
DECset

Guide to Detailed Program Design for
OpenVMS Systems
Order Number: AA–PJMXC–TE

November 1998

This guide introduces the Program Design Facility, which provides an
integrated method for designing, creating, compiling, correcting, and
inspecting source code. The guide also explains how to get started using its
basic features.

Revision/Update information: This is a revised manual.

Operating System and Version: OpenVMS VAX, Version 6.2 or higher
OpenVMS Alpha, Version 6.2 or higher
DECwindows Motif, Version 1.2-3 or
higher

Software Version: DECset for OpenVMS, Version 12.3

DIGITAL Language-Sensitive Editor/Source
Code Analyzer, Version 4.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, July 1992
Revised, May 1995
Revised, November 1998

While DIGITAL or EDS believes the information included in this publication is correct as of the
date of publication, it is subject to change without notice.

Possession, use, or copying of the software described in this documentation is authorized only
pursuant to a valid written license from DIGITAL, an authorized sublicensor, or the identified
licensor.

Digital Equipment Corporation or EDS makes no representations that the interconnection of its
products in the manner described in this document will not infringe existing or future patent
rights, nor do the descriptions contained in this document imply the granting of licenses to
make, use, or sell equipment or software in accordance with the description.

© Electronic Data Systems Limited 1994, 1995, 1998.

© Digital Equipment Corporation 1992, 1995, 1998. All rights reserved.

The following are trademarks of Digital Equipment Corporation: DEC, DEC Ada, DEC BASIC,
DECdocument, DEC Pascal, DECset, DECwindows, DIGITAL C, DIGITAL COBOL, DIGITAL
VAX COBOL, DIGITAL Fortran, EDT, OpenVMS, OpenVMS RMS, VAX DOCUMENT, VAX PL/I,
VMS, and the DIGITAL logo.)

All other trademarks and registered trademarks are the property of their respective holders.

This document is available on CDROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . vii

1 Introduction

1.1 DECset . 1–1
1.2 Source Code Analyzer (SCA) . 1–2
1.3 Language-Sensitive Editor (LSE) . 1–2
1.4 Designing Programs and Generating Reports 1–3

2 Getting Started Designing Programs

2.1 Entering Design Information with LSE . 2–2
2.1.1 Entering Design Information for a Module 2–2
2.1.2 Adding Design Information for a Routine 2–4
2.1.3 Entering Pseudocode . 2–6
2.1.4 Moving Pseudocode to Comments . 2–7
2.1.5 Using Overview Operations . 2–8
2.1.6 Completing the Implementation . 2–9
2.2 Retrieving Design Information . 2–11
2.2.1 Transferring Design Information to an SCA Library 2–11
2.2.2 Using an SCA Keyword Query . 2–12
2.2.3 Generating Reports . 2–12
2.2.4 Using LSE Packages and Help Text . 2–13

3 Entering Design Information Using LSE

3.1 Introduction . 3–1
3.2 Expressing Design Information Using Program Structure 3–1
3.3 Expressing Design Information Using Comments 3–2
3.3.1 Using Tagged Comments . 3–3
3.3.1.1 Text Comments . 3–3
3.3.1.2 Keyword Lists . 3–3
3.3.1.3 Structured Comments . 3–4

iii

3.3.2 Associating Comments with Declarations 3–5
3.4 Expressing Design Information Using Pseudocode 3–6
3.4.1 Using Pseudocode in Data Declarations 3–7
3.4.2 Using Pseudocode in Algorithms . 3–9
3.4.3 Refining the Design . 3–9

4 Retrieving Design Information

4.1 Using Overviews to Retrieve Design Information 4–1
4.2 Transferring Design Information to an SCA Library 4–3
4.2.1 Compiling Design Information . 4–4
4.2.2 Loading Design Information into an SCA Library 4–4
4.3 Using Keyword Queries . 4–5
4.4 Generating Reports . 4–5
4.4.1 Using the Report Commands . 4–5
4.4.2 General Report Information . 4–7
4.4.3 DOMAIN Option . 4–8
4.4.4 FILL Option . 4–9
4.4.5 DESIGN_EXAMPLE Source File . 4–9
4.4.6 Creating Online HELP . 4–11
4.4.7 Creating LSE Package Definitions . 4–13
4.4.8 Creating INTERNALS Reports . 4–15
4.4.9 Creating 2167A Software Design Reports 4–22
4.4.9.1 Describing 2167A Structure in your Code 4–23
4.4.9.2 Retrieving 2167A Structure Information 4–25
4.4.10 Options for Standard Reports . 4–27

5 Customizing Reports

5.1 Introduction . 5–1
5.2 How Reports are Organized . 5–2
5.3 Overview of Report Processing . 5–2
5.4 Modifying Report Source Files . 5–3
5.5 Changing the Default Value of an Option 5–4
5.6 Modifying Query Expressions . 5–4
5.7 Adding New Tags and Keyword Lists . 5–5
5.8 Modifying Tag Names . 5–6
5.9 Modifying Section Headers and Other Fixed Text 5–6
5.10 Deleting Information from a Report . 5–7
5.11 Customizing 2167A Reports . 5–7
5.11.1 Adding a Section to a 2167A Report . 5–8
5.11.2 Using Program Code For Report Information 5–9

iv

Index

Figures

4–1 INTERNALS Report Information for Compilation Units
Example . 4–17

4–2 INTERNALS Report Information for a Routines Section
Example . 4–19

4–3 INTERNALS Report Information for a Body Section
Example . 4–21

4–4 Source Files of Special Tags . 4–24

Tables

1 Conventions Used in This Guide . ix
4–1 HELP Report . 4–13
4–2 PACKAGE Report . 4–14
4–3 Tags for Component and Unit Information 4–26
4–4 2167A_DESIGN Report Options . 4–27
4–5 INTERNALS Report Options . 4–28
4–6 HELP Report Options . 4–30
4–7 PACKAGE Report Options . 4–31

v

Preface

This guide describes the Program Design Facility, which provides an integrated
method for designing, creating, compiling, correcting, and inspecting source
code. In addition, this guide explains how to get started using the basic
features.

Intended Audience
This guide is for experienced programmers and technical managers involved in
detailed program design. The user should be familiar with both LSE and SCA.

Document Structure
The Guide to Detailed Program Design for OpenVMS Systems contains the
following chapters:

• Chapter 1 provides an overview of the DECset tools, LSE, SCA, and
program design.

• Chapter 2 shows how features of LSE, SCA, and OpenVMS compilers are
used to design programs and generate reports.

• Chapter 3 provides in-depth information on entering detailed program
design.

• Chapter 4 provides information on running standard reports, the available
options, and sample outputs for each report.

• Chapter 5 provides information on customizing reports and creating new
reports.

vii

Associated Documents
The following documents might also be helpful when using LSE:

• Using DECset for OpenVMS Systems describes how to use the DIGITAL
Software Engineering Tools (DECset) with other OpenVMS facilities
to create an effective software development environment on OpenVMS
systems.

• Guide to DIGITAL Language-Sensitive Editor for OpenVMS Systems
contains instructions on how to use the DECwindows LSE.

• DIGITAL Language-Sensitive Editor/Source Code Analyzer for OpenVMS
Reference Manual contains command dictionary, parameter glossary,
command summary and translation table information for both the LSE and
SCA components.

• DIGITAL Language-Sensitive Editor Command-Line Interface and
Callable Routines Reference Manual contains LSE command-line interface
information and OpenVMS-specific information.

• Guide to Source Code Analyzer for OpenVMS Systems contains instructions
on how to use the DECwindows SCA.

• DIGITAL Source Code Analyzer Callable Routines and Queries Reference
Manual contains SCA command-line interface information and OpenVMS-
specific information.

References to Other Products
Some older products that DECset components previously worked with might
no longer be available or supported by DIGITAL. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with DECset.

Refer to the Software Product Description for a current list of the products that
the DECset components are warranted to interact with and support.

viii

Conventions Used in This Document
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in This Guide

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

() In format descriptions, if you choose more than one
option, parentheses indicate that you must enclose the
choices in parentheses.

[] In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term.

monospace boldface text Boldface, monospace text represents user input in
interactive examples.

(continued on next page)

ix

Table 1 (Cont.) Conventions Used in This Guide

Convention Description

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

x

1
Introduction

This chapter is an introduction to the DIGITAL Software Engineering Tools
(DECset), designing programs, and generating reports.

The Program Design Facility provides an integrated method for designing,
creating, compiling, correcting, and inspecting source code. This is not a
product, or even a tool—it is an abstract title for a set of features implemented
across DIGITAL Language-Sensitive Editor (LSE), DIGITAL Source Code
Analyzer (SCA), and the compilers.

1.1 DECset
The DECset tools provide an integrated method for designing, creating,
compiling, correcting, and inspecting your source code. You can include design
information that can be processed, analyzed, and preserved throughout the
software development cycle. You can review and modify the source code for
your software project, and access all your project files through LSE.

DECset is a group of the following DIGITAL layered components:

• DIGITAL Language-Sensitive Editor/Source Code Analyzer (LSE/SCA)

• DIGITAL Code Management System (CMS)

• DIGITAL Module Management System (MMS)

• DIGITAL Test Manager

• DIGITAL Performance and Coverage Analyzer (PCA)

• DECset Environment Manager

The combination of features from two of these tools, LSE and SCA, provide the
ability to design programs and retrieve program design.

Individually, each tool is useful and can enhance programmer productivity.
Used together, these tools combine with supported programming languages,
system services, and utilities to make an integrated environment with the
following characteristics:

Introduction 1–1

Introduction
1.1 DECset

• Support for the multiple phases of the software life cycle

• Support for applications written in multiple languages

• Compilers and tools that pass substantial information among themselves to
automate tasks previously performed manually

1.2 Source Code Analyzer (SCA)
The Source Code Analyzer (SCA) is an interactive cross-reference and static
analysis tool that works with many languages. It can help you understand
the complexities of a large software project. Because it allows you to analyze
and understand an entire system, SCA is extremely useful during the
implementation and maintenance phases of a project.

SCA provides the following capabilities:

• Cross-referencing—Gives you an index to information in your source
code

• Static analysis—Enables you to extract information about program
structures and the relationship of routines, symbols, and files

• Library creation and maintenance—Takes the information generated
by supported compilers and merges these files together into libraries to
create a picture of your entire project

• Graphical user interface—Provides a DECwindows-based user interface
from which you can easily access all SCA capabilities

1.3 Language-Sensitive Editor (LSE)
The Language-Sensitive Editor (LSE) is an advanced text editor with language-
specific features. In addition to text-editing features, LSE provides the
following language-specific support:

• Code compilation

• Diagnostic review

• Formatted language constructs

• Online language HELP

• Pseudocode entry support

• Code outlining

• Documentation extraction

1–2 Introduction

Introduction
1.3 Language-Sensitive Editor (LSE)

With LSE, you can customize your editing environment to conform to your
programming style. You can also extend your editing environment to handle
highly specialized editing needs.

1.4 Designing Programs and Generating Reports
LSE and SCA provide features to help you develop your detailed design and
retain it as you move from design to implementation. LSE overviews and SCA
reports can retrieve the retained design information.

You can also use LSE and SCA to extract detailed design information from
existing source files. You can customize LSE and SCA to improve the design
information extracted from source files that were not created using the
standard LSE templates.

Introduction 1–3

2
Getting Started Designing Programs

This chapter shows, with simple examples, how features of LSE, SCA, and
OpenVMS compilers are used to design programs and generate reports. You
can use these features to enter and retrieve a wide variety of program design
information, including:

• Routine interfaces

• Data types

• Algorithms

• Routine calls

Design information is information about the low-level design of your
software. There are two kinds of design information:

• Structural (modules, routines and their arguments, variables)

• Textual (description of data and algorithms in the form of comments or
pseudocode)

With DECset, you specify design information in program source files. This is
sometimes called embedded program design. You can gradually transform
your design into a completed program, retaining design information in
comments, or you can set aside the design and create your implementation in a
new source file.

You can choose any of the programming languages supported by DECset
to express your design. Your implementation can be in the same language
as your design or in other languages. DECset can supply extracted design
information in a variety of forms, such as LSE templates, HELP text, and
hardcopy reports.

To create, modify, and retrieve low-level design information, use the following
tools:

• LSE to create and modify design information (in comments and
pseudocode)

Getting Started Designing Programs 2–1

Getting Started Designing Programs

• A compiler to check the syntax of your design

• A compiler and SCA to transfer design information to an SCA library

• LSE overviews, SCA queries, and SCA reports to retrieve design
information

The output from the PACKAGE and HELP reports can then assist in further
design and development work.

2.1 Entering Design Information with LSE
This section explains the steps for entering design information for a new or
existing program. The examples are in C, but the same steps can be applied
to designs and programs written in any language supported by DECset.
Customer-written compilers, and even some obsolescent DIGITAL compilers,
might not support the /DESIGN qualifier. Therefore, refer to the specific
compiler’s documentation to determine whether it supports the entering of
design information. For more detailed information for entering designs, see
Chapter 3.

