent is also shown in
the Type field.

In this case, the MTA no longer has responsibility for the message. Make
further enquiries at the unregistered Agent. An unregistered Agent serves
only one O/R address, so the User Agent must have received the message.

18.4.4 Messages Transferred to a Peer MTA in the Same Routing
Domain
If the MTA has transferred the message to a peer MTA in your routing domain,
the State and Type fields of the Recipient Information attribute contain:

State = Transferred Type = MTA

The name of the peer MTA is also shown in the Type field.

18–16 Problems with Messages

In this case, this MTA no longer has responsibility for the message, continue
tracing the message at the peer MTA. To continue the trace at the peer MTA,
find out the name of the node where the peer MTA is running. Display the
Processed Message entity at this peer MTA and find out what the peer MTA is
doing or has done with the message.

18.4.5 Messages Transferred to Another Routing Domain
If the MTA has transferred the message to a peer MTA in another routing
domain, then the State and Type fields of the Recipient Information attribute
contain:

State = Transferred Type = Domain

The name of the routing domain where the peer MTA is located is also shown
in the Type field.

In this case, this MTA no longer has responsibility for the message.

You cannot trace messages in another routing domain, unless you have
management responsibility for that routing domain. However, if the other
routing domain contains MAILbus 400 MTAs, it is possible for the person
managing that routing domain to continue tracing the message.

18.4.6 Problems Tracing Messages
If you are unsuccessful when you first try to trace a message, continue again
at another MTA; for example, the recipient’s MTA. If another MTA in your
routing domain is able to display information relating to the message, then you
can continue the trace.

If you are unable to trace a message in your routing domain it could be that
there is no information about that message in your routing domain or the
Message History information at a particular MTA is missing or incomplete.
The most likely reason for information about a message to be missing from
your routing domain is because Message History logging is not enabled or, if
it is, the relevant information has been purged. Also, information about the
message may not be available for to one of the following reasons:

• Message History logging failed.

In this case, check the event sinks for occurrences of the Message History
Data Lost event. See Section 21.2.2 for information about this event, and
take the appropriate action.

• The first MTA that should have handled the message in your routing
domain never received the message.

Problems with Messages 18–17

This could be due to one of the following:

A Gateway that uses the Shared File interface fails to send the message
to the MTA.

The message could be awaiting collection by the MTA. Agents that
use the Shared File interface send a message to the MTA by placing a
file containing the message in the Input queue. The Input queue for
a particular Agent that uses the Shared File interface is in the MTA’s
workspace directory. Refer to the appendix describing the operating
system specific information for the location of the MTA’s workspace. If
the MTA is unable to retrieve the file containing the message from the
Input queue, then the MTA generates the System Interface Error event
reporting a file access failure (Section 20.1).

You can examine a message in the Input queue using the Message
Decoder tool. See the appropriate appendix for the commands to run
the Message Decoder tool.

If the message is not in the Input queue, then contact the person
responsible for managing the Gateway.

An Agent that uses the XAPI interface failed to send the message to
the MTA.

Contact the person responsible for managing the Agent.

A peer MTA in another routing domain failed to send the message to
the MTA.

Contact the person responsible for managing the peer MTA.

• The MTA did not log Message History information about the message
because the message was recovered from its workspace by another MTA in
the same routing domain (see Section 18.8).

In this case, the MTA that recovered the workspace copied the message to
its own workspace and is able to provide information about the message.
Therefore, resume tracing the message at the MTA that copied it. Note
that if the workspace was recovered by several MTAs it is not possible to
find out which messages were copied by a particular MTA. In this case, you
have to attempt to trace the message at each MTA that copied messages
from the workspace until you find an MTA that has information about the
message.

If, after all your investigations are complete, you are still unable to find out
what has happened to the message, then complete the following steps:

1. Make sure Message History logging is enabled at all the MTAs in your
routing domain, if you have not already done so.

18–18 Problems with Messages

2. Ask the originator of the lost message to re-send it.

If this message fails to be delivered, then you can trace what has happened to
it.

18.5 Tracing Deferred Messages
A deferred message is a message that is processed by the originator’s MTA at
a specified time after it has been submitted by the originator’s User Agent.
The originator specifies the time when processing is to begin. When the MTA
receives the message, it stores the message in its deferred messages workspace.
The MTA retrieves the message for processing at the time specified by the
originator. The MTA creates a Deferred Message entity for each message in its
deferred messages workspace.

It may be that a message you are trying to trace is in the MTA’s deferred
messages workspace. Use the following command to display information about
a specific deferred message:

SHOW NODE "node-id" MTA DEFERRED MESSAGE [COUNTRY = "country",-
ADMINISTRATION DOMAIN = "admd", PRIVATE DOMAIN = "prmd",-
LOCAL IDENTIFIER = "local-id"] ALL ATTRIBUTES

where:

• country is the Country name.

• admd is the name of the Administration Management Domain.

• prmd is the name of the Private Management Domain.

• local-id is a local identifier.

The following is an example of a response from this command:

Problems with Messages 18–19

 Identifiers

 Name

 [
 Country = "NZ",
 Administration Domain = "NZPT",
 Private Domain = "ACME",
 Local Identifier = "1C9AC35688"
]

Status

 Deferred Until = 1992-01-01-00:00:10.00

 Originator = "G=John S=Smith O=Sales
 P=ACME A=NZPTT C=NZ"

 Priority = Nonurgent

 Recipients = "G=James S=Major O=Sales
 P=ACME A=NZPTT C=NZ"

 Size = 2

 Submission Time = 1991-12-12-16:45:01.00

The identifier of the
message

When the MTA starts
to process the message

The originator’s
O/R address

The priority of the
 message

The recipient’s
O/R address

The size of the message
content in kilobytes

The time when the mes-
sage was submitted

MIG0194

18.6 Tracing Probes and Reports
You can trace probes and reports while they are being processed by the MTA.
You do this by using the MPDU entity. The Type attribute in the MPDU entity
indicates whether the MPDU is related to a message, probe, or report.

Use the following command to display all the MPDUs in the MTA that relate
to reports or probes:

SHOW NODE "node-id" MTA MPDU *, WITH TYPE = value

where value is either PROBE or REPORT.

If there are any probes or reports in the MTA, this command displays the
related MPDU entity for each probe or report.

18–20 Problems with Messages

The following is an example of a typical MPDU entity:

Identifiers

 Name = 282525696

Status

 Arrival Time = 1992-01-01-00:00:10.00

 Expiry Time = 1992-01-02-00:00:10.00

 Message Identifier =
 [
 Country = "NZ",
 Administration Domain = "NZPT",
 Private Domain = "ACME",
 Local Identifier = "1C9AC25611"
]

 Originator = "G=John S=Smith O=Sales
 P=ACME A=NZPTT C=NZ"

 Priority = Urgent

 Recipients = "G=James S=Major O=Sales
 P=ACME A=NZPTT C=NZ"

 Retry Time = 0-00:20:10.000

 Size = 2

 State = Awaiting Processing Retry

 Target =
 [
 Type = Undetermined
]

 Type = Probe

The MPDU ’s identifier

When the complete
MPDU arrived at
the MTA

When the MPDU
expires

The identifer of the
related message or
probe

The originator’s
O/R address

The priority of the
MPDU

The recipient’s
O/R address

The amount of time until
the retry attempt

The size of the content
in kilobytes

What is happening
to the MPDU

The next destination
of the MPDU

Indicates whether the
MPDU is a message,
probe, or report

MIG0189

Problems with Messages 18–21

18.7 Events Related to Problems with Messages
The following events are related to problems with messages or MPDUs:

• Expiry Alarm Threshold Exceeded (Section 18.7.1)

• Invalid MPDU Detected (Section 18.7.2)

• MPDU Expired (Section 18.7.3)

• Report Discarded (Section 18.7.4)

• Report Generation Failed (Section 18.7.5)

• Deferred Message Deleted (Section 18.7.6)

• MPDU Deleted (Section 18.7.7)

• Converter Unavailable (Section 18.7.8)

• Recovery Finished (Section 18.8.4)

18.7.1 Expiry Alarm Threshold Exceeded
This event is a warning that the MPDU could expire and not be delivered, and
occurs whenever an MPDU has been in the MTA for half the time specified in
the Local MPDU Expiry Interval attribute. This event is counted by the MTA
entity’s Expiry Alarms counter.

The event provides the following information:

Name = mpdu-id
State = mpdu-state
Target = target

where:

• mpdu-id is the identifier of the MPDU that is likely to expire.

• mpdu-state is the location of the MPDU in the MTA.

• target is the next destination of the MPDU.

Action
Action is not necessary in isolated instances of this event.

If you receive several of these events each identifying the same target, then
there could be problem with that particular target. See Section 18.4 for a
description of how to identify a target. You can check the event sink for other
events related to the same target; for example, if a peer MTA is unavailable,
then there might be events relating to the failure or rejection of an association
to that particular peer MTA.

18–22 Problems with Messages

If you receive several of these events that each identify different targets,
then there could be a problem with the MTA itself; for example the MTA has
reached its limit of outbound associations and cannot set up new associations.
Check the event sink for events that indicate congestion. See Section 7.2.3 for
a list of these events.

If this event occurs frequently because the MTA is congested, then tune the
MTA to improve the throughput of messages, see Section 7.3.

18.7.2 Invalid MPDU Detected
This event occurs whenever an MTA or Gateway cannot process an MPDU
because the MPDU is incorrectly encoded. The MTA copies the MPDU to its
bad messages directory. This event is counted by the MTA entity’s Invalid
MPDUs Detected counter.

The event provides the following information:

Name = mpdu-id
Message Identifier = message-id
Source = source
Saved MPDU = file-spec
Reason = reason
Diagnostic = diagnostic
Supplementary Information = supplement

where:

• mpdu-id is the locally assigned identifier of the invalid MPDU.

• message-id is the identifier of the related message, probe, or report.

• source is the name of the Domain, peer MTA, or Agent where the MPDU
originated. If the Source is a Mailbox, this field contains an O/R address,
or is null if the O/R address is incorrectly encoded.

• file-spec is the name of the file in the bad messages directory that
contains a copy of the MPDU.

• reason is the reason why the MPDU was invalid. This information is
the appropriate non-delivery text specified in the 1992 MHS Standards.
Reasons are listed in Section 18.2.1.

• diagnostic is information that identifies the error that caused the MPDU
to be rejected as invalid. This information is the appropriate diagnostic
text specified in the 1992 MHS Standards. Diagnostics are listed in
Section 18.2.1.

Problems with Messages 18–23

• supplement is additional information about the problem added by an MTA.
Note that this field can be empty.

Action
Investigate every occurrence of this event, which could be due to a file or device
error, or to a protocol error in the MPDU.

Examine the saved copy of the MPDU to identify the problem. Use the
Message Decoder tool to display the saved copy of the MPDU in the MTA’s bad
messages directory. For information about how to run the Message Decoder
tool, refer to the appendix describing the operating system specific information.

If possible, inform the originator that the message, probe, or report failed.

In the case of the Supplementary Information code 140 (GDI in message
identifier does not match the GDI in the first trace element), check the Global
Domain Identifiers attribute of the MTS entity. If your routing domain is
multihomed, make sure that all the synonyms for the GDI are included in the
Global Domain Identifiers attribute of the MTS entity, an entity of the MTS
module.

18.7.3 MPDU Expired
This event occurs whenever an MPDU expires. When an MPDU expires, the
MTA sends a non-delivery report to the originator of the message. Note that
the non-delivery report is delivered to the originator of the message only if
the originator requested a report or is able to receive reports. This event is
counted by the MTA entity’s Expired MPDUs counter.

The event provides the following information:

Name = mpdu-id
Message Identifier = message-id
State = mpdu-state

where:

• mpdu-id is the locally assigned identifier of the MPDU.

• message-id is the identifier of the related message, probe, or report.

• mpdu-state is the location of the MPDU in the MTA at the time it expired.

Action
Investigate every occurrence of this event, because it could indicate that other
problems are occurring in the MTA or in your routing domain which are
causing delays in the flow of messages. If this event occurs frequently, then
you may need to tune the MTA to improve the flow of messages through it, see
Section 7.3.

18–24 Problems with Messages

18.7.4 Report Discarded
This event occurs whenever an MTA discards a report because it is unable to
route it correctly. If the MTA generated the report, then the MTA copies the
the report to the bad messages directory. If the report was transferred in from
a peer MTA, then the MTA copies the report to the bad messages directory.
This event is counted by the MTA entity’s Reports Discarded counter.

The event provides the following information:

Name = mpdu-id
Original Message Identifier = message-id
Reason = reason
Diagnostic = diagnostic
Supplementary Information = supplement
Saved MPDU = file-spec

where:

• mpdu-id is the locally assigned identifier of the MPDU that contained the
report.

• message-id is the identifier of the original message or probe that the report
was referring to.

• reason is the reason why the delivery of the subject of the report failed.
This information is the appropriate non-delivery text specified in the 1992
MHS Standards. Reasons are listed in Section 18.2.1.

• diagnostic is information that identifies the error that caused the report to
be discarded. This information is the appropriate non-delivery diagnostic
text specified in the 1992 MHS Standards. Diagnostics are listed in
Section 18.2.1.

• supplement is additional information about the problem added by an MTA.
Note that this field can be empty.

• file-spec is the name of the file in the MTA’s bad messages directory, that
contains a copy of the message or probe that the discarded report referred
to, or, in the case of received reports, the report itself.

Problems with Messages 18–25

Action
Use the Message Decoder tool to display the saved copy in the MTA’s bad
messages directory. For information about how to run the Message Decoder
tool, refer to the appendix describing the operating system specific information.
Examine the saved copy in the MTA’s bad messages directory. If the copy is a
message or probe, then identify the originator. If possible, notify the originator
that their message or probe failed. If the copy in the bad messages directory
is a report, then notify the intended recipient of the report about the failure of
the message or probe that the report refers to.

18.7.5 Report Generation Failed
This event occurs whenever an MTA is unable to create a report; for example,
a non-delivery report. This event is counted by the MTA entity’s Report
Generation Failures counter.

The event provides the following information:

Name = mpdu-id
Original Message Identifier = message-id

where:

• mpdu-id is the locally assigned identifier of the MPDU.

• message-id is the identifier of the original message or probe for which
a report could not be generated. Note that the identifier of the original
message is only available if it was correctly encoded.

Action
This event is always preceded by the Invalid MPDU Detected event referring
to the same message or probe. Check the event sink for an Invalid MPDU
Detected event relating to the same MPDU; see Section 18.7.2 for information
about this event.

If possible, inform the originator that the message or probe failed.

18.7.6 Deferred Message Deleted
This event occurs whenever a message is manually deleted from an MTA’s
deferred messages workspace. This event is counted by the MTA entity’s
Deleted Deferred Messages counter.

The event contains the identifier of the message that was deleted.

18–26 Problems with Messages

Action
It is not normally necessary to investigate this event. The MTA automatically
sends a non-delivery report to the originator of the message. Note that the
non-delivery report is delivered to the originator of the message only if the
originator requested a report or is able to receive reports.

18.7.7 MPDU Deleted
This event occurs whenever an MPDU is manually deleted. This event is
counted by the MTA entity’s Deleted MPDUs counter.

The event provides the following information:

Name = mpdu-id
Message Identifier = message-id
State = mpdu-state

where:

• mpdu-id is the locally assigned identifier of the deleted MPDU.

• message-id is the identifier of the message, probe, or report that has been
deleted.

• mpdu-state is the location of the MPDU in the MTA at the time it was
deleted.

Action
It is not normally necessary to investigate this event. If the MPDU is a
message or a probe, then the MTA automatically sends a non-delivery report to
the originator. Note that the non-delivery report is delivered to the originator
of the message only if the originator requested a report or is able to receive
reports.

18.7.8 Converter Unavailable
This event is generated when a converter fails to convert a bodypart or when
the MTA is unable to locate the converter image it needs.

Failure by an MTA to convert a bodypart does not necessarily mean that the
message is not delivered. For example, an MTA can transfer a message to a
peer MTA without converting an unacceptable bodypart. However, if the MTA
is to deliver or export the message to an Agent, then delivery or export depends
on whether the Agent can receive any bodypart. If the Agent can receive any
bodypart, then the MTA delivers or exports the message. Otherwise, the MTA
issues a non-delivery report. See Section 3.8.1 for a description of how an MTA
decides whether or not to convert a bodypart.

This event is counted by the MTA entity’s Unavailable Converters counter.

Problems with Messages 18–27

The event provides the following information about the problem:

Converter Name = name
Step = step
Error Log = log
Saved Bodypart = file-spec
Message Identifier = message-id
Source = source
Originator = oraddress

where:

• name is the name of the Converter entity that describes the converter or a
sequence of conversions.

• step is the name of a Converter entity that describes the converter image
that failed during a sequence of conversions. Note that this field only has
a value when the Converter entity in the Converter Name field describes a
sequence of conversions.

• log is the file specification of the error log containing text error messages
from the converter that failed.

Note that the error log is only available if the converter fails and sends a
fatal error message to the MTA.

Some types of error reported in the log indicate a serious problem with
the MTA. These error messages are labeled Internal error. Report these
errors to HP. See Chapter 23 for information about how to contact HP and
the information that you need to supply.

• file-spec is the name of the file containing a copy of the bodypart. This
copy is in ASN.1 (BER) as described in Section 12.2.2.

Use the Message Decoder tool to examine the saved copy of the bodypart
that was being converted. Refer to the appendix describing the operating
system specific information for information about running this tool.

• message-id is the identifier of the message containing the bodypart that
the MTA sent to the converter.

• source is the identity of the Agent, peer MTA, or domain that sent the
message to the MTA.

• oraddress is the O/R address of the originator of the message.

This is followed by one of:

1 Error = Conversion Failed

2 Error = Conversion Result Does Not Match Target

18–28 Problems with Messages

3 Error = Cannot Decode Resultant Bodypart

4 Error = Converter Image Does Not Exist or is Inaccessible

Some of the problems identified by this event are caused by Converter and
Bodypart entities being incorrectly set up. Entities that describe the converters
supplied with the MTA, and the bodyparts referenced by those converters, are
created by commands in the MTA’s startup script.

If there is a problem with a HP-defined converter and you suspect the problem
was caused because you have amended the MTA’s startup script, then return to
using the original version of the script.

If you are unable to find out why a HP-defined converter has failed or why a
particular bodypart cannot be converted, then contact HP.

Action

1 The converter failed to recognize the source bodypart or failed before it
produced a target bodypart.

This is due to one of the following:

• The converter received a bodypart that was incorrectly encoded.

Problems with incorrect encoding of the source bodypart are due to
the original encoding by the User Agent being incorrect. You need
to identify the originator’s User Agent and check that it encodes the
characters and structure of the bodypart correctly.

• The Source attribute in the Converter entity that describes the
converter has been incorrectly set up.

The MTA sends the converter the bodypart type specified by the
Converter entity’s Source attribute. If this attribute has been
incorrectly set up, then the MTA sends the wrong bodypart type to
the converter.

If the converter is a HP-defined converter and you are using the MTA’s
startup script to create the Converter entity, make sure that you
are using the startup script that was supplied with the MTA. If the
converter is one that you have defined, then check that the Source
attribute of the Converter entity has been correctly set up.

Use the following command to display all the Converter entity’s
attributes:

SHOW NODE "node-id" MTA CONVERTER "name" ALL ATTRIBUTES

where name is the name of the Converter entity.

Problems with Messages 18–29

If the Source attribute describes a bodypart that you have defined,
then check the Bodypart entity that describes the bodypart. Use the
following command to display the Bodypart entity:

SHOW NODE "node-id" MTA BODYPART "name" ALL ATTRIBUTES

where name is the name of the Bodypart entity specified in the Source
attribute of the Converter entity.

Check the Source bodypart definition against the specification of the
converter. Also, check that the converter is using the correct object
identifiers for the data and parameter components of the bodypart.

If the Source attribute is incorrect, delete the Converter entity and
create a new entity containing the correct value.

If the Source bodypart definition is incorrect, delete the Bodypart entity
and create a new entity containing the correct attributes values. Add
any corrections you make to your Bodypart and Converter entities to
the MTA’s startup script.

• There is a decoding error in the converter.

If you cannot find a problem in the way the Source attribute is set up,
the problem might be with the converter image. You need to get the
converter checked by the supplier of the converter image. Note there is
a copy of the bodypart in the file specified by the event.

2 The converter has incorrectly converted the source bodypart.

The converter has generated a bodypart that the MTA is not expecting to
receive from this converter. This is caused by one of the following:

• The Target attribute of the Converter entity that describes the
converter has been incorrectly set up.

Display all the attributes of the Converter entity using the following
command:

SHOW NODE "node-id" MTA CONVERTER "name" ALL ATTRIBUTES

where name is the name of the Converter entity.

If the Target attribute describes a bodypart that you have defined,
then check the Bodypart entity that describes your bodypart. Use the
following command to display the Bodypart entity:

SHOW NODE "node-id" MTA BODYPART "name" ALL ATTRIBUTES

where name is the name of the Bodypart entity specified in the Target
attribute of the Converter entity.

18–30 Problems with Messages

Check the Target bodypart definition against the specification of
the converter. Check that the converter is using the correct object
identifiers for the data and parameter components of the bodypart.

If the Target attribute is incorrect, delete the Converter entity and
create a new entity containing the correct value.

If the Target bodypart definition is incorrect, delete the Bodypart entity
and create a new entity containing the correct attributes values. Add
any corrections you make to your Bodypart and Converter entities to
the MTA’s startup script.

• There is an encoding error in the converter itself.

If you cannot find a problem in the way the Target attribute is set up,
the problem might be with the converter image. You need to get the
converter checked by the supplier of the converter image. Note there is
a copy of the bodypart in the file specified by the event.

3 The MTA is unable to decode the bodypart that has been generated by the
converter.

This is due to an error in the encoding of the Target bodypart by the
converter image. The Target bodypart could have been incorrectly encoded
for one of the following reasons:

• The converter received a bodypart that was incorrectly encoded.

• There is an encoding error in the converter itself.

• There is a problem with the MTA.

If this problem occurs occasionally, then it is probably due to incorrect
encoding of the source bodypart by the User Agent that submitted the
message. You need to identify the originator’s User Agent and check that it
encodes the characters and structure of the bodypart correctly.

If this error occurs frequently then there could be an encoding error in the
converter. If the converter is one that you have defined, then check the
converter encoding.

If you cannot find an error in the encoding of a converter that you have
defined, then contact HP. If the converter is a HP-defined converter, then
contact HP. See Chapter 23 for information about how to contact HP and
the information that you need to supply.

4 The converter image is not accessible by the MTA.

Problems with Messages 18–31

Check whether the converter image file is correctly located in the MTA’s
converter image directory. For the location of this directory, refer to the
appendix describing the operating system specific information. If the
converter image is in the MTA’s converter image directory, then check that
the file protection and ownership are correct. Also check that the name of
the Converter entity exactly matches the name of the converter image that
it describes.

OpenVMS
On OpenVMS systems, the name of a converter image has a file
extension of .EXE. Do not include the .EXE extension in the name
of the corresponding Converter entity.
♦

If you are unable to find a HP-defined converter image, then reinstall the
MTA.

If you are unable to find a converter image that you have defined, then
reinstall your converter in the MTA’s converter image directory.

18.8 Recovering Messages From an MTA’s Workspace
There might be occasions when you need to remove an MTA from the network,
for example, because the node where the MTA is running is shut down for
maintenance. When an MTA is shut down, messages remain in its workspace
and cannot be processed until the MTA is recreated. However, another MTA
can access the MTA’s workspace and take responsibility for the messages by
copying them to its own workspace. When an MTA copies a message from a
peer MTA’s workspace it attempts to process the message as the peer MTA
would have done. The copying of messages by an MTA from a peer MTA’s
workspace is called recovery.

Before the MTA starts to copy a message from a peer MTA’s workspace, it
locks the peer MTA’s workspace. Locking controls access to the peer MTA’s
workspace, so that only one MTA can access a particular message at any one
time. As access to the peer MTA’s workspace is controlled, more than one MTA
can recover the peer MTA’s workspace and the peer MTA can be recreated at
any time during the recovery process.

If an MTA cannot lock the peer MTA’s workspace, recovery can still take place
but access to the messages in the workspace is not controlled. In this case,
when you issue the Recover command, it returns a warning text informing you
that the peer MTA’s workspace is not locked (see Section 18.8.3).

18–32 Problems with Messages

Messages copied from the peer MTA’s workspace that can only be delivered,
exported, or transferred by that peer MTA, cannot reach their intended
recipients. This is because the MTA that copied the messages does not have
the correct Agent or Peer MTA entities. If an MTA copies a message from
a peer MTA’s workspace that can only be delivered, exported, or transferred
by the peer MTA, then, if the peer MTA remains unavailable, the message
eventually expires. When the message expires, the MTA attempts to send a
non-delivery report to the originator of the message.

18.8.1 Limitations to Using Recovery
Recovery of a peer MTA’s workspace depends on the following conditions:

• The Recover command can be issued only from a privileged account. See
the appropriate appendix for information about privileges.

• Only MTAs in the same routing domain can recover messages from each
other’s workspace.

• An MTA can only recover messages from one peer MTA’s workspace at a
time.

• Before an MTA can recover messages from a peer MTA’s workspace it must
have read, write, and delete access to the workspace.

• An MTA running on Tru64 UNIX cannot access a workspace on OpenVMS.

• An MTA running on OpenVMS cannot access a workspace on Tru64 UNIX.

If the MTA is unable to lock the peer MTA’s workspace, the following additional
restrictions also apply:

• Only one MTA is able to recover messages from the peer MTA’s workspace.

• Do not recreate the peer MTA whose messages are being recovered until
recovery finishes.

18.8.2 Setting Up Recovery of an MTA’s Workspace
You need to find out the file specification of the workspace you want to recover
and then set up read, write, and delete access to that workspace. See the
appropriate appendix for the location of an MTA’s workspace.

The following are examples of how you can set up access to the peer MTA’s
workspace:

�
Tru64
UNIX

On Tru64 UNIX systems, access has to be set up at the MTA that
will recover the messages and at the peer MTA whose messages
you want to recover.

Problems with Messages 18–33

If you want to use the Network File System (NFS) to set up
access, then:

• NFS mount the peer MTA’s workspace by root at the MTA
doing the recovery.

• Export the peer MTA’s workspace using the /etc/exports file to
allow client superuser access.

♦

OpenVMS
On OpenVMS systems, if the peer MTA is located on a node that
is part of a cluster, and each MTA in the cluster has access to the
same disks, you can issue the Recover command at any node in
the cluster where an MTA is running.

If all the nodes where MTAs are running share a common
SYSUAF.DAT file, no additional security set up is required.

If the peer MTA whose messages are to be recovered is not on
a node in a cluster, you need access to the peer MTA’s SYSTEM
account at each MTA where you issue the Recover command.
Alternatively, you can set up a network proxy on the peer MTA’s
node so that an MTA can access the peer MTA’s workspace.
♦

If it is not possible for an MTA to access the peer MTA’s workspace over the
network, you might consider moving the device containing the peer MTA’s
workspace so that it is local to the MTA that is to recover the messages.
Alternatively, you can backup the peer MTA’s workspace and copy it to the
MTA that is to recover the peer MTA’s messages. Note that in this case, never
recreate the peer MTA whose messages have been recovered. If you do recreate
the peer MTA, duplicate messages could enter the MTS.

18.8.3 Recovery Command
To start the recovery process at an MTA, issue the following command:

RECOVER NODE "node-id" MTA WORKSPACE "workspace-name"

where workspace-name is the file specification of the peer MTA’s workspace, for
example:

�
Tru64
UNIX

/mnt/mta/workspace
♦

OpenVMS
node "SYSTEM password"::device:[MTA$node]

18–34 Problems with Messages

where node is the name of the node where the peer MTA is
located, password is the password of the SYSTEM account on the
peer MTA’s node, and device is the device containing the peer
MTA’s workspace.
♦

When you issue the Recover command, the following warning text might be
displayed: Warning - Recovery initiated but the workspace is not locked.
This warning text means that the MTA is unable to lock the peer MTA’s
workspace. In this case, the restrictions relating to recovering a workspace
that is not locked apply, see Section 18.8.1.

