HP C

Run-Time Library Reference
Manual for OpenVMS Systems

Order Number: BA554-90014

June 2010

This manual describes the functions and macros in the HP C Run-Time
Library for OpenVMS systems.

Revision/Update Information: = This manual supersedes the HP C
Run-Time Library Reference Manual
for OpenVMS Systems, Version 8.3

Software Version: OpenVMS Version 8.4 for Integrity

servers
OpenVMS Alpha Version 8.4

Hewlett-Packard Company
Palo Alto, California

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

UNIX is a registered trademark of The Open Group.
X/Open is a registered trademark of X/Open Company Ltd. in the UK and other countries.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Microsoft and Windows are US registered trademarks of Microsoft Corporation.

Printed in the US

ZK5763
The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Portions of the HP C Run-Time Library have been implemented using source copyrighted by the
University of California, Berkley and its contributors.

Copyright (¢) 1981 Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by the University of California,
Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Contents

Preface
1 Introduction
1.1 Using the HP C Run-Time Library
1.2 RTL Linking Optionst
1.2.1 Linking with the Shareable Image............................
1.2.2 Linking with the Object Libraries @ipha only)o v
1.2.3 Examples e
1.2.4 DECC$SHRPEXE Imageo ottt
1.3 HP C RTL Function Prototypes and Syntax........................
1.3.1 Function Prototypes
1.3.2 Syntax Conventions for Function Prototypes
1.3.3 UNIX Style File Specifications
1.3.4 Extended File Specifications
1.3.5 Symbolic Links and POSIX Pathnames
1.4 Feature-Test Macros for Header-File Control
1.41 Standards Macros it
14.2 Selecting a Standard
1.4.3 Interactions with the /STANDARD Qualifier
1.4.4 Multiple-Version-Support Macro
1.4.5 Compatibility Modes
1.4.6 Curses and Socket Compatibility Macros
1.4.7 2GBFile Size Macro
1.4.8 32-Bit UID and GID Macro (Integrity servers, Alpha)
1.4.9 Standard-Compliant stat Structure (ntegrity servers, Alpha)
1.4.10 Using Legacy _toupper and _tolower Behavior (ntegrity servers, Alpha)
1.4.11 Using Faster, Inlined Put and Get Functions (Integrity servers, Alpha)
1.4.12 POSIX Style exit (Integrity servers, Alpha) v i ittt e
1.5 Enabling C RTL Features Using Feature Logical Names
1.6 32-Bit UIDs/GIDs and POSIX Style Identifiers
1.7 Input and Output on OpenVMS Systems
1.7.1 RMS Record and File Formats
1.7.2 Accessto RMS Files i i
1.7.21 Accessing RMS Files in Stream Mode
1.7.2.2 Accessing RMS Record Files in Record Mode
1.7.2.2.1 Accessing Variable-Length or VFC Record Files in Record
Mode
17222 Accessing Fixed-Length Record Files in Record Mode
1.7.2.3 Example—Difference Between Stream Mode and Record Mode . . .
1.8 Specific Portability Concerns,
1.8.1 Reentrancy e
1.8.2 Multithread Restrictions
1.9 64-Bit Pointer Support (Integrity servers, AIpha) ¢« v v v v v i v i v vttt et e e e

XXV

1-2
1-3
1-3
1-3
1-5
1-6
1-6
1-6
1-7
1-7
1-10
1-10
1-10
1-10
1-11
1-13
1-15
1-15
1-16
1-17
1-17
1-18
1-18
1-18
1-18
1-19
1-38
1-39
1-41
1-42
1-43
1-43

1-45
1-46
1-46
1-48
1-50
1-52
1-53

1.9.1
1.9.2
1.9.3
1.94
1.9.4.1
1.9.4.2
1.9.4.3
1.94.4
1.9.4.5
1.9.4.6
1.9.5

Using the HP C Run-Time Library
Obtaining 64-Bit Pointers to Memory

HP C Header Files
Functions Affected

No Pointer-Size Impact
Functions Accepting Both Pointer Sizes.....................
Functions with Two Implementations
Socket Transfers Greater than 64 KB
Functions Requiring Explicit use of 64-Bit Structures
Functions Restricted to 32-Bit Pointers
Reading Header Files.

2 Understanding Input and Output

Using RMS from RTL Routines
UNIX /O and Standard /O
Wide-Character Versus Byte I/O Functions
Conversion Specifications
Converting Input Information
Converting Output Information

2.1
2.2
2.3
24
241
242
2.5
2.6

Terminal /O
Program Examples. . .

3 Character, String, and Argument-List Functions

3.1
3.2
3.3
3.4

Character-Classification Functions.
Character-Conversion Functions
String and Argument-List Functions

Program Examples. . .

4 Error and Signal Handling

4.1
4.2
4.21
422
4.2.3
4.2.4
425
4.3

Error Handling
Signal Handling

OpenVMS Versus UNIX Terminology
UNIX Signals andthe HPCRTL
Signal-Handling Concepts

Signal Actions . ..

Signal Handling and OpenVMS Exception Handling

Program Example . ..

5 Subprocess Functions

vi

5.1
5.2
5.2.1
5.2.2
5.3
5.4
5.5

Implementing Child Processesin HPC

The exec Functions ..
exec Processing . .

exec Error Conditions
Synchronizing Processes
Interprocess Communication,

Program Examples. . .

1-53
1-54
1-54
1-55
1-55
1-56
1-56
1-57
1-58
1-60
1-60

II\)I\)I})I\)I\)
QOWWNNO OA~

I\)II\)I\)
N = =

34
3-7
3-9
3-10

6 Curses Screen Management Functions and Macros

6.1 Using the BSD-Based Curses Package @ipha onty) 6-1
6.2 Curses OVeIVIEWottt e e e e e e 6-2
6.3 Curses Terminologyttt 6—4
6.3.1 Predefined Windows (stdscr and curser) 6-5
6.3.2 User-Defined Windows i 6-5
6.4 Getting Started with Curses 6—7
6.5 Predefined Variables and Constants. 69
6.6 Cursor Movement. e 6-10
6.7 Program Example 6-11

7 Math Functions

7.1 Math Function Variants—float, long double (integrity servers, Aipha) 7-4
7.2 Error Detection e 7-4
7.3 The <fp.h>Header File 7-5
7.4 Example e 7-5

8 Memory Allocation Functions
8.1 Program Example e 8-2

9 System Functions

10 Developing International Software

10.1 Internationalization Support 101
10.1.1 Installation 10-1
10.1.2 Unicode Supportt e 10-1
10.2 Features of International Software 10-2
10.3 Developing International Software Using HP C..................... 10-3
10.4 Localest 10-3
10.5 Using the setlocale Function to Set Up an International Environment . . . 10-4
10.6 Using Message Catalogs 10-5
10.7 Handling Different Character Sets 10-6
10.7.1 Charmap File e 10-6
10.7.2 Converter Functions. 10-6
10.7.3 Using Codeset Converter Files. 10-6
10.8 Handling Culture-Specific Information 10-7
10.8.1 Extracting Cultural Information From a Locale. 10-8
10.8.2 Date and Time Formatting Functions 10-8
10.8.3 Monetary Formatting Function 10-8
10.8.4 Numeric Formatting 10-8
10.9 Functions for Handling Wide Characters 10-9
10.9.1 Character Classification Functions 10-9
10.9.2 Case Conversion Functions 10-9
10.9.3 Functions for Input and Output of Wide Characters 10-10
10.9.4 Functions for Converting Multibyte and Wide Characters 10-10
10.9.5 Functions for Manipulating Wide-Character Strings and Arrays 10-11
10.10 Collating Functions i 10-11

Vii

11 Date/Time Functions

1.1 Date/Time Support Models.
11.2 Overview of Date/Time Functions
11.3 HP C RTL Date/Time Computations—UTC and Local Time
11.4 Time-Zone Conversion Rule Files.
11.5 Sample Date/Time Scenario 0.,

12 Symbolic Links and POSIX Pathname Support

12.1 POSIX Pathnames and Filenames
12.1.1 POSIX Pathname Interpretation
12.1.1.1 The POSIX Root Directory
12.1.1.2 Symbolic Links.
12.1.1.3 Mount Points
12.1.1.4 Reserved Filenames . and
12.1.1.5 Character Special Files
12.1.2 Using POSIX Pathnames with OpenVMS Interfaces
12.1.2.1 Special Considerations with POSIX Filenames
12.1.2.2 Special Considerations with OpenVMS Filenames.............
12.2 Using Symbolic Links
12.2.1 Creating and Using Symbolic Links with DCL.

12.2.2 Using Symbolic Links through GNV POSIX and DCL Commands. . . .
12.3 C RTL Support. . ..o e e e e

12.3.1 DECC$POSIX_COMPLIANT_PATHNAMES Feature Logical
12.3.2 decc$to_vms, decc$from_vms, and decc$translate vms
12.3.3 Symbolic Link Functions
12.3.4 Modifications to Existing Functions
12.3.5 Non POSIX-Compliant Behavior
12.3.5.1 Multiple Versions of Files.
12.3.5.2 Ambiguous Filenames
12.3.5.3 POSIX Security Behavior for File Deletion
124 RMS Interface
12.41 RMS Input/Output of POSIX Pathnames
12.4.2 Application Control of RMS Symbolic Link Processing
12,5 Defining the POSIX Root
12.5.1 Suggested Placement of the POSIX Root
12.5.2 The SET ROOT Command0 ottt
12.5.3 The SHOW ROOT Command,
12.6 Current Working Directory
12.7 Establishing Mount Points
12.8 NE S .
12.9 DCL . .
1210 GNV . e
12,11 Restrictions

Reference Section

viii

a64l (Integrity servers, AIDR@) . . v v v v i i i i e e e e e e e e e e e e e
AbOTt . .

2 L

11-1
1-2
11-3
1-4
11-5

12-2
12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-4
12-5
12-5
12-5
12-6
12-8
12-8
12-9

12-10

12-10

12-10

12-10

12-11

12-11

12-11

12-11

12-12

12-13

12-13

12-14

12-14

12-15

12-15

12-15

12-16

12-18

12-18

[wladdstr e REF-12
alarm REF-13
asctime, asctime_ T REF-14
ATl o e e e e e e REF-16
asinh (ntegrity servers, Alpha) . . . o oo i REF-17
ASSBTt . o i e e e REF-18
AN . . e REF-19
atan 2 . .. REF-20
atanh (Integrity servers, AIpha) . . . o o i REF-21
ateXit e REF-22
atof . . e REF-23
atol, atol e REF-24
atoq, atoll (Integrity servers, AIDRQ) . . v v v v v i i v i i e e e e e e e e e e e e e REF-25
basename e REF-26
M . . e REF-27
DCODY . o e REF-28
DOX . e REF-29
DI . . REF-30
bsearch e REF-31
DEOWE .« o REF-33
bZero e REF-34
CADS . . e e REF-35
CACOS (Integrity servers, AIDR@) . « « v v v e v e v ettt e e e e e e e REF-36
cacosh (ntegrity servers, Alpha) v v i REF-37
calloC e REF-38
Carg (Integrity servers, AIDha) . . . v v v v i i i e e e e e e REF-39
CaSIN (Integrity servers, AIDAG) « v . v v v v v e et e et e e e REF-40
casinh (Tntegrity servers, AIDRG) . . v . v v v i e e e e REF-41
catan (Integrity servers, AIDRa) . . . v v v v v it e e e e REF—42
catanh (Integrity servers, AIDRa) . . v v v v v i i i i e e e e e e e e e e e e e e e e e e e REF—43
catclose REF-44
catgets . .. e REF-45
CAtOPEIL. . . .ot e REF-48
cbrt (ntegrity servers, AIpha) . . v v v v e e e e e e REF-51
CCOS (Integrity servers, AIpha) . . v v v v v v i it it e e e e e et e e e e e e REF-52
ccosh (Integrity servers, Alpha) . . o .o REF-53
Cell . . e REF-54
CEXP (Integrity servers, AIDRG) « v v v v v v v et e e e e e e e e REF-55
CiTeE . . e REF-56
Chdir. . . e REF-57
chmod e REF-58
CNOWNL . . . e REF-59
cimag (Integrity servers, AIDR@) . . . v v v v v i i i e e e e e e e e e e e e e e e REF-60
[Wlclear REF-61
Clearerr e REF-62
clearerr_unlocked (Integrity servers, AIpha) . . v v v v v v v i i i i it i e e e e REF-63

CloCK . . o e REF-65
clock_getres (Integrity servers, AIDR@) . v v v v v v v i i e e e e e e e e e e e e e e e e e REF-66
clock_gettime (Integrity servers, AIDha) . . . v v v v v i i i i e e e e e e e e e e e e e e e e REF-67
clock_settime (Integrity servers, Alpha) . . . o oo i REF-68
clog (Integrity servers, AIpha) oo v i REF-70
ClOSE . .t REF-71
closedir. e REF-72
[wWlclrattr e REF-74
[wlclrtobot e REF-75
[wlclrtoeol e REF-76
COMEStT . . o REF-77
CONJ (Integrity servers, AIPRG) + v v v v v v e et e e e e e e e e e e REF-79
copysign (Integrity servers, AIpha) v v v v i v i i i e e e e e e REF-80
L0 .t v e e e e e e e e e e REF-81
COSh . . e REF-82
7 REF-83
CPOW (Integrity servers, AIDR@) . . « v v v v v v i i i it it e it e it e i e REF-84
CpI'Oj (Integrity servers, AIDR@) . . v v v v v v v v it e e e e e e e e e e e e e e e e e e e REF-85
creal (Integrity servers, AIDAG) . . o o v v i e REF-86
CreaAt . . ot e e REF-87
[nolermode REF-93
6172 0 REF-94
CSIN (Integrity servers, AIDRG) « . o v v v v v o v e e et e et e e e e REF-95
csinh (Integrity servers, Alpha) . . . v o i e e e REF-96
CSQrt (Integrity servers, AIDR@) . .« v v v v v vt e e e e e e e e e e e e e e e e REF-97
ctan (Integrity servers, AIDh@) . . v v v v v i i e e e e e e e e e e e e REF-98
ctanh (Integrity servers, Alpha) . . . o i e REF-99
ctermid e REF-100
ctime, CEIME I e REF-101
CUSETId . . .o REF-103
DECCSCRTL_INITttt e REF-104
deccfeature_get.o REF-105
dece$feature_get_index REF-106
decc$feature_get_name REF-107
decc$feature_get_value. REF-108
decc$feature Seto REF-109
decc$feature set valueot REF-110
decc$feature ShOW oo REF-111
decc$feature show allo REF-112
decCSxX time . . o oot REF-113
decCSfrom VINS . . o . ot e e REF-114
decc$match wildo REF-116
deccSrecord read REF-117
deceSrecord WTIiteot REF-118
decc$set_child default_dir antegrity servers, Alpha) . . o o v oo i e REF-119

decc$set_child standard streams. REF-120

decc$set_reentrancy REF-124

decCBto VINIS .« . o v et e REF-126
decctranslate VIMSo REF-128
decc$validate Wehar. oot REF-130
decc$write_eof to MbX . . . o oo REF-131
[wldelch e REF-134
delete REF-135
[wldeleteln REF-136
delwin REF-137
difftime REF-138
dirname e e REF-139
IV . REF-141
dlclose . ..o e REF-142
dlerror REF-143
dlopen e REF-144
dlsym . ..o e REF-145
drand48 REF-146
dup, dup2 REF-147
[nolecho e REF-148
OVl ot e REF-149
BNCT Y P . o o e e REF-151
endgrent (Integrity servers, AIDRa) . . v v v v v v v i i i e e e e e e e e e e e e e REF-152
endPWENT e e REF-153
ENAWIIL . . o o e e REF-154
erand48 REF-155
[WIerase REF-156
=3 o REF-157
exeCl . . . e REF-158
execle . .. e REF-160
exXeClp . . . e REF-161
BXECV o v vt e e e e e e e e e REF-162
EXEBCVE o v ot et e e e e e e e e e e e e e e e e e REF-163
EXECVD « o v vt e e e e e e e e e e e e e REF-164
eXit, _OXIt . . . e REF-165
25 4 o TP REF-167
eXP2 (Integrity servers, AIDRG) « .+« v v v vt i e e e e e e e REF-168
21 o 1= REF-169
fchmod e REF-170
fehown e REF-171
fCloSe . .. e REF-172
fentl .. REF-173
62 REF-179
fdim (Integrity servers, AIDR@) . . v v v v v i i i e e e e e e e e e e REF-181
fdopen REF-182
feof . . REF-183
feof_unlocked (ntegrity servers, Alpha) v oo REF-184
ferrOr . . e REF-185

xi

Xii

ferror_unlocked (Integrity servers, AIpha) v v v i i i i i i e e e e e e e e e e REF-186

fush ... e REF-187
i = REF-188
fgete . . o REF-189
fgetc_unlocked (Integrity servers, AIDha) . . v v v v v v v i i i it e e e e e e e e e e e e REF-190
fgetname REF-191
fgetPOs . . . REF-192
fgets . . e REF-194
fgetWe . . o e REF-196
fgetWs . . o REF-197
Aleno e REF-199
finite (ntegrity servers, AIDAa) . . . v v v i v e e e REF-200
flockfile ntegrity servers, AIpha) i i e e e e e e e e e e e e REF-201
HoOr . o REF-202
fma (Integrity servers, Alpha) . . . o v ot REF-203
fmax (Integrity servers, AIpha) o v it e REF-204
fmin dntegrity servers, Alpha) o REF-205
fmod e REF-206
fopen REF-207
fp_class (Integrity servers, AIDR@) .« . v v v v v i i e e e e e e e e e e e e e e e e e e REF-209
fpathconf REF-210
fprintf. . .. REF-212
Ut . . REF-214
fputc_unlocked (Integrity servers, Alpha) REF-215
PuUtS . . . e REF-216
PUtWE . . e REF-217
PULWS . e REF-219
fread REF-220
free . . REF-221
freopen REF-222
-4 o J0S REF-223
fscant REF-225
fSeEK . . o REF-227
fseeko e REF-229
fSetPOS .« o e REF-230
fstat . . e REF-231
fstatvls (dntegrity servers, Alpha) . . . v o v i i REF-234
YN, . REF-236
ftell .. REF-237
ftello. . ..o REF-238
ftime ... REF-239
ftok (Integrity servers, Alpha) . . . o i REF-240
ftruncate REF-241
ftrylockﬁle (Integrity servers, AIDR@) . . . v v v v i i i e e e e e e e e e e e e e e e e e REF-242
7 REF-243
funlockfile (Integrity servers, AIpha) . . . v . v oo i e REF-246
fwWait . .. REF-247

fwide REF-248

fwprintf REF-249
TWIIte . . . e REF-251
fwscant REF-252
BCVE o e REF-254
BELC . e REF-256
getc_unlocked (Integrity servers, Alpha) REF-257
Wlgetch REF-258
getchar e REF-259
g etchar_unlocked (Integrity servers, Alpha) . . . o .o REF-260
getclock REF-261
geteWd . .. REF-262
getdtablesize REF-263
getegid REF-264
G NV . L e REF-265
geteuld e REF-267
getgid . . . e REF-268
getgrent (Integrity servers, Alpha) . . . o v v i i e REF-269
g etgrgld (Integrity servers, AIDR@) . v« v v v v v i i e e e e e e e e e e e e e e e e REF-270
g etgrgid_r (Integrity servers, AIDR@) . . « v v v v v v i i i e e e e e e e e e e e e REF-271
g etgrnam (Integrity servers, AIDRa) . v v v v v v v i i i i i e e e e e e e e e e e e e e e e REF-273
getgrnam_r (Integrity servers, AIpha) . . . v o v v v v it e e REF-274
B g OUPS . . .o e REF-276
getitimer REF-277
getlogin e REF-279
getname e REF-280
getopt . . REF-281
etPAgESIZE . . . o o REF-284
getpgld (Integrity servers, AIDR@) .« . v v v v v v v i i e e e e e e e e e e e e e e e e e REF-285
getPQID (Integrity servers, AIDha) . .« o v o v v v v it e REF-286
getDId REF-287
et DPId REF-288
getpwent e REF-289
getpwnam, getpwnam_r REF-291
getpwuid, getpwuid_r (ntegrity servers, Alpha) « . . o oo REF-295
B S L REF-298
getsid (Integrity servers, AIDR@) .« . v v v v v i v i i e e e e e e e e e e e e e e e e e e REF-299
[Wlgetstr. . .o REF-300
gettimeofday i REF-301
getuid REF-302
Bt . L e REF-303
CELWC . . e REF-304
getwehar e REF-305
o<1 72 REF-306
glOb (Integrity servers, AIDRG) . . v v v v i e REF-307
globfree REF-311
gmtime, gmtime_r REF-312

xiii

Xiv

GSIENAL . . oo REF-314

hypot . .o e REF-316
1007 REF-317
10NV_CloSe REF-319
TCOMV_OPBIL & o v ottt e e e e e e e e e e e e e e e e e REF-320
ilogb (ntegrity servers, Alpha) REF-322
[Wlinch REF-323
INAEX ..t e e REF-324
80 17172 o REF-325
nitstate e REF-326
[Wlhnsch REF-328
[wlinsertln e REF-329
[WnSStr. . ..o REF-330
isalnum REF-331
isalpha REF-332
I APIP « o v e e e e e e e REF-333
1Tz 1] REF-334
1Tz 171 v REF-335
Isentrl. . e REF-336
ISAigit . . oo REF-337
ISgraph . . . REF-338
BloWer . .. REF-339
1SNAN (Integrity servers, AIDRG) « o v v v v v v et e e e e e e e e REF-340
ISPIINt . .o e REF-341
ISPUNCE . . . e REF-342
ISSPACE &« o vttt e e e e e REF-343
F TSR0 10 0 REF-344
Iswalnum e REF-345
iswalpha. REF-346
IsWwentrl REF-347
ISWC YD & o vt e e REF-348
ISWAIgIt . .. REF-350
ISWETraph . .. e REF-351
ISWIOWET . . . oo e REF-352
ISWPIING . . . e REF-353
ISWPUNCE . . . oot e e REF-354
ISWSPACE &« v v v ettt e e e e e e e e e e e REF-355
ISWUPDET .« & v v ittt e e e e e e e e REF-356
ISWXAIGIt ..o REF-357
ISXAIGIL . . o ot REF-358
30, 31, I (Integrity servers, Alpha) . . . v v v v it e e e e e e REF-359
Jrand48 e REF-360
Kill . REF-361
164a (Integrity servers, AIDRG) . v . v o v ot e e e e REF-362
labs .o REF-363
Ichown e REF-364
Leongd8 . . . REF-365

Idexp .o e REF-366

Idiv . . e REF-367
leaveok e REF-368
lgamma (Integrity servers, AIDR@) . v v v v v v v i i e e e e e e e e e REF-369
Hnk . REF-370
localeconyv REF-371
localtime, localtime_r REF-375
log, 1og2, 10210 e REF-377
log1p (Integrity servers, AIDha) . . . o v v it e e REF-378
10gb (Integrity servers, AIDR@) . « v v v v i e REF-379
longimp . .. REF-380
longname REF-382
Irand48 REF-383
Irint (Integrity servers, AIDRQ) . . v v v v v i i i i e e e e e e e e e e e e e e e REF-384
Iround (ntegrity servers, Alpha) . . o v oot REF-385
Iseek. . .. e REF-386
Istat (ntegrity servers, Alpha) o REF-388
Iwait. . . e REF-389
malloc e REF-390
mblen e REF-392
mbrlen e REF-393
MDBItOWCE . . . REF-394
MDSTOWES . . .o REF-396
MWo e e REF-397
MbSINIt e REF-398
MSTEOWES . . . oot REF-399
00 1=3 00 16763 3,20 REF-401
MEMCNT e REF-402
00 Tc] 00 e300 o S REF-403
100123100161 0) 2P REF-404
100123100100 1)< S P REF-405
MEMSEE . . .ottt e e REF-406
MKRAIT . .. REF-407
MRSt EMD . .. REF-410
MREEMD e REF-411
MKREIME e REF-412
0010z 1 o REF-414
modf . . . REF-419
[WImoOve REF-420
MPTroteCt . . . o o e REF-421
mrand48 e REF-423
1007507 0 U REF-424
INUNINAD « « o+ e v e e e et e e e e e et e e et e e e e e REF-426
mvlwladdch REF-427
mvlwladdstr REF-428
0021 REF-429
mv[wldelch REF-430

XV

XVi

mvlwlgetch REF—-431

mvlwlgetstr REF-432
mviwlinch e REF-433
mvlwlinsch REF-434
mv[WnSstr REF-435
INVWIIL & vttt e et e e e e e e e e e e e e e REF-436
nanosleep (Integrity servers, AIpha) . . .« o v v i e REF-437
TEWWIIL. . ot ittt e e e e e e e e e e e e e REF-439
nextafter ntegrity servers, AIDR@) . . v v i i i i i e e e e e e e e e e e REF-440
nexttoward (ntegrity servers, AIpha) . . v . v i e REF-441
D10 & it ittt e e e e REF-442
NINt (Integrity servers, AIDAG) « v v v v v v e e e e e e REF-443
[nolnl . . REF-444
nl_langinfo REF-445
nrand48 REF-449
10} 013 REF-450
OPENAIT e REF-453
Overlay . . . e REF-455
OVEIWIIte i e REF-456
pathconf REF-457
PAUSE o ottt it e e e e e REF-459
PClOSE . . oo REF-460
PO T OT . . ottt e e e e REF-461
PaPE - e et e REF-462
POl (Integrity servers, Alpha) . . . o o v REF-466
POPEIL . o ettt e e e REF-469
POW o it et e e e REF-471
pread (Integrity servers, AIDR@) . . v v v v v i i i e e e e e e e e e e e e e e e e e e e REF-472
Printf . . REF-473
[Wlprintw REF-474
PULC . o e REF-475
putc_unlocked (ntegrity servers, Alpha) REF-476
putchar REF-477
putchar_unlocked (integrity servers, Alpha) REF-478
PULENV . . e REF-479
PULS .« REF-481
PULW L e REF-482
PULWC . o e REF-483
putwehar REF-484
pwrite (Integrity servers, AIDR@) . . v v v v v v v i i i i e e e e e e e e e e e e e e e e e e REF-485
qabs, 1labs (ntegrity servers, Alpha) o REF-486
qdiv, 11div (Integrity servers, Alpha) . . .« o vt i REF-487
0T) o REF-488
0721 11 REF-489
rand, rand_r. e REF-490
random e REF-491
[olraw . . .o REF-492

read . .. e REF-494

readdir, readdir_r. e REF-496
readlink (ntegrity servers, AIpha) oo i REF-498
readv (Integrity servers, AIDR@) . . v v v v v v i i e e e e e e e e e e REF-499
realloc REF-501
realpath REF-503
[wWlrefresh REF-504
remainder (Integrity servers, AIDRa) « . o v v oo v e i e e e e e e e e REF-505
remaquo (Integrity servers, AIDR@) . . v v v v v v i i i e e e e e e e e e REF-506
=300 014 REF-507
=310 100 < S REF-508
TeWInd . .. e REF-510
rewinddir e REF-511
11010 15 QPN REF-512
Tint (Integrity servers, AIpha) . . o v v vt i it e e REF-513
TIAIT . . e e e e REF-514
SR . e REF-515
scalb (Integrity servers, Alpha) . . . v o v v REF-516
Scanf ... e REF-517
[WlSCanWw e REF-518
Seroll .. e REF-519
SCrolloKo REF-520
Sseedd8 REF-521
seekdir e REF-522
sem_close (Integrity servers, Alpha) . . o v v v i e e REF-523
semctl (Integrity servers, AIpha) . . . v o o e REF-524
sem_destroy (Integrity servers, AIDR@) . . v v v v i v v i i e e e e e e e e e REF-527
semget (Integrity servers, AIDha) . . . o v v v it e e e e e REF-528
sem_getvalue (Integrity servers, AIDR@) . . v v v v v v v it e e e e e e e e e e e e e e REF-530
sem_init (Integrity servers, AIDRa) . . . v v v v v v i i i i e e e e e e e e e e REF-531
Sem_open (Integrity servers, AIpha)« v i i i i i e e e e e REF-533
SEMOP (Integrity servers, APh@) . . . o v e o v v ittt e e e e e e REF-535
sem_post (Integrity servers, AIDha) . o« o v i e e e REF-538
sem_timedwait (Integrity servers, Alpha) . . . v v v it e e REF-539
sem_trywait (Integrity servers, AIDR@) .« . v v v v i v i i e e e e e e e e REF-540
sem_unlink (Integrity servers, AIpha) . . . v v i REF-541
sem_wait (Integrity servers, AIpha) . o v o v v i e e REF-542
[Wlsetattr e REF-543
setbuf REF-544
SEL BNV . . . e REF-545
seteuid (Integrity servers, AIpha) . . .o v i i e REF-547
Setgid . .. REF-548
setgrent (Integrity servers, Alpha) e REF-549
setitimer e REF-550
SEL D . . REF-552
SEUREY . o ot e REF-554
setlocale REF-555

XVii

Xviii

setpgid (Integrity servers, AIDha)« v v i i i i i i e e e e e e e e e e e e e e e REF-559

SetpETP (Integrity servers, AIPR@) « .« v v v v v i vt e e e e e e e e REF-561
Setpwent REF-562
setregid (Integrity servers, AIDR@) v v v v v v v v i i i i e e e e e e e e e e e e e e REF-563
setreuid (Integrity servers, AIDR@) . v v v v v v i i i i e e e e e e e e e e e e e REF-564
setsid (Integrity servers, AIDh@) + . v v v v vt e e REF-565
setstate REF-566
SetUId . . . REF-567
Setvbul . . . REF-568
shm_open (Integrity servers, AIDR@) . . v v v v v v v i e e e e e e e e e e e e e e REF-570
shm_unlink @ntegrity servers, Alpha) v v e REF-572
SIGACLION . . . o o REF-573
sigaddset REF-576
sigblock REF-577
sigdelset e REF-578
SIgEeMPEYSEt REF-579
sigfillset e REF-580
SlghOld (Integrity servers, AIDR@) . . v v v v v v i i i e e e e e e e e e e e e e e e e e e REF-581
sigignore (Integrity servers, AIDR@) . « . . v v v v v i i i e e e e e e e e e e e e e e e e e e e REF-582
sigismember REF-583
SIGlONEIMP e REF-584
SIgMASK . .. REF-585
SIgnal . .. REF-586
SIZPAUSE & o v vttt e e e e e e REF-587
SIgPENAINGot e REF-588
SIgProcmask e REF-589
sigrelse (Integrity servers, AIDR@) . . . v v v v v i i i i e e e e e e e e e e e e e e REF-591
SIZSEL M . . .o REF-592
sigsetmask L REF-594
SIGSUSPENA . . . ot REF-595
sigtimedwait (Integrity servers, AIDRQ) . . v v v v v v v v i i i e e e e e e e e e e REF-596
I VG & v v e e e e e e e e REF-597
sigwait (Integrity servers, AIDha) . . . o v oo it REF-598
sigwaitinfo (Integrity servers, AIpha) . . v v i i REF-599
53 s L REF-600
SINh .. REF-601
SlEED . o e REF-602
SNprintf . .. REF-603
SPrintf . . REF-605
STt . o REF-607
STANA . . . e REF-608
STand48 . .. REF-609
STANAOIN . . o o it e REF-610
SScant . . L e REF-611
ssignal REF-613
[wlstandend REF-614
[wlstandout REF-615

Stat. . . e REF-616

statvfs (Integrity servers, AIDR@) . v v v v v v v i i i e REF-621
SUrCASECINID . . o it e REF-623
Strcat . .. e REF-624
Strehr . .. REF-626
U eI . . . e REF-628
Streoll . ..o e REF-629
U DY .« o e REF-630
17 1S) o REF-631
Strdup .. REF-632
<3 3 REF-633
strfmon REF-635
stritime REF-639
Strlen . . e REF-645
SEIMCASECIND ot e REF-646
strncat e REF-647
SEPNCID . . . ot e REF-648
SUTCDY . & o e REF-650
strnlen REF-651
StrpbrK . . e REF-652
Strptime e REF-653
Strrchr . .. e REF-658
7 =T« J REF-659
7 =30 o REF-660
71 11 REF-661
Strtod . . . e REF-663
strtok, strtok T REF-665
Strtol ... REF-668
strtoq, strtoll (Integrity servers, AIDRQ) . v v v v v v v i i e e e e e e e e e e e e e e e e e REF-670
strtoul REF-672
strtouq, strtoull (ntegrity servers, Alpha) REF-673
17 0 i 0 REF-674
SUDWIN . . .o e REF-677
SWaAD . . . e REF-678
swprintf REF-679
SWSCANT . .. e REF-680
symlink (Integrity servers, AIDR@) . . v v v v v v i i i e e e e e e e e e e e REF-681
SYSCONT . . o e REF-683
SYSt eI . . . REF-690
72 o REF-692
tanh ... REF-693
telldir e REF-694
tempnam e REF-695
tgamma (Integrity servers, AIDRa) . . . o it e e e REF-697
I . . e e REF-698
BIES . . oo e REF-699
tmpfile REF-700

Xix

XX

tmpnam e REF-701

L1707 11 5 REF-702
170 04 REF-703
tOlOWeT . .. REF-704
tOUChWIn e REF-705
BOUD PO . . . ot e REF-706
Boupper . . . e REF-707
BOWCtrans e e e REF-708
BOWIOWET . . . e REF-709
BOW U DT . . ot ot e e REF-710
trunc (Integrity servers, AIDR@) .« v v v v i v i i e e e e e e e e e e e e e e e REF-711
truncate e REF-712
ttyname, ttyname_r REF-713
BZSet . . e REF-715
ualarm e REF-719
UMASK . .. e REF-720
UNAINE . . vt ettt e e et et et e e e e e e e e REF-721
UNZEEC .« .ot e REF-722
UNGEEWEC . o et e REF-723
unlink (Integrity servers, AIDRQ) —« . v v v v v v i i i e e e e e e e e e e e e e REF-724
unordered (Integrity servers, AIDA@) « « « v v v v e e e e e REF-725
UNSE eV . . . e REF-726
USlEED . . o REF-727
UEIMIE . . o e REF-728
UIMIES . .ot REF-731
VAXCSCRTL_INIT REF-734
VAXCSESTABLISH REF-735
£ 2= T - = REF-736
Va_COUND REF-737
Va_eNd . .. e REF-738
va_start, va_start_1 REF-739
VIOTK . REF-741
viprintf REF-743
viscant REF-744
viwprintf ... REF-746
viwseant REF-748
VPNt . L REF-749
VSCANT . . . REF-750
vsnprintf (ntegrity servers, Alpha) . . . oo i REF-751
veprintf ... e REF-752
vescant REF-753
vswprintf REF-754
VSWSCANT REF-756
VWPt . . REF-757
VWSCANT . . REF-758
WA . e REF-759
WAt L o e REF-760

Waitd .. REF-763

waitpid REF-766
wWertomb REF-770
WCSCAL & vttt e e e e REF-771
WCSCRT . . e REF-773
WECSCIMIPD .« v o e v e e e e e e e e et e e e e e e e e REF-775
Weseoll L. e REF-776
WCSCPY « e v v e e e e e e e e e e e e e e e e e REF-777
WESCSPIL v v v et et e REF-778
wesftime REF-780
WeCSIeN . .o REF-786
WCSIICAL . . o vt e REF-787
WESTICIID .+ v v e v e e e e e e e e e e e e e e e e e REF-789
WECSTICPY + « e v v v e e e e e e e e e e e e e e e REF-790
WESPDOTK . . e REF-791
WCSTCNT . . e REF-792
WESTEOMDS . . . o e REF-794
WESSPIL « v v v et e REF-796
WCSSET . L o REF-798
WeESEOd .« . o REF-799
WeCSTOK . oo REF-801
WESEOl . . e REF-804
WeStombs REF-806
westoul e REF-807
TWCSWES & v v v e et et e e e e e e e e e e e e e REF-810
weswidth ... REF-812
WESKITIN . . e REF-813
WCEOD . .o REF-816
wetomb . . L. REF-817
WCETANS . . oot e e REF-818
R L6177 o1 REF-819
wewidth REF-822
WINEMChT e REF-823
WINEINCIIID « « e v e v e v e REF-824
WINLEINICPY -« « « e v e v e REF-825
WINEIMINIOVE .+ . o v vt e et e e e e e e e e e e e e e e e e e et e e e REF-826
WINEMSEE . . ottt e REF-827
WPIINtE . . . REF-828
WLAPOK . . ot e e REF-830
WL . o e REF-831
WL OV . ot e e REF-832
WSCANS . .. e REF-834
VO, 1, YN (Integrity servers, Alpha) . . . v o v v vt i e e e e e REF-835

XXi

A Version-Dependency Tables
A1 Functions Available on all OpenVMS VAX, Alpha, and Integrity servers

VETSIONS . . . ottt e A-1
A2 Functions Available on OpenVMS Version 6.2 and Higher............. A-3
A3 Functions Available on OpenVMS Version 7.0 and Higher............. A4
A4 Functions Available on OpenVMS Alpha Version 7.0 and Higher A-5
A5 Functions Available on OpenVMS Version 7.2 and Higher............. A-6
A.6 Functions Available on OpenVMS Version 7.3 and Higher............. A-6
A7 Functions Available on OpenVMS Version 7.3-1 and Higher A-6
A8 Functions Available on OpenVMS Version 7.3-2 and Higher A-7
A9 Functions Available on OpenVMS Version 8.2 and Higher............. A-7
A.10 Functions Available on OpenVMS Version 8.3 and Higher............. A-7
A.11 Functions Available on OpenVMS Version 8.4 and Higher............. A-8

B Prototypes Duplicated to Nonstandard Headers

Index
Examples
1-1 Differences Between Stream Mode and Record Mode Access 1-46
2-1 Output of the Conversion Specifications. 2-20
2-2 Using the Standard I/O Functions 2-22
2-3 Using Wide Character I/O Functions 2-23
2-4 I/0 Using File Descriptors and Pointers 2-24
31 Character-Classification Functions. 3-7
3-2 Converting Double Values to an ASCII String 3-8
3-3 Changing Characters to and from Uppercase Letters 3-8
34 Concatenating Two Strings 0., 3-10
3-5 Four Arguments to the strcspn Function 3-10
3-6 Using the <stdarg.h> Functions and Definitions 3-11
4—1 Suspending and Resuming Programs.......................... 4-13
5-1 Creating the Child Process. 5-5
5-2 Passing Arguments to the Child Process 5-7
5-3 Checking the Status of Child Processes 5-8
54 Communicating Through a Pipe. 5-9
6—1 A Curses Program 6—7
6-2 Manipulating Windows 6-8
6-3 Refreshing the Terminal Screen 6-9
6—4 Curses Predefined Variables. 6-10
6-5 The Cursor Movement Functions 6-11
66 stdscr and Occluding Windows 6-11
7-1 Calculating and Verifying a Tangent Value 7-5
8—1 Allocating and Deallocating Memory for Structures............... 8-2
9-1 Accessing the User Name., 9-3
9-2 Accessing Terminal Information. 9-4
9-3 Manipulating the Default Directory 9-4
94 Printing the Date and Time 9-5

xXii

Figures
1-1

1-2
1-3
1-4
51
61
6-2
6-3
6-4
12—1
REF-1

4-5

5-1
6—1
62
7-1
8-1
9-1

Linking with the HP C RTL on OpenVMS Alpha and Integrity server
Systems e

Unicode Example
I/O Interface from C Programs.
Mapping Standard I/O and UNIXI/OtoRMS
Communications Links Between Parent and Child Processes
An Example of the stdscr Window
Displaying Windows and Subwindows
Updating the Terminal Screen
An Example of the getch Macro
POSIX Root Placement oo,
Reading and Writingtoa Pipe

UNIX and OpenVMS File Specification Delimiters
Valid and Invalid UNIX and OpenVMS File Specifications
Feature Test Macros - Standards
C RTL Feature Logical Names.
Functions with Dual Implementations
Socket Routines with Dual Implementations
Functions Restricted to 32-Bit Pointers
Callbacks that Pass Only 32-Bit Pointers
I/O Functions and Macrosiiininenann..

Optional Characters Between % (or %n$) and the Input Conversion
Specifier e

Conversion Specifiers for Formatted Input.