This section describes the following:

• Entering design information for a module

• Adding design information for a routine

• Entering pseudocode

• Moving pseudocode to comments

• Using overview operations

• Generating an implementation from the design

2.1.1 Entering Design Information for a Module
To create a new design or program, do the following:

1. Create a source file with LSE.

2. Expand the placeholders to get the template for module header comments.

If you are adding design information to an existing source file, get the
template by typing the appropriate token name (for the C language,
module_level_comments or MLC), then enter the EXPAND (Ctrl/E) command.
You can customize the template to match your own source formatting standards
by using the LSE TOKEN commands.

2–2 Getting Started Designing Programs

Getting Started Designing Programs
2.1 Entering Design Information with LSE

The following is an example of the standard C template for module header
comments:

/*
**++
** FACILITY: {@tbs@}
**
** MODULE DESCRIPTION:
**
** {@tbs@}
**
** AUTHORS:
**
** {@tbs@}
**
** CREATION DATE: {@tbs@}
**
** DESIGN ISSUES:
**
** {@tbs@}
**
** [@optional module tags@]...
**
** MODIFICATION HISTORY:
**
** {@tbs@}...
**--
*/

Getting Started Designing Programs 2–3

Getting Started Designing Programs
2.1 Entering Design Information with LSE

Complete the header comment block by filling in text to replace the [{@tbs@}
placeholders and delete unnecessary sections. For example:

/*
**++
** FACILITY: Sample facility 1
**
** MODULE DESCRIPTION:
**
** This is a sample module used to show how to use LSE and SCA to create
** a detailed design.
**
** AUTHORS:
**
** Jane Smith
**
** CREATION DATE: June 27, 1998
**
** KEYWORDS:
**
** Examples, sample design
**
** MODIFICATION HISTORY:
**
** {@tbs@}...
**--
*/

2.1.2 Adding Design Information for a Routine
To add design information for a routine, do the following:

1. Expand additional placeholders to get a function definition template.

2. Fill in the header comment block and calling sequence information.

3. Add the type declarations needed for the function return value and
argument types.

2–4 Getting Started Designing Programs

Getting Started Designing Programs
2.1 Entering Design Information with LSE

The following is an example of a typical result:

#include <stdlib>
typedef int integer_matrix[10][10]; 1
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right);

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function computes the matrix product of two integer matrices.
**
** It uses a simple, triple-nested loop, and does not do any checking to
** see if the matrices conform.
**
** FORMAL PARAMETERS:
**
** left:
** The left operand.
**
** right:
** The right operand.
**
** RETURN VALUE:
**
** The result of multiplying the two matrices.
**
**--
*/
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right) 2
{

[@block declaration@]...;

{@statement@}...;
}

Key to the example:

1 Shows the type declaration used for return value and argument types.

2 Shows the function definition, including function name, return value type,
arguments, and their types.

Note

You have now entered enough design information so you can use SCA
to retrieve design information in the form of LSE package definitions,

Getting Started Designing Programs 2–5

Getting Started Designing Programs
2.1 Entering Design Information with LSE

HELP text, and a preliminary INTERNALS report. See Section 2.2 for
more information.

2.1.3 Entering Pseudocode
You can enter your algorithm’s design in the form of pseudocode. Pseudocode is
a textual description of the actions to be performed by a piece of software. In
DECset, pseudocode is bracketed by pseudocode delimiters. By default, these
delimiters are « ». They can be customized by using the SET LANGUAGE
PSEUDOCODE DELIMIT command.

You can mix pseudocode and final source code, as shown below. Enter
pseudocode by issuing the ENTER PSEUDOCODE (PF1 Space) command,
then type your pseudocode text. For example:

#include <stdlib>
typedef int integer_matrix[10][10];
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right);

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function computes the matrix product of two integer matrices.
**
** It uses a simple, triple-nested loop, and does not do any checking to
** see if the matrices conform.
**
** FORMAL PARAMETERS:
**
** left:
** The left operand.
**
** right:
** The right operand.
**
** RETURN VALUE:
**
** The result of multiplying the two matrices.
**
**--
*/
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right)
{

integer_matrix result_matrix; 1

«Loop over the rows of the left matrix» 2
return result_matrix; 3

}

2–6 Getting Started Designing Programs

Getting Started Designing Programs
2.1 Entering Design Information with LSE

Key to the example:

1 Shows the final source code

2 Uses pseudocode as a loop statement

3 Shows final source code

2.1.4 Moving Pseudocode to Comments
LSE enables you to preserve the descriptive pseudocode text for later use as
design information. To change pseudocode to comment lines, issue the ENTER
COMMENT command. For example, if you apply the ENTER COMMENT
(PF1 B) command to the pseudocode line shown in the example code in
Section 2.1.3, the result is as follows:

/*
** Loop over the rows of the left matrix
*/
{@tbs@}
return result_matrix;

You can now fill in the next level of detail of your design as follows:

/*
** Loop over the rows of the left matrix
*/
for (i = 1; i < «matrix size»; i++)
{
«Loop over the columns of the right matrix» 1

};
return result_matrix;

Note that 1 shows a new pseudocode line.

Getting Started Designing Programs 2–7

Getting Started Designing Programs
2.1 Entering Design Information with LSE

2.1.5 Using Overview Operations
You can use overview operations to retrieve design information stored in
comments, as in this code example:

/*
** Loop over the rows of the left matrix
*/
for (i = 1; i < 10; i++)
{

/*
** Loop over the columns of the right matrix 1
*/
for (j = 1; j < 10; j++)
{

/*
** Compute the inner product of the current row and column
*/
for (k = 1; k < 10; k++)
{

*result_matrix[i][j] =
*result_matrix[i][j] + *left[i][k] * *right[k][j];

}
};

};
return result_matrix;

Do an overview operation on 1 by issuing the COLLAPSE (Ctrl \)
command.

The following is the result of using the overview operation with the COLLAPSE
command:

/*
** Loop over the rows of the left matrix
*/
for (i = 1; i < 10; i++)
{
«** Loop over the columns of the right matrix ...» 1
};
return result_matrix;

Key to the example:

1 Shows the retrieved design information that was originally entered as
pseudocode in the example in Section 2.1.4.

2–8 Getting Started Designing Programs

Getting Started Designing Programs
2.1 Entering Design Information with LSE

2.1.6 Completing the Implementation
The source code is complete when all pseudocode placeholders are expanded.
(This file is available online in SCA$EXAMPLES:DESIGN_EXAMPLE.C.)

The complete example is as follows:

/*
**++
** FACILITY: Sample facility 1
**
** MODULE DESCRIPTION:
**
** This is a sample module used to show how to use LSE and SCA to create
** a detailed design.
**
** AUTHORS:
**
** Jane Smith
**
** CREATION DATE: June 27, 1998
**
** DESIGN ISSUES:
**
** {@tbs@}
**
** KEYWORDS:
**
** Examples, sample design
**
** MODIFICATION HISTORY:
**
** {@tbs@}...
**--
*/

#include <stdlib>
typedef int integer_matrix[10][10];
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right);

Getting Started Designing Programs 2–9

Getting Started Designing Programs
2.1 Entering Design Information with LSE

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function computes the matrix product of two integer matrices.
**
** It uses a simple, triple-nested loop, and does not do any checking to
** see if the matrices conform.
**
** FORMAL PARAMETERS:
**
** left:
** The left operand.
**
** right:
** The right operand.
**
** RETURN VALUE:
**
** The result of multiplying the two matrices.
**
**--
*/
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right)
{

integer_matrix *result_matrix;
int i, j, k;

/*
** Allocate and initialize the result matrix
*/
result_matrix = malloc (i*j);
for (i = 1; i < 10; i++)
{

for (j = 1; j < 10; j++)
{

*result_matrix[i][j] = 0;
}

};

2–10 Getting Started Designing Programs

Getting Started Designing Programs
2.1 Entering Design Information with LSE

/*
** Loop over the rows of the left matrix
*/
for (i = 1; i < 10; i++)
{

/*
** Loop over the columns of the right matrix
*/
for (j = 1; j < 10; j++)
{

/*
** Compute the inner product of the current row and column
*/
for (k = 1; k < 10; k++)
{

*result_matrix[i][j] =
*result_matrix[i][j] + *left[i][k] * *right[k][j];

}
};

};
return result_matrix;

}

2.2 Retrieving Design Information
You can retrieve design information throughout the development cycle. This
section describes the following topics:

• Transferring design information to an SCA library

• Using an SCA keyword query

• Generating reports, using the supported languages shown in the example
in Section 2.2.3.

• Using LSE packages and help text

2.2.1 Transferring Design Information to an SCA Library
To transfer the design information to an SCA library, you must first compile
your source file to generate an analysis data file. You create the file containing
the comment design information by typing the following command:

$ CC/ANA/DESIGN/NOOBJECT design_example

To create an SCA library and load the analysis data file, type the following:

$ CREATE/DIR [.scalib]
$ SCA CREATE LIBRARY [.scalib]
$ SCA SET LIBRARY [.scalib]
$ SCA LOAD design_example

Getting Started Designing Programs 2–11

Getting Started Designing Programs
2.2 Retrieving Design Information

Some compilers generate .XREF files that can be converted to .ANA files by
means of the SCA IMPORT command. For more information, see the Guide to
Source Code Analyzer for OpenVMS Systems.

2.2.2 Using an SCA Keyword Query
You can use an SCA keyword query to find which modules contain keywords.
A keyword or keyword phrase associates a concept with a routine or module.
These keyword phrases can then be used for indexing. For example, you can
label your modules and routines with keyword phrases such as User interface,
OpenVMS-specific, AST reentrant, or Examples. Each module or routine can
have several keyword phrases associated with it, as many as are applicable.

For example, to see which modules have the keyword Examples associated
with them, enter the following:

SCA> FIND CONTAINING (SYMBOL=KEYWORD AND "Examples", SYMBOL=MODULE)

2.2.3 Generating Reports
To generate a package definition, help file, and INTERNALS report, type the
following:

$ SCA
SCA> SET LIB [.scalib]
SCA> SET COMMAND LANGUAGE PORTABLE
SCA> SET REPORT NAME PACKAGE
SCA> SET REPORT LANGUAGE [Ada|BASIC|C|COBOL|FORTRAN|Pascal|PL/I]
SCA> SET REPORT HELP_LIBRARY mydisk:[mydir]design_example_help
SCA> SET REPORT OUTPUT design_example
SCA> REPORT

SCA> SET REPORT NAME HELP
SCA> SET REPORT OUTPUT design_example
SCA> REPORT

SCA> SET REPORT NAME INTERNALS
SCA> SET REPORT OUTPUT design_example
SCA> REPORT

SCA> EXIT

An LSE package definition gives calling sequence information for routines, and
can also be linked to help text for the routines and their parameters. To create
an LSE environment file from the package definition, type the following:

$ LSEDIT/NODISP/INIT=SYS$INPUT: design_example.lse
SET COMMAND LANGUAGE PORTABLE
EXECUTE BUFFER LSE
SAVE ENVIRONMENT CHANGES mydisk:[mydir]design_example.env
EXIT

2–12 Getting Started Designing Programs

Getting Started Designing Programs
2.2 Retrieving Design Information

An OpenVMS help file contains a hierarchy of topics, along with text explaining
each topic. The help files generated as DECset reports contain information
about the modules in your SCA library, and about each routine and its
parameters. To load the help text into a help library named example_help.hlb,
type the following:

$ LIBR/CREATE/HELP design_example_help design_example.hlp

An INTERNALS report contains detailed design information about your
software. It is useful to anyone who needs to understand the software in order
to make changes to it (enhancements or bug fixes). To generate a PostScript
output file from the INTERNALS report, type the following:

$ DOCUMENT design_example.sdml software.reference PS

2.2.4 Using LSE Packages and Help Text
For further development work, you can load your package definition into LSE
by entering the following commands:

$ DEFINE LSE$ENVIRONMENT mydisk:[mydir]design_example.env
$ LSEDIT new.c

Type the routine name, matrix_multiply, then expand it by issuing the
EXPAND command to get the calling sequence for the routine, as follows:

matrix_multiply (
{@left@},
{@right@})

To get help text, place the cursor on the matrix_multiply name and enter the
HELP INDICATED command. The following text is displayed:

matrix_multiply

This function computes the matrix product of two integer matrices.

It uses a simple, triple-nested loop, and does not do any checking to
see if the matrices conform.

Returns: pointer to integer_matrix

Additional information available:

left right

Getting Started Designing Programs 2–13

Getting Started Designing Programs
2.2 Retrieving Design Information

You can get a description of a routine parameter by entering its name. For
example, if you type "left" you will see the following text:

matrix_multiply

left

Type: pointer to integer_matrix

The left operand.

You can now fill in the parameter values and continue development.