18.8.4 Recovery Finished Event
When an MTA stops copying messages from a peer MTA’s workspace, it
generates the Recovery Finished event. This event explains why the recovery
process has stopped. Note that there is no counter for the Recovery Finished
event.

The Recovery Finished event contains the following:

Workspace = "workspace-name"

where workspace-name is the file specification of the peer MTA’s workspace.

This is followed by one of:

1 Result = Recovery Complete

2 Result = Access to Workspace Lost

3 Result = Recovery Stopped by the MTA that Owns the Workspace

Action

1 The recovery process stopped because there are no more messages in the
peer MTA’s workspace. The recovery of the peer MTA’s workspace was
successful and no action is required.

2 The recovery process stopped because the MTA lost access to the peer
MTA’s workspace. Reissue the Recover command. If the MTA is still
unable to access the peer MTA’s workspace at the time you reissue the
Recover command, the Recover command fails. Check that the MTA
has read, write, and delete access to the peer MTA’s workspace and, if
necessary, set up this access to the peer MTA’s workspace.

3 The recovery process stopped because the peer MTA is being created. No
further action is required.

Problems with Messages 18–35

18.8.5 Information Not Recovered About Messages
When an MTA recovers messages from a peer MTA’s workspace, it does not
copy any recorded information about those messages that might be held by the
peer MTA, for example:

• Statistical information about messages recorded by the counters of the peer
MTA’s Agent, MTA, and Peer MTA entities.

• Accounting information

• Archived messages

• Message History information

You might be able to access the Accounting information and Archived messages
held by the MTA whose messages were recovered. Accounting information can
be examined using the Accounting Decoder tool. Similarly, Archived messages
can be examined using the Message Decoder tool. You can run these tools
from any MTA that can access the peer MTA’s directories. See the appropriate
appendix for information about running the Accounting Decoder and Message
Decoder tools.

When an MTA copies a message from a peer MTA, the peer MTA does not log
any Message History information about that message. Consequently, when the
peer MTA is recreated it cannot provide Message History information about
a message that was copied from its workspace. However, Message History
information about a message copied from the peer MTA can be provided by the
MTA that copied it.

18–36 Problems with Messages

19
Problems with Routing

This chapter describes the problems that might occur with routing messages
and how to solve these problems. MTAs use information stored in the
directory and in Agent and Peer MTA entities to route messages. If any of this
information is incorrect, then an MTA may be unable to send a message to its
intended recipient(s).

19.1 Discrepancies in Routing Information
Discrepancies between entries in the directory are detected by an MTA when
it is trying to obtain routing information from the directory. If an MTA finds
a discrepancy in the directory it generates the Directory Configuration Error
event; see Section 19.3.4.

If you replicate routing information, inconsistencies can occur between routing
information held by different DSAs in the same routing domain. If you
replicate the shared routing information for the routing domain, the MTAs
in your routing domain could be using a DSA that holds a shadow copy of it.
You are advised to make any changes to the routing information at the master
DSA. The master DSA is the DSA that holds the Naming Context for your
routing domain. After you have modified the routing information at the master
DSA you must update the shadow copies held by other DSAs. Until all the
MTAs in your routing domain have the same routing information available to
them, messages could be routed incorrectly.

Inconsistencies between routing information held in different routing domains
could cause a message to take a circular route. When an MTA detects that a
message is taking a circular route, that is, traveling along the same route more
than once, the MTA generates the Loop Detected event; see Section 19.3.5.

Problems with Routing 19–1

Discrepancies can also occur between routing information in the directory
and routing information held locally by an MTA in its Agent or Peer MTA
entities. If an MTA is unable to find an Agent or Peer MTA entity that is
named within a routing instruction held in the directory, then it generates one
of the following events:

• Rejected Agent Connection (see Section 19.3.1)

• Unknown Agent (see Section 19.3.2)

• Unknown Peer Domain (see Section 19.3.3)

If you believe the MTA has incorrectly routed a message, follow the procedure
described in Section 19.2.

19.2 Finding an O/R Address Entry in the Directory
If the routing information in the directory is incorrect or missing, then a
message is either incorrectly routed or not delivered. To find out whether
the routing information exists in the directory, check that the recipient’s O/R
address on the message has a corresponding entry in the directory.

If you have replicated the routing information, first check that the correct
routing information is held by the master DSA for your routing domain. If
the master DSA has the routing information, check that the same routing
information exists at all the DSAs that hold shadow copies.

Use the MTS module to access and modify the information in the directory.
See the MTS Module Online Help for information about creating MTS module
entities and modifying their attributes.

Use the following command to display an O/R address entry in the directory:

SHOW MTS "/MTS=routing-domain-name" ORADDRESS "oraddress" -
ALL ATTRIBUTES

where:

• routing-domain-name is the name of your routing domain

• oraddress is an O/R address

For example, a message is addressed as follows:

Recipient = "C=NZ;A=NZ-PTT;P=ACME;OU1=WELL;CN=CLARE ROBERTS"

This message is not delivered to Clare Roberts but is delivered to another
recipient. To find out if the routing information in the directory is either
incorrect or missing display the O/R address entry in the directory using the
following command:

19–2 Problems with Routing

SHOW MTS "/MTS=ACME" ORADDRESS -
"C=NZ;A=NZ-PTT;P=ACME;OU1=WELL;CN=CLARE ROBERTS" ALL ATTRIBUTES

If this command fails to return a matching O/R address entry, then remove the
last term from the O/R address and try the command again, for example:

SHOW MTS "/MTS=ACME" ORADDRESS "C=NZ;A=NZ-PTT;P=ACME;OU1=WELL" -
ALL ATTRIBUTES

If this command does not return a matching O/R address entry, then remove
the last term from the O/R address and issue the command again.

When the command returns a matching O/R address, you have found the O/R
address entry in the directory that contains the closest match to the recipient’s
full O/R address. This O/R address entry should contain routing information
as this is the entry that the MTA used when it routed the message.

Examine the routing information contained in the O/R address entry that
you have found. The routing information identifies either an MTA entry or a
Domain entry in the directory (or another O/R address entry if the recipient’s
messages are being redirected). Check that the entity named as a target in
the routing instruction exists in the directory. If the entity does not exist,
an appropriate event should have been generated (see Section 19.3.4). If the
entity exists, then check that it contains the correct information.

If the information in the directory is incomplete or inaccurate, then modify
the relevant entities of the MTS module to update the information in the
directory.

19.3 Events Related to Problems with Routing
The following events relate to discrepancies or errors in the routing information
held either in the directory or locally at the MTA in an Agent or Peer MTA
entity:

• Rejected Agent Connection (Section 19.3.1)

• Unknown Agent (Section 19.3.2)

• Unknown Peer Domain (Section 19.3.3)

Problems with Routing 19–3

• Directory Configuration Error (Section 19.3.4)

• Loop Detected (Section 19.3.5)

Note

If you have replicated routing information, always check the routing
information held at the master DSA when solving routing errors
identified by these events. If the routing information held at the
master DSA is correct, check that the shadow copies have been
updated.

19.3.1 Rejected Agent Connection
This event occurs whenever an MTA rejects a connection from an Agent.

Note

This event only applies to Agents that use the XAPI interface.

This event is counted by the MTA entity’s Rejected Agent Connections counter.

The information provided by the event depends on whether the Agent is a
registered Agent or an unregistered Agent of the MTA.

For a registered Agent, the event contains the following:

Agent =
[
Agent Name = agent-name
]

where agent-name is the name of the registered Agent that the MTA is
rejecting a connection from.

This is followed by one of:

1 Reason Code = Unknown Agent

2 Reason Code = Invalid Password

19–4 Problems with Routing

3 Reason Code = Maximum Connections Exceeded

For an unregistered Agent, the event contains the following:

Agent =
[
Mailbox Name = oraddress
]

where oraddress is the O/R address that the unregistered Agent supplied
when it tried to connect to the MTA.

This is followed by one of:

4 Reason Code = Unknown Agent

5 Reason Code = Invalid Password

6 Reason Code = Maximum Connections Exceeded

Action

1 The MTA rejected the connection because it did not recognize the Agent’s
name. Agents are registered with the MTA as Agent entities. When the
MTA receives a connection request from an Agent it searches for an Agent
entity with the same name. If the MTA is unable to find an Agent entity
with that name, it rejects the connection request.

Find out if the Agent named in the event should be registered. If it should
be registered, then check that none of the MTA’s Agent entities that
represent Agents using the XAPI interface are incorrectly named. To do
this, either check the create commands for Agent entities in the MTA’s
startup script or display the identifiers of the Agent entities using the
following command:

SHOW NODE "node-id" MTA AGENT * TYPE

If you find an obvious error in the name of an Agent entity, delete the
incorrectly named Agent entity and recreate it with the name specified in
the event. Check that the MTA is exchanging messages with the Agent.
Finally, correct the MTA’s startup script.

If all the MTA’s Agent entities are correctly named, create an Agent entity
for the Agent named in the event. See Part II of HP MAILbus 400 MTA
Planning and Setup for information about how to plan an Agent entity. If
copies of the messages exchanged with the Agent are to be archived, then
set up the Archive attribute (see Chapter 9). Include the commands that
create, set up, and enable the Agent entity in the MTA’s startup script.

Problems with Routing 19–5

2 The MTA rejected the connection because it did not recognize the Agent’s
password.

Note that Agents do not have to provide a password when they make a
connection request to the MTA. If a registered Agent of the MTA provides a
password, then the MTA checks the password provided by the Agent with
the password held by the Agent entity. If the passwords do not match,
then the MTA rejects the connection request. If the Agent does not provide
a password, then the MTA checks that there is no password held in the
Agent entity. If there is a password in the Agent entity, then the MTA
rejects the connection request.

Contact the person responsible for the Agent and verify the Agent’s
password. Note that the Password attribute is a write-only characteristic
attribute, so you cannot display its value.

If you have included the Agent entity’s Password attribute in the MTA’s
startup script, then you can display the startup script and check the
password.

If you have not included the Agent entity’s Password attribute in the
MTA’s startup script, you are unable to check that the password is correct.
Therefore, you have to assume that it has been incorrectly set up.

Use the following command to reset the Password attribute:

SET NODE "node-id" MTA AGENT "agent-name" PASSWORD "password"

where agent-name is the identifier of the Agent entity, and password is the
correct password.

It is recommended that you include the commands that create, set up, and
enable this Agent entity in the MTA’s startup script.

3 The MTA rejected the connection because it had reached the limit of Agent
connections that it can receive.

The Agent makes another attempt at connecting to the MTA, therefore
no action is required. However, if this event occurs frequently, increase
the value of the MTA entity’s Maximum Agent Connections attribute, see
Section 7.3.1.

4 The MTA rejected the connection because it could not validate the O/R
address supplied by the unregistered Agent. When an unregistered Agent
connects to an MTA, it supplies the O/R address of the person using the
Agent. The MTA validates this address by looking in the directory for a
matching O/R address entry. If it cannot find one, then the MTA rejects the
connection request.

19–6 Problems with Routing

If you want to check the O/R address entry in the directory against the O/R
address supplied by the Agent, use the following command:

SHOW MTS "/MTS=routing-domain-name" ORADDRESS "oraddress" -
ALL ATTRIBUTES

where:

• routing-domain-name is the name of your routing domain

• oraddress is the O/R address provided by the Agent

If there is no corresponding O/R address entry in the directory, then the
command returns an error. To find out how much of the O/R address has
been entered in the directory, remove the last term from the O/R address
and issue the command again as described in Section 19.2.

Inform the person responsible for managing the Agent about the
discrepancy in the O/R addresses. Either the O/R address supplied by
the Agent or the information in the directory needs to be changed. See the
MTS Module Online Help for information about using the MTS module to
modify information in the directory.

5 The MTA rejected the connection because it does not recognize the Agent’s
password. When an unregistered Agent connects to the MTA it supplies
the O/R address of the person using the unregistered Agent and a password
to the MTA. An O/R address entry in the directory can contain a password.
The MTA validates the password supplied by the Agent against the
password in the user’s O/R address entry in the directory. If the password
supplied by the Agent does not match the password held in the directory,
then the MTA rejects the Agent’s connection request. If the Agent does not
provide a password, then the MTA checks that there is no password held in
the user’s O/R address entry in the directory. If there is a password in the
user’s O/R address entry, then the MTA rejects the connection request.

Contact the person responsible for managing the unregistered Agent and
verify the password supplied by the Agent. The password held in the
directory is a write-only characteristic attribute, so you cannot display its
value. Therefore, you have to assume that it has been incorrectly set up.
Reset the Password attribute in the user’s O/R address entry using the
ORaddress entity of the MTS module. See the MTS Module Online Help
for information about modifying ORaddress entities.

Problems with Routing 19–7

6 The MTA rejected the connection because it has reached the limit of Agent
connections that it can receive.

The Agent makes another attempt at connecting to the MTA, therefore,
no action is required. However, if this event occurs frequently, you can
increase the value of the MTA entity’s Maximum Agent Connections
attribute, see Section 7.3.1.

19.3.2 Unknown Agent
This event occurs whenever an MTA receives a message for delivery or export
to an Agent that it does not recognize. Usually, this is because of a discrepancy
in the routing information provided in the recipient’s O/R address entry. This
discrepancy could be due to one of the following:

• The name of the Agent in the routing information within the recipient’s
O/R address entry is incorrect.

• An Agent entity has been created with an incorrect name.

• No Agent entity has been created for the Agent named in the recipient’s
O/R address entry.

• The message has been transferred to the wrong MTA.

This event is counted by the MTA entity’s Unknown Agents counter.

The event provides the following information:

A failed O/R Address from the MPDU = oraddress
Agent = agent-name

where oraddress is the recipient’s O/R address and agent-name is the name of
the Agent.

Action
Check that the routing information in the directory for the O/R address
provided by the event is correct. If the routing information is incorrect, then
use the ORaddress entity of the MTS module to modify the O/R address entry
in the directory.

If the routing information in the directory is correct, then check that none of
the MTA’s Agent entities are incorrectly named. To do this, either check the
create commands for Agent entities in the MTA’s startup script or display the
identifiers of Agent entities, using the following command:

SHOW NODE "node-id" MTA AGENT * ALL IDENTIFIERS

19–8 Problems with Routing

If you find an obvious error in the name of an Agent entity, delete the
incorrectly named Agent entity and recreate it with the name specified in the
event. Check that the MTA is exchanging messages with the Agent. Finally,
correct the MTA’s startup script.

If all the MTA’s Agent entities are correctly named, create an Agent entity for
the Agent named in the event. See Part II of HP MAILbus 400 MTA Planning
and Setup for information about how to plan an Agent entity. If the Agent uses
the XAPI interface and copies of messages exchanged with the Agent are to be
archived, set up the Archive attribute (see Chapter 9). Include the commands
that create, set up, and enable the Agent entity in the MTA’s startup script.

19.3.3 Unknown Peer Domain
This event occurs when there is a discrepancy between the name of a Domain
entry in the directory and the Peer Domain attribute of a Peer MTA entity.

This discrepancy prevents a boundary MTA transferring a message to a peer
MTA in the routing domain represented by the Domain entry. This is because
the boundary MTA is unable to find a Peer MTA entity for that peer MTA.

The discrepancy between the Domain entry and the Peer Domain attribute,
also causes a boundary MTA to reject an association request from a peer MTA
in another routing domain. This is because the boundary MTA is unable to find
the Domain entry in the directory that represents the routing domain where
the peer MTA is located. When the boundary MTA rejects the association
request, it generates the Inbound Transfer Hard Rejection event in addition to
this event.

This event can be due to one of the following errors:

• The directory does not contain a Domain entry that represents the routing
domain where the peer MTA is located.

• No Peer MTA entity has been created to represent the peer MTA in the
other routing domain.

• A Peer MTA entity has been created, but its Peer Domain attribute is
incorrect.

• The message has been transferred to the wrong boundary MTA.

This is because the routing instruction in a Domain entry is incorrect.

When this event is generated because the boundary MTA cannot find a Peer
MTA entity, then this event contains the name of the Domain entry in the
directory. When this event is generated because the boundary MTA rejects an
association request from the peer MTA, then this event contains the value of
the Peer Domain attribute.

Problems with Routing 19–9

This event is counted by the MTA entity’s Unknown Peer Domains counter.

Action
Find out the correct name of the Domain entry in the directory. The correct
name is the name that was planned. Check that there is a Domain entry in
the directory with the correct name; using the following command:

SHOW MTS "/MTS=routing-domain-name" DOMAIN -
"domain-name" ALL ATTRIBUTES

where:

• routing-domain-name is the name of your routing domain

• domain-name is the correct name of the Domain entity that represents the
peer MTA’s routing domain

The action you take depends on whether or not the correct Domain entry exists
in the directory.

• The Domain entry exists in the directory.

Check that the MTA that generated the event is the boundary MTA that is
connected to a peer MTA in the other routing domain.

If the MTA that generated the event is not the correct boundary MTA, then
you need to modify the routing instruction in the Domain entity so that
it points to the correct boundary MTA. In addition, check that there is an
MTA entry in the directory for the correct boundary MTA. See the MTS
Module Online Help for information about displaying and modifying the
Domain and MTA entities.

If the MTA that generated the event is the correct boundary MTA, then
the Peer MTA entity that represents the peer MTA is missing or has the
incorrect value in its Peer Domain attribute. Find out if you have created
a Peer MTA entity to hold information about a peer MTA in the other
routing domain. If you have, then reset its Peer Domain attribute using
the following command:

SET NODE "node-id" MTA PEER MTA [TYPE = MANUALLY CONFIGURED, -
NAME = "peer-mta-name"] PEER DOMAIN = "domain-name"

where peer-mta-name is the name of the Peer MTA entity that holds
information about the peer MTA in the other routing domain, and domain-
name is the correct name of the Domain entry in the directory.

If there is no Peer MTA entity, then you have to create one and set it up.
See HP MAILbus 400 MTA Planning and Setup for information about how
to plan and set up a Peer MTA entity.

• The Domain entry does not exist in the directory.

19–10 Problems with Routing

Create a Domain entry in the directory that represents the domain where
the peer MTA is located. See HP MAILbus 400 MTA Planning and Setup
for information about planning and setting up a Domain entity of the MTS
module.

After you have created a Domain entry in the directory, make sure that the
Peer Domain attribute of the Peer MTA entity contains the name of the
Domain entry.

19.3.4 Directory Configuration Error
This event occurs whenever an MTA accesses the directory and the directory
does not have all of the expected information. This is because there is an error
in the way that the routing information within the directory has been set up.

This event is counted by the MTA entity’s Directory Configuration Errors
counter.

The event contains the following information:

Directory Operation = operation
MTS Entity = mts-id
Problem Entity Name = identifier
Problem Entity Type = type
Attribute Type = attribute
Error = error

If the MTA was directed to the entry containing the problem by another entry
in the directory, then the identity of the referencing entry is also shown:

Referenced Entity Name = identifier
Referenced Entity Type = type

where:

• operation is the Directory Service operation that the MTA was attempting
when the error occurred, for example, Search.

• mts-id is the name of the MTS entity.

• identifier is the name of an entity in the MTS module.

• type is the type of entity in the MTS module named in the previous bullet,
for example, ORaddress.

• attribute is the attribute in the entity that contains the problem, if
known.

• error is a description of the problem; for example, Invalid Attribute
Syntax.

Problems with Routing 19–11

Action
The event identifies the MTS entity and the attribute that contains the error,
and describes the problem. Find out what information is expected to be held in
the entity.

Correct any errors by modifying the specified attribute or creating and
modifying the entity that is causing the problem. See the MTS Module Online
Help for information about modifying the attributes of entities belonging to the
MTS module.

19.3.5 Loop Detected
This event occurs whenever an MTA detects a loop in the route taken by
a message. A loop indicates that a message has been relayed through a
particular X.400 management domain twice or has been handled by 50 MTAs.

An MTA can detect the following types of loop:

• External

Each time a message enters an X.400 management domain the Global
Domain Identifiers (GDIs) for that domain are added to the external
trace information field in the message envelope. When an MTA receives
a message it checks the GDIs in the external trace information field.
An MTA detects an external loop when it receives a message that has
previously been relayed to the X.400 management domain that the MTA is
part of.

• Internal

Each MTA that handles a message in the local routing domain adds its
name to the internal trace information field in the message envelope. An
MTA detects an internal loop when it receives a message that has been
handled by 50 MTAs.

When an MTA detects a loop it does not deliver the message and sends a non-
delivery report to the originator. Note that the non-delivery report is returned
to the originator of the message only if the originator specifically requested a
report or is able to receive reports. The MTA copies the message that contains
the loop to the bad messages directory.

This event is counted by the MTA entity’s Loops Detected counter.

The event contains one of the following:

1 Trace Type = External
Saved MPDU = file-spec

19–12 Problems with Routing

2 Trace Type = Internal
Saved MPDU = file-spec

where file-spec is the name of the file in the bad messages directory that
contains the copy of the message.

Action

1 Use the Message Decoder tool to examine the message in the bad messages
directory. For information about how to run the Message Decoder tool,
refer to the appendix describing the operating system specific information.

Examine the Trace Information field within the saved copy of the MPDU
to identify the loop. Each record of this trace contains a Global Domain
Identifier (GDI) of an X.400 management domain through which the
message has traveled.

You need to find out why the message was routed from your X.400
management domain and where the message went after it left your routing
domain. This means that you have to look through the Trace Information
and identify your routing domain. In order to identify your routing domain
you need to know its GDIs. Note that a routing domain can have more
than one GDI, but only one of its GDIs appears on the message. Use the
following command to display the GDIs for your routing domain:

SHOW MTS "/MTS=routing-domain-name" GLOBAL DOMAIN -
IDENTIFIERS

where routing-domain-name is the name of your routing domain.

Look through the trace information in the saved message until you find a
GDI for your routing domain. The GDI information following your routing
domain’s GDIs identifies the next X.400 management domain on the
message’s route. The loop could have begun when the message left your
X.400 management domain.

To find out if the message should have been sent to this X.400 management
domain, check the routing instruction for each recipient of the message.

The O/R address of each recipient is specified in the message envelope. Use
the following command to check the routing instruction:

SHOW MTS "/MTS=routing-domain-name" ORaddress "oraddress" -
ROUTING INSTRUCTION

where:

• routing-domain-name is the name of your routing domain

• oraddress is the O/R address of a recipient on the message envelope

Problems with Routing 19–13

You need to make sure that the routing instruction for each recipient is
correct and that none of the recipients are in your routing domain. If
you find an error in the routing instruction for any of the recipients, then
correct the error using the appropriate entities in the MTS module. See
the MTS Module Online Help for information about modifying MTS module
entities.

If you are unable to find an error in the routing instruction of any of the
recipients, then do the following:

• Identify the boundary MTA that transferred the message from your
X.400 management domain.

• Identify the Peer MTA entity that holds information about a peer MTA
in the other X.400 management domain.

• Notify the person responsible for managing that peer MTA about the
problem.

2 If an MTA in your routing domain detects a loop in a message that
has not been outside your X.400 management domain, then the loop is
likely to be due to discrepancies in the routing information held in the
directory. Discrepancies can occur when information in the directory is
being updated. Until the directory is fully and correctly updated, different
MTAs in your routing domain could obtain different routing information
from the directory. If you have replicated the routing information, updating
the directory is not complete until all the DSAs that hold shadow copies of
the directory are updated.

19–14 Problems with Routing

20
Problems with Resources

This chapter describes the problems that occur when an MTA cannot access a
resource that it requires. The most important resources that the MTA needs
are those provided by the operating system that it is running on and the
directory. The System Interface Error (see Section 20.1) is generated by the
MTA whenever it detects a problem with the operating system. The MTA
generates the Directory Service Error (see Section 20.2) whenever it detects
a problem with the directory service provided by the directory system agent
(DSA).

20.1 System Interface Error
This event occurs whenever the operating system fails to do something that an
MTA requested.

This event is counted by the MTA entity’s System Interface Errors counter.

The event contains one of the following:

1 System Interface Error = Process Creation
Parameter =
Error Text = error-message

2 System Interface Error = Image Execution
Parameter = image
Error Text = error-message

3 System Interface Error = Interprocess Communication
Parameter =
Error Text = error-message

4 System Interface Error = File Access
Parameter = filename
Error Text = error-message

5 System Interface Error = Memory Allocation
Parameter =
Error Text = error-message

Problems with Resources 20–1

6 System Interface Error = Socket Operation
Parameter =
Error Text = error-message

7 System Interface Error = UID Operation
Parameter =
Error Text = error-message

8 System Interface Error = OpenVMS Management Operation
Parameter =
Error Text = error-message

where image is the name of an executable image, filename is the name of a
file, and error-message is text provided by the operating system.

Action

1 The operating system is unable to create a process required by the MTA.
This problem also affects other software running on the same node. Notify
the person responsible for managing your system or see the documentation
set applicable to your operating system.

2 The operating system was unable to run the named image.

Check that the image named in the event is in the correct directory and
has the correct protection and ownership. See the appropriate appendix for
the location, protection, and ownership of each image.

If you cannot find the program or image, then reinstall the MTA, see the
MAILbus 400 MTA installation documentation.

3 The operating system is unable to provide communication between different
processes.

Action is only required if this error affects the MTA so that it is no longer
working correctly. If this happens, then notify your system manager or see
the documentation set applicable to your operating system.

4 The operating system is unable to access a file.

Check that the file specified in the event has not been moved to a different
directory or has the wrong file protection or ownership. For the location of
the MTA’s files and the correct protection and ownership for each file, see
the appropriate appendix.

�
Tru64
UNIX

On Tru64 UNIX, if the error text is Too Many Files, in particular,
when followed by a Forced Exit event, increase maxusers and
rebuild the kernel.

20–2 Problems with Resources

maxusers is described in the Tru64 UNIX documentation as
a Tru64 UNIX global keyword. Refer to the Tru64 UNIX
documentation for information about this global keyword.
♦

5 The MTA has reached the limit of its allotted memory.

Notify the person responsible for managing your system or see the
documentation set applicable to your operating system. If possible, allocate
more memory to the MTA.

6 A socket is an end point for communication. The operating system has
failed in an operation connected with a socket; for example, it is unable to
create or delete a socket. Note that this problem can only occur on Tru64
UNIX systems. Notify the person responsible for managing your system or
see the Tru64 UNIX documentation set.

7 The operating system has failed in an operation related to a unique
identifier (UID); for example, it is unable to allocate a UID or is unable
to convert a UID to a string format. The allocation of UIDs is done by
DECnet. Notify the person responsible for managing your system or see
the HP DECnet-Plus documentation and the documentation set applicable
to your operating system.

8 The MTA failed when attempting a management operation; this is a
temporary error. If the error persists, shut down and restart the MTA.

The System Interface Error event can occur before other events. Examine the
event sink for any events with a time stamp later than the occurrence of this
event and take the appropriate action to remedy any other problems.

If the event sink contains a Forced Exit event from this MTA, you can ignore
any occurrences of the System Interface event that have a time stamp later
than the Forced Exit event. This is because the operating system might not be
responding as expected during the exit process.

20.2 Directory Service Error
There is a problem with the HP Enterprise Directory Service, specifically
with the DSA. The DSA is a server that is responsible for storing the MTA’s
directory entries and providing access to them.

Directory Service Errors indicate that an MTA cannot obtain access to the
directory or cannot obtain routing information from the directory.

This event is counted by the MTA entity’s Directory Service Errors counter.

The event contains the following information:

Problems with Resources 20–3

Directory Operation = operation
DSA Address = address
MTS Entity = mts-name
Entity Name = identifier
Entity Type = type
Error = error
Error Type = error-type

where:

• operation is the directory service operation that the MTA was attempting
when the error occurred; for example, Bind.

