
VAX DATATRIEVE
Guide to Programming and Customizing
Order Number: AA–P863E–TE

March 20, 1992

This manual explains how to use the VAX DATATRIEVE Call
Interface. It also describes how to create user-defined keywords
and user-defined functions and how to customize DATATRIEVE Help
and message text.

OPERATING SYSTEM: VMS Version 5.4 or higher

SOFTWARE VERSION: VAX DATATRIEVE Version 6.0

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1984, 1985, 1987, 1989.

The following are trademarks of Digital Equipment Corporation:

ACMS DIBOL ULTRIX
ALL–IN–1 MASSBUS UNIBUS
DATATRIEVE PDP VAX
DEC P/OS VAX CDD
DEC/CMS Professional VAX FMS
DEC/MMS Rainbow VAXcluster
DECforms RALLY VAXstation
DECintact Rdb/ELN VIDA
DECmate Rdb/VMS VMS
DECnet ReGIS VT
DECdecision RSTS Work Processor
DECUS RSX
DECwindows RT
DECwrite TDMS �™

The following are third-party trademarks:

IBM is a registered trademark of International Business Machines, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

Contents

Preface . ix

1 Introduction to Programming and Customizing

1.1 Writing Programs That Call DATATRIEVE 1–1
1.1.1 How Writing Calling Programs Extends DATATRIEVE

. 1–3
1.1.2 How DATATRIEVE Extends Programming

Languages . 1–4
1.2 Customizing DATATRIEVE . 1–4

2 Writing Programs That Call VAX DATATRIEVE

2.1 Overview of DATATRIEVE Programming Calls 2–1
2.1.1 Declare the DATATRIEVE Access Block (DAB) 2–2
2.1.2 Initialize the Call Interface . 2–2
2.1.3 Issue DATATRIEVE Commands and Statements 2–3
2.1.4 Closing the DATATRIEVE Interface 2–4
2.1.5 Compiling and Linking DATATRIEVE Programs 2–4
2.2 DATATRIEVE Stallpoints—Transfer of Control 2–5
2.3 The DATATRIEVE Access Block . 2–8
2.3.1 DAB$L_CONDITION—Condition Codes 2–9
2.3.2 Message Buffers . 2–10
2.3.2.1 Messages DATATRIEVE Stores in the Message

Buffer . 2–10
2.3.2.2 Messages DATATRIEVE Stores in the Auxiliary

Message Buffer . 2–11
2.3.3 DAB$W_STATE—Stallpoint Information 2–12
2.3.4 DAB$W_REC_LEN—Record Lengths 2–12
2.3.5 Input/Output Channels . 2–12
2.3.6 DAB$L_OPTIONS—Initial Options 2–15
2.3.7 User-Defined Keyword Information 2–15
2.4 Using the DATATRIEVE Call Interface 2–17

iii

2.4.1 Command Processing . 2–17
2.4.2 Reading and Storing Records . 2–17
2.4.3 Defining Your Own Keywords 2–18
2.4.4 Getting Information About DATATRIEVE Objects 2–18
2.4.5 Writing Data to a Log File . 2–18
2.4.6 Handling Errors . 2–19
2.4.7 Debugging Your Program . 2–20

3 DATATRIEVE Call Reference

DTR$COMMAND . 3–2
DTR$CONTINUE . 3–9
DTR$CREATE_UDK . 3–12
DTR$DTR . 3–17
DTR$END_UDK . 3–23
DTR$FINISH . 3–25
DTR$FINISH_WINDOWS . 3–27
DTR$GET_PORT . 3–29
DTR$GET_STRING . 3–35
DTR$INFO . 3–41
DTR$INIT . 3–58
DTR$LOOKUP . 3–65
DTR$PORT_EOF . 3–69
DTR$PRINT_DAB . 3–73
DTR$PUT_OUTPUT . 3–76
DTR$PUT_PORT . 3–79
DTR$PUT_VALUE . 3–82
DTR$UNWIND . 3–85
DTR$WINDOW_MSG . 3–88
DTR$WINDOW_OUTPUT . 3–90
DTR$WINDOWS . 3–92

iv

4 Adding Functions to DATATRIEVE

4.1 Using DATATRIEVE Functions . 4–1
4.2 DATATRIEVE Functions and External Procedures 4–2
4.3 How to Add Functions to DATATRIEVE 4–3
4.3.1 Write and Compile Your Procedures 4–4
4.3.2 Insert the Procedure Object Files into the Object

Library . 4–5
4.3.3 Add the Function Definitions to DTRFNDxx.MAR 4–5
4.3.3.1 The Format of a Function Definition 4–5
4.3.3.2 Sample Function Definitions 4–11
4.3.4 Assemble and Debug DTRFNDxx.MAR 4–14
4.3.5 Replace DTRFNDxx.MAR in the Object Library 4–16
4.3.6 Relink the DATATRIEVE Shareable Image 4–16

5 Customizing DATATRIEVE Help Text

5.1 How to Change Help Text . 5–1
5.1.1 Copy the DATATRIEVE Help Library File 5–1
5.1.2 Extract the Help Modules You Want to Change 5–2
5.1.3 Edit the Extracted Help Text . 5–2
5.1.3.1 The Structure of Help Text Files 5–2
5.1.4 Replace the Changed Text in DTRHELP.HLB 5–2
5.1.5 Replace the Old Help Library File with the New

One . 5–3
5.2 How to Create New Help Text . 5–3

6 Customizing DATATRIEVE Messages

6.1 DATATRIEVE Messages . 6–1
6.1.1 DATATRIEVE Messages and the Call Interface 6–2
6.1.2 Messages in Interactive DATATRIEVE 6–2
6.2 How to Change DATATRIEVE Messages 6–3
6.2.1 Copy the Message Source File 6–3
6.2.2 Edit the Message Source File . 6–4
6.2.2.1 Structure of the Message Source File 6–4
6.2.2.2 Changing the Message Text 6–5
6.2.2.3 Using FAO Directives to Format Message Text . . . 6–6
6.2.2.3.1 Substitution Directives 6–7
6.2.2.3.2 Formatting Directives 6–8
6.2.2.3.3 Parameter Interpretation Directives 6–9
6.2.3 Compile the Message Source File 6–10
6.2.4 Link the Object File . 6–10

v

6.2.5 Replace the Old DTRMSGS.EXE File with the New
One . 6–11

7 Customizing ADT and Guide Mode

7.1 Customizing ADT . 7–1
7.1.1 Copy the ADT Text File . 7–2
7.1.2 Modify ADT Text . 7–2
7.1.2.1 Ready the ADT_TEXT Domain 7–2
7.1.2.2 Modify ADT Text Strings . 7–2
7.1.2.3 Add ADT Text Strings . 7–3
7.1.2.4 Messages During an ADT Session 7–5
7.1.3 Replace the Old ADT Text File with the New One 7–5
7.2 Customizing Guide Mode . 7–5
7.2.1 Copy the DTRGUIDE.DAT File 7–7
7.2.2 Modify the Distribution of Commands and

Statements . 7–7
7.2.3 Replace the Old DTRGUIDE.DAT with the New

One . 7–8

8 Customizing DATATRIEVE Text

8.1 DATATRIEVE Text . 8–1
8.1.1 Syntax Prompt Text . 8–1
8.1.2 SHOW Text . 8–2
8.1.3 Date Text . 8–3
8.1.4 Default Edit Strings . 8–3
8.1.5 Statistical Text . 8–3
8.1.6 Keywords . 8–4
8.2 How to Change DATATRIEVE Text 8–4
8.2.1 Copy the DATATRIEVE Text File 8–4
8.2.2 Edit the Text File . 8–5
8.2.3 Assemble the Text File . 8–6
8.2.4 Replace the Text Object File in DTRLIBxx.OLB 8–6
8.2.5 Relink the DATATRIEVE Shareable Image 8–6

vi

9 Translating DATATRIEVE

9.1 Planning Your Translation . 9–2
9.2 How to Translate DATATRIEVE . 9–3
9.2.1 Translating Keywords . 9–3
9.2.2 Translating Help Text . 9–4
9.2.3 Translating Messages . 9–6
9.2.4 Translating ADT . 9–7
9.2.5 Translating the Remaining Text Elements 9–8
9.2.6 Translating the Names of Functions 9–9
9.2.7 Relinking the DATATRIEVE Shareable Image 9–10

A Definitions of the DATATRIEVE Access Block

A.1 Location of DATATRIEVE Access Blocks A–1
A.2 Location of Sample Programs . A–2
A.3 Defining the DATATRIEVE Access Block in Other VAX

Languages . A–3
A.3.1 Defining the Access Block . A–3
A.3.2 Defining the Message Buffers A–7
A.3.3 Defining DATATRIEVE Constants A–7

B DATATRIEVE Message Information

C Argument Data Types

Index

Examples

2–1 Sample Error Checking Routine in BASIC 2–20

Figures

1–1 VAX DATATRIEVE Architecture 1–2
A–1 Structure of the DATATRIEVE Access Block A–4

vii

Tables

2–1 Stallpoints and Calls . 2–7
2–2 Useful DAB Fields . 2–8
2–3 Content of Message Buffers . 2–11
2–4 Stallpoint Values . 2–12
2–5 DATATRIEVE Keywords . 2–16
3–1 Types of Context for User-Defined Keywords 3–13
3–2 DTR$DTR Control Options . 3–17
3–3 DTR$DTR Terminal Server Options 3–18
3–4 Token Types for the DTR$GET_STRING Call 3–35
3–5 Info-Code Options . 3–43
3–6 DTR$WINDOWS Control Options 3–92
3–7 DTR$WINDOWS DECwindows Terminal Server

Options . 3–93
4–1 Common VAX Data Types . 4–10
4–2 Input Argument Types and Clauses 4–10
6–1 Sample DATATRIEVE Messages 6–3
6–2 FAO Directives Used in DATATRIEVE Messages 6–6
7–1 Guide Mode Levels . 7–6
A–1 DAB Definition Files in DTR$LIBRARY A–1
A–2 Sample Programs . A–2
A–3 Files Containing Sample Programs that Call

DATATRIEVE . A–2
A–4 Fields of the DATATRIEVE Access Block A–5
A–5 DATATRIEVE Access Block Constants A–7
C–1 Atomic Data Types . C–1
C–2 String Data Types . C–4
C–3 Miscellaneous Data Types . C–4

viii

Preface

This manual explains how to call the VAX DATATRIEVE services (also referred
to in this manual as DATATRIEVE) from within programs written in high level
languages such as VAX FORTRAN, VAX BASIC, VAX COBOL, VAX PASCAL,
VAX PL/I, and VAX C. It also describes how to create user-defined keywords and
user-defined functions and how to customize DATATRIEVE help and message
text.

Intended Audience
This manual addresses experienced users of at least one programming language.
Some familiarity with DATATRIEVE is also required.

Operating System Information
Information about the versions of the operating system and related software that
are compatible with this version of VAX DATATRIEVE is included in the VAX
DATATRIEVE media kit, in either the VAX DATATRIEVE Installation Guide or
the VAX DATATRIEVE Before You Install Letter.

For information on the compatibility of other software products with this version
of VAX DATATRIEVE, refer to the System Support Addendum (SSA) that comes
with the Software Product Description (SPD). You can use the SPD/SSA to verify
which versions of your operating system are compatible with this version of
VAX DATATRIEVE.

Related Documents
For more information about the subjects discussed in this manual, consult the
following manuals:

• VAX DATATRIEVE User’s Guide

Describes how to use DATATRIEVE interactively.

• VAX DATATRIEVE Reference Manual

Contains reference information for DATATRIEVE.

ix

• Language reference manuals for FORTRAN, COBOL, BASIC, PASCAL, PL/I
and C.

References to Products
The VAX DATATRIEVE documentation to which this manual belongs refers to
the following products by their abbreviated names:

• VAX CDD/Repository software is referred to as CDD/Repository.

• VAX ACMS software is referred to as ACMS.

• VAX DATATRIEVE software is referred to as DATATRIEVE.

• VAX Rdb/ELN software is referred to as Rdb/ELN.

• VAX Rdb/VMS software is referred to as Rdb/VMS.

• VAX TDMS software is referred to as TDMS.

• VAX FMS software is referred to as FMS.

• DECforms software is referred to as DECforms.

• VIDA software is referred to as VIDA.

This manual uses the terms relational database or relational source to refer to all
three of these products:

• VAX Rdb/VMS

• VAX Rdb/ELN

• VIDA

x

1
Introduction to Programming and

Customizing

This manual describes how to customize VAX DATATRIEVE to suit your
information management needs and how to use DATATRIEVE services from you
applications. It explains how you can perform the following actions:

• Use the DATATRIEVE data management services in a program

• Write programs that set up an interface to DATATRIEVE for end users

• Add keywords and functions to DATATRIEVE

• Modify all of the DATATRIEVE on-line text

1.1 Writing Programs That Call DATATRIEVE
The DATATRIEVE Call Interface makes all of the DATATRIEVE information
management capabilities available to calling programs written in languages
such as VAX FORTRAN, VAX COBOL, VAX BASIC, VAX Pascal, VAX PL/I, and
VAX C.

Figure 1–1 illustrates the role of calling programs and the Call Interface in the
DATATRIEVE architecture.

Introduction to Programming and Customizing 1–1

Introduction to Programming and Customizing
1.1 Writing Programs That Call DATATRIEVE

Figure 1–1 VAX DATATRIEVE Architecture

DMF

Call Interface D
E
C
n
e
t

RMS
Relational Database

Products
VAX

DBMS

Terminal Server/
DECwindows Server

Calling
Programs

Remote
Server

Editors

Data

FMS

TDMS

DECforms

Forms

CDD/Repos−
itoryRepos−

itory

The main part of the DATATRIEVE architecture is the Data Manipulation
Facility (DMF). The DMF is the DATATRIEVE shareable image. It parses,
compiles, and executes all commands and statements entered to DATATRIEVE.
The DMF uses data definitions stored in the VAX CDD/Repository dictionary
system to manipulate data managed by VAX RMS (Record Management Services),
VAX DBMS, and DIGITAL relational database products such as VAX Rdb/VMS,
VIDA, and VAX Rdb/ELN.

All requests for the DMF data management services go through the DATATRIEVE
Call Interface. There are three modes of access to the DMF:

• DATATRIEVE terminal server

The most common way to use the DMF is with the DATATRIEVE terminal
server. When you invoke DATATRIEVE with the DIGITAL Command
Language (DCL) DATATRIEVE command, the terminal server gives you
interactive access to the DMF data management services. The terminal
server transmits your commands and statements through the Call Interface

1–2 Introduction to Programming and Customizing

Introduction to Programming and Customizing
1.1 Writing Programs That Call DATATRIEVE

to the DMF. The DMF returns print lines and messages, and the terminal
server displays them.

• Remote server

A second mode of access to the DMF is the remote server. When you enter a
command or statement that specifies a remote node, DATATRIEVE invokes
the remote server on the node you specify. DATATRIEVE on the host
node communicates with the DATATRIEVE remote server to process your
commands and statements.

• User-written programs

The third mode of access to the DMF is a user-written program. Programs
you write use the Call Interface to pass commands and statements to the
DMF and to receive print lines and messages in return. When you write a
program that calls the DMF, you create your own terminal server.

1.1.1 How Writing Calling Programs Extends DATATRIEVE
The Call Interface enables you to write programs that perform tasks that you
cannot do by using the terminal server. Your programs can use the data retrieval
services of DATATRIEVE and then perform complex calculations and statistical
tests, set up complicated reports, and format terminal screens.

You can write programs that set up a menu-driven, end-user interface to
information managed by DATATRIEVE, VAX DBMS, and relational database
products. The Call Interface gives you access to the DATATRIEVE and Forms
Interface, so your program can allow end users to display, store, and modify data
using a full-screen form.

You can also write programs that define new keywords. For example, you may
want to define a keyword, CORRELATE, that lets the user enter the following
statement:

DTR> CORRELATE LOA, PRICE OF YACHTS WITH RIG = "SLOOP"

To create the user-defined keyword CORRELATE, you can write a program
that calls the terminal server to simulate DATATRIEVE. The end user who
runs this program cannot differentiate between your program and interactive
DATATRIEVE. Your program can instruct DATATRIEVE to give it control when
the user enters CORRELATE. The program can then parse the statement entered,
perform the calculations required, and display the coefficient of correlation.

Introduction to Programming and Customizing 1–3

Introduction to Programming and Customizing
1.1 Writing Programs That Call DATATRIEVE

1.1.2 How DATATRIEVE Extends Programming Languages
VAX DATATRIEVE enables you to use data from a variety of sources. Records
can be stored in a single RMS file, several RMS files (a DATATRIEVE view), a
relational database, or a VAX DBMS database. You do not have to know how
the records are stored to work with them. VAX DATATRIEVE performs all of
the data access and your program does not have to specify how the records are
structured.

You can pass entire DATATRIEVE commands and statements, including
complicated record selection expressions, through the Call Interface. This
allows you to specify the records you want to use when you run your programs,
rather than when you write them. DATATRIEVE knows how the data file is
organized and automatically searches for the records in the most efficient way.

The Call Interface gives your programs full access to DATATRIEVE functionality,
including tables and procedures. If you use VAX DATATRIEVE when storing
records, you can take advantage of the automatic validation and default value
capabilities within DATATRIEVE.

1.2 Customizing DATATRIEVE
In addition to writing calling programs, you can customize DATATRIEVE in other
ways.

You can extend the capability of DATATRIEVE to perform specific tasks efficiently
by creating user-defined functions. For example, you may want to enable users to
raise a number, 2, to a specified power, 9, with the following statement:

DTR> PRINT FN$POWER (2, 9)

FN$POWER is a function you can define. You can also add functions that use
Run-Time Library routines and system services.

Another way you can customize DATATRIEVE is by changing the DATATRIEVE
on-line text. For example, you can translate all DATATRIEVE help text and
messages into a foreign language.

If you customize DATATRIEVE, you may want to have multiple shareable images.
For example, you may want a standard DATATRIEVE that you invoke with the
command:

$ RUN DATATRIEVE

You may also want a German version invoked as follows:

$ RUN DATATRIEVE/VARIANT=GR

1–4 Introduction to Programming and Customizing

Introduction to Programming and Customizing
1.2 Customizing DATATRIEVE

To differentiate between multiple versions of DATATRIEVE, it is necessary to
append a suffix such as GR to some of the DATATRIEVE file and image names.
The following list identifies the files that you use to customize DATATRIEVE. The
xx represents the optional characters at the end of each file name:

SYS$SHARE:DTRSHRxx.EXE
SYS$SYSTEM:DTR32xx.EXE
SYS$SYSTEM:DDMFxx.COM
SYS$SYSTEM:DDMFxx.EXE
DTR$LIBRARY:DTRBLDxx.COM
DTR$LIBRARY:DTRLIBxx.OLB
DTR$LIBRARY:DTRFNDxx.MAR
DTR$LIBRARY:DTRFUNxx.OLB
SYS$MANAGER:DTRSTUPxx.COM

Chapters 4, 5, 6, 7, 8, and 9 of this manual explain how to use a number of these
files to customize DATATRIEVE. Refer to the VAX DATATRIEVE Installation
Guide for more information about installing multiple copies of DATATRIEVE.

Introduction to Programming and Customizing 1–5

2
Writing Programs That Call

VAX DATATRIEVE

This chapter explains how you can access the DATATRIEVE data management
services from programs written in high-level languages such as FORTRAN,
COBOL, BASIC, Pascal, PL/I, and C.

To write programs that call DATATRIEVE, you need to become familiar with:

• DATATRIEVE calls

• DATATRIEVE stallpoints

• The DATATRIEVE Access Block

The DATATRIEVE Access Block (DAB) is the storage section of your program.

This chapter discusses each of the three concepts separately. Chapter 3 provides
reference material on each DATATRIEVE call in alphabetical order.

2.1 Overview of DATATRIEVE Programming Calls
Your program should perform five basic steps when calling DATATRIEVE
routines:

1. Declare the DATATRIEVE Access Block (DAB).

2. Initialize the Call Interface by calling DTR$INIT.

3. Issue DATATRIEVE commands and statements by calling DTR$COMMAND,
DTR$DTR, or DTR$WINDOWS.

4. Respond to the subsequent stallpoints and conditions by calling the routines
that perform the functions you need.

5. Close the DATATRIEVE Interface by calling DTR$FINISH or DTR$FINISH_
WINDOWS.

Writing Programs That Call VAX DATATRIEVE 2–1

Writing Programs That Call VAX DATATRIEVE
2.1 Overview of DATATRIEVE Programming Calls

2.1.1 Declare the DATATRIEVE Access Block (DAB)
The DATATRIEVE Access Block (DAB) is a section of memory your program
allocates for storing data and receiving information from DATATRIEVE. When
you make a call to DATATRIEVE, DATATRIEVE uses the DAB to pass messages
and information about the completion of the call to your program.

The DAB is a 100-byte data block that contains stallpoint information, condition
codes, addresses of message buffers, and options that DATATRIEVE and your
program use to communicate. In addition to this storage area, there is a DAB
inclusion file containing the DAB definition and declarations of integer constants,
message buffer sizes, and other information that your program can use.

The DATATRIEVE installation kit contains inclusion files that define the DAB
in FORTRAN, BASIC, COBOL, Pascal, PL/I, and C. The files are located in the
DTR$LIBRARY directory. You can declare the DAB in your program by including
the file DATATRIEVE provides 1. For example, in a COBOL program you can
include the following line:

COPY "DTR$LIBRARY:DAB.LIB".

Appendix A gives you more information on the names of the DAB inclusion files
for each programming language.

Later sections in this chapter explain how you can use fields in the DAB to
communicate with DATATRIEVE.

2.1.2 Initialize the Call Interface
The first DATATRIEVE call your program must make is to the DTR$INIT
routine. DTR$INIT initializes various fields of the DAB and allocates internal
data structures that DATATRIEVE uses. It also sets up the message buffer
and the auxiliary message buffer and sets certain options, such as whether the
Context Searcher is enabled. (Your program may change these options later.)

If initialization completes successfully, DATATRIEVE returns control to your
program and waits for input at the command stallpoint (DTR$K_STL_CMD).
Your program should check the return status of the call to make sure that
DTR$INIT completed successfully before it continues.

1 The inclusion file for C does not define the DAB, it only defines its type

2–2 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.1 Overview of DATATRIEVE Programming Calls

2.1.3 Issue DATATRIEVE Commands and Statements
When DATATRIEVE reaches the command stallpoint (DTR$K_STL_CMD), three
calls are allowed: DTR$COMMAND, DTR$DTR, and DTR$WINDOWS.

DTR$DTR invokes the DATATRIEVE terminal server, allowing the user
to interact with DATATRIEVE as though he or she were using interactive
DATATRIEVE. Your program gains control when DATATRIEVE reaches certain
stallpoints, which you specify. Otherwise, DATATRIEVE handles the stallpoints
and conditions it encounters. For example, you can request that your program
receive control only when the user enters a keyword defined by your program or
terminates a statement with CTRL/Z or CTRL/C.

Note

A VAX BASIC program that calls DATATRIEVE cannot have the BASIC
CTRL/C trapping enabled while DATATRIEVE is executing. Disable
CTRL/C trapping in your program with the RCTLC function before
the program calls DATATRIEVE. If the BASIC CTRLC function is
enabled while DATATRIEVE is executing, pressing CTRL/C can produce
unexpected results.

You can also use an optional argument to the DTR$DTR call to tell DATATRIEVE
to execute the commands in the startup file pointed to by the logical name
DTR$STARTUP. (See the description of the DAB$M_OPT_STARTUP option to
the DTR$DTR call in Chapter 3.)

If you are using DATATRIEVE with DECwindows in a workstation environment,
you should use the DTR$WINDOWS call instead of the DTR$DTR call. The
DTR$WINDOWS call performs the same function as the DTR$DTR call, but in a
DECwindows environment. With the DTR$WINDOWS call, you can use all but
three of the optional arguments that you use with DTR$DTR. You cannot use the
following:

• DTR$M_OPT_BANNER

• DTR$M_OPT_REMOVE_CTLC

• DTR$M_OPT_KEYDEFS

See Chapter 3 for more information.

DTR$COMMAND passes a command string to DATATRIEVE for processing. The
string can be a partial command, a complete command or statement, or several
commands or statements.

Writing Programs That Call VAX DATATRIEVE 2–3

Writing Programs That Call VAX DATATRIEVE
2.1 Overview of DATATRIEVE Programming Calls

The commands and statements you pass with the DTR$COMMAND call
determine the resulting stallpoint. Your program should check the return
status in DAB$L_CONDITION and the stallpoint value in DAB$W_STATE to
decide what action to take next.

You should not use the DTR$COMMAND call within a program loop to perform
an iterative sequence of commands. Instead, your program will run more
efficiently if you use a single call to DTR$COMMAND using the DATATRIEVE
REPEAT command to perform the looping.

2.1.4 Closing the DATATRIEVE Interface
When your program is finished using DATATRIEVE, it should call either the
DTR$FINISH call or the DTR$FINISH_WINDOWS call to finish readied sources
and release collections, tables, and variables; for example:

CALL DTR$FINISH (DAB)

Use the DTR$FINISH_WINDOWS call instead of the DTR$FINISH call if you
are working with DATATRIEVE in a DECwindows environment.

2.1.5 Compiling and Linking DATATRIEVE Programs
Before you can run your program that calls DATATRIEVE, you must compile and
link it.

You compile programs that call DATATRIEVE just as you would any normal
program. For example, if you wrote the program in COBOL, you would invoke
the COBOL compiler, specifying the file name:

$ COBOL DTRSAMPLE.COB

However, when you link the program, you must link it with the DATATRIEVE
shareable image and, optionally, the DATATRIEVE terminal server.

To link your program, create an options file containing the following lines (in the
examples in this book, the name of the options file is DTR.OPT):

SYS$SHARE:DTRSHR/SHARE, -
DTR$LIBRARY:TERMSERVE/LIBRARY/INCLUDE=(ADT,EDT,GUI,HLP,LSE,TPU)

The first line links your program with the DATATRIEVE shareable image. The
second line links your program with the DATATRIEVE terminal server library
TERMSERVE.OLB and gives your program access to ADT, EDT, Guide Mode,
help, VAX Language-Sensitive Editor (LSE), and VAXTPU.

Note

If the person installing DATATRIEVE at your site specifies a suffix
for DATATRIEVE files during the installation, the file name for the

2–4 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.1 Overview of DATATRIEVE Programming Calls

DATATRIEVE shareable image may be slightly different. Most often, the
file name is of the form DTRSHRxx.EXE, with the optional suffix being a
2-character suffix. Note, however, that no such suffix is ever appended to
the TERMSERVE.OLB file.

If your program does not call DTRDTR, DTRWINDOWS, or DTR$PUT_
OUTPUT, you can omit the second line of the options file. If you use ADT, Guide
Mode, help, or any of the editors, you must include the appropriate module in the
/INCLUDE list. If your program does not use ADT, EDT, Guide Mode, help, EDT,
LSE, or VAXTPU, then you can eliminate the /INCLUDE clause.

After you create the options file, you can use the LINK command to link
your program (and any separately compiled subroutines) to DTRSHR and
TERMSERVE. For example, to run a COBOL program named ENTRY, use the
following commands:

$ COBOL ENTRY
$ LINK ENTRY, DTR/OPT
$ RUN ENTRY

Note

You cannot use the /SERVICE_FAILURE qualifier with the RUN
command when executing programs that call DATATRIEVE routines.