2–14 Getting Started Designing Programs

3
Entering Design Information Using LSE

This chapter provides information on how to enter detailed program design. It
includes information about:

• Introductory material

• Storing design information in program structure

• Storing design information in comments

• Using pseudocode to enter design information

3.1 Introduction
In many software engineering environments, the last step before actual coding
is to generate a detailed design. With DECset, a detailed design consists of all
the following:

• Ordinary programming language syntax

• Ordinary and tagged comments

• Pseudocode placeholders

3.2 Expressing Design Information Using Program Structure
Part of your design is expressed in ordinary programming language constructs.
This includes the following:

• Names of routines

• Return value type of each routine

• Names and types of parameters to the routines

• Type definitions and data declarations for high-level types and variables
that are known at design time

Entering Design Information Using LSE 3–1

Entering Design Information Using LSE
3.2 Expressing Design Information Using Program Structure

For example, in the matrix_multiply example used in Chapter 2, the design
information describing the calling sequence for the routine matrix_multiply
uses ordinary C syntax:

integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right)

In addition, the definition of the type integer_matrix also uses ordinary C
syntax:

typedef int integer_matrix[10][10];

Given only this design information (without additional information stored
in comments), you can get reports that describe the calling sequence for the
routine, including type information. With the addition of comments describing
the routine, you can get reports that provide additional explanation of what
the routine does, how the parameters are used, and so on.

3.3 Expressing Design Information Using Comments
A significant amount of design information is expressed using tagged
comments. A tagged comment is a specially formatted comment consisting
of a tag and related text. A tagged comment begins with a defined tag or
annotation that characterizes the text of the comment. The following is an
example of a tagged comment, where FUNCTIONAL DESCRIPTION is the
tag:

-- FUNCTIONAL DESCRIPTION:
--
-- Find the arithmetic mean of a list of integers.

With LSE, you can easily enter tagged comments into your programs. The
templates for LSE include a standard set of comment tags. You can change
these tags and add new tags.

When programs are compiled with the /DESIGN qualifier, the compiler
performs the following:

• Scans comment blocks, looking for tagged comments

• Inserts data about those comments into the SCA analysis file

This information can be retrieved by SCA and matched with corresponding
identifiers, such as routine names that appear in the code, and be used to
generate design reports.

Section 3.3.1 and Section 3.3.2 explain how to use tagged comments, and how
to associate comments with objects.

3–2 Entering Design Information Using LSE

Entering Design Information Using LSE
3.3 Expressing Design Information Using Comments

3.3.1 Using Tagged Comments
Tags are defined within LSE and are saved in an LSE environment file that is
read by the compiler. Default tags are in the LSE$SYSTEM_ENVIRONMENT
file, where they are also available to compilers. The LSE$ENVIRONMENT
logical name must be defined to make your tags available to compilers. There
are several types of tags, and the value of these tags is parsed differently
depending on the tag type. There are also a number of special tags, each
beginning with a dollar sign ($).

The compiler groups comments into comment blocks. Comment blocks are
separated either by code (any visible text that is not contained in a comment)
or by a blank line (any blank line that is not contained in a comment). Within
each comment block, the compiler looks for tagged comments. A tag must
be the first text on the line of the comment, not including the comment
delimiters. If the tag is not the only text on the line, it must be followed by a
tag terminator (a colon or hyphen). Anything after the tag, either on the same
line or on subsequent lines, forms the value of the tag, up to but not including
the next tag.

There are three types of tagged comments: text, keyword, and structured.
The following sections describe these types in detail.

3.3.1.1 Text Comments
Text comments contain ordinary text and are the most common type of tagged
comments. No special processing occurs for these comments. For example:

-- FUNCTIONAL DESCRIPTION:
--
-- This function multiplies two matrices.

3.3.1.2 Keyword Lists
A keyword list contains keyword phrases used to identify sections of code. A
keyword tag may be associated with keyword phrases from a predefined list,
which in turn is defined with the DEFINE KEYWORDS command, or might
take arbitrary keyword phrases. In either case, keyword phrases are separated
by commas, and can contain space characters. For example:

-- FACILITY:
--
-- Sample facility
--
-- KEYWORDS:
--
-- Sample, matrix arithmetic

Entering Design Information Using LSE 3–3

Entering Design Information Using LSE
3.3 Expressing Design Information Using Comments

3.3.1.3 Structured Comments
The body of a structured comment consists of a sequence of one or more
subtags and their associated text. Unlike ordinary tags, subtags need not
be predefined. For example, a FORMAL PARAMETERS structured comment
consists of a sequence in which each parameter name is a subtag, and is
followed by the description of the parameter. A blank line is required before
the first subtag, and between subsequent subtags. For example:

-- FORMAL PARAMETERS:
-- 1
-- P1: 2
-- The first parameter
-- 3
-- P2: 4
-- The second parameter
-- 5
-- RETURN VALUE: 6
--
-- Text about return value
--

Key to the example:

1 Shows the required blank line.

2 The parameter name (P1) must be followed by a tag terminator (in this
case a colon).

3 Shows the required blank line.

4 The parameter name (P2) must be followed by a tag terminator.

5 Shows the required blank line.

6 The RETURN VALUE tag name must be indented less than (to the left of)
P2, and no more than FORMAL PARAMETERS.

Fully expand the [subtags] and [more-subtags] placeholders produced by the
language templates to automatically get the correct formatting.

3–4 Entering Design Information Using LSE

Entering Design Information Using LSE
3.3 Expressing Design Information Using Comments

Two implicit tags are defined for all languages. These are the $UNTAGGED
tag and the $REMARK tag. The $UNTAGGED tag is associated with any
comment text that occurs at the beginning of a comment block, before the first
tag within the comment block.

The $REMARK tag is associated with the first line of text in a comment block,
not including any tag names. The PACKAGE report, for example, uses the
$REMARK tagged comment for each routine as the description text for the
routine.

For example:

function function_1 (...)
--
-- This function computes the integer function of the P1, 1
-- with or without P2s.
--
-- FORMAL PARAMETERS:

...

1 These two lines are associated with the $UNTAGGED tag; the first line
is also associated with the $REMARK tag.

3.3.2 Associating Comments with Declarations
You can use comments to associate design information with declarations in
your program. Comments that occur in executable portions of your code, where
there are no adjacent declarations, are not used for SCA reports.

SCA looks for the closest declaration that is adjacent to the comment block. If
there is no adjacent declaration, the comment is associated with the outer-level
declaration containing the comment, if any.

This comment association can be ambiguous. For example, suppose you have
the following C fragment:

int x;
/* This comment describes a variable */
int y;

The declarations of x and y are equally close to the comment. You can put in
blank lines to get the association you want. For example:

int x;
/* This comment describes a variable */

int y;

Entering Design Information Using LSE 3–5

Entering Design Information Using LSE
3.3 Expressing Design Information Using Comments

This results in the comment being associated with x. Consider the following
example:

int x;

/* This comment describes a variable */
int y;

This results in the comment being associated with y, because the declaration of
y is now closer to the comment than is the declaration of x.

If you leave an ambiguous situation in your code, SCA uses the setting from
the LSE SET LANGUAGE COMMENT ASSOCIATION command. (See the
entries for SET LANGUAGE commands for more details.)

When you use the /DESIGN=COMMENTS qualifier to compile your source
program, the compiler uses your LSE$ENVIRONMENT files and the
LSE$SYSTEM_ENVIRONMENT file to determine the setting of the SET
LANGUAGE COMMENT ASSOCIATION command. That setting is stored
in your analysis data file. SCA performs the comment association, using that
setting, at the time you load the file into the SCA library. If you want to
change the setting of that qualifier, you must change the setting in LSE, save a
new LSE environment file, recompile your program, and load the new analysis
data file into SCA.

3.4 Expressing Design Information Using Pseudocode
Pseudocode is easy to write and provides a way to sketch your design ideas.
You can convert pseudocode to comments, thus providing a way to preserve
design information.

Each compiler that supports the /DESIGN qualifier has a set of conventions
describing in what context pseudocode is allowed. Check the documentation for
your compiler to learn where pseudocode is allowed in your design. See also
Section 4.2.1 for more detail.

While working on your detailed design, you can compile to verify your program
syntax, as follows:

/DESIGN=(PLACEHOLDERS,COMMENTS)/ANA

When your implementation is complete, you can compile with these qualifiers:

/DESIGN=(NOPLACEHOLDERS,COMMENTS)/ANA

This verifies that no placeholders or pseudocode remain in your source file,
and, at the same time, stores information about comments in the analysis data
file.

3–6 Entering Design Information Using LSE

Entering Design Information Using LSE
3.4 Expressing Design Information Using Pseudocode

To create designs for individual routines, expand the LSE placeholders as
necessary. Use tagged comments and pseudocode placeholders to contain
design information that is still at an abstract level, and use actual code for
those portions that are known.

To enter an algorithm or data declaration design, use the ENTER
PSEUDOCODE command. See the command dictionary in the DIGITAL
Language-Sensitive Editor/Source Code Analyzer for OpenVMS Reference
Manual for further information regarding pseudocode commands.

3.4.1 Using Pseudocode in Data Declarations
The design of data structures can be a part of a detailed design. An example of
the design of an Ada record is as follows:

type record_type is
record

count : integer := 0;
record_name : string({discrete_range}...); 1

subfield_1 : «A type suitable for subfield 1»; 2

«subfield 2, which has property x» 3
[component_declaration]...
[variant_part]

end record;
shared_array : array ({discrete_range}...) of record_type;

In this example, LSE placeholders are used several ways, as follows:

1 LSE generates the {discrete_range}... placeholder.

2 Shows a pseudocode placeholder. This is created using the ENTER
PSEUDOCODE (PF1 Space) command, then typing the contents.

3 Shows a pseudocode placeholder, which describes the next field of the
record in general terms.

Two important points concerning pseudocode placeholders are shown in this
example:

• A pseudocode placeholder typically contains ordinary text, not source code.

• It is preferable to fill in as much detail of the design as possible as actual
source code.

Entering Design Information Using LSE 3–7

Entering Design Information Using LSE
3.4 Expressing Design Information Using Pseudocode

You can declare the previous example as follows:

type record_type is
«a complicated record definition»;

However, this format provides little information for your SCA database. For
example, in this case, the compiler does not recognize the type definition as a
record definition and will not be able to do as much design checking later.

3–8 Entering Design Information Using LSE

Entering Design Information Using LSE
3.4 Expressing Design Information Using Pseudocode

3.4.2 Using Pseudocode in Algorithms
The following example shows a routine body in Ada:

partial_function, -- Used to store the partial
-- results from Murphy’s algorithm

final_function : integer; -- Used to store the final result
begin

if «the P2 is present» then 1
«Use the standard algorithm» 2

else
«Use Murphy’s algorithm»
final_function :=
fix_partial_function(partial_function); 3

end if;
[statement]... 4
return final_function;

end function_1;

Key to the example:

1 Uses pseudocode as the conditional expression in the if statement.

2 Uses pseudocode to represent the entire body of the then clause of the
statement.

3 Shows a procedure call. The procedure specification (not shown) must also
be present for Ada to recognize this procedure call. With the completed
design, you can use SCA to get information about calls to this routine,
including this call.

4 Contains an LSE list placeholder. You can use placeholders as part of a
design in any context in which they normally appear as the result of an
LSE expansion operation. In this example, the [statement]... placeholder
remains as a convenience because the algorithm is not yet complete.

3.4.3 Refining the Design
As the design is refined, you replace pseudocode by more detailed pseudocode,
and then by final source code. To preserve the original design information, use
the ENTER COMMENT (PF1 B) command. This applies both to the low-level
design phase and the implementation phase.

Entering Design Information Using LSE 3–9

Entering Design Information Using LSE
3.4 Expressing Design Information Using Pseudocode

For example, the if statement used in the previous example can be refined as
follows:

if P2 /= null_P2 then -- P2 is present 1

-- Use the standard algorithm 2
[loop_identifier]: loop

«Calculate function iteratively from P2»
end loop;
{tbs}

else
«Use Murphy’s algorithm»
final_function := fix_partial_function(partial_function);

end if;

Key to the example:

1 Uses the ENTER COMMENT LINE command to move the pseudocode for
the if statement over to the right, before writing the condition.

2 Uses the ENTER COMMENT BLOCK command to turn the pseudocode
placeholder into a block comment before writing the first statement, which
is a loop statement. The ENTER COMMENT BLOCK command produces
the generic {tbs} placeholder.

3–10 Entering Design Information Using LSE

4
Retrieving Design Information

This chapter provides information on retrieving design information by running
standard reports, the options available for each report, and sample outputs for
each report.

This chapter describes the following topics:

• Using overviews to retrieve design information

• Using the OpenVMS compilers and SCA to get design information into an
SCA library

• Finding keywords

• Generating design reports

4.1 Using Overviews to Retrieve Design Information
A powerful feature of the DECset design environment is the ability to display
overviews of your code, hiding low-level details to give you a better view of a
larger section of code. You can refine the overall results with the LSE NEW
ADJUSTMENT command. You can see varying levels of detail when you
edit a source file by using the LSE OVERVIEW commands: VIEW SOURCE,
COLLAPSE, FOCUS, and EXPAND (see the LSE documentation for more
information on these commands). The INTERNALS report uses these LSE
commands to produce the body section for each routine.