• address is the Presentation address of the DSA that the MTA is using or
attempting to use.

• mts-name is the identifier of the MTS entity associated with the MTA.

• identifier is the identifier of the entity in the MTS module that relates to
the directory information required by the MTA.

• type is the type of entity in the MTS module that relates to the directory
information required by the MTA; for example ORaddress.

• error is a description of the directory service error, for example, Busy.

• error-type describes the category of directory service error; for example,
Service Problem.

The following types of error can occur with the directory service:

1 Error Type = Service Error

The DSA is unable to provide a service to the MTA.

2 Error Type = Security Problem

The MTA is unable to access its routing information.

3 Error Type = Communication Problem

The MTA is unable to communicate with the DSA.

4 Error Type = Interface Problem

There is a problem with the interface between the MTA and the DSA.

20–4 Problems with Resources

Action
To solve problems with the HP Enterprise Directory Service you need to contact
the person managing the DSA or see the HP Enterprise Directory Service
documentation set. You can identify the DSA being used by the MTA from
the DSA’s Presentation address provided by this event. When you contact the
person responsible for managing the DSA, supply all the relevant information
provided in this event.

Some directory service problems reported by this event are also detected by
the DSA, which generates a DSA event that gives more information about the
problem. You could set up event dispatching so that you receive DSA events in
addition to MTA events.

1 The following service errors can be reported by this event:

• Error = Busy

No action is necessary as the MTA tries to reconnect to the DSA.
However, if this event occurs frequently, contact the person managing
the DSA and find out what is causing congestion at the DSA.

• Error = Unavailable

Check the state of the DSA by issuing the following command at the
node where the DSA is running:

SHOW NODE "node-id" DSA STATE

If the DSA does not exist or is in any state other than ON, contact the
person managing the DSA and ensure that the DSA is running.

• Error = Unwilling to Perform

This error is due to the way that the authentication characteristics in
the DSA entity have been set up. The DSA does not recognize the MTA
as an authorized directory user. Contact the person responsible for
managing the DSA and ensure that the DSA entity is set up to allow
the MTA access to the directory.

• Error = DIT Error

One of the schema files that the MTA uses at the DSA, for example,
MTS.SC or X400.SC, has been corrupted or is missing. Contact the
person managing the DSA and have the schema file(s) reinstalled.
Refer to the HP Enterprise Directory Service documentation set for the
location of the schema files.

• Error = Time Limit Exceeded

Problems with Resources 20–5

The time limit that specifies how long a directory operation can take
has expired. You can ignore this event as the MTA tries to access the
directory again. However, if this event occurs frequently, contact the
person managing the DSA and ensure that the DSA’s time limit for
directory operations is increased.

The following service errors occur when a DSA does not have the routing
information required by the MTA and unsuccessfully attempts to refer to
another DSA that does have the routing information. Referral by a DSA to
another DSA is known as chaining:

• Error = Chaining Required

• Error = Invalid Reference

• Error = Loop Detected

• Error = Out of Scope

• Error = Referral

Start investigating chaining errors by checking that the MTA is using
the correct DSA. The DSA’s Presentation address provided by this event
identifies the DSA being used by the MTA. If the MTA is not using the
correct DSA, then the DUA defaults file needs to be reconfigured to contain
the Presentation address of the DSA that holds the routing information for
the MTA’s routing domain. Consult with the managers of other applications
on the MTA’s node that also use the directory and find out if it is possible
to reconfigure the DUA defaults file.

If the DSA identified by this event is the DSA that the MTA should be
using, or if it is not possible to reconfigure the DUA defaults file, contact
the person responsible for managing the DSA and ensure that chaining
is avoided. To avoid chaining, the topography of the directory needs to
be reorganized so that the routing information is replicated to the DSA
identified in this event.

2 The following security errors can be reported by this event:

• Error = Invalid Credentials

One or more of the MTA entity identifier, MTS entity identifier or MTA
password are incorrect.

Check that the value of each these identifiers or attribute stored in
the directory is the same as the value in the MTA Startup script. It is
possible that someone has modified the directory entries while the MTA
is running.

20–6 Problems with Resources

When you have isolated the problem, make sure the directory entries
and the MTA Startup script contain the same values and shut down
and restart the MTA.

• Error = Insufficient Access Rights

This error occurs when the controls that permit access to the
directory have been modified to prevent the MTA accessing its routing
information in the directory. In this case, the access controls have
been set up at a naming context above the routing domain entry in the
Directory Information Tree (DIT).

To solve problems with access control, contact the person responsible
for managing the DSA and ensure that the MTA can access the routing
information in the appropriate MTS naming context.

3 Communication errors occur when there is a problem with the association
between the MTA and the DSA. If a communication error occurs when
the MTA is attempting to bind to the DSA, then the establishment of
the association failed. If a communication error occurs when the MTA is
attempting a Read or Search operation, then the association has been
aborted. If an association between the MTA and the DSA fails or is
aborted, the MTA attempts to reconnect to the DSA.

If communication errors occur frequently, contact the person managing the
DSA and find out why the associations fail.

In the case of an establishment failure, before contacting the person
responsible for managing the DSA, check the state of the DSA. If the DSA
is in the ON state, check that the ‘‘DXD_CLNS’’ Transport Template exists.
To do this, issue the following command at the node where the MTA that
generated the event is running:

SHOW NODE "node-id" OSI TRANSPORT TEMPLATE "DXD_CLNS" ALL ATTRIBUTES

If the ‘‘DXD_CLNS’’ Transport Template entity does not exist, contact the
person responsible for managing the DSA and ensure that the
‘‘DXD_CLNS’’ Template is created on the node where the MTA is running.

Problems with Resources 20–7

Note

If you try to create the MTA while the DSA is being created and
enabled, if the MTA is unable to obtain access to the directory it
generates the Directory Service Error event with the error Transmit
Error. Ignore this event if it occurs under these conditions as the MTA
tries to reconnect to the DSA.

However, if the MTA create command fails with the error "Failed when
communicating with the directory", all retries have failed, so check
the state of the DSA. If the DSA is not running, contact the person
responsible for managing the DSA and ensure that the DSA is in the
ON state.

The following communication errors can be reported by this event:

• Error = Abort Error

The association between the MTA and the DSA has been aborted. This
could be due to the connection being lost because of network problems.

• Error = Transmit Error

The MTA is unable to transmit connection information to the DSA.

• Error = Receive Error

The MTA is unable to receive data from the DSA.

• Error = Reject Error

The DSA has rejected attempts by the MTA to establish an association.

• Error = Unexpected Event

The association between the MTA and the DSA has been aborted
because of an error in one of the OSI lower layers.

• Error = No DSA Address

The MTA does not have a Presentation address for the DSA or the
Presentation address that the MTA is using for the DSA contains
a syntax error. To solve this problem you need to reconfigure the
DUA. See Part III of HP MAILbus 400 MTA Planning and Setup for
information about configuring the DUA.

20–8 Problems with Resources

4 The following interface errors can be reported by this event:

• Error = Memory

This is due to a temporary lack of memory at the MTA. When this
error occurs, the MTA also generates the System Interface Error event
with the error Memory Allocation. The System Interface Error event
provides more information about the problem. Check the event sink for
an occurrence of that event from this MTA and take the appropriate
action as described in Section 20.1.

• Error = Unknown

The cause of the problem is unknown. If this error occurs frequently
contact HP. See Chapter 23 for information about how to contact HP
and the information you need to supply.

• Error = Decoding Problem

The MTA is unable to decode a response from the DSA. This is due to
a software error. If this error occurs contact HP. See Chapter 23 for
information about how to contact HP and the information you need to
supply.

• Error = Bad Identifier

The MTA cannot identify a reply it received from the DSA. This is due
to a software error. If this error occurs contact HP. See Chapter 23 for
information about how to contact HP and the information you need to
supply.

Problems with Resources 20–9

21
Problems Collecting Information

This chapter describes the problems that can occur when collecting information
about the functioning of an MTA or the messages that it has handled. Some
resources that collect information, for example event dispatching, are set up
as standard parts of MTA operation. Other resources, for example, Message
History logging, Accounting and Archiving, can give rise to problems only when
they are enabled.

21.1 Problems Collecting Events
You may find that you do not receive some or any of the events that you expect,
although you know that there is a problem in your routing domain. Check
with the person responsible for managing the Event Dispatcher to find out if
the Event Dispatcher is operating normally.

If there is no problem with the Event Dispatcher, the problem could be one of
the following:

• Event reporting has not been correctly set up on the network.

• Events are being sent to another event sink.

• Event filters have been set over-selectively so you do not see all the
information you expect.

• The Event Dispatcher module has been disabled, deleted or is unavailable
for some other reason, for example, because DECnet communication
between the event stream and the event sink is not working properly.

Action
Make sure that event dispatching is set up correctly, as described in the HP
DECnet-Plus documentation and in Chapter 13.

If the Event Dispatcher is unavailable, then once it is restored you need to
manually restart MTA event dispatching. To do this, run the MTA’s event
dispatching script. Refer to the appendix describing the operating system
specific information for the command to run this script.

Problems Collecting Information 21–1

21.2 Events Related to Problems with Collecting Information
The following events relate to failures in recording information about a
message:

• Accounting Data Lost (Section 21.2.1)

• Message History Data Lost (Section 21.2.2)

• Archive Failed (Section 21.2.3)

21.2.1 Accounting Data Lost
This event occurs whenever an MTA is unable to log Accounting information
about a message.

This event is counted by the Accounting Data Losses counter of the MTA entity
or Peer MTA entity that generated the event.

The event contains the identifier of the message that was not logged.

Action
This problem is most likely to be caused because the disk that holds the MTA’s
Accounting files is full or has been corrupted. The System Interface Error
event is also generated whenever there is a file access error. Check the event
sink for an occurrence of the System Interface Error event from this MTA.
The System Interface Error event provides additional information about the
problem, see Section 20.1.

If the disk is full, take immediate action to delete any files that you do not
need. If you do not want to delete any of the files on the disk, then copy some
or all of the files to another medium. For the location of the MTA’s Accounting
directory and for information about how to run the Accounting Decoder tool,
refer to the appendix describing the operating system specific information.

If this problem persists, tune the MTA by decreasing the value of the
Accounting Purge Interval attribute so that the disk is purged more frequently,
see Section 8.2.3.

21.2.2 Message History Data Lost
This event occurs whenever an MTA is unable to write History information
about a message in the Message History workspace. Note that no history
information is kept about reports or probes.

This event is counted by the MTA entity’s Message History Data Losses
counter.

The event contains the identifier of the message for which no history
information was logged.

21–2 Problems Collecting Information

Action
This problem is most likely to be caused because the disk that holds the MTA’s
Message History workspace is full or has been corrupted. The System Interface
Error event is also generated whenever there is a file access error. Check for
an occurrence of the System Interface Error event from this MTA. The System
Interface Error event provides additional information about the problem, see
Section 20.1.

If the disk where the MTA’s Message History workspace is located is full, take
immediate action to make more space available on this disk. To immediately
solve this problem, disable Message History logging at this MTA. Make sure
that there is free space on the disk where the MTA’s message history workspace
is located before you re-enable Message History logging. For the location of
the MTA’s Message History workspace, refer to the appendix describing the
operating system specific information.

Tune the MTA by decreasing the value of the Message History Purge Interval
attribute so that the disk is purged more frequently, see Section 10.2.2.

21.2.3 Archive Failed
This event occurs whenever an MTA is unable to archive a message exchanged
with an Agent or peer MTA.

This event is counted by the Failed Archives counter of the Agent entity or
Peer MTA entity that generated the event.

The event contains the identifier of the message that was not archived.

Action
Since archived data is not purged automatically, this problem is most likely to
be caused by the disk that holds the MTA’s Archive files being full or having
been corrupted. Check that your procedures for managing Archiving are
working correctly.

The System Interface Error event is also generated whenever there is a file
access error. Check for an occurrence of the System Interface Error event from
this MTA. The System Interface Error event provides additional information
about the problem, see Section 20.1.

If the disk is full and you do not want to delete any of the files on the disk,
then copy some or all of the files to another medium. For the location of the
MTA’s Archive directory (Tru64 UNIX) or directories (OpenVMS), refer to the
appendix describing the operating system specific information.

Problems Collecting Information 21–3

22
Software Problems

It is possible for problems to originate between the MTA software and other
software, or in the MTA software itself. Section 22.1 describes how to solve
problems related to the state of the MTA. Section 22.2 describes the events
that report problems in the MTA software.

22.1 MTA Permanently in the Disabling or Enabling State
Once an MTA has been created, it is in one of the following states:

• ENABLING

The enable command is being executed.

• ON

The MTA is running.

• DISABLING

The disable command is being executed.

• OFF

The MTA is not running.

Use the following command to find out the state of an MTA:

SHOW NODE "node-id" MTA STATE

To change the state of an MTA from OFF to ON, issue the following command:

ENABLE NODE "node-id" MTA

When you issue this command, the state of the MTA immediately changes
to ENABLING. When the command has fully executed, the state of the MTA
changes to ON.

To change the state of an MTA from ON to OFF, issue the following command:

DISABLE NODE "node-id" MTA

Software Problems 22–1

When you issue this command, the state of the MTA immediately changes to
DISABLING. When the command has fully executed, the state of the MTA
changes to OFF.

An MTA should only be in the ENABLING or DISABLING state for a short
period of time. However, if an MTA remains in one of these states, then the
corresponding enable or disable command has failed to execute properly. To
solve this problem you need to stop the MTA and then restart it as explained
in the appendix describing the operating system specific information.

Note that only the MTA can be ON, ENABLING, DISABLING or OFF. Peer
MTA and Agent entities are either ON or OFF.

22.2 Events Related to Problems with Software
The following events relate to problems with the MTA software:

• Internal Error (Section 22.2.1)

• Forced Exit (Section 22.2.2)

22.2.1 Internal Error
This event occurs whenever an MTA detects an error in its own software. This
event is counted by the MTA entity’s Internal Errors counter.

The event provides the following information:

Version = version
Diagnostic Number = diagnostic

where version is the version number of the MTA software and diagnostic is a
reference number that identifies the error.

Action
Report all occurrences of this event to HP. See Chapter 23 for information
about how to contact HP and the information you need to provide.

If an occurrence of this event is followed by a Forced Exit event, record all
events that occur just before and after the Forced Exit event and any data
associated with them. Try to restart the MTA by running the MTA startup
procedure.

22–2 Software Problems

22.2.2 Forced Exit
This event occurs whenever an MTA is affected by an error due, for example,
to a software fault in either the MTA or the operating system. Such faults
prevent the MTA from continuing to function. Therefore, this event is likely to
follow an Internal Error event or a System Interface Error event.

This event provides the following information:

Exit Point = component

where component is the component of the MTA that failed.

Action
If this event is preceded by a System Interface Error event, try to resolve the
problem that caused the System Interface Error event (see Section 20.1). Try
to restart the MTA by running the MTA startup procedure.

If this event is preceded by a System Interface Error event, and you cannot
resolve the problem, or the event is preceded by an Internal Error event, then
contact HP. See Chapter 23 for information about how to contact HP and the
information to provide.

Note the Forced Exit event can lead to events that are generated as a result of
the MTA deleting itself. You can ignore an occurrence of the System Interface
Error event if it has a time stamp later than a Forced Exit event.

22.3 Events Related to License Problems
The Licensed Message Throughput Exceeded event occurs whenever an MTA
detects that the message throughput has exceeded its license terms and
agreement. This event is counted by the MTA entity’s Licensed Message
Throughput Exceeded counter.

The event provides the following information:

Licensed Throughput= messages_per_day.

where messages_per_day is the message throughput permitted by your license
agreement.

Action
You must obtain a new license from HP that is appropriate for the message
throughput that the MTA is now processing.

Software Problems 22–3

23
Reporting Your Problems

If you have a problem that you cannot solve by using the methods described in
Part III you need to report your problem to HP. This chapter tells you how to
contact HP and what evidence to gather before reporting your problem.

23.1 Contacting HP
Contact HP as follows:

• If you have a warranty or a service contract, contact your HP support
center.

• If you do not have a warranty or a service contract, contact your local HP
office to arrange for a service contract.

Contact your HP support center immediately on the occurrence of any problems
which cannot be solved using this guide. Your HP Services representative is
responsible for supporting your MAILbus 400 MTAs.

Alternatively, you can submit a Software Performance Report (SPR). SPR
forms can be obtained from your local HP office. Report one problem per SPR
and follow the instructions attached to the form. In addition to the information
requested on the form, remember to include all the information relevant to
your problem, as described in Section 23.2. When your SPR form is complete,
submit the form and associated information to the SPR center nearest you (see
the address list on the reverse side of the SPR instructions).

23.2 Gathering Information
Before contacting HP, collect as much information about the problem as you
can. In your report to HP, always include the version number of the MTA
software that you are running. The version number of the MTA software is
held in the Version attribute of the MTA entity. Use the following command to
display this attribute:

SHOW NODE "node-id" MTA VERSION

Reporting Your Problems 23–1

If you are reporting a problem that is caused by a protocol or parameter error,
make a trace of the protocol information and include it with your report. See
Section 16.4 for information about how to record protocol information.

Protocol errors are reported specifically by the RTSE Protocol Violation and
Lower Layer Protocol Violation events. The following events can also indicate
protocol or parameter errors:

• Inbound Failure event

• Outbound Failure event

• Outbound Establishment Failure event

Always report occurrences of the Internal Error event. The information
provided by the Internal Error event includes a diagnostic reference number.
Include this information in your report. When the Internal Error event
is followed by a Forced Exit event, the MTA might record the following
information at the same time as it records these events:

�
Tru64
UNIX

On Tru64 UNIX systems, information which is recorded in the
system error log: /usr/adm/syslog.dated/time-stamp/syslog.log
♦

OpenVMS
On OpenVMS systems, information which is recorded in
SYS$COMMON:[MTA]MTA.ERR or
SYS$COMMON:[MTA]MTA.OUT
♦

Make a copy of the entries that were entered by the MTA in your system error
log at the time the Internal Error and the Forced Exit events occurred. Include
a copy of these system error log entries when you report the problem to HP. If
you are reporting a problem related to the way the MTA works or the MTA’s
use of the directory, supply a copy of the MTA startup and directory population
scripts that you are using.

Because problems are often difficult to reproduce with a different system
configuration, define as precisely as possible the state of your system when the
problem occurred. For example, the following information about your system
will be helpful:

• The hardware that the MTA is running on.

• The version number of the operating system you are running.

• The type of disk storage you are using, or any special hardware
configuration.

23–2 Reporting Your Problems

• Details of the operating environment of the MTA, for example, the memory
resources available on the system where the MTA is running.

• The version number and mandatory update level of DECnet/OSI that you
are using.

Reporting Your Problems 23–3

A
Standards Information

This appendix introduces the 1992 messaging standards and explains how the
MAILbus 400 MTA conforms to these standards.

This appendix lists the standards and recommendations that are referenced
in the MTA documentation and that you may wish to have available. This
appendix also provides information about how to obtain these documents,
either by listing a document’s ISBN number or by providing a contact address.

A.1 Brief Overview of the 1992 MHS Standards
In 1984, the International Telegraph and Telephone Consultative Committee
(CCITT) introduced the 1984 X.400 Series of Recommendations to support
the implementation of a global messaging system. Since then, the CCITT, the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC) have worked in close collaboration to
develop recommendations and standards to replace the 1984 recommendations.

In 1988, the CCITT issued the 1988 X.400 Series of Recommendations, which
are defined in the CCITT Blue Book Volume VIII Fascicle VIII.7, and the
ISO/IEC issued corresponding X.400 standards defined in the International
Standard ISO/IEC 10021. In the MAILbus 400 MTA documentation, these
recommendations and standards are referred to as the 1988 Message Handling
System Standards, or 1988 MHS Standards.

Since 1988, the CCITT and ISO/IEC have continually revised their work. In
1992, the CCITT have consolidated their revisions with the 1988 X.400 Series
of Recommendations to form the 1992 editions of these recommendations.
For the purpose of the MTA documentation, the 1988 CCITT X.400
Recommendations, International Standard ISO/IEC 10021, and the revisions
to these recommendations and standards are collectively called the 1992
MHS Standards. Any reference in the MTA documentation to the 1992 MHS
Standards includes the 1988 MHS Standards, unless indicated otherwise.

Standards Information A–1

Section A.1.1 contains a detailed list of the revision documents that, combined
with the 1988 MHS Standards, make up the 1992 MHS Standards.

The 1984 X.400 recommendations are referred to as 1984 MHS Standards in
the MTA documentation. Note also that the term ‘‘X.400’’ is used in the MTA
documentation to refer to both the 1984 and the 1992 MHS Standards. Any
exceptions are specifically defined.

The MAILbus 400 MTA conforms to the 1992 MHS Standards. In places where
the CCITT recommendations and the ISO standards differ, the MAILbus 400
MTA product implements the ISO standard.

The MAILbus 400 MTA is capable of interworking with messaging systems
conforming to the 1984, 1988 or 1992 MHS Standards. The MAILbus 400 MTA
also conforms as closely as possible to the relevant profiles being developed
in Europe, the USA and South East Asia. See Appendix B and Appendix C
for further information about the MAILbus 400 MTA’s conformance to the
1992 MHS Standards and related profiles. For information on how the MTA
interworks with 1984 messaging systems see Chapter 6.

A.1.1 The 1992 Revisions to the 1988 MHS Standards
The following revision documents, combined with the 1988 MHS Standards,
make up the 1992 MHS Standards:

• Revision of the CCITT 1988 X.400 Series of Recommendations

The MHS Implementor’s Guide Version 10 of February 1993

• Revisions of individual parts of International Standard ISO/IEC 10021

Part 10021-1: Corrigenda 1, 2, 3, 4, 5, 6, and Amendment 2

Part 10021-2: Corrigenda 1, 2, 3, 4, 5, 6, 7, and Amendments 1, 2

Part 10021-4: Corrigenda 1, 2, 3, 4, 5, 6, 7, 8, and Amendment 1

Part 10021-5: Corrigenda 1, 2, 3, 4, 5, 6, 7

Part 10021-6: Corrigenda 1, 2, 3, 4, 5, 6, 7

Part 10021-7: Corrigenda 1, 2, 3, 4, 5, and Amendment 1

A–2 Standards Information

A.2 Listing of Individual Standards and Recommendations
This section lists the individual standards and recommendations relevant to
the MAILbus 400 MTA.

CCITT Recommendations
Recommendations developed by the International Telegraph and Telephone
Consultative Committee (CCITT):

• CCITT Blue Book Volume VIII Fascicle VIII.7, Data Communication
Networks - Message Handling Systems (Recommendations X.400-X.420)

ISBN number 92-61-03721-6

This book is referred to as the CCITT 1988 X.400 Recommendations.

• The MHS Implementor’s Guide Version 10 of February 1993

For information about how to obtain this document contact your national
standards body, such as the British Standards Institute (BSI) in the United
Kingdom, or the American National Standards Institute (ANSI) in the
U.S.A. For the name and address of your national standards body, write to
the following address:

U.N. Bookstall,
United Nations Assembly Building,
New York, NY 11017, U.S.A.

• CCITT Red Book Volume VIII Fascicle VIII.7, Data Communication
Networks - Message Handling Systems (Recommendations X.400-X.430)

ISBN number 92-61-02361-4

This book is referred to as the CCITT 1984 X.400 Recommendations.

• From CCITT Blue Book Volume VIII Fascicle VIII.4, Data Communication
Networks - Open Systems Interconnection (OSI) - Model and Notation,
Service Definition (Recommendations X.200-X.219)

ISBN number 92-61-03691-0

X.208 Specification of Abstract Syntax Notation One (ASN.1)

X.209 Specification of Basic Encoding Rules for Abstract Syntax
Notation One (ASN.1)

X.214 Transport Service Definition for Open Systems Interconnection for
CCITT Applications

X.215 Session Service Definition for Open Systems Interconnection for
CCITT Applications

Standards Information A–3

X.216 Presentation Service Definition for Open Systems Interconnection
for CCITT Applications

X.217 Association Control Service Definition for Open Systems
Interconnection for CCITT Applications

X.218 Reliable Transfer: Model and Service Definition

• From CCITT Blue Book Volume VIII Fascicle VIII.5, Data Communication
Networks - Open Systems Interconnection (OSI) - Protocol Specifications,
Conformance Testing (Recommendations X.220-X.290)

ISBN number 92-61-03701-1

X.224 Transport Protocol Specification for Open Systems Interconnection
for CCITT Applications

X.225 Session Protocol Specification for Open Systems Interconnection
for CCITT Applications

X.226 Presentation Protocol Specification for Open Systems
Interconnection for CCITT Applications

X.227 Association Protocol Specification for Open Systems
Interconnection for CCITT Applications

X.228 Reliable Transfer: Protocol Specification

• From CCITT Blue Book Volume VII Fascicle VII.3, Terminal Equipment
and Protocols for Telematic Services (Recommendations T.0-T.63)

ISBN number 92-61-03611-2

T.50 International Alphabet No. 5

T.61 Character Repertoire and Coded Character Sets for the
International Teletex Service

ISO International Standards
Standards referred to as ISO/IEC are developed by the International
Organization for Standardization (ISO) in collaboration with the International
Electrotechnical Commission (IEC).

• ISO/IEC 10021 Information Processing Systems - Text Communication -
Message-Oriented Text Interchange Systems (MOTIS)

Revisions to individual parts of International Standard ISO/IEC 10021:

Part 10021-1: Corrigenda 1, 2, 3, 4, 5, 6, and Amendment 2

Part 10021-2: Corrigenda 1, 2, 3, 4, 5, 6, 7, and Amendments 1, 2

Part 10021-4: Corrigenda 1, 2, 3, 4, 5, 6, 7, 8, and Amendment 1

A–4 Standards Information

Part 10021-5: Corrigenda 1, 2, 3, 4, 5, 6, 7

Part 10021-6: Corrigenda 1, 2, 3, 4, 5, 6, 7

Part 10021-7: Corrigenda 1, 2, 3, 4, 5, and Amendment 1

• ISO 8072 Information Processing Systems - Open Systems Interconnection -
Transport Service Definition

• ISO/IEC 8073 Information Processing Systems - Open Systems
Interconnection - Connection Oriented Transport Protocol Specification

• ISO 8326 Information Processing Systems - Open Systems Interconnection -
Basic Connection Oriented Session Service Definition

• ISO 8327 Information Processing Systems - Open Systems Interconnection -
Basic Connection Oriented Session Protocol Specification

• ISO 8613 Information Processing - Text and Office Systems - Office
Document Architecture (ODA) and Interchange Format

• ISO 8649 Information Processing Systems - Open Systems Interconnection -
Service Definition for the Association Control Service Element

• ISO 8650 Information Processing Systems - Open Systems Interconnection -
Protocol Specification for the Association Control Service Element

• ISO 8822 Information Processing Systems - Open Systems Interconnection -
Connection Oriented Presentation Service Definition

• ISO 8823 Information Processing Systems - Open Systems Interconnection -
Connection Oriented Presentation Protocol Specification

• ISO 8824 Information Processing Systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1)

• ISO 8825 Information Processing Systems - Open Systems Interconnection
- Specification of Basic Encoding Rules for Abstract Syntax Notation One
(ASN.1)

• ISO/IEC 9066-1 Information Processing Systems - Text Communication -
Reliable Transfer Part 1: Model and Service Definition

• ISO/IEC 9066-2 Information Processing Systems - Text Communication -
Reliable Transfer Part 2: Protocol Specification

• ISO/IEC ISP 10611 Information Technology - International Standardized
Profiles AMH1n - Message Handling Systems - Common Messaging

• ISO/IEC ISP 12062 Information Technology - International Standardized
Profiles AMH2n - Message Handling Systems - Interpersonal Messaging

Standards Information A–5

You can obtain these standards from the national standards body in your own
country, such as the British Standards Institute (BSI) in the United Kingdom,
or the American National Standards Institute (ANSI) in the U.S.A. For the
name and address of your national standards body, write to the following
address:

U.N. Bookstall,
United Nations Assembly Building,
New York, NY 11017, U.S.A.