Optional Characters Between % (or %n$) and the Output Conversion
Specifier e

Conversion Specifiers for Formatted Output
Character, String, and Argument-List Functions
Character-Classification Functions.
ASCII Characters and the Character-Classification Functions.
Error- and Signal-Handling Functions
The Error Code Symbolic Values
HP CRTL Signals e

HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions
(Alpha only) . o v v v v i e

HP C RTL Signals and Corresponding OpenVMS Integrity server
system EXCGptiOIlS (Integrity servers only) . . v v v v v v v v i v vt it e e e

Subprocess Functions.
Curses Functions and Macros
Curses Predefined Variables and #define Constants.
Math Functions i
Memory Allocation Functions.
System Functions. i

1-6
1-29
1-39
1-41

12-14

1-11
1-20
1-57
1-57
1-60
1-60

2-8
2-9

2-14
2-16
3-1
3-4
3-5

4-3
4-6

4-10

4-12
5-1
62
6-9
7-1
8-1
9-1

xXiii

XXiV

10-1
111
1-2
12—1
REF-1
REF—2
REF-3
REF-4
REF-5
REF-6
REF-7
REF-8
REF-9
REF-10
REF-11
REF-12
REF-13
REF-14

A-10
A-11
B—1

Locale Categoriest 10-3

Date/Time Functions 11-1
Time-zone Filename Acronymsou..... 11-4
Symbolic Link Functions 12-10
Interpretation of the mode Argument REF-7
File Protection Values and Their Meanings REF-58
RMS Valid Keywords and Values REF-88
tm Structure REF-375
Optional Characters in strfmon Conversion Specifications.......... REF-636
strfmon Conversion Specifiers REF-637
Optional Elements of strftime Conversion Specifications REF-640
strftime Conversion Specifiers REF-640
strptime Conversion Specifications. REF-654
sysconf Argument and Return Values REF-683
Time-Zone Initialization Rules REF-716
The vfork and fork Functions. REF-741
Optional Elements of wesftime Conversion Specifications REF-781
wesftime Conversion Specifiers REF-781
Functions Available on All OpenVMS Systems A-1
Functions Added in OpenVMS Version 6.2...................... A-3
Functions Added in OpenVMS Version 7.0. A-4
Functions Added in OpenVMS Alpha Version 7.0 A-5
Functions Added in OpenVMS Version 7.2. A-6
Functions Added in OpenVMS Version 7.3...................... A-6
Functions Added in OpenVMS Version 7.3-1 A-6
Functions Added in OpenVMS Version 7.3-2 A-7
Functions Added in OpenVMS Version 8.2. A-7
Functions Added in OpenVMS Version 8.3...................... A-8
Functions Added in OpenVMS Version 8.4...................... A-8
Duplicated Prototypes B-1

Preface

This manual describes the HP C Run-Time Library (RTL) for the OpenVMS
operating system on Integrity servers and Alpha. HP OpenVMS Industry
Standard 64 for Integrity servers is the full product name of the OpenVMS
operating system on Intel Itanium processors.

This manual provides reference information about the C RTL functions and
macros that perform input/output (I/O) operations, character and string
manipulation, mathematical operations, error detection, subprocess creation,
system access, screen management, and emulation of selected UNIX features. It
also notes portability concerns between operating systems, where applicable.

The HP C RTL contains XPG4-compliant internationalization support, providing
functions to help you develop software that can run in different languages and
cultures.

The complete HP C Run-Time Library (C RTL) needed for use with the HP C and
C++ compilers is distributed with the OpenVMS Alpha and OpenVMS Integrity
server operating systems in both shared image and object module library form.

This manual no longer documents the socket routines used for writing Internet
application programs for the TCP/IP Services protocol. For help on the socket
routines, use the following:

$ HELP TCPIP_Services Programming Interfaces Sockets API
Also see the HP TCP/IP Services for OpenVMS product documentation.

Intended Audience

This manual is intended for experienced and novice programmers who need
reference information on the functions and macros found in the HP C RTL.

Document Structure
This manual has the following chapters, reference section, and appendixes:
e Chapter 1 provides an overview of the HP C RTL.
e Chapter 2 discusses the Standard I/O, Terminal I/O, and UNIX I/O functions.
e Chapter 3 describes the character, string, and argument-list functions.
e Chapter 4 describes the error-handling and signal-handling functions.
e Chapter 5 explains the functions used to create subprocesses.
e Chapter 6 describes the Curses Screen Management functions.
e Chapter 7 discusses the math functions.
e (Chapter 8 explains the memory allocation functions.

e Chapter 9 describes the functions used to interact with the operating system.

XXV

Chapter 10 gives an introduction to the facilities provided in the HP C
environment on OpenVMS systems for developing international software.

Chapter 11 describes the date/time functions.
Chapter 12 describes symbolic links and POSIX pathname support.
The Reference Section describes all the functions in the HP C RTL.

Appendix A contains version-dependency tables that list the HP C RTL
functions supported on different OpenVMS versions.

Appendix B lists the function prototypes that are duplicated in more than one
header file.

Related Documents

The following documents may be useful when programming in HP C for
OpenVMS Systems:

XXVi

HP C User’s Guide for OpenVMS Systems—For C programmers who need
information on using HP C for OpenVMS Systems.

HP C Language Reference Manual—Provides language reference information
for HP C on HP systems.

VAX C to HP C Migration Guide—To help OpenVMS VAX application
programmers migrate from VAX C to HP C.

HP C Installation Guide for OpenVMS VAX Systems—For OpenVMS system
programmers who install the HP C software on VAX systems.

HP C Installation Guide for OpenVMS Alpha Systems—For OpenVMS system
programmers who install the HP C software on Alpha systems.

OpenVMS Master Index—For programmers who need to work with the VAX
and Alpha machine architectures or the OpenVMS system services. This
index lists manuals that cover the individual topics concerning access to the
OpenVMS operating system.

HP TCP/IP Services for OpenVMS Sockets API and System Services
Programming—For information on the socket routines used for writing
Internet application programs for the HP TCP/IP Services for OpenVMS
product or other implementations of the TCP/IP protocol.

HP TCP/IP Services for OpenVMS Guide to IPv6—For information on HP
TCP/IP Services for OpenVMS IPv6 features, how to install and configure
IPv6 on your system, changes in the socket application programming interface
(API), and how to port your applications to run in an IPv6 environment.

X/Open Portability Guide, Issue 3—Documents what is commonly known as
the XPG3 specification.

X/Open CAE Specification System Interfaces and Headers, Issue 4—
Documents what is commonly known as the XPG4 specification.

X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version
2—Documents what is commonly known as XPG4 V2.

X/Open CAE Specification, System Interfaces and Headers, Issue 5—
Documents what is commonly known as the XPG5 specification.

e Technical Standard. System Interfaces, Issue 6—Combined Open Group
Technical Standard and IEEE standard. IEEE Std 1003.1-2001, sometimes
known as XPG®6.

e Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API)—Amendment
2: Threads Extension [C Language/—Documents what is also known as
POSIX 1003.1¢-1995.

e [SO/IEC 9945-2:1993 - Information Technology - Portable Operating System
Interface (POSIX) - Part 2: Shell and Utilities—Documents what is also
known as ISO POSIX-2.

e JSO/IEC 9945-1:1990 - Information Technology - Portable Operating System
Interface (POSIX) - Part 1: System Application Programming Interface (API)
(C Language)—Documents what is also known as ISO POSIX-1.

e ANSI/ISO/IEC 9899:1999 - Programming Languages - C—The C99 standard,
published by ISO in December, 1999 and adopted as an ANSI standard in
April, 2000.

e JSO/IEC 9899:1990-1994 - Programming Languages - C, Amendment 1:
Integrity—Documents what is also known as ISO C, Amendment 1.

e [SO/IEC 9899:1990[1992] - Programming Languages - C—Documents what
is also known as ISO C. The normative part is the same as X3.159-1989,
American National Standard for Information Systems - Programming
Language C, also known as ANSI C.

For more information about HP OpenVMS products and services, see:

http://www.hp.com/go/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send your comments or
suggestions to:

openvmsdoc@hp.com

How to Order Additional Documentation
For information about how to order additional documentation, see:

http://www.hp.com/go/openvms/doc/order

Conventions Used in this Document

Convention Meaning

OpenVMS Integrity servers The variant of the OpenVMS operating system that runs
on the Intel Itanium architecture.

OpenVMS systems Refers to the OpenVMS operating system on all supported
platforms, unless otherwise specified.
The symbol represents a single stroke of the

Return key on a terminal.

XXVii

Convention

Meaning

CtrlI/X

switch statement
int data type
fprintf function
<stdio.h> header file

argl

$ RUN CPROG

float x;

X = 5;

option, . ..

[output-source, . ..]

sc-specifier ::=
auto

static
extern
register

[a | b]

The symbol Ctrl/X, where letter X represents a terminal
control character, is generated by holding down the Ctrl
key while pressing the key of the specified terminal
character.

Monospace type identifies language keywords and the
names of HP C functions and header files. Monospace
type is also used when referring to a specific variable
name used in an example.

Italic type indicates a placeholder, such as an argument
or parameter name, and the introduction of new terms.

Interactive examples show user input in boldface type.

A vertical ellipsis indicates that not all of the text of a
program or program output is illustrated. Only relevant
material is shown in the example.

A horizontal ellipsis indicates that additional parameters,
options, or values can be entered. A comma that precedes
the ellipsis indicates that successive items must be
separated by commas.

Square brackets, in function synopses and a few other
contexts, indicate that a syntactic element is optional.
Square brackets are not optional, however, when

used to delimit a directory name in an OpenVMS file
specification or when used to delimit the dimensions of a
multidimensional array in HP C source code.

In syntax definitions, items appearing on separate lines
are mutually exclusive alternatives.

Brackets surrounding two or more items separated by a
vertical bar (|) indicate a choice; you must choose one of
the two syntactic elements.

A delta symbol is used in some contexts to indicate a
single ASCII space character.

Platform Labels

A platform is a combination of operating system and hardware that provides
a distinct environment. This manual contains information applicable to the
OpenVMS operating system running on VAX, Alpha, and Itanium processors.

XXviii

The information in this manual applies to all of these processors, except when
specifically labeled as follows:

Label

Explanation

(Alpha only)

(Integrity servers only)

Specific to an Alpha processor.

Specific to an Intel Itanium processor running the OpenVMS
operating system. On this platform, the product name of the
operating system is OpenVMS Integrity servers.

Label Explanation

(Integrity servers, Alpha) Specific to Integrity servers and Alpha processors.

New and Changed Features - OpenVMS Version 8.4

The following sections describe the C Run-Time Library (C RTL) enhancements
included in OpenVMS Version 8.4. These enhancements provide improved UNIX
portability, standards compliance, and the flexibility of additional user-controlled
feature selections. New C RTL functions are also included.

Unicode Support

The C RTL now supports Unicode, UTF-8 encoding for filenames given in UNIX
style. For example, the following filename is now allowed:

/disk/mydir/"U65E5"U672C"UBAJE.txt filename

This greatly enhances the UNIX portability of International software that uses
UTF-8 encoded filenames.

A new logical, DECC$FILENAME_ENCODING_UTFS, is provided to enable this
feature.

With this logical undefined, the default behavior is to accept filenames as ASCII
and Latin-1 format.

This feature works only on ODS-5 disks. To ENABLE this feature ensure
that you must define both the DECC$FILENAME_ENCODING_UTFS8 and
DECC$EFS_CHARSET logicals.

Semaphore Support

C RTL supports the following Open Group semaphore control operations in the C
RTL:

System V semaphore routines supported:

semctl()
semget ()
semop()
ftok()

POSIX semaphore routines supported:

sem close()

sem destroy()
sem_getvalue()
sem init()
sem_open()

sem post ()
sem_timedwait ()
sem trywait()
sem_unlink()
sem wait()

Note

Applicable to all semaphore routines

When the semaphore APIs, semget and sem open returns an error status
value of 28, which indicates 'no space left on device’, you may want to
increase the GBLSECTIONS SYSGEN parameter. Semaphores internally
use global sections and having huge number of semaphore sets on a

XXiX

system may result in exhaustion of GBLSECTIONS. As a result, the
SYSGEN parameter needs to be increased.

Limitations in System V Semaphores
Following are the limitations in System V semaphores:

e Maximum number of System V semaphore sets allowed in a system is 1024

e Maximum number of System V semaphores allowed within a semaphore set
is 1024

e Maximum value of a semaphore is 32767

e Maximum number of System V SEM_UNDO operations allowed in a process
is 1024

DECCS$PRINTF_USES_VAX_ROUND Feature Switch

A new feature switch, DECC$PRINTF_USES_VAX_ ROUND, has been added to
the C RTL.

With this switch set, the F and E format specifiers of printf use VAX rounding
rules for programs compiled with IEEE float.

Symbolic Link and POSIX-Compliant Pathname Support
Enhancements

OpenVMS Version 8.3

Enhancements have been made to the Open Group-compliant symbolic-link
support and POSIX-compliant pathname support provided in OpenVMS Version
8.3.

These enhancements include:

e Support of logical names in POSIX filenames and symlinks
e Loop detection in RMS directory wildcarding

e Following symlinks in RMS directory wildcard searches

e Redesign of on-disk symlink representation

e Miscellaneous bug fixes

XXX

1

Introduction

The ISO/ANSI C standard defines a library of functions, as well as related
types and macros, to be provided with any implementation of ANSI C. The HP
C Language Reference Manual describes the ANSI-conformant library features
common to all HP C platforms. The HP C Run-Time Library Reference Manual
for OpenVMS Systems provides a more detailed description of these routines and
their use in the OpenVMS environment. It also documents additional header
files, functions, types, and macros that are available on the OpenVMS system.

All library functions are declared in a header file. To make the contents of a
header file available to your program, include the header file with an #include
preprocessor directive. For example:

#include <stdlib.h>

Each header file contains function prototypes for a set of related functions, and
defines any types and macros needed for their use.

To list the header files on OpenVMS Alpha or Integrity server systems, use the
following commands:

$ LIBRARY/LIST SYSSLIBRARY:SYS$STARLET C.TLB

$ LIBRARY/LIST SYS$SLIBRARY:DECCS$RTLDEF.TLB

$ DIR SYS$COMMON: [DECCSLIB.REFERENCE.DECCSRTLDEF]*.H;
$ DIR SYSSLIBRARY:*.H;

The first command lists the text module form of the header files for the OpenVMS
system interfaces. The second lists the text module form of the header files

for the HP C language interface. The third lists *.H header files for the HP C
language interfaces. The fourth lists *.H header files for layered products and
other applications.

Note

The SYS$COMMON:[DECC$LIB.REFERENCE.DECC$RTLDEF]
directory is only a reference area for your viewing. The compiler still
looks in the *.TLB files for #include file searches.

However, duplicate files (such as <stdio.h>) found in SYS$LIBRARY probably
support the VAX C Version 3.2 environment and should not be used with HP C.

Function definitions themselves are not included in the header files, but are
contained in the HP C Run-Time Library (RTL) shipped with the OpenVMS
operating system. Before using the HP C RTL, you must be familiar with the
following topics:

¢ The linking process

e The macro substitution process

Introduction 1-1

e The difference between function definitions and function calls
e The format of valid file specifications

e The OpenVMS-specific methods of input and output (I/O)

e The HP C for OpenVMS extensions and nonstandard features

A knowledge of all these topics is necessary to effectively use the HP C RTL. This
chapter shows the connections between these topics and the HP C RTL. Read this
chapter before any of the other chapters in this manual.

The primary purpose of the HP C RTL is to provide a means for C programs to
perform I/O operations; the C language itself has no facilities for reading and
writing information. In addition to I/O support, the HP C RTL also provides a
means to perform many other tasks.

Chapters 2 through 11 describe the various tasks supported by the HP C RTL.
The Reference Section alphabetically lists and describes all the functions and
macros available to perform these tasks.

1.1 Using the HP C Run-Time Library

1-2

Introduction

When working with the HP C RTL, you must be aware of some implementation
specifics.

First, if you plan to use HP C RTL functions in your C programs, make sure that
a function named main or a function that uses the main program option exists in
your program. For more information, see the HP C Language Reference Manual

or the HP C User’s Guide for OpenVMS Systems.

Second, the HP C RTL functions are executed at run time, but references to these
functions are resolved at link time. When you link your program, the OpenVMS
linker resolves all references to HP C RTL functions by searching any shareable
code libraries or object code libraries specified on the LINK command line.

You can use the HP C RTL as a shareable image or you can use the HP C RTL
object libraries.

When you use the HP C RTL as a shareable image, the code for the RTL resides
in an image file in SYS$SHARE and is shared by all HP C programs. After
execution, control returns to your program. This process has a number of
advantages:

e You reduce the size of a program’s executable image.
e The program’s image takes up less disk space.
e The program swaps in and out of memory faster due to decreased size.

e With HP C and HP C++, you no longer need to define an options file when
linking your program against the shareable image. Linking against the RTL
shareable image is now much simpler than it was with VAX C. In fact, it is
the default method of linking to the HP C RTL.

When linking to the HP C RTL, you do not need to define any LNK$LIBRARY
logicals. In fact, you should deassign LNK$LIBRARY because linking with the
shareable image is more convenient than linking with the HP C RTL object
libraries.

See your OpenVMS, HP C, or HP C++ release notes for any supplemental
information about linking with the HP C RTL.

1.2 RTL Linking Options

The following sections describe several ways of linking HP C and HP C++
programs with the HP C RTL on OpenVMS Alpha and Integrity server systems.

1.2.1 Linking with the Shareable Image

Most linking needs should be satisfied by using the HP C RTL shareable
image DECC$SHR.EXE in the ALPHA$LIBRARY (aipha only) or IA64$LIBRARY

(Integrity servers only) directory.

The shareable images VAXCRTL.EXE and VAXCRTLG.EXE do not
exist on OpenVMS Alpha and Integrity server systems. The only C
RTL shareable image is ALPHA$LIBRARY:DECC$SHR.EXE (aipha only)
or IAG4$LIBRARYDECC$SHRE)§E (Integrity servers only) , which the linker
automatically finds through IMAGELIB.OLB.

The fact that VAXCRTL*.EXE does not exist on Alpha and Integrity server
systems has the following ramifications:

¢ You must change any existing VAX C link procedures to eliminate any
references to the VAXCRTL*.EXE images. An explicit reference to
DECC$SHR.EXE is unnecessary because IMAGELIB.OLB is searched
automatically by the linker (see the HP OpenVMS Linker Utility Manual).

e Because DECC$SHR.EXE exports only prefixed universal symbols (ones
that begin with DECC$), to successfully link against it make sure you cause
prefixing to occur for all HP C RTL entry points that you use.

If you use only the HP C RTL functions defined in the ANSI C Standard, all
entry points will be prefixed.

If you use HP C RTL functions not defined in the ANSI C Standard, you must
compile in one of two ways to ensure prefixing:

— Compile with the /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES
qualifier.

— Compile with the /STANDARD=VAXC or /STANDARD=COMMON
qualifier; you get /PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES as the
default.

To link against the shareable image, use the LINK command. For example:
$ LINK PROG1

The linker automatically searches IMAGELIB.OLB to find DECC$SHR.EXE, and
resolves all C RTL references.

1.2.2 Linking with the Object Libraries uiha oniy)

The HP C RTL object libraries on OpenVMS Alpha systems are used solely for
linking programs compiled without /PREFIX=ALL. Please note that these object
libraries do not exist on OpenVMS Integrity server systems.

On OpenVMS Alpha systems, the HP C RTL provides the following object
libraries in the ALPHA$LIBRARY directory:

e VAXCCURSE.OLB
e VAXCRTLD.OLB

e VAXCRTLT.OLB

e VAXCRTL.OLB

Introduction 1-3

1-4 Introduction

e VAXCRTLX.OLB
¢ VAXCRTLDX.OLB
e VAXCRTLTX.OLB

The object library VAXCCURSE.OLB, which provides access to the Curses
functions, contains unprefixed entry points that vector to the appropriate prefixed
entry points.

The object libraries VAXCRTL.OLB, VAXCRTLD.OLB, VAXCRTLT.OLB,
VAXCRTLX.OLB, VAXCRTLDX.OLB, and VAXCRTLTX.OLB also contain
unprefixed entry points that vector to the appropriate prefixed entry points,
depending on the floating-point type specified by the object library used:

e VAXCRTL.OLB contains all HP C RTL routine name entry points as well as
VAX G-floating double-precision, floating-point entry points.

e VAXCRTLD.OLB contains a limited support of VAX D-floating double-
precision, floating-point entry points.

e VAXCRTLT.OLB contains IEEE T-floating double-precision, floating-point
entry points.

e VAXCRTLX.OLB contains G_floating support and support for the
/L_DOUBLE_SIZE=128 compiler qualifier.

e VAXCRTLDX.OLB contains D_floating support and support for the
/L_DOUBLE_SIZE=128 compiler qualifier.

e VAXCRTLTX.OLB contains IEEE T_floating support and support for the
/L_DOUBLE_SIZE=128 compiler qualifier.

/L_DOUBLE_SIZE=128 is the default.

On the LINK command, specify only one of the VAXCRTL*.OLB libraries and, if
needed, the VAXCCURSE.OLB library.

In the default mode of the compiler (/STANDARD=RELAXED_ANSI89) and
also in strict ANSI C mode, all calls to ANSI C standard library routines

are automatically prefixed with DECC$. With the /[NOJPREFIX_LIBRARY_
ENTRIES qualifier, you can change this to prefix all HP C RTL names with
DECCS$, or to not prefix any HP C RTL names. Other options are also available
for this qualifier. See the /[NOJPREFIX_LIBRARY_ENTRIES qualifier in this
chapter for more information.

When linking with /NOSYSSHR, if calls to the HP C RTL routines are prefixed
with DECC$, then the modules in STARLET.OLB are the only ones you need
to link against. Since STARLET.OLB is automatically searched by the linker
(unless the link qualifier /INOSYSLIB is used), all prefixed RTL external names
are automatically resolved.

If any calls to the HP C RTL routines are not prefixed, then you need to
explicitly link against VAXCRTL.OLB, VAXCRTLD.OLB, VAXCRTLT.OLB

(or VAXCRTLX.OLB, VAXCRTLDX.OLB, or VAXCRTLDX.OLB), or
VAXCCURSE.OLB, depending on which floating-point types you need, or if you
want Curses functions. If you are linking with /NOSYSSHR, prefixed HP C RTL
entry points are resolved in STARLET.OLB. If you are linking with /SYSSHR (the
default), prefixed HP C RTL entry points are resolved in DECC$SHR.EXE.

1.2.3 Examples

The following examples show several different ways you might want to link with
the HP C RTL. See Figure 1-1 for a graphical summary of these examples.

1.

3.

Most of the time, you just want to link against the shareable image:

$ CC/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES PROG1
$ LINK PROG1

The linker automatically searches IMAGELIB.OLB to find DECC$SHR.EXE.

If you want to use just object libraries (to write privileged code or for ease
of distribution, for example), use the /NOSYSSHR qualifier of the LINK
command:

$ CC/PREFIX_LIBRARY_ENTRIES=ALLLENTRIES PROG1
$ LINK/NOSYSSHR PROG1

Prefixed RTL symbol references in the user program are resolved in the HP C
RTL object library contained in STARLET.OLB.

Notes

¢ When linking HP C programs against the HP C RTL object
libraries using the /INOSYSSHR qualifier, applications that
previously linked without undefined globals may result in
undefined globals for the CMAS$TIS symbols. To resolve these
undefined globals, add the following line to your link options file:

SYS$SLIBRARY:STARLET.OLB/LIBRARY/INCLUDE=CMASTIS

e If a program linked with the /NOSYSSHR qualifier makes a call
to a routine that resides in a dynamically activated image, and the
routine returns a value indicating an unsuccessful status, errno
is set to ENOSYS, and vaxc$errno is set to C$_NOSYSSHR.

The error message corresponding to C$_NOSYSSHR is "Linking
/NOSYSSHR disables dynamic image activation." An example of
this situation is a program linked with /NOSYSSHR that makes a
call to a socket routine.

(Alpha only). On OpenVMS Alpha systems, when compiling with prefixing
disabled, in order to use object libraries that provide alternate
implementations of C RTL functions, you need to use the VAXC*.OLB
object libraries. In this case, compile and link as follows:

$ CC/NOPREFIX LIBRARY ENTRIES PROG1
$ LINK PROG1, MYLIB/LIBRARY, ALPHASLIBRARY:VAXCRTLX.OLB/LIBRARY

Unprefixed HP C RTL symbol references in the user program are resolved in
MYLIB and in VAXCRTL.OLB.

Prefixed HP C RTL symbol references in VAXCRTLX.OLB are resolved in
DECC$SHR.EXE through IMAGELIB.OLB.

In this same example, to get IEEE T-floating double-precision floating-point
support, you might use the following compile and link commands:

$ CC/NOPREFIX_LIBRARY_ENTRIES/FLOAT=IEEE_FLOAT PROG1
$ LINK PROGl, MYLIB/LIBRARY, ALPHASLIBRARY:VAXCRTLTX.OLB/LIBRARY

Introduction 1-5

4.

(Alpha only). Combining examples 2 and 3, you might want to use just the object
libraries (for writing privileged code or for ease of distribution) and use an
object library that provides C RTL functions. In this case, compile and link

as follows:

$ CC/NOPREFIX_LIBRARY_ENTRIES PROG1
$ LINK/NOSYSSHR PROGl, MYLIB/LIBRARY, ALPHASLIBRARY:VAXCRTLX.OLB/LIBRARY

Prefixed HP C RTL symbol references in VAXCRTL.OLB are resolved in

STARLET.OLB.

Figure 1-1 Linking with the HP C RTL on OpenVMS Alpha and Integrity server Systems

Example 1 Example 2 Example 3 Example 4
Prog Prog Prog Prog
VAXCRTL*.OLB VAXCRTL*.OLB
’ STARLET.OLB
STARLET.OLB
DECC$SHR.EXE 4
DECCS$SHR.EXE
/PREFIX=ALL /PREFIX=ALL /NOPREFIX /NOPREFIX
IMAGELIB.OLB STARLET.OLB IMAGELIB.OLB STARLET.OLB
(DECC$SHR.EXE) (DECC$SHR.EXE)
ZK-6045A-GE

1.2.4 DECC$SHRP.EXE Image

OpenVMS installs a new shareable image DECC$SHRP.EXE to implement C
RTL functions requiring protected mode. This shareable image is installed
on all Alpha and Integrity server processors and is invoked from either the
DECC$SHR.EXE or DECC$SHR_EV56.EXE shareable image.

1.3 HP C RTL Function Prototypes and Syntax

After learning how to link object modules and include header files, you must
learn how to reference HP C functions in your program. The remaining chapters
in this manual provide detailed descriptions of the HP C RTL functions.

1.3.1 Function Prototypes

In all chapters, the syntax describing each function follows the standard
convention for defining a function. This syntax is called a function prototype
(or just prototype). The prototype is a compact representation of the order of a
function’s arguments (if any), the types of the arguments, and the type of the
value returned by a function. We recommend the use of prototypes.

If the return value of the function cannot be easily represented by a C data-type
keyword, look for a description of the return values in the explanatory text. The
prototype descriptions provide insight into the functionality of the function. These
descriptions may not describe how to call the function in your source code.

1-6 Introduction

For example, consider the prototype for the feof function:

#include <stdio.h>
int feof(FILE *file_ptr);

This syntax shows the following information:

e The feof prototype resides in the <stdio.h> header file. To use feof, you
must include this header file. (Declaring HP C RTL functions yourself is not
recommended.)

e The feof function returns a value of data type int.

e There is one argument, file_ptr, that is of type "pointer to FILE". FILE is
defined in the <stdio.h> header file.

To use feof in a program, include <stdio.h> anywhere before the function call to
feof, as in the following example:

#include <stdio.h> /* Include Standard I/0 */
main()
{

FILE *infile; /* Define a file pointer */

/* Call the function feof */

while (! feof(infile)) /* Until EOF reached */
{ /* Perform file operations */
}

}
1.3.2 Syntax Conventions for Function Prototypes

Since some library functions take a varying number of parameters, syntax
descriptions for function prototypes adhere to the following conventions:

e [Ellipses (...) are used to indicate a varying number of parameters.

e In cases where the type of a parameter may vary, its type is not shown in the
syntax.

Consider the printf syntax description:

#include <stdio.h>
int printf(const char *format_specification, . . .);

The syntax description for printf shows that you can specify one or more optional
parameters. The remaining information about printf parameters is in the
description of the function.

1.3.3 UNIX Style File Specifications

The HP C RTL functions and macros often manipulate files. One of the

major portability problems is the different file specifications used on various
systems. Since many C applications are ported to and from UNIX systems, it is
convenient for all compilers to be able to read and understand UNIX system file
specifications.

Introduction 1-7

1-8

Introduction

The following file specification conversion functions are included in the HP C RTL
to assist in porting C programs from UNIX systems to OpenVMS systems:

— decc$match wild

— decc$translate_vms
— deccs$fix time

— deccS$to_vms

— decc$from vms

The advantage of including these file specification conversion functions in the
HP C RTL is that you do not have to rewrite C programs containing UNIX
system file specifications. HP C can translate most valid UNIX system file
specifications to OpenVMS file specifications.

Please note the differences between the UNIX system and OpenVMS file
specifications, as well as the method used by the RTL to access files. For
example, the RTL accepts a valid OpenVMS specification and most valid

UNIX file specifications, but the RTL cannot accept a combination of both.
Table 1-1 shows the differences between UNIX system and OpenVMS system file
specification delimiters.

Table 1-1 UNIX and OpenVMS File Specification Delimiters

OpenVMS

Description System UNIX System
Node delimiter i I/

Device delimiter : /

Directory path delimiter [] /

Subdirectory delimiter [.1] /

File extension delimiter .

File version delimiter ; Not applicable

For example, Table 1-2 shows the formats of two valid specifications and one
invalid specification.

Table 1-2 Valid and Invalid UNIX and OpenVMS File Specifications

System File Specification Valid/Invalid
OpenVMS BEATLE::DBAO:[MCCARTNEY]SONGS.LIS Valid
UNIX beatle!/usrl/mccartney/songs.lis Valid

— BEATLE::DBAO:[MCCARTNEY.Cl/songs.lis Invalid

When HP C translates file specifications, it looks for both OpenVMS and UNIX
system file specifications. Consequently, there may be differences between how
HP C translates UNIX system file specifications and how UNIX systems translate
the same UNIX file specification.

For example, if the two methods of file specification are combined, as in
Table 1-2, HP C RTL can interpret [MCCARTNEY.C]/songs.lis as either
[MCCARTNEY]songs.lis or [Clsongs.lis. Therefore, when HP C encounters a
mixed file specification, an error occurs.

UNIX systems use the same delimiter for the device name, the directory names,
and the filename. Due to the ambiguity of UNIX file specifications, HP C may not
translate a valid UNIX system file specification according to your expectations.

For instance, the OpenVMS system equivalent of /bin/today can be either
[BIN]TODAY or [BIN.TODAY]. HP C can make the correct interpretation only
from the files present. If a file specification conforms to UNIX system filename
syntax for a single file or directory, it is converted to the equivalent OpenVMS
filename if one of the following conditions is true:

e If the specification corresponds to an existing OpenVMS directory, it is
converted to that directory name. For example, /dev/dir/sub is converted to
DEV:[DIR.SUB]| if DEV:[DIR.SUB] exists.

e If the specification corresponds to an existing OpenVMS filename, it is
converted to that filename. For example, /dev/dir/file is converted to
DEV:[DIR|FILE if DEV:[DIR|FILE exists.

e If the specification corresponds to a nonexistent OpenVMS filename, but the
given device and directory exist, it is converted to a filename. For example,
/dev/dir/file is converted to DEV:[DIR|FILE if DEV:[DIR] exists.

Note

Beginning with OpenVMS Version 7.3, you can instruct the HP C RTL
to interpret the leading part of a UNIX style file specification as either a
subdirectory name or a device name.

As with previous releases, the default translation of foo/bar (UNIX style
name) is FOO:BAR (OpenVMS style device name).

To request translation of foo/bar (UNIX style name) to [FOOIBAR
(OpenVMS style subdirectory name), define the logical name
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION to ENABLE.
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION is checked
only once per image activation, not on a file-by-file basis. Defining this
logical affects not only the decc$to_vms function, but all HP C RTL
functions that accept both UNIX style and OpenVMS style filenames as
an argument.

In the UNIX system environment, you reference files with a numeric file
descriptor. Some file descriptors reference Standard I/O devices; some descriptors
reference actual files. If the file descriptor belongs to an unopened file, the HP C
RTL opens the file. HP C equates file descriptors with the following OpenVMS
logical names:

File Descriptor OpenVMS Logical Meaning
0 SYS$INPUT Standard input
1 SYS$OUTPUT Standard output

Introduction 1-9

File Descriptor OpenVMS Logical Meaning

2 SYS$ERROR Standard error

1.3.4 Extended File Specifications

The ODS-5 volume structure provides enhanced support for mixed UNIX and
OpenVMS style filenames. It supports long filenames, allows the use of a wider
range of characters within filenames, and preserves case within filenames. With
OpenVMS Alpha Version 7.3-1, the C RTL has greatly improved support of ODS-5
characters, with 250 of the 256 characters supported, as opposed to only 214
supported previously. Also, filenames without file types can now be accessed.

To enable the new support, you must define one or more C RTL feature logical
names. These names include the following:

DECC$EFS_CHARSET
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION
DECC$FILENAME_UNIX NO_VERSION
DECC$FILENAME_UNIX REPORT

DECC$READDIR_ DROPDOTNOTYPE
DECC$RENAME_NO_INHERIT

See Section 1.5 for more information on these and other feature logical names.

1.3.5 Symbolic Links and POSIX Pathnames

OpenVMS provides support for Open Group compliant symbolic links and POSIX
pathname processing. See Chapter 12 for more information.

1.4 Feature-Test Macros for Header-File Control

Feature-test macros provide a means for writing portable programs. They ensure
that the HP C RTL symbolic names used by a program do not clash with the
symbolic names supplied by the implementation.

The HP C RTL header files are coded to support the use of a number of feature-
test macros. When an application defines a feature-test macro, the HP C RTL
header files supply the symbols and prototypes defined by that feature-test macro
and nothing else. If a program does not define such a macro, the HP C RTL
header files define symbols without restriction.

The feature-test macros supported by the HP C RTL fall into the following broad
categories for controlling the visibility of symbols in header files according to the
following:

e Standards
e Multiple-version support
e Compatibility
1.4.1 Standards Macros
The HP C RTL implements parts of the following standards:

e X/Open CAE Specification, System Interfaces and Headers, Issue 4, Version 2,
also known as XPG4 V2.

e X/Open CAE Specification, System Interfaces and Headers, Issue 4, also
known as XPG4.

1-10 Introduction

Standard for Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API)—Amendment
2: Threads Extension [C Language], also known as POSIX 1003.1c-1995 or
IEEE 1003.1¢-1995.

ISO/IEC 9945-2:1993 - Information Technology - Portable Operating System
Interface (POSIX) - Part 2: Shell and Utilities, also known as ISO POSIX-2.

ISO/TEC 9945-1:1990 - Information Technology - Portable Operating System
Interface (POSIX) - Part 1: System Application Programming Interface (API)
(C Language), also known as ISO POSIX-1.

ANSI/ISO/IEC 9899:1999 - The C99 standard, published by ISO in December,
1999 and adopted as an ANSI standard in April, 2000.

ISO/IEC 9899:1990-1994 - Programming Languages - C, Amendment 1:
Integrity, also known as ISO C, Amendment 1.

ISO/IEC 9899:1990 - Programming Languages - C, also known as ISO C. The
normative part is the same as X3.159-1989, American National Standard for
Information Systems - Programming Language C, also known as ANSI C.

1.4.2 Selecting a Standard

You can define a feature-test macro to select each standard. You can do this
either with a #define preprocessor directive in your C source before the inclusion
of any header file, or with the /DEFINE qualifier on the CC command line.

Table 1-3 lists and describes the HP C RTL feature-test macros that control
standards support.

Table 1-3 Feature Test Macros - Standards

Other
Standard Standards
Macro Name Selected Implied Description
_XOPEN_SOURCE_ XPG4 V2 XPG4, Makes visible XPG4-extended features,

EXTENDED ISO POSIX-2, including traditional UNIX based
ISO POSIX-1, interfaces not previously adopted by
ANSI C X/Open.
_XOPEN_SOURCE XPG4 ISO POSIX-2, Makes visible XPG4 standard symbols
(X/Open ISO POSIX-1, and causes _POSIX_C_SOURCE to be
Issue 4) ANSI C set to 2 if it is not already defined with
a value greater than 2. 2
_XOPEN_SOURCE=500 X/Open Issue ISO POSIX-2, Makes visible X/Open Issue 5 standard
5 ISO POSIX-1, symbols and causes _POSIX C_
ANSI C SOURCE to be set to 2 if it is not
already defined with a value greater
than 2.1 2
IWhere the ISO C Amendment 1 includes symbols not specified by XPG4, defining __STDC_VERSION__ == 199409 and

_XOPEN_SOURCE (or

_XOPEN_SOURCE_EXTENDED) selects both ISO C and XPG4 APIs. Conflicts that arise when

compiling with both XPG4 and ISO C Amendment 1 resolve in favor of ISO C Amendment 1.

2Where XPG4 extends the ISO C Amendment 1, defining XOPEN_SOURCE or _XOPEN_SOURCE_EXTENDED selects
ISO C APIs as well as the XPG4 extensions available in the header file. This mode of compilation makes XPG4 extensions

visible.

(continued on next page)

Introduction 1-11

Table 1-3 (Cont.) Feature Test Macros - Standards

Standard
Macro Name Selected

Other
Standards
Implied

Description

_XOPEN_SOURCE=600 X/Open Issue
6

_POSIX_C_SOURCE==199506 IEEE
1003.1c-1995

_POSIX_C_SOURCE== ISO POSIX-2

_POSIX_C_SOURCE== ISO POSIX-1

__STDC_VERSION__==199409 ISO C amdt
1
_ANSI_C_SOURCE ANSI C

__HIDE_FORBIDDEN_
NAMES

ISO POSIX-2,
ISO POSIX-1,
ANSI C

ISO POSIX-2,
ISO POSIX-1,
ANSI C

ISO POSIX-1,
ANSI C

ANSI C

ANSI C

Makes visible X/Open Issue 6 standard
symbols and causes _POSIX C_
SOURCE to be set to 2 if it is not
already defined with a value greater
than 2.1 2

Header files defined by ANSI C make
visible those symbols required by IEEE
1003.1c-1995.

Header files defined by ANSI C make
visible those symbols required by ISO
POSIX-2 plus those required by ISO
POSIX-1.

Header files defined by ANSI C make
visible those symbols required by ISO
POSIX-1.

Makes ISO C Amendment 1 symbols
visible.

Makes ANSI C standard symbols
visible.

When defined to the value 1, causes
the C RTL headers that are named
in the C standard to be configured
such that they define only those
identifiers that are specified as being
defined by those headers under the
version of the C standard in effect
for the compilation, unless additional
features are explicitly requested by
other configuration macros (XOPEN_
SOURCE, for example).

The C and C++ compilers will predefine
this macro when certain language
standard conformance features are
selected, but the user can override

any such predefinition by specifying
/UNDEFINE=__HIDE_FORBIDDEN_
NAMES on the command line (or using
#undef before including any headers).
Conversely, the user can explicitly
define the macro before including any
headers, regardless of the language
standard selected for the compiler.

IWhere the ISO C Amendment 1 includes symbols not specified by XPG4, defining __STDC_VERSION__ == 199409 and

_XOPEN_SOURCE (or _XOPEN_SOURCE_EXTENDED) selects both ISO C and XPG4 APIs. Conflicts that arise when
compiling with both XPG4 and ISO C Amendment 1 resolve in favor of ISO C Amendment 1.

2Where XPG4 extends the ISO C Amendment 1, defining _XOPEN_SOURCE or _XOPEN_SOURCE_EXTENDED selects
ISO C APIs as well as the XPG4 extensions available in the header file. This mode of compilation makes XPG4 extensions

visible.

Features not defined by one of the previously named standards are considered
HP C extensions and are selected by not defining any standards-related, feature-

test macros.

1-12 Introduction

If you do not explicitly define feature test macros to control header file definitions,
you implicitly include all defined symbols as well as HP C extensions.

1.4.3 Interactions with the /STANDARD Qualifier
The /STANDARD qualifier selects the dialect of the C language supported.

With the exception of /STANDARD=ANSI89 and /STANDARD=ISOC94, the
selection of C dialect and the selection of HP C RTL APIs to use are independent
choices. All other values for /STANDARD cause the entire set of APIs to be
available, including extensions.

Specifying /STANDARD=ANSI&9 restricts the default API set to the ANSI C
set. In this case, to select a broader set of APIs, you must also specify the
appropriate feature-test macro. To select the ANSI C dialect and all APIs,
including extensions, undefine __HIDE_FORBIDDEN_NAMES before including
any header file.

Compiling with /STANDARD=ISOC94 sets __STDC_VERSION_ _ to 199409.
Conflicts that arise when compiling with both XPG4 and ISO C Amendment 1
resolve in favor of ISO C Amendment 1. XPG4 extensions to ISO C Amendment 1
are selected by defining _XOPEN_SOURCE.

The following examples help clarify these rules:

e The fdopen function is an ISO POSIX-1 extension to <stdio.h>. Therefore,
<stdio.h> defines fdopen only if one or more of the following is true:

— The program including it is not compiled in strict ANSI C mode
(/STANDARD=ANSIS&9).

_POSIX_C_SOURCE is defined as 1 or greater.
_XOPEN_SOURCE is defined.
_XOPEN_SOURCE_EXTENDED is defined.

e The popen function is an ISO POSIX-2 extension to <stdio.h>. Therefore,
<stdio.h> defines popen only if one or more of the following is true:

— The program including it is not compiled in strict ANSI C mode
(/STANDARD=ANSIS&9).