Retrieving Design Information 4–1

Retrieving Design Information
4.1 Using Overviews to Retrieve Design Information

The following example uses Ada:

package body example is

type integer_matrix is array (integer range <>, integer range <>) of integer;

function matrix_multiply (left, right : in integer_matrix)
return integer_matrix is

-- ++
-- FUNCTIONAL DESCRIPTION:
--
-- This function computes the matrix product of two integer matrices.
--
-- It uses a simple, triple-nested loop, and does not do any checking to
-- see if the matrices conform.
--
-- FORMAL PARAMETERS:
--
-- left:
-- The left operand.
--
-- right:
-- The right operand.
--
-- RETURN VALUE:
--
-- The result of multiplying the two matrices.
--
-- --

result_matrix :
integer_matrix(left’range,right’range(2))

:= (others => (others => 0));
begin

-- Loop over the rows of the left matrix
--
outer_loop: for i in left’range loop

-- Loop over the columns of the right matrix
--
middle_loop: for j in right’range(2) loop

-- Compute the inner product of the current row and column
--
inner_loop: for k in left’range(2) loop
result_matrix(i,j)
:= result_matrix(i,j) + left(i,k) * right(k,j);
end loop inner_loop;

end loop middle_loop;

end loop outer_loop;

4–2 Retrieving Design Information

Retrieving Design Information
4.1 Using Overviews to Retrieve Design Information

return result_matrix;
end matrix_multiply;
end example;

Do a COLLAPSE operation on the first line of the function. The result is a
single line overview of the function, as in the following:

«function matrix_multiply (left, right : in integer_matrix) ...»

Do an EXPAND operation on the overview line to get additional detail, as in
the following:

function matrix_multiply (left, right : in integer_matrix)
return integer_matrix is

«-- FUNCTIONAL DESCRIPTION: ...»
«result_matrix : ...»

«begin ...»
end matrix_multiply;

Now do an EXPAND on the «begin ...» line to see the next level of detail:

function matrix_multiply (left, right : in integer_matrix)
return integer_matrix is

«-- FUNCTIONAL DESCRIPTION: ...»
«result_matrix : ...»

begin
-- Loop over the rows of the left matrix
--
«outer_loop: for i in left’range loop ...»
return result_matrix;

end matrix_multiply;

You can continue doing overview operations to selectively display details of the
function, and to hide details that are not currently of interest. You can also
perform editing functions on overview lines. (See the command dictionary in
the DIGITAL Language-Sensitive Editor/Source Code Analyzer for OpenVMS
Reference Manual for information on using editing commands with overviews.)

4.2 Transferring Design Information to an SCA Library
Once there is a partial or complete design, you can process the design by using
a compiler and SCA.

Retrieving Design Information 4–3

Retrieving Design Information
4.2 Transferring Design Information to an SCA Library

4.2.1 Compiling Design Information
With OpenVMS compilers that support SCA, use the /DESIGN qualifier to
tell the compiler to process design information. In addition, you can use
the /DESIGN qualifier with the SCA ANALYZE command to process design
information in your source code if your compiler does not support SCA. This
qualifier takes two keyword values, as follows:

• [NO]COMMENT—Tells the compiler to search inside comments for
program design information

• [NO]PLACEHOLDERS—Tells the compiler to recognize placeholders
(including pseudocode placeholders) as valid program syntax

While working on your detailed design, you can compile to verify your program
syntax:

/DESIGN=(PLACEHOLDERS,COMMENTS)/ANA

This process checks the syntax of your source code and stores information
about comments in the analysis data file. When your implementation is
complete, you can compile with these qualifiers:

/DESIGN=(NOPLACEHOLDERS,COMMENTS)/ANA

This verifies that no placeholders or pseudocode remain in your source file,
and, at the same time, stores information about comments in the analysis data
file.

4.2.2 Loading Design Information into an SCA Library
To load analysis data files into an SCA library, use the SCA command
LOAD. SCA does not recognize any differences between an analysis data
file containing design information and one containing final code information.
If a design evolves directly into an implementation, you can use the same
arrangement of libraries during design as during implementation.

To refer to your design while continuing implementation, you can set up two,
parallel SCA libraries:

• One for keeping design information

• One for holding the implementation information

With SCA, you can use a list of individual SCA libraries as your current virtual
library. If a module appears in more than one library in the list, the first
instance of the module occludes subsequent instances. Thus, you can set up
your SCA libraries so modules being implemented occlude their designs. For
those modules still in the design stage, the designs are still available.

4–4 Retrieving Design Information

Retrieving Design Information
4.2 Transferring Design Information to an SCA Library

To refer to both the code and designs from SCA at the same time, you have two
options:

• You can choose a naming convention at the module level to distinguish
between the design of a module and its code. This is necessary because
SCA recognizes only one module of a given name in any library.

• You can move back and forth, using the SCA command SET LIBRARY.

4.3 Using Keyword Queries
Once the analysis data files containing design information are loaded into an
SCA library, you can use SCA queries to retrieve information, as with any
other SCA library. The symbol classes defined by SCA specifically for design
information are keyword, placeholder, and tag. To get design information, you
use these classes with the SYMBOL=construct of the SCA query language.

For example, if you want to find all routines that are marked with the keyword
interface, use the following SCA command:

SCA> FIND CONTAINED_BY(SYMBOL=routine, ’interface’ AND SYMBOL=KEYWORD, DEPTH=1)

4.4 Generating Reports
In addition to getting information directly from SCA queries, you can retrieve
design information by generating reports. A report covers all or a designated
part of your SCA database and presents information in a structured way. You
must have both LSE and SCA on your system to generate reports.

You generate reports with the SCA command REPORT. SCA provides four
reports that can be customized, or you can add new reports. See Chapter 5,
Customizing Reports, for more information.

The output for each standard report is controlled by the use of report options.
The following sections explain how to set report options, and list the available
options for each standard report.

4.4.1 Using the Report Commands
Use the REPORT commands for reports provided by SCA and for customized
reports that you create. The SCA commands are as follows:

• SET REPORT

• SHOW REPORT

• RESET REPORT

Retrieving Design Information 4–5

Retrieving Design Information
4.4 Generating Reports

• REPORT

SET REPORT option-name option-value
This command sets an option value. The options available for each standard
report are listed in Section 4.4.10. You can also obtain a list of all the current
option values by using the command SHOW REPORT *.

Before issuing any SET REPORT, RESET REPORT, or SHOW REPORT
commands, you must select that report. This is done by using the SET
REPORT NAME command. For example, if you want to run a PACKAGE
report with trace messages enabled, use the following set of commands:

SCA> SET COMMAND LANGUAGE PORTABLE
SCA> SET REPORT NAME PACKAGE
SCA> SET REPORT TRACE_MESSAGES ON
SCA> REPORT PACKAGE

RESET REPORT option-expression
This command restores the default values of a set of options. The default
option values for each standard report are listed in the Section 4.4.10. The
option-expression can be the name of a single option or a wildcard name. For
example, the following command resets all options whose names begin with the
letter T:

SCA> RESET REPORT T*

The following command resets all report options for the current report:

SCA> RESET REPORT *

SHOW REPORT option-expression
This command displays the values of a set of options. The option-expression
can be the name of a single option or a wildcard name. For example, the
following command displays the values of all options whose names begin with
the letter T.

SCA> SHOW REPORT T*

The following command displays all option values for the current report.

SCA> SHOW REPORT *

4–6 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

REPORT [report-name]
This command generates a report. If a SET REPORT NAME command has
been given, the report-name is optional; if specified, it must match the name
given in the SET REPORT NAME command. When the report is complete, all
option values are reset to their default values.

The report formats provided by SCA are as follows:

• HELP—An OpenVMS Help file generated from your design or code

• PACKAGE—An LSE package definition

• INTERNALS—A general report that describes your entire design in an
organized manner

• 2167A_DESIGN—A report that produces a document that meets the
requirements of the U.S. Defense Department’s DOD-STD-2167A Software
Design Document

4.4.2 General Report Information
The output of the REPORT command is usually not in its final state. HELP
reports must be loaded by the OpenVMS Librarian utility into a help
library, and PACKAGE reports must be executed by LSE to produce package
definitions. With INTERNALS and 2167A reports, you can produce reports
that can be read in three different ways: directly, with DECdocument, or with
DIGITAL Standard Runoff.

Because reports perform many SCA queries, they can be time consuming. For
this reason, DIGITAL recommends that you use the REPORT command from
batch jobs.

Reports are based on two types of information from your design or program:

• Program declarations (modules, routines, types, and variables)

• Design information stored in comments

Reports accept a variety of synonymous tags for specific sections of reports. For
example, the FORMAL PARAMETERS and FORMAL ARGUMENTS tags are
treated as synonyms.

The SCA reports use tags that are included in the system environment file
supplied with LSE. You can use the SHOW TAGS command in LSE to show
the tags for a particular language.

Retrieving Design Information 4–7

Retrieving Design Information
4.4 Generating Reports

In general, the tags applicable for an entire file or module are distinct from
the tags applicable for a single subroutine. For example, the ABSTRACT tag
describes a module, whereas the FUNCTIONAL DESCRIPTION tag describes
a subroutine or function. This convention makes it easier for the report tool to
distinguish between the two levels of tag information.

Make sure your SCA library is consistent with the current state of your source
files. Otherwise, the report tool cannot locate the comment text in your source
files. If you move your source files after they have been compiled, use the
LSE$SOURCE logical name to indicate to the report tool where the source
files are. This logical name definition performs the equivalent task as the
SET DIRECTORY SOURCE LSE command. Your definition of this logical will
have the same attributes and capabilities. (Refer to the DIGITAL Language-
Sensitive Editor/Source Code Analyzer for OpenVMS Reference Manual for
information about the SET DIRECTORY SOURCE command.) For example:

$ DEFINE LSE$SOURCE MYDISK:[MYDIR]

This definition tells the report generator to look in the directory
MYDISK:[MYDIR] if it is unable to find a source file in the directory where it
was compiled.

4.4.3 DOMAIN Option
The report tool steps through the files in the domain one at a time and steps
through the routines within each file one at a time. The default domain for
the report is the set of all files that have command-line references in your SCA
library, as follows:

SCA> FIND (SYMBOL=FILE AND OCCURRENCE=COMMAND_LINE)

To limit reports to specific files in your system, perform the following steps:

1. Determine an SCA query that represents the specific files.

2. Perform the query, and give it a name by using the FIND command with
the -name option.

3. Use the query name as the domain for the report.

The following example limits the report to only those files containing the string
matrix as part of the file name:

SCA> SET COMMAND LANGUAGE PORTABLE
SCA> FIND -name MYQUERY *matrix* AND SYMBOL=FILE AND OCCURRENCE=COMMAND_LINE

SCA> SET REPORT NAME report_name
SCA> SET REPORT DOMAIN MYQUERY
SCA> REPORT

4–8 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

4.4.4 FILL Option
The FILL option is applied to INTERNALS and 2167A reports. In cases where
comment text is copied into the report, the FILL option determines whether
the text will be filled. Use FILL OFF if your comments typically contain tables
or other formatted output that should not be filled.

4.4.5 DESIGN_EXAMPLE Source File
The source file at the end of Chapter 2 is used to generate sample
output in the following sections. This file is also available online in
SCA$EXAMPLES:DESIGN_EXAMPLE.C. Information on customizing reports
to get different output is given in Chapter 5.

Each report is described in separate sections, as follows:

• Description

• Sample output

• Table indicating where the information in the output file comes from.
These sources are as follows:

Your program structure

Comments in your source files

Report options that you enter when you generate the report

In the case of tagged comments, the table also indicates what tag names are
used for the information, and, if applicable, the name of the TPU variable that
contains the list of tag names. These TPU variables used for reports all start
with sca$report_. In the table, this prefix is replaced by ellipses (...).

The variables and constants referred to in the following sections are defined in
the file SYS$LIBRARY:SCA$REPORT_CUSTOMIZATIONS.TPU.

Retrieving Design Information 4–9

Retrieving Design Information
4.4 Generating Reports

The following is a portion of the DESIGN_EXAMPLE source file used to
generate the sample report output:

Module Header Comments

/*
**++
** FACILITY: Sample facility 1
**
** MODULE DESCRIPTION:
**
** This is a sample module used to show how to use LSE and SCA to create
** a detailed design.
**
** AUTHORS:
**
** Jane Smith
**
** CREATION DATE: June 27, 1998
**
** DESIGN ISSUES:
**
** {@tbs@}
**
** KEYWORDS:
**
** Examples, sample design
**
** MODIFICATION HISTORY:
**
** {@tbs@}...
**--
*/

Include Files and Type Declarations

#include <stdlib>
typedef int integer_matrix[10][10];
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right);

4–10 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

Routine Header Comments

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function computes the matrix product of two integer matrices.
**
** It uses a simple, triple-nested loop, and does not do any checking to
** see if the matrices conform.
**
** FORMAL PARAMETERS:
**
** left:
** The left operand.
**
** right:
** The right operand.
**
** RETURN VALUE:
**
** The result of multiplying the two matrices.
**
**--
*/

Routine Definition

integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right)

4.4.6 Creating Online HELP
The HELP report produces an .HLP file that the OpenVMS Librarian utility
loads into a standard OpenVMS HELP library. See the OpenVMS Librarian
Utility Manual for information on help libraries. See also Section 4.4.10 for
standard report options reference tables.

The following is an example of a command sequence that generates a HELP
report:

SCA> SET COMMAND LANGUAGE PORTABLE
SCA> SET REPORT NAME HELP
SCA> SET REPORT OUTPUT X.HLP
SCA> REPORT

After generating a HELP report, you can load the .HLP file into an OpenVMS
HELP library by using the following command:

$ LIBRARY/HELP/CREATE help-library-name help-file-name

Retrieving Design Information 4–11

Retrieving Design Information
4.4 Generating Reports

In the previous command, help-library-name is the name of the HELP library
that you are creating, and help-file-name is the name of the .HLP file generated
by the REPORT command.