2.2 DATATRIEVE Stallpoints—Transfer of Control
Each DATATRIEVE call passes control from your program to DATATRIEVE.
DATATRIEVE executes the commands and statements passed to it until it has a
message or print line, or needs information to continue. When DATATRIEVE does
not have a command to execute, it returns control to your program. Situations
where DATATRIEVE waits for action by your program are called stallpoints.

Your program can identify the current stallpoint by examining the value of
the DAB$W_STATE field in the DAB. For example, after your program calls
DTR$INIT to initialize DATATRIEVE, the value of the DAB$W_STATE field
should be DTR$K_STL_CMD, indicating that DATATRIEVE is at the command
stallpoint.

There are nine DATATRIEVE stallpoints. The following list describes each
stallpoint and the action necessary for DATATRIEVE to continue:

• The command stallpoint (DTR$K_STL_CMD)

Writing Programs That Call VAX DATATRIEVE 2–5

Writing Programs That Call VAX DATATRIEVE
2.2 DATATRIEVE Stallpoints—Transfer of Control

DATATRIEVE needs a command, or a command has been partially entered
and DATATRIEVE needs the rest of the command. To continue, use the call
DTR$COMMAND, DTR$DTR, or DTR$WINDOWS.

• The prompt stallpoint (DTR$K_STL_PRMPT)

DATATRIEVE needs a value. This stallpoint occurs when DATATRIEVE
is waiting for the user to respond to a prompt. To continue, use the call
DTRPUT_VALUE, DTRDTR, or DTR$WINDOWS.

• The print line stallpoint (DTR$K_STL_LINE)

DATATRIEVE has a print line in the message buffer. This stallpoint occurs
when DATATRIEVE executes a PRINT, LIST, or REPORT statement that
does not specify a device or file to receive the print line. To continue, use the
call DTR$CONTINUE, DTR$DTR, or DTR$WINDOWS.

• The message stallpoint (DTR$K_STL_MSG)

DATATRIEVE has a message in the message buffer. To continue, use the call
DTR$CONTINUE, DTR$DTR, or DTR$WINDOWS.

• The get port stallpoint (DTR$K_STL_PGET)

DATATRIEVE has a record to pass to the host program. This stallpoint
occurs when DATATRIEVE stores a record into a port. To continue, use the
call DTR$GET_PORT.

• The put port stallpoint (DTR$K_STL_PPUT)

DATATRIEVE needs a record from the host program. This stallpoint occurs
when DATATRIEVE evaluates a record selection expression (RSE) that
specifies a port. To continue, use the call DTR$PUT_PORT or DTR$PORT_
EOF.

• The continue stallpoint (DTR$K_STL_CONT)

An interaction between DATATRIEVE and a program has occurred,
and DATATRIEVE is ready to continue. To continue, use the call
DTR$CONTINUE, DTR$DTR, or DTR$WINDOWS.

This stallpoint occurs if your program set the DTR$K_IMMED_RETURN
option when it called DTR$INIT. DATATRIEVE returns control to your
program immediately after each call. See the description of DTR$INIT in
Chapter 3 for information on the Call Interface options.

• The user-defined keyword stallpoint (DTR$K_STL_UDK)

DATATRIEVE needs the commands and statements that make up the
keyword you are defining. This stallpoint occurs when a user enters a
keyword defined with the call DTR$CREATE_UDK. To continue, use the call
DTRGET_STRING, DTRCOMMAND, or DTR$END_UDK.

2–6 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.2 DATATRIEVE Stallpoints—Transfer of Control

• The end user-defined keyword stallpoint (DTR$K_STL_END_UDK)

A user-defined keyword declared as a statement has been entered.
DATATRIEVE has ended processing of the keyword. To continue, use
the call DTR$END_UDK.

Table 2–1 summarizes the relationship of stallpoints and calls.

Table 2–1 Stallpoints and Calls

Stallpoint:
DATATRIEVE enters this
stallpoint when:

To continue, use one of the
following calls:

DTR$K_STL_CMD It is waiting for a command
line.

DTR$COMMAND
DTR$DTR
DTR$WINDOWS

DTR$K_STL_PRMPT It is waiting for the user to
enter a value in response to
a prompt.

DTR$PUT_VALUE
DTR$DTR
DTR$WINDOWS

DTR$K_STL_LINE It has a print line for the
program to display.

DTR$CONTINUE
DTR$DTR
DTR$WINDOWS

DTR$K_STL_MSG It has a message for the
program to display.

DTR$CONTINUE
DTR$DTR
DTR$WINDOWS

DTR$K_STL_PGET There is a record in the
record buffer for the
program to retrieve.

DTR$GET_PORT

DTR$K_STL_PPUT It is waiting for the
program to pass a record.

DTR$PUT_PORT
DTR$PORT_EOF

DTR$K_STL_CONT The DTR$K_IMMED_
RETURN option is in
effect. DATATRIEVE has
responded to a call and is
ready to continue.

DTR$CONTINUE
DTR$DTR
DTR$WINDOWS

DTR$K_STL_UDK It is waiting for the
commands and statements
that make up a user-defined
keyword.

DTR$GET_STRING
DTR$COMMAND
DTR$END_UDK

DTR$K_STL_END_UDK It ends processing of a
user-defined statement
keyword.

DTR$END_UDK

Writing Programs That Call VAX DATATRIEVE 2–7

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

2.3 The DATATRIEVE Access Block
The DATATRIEVE Access Block (DAB) is a section of memory your program
allocates for storing data and receiving information from DATATRIEVE. When
you first call DTR$INIT, DATATRIEVE fills in many of the fields of the DAB
and identifies the message buffers it will use to return messages. With each
subsequent call, DATATRIEVE sets the values of fields in the DAB to indicate
the current stallpoint, the completion status, and other information related to the
call.

The first part of the DAB is a 100-byte data block that contains the stallpoint
information, condition codes, addresses of message buffers, and flags that
DATATRIEVE uses. In addition to this storage area, there is a DAB inclusion
file containing the declarations of integer constants that your program can use to
evaluate fields of the DAB.

Several fields in the DAB are reserved for internal use by Digital. However, other
fields contain information that can be useful within your program. Table 2–2
lists the fields of the DAB that you can use and a brief explanation of the field’s
purpose.

Table 2–2 Useful DAB Fields

DAB Field Contents of Field

DAB$L_CONDITION Numeric value identifying the status of the last
DATATRIEVE command or statement

DAB$A_MSG_BUF Address of the message buffer

DAB$W_MSG_BUF_LEN Length of the message buffer

DAB$W_MSG_LEN Length of the current message

DAB$A_AUX_BUF Address of the auxiliary message buffer

DAB$W_AUX_BUF_LEN Length of the auxiliary message buffer

DAB$W_AUX_LEN Length of the current auxiliary message

DAB$W_STATE Value of the current stallpoint

DAB$L_OPTIONS Options value for the DTR$INIT call

DAB$W_REC_LEN Length of the record DATATRIEVE passes to the
program

(continued on next page)

2–8 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

Table 2–2 (Cont.) Useful DAB Fields

DAB Field Contents of Field

DAB$W_TT_CHANNEL Number of the input/output channel for ADT,
Guide Mode, and help1

DAB$L_COMMAND_KEYBOARD Keyboard identifier for terminal server command
input

DAB$L_PROMPT_KEYBOARD Keyboard identifier for terminal server input in
response to prompts

DAB$L_KEYTABLE_ID Key table identifier for input key definitions

DAB$W_UDK_INDEX Number of the current user-defined keyword

1Form managements (namely FMS, TDMS, DECforms) require a value different from zero to operate.

The following sections explain how your program can use these DAB fields.

2.3.1 DAB$L_CONDITION—Condition Codes
Each time DATATRIEVE enters the message stallpoint (DTR$K_STL_MSG), it
stores a condition code in DAB$L_CONDITION. This condition code indicates
whether the last DATATRIEVE statement was completed, and what error
occurred if the statement was not completed. In addition to storing the message
code in DAB$L_CONDITION, DATATRIEVE stores the associated message text
in the DAB message buffer.

You can compare DAB$L_CONDITION to condition names if you declare the
condition names as external constants. For example, you can include the
following statement in the working storage section of a COBOL program:

01 DTR$_ERROR PIC 9(9) COMP VALUE IS EXTERNAL DTR$_ERROR.

If you include this line, you can compare DTR$_ERROR to DAB$L_CONDITION
in the procedure division of your program. For example, you can use the following
lines to check for DATATRIEVE commands and statements your program passes
that are abandoned due to error:

IF DAB$L_CONDITION = DTR$_ERROR
THEN DISPLAY "Error in DATATRIEVE command or statement.".

A list of the DATATRIEVE condition codes and message texts is supplied on-
line as part of the DATATRIEVE installation procedure. See Appendix B for
information on how to access the on-line message documentation.

Writing Programs That Call VAX DATATRIEVE 2–9

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

2.3.2 Message Buffers
DATATRIEVE uses two buffers to pass print lines, messages, and other
information to your program. These buffers are the message buffer and the
auxiliary message buffer.

The DAB inclusion files declare the message buffer and the auxiliary message
buffer as string variables. The sample DAB files use the names MSG_BUFF and
AUX_BUFF to access the messages or lines DATATRIEVE passes to it. Your
program can change the names and the lengths of both buffers by copying the
sample DAB to your own directory and modifying it.

When you initialize the DATATRIEVE Call Interface, you can use the names of
the buffers declared in the DAB, as in the following BASIC example:

CALL DTR$INIT (DAB BY REF, 100% BY REF, MSG_BUFF, AUX_BUFF, &
DTR$K_SEMI_COLON_OPT BY REF)

DATATRIEVE then stores the addresses of the buffers in the DAB$A_MSG_BUF
and DAB$A_AUX_BUF fields of the DAB. It also stores the lengths of the buffers
in the DAB$W_MSG_BUF_LEN and DAB$W_AUX_BUF_LEN fields. Each time
DATATRIEVE uses one of the buffers, it looks in the DATATRIEVE Access Block
to find the buffer’s address.

You can display the content of the message buffer with a statement such as:

IF DAB$L_CONDITION <> DTR$_SUCCESS
THEN PRINT MSG_BUFF
END IF

This statement causes the program to display any message or line passed to it by
DATATRIEVE other than the DTR$_SUCCESS message.

2.3.2.1 Messages DATATRIEVE Stores in the Message Buffer
The information DATATRIEVE stores in the message buffer depends on the
stallpoint. Table 2–3 shows the content of the message buffer corresponding to
each stallpoint.

2–10 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

Table 2–3 Content of Message Buffers

Stallpoint Content of Message Buffer

DTR$K_STL_CMD Prompt to terminal, for example DTR>

DTR$K_STL_PRMPT Prompt from DATATRIEVE prompt expression

DTR$K_STL_LINE A formatted print line

DTR$K_STL_MSG A formatted message

DTR$K_STL_PGET Name of port

DTR$K_STL_PPUT Name of port

DTR$K_STL_CONT Buffer is not used

DTR$K_STL_UDK Buffer is not used

DTR$K_STL_END_UDK Buffer is not used

DATATRIEVE stores the length of the message buffer in DAB$W_MSG_BUF_
LEN and the length of the message in DAB$W_MSG_LEN. If the buffer is not
long enough for the entire string, DATATRIEVE truncates the string. The buffer
can also be zero characters long or omitted.

2.3.2.2 Messages DATATRIEVE Stores in the Auxiliary Message Buffer
For some types of messages, DATATRIEVE uses an auxiliary message buffer.
Whenever a message contains an embedded string your program might use,
DATATRIEVE stores the embedded string in the auxiliary buffer. For example,
DATATRIEVE uses the auxiliary message buffer when executing the following
DATATRIEVE statement:

ABORT "Collection is empty"

DATATRIEVE stores the complete message ‘‘ABORT: Collection is empty’’ in
the message buffer and stores the string ‘‘Collection is empty’’ in the auxiliary
message buffer. DATATRIEVE stores the length of the auxiliary message buffer
in DAB$W_AUX_BUF_LEN and the length of the string in DAB$W_AUX_
LEN. If the auxiliary message buffer is not long enough for the entire string,
DATATRIEVE truncates the string. The buffer can also be zero characters long
or omitted.

Writing Programs That Call VAX DATATRIEVE 2–11

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

2.3.3 DAB$W_STATE—Stallpoint Information
To determine the current stallpoint, you must examine the value of the DAB$W_
STATE field. Table 2–4 shows the number corresponding to each stallpoint.

Table 2–4 Stallpoint Values

Value of DAB$W_STATE Stallpoint

1 DTR$K_STL_CMD

2 DTR$K_STL_PRMPT

3 DTR$K_STL_LINE

4 DTR$K_STL_MSG

5 DTR$K_STL_PGET

6 DTR$K_STL_PPUT

7 DTR$K_STL_CONT

8 DTR$K_STL_UDK

9 DTR$K_STL_END_UDK

The stallpoint names are declared as parameters in the inclusion file for
FORTRAN, as constants in the inclusion file for C, BASIC, Pascal, and PL/I,
and as 88-level condition names in the library file for COBOL.

2.3.4 DAB$W_REC_LEN—Record Lengths
When you pass records from DATATRIEVE to your program, DATATRIEVE
enters the get port stallpoint (DTR$K_STL_PGET). Each time DATATRIEVE is
at this stallpoint, it stores the length of the record it is passing in DAB$W_REC_
LEN. Your program can check the value of DAB$W_REC_LEN to make sure that
the record buffer your program uses in the DTR$GET_PORT call is large enough.

2.3.5 Input/Output Channels
When you invoke DATATRIEVE, the terminal server translates the logical
SYS$INPUT to get the name of the device you are using. If you are using a
terminal and DAB$W_TT_CHANNEL has not been assigned yet, DATATRIEVE
gets a channel number for the terminal and puts the number in DAB$W_TT_
CHANNEL.

The terminal server assigns a channel number whenever DAB$W_TT_CHANNEL
is zero and the calling program is being run from an interactive terminal. (The
DAB$W_TT_CHANNEL field is not used if the program is run in batch mode.) If
you have already assigned a channel number in the DATATRIEVE Access Block,
DATATRIEVE does not make a channel assignment. If your program assigns the

2–12 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

channel number before calling the terminal server, then the number you assigned
is not affected by later calls to the terminal server.

Note

DATATRIEVE does not assign a channel number to DAB$W_TT_
CHANNEL for FMS forms. FMS assigns a channel to SYS$INPUT
and uses that channel for FMS forms input and output.

The channel assigned in DAB$W_TT_CHANNEL is the input/output channel
for help, ADT, Guide Mode, and the TDMS Interface. Forms operations (using
FMS, TDMS, and DECforms) take place only if DAB$W_TT_CHANNEL contains
a value different from zero. When a DECforms form is enabled, SYS$INPUT
is used as the display device without referring to the channel in DAB$W_TT_
CHANNEL,

If your program does not call the DATATRIEVE terminal server and you want to
use forms, screen-oriented help, ADT, or Guide Mode, you must assign a channel
number to DAB$W_TT_CHANNEL. The simplest way to do this is to call the
DATATRIEVE terminal server immediately after initializing DATATRIEVE:

CALL DTR$DTR (DAB, DTR$M_OPT_CMD)

The terminal server puts a channel number in DAB$W_TT_CHANNEL and
returns control to your program.

Each call to DTR$DTR assigns channels for terminal input. Neither
DTR$FINISH nor DTR$FINISH_WINDOWS deassigns these channels. You
may find that after repeated calls to DTR$INIT you may exceed the number of
available channels. You can deassign channels after you call DTR$FINISH or
DTR$FINISH_WINDOWS. Channel numbers are stored in the fields DAB$W_
TT_CHANNEL and DAB$W_CTLC_CHANNEL in the DAB. The following lines
represent a section of a FORTRAN program that shows how to deassign channels:

CALL DTR$FINISH(DAB)

C Deassign the terminal channels

status = sys$dassgn (%val(dab$w_tt_channel))
status = sys$dassgn (%val(dab$w_ctlc_channel))

Note that the two lines that deassign the channel follow the call to DTR$FINISH.
You can use these two lines in any compatible program that calls DATATRIEVE.

Writing Programs That Call VAX DATATRIEVE 2–13

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

In addition to assigning a channel for ADT, forms, Guide Mode, and help, the
DATATRIEVE terminal server uses the Run-Time Library Screen Management
Facility (SMG) to perform command line input. (Note, however, that if you are
using the DATATRIEVE DECwindows interface, the SMG interface is inactive
and cannot be used with virtual keyboards.)

If your program is running interactively, DATATRIEVE creates two virtual
keyboards: one for the command line and one for prompting expressions. The
identifiers for these keyboards are stored in the fields DAB$L_COMMAND_
KEYBOARD and DAB$L_PROMPT_KEYBOARD.

DATATRIEVE also creates a key definition table for both virtual keyboards and
stores the key table identifier in the DAB$L_KEYTABLE_ID field.

When entering DATATRIEVE commands, you can use CTRL/B and the arrow
keys to recall previous commands. The default limit for the number of commands
you can recall is 20. You can alter this limit to a number between zero and 100
with the logical name DTR$COMMAND_LINES. To reset the recall limit for
command input, define the logical name DTR$COMMAND_LINES using either
the DCL DEFINE or ASSIGN command before invoking DATATRIEVE. For
example, the following command changes the recall limit to 30 lines:

$ DEFINE DTR$COMMAND_LINES "30"

Similarly, when responding to DATATRIEVE prompting expressions, you can
recall previous responses. The default limit for the number of responses you
can recall is 20. You can alter this limit to a number between zero and 100 by
defining the logical name DTR$PROMPT_LINES before invoking DATATRIEVE.
For example:

$ DEFINE DTR$PROMPT_LINES "30"

Note that you must assign the command and prompt recall limits before invoking
DATATRIEVE. Defining the logical DTR$COMMAND_LINES or DTR$PROMPT_
LINES from within DATATRIEVE with FN$CREATE_LOG has no effect. See
the VAX DATATRIEVE User’s Guide for more information on using the command
recall function.

If you want your program to perform additional input using the same SMG
key definitions as the DATATRIEVE terminal server, you can use the values in
DAB$L_COMMAND_KEYBOARD, DAB$L_PROMPT_KEYBOARD, and DAB$L_
KEYTABLE_ID in calls to SMG routines.

SMG assigns two additional channels for DAB$L_COMMAND_KEYBOARD and
DAB$L_PROMPT_KEYBOARD. You can deassign these channels by using the
SMG call, SMG$DELETE_VIRTUAL_KEYBOARD. Again, to deassign channels,
you should do so after you have made either the DTR$FINISH call or the
DTR$FINISH_WINDOWS call. The following lines represent a portion of code

2–14 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

from a FORTRAN program that show you how to deassign these channels. Note
that the two key lines deassigning the channels can be used in any program.

CALL DTR$FINISH(DAB)

C Free SMG virtual keyboards

status = smg$delete_virtual_keyboard (dab$1_command_keyboard)
status = smg$delete_virtual_keyboard (dab$1_prompt_keyboard)

See the Run-Time Library documentation in the VMS documentation set for more
information on the Screen Management Facility.

2.3.6 DAB$L_OPTIONS—Initial Options
You can set various options when you initialize the DATATRIEVE Call Interface.
For example, you can enable DATATRIEVE syntax prompting by specifying the
DTR$K_SYNTAX_PROMPT option in the DTR$INIT call:

CALL DTR$INIT (DAB, 100, MSG_BUFF, AUX_BUFF, DTR$K_SYNTAX_PROMPT)

DATATRIEVE uses the DAB$L_OPTIONS field of the DAB to store the options
you specify. Your program can then use the DAB$L_OPTIONS field to check what
options are active.

Names for each of the initial options are defined in the DAB inclusion files. See
the description of the DTR$INIT call in Chapter 3 for a list of the initial options
and their values.

2.3.7 User-Defined Keyword Information
A user-defined keyword (UDK) is a DATATRIEVE keyword you define and
add to the DATATRIEVE language. You can write a program that uses the call
DTR$DTR or the call DTR$WINDOWS to simulate interactive DATATRIEVE. In
the program, you can use the DTR$CREATE_UDK and DTR$GET_STRING calls
to define new keywords that perform tasks that interactive DATATRIEVE cannot
do. The user who runs your program can use your UDKs in addition to the other
DATATRIEVE commands and statements.

Each UDK is identified by a number. You specify this number when you create
the UDK with the DTR$CREATE_UDK call. When a user enters a UDK,
DATATRIEVE returns its identifying number in the DAB$W_UDK_INDEX field.

As described in the VAX DATATRIEVE User’s Guide, you can use the file
represented by the logical DTR$SYNONYM to store synonyms for the
DATATRIEVE keywords that you use frequently. However, you cannot use
this file for creating synonyms for user-defined keywords.

Writing Programs That Call VAX DATATRIEVE 2–15

Writing Programs That Call VAX DATATRIEVE
2.3 The DATATRIEVE Access Block

The DTR$SYNONYM logical is evaluated at initialization time. Since user-
defined keywords are defined by a callable program after initialization,
DTR$SYNONYM will not recognize any synonyms for the UDKs.

If you want to create synonyms for user-defined keywords, you can use the
startup command file DTR$STARTUP; however, keep in mind that the
commands that you include in this file are executed the first time you call
DTR$DTR or DTR$WINDOWS. This means that your callable program must
make the necessary calls to DTR$CREATE_UDK before calling DTR$DTR or
DTR$WINDOWS.

You can find information on creating a startup command file in the
VAX DATATRIEVE User’s Guide.

Some DATATRIEVE keywords are defined internally in the same way as a user-
defined keyword. These keywords are called DATATRIEVE keywords. When
the user enters a DATATRIEVE keyword, DATATRIEVE passes its number in
DAB$W_UDK_INDEX. Table 2–5 shows the index number associated with each
DATATRIEVE keyword.

Table 2–5 DATATRIEVE Keywords

Keyword Index

EDIT -4

ADT -5

GUIDE -6

EXIT -7

@ -8

OPEN -9

CLOSE -10

HELP -11

SHOW HELP -12

SET HELP_PROMPT -13

SET NO HELP_PROMPT -14

SET HELP_WINDOW -15

SET NO HELP_WINDOW -16

SET HELP_LINES -17

2–16 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.4 Using the DATATRIEVE Call Interface

2.4 Using the DATATRIEVE Call Interface
The DATATRIEVE calls you use in your program and the order in which you use
them depends on what you want to do. The following sections explain how to
perform some common functions using the DATATRIEVE Call Interface. Refer
to for extended examples of DATATRIEVE programming. See Appendix A and
Chapter 3 for a complete description of individual DATATRIEVE calls.

2.4.1 Command Processing
DATATRIEVE provides the following calls to let your program process commands:

• DTR$DTR or DTR$WINDOWS returns control to DATATRIEVE until
DATATRIEVE reaches the stallpoint you specify. By calling DTR$DTR or
DTR$WINDOWS your program can invoke plots, ADT, and other interactive
DATATRIEVE features.

• DTR$COMMAND processes a command string.

• DTR$PUT_VALUE returns a value in response to a prompt. When you pass
DATATRIEVE a statement that stores or modifies fields or that contains a
prompting expression, DATATRIEVE enters the prompt stallpoint (DTR$K_
STL_PRMPT) and returns control to your program. DATATRIEVE cannot
continue until you return a value with DTR$PUT_VALUE.

• DTR$CONTINUE resumes command execution.

• DTR$UNWIND aborts the command being executed.

2.4.2 Reading and Storing Records
If your program wants to read records or store records using DATATRIEVE,
it must first set up a record buffer to hold the records and a port to let
DATATRIEVE and your program refer to the same record. You can set up
the port in either of two ways:

• With the DEFINE PORT command. The name of the port and its associated
record definition are stored in the dictionary.

• With the DECLARE PORT statement. The port created is temporary.

Your program can then:

• Call DTR$GET_PORT at the DTR$K_STL_PGET stallpoint to pass a record
from DATATRIEVE to your program

• Call DTR$PUT_PORT at the DTR$K_STL_PPUT stallpoint to pass records
from your program to DATATRIEVE

Writing Programs That Call VAX DATATRIEVE 2–17

Writing Programs That Call VAX DATATRIEVE
2.4 Using the DATATRIEVE Call Interface

When you have no more records to pass to DATATRIEVE, your program calls
DTR$PORT_EOF at the DTR$K_STL_PPUT stallpoint.

See the description of the DTRGET_PORT, DTRPORT_EOF, and DTR$PUT_
PORT calls in Chapter 3 for more information about using ports.

2.4.3 Defining Your Own Keywords
The DATATRIEVE calls DTR$CREATE_UDK, DTR$GET_STRING, and
DTR$END_UDK let your program add keywords to DATATRIEVE. In general,
your program follows these steps to create and process user-defined keywords:

1. Uses DTR$CREATE_UDK to create the keyword.

2. Calls DTR$DTR or DTR$WINDOWS with the DTR$M_OPT_UDK option.
DATATRIEVE will return control to your program whenever the user enters
the keyword you have defined.

3. Uses DTR$GET_STRING to process any arguments to the keyword.

4. Calls DTR$END_UDK to tell DATATRIEVE you are done processing the
keyword.

See the description of the DTR$CREATE_UDK, DTR$END_UDK, and
DTR$GET_STRING calls in Chapter 3 for more information about using
user-defined keywords.

2.4.4 Getting Information About DATATRIEVE Objects
DATATRIEVE provides two calls that let you gather more information about
DATATRIEVE objects:

• DTR$LOOKUP returns a number that identifies the object about which you
want information. This number is either the object-id if the object exists, or
zero if the object is not found.

• DTR$INFO returns detailed information, such as the object-id of a subschema
in a VAX DBMS domain, a field’s output picture string, or the number of
arguments required by a particular plot.

See the description of the DTR$INFO and DTR$LOOKUP calls in Chapter 3 for
more information explaining how to get information about objects.

2.4.5 Writing Data to a Log File
DTR$PUT_OUTPUT writes a line to a file created by the DATATRIEVE command
OPEN. See the description of the DTR$PUT_OUTPUT call in Chapter 3 for more
information.

2–18 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.4 Using the DATATRIEVE Call Interface

2.4.6 Handling Errors
Every time you call a DATATRIEVE routine, it returns two values to indicate the
status of the call. These values are as follows:

• The return status of the call itself

• The condition value returned in the DAB field DAB$L_CONDITION

The return status that DATATRIEVE returns in register R0 indicates whether
the call is valid and whether DATATRIEVE is able to intepret the arguments to
the call. This value follows the standard format for VMS error condition codes;
that is, you can evaluate success or failure by comparing the return status with
the value SS$_NORMAL:

RETURN_STATUS = DTR$COMMAND (DAB, "PRINT ALL YACHTS")
IF RETURN_STATUS <> SS$_NORMAL
THEN CALL LIB$SIGNAL (RETURN_STATUS BY VALUE)
END IF

Chapter 3 lists the errors that can result from each DATATRIEVE call.

However, the return status does not give you any indication whether
DATATRIEVE succeeded at performing the requested action. For example,
DATATRIEVE may succeed at interpreting the preceding call, but if you did not
ready the YACHTS domain before issuing the call, DATATRIEVE cannot execute
the command.

If DATATRIEVE encounters an error while performing a call, it enters the
message stallpoint and stores the specific message text and value in the DAB$A_
MSG_BUF and DAB$L_CONDITION fields of the DAB.