— _POSIX_C_SOURCE is defined as 2 or greater.
— _XOPEN_SOURCE is defined.
— _XOPEN_SOURCE_EXTENDED is defined.

e The getw function is an X/Open extension to <stdio.h>. Therefore, <stdio.h>
defines getw only if one or more of the following is true:

— The program is not compiled in strict ANSI C mode
(/STANDARD=ANSIS&9).

— _XOPEN_SOURCE is defined.
— _XOPEN_SOURCE_EXTENDED is defined.

¢ The X/Open Extended symbolic constants _SC_PAGESIZE, _SC_PAGE_SIZE,
_SC_ATEXIT _MAX, and _SC_IOV_MAX were added to <unistd.h> to

support the sysconf function. However, these constants are not defined by
_POSIX_C_SOURCE.

Introduction 1-13

1-14 Introduction

The <unistd.h> header file defines these constants only if a program does not
define POSIX_C_SOURCE and does define XOPEN_SOURCE_EXTENDED.

If _POSIX_C_SOURCE is defined, these constants are not visible in
<unistd.h>. Note that _POSIX_C_SOURCE is defined only for programs
compiled in strict ANSI C mode.

The fgetname function is a HP C RTL extension to <stdio.h>. Therefore,
<stdio.h> defines fgetname only if the program is not compiled in strict
ANSI C mode (/STANDARD=ANSIS89).

The macro _PTHREAD_KEYS_MAX is defined by POSIX 1003.1¢-1995. This
macro is made visible in <limits.h> when compiling for this standard with _
POSIX_C_SOURCE == 199506 defined, or by default when compiling without
any standards-defining, feature-test macros.

The macro WCHAR_MAX defined in <wchar.h> is required by ISO C
Amendment 1 but not by XPG4. Therefore:

— Compiling for ISO C Amendment 1 makes this symbol visible, but
compiling for XPG4 compliance does not.

— Compiling for both ISO C Amendment 1 and XPG4 makes this symbol
visible.

Similarly, the functions wcsftime and westok in <wchar.h> are defined
slightly differently by the ISO C Amendment 1 and XPG4:

— Compiling for ISO C Amendment 1 makes the ISO C Amendment 1
prototypes visible.

— Compiling for XPG4 compliance makes the XPG4 prototypes visible.

— Compiling for both ISO C Amendment 1 and XPG4 selects the ISO C
prototypes because conflicts resulting from this mode of compilation
resolve in favor of ISO C.

— Compiling without any standard selecting feature test macros makes
ISO C Amendment 1 features visible.

In this example, compiling with no standard-selecting feature-test macros
makes WCHAR_MAX and the ISO C Amendment 1 prototypes for wcsftime
and westok visible.

The weswidth and wewidth functions are XPG4 extensions to ISO C
Amendment 1. Their prototypes are in <wchar.h>.

These symbols are visible if:

— Compiling for XPG4 compliance by defining _XOPEN_SOURCE or _
XOPEN_SOURCE_EXTENDED.

— Compiling for DEC C Version 4.0 compatibility or on pre-OpenVMS
Version 7.0 systems.

— Compiling with no standard-selecting feature-test macros.

— Compiling for both ISO C Amendment 1 and XPG4 compilance because
these symbols are XPG4 extensions to ISO C Amendment 1.

Compiling for strict ISO C Amendment 1 does not make them visible.

1.4.4 Multiple-Version-Support Macro

By default, the header files enable APIs in the HP C RTL provided by the version
of the operating system on which the compilation occurs. This is accomplished by
the predefined setting of the __VMS_VER macro, as described in the HP C User’s
Guide for OpenVMS Systems. For example, compiling on OpenVMS Version 6.2
causes only HP C RTL APIs from Version 6.2 and earlier to be made available.

Another example of the use of the __VMS_VER macro is support for the 64-bit
versions of HP C RTL functions available with OpenVMS Alpha Version 7.0

and higher. In all header files, functions that provide 64-bit support are
conditionalized so that they are visible only if __VMS_VER indicates a version of
OpenVMS that is greater than or equal to 7.0.

To target an older version of the operating system, do the following:

1. Define a logical DECC$SHR to point to the old version of DECC$SHR. The
compiler uses a table from DECC$SHR to perform routine name prefixing.

2. Define __VMS_VER appropriately, either with the /DEFINE qualifier or
with a combination of the #undef and #define preprocessor directives. With
/DEFINE, you may need to disable the warning regarding redefinition of a
predefined macro.

Targeting a newer version of the operating system might not always be possible.
For some versions, you can expect that the new DECC$SHR.EXE will require
new features of the operating system that are not present. For such versions, the
defining if the logical DECC$SHR in Step 1 would cause the compilation to fail.

To override the value of __VMS_VER, define __VMS_VER_OVERRIDE on the
compiler command line. Defining __VMS_VER_OVERRIDE without a value sets
__VMS_VER to the maximum value.

1.4.5 Compatibility Modes

The following predefined macros are used to select header-file compatibility with
previous versions of DEC C) or the OpenVMS operating system:

e _DECC_V4_SOURCE
e _VMS _V6_SOURCE
There are two types of incompatibilities that can be controlled in the header files:

e To conform to standards, some changes are source-code incompatible but
binary compatible. To select DEC C Version 4.0 source compatibility, use the
_DECC_V4_SOURCE macro.

e Other changes to conform to standards introduce a binary or run-time
incompatibility.

In general, programs that recompile get new behaviors. In these cases, use
the _VMS_V6_SOURCE feature test macro to retain previous behaviors.

However, for the exit, kill, and wait functions, the OpenVMS Version 7.0
changes to make these routines ISO POSIX-1 compliant were considered too
incompatible to become the default. Therefore, in these cases the default
behavior is the same as on pre-OpenVMS Version 7.0 systems. To access the
versions of these routines that comply with ISO POSIX-1, use the _POSIX_
EXIT feature test macro.

Introduction 1-15

The following examples help clarify the use of these macros:

To conform to the ISO POSIX-1 standard, typedefs for the following have
been added to <types.h>:

dev_t off t
gid t pid t
ino t size t
mode t ssize t
nlink t uid t~

Previous development environments using a version of DEC C earlier

than Version 5.2 may have compensated for the lack of these typedefs in
<types.h> by adding them to another module. If this is the case on your
system, then compiling with the <types.h> provided with DEC C Version 5.2
might cause compilation errors.

To maintain your current environment and include the DEC C Version

5.2 <types.h>, compile with _DECC_V4_SOURCE defined. This will omit
incompatible references from the DEC C Version 5.2 headers. In <types.h>,
for example, the previously listed typedefs will not be visible.

As of OpenVMS Version 7.0, the HP C RTL getuid and geteuid functions are
defined to return an OpenVMS UIC (user identification code) that contains
both the group and member portions of the UIC. In previous versions of the
DEC C RTL, these functions returned only the member number from the UIC
code.

Note that the prototypes for getuid and geteuid in <unistd.h> (as
required by the ISO POSIX-1 standard) and in <unixlib.h> (for HP C

RTL compatibility) have not changed. By default, newly compiled programs
that call getuid and geteuid get the new definitions. That is, these functions
will return an OpenVMS UIC.

To let programs retain the pre-OpenVMS Version 7.0 behavior of getuid and
geteuid, compile with the _"VMS_V6_SOURCE feature-test macro defined.

As of OpenVMS Version 7.0, the HP C RTL exit function is defined with ISO
POSIX-1 semantics. As a result, the input status argument to exit takes

a number between 0 and 255. (Prior to this, exit could take an OpenVMS
condition code in its status parameter.)

By default, the behavior for exit on OpenVMS systems is the same as
before: exit accepts an OpenVMS condition code. To enable the ISO POSIX-1
compatible exit function, compile with the _POSIX_EXIT feature-test macro
defined.

1.4.6 Curses and Socket Compatibility Macros

The following feature-test macros are used to control the Curses and Socket
subsets of the HP C RTL library:

1-16

Introduction

_BSD44 _CURSES

This macro selects the Curses package from the 4.4BSD Berkeley Software
Distribution.

_VMS_CURSES

This macro selects a Curses package based on the VAX C compiler. This is
the default Curses package.

_SOCKADDR_LEN

This macro is used to select 4.4BSD-compatible and XPG4 V2-compatible
socket interfaces. These interfaces require support in your underlying TCP/IP
software. Contact your TCP/IP vendor to inquire if the version of TCP/IP
software you run supports 4.4BSD sockets.

Strict XPG4 V2 compliance requires the 4.4BSD-compatible socket interface.
Therefore, if _XOPEN_SOURCE_EXTENDED is defined on OpenVMS Version 7.0
or higher, _SOCKADDR_LEN is defined to be 1.

The following examples help clarify the use of these macros:

e Symbolic constants like AE, AL, AS, AM, BC, which represent pointers
to termcap fields used by the BSD Curses package, are only visible in
<curses.h> if _BSD44_CURSES is defined.

e The <socket.h> header file defines a 4.4BSD sockaddr structure only if _
SOCKADDR_LEN or _XOPEN_SOURCE_EXTENDED is defined. Otherwise,
<socket.h> defines a pre-4.4BSD sockaddr structure. If _.SOCKADDR_LEN
is defined and _XOPEN_SOURCE_EXTENDED is not defined,

The <socket.h> header file also defines an osockaddr structure, which is a
4.3BSD sockaddr structure to be used for compatibility purposes. Since XPG4
V2 does not define an osockaddr structure, it is not visible in _XOPEN_
SOURCE_EXTENDED mode.

1.4.7 2 GB File Size Macro

The C RTL provides support for compiling applications to use file sizes and offsets
that are 2 GB and larger. This is accomplished by allowing file offsets of 64-bit
integers.

The fseeko and ftello functions, which have the same behavior as fseek and
ftell, accept or return values of type off t, which allows for a 64-bit variant of
off t to be used.

C RTL functions lseek, mmap, ftuncate, truncate, stat, fstat, and ftw can also
accommodate a 64-bit file offset.

The new 64-bit interfaces can be selected at compile time by defining the _
LARGEFILE feature macro.

1.4.8 32'Bit UID and GID MacrO (Integrity servers, Alpha)

The C RTL supports 32-bit User Identification (UID) and Group Identification
(GID). When an application is compiled to use 32-bit UID/GID, the UID and GID
are derived from the UIC as in previous versions of the operating system.

To compile an application for 16-bit UID/GID support on systems that by default
use 32-bit UIDs/GIDs, define the _DECC_SHORT_GID_T macro to 1.

Not specifying _DECC_SHORT_GID_T provides long (32-bit) UID/GID.

Compiling on older OpenVMS systems where long UID/GID is not supported,
or compiling for legacy compatibility (DECC_V4_SOURCE for HP C Version
4 or _VMS_V6_SOURCE for OpenVMS Version 6), forces use of short (16-bit)
UID/GID.

Introduction 1-17

1.4.9 Standard-Compliant stat Structure gty servers, aipha)

The C RTL supports an X/Open standard-compliant definition of the stat
structure and associated definitions. To use these new definitions, applications
must compile with the _USE_STD_STAT feature-test macro defined. Use of
_USE_STD_STAT specifies long (32-bit) GIDs.

When compiled with _USE_STD_STAT, the stat structure includes these changes:

* Type ino_t is defined as an unsigned quadword int. Without "USE_STD_
STAT, it is an unsigned short.

e Type dev_t is defined as a 64-bit integer. Without _USE_STD_STAT, it is a
32-bit character pointer.

e Type off t is defined as a 64-bit integer, as if the _'LARGEFILE macro has
been defined. Without _USE_STD_STAT, off t is a 32-bit integer.

* Fields st_dev and st_rdev will have unique values per device. Without
_USE_STD_STAT, uniqueness is not assured.

¢ Fields st_blksize and st_blocks are added. Without _USE_STD_STAT,
these fields do not exist.

1.4.10 Using Legacy _toupper and _tolower Behavior ntcgrity servers, Aipha)

As of OpenVMS Version 8.3, to comply with the C99 ANSI standard and X/Open
Specification, the tolower and _toupper macros by default do not evaluate their
parameter more than once. They simply call their respective tolower or toupper
function. This avoids side effects (such as i++ or function calls) where the user
can tell how many times an expression is evaluated.

To retain the older, optimized behavior of the tolower and _toupper macros,
compile with /DEFINE=_FAST_TOUPPER. Then, as in previous releases, these
macros optimize the call to avoid the overhead of a runtime call. However, the
macro’s parameter is evaluated more than once to determine how to calculate the
result, possibly creating unwanted side effects.

1.4.11 USing Faster, Inlined Put and Get Functions (Integrity servers, Alpha)

Compiling with the __UNIX_PUTC macro defined enables an optimization that
sets the following I/O functions to use faster, inlined functions:

fgetc

fputc

putc

putchar
fgetc_unlocked
fputc unlocked
putc_unlocked
putchar unlocked

1.4.12 POSIX Style eXit (Integrity servers, Alpha)

1-18

The HP C and C++ Version 7.1 and higher compilers have a /MAIN=POSIX_EXIT
qualifier that defines the 'POSIX_EXIT macro and causes the main program to
call __posix exit instead of exit when returning from the main program.

This qualifier should be used with programs ported from UNIX that do not
explicitly call exit and do not use OpenVMS specific exit codes.

For older compilers, the following sample code can be used to force the existing
main module to have a different name so that a simple main program will call it
but force the exit status to be through the posix exit call.

Introduction

The replacement main function can be in a different module, so that
/DEFINE="main=real_main" is all that is needed for modifying the build of
the existing main function.

#define POSIX EXIT 1
#include <stdlib.h>
int real main(int argc, char **argv);

/* Make sure POSIXized exit is used */
int main(int argc, char **argv)

int ret status;

ret status = real main(argc, argv);
exit (ret status);
#define main real main

Unless your C program is intentionally using OpenVMS status codes for exit
values, it is strongly recommended that both the _POSIX_EXIT macro be defined
and, if needed, the /MAIN=POSIX_EXIT or the alternative main replacement be
used so that DCL, BASH, and the accounting file get usable exit values.

1.5 Enabling C RTL Features Using Feature Logical Names

The C RTL provides an extensive list of feature switches that can be set using
DECCS$ logical names. These switches affect the behavior of a C application at
run time.

The feature switches introduce new behaviors and also preserve old behaviors
that have been deprecated.

You enable most features by setting a logical name to ENABLE and disable a
feature by setting the logical name to DISABLE:

$ DEFINE DECC$feature ENABLE
$ DEFINE DECC$feature DISABLE

Some feature logical names can be set to a numeric value. For example:

$ DEFINE DECCSPIPE BUFFER SIZE 32768

Notes

e Do not set C RTL feature logical names for the system. Set them
only for the applications that need them, because other applications
including OpenVMS components depend on the default behavior of
these logical names.

e Older feature logicals from earlier releases of the C Run-Time Library
were documented as supplying "any equivalence string" to enable a
feature. While this was true at one time, we now strongly recommend
that you use ENABLE for setting these feature logicals and DISABLE
for disabling them. Failure to do so may produce unexpected results.

The reason for this is twofold:

— In previous versions of the C RTL, any equivalence string, even
DISABLE, may have enabled a feature logical.

Introduction 1-19

— In subsequent and current versions of the C RTL, the following
equivalence strings will disable a feature logical. Do not use them
to enable a feature logical.

DISABLE
0 (zero)

F

FALSE

N

NO

Any other string not on this list will enable a feature logical. The
unintentionally misspelled string "DSABLE", for example, will
enable a feature logical.

The C RTL also provides several functions to manage feature logicals within your
applications:

decc$feature_get
decc$feature get value
decc$feature get index
deccsfeature get name
decc$feature_set
deccsfeature set value
deccsfeature_show
deccsfeature show all

See the reference section for more information on these functions.

Table 14 lists the C RTL feature logical names, grouped by the type of features
they control.

Table 1-4 C RTL Feature Logical Names

Feature Logical Name Default

Performance Optimizations

DECC$ENABLE_GETENV_CACHE DISABLE
DECC$LOCALE_CACHE_SIZE 0
DECC$TZ_CACHE_SIZE 2

Legacy Behaviors

DECC$ALLOW_UNPRIVILEGED_NICE DISABLE
DECC$NO_ROOTED_SEARCH_LISTS DISABLE
DECC$PRINTF_USES_VAX_ROUND DISABLE
DECC$THREAD_DATA_AST_SAFE DISABLE
DECC$V62 RECORD_GENERATION DISABLE
DECC$WRITE_SHORT _RECORDS DISABLE
DECC$XPG4_STRPTIME DISABLE

(continued on next page)

1-20 Introduction

Table 1-4 (Cont.) C RTL Feature Logical Names

Feature Logical Name Default

File Attributes

DECC$DEFAULT_LRL 32767
DECC$DEFAULT_UDF_RECORD DISABLE
DECC$FIXED_LENGTH_SEEK_TO_EOF DISABLE
DECC$ACL_ACCESS_CHECK DISABLE
Mailboxes

DECC$MAILBOX_CTX_STM DISABLE

Changes for UNIX Conformance

DECC$SELECT_IGNORES_INVALID FD DISABLE
DECC$STRTOL_ERANGE DISABLE
DECC$VALIDATE_SIGNAL_IN_KILL DISABLE

General UNIX Enhancements

DECC$UNIX_LEVEL DISABLE
DECC$ARGV_PARSE_STYLE DISABLE
DECC$PIPE_BUFFER _SIZE 512

DECC$PIPE_BUFFER_QUOTA 512

DECC$STREAM_PIPE DISABLE
DECC$POPEN_NO_CRLF_REC_ATTR DISABLE
DECC$STDIO_CTX_EOL DISABLE
DECC$USE_RAB64 DISABLE
DECC$GLOB_UNIX STYLE DISABLE

Enhancements for UNIX Style Filenames

DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION DISABLE

DECC$EFS_CHARSET DISABLE
DECC$ENABLE_TO_VMS_LOGNAME_CACHE ENABLE
DECC$FILENAME_ENCODING_UTF8 DISABLE
DECC$FILENAME_UNIX NO_VERSION DISABLE
DECC$FILENAME_UNIX_REPORT DISABLE
DECC$READDIR_DROPDOTNOTYPE DISABLE
DECC$RENAME_NO_INHERIT DISABLE
DECC$RENAME_ALLOW_DIR DISABLE

(continued on next page)

Introduction 1-21

1-22

Table 1-4 (Cont.) C RTL Feature Logical Names

Feature Logical Name Default

Enhancements for UNIX Style File Attributes

DECC$EFS_FILE_TIMESTAMPS DISABLE
DECC$EXEC_FILEATTR_INHERITANCE DISABLE
DECC$FILE_OWNER_UNIX DISABLE
DECCS$FILE_PERMISSION_UNIX DISABLE
DECCS$FILE_SHARING DISABLE

UNIX Compliance Mode

DECC$DETACHED_CHILD_PROCESS DISABLE
DECC$FILENAME_UNIX ONLY DISABLE
DECC$POSIX STYLE UID DISABLE
DECCUSE_JPI_CREATOR DISABLE

New Behaviors for POSIX Conformance

DECC$ALLOW_REMOVE_OPEN_FILES DISABLE
DECC$POSIX_SEEK_STREAM_FILE DISABLE
DECC$UMASK RMS default

File-Name Handling

DECC$POSIX_COMPLIANT PATHNAMES DISABLE
DECC$DISABLE_POSIX ROOT ENABLE
DECC$EFS_CASE_PRESERVE DISABLE
DECC$EFS_CASE_SPECIAL DISABLE
DECC$EFS_NO_DOTS_IN_DIRNAME DISABLE
DECC$READDIR_KEEPDOTDIR DISABLE
DECC$UNIX_PATH_BEFORE_LOGNAME DISABLE

An alphabetic listing and description of the C RTL feature logical names follows.
Unless otherwise stated, the feature logicals are enabled with ENABLE and
disabled with DISABLE.

DECCS$SACL_ACCESS CHECK
The DECC$ACL_ACCESS_CHECK feature logical controls the behavior of the
access function.

With DECC$ACL_ACCESS_CHECK enabled, the access function checks both
UIC protection and OpenVMS Access Control Lists (ACLs).

With DECC$ACL_ACCESS_CHECK disabled, the access function checks only
UIC protection.

DECCSALLOW_REMOVE_OPEN_FILES

The DECC$ALLOW_REMOVE_OPEN_FILES feature logical controls the
behavior of the remove function on open files. Ordinarily, the operation fails.
However, POSIX conformance dictates that the operation succeed.

Introduction

With DECC$ALLOW_REMOVE_OPEN_FILES enabled, this POSIX conformant
behavior is achieved.

DECC$ALLOW_UNPRIVILEGED_NICE

With DECC$ALLOW_UNPRIVILEGED_NICE enabled, the nice function exhibits
its legacy behavior of not checking the privilege of the calling process (that is,
any user may lower the nice value to increase process priorities). Also, when
the caller sets a priority above MAX_PRIORITY, the nice value is set to the base
priority.

With DECC$ALLOW_UNPRIVILEGED_NICE disabled, the nice function
conforms to the X/Open standard of checking the privilege of the calling process
(only users with ALTPRI privilege can lower the nice value to increase process
priorities), and when the caller sets a priority above MAX_PRIORITY, the nice
value is set to MAX_PRIORITY.

DECC$ARGV_PARSE_STYLE
With DECC$ARGV_PARSE_STYLE enabled, case is preserved in command-line

arguments when the process has been set up for extended DCL parsing using
SET PROCESS/PARSE_STYLE=EXTENDED.

DECC$ARGV_PARSE_STYLE must be defined externally as a logical name or
set in a function called using the LIBSINITIALIZE mechanism because it is
evaluated before function main is called.

DECCS$DEFAULT_LRL

DECC$DEFAULT_LRL specifies the default value for the RMS attribute for
the longest record length. The default value 32767 is the largest record size
supported by RMS.

Default: 32767
Maximum: 32767

DECCS$DEFAULT_UDF_RECORD
With DECC$DEFAULT UDF_RECORD enabled, file access mode defaults to
RECORD instead of STREAM mode for all files except STREAMLF.

DECC$DETACHED_CHILD_PROCESS
With DECC$DETACHED_CHILD_PROCESS enabled, child processes created
using vfork and exec are created as detached processes instead of subprocesses.

This feature has only limited support. In some cases the console cannot be shared
between the parent process and the detached process, which can cause exec to
fail.

DECC$DISABLE_POSIX_ROOT
With DECC$DISABLE_POSIX_ROOT enabled, support for the POSIX root
directory defined by SYS$POSIX_ROOT is disabled.

With DECC$DISABLE_POSIX_ROOT disabled, the SYS$POSIX_ROOT logical
name is interpreted as the equivalent of the file path "/". If a UNIX path
starting with a slash (/) is given and the value after the leading slash cannot be
translated as a logical name, SYS$POSIX_ROOT is used as the parent directory
for the specified UNIX file path.

Introduction 1-23

The C RTL supports a UNIX style root that behaves like a real directory. This
allows such actions as:

% cd /

% mkdir /dirname

% tar -xvf tarfile.tar /dirname
% 1s /

Previously, the C RTL did not recognize "/" as a directory name. The normal
processing for a file path starting with "/" was to interpret the first element as a
logical name or device name. If this failed, there was special processing for the
name /dev/null and names starting with /bin and /tmp:

/dev/null NLAOQ:
/bin SYS$SYSTEM:
/tmp SYS$SCRATCH:

These behaviors are retained for compatibility purposes. In addition, support
has been added to the C RTL for the logical name SYS$POSIX_ROOT as an
equivalent to "/".

To enable this feature for use by the C RTL, define SYS$POSIX_ROOT as a
concealed logical name. For example:

$ DEFINE/TRANSLATION=(CONCEALED, TERMINAL) SYSSPOSIX_ROOT "1DKAQ: [SYS0.abc.]"
To disable this feature:

$ DEFINE DECC$DISABLE POSIX ROOT DISABLE

Enabling SYS$POSIX_ROOT results in the following behavior:

e If the existing translation of a UNIX path starting with "/" fails and
SYS$POSIX_ROOT is defined, the name is interpreted as if it starts with
/sys$posix root.

e When converting from an OpenVMS to a UNIX style filename, and the
OpenVMS name starts with "SYS$POSIX_ROOT:", then the "SYS$POSIX_
ROOT:" is removed. For example, SYS$POSIX_ROOT:[dirname] becomes
/dirname. If the resulting name could be interpreted as a logical name or
one of the special cases previously listed, the result is /./dirname instead of
/dirname.

DECCS$DISABLE_TO_VMS_LOGNAME_TRANSLATION

With DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION enabled, the
conversion routine decc$to_vms will only treat the first element of a UNIX style
name as a logical name if there is a leading slash (/).

DECCS$EFS_CASE_PRESERVE
With DECC$EFS_CASE_PRESERVE enabled, case is preserved for filenames on
ODS-5 disks.

With DECC$EFS_CASE_PRESERVE disabled, UNIX style filenames are always
reported in lowercase.

However, note that enabling DECC$EFS_CASE_SPECIAL overrides the setting
for DECC$EFS_CASE_PRESERVE.

DECCS$SEFS_CASE_SPECIAL

With DECC$EFS_CASE_SPECIAL enabled, case is preserved only for filenames
containing lowercase. If an element of a filename contains all uppercase letters,
it is reported in all lowercase in UNIX style.

1-24 Introduction

When enabled, DECC$EFS_CASE_SPECIAL overrides the value of DECC$EFS_
CASE_PRESERVE.

DECCSEFS_CHARSET

With DECC$EFS_CHARSET enabled, UNIX names can contain ODS-5 extended
characters. Support includes multiple dots and all ASCII characters in the range
0 to 255, except the following:

<NUL>
/ *

n)

Unless DECC$FILENAME_UNIX_ONLY is enabled, some characters can be
interpreted as OpenVMS characters depending on context. They are:

A

[H
<

DECC$EFS_CHARSET might be necessary for existing applications that make
assumptions about filenames based on the presence of certain characters, because
the following nonstandard and undocumented C RTL extensions do not work
when EFS extended character-set support is enabled:
e $HOME is interpreted as the user’s login directory
With DECC$EFS_CHARSET enabled, $HOME is treated literally and may be
in an OpenVMS or UNIX style filename.
e -~name is interpreted as the login directory for user name
With DECC$EFS_CHARSET enabled, ~name is treated literally and can be in
an OpenVMS or UNIX style filename.
e Wild card regular expressions in the form [a-z]

With DECC$EFS_CHARSET enabled, square brackets are acceptable in
OpenVMS and UNIX style filenames. For instance, in a function such as
open, abc[a-z]ef.txt is interpreted as a UNIX style name equivalent to the
OpenVMS style name abc”[a-z"]ef.txt, and [a-z]bc is interpreted as an
OpenVMS style name equivalent to the UNIX style name /sys$disk/a-z/bc.

With DECC$EFS_CHARSET enabled, the following encoding for EFS extended
characters is supported when converting from an OpenVMS style filename to a
UNIX style filename:

e All ODS-2 compatible names

e All encoding for 8-bit characters, either as single byte or using two-digit
hexadecimal form “ab. In a UNIX path these are always represented as a
single byte.

e Encoding for DEL (*7F)

e The following characters when preceded by a caret:
space ! , &' ()+t @ {};H[1%"=8%-~.

¢ The following characters when not preceded by a caret:

s - ~

Introduction 1-25

e The implementation supports the conversion from OpenVMS to UNIX needed
for functions readdir, ftw, getname, fgetname, getcwd, and others.

Note

There are some special cases in C RTL filename processing. For example:

A

e Pathnames ending in ".dir are treated as directories, and when
translated, these characters are truncated from the string.

e Pathnames begining with "/ treat the next token as a logical name or
a directory from the root.

The following sample program shows these nuances:

#include <stdio.h>

#include <dirent.h>
#include <unixlib.h>
#include <string.h>

main()

{
char adir[80];
DIR *dir;

struct dirent *dp;
int decc feature efs charset index = 0;
int decc_feature_efs charset default val = 0;
if (
((decc feature efs charset index =
decc$feature_get Index("DECC$EFS_CHARSET")) == -1)

((decc_feature efs charset default val =
decc$feature get value(decc_feature efs charset index, 0)) == -1)

((deccsfeature_set value(decc_feature efs charset index, 1, TRUE) ==
)

{ . .
printf("Error setting up DECCSEFS CHARSET macro\n");

}

strcpy(adir, "SYSSSYSDEVICE:[SSHTEST.TEST.a",test”.dir";22]");
printf("\n\nFor %s\n", adir);
mrb: dir = opendir(adir);
if(dir)
{
do
{
dp = readdir(dir);
if(dp->d name) printf("%s\n", dp->d name);
} while (dp);
}

closedir(dir);

strcepy(adir, "SYS$SYSDEVICE:[SSHTEST.TEST.a",test”.dir]");
printf("\n\nFor %s\n", adir);
dir = opendir(adir);
if(dir)
{
do

dp = readdir(dir);
if(dp->d name) printf("%s\n", dp->d name);
} while (dp);
}

closedir(dir);

1-26 Introduction

strcpy(adir, "SYS$SYSDEVICE:[SSHTEST.TEST.a"\\test]");
printf("\n\nFor %s\n", adir);
dir = opendir(adir);
if(dir)
{
do

dp = readdir(dir);
if(dp->d_name) printf("$s\n", dp->d name);
} while (dp);
}

strcpy(adir, "SYS$SYSDEVICE:[SSHTEST.TEST.copies]");
printf("\n\nFor %s\n", adir);
dir = opendir(adir);
if(dir)
{
do
{
dp = readdir(dir);
if(dp->d name) printf("%s\n", dp->d name);
} while (dp);
}

closedir(dir);

strcpy(adir, "/SYS$SYSDEVICE/SSHTEST/TEST/copies");
printf("\n\nFor %s\n", adir);
dir = opendir(adir);
if(dir)
{
do
{
dp = readdir(dir);
if(dp->d name) printf("%s\n", dp->d name);
} while (dp);
}

closedir(dir);

DECCSEFS_FILE_TIMESTAMPS

With DECC$EFS_FILE_TIMESTAMPS enabled, stat and fstat report new
ODS-5 access time (st_atime), attribute revision time (st _ctime) and modification
time (st_mtime) for files on ODS-5 volumes that have the extended file times
enabled using SET VOLUME/VOLUME=ACCESS_DATES.

If DECC$EFS_FILE_TIMESTAMPS is disabled, or the volume is not ODS-5, or
the volume does not have support for these additional times enabled, st_ctime
continues to be the file creation time and st_atime the same as the st mtime.

The utime and utimes functions support these ODS-5 times in the same way as
stat.

DECCS$EFS_NO_DOTS_IN_DIRNAME

With support for extended characters in filenames for ODS-5, a name such as
NAME.EXT can be interpreted as NAME.EXT.DIR. Determining if directory
[.Lname”.ext] exists adds overhead to UNIX name translation when support for
extended character support in UNIX filenames is enabled.

Introduction 1-27

Enabling the DECC$EFS_NO_DOTS_IN_DIRNAME feature logical suppresses
the interpretation of a filename containing dots as a directory name. With this
logical enabled, NAME.EXT is assumed to be a filename; no check is made for
directory [.name”.ext].

DECCS$SENABLE_GETENV_CACHE
The C RTL supplements the list of environment variables in the environ table
with all logical names and DCL symbols available to the process.

By default, whenever getenv is called for a name not in the environ table, an
attempt is made to resolve this as a logical name and, if this fails, as a DCL
symbol.

With DECC$ENABLE_GETENV_CACHE enabled, once a logical name or DCL
name has been successfully translated, its value is stored in a cache. When the
same name is requested in a future call to getenv, the value is returned from the
cache instead of reevaluating the logical name or DCL symbol.

DECCS$ENABLE_TO_VMS_LOGNAME_CACHE

Use the DECC$ENABLE_TO_VMS_LOGNAME_CACHE to improve the
performance of UNIX name translation. The value is the life of each cache
entry in seconds. The equivalence string ENABLE is evaluated as 1 second.

Define DECC$ENABLE TO VMS _LOGNAME CACHE to 1 to enable the cache
with a 1-second life for each entry.

Define DECC$ENABLE_TO_VMS_LOGNAME_CACHE to 2 to enable the cache
with a 2-second life for each entry.

Define DECC$ENABLE TO VMS LOGNAME_CACHE to —1 to enable the cache
without a cache entry expiration.

DECCS$SEXEC_FILEATTR_INHERITANCE
The DECC$EXEC_FILEATTR_INHERITANCE feature logical affects child
processes that are C programs.

For versions of OpenVMS before Version 7.3-2, DECC$EXEC_FILEATTR_
INHERITANCE is either enabled or disabled:

e With DECC$EXEC_FILEATTR_INHERITANCE enabled, the current file
pointer and the file open mode is passed to the child process in exec calls.

e With this logical name disabled, the child process does not inherit append
mode or the file position.

For OpenVMS Version 7.3-2 and higher, DECC$EXEC_FILEATTR,_
INHERITANCE can be defined to 1 or 2, or be disabled:

e With DECC$EXEC_FILEATTR_INHERITANCE defined to 1, a child process
inherits file positioning for all file access modes except append.

e With DECC$EXEC_FILEATTR_INHERITANCE defined to 2, a child process
inherits file positioning for all file access modes including append.

e With DECC$EXEC_FILEATTR_INHERITANCE disabled, a child process does
not inherit the file position for any access modes.

DECCS$FILENAME_ENCODING_UTF8
C RTL routines that deal with filenames now support filenames in UTF-8
encoding when given in UNIX style.

1-28 Introduction

For example, on an ODS-5 disk the OpenVMS DIRECTORY command supports a
filename with the following characters:

disk:[mydir]"U65E5"U672C"UBAIE.txt

This filename contains three UCS-2 characters (call them xxx, yyy, and zzz for

typographical purposes) meaning "day", "origin", and "language", respectively.

With UTF-8 support enabled, a C program can now read the filename from the
VMS directory and use that filename as an UTF-8 encoded string.

For example, opendir("/disk/mydir") followed by a readdir will place the
following into the d_name field of the supplied dirent structure:

"\XE6\x97\xA5\XE6\x9C\XAC\XE8\XAA\XIE . txt"
One of the following calls can then open this file:

open("/disk/mydir/\xE6\x97\xA5\xE6\x9C\xAC\XE8\xAA\x9E.txt",0 RDWR,0)
open("/disk/mydir/xxxyyyzzz.txt", O _RDWR,0)

The "\ xE6\x97\ xA5" above is the byte stream E697A5, which represents the
xxx character in UTF-8 encoding. See the following example, where the actual
characters comprising the filename are shown:

Figure 1-2 Unicode Example

$ DIR 1DKAT00:[ENCODE].TXT
Directory 1DKAT00:[ENCODE]

UTF8.TXT;1 ~U65E5~U672C~UBAPA.TXT; 1
Total of 2 files.

$ MCR JSYS$CONTROL SET RMS/FILE=SDEC
$ DIR 1DKA100:[ENCODE].TXT

Directory 1DKA100:[ENCODE]

UTF8.TXT; 1 HAGE. TXT 1

Total of 2 files
$

This feature enhances the UNIX portability of international software that uses
UTF-8 encoded filenames.

The DECC$FILENAME_ENCODING_UTFS feature logical controls whether
or not the C RTL allows and correctly interprets Unicode UTF-8 encoding for
filenames given in UNIX style.

This logical is undefined by default, and the C RTL behavior is to accept
filenames as ASCII and Latin-1 format.

This feature works only on ODS-5 disks. Therefore, to enable Unicode UTF-8
encoding, you must define both the DECC$FILENAME_ENCODING_UTFS8 and
DECC$EFS_CHARSET logicals to ENABLE.

DECCS$FILENAME_UNIX_ONLY

With DECC$FILENAME_UNIX_ONLY enabled, filenames are never interpreted
as OpenVMS style names. This prevents any interpretation of the following as
OpenVMS special characters:

["

Introduction 1-29

DECCS$FILENAME_UNIX_NO_VERSION
With DECC$FILENAME_UNIX_NO_VERSION enabled, OpenVMS version
numbers are not supported in UNIX style filenames.

With DECC$FILENAME_UNIX_NO_VERSION disabled, in UNIX style names,
version numbers are reported preceded by a period (.).

DECCSFILENAME_UNIX_REPORT

With DECC$FILENAME_UNIX_REPORT enabled, all filenames are reported in
UNIX style unless the caller specifically selects OpenVMS style. This applies to
getpwnam, getpwuid, argv[0], getname, fgetname, and tempnam.

With DECC$FILENAME_UNIX_REPORT disabled, unless specified in the
function call, filenames are reported in OpenVMS style.

DECCSFILE_PERMISSION_UNIX

With DECC$FILE_PERMISSION_UNIX enabled, the file permissions for new
files and directories are set according to the file creation mode and umask.

This includes mode 0777. When an earlier version of the file exists, the file
permissions for the new file are inherited from the earlier version. This mode
sets DELETE permission for a new directory when WRITE permission is enabled.

With DECC$FILE_PERMISSION_UNIX disabled, modes 0 and 0777 indicate
using RMS default protection or protection from the previous version of the file.
Permissions for new directories also follow OpenVMS rules, including disabling
DELETE permissions.

DECCS$FILE_SHARING

With DECC$FILE_SHARING enabled, all files are opened with full sharing
enabled (FAB$M_DEL | FAB$M_GET | FAB$M_PUT | FAB$M_UPD). This is
set as a logical OR with any sharing mode specified by the caller.

DECCSFIXED_LENGTH_SEEK_TO_EOF

With DECC$FIXED_LENGTH_SEEK_TO_EOF enabled, 1seek, fseeko, and
fseek with the direction parameter set to SEEK_END will position relative to the
last byte in the file for files with fixed-length records.

With DECC$FIXED_LENGTH_SEEK_TO_EOF disabled, 1seek, fseek, and
fseeko when called with SEEK_EOF on files with fixed-length records, will
position relative to the end of the last record in the file.

DECC$GLOB_UNIX_STYLE

Enabling DECC$GLOB_UNIX_STYLE selects the UNIX mode of the glob
function, which uses UNIX style filenames and wildcards instead of OpenVMS
style filenames and wildcards.

DECCS$SLOCALE_CACHE_SIZE
DECC$LOCALE_CACHE_SIZE defines how much memory, in bytes, to allocate
for caching locale data. The default value is 0, which disables the locale cache.

Default: 0
Maximum: 2147483647

DECCSMAILBOX_CTX_STM
By default, an open on a local mailbox that is not a pipe treats mailbox records as
having a record attribute of FAB$M_CR.

1-30 Introduction

With DECC$MAILBOX_CTX_STM enabled, the record attribute FAB$M_CR is
not set.

DECC$NO_ROOTED_SEARCH_LISTS
When the decc$to_vms function evaluates a UNIX style path string, if it
determines the first element to be a logical name, then:

e For rooted logicals or devices, it appends ":[000000]" to the logical name.

For example, if 1ogl is a rooted logical ($DEFINE LOG1 [DIR_NAME.]) then
/logl/filename.ext translates to LOG1:[000000]FILENAME.EXT.

e For nonrooted logicals, it appends just a colon (:) to the logical name.

For example, if 1og2 is a nonrooted logical ($ DEFINE LOG2 [DIR_NAME]),
then /log2/filename.ext translates to LOG2:FILENAME.EXT.

e If the first element is a search-list logical, the translation proceeds by
evaluating the first element in the search list, and translating the path as
previously described.

The preceding three cases lead to predictable, expected results.

In the case where the first element is a search list that consists of a mixture of
rooted and nonrooted logicals, translating paths as described previously can lead
to different behavior from that of older versions of OpenVMS (before OpenVMS
Version 7.3-1):

e Before OpenVMS Version 7.3-1, regardless of the contents of the logical,
the decc$to_vms function appended only a colon (:). For search lists that
consisted of a mixture of rooted and nonrooted logicals, this resulted in
certain expected behaviors.

e For OpenVMS Version 7.3-1 and later, if the first element of the mixed search
list is a rooted logical, then decc$to_vms appends ":[000000]" to the logical
name, resulting in different behavior from that of OpenVMS releases prior to
Version 7.3-1.

DECC$NO_ROOTED_SEARCH_LISTS controls how the decc$to_vms function
resolves search-list logicals and provides a means to restore the OpenVMS
behavior prior to Version 7.3-1.

With DECC$NO_ROOTED_SEARCH_LISTS enabled:

e If a logical is detected in a file specification, and it is a search list, then a
colon (:) is appended when forming the OpenVMS file specification.

e Ifit is not a search list, the behavior is the same as with DECC$NO_
ROOTED_SEARCH_LISTS disabled.

Enabling this feature logical provides the pre-Version 7.3-1 behavior for search
list logicals.

With DECC$NO_ROOTED_SEARCH_LISTS disabled:

e If a logical is detected in a file specification, and it is a rooted logical (or
a search list whose first element is a rooted logical), then ":[000000]" is
appended when forming the OpenVMS file specification.

e Ifitis a nonrooted logical (or a search list whose first element is a nonrooted
logical), then just a colon (:) is appended.

Disabling this feature logical provides the behavior for OpenVMS Version 7.3-1
and later.

Introduction 1-31

DECCS$PIPE_BUFFER_QUOTA

OpenVMS Version 7.3-2 adds an optional fourth argument of type int to the pipe
function to specify the buffer quota of the pipe’s mailbox. In previous OpenVMS
versions, the buffer quota was equal to the buffer size.