You can tell the OpenVMS Librarian the maximum keysize allowed within
a given library by specifying the CREATE=KEYSIZE qualifier. For HELP
libraries, the default is 15. For REPORT help files, this might be too small
because it limits the top level help key to 15 characters. To increase the
keysize, use the following command:

$ LIBRARY/HELP/CREATE=KEYWORD:nn help-library-name help-file-name

If the keysize you specify is too small, the OpenVMS Librarian displays the
following message when you load the .HLP file: ‘‘Key XXX name length illegal’’.
To find the keysize of an existing library, use the LIBRARY/LIST command to
read the maximum key length in the header information.

The following is the output of the HELP report for the example program used
in Chapter 2. The callouts in the example are described in Table 4–1.

1 DESIGN_EXAMPLE 1

This is a sample module used to show how to use LSE and SCA to create 2
a detailed design.
2 matrix_multiply 3

This function computes the matrix product of two integer matrices. 4

It uses a simple, triple-nested loop, and does not do any checking to
see if the matrices conform.

Returns: pointer to integer_matrix 5

3 left 6
Type: pointer to integer_matrix 7

The left operand. 8
3 right
Type: pointer to integer_matrix

The right operand.

4–12 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

Table 4–1 HELP Report

Callout Source of Information TPU Variable

1 Program structure—module name, or file name if there is
no module name

2 Tagged comment: ...module_descriptions

PROGRAM DESCRIPTION

PACKAGE DESCRIPTION

MODULE DESCRIPTION

ABSTRACT

3 Program structure—routine name

4 Tagged comment: ...routine_description_tags

FUNCTIONAL DESCRIPTION

5 Program structure—return value type

6 Program structure—parameter name

7 Program structure—parameter type

8 Untagged comment associated with parameter declaration
or tagged comment:

...routine_parameters

FORMAL PARAMETERS

FORMAL ARGUMENTS

PARAMETERS

ARGUMENTS

4.4.7 Creating LSE Package Definitions
The PACKAGE report produces an .LSE file, used by LSE to define LSE
packages for your program.

The following is an example of a command sequence that generates a
PACKAGE report:

SCA> SET COMMAND LANGUAGE PORTABLE
SCA> SET REPORT NAME PACKAGE
SCA> SET REPORT OUTPUT name.LSE
SCA> REPORT

To use the result of a PACKAGE report, issue the following LSE commands,
then define the LSE$ENVIRONMENT logical name to point to the new
environment file that you created. You can then use the package definitions
within subsequent editing sessions.

Retrieving Design Information 4–13

Retrieving Design Information
4.4 Generating Reports

LSE> SET COMMAND LANGUAGE LSE
LSE> OPEN FILE package-name.LSE
LSE> EXECUTE BUFFER LSE
LSE> SAVE ENVIRONMENT CHANGES file_name

The following is the output of the PACKAGE report for the example program
used in Chapter 2. The callouts in the example are described in Table 4–2.

LSE NEW PACKAGE DESIGN_EXAMPLE 1
LSE SET PACKAGE ROUTINE EXPAND LSE$PKG_EXPAND_ROUT_
LSE SET PACKAGE PARAMETER EXPAND LSE$PKG_EXPAND_PARM_
LSE SET PACKAGE HELP LIBRARY SYS$LOGIN_DEVICE:[]DESIGN_EXAMPLE_HELP 2

LSE SET PACKAGE HELP TOPIC "DESIGN_EXAMPLE" 3

LSE SET PACKAGE LANGUAGE ADA 4
LSE SET PACKAGE LANGUAGE BASIC 4
LSE SET PACKAGE LANGUAGE C 4
LSE SET PACKAGE LANGUAGE COBOL 4
LSE SET PACKAGE LANGUAGE FORTRAN 4
LSE SET PACKAGE LANGUAGE PASCAL 4
LSE SET PACKAGE LANGUAGE PLI 4

LSE NEW ROUTINE "matrix_multiply" 5

LSE SET ROUTINE HELP TOPIC "matrix_multiply" 6
LSE SET ROUTINE DESCRIPTION -
"This function computes the matrix product of two integer matrices." 7
LSE NEW ROUTINE PARAMETER left 8
LSE SET ROUTINE PARAMETER value
LSE NEW ROUTINE PARAMETER right 9
LSE SET ROUTINE PARAMETER value

Table 4–2 PACKAGE Report

Callout Source of Information

1 Program structure—module name, or file name if there is no module name

2 Help library file spec comes from HELP_LIBRARY option

3 Program structure—module name, or file name if there is no module name

4 Language names come from LANGUAGES option

5 Program structure—routine name

6 Program structure—routine name

7 $REMARK comment for the routine

8 Program structure—parameter name

9 Program structure—parameter name

4–14 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

4.4.8 Creating INTERNALS Reports
The INTERNALS report is a comprehensive report on your system, on a
module-by-module, routine-by-routine basis. The INTERNALS report extracts
information from tagged comments to describe the various aspects of your
program. For example, information under the FUNCTIONAL DESCRIPTION
tag is used to describe each routine, whereas information under the RETURN
VALUE tag is used to describe the return value of each routine. The
INTERNALS report also uses the LSE overview mechanism to present the
code of each routine in a structured, top-down way.

Three targets are recognized by the INTERNALS report. These targets are as
follows:

• DOCUMENT—This is the default target. The output is a file suitable
for processing by DECdocument. The default output file name is
INTERNALS.SDML.

• RUNOFF—The output is a file suitable for processing by DIGITAL
Standard Runoff (DSR). The default file name is INTERNALS.RNO.

• TEXT—The output is a file that you can read directly. The default file
name is INTERNALS.TXT.

For example, to produce an INTERNALS report that can be processed by
DECdocument, type the following commands:

SCA> SET COMMAND LANGUAGE PORTABLE
SCA> SET REPORT NAME INTERNALS
SCA> SET REPORT TARGET DOCUMENT
SCA> REPORT

Process the resulting file with DECdocument. You must use the
SOFTWARE.REFERENCE doctype, as follows:

$ DOCUMENT INTERNALS.SDML SOFTWARE.REFERENCE destination

The SDML files generated by the REPORT command are suitable for printable
books. They are not directly usable by the Bookreader. To make an optional
Bookreader-compatible file, do the following:

1. Add a front-matter section to the SDML files you are processing. For
example:

$ SCA REPORT INTERNALS

Retrieving Design Information 4–15

Retrieving Design Information
4.4 Generating Reports

Edit INTERNALS.SDML and add the following text at the beginning of the
file, after the <COMMENT> line:

<FRONT_MATTER>
<TITLE_PAGE>
<TITLE>(INTERNALS Report)
<ENDTITLE_PAGE>
<ENDFRONT_MATTER>

Note

You can supply whatever title you choose in place of ‘‘INTERNALS
Report’’.

2. Add symbol names to your SDML files.

$ DOCUMENT/GENERATE_SYMBOL INTERNALS.SDML

3. Process the resulting file using the SOFTWARE.ONLINE doctype and the
BOOKREADER destination, and specify /CONTENTS.

$ DOCUMENT/CONTENTS INTERNALS.SDML SOFTWARE.ONLINE BOOKREADER

An INTERNALS report contains a chapter for each file in the report domain.
Each chapter contains the following:

• Information from module or file level tags, such as ABSTRACT

• Sections that describe the global objects of the module, such as imported
variables and exported variables

• A section on each routine
The format of each routine section is similar to the format of routines in
the OpenVMS Run-Time Library Routines Volume. In addition, the body of
the routine is presented in a hierarchical fashion, using overviews to hide
details at the upper layers, and proceeding until the entire body has been
produced.

4–16 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

Figure 4–1 is an example of an INTERNALS report for compilation units.

Figure 4–1 INTERNALS Report Information for Compilation Units Example

ZK−5077A−GE

1 DESIGN_EXAMPLE (module)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

MODULE DESCRIPTION

AUTHORS

CREATION DATE

DESIGN ISSUES

KEYWORDS

Imported routines

Sample facility 1

This is a sample module used to show how to use LSE and SCA to create
a detailed design.

Jane Smith

{@tbs@}

Examples, sample design

Malloc

2

2

2

2

2

2

1

3

4

June 26, 1998

FACILITY

Retrieving Design Information 4–17

Retrieving Design Information
4.4 Generating Reports

The following table describes the sources of information for the callouts in
Figure 4–1.

Callout Source of Information

1 Program structure—module name, or file name if there is no module name plus
declaration class of module.

2 Tagged comment—one section for each module-level tagged comment.1

3 Sections on module-level program structure (imported and exported routines, variables,
and types; COMMON blocks, and so on)—name and (if applicable) type information
comes from program structure. Object description (for exported objects and module-wide
objects) comes from the comment associated with object’s declaration. Section title comes
from the constant string in SCA$REPORT_CUSTOMIZATIONS.TPU.

4 Program structure—routine name.

1These tagged comments are typically in the module header comment block.

4–18 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

Figure 4–2 is an example of an INTERNALS report for a routines section.

Figure 4–2 INTERNALS Report Information for a Routines Section Example

ZK−5078A−GE

matrix_multiply (function)

FORMAT

RETURNS

ARGUMENTS

1

DESIGN_EXAMPLE
matrix_multiply (function) 1

This function computes the matrix product of two integer matrices. 2

pointer to integer_matrix= left, rightmatrix_multiply 3

Type: pointer to integer_matrix

The result of multiplying the two matrices.

4

5

Type: pointer to integer_matrix
The left operand.

Type: pointer to integer_matrix
The right operand.

left

right

6

7
8

FUNCTIONAL
DESCRIPTION

This function computes the matrix product of two integer matrices.

It uses a simple, triple−nested loop, and does not do any checking to see if
the matrices conform.

9

Retrieving Design Information 4–19

Retrieving Design Information
4.4 Generating Reports

The following table describes the sources of information for the callouts in
Figure 4–2.

Callout Source of Information TPU Variable

1 Program structure—routine name plus
declaration class

2 $REMARK comment for routine

3 Program structure—routine name,
parameter names, return value type

4 Program structure—return value type

5 Tagged comment: ...routine_return_value

RETURN VALUE

ROUTINE VALUE

FUNCTION VALUE

6 Program structure—parameter name

7 Program structure—parameter type

8 Untagged comment associated with
parameter1 declaration or tagged
comment:

...routine_parameters

FORMAL PARAMETERS

FORMAL ARGUMENTS

PARAMETERS

ARGUMENTS

9 Tagged comment—one section for each
routine-level tagged comment 2

1Each parameter description can be either from within a structured comment (under a subtag that matches
the parameter name), or from the untagged comment associated with the parameter declaration.
2These tagged comments are typically in the routine header comment block. Tag names on the excluded list
(sca$report_excluded_tags constant) and module-level tag names are excluded from this section. Sections are
in the same order as the corresponding text appears in the source file.

4–20 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

Figure 4–3 is an example of an INTERNALS report for a body section.

Figure 4–3 INTERNALS Report Information for a Body Section Example

BODY 10

1

2

3

2

3

4

4

5

5

6

6

DESIGN_EXAMPLE
matrix_multiply (function) 1

result_matrix = malloc (i*j);
<<for (i =1; i < 10; i++) ...>>
<<** Loop over the rows of the left matrix ...>>

}

}

};

{

}

for (i = 1; i < 10; i++)

for (j = 1; j < 10; j++)

*result_matrix[1] [j] = 0;

/*
** Loop over the rows of the left matrix
*/
<<for (i = 1; i < 10; i++ ...>>
return result_matrix;

for (i = 1; i < 10; i++)
{

<<** Loop over the columns of the right matrix ...>>
};

/*
** Loop over the columns of the right matrix
*/
<<for (j = 1; < 10; j++) ...>>

for (j = 1; j < 10; j++)
{

/*
** Compute the inner product of the current row and column
*/
for (k = 1; k < 10; k++)
}
 *result_matrix[i] [j] =
 *result_matrix[i] [j] + *left[i] [k] * *right[k] [j];
}

};

ZK_5079A−GE

Retrieving Design Information 4–21

Retrieving Design Information
4.4 Generating Reports

The following table describes the sources of information for the callouts in
Figure 4–3.

Callout Source of Information1

1 0 Body section—Program structure gives the range of lines in the source file that compose
the body of the routine. The LSE overview feature is used to display progressively
detailed sections of the code.

1 The body of the routine begins with a final source code statement.

2 The second item of the body is pseudocode expanded to a nested for loop.

3 The third and final item of the body is pseudocode expanded with nested pseudocode.
Note that the pseudocode description is included in the expansion.

4 A for loop expansion is embedded with the prior left matrix loop and also expands to
include an additional pseudocode loop for the right matrix.

5 The right matrix pseudocode is expanded and includes one final pseudocode entry. Note
that the pseudocode description is included in the expansion.

6 The final expansion occurs with a nested for loop.

1Final expanded items are marked with the callout figures seen on the left side. A right-side callout shows
pseudocode to be expanded.