You should always examine the value of the DAB$W_STATE field after each
call to identify the current stallpoint. If the stallpoint is DTR$K_STL_MSG, you
should either evaluate the DAB$L_CONDITION field to further identify the error
or call DTR$DTR or DTR$WINDOWS with the DTR$M_OPT_CMD option to
allow DATATRIEVE to display the message text and handle the error condition.

In general, it is a good idea to check for both types of errors after every call,
especially while you are debugging a program. Example 2–1 shows a BASIC
subroutine that evaluates both the return status and the stallpoint to identify
possible errors:

Writing Programs That Call VAX DATATRIEVE 2–19

Writing Programs That Call VAX DATATRIEVE
2.4 Using the DATATRIEVE Call Interface

Example 2–1 Sample Error Checking Routine in BASIC
ERROR_CHECKING:

! Check for the validity of the call and its parameter.

SELECT RETURN_STATUS

CASE SS$_NORMAL
! The call is valid; no action.

CASE DTR$_EXIT
! The user ended the session with CTRL/Z or EXIT.

PRINT "DATATRIEVE session ended."
GOTO DONE

CASE ELSE
! All other errors are signaled.

PRINT "A DATATRIEVE call has failed."
CALL LIB$SIGNAL (RETURN_STATUS BY VALUE)

END SELECT

! Check for the successful completion of the call.

IF (DAB$W_STATE = DTR$K_STL_MSG) &
AND (DAB$L_CONDITION <> DTR$_SUCCESS)

THEN
! DATATRIEVE is at the message stallpoint
! and the message does not indicate success.
! Display the message on the screen and have
! DATATRIEVE return to the command stallpoint.

PRINT MSG_BUFF
CALL DTR$CONTINUE (DAB BY REF)

END IF

RETURN

2.4.7 Debugging Your Program
You can debug DATATRIEVE programs written in high-level languages just as
you would any other program. The VMS Debugger allows you to display source
code and examine variables as you step through the individual instructions of
the program. (See the VMS documentation set for more information on the VMS
Debugger.)

You can also debug DATATRIEVE programs by calling DTR$PRINT_DAB
to display the contents of the DATATRIEVE Access Block. For example,
the following BASIC code calls DTR$PRINT_DAB if the stallpoint from the
DTR$COMMAND call is not as expected:

2–20 Writing Programs That Call VAX DATATRIEVE

Writing Programs That Call VAX DATATRIEVE
2.4 Using the DATATRIEVE Call Interface

LINPUT "What domain do you want to print"; DOMAIN
CALL DTR$COMMAND (DAB, "PRINT !CMD", DOMAIN)

IF DAB$W_STATE = DTR$K_STL_LINE
THEN

! If DATATRIEVE is at the print line stallpoint,
! call DTR$DTR to have DATATRIEVE display the data.

CALL DTR$DTR (DAB, DTR$M_OPT_CMD)
ELSE

! If not, display the contents of the DAB for analysis.

PRINT "DATATRIEVE is not at the print line stallpoint."
PRINT "The contents of the DAB are as follows:"
CALL DTR$PRINT_DAB (DAB)

END IF

Sample Programs

Appendix A points you to directory locations where you can find sample
FORTRAN, COBOL, BASIC, Pascal, PL/I, and C programs.

Writing Programs That Call VAX DATATRIEVE 2–21

3
DATATRIEVE Call Reference

This chapter describes the DATATRIEVE calls and explains how you can
use them to communicate with DATATRIEVE. For each call, the following
information is provided:

� Format
The format specifies the placement of required and optional syntax elements for
each call. The documentation conventions are listed at the front of this manual.

� Arguments
Arguments specify the data type, access method, passing mechanism, and content
for each argument to the call.

� Usage Notes
Usage Notes explain the following:

Requirements for using the call

Results of the call

Restrictions on using the call

� Return Status
The return status tells you the name and meaning of each status code
DATATRIEVE returns to your program.

You can use each call as an external function in your program. This enables you
to check the status the call returns to your program.

� Examples
The examples show representative uses of the call. Refer to Appendix A for more
examples.

DATATRIEVE Call Reference 3–1

DTR$COMMAND

DTR$COMMAND
Passes a command string to DATATRIEVE.

Format

DTR$COMMAND (dab, command-string [, p1, ...pn])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Note

The C include file does not define the DAB, it only defines its type.

command-string

Data type: character string
Access: read-only
Mechanism: by descriptor

Is a DATATRIEVE command or statement. The command string can also be
part of a command or statement or several commands or statements.

The command string can contain the following substitution directives:

!CMD

Inserts a string in the command string.

!VAL

Inserts a numeric value in the command string.

p1, . . . pn

Data type: unspecified
Access: read-only
Mechanism: by descriptor

3–2 DATATRIEVE Call Reference

DTR$COMMAND

Are the arguments for substitution directives. The number and order of
arguments must be the same as the number and order of substitution
directives in the command string. The data type of the argument depends
on the substitution directive it replaces. An argument replacing the !CMD
directive must be a character string data type. An argument replacing the
!VAL directive can be any numeric data type or it can be a fixed-length
character string data type containing a numeric string (for example, ‘‘25’’).

Usage Notes

• You can use this call when DATATRIEVE is at the command or user-defined
keyword stallpoints (DTR$K_STL_CMD or DTR$K_STL_UDK).

• The commands and statements you pass with this call determine the
resulting stallpoint. Most commands and statements cause the message
stallpoint (DTR$K_STL_MSG) to inform your program of the completion of
the command or of an error. You can determine whether a message indicates
an error or is only informational by checking the condition code stored in
DAB$L_CONDITION.

• Your program must handle the stallpoint that results from this call. For
example, if you get the DTR$_SUCCESS message, ‘‘Statement completed
successfully,’’ you should use the DTR$CONTINUE, DTR$DTR, or
DTR$WINDOWS call before passing your next DTR$COMMAND call.

• For each !CMD and !VAL substitution directive in the command string, you
must include an argument for DATATRIEVE to substitute.

• When storing a procedure in the dictionary, DATATRIEVE must ensure that
each line of the procedure is no longer than 255 characters. The command
string you pass to DATATRIEVE with the DTR$COMMAND is restricted to
255 characters. However, each substitution directive within the command
string can also be up to 255 characters in length.

To ensure that the procedure is stored with no more than 255 characters per
line, DATATRIEVE isolates substitution strings as separate lines within the
procedure. For example:

CALL DTR$COMMAND (DAB, "DEFINE PROCEDURE PRINT_YACHTS")
CALL DTR$COMMAND (DAB, "PRINT ALL YACHTS ON !CMD", "FOO.DAT")
CALL DTR$COMMAND (DAB, "END_PROCEDURE")

DATATRIEVE Call Reference 3–3

DTR$COMMAND

The preceding calls result in a procedure that consists of two lines:

PRINT ALL YACHTS ON
FOO.DAT

When you invoke the procedure, DATATRIEVE can execute it properly
because the first line is not a complete command. However, consider the
following code:

CALL DTR$COMMAND (DAB, "DEFINE PROCEDURE PRINT_YACHTS")
CALL DTR$COMMAND (DAB, "PRINT ALL !CMD ON FOO.DAT", "YACHTS")
CALL DTR$COMMAND (DAB, "END_PROCEDURE")

These calls result in a 3-line procedure:

PRINT ALL
YACHTS
ON FOO.DAT

DATATRIEVE cannot execute this procedure correctly because the first line
— although only part of the intended command — is a complete and valid
command. DATATRIEVE will interpret and execute the first line and then
issue an error when it encounters YACHTS as a separate command line.

• The length of the command that you pass to DTR$COMMAND can be
up to 255 characters. If you need to pass a command string longer than
255 characters, you can set the DTR$K_MORE_COMMANDS option in
the DAB$L_OPTIONS field of the DAB to delay DATATRIEVE command
parsing and then pass parts of the command string in a series of calls to
DTR$COMMAND.

After you finish passing the command, reset the DAB$L_OPTIONS field and
call DTR$COMMAND one last time to parse the completed command. Refer
to Appendix A for a sample FORTRAN program (see the subroutine PARSE)
that uses the DTR$L_MORE_COMMANDS option to pass a long command
string.

• If the command line you pass to DTR$COMMAND invokes a command file,
DATATRIEVE interprets the invocation operator ‘‘@’’ as a DATATRIEVE
keyword and returns control to the program at the user-defined keyword
stallpoint (DTR$K_STL_UDK). To execute the command file, your program
must either call DTR$DTR or DTR$WINDOWS to have DATATRIEVE handle
the keyword or call DTR$GET_STRING to get the file name, open the file,
and pass the individual lines to DTR$COMMAND.

3–4 DATATRIEVE Call Reference

DTR$COMMAND

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments. At least two arguments (dab, command_string) are
required.

DTR$_BADSTRDES
Invalid string descriptor.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be either DTR$K_STL_CMD or
DTR$K_STL_UDK.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

Pass a command to DATATRIEVE from a FORTRAN program:

STATUS = DTR$COMMAND (DAB, ’READY YACHTS;’)

Pass a command to DATATRIEVE from a BASIC program:

STATUS = 800 DTR$COMMAND (DAB BY REF, "SHOW FIELDS FOR YACHTS;")

Pass a command to DATATRIEVE from a COBOL program:

MOVE SPACES TO COMMAND_LINE.
MOVE "FINISH YACHTS;" TO COMMAND_LINE.
C ALL "DTR$COMMAND" USING DAB

BY DESCRIPTOR COMMAND_LINE
GIVING STATUS.

Enter commands when you run your program:

WRITE (6, 10)
10 FORMAT (’ Enter a command’)

READ (5, 20) LINE
20 FORMAT (A)

STATUS = DTR$COMMAND (DAB, LINE)

DATATRIEVE Call Reference 3–5

DTR$COMMAND

Use substitution directives to change the values of arguments while you run
a BASIC program:

2000 INPUT "Enter the name of the field: "; FIELD$
INPUT "Enter the minimum value: "; VALUE%

STATUS = DTR$COMMAND (DAB BY REF,"FIND YACHTS WITH &
!CMD GE !VAL;", &
FIELD$, &
VALUE% BY DESC)

Use substitution directives to change the values of arguments while you run
a Pascal program:

WRITE (’Enter the name of the field: ’);
READLN (PARAM1);
WRITE (’Enter the minimum value: ’);
READLN (PARAM2);
COMMAND := ’FIND YACHTS WITH !CMD GT !VAL;’;
STATUS := DTR$COMMAND (DAB, COMMAND, PARAM1, PARAM2, PARAM3, PARAM4);

Write a FORTRAN program that enables a user to form and print out a
record stream:

INCLUDE ’DTR$LIBRARY:DAB’
CHARACTER*80 LINE
CHARACTER*20 FIELD
CHARACTER*10 VALUE
INTEGER*4 DTR$INIT
INTEGER*4 DTR_OPTIONS
INTEGER RET_STATUS
LOGICAL NO_DICTIONARY/.TRUE./
EXTERNAL SS$_NORMAL

C Declare options to be used in DTR$DTR call.

DTR_OPTIONS = DTR$M_OPT_CMD + DTR$M_OPT_CONTROL_C

C Initialize the session with DATATRIEVE.

RET_STATUS = DTR$INIT (DAB, 100, MSG_BUFF, AUX_BUFF,
1 DTR$K_SEMI_COLON_OPT)

C Verify that the call was completed successfully.

IF (RET_STATUS .NE. %LOC(SS$_NORMAL)) THEN
WRITE (6, *) ’ DATATRIEVE initialization failed.’
STOP

END IF

DO WHILE (NO_DICTIONARY)

C Prompt the user for a SET DICTIONARY command.

3–6 DATATRIEVE Call Reference

DTR$COMMAND

WRITE (6, 25)
25 FORMAT (’ Please enter a SET DICTIONARY command’)

READ (5, 50, END = 999) LINE
50 FORMAT (A)

C Pass the command to DATATRIEVE.

RET_STATUS = DTR$COMMAND (DAB, LINE)

C Use the DTR$DTR call to handle messages and print lines from
C DATATRIEVE and return when at DTR$K_STL_CMD.

RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

C Check to see if the SET DICTIONARY command was executed
C successfully. If it was not, start over.

IF (DAB$L_CONDITION .EQ. %LOC(DTR$_SUCCESS)) THEN
NO_DICTIONARY = .FALSE.

ELSE
WRITE (6, 75)

75 FORMAT (’ Try again’)
END IF

END DO

C Ready the YACHTS domain.

100 RET_STATUS = DTR$COMMAND (DAB, ’READY YACHTS’)

C Print out any messages and return on command stallpoint.

RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

DO WHILE (.TRUE.)

C Show the fields available for the domain YACHTS.

RET_STATUS = DTR$COMMAND (DAB, ’SHOW FIELDS YACHTS’)
RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

C Prompt for a field name and a value.

WRITE (6, 125)
125 FORMAT (’ Enter a field name for YACHTS (or CONTROL Z to

1 exit): ’, $)
READ (5, 50, END = 999) FIELD
WRITE (6, 150)

150 FORMAT (’ Enter minimum value for the field: ’,$)
READ (5, 50, END = 999) VALUE

C Use substitution directives to form the record stream.

RET_STATUS = DTR$COMMAND (DAB, ’PRINT YACHTS WITH !CMD GT !VAL’,
1 FIELD,
2 VALUE)

C Use DTR$DTR to print out the record stream.

DATATRIEVE Call Reference 3–7

DTR$COMMAND

RET_STATUS = DTR$DTR (DAB, DTR_OPTIONS)
END DO

999 RET_STATUS = DTR$FINISH (DAB)
END

3–8 DATATRIEVE Call Reference

DTR$CONTINUE

DTR$CONTINUE
Instructs DATATRIEVE to continue processing.

Format

DTR$CONTINUE (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Notes

• You can use the DTR$CONTINUE call when DATATRIEVE is at the continue,
message, or print line stallpoint (DTRK_STL_CONT, DTRK_STL_MSG, or
DTR$K_STL_LINE).

• When DATATRIEVE has a message, it stores the message text in the message
buffer and the associated number in DAB$L_CONDITION. For some types
of messages, DATATRIEVE also stores a string in the auxiliary message
buffer. DATATRIEVE then enters the message stallpoint (DTR$K_STL_
MSG). To restart from the message stallpoint, your program can use the call
DTR$CONTINUE.

• When DATATRIEVE executes a PRINT statement that does not specify a
file or device to receive the output, DATATRIEVE stores a print line in the
message buffer and enters the print line stallpoint (DTR$K_STL_LINE). Your
program receives control and can get the print line out of the message buffer.
To clear the message buffer and get the remaining print lines, your program
can use the call DTR$CONTINUE.

• If you specify an output device or file in a PRINT statement, DATATRIEVE
does not have to stall after each print line.

• If you set the DTR$K_IMMED_RETURN option, DATATRIEVE stalls at the
continue stallpoint (DTR$K_STL_CONT) after each call. To continue, call
DTR$CONTINUE.

DATATRIEVE Call Reference 3–9

DTR$CONTINUE

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be DTR$K_STL_CONT,
DTR$K_STL_MSG, or DTR$K_STL_LINE.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

Create a Pascal procedure that prints out DATATRIEVE messages or print
lines:

PROCEDURE PRINTSTUFF;
VAR STATUS : INTEGER;
BEGIN
WHILE (DAB.DAB$W_STATE = DTR$K_STL_MSG) OR

(DAB.DAB$W_STATE = DTR$K_STL_LINE) DO
BEGIN
WRITELN (MSG_BUFF);
STATUS := DTR$CONTINUE (DAB);
END

END;

Create a FORTRAN subroutine that suppresses the display of a number of
DATATRIEVE messages but displays all other messages and print lines:

SUBROUTINE MESSAGE
INCLUDE ’DTR$LIBRARY:DAB’
INTEGER*4 RET_STATUS

C While DATATRIEVE is at either the message or print line
C stallpoints.

DO WHILE ((DAB$W_STATE .EQ. DTR$K_STL_MSG) .OR.
1(DAB$W_STATE .EQ. DTR$K_STL_LINE))

C If DATATRIEVE is at the message stallpoint

IF ((DAB$W_STATE .EQ. DTR$K_STL_MSG) .AND.

C and the message is one of the following:

3–10 DATATRIEVE Call Reference

DTR$CONTINUE

1 ((DAB$L_CONDITION .EQ. %LOC(DTR$_RECFOUND)) .OR.
2 (DAB$L_CONDITION .EQ. %LOC(DTR$_ASSUMELIT)) .OR.
3 (DAB$L_CONDITION .EQ. %LOC(DTR$_NONDIGIT)) .OR.
4 (DAB$L_CONDITION .EQ. %LOC(DTR$_SUCCESS)))) THEN

C Use the call DTR$CONTINUE to skip the message.

RET_STATUS = DTR$CONTINUE (DAB)
ELSE

C Otherwise, print out the message buffer.

WRITE (6, *) MSG_BUFF(1:DAB$W_MSG_LEN)

C Instruct DATATRIEVE to continue.

RET_STATUS = DTR$CONTINUE (DAB)
END IF

END DO
40 RETURN

END

DATATRIEVE Call Reference 3–11

DTR$CREATE_UDK

DTR$CREATE_UDK
Lets you add a keyword to DATATRIEVE. Commands and statements you add
are called user-defined keywords (UDKs).

Format

DTR$CREATE_UDK (dab, keyword-name, index, context)

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

keyword-name

Data type: character string
Access: read-only
Mechanism: by descriptor

Is the name of the keyword.

index

Data type: word integer
Access: read-only
Mechanism: by reference

Is a number between 1 and 32767. It is the number that is returned in the
DAB field DAB$W_UDK_INDEX as the index of this keyword.

context

Data type: word integer
Access: read-only
Mechanism: by reference

Is the context DATATRIEVE uses to interpret the keyword. Table 3–1 lists
the user-defined keyword contexts and their values.

3–12 DATATRIEVE Call Reference

DTR$CREATE_UDK

Table 3–1 Types of Context for User-Defined Keywords

Context Value
DATATRIEVE interprets the keyword
as:

DTR$K_UDK_SET 1 A SET command
DTR$K_UDK_SET_NO 2 A SET NO command
DTR$K_UDK_SHOW 3 A SHOW command
DTR$K_UDK_STATEMENT 4 A statement
DTR$K_UDK_COMMAND 5 A command

Usage Notes

• You can use this call when DATATRIEVE is at the command stallpoint
(DTR$K_STL_CMD).

• After you call DTR$CREATE_UDK to create a keyword, you can call
DTR$DTR or DTR$WINDOWS to get access to interactive DATATRIEVE. If
you set the DTR$DTR or DTR$WINDOWS option DTR$M_OPT_UDK, your
program gets control when a user enters the keyword you have created.

• When a user enters your keyword, DATATRIEVE stalls at the user-defined
keyword stallpoint (DTR$K_STL_UDK). Your program can now perform the
functions that make up the keyword.

• If your keyword includes arguments, you must use the call DTR$GET_
STRING to parse them.

• To finish processing of your keyword and continue from the user-defined
keyword stallpoint (DTR$K_STL_UDK), use the call DTR$END_UDK.

• If the UDK context is DTR$K_UDK_STATEMENT, you must pass one
statement or a series of statements within a BEGIN-END block to
DATATRIEVE . You should pass only one statement or BEGIN-END block
for each time the user enters a UDK statement. Refer to Appendix A for
a sample FORTRAN program (the program CORRELATE) showing how to
define a UDK statement.

After you pass the statement, DATATRIEVE enters the end user-defined
keyword stallpoint (DTR$K_STL_END_UDK).

• You cannot use zero as an index. Digital reserves indexes -1 through -32768
for DATATRIEVE keywords.

DATATRIEVE Call Reference 3–13

DTR$CREATE_UDK

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments. There must be four.

DTR$_BADSTRDES
Invalid descriptor for keyword name.

DTR$_BADUDKCTX
Invalid UDK context.

DTR$_BADUDKIDX
Invalid index number. The index must be a positive number.

DTR$_WRONGSTALL
Wrong stallpoint for this call. You must be at a DTR$K_STL_CMD stallpoint

Other errors from RMS, system services, and Run-Time Library routines.

Example

Enable the interactive user to use several DCL commands in DATATRIEVE:
! PROGRAM: UDK

100 %INCLUDE "DTR$LIBRARY:DAB.BAS"

! Declare the initialization and terminal server calls
! as functions.

EXTERNAL INTEGER FUNCTION DTR$INIT, DTR$DTR

! Declare the exit and normal status.

EXTERNAL LONG CONSTANT DTR$_EXIT, SS$_NORMAL

DECLARE INTEGER INIT_OPTIONS, DTR_OPTIONS, RET_STATUS

! Assign the initial options.

INIT_OPTIONS = DTR$K_SEMI_COLON_OPT &
OR DTR$K_UNQUOTED_LIT &
OR DTR$K_FORMS_ENABLE

! Initialize the Interface.

3–14 DATATRIEVE Call Reference

DTR$CREATE_UDK

500 RET_STATUS = DTR$INIT (DAB BY REF, 100% BY REF, MSG_BUFF, &
AUX_BUFF, INIT_OPTIONS BY REF)

! Check to see if DATATRIEVE was initialized.

IF RET_STATUS <> SS$_NORMAL THEN
PRINT "DATATRIEVE initialization failed."
GOTO 7000

! Create the user-defined keywords.

! UDK number 1 = CLEAR_SCREEN
! 2 = DIRECTORY
! 3 = MAIL
! 4 = SPAWN
! 5 = SHOW UDKS

1000 RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’CLEAR_SCREEN’, 1% BY REF, &
DTR$K_UDK_COMMAND BY REF)

RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’DIRECTORY’, 2% BY REF, &
DTR$K_UDK_COMMAND BY REF)

RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’MAIL’, 3% BY REF, &
DTR$K_UDK_COMMAND BY REF)

RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’SPAWN’, 4% BY REF, &
DTR$K_UDK_COMMAND BY REF)

RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’UDKS’, 5% BY REF, &
DTR$K_UDK_SHOW BY REF)

! Declare the options for the DTR$DTR call.

2000 DTR_OPTIONS = DTR$M_OPT_UDK ! Return to program on a UDK &
OR DTR$M_OPT_CONTROL_C &
OR DTR$M_OPT_STARTUP &
OR DTR$M_OPT_FOREIGN &
OR DTR$M_OPT_BANNER

! Call the terminal server.

2500 RET_STATUS = DTR$DTR (DAB BY REF, DTR_OPTIONS BY REF)

! Check for EXIT or CTRL/Z.

GOTO 6000 IF RET_STATUS = DTR$_EXIT

ON DAB$W_UDK_INDEX &
GOSUB 3100, 3200, 3300, 3400, 3500
GOTO 2500

! UDK 1 - User entered CLEAR_SCREEN.

3100 CALL LIB$ERASE_PAGE (1% BY REF,1% BY REF)

! End the UDK.

DATATRIEVE Call Reference 3–15

DTR$CREATE_UDK

RET_STATUS = DTR$END_UDK BY REF (DAB)
RETURN

! UDK 2 - User entered DIRECTORY.

3200 RET_STATUS = LIB$SPAWN ("DIRECTORY")
RET_STATUS = DTR$END_UDK BY REF (DAB)
RETURN

! UDK 3 - User entered MAIL.

3300 RET_STATUS = LIB$SPAWN ("MAIL")
RET_STATUS = DTR$END_UDK BY REF (DAB)
RETURN

! UDK 4 - User entered SPAWN.

3400 RET_STATUS = LIB$SPAWN ()
RET_STATUS = DTR$END_UDK BY REF (DAB)
RETURN

! UDK 5 - User entered SHOW UDKS.

3500 PRINT " "
PRINT " User-Defined Keywords Available"
PRINT " "
PRINT " CLEAR_SCREEN - clears the screen"
PRINT " DIRECTORY - displays files in the default directory"
PRINT " SPAWN - creates a subprocess"
PRINT " MAIL - invokes VMS MAIL"

RET_STATUS = DTR$END_UDK BY REF (DAB)
RETURN

6000 RET_STATUS = DTR$FINISH BY REF (DAB)

7000 END

This program shows you how to add commands to DATATRIEVE by using
Run-Time Library routines. Refer to Appendix A for an example of how to add
statements in a FORTRAN program (see the program CORRELATE).

Note that the DTR$M_OPT_FOREIGN option to the DTR$DTR or DTR$WINDOWS
call lets you execute commands and statements from DCL level. For example:

$ UDK :== $DB0:[KELLER]UDK.EXE
$ UDK READY PERSONNEL; CLEAR_SCREEN; PRINT FIRST 5 PERSONNEL

3–16 DATATRIEVE Call Reference

DTR$DTR

DTR$DTR
Invokes the DATATRIEVE terminal server. Your program gets access to all of the
DATATRIEVE interactive data management capabilities. Users of your program
cannot tell that they are running a program and not interactive DATATRIEVE .

Use this call for access to the DATATRIEVE terminal server. For access to the
DATATRIEVE DECwindows terminal server see the DTR$WINDOWS call.

Format

DTR$DTR (dab, options-code)

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

options-code

Data type: longword integer
Access: read-only
Mechanism: by reference

Is a bit mask of options you select, where each bit in the options-code
argument identifies a separate option. The default for options-code is 0.

The following tables describe the DTR$DTR options and list their values.
Table 3–2 describes the DTR$DTR options that determine when the
DATATRIEVE terminal server returns control to your program. Table 3–3
describes the DTR$DTR options that enable various DATATRIEVE terminal
server functions.

Table 3–2 DTR$DTR Control Options

Option Value
Terminal server returns control to your
program when:

DTR$M_OPT_CMD 1 Stallpoint is DTR$K_STL_CMD
(continued on next page)

DATATRIEVE Call Reference 3–17

DTR$DTR

Table 3–2 (Cont.) DTR$DTR Control Options

Option Value
Terminal server returns control to your
program when:

DTR$M_OPT_PRMPT 2 Stallpoint is DTR$K_STL_PRMPT
DTR$M_OPT_LINE 4 Stallpoint is DTR$K_STL_LINE
DTR$M_OPT_MSG 8 Stallpoint is DTR$K_STL_MSG
DTR$M_OPT_PGET 16 Stallpoint is DTR$K_STL_PGET
DTR$M_OPT_PPUT 32 Stallpoint is DTR$K_STL_PPUT
DTR$M_OPT_CONT 64 Stallpoint is DTR$K_STL_CONT
DTR$M_OPT_UDK 128 Stallpoint is DTR$K_STL_UDK
DTR$M_OPT_DTR_UDK 256 User enters a DATATRIEVE keyword
DTR$M_OPT_END_UDK 512 Stallpoint is DTR$K_STL_END_UDK
DTR$M_OPT_UNWIND 1024 Condition is DTR$_UNWIND—user

enters CTRL/C or CTRL/Z during
execution of a command or statement

Table 3–3 DTR$DTR Terminal Server Options

Option Value This option enables:

DTR$M_OPT_CONTROL_C 2048 DATATRIEVE CTRL/C
handling

DTR$M_OPT_STARTUP 4096 Execution of the startup
command file the first time
you call DTR$DTR with this
option

DTR$M_OPT_FOREIGN 8192 Execution of the foreign
command line

DTR$M_OPT_BANNER 16384 Display of the DATATRIEVE
login banner the first time you
call DTR$DTR with this option

DTR$M_OPT_REMOVE_CTLC 32768 Removal of CTRL/C handling
when leaving the DTR$DTR
call and returning to the
program

(continued on next page)

3–18 DATATRIEVE Call Reference

DTR$DTR

Table 3–3 (Cont.) DTR$DTR Terminal Server Options

Option Value This option enables:

DTR$M_OPT_KEYDEFS 65536 Definition of keypad keys
as specified in the file
associated with the logical
name DTR$KEYDEFS the first
time you call DTR$DTR with
this option

Usage Notes

• The DATATRIEVE terminal server cannot be active at the same time as the
DATATRIEVE DECwindows terminal server. If you have already made a
call to DTR$WINDOWS, you cannot make a call to DTR$DTR until you have
called DTR$FINISH_WINDOWS.