DECC$PIPE_BUFFER_QUOTA lets you specify a buffer quota to use for the pipe
function if the optional fourth argument of that function is omitted.

If the optional pipe fourth argument is omitted and DECC$PIPE_BUFFER_
QUOTA is not defined, then the buffer quota defaults to the buffer size, as before.

Default: 512
Minimum: 512

Maximum: 2147483647

DECCS$PIPE_BUFFER_SIZE

The system default buffer size of 512 bytes for pipe write operations can limit
performance and generate extra line feeds when handling messages longer than
512 bytes.

DECC$PIPE_BUFFER_SIZE allows a larger buffer size to be used for pipe
functions such as pipe and popen. A value of 512 to 65535 bytes can be specified.

If DECC$PIPE_BUFFER_SIZE is not specified, the default buffer size 512 is
used.

Default: 512
Minimum: 512

Maximum: 65535

DECCS$POPEN_NO_CRLF_REC_ATTR

With DECC$POPEN_NO_CRLF_REC_ATTR disabled, a pipe opened with the
popen function has its record attributes set to CR/LF carriage control (fab$b_rat
| = FABSM_CR). This is the default behavior.

With DECC$POPEN_NO_CRLF_REC_ATTR enabled, CR/LF carriage control is
prevented from being added to the pipe records. This is compatible with UNIX
behavior, but be aware that enabling this feature might result in undesired
behavior from other functions, such as gets, that rely on the carriage-return
character.

DECCS$POSIX_COMPLIANT_PATHNAMES

With DECC$POSIX_COMPLIANT PATHNAMES enabled, an application is
allowed to present POSIX-compliant pathnames to any C RTL function that
accepts a pathname.

By default DECC$POSIX_COMPLIANT PATHNAMES is disabled, and the
usual C RTL behavior prevails. This disabled mode includes interpretation of
pathnames as UNIX style specifications and uses rules that are different and
unrelated to POSIX-compliant pathname processing.

To enable DECC$POSIX_COMPLIANT PATHNAMES, set it to one of the
following values:

1 All pathnames are designated as POSIX style.

1-32 Introduction

2 Pathnames that end in ":" or contain any of the bracket characters "[]<>", and
that can be successfully parsed by the SYS$FILESCAN service, are designated as
OpenVMS style. Otherwise, they are designated as POSIX style.

3 The pathnames "." and "..", or pathnames that contain "/" are designated as
POSIX style. Otherwise, they are designated as OpenVMS style.

4 All pathnames are designated as OpenVMS style.

See Section 12.3.1 for more information.

DECC$POSIX_SEEK_STREAM_FILE

With DECC$POSIX_SEEK_STREAM_FILE enabled, positioning beyond end-of-
file on STREAM files does not write to the file until the next write. If the write
is beyond the current end-of-file, this positions beyond the old end-of-file, and the
start position for the write is filled with zeros.

With DECC$POSIX_SEEK_STREAM_FILE disabled, positioning beyond end-of-
file will immediately write zeros to the file from the current end-of-file to the new
position.

DECCS$POSIX_STYLE_UID
With DECC$POSIX_STYLE_UID enabled, 32-bit UIDs and GIDs are interpreted
as POSIX style identifiers.

With this logical name disabled, UIDs and GIDs are derived from the process
UIC.

This feature is only available on OpenVMS systems providing POSIX style UID
and GID support.

DECCS$PRINTF_USES_VAX_ROUND
With DECC$PRINTF_USES_VAX_ROUND enabled, the F and E format specifiers
of printf use VAX rounding rules for programs compiled with IEEE float.

DECC$READDIR_DROPDOTNOTYPE
With DECC$READDIR_DROPDOTNOTYPE enabled, readdir when reporting
files in UNIX style only reports the trailing period (.) for files with no file type
when the filename contains a period.

With this logical name disabled, all files without a file type are reported with a
trailing period.

DECC$READDIR_KEEPDOTDIR
The default behavior when reporting files in UNIX style from readdir is to report
directories without a file type.

With DECC$READDIR_KEEPDOTDIR enabled, directories are reported in UNIX
style with a file type of ".DIR".

DECCSRENAME_NO_INHERIT

DECC$RENAME_NO_INHERIT provides more UNIX compliant behavior in the
rename function. With DECC$RENAME_NO_INHERIT enabled, the following
behaviors are enforced:

e If the old argument points to the pathname of a file that is not a directory,
the new argument will not point to the pathname of a directory.

e The new argument cannot point to a directory that exists.

e Ifthe old argument points to the pathname of a directory, the new argument
will not point to the pathname of a file that is not a directory.

Introduction 1-33

1-34

e The new name for the file does not inherit anything from the old name. The
new name must be specified completely. For example:

Renaming "A.A" to "B" yields "B"

With this logical name disabled, you get the expected OpenVMS behavior. For
example:

Renaming "A.A" to "B" yields "B.A"

DECC$SRENAME_ALLOW_DIR

Enabling DECC$RENAME_ALLOW_DIR restores the prior OpenVMS behavior of
the rename function by allowing conversion to a directory specification when the
second argument is an ambiguous file specification passed as a logical name. The
ambiguity is whether the logical name is a UNIX or OpenVMS file specification.
Consider the following example with DECC$RENAME_ALLOW_DIR enabled:

rename("file.ext", "logical name") /* where logical name = dev:[dir.subdir] */
/* and :[dir.subdir] exists. */

This results in:
dev:[dir.subdir]file.ext

This example renames a file from one directory into another directory, which is
the same behavior as in legacy versions of OpenVMS (versions before 7.3-1). Also
in this example, if dev:[dir.subdir] does not exist, rename returns an error.

Disabling DECC$RENAME_ALLOW_DIR provides a more UNIX compliant
conversion of the "logical name" argument of rename. Consider the following
example with DECC$RENAME_ALLOW_DIR disabled:

rename("file.ext", "logical name") /* where logical name = dev:[dir.subdir] */
This results in:
dev:[dir]subdir.ext

This example renames the file using the subdir part of the "logical name"
argument as the new filename because on UNIX systems, renaming a file to a
directory is not allowed. So rename internally converts the "logical name" to a
filename, and dev: [dir]subdir is the most reasonable conversion it can perform.

This new feature switch has a side effect of causing rename to a directory to take
precedence over rename to a file. Consider this example:

rename ("filel.ext", "dir2") /* dir2 is not a logical */

With DECC$RENAME_ALLOW_DIR disabled, this example results in dir2.ext,
regardless of whether or not subdirectory [.dir2] exists.

With DECC$RENAME_ALLOW_DIR enabled, this example results in dir2.ext
only if subdirectory [.dir2] does not exist. If subdirectory [.dir2] does exist,
the result is [.dir2]filel.ext.

Note

If DECC$RENAME_NO_INHERIT is enabled, UNIX compliant behavior
is expected, so DECC$RENAME_ALLOW_DIR is ignored, and renaming
a file to a directory is not allowed.

Introduction

DECCS$SELECT_IGNORES_INVALID_FD

With DECC$SELECT _IGNORES_INVALID_FD enabled, select fails with errno
set to EBADF when an invalid file descriptor is specified in one of the descriptor
sets.

With DECC$SELECT_IGNORES_INVALID_FD disabled, select ignores invalid
file descriptors.

DECCS$STDIO_CTX_EOL
With DECC$STDIO_CTX_EOL enabled, writing to stdout and stderr for stream
access is deferred until a terminator is seen or the buffer is full.

With DECC$STDIO_CTX_EOL disabled, each fwrite generates a separate write,
which for mailbox and record files generates a separate record.

DECC$STREAM_PIPE
With DECC$STREAM_PIPE enabled, the C RTL pipe function uses the more
UNIX compatible stream I/O.

With DECC$STREAM_PIPE disabled, pipe uses the OpenVMS legacy record I/O.
This is the default.

DECC$STRTOL_ERANGE
With DECC$STRTOL_ERANGE enabled, the strtol behavior for an ERANGE
error is corrected to consume all remaining digits in the string.

With DECC$STRTOL_ERANGE disabled, the legacy behavior of leaving the
pointer at the failing digit is preserved.

DECC$THREAD_DATA_AST_SAFE

The C RTL has a mode that allocates storage for thread-specific data allocated by
threads at non-AST level separate for data allocated for ASTs. In this mode, each
access to thread-specific data requires a call to LIBSAST_IN_PROG, which can
add significant overhead when accessing thread-specific data in the C RTL.

The alternate mode protects thread-specific data only if another function has it
locked. This protects data that is in use within the C RTL, but does not protect
the caller from an AST changing the data pointed to.

This latter mode is now the C RTL default for the strtok, ecvt, and fcvt
functions.

You can select the legacy AST safe mode by enabling DECC$THREAD_DATA _
AST_SAFE.

DECC$TZ_CACHE_SIZE
DECC$TZ_CACHE_SIZE specifies the number of time zones that can be held in
memory.

Default: 2
Maximum: 2147483647

DECC$SUMASK

DECC$UMASK specifies the default value for the permission mask umask. By
default, a parent C program sets the umask from the RMS default permissions for
the process. A child process inherits the parent’s value for umask.

Introduction 1-35

1-36

To enter the value as an octal value, add the leading zero; otherwise, it is
translated as a decimal value. For example:

S DEFINE DECCSUMASK 026
Maximum: 0777

DECCSUNIX_LEVEL

With the DECC$UNIX_LEVEL logical name, you can manage multiple C RTL
feature logical names at once. By setting a value for DECC$UNIX_LEVEL from
1 to 100, you determine the default value for groups of feature logical names. The
value you set has a cumulative effect: the higher the value, the more groups that
are affected. Setting a value of 20, for example, enables all the feature logicals
associated with a DECC$UNIX_LEVEL of 20, 10, and 1.

The principal logical names affecting UNIX like behavior are grouped as follows:

1 General corrections

10 Enhancements

20 UNIX style filenames

30 UNIX style file attributes

90 Full UNIX behavior - No concessions to OpenVMS

Level 30 is appropriate for UNIX like programs such as BASH and GNV.
The DECC$UNIX_LEVEL values and associated groups of affected feature logical

names are:
General Corrections (DECCSUNIX LEVEL 1)

DECC$FIXED LENGTH SEEK_TO EOF 1
DECC$POSIX_SEEK_STREAM FILE 1
DECC$SELECT IGNORES_INVALID FD 1

DECC$STRTOL_ERANGE 1
DECC$VALIDATE_SIGNAL_IN_KILL 1

General Enhancements (DECCSUNIX LEVEL 10)
DECC$ARGV_PARSE_STYLE 1
DECCSEFS_CASE_PRESERVE 1
DECC$STDIO_CTX EOL 1
DECCSPIPE BUFFER_SIZE 4096
DECC$USE_RAB64 1

UNIX style filenames (DECCSUNIX LEVEL 20)
DECC$DISABLE_TO VMS_LOGNAME TRANSLATION 1
DECC$EFS_CHARSET 1
DECC$FILENAME_UNIX_NO_VERSION 1
DECC$FILENAME_UNIX_REPORT 1
DECC$READDIR_DROPDOTNOTYPE 1
DECCSRENAME NO INHERIT 1

DECC$GLOB_UNIX_ STYLE

UNIX like file attributes (DECCSUNIX_LEVEL 30)
DECC$EFS_FILE_TIMESTAMPS 1
DECCSEXEC_FILEATTR_INHERITANCE 1
DECC$FILE_0WNER_UNIX 1
DECC$FILE_PERMISSION_UNIX 1
DECC$FILE_SHARING 1

UNIX compliant behavior (DECCSUNIX LEVEL 90)

Introduction

DECC$FILENAME UNIX ONLY
DECC$POSIX STYLE UID
DECCSUSE JPI$ CREATOR
DECC$DETACHED CHILD PROCESS

Notes

e Defining a logical name for an individual feature logical supersedes
the default value established by DECC$UNIX_LEVEL for that
feature.

e Future revisions of the C RTL may add new feature logicals to a given
DECC$UNIX_LEVEL. For applications that specify that UNIX level,
the effect is to enable those new feature logicals by default.

DECC$UNIX_PATH_BEFORE_LOGNAME

With DECC$UNIX_PATH_BEFORE_LOGNAME enabled, when translating a
UNIX filename not starting with a leading slash (/), an attempt is made to match
this to a file or directory in the current directory. If this is not found and the
name is valid as a logical name in an OpenVMS filename, an attempt is made to
translate the logical name and, if found, is used as part of the resulting filename.

Enabling DECC$UNIX_PATH_BEFORE_LOGNAME overrides the setting for
DECC$DISABLE_TO_VMS_LOGNAME_TRANSLATION.

DECCUSE_JPI_CREATOR

When enabled, DECCUSE_JPI_CREATOR determines the parent process ID
in getppid by calling $GETJPI using item JPI$_CREATOR instead of JPI$_
OWNER.

This feature is only available on systems supporting POSIX style session
identifiers.

DECC$USE_RAB64
With DECC$USE_RABG64 enabled, open functions allocate a RAB64 structure
instead of the traditional RAB structure.

This provides latent support for file buffers in 64-bit memory.

DECCS$VALIDATE_SIGNAL_IN_KILL

With DECC$VALIDATE_SIGNAL_IN_KILL enabled, a signal value that is in the
range 0 to _SIG_MAX but is not supported by the C RTL generates an error with
errno set to EINVAL, which makes the behavior the same as for raise.

With this logical name disabled, validation of signals is restricted to checking
that the signal value is in the range 0 to _SIG_MAX. If sys$sigprc fails, errno is
set based on sys$sigprc exit status.

DECC$V62_RECORD_GENERATION
OpenVMS Versions 6.2 and higher can output record files using different rules.

With DECC$V62_RECORD_GENERATION enabled, the output mechanism
follows the rules used for OpenVMS Version 6.2.

Introduction 1-37

DECCS$WRITE_SHORT_RECORDS

The DECC$WRITE_SHORT_RECORDS feature logical supports a previous
change to the fwrite function (to accommodate writing records with size less
than the maximum record size), while retaining the legacy way of writing records
to a fixed-length file as the default behavior:

With DECC$WRITE_SHORT RECORDS enabled, short-sized records (records
with size less than the maximum record size) written at EOF are padded
with zeros to align records on record boundaries. This is the behavior seen in
OpenVMS Version 7.3-1 and some ACRTL ECOs of that time period.

With DECC$WRITE_SHORT_RECORDS disabled, the legacy behavior of writing
records with no padding is implemented. This is the recommended and default
behavior.

DECC$XPG4_STRPTIME

XPG5 support for strptime introduces pivoting year support so that years in the
range 0 to 68 are in the 21st century, and years in the range 69-99 are in the
20th century.

With DECC$XPG4_STRPTIME enabled, XPG5 support for the pivoting year is
disabled and all years in the range 0 to 99 are in the current century.

1.6 32-Bit UIDs/GIDs and POSIX Style Identifiers

Where supported in versions of the OpenVMS operating system, POSIX style
identifiers refers to the User Identifier (UID), Group Identifier (GID), and Process
Group. The scope includes real and effective identifiers.

The support for POSIX style identifiers in the HP C RTL requires 32-bit user and
group ID support and also depends on features in the base version of OpenVMS.
POSIX style IDs are supported by OpenVMS Version 7.3-2 and higher.

To use POSIX style identifiers on OpenVMS versions that support them requires
applications to be compiled for 32-bit UID/GID. On OpenVMS versions where
32-bit UID/GID is the default, the user or application must still enable POSIX
style IDs by defining the DECC$POSIX_STYLE_UID feature logical name:

$ DEFINE DECC$SPOSIX STYLE UID ENABLE

With POSIX style IDs enabled, at compile time you can selectively invoke the
traditional (UIC-based) definition for an individual function by explicitly calling
it by its decc$-prefixed entry point (as opposed to the decc$ long gid -prefixed
entry point, which provides the POSIX style behavior).

To disable POSIX style IDs:
$ DEFINE DECC$POSIX_STYLE_UID DISABLE

OpenVMS Version 7.3-2 and higher supports POSIX style IDs as well as 32-bit
UID/GIDs. When an application is compiled to use 32-bit UID/GIDs, the UID and
GID are derived from the UIC as in previous versions of the operating system.
In some cases, such as with the getgroups function, more information may be
returned when the application supports 32-bit GIDs.

To compile an application for 16-bit UID/GID support on systems that by default
use 32-bit UIDs/GIDs, define the _"DECC_SHORT_GID_T macro to 1.

1-38 Introduction

1.7 Input and Output on OpenVMS Systems

After you learn how to link with the HP C RTL and call HP C functions and
macros, you can use the HP C RTL for its primary purpose: input/output (I/O).

Since every system has different methods of I/O, familiarize yourself with the
OpenVMS specific methods of file access. In this way, you will be equipped
to predict functional differences when porting your source program from one
operating system to another.

Figure 1-3 shows the I/O methods available with the HP C RTL. The OpenVMS
system services communicate directly with the OpenVMS operating system, so
they are closest to the operating system. The OpenVMS Record Management
Services (RMS) functions use the system services, which manipulate the operating
system. The HP C Standard I/O and UNIX I/O functions and macros use the
RMS functions. Since the HP C RTL Standard I/O and UNIX I/O functions and
macros must go through several layers of function calls before the system is
manipulated, they are furthest from the operating system.

Figure 1-3 1/O Interface from C Programs

P|l—» Standard 1/0

cr> —¥ UNIX I/O

gr] —_—b VAX RMS

:l —» System Services
ZK-0493-GE

The C programming language was developed on the UNIX operating system, and
the Standard I/O functions were designed to provide a convenient method of I/O
that would be powerful enough to be efficient for most applications, and also be
portable so that the functions could be used on any system running C language
compilers.

The HP C RTL adds functionality to this original specification. Since, as
implemented in the HP C RTL, the Standard I/O functions recognize line
terminators, the HP C RTL Standard I/O functions are particularly useful for
text manipulation. The HP C RTL also implements some of the Standard I/O
functions as preprocessor-defined macros.

In a similar manner, the UNIX I/O functions originally were designed to provide
a more direct access to the UNIX operating systems. These functions were meant
to use a numeric file descriptor to represent a file. A UNIX system represents all
peripheral devices as files to provide a uniform method of access.

The HP C RTL adds functionality to the original specification. The UNIX I/O
functions, as implemented in HP C, are particularly useful for manipulating
binary data. The HP C RTL also implements some of the UNIX I/O functions as
preprocessor-defined macros.

Introduction 1-39

1-40

The HP C RTL includes the Standard I/O functions that should exist on all C
compilers, and also the UNIX I/O functions to maintain compatibility with as
many other implementations of C as possible. However, both Standard I/O and
UNIX I/O use RMS to access files. To understand how the Standard I/O and
UNIX I/O functions manipulate RMS formatted files, learn the fundamentals
of RMS. See Section 1.7.1 for more information about Standard I/O and UNIX
I/0 in relationship to RMS files. For an introduction to RMS, see the Guide to
OpenVMS File Applications.

Before deciding which method is appropriate for you, first ask this question: Are
you concerned with UNIX compatibility or with developing code that will run
solely under the OpenVMS operating system?

e If UNIX compatibility is important, you probably want to use the highest
levels of I/O—Standard I/O and UNIX I/O—because that level is largely
independent of the operating system. Also, the highest level is easier to learn
quickly, an important consideration if you are a new programmer.

e If UNIX compatibility is not important to you or if you require the
sophisticated file processing that the Standard I/O and UNIX I/O methods do
not provide, you might find RMS desirable.

If you are writing system-level software, you may need to access the OpenVMS
operating system directly through calls to system services. For example, you
may need to access a user-written device driver directly through the Queue I/0
Request System Service ($QIO). To do this, use the OpenVMS level of I/O; this
level is recommended if you are an experienced OpenVMS programmer. For
examples of programs that call OpenVMS system services, see the HP C User’s
Guide for OpenVMS Systems.

You may never use the RMS or the OpenVMS system services. The Standard I/0
and UNIX I/O functions are efficient enough for a large number of applications.
Figure 1-4 shows the dependency of the Standard I/O and the UNIX I/O functions
on RMS, and the various methods of I/O available to you.

Introduction

Figure 1-4 Mapping Standard I/O and UNIX I/O to RMS

HP C PROGRAM

v v
Standard I/O UNIX I/O

v

System Services

ZK-0494-GE

1.7.1 RMS Record and File Formats

To understand the capabilities and the restrictions of the Standard I/O and UNIX
I/0 functions and macros, you need to understand OpenVMS Record Management
Services (RMS).

RMS supports the following file organizations:
e Sequential

e Relative

e Indexed

Sequential files have consecutive records with no empty records in between;
relative files have fixed-length cells that may or may not contain a record; and
indexed files have records that contain data, carriage-control information, and
keys that permit various orders of access.

The HP C RTL functions can access only sequential files. If you wish to use the
other file organizations, you must use the RMS functions. For more information
about the RMS functions, see the HP C User’s Guide for OpenVMS Systems.

RMS is not concerned with the contents of records, but it is concerned about the
record format, which is the way a record physically appears on the recording
surface of the storage medium.

RMS supports the following record formats:
e Fixed-length

e Variable-length

e Variable with fixed-length control (VFC)

e Stream

Introduction 1-41

You can specify a fixed-length record format at the time of file creation. This
means that all records occupy the same amount of space in the file. You cannot
change the record format once you create the file.

The length of records in variable-length, VFC, and stream file formats can
vary up to a maximum size that must be specified when you create the file.
With variable-length record or VFC format files, the size of the record is held
in a header section at the beginning of the data record. With stream files,
RMS terminates the records when it encounters a specific character, such as a
carriage-control or line-feed character. Stream files are useful for storing text.

RMS allows you to specify carriage-control attributes for records in a file. Such
attributes include the implied carriage-return or the Fortran formatted records.
RMS interprets these carriage controls when the file is output to a terminal, a
line printer, or other device. The carriage-control information is not stored in the
data records.

By default, files inherit the RMS record format, maximum record size and
record attributes, from the previous version of the file, if one exists; to an
OpenVMS system programmer, the inherited attributes are known as FAB$B_
RFM, FAB$W_MRS and FAB$B_RAT. If no previous versions exist, the newly
created file defaults to stream format with line-feed record separator and implied
carriage-return attributes. (This manual refers to this type of file as a stream
file.) You can manipulate stream files using the Standard I/O and the UNIX I/O
functions of the HP C RTL. When using these files and fixed-record files with no
carriage control, there is no restriction on the ability to seek to any random byte
of the file using the fseek or the lseek functions. However, if the file has one of
the other RMS record formats, such as variable-length record format, then these
functions, due to RMS restrictions, can seek only to record boundaries. Use the
default VAX stream format unless you need to create or access files to be used
with other VAX languages or utilities.

1.7.2 Access to RMS Files

1-42

RMS sequential files can be opened in record mode or stream mode. By default,
STREAM_LF files are opened in stream mode; all other file types are opened in
record mode. When opening a file, you can override these defaults by specifying
the optional argument "ctx=rec" to force record mode, or "ctx=stm" to force stream
mode. RMS relative and indexed files are always opened in record mode. The
access mode determines the behavior of various I/O functions in the HP C RTL.

One of the file types defined by RMS is an RMS-11 stream format file,
corresponding to a value of FAB$C_STM for the record format. The definition

of this format is such that the RMS record operation SYS$GET removes leading
null bytes from each record. Because this file type is processed in record mode
by the HP C RTL, it is unsuitable as a file format for binary data unless it is
explicitly opened with "ctx=stm", in which case the raw bytes of data from the file
are returned.

Note

In OpenVMS Version 7.0 the default LRL value on stream files was
changed from 0 to 32767. This change caused significant performance
degradation on certain file operations such as sort.

This is no longer a problem. The HP C RTL now lets you define the
logical DECC$DEFAULT_LRL to change the default record-length value
on stream files.

Introduction

The HP C RTL first looks for this logical. If it is found and it translates to
a numeric value between 0 and 32767, that value is used for the default
LRL.

To restore the behavior prior to OpenVMS Version 7.0, enter the following
command:

$ DEFINE DECCSDEFAULT LRL 0

1.7.2.1 Accessing RMS Files in Stream Mode
Stream access to RMS files is done with the block I/O facilities of RMS.
Stream input is performed from RMS files by passing each byte of the on-disk
representation of the file to your program. Stream output to RMS files is done
by passing each byte from your program to the file. The HP C RTL performs no
special processing on the data.

When opening a file in stream mode, the HP C RTL allocates a large internal
buffer area. Data is read from the file using a single read into the buffer area
and then passing the data to your program as needed. Data is written to the file
when the internal buffer is full or when the fflush function is called.

1.7.2.2 Accessing RMS Record Files in Record Mode
Record access to record files is done with the record I/O facilities of RMS. The
HP C RTL emulates a byte stream by translating carriage-control characters
during the process of reading and writing records. Random access is allowed
to all record files, but positioning (with fseek and lseek) must be on a record
boundary for VFC files, variable record files, or files with non-null carriage
control. Positioning a record file causes all buffered input to be discarded and
buffered output to be written to the file.

Record input from RMS record files is emulated by the HP C RTL in two steps:

1. The HP C RTL reads a logical record from the file.

If the record format is variable length with fixed control (RFM = VFC), and
the record attributes are not print carriage control (RAT is not PRN), then the
HP C RTL concatenates the fixed-control area to the beginning of the record.

2. The HP C RTL expands the record to simulate a stream of bytes by
translating the record’s carriage-control information (if any).

In RMS terms, the HP C RTL translates the record’s carriage-control information
using one of the following methods:

e If the record attribute is implied carriage control (RAT = CR), then the HP C
RTL appends a new-line character to the record.

This new-line character is considered an integral part of the record, which
means for example, that it can be obtained by the fgetc function and is
considered a line terminator by the fgets function. Since fgets reads the file
up to the new-line character, for RAT=CR files this function cannot retrieve a
string that crosses the record boundaries.

e If the record attributes are print carriage control (RAT = PRN), then the
HP C RTL expands and concatenates the prefix and postfix carriage controls
before and after the record.

Introduction 1-43

1-44

This translation is done according to rules specified by RMS, with one
exception: if the prefix character is x01 and the postfix character is x8D,
then nothing is attached to the beginning of the record and a single new-line
character is attached to the end of it. This is done because this prefix/postfix
combination is normally used to represent a line.

If the record attributes are Fortran carriage control (RAT = FTN), then the
HP C RTL removes the initial control byte and attaches the appropriate
carriage-control characters before and after the data as defined by RMS, with
the exception of the space and default carriage-control characters. In these
cases, which are used to represent a line, the HP C RTL appends a single
new-line character to the data.

The mapping of Fortran carriage-control can be disabled by using "ctx=nocvt".

If the record attributes are null (RAT = NONE) and the input is coming from
a terminal, then the HP C RTL appends the terminating character to the
record. If the terminator is a carriage return or Ctrl/Z, then HP C translates
the character to a new-line character (\ n).

If the input is coming from a nonterminal file, then the HP C RTL passes
the record unchanged to your program with no additional prefix or postfix
characters.

As you read from the file, the HP C RTL delivers a stream of bytes resulting from
the translations. Information that is not read from an expanded record by one
function call is delivered on the next input function call.

The HP C RTL performs record output to RMS record files in two steps.

The first part of the record output emulation is the formation of a logical record.
As you write bytes to a record file, the emulator examines the information being
written for record boundaries. The handling of information in the byte stream
depends on the attributes of the destination file or device, as follows:

For all files, if the number of output bytes is greater than the internal buffer
allocated by the HP C RTL, a record is output.

For files with fixed record length (RFM = FIX) or for files opened with
"ctx=bin" or "ctx=xplct", a record is output only when the internal buffer
is filled or when the flush function is called.

For files with STREAM_CR record format (RFM = STMCR), the HP C RTL
outputs a record when it encounters a carriage-return character (\r).

For files with STREAM record format (RFM = STM) the HP C RTL outputs a
record when it encounters a new-line (\ n), form feed (\f), or vertical tab (\v)
character.

For all other file types, the HP C RTL outputs a record when it encounters a
new-line (\ n) character.

The second part of record output emulation is to write the logical record formed
during the first step. The HP C RTL forms the output record as follows:

Introduction

If the record attribute is carriage control (R AT = CR), and if the logical
record ends with a new-line character (\n), the HP C RTL drops the new-line
character and writes the logical record with implied carriage control.

e If the record attribute is print carriage control (RAT = PRN), then the HP C
RTL writes the record with print carriage control according to the rules
specified by RMS. If the logical record ends with a single new-line character
(\n), the HP C RTL maps the new-line character to an x01 prefix and x8D
postfix character. This is the reverse of the translation for record input files
with print carriage-control attributes.

e If the record attributes are Fortran carriage control (RAT = FTN), then the
HP C RTL removes any prefix and/or postfix carriage-control characters and
concatenates a single carriage-control byte to the beginning of the record as
defined by RMS, with one exception: If the output record ends in a new-line
character (\n), the HP C RTL will remove the new-line character and use the
space carriage-control byte. This is the reverse of the translation for record
input files with Fortran carriage-control attributes.

The mapping of Fortran carriage-control can be disabled by using "ctx=nocvt".

e If the logical record is to be written to a terminal device and the last character
of the record is a new-line character (\n) the HP C RTL replaces the new-line
character with a carriage-return (\r), and attaches a line-feed character (\n)
to the front of the record. The HP C RTL then writes out the record with no
carriage control.

e If the output file record format is variable length with fixed control (RFM =
VFC), and the record attributes do not include print carriage control (RAT is
not PRN), then the HP C RTL takes the beginning of the logical record to be
the fixed-control header, and reduces the number of bytes written out by the
length of the header. These bytes are then used to construct the fixed-control
header. If there are too few bytes in the logical record, an error is signaled.

1.7.2.2.1 Accessing Variable-Length or VFC Record Files in Record Mode
When you access a variable-length or VFC record file in record mode, many I/O
functions behave differently than they would if they were being used with stream
mode. This section describes these differences.

In general, the new-line character (\n) is the record separator for all record
modes. On output, when a new-line character is encountered, a record is
generated unless you specify an optional argument (such as "ctx=bin" or
"ctx=xplct") that affects the interpretation of new lines.

The read and decc$record read functions always read at most one record. The
write and decc$record write functions always generate at least one record.

deccsrecord read and decc$record write are equivalent, respectively, to read
and write, except that they work with file pointers rather than file descriptors.

Unlike the read function, which reads at most one record, the fread function
can span records. Rather than read number_items records (where number_items
is the third parameter to fread), fread tries to read the number of bytes equal
to number_items x size_of _item (where size_of _item is the second parameter to
fread). The value returned by fread is equal to the number of bytes read divided
by size_of _item.

However, the fwrite function always generates at least number_items records.

The fgets and gets functions read to either a new-line character or a record
boundary.

The fflush function always generates a record if there is unwritten data in the
buffer. The same is true of close, fclose, fseek, 1seek, rewind, and fsetpos, all
of which perform implicit £f1ush functions.

Introduction 1-45

A record is also generated whenever an attempt is made to write more characters
than allowed by the maximum record size.

For more information on these functions, see the Reference Section.

1.7.2.2.2 Accessing Fixed-Length Record Files in Record Mode When
accessing a fixed-length record file in record mode, the I/O functions generally
behave as described in Section 1.7.2.2.1.

The write, fwrite, and decc$record write functions will fail if given a record
size that is not an integral multiple of the maximum record size, unless the file
was opened with the "ctx=xplct" optional argument specified. All other output
functions will generate records at every nth byte, where n is the maximum record
size.

If a new record is forced by fflush, the data in the buffer is padded to the
maximum record size with null characters.

Note

This padding can cause problems for programs that seek to the end-of-
file. For example, if a program were to append data to a file, then seek
backwards in the file (causing an fflush to occur), and then seek to the
end-of-file again, a zero-filled "hole" will have been created between the
previous end-of-file and the new end-of-file if the previous end-of-file was
not on a record boundary.

1.7.2.3 Example—Difference Between Stream Mode and Record Mode

1-46

Example 1-1 demonstrates the difference between stream mode and record mode
access.

Example 1-1 Differences Between Stream Mode and Record Mode Access

/* CHAP_1 STREAM RECORD.C */

/* This program demonstrates the difference between */
/* record mode and stream mode input/output. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void process_records(const char *fspec, FILE * fp);

main()

{
FILE *fp;

fp = fopen("example-fixed.dat", "w", "rfm=fix", "mrs=40", "rat=none");
if (fp == NULL) {

perror("example-fixed");

exit (EXIT FAILURE);

printf("Record mode\n");

process_records ("example-fixed.dat", fp);
fclose(fp);

(continued on next page)

Introduction

Example 1-1 (Cont.) Differences Between Stream Mode and Record Mode

Access

printf("\nStream mode\n");
fp = fopen("example-streamlf.dat", "w");
if (fp == NULL) {

}

perror ("example-streamlf");
exit(EXIT_FAILURE);

process_records ("example-streamlf.dat", fp);
fclose(fp);

}
void process records(const char *fspec, FILE * fp)
{ . .
int 1,
sts;

char buffer[40];

/*

Write records of all 1’s, all 2's and all 3's */

for (i = 0; 1< 3; i++) {

}

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

memset (buffer, '1' + i, 40);
sts = fwrite(buffer, 40, 1, fp);
if (sts 1= 1) {
perror("fwrite");
exit(EXIT FAILURE);

}

Rewind the file and write 10 characters of A’s, then 10 B’'s, */
then 10 C’s. */

*/
For stream mode, each fwrite call outputs 10 characters */
and advances the file position 10 characters */
characters. */

*/
For record mode, each fwrite merges the 10 characters into */
the existing 40-character record, updates the record and */
advances the file position 40 characters to the next record. */

rewind(fp);
for (1 = 0; 1< 3; i++) {

}
/*

memset (buffer, 'A’" + i, 10);
sts = fwrite(buffer, 10, 1, fp);
if (sts !=1) {

perror ("fwrite2");

exit(EXIT FAILURE);

Now reopen the file and output the records. */

fclose(fp);

fp

= fopen(fspec, "r");

for (i = 0; 1< 3; i++) {

sts = fread(buffer, 40, 1, fp);
if (sts != 1)
perror("fread");
printf("%.40s\n", buffer);

(continued on next page)

Introduction 1-47

Example 1-1 (Cont.) Differences Between Stream Mode and Record Mode
Access

return;

}

Running this program produces the following output:

Record Mode

AAAAAAAAAAIILIIIII111111111111111111111111
BBBBBBBBBB222222222222222222222222222222
CCCCCCCCCC333333333333333333333333333333

Stream mode

AAAAAAAAAABBBBBBBBBBCCCCCCCCCC1111111111
22
33

1.8 Specific Portability Concerns

1-48

One of the last tasks in preparing to use the HP C RTL, if you are going to

port your source programs across systems, is to be aware of specific differences
between the HP C RTL and the run-time libraries of other implementations of
the C language. This section describes some of the problems that you might
encounter when porting programs to and from an OpenVMS system. Although
portability is closely tied to the implementation of the HP C RTL, this section also
contains information on the portability of other HP C for OpenVMS constructs.

The HP C RTL provides ANSI C defined library functions as well as many
commonly available APIs and a few OpenVMS extensions. See Section 1.4

for specific standards, portions of which are implemented by the HP C RTL.
Attempts have been made to maintain complete portability in functionality
whenever possible. Many of the Standard I/O and UNIX I/O functions and
macros contained in the HP C RTL are functionally equivalent to those of other
implementations.

The RTL function and macro descriptions elaborate on issues presented in this
section and describe concerns not documented here.

The following list documents issues of concern if you wish to port C programs to
the OpenVMS environment:

e HP C for OpenVMS Systems does not implement the global symbols end,
edata, and etext.

e There are differences in how OpenVMS and UNIX systems lay out virtual
memory. In some UNIX systems, the address space between 0 and the break
address is accessible to your program. In OpenVMS systems, the first page of
memory is not accessible.

For example, if a program tries to reference location 0 on an OpenVMS
system, a hardware error (ACCVIO) is returned and the program terminates
abnormally. OpenVMS systems reserve the first page of address space to
catch incorrect pointer references, such as a reference to a location pointed to
by a null pointer. For this reason, some existing programs that run on some
UNIX systems may fail and you should modify them, as necessary. (Tru64
UNIX and OpenVMS, however, are compatible in this regard.)

Introduction

Some C programmers code all external declarations in #include files. Then,
specific declarations that require initialization are redeclared in the relevant
module. This practice causes the HP C compiler to issue a warning message
about multiply declared variables in the same compilation. One way to avoid
this warning is to make the redeclared symbols extern variables in the
#include files.

HP C does not support asm calls on OpenVMS VAX and Integrity server
systems. They are supported on OpenVMS Alpha systems. See the HP
C User’s Guide for OpenVMS Systems for more information on intrinsic
functions.

Some C programs call the counted string functions strcmpn and strcpyn.
These names are not used by HP C for OpenVMS Systems. Instead, you
can define macros that expand the strcmpn and strcpyn names into the
equivalent, ANSI-compliant names strncmp and strncpy.

The HP C for OpenVMS compiler does not support the following initialization
form:

int foo 123;
Programs using this form of initialization must be changed.

HP C for OpenVMS Systems predefines several compile-time macros such as
__vax, _alpha, _ia64 _ 32BITS, _vms, _vaxc, _VMS VER, DECC_VER,
_ D FLOAT, G FLOAT, _IEEE FLOAT, X FLOAT, and others. These
predefined macros are useful for programs that must be compatible on other
machines and operating systems. For more information, see the predefined

macro chapter of the HP C User’s Guide for OpenVMS Systems.

The ANSI C language does not guarantee any memory order for the variables
in a declaration. For example:

int a, b, c;

Depending on the type of external linkage requested, extern variables in a
program may be treated differently using HP C on OpenVMS systems than
they would on UNIX systems. See the HP C User’s Guide for OpenVMS
Systems for more information.

The dollar sign ($) is a legal character in HP C for OpenVMS identifiers, and
can be used as the first character.

The ANSI C language does not define any order for evaluating expressions
in function parameter lists or for many kinds of expressions. The way in
which different C compilers evaluate an expression is only important when
the expression has side effects. Consider the following examples:

af[i] = 1i+4;

x = func y() + func_z();

f(pt+, ptt)

Neither HP C nor any other C compiler can guarantee that such expressions

evaluate in the same order on all C compilers.

The size of a HP C variable of type int is 32 bits on OpenVMS systems. You
will have to modify programs that are written for other machines and that
assume a different size for a variable of type int. A variable of type long is
the same size (32 bits) as a variable of type int.

Introduction 1-49

The C language defines structure alignment to be dependent on the
machine for which the compiler is designed. On OpenVMS Alpha systems,
HP C aligns structure members on natural boundaries, unless #pragma
nomember_alignment is specified. Other implementations may align structure
members differently.

References to structure members in HP C cannot be vague. For more
information, see the HP C Language Reference Manual.

Registers are allocated based upon how often a variable is used, but the
register keyword gives the compiler a strong hint that you want to place a
particular variable into a register. Whenever possible, the variable is placed
into a register. Any scalar variable with the storage class auto or register
can be allocated to a register as long as the variable’s address is not taken
with the ampersand operator (&) and it is not a member of a structure or
union.

1.8.1 Reentrancy

The HP C RTL supports an improved and enhanced reentrancy. The following
types of reentrancy are supported:

AST reentrancy uses the _BBSSI built-in function to perform simple locking
around critical sections of RTL code, but it may also disable asynchronous
system traps (ASTs) in locked regions of code. This type of locking should be
used when AST code contains calls to HP C RTL I/O routines.

Failure to specify AST reentrancy might cause I/O routines to fail, setting
errno to EALREADY.

MULTITHREAD reentrancy is designed to be used in threaded programs
such as those that use the POSIX threads library. It performs threads locking
and never disables ASTs. The POSIX Threads library must be available on
your system to use this form of reentrancy.

TOLERANT reentrancy uses the _BBSSI built-in function to perform simple
locking around critical sections of RTL code, but ASTs are not disabled. This
type of locking should be used when ASTs are used and must be delivered
immediately.

NONE gives optimal performance in the HP C RTL, but does absolutely
no locking around critical sections of RTL code. It should only be used in
a single-threaded environment when there is no chance that the thread of
execution will be interrupted by an AST that would call the HP C RTL.

For nonthreaded processes, the default reentrancy type is TOLERANT. When
the threads library is loaded, the reentracy level is implicitly set to C$C_
MULTITHREAD, and the application cannot change it after that.

You can set the reentrancy type by compiling with the /REENTRANCY command-
line qualifier or by calling the decc$set reentrancy function. This function must
be called exclusively from non-AST level.

When programming an application using multiple threads or ASTs, consider three
classes of functions:

1-50 Introduction

Functions with no internal data
Functions with thread-local internal data

Functions with processwide internal data

Most functions have no internal data at all. For these functions, synchronization
is necessary only if the parameter is used by the application in multiple threads
or in both AST and non-AST contexts. For example, although the strcat function
is ordinarily safe, the following is an example of unsafe usage:

extern char buffer[100];
void routinel(char *data) {

strcat(buffer, data);
}

If routinel executed concurrently in multiple threads, or if routinel is
interrupted by an AST routine that calls it, the results of the strcat call are
unpredictable.