Others

• Stable Implementation Agreements for Open Systems Interconnection
Protocols based on the Proceedings of the OSE Implementors’ Workshop

This document is revised in regular intervals; the versions referenced in
the MTA documentation are:

Version 7, Edition 1, December 1993.

This version is also known as NIST Special Publication 500-214.

Version 3, Edition 1, December 1989.

Version 1, Edition 1, December 1987.

You can obtain these documents from:

National Technical Information Service (NTIS)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161, U.S.A.

• CEN/CENELEC European Prestandards

The European Prestandards referenced in this document are:

ENV 41214

ENV 41201

ENV 41202

ENV 41510

You can obtain these documents from your national standards body if you
are located in Europe, or from the following address:

European Workshop for Open Systems
Rue de Stassart, 36
1050 Brussels, Belgium

A–6 Standards Information

• United States Government Open Systems Interconnection Profiles (US
GOSIP)

The US GOSIP versions referenced in this document are:

Version 1, which is available as Federal Information Processing
Standard (FIPS) Publication 146, of August 1988.

Version 2, which is available as Federal Information Processing
Standard (FIPS) Publication 146-1, of April 1991.

You can obtain these documents from:

National Technical Information Service (NTIS)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161, U.S.A.

• United Kingdom Government Open Systems Interconnection Profile (UK
GOSIP), Version 4.1

This document is available as:

A Supplier Set, ISBN number 0 11 330568 0

A Supplier Set, First Update, ISBN number 0 11 330608 3

A Procurement Set, ISBN number 0 11 330567 2

• RFC 1328 X.400 1988 to 1984 Downgrading

You can obtain this document from:

SRI International
Network Information Systems Center
333 Ravenswood Avenue EJ291
Menlo Park, CA 94025, U.S.A.

Standards Information A–7

B
X.400 Elements of Service and Extensions

You need more detailed knowledge of the 1992 MHS Standards to use the
information in this appendix.

This appendix:

• Summarizes how the MAILbus 400 MTA supports the Message Transfer
and Message Handling/Physical Delivery X.400 Elements of Service defined
in CCITT Recommendation X.400 and International Standard ISO/IEC
10021.

• Summarizes how the MAILbus 400 MTA handles extensions that are
present in a message.

B.1 Elements of Service
The X.400 Elements of Service define features, functions or capabilities of
an X.400 MHS. They are classified either as basic Elements of Service or
as optional user facilities. These classifications are primarily applicable to
organizations operating an ADMD public service.

Basic Elements of Service are the inherent and constituent parts of the MTS
service; they are always provided and available. Optional user facilities can be
selected by the user, either for individual messages or for a certain period of
time.

Optional user facilities are either essential or additional. Essential optional
user facilities are made available to all MTS users. Additional optional
user facilities can be made available for national use, and for international
use based on bilateral agreement. The essential and additional optional
user facilities are listed in Annex B of CCITT 1988 Recommendation X.400
(International Standard ISO/IEC 10021-1).

X.400 Elements of Service and Extensions B–1

A short summary of the support of the X.400 Elements of Service by the
MAILbus 400 MTA is given below. For a more detailed listing see Table B–1
and Table B–2.

Summary of Support

The support of the X.400 Elements of Service by the MAILbus 400
MTA is as follows:

• All basic Elements of Service are supported.

• All essential optional user facilities are supported.

• Most additional optional user facilities are supported.

Table B–1 summarizes the Message Transfer (MT) Elements of Service and
Table B–2 summarizes the Message Handling/Physical Delivery (MH/PD)
Elements of Service. For a detailed definition of the X.400 Elements of Service,
see Annex B of CCITT 1988 Recommendation X.400 (International Standard
ISO/IEC 10021-1).

The following abbreviations are used in the tables:

84 Std In the 1984 X.400 Standards

88 Std In the 1988 X.400 Standards

M (B) Basic Element of Service (mandatory)

M Essential optional user facility (mandatory)

O Additional optional user facility (optional)

UA User Agent

EMS Express Mail Service

PDS Physical Delivery Service

B–2 X.400 Elements of Service and Extensions

Table B–1 The MAILbus 400 MTA’s Support of MT Elements of Service

MT Service 84 Std 88 Std Supported
Additional
Information

Access management M (B) M (B) Yes

Alternate recipient allowed M M Yes

Alternate recipient assignment O O Yes

Content confidentiality N/A O Yes Pass-
through1

Content integrity N/A O Yes Pass-
through1

Content type indication M (B) M (B) Yes

Converted indication M (B) M (B) Yes

Conversion prohibition M M Yes

Conversion prohibition in case of
loss of information

N/A O Yes

Deferred delivery M M Yes

Deferred delivery cancellation M M Yes

Delivery notification N/A M Yes

Delivery time stamp indication M (B) M (B) Yes

Designation of recipient by
Directory name

N/A O No2

Disclosure of other recipients M M Yes

DL expansion history indication N/A M Yes

DL expansion prohibited N/A O Yes

Explicit conversion O O No3

Grade of delivery selection M M Yes

Hold for delivery O O No4

1Support of pass-through of P1 envelope fields which supply security features between secure MTS
users
2Nonsupport of O/R names containing only Directory names for originator and recipient addresses
or distribution lists
3Nonsupport of originator-specified explicit conversion; however, requests for explicit conversion
are passed through
4Nonsupport of recipient-specified requirements with regard to holding messages for delivery until
the target User Agent becomes available. However, you can provide a similar service by using the
MAILbus 400 Message Store.

(continued on next page)

X.400 Elements of Service and Extensions B–3

Table B–1 (Cont.) The MAILbus 400 MTA’s Support of MT Elements of Service

MT Service 84 Std 88 Std Supported
Additional
Information

Implicit conversion O O Yes

Latest delivery designation N/A O Yes

Message flow confidentiality N/A O Yes Pass-
through1

Message identification M (B) M (B) Yes

Message origin authentication N/A O Yes By recipient
only

Message security labeling N/A O Yes By recipient
only

Message sequence integrity N/A O Yes Pass-
through1

Multi-destination delivery M M Yes

Non-delivery notification M (B) M (B) Yes

Non-repudiation of delivery N/A O Yes Pass-
through1

Non-repudiation of origin N/A O Yes Pass-
through1

Non-repudiation of submission N/A O No5

Original encoded information
types indication

M (B) M (B) Yes

Originator requested alternate
recipient

N/A M Yes

Prevention of non-delivery
notification

O O Yes

Probe N/A M Yes

Probe origin authentication N/A O No5

Proof of delivery N/A O Yes Pass-
through1

Proof of submission N/A O No5

1Support of pass-through of P1 envelope fields which supply security features between secure MTS
users
5Nonsupport of security services which require the MTA to use security information submitted in
messages

(continued on next page)

B–4 X.400 Elements of Service and Extensions

Table B–1 (Cont.) The MAILbus 400 MTA’s Support of MT Elements of Service

MT Service 84 Std 88 Std Supported
Additional
Information

Redirection disallowed by
originator

N/A O Yes

Redirection of incoming
messages

N/A O Yes Requires
manual setup
in directory

Report origin authentication N/A O No5

Requested delivery method N/A M Yes Validation of
request only

Restricted delivery N/A O No6

Return of content O O Yes

Secure access management N/A O No7

Submission time stamp
indication

M (B) M (B) Yes

Use of distribution list N/A O Yes

User/UA capabilities registration M (B) M (B) Yes Requires
manual setup
in directory

5Nonsupport of security services which require the MTA to use security information submitted in
messages
6Nonsupport of recipient-specified User Agents and distribution lists, from which no messages are
to be delivered
7Nonsupport of strong authentication of password for User Agent to MTA access, and MTA to MTA
access

X.400 Elements of Service and Extensions B–5

Table B–2 The MAILbus 400 MTA’s Support of MH/PD Elements of Service

MH/PD Service 88 Std Supported Additional Info

Additional physical rendition O Yes1

Basic physical rendition M (B) Yes1

Counter collection M Yes1

Counter collection with advice O Yes1

Delivery via Bureaufax service O Yes1

EMS/Special delivery (one or
other)

M Yes1

Ordinary mail M (B) Yes1

Physical delivery notification by
MHS

O Yes1 Dependent on
support of transfer
out reports by Access
Unit

Physical delivery notification by
PDS

O N/A

Physical forwarding allowed M (B) Yes1

Physical forwarding prohibited O Yes1

Registered mail O Yes1

Registered mail to addressee in
person

O Yes1

Request for forwarding address O Yes1 Dependent on
support of transfer
out reports by Access
Unit

Undeliverable mail with return
of physical message

M (B) N/A

1MTA supports pass-through of MT parameters which the PDS uses.

B–6 X.400 Elements of Service and Extensions

B.2 Extensions
The CCITT 1988 X.400 Series of Recommendations defines a mechanism
for extending the functionality of an MTA. Most of the features that were
introduced in the CCITT 1988 X.400 Series of Recommendations are defined
using this mechanism. Features that are defined in this way are known as
extensions.

Some of the extensions introduced in the 1988 X.400 recommendations are
optional, so not all X.400 MTA implementations are guaranteed to support
them. Furthermore, some implementors may introduce extensions that are
defined in future versions of the recommendations or which they themselves
have devised. This means that a User Agent or Gateway submitting a message
cannot be sure that all MTAs through which the message passes support
the features that are required by the message. X.400 therefore allows an
application to mark extensions as being critical to the submission, delivery, or
transfer of a message. (In this case, transfer refers to the processing that the
MTA does to the message before passing it to a User Agent or to another MTA
or MTS.)

When a message is submitted to the MTA, the Interface Region checks the
message for the presence of any extensions marked as being critical for
submission. If such an extension is present, and the extension is supported,
the MAILbus 400 MTA takes the appropriate action. If the MAILbus 400
MTA does not support the extension, the Interface Region does not accept the
message.

Before sending an MPDU to the next destination in its route, the MAILbus
400 MTA checks it for the presence of any extensions marked as being critical
for transfer or critical for delivery. If such an extension is present, and the
extension is supported, the MAILbus 400 MTA takes the appropriate action.
If the MAILbus 400 MTA does not support the extension, it non-delivers the
MPDU if it is a message or a probe, or discards it if it is a report.

Table B–3 lists the 1988 X.400 extensions and shows which the MAILbus 400
MTA supports.

X.400 Elements of Service and Extensions B–7

Table B–3 The MAILbus 400 MTA’s Support of 1988 X.400 Extensions

Extension Supported

Recipient-reassignment-prohibited Yes

Originator-requested-alternate-recipient Yes

DL-expansion-prohibited Yes

Conversion-with-loss-prohibited Yes1

Latest-delivery-time Yes

Requested-delivery-method Yes

Physical-forwarding-prohibited Yes

Physical-forwarding-address-request Yes

Physical-delivery-modes Yes

Registered-mail-type Yes

Recipient-number-for-advice Yes

Physical-rendition-attributes Yes

Originator-return-address Yes

Physical-delivery-report-request Yes

Originator-certificate Yes

Message-token Yes2 3

Content-confidentiality-algorithm-identifier Yes

Content-integrity-check Yes

Message-origin-authentication-check Yes2

Message-security-label Yes2

Proof-of-submission-request No

Proof-of-delivery-request Yes4

Content-correlator Yes

Probe-origin-authentication-check "Critical for transfer" not supported

Redirection-history Yes

1If this extension is marked as critical for transfer, the MAILbus 400 MTA avoids using a converter
whose Lossy attribute has a "True" value.
2The MAILbus 400 MTA does not do any checking, but relays the extension so that recipient
checks can take place.
3The MAILbus 400 MTA can deliver only asymmetric tokens.
4The recipient User Agent returns the requested information in the Message Delivery result.

(continued on next page)

B–8 X.400 Elements of Service and Extensions

Table B–3 (Cont.) The MAILbus 400 MTA’s Support of 1988 X.400 Extensions

Extension Supported

DL-expansion-history Yes

Physical-forwarding-address Yes

Recipient-certificate Yes4

Proof-of-delivery Yes4

Originator-and-DL-expansion-history Yes

Reporting-DL-name Yes5

Reporting-MTA-certificate Yes5

Report-origin-authentication-check Yes5

Originating-MTA-certificate No

Proof-of-submission No

An unknown integer No

An unknown object ID No

4The recipient User Agent returns the requested information in the Message Delivery result.
5The MAILbus 400 MTA does not generate such an extension, but relays any provided by another
MTA.

X.400 Elements of Service and Extensions B–9

C
Conformance to Regional Profiles

The MAILbus 400 MTA conforms to the 1992 MHS Standards. These consist of
the CCITT 1988 X.400 Series of Recommendations and International Standard
ISO/IEC 10021 (the international base standards defined for message handling
systems), as well as the following revision documents:

• The CCITT MHS Implementor’s Guide Version 10 of February 1993

• Revisions to individual parts of International Standard ISO/IEC 10021:

Part 10021-1: Corrigenda 1, 2, 3, 4, 5, 6, and Amendment 2

Part 10021-2: Corrigenda 1, 2, 3, 4, 5, 6, 7, and Amendments 1, 2

Part 10021-4: Corrigenda 1, 2, 3, 4, 5, 6, 7, 8, and Amendment 1

Part 10021-5: Corrigenda 1, 2, 3, 4, 5, 6, 7

Part 10021-6: Corrigenda 1, 2, 3, 4, 5, 6, 7

Part 10021-7: Corrigenda 1, 2, 3, 4, 5, and Amendment 1

The MAILbus 400 MTA also conforms to the International Standardized
Profile ISO/IEC ISP 10611 Common Messaging (AMH1n), and to the
draft International Standardized Profile ISO/IEC ISP 12062 Interpersonal
Messaging (AMH2n). Section C.1 in this appendix outlines the MAILbus 400
MTA’s conformance to these international profiles.

In addition, the MAILbus 400 MTA conforms to a number of profiles developed
by other, regional, standards bodies. This appendix outlines the MAILbus 400
MTA’s conformance to the following regional profiles:

• The Stable Implementation Agreements for Open Systems Interconnection
Protocols, Version 7, Edition 1, December 1993, set up by the Open
Systems Environment (OSE) Implementor’s Workshop (OIW). In the
MTA documentation, these Agreements are referred to as the OIW Stable
Implementation Agreements. See Section C.2.

• United States Government OSI Profiles (US GOSIP). See Section C.3.

Conformance to Regional Profiles C–1

• United Kingdom Government OSI Profile (UK GOSIP) Version 4.1. See
Section C.4.

• The following European Prestandards developed by the Comité
Européen de Normalisation (CEN)/Comité Européen de Normalisation
Electrotechnique (CENELEC) and the European Telecommunications
Standard Institute (ETSI):

ENV 41201

ENV 41202

ENV 41214

See Section C.5 for information on these Prestandards.

To fully understand the terminology used in this appendix you should have the
referenced profiles available. The tables in this appendix are reproductions of
tables from these profiles. Therefore, terms and classifications in the tables
and sections in this appendix are used as per definition in the respective
profile. See Appendix A for information about how to obtain these profiles.

C.1 The International Standardized Profiles (ISPs)
The International Standardized Profiles (ISPs) for Message Handling Systems
are produced by international cooperation between the following regional
standards communities:

• The North American OSE Implementor’s Workshop (OIW)

• The European Workshop for Open Systems (EWOS) in collaboration with
the European Telecommunications Standards Institute (ETSI)

• The Asia-Oceania Workshop (AOW)

International Standardized Profiles are balloted by the national standards
bodies and, if agreed, are accepted as international standards. Thus, these
profiles represent the harmonized views of MHS expert groups worldwide.

C.1.1 How the MAILbus 400 MTA Conforms
The MAILbus 400 MTA conforms to profiles in the following ISO/IEC ISP
standards:

• ISO/IEC ISP 10611 Information Technology - International Standardized
Profiles AMH1n - Message Handling Systems - Common Messaging (see
Section C.1.1.1)

C–2 Conformance to Regional Profiles

• ISO/IEC ISP 12062 Information Technology - International Standardized
Profiles AMH2n - Message Handling Systems - Interpersonal Messaging
(see Section C.1.1.2)

For information about obtaining these ISO/IEC profiles see Appendix A.

C.1.1.1 Conformance to ISO/IEC ISP 10611
The MAILbus 400 MTA conforms to the AMH11 profile described in Parts 2
and 3 of ISO/IEC ISP 10611 Common Messaging:

• ISO/IEC ISP 10611-2 Specification of ROSE, RTSE, ACSE, Presentation
and Session Protocols for Use by MHS

• ISO/IEC ISP 10611-3 Message Transfer (P1) (AMH11)

Annex A of ISO/IEC ISP 10611-3 contains the International Standardized
Profile Implementation Conformance Statement (ISPICS) proforma that defines
how implementations must conform to this profile. The tables in this section
are extracts from this ISPICS proforma and show the MAILbus 400 MTA’s
conformance to each functional group (Table C–1) and the relevant application
contexts (Table C–2).

Italicized text in these tables indicates conformance information supplied by
HP about the MAILbus 400 MTA product.

Conformance to Regional Profiles C–3

Table C–1 MTA Conformance to ISO/IEC ISP 10611-3 (AMH11) ISPICS: Global
Statement of Conformance and Profile Conformance

Question Response Comments

Global statement of conformance

Are all mandatory base standards require-
ments implemented?

Y

Statement of profile conformance

Are all mandatory requirements of profile
AMH111 implemented?

Y

Are all mandatory requirements of profile
AMH112 implemented?

Y

Are all mandatory requirements of any of
the following optional functional groups
implemented?

Security (SEC) Y class(es): S0

Physical Delivery (PD) - Can implement a co-
located PDAU using the
MAILbus 400 API.

Conversion (CV) Y Implicit Conversion

Redirection (RED) Y

Latest Delivery (LD) Y

Return of Contents (RoC) Y

Distribution List (DL) Y

Use of Directory (DIR)1 - Nonsupport of O/R
names containing
only Directory names
for originator and
recipient addresses or
distribution lists.

’84 Interworking (84IW) Y

1The MAILbus 400 MTA makes significant use of the X.500 Directory for routing, recipient
capability assessment and distribution list expansion. Full support of the Use of Directory
functional group is planned for a future release.

Table C–2 shows the MAILbus 400 MTA’s conformance to the application
contexts defined in the ISPICS for ISO/IEC ISP 10611-3.

C–4 Conformance to Regional Profiles

Italicized text in this table indicates conformance information supplied by HP
about the MAILbus 400 MTA product.

Table C–2 MTA Conformance to ISO/IEC ISP 10611-3 (AMH11) ISPICS: Supported
Application Contexts

Application Context
Base

CCITT ISO/IEC Profile Support

mts-transfer m m m Y

mts-transfer-protocol m o c11 Y

mts-transfer-protocol-1984 m o c22 Y

1c1 - if conformance to AMH112 is claimed then m else o
2c2 - if conformance to AMH112 or the 84 Interworking functional group is claimed then m else o

C.1.1.2 Conformance to ISO/IEC ISP 12062
The MAILbus 400 MTA conforms to the AMH22 profile in Part 3 of ISO/IEC
ISP 12062 Interpersonal Messaging: ISO/IEC ISP 12062-3 IPM Requirements
for Message Transfer (P1) (AMH22).

Table C–3 in this section is an extract from the ISPICS proforma in Annex
A of ISO/IEC ISP 12062-2 and shows the MAILbus 400 MTA’s profile
conformance.

Table C–3 MTA Conformance to ISO/IEC ISP 12062-3 (AMH22) ISPICS:
Statement of Profile Conformance

Question Response Comments

IPM Security (SEC) Y class(es): SO

IPM Physical Delivery (PD) - Can implement a co-located PDAU
using the MAILbus 400 API.

IPM Conversion (CV) Y

IPM Redirection (RED) Y

IPM Latest Delivery (LD) Y

IPM Return of Contents (RoC) Y

(continued on next page)

Conformance to Regional Profiles C–5

Table C–3 (Cont.) MTA Conformance to ISO/IEC ISP 12062-3 (AMH22) ISPICS:
Statement of Profile Conformance

Question Response Comments

IPM Use of Directory (DIR)1 - Nonsupport of O/R names
containing only Directory names for
originator and recipient addresses
or distribution lists.

IPM 84 Interworking (84IW) Y See NOTE below.

1The MAILbus 400 MTA makes significant use of the X.500 Directory for routing, recipient
capability assessment and distribution list expansion. Full support of the Use of Directory
functional group is planned for a future release.

Note

The MAILbus 400 MTA supports the additional recommended practices
for 1984 interworking specified in Annex C of ISO/IEC ISP 12062-1.
These recommended practices concern downgrading of the IPM content
from content type 22 (Interpersonal Messaging 1988) to content type 2
(Interpersonal Messaging 1984), and are aligned with the procedures
specified in Section 6.1.3 of this guide.

C.2 The OIW Stable Implementation Agreements
The OIW Stable Implementation Agreements are the proceeds of the OSE
Implementor’s Workshop, a community of OSI vendors and purchasers who
meet quarterly in the U.S.A. Their aim is to produce agreements on the
features of OSI implementations. The OIW Stable Implementation Agreements
are revised regularly, and therefore it is important to name the exact edition of
the document to which a reference is made.

The MAILbus 400 MTA conforms to Version 7 Edition 1 of the OIW Stable
Implementation Agreements, which was issued in December 1993. All
references in the following subsections concern this version of the OIW Stable
Implementation Agreements. The requirements relevant for the MAILbus 400
MTA are those laid out in Parts 7, 8, 29 and 30 of these Agreements.

For information about how to obtain a copy of the OIW Stable Implementation
Agreements see Appendix A.

C–6 Conformance to Regional Profiles

C.2.1 How the MAILbus 400 MTA Conforms
The MAILbus 400 MTA can use any of the Application Contexts defined for
1988 message transfer systems (MTSs) and so can function as either a 1984 or
1988 MTA.

Conformance to 1984 MHS protocols is defined in Part 7 of the OIW Stable
Implementation Agreements; see Section C.2.1.1 for information about the
MAILbus 400 MTA’s conformance.

Conformance to 1988 MHS protocols is defined in Part 8, 29 and 30 of the OIW
Stable Implementation Agreements; see Section C.2.1.2 for information about
the MAILbus 400 MTA’s conformance.

C.2.1.1 Conformance to 1984 MHS Protocols
The MAILbus 400 MTA satisfies the conformance requirements specified in
Part 7, Clause 10.2 of the OIW Stable Implementation Agreements as follows:

• The MAILbus 400 MTA conforms to the requirements specified in Part 7,
Clauses 5, 6 and 7, thus allowing the MTA to operate within an ADMD,
PRMD or relaying PRMD. This assumes that the user has configured the
O/R addresses and routing information used by the MAILbus 400 MTA
appropriately.

• For routing within a PRMD, the MAILbus 400 MTA can operate as a Class
3 MTA as defined in Part 7, Clause 7.3.3.1.

The following qualifications on the requirements stated in Part 7 of the OIW
Stable Implementation Agreements apply to the MAILbus 400 MTA:

• The MAILbus 400 MTA is capable of resuming an activity on an existing
concurrent OSI association. To prevent the MAILbus 400 MTA from
resuming activities on existing concurrent OSI associations in order to
satisfy the restriction stated in Part 7, Clause 5.4.3 k), the MAILbus
400 MTA must be configured so that the Maximum Parallel Transfer
Associations attribute of the relevant Peer MTA entity is set to one.

• The MAILbus 400 MTA is capable of using all or none of the Forced
Nondelivery Times specified in Part 7, Clause 6.9.2, Table 16. To ensure
the MAILbus 400 MTA uses all of them, the MAILbus 400 MTA must be
configured so that its MPDU Expiry intervals are set to these values.

• Not all of the validation checks described in Part 7, Clause 6.8 are
performed; in particular, there is no check to avoid inconsistency between
the GDI in the first TraceInformation and the GDI in the MPDUIdentifier.

Conformance to Regional Profiles C–7

• For intra-PRMD connections, the MAILbus 400 MTA supports the
InternalTraceInformation field but employs a more complex loop
suppression algorithm than that implied in Part 7, Clause 7.3.2.

• For intra-PRMD connections, the MAILbus 400 MTA ensures the
uniqueness of the MPDUIdentifier by a method other than that described
in Part 7, Clause 7.3.4. The MAILbus 400 MTA assigns a 32 character
identifier which is automatically generated.

• The MAILbus 400 MTA supports both the Unidentified (BilaterallyDefined)
and ODA bodypart definitions described in Part 7, Annex B.

C.2.1.2 Conformance to 1988 MHS Protocols
The MAILbus 400 MTA satisfies the conformance requirements specified in
Part 8, Clause 5 of the OIW Stable Implementation Agreements. The MAILbus
400 MTA operates as an "MHS-88-MTA" entity as described in Table 1 of the
above-mentioned Clause.

Note

The OIW Stable Implementation Agreements are based on conformance
to the International Standardized Profiles (ISPs) for Message Handling
(also described in Section C.1). The current texts for these ISPs have
been made available for reference in Parts 29 and 30 of the OIW Stable
Implementation Agreements.

In addition to the requirements specified in the International Standardized
Profiles, the MAILbus 400 MTA satisfies all the additional regional
requirements specified in Clauses 6 and 8 of the OIW Stable Implementation
Agreements.

C.3 US GOSIP
A United States Government OSI Profile (US GOSIP) is the standard
reference for all US federal government agencies when acquiring and operating
communication systems or services that are to conform to OSI protocols.

US GOSIP requirements are based on the agreements reached at the
OSE Implementor’s Workshops, which are published in the OIW Stable
Implementation Agreements (see Section C.2). Different US GOSIP versions
reference different versions of the OIW Stable Implementation Agreements.

C–8 Conformance to Regional Profiles

C.3.1 How the MAILbus 400 MTA Conforms
The MAILbus 400 MTA conforms to two US GOSIP versions:

• Version 1, known also as Federal Information Processing Standard (FIPS)
Publication 146.

In the sections relating to Message Handling Systems, US GOSIP Version
1 references Part 7 of the OIW Stable Implementation Agreements, Version
1, Edition 1, December 1987.

• Version 2, known also as FIPS Publication 146-1.

In the sections relating to Message Handling Systems, US GOSIP Version
2 references Part 7 of the OIW Stable Implementation Agreements, Version
3, Edition 1, December 1989.

In addition, the MAILbus 400 MTA conforms to the requirement laid out
in Clause 5.3.2 of US GOSIP Version 2. This clause specifies that an MTA
must support routing on particular O/R address attributes.

See Appendix A for information about how to obtain these documents.

C.4 UK GOSIP Version 4.1
The United Kingdom Government OSI Profile (UK GOSIP) is designed to
assist UK government departments when purchasing products based on OSI
standards.

This profile will eventually be superseded by a European procurement
specification, the European Procurement Handbook for Open Systems
(EPHOS), produced by the European Commission. However, at this time,
EPHOS is still under development.

The MAILbus 400 MTA conforms to UK GOSIP Version 4.1. UK GOSIP is
published in two different sets:

• The Procurement Set for Version 4.0, aimed at the purchaser of OSI
products.

• The Supplier Set, aimed at the supplier of OSI products.

This is available as Version 4.0, and Version 4.1 (an update to Version 4).

See Appendix A for information about how to obtain these documents.

Conformance to Regional Profiles C–9

C.4.1 How the MAILbus 400 MTA Conforms
The MAILbus 400 MTA can use any of the Application Contexts defined for
1988 Message Transfer Systems and so can function as either a 1984 or 1988
MTA:

• Conformance to 1984 MHS protocols is defined in Chapter 1 of the UK
GOSIP Version 4.1 Supplier Handbook, Volume 4 - Application Services (2).

See Section C.4.1.1 for information about the MAILbus 400 MTA’s
conformance to the 1984 MHS protocols.

• Conformance to 1988 MHS protocols is defined in Chapter 2 of the UK
GOSIP Version 4.1 Supplier Handbook, Volume 4 - Application Services (2).