• The DATATRIEVE DECwindows terminal server cannot be active at the same
time as the DATATRIEVE terminal server. If you have already made a call to
DTR$DTR, you cannot make a call to DTR$WINDOWS until you have called
DTR$FINISH.

• You can use the options-code argument to specify the stallpoints you want the
terminal server to handle and the stallpoints at which you want your program
to take control. For example, you can call DTR$DTR to have DATATRIEVE
display messages and print lines and then return control to your program by
specifying DTR$M_OPT_CMD in the options-code argument.

• If your program gives control to the terminal server and the user ends the
DATATRIEVE session by entering CTRL/Z or EXIT in response to the DTR>
prompt, control returns to your program.

• If you specify the option DTR$M_OPT_UNWIND, DATATRIEVE returns
control to your program whenever it detects an unwind condition. An
unwind condition occurs when the user enters CTRL/C or CTRL/Z, or when
DATATRIEVE encounters a DTR$UNWIND call in your program.

The DTR$M_OPT_CONTROL_C causes DATATRIEVE to turn on CTRL/C
handling so that a CTRL/C is not interpreted as a CTRL/Y. The terminal
server handles the CTRL/C breaks.

DATATRIEVE Call Reference 3–19

DTR$DTR

Note

A BASIC program that calls DATATRIEVE cannot have the CTRL/C
trapping enabled by BASIC while DATATRIEVE is executing. Disable
CTRL/C trapping in your program with the RCTLC function before
the program calls DATATRIEVE. If the BASIC CTRLC function is
enabled while DATATRIEVE is executing, pressing CTRL/C can produce
unexpected results.

• DTR$DTR assigns a channel number to the DAB$W_TT_CHANNEL DAB
field if a number has not been previously assigned. DATATRIEVE uses the
value of DAB$W_TT_CHANNEL as the input/output channel for ADT, TDMS
forms, Guide Mode, and help. (For information about deassigning channels,
see Chapter 2.)

• DTR$DTR calls the Run-Time Library Screen Management Facility (SMG)
to create a key definition table and two virtual keyboards if the values have
not been previously assigned. DATATRIEVE stores the key table identifier in
DAB$L_KEYTABLE_ID, the virtual keyboard identifier for command input
in DAB$L_COMMAND_KEYBOARD, and the virtual keyboard identifier for
input from prompting expressions in DAB$L_PROMPT_KEYBOARD.

• You can use DTR$DTR with the call DTR$CREATE_UDK to add your own
keywords to interactive DATATRIEVE (see the discussion of DTR$CREATE_
UDK in this chapter).

• You can specify the option DTR$M_OPT_STARTUP to invoke a startup
command file pointed to by the logical DTR$STARTUP. This command file
is executed only the first time you call DTR$DTR with the DTR$M_OPT_
STARTUP option set.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_BADSTALL
Invalid stallpoint in the DAB.

DTR$_EXIT
User entered either EXIT or CTRL/Z.

3–20 DATATRIEVE Call Reference

DTR$DTR

DTR$_NOSMG
The DECwindows terminal server is active.

DTR$_UNWIND
Program called DTR$UNWIND or user entered CTRL/C or CTRL/Z to terminate
DATATRIEVE statement.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

Use DTR$DTR to handle error messages in a FORTRAN program:

IF (DAB$L_CONDITION .NE. %LOC(DTR$_SUCCESS)
1 RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

Use DTR$DTR to display print lines in a COBOL program:

IF DTR$K_STL_LINE THEN
RET_STATUS = "DTR$DTR" USING DAB DTR$M_OPT_CMD.

Use DTR$DTR in a BASIC program to simulate interactive DATATRIEVE.
Note that the option DTR$M_OPT_STARTUP executes a DATATRIEVE
startup command file, if you have one.

100 %INCLUDE "DTR$LIBRARY:DAB"

! Declare the initialization and terminal server calls as
! functions.

EXTERNAL INTEGER FUNCTION DTR$INIT, DTR$DTR

DECLARE INTEGER DTR_OPTIONS, RET_STATUS

! Declare the normal and exit status.

EXTERNAL INTEGER CONSTANT DTR$_BADNUMARG, &
DTR$_BADSTALL, &
DTR$_EXIT, &
SS$_NORMAL

! Initialize the interface.

500 RET_STATUS = DTR$INIT (DAB BY REF, 100% BY REF, MSG_BUFF, &
AUX_BUFF, DTR$K_SEMI_COLON_OPT BY REF)

! Check to see if DATATRIEVE was initialized.

IF RET_STATUS <> SS$_NORMAL THEN
PRINT "DATATRIEVE initialization failed."
GOTO 2000

! Set options include commands to: execute a startup file,
! enable CTRL/C handling, allow invocation command lines,
! and display a startup banner.

DATATRIEVE Call Reference 3–21

DTR$DTR

DTR_OPTIONS = DTR$M_OPT_CONTROL_C &
OR DTR$M_OPT_STARTUP &
OR DTR$M_OPT_FOREIGN &
OR DTR$M_OPT_BANNER

! Call the terminal server.

1000 RET_STATUS = DTR$DTR (DAB BY REF, DTR_OPTIONS BY REF)

! Check the status.

SELECT RET_STATUS
CASE SS$_NORMAL

PRINT "Check your DTR$DTR options."
PRINT "You returned control to the program."

CASE DTR$_EXIT
PRINT "Bye."

CASE ELSE
CALL LIB$SIGNAL (RET_STATUS BY VALUE)

END SELECT

1500 RET_STATUS = DTR$FINISH BY REF (DAB)

2000 END

You can use this program as the framework for customizing interactive
DATATRIEVE. Refer to Appendix A for more examples of how to use
DTR$DTR.

3–22 DATATRIEVE Call Reference

DTR$END_UDK

DTR$END_UDK
Ends processing of a user-defined keyword.

Format

DTR$END_UDK (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Notes

• To use this call you must be at the command, user-defined keyword, or end
user-defined keyword stallpoint (DTRK_STL_CMD, DTRK_STL_UDK, or
DTR$K_STL_END_UDK).

• If your UDK is a DATATRIEVE statement, pass a statement or a series of
statements within a BEGIN-END block to DATATRIEVE. When you finish
passing the statement, DATATRIEVE enters the end user-defined keyword
stallpoint (DTR$K_STL_END_UDK). To continue, you must use the call
DTR$END_UDK. Refer to Appendix A for a sample FORTRAN program
(program CORRELATE) that shows how to define and end a UDK statement.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments. There must be one.

DTR$_WRONGSTALL
Wrong stallpoint for this call. You must be at the DTRK_STL_CMD, DTRK_
STL_UDK, or DTR$K_STL_END_UDK stallpoint.

DATATRIEVE Call Reference 3–23

DTR$END_UDK

Other errors from RMS, system services, and Run-Time Library routines.

Example

End processing of a user-defined keyword in a FORTRAN program:
.
.
.

C Create the UDK.

RET_STATUS = DTR$CREATE_UDK (DAB, ’SPAWN’, 1, DTR$K_UDK_COMMAND)

C Select DTR$DTR options.

DTR_OPTS = DTR$M_OPT_CONTROL_C ! Enable Control C handling
1 + DTR$M_OPT_STARTUP ! Execute startup command file
2 + DTR$M_OPT_FOREIGN ! Execute invocation command lines
3 + DTR$M_OPT_BANNER ! Display DATATRIEVE banner
4 + DTR$M_OPT_UDK ! Return on DTR$K_STL_UDK

C Call the terminal server.

100 RET_STATUS = DTR$DTR (DAB, DTR_OPTS)

! Finish on CTRL/Z or EXIT.

GOTO 999 IF RET_STATUS = DTR$_EXIT

C When user enters SPAWN, the program gets control.
C The stallpoint is DTR$K_STL_UDK.

IF (DAB$W_UDK_INDEX .EQ. 1) THEN

C Use a Run-Time Library routine to spawn a subprocess.

RET_STATUS = LIB$SPAWN()
END IF

C Terminate processing of the UDK.

RET_STATUS = DTR$END_UDK (DAB)

C Recall the terminal server.

GO TO 100

999 RET_STATUS = DTR$FINISH (DAB)

END

3–24 DATATRIEVE Call Reference

DTR$FINISH

DTR$FINISH
Ends a program’s interaction with the DATATRIEVE terminal server invoked by
the DTR$DTR call.

To end a program’s interaction with the DATATRIEVE DECwindows terminal
server invoked by the DTR$WINDOWS call, see the DTR$FINISH_WINDOWS
call.

Format

DTR$FINISH (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Notes

• DTR$FINISH is similar to the DATATRIEVE exit command. DTR$FINISH
finishes all DATATRIEVE sources, releases all collections, tables, and
variables, and ends the DATATRIEVE Call Interface session.

• After your program closes the DATATRIEVE Call Interface with a call to
DTR$FINISH, the program must reinitialize the DAB before it can be used in
another call to DTR$INIT. That is, the values of all the fields must be set to
zero.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments.

DATATRIEVE Call Reference 3–25

DTR$FINISH

DTR$_NOSMG
The DECwindows terminal server is active.

Other errors from RMS, system services, and Run-Time Library routines.

Example

Close the DATATRIEVE session in a FORTRAN program:

C Close the DATATRIEVE Interface.
STATUS = DTR$FINISH (DAB)

3–26 DATATRIEVE Call Reference

DTR$FINISH_WINDOWS

DTR$FINISH_WINDOWS
Ends a program’s interaction with the DATATRIEVE DECwindows terminal
server invoked by DTR$WINDOWS.

To end a session with the DATATRIEVE terminal server, see the DTR$FINISH
call.

Format

DTR$FINISH_WINDOWS (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Notes

• Use DTR$FINISH_WINDOWS to end an interactive DATATRIEVE
session with the DATATRIEVE DECwindows interface invoked with the
DTR$WINDOWS call. Use DTR$FINISH to end a session initiated by a call
to DTR$DTR.

• DTR$FINISH_WINDOWS is similar to the DATATRIEVE exit command.
DTR$FINISH_WINDOWS finishes all DATATRIEVE sources, releases all
collections, tables, and variables, and ends the DATATRIEVE Call Interface
session.

• After your program closes the DATATRIEVE Call Interface with a call to
DTR$FINISH_WINDOWS, the program must reinitialize the DAB before it
can be used in another call to DTR$INIT. That is, the values of all the fields
must be set to zero.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DATATRIEVE Call Reference 3–27

DTR$FINISH_WINDOWS

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_NOWINDOWS
User tried to call DTR$FINISH_WINDOWS without first invoking the
DATATRIEVE DECwindows interface with a DTR$WINDOWS call.

Other errors from RMS, system services, and Run-Time Library routines.

Example

Close the DATATRIEVE session in a FORTRAN program:

C Close the DATATRIEVE DECwindows Interface.
STATUS = DTR$FINISH_WINDOWS (DAB)

3–28 DATATRIEVE Call Reference

DTR$GET_PORT

DTR$GET_PORT
Gets a record from DATATRIEVE and passes it to your program.

Format

DTR$GET_PORT (dab, record-buffer)

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

record-buffer

Data type: data block
Access: write
Mechanism: by reference

Is a buffer to hold the record. The record buffer must be large enough to
contain all of the fields defined in the port.

Usage Notes

• To transfer records from DATATRIEVE to your program, you must define a
record buffer in your program to receive the records. For example, here is a
record buffer for YACHTS in a FORTRAN program:

CHARACTER*1 YACHT(41)
CHARACTER*10 BUILDER
CHARACTER*10 MODEL
CHARACTER*6 RIG
CHARACTER*3 LOA
CHARACTER*5 DISP
CHARACTER*2 BEAM
CHARACTER*5 PRICE
EQUIVALENCE (YACHT(1), BUILDER),
1 (YACHT(11), MODEL),
2 (YACHT(21), RIG),
3 (YACHT(27), LOA),
4 (YACHT(30), DISP),
5 (YACHT(35), BEAM),
6 (YACHT(37), PRICE)

DATATRIEVE Call Reference 3–29

DTR$GET_PORT

• If you write your programs in a high-level language that supports VAX
CDD/Repository (such as BASIC, COBOL, and FORTRAN), you need not code
the entire record buffer into your program. You can copy a record definition
from the dictionary and use it as a record buffer.

Be sure that your record definition does not contain a field name that is a
reserved word in the programming language you are using. For example, the
YACHT record definition contains a field named TYPE, which is a COBOL
reserved word. You should change this field name if you want to copy the
record into a COBOL program. For example:

RECORD YACHT_COBOL USING
01 BOAT.
03 BOAT_TYPE.

06 MANUFACTURER PIC X(10)
QUERY_NAME IS BUILDER.

.

.

.
;

• To transfer records to your program, you must also define a port. A port
is a single record buffer that can be referenced by DATATRIEVE and your
program. All transfer of records between DATATRIEVE and the host program
is done through ports. To define a port, use the DEFINE PORT command or
the DECLARE PORT statement.

• The DEFINE PORT command inserts your port definition into the dictionary.
On the DEFINE PORT command line you specify a name for the port and an
associated record definition in the following format:

DEFINE PORT path-name [USING] record-path-name;

To define a port for YACHTS records, you can use the following command in
interactive DATATRIEVE:

DTR> DEFINE PORT YPORT USING YACHT;

You can also use the DTR$COMMAND call to pass this command to
DATATRIEVE from your program. If you use DEFINE PORT to create a
port, ready the port for write access before using it.

• The DECLARE PORT statement creates a temporary port with the name
you specify and readies the port for write access. DATATRIEVE does not
enter a definition of the port in the dictionary. You can issue the DECLARE
PORT statement only from your program. You must define a record in the
statement.

3–30 DATATRIEVE Call Reference

DTR$GET_PORT

Here is an example of the DECLARE PORT statement in a BASIC program:

STATUS = DTR$COMMAND (DAB BY REF, "DECLARE PORT PT1 & 01 PTYPE PIC X(20).;")

• To pass data from DATATRIEVE to your program, you must first tell
DATATRIEVE to store a record in a port. If you use the STORE statement to
store data in a port, include the USING clause to specify the fields you want
to store, as in the following examples:

FOR YACHTS WITH LOA GT 30 STORE YPORT USING BUILDER = BUILDER

FOR YACHTS STORE PT1 USING PT1_TYPE = TYPE

You also can use an Assignment statement in the following format:

port-name = rse

An example of an Assignment statement that stores data into a port is:

YPORT = YACHTS WITH LOA GT 30

If you want to use this Assignment statement to store only some fields of a
DATATRIEVE record into a port, define your port to include only the fields
you want to store.

• A DATATRIEVE statement that stores records into a port results in the get
port stallpoint (DTR$K_STL_PGET). When you are at this stallpoint, you
can use the call DTR$GET_PORT to copy a record from a port to a record
buffer in your program. You can use the call DTR$GET_PORT only when
DATATRIEVE is at the get port stallpoint (DTR$K_STL_PGET).

• After the DTR$GET_PORT call, DATATRIEVE is usually at the get port
or message stallpoint (DTR$K_STL_PGET or DTR$K_STL_MSG). If
DATATRIEVE has more records to store into the port, the stallpoint is
the get port stallpoint.

• The message buffer contains the name of the port when DATATRIEVE
reaches the get port stallpoint (DTR$K_STL_PGET).

• Be careful when you use record buffers that are the same size as the ports;
if the sizes do not match, you may cause DATATRIEVE to write over the
addresses following the record buffer, causing errors in your program.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DATATRIEVE Call Reference 3–31

DTR$GET_PORT

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_BADSTALL
Invalid stallpoint in the DAB.

DTR$_WRONGSTALL
Wrong stallpoint for this call. You must be at the get port stallpoint (DTR$K_
STL_PGET).

Other errors from RMS, system services, and Run-Time Library routines.

Example

Set up a record buffer and use a port in a COBOL program:
IDENTIFICATION DIVISION.
PROGRAM-ID. SEEYACHTS.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Define a record buffer by copying a dictionary record *
* definition. *

COPY "CDD$TOP.COBOL.YACHT_COBOL" FROM DICTIONARY.

* Copy in the DAB and set up program variables. *

COPY "DTR$LIBRARY:DAB.LIB".

01 STACK_SIZE PIC 99 COMP VALUE 100.

01 CONT PIC X.
01 BOOL PIC X(30).
01 COMMAND_LINE PIC X(80).
01 RET_STATUS PIC S9(9) COMP.

PROCEDURE DIVISION.

3–32 DATATRIEVE Call Reference

DTR$GET_PORT

010-SHOW-YACHTS.
MOVE "Y" TO CONT.
PERFORM 050-INITIALIZE-INTERFACE.
PERFORM 100-READY-DOMAINS-AND-PORT.
PERFORM 200-GET-BOOL UNTIL

CONT EQUAL "N" OR CONT EQUAL "n".
PERFORM 999-EOJ.

050-INITIALIZE-INTERFACE.

* Initialize the Interface. *

RET_STATUS = "DTR$INIT" USING DAB STACK_SIZE
BY DESCRIPTOR MSG_BUFF AUX_BUFF.

* Use DTR$COMMAND to define a port. *

MOVE "DEFINE PORT YPORT USING YACHT_COBOL;"
TO COMMAND_LINE.

RET_STATUS = "DTR$COMMAND" USING DAB
BY DESCRIPTOR COMMAND_LINE.

* Use the call DTR$DTR to print out any print lines or error *
* messages. Set the DTR$M_OPT_CMD option so that DATATRIEVE *
* returns control to the program on the DTR$K_STL_CMD *
* stallpoint. *

RET_STATUS = "DTR$DTR" USING DAB DTR$M_OPT_CMD.

100-READY-DOMAINS-AND-PORT.
MOVE "READY YACHTS; READY YPORT WRITE;"

TO COMMAND_LINE.
RET_STATUS = "DTR$COMMAND" USING DAB

BY DESCRIPTOR COMMAND_LINE.

* Have DATATRIEVE display messages and return control. *

RET_STATUS = "DTR$DTR" USING DAB DTR$M_OPT_CMD.

200-GET-BOOL.
DISPLAY "ENTER A BOOLEAN EXPRESSION, SUCH AS LOA > 30.".
ACCEPT BOOL.

* Command DATATRIEVE to store the port. After this call, *
* DATATRIEVE stalls at the DTR$K_STL_PGET stallpoint. *

DATATRIEVE Call Reference 3–33

DTR$GET_PORT

MOVE "YPORT = YACHTS WITH !CMD;"
TO COMMAND_LINE.

RET_STATUS = "DTR$COMMAND" USING DAB
BY DESCRIPTOR COMMAND_LINE BOOL.

* Check for error messages. Print column headers. *

IF DTR$K_STL_MSG
RET_STATUS = "DTR$DTR" USING DAB DTR$M_OPT_CMD

GO TO 200-GET-BOOL
ELSE

DISPLAY " "
DISPLAY "BUILDER" " " "MODEL" " " "RIG" " "
"LOA" " " "BEAM" " " "WEIGHT" " " "PRICE"
DISPLAY " ".

PERFORM 300-PASS-AND-DISPLAY-RECORDS UNTIL NOT DTR$K_STL_PGET.
PERFORM 400-DO-MORE.

300-PASS-AND-DISPLAY-RECORDS.

* DATATRIEVE is at the DTR$K_STL_PGET stallpoint. Use the call *
* DTR$GET_PORT to copy a record from YPORT to the record buffer.*

RET_STATUS = "DTR$GET_PORT" USING DAB BOAT.
DISPLAY MANUFACTURER " " MODEL " " RIG " "
LENGTH_OVER_ALL " " BEAM " " DISPLACEMENT " " PRICE.

400-DO-MORE.
RET_STATUS = "DTR$DTR" USING DAB DTR$M_OPT_CMD.
DISPLAY " ".
DISPLAY "ENTER Y TO SEE MORE RECORDS, N TO QUIT."
ACCEPT CONT.

999-EOJ.
RET_STATUS = "DTR$FINISH" USING DAB.
STOP RUN.

3–34 DATATRIEVE Call Reference

DTR$GET_STRING

DTR$GET_STRING
Gets a string from DATATRIEVE and passes it to your program. You can use this
call in your program to interpret the arguments to a user-defined keyword.

Format

DTR$GET_STRING (dab, token-type, [string], [length], [compare-string])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

token-type

Data type: longword integer
Access: read-only
Mechanism: by reference

Is the type of token you want DATATRIEVE to return.

A token can be a character string delimited by spaces or any other identifiable
unit within the command string. For example, in the following command line,
the word OPEN and the file specification DUA0:[SAMPLE]DTR.LOG are both
tokens:

OPEN DUA0:[SAMPLE]DTR.LOG

You can also return the entire command string by selecting the DTR$K_TOK_
COMMAND type. Table 3–4 lists all the token types you can specify.

Table 3–4 Token Types for the DTR$GET_STRING Call

Token Type Value Action

DTR$K_TOK_TOKEN 1 Retrieves a single token
DTR$K_TOK_FILENAME 2 Retrieves a file specification
DTR$K_TOK_PICTURE 3 Retrieves a picture string

(continued on next page)

DATATRIEVE Call Reference 3–35

DTR$GET_STRING

Table 3–4 (Cont.) Token Types for the DTR$GET_STRING Call

Token Type Value Action

DTR$K_TOK_COMMAND 4 Retrieves the remainder of the
string

DTR$K_TOK_TEST_TOKEN 5 Retrieves a single token if it
matches the compare string and
has the specified length

DTR$K_TOK_LIST_ELEMENT 6 Retrieves all tokens until the next
comma or the end of the line

DTR$K_TOK_TEST_EOL 7 Checks for the end of the string and
returns either DTR$_MORESTR, if
there are any remaining tokens, or
DTR$_ENDOFSTR, if there are no
more tokens

Arguments

string

Data type: character string
Access: write
Mechanism: by descriptor

Is the retrieved string. This parameter is required for all token types except
DTR$K_TOK_TEST_EOL.

length

Data type: word integer
Access: read/write
Mechanism: by reference

Is the length of the string. If the type is DTR$K_TOK_TEST_TOKEN, you
can use length to determine whether or not the token was read.

compare-string

Data type: character string
Access: read-only
Mechanism: by descriptor

Is a string that should be matched by the token in the string argument.

3–36 DATATRIEVE Call Reference

DTR$GET_STRING

This argument is examined only for type DTR$K_TOK_TEST_TOKEN. For
other types, it is ignored. If the type is DTR$K_TOK_TEST_TOKEN and this
descriptor is not specified, the result of the DTR$GET_STRING call is the
same as for type DTR$K_TOK_TOKEN.

Usage Notes

• You can use this call only when DATATRIEVE is at the user-defined keyword
stallpoint (DTR$K_STL_UDK).

• After this call, DATATRIEVE remains at the user-defined keyword stallpoint
(DTR$K_STL_UDK).

• If you use DTR$GET_STRING to parse a number of arguments to a UDK,
you may need to check the status of your call frequently. The status codes
DTR$_ENDOFSTR, DTR$_MORESTR, and DTR$_TRUNCSTR are useful in
parsing the command string the user enters.

For example, suppose you create a UDK, CORRELATE, that lets users enter
an argument string:

DTR> CORRELATE LOA, BEAM

You have set the DTR$M_OPT_UDK option to DTR$WINDOWS or to
DTR$DTR so that when the user enters CORRELATE, your program gets
control. You can check if any strings have been entered after CORRELATE as
follows:

RET_STATUS = DTR$GET_STRING (DAB, DTR$K_TOK_TOKEN,
1 FIELD1)
IF (RET_STATUS .EQ. %LOC(DTR$_ENDOFSTR))
THEN WRITE (6,*) ’Enter a field name: ’

If a field name has been entered, you can check for a comma with the
DTR$K_TOK_TEST_TOKEN type:

IF (RET_STATUS .EQ. %LOC(DTR$_MORESTR)) THEN
RET_STATUS = DTR$GET_STRING (DAB, DTR$K_TOK_TEST_TOKEN,

1 COMMA, 1, ’,’)
IF (RET_STATUS .EQ. %LOC(DTR$_ENDOFSTR))THEN

WRITE (6,*) ’Enter a comma or the next field name: "
END IF

END IF

Refer to Appendix A for a sample FORTRAN program (see the subroutine
PARSE) showing how to parse a string entered after a user-defined keyword.

DATATRIEVE Call Reference 3–37

DTR$GET_STRING

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments. You must specify at least three.

DTR$_BADSTRDES
Invalid string descriptor.

DTR$_BADTOKTYP
Invalid token type.

DTR$_ENDOFSTR
There are no more tokens.

DTR$_MORESTR
There are more valid tokens.

DTR$_TRUNCSTR
The token is too long for the string. The required token length is specified in the
length argument. Another GET_STRING call will retrieve the same token.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be DTR$K_STL_UDK.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

You have a DATATRIEVE procedure that produces a long report and sends it
to a file:

PROCEDURE SALARY_REPORT
READY PERSONNEL SHARED
REPORT PERSONNEL ON DB0:[DIETTERICH]MONTHLY.REP

.

.

.
END_REPORT
END_PROCEDURE

3–38 DATATRIEVE Call Reference

DTR$GET_STRING

You want to submit this procedure for batch processing and continue your
session with DATATRIEVE. Create the UDK SUBMIT in a BASIC program:

100 %INCLUDE "DTR$LIBRARY:DAB"

! Declare the initialization and terminal server
! calls as functions.

EXTERNAL INTEGER FUNCTION DTR$INIT, DTR$DTR

! Declare the success and exit status.

EXTERNAL LONG CONSTANT SS$_NORMAL, DTR$_EXIT

DECLARE INTEGER DTR_OPTIONS, INIT_OPTIONS, RET_STATUS

DECLARE STRING DTR_PROCEDURE

! Assign the initial options.

INIT_OPTIONS = DTR$K_SEMI_COLON_OPT &
OR DTR$K_UNQUOTED_LIT &
OR DTR$K_FORMS_ENABLE

! Initialize the Interface.

500 RET_STATUS = DTR$INIT (DAB BY REF, 100% BY REF, MSG_BUFF, &
AUX_BUFF, INIT_OPTIONS BY REF)

! Check to see if DATATRIEVE was initialized.

IF RET_STATUS <> SS$_NORMAL THEN
PRINT "DATATRIEVE initialization failed."
GOTO 6000

! Create the user defined keyword.

1000 RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’SUBMIT’, 1% BY REF, &
DTR$K_UDK_COMMAND BY REF)

! Declare the options for the DTR$DTR call.

2000 DTR_OPTIONS = DTR$M_OPT_UDK ! Return to program on UDK &
+ DTR$M_OPT_CONTROL_C &
+ DTR$M_OPT_STARTUP &
+ DTR$M_OPT_FOREIGN &
+ DTR$M_OPT_BANNER

! Call the terminal server.

2500 RET_STATUS = DTR$DTR (DAB BY REF, DTR_OPTIONS BY REF)

! Check for EXIT or CTRL/Z.

GOTO 6000 IF RET_STATUS = DTR$_EXIT

3000 OPEN "TEMP.COM" FOR OUTPUT AS FILE #2%

! Use DTR$GET_STRING to get the procedure name.