The second class of functions are those that have thread-local static data.
Typically, these are routines in the library that return a string where the
application is not permitted to free the storage for the string. These routines
are thread-safe but not AST-reentrant. This means they can safely be called
concurrently, and each thread will have its own copy of the data. They cannot be
called from AST routines if it is possible that the same routine was executing in
non-AST context. The routines in this class are:

asctime stat

ctermid strerror

ctime strtok

cuserid VAXCSESTABLISH
gmtime the errno variable
localtime wcstok

perror

All the socket functions are also included in this list if the TCP/IP product in use
is thread-safe.

The third class of functions are those that affect processwide data. These
functions are neither thread-safe nor AST-reentrant. For example, sigsetmask
establishes the processwide signal mask. Consider a routine like the following:

void update data
base()

{

int old mask;

old mask = sigsetmask(1 << (SIGINT - 1));
/* Do work here that should not be aborted. */
sigsetmask(old mask);

}

If update_database was called concurrently in multiple threads, thread 1 might
unblock SIGINT while thread 2 was still performing work that should not be
aborted.

The routines in this class are:
e All the signal routines
e All the exec routines

e The exit, exit, nice, system, wait, getitimer, setitimer, and setlocale
routines.

Introduction 1-51

Note

Generally, UTC-based time functions can affect in-memory time-zone
information, which is processwide data. However, if the system time zone
remains the same during the execution of the application (which is the
common case) and the cache of time-zone files is enabled (which is the
default), then the _r variant of the time functions asctime r, ctime r,
gmtime r and localtime r is both thread-safe and AST-reentrant.

If, however, the system time zone can change during the execution of
the application or the cache of time-zone files is not enabled, then both
variants of the UTC-based time functions belong to the third class of
functions, which are neither thread-safe nor AST-reentrant.

Some functions remain inherently nonthread-safe regardless of the reentrancy
type. They are:

execl exit
execle exit
execlp nice
execv system
execve viork
execvp

1.8.2 Multithread Restrictions

Mixing the multithread programming model and the OpenVMS AST
programming model in the same application is not recommended. The application
has no mechanism to control which thread gets interrupted by an AST. This can
result in a resource deadlock if the thread holds a resource that is also needed
by the AST routine. The following functions use mutexes. To avoid a potential
resource deadlock, do not call them from AST functions in a multithreaded
application.

e All the I/O functions

e All the socket functions

e All the signal functions

e vfork, exec, wait, system

® catgets

e set new_handler (C++ only)
e getenv

e rand and srand

* exit and exit

e clock
e nice
e times

e ctime, localtime, asctime, mktime

1-52 Introduction

1-9 64'Bit POinteI" Support (Integrity servers, Alpha)

This section is for application developers who need to use 64-bit virtual memory
addressing on OpenVMS Alpha Version 7.0 or higher.

OpenVMS Alpha 64-bit virtual addressing support makes the 64-bit virtual
address space defined by the Alpha architecture available to both the OpenVMS
operating system and its users. It also allows per-process virtual addressing for
accessing dynamically mapped data beyond traditional 32-bit limits.

The HP C Run-Time Library on OpenVMS Alpha Version 7.0 systems and higher
includes the following features in support of 64-bit pointers:

e Guaranteed binary and source compatibility of existing programs

e No impact on applications that are not modified to exploit 64-bit support
e Enhanced memory allocation routines that allocate 64-bit memory

e Widened function parameters to accommodate 64-bit pointers

¢ Dual implementations of functions that need to know the pointer size used by
the caller

e New information available to the DEC C Version 5.2 compiler or higher to
seamlessly call the correct implementation

e Ability to explicitly call either the 32-bit or 64-bit form of functions for
applications that mix pointer sizes

e A single shareable image for use by 32-bit and 64-bit applications

1.9.1 Using the HP C Run-Time Library

The HP C Run-Time library on OpenVMS Alpha Version 7.0 systems and higher
can generate and accept 64-bit pointers. Functions that require a second interface
to be used with 64-bit pointers reside in the same object libraries and shareable
images as their 32-bit counterparts. No new object libraries or shareable images
are introduced. Using 64-bit pointers does not require changes to your link
command or link options files.

The HP C 64-bit environment allows an application to use both 32-bit and
64-bit addresses. For more information about how to manipulate pointer sizes,
see the /POINTER_SIZE qualifier and #pragma pointer size and #pragma
required pointer_size preprocessor directives in the HP C User’s Guide for
OpenVMS Systems.

The /POINTER_SIZE qualifier requires you to specify a value of 32 or 64. This
value is used as the default pointer size within the compilation unit. You can
compile one set of modules using 32-bit pointers and another set using 64-bit
pointers. Care must be taken when these two separate groups of modules call
each other.

Use of the /POINTER_SIZE qualifier also influences the processing of HP C RTL
header files. For those functions that have a 32-bit and 64-bit implementation,
specifying /POINTER_SIZE enables function prototypes to access both functions,
regardless of the actual value supplied to the qualifier. In addition, the value
specified to the qualifier determines the default implementation to call during
that compilation unit.

Introduction 1-53

The #pragma pointer size and #pragma required pointer size preprocessor
directives can be used to change the pointer size in effect within a compilation
unit. You can default pointers to 32-bit pointers and then declare specific pointers
within the module as 64-bit pointers. You would also need to specifically call the
_malloc64 form of malloc to obtain memory from the 64-bit memory area.

1.9.2 Obtaining 64-Bit Pointers to Memory

The HP C RTL has many functions that return pointers to newly allocated
memory. In each of these functions, the application owns the memory pointed to
and is responsible for freeing that memory.

Functions that allocate memory are:

malloc
calloc
realloc
strdup

Each of these functions have a 32-bit and a 64-bit implementation. When the
/POINTER_SIZE qualifier is used, the following functions can also be called:

_malloc32, mallocé64
_calloc32, callocé4
_realloc32, realloc64
_strdup32, strdup64

When /POINTER_SIZE=32 is specified, all malloc calls default to malloc32.
When /POINTER_SIZE=64 is specified, all malloc calls default to mallocé64.

Regardless of whether the application calls a 32-bit or 64-bit memory allocation
routine, there is still a single free function. This function accepts either pointer
size.

Be aware that the memory allocation functions are the only ones that return
pointers to 64-bit memory. All HP C RTL structure pointers returned to the
calling application (such as a FILE, WINDOW, or DIR) are always 32-bit pointers.
This allows both 32-bit and 64-bit callers to pass these structure pointers within
the application.

1.9.3 HP C Header Files

1-54

The header files distributed with OpenVMS support 64-bit pointers. Each
function prototype whose signature contains a pointer is constructed to indicate
the size of the pointer accepted.

A 32-bit pointer can be passed as an argument to functions that accept either a
32-bit or 64-bit pointer for that argument.

A 64-bit pointer, however, cannot be passed as an argument to a function that
accepts a 32-bit pointer. Attempts to do this are diagnosed by the compiler with
a MAYLOSEDATA message. The diagnostic message IMPLICITFUNC means the
compiler can do no additional pointer-size validation for calls to that function.

If this function is an HP C RTL function, refer to the reference section of this
manual for the name of the header file that defines that function.

You might find the following pointer-size compiler diagnostics useful:
e %CC-IMPLICITFUNC

Introduction

A function prototype was not found before using the specified function. The
compiler and run-time system rely on prototype definitions to detect incorrect
pointer-size usage. Failure to include the proper header files can lead to
incorrect results and/or pointer truncation.

e 9%CC-MAYLOSEDATA

A truncation is necessary to do this operation. The operation could be passing
a 64-bit pointer to a function that does not support a 64-bit pointer in the
given context. It could also be a function returning a 64-bit pointer to a
calling application that is trying to store that return value in a 32-bit pointer.

e %CC-MAYHIDELOSS

This message (when enabled) helps expose real MAYLOSEDATA messages
that are being suppressed because of a cast operation. To enable this warning,
compile with the qualifier /WARNINGS=ENABLE=MAYHIDELOSS.

1.9.4 Functions Affected

The HP C RTL accommodates applications that use only 32-bit pointers, only
64-bit pointers, or combinations of both. To use 64-bit memory, you must, at a
minimum, recompile and relink an application. The amount of source code change
required depends on the application itself, calls to other run-time libraries, and
the combinations of pointer sizes used.

With respect to 64-bit pointer support, the functions in the HP C RTL fall into
four categories:

¢ Functions not impacted by choice of pointer size

¢ Functions enhanced to accept either pointer size

e Functions having a 32-bit and 64-bit implementation
¢ Functions that accept only 32-bit pointers

From an application developer’s perspective, the first two types of functions are
the easiest to use in either a single- or mixed-pointer mode.

The third type requires no modifications when used in a single-pointer
compilation, but might require source code changes when used in a mixed-pointer
mode.

The fourth type requires careful attention whenever 64-bit pointers are used.

1.9.4.1 No Pointer-Size Impact

The choice of pointer size has no impact on a function if its prototype contains
no pointer-related parameters or return values. The mathematical functions are
good examples of this.

Even some functions in this category that do have pointers in their prototype are
not impacted by pointer size. For example, strerror has the prototype:

char * strerror (int error_number);

This function returns a pointer to a character string, but this string is allocated
by the HP C RTL. As a result, to support both 32-bit and 64-bit applications,
these types of pointers are guaranteed to fit in a 32-bit pointer.

Introduction 1-55

1.9.4.2 Functions Accepting Both Pointer Sizes

The Alpha architecture supports 64-bit pointers. The OpenVMS Alpha calling
standard specifies that all arguments are actually passed as 64-bit values. Before
OpenVMS Alpha Version 7.0, all 32-bit addresses passed to procedures were sign-
extended into this 64-bit parameter. The called function declared the parameters
as 32-bit addresses, which caused the compiler to generate 32-bit instructions
(such as LDL) to manipulate these parameters.

Many functions in the HP C RTL are enhanced to receive the full 64-bit address.
For example, consider strlen:

size t strlen (const char *string);

The only pointer in this function is the character-string pointer. If the caller
passes a 32-bit pointer, the function works with the sign-extended 64-bit address.
If the caller passes a 64-bit address, the function works directly with that address.

The HP C RTL continues to have only a single entry point for functions in this
category. There are no source-code changes required to add any of the four
pointer-size options for functions of this type. The OpenVMS documentation
refers to these functions as 64-bit friendly.

1.9.4.3 Functions with Two Implementations

1-56

There are many reasons why a function might need one implementation for 32-bit
pointers and another for 64-bit pointers. Some of these reasons include:

¢ The pointer size of the return value is the same size as the pointer size of one
of the arguments. If the argument is 32 bits, the return value is 32 bits. If
the argument is 64 bits, the return value is 64 bits.

¢ One of the arguments is a pointer to an object whose size is pointer-size
sensitive. To know how many bytes are being pointed to, the function must
know if the code was compiled in 32-bit or 64-bit pointer-size mode.

e The function returns the address of dynamically allocated memory. The
memory is allocated in 32-bit space when compiled for 32-bit pointers, and is
allocated in 64-bit space when compiled for 64-bit pointers.

From the application developer’s point of view, there are three function prototypes
for each of these functions. The <string.h> header file contains many functions
whose return value is dependent upon the pointer size used as the first argument
to the function call. For example, consider the memset function. The header file
defines three entry points for this function:

void * memset (void *memory pointer, int character, size t size);
void * memset32 (void *memory pointer, int character, size t size);
void * memset64 (void *memory “pointer, int character, size "t size);

The first prototype is the function that your application would currently call if
using this function. The compiler changes a call to memset into a call to either

memset32 when compiled with /POINTER_SIZE=32, or memset64 when compiled
with /POINTER_SIZE=64.

You can override this default behavior by directly calling either the 32-bit or the
64-bit form of the function. This accommodates applications using mixed-pointer
sizes, regardless of the default pointer size specified with the /POINTER_SIZE
qualifier.

Introduction

If the application is compiled without specifying the /POINTER_SIZE qualifier,
neither the 32-bit specific nor the 64-bit specific function prototypes are defined.
In this case, the compiler automatically calls the 32-bit interface for all interfaces
having dual implementations.

Table 1-5 shows the HP C RTL functions that have dual implementations to
support 64-bit pointer size. When compiling with the /POINTER_SIZE qualifier,
calls to the unmodified function names are changed to calls to the function
interface that matches the pointer size specified on the qualifier.

Table 1-5 Functions with Dual Implementations

basename bsearch calloc catgets
ctermid cuserid dirname fgetname
fgets fgetws gcvt getcwd
getname getpwent getpwnam getpwnam r
getpwuid getpwuid r gets index
longname malloc mbsrtowcs memccpy
memchr memcpy memmove memset
mktemp mmap gsort readv
realloc rindex strcat strchr
strcpy strdup strncat strncpy
strpbrk strptime strrchr strsep
strstr strtod strtok strtok r
strtol strtoll strtoq strtoul
strtoull strtouq tmpnam wcscat
weschr wescpy wesncat WwCSnepy
wcspbrk wcsrchr wcsrtombs wesstr
wcstok westol wcstoul WwCSwWCSs
wmemchr wmemcpy wmemmove wmemset
writev glob globfree

Table 1-6 shows the TCP/IP socket routines that have dual implementations to
support 64-bit pointer size.

Table 1-6 Socket Routines with Dual Implementations

freeaddrinfo getaddrinfo
recvmsg sendmsg

1.9.4.4 Socket Transfers Greater than 64 KB

Starting with OpenVMS Version 8.3, support is added for socket transfers greater
than 64 KB for the following socket routines:

send recv read
sendto recvfrom write
sendmsg recvmsg

Introduction 1-57

1.9.4.5 Functions Requiring Explicit use of 64-Bit Structures

1-58

Some functions require explicit use of 64-bit structures when compiling
/POINTER_SIZE=LONG. This is necessary for functions that have recently
had 64-bit support added to avoid unexpected runtime errors by inadvertently
mixing 32-bit and 64-bit versions of structures.

Consider the following functions:

getaddrinfo getpwnam
freeaddrinfo getpwnam r
getpwuid getpwent
sendmsg getpwent r
recvmsg

These functions previously offered 32-bit support only, even when compiled

with /POINTER_SIZE=LONG. In order to preserve the previous behavior of
32-bit pointer support in those functions even when compiled with /POINTER_
SIZE=LONG, these seven functions do not follow the normal convention for 32-bit
and 64-bit support as documented in the previous section.

The following variants of these functions, and the corresponding structures they
use, have been added to the C RTL to provide 64-bit support:

Function Structure
getaddrinfo32 addrinfo32

" getaddrinfo64 " addrinfo64

" freeaddrinfo32 " addrinfo32

" freeaddrinfo64 " addrinfo64

" recvmsg32 " msghdr32

" recvmsg64 ~msghdr64

" sendmsg32 " msghdr32

" sendmsg64 ~ msghdr64

__32_getpwnam __passwd32

__64 getpwnam __passwd6d

_getpwnam r32 _ passwd32
_getpwnam r64 _ passwd6d

__32_getpwuid __passwd32
64 getpwuid __passwdb6d

getpwuid r32 passwd32

“getpwuid r64 — passwd64
32 getpwent passwd32

__64 getpwent __passwdé64

When compiling the standard versions of these functions, the following behavior
occurs:

e With /POINTER_SIZE=32 specified, the compiler converts the call to the
32-bit version of the function. For example, getaddrinfo is converted to
__getaddrinfo32.

e With /POINTER_SIZE=64 specified, the compiler converts the call to the
64-bit version of the function. For example, getaddrinfo is converted to
__getaddrinfo64.

e When the /POINTER_SIZE qualifier is not specified, neither the 32-bit-specific
nor the 64-bit-specific function prototypes are defined.

Introduction

However, a similar conversion of the corresponding structures does not occur

for these functions. This behavior is necessary because these structures existed
before OpenVMS Version 7.3-2 as 32-bit versions only, even when compiled with
/POINTER_SIZE=LONG. Implicitly changing the size of the structure could result
in unexpected run-time errors.

When compiling programs that use the standard version of these functions

for 64-bit support, you must use the 64-bit-specific definition of the related
structure. With /POINTER_SIZE=64 specified, compiling a program with the
standard function name and standard structure definition will result in compiler
PTRMISMATCH warning messages.

For example, the following program uses the getaddrinfo and freeaddrinfo
routines, along with the standard definition of the addrinfo structure. Compiling
this program results in the warning messages shown:

$ type test.c
#include <netdb.h>

int main ()

{

struct addrinfo *ai;

getaddrinfo ("althea", 0, 0, &ai);
freeaddrinfo (ai);
return 0;

}
$ cc /pointer size=64 TEST.C

getaddrinfo ("althea", 0, 0, &ai);

$CC-W-PTRMISMATCH, In this statement, the referenced type of the pointer value
"gai" is "long pointer to struct addrinfo", which is not compatible with "long
pointer to struct addrinfo64".

at line number 7 in file TEST.C;1

freeaddrinfo (ai);

$CC-W-PTRMISMATCH, In this statement, the referenced type of the pointer value
"ai" is "struct addrinfo", which is not compatible with "struct _ addrinfo64".
at line number 8 in file TEST.C;1

$

When compiling for 64 bits, you need to use the 64-bit-specific version of the
related structure. In the previous example, the declaration of the ai structure
could be changed to the following:

struct _ addrinfo64 *ai;

Or, to provide flexibility between 32-bit and 64-bit compilations, the ai structure
could be declared as follows:

#if INITIAL POINTER SIZE == 64
struct addrinfo64 *ai;
telse _
struct addrinfo32 *ai;
#endif _

Introduction 1-59

1.9.4.6 Functions Restricted to 32-Bit Pointers

A few functions in the HP C RTL do not support 64-bit pointers. If you try to
pass a 64-bit pointer to one of these functions, the compiler generates a %CC-
W-MAYLOSEDATA warning. Applications compiled with /POINTER_SIZE=64
might need to be modified to avoid passing 64-bit pointers to these functions.

Table 1-7 shows the functions restricted to using 32-bit pointers. The HP C RTL
offers no 64-bit support for these functions. You must ensure that only 32-bit
pointers are used with these functions.

Table 1-7 Functions Restricted to 32-Bit Pointers

atexit getopt putenv
execv iconv setbuf
execve initstate setstate
execvp ioctl setvbuf

Table 1-8 shows functions that make callbacks to user-supplied functions as part
of processing that function call. The callback procedures are not passed 64-bit
pointers.

Table 1-8 Callbacks that Pass Only 32-Bit Pointers

decc$from vms decc$to_vms
ftw tputs

1.9.5 Reading Header Files

1-60

This section introduces the pointer-size manipulations used in the HP C RTL
header files. Use the following examples to become more proficient in reading
these header files and to help modify your own header files.

Examples

1,

if _ INITIAL POINTER SIZE @

#

if (__VMS VER < 70000000) || !defined __ALPHA @

i error " Pointer size usage not permitted before OpenVMS Alpha V7.0"
endif

4 pragma __pointer size __save ©

#

#

$if _ INITIAL POINTER SIZE @
pragma __ pointer size 64
tendif

$if _ INITIAL POINTER SIZE @
pragma __pointer size __restore
#endif

All HP C compilers that support the /POINTER_SIZE qualifier predefine
the __INITIAL_POINTER_SIZE macro. The HP C RTL header files take

Introduction

advantage of the ANSI rule that if a macro is not defined, it has an implicit
value of 0.

The macro is defined as 32 or 64 when the /POINTER_SIZE qualifier is used.
It is defined as 0 if the qualifier is not used. The statement at @ can be
read as "if the user has specified either /POINTER_SIZE=32 or /POINTER_
SIZE=64 on the command line".

The C compiler is supported on many OpenVMS versions. The lines at @
generate an error message if the target of the compilation is one that does not
support 64-bit pointers.

A header file cannot assume anything about the actual pointer-size context
in effect at the time the header file is included. Furthermore, the HP C
compiler offers only the _ _INITIAL_POINTER_SIZE macro and a mechanism
to change the pointer size, but not a way to determine the current pointer
size.

All header files that have a dependency on pointer sizes are responsible for
saving @), initializing @, altering @, and restoring ® the pointer-size context.

$ifndef _ CHAR PTR32 @
define __CHAR PTR32 1

typedef char * char ptr32;

typedef const char * ~ const char ptr32;
#endif - -

$if INITIAL POINTER SIZE
pragma __pointer size 64
#endif

$ifndef _ CHAR PTR64 @
define CHAR PTR64 1

typedef char *~ char ptr64;

typedef const char * ~ const char ptr64;
#endif - -7

Some function prototypes need to refer to a 32-bit pointer when in a 64-bit
pointer-size context. Other function prototypes need to refer to a 64-bit
pointer when in a 32-bit pointer-size context.

HP C binds the pointer size used in a typedef at the time the typedef
is made. Assuming this header file is compiled with no /POINTER_SIZE
qualifier or with /POINTER_SIZE=SHORT, the typedef declaration of
__char ptr32 @ is made in a 32-bit context. The typedef declaration of
__char ptr64 @ is made in a 64-bit context.

Introduction 1-61

1-62

Introduction

INITIAL POINTER SIZE

If (__VMS VER < 70000000) || !defined _ ALPHA

error " Pointer size usage not permitted before OpenVMS Alpha V7.0"
endif
#
#

pragma __pointer size save
pragma __ p01nter size 32
#endif
(1)
#if __INITIAL POINTER SIZE (2]
pragma __ pointer size 64
#endif
(3]

int abs (int __j); @

_char ptr32 strerror (int _ _errnum); (5)

Before declaring function prototypes that support 64-bit pointers, the pointer
context is changed @ from 32-bit pointers to 64-bit pointers.

Functions restricted to 32-bit pointers are placed in the 32-bit pointer context
section @ of the header file. All other functions are placed in the 64-bit
context section @ of the header file.

Functions that have no pointer-size impact (@ and @) are located in the
64-bit section. Functions that have no pointer-size impact except for a 32-bit
address return value @ are also in the 64-bit section, and use the 32-bit
specific typedefs previously discussed.

#if _ INITIAL POINTER SIZE

pragma __pointer size 64

#endif

#if __INITIAL POINTER SIZE == 32 0

pragma __ pointer size 32

#endif

char *strcat (char *__sl, const _char ptr6d _ s2); (2]

#if __INITIAL POINTER SIZE
pragma _pointer size 32

char * strcat32 (char *__sl, _ const char ptr64 _ s2); ©
pragma ___pointer size 64
char * strcat64 (char * _sl, const char * s2); @

#endif

This example shows declarations of functions that have both a 32-bit and
64-bit implementation. These declarations are located in the 64-bit section of
the header file.

The normal interface to the function @ is declared using the pointer size
specified on the /POINTER_SIZE qualifier. Because the header file is in 64-
bit pointer context and because of the statements at @, the declaration at @
is made using the same pointer-size context as the /POINTER_SIZE qualifier.

The 32-bit specific interface © and the 64-bit specific interface @ are declared
in 32-bit and 64-bit pointer-size context, respectively.

Introduction 1-63

2

Understanding Input and Output

There are three types of input and output (I/O) in the HP C Run-Time Library
(RTL): UNIX, Standard, and Terminal. Table 2—1 lists all the I/O functions and
macros found in the HP C RTL. For more detailed information on each function
and macro, see the Reference Section.

Table 2—1 1/0 Functions and Macros

Function or Macro Description

UNIX I/0—Opening and Closing Files

close Closes the file associated with a file descriptor.
creat Creates a new file.
dup, dup?2 Allocates a new descriptor that refers to a file specified by a

file descriptor returned by open, creat, or pipe.
open Opens a file and positions it at its beginning.

UNIX I/0—Reading from Files

read Reads bytes from a file and places them in a buffer.

UNIX I/O—Writing to Files

write Writes a specified number of bytes from a buffer to a file.

UNIX I/O—Maneuvering in Files

lseek Positions a stream file to an arbitrary byte position and returns
the new position as an int.

(continued on next page)

Understanding Input and Output 2-1

Table 2-1 (Cont.) 1/O Functions and Macros

Function or Macro

Description

UNIX I/0—Additional X/Open I/O Functions and Macros

fstat, stat

flockfile,
ftrylockfile,
funlockfile

fsync
getname
isapipe

isatty

lwait
ttyname

Accesses information about the file descriptor or the file
specification.

File-pointer-locking functions.

Writes to disk any buffered information for the specified file.
Returns the file specification associated with a file descriptor.

Returns 1 if the file descriptor is associated with a pipe and 0
if it is not.

Returns 1 if the specified file descriptor is associated with a
terminal and 0 if it is not.

Waits for completion of pending asynchronous I/O.

Returns a pointer to the null-terminated name of the terminal
device associated with file descriptor 0, the default input
device.

Standard 1/0—Opening and Closing Files

fclose

fdopen

fopen
freopen

Closes a function by flushing any buffers associated with the
file control block, and freeing the file control block and buffers
previously associated with the file pointer.

Associates a file pointer with a file descriptor returned by an
open, creat, dup, dup2, or pipe function.

Opens a file by returning the address of a FILE structure.

Substitutes the file, named by a file specification, for the open
file addressed by a file pointer.

Standard I/0—Reading from Files

fgetc, getc, fgetwc,
getw, getwc

fgets, fgetws

fread

fscanf, fwscanf,
viscanf, vfwscanf

sscanf, swscanf,
vsscanf, vswscanf

ungetc, ungetwc

2-2 Understanding Input and Output

Returns characters from a specified file.

Reads a line from a specified file and stores the string in an
argument.

Reads a specified number of items from a file.

Performs formatted input from a specified file.
Performs formatted input from a character string in memory.
Pushes back a character into the input stream and leaves the

stream positioned before the character.

(continued on next page)

Table 2-1 (Cont.) I/0 Functions and Macros

Function or Macro

Description

Standard I/0—Writing to Files

fprintf, fwprintf,
viprintf, viwprintf

Performs formatted output to a specified file.

fputc, putc, putw, Writes characters to a specified file.

putwc, fputwe
fputs, fputws

fwrite

sprintf, swprintf,
vsprintf, vswprintf

Writes a character string to a file without copying the string’s
null terminator.

Writes a specified number of items to a file.

Performs formatted output to a string in memory.

Standard I/0O—Maneuvering in Files

fflush
fgetpos

fsetpos

fseek, fseeko
ftell, ftello
rewind

Sends any buffered information for the specified file to RMS.

Stores the current value of the file position indicator for the
stream.

Sets the file position indicator for the stream according to the
value of the object pointed to.

Positions the file to the specified byte offset in the file.
Returns the current byte offset to the specified stream file.
Sets the file to its beginning.

Standard I/O—Additional Standard I/O Functions and Macros

access
clearerr
feof
ferror

fgetname
fileno

ftruncate
fwait

fwide

mktemp

remove, delete
rename

setbuf, setvbuf
tmpfile

tmpnam

Checks a file to see whether a specified access mode is allowed.
Resets the error and end-of-file indications for a file.
Tests a file to see if the end-of-file has been reached.

Returns a nonzero integer if an error has occurred while
reading or writing a file.

Returns the file specification associated with a file pointer.

Returns an integer file descriptor that identifies the specified
file.

Truncates a file at the specified position.

Waits for completion of pending asynchcronous I/O.
Sets the orientation a stream.

Creates a unique filename from a template.
Deletes a file.

Gives a new name to an existing file.

Associates a buffer with an input or output file.
Creates a temporary file that is opened for update.

Creates a character string that can be used in place of the
file-name argument in other function calls.

(continued on next page)

Understanding Input and Output 2-3

2.1 Using

Table 2-1 (Cont.) 1/O Functions and Macros

Function or Macro Description

Terminal /0—Reading from Files

getchar, getwchar Reads a single character from the standard input (stdin).
gets Reads a line from the standard input (stdin).
scanf, wscanf, Performs formatted input from the standard input.

vscanf, vwscanf

Terminal /O—Writing to Files

printf, wprintf, Performs formatted output to the standard output (stdout).
vprintf, vwprintf

putchar, putwchar Writes a single character to the standard output and returns
the character.

puts Writes a character string to the standard output followed by a
new-line character.

RMS from RTL Routines

When you create a file using the HP C RTL I/O functions and macros, you can
supply values for many RMS file attributes, including:

e Allocation quantity

¢ Block size

e Default file extension

e Default filename

e File access context options
e File-processing options

e File-sharing options

e Multiblock count

e Multibuffer count

e Maximum record size

e Record attributes

¢ Record format

¢ Record-processing options

See the description of the creat function in the Reference Section for information
on these values.

Other functions that allow you to set these values include open, fopen, and
freopen.

For more information about RMS, see the HP C User’s Guide for OpenVMS
Systems.

2-4 Understanding Input and Output

2.2 UNIX I/0 and Standard 1/0

UNIX I/O functions are UNIX system services, now standardized by ISO POSIX-1
(the ISO Portable Operating System Interface).

UNIX I/O functions use file descriptors to access files. A file descriptor is an
integer that identifies the file. A file descriptor is declared in the following way,
where file_desc is the name of the file descriptor:

int file desc;

UNIX I/O functions, such as creat, associate the file descriptor with a file.
Consider the following example:

file descl = creat("INFILE.DAT", 0, "rat=cr", "rfm=var");

This statement creates the file, INFILE.DAT, with file access mode 0, carriage-
return control, variable-length records, and it associates the variable file descl
with the file. When the file is accessed for other operations, such as reading or
writing, the file descriptor is used to refer to the file. For example:

write(file descl, buffer, sizeof(buffer));
This statement writes the contents of the buffer to INFILE.DAT.

There may be circumstances when you should use UNIX I/O functions and macros
instead of the Standard I/O functions and macros. For a detailed discussion of
both forms of I/O and how they manipulate the RMS file formats, see Chapter 1.

Standard I/O functions are specified by the ANSI C Standard.

Standard I/O functions add buffering to the features of UNIX I/O and use file
pointers to access files. A file pointer is an object of type FILE *, which is a
typedef defined in the <stdio.h> header file as follows:

typedef struct _iobuf *FILE;

The _iobuf identifier is also defined in <stdio.h>.
To declare a file pointer, use the following:

FILE *file ptr;

Use the Standard I/O fopen function to create or open an existing file. For
example:

#include <stdio.h>

main()

FILE *outfile;
outfile = fopen("DISKFILE.DAT", "w+");

}
Here, the file DISKFILE.DAT is opened for write-update access.

The HP C RTL provides the following functions for converting between file
descriptors and file pointers:

e fileno—returns the file descriptor associated with the specified file pointer.

e fdopen—associates a file pointer with a file descriptor returned by an open,
creat, dup, dup2, or pipe function.

Understanding Input and Output 2-5

2.3 Wide-Character Versus Byte I/O Functions

The wide-character I/0 functions provide operations similar to most of the byte
I/O functions, except that the fundamental units internal to the wide-character
functions are wide characters.

However, the external representation (in files) is a sequence of multibyte
characters, not wide characters. For the wide-character formatted input and
output functions:

¢ The wide-character formatted input functions (such as fwscanf) always read
a sequence of multibyte characters from files, regardless of the specified
directive and, before any further processing, convert this sequence to a
sequence of wide characters.

e The wide-character formatted output functions (such as fwprintf) write wide
characters to output files by first converting wide-character argument types
to a sequence of multibyte characters, then calling the underlying operating
system output primitives.

Byte I/O functions cannot handle state-dependent encodings. Wide-character I/O
functions can. They accomplish this by associating each wide-character stream
with a conversion-state object of type mbstate t.

The wide-character I/O functions are:

fgetwe fputwe fwscanf fwprintf ungetwc
fgetws fputws wscanf wprintf

getwe putwe viwprintf

getwchar putwchar vwprintf

The byte I/O functions are:

fgetc fputc fscanf fprintf ungetc
fgets fputs scanf printf fread
getc putc viprinf fwrite
gets puts vprintf

getchar putchar

The wide-character input functions read multibyte characters from the stream
and convert them to wide characters as if they were read by successive calls to
the fgetwc function. Each conversion occurs as if a call were made to the mbrtowc
function with the conversion state described by the stream’s own mbstate t
object.

The wide-character output functions convert wide characters to multibyte
characters and write them to the stream as if they were written by successive
calls to the fputwc function. Each conversion occurs as if a call were made to the
wcrtomb function, with the conversion state described by the I/O stream’s own
mbstate_t object.

If a wide-character I/O function encounters an invalid multibyte character, the
function sets errno to the value EILSEQ.

2-6 Understanding Input and Output

2.4 Conversion Specifications

Several of the Standard I/O functions (including the Terminal I/O functions) use
conversion specifications to specify data formats for I/O. These functions are the
formatted-input and formatted-output functions. Consider the following example:

int x = 5.0;
FILE *outfile;

fprintf(outfile, "The answer is %d.\n", x);

The decimal value of the variable x replaces the conversion specification $d in the
string to be written to the file associated with the identifier outfile.

Each conversion specification begins with a percent sign (%) and ends with a
conversion specifier, which is a character that specifies the type of conversion to
be performed. Optional characters can appear between the percent sign and the
conversion specifier.

For the wide-character formatted I/O functions, the conversion specification is a
string of wide characters. For the byte I/O equivalent functions, it is a string of
bytes.

Sections 2.4.1 and 2.4.2 describe these optional characters and conversion
specifiers.

2.4.1 Converting Input Information

The format specification string for the input of information can include three
kinds of items:

e White-space characters (spaces, tabs, and new-line characters), which match
optional white-space characters in the input field.

¢ Ordinary characters (not %), which must match the next nonwhite-space
character in the input.

e Conversion specifications, which govern the conversion of the characters in
an input field and their assignment to an object indicated by a corresponding
input pointer.

Each input pointer is an address expression indicating an object whose

type matches that of a corresponding conversion specification. Conversion
specifications form part of the format string. The indicated object is the target
that receives the input value. There must be as many input pointers as there are
conversion specifications, and the addressed objects must match the types of the
conversion specifications.

A conversion specification consists of the following characters, in the order listed:

e A percent character (%) or the sequence %n$ (where n is an integer),

The sequence %n$ denotes that the conversion is applied to the nth input
pointer listed, where n is a decimal integer between [1, NL_ ARGMAX]

(see the <limits.h> header file). For example, a conversion specification
beginning with %5$ means that the conversion will be applied to the fifth
input pointer listed after the format specification. The sequence %$ is invalid.

Understanding Input and Output 2-7

If the conversion specification does not begin with the sequence %n$, the
conversion specification is matched to its input pointer in left-to-right order.
You should only use one type of conversion specification (% or %n$) in a
format specification.

e One or more optional characters (see Table 2-2).

e A conversion

specifier (see Table 2-3).

Table 2—2 shows the characters you can use between the percent sign (%) (or the
sequence %n$), and the conversion specifier. These characters are optional but, if
specified, must occur in the order shown in Table 2-2.

Table 2-2 Optional Characters Between % (or %n$) and the Input Conversion

Specifier
Character Meaning
* An assignment-suppressing character.
field width A nonzero decimal integer that specifies the maximum field width.

h, 1, or L (or 1I)

For the wide-character input functions, the field width is measured in
wide characters.

For the byte input functions, the field width is measured in bytes,
unless the directive is one of the following:

$lc, %ls, %C, %S, %]

In these cases, the field width is measured in multibyte character
units.

For programs compiled with / L_DOUBLE=64 (that is, compiled
without the default /L_DOUBLE=128), the maximum field width is
1024.

Precede a conversion specifier of d, i, or n with an h if the
corresponding argument is a pointer to short int rather than a
pointer to int; with an 1 (lowercase ell) if it is a pointer to long int;
or, for OpenVMS Alpha systems only, with an L or 1l (two lowercase
ells) if it is a pointer to __int64.

Precede a conversion specifier of o, u, or x with an h if the
corresponding argument is a pointer to unsigned short int rather
than a pointer to unsigned int; with an 1 if it is a pointer to
unsigned long int; or, for OpenVMS Alpha systems only, with an
L or 11 if it is a pointer to unsigned __int64.

Precede a conversion specifier of c, s, or [with an 1 (lowercase ell) if the
corresponding argument is a pointer to a wchar_t.

Finally, precede a conversion specifier of e, f, or g with an 1 (lowercase
ell) if the corresponding argument is a pointer to double rather than a
pointer to £1loat, or with an L if it is a pointer to long double.

If an h, 1, L, or 1l appears with any other conversion specifier, then the
behavior is undefined.

Table 2—-3 describes the conversion specifiers for formatted input.

2-8 Understanding Input and Output

Table 2-3 Conversion Specifiers for Formatted Input

Specifier

Input Type'

Description

d

Byte

Wide-character

Expects a decimal integer in the input whose format
is the same as expected for the subject sequence of
the strtol function with the value 10 for the base
argument. The corresponding argument must be a
pointer to int.

Expects an integer whose type is determined by the
leading input characters. A leading 0 is equated to octal,
a leading 0X or Ox is equated to hexadecimal, and all
other forms are equated to decimal. The corresponding
argument must be a pointer to int.

Expects an octal integer in the input (with or without
a leading 0). The corresponding argument must be a
pointer to int.

Expects a decimal integer in the input whose format
is the same as expected for the subject sequence of
the strtoul function with the value 10 for the base
argument.

Expects a hexadecimal integer in the input (with or
without a leading 0x). The corresponding argument
must be a pointer to unsigned int.

Expects a single byte in the input. The corresponding
argument must be a pointer to char.

If a field width precedes the ¢ conversion specifier, then
the number of characters specified by the field width is
read. In this case, the corresponding argument must be
a pointer to an array of char.

If the optional character 1 (lowercase ell) precedes

this conversion specifier, then the specifier expects a
multibyte character in the input which is converted into
a wide-character code.

The corresponding argument must be a pointer to type
wchar t. If a field width also precedes the ¢ conversion
specifier, then the number of characters specified by
the field width is read. In this case, the corresponding
argument must be a pointer to an array of wchar_t.

Expects a sequence of the number of characters specified
in the optional field width; this is 1 if not specified.

If no 1 (lowercase ell) precedes the c specifier, then the
corresponding argument must be a pointer to an array of
char.

If an 1 (lowercase ell) precedes the ¢ specifier, then the
corresponding argument must be a pointer to an array of
wchar t.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

Understanding Input and Output 2-9

Table 2-3 (Cont.) Conversion Specifiers for Formatted Input

Specifier Input Type'

Description

C Byte

Wide-character

S Byte

Wide-character

S Byte

Wide-character

The specifier expects a multibyte character in the input,
which is converted into a wide-character code. The
corresponding argument must be a pointer to type
wchar t.

If a field width also precedes the C conversion specifier,
then the number of characters specified by the field
width is read. In this case, the corresponding argument
must be a pointer to an array of wchar_t.

Expects a sequence of the number of characters specified
in the optional field width; this is 1 if not specified. The
corresponding argument must be a pointer to an array of
wchar t.

Expects a sequences of bytes in the input. The
corresponding argument must be a pointer to an

array of characters that is large enough to contain

the sequence and a terminating null character (\ 0) that
is automatically added. The input field is terminated by
a space, tab, or new-line character.

If the optional character 1 (ell) precedes this conversion
specifier, then the specifier expects a sequence of
multibyte characters in the input, which are converted
to wide-character codes. The corresponding argument
must be a pointer to an array of wide characters (type
wchar t) that is large enough to contain the sequence
plus the terminating null wide-character code that is
automatically added. The input field is terminated by a
space, tab, or new-line character.

Expects (conceptually) a sequence of nonwhite-space
characters in the input.

If no 1 (lowercase ell) precedes the s specifier, then the
corresponding argument must be a pointer to an array
of char large enough to contain the sequence plus the
terminating null byte that is automatically added.

If an 1 (lowercase ell) precedes the s specifier, then the
corresponding argument must be a pointer to an array of
wchar t large enough to contain the sequence plus the
terminating null wide character that is automatically
added.

The specifier expects a sequence of multibyte characters
in the input, which are converted to wide-character
codes. The corresponding argument must be a pointer
to an array of wide characters (type wchar t) that is
large enough to contain the sequence plus a terminating
null wide-character code that is added automatically.
The input field is terminated by a space, tab, or new-line
character.

Expects a sequence of nonwhite-space characters in the
input. The corresponding argument must be a pointer
to an array of wchar t large enough to contain the
sequence plus the terminating null wide character that
is automatically added.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description

applies to both.

Understanding Input and Output

(continued on next page)

Table 2-3 (Cont.) Conversion Specifiers for Formatted Input

Specifier Input Type'

Description

e f, g

Byte

Expects a floating-point number in the input. The
corresponding argument must be a pointer to £loat.
The input format for floating-point numbers is:
[+]nnn[radix][ddd][{E | e}[+]nn]. The n’s and d’s are
decimal digits (as many as indicated by the field width
minus the signs and the letter E). The radix character is
defined in the current locale.

Expects a nonempty sequence of characters that is not
delimited by a white-space character. The brackets
enclose a set of characters (the scanset) expected

in the input sequence. Any character in the input
sequence that does not match a character in the scanset
terminates the character sequence.

All characters between the brackets comprise the
scanset, unless the first character after the left bracket
is a circumflex (*). In this case, the scanset contains
all characters other than those that appear between
the circumflex and the right bracket. Any character
that does appear between the circumflex and the right
bracket will terminate the input character sequence.