See Section C.4.1.2 for information about the MAILbus 400 MTA’s
conformance to the 1988 MHS protocols.

C.4.1.1 Conformance to 1984 MHS Protocols
Chapter 3, Appendix A of the UK GOSIP Version 4, Procurement Handbook
Volume 3 - Application Services contains the procurement Protocol
Implementation Conformance Statement (PICS) proforma to be filled in by
suppliers of 1984 X.400 applications. This section refers to this appendix as
the UK GOSIP MHS(84) procurement PICS appendix.

The tables in this section are reproductions of tables in the UK GOSIP
MHS(84) procurement PICS appendix; only those tables are included that
list conformance requirements relevant to the MAILbus 400 MTA.

• Table C–4 is a reproduction of a table in Section A.1 of the UK GOSIP
MHS(84) procurement PICS appendix. It lists the required support of the
MHS services. The MAILbus 400 MTA’s conformance, where applicable, is
indicated with X.

• Table C–5 is a reproduction of a table in Section A.2 of the UK GOSIP
MHS(84) procurement PICS appendix. It lists the required support of MTA
capabilities. The MAILbus 400 MTA’s conformance, where applicable, is
indicated with X.

• Table C–6 is a reproduction of a table in Section A.4 of the UK GOSIP
MHS(84) procurement PICS appendix. It lists the required support of O/R
name forms. The MAILbus 400 MTA’s conformance, where applicable, is
indicated with X.

Abbreviations used in this table:

C = Conditional
M = Mandatory

C–10 Conformance to Regional Profiles

O = Optional

Italicized text in these tables indicates conformance information supplied by
HP about the MAILbus 400 MTA product.

Table C–4 MTA Conformance to Service Support in UK GOSIP MHS(84)
Procurement PICS Appendix

Service Support Notes

Message Transfer Service M [X]

Interpersonal Messaging
Service

C [] [] Required unless only
the GOSIP MHS(84)
MTS conformance level
is claimed

Table C–5 shows the MAILbus 400 MTA’s conformance to the required MTA
capability regarding origination, reception and relaying.

Table C–5 MTA Conformance to Required MTA Capability in UK GOSIP
MHS(84) Procurement PICS Appendix

Capability Support

Origination M [X]

Reception M [X]

Relaying O [] [X]

Table C–6 shows the MAILbus 400 MTA’s support of the required O/R name
forms.

Table C–6 MTA Conformance to O/R Name Form Support in UK GOSIP
MHS(84) Procurement PICS Appendix

O/R Name Form/Variant Support

Form 1 Variant 1 M [X]

Form 1 Variant 2 - [X]

Form 1 Variant 3 - [X]

Form 2 - [X]

Conformance to Regional Profiles C–11

The MAILbus 400 MTA conforms to the requirements specified in the
remaining relevant tables of the UK GOSIP MHS(84) procurement PICS
appendix as follows:

• The MAILbus 400 MTA supports all of the MT service elements listed in
Section A.6 of the UK GOSIP MHS(84) procurement PICS appendix for
origination, reception and relay. See also Appendix B in this guide.

• The MAILbus 400 MTA supports all of the O/R name attributes listed in
Section A.7 of the UK GOSIP MHS(84) procurement PICS appendix for
origination and reception.

• The MAILbus 400 MTA supports all of the O/R name attributes listed in
Section A.8.1 of the UK GOSIP MHS(84) procurement PICS appendix for
inter-domain relay, intra-domain relay and intra-domain delivery, except
for domain-defined attributes. No particular attributes are required for
delivery.

C.4.1.2 Conformance to 1988 MHS Protocols
Chapter 3, Appendix B of the UK GOSIP Version 4, Procurement Handbook
Volume 3 - Application Services contains the procurement Protocol
Implementation Conformance Statement (PICS) proforma to be filled in by
suppliers of OSI Message Handling applications. This section refers to this
appendix as the UK GOSIP MHS(88) procurement PICS appendix.

The tables in this section are reproductions of tables in the UK GOSIP
MHS(88) procurement PICS appendix; only those tables are included that
list conformance requirements relevant to the MAILbus 400 MTA.

• Table C–7 is a reproduction of a table in Section B.1 of the UK GOSIP
MHS(88) procurement PICS appendix. It lists the required support of the
system and service configuration. The MAILbus 400 MTA’s conformance,
where applicable, is indicated with X.

• Table C–8 is a reproduction of a table in Section B.2 of the UK GOSIP
MHS(88) procurement PICS appendix. It lists the required support
of common messaging functional groups. The MAILbus 400 MTA’s
conformance, where applicable, is indicated with X.

Abbreviations used in this table:

C = Conditional
M = Mandatory
O = Optional

C–12 Conformance to Regional Profiles

Italicized text in these tables indicates conformance information supplied by
HP about the MAILbus 400 MTA product.

Table C–7 MTA Conformance to System/Service Configuration in UK GOSIP
MHS(88) Procurement PICS Appendix

System/Service
Configuration Support Notes

UA O [] [] P7 support is required

MTA O [] [X] P11 support is required

Combined MTA-UA O [] [] P1 support is required
P7 support is not applicable

Combined MTA-MS O [] [] P1 support is required
P7 support is required

Combined
MTA-MS-UA

O [] [] P1 support is required

P7 support O [] [] P7 support is operational for
remote UA access

MHS service1

remote access to UA
O [] [] Using an unspecified protocol -

treat as combined MTA-UA

P7 access O [] [] Treat as combined MTA-MS
with P7 support

P1 access O [] [X] Treat as MTA with P1 support
only

1 An MHS ‘service’ in this context is one which is offered for remote access and where ownership of
the internal system components remains with the service provider.

The MAILbus 400 Message Transfer Agent offers a Message Application and
Message Transfer API (the MAILbus 400 Application Program Interface)
according to the X/Open™ X.400 API Specifications. Thus the MAILbus 400
MTA will not normally be used simply as a relay-only MTA as implied by this
table.

Conformance to Regional Profiles C–13

Table C–8 MTA Conformance to Common Messaging Functional Groups in UK GOSIP
MHS(88) Procurement PICS Appendix

Functional Group
Support

Notes

MTA MS UA

MTA Kernel M [X] - -

MTS Kernel C [] - M [] Required for an
MTA unless only P1
support is proposed

MS Kernel - M [] C [] Required for a UA
with P7 support

84 Interworking O [][X] - -

DL Expansion1 O [][] - -

Use of Directory2 O [][] - O [][]

Secure Messaging O [][X] O [][] O [][]

security class0 O [][X] O [][] O [][]

security class1 O [][] O [][] O [][]

security class2 O [][] O [][] O [][]

confidential variant O [][] O [][] O [][]

Physical Delivery O [][X]3 - O [][] Not applicable to an
MTA with only P1
support

1The MAILbus 400 MTA supports all of the Elements of Service defined in the CCITT 1988 X.400
Recommendations that are associated with DL Expansion, but it does not support the three DL policies
described in the UK GOSIP specification.
2The MAILbus 400 MTA makes significant use of the X.500 Directory for routing, recipient capability
assessment and distribution list expansion. Full support of the Use of Directory functional group is planned
for a future release.
3The MAILbus 400 MTA’s support and use of the X/Open X.400 Application Program Interface allows for
support of a physical delivery access unit (PDAU) conforming to the Physical Delivery functional group.

C.5 CEN/CENELEC European Prestandards (ENVs)
The Comité Européen de Normalisation (CEN)/Comité Européen
de Normalisation Electrotechnique (CENELEC) and the European
Telecommunications Standard Institute (ETSI) are standards bodies
responsible for issuing standards on a European basis.

C–14 Conformance to Regional Profiles

The European standards concerned with Message Handling Systems are
produced by collaboration between MHS experts in the EWOS and ETSI
committees.

C.5.1 How the MAILbus 400 MTA Conforms
The CEN/CENELEC committees and the European Telecommunications
Standard Institute (ETSI) are responsible for the publication of M-IT-02, a
taxonomy of profiles for the development of European Standards. M-IT-02
provides for several profiles for Message Handling, which are issued as
European Prestandards (ENV). The profiles that the MAILbus 400 MTA
conforms to, their corresponding ENV numbers and the Message Transfer
protocols that they define are listed in the following table.

Profile No. ENV No Title
Message Transfer
Protocol Defined

Date
of
Issue

A/3211 ENV 412011 Private Message Handling
System: - UA and MTA; Private
Management Domain to Private
Management Domain

1984 P1 and P2 February
1988

A/311 ENV 412021 Message Handling Systems:
User Agent (UA) plus Message
Transfer Agent (MTA): Access
to an Administration Domain
(ADMD)

1984 P1 and P2 August
1987

A/MH11 ENV 41214 Application Profile for Message
Handling 11: Message Handling
Systems - Common Facilities -
MTA and MTS

1988 P1 May
1992

1Amendments to this profile have been produced in January 1994 to enable implementations conforming to
the 1984 Recommendations to interwork with 1988 implementations. These amendments are considered to be
part of these ENVs when considering the MAILbus 400 MTA’s conformance.

See Section C.5.1.1 for information about the MAILbus 400 MTA’s conformance
to ENV 41201.

See Section C.5.1.2 for information about the MAILbus 400 MTA’s conformance
to ENV 41202.

See Section C.5.1.3 for information about the MAILbus 400 MTA’s conformance
to ENV 41214.

For information about how to obtain a copy of these ENVs see Appendix A.

Conformance to Regional Profiles C–15

C.5.1.1 Conformance to ENV 41201 of February 1988
Conformance to ENV 41201 is a requirement of the 1984 Interworking
Functional Group of ENV 41214 (see Section C.5.1.3). Note that the MAILbus
400 MTA conforms to Clause 6.8.1 of ENV 41214 and so will generate the
application protocol identifier value of 1 (not 8883) in RTS connect requests.

The following qualifications on the requirements stated in ENV 41201 apply to
the MAILbus 400 MTA:

• The MAILbus 400 MTA is capable of resuming an activity on an existing
concurrent OSI association. To prevent the MAILbus 400 MTA from
resuming activities on existing concurrent OSI associations in order to
satisfy the restriction stated in Clause 2.4, the MAILbus 400 MTA must be
configured so that the Maximum Parallel Transfer Associations attribute of
the relevant Peer MTA entity is set to one.

• The MAILbus 400 MTA is capable of using Transport expedited data for
Transport Classes other than Class 0. To prevent the use of Transport
expedited data in order to satisfy the restriction stated in Clause 2.6.8, the
relevant Peer MTA entity of the MAILbus 400 MTA must be configured to
use a Transport template with this feature switched off.

• The MAILbus 400 MTA supports the 1984 P1 Internal Trace Information
field defined in the OIW Stable Implementation Agreements (Clause 7.3.2)
when interworking with 1984 MTAs in the same CCITT management
domain. To prevent the use of the internal trace information in order
to satisfy the restriction stated in Table 4 of ENV 41201, configure the
MAILbus 400 MTA so that it is always in a different CCITT management
domain to 1984 peer MTAs.

• The MAILbus 400 MTA supports the ISO 6937 IPM bodypart which is
defined in ISO 9065 and referenced in Clause 5.4 and Table 4 of ENV
41201.

C.5.1.2 Conformance to ENV 41202 of August 1987
Conformance to ENV 41202 is a requirement of the 1984 Interworking
Functional Group of ENV 41214 (see Section C.5.1.3). Note that the MAILbus
400 MTA conforms to Clause 6.8.1 of ENV 41214 and so will generate the
application protocol identifier value of 1 (not 8883) in RTS connect requests.

The qualifications regarding the MAILbus 400 MTA’s conformance are the
same as those listed for ENV 41201 in Section C.5.1.1.

C–16 Conformance to Regional Profiles

C.5.1.3 Conformance to ENV 41214 of May 1992
ENV 41214 is the first completed European profile concerned with 1988 MHS
functionality.

Annex H of ENV 41214 is a Protocol Implementation Conformance Statement
(PICS) proforma annex that contains profile-specific tables indicating how an
implementation should conform to the major features of the A/MH11 profile.
The following tables are reproductions of the tables in the PICS proforma
annex and show how the MAILbus 400 MTA conforms to ENV 41214:

• Table C–9 in this appendix is a reproduction of Table H-1 in ENV 41214
and shows the MAILbus 400 MTA’s conformance to the application contexts
specified in ENV 41214.

• Table C–10 in this appendix is a reproduction of Table H-2 in ENV 41214
and shows the MAILbus 400 MTA’s conformance to the abstract operations
specified in ENV 41214.

• Table C–11 in this appendix is a reproduction of Table H-3 in ENV 41214
and shows the MAILbus 400 MTA’s conformance to the functional groups
specified in ENV 41214.

Abbreviations used in these tables:

C = Conditional
M = Mandatory
O = Optional

Italicized text in these tables indicates conformance information supplied by
HP about the MAILbus 400 MTA product.

Table C–9 MTA Conformance to Application Contexts in ENV 41214

Application Contexts A/MH11 Implemented

A/MH11.1 O Yes

A/MH11.2 O Yes

Conformance to Regional Profiles C–17

Table C–10 MTA Conformance to Abstract Operations in ENV 41214

Abstract Operations A/MH11 Implemented

Message Transfer (MTSE) M Yes

Message Submission (MSSE) O No2

Message Delivery (MDSE) O No2

Message Administration (MASE) C1 No3

1Mandatory if MSSE or MDSE is implemented.
2Submission and Delivery services are implemented according to the X/Open X.400 API
Specification, which offers most, but not all, of these P3 (MTS Access Protocol) services.
3Administration services are implemented using the directory; the MTA offers some, but not all, of
these P3 (MTS Access Protocol) services.

Table C–11 MTA Conformance to Functional Groups in ENV 41214

Functional Groups A/MH11 Implemented

Minimum Kernel M Yes

Extended Kernel O No2

Redirection O Yes

Distribution List O Yes

Conversion O Yes

Use of Directory O No3

Physical Delivery

PD0 O Yes

PD1 O No

84 Interworking C1 Yes

Security

S0 O Yes

1Mandatory in A/MH11.2
2All Elements of Service (EOS) except the Hold for Delivery EOS are implemented.
3Nonsupport of O/R names containing only Directory names for originator and recipient addresses
or distribution lists. The MAILbus 400 MTA makes significant use of the X.500 Directory for
routing, recipient capability assessment and distribution list expansion. Full support of the Use of
Directory functional group is planned for a future release.

(continued on next page)

C–18 Conformance to Regional Profiles

Table C–11 (Cont.) MTA Conformance to Functional Groups in ENV 41214

Functional Groups A/MH11 Implemented

S0a O No

S1 O No

S1a O No

S2 O No

S2a O No

Conformance to Regional Profiles C–19

D
The Tru64 UNIX Implementation of the MTA

This appendix describes the following features that are specific to the Tru64
UNIX implementation of the HP MAILbus 400 Message Transfer Agent:

• The privileges that you need before you can manage a MAILbus 400 MTA
(Section D.1)

• The directories used by a MAILbus 400 MTA (Section D.2)

• The files installed with a MAILbus 400 MTA (Section D.3)

• The tools supplied with the MAILbus 400 MTA server subset (Section D.4)

• How to manually execute scripts supplied with the MAILbus 400 MTA
(Section D.5)

• How to specify a different port number for Agents using the API Server
over TCP/IP, if required (Section D.6).

• How to stop and start a MAILbus 400 MTA (Section D.7)

• How to restart a MAILbus 400 MTA server that is not responding to
management (Section D.8).

D.1 Privileges
To manage the MTA or run any of the tools provided with the MTA, you must
use an account that has superuser privileges.

D.2 Directories Used by the MTA
During normal operation, the MTA places messages in several single
directories. The directories that are usually accessed only by the MTA are in
the MTA’s workspace. The MTA’s workspace is under /var/mta/workspace and
directories, which you can access, are directly under /var/mta. See Table D–1
for a list of the MTA’s directories and workspace.

The Tru64 UNIX Implementation of the MTA D–1

Table D–1 The MTA’s Directories

Directory Description

/var/mta/accounting Contains Accounting files
/var/mta/archive Contains archived messages
/var/mta/bad_msgs Contains MPDUs or IPM bodyparts that the MTA cannot process
/var/mta/trace Contains trace binary files
/var/mta/workspace Contains the MTA’s workspace

D.3 Files Installed on Your System
The following tables describe the files installed with the MAILbus 400 MTA:

• Table D–2 lists the contents of the MAILbus 400 MTA Management subset.

• Table D–3 lists the contents of the MAILbus 400 MTA Server subset.

• Table D–4 lists the contents of the MAILbus 400 MTA Base subset.

Note that these tables do not show the physical location of the files as they are
installed from the individual subsets, but show the softlinks from the installed
files. The physical location of the MTA’s installed files is as follows:

/directory/opt/subsetname/pathname

where

• /directory is either /var if the softlink is in /var, or /usr if the softlink is
in /usr.

• subsetname is the name of the subset from which the file was installed.
This is one of the following:

MTAANETMANnnn for the MAILbus 400 MTA Management subset
MTAASRVRnnn for the MAILbus 400 MTA Server subset
MTAABASEnnn for the MAILbus 400 MTA Base subset

where nnn is the version number of the product.

• /pathname is the complete path name of the softlinked file, for example
/var/mts/scripts/populate_mts_example.ncl

For example, the physical location of the file referenced by the softlink
/usr/sbin/mts_cml_script is:
/usr/opt/MTAANETMAN140/usr/sbin/mts_cml_script

D–2 The Tru64 UNIX Implementation of the MTA

Table D–2 The Files Installed from a MAILbus 400 MTA Management Subset

Description Directory File Ownership Protection

MTS Image /usr/sbin mts root lrwsr-xr-x
MTS CML Script /usr/sbin mts_cml_script root lrwxr-xr-x
MTA Help /usr/share/dna/dict mta_module.hlp root lrw-r–r–
MTS Help /usr/share/dna/dict mts_module.hlp root lrw-r–r–
MTA MSL /usr/share/dna ncl_dna5_mta.ms root lrw-r–r–
MTS MSL /usr/share/dna ncl_dna5_mts.ms root lrw-r–r–
Example Directory

Script
/var/mts/scripts populate_mts_example.ncl root lrw-r–r–

Populate Countries
Script

/var/mts/scripts populate_countries.ncl root lrw-r–r–

Table D–3 The Files Installed from a MAILbus 400 MTA Server Subset

Description Directory File Ownership Protection

MTA CML Script /usr/sbin/mta mta_cml_script root lrwxr-xr-x
MTA Startup Script /var/mta/scripts start_mta.ncl root lrw——-
MTA Shutdown

Script
/var/mta/scripts stop_mta.ncl root lrw-r–r–

MTA Setup Script /var/mta/scripts mta_setup root lrwxr–r–
MTA Event

Dispatching
Script

/var/mta/scripts start_mta_event_
dispatching.ncl

root lrw-r–r–

MTA CLNS
Transport
Template Script

/var/mta/scripts create_mta_clns_templates.ncl root lrw-r–r–

MTA CONS
Transport
Template Script

/var/mta/scripts create_mta_cons_
templates.ncl

root lrw-r–r–

MTA Create
Externally

Defined
Bodypart Script

/var/mta/scripts create_mta_extdef_
bodyparts.ncl

root lrw-r–r–

MTA Release Notes /usr/doc mailbus400_mta.release_
notes

root lrw-r–r–

VP Image /usr/examples/mta mtamail root lrwxr-xr-x
VP Script /usr/examples/mta mta_vp.sh root lrwxr–r–
MTA images /usr/sbin/mta mta root lrwsr-xr-x

mta_irchild root lrwxr-xr-x
mta_irserver root lrwxr-xr-x

(continued on next page)

The Tru64 UNIX Implementation of the MTA D–3

Table D–3 (Cont.) The Files Installed from a MAILbus 400 MTA Server Subset

Description Directory File Ownership Protection

mta_mpchild root lrwxr-xr-x
mta_mpserver root lrwxr-xr-x
mta_rlchild root lrwxr-xr-x
mta_rlserver root lrwxr-xr-x
mta_wjchild root lrwxr-xr-x
mta_wjserver root lrwxr-xr-x
mta_remote_api_server root lrwxr-xr-x

Accounting Decoder
tool

/usr/sbin/mta mta_accdecoder root lrwxr-xr-x

Message Decoder
tool

/usr/sbin/mta mta_decoder root lrwxr-xr-x

Converter images /usr/sbin/mta
/converters/ipm generalt61tolatin1 root lrwxr-xr-x

decdxtoddif root lrwxr-xr-x
decdxtolatin1 root lrwxr-xr-x
decmcstolatin1 root lrwxr-xr-x
externaldeftobilatdef root lrwxr-xr-x
externaldeftoposte root lrwxr-xr-x
generaltoia5 root lrwxr-xr-x
generaltot61 root lrwxr-xr-x
ia5tolatin1 root lrwxr-xr-x
iso6937tolatin1 root lrwxr-xr-x
j88tosdk root lrwxr-xr-x
j84tosdk root lrwxr-xr-x
latin1todecmcs root lrwxr-xr-x
latin1togeneralia5 root lrwxr-xr-x
latin1toia5 root lrwxr-xr-x
latin1toiso6937 root lrwxr-xr-x
latin1tomrtext root lrwxr-xr-x
latin1tot61 root lrwxr-xr-x
t61togeneral root lrwxr-xr-x
t61tolatin1 root lrwxr-xr-x
latin1toddif root lrwxr-xr-x
ddiftolatin1 root lrwxr-xr-x
ddiftoodifq111 root lrwxr-xr-x
ddiftoodifq112 root lrwxr-xr-x
ddiftoodifq121 root lrwxr-xr-x
ddiftowpsplus root lrwxr-xr-x
odiftoddif root lrwxr-xr-x

(continued on next page)

D–4 The Tru64 UNIX Implementation of the MTA

Table D–3 (Cont.) The Files Installed from a MAILbus 400 MTA Server Subset

Description Directory File Ownership Protection

mrtexttolatin1 root lrwxr-xr-x
sdktoj88 root lrwxr-xr-x
sdktoj84 root lrwxr-xr-x
sdktosjis root lrwxr-xr-x
sjistosdk root lrwxr-xr-x
wpsplustoddif root lrwxr-xr-x
wpsplustolatin1 root lrwxr-xr-x
w4w01t root lrwxr-xr-x
w4w30f root lrwxr-xr-x
w4w45f root lrwxr-xr-x

Softlinks to
odiftoddif
converter

odifq111toddif root lrwxr-xr-x

odifq112toddif root lrwxr-xr-x
odifq121toddif root lrwxr-xr-x

Options files for
the odiftoddif
converter1 q111_dap_options root lrw-r–r–

q112_dap_options root lrw-r–r–
q121_dap_options root lrw-r–r–

Warning Text File2 /var/mta mta_ia5_warning_text root -rw-r–r–
Application services /usr/shlib libmtadir.so root lrw-r–r–

1These files must not be modified.
2This file is not a softlink.

Table D–4 The Files Installed from a MAILbus 400 MTA Base Subset

Description Directory File Ownership Protection

Shared images /usr/shlib libxapi.so root lrw-r–r–
libxapi_remote.so root lrw-r–r–

Server Address /var/mta mta_api_server_address root lrw-r–r–
Reader’s Comments

Template
/var/mta mta_rc_template.txt root lrw-r–r–

Bodypart Mapping
Table

/var/mta mta_bp_map_table.template root lrw-r–r–

API Release Notes /usr/doc mailbus400_api.release_
notes

root lrw-r–r–

The Tru64 UNIX Implementation of the MTA D–5

D.4 Tools Supplied with the MTA
The MTA Server subset includes the following tools:

• Accounting Decoder tool (Section D.4.1)

This tool decodes and displays messages that are in the MTA’s Accounting
directory.

• Message Decoder tool (Section D.4.2)

This tool decodes and displays messages and bodyparts that are in the
MTA’s bad messages directory. The Message Decoder tool can also be used
to decode and display messages that are in the MTA’s Archive directory.

D.4.1 Accounting Decoder Tool
The MTA stores Accounting information about messages in ASN.1 (BER)
format. The Accounting Decoder tool decodes ASN.1 (BER). Use this tool to
decode and display Accounting files held in the MTA’s Accounting directory.

You can use this tool to display all the Accounting information for each entry
in an Accounting file. Alternatively, you can use the -b qualifier to display the
first four lines only of each entry.

Use the following command to run the Accounting Decoder tool:

/usr/sbin/mta/mta_accdecoder -f /var/mta/accounting/filename [-b]

where filename is the name of the Accounting file.

If you move the Accounting file to some other directory, for example to prevent
it being purged, then enter the new directory specification, that is, full filename
including path.

D.4.2 Message Decoder Tool
The MTA stores messages on disk in ASN.1 (BER) format. The Message
Decoder tool decodes the ASN.1 (BER) and displays the message. Use this tool
to examine messages in the following directories:

• /var/mta/bad_msgs

You can also use the Message Decoder tool to examine IPM bodyparts in
this directory.

• /var/mta/archive

• The MTA Input and Output queues.

/var/mta/workspace/agents/agent_name/oq
/var/mta/workspace/agents/agent_name/iq

D–6 The Tru64 UNIX Implementation of the MTA

where agent_name is the name of the Agent.

You can use this tool to display a complete message. You can also use the
following qualifiers:

-a displays the header of a message in the Archive directory.

-e decodes and displays the message envelope. Note that the envelope contains the
content of the message, in its encoded form, which is also displayed.

-c decodes and displays the content of the message.

-b decodes and displays an IPM bodypart. Use this qualifier to display an IPM
bodypart that failed conversion.

-p parses the ASN.1 (BER) data in the file named in the command and verifies
that the file contains valid ASN.1.

Use the following command to run the Message Decoder tool:

/usr/sbin/mta/mta_decoder -f directory/filename [qualifier]

When displaying a bodypart, directory is the directory identifier, filename is
the name of the bodypart file, and qualifier is -b.

When displaying a message, directory is the directory identifier, filename is
the name of the message file, and qualifier is one of the following optional
qualifiers: -h, -e, -c, or -p. If you do not specify an optional qualifier, the -e
qualifier is used.

When displaying a message in the Archive directory, directory is the directory
identifier, filename is the name of the Archive file, and qualifier is one of
the following optional qualifiers: -a, -h, -e, -c, or -p. If you do not specify an
optional qualifier, the -e qualifier is used.

You can also use the -s qualifier to display a message in the Input or Output
queues for the Shared File interface. See HP MAILbus 400 MTA Planning and
Setup for information about the Input and Output queues for the Shared File
interface.

D.5 Executing NCL Scripts
In certain circumstances indicated in Part II and Part III you may have to
execute the following scripts manually:

• MTA CLNS Transport Template Script:
/var/mta/scripts/create_mta_clns_templates.ncl

• MTA CONS Transport Template Script:
/var/mta/scripts/create_mta_cons_templates.ncl

The Tru64 UNIX Implementation of the MTA D–7

• MTA Event Dispatching Script:
/var/mta/scripts/start_mta_event_dispatching.ncl

• MTA Shutdown Script: /var/mta/scripts/stop_mta.ncl

• MTA Startup Script: /var/mta/scripts/start_mta.ncl

Use the following command to execute these scripts:

NCL> Do script

where script is the script you want to execute.

D.6 Port Number for Agents Using the API Server Over
TCP/IP

Agents connecting to the MTA through the API Server over TCP/IP have a
port number registered in the Tru64 UNIX services file /etc/services. The
name registered is mta_api_server and the number of the port is 200. If this
port number is used by another application, you will need to change the port
number in the Tru64 UNIX services file at the MTA. Do this by editing the
appropriate line in the /etc/services file. Make sure that you edit the file
both on the systems where the Agent and the MTA are running, and on the
systems where any other Agents served by the MTA are running.

D.7 Stopping and Starting the MTA
When solving MTA-related problems, or when tuning the MTA, it may be
necessary to stop and start the MTA.