DATATRIEVE Call Reference 3–39

DTR$GET_STRING

RET_STATUS = DTR$GET_STRING (DAB BY REF, DTR$K_TOK_COMMAND, &
DTR_PROCEDURE BY DESC)

! User entered SUBMIT; read in a procedure name.

IF DTR_PROCEDURE = "" THEN
INPUT "Enter procedure name: "; DTR_PROCEDURE

! Write a command file that executes the DATATRIEVE procedure.

4000 PRINT #2%, "$ RUN SYS$SYSTEM:DTR32"
PRINT #2%, "EXECUTE ";DTR_PROCEDURE
PRINT #2%, "$ EXIT"
CLOSE 2%

! Submit the command file.

RET_STATUS = LIB$SPAWN ("SUBMIT/QUEUE=SYS$BATCH/NOPRINTER "+ &
"TEMP/NOTIFY/DELETE/LOG=[]")

! End the UDK.

RET_STATUS = DTR$END_UDK BY REF (DAB)

! Recall the terminal server.
GO TO 2500

6000 RET_STATUS = DTR$FINISH BY REF (DAB)
END

3–40 DATATRIEVE Call Reference

DTR$INFO

DTR$INFO
Returns information about the DATATRIEVE object you specify. To use this call,
you pass in:

• A number that identifies the object (the object-id)

• An option code that specifies what kind of information you want (the info-
code)

• In some cases, a number that specifies which element in a series you want
information about (the index)

Depending on the option code you select, DTR$INFO returns the following:

• An identifying number for another object, such as the object-id of a second or
third readied domain

• A string, such as one of the lines in a query header

• The length of the string returned

Format

DTR$INFO (dab, object-id, info-code, ret-val, [output-string], [index])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

object-id

Data type: longword integer
Access: read-only
Mechanism: by reference

Is a number that identifies a DATATRIEVE object. You obtain this number
with the DTR$LOOKUP or DTR$INFO call.

info-code

Data type: byte integer
Access: read-only
Mechanism: by reference

DATATRIEVE Call Reference 3–41

DTR$INFO

Is a number that identifies the type of information you want. The info-
code options you can select are declared in inclusion files provided in
DTR$LIBRARY as part of the DATATRIEVE installation kit. Table 3–5
lists the valid options.

ret-val

Data type: longword integer
Access: write
Mechanism: by reference

Is a number DATATRIEVE returns to your program. If you specify the
output-string argument, then ret-val is the length of the output string. If you
do not use the output-string argument, then ret-val is either the object-id or a
number that provides your program with information. (See Table 3–5.)

output-string

Data type: character string
Access: write
Mechanism: by descriptor

Is a string DATATRIEVE uses to return the information you request.
Table 3–5 shows when you can use this optional argument and what
information it returns.

index

Data type: longword integer
Access: read-only
Mechanism: by value

Is a number that specifies which of a series of elements you want to access.
For example, if you want to retrieve the third line in a multiline statement,
then index should equal three.

Table 3–5 lists the following:

• The info-code options you can select

• The number of arguments you must pass for each option

• The information DTR$INFO returns for each option

3–42 DATATRIEVE Call Reference

DTR$INFO

Table 3–5 Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Object-id of domains, statements, collections, and subschemas

Pass in a GLV identifier obtained with the DTR$LOOKUP call

DTR$K_INF_GLV_FIRST_DOM 4 Object-id of first domain in
readied domain list

DTR$K_INF_GLV_FIRST_COL 4 Object-id of first collection in
collection list

DTR$K_INF_GLV_FIRST_SSC 4 Object-id of first open
subschema

DTR$K_INF_GLV_STA_OBJ 4 Object-id of last statement
entered

DTR$K_INF_GLV_DEF_DIC 5 Default dictionary path
string

Information about statements

Pass in an object-id obtained with DTR$K_INF_GLV_STA_OBJ

DTR$K_INF_GLV_STA_CNT 4 Number of lines in
statement

DTR$K_INF_GLV_STA_LINE 6 Line specified by index in
output-string

Information about domains

Pass in an object-id obtained with DTR$K_INF_GLV_FIRST_DOM

DTR$K_INF_DOM_FLD 4 Object-id of top-level field
DTR$K_INF_DOM_FORM 4 Object-id of form associated

with domain
(continued on next page)

DATATRIEVE Call Reference 3–43

DTR$INFO

Table 3–5 (Cont.) Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Information about domains

DTR$K_INF_DOM_SHARE 4 Number specifying domain
access option: EXCLUSIVE
= 1, SHARED = 2,
PROTECTED = 3

DTR$K_INF_DOM_ACCESS 4 Number specifying domain
access mode: READ = 1,
WRITE = 2, MODIFY = 3,
EXTEND = 4

DTR$K_INF_DOM_NAME 5 Name of domain in output-
string

DTR$K_INF_DOM_NEXT_DOM 4 Object-id of next domain in
readied domain list

DTR$K_INF_DOM_SSC 4 Object-id of subschema of
VAX DBMS domain

DTR$K_INF_DOM_REC_LEN 4 Length of record associated
with current domain

Information about fields

Pass in the object-id of a top-level field obtained with DTR$K_INF_DOM_FLD

DTR$K_INF_FLD_NAME 5 Name of field in output-
string

DTR$K_INF_FLD_QNAME 5 Query name of field in
output-string

DTR$K_INF_FLD_QHDR 4 Object-id of query header
DTR$K_INF_FLD_PICTURE 5 Picture string for field in

output-string
DTR$K_INF_FLD_EDIT 5 Edit string for field in

output-string
(continued on next page)

3–44 DATATRIEVE Call Reference

DTR$INFO

Table 3–5 (Cont.) Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Information about fields

DTR$K_INF_FLD_DTYPE 4 Number of VAX data type
for field

DTR$K_INF_FLD_OFFSET 4 Offset of field within record
in bytes

DTR$K_INF_FLD_LENGTH 4 Length of field in bytes
DTR$K_INF_FLD_SCALE 4 Scale factor of field
DTR$K_INF_FLD_CHILD 6 Object-id of child of field

specified in object-id; index
number specifies which child

DTR$K_INF_FLD_CNT 4 Count of children of field
specified in object-id

DTR$K_INF_FLD_LIST 4 Zero if not top-level field
in a list (field defined with
OCCURS clause)

DTR$K_INF_FLD_REDEFINES 4 Object-id of field defined
with REDEFINES clause

DTR$K_INF_FLD_VIRTUAL 4 Nonzero if field is a
COMPUTED BY field; else,
value is zero

DTR$K_INF_FLD_FILLER 4 Zero if not field FILLER;
else, a number greater than
zero

DTR$K_INF_FLD_MISSING 5 Descriptor of the MISSING
VALUE

(continued on next page)

DATATRIEVE Call Reference 3–45

DTR$INFO

Table 3–5 (Cont.) Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Information about fields

DTR$K_INF_FLD_MISSING_TXT 5 Descriptor of the MISSING
VALUE text for a string field

DTR$K_INF_FLD_SEG_STRING 4 One if the field is a
relational database
segmented string field;
else, zero.

Information about collections

Pass in the object-id of a collection obtained with DTR$K_INF_GLV_FIRST_COL

DTR$K_INF_COL_FLD 4 Object-id of top-level field
DTR$K_INF_COL_DROPPED 4 One if a selected record was

dropped; else, zero
DTR$K_INF_COL_ERASED 4 One if a selected record was

erased; else, zero
DTR$K_INF_COL_INVISIBLE 4 One if a collection is

invisible (see Usage Notes);
else, zero

DTR$K_INF_COL_NAME 5 Name of collection in output-
string

DTR$K_INF_COL_NEXT_COL 4 Object-id of next collection in
collection list

(continued on next page)

3–46 DATATRIEVE Call Reference

DTR$INFO

Table 3–5 (Cont.) Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Information about forms

Pass in the object-id of a form obtained with DTR$K_INF_DOM_FORM

DTR$K_INF_FRM_NAME 5 Name of form in output-
string

DTR$K_INF_FRM_LIBRARY 5 Name of form library in
output-string

Information about VAX DBMS subschemas, sets, and domains

Pass in the object-id of a subschema obtained with DTR$K_INF_GLV_FIRST_SSC

DTR$K_INF_SSC_NAME 5 Name of subschema in
output-string

DTR$K_INF_SSC_SET 4 Address of last active set;
null if no sets active

DTR$K_INF_SSC_NEXT 4 Object-id of previous active
subschema

Pass in the object-id of a set obtained with DTR$K_INF_SSC_SET

DTR$K_INF_SET_NAME 5 Name of set in output-string
DTR$K_INF_SET_NEXT 4 Object-id of previous active

set
DTR$K_INF_SET_SDP 4 Object-id of set/domain pair
DTR$K_INF_SET_SINGULAR 4 One if set is singular

(system owned); else, zero

Pass in the object-id of a domain/set pair obtained with DTR$K_INF_SET_SDP

(continued on next page)

DATATRIEVE Call Reference 3–47

DTR$INFO

Table 3–5 (Cont.) Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Information about VAX DBMS subschemas, sets, and domains

DTR$K_INF_SDP_NEXT 4 Object-id of next domain/set
pair

DTR$K_INF_SDP_DOMAIN 4 Object-id of domain
associated with set

DTR$K_INF_SDP_TENANCY 4 One if domain is member of
current set

DTR$K_INF_SDP_INSERT 4 Insertion type for member
domains: Manual = 1,
Automatic = 2

DTR$K_INF_SDP_RETAIN 4 Retention type for member
domains: Fixed = 1,
Mandatory = 2, Optional
= 3

Information about header lines

Pass in the object-id of a header obtained with DTR$K_INF_FLD_QHDR

DTR$K_INF_HDR_CNT 4 Number of lines in header
DTR$K_INF_HDR_STRING 6 Header line specified by

index in output-string

(continued on next page)

3–48 DATATRIEVE Call Reference

DTR$INFO

Table 3–5 (Cont.) Info-Code Options

Info-code options

Number of
arguments
required

Information
DTR$INFO returns

Information about plots

Pass in the object-id of a plot obtained with DTR$LOOKUP call

DTR$K_INF_PLO_CNT 4 Number of plot arguments
DTR$K_INF_PLO_PAI 6 Object-id of plot argument

specified in index
DTR$K_INF_HDR_STRING 6 Header line specified by

index in output-string

Pass in the object-id of a plot argument obtained with DTR$K_INF_PLO_PAI

DTR$K_INF_PAI_PROMPT 5 Prompting string for plot
argument if one exists;
length in ret-val = 0 if no
string

DTR$K_INF_PAI_DTYPE 4 Number of VAX data type
expected for argument

Usage Notes

• To use this call you must copy the INFO inclusion file into your program. You
can find INFO inclusion files in FORTRAN, COBOL, BASIC, Pascal, PL/I,
and C in the DTR$LIBRARY directory. The file name for each file is INFO
and the file type identifies the language it is designed to be used with.

• You can use the DTR$INFO call when DATATRIEVE is at the command,
user-defined keyword, or end user-defined keyword stallpoint (DTR$K_STL_
CMD, DTR$K_STL_UDK, or DTR$K_STL_END_UDK).

• One of the info-code options, DTR$K_INF_COL_INVISIBLE, allows you to
check for ‘‘invisible’’ collections. An invisible collection is formed as follows:

DATATRIEVE Call Reference 3–49

DTR$INFO

DTR> READY FAMILIES !FAMILIES is a hierarchical domain.
DTR> FIND FAMILIES !Form an unnamed collection of FAMILIES.
[14 records found]
DTR> SELECT 1

DTR> SHOW CURRENT
Collection CURRENT

Domain: FAMILIES
Number of Records: 14
Selected Record: 1

DTR> FIND KIDS !KIDS is a list. Form an
!unnamed collection of KIDS.

[2 records found]
DTR> SHOW CURRENT
Collection CURRENT

Domain: FAMILIES
Number of Records: 2
No Selected Record

After you form the collection KIDS, the first collection of FAMILIES is invisible.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_INFBADCOD
Invalid info-code.

DTR$_INFBADID
Invalid object-id.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be DTR$K_STL_CMD,
DTR$K_STL_UDK, or DTR$K_STL_END_UDK.

Other errors from RMS, system services, and Run-Time Library routines.

3–50 DATATRIEVE Call Reference

DTR$INFO

Examples

Write a FORTRAN program to determine if a selected record in a collection
has been dropped:

.

.

.

C Use DTR$LOOKUP to get the global variable identifier.

RET_STATUS = DTR$LOOKUP (DAB, DTR$K_INF_TYPE_GLV, GLV_ID)

C Use DTR$INFO with the DTR$K_INF_GLV_FIRST_COL option to get the
C object-id of the first collection in the collection list.

RET_STATUS = DTR$INFO (DAB, GLV_ID, DTR$K_INF_GLV_FIRST_COL,
1 COL_ID)

C Call DTR$INFO again, using the object-id obtained with the last call.
C Specify the DTR$K_INF_COL_NAME option to get the collection name.

RET_STATUS = DTR$INFO (DAB, COL_ID, DTR$K_INF_COL_NAME,
1 LENGTH, COL_NAME)

C Call DTR$INFO with the DTR$K_INF_COL_DROPPED option to find out if
C the selected record has been dropped.

C The ret-val argument returns one if the record has been dropped,
C zero if the record has not been dropped.

RET_STATUS = DTR$INFO (DAB, COL_ID, DTR$K_INF_COL_DROPPED, DROPPED)

IF (DROPPED .EQ. 1) THEN
WRITE (6, *) ’Selected record from ’, COL_NAME, ’dropped.’
END IF

RET_STATUS = DTR$FINISH (DAB)

Create a UDK that enables users to find out the maximum number of
arguments required for a plot. For example:

DTR> PLOT_ARGUMENTS MULTI_BAR
MULTI_BAR not found in the default plots directory
DTR> SET PLOTS CDD$TOP.DTR$LIB.VT125
DTR> PLOT_ARGUMENTS MULTI_BAR
Maximum number of arguments for MULTI_BAR is 4
DTR> PLOT_ARGUMENTS
Enter plot name: WOMBAT
Maximum number of arguments for WOMBAT is 0

DATATRIEVE Call Reference 3–51

DTR$INFO

The following program creates the UDK PLOT_ARGUMENTS:
INCLUDE ’DTR$LIBRARY:DAB’
INCLUDE ’DTR$LIBRARY:INFO’

INTEGER*2 DTR_OPTS, PLOT_LEN, ARGUMENT_CNT
INTEGER*4 DTR$_EXIT, DTR$DTR, RET_STATUS, PLOT_ID
CHARACTER*15 PLOT_NAME
EXTERNAL DTR$_EXIT

C Initialize the DATATRIEVE Call Interface.

RET_STATUS = DTR$INIT (DAB, 100, MSG_BUFF, AUX_BUFF,
1 DTR$K_SEMI_COLON_OPT)

C Create the UDK PLOT_ARGUMENTS.

RET_STATUS = DTR$CREATE_UDK (DAB, ’PLOT_ARGUMENTS’, 1, DTR$K_UDK_COMMAND)

C Declare terminal server call options and call DTR$DTR.

DTR_OPTS = DTR$M_OPT_CONTROL_C ! Enable Control C handling
1 + DTR$M_OPT_STARTUP ! Execute startup command file
2 + DTR$M_OPT_FOREIGN ! Execute invocation command lines
3 + DTR$M_OPT_BANNER ! Display DATATRIEVE banner
4 + DTR$M_OPT_UDK ! Return on UDK

10 RET_STATUS = DTR$DTR (DAB,DTR_OPTS)
IF (RET_STATUS .EQ. %LOC(DTR$_EXIT)) THEN
GO TO 999
END IF

DO WHILE ((DAB$W_UDK_INDEX .EQ. 1) .AND.
1 (DAB$W_STATE .EQ. DTR$K_STL_UDK))

C User entered PLOT_ARGUMENTS plot-name.
C Get the name of the plot.

RET_STATUS = DTR$GET_STRING (DAB, DTR$K_TOK_COMMAND,
1 PLOT_NAME, PLOT_LEN)

C User entered PLOT_ARGUMENTS. Prompt for a plot name.

IF (PLOT_NAME .EQ. ’ ’) THEN
WRITE (6, 20)

20 FORMAT (X, ’Enter plot name: ’, $)
READ (5, 30) PLOT_LEN, PLOT_NAME

30 FORMAT (Q, A)
END IF

C Use DTR$LOOKUP to get the object-id for the specified plot.

RET_STATUS = DTR$LOOKUP (DAB, DTR$K_INF_TYPE_PLOT, PLOT_ID,
1 PLOT_NAME)

C If there is no such plot, inform the user.

3–52 DATATRIEVE Call Reference

DTR$INFO

IF (PLOT_ID .EQ. 0) THEN
WRITE (6, 35) PLOT_NAME

35 FORMAT (1X, A<PLOT_LEN>, ’ not found in the
1 default plots directory’)

GO TO 50
END IF

C Use DTR$INFO to get the maximum number of arguments for the plot.

RET_STATUS = DTR$INFO (DAB, PLOT_ID, DTR$K_INF_PLO_CNT, ARGUMENT_CNT)

WRITE (6,40) PLOT_NAME, ARGUMENT_CNT
40 FORMAT (’ Maximum number of arguments for ’, A<PLOT_LEN>,

1 ’ is ’, I1)

50 RET_STATUS = DTR$END_UDK (DAB)
END DO

GO TO 10

999 RET_STATUS = DTR$FINISH(DAB)
END

Create a UDK that enables users to display information about record
definitions as follows:

DTR> READY OWNERS, PERSONNEL
DTR> SHOW RECORD_LENGTH
Domain: PERSONNEL

PERSON <Group Field>
ID < 5 Bytes >
EMPLOYEE_STATUS (STATUS) < 11 Bytes >
EMPLOYEE_NAME (NAME) <Group Field>

FIRST_NAME (F_NAME) < 10 Bytes >
LAST_NAME (L_NAME) < 10 Bytes >

DEPT < 3 Bytes >
START_DATE < 8 Bytes >
SALARY < 5 Bytes >
SUP_ID < 5 Bytes >

PERSONNEL has a total record length of 57 bytes
Domain: OWNERS

OWNER <Group Field>
NAME < 10 Bytes >
BOAT_NAME < 17 Bytes >
TYPE <Group Field>

BUILDER < 10 Bytes >
MODEL < 10 Bytes >

OWNERS has a total record length of 47 bytes

DATATRIEVE Call Reference 3–53

DTR$INFO

The BASIC program that creates the UDK RECORD_LENGTH shows how
you can use DTR$INFO to get information about elementary fields in a field
tree. Here is the program:

100 %INCLUDE "DTR$LIBRARY:DAB" !Copy in the DAB.
200 %INCLUDE "DTR$LIBRARY:INFO" !Copy in the INFO inclusion file.

! Declare initialization and terminal server calls as functions.
! Declare exit and normal status and call options.

EXTERNAL INTEGER FUNCTION DTR$INIT, DTR$DTR
EXTERNAL LONG CONSTANT DTR$_EXIT, SS$_NORMAL
DECLARE INTEGER INIT_OPTIONS, DTR_OPTIONS

250 REM FN.GET.FIELDS Function &
!***

! Define a recursive BASIC function to get information about
! fields in the record:
! FLD_ID% = the object-id of a field
! FIELD_COUNT% = the number of children (subfields) a field has
! I% = local variable used to pass number of the field
! level

300 DEF FN.GET.FIELDS (FLD_ID%, FIELD_COUNT%, I%)

! Add one to the number of the field level.

LEVEL% = I% + 1%

! Determine the number of spaces to go in front of the field name.
! (3 spaces per level).

SPACE.FILLER$ = SPACE$(I% * 3)

! Find out if the field is a FILLER field.

RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID%, &
DTR$K_INF_FLD_FILLER, FILLER% , ,)

! If the field is a FILLER field, name it FILLER.

IF FILLER% = 1% &
THEN

FLD_NAME$ = "FILLER"
ELSE

! If the field is not FILLER, get its name.

RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID%, &
DTR$K_INF_FLD_NAME, NAME_LEN%, FLD_NAME$,)

! Get the query name of the field.

350 RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID%, &
DTR$K_INF_FLD_QNAME, QNAME.LEN%, QNAME$,)

! If the field has a query name, enclose it with parentheses.

3–54 DATATRIEVE Call Reference

DTR$INFO

IF QNAME.LEN% <> 0% &
THEN

QNAME$ = "(" + QNAME$ + ")"
ELSE

QNAME$ = SPACE$(0%)

! If the field has no children (subfields),
! then it is an elementary field.

400 IF FIELD_COUNT% = 0% &

! Find the length (in bytes) of the elementary field.

THEN RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID%, &
DTR$K_INF_FLD_LENGTH, FLD_LENGTH% , ,)

! Print out field name, query name, and length.

PRINT SPACE.FILLER$; FLD_NAME$;" "; QNAME$; &
" <";FLD_LENGTH%;"Bytes >"

! If the field is not an elementary field,
! print out the field name with a notice that it is a group field.

ELSE

PRINT SPACE.FILLER$; FLD_NAME$; " "; QNAME$;" <Group Field>"

! Loop through the children of the group field.

FOR I% = 1% TO FIELD_COUNT%

! Get the object-id of the child field.

RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID%, &
DTR$K_INF_FLD_CHILD, FLD_ID2%, ,I% BY VALUE)

! Find out if this new field has children.

RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID2%, &
DTR$K_INF_FLD_CNT, FIELD_COUNT2%,,)

! Call this function (recurse), passing it the object-id,
! child count, and level number of the child field.

A% = FN.GET.FIELDS (FLD_ID2%, FIELD_COUNT2%, LEVEL%)

! Do the same with next child.

NEXT I%

! Subtract 1 from the current level to get back to previous
! level.

425 LEVEL% = LEVEL% - 1%
450 END DEF
460 REM End of Function &
!**

DATATRIEVE Call Reference 3–55

DTR$INFO

! Assign options and initialize the Interface.

475 INIT_OPTIONS = DTR$K_SEMI_COLON_OPT &
+ DTR$K_UNQUOTED_LIT &
+ DTR$K_FORMS_ENABLE

500 RET_STATUS% = DTR$INIT (DAB BY REF, 100%, MSG_BUFF, AUX_BUFF, &
INIT_OPTIONS)

! Check to see if DATATRIEVE was initialized.

IF RET_STATUS% <> SS$_NORMAL THEN
PRINT "DATATRIEVE initialization failed."
GOTO 8000

! Create the user-defined keyword RECORD_LENGTH.

1000 RET_STATUS% = DTR$CREATE_UDK (DAB BY REF, ’RECORD_LENGTH’, 1%, &
DTR$K_UDK_SHOW)

! Use DTR$LOOKUP to get the global variable identifier.

RET_STATUS% = DTR$LOOKUP (DAB BY REF, DTR$K_INF_TYPE_GLV, GLV_ID% ,)

! Declare the options for the DTR$DTR call.

2000 DTR_OPTIONS = DTR$M_OPT_UDK !Return to program on a UDK &
+ DTR$M_OPT_CONTROL_C &
+ DTR$M_OPT_STARTUP &
+ DTR$M_OPT_FOREIGN &
+ DTR$M_OPT_BANNER

! Call the terminal server.

3000 RET_STATUS% = DTR$DTR (DAB BY REF, DTR_OPTIONS)

! Execute the following loop until DTR$DTR returns
! DTR$_EXIT status.

UNTIL RET_STATUS% = DTR$_EXIT

! Get the object-id of the first domain.

RET_STATUS% = DTR$INFO (DAB BY REF, GLV_ID%, &
DTR$K_INF_GLV_FIRST_DOM, DOM_ID%,,)

! If no address is returned, there are no readied domains.

IF DOM_ID% = 0% &
THEN PRINT "No ready domains"

! Execute the following loop until there are no more
! ready domains.

4000 UNTIL DOM_ID% = 0%

! Get the name of the domain and display it.

3–56 DATATRIEVE Call Reference

DTR$INFO

RET_STATUS% = DTR$INFO (DAB BY REF, DOM_ID%, DTR$K_INF_DOM_NAME, &
DOM_NAME_LEN%, DOM_NAME$,)

PRINT
PRINT "Domain: "; DOM_NAME$

! Get the address of the first field in the domain.

RET_STATUS% = DTR$INFO (DAB BY REF, DOM_ID%, DTR$K_INF_DOM_FLD, &
FLD_ID% , ,)

! Find the number of elementary fields the first field has.

RET_STATUS% = DTR$INFO (DAB BY REF, FLD_ID%, DTR$K_INF_FLD_CNT, &
FIELD_COUNT%,,)

! Call the function to print out the fields and field lengths of the
! domain record definition.

A% = FN.GET.FIELDS(FLD_ID%, FIELD_COUNT%, 1%)

! Find the total length of the record.

RET_STATUS% = DTR$INFO (DAB BY REF, DOM_ID%, &
DTR$K_INF_DOM_REC_LEN, REC_LENGTH% , ,)

PRINT

IF REC_LENGTH% = 0% &

! If the record length is 0, then the domain is
! a view domain. Print out this information.

THEN
PRINT DOM_NAME$;" is a view domain and has no record length."

ELSE

! Display the total length of the record.

PRINT DOM_NAME$; " has a total record length of";
PRINT REC_LENGTH%; "bytes"

! Get the object-id next domain.

5000 RET_STATUS% = DTR$INFO (DAB BY REF, DOM_ID%, &
DTR$K_INF_DOM_NEXT_DOM, DOM_ID% , ,)

NEXT

RET_STATUS% = DTR$END_UDK(DAB BY REF) !End the UDK.

! Recall the terminal server.

RET_STATUS% = DTR$DTR (DAB BY REF, DTR_OPTIONS)

6000 NEXT

7000 RET_STATUS% = DTR$FINISH BY REF (DAB)
8000 END

DATATRIEVE Call Reference 3–57

DTR$INIT

DTR$INIT
Initializes the DATATRIEVE Call Interface, letting your program and
DATATRIEVE communicate.

Format

DTR$INIT (dab, [size], [msg-buff], [aux-buff], [options-code])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

size

Data type: longword integer
Access: read-only
Mechanism: by reference

Is the number of virtual pages that the DATATRIEVE stack uses. Exhausting
the DATATRIEVE stack causes an access violation and means that following
DATATRIEVE calls cannot be completed. Stack size has no other effect on
program performance. The default of 100 is sufficient for most users.

If you do not specify a stack size or if you specify a value less than 100,
DATATRIEVE uses the default stack size of 100 pages.

msg-buff

Data type: character string
Access: read/write
Mechanism: by descriptor

Is the message buffer. You can omit this argument if you put the address and
length of the message buffer in the DAB. If a character string is longer than
255 characters, the maximum the message buffer can contain, DATATRIEVE
returns the error DTR$_BADSTRDES.

aux-buff

Data type: character string
Access: read/write
Mechanism: by descriptor

3–58 DATATRIEVE Call Reference

DTR$INIT

Is the auxiliary message buffer. You can omit this argument if you put
the address and length of this buffer in the DAB. If a character string is
longer than 255 characters, the maximum the message buffer can contain,
DATATRIEVE returns the error DTR$_BADSTRDES.

options-code

Data type: longword integer
Access: read-only
Mechanism: by reference

Is a bit mask of options you select, where each bit in the options-code
argument identifies a separate option. The default for options-code is 0.

The options you can select and their values are as follows:

DTR$K_SEMI_COLON_OPT = 1

Enables termination of DATATRIEVE commands and statements without
the semicolon. If this option is not set, all DATATRIEVE commands and
statements must end with a semicolon. Setting this option is equivalent to
using the SET SEMICOLON command.