If the conversion specifier begins with [] or [*], then the
right bracket character is in the scanset and the next
right bracket character is the matching right bracket
that ends the specification; otherwise, the first right
bracket character ends the specification.

If an 1 (lowercase ell) does not precede the [specifier,
then the characters in the scanset must be single-
byte characters only. In this case, the corresponding
argument must be a pointer to an array of char large
enough to accept the sequence and the terminating null
byte that is automatically added.

If an 1 (lowercase ell) does precede the [specifier, then
the characters in the input sequence are considered

to be multibyte characters, which are then converted

to a wide-character sequence for further processing.

If character ranges are specified in the scanset, then
the processing is done according to the LC_COLLATE
category of the current program’s locale. In this case, the
corresponding argument must be a pointer to an array
of wchar t large enough to accept the sequence and the
terminating null wide character that is automatically
added.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description

applies to both.

(continued on next page)

Understanding Input and Output 2-11

Table 2-3 (Cont.) Conversion Specifiers for Formatted Input

Specifier Input Type' Description

%

Wide-character If no 1 (lowercase ell) precedes the [conversion specifier,
then processing is the same as described for the
byte-input type of the %l[specifier, except that the
corresponding argument must be an array of char
large enough to accept the multibyte sequence plus the
terminating null byte that is automatically added.

If an 1 (lowercase ell) precedes the [conversion specifier,
then processing is the same as in the preceding
paragraph except that the corresponding argument
must be an array of wchar t large enough to accept the
wide-character sequence plus the terminating null wide
character that is automatically added.

Requires an argument that is a pointer to void. The
input value is interpreted as a hexadecimal value.

No input is consumed. The corresponding argument

is a pointer to an integer. The integer is assigned the
number of characters read from the input stream so far
by this call to the formatted input function. Execution of
a %n directive does not increment the assignment count
returned when the formatted input function completes
execution.

Matches a single percent symbol. No conversion or
assignment takes place. The complete conversion
specification would be %%.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

Remarks

You can change the delimiters of the input field with the bracket ([1)
conversion specification. Otherwise, an input field is defined as a string
of nonwhite-space characters. It extends either to the next white-space
character or until the field width, if specified, is exhausted. The function
reads across line and record boundaries, since the new-line character is a
white-space character.

A call to one of the input conversion functions resumes searching immediately
after the last character processed by a previous call.

If the assignment-suppression character (*) appears in the format
specification, no assignment is made. The corresponding input field is
interpreted and then skipped.

The arguments must be pointers or other address-valued expressions, since
HP C permits only calls by value. To read a number in decimal format and
assign its value to n, you must use the following form:

scanf("%d", &n)
You cannot use the following form:
scanf("%d", n)

White space in a format specification matches optional white space in the
input field. Consider the following format specification:

field = %x

2-12 Understanding Input and Output

This format specification matches the following forms:

field = 5218
field=5218

field= 5218
field =5218

These forms do not match the following example:

fiel d=5218

2.4.2 Converting Output Information

The format specification string for the output of information can contain:

Ordinary characters, which are copied to the output.

Conversion specifications, each of which causes the conversion of a
corresponding output source to a character string in a particular format
Conversion specifications are matched to output sources in left-to-right order.

A conversion specification consists of the following, in the order listed:

A percent character (%) or the sequence %n$.

The sequence %n$ denotes that the conversion is applied to the nth output
source listed, where n is a decimal integer between [1, NL_ARGMAX] (see the
<limits.h> header file). For example, a conversion specification beginning
with %5$ means that the conversion will be applied to the fifth output source
listed after the format specification.

If the conversion specification does not begin with the sequence %n$, the
conversion specification is matched to its output source in left-to-right order.
You should only use one type of conversion specification (% or %n$) in a
format specification.

One or more optional characters (see Table 2—4).

A conversion specifier (see Table 2-5) concludes the conversion specification.

For examples of conversion specifications, see the sample programs in Section 2.6.

Table 2—4 shows the characters you can use between the percent sign (%) (or the
sequence %n$) and the conversion specifier. These characters are optional, but if
specified, they must occur in the order shown in Table 2—4.

Understanding Input and Output 2-13

Table 2-4 Optional Characters Between % (or %n$) and the Output Conversion

Specifier

Character Meaning

flags You can use the following flag characters, alone or in any combined order,
to modify the conversion specification:

> (single
quote)

— (hyphen)

space

2-14 Understanding Input and Output

Requests that a numeric conversion is formatted with
the thousands separator character. Only the numbers
to the left of the radix character are formatted with the
separator character. The character used as a separator
and the positioning of the separators are defined in the
program’s current locale.

Left-justifies the converted output source in its field.

Requests that an explicit sign be present on a signed
conversion. If this flag is not specified, the result of a
signed conversion begins with a sign only when a negative
value is converted.

Prefixes a space to the result of a signed conversion, if
the first character of the conversion is not a sign, or if the
conversion results in no characters. If you specify both the
space and the + flag, the space flag is ignored.

Requests an alternate conversion format. Depending on
the conversion specified, different actions will occur.

For the o (octal) conversion, the precision is increased to
force the first digit to be a zero.

For the x (or X) conversion, a nonzero result is prefixed
with 0x (or 0X).

For e, E, f, g, and G conversions, the result contains a
decimal point even at the end of an integer value.

For g and G conversions, trailing zeros are not trimmed.
For other conversions, the effect of # is undefined.

Uses zeros rather than spaces to pad the field width for d,
i,0,u, x, X, e, E, f, g, and G conversions. If both the 0 and
the — flags are specified, then the 0 flag is ignored. For d,
i, 0, u, X, and X conversions, if a precision is specified, the
0 flag is ignored. For other conversions, the behavior of
the 0 flag is undefined.

(continued on next page)

Table 2-4 (Cont.) Optional Characters Between % (or %n$) and the Output

Conversion Specifier

Character

Meaning

field width

. (period)

precision

The minimum field width can be designated by a decimal integer
constant, or by an output source. To specify an output source, use an
asterisk (*) or the sequence *n$, where n refers to the nth output source
listed after the format specification.

The minimum field width is considered after the conversion is done
according to all the other components of the format directive. This
component affects the padding of the conversion result as follows:

If the result of the conversion is wider than the minimum field, write it
out.

If the result of the conversion is narrower than the minimum width, pad
it to make up the field width. Pad with spaces by default. Pad with zeros
if the 0 flag is specified; this does not mean that the width is an octal
number. Padding is on the left by default, and on the right if a minus
sign is specified.

For the wide-character output functions, the field width is measured in
wide characters; for the byte output functions, it is measured in bytes.

For programs compiled with / L DOUBLE=64 (that is, compiled without
the default /L DOUBLE=128), the maximum field width is 1024.

Separates the field width from the precision.

The precision defines any of the following:

e Minimum number of digits to appear for d, i, o, u, x, and X
conversions

e Number of digits to appear after the decimal-point character for e,
E, and f conversions

e Maximum number of significant digits for g and G conversions

e Maximum number of characters to be written from a string in an s
or S conversion

If a precision appears with any other conversion specifier, the behavior is
undefined.

Precision can be designated by a decimal integer constant, or by an
output source. To specify an output source, use an asterisk (*) or the
sequence *n$, where n refers to the nth output source listed after the
format specification.

If only the period is specified, the precision is taken as 0.

(continued on next page)

Understanding Input and Output 2-15

Table 2-4 (Cont.) Optional Characters Between % (or %n$) and the Output
Conversion Specifier

Character Meaning

h,1,or L (or1l) An h specifies that a following d, i, o, u, x, or X conversion specifier
applies to a short int or unsigned short int argument; an h can also
specify that a following n conversion specifier applies to a pointer to a
short int argument.

An 1 (lowercase ell) specifies that a following d, i, o, u, x, or X conversion
specifier applies to a long int or unsigned long int argument; an

1 can also specify that a following n conversion specifier applies to a
pointer to a long int argument.

On OpenVMS Alpha and Integrity server systems, an L or 1l (two
lowercase ells) specifies that a following d, i, o, u, X, or X conversion
specifier applies to an __int64 or unsigned __ int64 argument.
(Integrity servers, Alpha)

An L specifies that a following e, E, f, g, or G conversion specifier applies
to a long double argument.

An 1 specifies that a following c or s conversion specifier applies to a
wchar t argument.

If an h, 1, or L appears with any other conversion specifier, the behavior
is undefined.

OpenVMS Alpha systems, HP C int values are equivalent to long
values.

Table 2—5 describes the conversion specifiers for formatted output.

Table 2-5 Conversion Specifiers for Formatted Output

Specifier Output Type' Description

d, i Converts an int argument to signed decimal format.

0 Converts an unsigned int argument to unsigned octal
format.

u Converts an unsigned int argument to unsigned decimal

format (giving a number in the range 0 to 4,294,967,295).

x, X Converts an unsigned int argument to unsigned
hexadecimal format (with or without a leading 0x). The
letters abcdef are used for X conversion, and the letters
ABCDEF are used for X conversion.

IEither byte or wide-character. Where neither is shown for a given specifier, the specifier description
applies to both.

(continued on next page)

2-16 Understanding Input and Output

Table 2-5 (Cont.) Conversion Specifiers for Formatted Output

Specifier Output Type'

Description

f

e, E

g, G

c Byte

Converts a float or double argument to the format
[-Jmmm.nnnnnn. The number of n’s is equal to the precision
specification as follows:

e Ifno precision is specified, the default is 6.

e Ifthe precision is 0 and the # flag is specified, the decimal
point appears but no n’s appear.

e If the precision is 0 and the # flag is not specified, the
decimal point also does not appear.

e If a decimal point appears, at least one digit appears
before it.

The value is rounded to the appropriate number of digits.

Converts a float or double argument to the format
[-lm.nnnnnnE+xx. The number of n’s is specified by the
precision. If no precision is specified, the default is 6. If the
precision is explicitly 0 and the # flag is specified, the decimal
point appears but no n’s appear. If the precision is explicitly
0 and the # flag is not specified, the decimal point also does
not appear. An ’e’ is printed for e conversion; an 'E’ is printed
for E conversion. The exponent always contains at least two
digits. If the value is 0, the exponent is 0.

Converts a float or double argument to format f or e (or
E if the G conversion specifier is used), with the precision
specifying the number of significant digits. If the precision

is 0, it is taken as 1. The format used depends on the value
of the argument: format e (or E) is used only if the exponent
resulting from such a conversion is less than —4, or is greater
than or equal to the precision; otherwise, format f is used.
Trailing zeros are suppressed in the fractional portion of the
result. A decimal point appears only if it is followed by a
digit.

Converts an int argument to an unsigned char, and writes
the resulting byte.

If the optional character 1 (lowercase ell) precedes this
conversion specifier, then the specifier converts a wchar t
argument to an array of bytes representing the character, and
writes the resulting character. If the field width is specified
and the resulting character occupies fewer bytes than the field
width, then it will be padded to the given width with space
characters. If the precision is specified, then the behavior is
undefined.

IRither byte or wide-character. Where neither is shown for a given specifier, the specifier description

applies to both.

(continued on next page)

Understanding Input and Output 2-17

Table 2-5 (Cont.) Conversion Specifiers for Formatted Output

Specifier Output Type'

Description

Wide-character

C Byte

Wide-character

S Byte

If an 1 (lowercase ell) does not precede the ¢ specifier, then the
int argument is converted to a wide character as if by calling
btowc, and the resulting character is written.

If an 1 (lowercase ell) precedes the c specifier, then the
specifier converts a wchar t argument to an array of
bytes representing the character, and writes the resulting
character. If the field width is specified and the resulting
character occupies fewer characters than the field width, it
will be padded to the given width with space characters. If
the precision is specified, the behavior is undefined.

Converts a wchar t argument to an array of bytes
representing the character, and writes the resulting character.
If the field width is specified and the resulting character
occupies fewer bytes than the field width, then it will be
padded to the given width with space characters. If the
precision is specified, then the behavior is undefined.

Converts a wchar t argument to an array of bytes
representing the character, and writes the resulting character.
If the field width is specified and the resulting character
occupies fewer wide characters than the field width, then it
will be padded to the given width with space characters. If
the precision is specified, then the behavior is undefined.

Requires an argument that is a pointer to an array of
characters of type char. The argument is used to write
characters until a null character is encountered or until the
number of characters indicated by the precision specification
is exhausted. If the precision specification is 0 or omitted,
then all characters up to a null are output.

If the optional character 1 (lowercase ell) precedes this
conversion specifier, then the specifier converts an array of
wide-character codes to multibyte characters, and writes the
multibyte characters. Requires an argument that is a pointer
to an array of wide characters of type wchar t. Characters
are written until a null wide character is encountered or until
the number of bytes indicated by the precision specification
is exhausted. If the precision specification is omitted or is
greater than the size of the array of converted bytes, then the
array of wide characters must be terminated by a null wide
character.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description

applies to both.

2-18 Understanding Input and Output

(continued on next page)

Table 2-5 (Cont.) Conversion Specifiers for Formatted Output

Specifier Output Type'

Description

Wide-character

S Byte

Wide-character

%

If an 1 (lowercase ell) does not precede the s specifier, then
the specifier converts an array of multibyte characters, as

if by calling mbrtowc for each multibyte character, and
writes the resulting characters until a null wide character

is encountered or the number of wide characters indicated

by the precision specification is exhausted. If the precision
specification is omitted or is greater than the size of the array
of converted characters, then the converted array must be
terminated by a null wide character.

If an 1 precedes this conversion specifier, then the argument
is a pointer to an array of wchar t. Characters from this
array are written until a null wide character is encountered
or the number of wide characters indicated by the precision
specification is exhausted. If the precision specification is
omitted or is greater than the size of the array, then the array
must be terminated by a null wide character.

Converts an array of wide-character codes to multibyte
characters, and writes the multibyte characters. Requires
an argument that is a pointer to an array of wide characters
of type wchar t. Characters are written until a null wide
character is encountered or until the number of bytes
indicated by the precision specification is exhausted. If

the precision specification is omitted or is greater than the
size of the array of converted bytes, then the array of wide
characters must be terminated by a null wide character.

The argument is a pointer to an array of wchar t.
Characters from this array are written until a null wide
character is encountered or the number of wide characters
indicated by the precision specification is exhausted. If the
precision specification is omitted or is greater than the size of
the array, then the array must be terminated by a null wide
character.

Requires an argument that is a pointer to void. The value of
the pointer is output as a hexadecimal number.

Requires an argument that is a pointer to an integer. The
integer is assigned the number of characters written to the
output stream so far by this call to the formatted output
function. No argument is converted.

Writes out the percent symbol. No conversion is performed.
The complete conversion specification would be %%.

1Either byte or wide-character. Where neither is shown for a given specifier, the specifier description

applies to both.

2.5 Terminal 1/0

HP C defines three file pointers that allow you to perform I/O to and from

the logical devices usually associated with your terminal (for interactive jobs)

or a batch stream (for batch jobs). In the OpenVMS environment, the three
permanent process files SYS$INPUT, SYS$OUTPUT, and SYSSERROR perform
the same functions for both interactive and batch jobs. Terminal I/O refers to
both terminal and batch stream I/O. The file pointers stdin, stdout, and stderr
are defined when you include the <stdio.h> header file using the #include

preprocessor directive.

Understanding Input and Output 2-19

The stdin file pointer is associated with the terminal to perform input. This
file is equivalent to SYS$INPUT. The stdout file pointer is associated with the
terminal to perform output. This file is equivalent to SYS$OUTPUT. The stderr
file pointer is associated with the terminal to report run-time errors. This file is
equivalent to SYSSERROR.

There are three file descriptors that refer to the terminal. The file descriptor 0 is
equivalent to SYS$INPUT, 1 is equivalent to SYS$OUTPUT, and 2 is equivalent
to SYS$ERROR.

When performing I/O at the terminal, you can use Standard I/O functions and
macros (specifying the pointers stdin, stdout, or stderr as arguments), you can
use UNIX I/O functions (giving the corresponding file descriptor as an argument),
or you can use the Terminal I/O functions and macros. There is no functional
advantage to using one type of I/O over another; the Terminal I/O functions might
save keystrokes since there are no arguments.

2.6 Program Examples

This section gives some program examples that show how the I/O functions can
be used in applications.

Example 2-1 shows the printf function.

Example 2—1 Output of the Conversion Specifications

/* CHAP_2_OUT_CONV.C */

/* This program uses the printf function to print the */
/* various conversion specifications and their effect */
/* on the output. */

/* Include the proper header files in case printf has */
/* to return EOF. %/

#include <stdlib.h>
#include <stdio.h>
#include <wchar.h>

fdefine WIDE_STR SIZE 20

main()

{
double val = 123345.5;
char ¢ = 'C’;
int i = -1500000000;
char *s = "thomasina";
wchar t wc;
wchar_t ws[WIDE_STR SIZE];

/* Produce a wide character and a wide character string */

if (mbtowc(&wc, "W", 1) == -1) {
perror ("mbtowc");
exit(EXIT_FAILURE) H

}

if (mbstowcs(ws, "THOMASINA", WIDE STR SIZE) == -1) {
perror ("mbstowcs");
exit (EXIT FAILURE);

}

(continued on next page)

2-20 Understanding Input and Output

Example 2-1 (Cont.) Output of the Conversion Specifications

/* Print the specification code, a colon, two tabs, and the */
/* formatted output value delimited by the angle bracket */

/* characters (<>).

printf("%%9.4£:\t\t<%9.4£>\n", val);
printf("$%9£f:\t\t<®9£>\n", val);
printf("%%9.0£:\t\t<%9.0£>\n", val);

printf("%%-9.0f:\t\t<%-9.0f>\n\n", val);
printf("$%11l.6e:\t\t<g1ll.6e>\n", val);

printf("s$slle:\t\t<tlle>\n", val);

printf

printf
printf("%$%9g:\t\t<%9g>\n\n", val);

val);
'%%-11.0e:\t\t<%-11.0e>\n\n", val);

*/

}

printf("%$%d:\t\t<sd>\n", c);
printf("%%c:\t\t<sc>\n", c);
printf("%$%o:\t\t<%o>\n", c);
printf("$%x:\t\t<%x>\n\n", c);

printf("$%d:\t\t<sd>\n", 1i);
printf("$%u:\t\t<su>\n", i);
printf("$%x:\t\t<sx>\n\n", i);

printf("%%s:\t\t<gs>\n", s);
printf("%$%-9.6s:\t\t<%-9.6s>\n",
printf("$%-*.*s:\t\t<®¥-*.*s>\n",
printf("$%6.0s:\t\t<%6.0s>\n\n",
printf("%%C:\t\t<sC>\n", wc);
printf("$%S:\t\t<8S>\n", ws);
printf("$%-9.6S:\t\t<%-9.6S>\n",
printf("$3-*.*S:\t\t<3-*.*S>\n",
printf("%$%6.0S:\t\t<%6.0S>\n\n",

(
(
(
(
}
printf("$%11.0e:\t\t<¢1ll.0e>\n",
(
(
(
(
(
(
(

"$%11g:\t\t<%1llg>\n", val);

s);
9, 5, 8);
s);

ws);
9, 5, ws);
ws);

Running Example 2-1 produces the following output:

$ RUN EXAMPLE

%9.4f: <123345.5000>
$9f: <123345.500000>
%9.0f: < 123346>
%$-9.0f: <123346 >
%$11.6e: <1.233455e+05>
$lle: <1.233455e+05>
%$11.0e: < le+05>
%$-11.0e: <le+05 >
$1lg: < 123346>
%9g: < 123346>
%d: <67>

%C: <C>

%0: <103>

%X <43>

%d: <-1500000000>
$u: <2794967296>
%X <a697d100>

$s: <thomasina>
$-9.6s: <thomas >
g-*,*s: <thoma >
%$6.0s: < >

Understanding Input and Output 2-21

%C: <W>

$S: <THOMASINA>
%$-9.6S: <THOMAS >
g-*.*%S: <THOMA >
%$6.0S: < >

$

Example 2-2 shows the use of the fopen, ftell, sprintf, fputs, fseek, fgets,
and fclose functions.

Example 2-2 Using the Standard I/O Functions

/* CHAP 2 STDIO.C */

/* This program establishes a file pointer, writes lines from */
/* a buffer to the file, moves the file pointer to the second */
/* record, copies the record to the buffer, and then prints */
/* the buffer to the screen. */

#include <stdio.h>
#include <stdlib.h>

main()

char buffer[32];
int i,

pos;
FILE *fptr;

/* Set file pointer. */
fptr = fopen("data.dat", "wt+");
if (fptr == NULL) {
perror("fopen");
exit (EXIT FAILURE);

}

for (1 = 1; 1 < 5; i++) {
if (1 == 2) /* Get position of record 2. */

pos = ftell(fptr);

/* Print a line to the buffer. =/
sprintf(buffer, "test data line %d\n", i);
/* Print buffer to the record. */
fputs(buffer, fptr);

}

/* Go to record number 2. */

if (fseek(fptr, pos, 0) < 0) {
perror("fseek"); /* Exit on fseek error. */
exit(EXIT FAILURE);

}

/* Read record 2 in the buffer. */

if (fgets(buffer, 32, fptr) == NULL) {
perror("fgets"); /* Exit on fgets error. */
exit (EXIT FAILURE);

}

/* Print the buffer. */

printf("Data in record 2 is: %s", buffer);
fclose(fptr); /* Close the file. */

}

Running Example 2-2 produces the following result:

$ RUN EXAMPLE
Data in record 2 is: test data line 2

2-22 Understanding Input and Output

The output to DATA.DAT from Example 2-2 is:

test data line 1
test data line 2
test data line 3
test data line 4

Example 2-3 Using Wide Character I/O Functions
/% CHAP 2 WC_IO.C

/* This program establishes a file pointer, writes lines from
/* a buffer to the file using wide-character codes, moves the
/* file pointer to the second record, copies the record to the
/* wide-character buffer, and then prints the buffer to the

/* screen.

#include <stdio.h>
#include <stdlib.h>
#include <wchar.h>

main()
{
char flat buffer[32];
wchar t wide buffer([32];
wchar_t format[32];
int i,
pos;
FILE *fptr;

/* Set file pointer. */
fptr = fopen("data.dat", "wt");
if (fptr == NULL) {
perror ("fopen");
exit(EXIT_FAILURE);

}
for (1 =1; i < 5; i++) {
if (1 == 2) /* Get position of record 2. */
pos = ftell(fptr);
/* Print a line to the buffer. */
sprintf(flat buffer, "test data line %d\n", 1i);
if (mbstowcs(wide buffer, flat buffer, 32) == -1) {
perror("mbstowcs");
eXit(EXIT_FAILURE);
}
/* Print buffer to the record. */
fputws (wide_buffer, fptr);
}

/* Go to record number 2. */

if (fseek(fptr, pos, 0) < 0) {
perror("fseek"); /* Exit on fseek error. */
exit (EXIT FAILURE);

(continued on next page)

Understanding Input and Output 2-23

*/

*/
*/
*/
*/
*/

Example 2-3 (Cont.) Using Wide Character I/O Functions

/* Put record 2 in the buffer. */

if (fgetws(wide_buffer, 32, fptr) == NULL) {
perror("fgetws"); /* Exit on fgets error. */
exit(EXIT FAILURE);

}

/* Print the buffer. */

printf("Data in record 2 is: %S", wide buffer);

fclose(fptr); /* Close the file. */
}

Running Example 2-3 produces the following result:

$ RUN EXAMPLE
Data in record 2 is: test data line 2

The output to DATA.DAT from Example 2-3 is:

test data line 1
test data line 2
test data line 3
test data line 4

Example 2—4 shows the use of both a file pointer and a file descriptor to access a
single file.

Example 2-4 1/0 Using File Descriptors and Pointers

/* CHAP_2_FILE DIS_AND POINTER.C */

/* The following example creates a file with variable-length */
/* records (rfm=var) and the carriage-return attribute (rat=cr).*/
/* */
/* The program uses creat to create and open the file, and */
/* fdopen to associate the file descriptor with a file pointer. */
/* After using the fdopen function, the file must be referenced */
/* using the Standard I/0 functions. */

#include <unixio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define ERROR 0
#define ERROR1 -1
#define BUFFSIZE 132

main()

{
char buffer[BUFFSIZE];
int fildes;
FILE *fp;

if ((fildes = creat("data.dat", 0, "rat=cr",
"rfm=var")) == ERROR1) {
perror ("DATA.DAT: creat() failed\n");
eXit(EXIT_FAILURE);

(continued on next page)

2-24 Understanding Input and Output

Example 2-4 (Cont.) 1/0 Using File Descriptors and Pointers

if ((fp = fdopen(fildes, "w")) == NULL) {
perror ("DATA.DAT: fdopen() failed\n");
exit (EXIT FAILURE);

}
while (fgets(buffer, BUFFSIZE, stdin) != NULL)
if (fwrite(buffer, strlen(buffer), 1, fp) == ERROR) {
perror("DATA.DAT: fwrite() failed\n");
exit(EXIT FAILURE);

}

if (fclose(fp) == EOF) {
perror ("DATA.DAT: fclose() failed\n");
exit(EXIT_FAILURE);

Understanding Input and Output 2-25

3

Character, String, and Argument-List Functions

Table 3-1 describes the character, string, and argument-list functions in the HP C
Run-Time Library (RTL). Although further discussion follows in this chapter, see
the Reference Section for more detailed information on each function.

Table 3-1 Character, String, and Argument-List Functions

Function Description

Character Classification

isalnum, iswalnum Returns a nonzero integer if its argument is one of the
alphanumeric characters in the current locale.

isalpha, iswalpha Returns a nonzero integer if its argument is one of the
alphabetic characters in the current locale.

isascii Returns a nonzero integer if its argument is any ASCII
character.

iscntrl, iswentrl Returns a nonzero integer if its argument is a control character
in the current locale.

isdigit, iswdigit Returns a nonzero integer if its argument is a digit character
in the current locale.

isgraph, iswgraph Returns a nonzero integer if its argument is a graphic
character in the current locale.

islower, iswlower Returns a nonzero integer if its argument is a lowercase
character in the current locale.

isprint, iswprint Returns a nonzero integer if its argument is a printing
character in the current locale.

ispunct, iswpunct Returns a nonzero integer if its argument is a punctuation
character in the current locale.

isspace, iswspace Returns a nonzero integer if its argument is a white-space
character in the current locale.

isupper, iswupper Returns a nonzero integer if its argument is an uppercase
character in the current locale.

iswctype Returns a nonzero integer if its argument has the specified
property.

isxdigit, iswxdigit Returns a nonzero integer if its argument is a hexadecimal
digit (0 to 9, A to F, or a to).

(continued on next page)

Character, String, and Argument-List Functions 3-1

Table 3-1 (Cont.) Character, String, and Argument-List Functions

Function

Description

Character Conversion

btowc
ecvt, fevt, gevt

index, rindex
mblen, mbrlen
mbsinit

mbstowcs

toascii

tolower, tolower,

towlower ~

toupper, _toupper,

towupper
towctrans

wcstombs

wctob

wctomb

wctrans

wctype

Converts a one-byte multibyte character to a wide character in
the initial shift state.

Converts an argument to a null-terminated string of ASCII
digits and return the address of the string.

Searches for a character in a string.
Determines the number of bytes in a multibyte character.

Determines whether an mbstate t object decribes an initial
conversion state.

Converts a sequence of multibyte characters into a sequence of
corresponding codes.

Converts its argument, an 8-bit ASCII character, to a 7-bit
ASCII character.

Converts its argument, an uppercase character, to lowercase.
Converts its argument, a lowercase character, to uppercase.

Maps one wide character to another according to a specified
mapping descriptor.

Converts a sequence of wide-character codes corresponding to
multibyte characters to a sequence of multibyte characters.

Determines if a wide character corresponds to a single-byte
multibyte character and returns its multibyte character
representation.

Converts a wide character to its multibyte character
representation.

Returns the description of a mapping, corresponding to
specified property, that can be later used in a call to
towctrans.

Converts a valid character class defined for the current locale
to an object of type wctype t.

String Manipulation

atof
atoi, atol

atoll, atoq
(Integrity servers, Alpha)

basename
dirname

strcat, strncat,
wcscat, wesncat

strchr, strrchr,
wcschr, wesrchr

Converts a given string to a double-precision number.

Converts a given string of ASCII characters to the appropriate
numeric values.

Converts a given string of ASCII characters to an __int64.

Returns the last component of a path name.
Reports the parent directory name of a file path name.

Appends one string to the end of another string.

Returns the address of the first or last occurrence of a given
character in a null-terminated string.

(continued on next page)

3-2 Character, String, and Argument-List Functions

Table 3—1 (Cont.) Character, String, and Argument-List Functions

Function

Description

String Manipulation

strcmp, strncmp,
strcoll, wescmp,
wcesnemp, wescoll

strcpy, strncpy,
WCSCpY, WCShCpy
strxfrm, wesxfrm
strcspn, wescspn
strlen, wcslen
strpbrk, wespbrk
strspn, wcsspn

strstr, wcswes

strtod, wcstod
strtok, wcstok
strtol, westol

strtoll, strtoq
(Integrity servers, Alpha)

strtoul, westoul

strtoull, strtouq
(Integrity servers, Alpha)

Compares two character strings and returns a negative, zero,

or positive integer indicating that the values of the individual
characters in the first string are less than, equal to, or greater
than the values in the second string.

Copies all or part of one string into another.

Transforms a multibyte string to another string ready for
comparisons using the strcmp or wescmp function.

Searches a string for a character that is in a specified set of
characters.

Returns the length of a string of characters. The returned
length does not include the terminating null character (\0).

Searches a string for the occurrence of one of a specified set of
characters.

Searches a string for the occurrence of a character that is not
in a specified set of characters.

Searches a string for the first occurrence of a specified set of
characters.

Converts a given string to a double-precision number.
Locates text tokens in a given string.
Converts the initial portion of a string to a signed long integer.

Converts the initial portion of a string to signed __int64.

Converts the initial portion of a string to an unsigned long
integer.

Converts the initial portion of the string pointed to by the
pointer to the character string to an unsigned __int64.

String Handling—Accessing Binary Data

bemp
bcopy
bzero
memchr, wmemchr

memcmp, wmemcmp

memcpy, memmove,
Wmemcpy, wmemmove

memset, wmemset

Compares byte strings.
Copies byte strings.
Copies nulls into byte strings.

Locates the first occurrence of the specified byte within the
initial length of the object to be searched.

Compares two objects byte by byte.

Copies a specified number of bytes from one object to another.
Sets a specified number of bytes in a given object to a given

value.

(continued on next page)

Character, String, and Argument-List Functions 3-3

Table 3-1 (Cont.) Character, String, and Argument-List Functions

Function Description

Argument-List Handling—Accessing a Variable-Length Argument List

va_arg Returns the next item in the argument list.

va count Returns the number of quadwords (Aipha only) in the argument
- list.

va_end Finishes the va_start session.

va_start, Initializes a variable to the beginning of the argument list.

va_start 1

viprintf, vprintf, Prints formatted output based on an argument list.

vsprintf

3.1 Character-Classification Functions

The character-classification functions take a single argument on which they
perform a logical operation. The argument can have any value; it does not have
to be an ASCII character. The isascii function determines if the argument is an
ASCII character (0 through 177 octal). The other functions determine whether
the argument is a particular type of ASCII character, such as a graphic character
or digit. The isw* functions test wide characters. Character-classification
information is in the LC_CTYPE category of the program’s current locale.

For all functions, a positive return value indicates TRUE. A return value of 0
indicates FALSE.

To briefly reference the character-classification functions in a subsequent table,
each function is assigned a number, as shown in Table 3-2.

Table 3—2 Character-Classification Functions

Function Function

Number Function Number Function
1 isalnum 7 islower
2 isalpha 8 isprint
3 isascii 9 ispunct
4 iscntrl 10 isspace
5 isdigit 11 isupper
6 isgraph 12 isxdigit

Table 3-3 lists the numbers of the functions (as assigned in Table 3-2) that
return the value TRUE for each of the given ASCII characters. The numeric code
represents the octal value of each of the ASCII characters.

3-4 Character, String, and Argument-List Functions

Table 3—-3 ASCII Characters and the Character-Classification Functions

ASCII Function ASCII Function
Values Numbers Values Numbers
NUL 00 3,4 @ 100 3,6,8,9

SOH 01 3,4 A 101 1,2,3,6,8,11,12
STX 02 3,4 B 102 1,2,3,6,8,11,12
ETX 03 3,4 C 103 1,2,3,6,8,11,12
EOT 04 3.4 D 104 1,2,3,6,8,11,12
ENQ 05 3,4 E 105 1,2,3,6,8,11,12
ACK 06 3,4 F 106 1,2,3,6,8,11,12
BEL 07 3,4 G 107 1,2,3,6,8,11
BS 10 3,4 H 110 1,2,3,6,8,11
HT 11 3,4,10 I111 1,2,3,6,8,11
LF 12 3,4,10 J 112 1,2,3,6,8,11
VT 13 3,4,10 K113 1,2,3,6,8,11
FF 14 3,4,10 L 114 1,2,3,6,8,11
CR 15 3,4,10 M 115 1,2,3,6,8,11
SO 16 3,4 N 116 1,2,3,6,8,11
SI 17 3,4 0 117 1,2,3,6,8,11
DLE 20 3,4 P 120 1,2,3,6,8,11
DC1 21 3,4 Q121 1,2,3,6,8,11
DC2 22 3.4 R 122 1,2,3,6,8,11
DC3 23 3,4 S 123 1,2,3,6,8,11
DC4 24 3,4 T 124 1,2,3,6,8,11
NAK 25 3,4 U 125 1,2,3,6,8,11
SYN 26 3,4 V 126 1,2,3,6,8,11
ETB 27 3,4 W 127 1,2,3,6,8,11
CAN 30 3,4 X 130 1,2,3,6,8,11
EM 31 3,4 Y 131 1,2,3,6,8,11
SUB 32 3,4 7 132 1,2,3,6,8,11
ESC 33 3,4 [133 3,6,8,9

FS 34 3,4 \ 134 3,6,8,9

GS 35 3,4 1135 3,6,8,9

RS 36 3,4 A 136 3,6,8,9

US 37 3,4 - 137 3,6,8,9

SP 40 3,8,10 * 140 3,6,8,9

141 3,6,8,9 a 141 1,2,3,6,7,8,12

(continued on next page)

Character, String, and Argument-List Functions 3-5

Table 3-3 (Cont.) ASCII Characters and the Character-Classification Functions

ASCII Function ASCII Function
Values Numbers Values Numbers

" 42 3,6,8,9 b 142 1,2,3,6,7,8,12
#43 3,6,8,9 c 143 1,2,3,6,7,8,12
$ 44 3,6,8,9 d 144 1,2,3,6,7,8,12
% 45 3,6,8,9 e 145 1,2,3,6,7,8,12
& 46 3,6,8,9 f 146 1,2,3,6,7,8,12
" 47 3,6,8,9 g 147 1,2,3,6,7,8
(50 3,6,8,9 h 150 1,2,3,6,7,8

) 51 3,6,8,9 i151 1,2,3,6,7,8

* 52 3,6,8,9 j 152 1,2,3,6,7,8

+ 53 3,6,8,9 k 153 1,2,3,6,7,8

" 54 3,6,8,9 1154 1,2,3,6,7,8

- 55 3,6,8,9 m 155 1,2,3,6,7,8

. 56 3,6,8,9 n 156 1,2,3,6,7,8
/57 3,6,8,9 o 157 1,2,3,6,7,8

0 60 1,3,5,6,8,12 p 160 1,2,3,6,7,8
161 1,3,5,6,8,12 q 161 1,2,3,6,7,8

2 62 1,3,5,6,8,12 r 162 1,2,3,6,7,8
363 1,3,5,6,8,12 s 163 1,2,3,6,7,8
464 1,3,5,6,8,12 t 164 1,2,3,6,7,8

5 65 1,3,5,6,8,12 u 165 1,2,3,6,7,8

6 66 1,3,5,6,8,12 v 166 1,2,3,6,7,8

7 67 1,3,5,6,8,12 w 167 1,2,3,6,7,8
870 1,3,5,6,8,12 x 170 1,2,3,5,6,8
971 1,3,5,6,8,12 y 171 1,2,3,5,6,8

2 72 3,6,8,9 z 172 1,2,3,5,6,8

; 13 3,6,8,9 {173 3,6,8,9

<74 3,6,8,9 | 174 3,6,8,9

=175 3,6,8,9 } 175 3,6,8,9

> 76 3,6,8,9 ~ 176 3,6,8,9

277 3,6,8,9 DEL 177 3,4

3-6 Character, String, and Argument-List Functions

Example 3—1 shows how the character-classification functions are used.

Example 3-1 Character-Classification Functions

/% CHAP 3 CHARCLASS.C */
/* This example uses the isalpha, isdigit, and isspace */
/* functions to count the number of occurrences of letters, */
/* digits, and white-space characters entered through the */
/* standard input (stdin). */

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

main()
{
char c¢;
int 1 = 0,
j=0,
k =0;

while ((c = getchar()) != EOF) {
if (%salpha(c))

1++;

if (isdigit(c))
Jti

if (isspace(c))
k++;

}

printf("Number of letters: %d\n", 1i);

printf("Number of digits: %d\n", j);

printf("Number of spaces: %d\n", k);
}

The sample input and output from Example 3—1 follows:

$ RUN EXAMPLEL
I saw 35 people riding bicycles on Main Street.|Retum

Number of letters: 36

Number of digits: 2
Number of spaces: 8

$

3.2 Character-Conversion Functions

The character-conversion functions convert one type of character to another type.
These functions include:

ecvt _tolower
fevt toupper
gevt _toupper
mbtowc towctrans
mbrtowc wctrans
mbsrtowcs wcrtomb
toascii wcsrtombs
tolower

For more information on each of these functions, see the Reference Section.

Character, String, and Argument-List Functions 3-7

Example 3—-2 shows how to use the ecvt function.

Example 3-2 Converting Double Values to an ASCII String

/* CHAP_3_CHARCONV.C */
/* This program uses the ecvt function to convert a double */
/* value to a string. The program then prints the string. */

#include <stdio.h>

#include <stdlib.h>
#include <unixlib.h>
#include <string.h>

main()
{
double val; /* Value to be converted */
int sign, /* Variables for sign */
point; /* and decimal place */

/* Array for the converted string */
static char string[20];

val = -3.1297830e-10;

printf("original value: %e\n", val);
if (sign)
printf("value is negative\n");
else
printf("value is positive\n");
printf("decimal point at %d\n", point);
}

The output from Example 3-2 is as follows:

$ RUN EXAMPLE2

original value: -3.129783e-10
converted string: 31298

value is negative

decimal point at -9

$

Example 3—-3 shows how to use the toupper and tolower functions.

Example 3-3 Changing Characters to and from Uppercase Letters

/* CHAP_3 CONV_UPPERLOWER.C */
/* This program uses the functions toupper and tolower to */
/* convert uppercase to lowercase and lowercase to uppercase */
/* using input from the standard input (stdin). */

#include <ctype.h>
#include <stdio.h> /* To use EOF identifier */
#include <stdlib.h>

main()

{

char c,
ch;

(continued on next page)

3-8 Character, String, and Argument-List Functions

3.3 String

Example 3-3 (Cont.) Changing Characters to and from Uppercase Letters

while ((c = getchar()) != EOF) {
if (c >= 'A’" && ¢ <= 'Z')
ch = tolower(c);
else
ch = toupper(c);
putchar(ch);

}

Sample input and output from Example 3-3 are as follows:

$ RUN EXAMPLE3

LET'S GO TO THE welcome INN. [CtiZ]
let’s go to the WELCOME inn.

$

and Argument-List Functions

The HP C RTL contains a group of functions that manipulate strings. Some of
these functions concatenate strings; others search a string for specific characters
or perform some other comparison, such as determining the equality of two
strings.

The HP C RTL also contains a set of functions that allow you to copy buffers
containing binary data.

The set of functions defined and declared in the <varargs.h> and the <stdarg.h>
header files provide a method of accessing variable-length argument lists. The
<stdarg.h> functions are defined by the ANSI C Standard and are more portable
than those defined in <varargs.h>.

The RTL functions such as printf and execl, for example, use variable-length
argument lists. User-defined functions with variable-length argument lists that
do not use <varargs.h> or <stdarg.h> are not portable due to the different
argument-passing conventions of various machines.

The <stdarg.h> header file does not contain va_alist and va_dcl. The following
shows a syntax example when using <stdarg.h>:

function_name(int argf, ...)

{

va_list ap;

When using <varargs.h>:
¢ The identifier va_alist is a parameter in the function definition.

* va_dcl declares the parameter va_alist, a declaration that is not terminated
with a semicolon (;).

* The type va_list is used in the declaration of the variable used to traverse
the list. You must declare at least one variable of type va_list when using
<varargs.h>.

Character, String, and Argument-List Functions 3-9

These names and declarations have the following syntax:

function_name(int argt, ...)

{

va_list ap;

3.4 Program Examples

Example 3—4 shows how to use the strcat and strncat functions.