To stop the MTA, log into a privileged account on the node where the MTA is
running and execute the MTA’s shutdown script using the following command:

NCL> do /var/mta/scripts/stop_mta.ncl

To start the MTA, execute the MTA’s startup script using the following
command:

NCL> do /var/mta/scripts/start_mta.ncl

D–8 The Tru64 UNIX Implementation of the MTA

D.8 Restarting an MTA that is Not Responding to
Management

This section describes how to restart an MTA that, for any reason, stops
processing messages and fails to respond to NCL commands.

Before restarting the MTA you need to delete all of the MTA’s processes. To do
this, complete the following steps:

1. Log into a superuser account on the node where the MTA is running.

2. Find out the process identifiers of the MTA processes and subprocesses by
entering the following command:

ps -e | grep mta

This command displays the MTA processes.

3. Delete the /usr/sbin/mta/mta process of the MTA, as follows:

kill -9 process-id

where process-id is the identifier of the /usr/sbin/mta/mta process.

After a few seconds all of the MTA’s processes and subprocesses will have
been deleted.

4. Start the MTA again using the MTA’s startup script:

NCL> do /var/mta/scripts/start_mta.ncl

The Tru64 UNIX Implementation of the MTA D–9

E
The OpenVMS Implementation of the MTA

This appendix describes the following features that are specific to the
OpenVMS VAX and OpenVMS Alpha implementations of the MAILbus 400
MTA:

• The privileges that you need in order to manage a MAILbus 400 MTA
(Section E.1).

• The files that you can use (Section E.2).

• How to run the NCL scripts supplied with the MAILbus 400 MTA
(Section E.3).

• The directories used by the MAILbus 400 MTA (Section E.4).

• The logical names specific to the MAILbus 400 MTA (Section E.5 and
Section E.6).

• The tools supplied with the MAILbus 400 MTA (Section E.7).

• Port number for Agents using the API Server over TCP/IP, if required
(Section E.8).

• How to stop and start the MAILbus 400 MTA (Section E.9).

• How to restart a MAILbus 400 MTA Server that is not responding to
management (Section E.10).

This appendix also lists all the files on your system after you have installed
the MAILbus 400 MTA Mgt, Server and Base components (Section E.11).

The OpenVMS Implementation of the MTA E–1

Note

In this appendix, the location and name of the directories used by the
MTA is given as:

device:[MTA$node]

where device is the device that you specified when you set up the MTA
and node is the node where you set up the MTA.

E.1 Privileges
Generally, to manage an MTA you need a privileged account, such as the
SYSTEM account. In addition there are some attributes that can only be
displayed, using the NCL Show command, from a privileged account. These
attributes are identified in the MTA Module Online Help and in Appendix G.

E.2 Files You Can Use
This section lists the files that you use to set up and manage the MTA and the
directory.

Table E–1 lists node specific NCL scripts and the MTA’s warning text
file. The files listed in Table E–1, with one exception, are copied from
SYS$COMMON:[MTA.TEMPLATE_FILES] when you set up the MTA.

The file that is not copied from SYS$COMMON:[MTA.TEMPLATE_FILES] is
MTA$MTS_CREATE_MTA_ENTRY.NCL. This script is created when you set
up the MTA.

Table E–1 Node Specific NCL Scripts and Warning Text File

Description File Protection

Files in SYS$SPECIFIC:[SYS$STARTUP]

MTA CLNS Template
Script

MTA$CREATE_CLNS_TEMPLATES.NCL RWED,RWED,RE,

MTA CONS Template
Script

MTA$CREATE_CONS_TEMPLATES.NCL RWED,RWED,RE,

MTA RFC 1006
Template Script

MTA$CREATE_RFC1006_TEMPLATES.NCL RWED,RWED,RE,

(continued on next page)

E–2 The OpenVMS Implementation of the MTA

Table E–1 (Cont.) Node Specific NCL Scripts and Warning Text File

Description File Protection

Files in SYS$SPECIFIC:[SYS$STARTUP]

Example MTS
Population Script

MTA$MTS_POPULATE_EXAMPLE.NCL RWED,RWED,RE,

Populate Countries
Script

MTA$MTS_POPULATE_COUNTRIES.NCL RWED,RWED,RE,

MTA Startup Script MTA$START.NCL RWED,RWED,RE,
MTA Event

Dispatching Script
MTA$START_EVENT_

DISPATCHING.NCL
RWED,RWED,RE,

MTA Shutdown Script MTA$STOP.NCL RWED,RWED,RE,
Create MTA Entry

Script
MTA$MTS_CREATE_MTA_ENTRY.NCL1 RWED,RWED,RE,

File in device:[MTA$node]

Warning Text File MTA$IA5_WARNING_TEXT.TXT RWED,RWED,RE,

1Generated by MTA$SERVER_SETUP.COM

Table E–2 lists the procedures you use to set up, start, and shut down the
MTA.

Table E–2 MTA Setup and Startup Procedures

Description File Protection

Files in SYS$COMMON:[SYS$STARTUP]

MTA Server Setup
Procedure

MTA$SERVER_SETUP.COM RWED,RWED,RE,

MTA Server
Initialization
Procedure

MTA$SERVER_INIT.COM RWED,RWED,RE,

MTS Process
Initialization
Procedure

MTA$MTS_INIT.COM RWED,RWED,RE,

MTA Server
Shutdown Procedure

MTA$SERVER_SHUTDOWN.COM RWED,RWED,RE,

MTA Server
Startup Procedure

MTA$SERVER_STARTUP.COM RWED,RWED,RE,

(continued on next page)

The OpenVMS Implementation of the MTA E–3

Table E–2 (Cont.) MTA Setup and Startup Procedures

Description File Protection

Files in SYS$COMMON:[SYS$STARTUP]

MTA Shutdown
Procedure

MTA$COMMON_SHUTDOWN.COM RWED,RWED,RE,

MTA Startup
Procedure

MTA$COMMON_STARTUP.COM RWED,RWED,RE,

Client Startup
Procedure

MTA$CLIENT_STARTUP.COM RWED,RWED,RE,

Client CLNS Transport
Template Script

MTA$CREATE_CLIENT_CLNS_
TEMPLATES.NCL

RWED,RWED,RE,

Table E–3 lists the procedures you use to run the Accounting Decoder and
Message Decoder tools. See Section E.7 for the commands you need to run
these tools.

Table E–3 Decoder Tool Procedures

Description File Protection

Files in SYS$COMMON:[SYSMGR]

Accounting Decoder Tool
Procedure

MTA$ACCDECODER.COM RWED,RWED,RE,

Message Decoder Tool
Procedure

MTA$DECODER.COM RWED,RWED,RE,

Table E–4 shows the location of the bodypart mapping table. Instructions
on how to modify the bodypart mapping table are provided in the bodypart
mapping table itself.

Table E–4 Bodypart Mapping Table

Description File Protection

Files in SYS$COMMON:[MTA]

Bodypart Mapping
Table

MTA$BP_MAP_TABLE.TXT RWED,RWED,RE,

E–4 The OpenVMS Implementation of the MTA

E.3 Executing NCL Scripts
In certain circumstances indicated in Part II and Part III you may have to
manually execute the NCL scripts listed in Table E–1.

Use the following command to execute these scripts:

NCL>DO script

where script is the NCL script you want to execute.

E.4 Directories Used by the MTA
During operation, the MTA uses several directories. You specify the location of
these directories when the MTA is set up. The Accounting directory, Archive
directories, and the MTA’s work area directories can be located on different
devices. The MTA’s work area contains the bad messages, trace and workspace
directories. The workspace directories are usually accessed only by the MTA.

The locations of the MTA’s directories are listed in Table E–5.

Table E–5 Location of the MTA’s Work Area, Accounting, and Archive Directories

Directory Description

device:[MTA$node.ACCOUNTING]1 Accounting files
device:[MTA$node.ARCHIVE]1 Archived messages
device:[MTA$node.BAD_MSGS]1 MPDUs or IPM bodyparts that the MTA cannot

process
device:[MTA$node.TRACE]1 Trace binary files
device:[MTA$node.WORKSPACE] MTA’s workspace (MTA use only)

1You can access this directory by using the appropriate logical name listed in Section E.5

E.5 Logical Names for Accounting, Archiving, Bad Message
and Trace Directories

The following logical names are defined after you have set up the MTA and the
MTA is operational. These logicals are for your use only and are not used by
the MTA.

• MTA$ACCOUNTING

This logical name defines the location of the MTA’s Accounting directory.

• MTA$ARCHIVE

This logical name defines the location of the MTA’s Archive directories.

The OpenVMS Implementation of the MTA E–5

• MTA$BAD_MSGS

This logical name defines the location of the MTA’s bad messages directory.

• MTA$TRACE

This logical name defines the location of the MTA’s Trace directory. This
directory contains the binary trace files created by the MTA when recording
protocol information (see Section 16.4).

E.6 Logical Defining CLNS Address for Agents
The logical MTA_NODE defines the CLNS address of the node where the MTA
is installed. Agents that use the XAPI interface need this logical name to be
able to find and connect to the MTA; see Part III of HP MAILbus 400 MTA
Planning and Setup.

E.7 Tools Supplied with the MTA
The MAILbus 400 MTA Server component includes the following tools:

• Accounting Decoder tool (Section E.7.1)

Use this tool to decode and display messages in the MTA’s Accounting
directory.

• Message Decoder tool (Section E.7.2)

Use this tool to decode and display messages in the MTA’s bad messages
directory and Archive directories, and in the Input and Output queues for
the Shared File interface.

E.7.1 Accounting Decoder Tool
The MTA stores Accounting information about messages in ASN.1 (BER)
format. The Accounting Decoder tool decodes ASN.1 (BER). Use this tool to
decode and display Accounting files held in the MTA’s Accounting directory.

You can use this tool to display all the Accounting information for each entry
in an Accounting file. Alternatively, you can use the -B qualifier to display the
first four lines only of each entry.

To run the Accounting Decoder tool, execute the following procedure:

$ @SYS$MANAGER:MTA$ACCDECODER -F MTA$ACCOUNTING:filename [qualifier]

where filename is the name of the Accounting file and qualifier is the
optional -B qualifier.

E–6 The OpenVMS Implementation of the MTA

E.7.2 Message Decoder Tool
The MTA stores messages on disk in ASN.1 (BER) format. The Message
Decoder tool decodes the ASN.1 (BER) and displays the message. You can also
use the Message Decoder tool to examine IPM bodyparts in the bad messages
directory.

To decode and display a message or an IPM bodypart in the bad messages
directory, execute the following procedure:

$ @SYS$MANAGER:MTA$DECODER -F MTA$BAD_MSGS:filename [qualifier]

where:

• filename is the name of the file containing the bad message.

• qualifier is one of the following optional qualifiers:

-E decodes and displays the message envelope. Note that the envelope contains the
content of the message, in its encoded form, which is also displayed.

-C decodes and displays the content of the message.

-B decodes and displays an IPM bodypart. Use this qualifier to display an IPM
bodypart that failed conversion.

-P parses the ASN.1 (BER) data in the file named in the command and verifies
that the file contains valid ASN.1.

If you do not specify an optional qualifier, the -E qualifier is used.

You can also use the -S qualifier to display a message in the Input or Output
queues for the Shared File interface. See Part III of HP MAILbus 400 MTA
Planning and Setup for information about the Input and Output queues for the
Shared File interface.

To decode and display a message in an Archive directory, execute the following
procedure:

$ @SYS$MANAGER:MTA$DECODER -F MTA$ARCHIVE:filename [qualifier]

where:

• filename is the name of the Archive file.

• qualifier is one of the following optional qualifiers:

-A displays the header of a message only.

-E decodes and displays the message envelope. Note that the envelope contains the
content of the message, in its encoded form, which is also displayed.

The OpenVMS Implementation of the MTA E–7

-C decodes and displays the content of the message.

-P parses the ASN.1 (BER) data in the file named in the command and verifies
that the file contains valid ASN.1.

If you do not specify an optional qualifier, the -E qualifier is used.

E.8 Port Number for Agents Using the API Server Over
TCP/IP

Agents connecting to the MTA through the API Server over TCP/IP have a
registered name mta_api_server and a port number of 200. If you want to
change the port number used by the application, you will need to change the
port number as directed by the documentation relating to the TCP/IP services
that you use. Make sure that you make the change on both the system where
the Agent and the MTA are running, and on the systems where any other
Agents served by the MTA are running.

E.9 Stopping and Starting the MTA
When solving MTA-related problems, or when tuning the MTA, it may be
necessary to stop and start the MTA.

To stop the MTA, log into a privileged account on the node where the MTA is
running and execute the following procedure:

$ @SYS$STARTUP:MTA$SERVER_SHUTDOWN

Note that this procedure does not delete the MTA’s processes. See Section E.10
for information about deleting and creating the MTA’s processes.

To start the MTA, execute the following procedure:

$ @SYS$STARTUP:MTA$SERVER_STARTUP

E.10 Restarting an MTA That is Not Responding to
Management
This section describes how to restart a MAILbus 400 MTA that, for any reason,
stops processing messages and fails to respond to NCL commands.

Shutdown and then restart the MTA as follows:

1. Log into a privileged account on the node where the MTA that you want to
restart is running.

2. Stop the MTA’s processes by executing the following procedure:

$ @SYS$STARTUP:MTA$COMMON_SHUTDOWN

E–8 The OpenVMS Implementation of the MTA

After a few seconds all of the MTA’s processes are stopped. The
MTA$COMMON_SHUTDOWN procedure stops the following processes:

MTA$SERVER

MTA$XAPI_SERVER

MTA$MTS

3. Start the MTA again by executing the following procedure:

$ @SYS$STARTUP:MTA$COMMON_STARTUP

E.11 Files on Your System After Installation
The following tables describe the files on your system after you have installed
the MAILbus 400 MTA and run the MTA setup procedure:

• Table E–6 lists the files present on your system after installation of the
MAILbus 400 MTA Mgt component.

• Table E–7 lists the files present on your system after the installation of the
MAILbus 400 MTA Server component.

• Table E–8 lists the files present on your system after the installation of the
MAILbus 400 MTA Base component.

Note that there are other files that may be on the same node as the
MTA that also have names prefixed with ‘‘MTA’’. In particular, the files
SYS$SYSTEM:MTAAACP.EXE and SYS$LIBRARY:MTADEFS.H, which are
part of the OpenVMS operating system.

Table E–6 Files on Your System After You have Installed MAILbus 400 MTA Mgt

File Owner Protection

Files in SYS$COMMON:[MTA]

MTA$MTS.EXE SYSTEM RWED,RWED,RE,RE
MTS_START.COM SYSTEM RWED,RWED,RE,

Files in SYS$COMMON:[MTA.TEMPLATE_FILES]

MTA$MTS_POPULATE_EXAMPLE.NCL SYSTEM RWED,RWED,RE,
MTA$MTS_POPULATE_COUNTRIES.NCL SYSTEM RWED,RWED,RE,

(continued on next page)

The OpenVMS Implementation of the MTA E–9

Table E–6 (Cont.) Files on Your System After You have Installed MAILbus 400 MTA
Mgt

File Owner Protection

Files in SYS$COMMON:[SYSHLP]

MAILBUS400_MTA.RELEASE_NOTES SYSTEM RWED,RWED,RE,RE

Files in SYS$COMMON:[SYS$STARTUP]

MTA$COMMON_SHUTDOWN.COM SYSTEM RWED,RWED,RE,
MTA$COMMON_STARTUP.COM SYSTEM RWED,RWED,RE,
MTA$MTS_INIT.COM SYSTEM RWED,RWED,RE,

Table E–7 Files on Your System After You have Installed the MAILbus 400 MTA Server

File Owner Protection

Files in SYS$COMMON:[MTA]

MTA_ACCDECODER.EXE SYSTEM RWED,RWED,RE,RE
MTA_DECODER.EXE SYSTEM RWED,RWED,RE,RE
MTA$SERVER_V6.EXE SYSTEM RWED,RWED,RE,RE
MTA$SERVER_V7.EXE SYSTEM RWED,RWED,RE,RE
MTA_START.COM SYSTEM RWED,RWED,RE,
MTA$XAPI_SERVER.EXE SYSTEM RWED,RWED,RE,RE
XAPI_SERVER_START.COM SYSTEM RWED,RWED,RE,

Files in SYS$COMMON:[MTA.CONVERTERS.IPM]

DECDXTODDIF.EXE SYSTEM RWED,RWED,RE,RE
DECDXTOLATIN1.COM SYSTEM RWED,RWED,RE,RE
DECMCSTOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
DDIFTOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
DDIFTOODIFQ111.EXE SYSTEM RWED,RWED,RE,RE
DDIFTOODIFQ112.EXE SYSTEM RWED,RWED,RE,RE
DDIFTOODIFQ121.EXE SYSTEM RWED,RWED,RE,RE
DDIFTOWPSPLUS.EXE SYSTEM RWED,RWED,RE,RE
EXTERNALDEFTOBILATDEF.EXE SYSTEM RWED,RWED,RE,RE
EXTERNALDEFTOPOSTE.EXE SYSTEM RWED,RWED,RE,RE
GENERALT61TOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
GENERALTOIA5.EXE SYSTEM RWED,RWED,RE,RE

(continued on next page)

E–10 The OpenVMS Implementation of the MTA

Table E–7 (Cont.) Files on Your System After You have Installed the MAILbus 400 MTA
Server

File Owner Protection

Files in SYS$COMMON:[MTA.CONVERTERS.IPM]

GENERALTOT61.EXE SYSTEM RWED,RWED,RE,RE
IA5TOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
ISO6937TOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TODDIF.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TODECMCS.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TOGENERALIA5.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TOIA5.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TOISO6937.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TOMRTEXT.EXE SYSTEM RWED,RWED,RE,RE
LATIN1TOT61.EXE SYSTEM RWED,RWED,RE,RE
MRTEXTTOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
ODIFQ111TODDIF.EXE SYSTEM RWED,RWED,RE,RE
ODIFQ112TODDIF.EXE SYSTEM RWED,RWED,RE,RE
ODIFQ121TODDIF.EXE SYSTEM RWED,RWED,RE,RE
Q111_DAP_OPTIONS.DAT SYSTEM RWED,RWED,RE,RE
Q112_DAP_OPTIONS.DAT SYSTEM RWED,RWED,RE,RE
Q121_DAP_OPTIONS.DAT SYSTEM RWED,RWED,RE,RE
T61TOGENERAL.EXE SYSTEM RWED,RWED,RE,RE
T61TOLATIN1.EXE SYSTEM RWED,RWED,RE,RE
W4W01T.EXE SYSTEM RWED,RWED,RE,RE
W4W30F.EXE SYSTEM RWED,RWED,RE,RE
W4W45F.EXE SYSTEM RWED,RWED,RE,RE
WPSPLUSTODDIF.EXE SYSTEM RWED,RWED,RE,RE
WPSPLUSTOLATIN1.COM SYSTEM RWED,RWED,RE,RE

Files in SYS$COMMON:[MTA.TEMPLATE_FILES]

MTA$CREATE_CLNS_TEMPLATES.NCL SYSTEM RWED,RWED,RE,
MTA$CREATE_CONS_TEMPLATES.NCL SYSTEM RWED,RWED,RE,
MTA$CREATE_RFC1006_TEMPLATES.NCL SYSTEM RWED,RWED,RE,
MTA$CREATE_EXTDEF_BODYPARTS.NCL SYSTEM RWED,RWED,RE,
MTA$IA5_WARNING_TEXT.TXT SYSTEM RWED,RWED,RE,
MTA$START.NCL SYSTEM RWED,RWED,RE,
MTA$START_EVENT_DISPATCHING.NCL SYSTEM RWED,RWED,RE,
MTA$STOP.NCL SYSTEM RWED,RWED,RE,

(continued on next page)

The OpenVMS Implementation of the MTA E–11

Table E–7 (Cont.) Files on Your System After You have Installed the MAILbus 400 MTA
Server

File Owner Protection

Files in SYS$COMMON:[SYSLIB]

MTA$DIR_CMA_SHR.EXE SYSTEM RWED,RWED,RWED,RE
MTA$DIR_SHR.EXE SYSTEM RWED,RWED,RWED,RE

Files in SYS$COMMON:[SYSMGR]

MTA$ACCDECODER.COM SYSTEM RWED,RWED,RE,
MTA$DECODER.COM SYSTEM RWED,RWED,RE,

Files in SYS$COMMON:[SYS$STARTUP]

MTA$SERVER_INIT.COM SYSTEM RWED,RWED,RE,
MTA$SERVER_SETUP.COM SYSTEM RWED,RWED,RE,
MTA$SERVER_SHUTDOWN.COM SYSTEM RWED,RWED,RE,
MTA$SERVER_STARTUP.COM SYSTEM RWED,RWED,RE,

Files in SYS$COMMON:[SYSTEST]

MTA$VP.COM SYSTEM RWED,RWED,RE,
MTA$MTAMAIL.EXE SYSTEM RWED,RWED,RE,

Table E–8 Files on Your System After You have Installed MAILbus 400 MTA Base

File Owner Protection

Files in SYS$COMMON:[SYSLIB]

MTA$XAPI_REM_SHR.EXE SYSTEM RWED,RWED,RWED,RE
MTA$XAPI_SHR.EXE SYSTEM RWED,RWED,RWED,RE
MTA$XAPI_CMA_SHR.EXE SYSTEM RWED,RWED,RWED,RE

Files in SYS$COMMON:[SYS$STARTUP]

MTA$CLIENT_STARTUP.COM SYSTEM RWED,RWED,RE,
MTA$CREATE_CLIENT_CLNS_

TEMPLATES.NCL
SYSTEM RWED,RWED,RE,

(continued on next page)

E–12 The OpenVMS Implementation of the MTA

Table E–8 (Cont.) Files on Your System After You have Installed MAILbus 400 MTA
Base

File Owner Protection

Files in SYS$COMMON:[SYSHLP]

MAILBUS400_API.RELEASE_NOTES SYSTEM RWED,RWED,RE,RE
MTA$RC_TEMPLATE.TXT SYSTEM RWED,RWED,RE,RE

Files in SYS$COMMON:[MTA]

MTA$BP_MAP_TABLE.TEMPLATE SYSTEM RWED,RWED,RE,

The OpenVMS Implementation of the MTA E–13

F
Routing Examples

This appendix gives examples of how the MAILbus 400 MTA uses routing
information contained in the directory and in Agent and Peer MTA entities.
For routing to work, the relevant routing information must be present in the
directory and in the appropriate Agent and Peer MTA entities. If the MAILbus
400 MTA cannot find this information, it cannot route the message, and so
generates a non-delivery report.

For the purposes of these examples, it is assumed that area routing is not
implemented. For a description of area routing, see Part II of HP MAILbus
400 MTA Planning and Setup.

These examples show the information that the MTA uses at different stages
when routing a message to a recipient. Note that this appendix describes the
behavior of the MTA for these specific examples and that the MTA can behave
differently in other situations.

F.1 Routing a Message Within a Routing Domain
In this example, a user in the ACME routing domain addresses a message to
another user in the same routing domain.

The recipient’s O/R address on the message is as follows:

Recipient = "C=NZ;A=NZ-PTT;P=ACME;O=ACME;OU1=WELL;CN=KIM YIP"

The MAILbus 400 MTA routes the message to this recipient as follows:

1. The MTA looks in the directory for an O/R address entry that matches the
recipient’s O/R address on the message. The O/R address entry contains a
Routing Instruction that identifies the recipient’s MTA, as follows:

NAME = "C=NZ;A=NZ-PTT;P=ACME;O=ACME;OU1=WELL;CN=KIM YIP"
ROUTING INSTRUCTION [ACTION = DELIVER,

SERVER MTA = "WELL.NODE7",
AGENT = "MYAGENT",
DEFINITIVE ORADDRESS = ""]

TYPE = USER

Routing Examples F–1

The MTA checks whether the MTA named in the Routing Instruction
(WELL.NODE7) is its own name. If it is, the MTA finds the name of the
User Agent named in the Routing Instruction. To deliver the message, the
MTA must have an Agent entity that corresponds to this User Agent. In
the example, this Agent entity is:

AGENT "MYAGENT"

The Agent entity contains information about the User Agent, such as the
password used by the User Agent. The MTA needs this information to
contact the User Agent and deliver the message.

2. If the MTA named in the Routing Instruction is different from the MTA
that is currently responsible for the message (referred to here as the
routing MTA), the routing MTA looks in the directory for an MTA entry
that matches the MTA named in the Routing Instruction.

The routing MTA checks the MTA entry to see whether it describes a
single MTA or an MTA set. If it is a single MTA, the routing MTA uses the
Presentation address and password specified in the MTA entry to transfer
the message to the specified MTA.

3. If the MTA named in the Routing Instruction is an MTA set, and the
routing MTA is a member of the set, the routing MTA uses the User Agent
named in the Routing Instruction of the recipient’s O/R address, and the
information in the corresponding Agent entity, to deliver the message.

4. If the MTA named in the Routing Instruction is an MTA set, but the
routing MTA is not a member of that set, the routing MTA selects a
member of the MTA set to which it attempts to transfer the message. It
then looks in the directory for an entry for the selected MTA and uses the
Presentation address and password in that entry to transfer the message
to that MTA.

5. When the message arrives at the MTA selected in step 4, the new MTA
becomes the routing MTA. The new routing MTA then completes steps 1 to
4 again until the message arrives at the destination MTA, that is, the MTA
that can deliver the message.

F.2 Routing a Message to Another Routing Domain
In this example, a user in the ACME routing domain addresses a message to a
user in the MACE routing domain. The recipient’s O/R address on the message
is:

Recipient = "C=NZ;A=NZ-PTT;P=MACE;O=MACE;CN=HEIDI BRAUN"

F–2 Routing Examples

The MAILbus 400 MTA routes the message to this recipient as follows:

1. The routing MTA looks in the directory for an O/R address entry that
matches the recipient’s O/R address on the message. In this case, it cannot
find an exact match, so it discounts the last term from the O/R address
and looks for an entry that matches the partial O/R address. It continues
to do this until it finds a matching entry in the directory, with a Routing
Instruction as follows:

NAME = "C=NZ;A=NZ-PTT;P=MACE"
ROUTING INSTRUCTION [ACTION = TRANSFER TO DOMAIN,

SERVER DOMAIN = "MACE"]
TYPE = USER

The matching O/R address entry contains a Routing Instruction that
identifies a Domain entry in the directory. The Domain entry should
contain a Routing Instruction that identifies the boundary MTA that can
send the message to the other routing domain, as follows:

NAME = "MACE"
ROUTING INSTRUCTION [ACTION = TRANSFER TO DOMAIN,

BOUNDARY MTA = "WELL.MTA-NODE6"]

The routing MTA checks whether the name of the boundary MTA is its own
name. If it is, it attempts to transfer the message to a peer MTA in the
MACE routing domain. To do this, it must have a Peer MTA entity that
represents a peer MTA in the MACE routing domain. To find the correct
Peer MTA entity, the boundary MTA looks through the attributes of its
Peer MTA entities until it finds one that contains a Peer Domain attribute
that matches the name of the Domain entry, as follows:

PEER DOMAIN = "MACE"

The Peer MTA entity contains information about the peer MTA in the
other routing domain, such as the password used by the peer MTA and the
application context that it uses. The MTA needs the information in the
Peer MTA entity to contact the peer MTA and transfer the message to it.

2. If the boundary MTA is different from the routing MTA, the routing MTA
looks in the directory for an MTA entry for the boundary MTA. It then
checks whether the boundary MTA is an MTA set, as described in step 2 of
Section F.1.

The routing MTA then uses the Presentation address and the password
named in the MTA entry for the boundary MTA (or for the MTA set
member selected by the routing MTA) to transfer the message to that MTA.
This MTA, in turn, uses the information in its Peer MTA entity to contact
the peer MTA, as described in step 1 of this section.