DTR$K_UNQUOTED_LIT = 16

DATATRIEVE assumes a string is a literal if it cannot interpret the string as
a valid field name.

DTR$K_SYNTAX_PROMPT = 32

Enables DATATRIEVE syntax prompting. If your program passes an
incomplete command or statement to DATATRIEVE, DATATRIEVE prompts
for the continuation of the input line. Setting this option is equivalent to
using the SET PROMPT command. SET PROMPT is the default.

DTR$K_IMMED_RETURN = 64

Enables the continue stallpoint (DTR$K_STL_CONT). DATATRIEVE returns
control to your program immediately after each call.

DTR$K_FORMS_ENABLE = 128

Enables the DATATRIEVE and Forms Interface. If your program either
accesses domains that use a form or passes DISPLAY_FORM or WITH_
FORM statements, and if the value in DAB$W_TT_CHANNEL is different
from zero, then DATATRIEVE displays the form on your terminal screen.
Setting this option is equivalent to using the SET FORM command.

DTR$K_VERIFY = 256

DATATRIEVE Call Reference 3–59

DTR$INIT

Enables terminal display of the contents of command files invoked within
DATATRIEVE. Setting this option is equivalent to using the SET VERIFY
command. SET NO VERIFY is the default.

DTR$K_CONTEXT_SEARCH = 2048

Enables the DATATRIEVE Context Searcher. Setting this option is equivalent
to using the SET SEARCH command. By default, the Context Searcher is
not enabled. (See the description of the SET SEARCH command in the
VAX DATATRIEVE Reference Manual for more information on the Context
Searcher.)

DTR$K_HYPHEN_DISABLED = 4096

Disables continuation of strings with a hyphen. If you set this option, the
hyphen is not interpreted as a continuation character in command strings.

DTR$K_MORE_COMMANDS = 8192

Enables execution of multiple command lines. If your program is at the
command stallpoint (DTR$K_STL_CMD) and you set this option, you can call
DTR$COMMAND a number of times and still be at a command stallpoint.
DATATRIEVE does not parse or execute the commands and statements
passed to it when DTR$K_MORE_COMMANDS is in effect. You can use only
the call DTR$COMMAND when you set this option.

Before the last command line you pass to DATATRIEVE, you can clear the
option and call DTR$COMMAND. DATATRIEVE then parses and executes all
the commands and statements you passed. Refer to Appendix A for a sample
FORTRAN program (the CORRELATE program) showing how to use this
option.

DTR$K_ABORT = 16384

Enables termination of the execution statements and command files with the
ABORT statement. Setting this option is equivalent to using the SET ABORT
command. SET NO ABORT is the default.

DTR$K_LOCK_WAIT = 32768

Causes DATATRIEVE to continue to attempt to access a record that is
currently locked. Setting this option is equivalent to using the SET LOCK_
WAIT command. SET NO LOCK_WAIT is the default.

3–60 DATATRIEVE Call Reference

DTR$INIT

Usage Notes

• If the call is successful, DATATRIEVE enters the command stallpoint
(DTR$K_STL_CMD), the message buffer contains the DTR> prompt, and
DAB$L_CONDITION is set to zero. When DTR$INIT initializes the DAB, it
does the following:

• Clears all the fields except for:

DAB$W_TT_CHANNEL
DAB$L_COMMAND_KEYBOARD
DAB$L_PROMPT_KEYBOARD
DAB$L_KEYTABLE_ID

• Stores values supplied by the user.

• Initializes some fields.

• To specify more than one option in the options-code argument, you can
either add together the values for all the options you want, or you can use
logical operators to create the bit mask. For example, the following BASIC
statements produce the same value for the options-code argument:

OPTIONS_CODE = DTR$K_SEMI_COLON_OPT ! Semicolon is optional &
+ DTR$K_UNQUOTED_LIT ! Use unquoted literals &
+ DTR$K_FORMS_ENABLE ! Display forms

OPTIONS_CODE = DTR$K_SEMI_COLON_OPT ! Semicolon is optional &
OR DTR$K_UNQUOTED_LIT ! Use unquoted literals &
OR DTR$K_FORMS_ENABLE ! Display forms

The value of the options-code argument is stored in the DAB$L_OPTIONS
field of the DAB.

• Typically, you should make only one call to DTR$INIT during a DATATRIEVE
session.

• DTR$INIT does not invoke the DATATRIEVE command startup file. See the
call DTR$DTR or DTR$WINDOWS for the option that invokes the startup
file.

• Your program can start up to five DATATRIEVE sessions at one time. Each
session requires a separate Access Block and a call to DTR$INIT to start
the session. If you want to initialize DATATRIEVE more than five times,
you must call DTR$FINISH or DTR$FINISH_WINDOWS to close one of the
existing sessions, then call DTR$INIT again to start the new session.

DATATRIEVE Call Reference 3–61

DTR$INIT

• If you attempt to store values in one of the DAB fields that will be cleared,
you will lose them. This happens because the DTR$INIT call automatically
clears several DAB fields before starting to use it.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADNUMARG
Invalid number of arguments. You must specify at least the DAB.

DTR$_BADSTRDES
Invalid string descriptor in argument list.

DTR$_USESLOEXH
Five concurrent DATATRIEVE streams already initialized. You cannot initialize
another.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

Initialize the DATATRIEVE Call Interface in a FORTRAN program. Check
the status of the DTR$INIT call:

C Get the definition of the DAB from the inclusion file.

INCLUDE ’DTR$LIBRARY:DAB’

C Declare variables for status checking.

INTEGER*4 INIT_OPTIONS
INTEGER*4 DTR$INIT
INTEGER*4 RET_STATUS
EXTERNAL SS$_NORMAL

C Set options.

INIT_OPTIONS =
1 + DTR$K_SEMI_COLON_OPT ! Semicolon is optional
2 + DTR$K_UNQUOTED_LIT ! Use unquoted literals
3 + DTR$K_FORMS_ENABLE ! Display forms

C Initialize the session with DATATRIEVE.

RET_STATUS = DTR$INIT (DAB,
1 100,
2 MSG_BUFF,
3 AUX_BUFF,

4 INIT_OPTIONS)

C Verify that the call was completed successfully.

3–62 DATATRIEVE Call Reference

DTR$INIT

IF (RET_STATUS .NE. %LOC(SS$_NORMAL)) THEN
WRITE (6, *) ’ DATATRIEVE initialization failed.’
STOP

END IF

Initialize the DATATRIEVE Call Interface in a COBOL program. Check the
status of the DTR$INIT call:

.

.

.

COPY "DTR$LIBRARY:DAB.LIB".

01 STACK_SIZE PIC 99 COMP VALUE 100.
01 INIT_OPTIONS PIC 999 COMP.
01 RET_STATUS PIC 9(9) COMP.

.

.

.

ADD DTR$K_SEMI_COLON_OPT DTR$K_UNQUOTED_LIT
DTR$K_FORMS_ENABLE GIVING INIT_OPTIONS.

CALL "DTR$INIT" USING DAB STACK_SIZE
BY DESCRIPTOR MSG_BUFF AUX_BUFF
BY REFERENCE INIT_OPTIONS
GIVING RET_STATUS.

IF RET_STATUS IS FAILURE THEN
DISPLAY "Initialization of DATATRIEVE failed."
GO TO 999-BAD-INIT.

Initialize the DATATRIEVE Call Interface in a BASIC program. Check the
status of the DTR$INIT call:

100 %INCLUDE "DTR$LIBRARY:DAB.BAS"

EXTERNAL LONG CONSTANT SS$_NORMAL

INIT_OPTIONS = DTR$K_SEMI_COLON_OPT &
+ DTR$K_UNQUOTED_LIT &
+ DTR$K_FORMS_ENABLE

RET_STATUS% = DTR$INIT (DAB BY REF, 100% BY REF, MSG_BUFF, &
AUX_BUFF, INIT_OPTIONS BY REF)

! Check to see if DATATRIEVE was initialized.

IF RET_STATUS% <> SS$_NORMAL THEN
PRINT "DATATRIEVE initialization failed."
GOTO 2000

DATATRIEVE Call Reference 3–63

DTR$INIT

Initialize the DATATRIEVE Call Interface in a Pascal program. Note that the
DTR$INIT call is declared as an external procedure in the Pascal DAB:

%INCLUDE ’DTR$LIBRARY:DAB.PAS’

VAR INIT_OPTIONS : INTEGER;
RET_STATUS : INTEGER;

BEGIN

INIT_OPTIONS := DTR$K_SEMI_COLON_OPT
+ DTR$K_UNQUOTED_LIT
+ DTR$K_FORMS_ENABLE;

RET_STATUS := DTR$INIT (DAB,
1 100,
2 MSG_BUFF,
3 AUX_BUFF,
4 INIT_OPTIONS);

3–64 DATATRIEVE Call Reference

DTR$LOOKUP

DTR$LOOKUP

Returns a number that identifies a DATATRIEVE object. You can use this call to:

• Find out if a dictionary object or DATATRIEVE keyword exists.

• Get an identifying number that you can use in the DTR$INFO call.
DTR$INFO enables you to get information about domains, collections, record
definitions, fields, subschemas, sets, and plots.

Format

DTR$LOOKUP (dab, object-type, object-id, [object-name])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

object-type

Data type: byte integer
Access: read-only
Mechanism: by reference

Is the type of object that you want information about.

The object types you can select and their values are as follows:

DTR$K_INF_TYPE_DOMAIN = 1

DTR$LOOKUP returns the object-id of the domain specified in the object-
name argument. The object-id is zero if the specified domain is not ready or
not found.

DTR$K_INF_TYPE_COLLECTION = 2

DTR$LOOKUP returns the object-id of the collection specified in the object-
name argument. The object-id is zero if the collection is not found.

DTR$K_INF_TYPE_KEYWORD = 3

DATATRIEVE Call Reference 3–65

DTR$LOOKUP

DTR$LOOKUP returns a number not equal to zero if the string specified in
the object-name argument is a DATATRIEVE keyword and zero if the string
is not a keyword.

DTR$K_INF_TYPE_DIC_NAME = 4

DTR$LOOKUP returns a number not equal to zero if the string specified in
the object-name argument is a dictionary object and zero if the string is not a
dictionary object. DTR$LOOKUP uses your default dictionary directory if you
do not specify a full path name in the object-name.

DTR$K_INF_TYPE_GLV = 5

DTR$LOOKUP returns a global variable identifier (GLV). You can use this
identifier in the DTR$INFO call to get information about dictionary objects
such as domains, collections, and fields. There is one GLV for each time you
initialize DATATRIEVE, so you should not specify the object-name argument
if you use this type.

DTR$K_INF_TYPE_PLOT = 6

DTR$LOOKUP returns the object-id of the plot you pass in with the object-
name argument. The object-id is zero if the plot is not found.

object-id

Data type: longword integer
Access: write
Mechanism: by reference

Is a number that identifies the object you want information about.
DTR$LOOKUP returns the object-id to your program. The object-id is
zero if the object you specify is not found.

object-name

Data type: character string
Access: read-only
Mechanism: by descriptor

Is the name of the object you want information about. DTR$LOOKUP ignores
this argument if the object type is DTR$K_INF_TYPE_GLV.

3–66 DATATRIEVE Call Reference

DTR$LOOKUP

Usage Notes

• If you use this call, you should copy the INFO inclusion file into your program.
You can find INFO inclusion files in FORTRAN, COBOL, BASIC, PL/1, C and
Pascal in the DTR$LIBRARY directory.

• You can use this call when DATATRIEVE is at the command, user-defined
keyword, or end user-defined keyword stallpoint (DTRK_STL_CMD, DTRK_
STL_UDK, or DTR$K_STL_END_UDK).

• If you specify the type DTR$K_INF_TYPE_DOMAIN, DTR$LOOKUP returns
the object-id of readied domains only.

• You can use the types DTR$K_INF_TYPE_KEYWORD and DTR$K_INF_
TYPE_DIC_NAME to check for names that duplicate keywords or existing
dictionary path names. ADT uses these types in DTR$LOOKUP calls.

• You can use the type DTR$K_INF_TYPE_GLV to get identifiers of readied
domains, collections, subschemas, sets, fields, and plots. (See the description
of the DTR$INFO call.)

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_INFNOTFOU
The object you specified in object-name was not found.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be DTR$K_STL_CMD,
DTR$K_STL_UDK, or DTR$K_STL_END_UDK.

Other errors from RMS, system services, and Run-Time Library routines.

DATATRIEVE Call Reference 3–67

DTR$LOOKUP

Examples

In a BASIC program, verify that a string is a keyword or a synonym for a
keyword:

.

.

.

CALL DTR$LOOKUP (DAB BY REF, DTR$K_INF_TYPE_KEYWORD, &
ID, TEST_STRING BY DESC)

SELECT ID
CASE 0
PRINT TEST_STRING; " is not a keyword."
CASE ELSE
PRINT TEST_STRING; " is a keyword."
END SELECT

In a FORTRAN program, use the return status DTR$_INFNOTFOU to verify
that a specific dictionary directory exists:

EXTERNAL DTR$_INFNOTFOU, DTR$LOOKUP
INTEGER*4 DTR$LOOKUP, RET_STATUS

.

.

.

RET_STATUS = DTR$LOOKUP (DAB, DTR$K_INF_TYPE_DIC_NAME
CDD_OBJECT_ID, ’CDD$TOP.DTR$USERS.WOMBAT’)

IF (RET_STATUS .EQ. %LOC(DTR$_INFNOTFOU)) THEN
WRITE (6,*) ’CDD directory not found.’

For more examples of DTR$LOOKUP, see the examples for the DTR$INFO
call.

3–68 DATATRIEVE Call Reference

DTR$PORT_EOF

DTR$PORT_EOF
Terminates passing of records from your program to DATATRIEVE.

Format

DTR$PORT_EOF (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Note

You can use this call only if DATATRIEVE is at the put port stallpoint (DTR$K_
STL_PPUT).

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_WRONGSTALL
Wrong stallpoint for this call. You must be at the DTR$K_STL_PPUT stallpoint.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

Use the calls DTR$PUT_PORT and DTR$PORT_EOF to store records in the
domain YACHTS from a FORTRAN program:

DATATRIEVE Call Reference 3–69

DTR$PORT_EOF

C********** PROGRAM: PUTPORT **********

C Include definition of the DAB.

INCLUDE ’DTR$LIBRARY:DAB’

C Set up a buffer for records. Because input is from the terminal,
C declare the entire buffer and each field as CHARACTER types.

CHARACTER*1 YACHT(41)
CHARACTER*10 BUILDER
CHARACTER*10 MODEL
CHARACTER*6 RIG
CHARACTER*3 LOA
CHARACTER*5 DISP
CHARACTER*2 BEAM
CHARACTER*5 PRICE
EQUIVALENCE (YACHT(1), BUILDER),
1 (YACHT(11), MODEL),
2 (YACHT(21), RIG),
3 (YACHT(27), LOA),
4 (YACHT(30), DISP),
5 (YACHT(35), BEAM),
6 (YACHT(37), PRICE)

INTEGER*4 DTR$INIT
INTEGER*4 DTR_OPTIONS
INTEGER RET_STATUS
EXTERNAL SS$_NORMAL

C Select DTR$DTR options.

DTR_OPTIONS =
1 DTR$M_OPT_CMD ! Return on DTR$K_STL_CMD.
2 + DTR$M_OPT_PPUT ! Return on DTR$K_STL_PPUT.

C Initialize the session with DATATRIEVE.

RET_STATUS = DTR$INIT (DAB, 100, MSG_BUFF, AUX_BUFF,
1 DTR$K_SEMI_COLON_OPT)

C Verify that initialization was successful.

IF (RET_STATUS .NE. %LOC(SS$_NORMAL)) THEN
WRITE (6, *) ’ DATATRIEVE initialization failed.’
STOP

END IF

C Ready domain.

RET_STATUS = DTR$COMMAND (DAB, ’READY YACHTS WRITE’)

C Display messages.

RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

C Set up a port to pass records to DATATRIEVE.

3–70 DATATRIEVE Call Reference

DTR$PORT_EOF

RET_STATUS = DTR$COMMAND(DAB,’DECLARE PORT BOAT_PORT USING
1 01 YACHT.
2 03 BOAT.
3 06 BUILDER PIC X(10).
4 06 MODEL PIC X(10).
5 06 RIG PIC X(6).
6 06 LOA PIC X(3).
7 06 DISP PIC X(5).
8 06 BEAM PIC XX.
9 06 PRICE PIC X(5).;’)

C Display messages.

RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

C Read in a record. Note that the order your program reads records
C need not be the same as the order DATATRIEVE uses.

5 WRITE (6, 10)
10 FORMAT (’ Enter BUILDER: ’,$)

READ (5, 100, END = 200) BUILDER

WRITE (6, 20)
20 FORMAT (’ Enter MODEL: ’,$)

READ (5, 100, END = 200) MODEL

WRITE (6, 30)
30 FORMAT (’ Enter RIG: ’,$)

READ (5, 100, END = 200) RIG

WRITE (6, 40)
40 FORMAT (’ Enter LENGTH: ’,$)

READ (5, 100, END = 200) LOA

WRITE (6, 50)
50 FORMAT (’ Enter BEAM: ’,$)

READ (5, 100, END = 200) BEAM

WRITE (6, 60)
60 FORMAT (’ Enter WEIGHT: ’,$)

READ (5, 100, END = 200) DISP

WRITE (6, 70)
70 FORMAT (’ Enter PRICE: ’,$)

READ (5, 100, END = 200) PRICE
100 FORMAT (A)

C Command DATATRIEVE to store YACHTS. DATATRIEVE stalls at
C the DTR$K_STL_PPUT stallpoint.

RET_STATUS = DTR$COMMAND (DAB, ’FOR BOAT_PORT STORE YACHTS
1 USING BOAT = BOAT;’)

C Use DTR$PUT_PORT to pass the complete record.

RET_STATUS = DTR$PUT_PORT (DAB, %REF(YACHT))

DATATRIEVE Call Reference 3–71

DTR$PORT_EOF

C Make sure record was stored; signal if it was not stored.

IF (DAB$W_STATE .EQ. DTR$K_STL_MSG)
1 RET_STATUS = DTR$DTR (DAB, DTR_OPTS)

C Inquire if user wishes to continue.

200 WRITE (6, 210)
210 FORMAT (’ Do you wish to continue? ’, $)

READ(5, 100)ANS
IF ((ANS .EQ. ’Y’) .OR. (ANS .EQ. ’y’)) THEN

GO TO 5
END IF

C Use the DTR$PORT_EOF call to stop storing.

300 RET_STATUS = DTR$PORT_EOF (DAB)
RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

C End the Interface.

RET_STATUS = DTR$FINISH (DAB)

END

3–72 DATATRIEVE Call Reference

DTR$PRINT_DAB

DTR$PRINT_DAB
Displays the contents of the DAB.

Format

DTR$PRINT_DAB (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Notes

• The call DTR$PRINT_DAB enables you to display the contents of the
DAB fields at any time during execution of your program. You can use
DTR$PRINT_DAB to determine the stallpoint, condition, and message or
print line that result from each call.

• When you call DTR$PRINT_DAB, DATATRIEVE displays up to 80 characters
of the message buffer (DAB$A_MSG_BUF) and up to 80 characters of the
auxiliary message buffer (DAB$A_AUX_BUF), regardless of the lengths of
DAB$W_MSG_LEN and DAB$W_AUX_LEN. To print the entire contents of
either buffer when it holds a message longer than 80 characters, use program
code to display the text. For example, the following BASIC code displays the
contents of the DAB and the entire contents of the modified message and
auxiliary buffers:

DATATRIEVE Call Reference 3–73

DTR$PRINT_DAB

! Declare new message and auxiliary buffers.
MAP (NEW_BUFFERS) STRING NEW_MSG_BUFF = 132, &

NEW_AUX_BUFF = 132

RETURN_STATUS = DTR$INIT (DAB, 100%, NEW_MSG_BUFF, NEW_AUX_BUFF,)
.
.
.

! Display the contents of the DAB.
RETURN_STATUS = DTR$PRINT_DAB (DAB)

! Display the full message and auxiliary buffers.
PRINT "Message buffer: "; NEW_MSG_BUFF
PRINT "Auxiliary buffer: "; NEW_AUX_BUFF

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADNUMARG
The DAB is invalid.

Other errors from RMS, system services, and Run-Time Library routines.

Example

Determine the error in the following sequence of FORTRAN statements:

1 CALL DTR$COMMAND (DAB, ’READY PERSONNEL;’)
2 CALL DTR$COMMAND (DAB, ’PRINT PERSONNEL;’)
3 CALL DTR$FINISH (DAB)

These statements do not produce the desired result: DATATRIEVE does not print
any PERSONNEL records.

Insert the call DTR$PRINT_DAB between statements 1 and 2 and run your
program. DATATRIEVE displays the following information:

3–74 DATATRIEVE Call Reference

DTR$PRINT_DAB

VAX DATATRIEVE Access Block Dump

DAB Address : %X’000004B0’
DAB$L_CONDITION : 9274723 (%X’008D8563’) DTR$_SUCCESS (I)
DAB$A_MSG_BUF : %X’00000400’ DAB$W_MSG_BUF_LEN : 80 DAB$W_MSG_LEN : 34
Statement completed successfully.
DAB$A_AUX_BUF : %X’00000450’ DAB$W_AUX_BUF_LEN : 20 DAB$W_AUX_LEN : 0

DAB$W_IDI : 0 DAB$W_STATE : 4 (DTR$K_STL_MSG)
DAB$L_FLAGS : %X’00000000’

DAB$L_OPTIONS : %X’00000091’
DAB$V_SEMI_COLON_OPT DAB$V_UNQUOTED_LIT DAB$V_FORMS_ENABLE

DAB$W_REC_LEN : 0 DAB$W_VERSION.DAB$W_LEVEL : 4.1
DAB$W_UDK_INDEX : 0 DAB$W_COLUMNS_PAGE : 80 DAB$W_TT_CHANNEL : 224
DAB$W_CTLC_CHANNEL : 0 DAB$L_KEYTABLE_ID : 1866504
DAB$L_COMMAND_KEYBOARD : 1893432 DAB$L_PROMPT_KEYBOARD : 1894184

The DTR$_SUCCESS message shows that DATATRIEVE has executed the
READY command in the first call. The value of DAB$W_STATE shows that
DATATRIEVE is currently at the message stallpoint (DTR$K_STL_MSG), that is,
it has a message.

DATATRIEVE does not execute the PRINT statement in the second call until
your program handles the message stallpoint. The simplest way to do this is
to call DTR$DTR or DTR$WINDOWS with the DTR$M_OPT_CMD option.
DATATRIEVE displays its message (if it is anything other than DTR$_SUCCESS)
and returns control to your program when it is at the command stallpoint
(DTR$K_STL_CMD).

After you insert the call DTR$DTR or DTR$WINDOWS between the first and
second calls, DATATRIEVE still does not execute the PRINT statement. If
you use the call DTR$PRINT_DAB after the second call, the resulting DAB
dump shows that you are at the print line stallpoint (DTR$K_STL_LINE).
DATATRIEVE has some print lines, and your program must handle them. Again,
the simplest way to have DATATRIEVE execute your call is to call DTR$DTR or
DTR$WINDOWS.

DATATRIEVE Call Reference 3–75

DTR$PUT_OUTPUT

DTR$PUT_OUTPUT
Writes a line to a file created by the DATATRIEVE OPEN command.

Format

DTR$PUT_OUTPUT (dab, string, [prompt-string])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

string

Data type: character string
Access: read-only
Mechanism: by descriptor

Is the string you want to write to the output file.

prompt-string

Data type: character string
Access: read-only
Mechanism: by descriptor

Is a string inserted before the line specified by the string argument.

Usage Notes

• If you create a log file with the DATATRIEVE OPEN statement,
DATATRIEVE writes the string you specify to that file.

• You can use this call at any stallpoint.

3–76 DATATRIEVE Call Reference

DTR$PUT_OUTPUT

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADNUMARG
Invalid number of arguments.

Other errors from RMS, system services, and Run-Time Library routines.

Example

You are using the BASIC program UDK (listed in the examples of the
DTR$CREATE_UDK call). You would like to use the DATATRIEVE OPEN
command to write the results of the SHOW UDKS command to a log file. Use the
call DTR$PUT_OUTPUT as follows:

.

.

.
RET_STATUS = DTR$CREATE_UDK (DAB BY REF, ’UDKS’, 5% BY REF, &

DTR$K_UDK_SHOW BY REF)

! Declare the options for the DTR$DTR call.

2000 DTR_OPTIONS = DTR$M_OPT_UDK ! Return to program on a UDK &
+ DTR$M_OPT_CONTROL_C &
+ DTR$M_OPT_STARTUP &
+ DTR$M_OPT_FOREIGN &
+ DTR$M_OPT_BANNER

! Call the terminal server.

2500 RET_STATUS = DTR$DTR (DAB BY REF, DTR_OPTIONS BY REF)

! Check for EXIT or CTRL/Z.

GOTO 6000 IF RET_STATUS = DTR$_EXIT

! UDK 5 - User entered SHOW UDKS.

3500 PRINT " "
PRINT " User-Defined Keywords Available "
PRINT " "
PRINT " CLEAR_SCREEN - clears the screen "
PRINT " DIRECTORY - displays files in the default directory"
PRINT " SPAWN - creates a subprocess "
PRINT " MAIL - invokes VMS MAIL "

! If user entered OPEN file-spec, write the preceding text
! out to the log file.

DATATRIEVE Call Reference 3–77

DTR$PUT_OUTPUT

RET_STATUS = DTR$PUT_OUTPUT (DAB BY REF, " " BY DESC)
RET_STATUS = DTR$PUT_OUTPUT (DAB BY REF, " User-Defined "+ &

"Keywords Available " BY DESC)
RET_STATUS = DTR$PUT_OUTPUT (DAB BY REF, " " BY DESC)
RET_STATUS = DTR$PUT_OUTPUT (DAB BY REF, " CLEAR_SCREEN - "+ &

"clears the screen " BY DESC)
RET_STATUS = DTR$PUT_OUTPUT (DAB BY REF, " SPAWN - "+ &

"creates a subprocess " BY DESC)
RET_STATUS = DTR$PUT_OUTPUT (DAB BY REF, " MAIL - "+ &

"invokes VMS MAIL " BY DESC)

! End the UDK.

RET_STATUS = DTR$END_UDK BY REF (DAB)

GOTO 2500
6000 END

3–78 DATATRIEVE Call Reference

DTR$PUT_PORT

DTR$PUT_PORT
Passes a record from your program to DATATRIEVE.

Format

DTR$PUT_PORT (dab, record-buffer)

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

record-buffer

Data type: data block
Access: read-only
Mechanism: by reference

Is a buffer that contains the record being passed to DATATRIEVE.

Usage Notes

• To transfer records from your program to DATATRIEVE, you must define a
record buffer in your program.

• If you write your programs in a high-level language that supports the
dictionary (such as BASIC, COBOL, and FORTRAN), you need not code the
entire record buffer into your program. You can copy a record definition from
the dictionary and use it as a record buffer.

Be sure that your record definition does not contain a field name that is a
reserved word in the programming language you are using.

• To transfer records to DATATRIEVE, you must also define a port. A port
is a single record buffer that can be referenced by DATATRIEVE and your
program. All transfer of records between DATATRIEVE and the host program
is done through ports. To define a port, use the DEFINE PORT command or
the DECLARE PORT statement.