Example 3-4 Concatenating Two Strings

/* CHAP_3_CONCAT.C */

/* This example uses strcat and strncat to concatenate two */
/* strings. */

#include <stdio.h>
#include <string.h>

main()
{
static char stringl[80] = "Concatenates ";
static char string2[] = "two strings ";
static char string3[] = "up to a maximum of characters.";

static char string4[] = "imum number of characters";

printf("strcat:\t%s\n", strcat(stringl, string2));

printf("strncat (0):\t%s\n", strncat(stringl, string3, 0));

printf("strncat (11):\t%s\n", strncat(stringl, string3, 11));

printf("strncat (40):\t%s\n", strncat(stringl, stringd, 40));
}

Example 3—4 produces the following output:

$ RUN EXAMPLE1

strcat: Concatenates two strings

strncat (0): Concatenates two strings

strncat (11): Concatenates two strings up to a max

strncat (40): Concatenates two strings up to a maximum number of characters.

$

Example 3-5 shows how to use the strcspn function.

Example 3-5 Four Arguments to the strespn Function

/% CHAP 3 STRCSPN.C */
/* This example shows how strcspn interprets four */
/* different kinds of arquments. */

#include <stdio.h>

main()

{

printf("strcspn with null charset: %d\n",
strcspn("abcdef", ""));

(continued on next page)

3-10 Character, String, and Argument-List Functions

Example 3-5 (Cont.) Four Arguments to the strcspn Function

printf("strcspn with null string: %d\n",
strespn("", "abcdef"));

printf("strcspn(\"xabc\", \"abc\"): %d\n",
strcspn("xabc", "abc"));

printf("strcspn(\"abc\", \"def\"): %d\n",
strcspn("abc", "def"));
}

The sample output, to the file strcspn.out, in Example 3-5 is as follows:

$ RUN EXAMPLE2

strcspn with null charset: 6
strcespn with null string: 0
strcspn("xabc","abc"): 1
strcspn("abc","def"): 3

Example 3—6 shows how to use the <stdarg.h> functions and definitions.

Example 3-6 Using the <stdarg.h> Functions and Definitions

/% CHAP_3_STDARG.C */

/* This routine accepts a variable number of string arguments, */
/* preceded by a count of the number of such strings. It */
/* allocates enough space in which to concatenate all of the */
/* strings, concatenates them together, and returns the address */
/* of the new string. It returns NULL if there are no string */

/* arquments, or if they are all null strings. */
#include <stdarg.h> /* Include appropriate header files */
#include <stdlib.h> /* for the "example" call in main. */

#include <string.h>
#include <stdio.h>

/* NSTRINGS is the maximum number of string arguments accepted */
/* (arbitrary). */

#define NSTRINGS 10

char *concatenate(int n,...)

{

va_list ap; /* Declare the argument pointer. */

char *1ist[NSTRINGS],
*string;

int index = 0,
size = 0;

/* Check that the number of arguments is within range. */

if (n <= 0)
return NULL;

if (n > NSTRINGS)
n = NSTRINGS;

va_start(ap, n); /* Initialize the argument pointer. */

do {
/* Extract the next argument and save it. */

list[index] = va_arg(ap, char *);

(continued on next page)

Character, String, and Argument-List Functions 3-11

Example 3-6 (Cont.) Using the <stdarg.h> Functions and Definitions

size += strlen(list[index]);
} while (++index < n);
va_end(ap); /* Terminate use of ap. */

if (size == 0)
return NULL;

string = malloc(size + 1);
string[0] = "\0';

/* Append each arqument to the end of the growing result */
/* string. */

for (index = 0; index < n; ++index)
strcat(string, list[index]);

return string;

}

/* An example of calling this routine is */

main() {
char *ret string ;

ret_string = concatenate(7, "This ", "message ", "is ",
"built with ", "a", " variable arg",
" list.") ;
puts(ret string) ;
}
The call to Example 3—-6 produces the following output:

This message is built with a variable arg list.

3-12 Character, String, and Argument-List Functions

4

Error and Signal Handling

Table 4-1 lists and describes all the error- and signal-handling functions found
in the HP C Run-Time Library (RTL). For more detailed information on each
function, see the Reference Section.

Table 4-1 Error- and Signal-Handling Functions

Function Description

abort Raises the signal SIGABRT that terminates the execution of
the program.

assert Puts diagnostics into programs.

atexit Registers a function to be called at program termination.

exit, _exit
perror

strerror
alarm

gsignal
kill

longjmp

pause
raise
setjmp

sigaction
sigaddset
sigblock

sigdelset

sigemptyset

sigfillset
sighold
sigignore

Terminates the current program.

Writes a short error message to stderr describing the current
errno value.

Maps the error code in errno to an error message string.

Sends the signal SIGALARM to the invoking process after the
number of seconds indicated by its argument has elapsed.

Generates a specified software signal.

Sends a SIGKILL signal to the process specified by a
process ID.

Transfers control from a nested series of function invocations
back to a predefined point without returning normally.

Causes the process to wait until it receives a signal.
Generates a specified signal.

Establishes the context for a later transfer of control from
a nested series of function invocations, without returning
normally.

Specifies the action to take upon delivery of a signal.
Adds the specified individual signal.

Causes the signals in its argument to be added to the current
set of signals being blocked from delivery.

Deletes a specified individual signal.

Initializes the signal set to exclude all signals.

Initializes the signal set to include all signals.

Adds the specified signal to the calling process’s signal mask.
Sets the disposition of the specified signal to SIG_IGN.

(continued on next page)

Error and Signal Handling 4-1

Table 4-1 (Cont.) Error- and Signal-Handling Functions

Function Description

sigismember Tests whether a specified signal is a member of the signal set.

siglongjmp Nonlocal goto with signal handling.

sigmask Constructs the mask for a given signal number.

signal Catches or ignores a signal.

sigpause Blocks a specified set of signals and then waits for a signal
that was not blocked.

sigpending Examines pending signals.

sigprocmask Sets the current signal mask.

sigrelse Removes the specified signal from the calling process’s signal
mask.

sigsetjmp Sets the jump point for a nonlocal goto.

sigsetmask Establishes the signals that are blocked from delivery.

sigsuspend Atomically changes the set of blocked signals and waits for a
signal.

sigtimedwait Suspends a calling thread and waits for queued signals to
arrive.

sigvec Permanently assigns a handler for a specific signal.

sigwait Suspends a calling thread and waits for queued signals to
arrive.

sigwaitinfo Suspends a calling thread and waits for queued signals to
arrive.

ssignal Allows you to specify the action to be taken when a particular
signal is raised.

VAXCSESTABLISH Establishes an application exception handler in a way that is

compatible with HP C RTL exception handling.

4.1 Error Handling

When an error occurs during a call to any of the HP C RTL functions, the
function returns an unsuccessful status. Many RTL routines also set the external
variable errno to a value that indicates the reason for the failure. You should
always check the return value for an error situation.

The <errno.h> header file declares errno and symbolically defines the possible
error codes. By including the <errno.h> header file in your program, you can
check for specific error codes after a HP C RTL function call.

At program startup, the value of errno is 0. The value of errno can be set to a
nonzero value by many HP C RTL functions. It is not reset to 0 by any HP C
RTL function, so it is only valid to use errno after a HP C RTL function call has
been made and a failure status returned. Table 4-2 lists the symbolic values that
may be assigned to errno by the HP C RTL.

4-2 Error and Signal Handling

Table 4-2 The Error Code Symbolic Values

Symbolic Constant

Description

E2BIG
EACCES
EADDRINUSE
EADDRNOTAVAIL
EAFNOSUPPORT
EAGAIN

EALIGN
EALREADY
EBADF
EBADCAT
EBADMSG
EBUSY
ECANCELED
ECHILD
ECONNABORTED
ECONNREFUSED
ECONNRESET
EDEADLK
EDESTADDRREQ
EDOM

EDQUOT
EEXIST

EFAIL

EFAULT

EFBIG

EFTYPE
EHOSTDOWN
EHOSTUNREACH
EIDRM

EILSEQ
EINPROGRESS
EINPROG

EINTR

EINVAL

EIO

EISCONN

EISDIR

ELOOP

Argument list too long
Permission denied

Address already in use

Can’t assign requested address
Address family not supported

No more processes

Alignment error

Operation already in progress
Bad file number

Bad message catalog format
Corrupted message detected
Mount device busy

Operation canceled

No children

Software caused connection abort
Connection refused

Connection reset by peer
Resource deadlock avoided
Destination address required
Math argument

Disk quota exceeded

File exists

Cannot start operation

Bad address

File too large

Inappropriate operation for file type
Host is down

No route to host

Identifier removed

Illegal byte sequence

Operation now in progress
Asynchronous operation in progress
Interrupted system call

Invalid argument

I/0 error

Socket is already connected

Is a directory

Too many levels of symbolic links

(continued on next page)

Error and Signal Handling 4-3

Table 4-2 (Cont.) The Error Code Symbolic Values

Symbolic Constant

Description

EMFILE
EMLINK
EMSGSIZE
ENAMETOOLONG
ENETDOWN
ENETRESET
ENETUNREACH
ENFILE
ENOBUFS
ENODEV
ENOENT
ENOEXEC
ENOLCK
ENOMEM
ENOMSG
ENOPROTOOPT
ENOSPC
ENOSYS
ENOTBLK
ENOTCONN
ENOTDIR
ENOTEMPTY
ENOTSOCK
ENOTSUP
ENOTTY
ENWAIT

ENXIO
EOPNOTSUPP
EPERM
EPFNOSUPPORT
EPIPE
EPROCLIM

EPROTONOSUPPORT

EPROTOTYPE
ERANGE
EREMOTE
EROFS
ESHUTDOWN

4-4 Error and Signal Handling

Too many open files

Too many links

Message too long

Filename too long

Network is down

Network dropped connection on reset
Network is unreachable

File table overflow

No buffer space available

No such device

No such file or directory

Exec format error

No locks available

Not enough core

No message of desired type
Protocol not available

No space left on device
Function not implemented
Block device required

Socket is not connected

Not a directory

Directory not empty

Socket operation on nonsocket
Function not implemented
Not a typewriter

No waiting processes

No such device or address
Operation not supported on socket
Not owner

Protocol family not supported
Broken pipe

Too many processes

Protocol not supported
Protocol wrong type for socket
Result too large

Too many levels of remote in path
Read-only file system

Can’t send after socket shutdown

(continued on next page)

Table 4-2 (Cont.) The Error Code Symbolic Values

Symbolic Constant Description
ESOCKTNOSUPPORT Socket type not supported
ESPIPE Illegal seek

ESRCH No such process

ESTALE Stale NFS file handle
ETIMEDOUT Connection timed out
ETOOMANYREFS Too many references: can’t splice
ETXTBSY Text file busy

EUSERS Too many users

EVMSERR OpenVMS specific nontranslatable error code
EWOULDBLOCK I/0 operation would block channel
EXDEV Cross-device link

You can translate the error codes to a message, similar to that found in UNIX
systems, by using the perror or strerror function. If errno is set to EVMSERR,
perror cannot translate the error code and prints the following message, followed
by the OpenVMS error message associated with the value:

$s:nontranslatable vms error code: XXXXXX VmMS message:

In the message, %s is the string you supply to perror; xxxxxx is the OpenVMS
condition value.

If errno is set to EVMSERR, then the OpenVMS condition value is available in
the vaxcS$errno variable declared in the <errno.h> header file. The vaxc$errno
variable is guaranteed to have a valid value only if errno is set to EVMSERR;
if errno is set to a value other than EVMSERR, the value of vaxc$errno is
undefined.

See the strerror function in the Reference Section for another way to translate
error codes.
4.2 Signal Handling

A signal is a form of software interrupt to the normal execution of a user process.
Signals occur as a result of a variety of events, including any of the following:

e Typing Ctrl/C at a terminal
¢ (Certain programming errors
e A call to the gsignal or raise function

e A wake-up action

4.2.1 OpenVMS Versus UNIX Terminology

Both OpenVMS and UNIX systems provide signal-handling mechanisms that
behave differently but use similar terminology. With the HP C RTL, you
can program using either signal-handling mechanism. Before describing the
signal-handling routines, some terminology must be established.

The UNIX term for a software interrupt is signal. A routine called by the UNIX
system to process a signal is termed a signal handler.

Error and Signal Handling 4-5

A software interrupt on an OpenVMS system is referred to as a signal, condition,
or exception. A routine called by the OpenVMS system to process software
interrupts is termed a signal handler, condition handler, or exception handler.

To prevent confusion, the terms signal and signal handler in this manual refer
to UNIX interrupts and interrupt processing routines, while the terms exception
and exception handler refer to OpenVMS interrupts and interrupt processing

routines.

4.2.2 UNIX Signals and the HP C RTL

Signals are represented by mnemonics defined in the <signal.h> header file.
Table 4-3 lists the supported signal mnemonics and the corresponding event that
causes each signal to be generated on the OpenVMS operating system.

Table 4-3 HP C RTL Signals

Name Description Generated by

SIGABRT! Abort abort()

SIGALRM Alarm clock Timer AST, alarm routine

SIGBUS Bus error Access violation or change mode user

SIGCHLD Child process stopped Child process terminated or stopped

SIGEMT EMT instruction Compatibility mode trap or opcode reserved

to customer

SIGFPE Floating-point Floating-point overflow/underflow
exception

SIGHUP Hang up Data set hang up

SIGILL! Illegal Illegal instruction, reserved operand, or
instruction reserved address mode

SIGINT* Interrupt OpenVMS Ctrl/C interrupt

SIGIOT! IOT instruction Opcode reserved to customer

SIGKILL2? Kill External signal only

SIGQUIT? Quit Not implemented.

SIGPIPE Broken pipe Write to a pipe with no readers.

SIGSEGV Segment Length violation or change mode user
violation

SIGSYS System call Bad argument to system call
error

SIGTERM Software External signal only
terminate

SIGTRAP! Trace trap TBIT trace trap or breakpoint fault

instruction

1Cannot be reset when intercepted.

2Cannot be intercepted or ignored.
3Cannot be blocked.

4Setting SIGINT can affect processing of Ctrl/Y interrupts. For example, in response to a caller’s
request to block or ignore SIGINT, the HP C RTL disables the Ctrl/Y interrupt.

5"Not implemented" for SIGQUIT means that there is no external event, including a Ctrl/Y interrupt,
that would trigger a SIGQUIT signal, thereby causing a signal handler established for SIGQUIT to
be invoked. This signal can be generated only through an appropriate HP C RTL function, such as

raise.

4-6 Error and Signal Handling

(continued on next page)

Table 4-3 (Cont.) HP C RTL Signals

Name Description

Generated by

SIGUSR1 User-defined signal
SIGUSR2 User-defined signal
SIGWINCH® Window size changed

Explicit program call to raise the signal
Explicit program call to raise the signal
Explicit program call to raise the signal

6Supported on OpenVMS Version 7.3 and higher.

By default, when a signal (except for SIGCHLD) occurs, the process is terminated.
However, you can choose to have the signal ignored by using one of the following
functions:

sigaction
signal
sigvec
ssignal

You can have the signal blocked by using one of the following functions:

sigblock
sigsetmask
sigprocmask
sigsuspend
sigpause

Table 4-3 indicates those signals that cannot be ignored or blocked.

You can also establish a signal handler to catch and process a signal by using one
of the following functions:

sigaction
signal
sigvec
ssignal

Unless noted in Table 4-3, each signal can be reset. A signal is reset if the signal
handler function calls signal or ssignal to re-establish itself to catch the signal.
Example 4-1 shows how to establish a signal handler and reset the signal.

The calling interface to a signal handler is:
void handler (int sigint);

Where sigint is the signal number of the raised signal that caused this handler to
be called.

A signal handler installed with sigvec remains installed until it is changed.

A signal handler installed with signal or signal remains installed until the
signal is generated.

A signal handler can be installed for more than one signal. Use the sigaction
routine with the SA_RESETHAND flag to control this.

Error and Signal Handling 4-7

4.2.3 Signal-Handling Concepts

A signal is said to be generated for (or sent to) a process when the event that
causes the signal first occurs. Examples of such events include detection of
hardware faults, timer expiration, and terminal activity, as well as the invocation
of kill. In some circumstances, the same event generates signals for multiple
processes.

Each process has an action to be taken in response to each signal defined by the
system. A signal is said to be delivered to a process when the appropriate action
for the process and signal is taken.

During the time between the generation of a signal and its delivery, the signal is
said to be pending. Ordinarily, this interval cannot be detected by an application.
However, a signal can be blocked from delivery to a process:

e Ifthe action associated with a blocked signal is anything other than to ignore
the signal, and if that signal is generated for the process, the signal remains
pending until either it is unblocked or the action associated with it is set to
ignore the signal.

e If the action associated with a blocked signal is to ignore the signal and if
that signal is generated for the process, it is unspecified whether the signal is
discarded immediately upon generation or remains pending.

Each process has a signal mask that defines the set of signals currently blocked
from delivery to it. The signal mask for a process is initialized from that of

its parent. The sigaction, sigprocmask, and sigsuspend functions control the
manipulation of the signal mask.

The determination of which action is taken in response to a signal is made

at the time the signal is delivered, allowing for any changes since the time of
generation. This determination is independent of the means by which the signal
was originally generated. If a subsequent occurrence of a pending signal is
generated, it is implementation-dependent as to whether the signal is delivered
more than once. The HP C RTL delivers the signal only once. The order in
which multiple, simultaneously pending signals are delivered to a process is
unspecified.

4.2.4 Signal Actions

This section applies to the sigaction, signal, sigvec, and ssignal functions.
There are three types of action that can be associated with a signal:

SIG_DFL
SIG_IGN
pointer to a function

Initially, all signals are set to SIG_DFL or SIG_IGN prior to entry of the main
routine (see the exec functions.) The actions prescribed by these values are:

SIG_DFL — signal-specific default action

e The default actions for the signals defined in this document are specified
under <signal.h>.

e If the default action is to stop the process, the execution of that process
is temporarily suspended. When a process stops, a SIGCHLD signal
is generated for its parent process, unless the parent process has set
the SA_NOCLDSTOP flag. While a process is stopped, any additional
signals that are sent to the process are not delivered until the process

4-8 Error and Signal Handling

is continued, except SIGKILL which always terminates the receiving
process. A process that is a member of an orphaned process group is

not allowed to stop in response to the SIGSTOP, SIGTTIN, or SIGTTOU
signals. In cases where delivery of one of these signals would stop such a
process, the signal is discarded.

Setting a signal action to SIG_DFL for a signal that is pending and whose
default action is to ignore the signal (for example, SIGCHLD), causes the
pending signal to be discarded, whether or not it is blocked.

SIG_IGN — ignore signal

Delivery of the signal has no effect on the process. The behavior of a
process is undefined after it ignores a SIGFPE, SIGILL, or SIGSEGV
signal that was not generated by kill or raise.

The system does not allow the action for the SIGKILL or SIGSTOP
signals to be set to SIG_IGN.

Setting a signal action to SIG_IGN for a signal that is pending causes the
pending signal to be discarded, whether or not it is blocked.

If a process sets the action for the SIGCHLD signal to SIG_IGN, the
behavior is unspecified.

pointer to a function — catch signal

On delivery of the signal, the receiving process executes the signal-
catching function at the specified address. After returning from the
signal-catching function, the receiving process resumes execution at the
point at which it was interrupted.

Specify the signal-catching function as:
void func(int signo);

Here, func is the specified signal-catching function and signo is the signal
number of the signal being delivered.

The behavior of a process is undefined after it returns normally from a
signal-catching function for a SIGFPE, SIGKILL, or SIGSEGV signal that
was not generated by kill or raise.

The system does not allow a process to catch the signals SIGKILL and
SIGSTOP.

If a process establishes a signal-catching function for the SIGCHLD signal
while it has a terminated child process for which it has not waited, it is
unspecified whether a SIGCHLD signal is generated to indicate that child
process.

4.2.5 Signal Handling and OpenVMS Exception Handling

This section discusses how HP C RTL signal handling is implemented with
and interacts with OpenVMS exception handling. Information in this section
allows you to write OpenVMS exception handlers that do not conflict with HP C
RTL signal handling. For information on OpenVMS exception handling, see the
OpenVMS Procedure Calling and Condition Handling Standard.

Error and Signal Handling 4-9

The HP C RTL implements signals with OpenVMS exceptions. When gsignal

or raise is called, the signal number is translated to a particular OpenVMS
exception, which is used in a call to LIB$SIGNAL. This mechanism is necessary
to catch an OpenVMS exception resulting from a user error and translate it into
a corresponding UNIX signal. For example, an ACCVIO resulting from a write to
a NULL pointer is translated to a SIGBUS or SIGSEGV signal.

Tables 4-4 and 4-5 list the HP C RTL signal names, the corresponding OpenVMS
Alpha and Integrity server system exceptions, the event that generates the signal,
and the optional signal code for use with the gsignal and raise functions.

To call a signal handler that you have established with signal or sigvec, the
HP C RTL intercepts the OpenVMS exceptions that correspond to signals by
having an OpenVMS exception handler in the main routine of the program. If
your program has a main function, then this exception handler is automatically
established. If you do not have a main function, or if your main function is written
in a language other than HP C, then you must invoke the VAXC$CRTL _INIT routine
to establish this handler.

The HP C RTL uses OpenVMS exceptions to implement the setjmp and longjmp
functions. When the longjmp function is called, a C$_LONGJMP OpenVMS
exception is signaled. To prevent the C$_LONGJMP exception from being
interfered with by user exception handlers, use the VAXCSESTABLISH routine to
establish user OpenVMS exception handlers instead of calling LIBSESTABLISH.
The C$_LONGJMP mnemonic is defined in the <errnodef.h> header file.

If you want to use OpenVMS exception handlers and UNIX signals in your C
program, your OpenVMS exception handler must be prepared to accept and
resignal the OpenVMS exceptions listed in Table 4—4 @ipha oniy), as well as the
C$_LONGJMP exception and any C$ facility exception that might be introduced
in future versions of the HP C RTL. This is because UNIX signals are global in
context, whereas OpenVMS exceptions are stack-frame based.

Consequently, an OpenVMS exception handler always receives the exception that
corresponds to the UNIX signal before the HP C RTL exception handler in the
main routine does. By resignaling the OpenVMS exception, you allow the HP C
RTL exception handler to receive the exception. You can intercept any of those
OpenVMS exceptions yourself, but in doing so you will disable the corresponding
UNIX signal.

Table 4-4 HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions ipha oniy)

Name OpenVMS Exception Generated By Code

SIGABRT SS$_OPCCUS The abort function -

SIGALRM SS$_ASTFLT The alarm function -

SIGBUS SS$_ACCVIO Access violation -

SIGBUS SS$_CMODUSER Change mode user -

SIGCHLD C$_SIGCHLD Child process stopped -

SIGEMT SS$_COMPAT Compatibility mode trap -

SIGFPE SS$_DECDIV Decimal divide trap FPE_DECDIV_TRAP
SIGFPE SS$_DECINV Decimal invalid operand trap FPE_DECINV_TRAP

(continued on next page)

4-10 Error and Signal Handling

Table 4-4 (Cont.) HP C RTL Signals and Corresponding OpenVMS Alpha Exceptions (aipha oniy)

Name OpenVMS Exception Generated By Code

SIGFPE SS$_DECOVF Decimal overflow trap FPE_DECOVF_TRAP
SIGFPE SS$_HPARITH Floating/decimal division by 0 FPE_FLTDIV_TRAP
SIGFPE SS$ HPARITH Floating overflow trap FPE_FLTOVF_TRAP
SIGFPE SS$_HPARITH Floating underflow trap FPE_FLTUND_TRAP
SIGFPE SS$_HPARITH Integer overflow FPE_INTOVF_TRAP
SIGFPE SS$ HPARITH Invalid operand FPE_INVOPR_TRAP
SIGFPE SS$_HPARITH Inexact result FPE_INXRES_TRAP
SIGFPE SS$_INTDIV Integer div by zero FPE_INTDIV_TRAP
SIGFPE SS$_SUBRNG Subscript out of range FPE_SUBRNG_TRAP
SIGFPE SS$ SUBRNG1 Subscriptl out of range FPE_SUBRNG1_TRAP
SIGFPE SS$_SUBRNG2 Subscript2 out of range FPE_SUBRNG2_TRAP
SIGFPE SS$_SUBRNGS3 Subscript3 out of range FPE_SUBRNG3_TRAP
SIGFPE SS$ _SUBRNG4 Subscript4 out of range FPE_SUBRNG4_TRAP
SIGFPE SS$ SUBRNG5 Subscript5 out of range FPE_SUBRNG5_TRAP
SIGFPE SS$_SUBRNG6 Subscript6 out of range FPE_SUBRNG6_TRAP
SIGFPE SS$_SUBRNG7 Subscript7 out of range FPE_SUBRNG7_TRAP
SIGHUP SS$ HANGUP Data set hangup -

SIGILL SS$ OPCDEC Reserved instruction ILL_PRIVIN_FAULT
SIGILL SS$_ROPRAND Reserved operand ILL_RESOP_FAULT
SIGINT SS$_CONTROLC OpenVMS Ctrl/C interrupt -

SIGIOT SS$ OPCCUS Customer-reserved opcode -

SIGKILL SS$_ABORT External signal only -

SIGQUIT SS$_CONTROLY The raise function -

SIGPIPE SS$_NOMBX No mailbox -

SIGPIPE C$_SIGPIPE Broken pipe -

SIGSEGV SS$_ACCVIO Length violation -

SIGSEGV SS$_CMODSUPR Change mode supervisor -

SIGSYS SS$_ BADPARAM Bad argument to system call -

SIGTERM Not implemented - -

SIGTRAP SS$_BREAK Breakpoint fault instruction -

SIGUSR1 C$_SIGUSR1 The raise function -

SIGUSR2 C$_SIGUSR2 The raise function -

SIGWINCH' C$_SIGWINCH? The raise function -

1Supported on OpenVMS Version 7.3 and higher.
28S8$_BADWINCNT when C$_SIGWINCH not defined (OpenVMS versions before 7.3).

Error and Signal Handling 4-11

OpenVMS Alpha Signal-Handling Notes aipha onty)

e While all signals that exist on OpenVMS VAX systems also exist on
OpenVMS Alpha systems, the corresponding OpenVMS exceptions
and code is different in a number of cases because on Alpha processors
there are two new OpenVMS exceptions and several others that are
obsolete.

e All floating-point exceptions on OpenVMS Alpha systems are signaled
by the OpenVMS exception SS$_HPARITH (high-performance
arithmetic trap). The particular type of trap that occurred is
translated by the HP C RTL through use of the exception summary
longword, which is set when a high-performance arithmetic trap is
signaled.

Table 4-5 HP C RTL Signals and Corresponding OpenVMS Integrity server system Exceptions

(Integrity servers only)

Name OpenVMS Exception Generated By Code

SIGABRT SS$_OPCCUS The abort function -

SIGALRM SS$_ASTFLT The alarm function -

SIGBUS SS$_ACCVIO Access violation -

SIGBUS SS$ CMODUSER Change mode user -

SIGCHLD C$_SIGCHLD Child process stopped -

SIGEMT SS$_COMPAT Compatibility mode trap -

SIGFPE SS$ DECOVF Decimal overflow trap FPE_DECOVF_TRAP

SIGFPE SS$_DECDIV Decimal divide trap FPE_DECDIV_TRAP

SIGFPE SS$_DECINV Decimal invalid operand trap FPE_DECINV_TRAP

SIGFPE SS$ Denormal operand fault FPE_FLTDENORMAL_FAULT
FLTDENORMAL

SIGFPE SS$_FLTDIV Floating/decimal division by 0 FPE_FLTDIV_TRAP

SIGFPE SS$_FLTDIV_F Floating divide by 0 fault FPE_FLTDIV_FAULT

SIGFPE SS$_FLTINE Inexact operation trap FPE_FLTINE_TRAP

SIGFPE SS$_FLTINV Invalid operation trap FPE_FLTINV_TRAP

SIGFPE SS$_FLTINV_F Invalid operation fault FPE_FLTINV_FAULT

SIGFPE SS$ FLTOVF Floating overflow trap FPE_FLTOVF_TRAP

SIGFPE SS$_FLTUND Floating underflow trap FPE_FLTUND_TRAP

SIGFPE SS$_INTDIV Integer division by 0 FPE_INTDIV_TRAP

SIGFPE SS$_INTOVF Integer overflow FPE_INTOVF_TRAP

SIGFPE SS$_SUBRNG Subscript-range FPE_SUBRNG_TRAP

SIGHUP SS$ HANGUP Data set hangup -

SIGILL SS$_OPCDEC Reserved instruction ILL_PRIVIN_FAULT

SIGILL SS$_ROPRAND Reserved operand ILL_RESOP_FAULT

4-12 Error and Signal Handling

(continued on next page)

Table 4-5 (Cont.) HP C RTL Signals and Corresponding OpenVMS Integrity server system
Exceptions (Integrity servers only)

Name OpenVMS Exception Generated By Code
SIGINT SS$_CONTROLC OpenVMS Ctrl/C interrupt -
SIGIOT SS$_OPCCUS Customer-reserved opcode -
SIGKILL SS$_ABORT External signal only -
SIGQUIT SS$_CONTROLY The raise function -
SIGPIPE SS$_NOMBX No mailbox -
SIGPIPE C$_SIGPIPE Broken pipe -
SIGSEGV SS$ ACCVIO Length violation -
SIGSEGV SS$_CMODSUPR Change mode supervisor -
SIGSYS SS$_BADPARAM Bad argument to system call -
SIGTERM Not implemented - -
SIGTRAP SS$_TBIT TBIT trace trap -
SIGTRAP SS$_BREAK Breakpoint fault instruction -
SIGUSR1 C$_SIGUSR1 The raise function -
SIGUSR2 C$_SIGUSR2 The raise function -
SIGWINCH C$_SIGWINCH The raise function -

4.3 Program Example

Example 4-1 shows how the signal, alarm, and pause functions operate. It
also shows how to establish a signal handler to catch a signal, which prevents
program termination.

Example 4-1 Suspending and Resuming Programs

/* CHAP_4_ SUSPEND RESUME.C */

/* This program shows how to alternately suspend and resume a */
/* program using the signal, alarm, and pause functions. */

#define SECONDS 5

#include <stdio.h>
#include <signal.h>

int number of alarms = 5; /* Set alarm counter. */
void alarm_action(int);

main()

{
signal (SIGALRM, alarm action); /* Establish a signal handler. */

/* to catch the SIGALRM signal.*/
alarm(SECONDS); /* Set alarm clock for 5 seconds. */

pause(); /* Suspend the process until *
* the signal is received. */

(continued on next page)

Error and Signal Handling 4-13

Example 4-1 (Cont.) Suspending and Resuming Programs

void alarm action(int x)

{

printf("\t<¢d\007>", number of alarms); /* Print the value of */
/* the alarm counter. */
signal (SIGALRM, alarm action); /* Reset the signal. */
alarm(SECONDS); /* Set the alarm clock. */
if (--number of alarms) /* Decrement alarm counter. */
pause();
}

Here is the sample output from Example 4-1:

$ RUN EXAMPLE
<5> 4> 3> 2> <>

4-14 Error and Signal Handling

O

Subprocess Functions

The HP C Run-Time Library (RTL) provides functions that allow you to create
subprocesses from a HP C program. The creating process is called the parent and
the created subprocess is called the child.

To create a child process within the parent process, use the exec functions
(execl, execle, execv, execve, execlp, and execvp) and the vfork function.
Other functions are available to allow the parent and child to read and write
data across processes (pipe) and to allow for synchronization of the two processes
(wait). This chapter describes how to implement and use these functions.

The parent process can execute HP C programs in its children, either
synchronously or asynchronously. The number of children that can run
simultaneously is determined by the /PRCLM user authorization quota
established for each user on your system. Other quotas that may affect the use of
subprocesses are /ENQLM (Queue Entry Limit), /ASTLM (AST Waits Limit), and
/FILLM (Open File Limit).

This chapter discusses the subprocess functions. Table 5-1 lists and describes all
the subprocess functions found in the HP C RTL. For more detailed information
on each function, see the Reference Section.

Table 5-1 Subprocess Functions

Function Description

Implementation of Child Processes

system Passes a given string to the host environment to be
executed by a command processor.

viork Creates an independent child process.

The exec Functions

execl, execle, execlp Passes the name of the image to be activated in a child
execv, execve, execvp process.

Synchronizing Process

wait, wait3, waitd, Suspends the parent process until a value is returned
waitpid, from a child.

Interprocess Communication

pipe Allows for communication between a parent and child.

Subprocess Functions 5-1

5.1 Implementing Child Processes in HP C

Child processes are created by HP C functions with the OpenVMS LIB$SPAWN
RTL routine. (See the VMS Run-Time Library Routines Volume for information
on LIB$SPAWN.) Using LIB$SPAWN allows you to create multiple levels of child
processes; the parent’s children can also spawn children, and so on, up to the
limits allowed by the user authorization quotas discussed in the introduction to
this chapter.

Child processes can only execute other HP C programs. Other native-mode
OpenVMS languages do not share the ability of HP C to communicate between
processes; if they do, they do not use the same mechanisms. The parent process
must be run under an HP supported command-language interpreter (CLI), such
as DCL. You cannot run the parent as a detached process or under control of a
user-supplied CLI.

Enabling the DECC$DETACHED_CHILD_PROCESS feature logical allows child
processes to be created as detached processes instead of subprocesses. This
feature has only limited support. In some cases, the console cannot be shared

between the parent process and the detached process, which can cause exec to
fail.

Parent and child processes communicate through a mailbox as shown in

Figure 5-1. This mailbox transfers the context in which the child will run. This
context mailbox passes information to the child that it inherits from the parent,
such as the names and file descriptors of all the files opened by the parent and
the current location within those files. The mailbox is deleted by the parent when
the child image exits.

Figure 5-1 Communications Links Between Parent and Child Processes

Parent

context Mailbox context Child
ZK-4002-GE
Note

The mailbox created by the vfork and exec functions is temporary. The
logical name of this mailbox is VAXC$EXECMBX and is reserved for use
by the HP C RTL.

The mailbox is created with a maximum message size and a buffer quota of
512 bytes each, unless the buffer size and quota are explicitly specified with the
DECCS$PIPE_BUFFER_SIZE or DECC$PIPE_BUFFER_QUOTA feature logicals,
or with the bufsize or bufquota parameters of the pipe function. See the pipe
function for more information.

You need the TMPMBX privilege to create a mailbox with these RTL functions.
Since TMPMBX is the privilege required by the DCL commands PRINT and
SUBMIT, most users on a system have this privilege. To see what system
privileges you have, enter a SHOW PROCESS/PRIVILEGES command.

5-2 Subprocess Functions

You cannot change the characteristics of these mailboxes. For more information
on mailboxes, see the VMS I/0 User’s Reference Volume.

5.2 The exec Functions

There are six exec functions that you can call to execute an HP C image in the
child process. These functions expect that vfork has been called to set up a
return address. The exec functions will call vfork if the parent process did not.

When vfork is called by the parent, the exec function returns to the parent
process. When vfork was called by an exec function, the exec function returns
to itself, waits for the child to exit, and then exits the parent process. The exec
function does not return to the parent process unless the parent calls vfork to
save the return address.

In OpenVMS Version 7.2, the exec functions were enhanced to activate either
executable images or DCL command procedures. If no file extension is specified
in the file_name argument, the functions first search for the file with the .EXE
file extension and then for the file with the .COM file extension. If both the
executable image and the command procedure with the same name exist, you
must explicitly specify the .COM file extension to force activating the command
procedure.

For a DCL command procedure, the exec functions pass the first eight arg0, argl,
..., arguments specified in the exec call to the command procedure as PI1, P2, ...
parameters, preserving the case.

Unlike UNIX based systems, the exec functions in the HP C RTL cannot always
determine if the specified executable image or command procedure exists and can
be activated and executed. Therefore, the exec functions might appear to succeed
even though the specified file cannot be executed by the child process.

The status of the child process, returned to the parent process, indicates that the
error occurred. You can retrieve this error code by using one of the functions from
the wait family of functions.

Note

The vfork and exec functions in the HP C RTL on OpenVMS systems
work differently than on UNIX systems:

e On UNIX systems, viork creates a child process, suspends the parent,
and starts the child running where the parent left off.

® On OpenVMS systems, vfork establishes context later used by an
exec function, but it is the exec function, not vfork, that starts a
process running the specified program.

For a programmer, the key differences are:

¢ On OpenVMS systems, code between the call to vfork and the call to
an exec function runs in the parent process.

On UNIX systems, this code runs in the child process.

e On OpenVMS systems, the child inherits open file descriptors and so
on, at the point where the exec function is called.

On UNIX systems, this occurs at the point where vfork is called.

Subprocess Functions 5-3

5.2.1 exec Processing

The exec functions use the LIB§SPAWN routine to create the subprocess and
activate the child image within the subprocess. This child process inherits the
parent’s environment, including all defined logical names and command-line
interpreter symbols.

By default, child processes also inherit the default (working) directory of their
parent process. However, you can use the decc$set _child default dir function
to set the default directory for a child process as it begins execution. For more
information about the decc$set child default dir function, see the Reference
Section.

The exec functions use the logical name VAXC$EXECMBX to communicate
between parent and child; this logical name must not exist outside the context of
the parent image.

The exec functions pass the following information to the child:

e The parent’s umask value, which specifies whether any access is to be
disallowed when a new file is created. For more information about the
umask function, see the Reference Section.

e The file-name string associated with each file descriptor and the current
position within each file. The child opens the file and calls 1seek to position
the file to the same location as the parent. If the file is a record file, the child
is positioned on a record boundary, regardless of the parent’s position within
the record. For more information about file descriptors, see Chapter 2. For
more information on the lseek function, see the Reference Section.

This information is sent to the child for all descriptors known to the parent
including all descriptors for open files, null descriptors, and duplicate
descriptors.

File pointers are not transferred to the child. For files opened by a file pointer
in the parent, only their corresponding file descriptors are passed to the child.
The fdopen function must be called to associate a file pointer with the file
descriptor if the child will access the file-by-file pointer. For more information
about the fdopen function, see the Reference Section.

The DECC$EXEC_FILEATTR_INHERITANCE feature logical can be used
to control whether or not a child process inherits file positioning, and if so,
for which access modes. For more information on DECC$EXEC_FILEATTR_
INHERITANCE, see Section 1.5.

e The signal database. Only SIG_IGN (ignore) actions are inherited. Actions
specified as routines are changed to SIG_DFL (default) because the parent’s
signal-handling routines are inaccessible to the child.

e The environment and argument vectors.

When everything is transmitted to the child, exec processing is complete. Control
in the parent process then returns to the address saved by vfork and the child’s
process ID is returned to the parent.

See Section 4.2.4 for a discussion of signal actions and the SIGCHLD signal.

5-4 Subprocess Functions

5.2.2 exec Error Conditions

The exec functions will fail if LIBSSPAWN cannot create the subprocess.
Conditions that can cause a failure include exceeding the subprocess quota

or finding the communications by the context mailbox between the parent and
child to be broken. Exceeding some quotas will not cause LIB$SPAWN to fail, but
will put LIB§SPAWN into a wait state that can cause the parent process to hang.
An example of such a quota is the Open File Limit quota.

You will need an Open File Limit quota of at least 20 files, with an average of
three times the number of concurrent processes that your program will run. If
you use more than one open pipe at a time, or perform I/O on several files at one
time, this quota may need to be even higher. See your system manager if this
quota needs to be increased.

When an exec function fails, a value of —1 is returned. After such a failure, the
parent is expected to call either the exit or _exit function. Both functions then
return to the parent’s vfork call, which returns the child’s process ID. In this
case, the child process ID returned by the exec function is less than zero. For
more information about the exit function, see the Reference Section.

5.3 Synchronizing Processes

A child process is terminated when the parent process terminates. Therefore, the
parent process must check the status of its child processes before exiting. This is
done using the HP C RTL function wait.

5.4 Interprocess Communication

A channel through which parent and child processes communicate is called a
pipe. Use the pipe function to create a pipe.

5.5 Program Examples

Example 5-1 shows the basic procedures for executing an image in a child
process. The child process in Example 5-1 prints a message 10 times.

Example 5-1 Creating the Child Process
/% chap 5 exec_image.c */

/* This example creates the child process. The only */
/* functionality given to the child is the ability to */
/* print a message 10 times. */

#include <climsgdef.h> /* CLI status values */
#include <stdio.h>

#include <perror.h>

#include <processes.h>

#include <stdlib.h>

static const char *child name = "chap 5 exec_image_child.exe" ;
main()
int status,

cstatus;

(continued on next page)

Subprocess Functions 5-5

Example 5-1 (Cont.) Creating the Child Process

/* NOTE: */
/* Any local automatic variables, even those */
/* having the volatile attribute, may have */
/* indeterminant values if they are modified */
/* between the vfork() call and the matching */
/* exec() call. */
Q@ if ((status = vfork()) != 0) {
/* This is either an error or */
/* the "second" vfork return, taking us "back" */
/* to parent mode. */
(3] if (status < 0)
printf("Parent - Child process failed\n");
else {
printf("Parent - Waiting for Child\n");
(4] if ((status = wait(&cstatus)) == -1)
perror("Parent - Wait failed");
(5] else if (cstatus == CLI$ IMAGEFNF)
printf("Parent - Child does not exist\n");
else

printf("Parent - Child final status: %d\n", cstatus);
}

}
(2] else { /* The FIRST Vfork return is zero, do the exec */
printf("Parent - Starting Child\n");
if ((status = execl(child name, 0)) == -1) {
perror("Parent - Execl failed");
exit(EXIT FAILURE);

/* CHAP 5 EXEC IMAGE CHILD.C */

/* This is the child program that writes a message */
/* through the parent to "stdout" */

#include <stdio.h>

main()
{ . .
int 1;
for (i =0; 1 < 10; i++)
printf("Child - executing\n");
return (255) ; /* Set an unusual success stat */

}

Key to Example 5-1:

© The vfork function is called to set up the return address for the exec call.