Routing Examples F–3

F.3 Routing a Message to a Postal Routing Domain
In this example, a user in the ACME routing domain addresses a message to a
user in the postal routing domain ISLAND-POST. The recipient’s O/R address
on the message is:

Recipient = "C=NZ;A=NZ-PTT;PD-C=NZ;PD-SN=ISLAND-POST;PD-A1=Fred Zimmer; -
PD-A2=92 Wood Way;PD-A3=Foxton;PD-A4=New Zealand;PD-PC=NZ9236"

The MAILbus 400 MTA routes the message to this recipient as follows:

1. The routing MTA looks in the directory for an O/R address entry that
matches the recipient’s O/R address on the message. In this case, it cannot
find an exact match, so it discounts the last term from the O/R address
and looks for an entry that matches the partial O/R address. It continues
to do this until it finds a matching entry in the directory, with Routing
Instructions as follows:

NAME = "C=NZ;A=NZ-PTT"
POSTAL ROUTING INSTRUCTION [ACTION = TRANSFER TO DOMAIN,

SERVER DOMAIN = "ISLAND-POST"]
ROUTING INSTRUCTION [ACTION = TRANSFER TO DOMAIN,

SERVER DOMAIN = "NZ-PTT"]
TYPE = USER

In this case a routing instruction which is specific to the postal O/R address
form is present. The MTA uses this instruction in preference to the routing
instruction specified generally for the other O/R address forms because the
recipient has a postal O/R address.

The Domain entry specified as server domain (ISLAND-POST) should
contain a Routing Instruction that identifies the boundary MTA that can
send the message to the ISLAND-POST routing domain, as follows:

NAME = "ISLAND-POST"
ROUTING INSTRUCTION [ACTION = TRANSFER TO DOMAIN,

BOUNDARY MTA = "WELL.MTA-NODE8"]

The routing MTA checks whether the name of the boundary MTA is its
own name. If it is, it attempts to transfer the message to a peer MTA in
the ISLAND-POST routing domain. To do this, it must have a Peer MTA
entity that represents a peer MTA in the ISLAND-POST routing domain.
To find the correct Peer MTA entity, the boundary MTA looks through the
attributes of its Peer MTA entities until it finds one that contains a Peer
Domain attribute that matches the name of the Domain entry, as follows:

PEER DOMAIN = "ISLAND-POST"

F–4 Routing Examples

The Peer MTA entity contains information about the peer MTA in the
ISLAND-POST routing domain that can reach the physical delivery access
unit (PDAU) for the ISLAND-POST delivery service. The Peer MTA entity
contains information such as the password used by the peer MTA and the
application context that it uses. The MTA needs the information in the
Peer MTA entity to contact the peer MTA and transfer the message to it.

2. If the boundary MTA is different from the routing MTA, the routing MTA
looks in the directory for an MTA entry for the boundary MTA. It then
checks whether the boundary MTA is an MTA set, as described in step 2 of
Section F.1.

The routing MTA then uses the Presentation address and the password
named in the MTA entry for the boundary MTA (or for the MTA set
member selected by the routing MTA) to transfer the message to that MTA.
This MTA, in turn, uses the information in its Peer MTA entity to contact
the peer MTA, as described in step 1 of this section.

Routing Examples F–5

G
MTA Module Entities and Attributes

This appendix lists the characteristic, status, and identifier attributes of each
entity in the MTA module. The tables in this appendix list the characteristic,
status, and identifier attributes of the following entities:

• MTA entity (Table G–1)

• Agent entity (Table G–2)

• Bodypart entity (Table G–3)

• Converter entity (Table G–4)

• Deferred Message entity (Table G–5)

• Processed Message entity (Table G–6)

• MPDU entity (Table G–7)

• Peer MTA entity (Table G–8)

• Activity entity (Table G–9)

Counter attributes and events are listed in the following tables:

• Table 14–3

Lists the counters that record statistical information about MPDUs and
associations.

• Table 14–2

Lists each event and its related counter.

Each table in this appendix lists each attribute and gives a summary of the
NCL commands and the datatype or value. See the MTA Module Online Help
for a full description of all attributes and their value syntaxes.

MTA Module Entities and Attributes G–1

Table G–1 MTA Entity Attributes

Attribute Show Set Datatype or Value

MTS
�

- Printable String

Name
�

- Printable String

Presentation Address
�1 - 2

Session Address
�1 - 2

Accounting State
� �

On, Off

Accounting Purge Interval
� �

Binary Relative Time

Maximum Agent Connections
� �

Integer

Contact Name
� �

Latin1

Template Name
� �

See the MTA Module
Online Help

Transport Service Options
� �

See the MTA Module
Online Help

Delivery Accounting Filter
� �3 See the MTA Module

Online Help

Export Accounting Filter
� �3 See the MTA Module

Online Help

Import Accounting Filter
� �3 See the MTA Module

Online Help

Submission Accounting Filter
� �3 See the MTA Module

Online Help

Message History State
� �

On, Off

Message History Purge Interval
� �

Binary Relative Time

Initial Transfer Retry Interval
� �

Binary Relative Time

Maximum Automatically
Configured Peer MTAs

� �
Integer

Maximum Inbound Transfer
Associations

� �
Integer

Maximum Idle Inbound Transfer
Association Interval

� �
Binary Relative Time

1Not without privileges
2See the DECnet/OSI network documentation
3You can also use the Add and Remove Commands

(continued on next page)

G–2 MTA Module Entities and Attributes

Table G–1 (Cont.) MTA Entity Attributes

Attribute Show Set Datatype or Value

Maximum Outbound Parallel
Transfer Associations

� �
Integer

Maximum Outbound Transfer
Associations

� �
Integer

Maximum Idle Outbound
Transfer Associations Interval

� �
Binary Relative Time

Maximum Transfer Associations
� �

Integer

Maximum Transfer Lookahead
� �

Integer

Maximum Transfer Retry
Interval

� �
Binary Relative Time

Local MPDU Expiry Interval
� �

Binary Relative Time

Nonurgent MPDU Expiry
Interval

� �
Binary Relative Time

Normal MPDU Expiry Interval
� �

Binary Relative Time

Maximum Message Processors
� �

Integer

Version
�

- Version Number

State
�

- On, Off, Enabling,
Disabling

UID
�

- Unique identifier

Table G–2 Agent Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- See the MTA Module Online
Help

Type
�

- XAPI, Shared File 1984,
Shared File 1992

Archive
� �

Off, Inbound, Outbound,
Inbound and Outbound

Invocation Filename
�1 �

File name

Password -
�

Printable String

1Not without privileges

(continued on next page)

MTA Module Entities and Attributes G–3

Table G–2 (Cont.) Agent Entity Attributes

Attribute Show Set Datatype or Value

State
�

- On, Off

UID
�

- Unique identifier

Table G–3 Bodypart Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- Alphanumeric

Encoded Information Types
�

- See the MTA Module Online
Help

Identifier
�

- See the MTA Module Online
Help

Table G–4 Converter Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- Alphanumeric

Lossy
�

- True, False

Source
�

- Alphanumeric

Steps
�

- Alphanumeric

Target
�

- Alphanumeric

Table G–5 Deferred Message Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- Message identifier

Deferred Until
�

- Binary Absolute Time

Originator
�1 - O/R address

Priority
�

- Urgent, Nonurgent Normal,

Recipients
�1 - Set of O/R addresses

Size
�

- Integer

1Not without privileges

(continued on next page)

G–4 MTA Module Entities and Attributes

Table G–5 (Cont.) Deferred Message Entity Attributes

Attribute Show Set Datatype or Value

Submission Time
�

- Binary Absolute Time

Table G–6 Processed Message Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- Message identifier

Recipient Information
�1 - See the MTA Module Online

Help

1Not without privileges

Table G–7 MPDU Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- See the MTA Module Online
Help

Arrival Time
�

- Binary Absolute Time

Expiry Time
�

- Binary Absolute Time

Message Identifier
�

- Message identifier

Originator
�1 - O/R address

Priority
�

- Urgent, Nonurgent, Normal

Recipients
�1 - Set of O/R addresses

Retry Time
�

- Binary Relative Time

Size
�

- Integer

State
�

- See the MTA Module Online
Help

Target
�

- See the MTA Module Online
Help

Type
�

- Message, Probe, Report

1Not without privileges

MTA Module Entities and Attributes G–5

Table G–8 Peer MTA Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- See the MTA Module
Online Help

Type
�

- Automatically
Configured, Manually
Configured

Application Context1 � �
See the MTA Module
Online Help

Archive1 � �
Off, Inbound,
Outbound, Inbound
and Outbound

Contact Name1 � �
Latin1

Direction1 � �
Inbound, Outbound,
Inbound and Outbound

Peer Domain1 � �
Printable String

Presentation Address1 �2 � 3

Session Address1 �2 � 3

Local Name1 � �
IA5 Graphic Subset

Local Password1 -
�

IA5 Graphic Subset or
Octet

Peer Name1 � �
IA5 Graphic Subset

Peer Password1 -
�

IA5 Graphic Subset or
Octet

Transport Service Options
� �

See the MTA Module
Online Help

Template Name1 � �
See the MTA Module
Online Help

Maximum Inbound Parallel
Transfer Associations1

� �
Integer

Maximum Outbound Parallel
Transfer Associations1

� �
Integer

Trace1 � �
On, Off

1This attribute is only applicable to Peer MTA entities that are manually created
2Not without privileges
3See the DECnet/OSI network documentation

(continued on next page)

G–6 MTA Module Entities and Attributes

Table G–8 (Cont.) Peer MTA Entity Attributes

Attribute Show Set Datatype or Value

Transfer In Accounting Filter1 � �4 See the MTA Module
Online Help

Transfer Out Accounting Filter 1 � �4 See the MTA Module
Online Help

Retry Count
�

- Integer

Retry Time
�

- Binary Absolute Time

State
�

- On, Off

UID
�

- Unique identifier

1This attribute is only applicable to Peer MTA entities that are manually created
4You can also use the Add and Remove commands

Table G–9 Activity Entity Attributes

Attribute Show Set Datatype or Value

Name
�

- See the MTA Module Online
Help

Application Context
�

- See the MTA Module Online
Help

Creation Time
�

- Binary Absolute Time

Current MPDU
�

- MPDU identifier

Direction
�

- Inbound, Outbound, Inbound
and Outbound

Interruption Reason
�

- Text

Port
�

- See the MTA Module Online
Help

SCID
�

- Unique identifier

State
�

- Idle, Active, Interrupted

UID
�

- Unique identifier

MTA Module Entities and Attributes G–7

H
Characters in Character Sets

This appendix shows the characters that comprise the different character
sets used to specify the value of attributes of entities of the MTA and MTS
modules.

H.1 Printable String
Table H–1 shows the characters that can appear in the printable string
character set, which is specified in CCITT Recommendation X.208.

Table H–1 Printable String Characters

Name Character

Capital letters A, B, . . . Z

Small letters a, b, . . . z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Space (space)

Apostrophe ’

Left Parenthesis (

Right Parenthesis)

Plus Sign +

Comma ,

Hyphen -

Full Stop (period) .

Solidus /

Colon :

Equal Sign =

(continued on next page)

Characters in Character Sets H–1

Table H–1 (Cont.) Printable String Characters

Name Character

Question Mark ?

H.2 IA5 Graphic Subset
Table H–2 shows the characters that comprise the IA5 graphic subset, which is
specified in CCITT Recommendation T.50.

Table H–2 IA5 Graphic Subset Characters

Name Character

Capital letters A, B, . . . Z

Small letters a, b, . . . z

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Exclamation mark !

Quotation mark "

Number sign #

Currency sign ¤

Percent sign %

Ampersand &

Apostrophe ’

Left parenthesis (

Right parenthesis)

Asterisk *

Plus sign +

Comma ,

Hyphen -

Full stop (period) .

Solidus /

Colon :

Semi-colon ;

(continued on next page)

H–2 Characters in Character Sets

Table H–2 (Cont.) IA5 Graphic Subset Characters

Name Character

Less than sign <

Equals sign =

Greater than sign >

Question mark ?

Commercial at @

Left square bracket [

Reverse solidus \

Right square bracket]

Upward arrow head ^

Underline _

Grave accent (for example, with small e) è

Left curly bracket (brace) {

Vertical line |

Right curly bracket (brace) }

Overline �

Space (space)

H.3 Teletex String
The teletex character set, specified in CCITT Recommendation T.61, consists
of graphic and control characters. The graphic characters include not only
decimal digits and basic Latin letters, but also accented letters and alphabetic
characters from non-Latin alphabets. Table H–3 shows the graphic characters
from the teletex character set. For technical reasons, some of these are not
shown, and the table shows their name only.

The hexadecimal values shown in Table H–3 describe the position of each
character in the 16x16 code table for graphic characters shown in CCITT
Recommendation T.61. The value for each character consists of the column
number (0 through F) and the row number (0 through F). Thus, for example,
capital A appears in column 4, row 1, and capital B in column 4, row 2. Capital
P appears in column 5, row 0, and capital Z in column 5, row A.

Characters in Character Sets H–3

Table H–3 Teletex String Graphic Characters

Name Character Hexadecimal Value

Capital Latin letters A, B, . . . Z 41 to 5A

Small Latin letters a, b, . . . z 61 to 7A

Capital Æ diphthong Æ E1

Small æ diphthong æ F1

Capital D with stroke Ð E2

Small d with stroke (not shown) F2

Small eth (Icelandic) ð F3

Capital H with stroke (not shown) E4

Small h with stroke (not shown) F4

Small i without dot (not shown) F5

Capital IJ ligature (not shown) E6

Small ij ligature (not shown) F6

Capital L with middle dot (not shown) E7

Small l with middle dot (not shown) F7

Capital L with stroke (not shown) E8

Small l with stroke (not shown) F8

Capital O with slash Ø E9

Small o with slash ø F9

Capital Œ ligature Œ EA

Small œ ligature œ FA

Small sharp s (German) ß FB

Capital thorn (Icelandic) Þ EC

Small thorn (Icelandic) þ FC

Capital T with stroke (not shown) ED

Small t with stroke (not shown) FD

Capital eng (Lapp) (not shown) EE

Small eng (Lapp) (not shown) FE

Small n with apostrophe ’n EF

Small k (Greenlandic) (not shown) F0

(continued on next page)

H–4 Characters in Character Sets

Table H–3 (Cont.) Teletex String Graphic Characters

Name Character Hexadecimal Value

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 30 to 39

Currency symbol ¤ A8

Pound sign £ A3

Dollar sign $ A4

Cent sign ¢ A2

Yen sign ¥ A5

Space (space) 20

Exclamation mark ! 21

Inverted exclamation mark ¡ A1

Quotation mark " 22

Apostrophe ’ 27

Left parenthesis (28

Right parenthesis) 29

Comma , 2C

Low line _ 5F

Hyphen or minus sign - 2D

Full stop (period) . 2E

Solidus / 2F

Colon : 3A

Semicolon ; 3B

Question mark ? 3F

Inverted question mark left ¿ BF

Angle quotation mark left « AB

Angle quotation mark right » BB

Plus sign + 2B

Plus/minus sign � B1

Less-than sign < 3C

Equals sign = 3D

Greater-than sign > 3E

(continued on next page)

Characters in Character Sets H–5

Table H–3 (Cont.) Teletex String Graphic Characters

Name Character Hexadecimal Value

Divide sign � B8

Multiply sign � B4

Superscript 2 2 B2

Superscript 3 3 B3

Fraction one half ½ BD

Fraction one quarter ¼ BC

Fraction three quarters ¾ BE

Number sign # A6

Percent sign % 25

Ampersand & 26

Asterisk * 2A

Commercial at @ 40

Left square bracket [5B

Right square bracket] 5D

Vertical line | 7C

Micro sign � B5

Ohm sign � E0

Degree sign ° B0

Masculine ordinal indicator º EB

Feminine ordinal indicator ª E3

Section sign § A7

Paragraph sign (pilcrow) ¶ B6

Middle dot � B7

You can use the hexadecimal value to specify any teletex character. Normally,
you would only use the hexadecimal value to specify a teletex character that is
not part of the ISO Latin 1 character set. When you specify a character as a
hexadecimal value, enclose the value for each character in backslash characters
(\). For example, to specify the feminine ordinal indicator, enter \E3\.

H–6 Characters in Character Sets

The graphic representation of an accented letter consists of the combination of
the basic Latin letter and a diacritical (non-spacing) mark. Table H–4 shows
the accents that are included in the teletex character set.

Table H–4 Accents in the Teletex Character Set

Accent Hexadecimal Value

Acute C2

Grave C1

Circumflex C3

Diaeresis or umlaut C8

Tilde C4

Caron CF

Breve C6

Double acute accent CD

Ring CA

Dot C7

Macron C5

Cedilla CB

Non-spacing underline CC

Ogonek CE

To specify a teletex character that includes a diacritical mark and that is not
part of the ISO Latin 1 character set, specify the hexadecimal value of the
diacritical mark, as shown in Table H–4, then that of the basic character. For
example, to specify the letter y with a circumflex, enter \C379\.

H.4 Numeric String
Table H–5 shows the characters that comprise the numeric string character
set, which is specified in CCITT Recommendation X.208.

Characters in Character Sets H–7

Table H–5 Numeric String Characters

Name Character

Digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Space (space)

H.5 Octet String
An octet string consists of one or more octets. An octet is described by two
hexadecimal digits (0-9, A-F).

When using an octet string to enter teletex characters, enclose the hexadecimal
representation of each teletex character in backslash characters (\). For
example, to specify the capital H with stroke and the small ij ligature enter:
\E4\\F6\.

H–8 Characters in Character Sets

Index

A
A/311 profile, C–16
A/3211 profile, C–16
A/MH11 profile, C–17
Abstract Syntax Notation One, 2–4, 8–11

in Accounting files, 8–9, 8–11
in archived messages, 9–3, 9–5

Access Denied error, 15–1
and the Dump command, 15–2

Accounting
communication with peer MTA, 5–5
data storage, 5–5
Decoder tool, 8–9

using on OpenVMS Alpha, E–6
using on OpenVMS VAX, E–6
using on Tru64 UNIX, D–6

description, 8–1
diagram, 8–2
disabling, 8–4
enabling, 5–5, 8–4
examples of using, 8–2, 8–4
file, 8–9, 8–11
filter, 5–5

settings, 8–6
managing

diagram, 5–2
message attributes, 8–1, 8–11
Purge Interval, 8–8
timestamps in filter settings, 8–7
uses of, 5–1

Accounting Data Lost event, 21–2

Accounting Purge Interval attribute, 5–5,
8–8

Accounting State attribute, 5–5, 8–4
ACL attribute, 17–6, 17–8, 17–12
Activity entity, 1–10

creating, 4–5
diagram, 1–7
Interruption Reason attribute

displaying, 16–3
monitoring associations, 16–2
State attribute, 16–3
table of attributes, G–7

Address
See also O/R address
for Reader’s comments, xxv
of peer MTA, 1–10

Address Extensions attribute, 17–3, 17–5
Address Prefix, 17–3
Agent

Accounting filter setting, 8–6, 8–7
application, 1–2, 2–2
connections to MTA, 1–2
connection with MTA, 19–4
supported content types, 11–5

Agent connections
port number for Agents using the XAPI

interface on OpenVMS, E–8
port number for Agents using the XAPI

interface on Tru64 UNIX, D–8
Agent entity

and routing, F–2
attributes affecting inbound

communication
in diagram, 2–2

Index–1

Agent entity (cont’d)
attributes affecting outbound

communication
in diagram, 4–4

creating, 1–9, 1–12
diagram, 1–7
Invocation Filename attribute, 4–2
MPDUs In counter, 7–4
MPDUs Out counter, 7–5
Password attribute, 19–6
table of attributes, G–3
use of, 1–7
using Archiving, 9–2

Any EIT, 11–9
API Server, 1–2
Application context, 4–5
Archive attribute, 5–5, 9–3
Archived message

examining on OpenVMS Alpha, E–7
examining on OpenVMS VAX, E–7
examining on Tru64 UNIX, D–7

Archived messages
format of, 9–5

Archive Failed event, 21–3
Archiving

ASN.1 in archived message headers, 9–6
description, 9–1
diagram, 9–2
disabling, 9–2
enabling, 9–2
example of using, 9–1
format of archived messages, 9–5
managing

diagram, 5–2
setting direction, 9–2
uses of, 5–1
using, 5–5

ASN.1
See Abstract Syntax Notation One

Association
defined, 1–3
failure, 1–4, 16–2
idle interval, 1–3
inbound, 2–4
limit on number, 2–4

Association (cont’d)
meaning in ‘Problems with Associations’

chapter, 16–1
outbound, 4–4, 4–6
state of, 1–10, 16–3
using an existing, 4–8

Automatically-Configured Peer MTA entity,
1–9

B
Bad message

defined, 2–6
directory for, 18–9
examining, 5–6
examining on OpenVMS Alpha, E–7
examining on OpenVMS VAX, E–7
examining on Tru64 UNIX, D–6

Basic bodypart, 12–3
Basic encoding

defined, 6–6
Bilaterally Defined bodypart, 11–11
Bodypart

and content information, 11–2
conversion, 3–8, 3–9, 11–3

problem, 14–4, 18–27
specifying EITs, 11–8

converter, 11–13
defining, 12–3
defining new type, 3–9, 12–3
downgrading, 6–6
EITs, 11–9
examining on OpenVMS Alpha, E–7
examining on OpenVMS VAX, E–7
examining on Tru64 UNIX, D–7
translation, 11–7

Bodypart 14
see Bilaterally defined, 11–16

Bodypart 15
see Externally defined, 11–16

Bodypart entity, 3–10
creating, 1–9, 1–12, 3–9, 12–4
diagram, 1–7
table of attributes, G–4

Index–2

Bodypart mapping table, 11–8
location, D–5, E–4

Boundary MTA, 2–4
and direction of message transfer, 7–27
connecting to 1984 routing domain, 6–8
definition, 1–10
in routing instruction, F–3, F–4
number of, 16–28

C
Call Data Value

see CDV
CCITT, A–1
CCITT Reccomendations, A–3

1988 extensions, B–7
CCITT Recommendations

1984, 6–1
CDV, 17–5

attribute, 17–10
value for, 17–5
value required for OSI Transport, 17–10

CEN/CENELEC European Prestandards,
A–6

CHANNELCNT, 7–11
Character set

conversion to another character set, 3–8
IA5 graphic subset, H–2
numeric string, H–8
printable string, H–1
teletex string, H–4

Checkpoint information, 1–4
Checkpointing

during transfer, 4–5
CLNS, 7–30
Comments

addresses, xxv
Common Name

mapping with Domain-defined attribute,
6–3

Common Name attribute, 6–2
Conformance, A–1, C–1

CEN/CENELEC ENV 41201, C–16
CEN/CENELEC ENV 41202, C–16
CEN/CENELEC ENV 41214, C–17

Conformance (cont’d)
CEN/CENELEC European Prestandards,

C–14
ISP 10611, C–3
ISP 12062, C–5
OIW Stable Implementation Agreements,

C–6
UK GOSIP, C–9
US GOSIP, C–8

Congestion
reasons for, 7–2

Connection
between Agent and MTA, 19–4
between MTAs, 1–10, 2–4
for MPDU collection, 4–2
limit on number permitted, 2–2

Connectionless Network Service
See CLNS, 7–30

Connection-Oriented Network Service
See CONS, 7–30

CONS, 7–30
CONS Template

attribute of OSI Transport module, 17–5
Contact Name attribute

of Peer MTA entity
setting, 14–3

Content
loss during conversion, 3–8

Content information
content types, 11–5
definition, 11–1
effects of, 11–2, 11–4
encoded information types, 11–8
entering in the directory, 11–17
for 1984 based User Agents, 11–18
how MTAs use it, 3–7
maximum content length, 11–5
proprietary formats, 12–1

Content Information
for 1992 based User Agents, 11–19
for ISOGATE cc:Mail Gateways, 11–24
for Retix OpenServer 400 Gateways,

11–22
for the HP MAILbus 400 SMTP Gateway,

11–20

Index–3

Content Information (cont’d)
for the MAILbus 400 Message Router

Gateway, 11–21
sent across an MTS based on the 1984

MHS Standards, 11–25
Content Information attribute, 3–8
Content type

known formats, 11–6
proprietary formats, 12–1
specified in ORaddress entities, 11–5

Conversion
and loss of content, 3–8
criteria for, 3–8
how the MTA decides, 11–3
incorrect, 14–4
of bodypart, 3–8
of Externally Defined bodyparts, 6–6
problem, 18–27
specifying EITs for IPM bodypart

conversion, 11–8
Converter

defined, 3–8
Externally defined to Bilaterally defined,

11–16
File Transfer to Bilaterally defined,

11–16
installation, 3–9
integrating a proprietary converter, 12–2
interworking between MailWorks Server

for Tru64 UNIX and Poste, 11–17
supplied, 3–9, 11–13

Converter entity, 3–10
creating, 1–9, 1–12, 3–9, 11–14, 12–8
diagram, 1–7
displaying, 18–29
Steps attribute, 3–10, 12–9
table of attributes, G–4

Converter Unavailable event, 18–27
Creating entries in the directory

problems with access control, 15–1
Creation Time attribute, 14–7

of Peer MTA entity, 7–5
Criticality

of extension, B–7

D
DDA

See Domain-defined attribute
DDIF, 3–9
DDIF bodypart, 11–11
DECdx bodypart, 11–11
DEC MCS bodypart, 11–11
DECnet shutdown

MTA event dispatching, 13–3
Deferred delivery, 1–11, 2–2, 2–3
Deferred message, 18–19

displaying, 18–11
displaying information about, 18–19
tracing, 18–19
workspace, 18–19

Deferred Message Deleted event, 18–26
Deferred Message entity, 1–11, 2–2, 2–3,

18–19
deleting, 2–3
diagram, 1–7
example, 18–20
table of attributes, G–4

Delivered MPDUs counter, 7–5
Delivery

defined, 4–1
Delivery Accounting Filter attribute, 8–5
Delivery Queue, 1–3, 1–4, 3–3, 3–10, 4–1,

4–2
Dialogue mode, 16–16, 16–18

types of, 1–3
Different CCITT Domain attribute, 3–5, 3–6
Direction attribute, 7–27

of Peer MTA entity, 16–22
Directory

and content information, 11–1, 11–17
displaying an O/R address entry, 19–2
MTA entry, 19–10
MTA name entry, 16–10
MTA password entry, 16–9, 16–21
MTA Presentation address entry, 16–8,

16–23
problem with, 19–11, 20–3
unavailable, 16–29

Index–4

Directory Configuration Error event, 19–11
Directory Service Error event, 20–3
Directory System Agent

checking the state of, 20–5
Disk

deletion of MPDU from, 2–6, 4–3
releasing space, 5–3
space occupied by Accounting files, 8–8
space occupied by archived messages, 9–4
space occupied by Message History data,

10–4
writing MPDU to, 2–4

Distribution list, 14–5
expanding, 3–4
nested, 3–4

Domain
Accounting filter setting, 8–6, 8–7

Domain-defined attribute
and O/R address, 6–3
mapping with Common Name, 6–3

Domain entity
Different CCITT Domain attribute, 3–5,

3–6
displaying, 16–24, 19–10

DOTS bodypart, 11–11
Downgrading, 4–5

and Shared File interface, 4–3
and XAPI interface, 4–2
bodypart, 6–6
message content, 3–10, 6–5
message envelope, 6–1
O/R address, 6–2
RFC 1328, A–7

DSA
See Directory System Agent

DTE, 17–3
DTE address, 17–14

as provided by the caller, 17–10
DTE class, 17–5, 17–9
DTE Class attribute, 17–8
DTIF bodypart, 11–11
Dump command

Access Denied error, 15–2

E
EIT

definition, 11–2
known formats, 11–9
proprietary formats, 12–1
specified in ORaddress entities, 11–8