DATATRIEVE Call Reference 3–79

DTR$PUT_PORT

• The DEFINE PORT command inserts your port definition into the dictionary.
In the DEFINE PORT command, you specify a name for the port and an
associated record definition in the following format:

DEFINE PORT path-name [USING] record-path-name;

To define a port for YACHTS records, you can use the following command in
interactive DATATRIEVE:

DTR> DEFINE PORT BOAT_PORT USING YACHT;

You can also use the DTR$COMMAND call to pass this command to
DATATRIEVE from your program. If you use DEFINE PORT to create a
port, you must ready the port before using it.

• The DECLARE PORT statement creates a temporary port with the name
you specify and readies the port for write access. DATATRIEVE does not
enter a definition of the port in the dictionary. You can issue the DECLARE
PORT statement only from your program. You must define a record in the
statement.

To declare a port for YACHTS records in a FORTRAN program, you can use
the following statement:

CALL DTR$COMMAND (DAB,’DECLARE PORT BOAT_PORT USING
1 01 YACHT.
2 03 BOAT.
3 06 BUILDER PIC X(10).
4 06 MODEL PIC X(10).
5 06 RIG PIC X(6).
6 06 LOA PIC X(3).
7 06 DISP PIC X(5).
8 06 BEAM PIC XX.
9 06 PRICE PIC X(5).;’)

• If your program reads in data from the terminal, you may need to declare all
fields of your port as character string data types.

• To pass records to DATATRIEVE, use a DATATRIEVE statement that
specifies a port; for example:

FOR BOAT_PORT STORE YACHTS USING BOAT = BOAT

FOR PT1 MODIFY YACHTS USING TYPE = PT1_TYPE

• When you tell DATATRIEVE to store records from a port into a domain,
DATATRIEVE enters the put port stallpoint (DTR$K_STL_PPUT) and waits
for the program to pass a record. You can pass a record to DATATRIEVE with
the call DTR$PUT_PORT. You can terminate the passing of records with the
call DTR$PORT_EOF.

3–80 DATATRIEVE Call Reference

DTR$PUT_PORT

• After each DTR$PUT_PORT call, DATATRIEVE is usually at the put port
or message stallpoint (DTR$K_STL_PPUT or DTR$K_STL_MSG). If a
DTR$PUT_PORT call causes an error, DATATRIEVE enters the message
stallpoint (DTR$K_STL_MSG) and informs your program of the error.

• The message buffer contains the name of the port when DATATRIEVE is at
the put port stallpoint (DTR$K_STL_PPUT).

• You cannot sort or reduce records passed to DATATRIEVE from a port.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_WRONGSTALL
Wrong stallpoint for this call. You must be at the DTR$K_STL_PPUT stallpoint.

Other errors from RMS, system services, and Run-Time Library routines.

Example

For an example of how to use DTR$PUT_PORT, see the program PUTPORT in
the examples to the DTR$PORT_EOF call.

DATATRIEVE Call Reference 3–81

DTR$PUT_VALUE

DTR$PUT_VALUE
Passes a value to DATATRIEVE.

Format

DTR$PUT_VALUE (dab, [value])

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

value

Data type: character string
Access: read-only
Mechanism: by descriptor

Is a string you want to pass to DATATRIEVE.

Usage Notes

• If you pass DATATRIEVE a statement that stores or modifies fields or
a statement that contains a prompting expression, DATATRIEVE enters
the prompt stallpoint (DTR$K_STL_PRMPT) and returns control to your
program. Your program must provide a value for the prompting expression
before DATATRIEVE can continue. To pass a value back to DATATRIEVE,
use the call DTR$PUT_VALUE.

• The value passed must be an ASCII string.

• The DATATRIEVE prompt is stored in the message buffer.

• If you are modifying or storing a field, the name of the field is stored in the
auxiliary message buffer.

• If you use a prompting expression, that expression is stored in the auxiliary
message buffer. For example, suppose you pass DATATRIEVE the statement:

FIND PERSONNEL WITH LAST_NAME CONT *."last name"

3–82 DATATRIEVE Call Reference

DTR$PUT_VALUE

The string ‘‘last name’’ is stored in the auxiliary message buffer. The string
‘‘Enter last name’’ is stored in the message buffer.

• If you do not pass the value argument, the value of the field you are storing
or modifying is not changed. Not passing the value argument is equivalent to
pressing the TAB key in response to a prompt in interactive DATATRIEVE.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_BADSTRDES
Invalid string descriptor.

Other errors from RMS, system services, and Run-Time Library routines.

Example

Read a value and pass it to DATATRIEVE from a FORTRAN program:
CHARACTER*20 VALUE

DTR_OPTIONS = ! Set DTR$DTR options.
1 + DTR$M_OPT_CMD
2 + DTR$M_OPT_PRMPT

C Display the DATATRIEVE value prompt and read a value.

DO WHILE (DAB$W_STATE .EQ. DTR$K_STL_PRMPT)
100 WRITE (6, 150) MSG_BUFF
150 FORMAT (1X, A<DAB$W_MSG_LEN>, $)

READ (5, 1) VALUE
1 FORMAT (A)

C Pass the value entered to DATATRIEVE.

RET_STATUS = DTR$PUT_VALUE (DAB, VALUE)

C Use DTR$DTR to display messages. Return control to the program
C if there are more values to be entered or if DATATRIEVE is
C ready for the next command.

DATATRIEVE Call Reference 3–83

DTR$PUT_VALUE

RET_STATUS = DTR$DTR (DAB, DTR_OPTIONS)
END DO

3–84 DATATRIEVE Call Reference

DTR$UNWIND

DTR$UNWIND
Stops execution of a command or statement passed to DATATRIEVE.

Format

DTR$UNWIND (dab)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

Usage Notes

• This call is useful if your program allows users to interact with
DATATRIEVE. Your program can check stallpoint information to decide
whether to abort a command string.

• DTR$UNWIND has the same effect as CTRL/Z during execution of a STORE
statement or CTRL/C during execution of a PRINT statement in interactive
DATATRIEVE.

• When you use the call DTR$UNWIND, DATATRIEVE does not immediately
terminate the statement you are unwinding. DATATRIEVE sets a flag in the
DAB, which records your DTR$UNWIND call. When you return control to
DATATRIEVE, DATATRIEVE sets DAB$L_CONDITION to DTR$_UNWIND,
terminates the command, and stalls at the message stallpoint (DTR$K_STL_
MSG). The message buffer contains the message: ‘‘Execution terminated by
operator.’’

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

Other errors from RMS, system services, and Run-Time Library routines.

DATATRIEVE Call Reference 3–85

DTR$UNWIND

Example

Use DTR$UNWIND to terminate a STORE statement in a FORTRAN program:
INCLUDE ’DTR$LIBRARY:DAB’
CHARACTER*20 VALUE, ANS

RET_STATUS = DTR$INIT (DAB, 100, MSG_BUFF, AUX_BUFF,
1 DTR$K_SEMI_COLON_OPT)

RET_STATUS = DTR$COMMAND (DAB, ’READY YACHTS WRITE’)

C Use the DTR$DTR call to handle the "Statement completed
C successfully" message and to display error messages.

RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)

100 RET_STATUS = DTR$COMMAND (DAB, ’REPEAT 5 STORE YACHTS’)

DTR_OPTIONS = ! Select DTR$DTR options
1 + DTR$M_OPT_CMD ! Return on DTR$K_STL_CMD
2 + DTR$M_OPT_PRMPT ! Return on DTR$K_STL_PRMPT

DO WHILE (DAB$W_STATE .EQ. DTR$K_STL_PRMPT)

C Display the DATATRIEVE "Enter field-name" prompt.

120 WRITE (6, 150) MSG_BUFF
150 FORMAT (1X, A<DAB$W_MSG_LEN>, $)

C Read the value entered. At end of STORE, or if user
C aborts the STORE statement with CTRL/Z, go to 999.

READ (5, 160, END = 999) VALUE
160 FORMAT (A)

C Pass the value entered to DATATRIEVE.

RET_STATUS = DTR$PUT_VALUE (DAB, VALUE)

C If a validation error occurs, display message and reprompt.

IF(DAB$W_STATE .EQ. DTR$K_STL_MSG) THEN
RET_STATUS = DTR$DTR (DAB, DTR_OPTIONS)

END IF
END DO

C If user entered CTRL/Z to a prompt, use the DTR$UNWIND call.
C DATATRIEVE records this call but does not execute it.

999 IF (DAB$W_STATE .NE. DTR$K_STL_CMD) THEN
RET_STATUS = DTR$UNWIND (DAB)

C Use the DTR$PUT_VALUE call again. DATATRIEVE executes the
C DTR$UNWIND call.

RET_STATUS = DTR$PUT_VALUE (DAB, VALUE)

3–86 DATATRIEVE Call Reference

DTR$UNWIND

C Use DTR$DTR to display messages.

RET_STATUS = DTR$DTR (DAB, DTR$M_OPT_CMD)
END IF

WRITE (6, *) ’Do you wish to continue storing? Y or N:’
READ (5, 160) ANS

IF ((ANS(1:1) .EQ. ’Y’) .OR. (ANS(1:1) .EQ. ’y’)) THEN
GO TO 100

END IF

RET_STATUS = DTR$FINISH (DAB)
END

DATATRIEVE Call Reference 3–87

DTR$WINDOW_MSG

DTR$WINDOW_MSG
Displays a user-created message in a DATATRIEVE DECwindows interface
message box. This call takes advantage of the DECwindows message dialog box
format to display a message from your program. The DECwindows message
dialog box requires that the user acknowledge the message by clicking on the
ACKNOWLEDGE button in the message box.

Format

DTR$WINDOW_MSG (dab, message-string)

Argument

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

message-string

Data type: character string
Access: read-only
Mechanism: by descriptor

Usage Note

You must have made a call to DTR$WINDOWS to activate the DATATRIEVE
DECwindows terminal server before you can call DTR$WINDOW_MSG.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

DTR$_BADNUMARG
Invalid number of arguments.

3–88 DATATRIEVE Call Reference

DTR$WINDOW_MSG

DTR$_BADSTRDES
Invalid string descriptor.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be DTR$K_STL_CMD.

DTR$_NOWINDOWS
The DATATRIEVE DECwindows terminal server has not been activated by a call
to DTR$WINDOWS.

Other errors from RMS, system services, and Run-Time Library routines.

DATATRIEVE Call Reference 3–89

DTR$WINDOW_OUTPUT

DTR$WINDOW_OUTPUT
Lets the user display a line of up to 255 characters in the DATATRIEVE main
application window. You can use this call in your program to print out a line of
text in the output area of the DATATRIEVE main application window.

Format

DTR$WINDOW_OUTPUT (dab, text-string)

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

text-string

Data type: character string
Access: read-only
Mechanism: by descriptor

Is a text string of up to 255 printable characters or spaces. The text string should
not include ASCII characters with a decimal value of less than 32, or control
characters such as line feeds or tabs.

Usage Note

Your program must have made a call to DTR$WINDOWS to activate the
DATATRIEVE DECwindows terminal server before you can use DTR$WINDOW_
OUTPUT.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADHANDLE
The DAB is invalid.

3–90 DATATRIEVE Call Reference

DTR$WINDOW_OUTPUT

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_BADSTRDES
Invalid string descriptor or string is longer than 255 characters.

DTR$_WRONGSTALL
Wrong stallpoint for this call. The stallpoint must be DTR$K_STL_CMD.

DTR$_NOWINDOWS
The DATATRIEVE DECwindows terminal server has not been activated by a call
to DTR$WINDOWS.

Other errors from RMS, system services, and Run-Time Library routines.

DATATRIEVE Call Reference 3–91

DTR$WINDOWS

DTR$WINDOWS
Invokes the DATATRIEVE DECwindows terminal server. Your program gets
access to all of the DATATRIEVE interactive data management capabilities in
a DECwindows environment. Users of your program cannot tell that they are
running a program and not interactive DATATRIEVE. The DTR$WINDOWS call
performs the same function as the DTR$DTR call, but should be used in place of
DTR$DTR to use the DECwindows terminal server.

Format

DTR$WINDOWS (dab, options-code)

Arguments

dab

Data type: data block
Access: read/write
Mechanism: by reference

Is the DATATRIEVE Access Block.

options-code

Data type: longword integer
Access: read-only
Mechanism: by reference

Is a bit mask of options you select, where each bit in the options-code
argument identifies a separate option. The default for options-code is zero.

The following tables describe the DTR$WINDOWS options and list their
values. Table 3–6 describes the DTR$WINDOWS options that determine
when the DATATRIEVE terminal server returns control to your program.
Table 3–7 describes the DTR$WINDOWS options that enable various
DATATRIEVE terminal server functions.

Table 3–6 DTR$WINDOWS Control Options

Option Value
DECwindows terminal server returns control
to your program when:

DTR$M_OPT_CMD 1 Stallpoint is DTR$K_STL_CMD
(continued on next page)

3–92 DATATRIEVE Call Reference

DTR$WINDOWS

Table 3–6 (Cont.) DTR$WINDOWS Control Options

Option Value
DECwindows terminal server returns control
to your program when:

DTR$M_OPT_PRMPT 2 Stallpoint is DTR$K_STL_PRMPT
DTR$M_OPT_LINE 4 Stallpoint is DTR$K_STL_LINE
DTR$M_OPT_MSG 8 Stallpoint is DTR$K_STL_MSG
DTR$M_OPT_PGET 16 Stallpoint is DTR$K_STL_PGET
DTR$M_OPT_PPUT 32 Stallpoint is DTR$K_STL_PPUT
DTR$M_OPT_CONT 64 Stallpoint is DTR$K_STL_CONT
DTR$M_OPT_UDK 128 Stallpoint is DTR$K_STL_UDK
DTR$M_OPT_DTR_UDK 256 User enters a DATATRIEVE keyword
DTR$M_OPT_END_UDK 512 Stallpoint is DTR$K_STL_END_UDK
DTR$M_OPT_UNWIND 1024 Condition is DTR$_UNWIND—user

enters CTRL/C or CTRL/Z during
execution of a command or statement

Table 3–7 DTR$WINDOWS DECwindows Terminal Server Options

Option Value This option enables:

DTR$M_OPT_CONTROL_C 2048 DATATRIEVE CTRL/C
handling

DTR$M_OPT_STARTUP 4096 Execution of the startup
command file the first time
you call DTR$WINDOWS with
this option

DTR$M_OPT_FOREIGN 8192 Execution of the foreign
command line

Usage Notes

• If you have made a call to DTR$WINDOWS, you cannot make a call to
DTR$DTR until you have called DTR$FINISH_WINDOWS. DTR$FINISH_
WINDOWS terminates your session with the DATATRIEVE DECwindows
terminal server. DTR$DTR invokes the DATATRIEVE terminal server.

DATATRIEVE Call Reference 3–93

DTR$WINDOWS

• If you have made a call to DTR$DTR, you cannot make a call to
DTR$WINDOWS until you have called DTR$FINISH. DTR$FINISH termi-
nates you session with the DATATRIEVE terminal server. DTR$WINDOWS
invokes the DATATRIEVE DECwindows terminal server.

• To end your program’s interaction with the DATATRIEVE DECwindows
terminal server, use the DTR$FINISH_WINDOWS call. The DTR$FINISH_
WINDOWS call cannot be used unless the DATATRIEVE DECwindows
terminal server has been activated by a call to DTR$WINDOWS.

• The calls that enable and disable CTRL/C operation (DTR$DISABLE_
CONTROL_C and DTR$ENABLE_CONTROL_C) are invalid if you
have invoked the DATATRIEVE DECwindows terminal server with the
DTR$WINDOWS call.

• The DATATRIEVE DECwindows terminal server does not allow you to use
the SMG (Screen Management Facility) interface or the virtual keyboards for
command line and prompting expressions.

• You can use the options-code argument to specify the stallpoints you want
the terminal server to handle and the stallpoints at which you want your
program to take control. For example, you can call DTR$WINDOWS to have
DATATRIEVE display messages and print lines and then return control to
your program by specifying DTR$M_OPT_CMD in the options-code argument.

• If your program gives control to the DATATRIEVE DECwindows terminal
server and the user ends the DATATRIEVE session by entering CTRL/Z or
EXIT in response to the DTR> prompt or by selecting the Exit menu item of
the File menu, control returns to your program.

• If you specify the option DTR$M_OPT_UNWIND, DATATRIEVE returns
control to your program whenever it detects an unwind condition. An unwind
condition occurs when the user enters CTRL/Z, or when DATATRIEVE
encounters a DTR$UNWIND call in your program.

• DTR$WINDOWS assigns a channel number to the DAB$W_TT_CHANNEL
DAB field if a number has not been previously assigned. DATATRIEVE uses
the value of DAB$W_TT_CHANNEL as the input/output channel for TDMS
forms and Guide Mode. To operate with forms (namely FMS, TDMS, and
DECforms), it is required a value different from zero. (For information about
deassigning channels, see Chapter 2.)

• You can use DTR$WINDOWS with the call DTR$CREATE_UDK to add
your own keywords to interactive DATATRIEVE (see the discussion of
DTR$CREATE_UDK in this chapter).

3–94 DATATRIEVE Call Reference

DTR$WINDOWS

• You can specify the option DTR$M_OPT_STARTUP to invoke a startup
command file pointed to by the logical DTR$STARTUP. This command file is
executed only the first time you call DTR$WINDOWS with the DTR$M_OPT_
STARTUP option set.

Return Status

SS$_NORMAL
Call completed successfully.

DTR$_BADNUMARG
Invalid number of arguments.

DTR$_BADSTALL
Invalid stallpoint in the DAB.

DTR$_EXIT
User entered either EXIT or CTRL/Z.

DTR$_INVOPTION
User has specified one of the following invalid options:

DTR$M_OPT_BANNER
DTR$M_OPT_KEYDEFS
DTR$M_OPT_REMOVE_CTLC

DTR$_NOWINDOWS
User tried to invoke the DATATRIEVE DECwindows terminal server with a
DTR$WINDOWS call while the DATATRIEVE terminal server (invoked by the
DTR$DTR call) is still active.

DTR$_UNWIND
Program called DTR$UNWIND or user entered CTRL/C or CTRL/Z to terminate
DATATRIEVE statement.

Other errors from RMS, system services, and Run-Time Library routines.

Examples

Use DTR$WINDOWS to handle error messages in a FORTRAN program:

IF (DAB$L_CONDITION .NE. %LOC(DTR$_SUCCESS)
1 STATUS = DTR$WINDOWS (DAB, DTR$M_OPT_CMD)

DATATRIEVE Call Reference 3–95

DTR$WINDOWS

Use DTR$WINDOWS to display print lines in a COBOL program:

IF DTR$K_STL_LINE THEN
STATUS = "DTR$WINDOWS" USING DAB DTR$M_OPT_CMD GIVING STATUS.

Use DTR$WINDOWS in a BASIC program to simulate interactive
DATATRIEVE. Note that the option DTR$M_OPT_STARTUP executes a
DATATRIEVE startup command file, if you have one.

100 %INCLUDE "DTR$LIBRARY:DAB"

! Declare the initialization and terminal server calls as
! functions.

EXTERNAL INTEGER FUNCTION DTR$INIT, DTR$WINDOWS

DECLARE INTEGER DTR_OPTIONS, RET_STATUS

! Declare the normal and exit status.

EXTERNAL INTEGER CONSTANT DTR$_BADNUMARG, &
DTR$_BADSTALL, &
DTR$_EXIT, &
SS$_NORMAL

! Initialize the interface.

500 RET_STATUS = DTR$INIT (DAB BY REF, 100% BY REF, MSG_BUFF, &
AUX_BUFF, DTR$K_SEMI_COLON_OPT BY REF)

! Check to see if DATATRIEVE was initialized.

IF RET_STATUS <> SS$_NORMAL THEN
PRINT "DATATRIEVE initialization failed."
GOTO 2000

! Set options include commands to: execute a startup file,
! enable CTRL/C handling, allow invocation command lines,
! and display a startup banner.

DTR_OPTIONS = DTR$M_OPT_STARTUP &
OR DTR$M_OPT_FOREIGN

! Call the terminal server.

1000 RET_STATUS = DTR$WINDOWS (DAB BY REF, DTR_OPTIONS BY REF)

! Check the status.

SELECT RET_STATUS
CASE SS$_NORMAL

PRINT "Check your DTR$WINDOWS options."
PRINT "You returned control to the program."

CASE DTR$_EXIT
PRINT "Bye."

CASE ELSE
CALL LIB$SIGNAL (RET_STATUS BY VALUE)

END SELECT

3–96 DATATRIEVE Call Reference

DTR$WINDOWS

1500 RET_STATUS = DTR$FINISH_WINDOWS BY REF (DAB)

2000 END

You can use this program as the framework for customizing interactive
DATATRIEVE.

DATATRIEVE Call Reference 3–97

4
Adding Functions to DATATRIEVE

A DATATRIEVE function is a mechanism to produce values you define and add
to the DATATRIEVE language. By adding functions, you extend the capability of
DATATRIEVE to perform specific tasks efficiently.

This chapter explains how to add functions to DATATRIEVE. In order to add
functions, you must install a new shareable image. This requires the VMS
privileges SYSPRV and CMKRNL.

4.1 Using DATATRIEVE Functions
You can use a function within DATATRIEVE as a value expression in a statement.
For example, to calculate and print the square root of a number, you can use the
function FN$SQRT in a PRINT statement:

DTR> FIND FIRST 5 YACHTS; SELECT 1
DTR> PRINT LOA, FN$SQRT(LOA) ("SQUARE ROOT"/"OF LOA")

LENGTH
OVER SQUARE ROOT
ALL OF LOA

37 6.08276271

You can also use functions to assign values to variables and in virtual field
definitions. For example, to calculate the hexadecimal equivalent of a decimal
number, you can use the function FN$HEX within a COMPUTED BY clause:

DTR> DECLARE A COMPUTED BY FN$HEX(B).
DTR> DECLARE B PIC 99.
DTR> B = 16
DTR> PRINT A

A

10

Adding Functions to DATATRIEVE 4–1

Adding Functions to DATATRIEVE
4.1 Using DATATRIEVE Functions

You can nest functions, as the following example shows:

DTR> PRINT FN$HEX(FN$SQRT(2500))

FN$HEX

32

The examples in this section show how to use functions to form value expressions.
Functions can also serve as DATATRIEVE commands and statements. For
example, the function FN$CREATE_LOG defines a process logical name that is
valid only during the current DATATRIEVE session. FN$CREATE_LOG accepts
two arguments: a logical name and an equivalence name.

The following example shows how to use a function to create a logical name
within DATATRIEVE:

DTR> FN$CREATE_LOG(’FILE’,-
CON> ’BRANDY"GREBE NANCY"::DB2:[GREBE]REPORT.LIS’)
DTR> REPORT ON FILE

.

.

.
RW> END_REPORT
DTR>

4.2 DATATRIEVE Functions and External Procedures
A DATATRIEVE function invokes an external procedure. The procedure is a unit
of code designed to perform a specific task. The procedure that a DATATRIEVE
function invokes can be one of two types:

• A Run-Time Library procedure

• A procedure that you write

In the first example in the preceding section, the DATATRIEVE function
FN$SQRT calls the Run-Time Library procedure MTH$SQRT. MTH$SQRT
performs the square root calculation and returns the value to FN$SQRT.

FN$SQRT, FN$HEX, and FN$CREATE_LOG are some of the functions included
in the DATATRIEVE installation kit. The VAX DATATRIEVE Reference Manual
describes these sample functions. The rest of this chapter explains how you can
use Run-Time Library procedures and procedures you write to add your own
functions to DATATRIEVE.

4–2 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

4.3 How to Add Functions to DATATRIEVE
To add functions to DATATRIEVE, you must use several of the following files,
which are located in DTR$LIBRARY.

DTRFNDxx.MAR1 The VAX MACRO file that contains user-defined function definitions

DTRFUNxx.OLB The library file that contains the object module DTRFND and object
modules of user-written procedures

DTRBLDxx.COM The command file that links the DATATRIEVE shareable image

1xx represents the 1 to 26-character suffix that may be added at installation. DTRBLDxx might be
DTRBLDFMS, for example.

The following steps are necessary to add functions to DATATRIEVE. If you are
writing your own procedure, begin at step 1. If you are using a Run-Time Library
procedure, begin at step 3.

1. Write your procedures and compile them.

2. Insert the procedure object files into DTRFUNxx.OLB.

3. Add the function definitions to DTRFNDxx.MAR.

4. Assemble DTRFNDxx.MAR, creating DTRFNDxx.OBJ.

5. Replace DTRFNDxx.OBJ in DTRFUNxx.OLB.

6. Relink the DATATRIEVE shareable image.

The functions supplied as part of the DATATRIEVE kit are stored in the the VAX
MACRO file IDTRFND.MAR. If you want to replace one of the DATATRIEVE
supplied functions with one that you create, you should follow the steps listed
previously in this section. The new function should have the same name as the
DATATRIEVE function you wish to replace. When you relink the DATATRIEVE
shareable image, DATATRIEVE checks against the contents of IDTRFND.MAR
to look for a match. If it finds a match, DATATRIEVE overrides the function
defined in IDTRFND.MAR and, instead, refers to the new function defined in
DTRFNDxx.MAR.

Note

Do not modify the contents on IDTRFND.MAR. The code for defining
functions that are supplied with the DATATRIEVE kit is different from
the code used to define user-defined functions.

Adding Functions to DATATRIEVE 4–3

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

For additional information on using VMS RTLs to create and add DATATRIEVE
functions, refer to the VMS documentation set. It contains a master index with
references to information on the Run-Time Library, modular library procedures,
systems services, and utilities.

In addition, the VAX DATATRIEVE Installation Guide contains information on
linking and installing DATATRIEVE.

You may also want to refer to the reference manual of the language in which you
write your own procedures.

4.3.1 Write and Compile Your Procedures
Before you write a procedure, refer to the VMS documentation set for procedures
included in the Run-Time Library. If you find the procedure you want in the
Run-Time Library, you can go to Section 4.3.3, Add the Function Definitions to
DTRFNDxx.MAR, later in this chapter.

If you decide to write your own procedure, you must observe the following
restrictions:

• All procedures should be read only.

If a procedure is not read only and more than one DATATRIEVE user uses
the function that calls it, then invalid results can occur.

• All procedures must contain position-independent code.

For DTRSHR.EXE to be position-independent, each function linked with it
must also be position-independent. If you write procedures in C, BASIC,
Pascal, or PL/I, the resulting code is always position-independent. BLISS and
MACRO produce position-independent code if you use self-relative addressing.

FORTRAN and COBOL do not produce position-independent code. However,
the VMS Linker makes FORTRAN and COBOL code position-independent.
Therefore, you can write procedures in FORTRAN and COBOL and link them
with DTRSHR.

The following procedure is written in BASIC. Its purpose is to pass to
DATATRIEVE the value of a number raised to a power.

10 FUNCTION REAL POWER (REAL X, Y)
20 POWER = X ** Y
30 FUNCTIONEND

The following procedure is written in FORTRAN. It enables you to pass an escape
sequence as a text string to DATATRIEVE. This particular escape sequence clears
the screen on a VT100 terminal.