4.4.9 Creating 2167A Software Design Reports
You can use the REPORT command to automatically create the body of a report
that conforms to the requirements of the Software Design Document specified
by MIL-STD-2167A. The report tool creates the design section, Section 4 of
the 2167A Software Design Report. You can include this output file in your
complete Software Design Report, as follows:

• Use the DECdocument <INCLUDE> or <ELEMENT> tag for
DECdocument reports.

• Use the .REQUIRE directive for DIGITAL Standard Runoff (DSR) reports.

• Merge the output of the REPORT command manually with other text for
text reports.

Sample template files for the top levels of these reports are included in the
SCA$2167A directory, as follows:

2167A_PROFILE.SDML
2167A_PROFILE.RNO

4–22 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

These profile files use the appropriate commands to include the lower-level
files in the report. The SCA$2167A directory also contains stub files for each
of those lower-level files. Typically, you create the chapters (other than the
requirements chapter) manually, or you use another design tool.

Type the following SCA command to generate the file 2167A_DESIGN.SDML:

$ SCA REPORT 2167A_DESIGN

The profile files use 2167A_DESIGN as the name of the file to include as
Section 4 of the report. If you change the output file name by specifying the
OUTPUT option, you must also change the profile file using the new file name.

Invoke DECdocument to generate a Software Design report, as follows:

$ DOCUMENT /CONTENTS SCA$2167A.SDML MILSPEC destination_type

4.4.9.1 Describing 2167A Structure in your Code
The specifications for the DOD-STD-2167A Software Design Report call for
a hierarchy of program elements. A design is separated into components,
which may be further separated into sublevel components, or units. A unit
is the lowest level entity described in the design. For SCA 2167A_DESIGN
reports, use tagged comments to represent this structure.

The 2167A_DESIGN report treats each file in your system as a unit of the
2167A design. You specify design information for each unit in a comment
block in the source file. Because a 2167A component is a collection of units
and subcomponents, the 2167A_DESIGN report maps a set of files into each
component. However, it is redundant to duplicate all of the component design
information in each file of the component. Instead, select one file as the
main design file of the component and put the design information there. The
other files in the component contain a single tagged comment that names the
component to which they belong.

The special tags used to designate 2167A relationships are as follows:

• COMPONENT—Used in each file that you designate as the main design
file for a component, either top level or sublevel; the comment names that
component.

• COMPONENT OF—Used in sublevel components to name the parent of
the sublevel component.

• UNIT OF—Used in each unit (each file of your system) and names the
component to which the file belongs.

Retrieving Design Information 4–23

Retrieving Design Information
4.4 Generating Reports

Figure 4–4 shows a basic layout for a set of source files and how the special
tags are used.

Figure 4–4 Source Files of Special Tags

ZK−4706A−GE

C.ada C1.ada U1.ada U2.ada

−− Component: C1
−− Component of: C
−− Unit of: C1
−− design info...

−− Component: C
−− design info

for C...

−− Unit of: C
−− design info...
package U1 is...

−− Unit of: C1
−− design info...
package U2 is...

−− Unit of: C1
−− design info...
package U3 is...

Top−level component C has sub−component C1,
units U1, U2, and U3. Source files might be like this:

You can find a set of template files in the SCA$2167A directory, if you choose
this option when SCA is installed. For the example, perform the following
steps:

1. To set your SCA library to be SCA$2167A, type the following command:

$ SCA SET LIBRARY SCA$2167A

2. To create a report, type the following commands:

$ SCA
SCA SET COMMAND LANGUAGE PORTABLE
SCA> SET REPORT NAME 2167A_DESIGN
SCA> SET REPORT OUTPUT mydir:2167a_design
SCA> REPORT

To process the report with DECdocument, perform the following steps:

1. Copy the SDML profile files from SCA$2167A into your directory, as
follows:

$ COPY SCA$2167A:*.SDML mydir:

2. Define 2167A_DESIGN to point at the report output file you generated, as
follows:

$ DEFINE 2167A_DESIGN mydir:2167a_design.sdml

4–24 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

3. Invoke DECdocument with a recognized destination_type, such as POST or
LINE, as follows:

$ DOCUMENT /CONTENTS 2167A_PROFILE MILSPEC destination_type

4.4.9.2 Retrieving 2167A Structure Information
You can use SCA to get information about the structure of your system. For
example, if you want to find all the components in your system, type the
following query:

SCA> FIND COMPONENT AND SYMBOL=TAG

Because the three primary 2167A tags (COMPONENT, COMPONENT OF, and
UNIT OF) are all keyword tags, you can use them in keyword queries. For
example, if you want to find all the units of a component named Component 1,
use the following query expression:

FIND CONTAINED_BY (-
END = "UNIT OF" AND SYMBOL=TAG, -
BEGIN = "Component 1" AND SYMBOL=KEYWORD, -
DEPTH = 1, -
RESULT = BEGIN))

Similarly, you can use queries on the COMPONENT OF tag to find sublevel
components of a given component.

The 2167A_DESIGN report uses this information to create the report. It starts
by finding the names of all the components of the system.

The report goes through the components one at a time, and writes the
component section for each. It finds the units that belong to each component,
and writes a unit subsection for each unit.

Retrieving Design Information 4–25

Retrieving Design Information
4.4 Generating Reports

The data in the 2167A Software Design Report is obtained from the tagged
comments in your source files. Table 4–3 shows the tags corresponding to
paragraphs in the report.

Table 4–3 Tags for Component and Unit Information

TAGS FOR COMPONENT INFORMATION:

Tag: Description of corresponding section:

COMPONENT DESCRIPTION General description of the component

INPUT/OUTPUT DATA Input and output data for the component

ALGORITHMS Algorithms used by the component

ERROR HANDLING Error detection and recovery features

DATA CONVERSION Data conversions done by the component

LOGIC FLOW Logic flow of the component

REQUIREMENTS ALLOCATION Requirements satisfied by this component

TAGS FOR UNIT INFORMATION:

Tag: Description of corresponding section:

UNIT DESCRIPTION General description of the unit

INPUT/OUTPUT DATA ELEMENTS Input and output data for the unit

LOCAL DATA ELEMENTS Data used only in this unit

INTERRUPTS AND SIGNALS Interrupts and signals handled by this unit

UNIT ALGORITHMS Algorithms used by this unit

UNIT ERROR HANDLING Error detection and recovery for the unit

UNIT DATA CONVERSION Data conversions done by unit

USE OF OTHER ELEMENTS Other elements used by this unit

UNIT LOGIC FLOW Logic flow of the unit

DATA STRUCTURES Data structures implemented by unit

LOCAL DATA FILES Data files or databases used by unit

LOCAL DATABASES Same as LOCAL DATA FILES

LIMITATIONS Limitations of the unit

REQUIREMENTS ALLOCATED TO
THIS UNIT

Requirements satisfied by this unit

4–26 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

For Ada programs, these tags can be put into your comment headers
automatically by expanding the 2167A placeholder in the header comment
for the file.

Because the exact mapping between elements of your program and 2167A
items is highly dependent on your particular application and conventions,
the 2167A report as supplied by DIGITAL makes no attempt to use program
elements (packages, routines, and so forth.). All information in the report is
obtained from tagged comments. However, it is possible to customize reports
to use information from your program elements. It is also possible to change
the mapping of units to files and components to sets of files. (See Chapter 5 for
more information.)

4.4.10 Options for Standard Reports
The options for 2167A_DESIGN reports are shown in Table 4–4.

Table 4–4 2167A_DESIGN Report Options

Option Name Report Description Default Value

DOMAIN_QUERY Name of query to be used as the
domain.

null string

FILL Controls whether comment text is
filled.

ON

OUTPUT The output file specification. 2167A_DESIGN.target-
type

TARGET Indicates the type of output file to
generate.

SDML (other valid
values are TEXT, TXT,
RUNOFF, RNO, DSR,
DOCUMENT)

DESCRIPTION_INDENT_
WIDTH

Gives the width of the first column
of two-column tables.

32

LIST_STYLE Gives the list style to use. sca$report_k_list_
numbered

LITERAL_ANGLE_BRACKETS Controls whether text that contains
words in angle brackets, which
might otherwise be interpreted as
tags, should include the LITERAL
tags. ON means to add the
LITERAL tags.

ON

(continued on next page)

Retrieving Design Information 4–27

Retrieving Design Information
4.4 Generating Reports

Table 4–4 (Cont.) 2167A_DESIGN Report Options

Option Name Report Description Default Value

SCA_DEBUG_MESSAGES Controls whether to enable
debugging messages giving SCA
status values.

OFF

STATUS_MESSAGES Controls whether to enable status
messages.

ON

TRACEBACK_FLAG Controls whether to enable TPU
traceback messages during report
execution.

ON

TRACE_MESSAGES Controls whether to enable trace
messages generated by calling
sca$report_trace_message.

OFF

USE_SOURCE_SPELLING Controls whether the spelling of
routine, variable, and type names
are taken from the source file or are
supplied by SCA.

ON

The options for INTERNALS reports are shown in Table 4–5.

Table 4–5 INTERNALS Report Options

Option Name Report Description Default Value

DOMAIN_QUERY Name of query to be used as the
domain.

null string

FILL Controls whether comment text is
filled.

ON

OUTPUT The output file specification. INTERNALS.target-
type

TARGET Indicates the type of output file to
generate.

SDML (other valid
values are TEXT, TXT,
RUNOFF, RNO, DSR,
DOCUMENT)

DECL_CLASS_MODULES Controls whether declaration class
information appears in report
output.

ON, but overridden for
some languages

(continued on next page)

4–28 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

Table 4–5 (Cont.) INTERNALS Report Options

Option Name Report Description Default Value

DECL_CLASS_ROUTINES Controls whether declaration class
information appears in report
output.

ON, but overridden for
some languages

DESCRIPTION_INDENT_
WIDTH

Gives the width of the first column
of two-column tables.

32

INTERNALS_MAXIMUM_
FRAGMENT_SIZE

Gives the maximum number of
lines of source code to be displayed
in a single code fragment of an
INTERNALS routine body.

12

LIST_STYLE Gives the list style to use. sca$report_k_list_
numbered

OVERVIEW_LEVEL Controls what depth of detail to
display for the body section.

-1

ROUTINE_DEPTH Controls whether nested routines
are reported. For example, a
routine_depth of 2 means to report
on top-level routines plus the first
level of nested routines.

1 (top-level routines
only)

SCA_DEBUG_MESSAGES Controls whether to enable
debugging messages giving SCA
status values.

OFF

STATUS_MESSAGES Controls whether to enable status
messages.

ON

TRACEBACK_FLAG Controls whether to enable TPU
traceback messages during report
execution.

ON

TRACE_MESSAGES Controls whether to enable trace
messages generated by calling
sca$report_trace_message.

OFF

USE_SOURCE_SPELLING Controls whether the spelling of
routine, variable, and type names
are taken from the source file or are
supplied by SCA.

ON

Retrieving Design Information 4–29

Retrieving Design Information
4.4 Generating Reports

The options for HELP reports are shown in Table 4–6.

Table 4–6 HELP Report Options

Option Name Report Description Default Value

DOMAIN_QUERY Name of query to be used as the
domain.

null string

FILL Controls whether comment text is
filled.

ON

OUTPUT The output file specification. HELP.HLP

TARGET Indicates the type of output file to
generate.

HLP (the valid values
are HELP and HLP)

SCA_DEBUG_MESSAGES Controls whether to enable
debugging messages giving SCA
status values.

OFF

ROUTINE_DEPTH Controls whether nested routines
are reported. For example, a
routine_depth of 2 means to report
on top-level routines plus the first
level of nested routines.

1 (top-level routines
only)

STATUS_MESSAGES Controls whether to enable status
messages.

ON

TRACEBACK_FLAG Controls whether to enable TPU
traceback messages during report
execution.

ON

TRACE_MESSAGES Controls whether to enable trace
messages generated by calling
sca$report_trace_message.

OFF

USE_SOURCE_SPELLING Controls whether the spelling of
routine, variable, and type names
are taken from the source file or are
supplied by SCA.

ON

4–30 Retrieving Design Information

Retrieving Design Information
4.4 Generating Reports

The options for PACKAGE reports are shown in Table 4–7.

Table 4–7 PACKAGE Report Options

Option name Report Description Default value

DOMAIN_QUERY Name of query to be used as the
domain.

null string

OUTPUT The output file specification. PACKAGE.LSE

TARGET Indicates the type of output file
to generate. For details, see the
REPORT command description in
the DIGITAL Language-Sensitive
Editor/Source Code Analyzer for
OpenVMS Reference Manual.

LSE (the valid values
are LSE, VMSLSE,
PLSE, PORTABLE,
and LSEDIT as a
synonym for LSE)

LANGUAGES The list of languages in which
the package definition should be
available.

({language-name1}...)

HELP_LIBRARY The file specification used as the
help library.

null string

ROUTINE_DEPTH Controls whether nested routines
are reported. For example, a
routine_depth of 2 means to report
on top-level routines plus the first
level of nested routines.

1 (top-level routines
only)

SCA_DEBUG_MESSAGES Controls whether to enable
debugging messages giving SCA
status values.

OFF

STATUS_MESSAGES Controls whether to enable status
messages.

ON

TRACEBACK_FLAG Controls whether to enable TPU
traceback messages during report
execution.