The vfork function is normally used in the expression of an if statement.
This construct allows you to take advantage of the double return aspect of
viork, since one return value is 0 and the other is nonzero.

® A 0 return value is returned the first time vfork is called and the parent
executes the else clause associated with the vfork call, which calls execl.

© A negative child process ID is returned when an exec function fails. The
return value is checked for these conditions.

5-6 Subprocess Functions

The wait function is used to synchronize the parent and child processes.

Since the exec functions can indicate success up to this point even if the
image to be activated in the child does not exist, the parent checks the child’s
return status for the predefined status, CLI$_IMAGEFNF (file not found).

In Example 5-2, the parent passes arguments to the child process.

Example 5-2 Passing Arguments to the Child Process

/*

/*
/*
/*
/*

CHAP 5 CHILDARG.C */
In this example, the arguments are placed in an array, gargv, */
but they can be passed to the child explicitly as a zero- */

terminated series of character strings. The child program in this */
example writes the arguments that have been passed it to stdout. */

#include <climsgdef.h>
#include <stdio.h>
#include <stdlib.h>
#include <perror.h>
#include <processes.h>

const char *child name = "chap 5 childarg child.exe" ;

main()

{

int status,
cstatus;
char *gargv[] =
{"Child", "ARGCl", "ARGC2", "Parent", 0};

if ((status = vfork()) !=0) {
if (status < -1)
printf("Parent - Child process failed\n");

else {
printf("Parent - waiting for Child\n");
if ((status = wait(&cstatus)) == -1)

perror("Parent - Wait failed");
else if (cstatus == CLI$_IMAGEFNF)
printf("Parent - Child does not exist\n");

else
printf("Parent - Child final status: %x\n",
cstatus);
}
else {
printf("Parent - Starting Child\n");
if ((status = execv(child name, gargv)) == -1) {
perror ("Parent - Exec failed");
exit(EXIT FAILURE);
}
}
CHAP 5 CHILDARG_CHILD.C */

/* This is a child program that echo’s its arguments */

#include <stdio.h>

(continued on next page)

Subprocess Functions 5-7

Example 5-2 (Cont.) Passing Arguments to the Child Process

main(argc, argv)
int argc;
char *argv[];

{
int i;
printf("Program name: %s\n", argv[0]);
for (1 = 1; i < argc; i++)
printf("Arqgument %d: %s\n", i, argv[i]);
return(255) ;
}

Example 5-3 shows how to use the wait function to check the final status of
multiple children being run simultaneously.

Example 5-3 Checking the Status of Child Processes

/* CHAP_5 CHECK_STAT.C */
/* In this example 5 child processes are started. The wait() */
/* function is placed in a separate for loop so that it is */
/* called once for each child. If wait() were called within */
/* the first for loop, the parent would wait for one child to */
/* terminate before executing the next child. If there were */
/* only one wait request, any child still running when the */
/* parent exits would terminate prematurely. */

#include <climsgdef.h>
#include <stdio.h>
#include <stdlib.h>
#include <perror.h>
#include <processes.h>

const char *child name = "chap 5 check stat child.exe" ;

main()
{ .
int status,
cstatus,
i;
for (1 = 0; i < 5; it++) {
if ((status = vfork()) == 0) {
printf("Parent - Starting Child %d\n", 1i);
if ((status = execl(child name, 0)) == -1)
perror("Parent - Exec failed");
exit(EXIT_FAILURE);
}

else if (status < -1)
printf("Parent - Child process failed\n");

}

printf("Parent - Waiting for children\n");

(continued on next page)

5-8 Subprocess Functions

Example 5-3 (Cont.) Checking the Status of Child Processes

}

for (1 = 0; 1 < 5; it++) {

if ((status = wait(&cstatus)) == -1)
perror("Parent - Wait failed");

else if (cstatus == CLI$ IMAGEFNF)
printf("Parent - Child does not exist\n");

else
printf("Parent - Child %X final status: %d\n",

status, cstatus);

Example 5-4 shows how to use the pipe and dup2 functions to communicate
between a parent and child process through specific file descriptors. The #define
preprocessor directive defines the preprocessor constants inpipe and outpipe as
the names of file descriptors 11 and 12.

Example 5-4 Communicating Through a Pipe

/*

/*
/*
/*
/*
/*
/*

CHAP_5_PIPE.C */

In this example, the parent writes a string to the pipe for */
the child to read. The child then writes the string back */
to the pipe for the parent to read. The wait function is */
called before the parent reads the string that the child has */
passed back through the pipe. Otherwise, the reads and */
writes will not be synchronized. */

#include <perror.h>
#include <climsgdef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <processes.h>
#include <unixio.h>

#define inpipe 11
#define outpipe 12

const char *child name = "chap 5 pipe child.exe" ;

main()

{

int pipes[2];

int mode,
status,
cstatus,
len;

char *outbuf,
*inbuf;

if ((outbuf = malloc(512)) == 0) {
printf("Parent - Outbuf allocation failed\n");
exit(EXIT FAILURE);

(continued on next page)

Subprocess Functions 5-9

Example 5-4 (Cont.) Communicating Through a Pipe

if ((inbuf = malloc(512)) == 0) {
printf("Parent - Inbuf allocation failed\n");
exit(EXIT_FAILURE);

}

if (pipe(pipes) == -1) {
printf("Parent - Pipe allocation failed\n");
exit(EXIT_FAILURE);

}

dup2(pipes[0], inpipe);
dup2 (pipes[1l], outpipe);
strcpy(outbuf, "This is a test of two-way pipes.\n");

status = vfork();

switch (status) {

case 0:
printf("Parent - Starting child\n");
if ((status = execl(child name, 0)) == -1) {
printf("Parent - Exec failed");
exit(EXIT FAILURE);
}
break;
case -1:
printf("Parent - Child process failed\n");
break;
default:

printf("Parent - Writing to child\n");

if (write(outpipe, outbuf, strlen(outbuf) + 1) == -1) {
perror ("Parent - Write failed");
exit (EXIT FAILURE);

}
else {
if ((status = wait(&cstatus)) == -1)
perror("Parent - Wait failed");
if (cstatus == CLI$ IMAGEFNF)
printf("Parent - Child does not exist\n");
else {
printf("Parent - Reading from child\n");
if ((len = read(inpipe, inbuf, 512)) <= 0) {
perror("Parent - Read failed");
eXit(EXIT_FAILURE);
else {
printf("Parent: %s\n", inbuf);
printf("Parent - Child final status: %d\n",
cstatus);
}
}
}
break;
}
}
/% CHAP 5 PIPE CHILD.C */

/* This is a child program which reads from a pipe and writes */
/* the received message back to its parent. */

(continued on next page)

5-10 Subprocess Functions

Example 5-4 (Cont.) Communicating Through a Pipe

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>

#define inpipe 11
#define outpipe 12

main()

char *buffer;
int len;

if ((buffer = malloc(512)) == 0) {
perror("Child - Buffer allocation failed\n");
eXit(EXIT_FAILURE);

}

printf("Child - Reading from parent\n");

if ((len = read(inpipe, buffer, 512)) <= 0) {
perror("Child - Read failed");
exit(EXIT FAILURE);

}

else {
printf("Child: %s\n", buffer);
printf("Child - Writing to parent\n");

if (write(outpipe, buffer, strlen(buffer) + 1) == -1) {

perror("Child - Write failed");
exit(EXIT_FAILURE);

}

}
exit (EXIT SUCCESS);

Subprocess Functions 5-11

6

Curses Screen Management Functions and
Macros

This chapter describes the screen management routines available with HP C for
OpenVMS Systems.

The OpenVMS Curses screen management package is supported on all OpenVMS
systems.

On OpenVMS Alpha systems, two screen management packages are supported:
OpenVMS Curses and a more UNIX compatible package based on the Berkeley
Standard Distribution (BSD) Curses software.l See Section 6.1 for more
information.

Furthermore, the HP C RTL offers a Curses package based on the 4.4BSD
Berkeley Software Distribution. Documentation on the 4.4BSD Curses package

can be found in Screen Updating and Cursor Movement Optimization: A Library
Package, by Kenneth C.R.C. Arnold.

The functions and macros in the OpenVMS and BSD-based Curses packages are
nearly the same. Most differences between them are called out in this chapter.
Otherwise, this chapter makes no distinction between the two Curses packages,
and refers to "Curses" or the "Curses functions and macros."

6.1 Using the BSD-Based Curses Package wia ony

The <curses.h> header file required to use the BSD-based Curses implementation
is provided with the HP C compiler on OpenVMS Alpha systems.

Existing programs are not affected by the BSD-based Curses functions because
the OpenVMS Curses functions are still available as the default Curses package.
(Note that is a change from previous versions of HP C, where BSD-based Curses
was the default.)

To get the 4.4BSD Curses implementation, you must compile modules that
include <curses.h> with the following qualifier:

/DEFINE=_BSD44 CURSES

The BSD-based Curses functions do not provide the support required to call the
OpenVMS SMG$ routines with the pasteboard and keyboard allocated by the
Curses functions. Consequently, Curses programs that rely on calling SMG$
entry points, as well as Curses functions, must continue to use the OpenVMS
Curses implementation.

L Copyright (c) 1981 Regents of the University of California.

All rights reserved.

Curses Screen Management Functions and Macros 6-1

The BSD-based Curses implementation is not interoperable with the old
implementation. Attempts to mix calls to the new functions and the old functions
will result in incorrect output displayed on the screen and could result in an
exception from an SMG$ routine.

6.2 Curses Overview

Curses, the HP C Screen Management Package, is composed of HP C RTL
functions and macros that create and modify defined sections of the terminal
screen and optimize cursor movement. Using the screen management package,
you can develop a user interface that is both visually attractive and user-
friendly. Curses is terminal-independent and provides simplified terminal screen
formatting and efficient cursor movement.

Most Curses functions and macros are listed in pairs where the first routine is a
macro and the second is a function beginning with the prefix “w,” for “window.”
These prefixes are delimited by brackets ([]). For example, [w]addstr designates
the addstr macro and the waddstr function. The macros default to the window
stdscr; the functions accept a specified window as an argument.

To access the Curses functions and macros, include the <curses.h> header file.

The terminal-independent Screen Management Software, which is part of the
OpenVMS RTL, is used to implement Curses. For portability purposes, most
functions and macros are designed to perform in a manner similar to other C
implementations. However, the Curses routines depend on the OpenVMS system
and its Screen Management Software, so performance of some functions and
macros could differ slightly from those of other implementations.

Some functions and macros available on other systems are not available with the
HP C RTL Curses package.

Some functions, such as [w]clrattr, [w]insstr, mv[w]insstr, and [w]setattr
are specific to HP C for OpenVMS Systems and are not portable.

Table 6-1 lists all of the Curses functions and macros found in the HP C RTL.
For more detailed information on each function and macro, see the Reference
Section.

Table 6-1 Curses Functions and Macros

Function or Macro Description

[w]addch Adds a character to the window at the current position of the
cursor.

[w]addstr Adds a string to the window at the current position of the
cursor.

box Draws a box around the window.

[w]clear Erases the contents of the specified window and resets the
cursor to coordinates (0,0).

clearok Sets the clear flag for the window.

[w]clrattr Deactivates the video display attribute within the window.

[w]clrtobot Erases the contents of the window from the current position of

the cursor to the bottom of the window.

(continued on next page)

6—2 Curses Screen Management Functions and Macros

Table 6-1 (Cont.) Curses Functions and Macros

Function or Macro

Description

[w]clrtoeol

[no]crmode
[w]delch

[w]deleteln
delwin
[no]echo

endwin

[w]erase
[w]getch

[w]getstr
getyx
[w]inch

initscr
[w]insch

[w]insertln
[w]insstr
leaveok
longname

[w]move
mv[w]addch
mv[w]addstr
mvcur
mv[w]delch

mv[w]getch
mv[w]getstr

mv[w]inch

Erases the contents of the window from the current cursor
position to the end of the line on the specified window.

Sets and unsets the terminal from cbreak mode.

Deletes the character on the specified window at the current
position of the cursor.

Deletes the line at the current position of the cursor.
Deletes the specified window from memory.

Sets the terminal so that characters may or may not be echoed
on the terminal screen.

Clears the terminal screen and frees any virtual memory
allocated to Curses data structures.

Erases the window by painting it with blanks.

Gets a character from the terminal screen and echoes it on the
specified window.

Gets a string from the terminal screen, stores it in a character
variable, and echoes it on the specified window.

Puts the (y,x) coordinates of the current cursor position on the
window in the variables y and x.

Returns the character at the current cursor position on the
specified window without making changes to the window.

Initializes the terminal-type data and all screen functions.

Inserts a character at the current cursor position in the
specified window.

Inserts a line above the line containing the current cursor
position.

Inserts a string at the current cursor position on the specified
window.

Leaves the cursor at the current coordinates after an update to
the window.

Assigns the full terminal name to a character name that must
be large enough to hold the character string.

Changes the current cursor position on the specified window.
Moves the cursor and adds a character to the specified window.
Moves the cursor and adds a string to the specified window.
Moves the terminal’s cursor.

Moves the cursor and deletes a character on the specified
window.

Moves the cursor, gets a character from the terminal screen,
and echoes it on the specified window.

Moves the cursor, gets a string from the terminal screen, stores
it in a variable, and echoes it on the specified window.

Moves the cursor and returns the character on the specified
window without making changes to the window.

(continued on next page)

Curses Screen Management Functions and Macros 6-3

Table 6-1 (Cont.) Curses Functions and Macros

Function or Macro

Description

mv[w]insch

mv[w]insstr
mvwin

newwin
[no]nl

overlay

overwrite

[w]printw
[no]raw

[w]refresh
[w]scanw
scroll
scrollok
[w]setattr
[w]standend
[w]standout
subwin

touchwin

wrapok

Moves the cursor and inserts a character in the specified
window.

Moves the cursor and inserts a string in the specified window.

Moves the starting position of the window to the specified
coordinates.

Creates a new window with lines and columns starting at the
coordinates on the terminal screen.

Provided only for UNIX software compatibility and has no
functionality in the OpenVMS environment.

Writes the contents of one window that will fit over the
contents of another window, beginning at the starting
coordinates of both windows.

Writes the contents of one window, insofar as it will fit, over
the contents of another window beginning at the starting
coordinates of both windows.

Performs a printf on the window starting at the current
position of the cursor.

Provided only for UNIX software compatibility and has no
functionality in the OpenVMS environment.

Repaints the specified window on the terminal screen.
Performs a scanf on the window.

Moves all the lines on the window up one line.

Sets the scroll flag for the specified window.

Activates the video display attribute within the window.
Deactivates the boldface attribute for the specified window.
Activates the boldface attribute of the specified window.

Creates a new subwindow with lines and columns starting at
the coordinates on the terminal screen.

Places the most recently edited version of the specified window
on the terminal screen.

OpenVMS Curses only. Allows the wrapping of a word from
the right border of the window to the beginning of the next
line.

6.3 Curses Terminology

This section explains some of the Curses terminology and shows you how Curses
looks on the terminal screen.

Consider a Curses application as being a series of overlapping windows. Window
overlapping is called occlusion. To distinguish the boundaries of these occluding
windows, you can outline the rectangular windows with specified characters, or
you can turn on the reverse video option (make the window a light background

with dark writing).

6—-4 Curses Screen Management Functions and Macros

6.3.1 Predefined Windows (stdscr and curscr)

Initially, two windows the size of the terminal screen are predefined by Curses.
These windows are called stdscr and curscr. The stdscr window is defined for
your use. Many Curses macros default to this window. For example, if you draw
a box around stdscr, move the cursor to the left-corner area of the screen, write
a string to stdscr, and then display stdscr on the terminal screen, your display
will look like that in Figure 6-1.

Figure 6-1 An Example of the stdscr Window

4 N

Welcome to Curses_

A)

1

ZK-5752-GE

The second predefined window, curscr, is designed for internal Curses work;

it is an image of what is currently displayed on the terminal screen. The only
HP C for OpenVMS Curses function that will accept this window as an argument
is clearok. Do not write to or read from curscr. Use stdscr and user-defined
windows for all your Curses applications.

6.3.2 User-Defined Windows

You can occlude stdscr with your own windows. The size and location of each
window is given in terms of the number of lines, the number of columns, and the
starting position.

The lines and columns of the terminal screen form a coordinate system, or grid,
on which the windows are formed. You specify the starting position of a window
with the (y,x) coordinates on the terminal screen where the upper left corner of
the window is located. The coordinates (0,0) on the terminal screen, for example,
are the upper left corner of the screen.

The entire area of the window must be within the terminal screen borders;
windows can be as small as a single character or as large as the entire terminal
screen. You can create as many windows as memory allows.

Curses Screen Management Functions and Macros 6-5

When writing to or deleting from windows, changes do not appear on the terminal
screen until the window is refreshed. When refreshing a window, you place the
updated window onto the terminal screen, which leaves the rest of the screen
unaltered.

All user-defined windows, by default, occlude stdscr. You can create two or more
windows that occlude each other as well as stdscr. When writing data to one
occluding window, the data is not written to the underlying window.

You can create overlapping windows (called subwindows). A declared window
must contain the entire area of its subwindow. When writing data to a
subwindow or to the portion of the window overlapped by the subwindow, both
windows contain the new data. For instance, if you write data to a subwindow
and then delete that subwindow, the data is still present on the underlying
window.

If you create a window that occludes stdscr and a subwindow of stdscr, your
terminal screen will look like Figure 6-2.

Figure 6—2 Displaying Windows and Subwindows

ZK-5754-GE
If you delete both the user-defined window and the subwindow, and then update

the terminal screen with the new image, your terminal screen will look like
Figure 6-3.

6—-6 Curses Screen Management Functions and Macros

Figure 6-3 Updating the Terminal Screen

ZK-5753-GE

The string written on the window is deleted, but the string written on the
subwindow remains on stdscr.

6.4 Getting Started with Curses

There are commands that you must use to initialize and restore the terminal
screen when using Curses Screen Management functions and macros. Also, there
are predefined variables and constants on which Curses depends. Example 6-1
shows how to set up a program using Curses.

Example 6-1 A Curses Program

@ #include <curses.h>
@ WINDOW *winl, *win2, *win3;

main()

{
© initscr();

endx;lin():

}

Key to Example 6-1:

@ The preprocessor directive includes the <curses.h> header file, which defines
the data structures and variables used to implement Curses. The <curses.h>
header file includes the <stdio.h> header file, so it is not necessary to
duplicate this action by including <stdio.h> again in the program source

Curses Screen Management Functions and Macros 6-7

code. You must include <curses.h> to use any of the Curses functions or
macros.

@ In the example, WINDOW is a data structure defined in <curses.h>. You
must declare each user-specified window in this manner. In Example 6-1, the
three defined windows are winl, win2, and win3.

© The initscr and endwin functions begin and end the window editing session.
The initscr function clears the terminal screen (for OpenVMS Curses only;
BSD-based Curses does not clear the screen), and allocates space for the
windows stdscr and curscr. The endwin function deletes all windows and
clears the terminal screen.

Most Curses users wish to define and modify windows. Example 6-2 shows you
how to define and write to a single window.

Example 6—-2 Manipulating Windows

#include <curses.h>
WINDOW *winl, *win2, *win3;

main()
{
initscr();
(1) winl = newwin(24, 80, 0, 0);
(2] mvwaddstr (winl, 2, 2, "HELLO");

endwin();

}

Key to Example 6-2:

© The newwin function defines a window 24 rows high and 80 columns wide with
a starting position at coordinates (0,0), the upper left corner of the terminal
screen. The program assigns these attributes to winl. The coordinates are
specified as follows: (lines,columns) or (y,x).

® The mvwaddstr macro performs the same task as a call to the separate macros
move and addstr. The mvwaddstr macro moves the cursor to the specified
coordinates and writes a string onto stdscr.

Note

Most Curses macros update stdscr by default. Curses functions that
update other windows have the same name as the macros but with the
added prefix “w”. For example, the addstr macro adds a given string to
stdscr at the current cursor position. The waddstr function adds a given
string to a specified window at the current cursor position.

When updating a window, specify the cursor position relative to the origin of the
window, not the origin of the terminal screen. For example, if a window has a
starting position of (10,10) and you want to add a character to the window at its
starting position, specify the coordinates (0,0), not (10,10).

6-8 Curses Screen Management Functions and Macros

The string HELLO in Example 6-2 does not appear on the terminal screen until
you refresh the screen. You accomplish this by using the wrefresh function.
Example 6-3 shows how to display the contents of winl on the terminal screen.

Example 6-3 Refreshing the Terminal Screen

#include <curses.h>
WINDOW *winl, *win2, *win3;

main()

initscr();

winl = newwin(22, 60, 0, 0);
mvwaddstr(winl, 2, 2, "HELLO");
wrefresh(winl);

endwin();

}

The wrefresh function updates just the region of the specified window on the
terminal screen. When the program is executed, the string HELLO appears

on the terminal screen until the program executes the endwin function. The
wrefresh function only refreshes the part of the window on the terminal screen
that is not overlapped by another window. If winl was overlapped by another
window and you want all of winl to be displayed on the terminal screen, call the
touchwin function.

6.5 Predefined Variables and Constants

The <curses.h> header file defines variables and constants useful for
implementing Curses (see Table 6-2).

Table 6-2 Curses Predefined Variables and #define Constants

Name Type Description

curscr WINDOW * Window of current screen

stdscr WINDOW * Default window

LINES int Number of lines on the terminal screen
COLS int Number of columns on the terminal screen
ERR — Flag (0) for failed routines

OK — Flag (1) for successful routines

TRUE — Boolean true flag (1)

FALSE — Boolean false flag (0)

_BLINK — Parameter for setattr and clrattr
_BOLD — Parameter for setattr and clrattr

(continued on next page)

Curses Screen Management Functions and Macros 6-9

Table 6-2 (Cont.) Curses Predefined Variables and #define Constants

Name Type Description
_REVERSE — Parameter for setattr and clrattr
_UNDERLINE — Parameter for setattr and clrattr

For example, you can use the predefined macro ERR to test the success or failure
of a Curses function. Example 6—4 shows how to perform such a test.

Example 6-4 Curses Predefined Variables

#include <curses.h>
WINDOW *winl, *win2, *win3;

main()

{
initscr();
winl = newwin(10, 10, 1, 5);

if (mvwin(winl, 1, 10) == ERR)
addstr("The MVWIN function failed.");

endwin();

}

In Example 6—4, if the mvwin function fails, the program adds a string to stdscr
that explains the outcome. The Curses mvwin function moves the starting position
of a window.

6.6 Cursor Movement

In the UNIX system environment, you can use Curses functions to move the
cursor across the terminal screen. With other implementations, you can either
allow Curses to move the cursor using the move function, or you can specify the
origin and the destination of the cursor to the mvcur function, which moves the
cursor in a more efficient manner.

In HP C for OpenVMS Systems, the two functions are functionally equivalent and
move the cursor with the same efficiency.

Example 6-5 shows how to use the move and mvcur functions.

6-10 Curses Screen Management Functions and Macros

Example 6-5 The Cursor Movement Functions

#include <curses.h>

main()
initscr();
(1] cleér();
A nmove(l0, 10);
g; move (LINES/2, COLS/2);

nveur (0, COLS-1, LINES-1, 0);

endwin();

}
Key to Example 6-5:
@ The clear macro erases stdscr and positions the cursor at coordinates (0,0).

® The first occurrence of move moves the cursor to coordinates (10,10).

© The second occurrence of move uses the predefined variables LINES and
COLS to calculate the center of the screen (by calculating the value of half
the number of LINES and COLS on the screen).

O The mvcur function forces absolute addressing. This function can address the
lower left corner of the screen by claiming that the cursor is presently in the
upper right corner. You can use this method if you are unsure of the current
position of the cursor, but move works just as well.

6.7 Program Example

The following program example shows the effects of many of the Curses macros
and functions. You can find explanations of the individual lines of code, if not
self-explanatory, in the comments to the right of the particular line. Detailed
discussions of the functions follow the source code listing.

Example 6-6 shows the definition and manipulation of one user-defined window
and stdscr.

Example 6-6 stdscr and Occluding Windows

/% CHAP 6 STDSCR OCCLUDE.C */
/* This program defines one window: winl. winl is */
/* located towards the center of the default window */

/* stdscr. When writing to an occluding window (winl) */
/* that is later erased, the writing is erased as well. */

#include <curses.h> /* Include header file. */
WINDOW *winl; /* Define windows. */
main()

char str[80]; /* Variable declaration.*/

(continued on next page)

Curses Screen Management Functions and Macros 6-11

Example 6-6 (Cont.) stdscr and Occluding Windows
initscr(); /* Set up Curses. */
noecho(); /* Turn off echo. */

/* Create window. */
winl = newwin(10, 20, 10, 10);

box(stdscr, ’|’, *-"); /* Draw a box around stdscr. */
box(winl, "|", '-"); /* Draw a box around winl. */

refresh(); /* Display stdscr on screen. */
wrefresh(winl); /* Display winl on screen. */
(1) getstr(str); /* Pause. Type a few words! */

mvaddstr(22, 1, str);
O getch();

/* Add string to winl. */
mvwaddstr(winl, 5, 5, "Hello");
wrefresh(winl); /* Add winl to terminal scr. */
getch(); /* Pause. Press Return. */
delwin(winl); /* Delete winl. */
© touchwin(stdscr); /* Refresh all of stdscr. */
getch(); /* Pause. Press Return. */
endwin(); /* Ends session. */

}

Key to Example 6-6:

@ The program waits for input. The echo was disabled using the noecho macro,
so the words that you type do not appear on stdscr. However, the macro
stores the words in the variable str for use elsewhere in the program.

® The getch macro causes the program to pause. When you are finished
viewing the screen, press Return so the program can resume. The getch
macro refreshes stdscr on the terminal screen without calling refresh. The
screen appears like Figure 6-4.

6-12 Curses Screen Management Functions and Macros

Figure 6-4 An Example of the getch Macro

ZK-5751-GE

© The touchwin function refreshes the screen so that all of stdscr is visible and
the deleted occluding window no longer appears on the screen.

Curses Screen Management Functions and Macros 6-13

7

Math Functions

Table 7-1 lists and describes the math functions in the HP C Run-Time Library
(RTL). For more detailed information on each function, see the Reference

Section.

Table 7-1 Math Functions

Function Description

abs Returns the absolute value of an integer.

acos Returns the arc cosine of its radian argument, in the range
[0,7] radians.

acosd Returns the arc cosine of its radian argument, in the range

(Integrity servers, Alpha) [0,180] degrees.

acosh Returns the hyperbolic arc cosine of its argument.

(Integrity servers, Alpha)

asin Returns the arc sine of its radian argument in the range
[-m/2,7/2] radians.

asind Returns the arc sine of its radian argument, in the range

(Integrity servers, Alpha) [—90, 90] degrees.

asinh Returns the hyperbolic arc sine of its argument.

(Integrity servers, Alpha)

atan Returns the arc tangent of its radian argument, in the range
[-7/2,7/2] radians.

atand Returns the arc tangent of its radian argument, in the range

(Integrity servers, Alpha) [—90,90] degrees.

atan? Returns the arc tangent of y/x (its two radian arguments), in
the range [—, 7] radians.

atand? Returns the arc tangent of y/x (its two radian arguments), in

(Integrity servers, Alpha) the range [—180,180] degrees.

atanh Returns the hyperbolic arc tangent of its radian argument.

(Integrity servers, Alpha)

cabs Returns the absolute value of a complex number as:
sqrt (2 + ¢?).

cbrt Returns the rounded cube root of its argument.

(Integrity servers, Alpha)

ceil Returns the smallest integer greater than or equal to its
argument.

copysign Returns its first argument with the same sign as its second.

(Integrity servers, Alpha)
cos

Returns the cosine of its radian argument in radians.

(continued on next page)

Math Functions 7-1

Table 7-1 (Cont.) Math Functions

Function Description

cosd Returns the cosine of its radian argument in degrees.
(Integrity servers, Alpha)

cosh Returns the hyperbolic cosine of its argument.

cot Returns the cotangent of its radian argument in radians.
cotd Returns the cotangent of its radian argument in degrees.

(Integrity servers, Alpha)

drand48, erand48,
jrand48, lrand4s,
mrand48, nrand48

erf (Integrity servers, Alpha)

erfc
(Integrity servers, Alpha)

exp

expml
(Integrity servers, Alpha)

fabs

finite

(Integrity servers, Alpha)
floor

fmod

fp class

(I nt:grity servers, Alpha)

isnan
(Integrity servers, Alpha)

30, J1, in
(Integrity servers, Alpha)
frexp

hypot

initstate
labs
lcong48

lgamma
(Integrity servers, Alpha)

llabs, qgabs
(Integrity servers, Alpha)

ldexp

1div, div

7-2 Math Functions

Generates uniformly distributed pseudorandom number
sequences. Returns 48-bit, nonnegative, double-precision
floating-point values.

Returns the error function of its argument.
Returns (1.0 — erf(x)).

Returns the base e raised to the power of the argument.

Returns exp(x) — 1.

Returns the absolute value of a floating-point value.

Returns 1 if its argument is a finite number; 0 if not.

Returns the largest integer less than or equal to its argument.

Computes the floating-point remainder of its first argument
divided by its second.

Determines the class of IEEE floating-point values, returning a
constant from the <fp class.h> header file.

Test for NaN. Returns 1 if its argument is a NaN; 0 if not.
Computes Bessel functions of the first kind.

Calculates the fractional and exponent parts of a floating-point
value.

Returns the square root of the sum of the squares of two
arguments.

Initializes random number generators.
Returns the absolute value of an integer as a long int.

Initializes a 48-bit uniformly distributed pseudorandom
number sequence.

Computes the logarithm of the gamma function.
Returns the absolute value of an __int64 integer.

Returns its first argument multiplied by 2 raised to the power
of its second argument.

Returns the quotient and remainder after the division of their
arguments.

(continued on next page)

Table 7-1 (Cont.) Math Functions

Function

Description

11div, qdiv
(Integrity servers, Alpha)

log2
(Integrity servers, Alpha)
log, logl0

loglp
(Integrity servers, Alpha)

logb
(Integrity servers, Alpha)

nextafter
(Integrity servers, Alpha)

nint
(Integrity servers, Alpha)

modf

pow
rand, srand
random, srandom

rint
(Integrity servers, Alpha)

scalb
(Integrity servers, Alpha)

seed48, srand48
setstate

sin

sind

(Integrity servers, Alpha)
sinh

sqrt

tan

tand
(Integrity servers, Alpha)

tanh

trunc
(Integrity servers, Alpha)

unordered
(Integrity servers, Alpha)

y0, yl, yn
(Integrity servers, Alpha)

Returns the quotient and remainder after the division of their
arguments.

Returns the logarithm of their arguments.

Computes In(1+x) accurately.
Returns the radix-independent exponent of its argument.

Returns the next machine-representable number following x in
the direction of y.

Returns the nearest integral value to the argument.

Returns the positive fractional part of its first argument
and assigns the integral part to the object whose address is
specified by the second argument.

Returns the first argument raised to the power of the second.
Returns pseudorandom numbers in the range 0 to 2°* — 1.
Generates pseudorandom numbers in a more random sequence.

Rounds its argument to an integral value according to the
current IEEE rounding direction specified by the user.

Returns the exponent of a floating-point number.

Initializes a 48-bit random number generator.
Restarts, and changes random number generators.
Returns the sine of its radian argument in radians.

Returns the sine of its radian argument in degrees.

Returns the hyperbolic sine of its argument.
Returns the square root of its argument.
Returns the tangent of its radian argument in radians.

Returns the tangent of its radian argument in degrees.

Returns the hyperbolic tangent of its argument.

Truncates its argument to an integral value.
Returns 1 if either or both of its arguments is a NaN; 0, if not.

Computes Bessel functions of the second kind.

Math Functions 7-3

7.1 Math Function Variants—float, long double @ity servers, aipha

Additional math routine variants are supported for HP C on OpenVMS Alpha
and Integrity server systems only. They are defined in <math.h> and are float
and long double variants of the routines listed in Table 7-1.

Float variants take float arguments and return float values. Their names have
an f suffix. For example:

float cosf (float x);
float tandf (float x);

Long double variants take long double arguments and return long double
values. Their names have an 1 suffix. For example:

long double cosl (long double x);
long double tandl (long double x);

All math routine variants are included in the Reference Section of this manual.

Note that for programs compiled without /L._DOUBLE=64 (that is, compiled
with the default /L DOUBLE=128), the long double variants of these HP C RTL
math routines map to the X_FLOAT entry points documented in the HP Portable
Mathematics Library (HPML) manual.

7.2 Error Detection

To help you detect run-time errors, the <errno.h> header file defines the following
two symbolic values that are returned by many (but not all) of the mathematical
functions:

e EDOM indicates that an argument is inappropriate; the argument is not
within the function’s domain.

e ERANGE indicates that a result is out of range; the argument is too large or
too small to be represented by the machine.

When using the math functions, you can check the external variable errno for
either or both of these values and take the appropriate action if an error occurs.

The following program example checks the variable errno for the value EDOM,
which indicates that a negative number was specified as input to the function
sqrt:

#include <errno.h>
#include <math.h>
#include <stdio.h>

main()

{

double input, square root;

printf("Enter a number: ");
scanf("$le", &input);

errno = 0;

square root = sqrt(input);

if (errno == EDOM)
perror("Input was negative");
else
printf("Square root of %e = %e\n",
input, square_root);

7-4 Math Functions

If you did not check errno for this symbolic value, the sqrt function returns 0
when a negative number is entered. For more information about the <errno.h>
header file, see Chapter 4.

7.3 The <fp.h> Header File

The <fp.h> header file implements some of the features defined by the Numerical
C Extensions Group of the ANSI X3J11 committee. You might find this useful for
applications that make extensive use of floating-point functions.

Some of the double-precision functions listed in this chapter return the value
+HUGE_VAL (defined in either <math.h> or <fp.h>) if the result is out of range.
The float version of those functions return the value HUGE_VALF (defined only
in <fp.h>) for the same conditions. The long double version returns the value
HUGE_VALL (also defined in <fp.h>).

For programs compiled to enable IEEE infinity and NaN values, the values
HUGE_VAL, HUGE_VALF, and HUGE_VALL are expressions, not compile-time
constants. Initializations such as the following cause a compile-time error:

$ CREATE IEEE_INFINITY.C
#include <fp.h>

double my huge val = HUGE VAL
"z
$ CC /FLOAT=IEEE/IEEE=DENORM IEEE_INFINITY

double my huge val = HUGE VAL;

$CC-E-NEEDCONSTEXPR, In the initializer for my huge val, "decc$gt dbl infinity"
is not constant, but occurs in a context that requires a constant expression.
at line number 3 in file WORK1$:[RTL]IEEE_INFINITY.C;l

$

When using both <math.h> and <fp.h>, be aware that <math.h> defines a
function isnan and <fp.h> defines a macro by the same name. Whichever header
is included first in the application will resolve a reference to isnan.

7.4 Example

Example 7-1 shows how the tan, sin, and cos functions operate.

Example 7-1 Calculating and Verifying a Tangent Value

/* CHAP_7_MATH_ EXAMPLE.C */
/* This example uses two functions --- mytan and main --- */
/* to calculate the tangent value of a number, and to check */
/* the calculation using the sin and cos functions. */

#include <math.h>
#include <stdio.h>

/* This function calculates the tangent using the sin and */
/* cos functions. */
double mytan(x)
double x;
{
double vy,
vl,
y2;

(continued on next page)

Math Functions 7-5

Example 7-1 (Cont.) Calculating and Verifying a Tangent Value

sin(x);
cos(X);

yl
y2
if (y2 == 0)

y = 0;
else

y =yl /y2;

return y;

}

main()

double x;

/* Print values: compare */
for (x = 0.0; x < 1.5; x += 0.1)
printf("tan of %4.1f = %6.2£\t%6.2f\n", x, mytan(x), tan(x));
}

Example 7-1 produces the following output:

$ RUN EXAMPLE

tan of 0.0 = 0.00 0.00
tan of 0.1 = 0.10 0.10
tan of 0.2 = 0.20 0.20
tan of 0.3 = 0.31 0.31
tan of 0.4 = 0.42 0.42
tan of 0.5 = 0.55 0.55
tan of 0.6 = 0.68 0.68
tan of 0.7 = 0.84 0.84
tan of 0.8 = 1.03 1.03
tan of 0.9 = 1.26 1.26
tan of 1.0 = 1.56 1.56
tan of 1.1 = 1.96 1.96
tan of 1.2 = 2.57 2.57
tan of 1.3 = 3.60 3.60
tan of 1.4 = 5.80 5.80
$

7-6 Math Functions

8

Memory Allocation Functions

Table 8-1 lists and describes all the memory allocation functions found in the
HP C Run-Time Library (RTL). For a more detailed description of each function,
see the Reference Section.

Table 8-1 Memory Allocation Functions

Function Description

brk, sbrk Determine the lowest virtual address that is not used with the
program.

calloc, malloc Allocate an area of memory.

cfree, free Make available for reallocation the area allocated by a previous

calloc, malloc, or realloc call.

realloc Changes the size of the area pointed to by the first argument
to the number of bytes given by the second argument.

strdup Duplicates a string.

All HP C RTL functions requiring additional storage from the heap get
that storage using the HP C RTL memory allocation functions malloc,
calloc, realloc, free, and cfree. Memory allocated by these functions is
quadword-aligned.

The ANSI C standard does not include cfree. For this reason, it is preferable to
free memory using the functionally equivalent free function.

The brk and sbrk functions assume that memory can be allocated contiguously
from the top of your address space. However, the malloc function and RMS
may allocate space from this same address space. Do not use the brk and sbrk
functions in conjunction with RMS and HP C RTL routines that use malloc.

Previous versions of the VAX C RTL documentation indicated that the memory
allocation routines used the OpenVMS RTL functions LIB$GET_VM and
LIB$FREE_VM to acquire and return dynamic memory. This is no longer the
case; interaction between these routines and the HP C RTL memory allocation
routines is no longer problematic (although LIB§SHOW_VM can no longer be
used to track HP C RTL malloc and free usage).

The HP C RTL memory allocation functions calloc, malloc, realloc, and
free are based on the LIB$ routines LIBVM_CALLOC, LIBVM_MALLOC,
LIB$VM_REALLOC and LIB$VM_FREE, respectively.

The routines VAXC$CALLOC OPT, VAXC$CFREE OPT, VAXC$FREE OPT,
VAXCSMALLOC_OPT, and VAXC$REALLOC OPT are now obsolete and should not
be used in new development. However, versions of these routines that are
equivalent to the standard C memory allocation routines are provided for
backward compatibility.

Memory Allocation Functions 8-1

8.1 Program Example

Example 8-1 shows the use of the malloc, calloc, and free functions.

Example 8-1 Allocating and Deallocating Memory for Structures

/* CHAP_8 MEM MANAGEMENT.C

*/

/* This example takes lines of input from the terminal until */
/* it encounters a Ctrl/Z, places the strings into an */
/* allocated buffer, copies the strings to memory allocated for */
/* structures, prints the lines back to the screen, and then */
/* deallocates all the memory used for the structures. */

#include <stdlib.h>
#include <stdio.h>

fdefine MAX LINE LENGTH 80

struct line rec { /*
struct line rec *next; /*
char *data; /*

i

int main(void)

{

char *buffer;

/* Define pointers to */
/* structure (input lines). */

Declare the structure. */
Pointer to next line. */
A line from terminal. */

struct line rec *first line = NULL,

*next line,
*last line = NULL;

/* Buffer points to memory. */
malloc (MAX LINE_LENGTH);

/* If error ... */

buffer =

if (buffer == NULL) {
perror("malloc");
exit (EXIT FAILURE);
}

while (gets(buffer) != NULL) {
/* Allocate for input line.
calloc(l, sizeof (struct line rec));

next line =

if (next line == NULL) {
perror("calloc");
exit(EXIT FAILURE);

}

/* Put line in data area.

next line->data = buffer;

if (last line == NULL)
first line =

else

/* While not Ctrl/Z ... */
*/

*/

/* Reset pointers. */
next line;

last line->next = next line;

last line = next line;

/* Allocate space for the
/* next input line.
buffer =

8-2 Memory Allocation Functions

*/
*/

malloc(MAX LINE LENGTH);

(continued on next page)

Example 8-1 (Cont.) Allocating and Deallocating Memory for Structures

}

if (buffer == NULL) {
perror("malloc");
exit(EXIT FAILURE);

}
}
free(buffer); /* Last buffer always unused. */
next line = first line; /* Pointer to beginning. */

while (next l