Electronic Data Interchange content type,
11–6

Elements of Service, B–1 to B–6
EMA

See Enterprise Management Architecture,
1–6

Encoded information type
See EIT

Encoding
conversion to another encoding, 3–8

Encrypted bodypart, 11–10
Enterprise Management Architecture, 1–6
Entity

creation, 1–7
hierarchy, 1–6

Entity Deleted event, 7–5, 7–27, 14–10
ENV, C–15

41201, C–16
41202, C–16
41214, C–17

Envelope
content conversion information, 3–8
content information, 3–7
downgrading, 6–1
logging information in, 8–6
trace information in, 2–1, 19–12

Error
Access Denied, 15–1

Error log, 23–2
MTA.ERR, 23–2
MTA.LOG, 23–2

European Prestandards
See ENV

Event
Accounting Data Lost, 21–2
Archive Failed, 21–3
Converter Unavailable, 18–27

Index–5

Event (cont’d)
Deferred Message Deleted, 18–26
Directory Configuration Error, 19–11
Directory Service Error, 20–3
dispatching, 13–1
example, 14–6
Expiry Alarm Threshold Exceeded, 18–22
Forced Exit, 22–3
generating, 14–4
Inbound Failure, 16–30
Inbound Transfer Hard Rejection, 16–17
Inbound Transfer Soft Rejection, 16–26
Internal Error, 22–2
Invalid MPDU Detected, 18–23
Licensed Message Throughput Exceeded,

22–3
Loop Detected, 19–12
Lower Layer Protocol Violation, 16–44
Message History Data Lost, 21–2
MPDU Deleted, 18–27
MPDU Expired, 18–24
Outbound Establishment Failure, 16–5
Outbound Failure, 16–35
Outbound Hard Rejection, 16–15
Outbound Soft Rejection, 16–25
Recovery Finished, 18–35
Rejected Agent Connection, 19–4
Report Discarded, 18–25
Report Generation Failed, 18–26
RTSE Protocol Violation, 16–42
sequence of, 14–6
sink, 13–1
State Change, 14–10
System Interface Error, 20–1
timestamp, 14–6
Transport Interface Error, 16–39
Unknown Agent, 19–8
Unknown Peer Domain, 19–9

Event Dispatcher
effects of shutdown, 13–3
module, 13–1
problems with, 21–1

Event dispatching, 13–1
DECnet shutdown, 13–3
Event Dispatcher shutdown, 13–3

Event dispatching (cont’d)
starting, 13–3

Exit status, 12–5
Expiry

alarm threshold, 7–25
Changing the interval, 7–24
intervals, 7–24
of MPDU with nonurgent priority, 7–25
of MPDU with normal priority, 7–26
of MPDU with urgent priority, 7–26
time, 1–6
warning of, 18–22

Expiry Alarm Threshold Exceeded event,
7–9, 7–25, 18–22

Export
defined, 4–1

Export Accounting Filter attribute, 8–5
Exported MPDUS counter, 7–5
Extended bodypart, 12–3
Extended SDECKanji Text bodypart, 11–12
Extended SJIS Text bodypart, 11–12
Extensions, B–7
Externally Defined bodypart, 11–6, 11–11

translation, 11–7
Externally Defined IPMS content type, 11–6
External trace information, 3–6

adding, 3–6
removing, 3–6

F
Feedback

on this guide, xxv
File name

of Accounting files, 8–10
of archived messages, 9–3, 9–4
of trace binary file, 16–49

File Transfer bodypart, 11–7
translation, 11–7

File Transfer IPMS content type, 11–7
Filter attribute, 17–7
Filter settings

in Accounting, 8–6

Index–6

Forced Exit event, 22–3

G
G3Fax bodypart, 11–10
G4Class1 bodypart, 11–10
Gateway

connection through Interface Region, 1–2
export through, 4–1
import through, 2–1
registration as Agent entity, 1–7

GDI
See Global Domain Identifier
in external trace information, 3–6

General Text bodypart, 11–13
Global Domain Identifier

displaying, 19–13
in external trace information, 19–12

Global Domain Identifiers attribute, 3–6

H
History logging

See Message History logging

I
IA5 bodypart, 11–13
IA5 graphic subset, H–2
IA5Text bodypart, 11–10
Identifier

of Agent entity, 19–5, 19–8
of message, 18–9

Identifying and X.25 Server from an X.25
Gateway Client, 17–9

Import
defined, 2–1

Import Accounting Filter attribute, 8–5
Imported MPDUs counter, 7–4
Inbound association, 2–4
Inbound connection requests

at an X.25 Server on behalf of an X.25
Gateway Client, 17–13

From an X.25 Server or Native system,
17–10

Inbound connection requests from an X.25
Server or Native system

diagram, 17–10
Inbound connection requests to an X.25

Gateway Client
diagram, 17–13

Inbound connections
failure, 17–19

Inbound Failure event, 16–30
Inbound transfer

defined, 2–1
Inbound Transfer Hard Rejection event,

16–17
Inbound Transfer Soft Rejection event, 7–8,

16–26
Initial Transfer Retry Interval attribute,

4–8, 7–21
Installation

of converter, 3–9
of proprietary converter, 12–7

Interface Region
and deferred delivery, 2–3
and inbound MPDU, 2–2
and outbound MPDU, 4–2
defined, 1–2
monitoring inbound communication

diagram, 2–2
monitoring outbound communication

diagram, 4–4
Internal Error event, 22–2
Internal trace information, 3–6

adding, 3–7
removing, 3–7

International Organization for
Standardization, A–1

See ISO
International Standardized Profile

See ISP
International Telegraph and Telephone

Consultative Committee, A–1
Interpersonal messaging system 1984

content type, 11–6

Index–7

Interpersonal messaging system 1992
content type, 6–5, 11–6

Interruption Reason attribute
displaying, 16–3

Interworking, A–2
Interworking with a 1984 X.400 MHS, 6–1
Invalid MPDU Detected event, 18–23
Invocation Filename attribute, 4–2
IPM bodypart conversion

specifying EITs, 11–8
IPMS Passthrough content type, 11–7
ISO, A–1
ISO 6937 bodypart, 11–9
ISO International Standards, A–4
ISO Latin 1 bodypart, 11–13
Isolating failed connections, 17–17

inbound, 17–19
outbound, 17–18

ISP, C–2
ISO/IEC ISP 10611, C–3
ISO/IEC ISP 12062, C–5

J
Journaling, 5–1, 5–3
Journal record, 4–6, 5–1, 5–4
jpbody84 bodypart, 11–13
jpbody88 bodypart, 11–12

L
Licensed Message Throughput Exceeded

event, 22–3
Limit

concurrent connections with Agents, 2–2
Peer MTA entities, 1–10
to lookahead in Relay Queue, 4–8

Listener
associating with an X25 Access Filter,

17–12
Listening for incoming connections

diagram, 17–14
Local DTEs, 17–5

Local MPDU Expiry Interval attribute, 7–25
Local Name attribute, 16–16
Local Password attribute, 16–16
Local Subaddress attribute, 17–9
Local Transport Selector, 16–41
Logical Name

MTA$ACCOUNTING, E–5
MTA$ARCHIVE, E–5
MTA$BAD_MSGS, E–6
MTA$node, E–3
MTA$TRACE, E–6
MTA_NODE, E–6

Lookahead, 4–8, 7–20
Loop Detected event, 19–12
Loop detection, 3–7
Loss

of Accounting data, 21–2
of Archive data, 21–3
of data

due to insufficient disk space, 8–10,
9–5, 10–4

during conversion, 11–14
of message content, 3–8
of Message History data, 21–2

Lower Layer Protocol Violation event, 16–44

M
Mailbox, 18–13
MAILbus 400 Application Program Interface

and registered Agent, 1–7
defined, 1–2

MAILbus 400 Message Router Gateway
content information, 11–21

MAILbus 400 MTA
conformance, A–2

Management
of MPDU processing

diagram, 3–1
of Relayer (inbound)

diagram, 2–4
of Relayer (outbound)

diagram, 4–6

Index–8

Managing routing information
Access Denied, 15–1

Manually-Configured Peer MTA entity, 1–10
Maximum Agent Connections attribute,

7–11
Maximum Automatically Configured Peer

MTAs attribute, 1–10, 7–27
Maximum Idle Inbound Transfer Association

Interval attribute, 16–32
modifying, 7–19

Maximum Idle Outbound Transfer
Association Interval attribute

modifying, 7–18
Maximum Inbound Parallel Transfer

Associations attribute, 7–14
Maximum Inbound Transfer Associations

attribute, 7–13
displaying, 16–49
setting, 16–49

Maximum Message Processors attribute,
3–2, 7–17

Maximum Outbound Parallel Transfer
Associations attribute, 7–16

displaying, 16–48
setting, 16–48

Maximum Outbound Transfer Associations
attribute, 7–15

Maximum Transfer Associations attribute,
7–12

Maximum Transfer Lookahead attribute,
4–8, 7–20

Maximum Transfer Retry Interval attribute,
4–8, 7–22

Maximum Transport Connections attribute,
7–11

May Cross CCITT Boundaries attribute, 3–5
Message

bodypart, 11–10
failure, 18–1
tracing, 18–9

Message content
downgrading, 6–5
loss during conversion, 3–8

Message Content Type
Accounting filter setting, 8–6

Message Decoder tool, 2–6
use of, 5–6
using on OpenVMS Alpha, E–7
using on OpenVMS VAX, E–7
using on Tru64 UNIX, D–6

Message DL Expansion History
Accounting filter setting, 8–6

Message EITs
Accounting filter setting, 8–7

Message External Trace Information
Accounting filter setting, 8–6

Message Flags
Accounting filter setting, 8–6

Message History
viewing, 10–3

Message History Data Lost event, 21–2
Message History logging, 1–11, 2–6

description, 10–1
diagram, 10–2
disabling, 10–3
enabling, 5–6, 10–3
examples of using, 10–1, 10–2
information logged, 10–3
managing

diagram, 5–2
purge interval, 10–3
use of, 5–1

Message History Logging
Processed Message entity, 10–3

Message History Purge Interval attribute,
1–11, 2–6, 5–6, 10–3

Message History State attribute, 5–6, 10–3
Message Internal Trace Information

Accounting filter setting, 8–6
Message Originator

Accounting filter setting, 8–6
Message Priority

Accounting filter setting, 8–6
Message Processor, 3–2

defined, 1–3
Message Recipient Information

Accounting filter setting, 8–6

Index–9

Message Recipient Redirection History
Accounting filter setting, 8–6

Message Router Text bodypart, 11–12
Message Size

Accounting filter setting, 8–6
MHS

See Message Handling System, 2–1
MHS Standards

1984, A–2
1988, A–1
1992, A–1

Mixed-mode bodypart, 11–11
Mnemonic content information, 11–17
Mnemonic O/R address, 6–2
Monologue mode

defined, 1–3
MPDU

constraints on throughput, 3–3
displaying information about, 7–6
location in MTA, 7–6

MPDU Deleted event, 18–27
MPDU encoding

during processing, 2–6
when written to disk, 2–4

MPDU entity
creation, 1–11
diagram, 1–7
displaying, 7–6
example, 18–21
State attribute, 7–6, 7–9
table of attributes, G–5
Target attribute

displaying, 16–47
Type attribute, 18–20

MPDU Expired event, 7–9, 18–24
MPDUs In counter

of Agent entity, 7–4
of Peer MTA entity, 7–4

MPDUs Out counter
of Agent entity, 7–5
of Peer MTA entity, 7–5

MTA
and problems related to X.25, 17–17
and X.25, 17–1

MTA (cont’d)
checking failed inbound connections,

17–19
checking failed outbound connections,

17–18
connections to Agent, 1–2
encoding MPDU, 2–4
listening for incoming connection requests,

17–14
restarting on OpenVMS Alpha, E–8
restarting on OpenVMS VAX, E–8
restarting on Tru64 UNIX, D–9
starting on Tru64 UNIX, D–8, D–9
startup script, 7–1
stopping on OpenVMS Alpha, E–8
stopping on OpenVMS VAX, E–8
stopping on Tru64 UNIX, D–9
Transport Template, 7–34

MTA$ACCOUNTING
definition, E–5

MTA$ARCHIVE
definition, E–5

MTA$BAD_MSGS
definition, E–6

MTA$node, 7–28, E–3
MTA$TRACE

definition, E–6
MTA attributes

Transport Service Options, 7–31
MTA entity

Accounting Purge Interval attribute, 5–5
Accounting State attribute, 5–5
attributes affecting inbound

communication
in diagram, 2–2

attributes affecting outbound
communication
in diagram, 4–4

Delivered MPDUs counter, 7–5
diagram, 1–7
Exported MPDUS counter, 7–5
Global Domain Identifiers attribute, 3–6
Imported MPDUs counter, 7–4
Initial Transfer Retry Interval attribute,

4–8

Index–10

MTA entity (cont’d)
Local MPDU Expiry Interval attribute,

1–6, 7–25
Maximum Agent Connections attribute,

2–2
Maximum Automatically Configured Peer

MTAs attribute, 1–10, 7–27
Maximum Idle Inbound Transfer

Association Interval attribute, 16–32
Maximum Inbound Transfer Associations

attribute
displaying, 16–49
setting, 16–49

Maximum Message Processors attribute,
3–2, 7–17

Maximum Outbound Parallel Transfer
Associations attribute
displaying, 16–48
setting, 16–48

Maximum Transfer Associations attribute,
2–4

Maximum Transfer Lookahead attribute,
4–8, 7–20

Maximum Transfer Retry Interval
attribute, 4–8

Message History Purge Interval attribute,
1–11, 2–6, 5–6

Message History State attribute, 5–6
Nonurgent MPDU Expiry Interval

attribute, 7–25
Normal MPDU Expiry Interval attribute,

7–26
State attribute

displaying, 16–32
Submitted MPDUs counter, 7–4
table of attributes, G–1
Template Name attribute

displaying, 16–12
Urgent MPDU Expiry Interval attribute,

7–26
using Accounting, 8–4
Version attribute

displaying, 23–1

MTA module
Activity entity attributes, G–7
Agent entity attributes, G–3
Bodypart entity attributes, G–4
Converter entity attributes, G–4
Deferred Message entity attributes, G–4
diagram, 1–6
MPDU entity attributes, G–5
MTA entity attributes, G–1
Peer MTA entity attributes, G–6
Processed Message entity attributes, G–5

MTA name
discrepancy, 16–10
in internal trace information, 3–7

MTA state
Disabling, 22–2
Enabling, 22–2

MTA Transport Template, 2–4
mta_any

Transport Template entity, 2–4, 16–39
mta_clns

Transport Template entity, 7–35
mta_cons

Transport Template entity, 7–35
mta_cons template, 17–3
MTA_NODE

definition, E–6
MTS

See Message Transfer System, 2–1
MTS entity

Access Denied, 15–1
defining a new password, 15–3
password, 15–1

Multi-homed routing domain, 3–6

N
Nationally Defined bodypart, 6–7, 11–11
NCL

See Network Control Language, 1–12
Network Control Language

scripts
executing on OpenVMS Alpha, E–5
executing on OpenVMS VAX, E–5
executing on Tru64 UNIX, D–7

Index–11

Network Control Language (cont’d)
startup script, 1–12

Network service access point
RFC 1006, 7–30
See also CLNS, 7–30
See also CONS, 7–30
See NSAP, 7–30

Network service types, 7–30
Nodename attribute, 17–14
Non-delivery report

diagnostic codes, 18–4
failure to receive, 14–5
generating, 18–8
not received, 18–8
reason codes, 18–4

Nonurgent MPDU Expiry Interval attribute,
7–25

Normal MPDU Expiry Interval attribute,
7–26

NSAP, 7–30
Numeric content information, 11–17
Numeric string, H–8

O
O/R address

and content information, 11–1
and domain-defined attribute, 6–3
and redirection, 3–4
attribute, 3–3
content type, 11–5
displaying entry in the directory, 19–2,

19–7
downgrading, 6–2
mnemonic, 6–2
problem with, 18–1
representing a distribution list, 3–4
routing information, 3–3, 19–3

checking, 19–13
routing instruction, 3–3

O/R address entity
Content Information attribute, 3–8
May Cross CCITT Boundaries attribute,

3–5

Object identifier
assigning your own, 12–1
definition, 11–1

Octets In counter, 7–4
Octets Out counter, 7–5
ODIF bodypart, 11–10
ODIF Q111 bodypart, 11–12
ODIF Q112 bodypart, 11–12
ODIF Q121 bodypart, 11–12
Office Document Interchange Format (ODIF),

6–6
OIW Stable Implementation Agreements,

A–6, C–6
OpenVMS Management Operation, 20–3
Operating system specific information, xx
Optional user facilities

additional, B–1
essential, B–1

ORaddress entity
Content Information attribute, 11–19
content types, 11–5
effects of specifying content information,

11–2
encoded information types, 11–8
maximum content length, 11–5

OSE Implementor’s Workshop, C–6
OSI Reference Model

defined, 1–3
OSI Transport

connections, 7–11
displaying state, 16–8

OSI Transport module, 7–11
OSI Transport Module, 7–33

events, 13–4
OSI Transport Port entity, 17–16
OSI Transport Template entity, 17–3
Outbound connection requests

from an X.25 Gateway Client, 17–8
from X.25 Server on behalf of client, 17–6

Outbound connections
diagram, 17–3, 17–6
failure, 17–18
from an X.25 Server or Native system,

17–3

Index–12

Outbound connections requests from a X.25
Gateway Client

diagram, 17–8
Outbound Establishment Failure event,

16–5
Outbound Failure event, 16–35
Outbound Hard Rejection event, 16–15
Outbound Soft Rejection event, 7–8, 16–25
Outbound transfer

defined, 4–1
retry set, 4–8

P
Parameter error

reporting to HP, 23–2
Partial O/R address

content information, 11–4
Password

for the MTS entity, 15–1, 15–3
unregistered Agent, 19–7

Password attribute
of Agent entity, 19–6

Peer Domain attribute, 16–23, 19–10
setting, 19–10

Peer MTA
accounting information, 5–5
Accounting information, 8–1
definition, 1–3
identifying MPDUs destined for, 16–47
using Archiving, 9–2

Peer MTA entity
Application Context attribute, 4–5
automatically-configured Peer MTA entity,

1–9
Contact Name attribute

setting, 14–3
controlling number of, 7–26
creating, 1–10, 1–12
Creation Time attribute, 7–5
diagram, 1–7
Direction attribute, 16–22
limit on number, 1–10
Local Name attribute, 16–16
Local Password attribute, 16–16

Peer MTA entity (cont’d)
manually-configured Peer MTA entity,

1–10
MPDUs In counter, 7–4
MPDUs Out counter, 7–5
Octets In counter, 7–4
Octets Out counter, 7–5
Peer Domain attribute, 16–23, 19–10

setting, 19–10
Peer Name attribute, 16–19

displaying, 16–19
Peer Password attribute, 16–10
Retry Time attribute

displaying, 16–47
State attribute

displaying, 16–29
table of attributes, G–6
Trace attribute, 16–45

setting, 16–45, 16–47
Peer MTA name

discrepancy, 16–19
Peer Name attribute, 16–19

displaying, 16–19
Peer Password attribute, 16–10
Personal Name attribute, 6–3

registering, 6–8
Platform specific information, xx
Port number

for Agents using the API Server on
OpenVMS, E–8

for Agents using the API Server on Tru64
UNIX, D–8

Postal content information, 11–17
Postscript bodypart, 11–12
Presentation address

and NSAP, 17–14
and TSAP, 17–14
discrepancy, 16–8

Presentation Context Identifier, 16–22
Printable string, H–1
Priority

and expiry time, 1–6, 7–25
and order in queues, 1–4
and order in Relay Queue, 4–6

Index–13

Priority attribute, 17–10
Privileges

on OpenVMS OpenVMS Alpha, E–2
on OpenVMS OpenVMS VAX, E–2
on Tru64 UNIX, D–1

Probe, 14–5
Processed Message entity, 2–6, 5–6, 18–9

creation, 1–11
diagram, 1–7
example, 18–12
table of attributes, G–5

Processing Queue, 1–4
Protocol

analyzing information, 16–49
errors

in general, 16–45
reporting to HP, 23–2

recording information, 16–45
violation, 16–42

R
Reliable Transfer Service Element See RTSE
RAP, 17–6, 17–10, 17–14
Reader’s comments, xxv
Recipient

acceptable MPDU format, 3–8
information, 1–3, 2–3, 3–3, 3–8

Recipient Information attribute, 5–6
Recommendations

X.400, A–1
Recover command, 18–34
Recovery

from association failure, 1–4
from system failure, 2–6, 4–5, 5–1, 5–3
peer MTA’s workspace, 18–32

Recovery Finished event, 18–35
Redirection, 3–4

problem, 14–5
Registered Agent

using the Shared File interface, 4–3
using the XAPI interface, 4–2

Registration
of Agent application, 1–7
of User Agent, 4–1

Rejected Agent Connection event, 7–9, 19–4
Relayer

and RTSE dialogue modes, 1–3
checkpoint information, 1–4
defined, 1–3
monitoring inbound associations

diagram, 2–4
monitoring outbound associations

diagram, 4–6
operations, 2–4

Relay Queue, 1–3, 1–4, 3–3, 3–10, 4–6
congestion, 7–10
limit to lookahead, 4–8

Remote Address Prefix
See RAP

Remote DTE entity, 17–6, 17–10
Report, 3–10

generation by the Interface Region, 4–3
Report Destination Name

Accounting filter setting, 8–7
Report Discarded event, 18–25
Reported Actual and Intended Recipient

Accounting filter setting, 8–7
Reported Originator and DL Expansion

History
Accounting filter setting, 8–7

Report External Trace Information
Accounting filter setting, 8–7

Report Generation Failed event, 18–26
Report Internal Trace Information

Accounting filter setting, 8–7
Report Size

Accounting filter setting, 8–7
Report Subject Identifier

Accounting filter setting, 8–7
Restarting an MTA

on OpenVMS Alpha, E–8
on OpenVMS VAX, E–8
on Tru64 UNIX, D–9

Retry
outbound transfer, 4–5, 4–8
set, 4–8
time, 1–5

Index–14

Retry Count attribute, 7–24
Retry interval, 7–21
Retry Time attribute, 7–24

displaying, 16–47
RFC 1006 NSAP, 7–31
Rights Identifier, 17–6, 17–7
Rights Identifiers, 17–10
Routing, 1–3

algorithm, 3–3
conversion of MPDU during, 3–9
information, 19–13

Routing domain
in a different X.400 management domain,

3–5
Routing information

content information, 3–7
routing instruction, 3–3

Routing instruction, 3–3
redirection, 3–4

RTSE
See also Protocol
checkpoint information, 1–4
dialogue modes, 1–3
monologue mode, 1–3

RTSE Protocol Violation event, 16–42

S
Security DTE Class, 17–6
Security Filter attribute, 17–7, 17–12
Sending messages to different X.400

management domains, 3–5
Session address

and NSAP, 17–14
and TSAP, 17–14

Setup
of MTA, 3–9

Shared File interface, 1–7, 4–3
filenames prefixed with ‘‘U’’, 18–16
Input queue, 18–18
Output queue, 18–15
tracing a message, 18–15, 18–18

Socket
defined, 20–3

Software Performance Report
See SPR

Splitting MPDUs, 3–10
effect of system failure, 5–3

SPR, 23–1
Stable Implementation Agreements

See OIW Stable Implementation
Agreements

Stable storage, 2–6
Standards

ISO/IEC 10021, A–1
X.400, A–1

Standards information, A–1
Startup script, 1–12

creating a Converter entity, 11–14
State

of association, 16–3
of message, 18–12
of MPDU, 7–6
of MTA, 22–1

State attribute
displaying for MTA entity, 22–1
of MPDU entity, 7–6, 7–9

State Change event, 14–10
Status

of MPDU, 1–11, 2–6
Storage

and recovery, 5–3
deletion of an MPDU from, 2–6, 4–3, 4–6
encoding for, 2–4
for Archiving, 5–5
of Accounting data, 5–5
of Message History information, 5–6
of MPDUs, 2–2, 2–4, 5–3

Subaddress
attribute, 17–10
for X.25 Gateway Clients, 17–9

Submission
defined, 2–1

Submission Accounting Filter attribute, 8–5
Submitted MPDUs counter, 7–4
syslog.log, 23–2

Index–15

System error log, 23–2
System Interface Error event, 8–10, 9–5,

10–4, 20–1, 22–3
System specific information

OpenVMS Alpha, E–1
OpenVMS VAX, E–1
Tru64 UNIX, D–1

T
T.61 Latin bodypart, 11–13
Target attribute

displaying, 16–47
TCP/IP

and Agent connections on OpenVMS, E–8
and Agent connections on Tru64 UNIX,

D–8
TCP/IP NSAP

example, 7–30
in an MTA’s Presentation or Session

address, 7–30
TCP Port number, 7–30
Teletex bodypart, 11–10
Teletex string, H–4
Template

entity, 7–33
transport layer, 2–4

Template Name attribute, 7–34
displaying, 16–12
modifying, 7–36

Terminal content information, 11–17
Time stamp

on event, 20–3
on System Interface Error event, 22–3

Timestamp
in Accounting filter settings, 8–7
on event, 14–6

Trace
analyzing, 16–49

Trace Analyzer utility
using on OpenVMS, 16–51
using on Tru64 UNIX, 16–50

Trace attribute, 16–45
setting, 16–45, 16–47

Trace binary file
filename syntax, 16–49

Trace information, 3–6
Tracing a message, 18–9

deferred message, 18–19
probe, 18–20
problems, 18–17
report, 18–20

Transfer
inbound, 2–1
of MPDU, 4–5, 5–3

failure, 4–5
outbound, 4–1
resuming after failure, 1–4, 1–11
status, 5–1

Transfer In Accounting Filter attribute, 8–5
Transfer Out Accounting Filter attribute,

8–5
Transport connections, 7–11
Transport Interface Error event, 16–39
Transport Service Options attribute, 7–31

setting at a Peer MTA entity, 7–32
Transport Template, 2–4

for a boundary MTA, 7–36
Transport Template entity, 7–33
TSAP

as used by OSI Transport, 17–12
Type attribute, 18–20

U
UK GOSIP, A–7, C–9
Unidentified

see Bilaterally defined, 11–16
Unidentified content type, 11–6
Unknown Agent event, 19–8
Unknown Peer Domain event, 19–9
Unregistered Agent, 4–2
Urgent MPDU Expiry Interval attribute,

7–26
USA Nationally Defined bodypart, 6–7,

11–10
User Agent, 1–2

capability limitations, 3–9
delivery to, 4–1

Index–16

User Agent (cont’d)
registration as Agent entity, 1–7, 4–1

US GOSIP, A–7, C–8

V
Version attribute

displaying, 23–1
Videotex bodypart, 11–10
Voice bodypart, 11–10
Volatile memory, 2–6

W
Warning text, 7–28, 7–29, E–3
Work load

assessing, 5–1
Workspace

on OpenVMS Alpha, E–5
on OpenVMS VAX, E–5
on Tru64 UNIX, D–1
recovering messages from, 18–32

WPS-PLUS bodypart, 11–12

X
X.25

and the MTA, 17–1
management entities used by the MTA,

17–1, 17–2
problems related to the MTA, 17–17
setup procedure problems, 17–17

X.25 Gateway Client
identifying an X.25 Server, 17–9

X.25 Server Client entity, 17–13
X.400

definition used in the MTA documentation,
A–2

Recommendations, A–1
X.400 Elements of Service, B–1 to B–6
X.400 management domain

communication with a different, 3–5
identifying, 3–5

X.411 and ISO/IEC 10021-4
mapping Accounting filter settings, 8–11

X25 Access DTE Class entity, 17–5, 17–8,
17–9

X25 Access Filter, 17–9
X25 Access Filter entity, 17–7, 17–12, 17–16

in use, 17–16
X25 Access Reachable Address entity, 17–3
X25 Access Security DTE Class entity, 17–6,

17–14
X25 Access Template entity, 17–5, 17–9
X25 Server Client entity, 17–7, 17–12
X25 Server Security Nodes entity, 17–6,

17–7
XAPI

interface, 1–7, 4–2
MPDUs received through, 2–4

Index–17