ON

TRACE_MESSAGES Controls whether to enable trace
messages generated by calling
sca$report_trace_message.

OFF

USE_SOURCE_SPELLING Controls whether the spelling of
routine, variable, and type names
are taken from the source file or are
supplied by SCA.

ON

Retrieving Design Information 4–31

5
Customizing Reports

This chapter provides information on how to customize reports or create new
reports.

The following topics are described:

• An introduction to customizing reports

• Organizing reports

• Processing reports

• Modifying a report source file

• Changing the default value of an option

• Modifying query expressions

• Adding new tags and keyword lists

• Modifying tag names

• Modifying section headers and other fixed text

• Deleting information from a report

• Customizing 2167A reports

5.1 Introduction
The SCA REPORT command uses TPU in conjunction with the SCA callable
interface to generate reports. You can customize the reports or create your
own reports (or both) by modifying the TPU source code. The TPU source files
for the SCA command REPORT are located in the SYS$LIBRARY directory.
For more information on TPU, see the Guide to the DIGITAL Text Processing
Utility.

The interface between TPU and SCA is built into LSE. Therefore, you must
use LSE for access to the TPU/SCA interface.

Customizing Reports 5–1

Customizing Reports
5.2 How Reports are Organized

5.2 How Reports are Organized
Source files for the reports are in the SYS$LIBRARY directory. Each file has
a name in the form SCA$REPORT_module.TPU, with the exception of the file
SCA$QUERY_CALLABLE.TPU. The top-level procedure for each report has a
name in the form sca$report_report_name. All other routines for the reports
have names of the form sca$report_routine_name.

The source files that you will customize most often are as follows:

• SCA$REPORT_INTERNALS.TPU—Implements the INTERNALS report.

• SCA$REPORT_2167A_DESIGN.TPU—Implements the 2167A report.

• SCA$REPORT_HELP.TPU—Implements the HELP report.

• SCA$REPORT_PACKAGE.TPU—Implements the PACKAGE report.

• SCA$REPORT_UTILITIES.TPU—Contains general-purpose routines. It is
organized into several sections, with a table of contents at the beginning of
the file.

• SCA$REPORT_CUSTOMIZATIONS.TPU—Contains variables and
constants that provide easy report customization. It also contains
comments about customizing reports. It is organized into several sections,
with a table of contents at the beginning of the file.

• SCA$REPORT_PORTABLE_SYNTAX.TPU—Contains procedures used for
processing the portable report commands and defining report options.

Each source file contains header comments summarizing the file’s contents,
and each procedure within the source file is commented.

5.3 Overview of Report Processing
Report processing consists of three major parts, as follows:

1. Issuing SCA queries

2. Storing query results

3. Generating report output on the basis of the query results

Query processing (parts 1 and 2) is defined by the report definition. Output
generation (part 3) is done by the action routines specified in the report
definition. A report definition specifies the following:

• What queries are issued for the report, in what order the queries are
issued, and what the dependencies are between queries.

• What information is stored for each query result.

5–2 Customizing Reports

Customizing Reports
5.3 Overview of Report Processing

• What action routines are invoked to generate the report output. Query
result information is passed to the action routines by means of result
arrays.

The following are the steps in the main procedure for each of the standard
reports:

1. Standard initialization (processes command options, creates buffers needed
for report generation, and initializes variables)

2. Builds a report definition

3. Generates the report by processing the report definition

4. Standard cleanup (deletes report buffers, deletes the report definition,
deletes result arrays, and so on)

The main procedure for a DIGITAL-supplied report is named sca$report_xxx,
where xxx is the report name. For example, the main procedure for the
INTERNALS report is named sca$report_internals, and it is in the source file
SYS$LIBRARY:SCA$REPORT_INTERNALS.TPU.

For each standard report, the report definition is created by the procedure
sca$report_build_definition_xxx, where xxx is the report name. The procedures
called by the build_definition procedure are defined in the source file
SCA$REPORT_UTILITIES.TPU. Information on how to call each of these
procedures is found in the procedure’s header comments.

A set of utility routines is provided to fetch the results stored for each query.
These sca$report_fetch_* routines are also in SCA$REPORT_UTILITIES.TPU,
with calling sequence information in the header comments of each procedure.
For examples, see the action routines in SCA$REPORT_PACKAGE.TPU.

5.4 Modifying Report Source Files
The DIGITAL-supplied source files for the REPORT code are written in the
TPU language and reside in SYS$LIBRARY:SCA$REPORT_*.TPU. For some
report customizations, you need to modify one or more of these source files.
To modify a source file and then use it during report generation, perform the
following steps:

1. Make a local copy of the source file.

$ COPY SYS$LIBRARY:SCA$REPORT_xxx.TPU mydisk:[mydir]

2. Edit the local copy to make the desired customizations.

$ LSEDIT mydisk:[mydir]SCA$REPORT_xxx.TPU

Customizing Reports 5–3

Customizing Reports
5.4 Modifying Report Source Files

3. Define a logical name to point to the modified file.

$ DEFINE SCA$REPORT_xxx mydisk:[mydir]SCA$REPORT_xxx

4. Generate a report from SCA.

$ SCA REPORT report-name

5.5 Changing the Default Value of an Option
Each report option is represented by a TPU variable with the name
sca$report_option_xxx. The option name is xxx. For example, the TPU variable
corresponding to the overview_level option is sca$report_option_overview_level.
The option variables are defined and initialized to their default values in the
option definition procedure for each report.

To change the default value for an option, modify the option definition code
in the option definition procedure. For example, if you do not want to have
Body sections in your INTERNALS reports by default, you can change this
option definition by modifying code in SCA$REPORT_INTERNALS.TPU. In
the procedure sca$report_define_options_internals, change the following line:

sca$report_add_valid_option (’overview_level’, -1, ’’);

The revised line is as follows:

sca$report_add_valid_option (’overview_level’, 0, ’’);

In this example, you changed the default value of the overview_level option
from –1 to 0.

To use the modified file, follow the procedure described in Section 5.4.

5.6 Modifying Query Expressions
The query expressions issued by the standard reports are defined as string
constants in SCA$REPORT_CUSTOMIZATIONS.TPU. The constant names
begin with sca$report_k_query_. Some query expressions are formed during
report execution (for example, queries that include the name of the source file
currently being processed). The constant portions of these query expressions
are also defined in SCA$REPORT_CUSTOMIZATIONS.TPU.

5–4 Customizing Reports

Customizing Reports
5.6 Modifying Query Expressions

To modify a query expression, edit the string constant definition for the
query in SCA$REPORT_CUSTOMIZATIONS.TPU. For example, the standard
PACKAGE report uses the $REMARK comment text for a description of each
routine defined. To use the text from a comment with the OVERVIEW tag,
change the definition of the constant sca$report_k_query_routine_remark in
SCA$REPORT_CUSTOMIZATIONS.TPU to the following:

sca$report_k_query_routine_remark :=
’FIND CONTAINED_BY (@SCA$REPORT_CURRENT_ROUTINE,’ +
’SYMBOL=TAG AND "OVERVIEW", DEPTH=1, RESULT=BEGIN)’

5.7 Adding New Tags and Keyword Lists
LSE provides a set of standard tag definitions for each language. You can
define additional tags by using the DEFINE TAG and DEFINE KEYWORDS
commands. To save tag definitions in an environment file, use the SAVE
ENVIRONMENT command. To tell the compiler about the tag definitions,
define the logical name LSE$ENVIRONMENT to include the environment file
(LSE$ENVIRONMENT can be a search list). These tags are then available
when compiling programs with the /DESIGN qualifier.

Note that it is the compiler and not SCA that checks the program to ensure
that any keywords used are appropriate for a given keyword tag.

The following example shows how to label each module with a list of
requirements supplied by the module:

SET COMMAND LANGUAGE VMSLSE
DEFINE TAG REQUIREMENTS /LANGUAGE=ADA /TYPE=KEYWORD /KEYWORDS=Requirements_list
DEFINE KEYWORDS Requirements_list

"AST reentrant"
"Execution time under 1 millisecond"
"Accepts dynamic strings"

END DEFINE

To save these definitions in an environment file, type the following commands:

LSE> SET COMMAND LANGUAGE LSE
LSE> SAVE ENVIRONMENT CHANGES MYDISK:[MYDIRECTORY]MYTAGS

The CHANGES option tells LSE to save only the new definitions that
you added during the current editing session. This creates a file called
MYDISK:[MYDIRECTORY]MYTAGS.ENV. To have the compilers and LSE use
this file, type the following DCL command:

$ DEFINE LSE$ENVIRONMENT MYDISK:[MYDIRECTORY]MYTAGS.ENV

Customizing Reports 5–5

Customizing Reports
5.7 Adding New Tags and Keyword Lists

You can now use the /DESIGN qualifier to compile your program and the
REQUIREMENTS keyword tag will be recognized in your source file. For
example, your source file might contain the following lines:

-- Requirements:
-- AST Reentrant, accepts dynamic strings

5.8 Modifying Tag Names
The standard reports do special processing of certain tagged comments.
For example, tagged comments that contain the routine description and
descriptions of routine parameters are given special treatment for HELP and
INTERNALS reports. The tag names for these specially processed comments
are given by string constants in SCA$REPORT_CUSTOMIZATIONS.TPU. If
you define new tag names, modify these string constants.

For example, if you want to use the RESULT tag to label the text description
of the return value of a function, add the following tag definition to your LSE
environment file:

DEFINE TAG "RESULT" /TYPE=TEXT /LANGUAGE=language-name

Change the definition of the constant sca$report_routine_return_value in
SCA$REPORT_CUSTOMIZATIONS.TPU as follows:

sca$report_routine_return_value :=
’("RETURN VALUE" OR "ROUTINE VALUE" OR "FUNCTION VALUE" OR "RESULT")’

The DEFINE TAG command tells the compiler that RESULT is a valid
tag name to be recorded in the .ANA file and loaded into the SCA library.
Changing the constant definition in the report code modifies report processing
to recognize the RESULT tag as receiving special handling for HELP and
INTERNALS reports.

5.9 Modifying Section Headers and Other Fixed Text
The text for section headers and other fixed text used within reports is defined
as string constants in SCA$REPORT_CUSTOMIZATIONS.TPU.

To modify one of these strings, edit the string constant definition in
SCA$REPORT_CUSTOMIZATIONS.TPU. For example, to change the
Intramodule variables heading to Module-wide variables, change the definition
of the constant sca$report_section_variables in
SCA$REPORT_CUSTOMIZATIONS.TPU as follows:

sca$report_section_variables := ’Module-wide variables’

5–6 Customizing Reports

Customizing Reports
5.10 Deleting Information from a Report

5.10 Deleting Information from a Report
You delete a definition entry by either commenting out the code or by marking
it as an ignore entry. To comment out the code, add an exclamation point (!) at
the beginning of each line. To mark the definition as an ignore entry, add the
following code to the entry definition:

sca$report_definition_add_option (sca$report_k_option_ignore);

For example, if you do not want to have an Imported Types section in your
INTERNALS reports, edit the file SCA$REPORT_INTERNALS.TPU to remove
this section. In the procedure sca$report_build_definition_internals, you need
to delete the definition labelled imported types entry. The code that defines this
entry begins with the following lines:

!---
! level 3 - imported types
! attribute - type NAME, location object_name
!
sca$report_definition_add_entry (3, 2, 1, 1);
sca$report_definition_add_label (’imported types entry’);

You can make this entry be ignored by adding the following code directly after
the call to sca$report_definition_add_label:

sca$report_definition_add_option (sca$report_k_option_ignore);

5.11 Customizing 2167A Reports
Because the relationships between your program design or code and the DOD
2167A Software Design Document are dependent upon policies established at
your site, you will probably need to customize the report.

In this section, two simple types of customizations are presented. The first
example adds a section to a report. The next example shows how to generate
the INPUT/OUTPUT section of a report automatically from data declarations
in the code, instead of getting the information directly from tagged comments.

Customizing Reports 5–7

Customizing Reports
5.11 Customizing 2167A Reports

5.11.1 Adding a Section to a 2167A Report
The report definition for 2167A_DESIGN reports is given by the procedure
sca$report_build_definition_2167a_design, in the file
SCA$REPORT_2167A_DESIGN.TPU. This report definition contains a series
of entries for component and unit information. Each entry specifies the tag
that labels the information in your source files, and the title to be used for the
corresponding section of the report. You might want to have additional report
sections that correspond to other information in your source files. This section
describes how to add such a report section, as follows:

1. To add a section called PERFORMANCE CONSIDERATIONS for units,
begin by defining a UNIT PERFORMANCE CONSIDERATIONS tag by
using the DEFINE TAG command, as follows:

DEFINE TAG "UNIT PERFORMANCE CONSIDERATIONS"/TYPE=TEXT -
/LANGUAGE=your_language

2. Add the definition entry for the new section in SCA$REPORT_2167A.TPU.
If you want the new section to be added after all the other sections, add
the definition entry after the one labelled UNIT REQ ENTRY. If you want
it in a different position, add the new definition entry between the sections
where you want the new section to appear.

The definition entry appears as follows:

!---
! level 3 - unit performance entry
! unit_perf query
! attribute - type TAG_NAME, location tag_name
! attribute - type TAG_TEXT, location tag_text
! attribute - type CONSTANT, location section_label
!
sca$report_definition_add_entry (3, 1, 3, 0);
sca$report_definition_add_label (’unit performance entry’);
! This dynamic query specifies that the name of the current file will
! be inserted at run-time.
! The variable sca$report_unit_file_name is filled in by the action
! routine for the units entry - it is the file name for the current unit.
sca$report_add_query_dynamic (

sca$report_k_query_2167a_unit_perf + ’"’,
’sca$report_unit_file_name’,
’"’);

sca$report_definition_add_info (sca$report_k_info_type_tag_name,
sca$report_location_tag_name);

sca$report_definition_add_info (sca$report_k_info_type_tag_text,
sca$report_location_tag_text);

sca$report_definition_add_info (sca$report_k_info_type_constant,
sca$report_location_section_label,
’Performance considerations’);

5–8 Customizing Reports

Customizing Reports
5.11 Customizing 2167A Reports

In the file SCA$REPORT_CUSTOMIZATIONS.TPU, add a query string for
your new section, as follows:

CONSTANT
sca$report_k_query_2167a_unit_perf :=

’FIND SYMBOL=TAG AND "PERFORMANCE CONSIDERATIONS" AND FILE=’;

You can also modify your LSE templates to make this tag available at an
appropriate point in the comment header.

DIGITAL recommends that you use distinct names for tags at the
component and unit level. In this case, COMPONENT PERFORMANCE
CONSIDERATIONS is an appropriate tag to use at the component level.
Because the correct level for section headings is apparent from the context in
the report output, it is not necessary to use section headings, although you can
do so.

5.11.2 Using Program Code For Report Information
The 2167A design report is based solely on tagged comment text; it does not
use your program structure. This section shows how to modify this report to
get information about global variables from your program structure, rather
than from a tagged comment.

The standard 2167A report gets information about a component’s
INPUT/OUTPUT DATA ELEMENTS (global variables) from tagged comments.
To get this information from your program structure, you need to make several
changes in the report definition entry labeled component i/o entry.

First, change the query used in this entry. The query that finds all the global
variables in the file name.ext is as follows:

FIND SYMBOL=VARIABLE AND OCCURRENCE=DECLARATION AND DOMAIN=MULTI_MODULE -
AND FILE="name.ext"

To use this query in your report, change the definition of the constant
sca$report_k_query_component_io contained in the file
SCA$REPORT_CUSTOMIZATIONS.TPU. The original definition is as follows:

sca$report_k_query_2167a_component_io :=
’FIND SYMBOL=TAG AND "INPUT/OUTPUT DATA" AND FILE=’,

Change it to the following:

sca$report_k_query_component_io :=
’FIND SYMBOL=VARIABLE AND OCCURRENCE=DECLARATION AND DOMAIN=MULTI_MODULE -

AND FILE=’,

Customizing Reports 5–9

Customizing Reports
5.11 Customizing 2167A Reports

Next, change the entry to gather the name and type of each global variable by
changing the calls to sca$report_definition_add_info, as follows:

sca$report_definition_add_info (sca$report_k_info_type_name,
sca$report_location_object_name);

sca$report_definition_add_info (sca$report_k_info_type_variable_type,
sca$report_location_object_type);

sca$report_definition_add_info (sca$report_k_info_type_source_location,
sca$report_location_source_location);

You also need to add a subentry to get the description of each variable. Add an
entity name to the component i/o entry to form the appropriate query to get
the description text associated with each variable, as follows:

sca$report_definition_add_entity_name (’SCA$REPORT_CURRENT_OBJECT’);

Add the subentry (modeled after similar entries in the INTERNALS report
definition), as follows:

!---
! level 3 - object description
! attribute - type TAG_NAME, location tag_name
! attribute - type TAG_TEXT, location tag_text
!
sca$report_definition_add_entry (3, 1, 2, 1);
sca$report_definition_add_option (sca$report_k_option_all_occurrences);
sca$report_definition_add_query (sca$report_k_query_object_description);
sca$report_definition_add_info (sca$report_k_info_type_tag_name,

sca$report_location_tag_name);
sca$report_definition_add_info (sca$report_k_info_type_tag_text,

sca$report_location_tag_text);

! Action routine for after query is processed - do comment filtering.
!
sca$report_definition_add_action_routine (

’sca$report_do_comment_filter’,
sca$report_k_invoke_after_all_entities);

The last change invokes a different action routine for the component i/o
entry. Write and invoke an action routine that writes the variable
name, type, and description with the necessary target-specific formatting
information surrounding it. Model this action routine after the procedure
sca$report_do_internals_exported_variables (contained in the
SCA$REPORT_INTERNALS.TPU file), which writes this information for
exported variables in the INTERNALS report. The commands are as follows:

! Invoke after all entities - write component section.
!
sca$report_definition_add_action_routine (

’sca$report_do_io_section’,
sca$report_k_invoke_after_all_entities);

5–10 Customizing Reports

Customizing Reports
5.11 Customizing 2167A Reports

Your new definition entry for the component i/o section looks like the following:

!---
! level 2 - component i/o tag
! component_io query
! attribute - type NAME, location object_name
! attribute - type VARIABLE_TYPE, location object_type
! attribute - type SOURCE_LOCATION, location source_location
! attribute - type CONSTANT, location section_label
!
sca$report_definition_add_entry (2, 1, 4, 2);
sca$report_definition_add_label (’component i/o entry’);
! The variable sca$report_CSC_file_name is filled in by a CSC action
! routine - it is the file name for the current CSC.
sca$report_definition_add_query_dynamic (

sca$report_k_query_component_io + ’"’,
’sca$report_CSC_file_name’,
’"’);

sca$report_definition_add_info (sca$report_k_info_type_name,
sca$report_location_object_name);

sca$report_definition_add_info (sca$report_k_info_type_variable_type,
sca$report_location_object_type);

sca$report_definition_add_info (sca$report_k_info_type_source_location,
sca$report_location_source_location);

sca$report_definition_add_info (sca$report_k_info_type_constant,
sca$report_location_section_label,
’Input/output data’);

sca$report_definition!add_entity_name (’SCA$REPORT_CURRENT_OBJECT’);

! Invoke before query - write header for all component sections.
!
sca$report_definition_add_action_routine (

’sca$report_start_component_sections’,
sca$report_k_invoke_before_query);

! Invoke after all entities - write component section.
!
sca$report_definition_add_action_routine (

’sca$report_do_io_section’,
sca$report_k_invoke_after_all_entities);

Customizing Reports 5–11

Customizing Reports
5.11 Customizing 2167A Reports

!---
! level 3 - object description
! attribute - type TAG_NAME, location tag_name
! attribute - type TAG_TEXT, location tag_text
!
sca$report_definition_add_entry (3, 1, 2, 1);
sca$report_definition_add_option (sca$report_k_option_all_occurrences);
sca$report_definition_add_query (sca$report_k_query_object_description);
sca$report_definition_add_info (sca$report_k_info_type_tag_name,

sca$report_location_tag_name);
sca$report_definition_add_info (sca$report_k_info_type_tag_text,

sca$report_location_tag_text);

! Action routine for after query is processed - do comment filtering.
!
sca$report_definition_add_action_routine (

’sca$report_do_comment_filter’,
sca$report_k_invoke_after_all_entities);

5–12 Customizing Reports

Index

A
ABSTRACT tag, 4–8
Algorithms

designing, 3–9
2167A_DESIGN report

adding a section to, 5–8
customizing, 5–7
definition of, 4–22
describing structure in code, 4–23
format, 4–7
retrieving structure information, 4–25

C
Comment block

definition of, 3–3
Comments

See also Tagged comments
associating tags with declarations, 3–5
block

definition of, 3–3
expressing design information in, 3–2

Compiling design information, 4–4
COMPONENT DESCRIPTION tag, 4–26
COMPONENT OF tag, 4–23
Components

definition of, 4–23
COMPONENT tag, 4–23
Creating INTERNALS reports, 4–15
Creating LSE package definitions, 4–13
Creating online HELP, 4–11

Creating reports, 5–1
Customizing reports, 5–1

D
Data declarations

designing, 3–7
DECset, 3–1

tools, 1–1
DEFINE ADJUSTMENT command, 4–1
DEFINE KEYWORDS command, 3–3, 5–5
DEFINE TAG command, 5–5
Design information, 2–1

adding for a routine, 2–4
entering, 2–2
retrieving, 2–11
transferring to SCA library, 2–11

Designing algorithms, 3–9
Designing data declarations, 3–7
Designing programs, 1–3
DOD-STD-2167A

See 2167A_DESIGN report
DOMAIN option, 4–8

E
ENTER COMMENT/BLOCK command,

3–10
ENTER COMMENT command, 3–9
ENTER COMMENT LINE command, 3–10
Entering design information, 2–2

module, 2–2
ENTER PSEUDOCODE command, 3–7, 3–9

Index–1

F
FILL option, 4–9
Fixed text

modifying, 5–6
FORMAL PARAMETERS tagged comment,

3–4
FUNCTIONAL DESCRIPTION tag, 4–8

G
Generating reports, 4–5

H
Help file, 2–12
HELP report

definition of, 4–11
format, 4–7

I
Implementation

completing, 2–9
INTERNALS report, 2–13

creating, 4–15
definition of, 4–2, 4–15
format, 4–7
targets

DOCUMENT, 4–15
RUNOFF, 4–15
TEXT, 4–15

K
Keyword list

adding, 5–5
definition of, 3–3

Keyword phrases, 3–3
Keyword queries, 2–12, 4–5
Keyword tag

defining, 3–3

L
Loading design information into an SCA

library, 4–4
LSE, 1–2

entering design information with, 2–2
LSE$ENVIRONMENT, 5–5
LSE$SYSTEM_ENVIRONMENT, 3–3

M
MIL-STD-2167A

See 2167A_DESIGN report
Modifications

reports, 5–1

O
OpenVMS compilers

processing designs using, 4–4
qualifiers

/ANALYSIS_DATA, 3–2
/DESIGN, 3–2, 4–4
/DESIGN=(COMMENT), 4–4
/DESIGN=(PLACEHOLDER), 4–4

Overview operations
using, 2–8

P
Package definition, 2–12
PACKAGE report

definition of, 4–13
format, 4–7

PDF (Program Design Facility)
compiling design information, 4–4
generating reports, 4–5
keyword queries, 4–5
loading design information into an SCA

library, 4–4
refining designs, 3–9
reverse-engineering a design, 4–1
transferring design information, 4–3

Index–2

Preserving designs, 4–4
Processing designs, 4–3
Program design information, 2–1
Program structure, 3–1
Pseudocode

entering, 2–6
example of, 3–7
moving to comments, 2–7
writing the algorithm design, 3–9

Q
Query expressions

modifying, 5–4

R
Refining designs with PDF, 3–9
$REMARK tag, 3–5
REPORT command, 4–5, 5–1
Report processing

overview, 5–2
Reports

2167A_DESIGN, 4–7, 4–22
customizing, 5–1
generating, 2–12, 4–5
HELP, 4–7, 4–11
INTERNALS, 4–2, 4–7, 4–15
organization of, 5–2
PACKAGE, 4–7, 4–13
sample templates files, 4–22
source code location, 5–2

Report source file
modifying, 5–3

Retrieving 2167A structure information,
4–25

Retrieving design information, 2–11
Reverse-engineering a design, 4–1

S
Sample report

templates files, 4–22

SAVE ENVIRONMENT command, 5–5
/NEW qualifier, 5–5

SCA, 1–2
SCA$REPORT_2167A_DESIGN.TPU, 5–2
SCA$REPORT_CUSTOMIZATIONS.TPU,

5–2
SCA$REPORT_HELP.TPU, 5–2
SCA$REPORT_INTERNALS.TPU, 5–2
SCA$REPORT_PACKAGE.TPU, 5–2
SCA$REPORT_PORTABLE_SYNTAX.TPU,

5–2
SCA$REPORT_UTILITIES.TPU, 5–2
SCA keyword query, 2–12
SCA library

containing design information, 4–4
loading design information into, 4–4

Section headers
modifying, 5–6

SET LANGUAGE COMMENT
ASSOCIATION command, 3–6

SHOW TAGS command, 4–7
Source code

finalizing, 2–9
Structured comments

subtags, 3–4
SYS$LIBRARY, 5–2

T
Tag

ABSTRACT, 4–8
adding new, 5–5
COMPONENT, 4–23
COMPONENT DESCRIPTION, 4–26
COMPONENT OF, 4–23
FUNCTIONAL DESCRIPTION, 4–8
list of, 4–26
$REMARK, 3–5
UNIT OF, 4–23
$UNTAGGED, 3–5

Tagged comments
definition of, 3–2
FORMAL PARAMETERS, 3–4
structured

See Structured comments

Index–3

Tagged comments (cont’d)
Text

See Text comments
types of, 3–4
using, 3–3

Tag names
modifying, 5–6

Text comments
definition of, 3–3

Transferring design information, 4–3

Transferring designs, 2–11

U
UNIT OF tag, 4–23
Units

definition of, 4–23
$UNTAGGED tag, 3–5
Using help text, 2–13
Using packages, 2–13

Index–4