4–4 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

INTEGER FUNCTION CLEAR (SCREEN)
CHARACTER*1 ESC
CHARACTER*7 SCREEN
ESC = CHAR(27)
SCREEN = ESC//’[2J’//ESC//’[H’
CLEAR = 1

END

The VMS Linker searches the module library DTR$LIBRARY:DTRFUNxx.OLB to
resolve references to external procedure names such as POWER and CLEAR. If
you want to call these procedures from within DATATRIEVE, the first step is to
compile them:

$ BASIC POWER
$ FORTRAN CLEAR

4.3.2 Insert the Procedure Object Files into the Object Library
After you compile your procedures, use the LIBRARY command to insert the
object modules into DTRFUNxx.OLB:

$ LIBRARY/INSERT DTR$LIBRARY:DTRFUNxx POWER, CLEAR

4.3.3 Add the Function Definitions to DTRFNDxx.MAR
User-defined functions are contained in the file DTRFNDxx.MAR. DTRFNDxx.MAR
must always contain at least one function. (The function FN$GET_SYMBOL is
included in DTRFNDxx.MAR as part of the DATATRIEVE kit. Do not remove
FN$GET_SYMBOL from DTRFNDxx.MAR unless you have replaced it with
another function definition.) DTRFNDxx.MAR is coded in VAX MACRO. It uses
macros that are defined in DTR$LIBRARY:DTRFNLB.MLB. You do not need to
understand VAX MACRO to add function definitions.

In order to define your own functions, edit DTRFNDxx.MAR and insert the new
function definitions. The following sections explain the format and the parts of a
function definition and provide several sample function definitions.

4.3.3.1 The Format of a Function Definition
A function definition has the following format:

Adding Functions to DATATRIEVE 4–5

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

DTRFUN_DEF internal−name, external−name, number−of−arguments
[DTRFUN_HEADER HDR=<"header−segment"[/...]>]
[DTRFUN_EDIT_STRING ^\edit−string\]

DTRFUN_OUT_ARG TYPE =

DTRFUN_IN_ARG TYPE =

[DTRFUN_NOVALUE]
[DTRFUN_NOOPTIMIZE]
DTRFUN_END_DEF

ZK−1111A−GE

FUN$K_STATUS
FUN$K_INPUT
FUN$K_VALUE ,DTYPE = data−type

[,...]

FUN$K_NULL
FUN$K_TEXT ,OUT_PUT = TRUE [,ALL_LEN = m]
FUN$K_VALUE ,DTYPE = data−type ,ORDER = p
FUN$K_DESC ,DTYPE = data−type ,ORDER = p[, OUT_PUT = TRUE],

FUN$K_REF ,DTYPE = data−type
, OUT_PUT = TRUE[, ORDER = p]
, ORDER = p

A function definition contains the following parts:

DTRFUN_DEF internal-name, external-name, number-of-arguments

internal-name

Is the name used to call the function within DATATRIEVE. The internal name
cannot be the same as any DATATRIEVE keyword or name.

external-name

Is the name of the library procedure or the user-written function program. It is
the global symbol for the routine entry point.

number-of-arguments

Is the number of input arguments that are passed to the function. You can specify
from 0 to 31 arguments. The number includes arguments that are used to return
a value. The number must be the same as the number of arguments that you
describe with the DTR$FUN_IN_ARG clause.

DTRFUN_HEADER HDR = <"header-segment" [/...]>

Specifies the header that DATATRIEVE displays when you use the function as
a PRINT element. The header specification must be enclosed in angle brackets.
If you want no function header displayed, place a hyphen within the angle
brackets (for instance, <->). If you do not specify a header, DATATRIEVE uses

4–6 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

the function’s internal name. The rules for formatting function headers are the
same as those for formatting DATATRIEVE query headers.

DTRFUN_EDIT_STRING ^\edit-string\

Specifies the edit string DATATRIEVE uses to display the function value. The
edit string specification must be enclosed within the delimiters indicated. Use
uppercase letters to specify the edit string.

DTRFUN_OUT_ARG TYPE ={type}, DTYPE = data-type

Tells DATATRIEVE how the value of the function is returned.

The type parameter can have the following values:

FUN$K_STATUS

Indicates that the function value is returned in one of the input arguments
and that a status code is returned in register 0. DATATRIEVE signals the
status if the status code indicates a warning, an error, or a severe error. With
DATATRIEVE V4.2 or later, when you define a new function you must explicitly
return the status from the function code.

FUN$K_INPUT

Indicates that the function value is returned in one of the input arguments.
DATATRIEVE ignores the values returned in the registers.

FUN$K_VALUE

Indicates that the function value is returned in registers 0 and 1. In this case,
you must indicate the data type of the output argument with a DTYPE = clause.
DATATRIEVE uses the data type to determine how many registers to check
and how to interpret the contents of those registers. The data type for FUN$K_
VALUE can be up to 64 bits long.

DTYPE = data-type

Indicates the data type of the output argument.

Appendix C contains a complete list of the VAX data types. Table 4–1 lists the
data types commonly used in functions.

DTRFUN_IN_ARG TYPE = {type} , ALL_LEN = m , OUT_PUT = TRUE,
DTYPE = data-type , ORDER = p

Describes how DATATRIEVE passes input arguments. It specifies the data
types of the arguments and their positions when the function is called within
DATATRIEVE. This section also indicates whether an input argument is used to
pass the function value to DATATRIEVE.

Adding Functions to DATATRIEVE 4–7

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

There must be one DTRFUN_IN_ARG section for each input argument. In
addition, you must specify the arguments in the order that the procedure expects
to receive them. You must specify how each argument is passed with a TYPE
clause.

You can specify the following argument-passing types with the TYPE parameter:

FUN$K_NULL

Causes DATATRIEVE to pass a null value. You can use this type when you want
to omit an optional argument in a procedure. FUN$K_NULL puts an immediate
value of zero in the argument list.

FUN$K_TEXT

Causes DATATRIEVE to pass a dynamic string descriptor of variable length. You
can use the optional (AL_LEN) clause to specify the length. You cannot specify
the DTYPE argument if the type is FUN$K_TEXT.

FUN$K_VALUE

Causes DATATRIEVE to pass an immediate value in the argument list. You must
specify the DTYPE argument for this type. You can use only data types that fit
into a 32-bit longword.

FUN$K_DESC

Causes DATATRIEVE to pass the address of a class S (scalar) or class SD (scalar
decimal) descriptor in the argument list. You must specify the DTYPE clause for
this type.

FUN$K_REF

Causes DATATRIEVE to pass the address of a value in the argument list. You
must use the DTYPE clause to specify a nonstring data type for this type.

You use the following clauses with the TYPE parameter:

ALL_LEN = m

Causes DATATRIEVE to allocate m bytes to the string before calling the routine.
This clause is necessary only if the external routine requires the descriptor of a
fixed-length string.

The ALL_LEN clause is an option only with an argument whose type is FUN$K_
TEXT.

DTYPE = data-type

4–8 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

Indicates the data type of the input argument. If the type of the argument is
FUNK_VALUE, FUNK_REF, or FUN$K_DESC, it is necessary to specify the
data type with the DTYPE clause. Do not use this clause with arguments whose
type is FUN$K_NULL or FUN$K_TEXT.

Appendix C contains a complete list of the VAX data types. Table 4–1 lists the
data types commonly used in functions.

OUT_PUT = TRUE

Specifies that the function value is passed back in the argument in which this
clause appears. Only one input argument can have this clause. If the function
value is returned in the registers, then no input argument should have this
clause.

ORDER = p

Specifies the order of the input arguments when a user calls the function within
DATATRIEVE. You must include an ORDER clause with each argument:

• Unless the passing type is FUN$K_NULL

• Unless the argument is used for output and the passing type is FUN$K_
TEXT or FUN$K_REF

DTRFUN_NOVALUE

Specifies that no value is returned to DATATRIEVE by the external procedure.
If you use this statement, you must specify either the FUN$K_STATUS or
FUN$K_INPUT type in the output argument. You cannot use the clause
OUT_PUT = TRUE in input arguments.

The DTRFUN_NOVALUE statement enables you to invoke the function within
DATATRIEVE as a command or statement rather than as a value expression.

DTRFUN_NOOPTIMIZE

Specifies that a function override the optimization that DATATRIEVE uses when
it executes functions within FOR, REPEAT, or WHILE loops. For instance,
DATATRIEVE optimizes the execution of a function by factoring it out of a FOR
loop and executing it only once at the top of that loop. You can override how
DATATRIEVE handles a function by specifying the DTR$FUN_NOOPTIMIZE
statement in the function definition. DATATRIEVE then executes the function for
each execution of the FOR loop.

DTRFUN_END_DEF

Specifies the end of the function definition.

Adding Functions to DATATRIEVE 4–9

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

Table 4–1 lists the data types commonly used in functions. For a complete list of
the VAX data types refer to Appendix C.

Table 4–1 Common VAX Data Types

Symbol Description

DSC$K_DTYPE_LU Longword unsigned. A 32-bit unsigned quantity.

DSC$K_DTYPE_QU Quadword unsigned. A 64-bit unsigned quantity.

DSC$K_DTYPE_L Longword integer. A 32-bit signed two’s complement
integer.

DSC$K_DTYPE_Q Quadword integer. A 64-bit signed two’s complement
integer.

DSC$K_DTYPE_F F_floating. A 32-bit F_floating quantity representing a
single-precision number.

DSC$K_DTYPE_D D_floating. A 64-bit D_floating quantity representing a
double-precision number.

DSC$K_DTYPE_T ASCII text. A string of 8-bit ASCII characters.

DSC$K_DTYPE_ADT Date. A 64-bit unsigned quantity.

Whether the clauses used with the type parameter are required or optional
depends on the input argument type. Table 4–2 shows the required and optional
clauses for each argument-passing type.

Table 4–2 Input Argument Types and Clauses

Input Argument Type Required Clauses Optional Clauses

FUN$K_NULL None None

FUN$K_TEXT OUT_PUT = TRUE ALL_LEN = m

FUN$K_VALUE DTYPE = data-type
ORDER = p

OUT_PUT = TRUE

FUN$K_DESC DTYPE = data-type
ORDER = p

OUT_PUT = TRUE

FUN$K_REF (as an input
argument)

DTYPE = data-type
ORDER = p

None

FUN$K_REF (as an output
argument)

OUT_PUT = TRUE
DTYPE = data-type

ORDER = p

4–10 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

4.3.3.2 Sample Function Definitions
The following function definition allows you to round off numbers within
DATATRIEVE. The actual procedure used is MTH$JNINT, from the VMS Run-
Time Library. Like most of the Run-Time Library mathematics procedures,
MTH$JNINT accepts input arguments passed by reference and returns the
function value in the registers. It is a good idea to include comments with
each function definition. You identify comments in the function definitions by
preceding the comment text with semicolons.

; FN$NINT - nearest integer from floating
;
; output is an integer
; input is a floating point number

DTRFUN_DEF FN$NINT, MTH$JNINT, 1
DTRFUN_EDIT_STRING ^\Z(9)9\
DTRFUN_OUT_ARG TYPE = FUN$K_VALUE, DTYPE = DSC$K_DTYPE_L
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_F, ORDER = 1

DTRFUN_END_DEF

To use the function within DATATRIEVE, use the internal name FN$NINT. You
can use function value expressions in the same way as you use any other value
expression. For example, you can use this function to round off a floating point
number:

DTR> PRINT FN$NINT(11.2)

FN$NINT

11

You can also use this function in a record selection expression:

DTR> FOR FIRST 3 YACHTS WITH FN$NINT(LOA/BEAM) LT 5
CON> PRINT TYPE, FN$NINT(LOA/BEAM) ("LOA/BEAM")

MANUFACTURER MODEL LOA/BEAM

ALBERG 37 MK II 3
ALBIN 79 2
ALBIN BALLAD 3

The following function definition uses an input argument to pass back the
function value:

Adding Functions to DATATRIEVE 4–11

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

; FN$STR_EXTRACT - String extract
;
; output is a string
; input is an output string descriptor,
; an input string descriptor
; a starting position in the string
; and the length to extract

DTRFUN_DEF FN$STR_EXTRACT, STR$LEN_EXTR, 4
DTRFUN_HEADER HDR = <"Extracted"/"String">
DTRFUN_OUT_ARG TYPE = FUN$K_STATUS
DTRFUN_IN_ARG TYPE = FUN$K_TEXT , OUT_PUT = TRUE
DTRFUN_IN_ARG TYPE = FUN$K_DESC, DTYPE = DSC$K_DTYPE_T, ORDER = 1
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_L, ORDER = 2
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_L, ORDER = 3

DTRFUN_END_DEF

When you call this function within DATATRIEVE, the first input argument you
supply is the string from which you want to extract a substring. This corresponds
to the argument with the ORDER = 1 clause. The second and third arguments
are the start position and the length of the substring. The fact that the actual
procedure uses an input argument to return a value is invisible to a user calling
the function with DATATRIEVE. You can use FN$STR_EXTRACT as follows:

DTR> FOR FIRST 3 YACHTS PRINT FN$STR_EXTRACT(BUILDER, 3, 4)

Extracted
String

BERG
BIN
BIN

The next examples are the definitions of the functions FN$INIT_TIMER and
FN$SHOW_TIMER:

; FN$INIT_TIMER - Initializes a timer and counter
;
; No Output

DTRFUN_DEF FN$INIT_TIMER, LIB$INIT_TIMER, 0
DTRFUN_OUT_ARG TYPE = FUN$K_STATUS
DTRFUN_NOVALUE

DTRFUN_END_DEF

; FN$SHOW_TIMER - Displays elapsed time, CPU time and
; other process parameters
; No Output

DTRFUN_DEF FN$SHOW_TIMER, LIB$SHOW_TIMER, 0
DTRFUN_OUT_ARG TYPE = FUN$K_STATUS
DTRFUN_NOVALUE

DTRFUN_END_DEF

4–12 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

The DTRFUN_NOVALUE statement in these function definitions enables you
to invoke them as DATATRIEVE commands. You can use these functions to
measure the performance of DATATRIEVE in response to various queries, as in
the following example:

DTR> SHOW TIMER
PROCEDURE TIMER
READY YACHTS
FN$INIT_TIMER
FIND YACHTS WITH BUILDER = ’ALBIN’
PRINT CURRENT
FN$SHOW_TIMER
RELEASE CURRENT
FN$INIT_TIMER
PRINT YACHTS WITH BUILDER = ’ALBIN’
FN$SHOW_TIMER
END_PROCEDURE

DTR> :TIMER

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
ELAPSED: 00:00:00.60 CPU: 0:00:00.20 BUFIO: 8 DIRIO: 3 FAULTS: 31

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
ELAPSED: 00:00:00.41 CPU: 0:00:00.16 BUFIO: 8 DIRIO: 1 FAULTS: 0

The following example is the function definition for the VAX BASIC procedure
POWER described in Section 4.3.1, Write and Compile Your Procedures, earlier in
this chapter:

; FN$POWER - uses first input as the base, second input as exponent
;
; output is floating number
; input is two floating numbers

DTRFUN_DEF FN$POWER, POWER, 2
DTRFUN_OUT_ARG TYPE = FUN$K_VALUE, DTYPE = DSC$K_DTYPE_F
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_F, ORDER = 1
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_F, ORDER = 2

DTRFUN_END_DEF

Adding Functions to DATATRIEVE 4–13

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

You can call the external procedure POWER from within DATATRIEVE using the
internal name FN$POWER. FN$POWER accepts a number and its exponent, and
returns the value of the number to the specified exponent.

DTR> FIND YACHTS WITH LOA GT 40; SELECT 1
DTR> PRINT LOA, FN$POWER(LOA,2) ("LOA"/"SQUARED") USING Z(5)V99
LENGTH
OVER LOA
ALL SQUARED

41 1681.00

The following example is the function definition for the VAX FORTRAN procedure
CLEAR described in Section 4.3.1, Write and Compile Your Procedures, earlier in
this chapter:

; FN$CLEAR - Clears the screen
;
; output is an escape sequence
; input is an output string descriptor

DTRFUN_DEF FN$CLEAR, CLEAR, 1
DTRFUN_HEADER HDR = <->
DTRFUN_OUT_ARG TYPE = FUN$K_STATUS
DTRFUN_IN_ARG TYPE = FUN$K_TEXT, ALL_LEN = 7, OUT_PUT = TRUE

DTRFUN_END_DEF

You can use FN$CLEAR to clear a VT100 terminal screen as follows:

DTR> PRINT FN$CLEAR

4.3.4 Assemble and Debug DTRFNDxx.MAR
After you place function definitions in DTRFNDxx.MAR, reassemble it with the
command:

$ MACRO/LIST DTR$LIBRARY:DTRFNDxx.MAR

If you have made any mistakes in your function definitions, you should get error
messages when you assemble DTRFNDxx.MAR. The following table contains
explanations of these error messages:

Error 1: Function definition not in progress.

Occurs if you omit the DTRFUN_DEF section from your function definition.

4–14 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

Error 2: Duplicate definition within a single function.

Occurs if:

• You specify DTRFUN_DEF without a corresponding DTRFUN_END_
DEF

• You have two DTROUT_ARG sections in a function definition

• You specify two arguments as OUT_PUT = TRUE

Error 3: Parameter out of range.

Occurs if:

• You have a data type or passing type that is not in the acceptable range
for an argument

• You specify more than 31 input arguments

• You specify an allocation length greater than 1000

Error 4: Calling order is not dense.

Occurs if:

• You specify input arguments in an incorrect order. For example, if you
have three input arguments and you use the clauses ORDER = 1, ORDER
= 3, and ORDER = 4, then the calling order is not dense.

• You have fewer input arguments than you specify in the DTRFUN_
DEF section.

Error 5: More input arguments than specified in function definition.

Occurs if you include more input arguments than you specify in the
DTRFUN_DEF section.

Error 6: Order must be specified for this passing type.

Occurs if you do not include the ORDER = clause when it must be specified.
Each DTRFUN_IN_ARG must have an ORDER = clause unless the passing
type is FUN$K_NULL or unless you include an OUTPUT = TRUE clause and
the passing type is FUN$K_TEXT or FUN$K_REF.

Error 7: Duplicate call order specified.

Occurs if you specify the same order for two input arguments.

Error 8: Output argument not specified.

Occurs if you leave out the DTRFUN_OUT_ARG section.

Adding Functions to DATATRIEVE 4–15

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

Error 9: Output argument not found in input arguments.

Occurs if you do not specify the FUN$K_VALUE passing type for DTRFUN_
OUT_ARG, and you also do not have any DTRFUN_IN_ARG sections with
the OUT_PUT = TRUE clause.

If you get any of these messages when you assemble DTRFNDxx.MAR, you
should note the lines that caused the errors. You can then determine which
function definitions have errors and fix them. (If you use the /LIST qualifier with
the MACRO command, you can also use the .LIS file that the MACRO assembler
creates to help you identify the incorrect lines.)

4.3.5 Replace DTRFNDxx.MAR in the Object Library
After you successfully assemble DTRFNDxx.MAR, use the LIBRARY command to
put the new object file, DTRFNDxx.OBJ, in the library DTRFUNxx.OLB:

$ LIBRARY/REPLACE DTR$LIBRARY:DTRFUNxx DTRFNDxx

4.3.6 Relink the DATATRIEVE Shareable Image
After you replace DTRFNDxx.OBJ in the DATATRIEVE object module library,
you must relink the DATATRIEVE shareable image for the new function
definitions to take effect.

You use the command procedure DTRBLDxx.COM to relink the DATATRIEVE
shareable image. When you relink, you must be sure that the shareable image
you relink against is from the most recently installed version of DATATRIEVE.

Before invoking DTRBLDxx.COM, check the command file to make sure it
includes all the Run-Time Libraries that your function definitions require. By
default, DATATRIEVE links against only those Run-Time Libraries (RTLs) that
it requires. For example, DATATRIEVE does not automatically link against the
BASIC Run-Time Library.

When you write a function definition that uses an RTL routine in an object
library that DATATRIEVE does not link against, you must edit DTRBLDxx.COM
to include that RTL library. For example, to use the BASIC procedure POWER
described in Section 4.3.1, Write and Compile Your Procedures, and defined in
Section 4.3.3.2, Sample Function Definitions, you must add these two lines to the
DTRBLDxx.COM file:

CLUSTER=BASRTL,,,SYS$COMMON:[SYSLIB]BASRTL.EXE/SHAREABLE
CLUSTER=BASRTL2,,,SYS$COMMON:[SYSLIB]BASRTL2.EXE/SHAREABLE

Put the lines for the BASIC RTL in the same section in the command file that
you find the following lines:

CLUSTER=FORRTL,,,SYS$COMMON:[SYSLIB]FORRTL.EXE/SHAREABLE
CLUSTER=LIBRTL,,,SYS$COMMON:[SYSLIB]LIBRTL.EXE/SHAREABLE

4–16 Adding Functions to DATATRIEVE

Adding Functions to DATATRIEVE
4.3 How to Add Functions to DATATRIEVE

To relink VAX DATATRIEVE, execute the command file DTRBLDxx:

$ @DTR$LIBRARY:DTRBLDxx

Adding Functions to DATATRIEVE 4–17

5
Customizing DATATRIEVE Help Text

You can customize any DATATRIEVE help text and make additions to the
existing text. Changes and additions you make can become part of your own
DATATRIEVE on-line help. If you have the privilege SYSPRV, you can also
change and add help text for all DATATRIEVE users on your system.

This chapter explains how to modify or add DATATRIEVE help text to suit your
on-line documentation needs.

5.1 How to Change Help Text
To change DATATRIEVE help text, follow these steps:

1. Copy the DATATRIEVE help library file DTRHELP.HLB from SYS$HELP to
one of your own directories.

2. Extract the help modules you want to change.

3. Edit the extracted help text to make the desired changes.

4. Replace the changed text in DTRHELP.HLB.

5. Replace the old help library file with the new one.

The following sections describe each of these steps.

5.1.1 Copy the DATATRIEVE Help Library File
The DATATRIEVE help library file, DTRHELP.HLB, is located in the SYS$HELP
directory. To copy DTRHELP.HLB to one of your own directories, use the COPY
command. For example:

$ COPY SYS$HELP:DTRHELP.HLB DB0:[USER.DTR]DTRHELP.HLB

This command creates a copy of DTRHELP.HLB in the DB0:[USER.DTR]
directory.

Customizing DATATRIEVE Help Text 5–1

Customizing DATATRIEVE Help Text
5.1 How to Change Help Text

5.1.2 Extract the Help Modules You Want to Change
The help library file DTRHELP.HLB consists of text modules of each
DATATRIEVE help topic. To see what modules DTRHELP.HLB contains, use
the LIBRARY command with the /LIST and /HELP qualifiers:

$ LIBRARY/HELP/LIST DTRHELP.HLB

After you copy DTRHELP.HLB to your own directory, use the LIBRARY command
to extract the modules you wish to change. For example, if you want to modify
the help text for the DATATRIEVE FUNCTIONS command, use the following
LIBRARY command:

$ LIBRARY/HELP/EXTRACT=FUNCTIONS/OUTPUT=FUNCTIONS DTRHELP.HLB

The /EXTRACT qualifier causes the VMS Librarian Utility to extract the
FUNCTIONS module from DTRHELP.HLB. The /OUTPUT qualifier places
the HELP FUNCTIONS text in the file FUNCTIONS.HLP in your default VMS
directory. Note that FUNCTIONS.HLP, the file that results from the LIBRARY
command, contains text.

For more information on the LIBRARY command, use the HELP LIBRARY
command or refer to the VMS documentation set.

5.1.3 Edit the Extracted Help Text
After you extract the module you want to change, use an editor to make changes
to the .HLP text file.

5.1.3.1 The Structure of Help Text Files
Help files have a hierarchical structure, much like DATATRIEVE record
definitions.

Each numbered word in the file is a key. The top-level key is the keyword
FUNCTIONS. When you enter the command HELP FUNCTIONS in response to
the DTR> prompt, DATATRIEVE displays the keyword FUNCTIONS and text
that explains its use. In addition, DATATRIEVE displays the subtopics you can
get further help on. The FUNCTIONS subtopics are the second-level keys, that
is, those words preceded by the number 2.

5.1.4 Replace the Changed Text in DTRHELP.HLB
After you make the desired changes to the help text, use the LIBRARY command
with the /REPLACE qualifier to replace the old help module with your new
one. Use the following command to replace the FUNCTIONS module in
DTRHELP.HLB with the changed text in FUNCTIONS.HLP:

5–2 Customizing DATATRIEVE Help Text

Customizing DATATRIEVE Help Text
5.1 How to Change Help Text

$ LIBRARY/HELP/REPLACE
_Library: DTRHELP
_File: FUNCTIONS.HLP

5.1.5 Replace the Old Help Library File with the New One
If you want all DATATRIEVE users on your system to be able to display your new
help text, copy the new DTRHELP.HLB file to SYS$HELP. You must have write
access to SYS$HELP to do this. Be sure to use the SET PROTECTION command
to give READ privilege to world category users.

If you want only selected users to be able to display your new help text, assign a
process logical name that refers to the new help library file. For example, if the
new DTRHELP.HLB is in DB0:[USER.DTR], use the following command:

$ ASSIGN "DB0:[USER.DTR]DTRHELP" DTRHELP

Users who want DATATRIEVE to display the changed help text can include this
command in their LOGIN.COM file.

You can also use the function FN$CREATE_LOG to define the logical name
DTRHELP after you enter DATATRIEVE:

DTR> FN$CREATE_LOG ("DTRHELP", "DB0:[USER.DTR]DTRHELP")

The FN$CREATE_LOG assignment is valid only during the current
DATATRIEVE session. You can make this assignment automatic by inserting
the FN$CREATE_LOG command in a DATATRIEVE startup command file.

5.2 How to Create New Help Text
The procedure for creating new help text is similar to the procedure for modifying
existing help text. Design your help files with the hierarchical structure
described in this chapter. Use an editor to create the help files. You can use
DIGITAL Standard Runoff to format your help text if you wish. Be sure to place
each numbered keyword at the left-hand margin.

After you create your new help text, use the LIBRARY command with the
/INSERT qualifier to insert the new text into DTRHELP.HLB. If your help
text file is HELPTEXT.HLP, you can make it part of the help library with this
command:

$ LIBRARY/HELP/INSERT
_Library: DTRHELP
_File: HELPTEXT

To have DATATRIEVE display the new help text, follow the procedure described
in the preceding section.

Customizing DATATRIEVE Help Text 5–3

6
Customizing DATATRIEVE Messages

This chapter explains how you can change the text of the DATATRIEVE messages
to suit the needs of your working environment. You can change the messages
DATATRIEVE displays to you and to other selected users. If you have the
privilege SYSPRV, you can modify messages for all DATATRIEVE users on your
system.

This manual does not describe how to change messages from other products
such as VAX/VMS, VAX RMS, VAX CDD/Repository, VAX DBMS, and the VMS
DIGITAL Standard Editor (EDT).

6.1 DATATRIEVE Messages
Each time you give DATATRIEVE a command or statement to execute,
DATATRIEVE determines the message it should display. Each message includes
a severity level, a code, a name, and a text string.

The message severity level determines whether DATATRIEVE completes your
command or statement and what warning or information DATATRIEVE displays.
Your command or statement results in one of the following severity levels:

• Severe Error

• Error

• Warning

• Informational

The message code is a number that identifies the message.

The message name is a symbol beginning with the prefix DTR$_ that
also identifies the message. The message code and the message name are
synonymous; they represent the same value. In most cases, the DATATRIEVE
documentation recommends using the message name rather than the actual
hexidecimal code value because the name is easier to remember.

The message text is a string that DATATRIEVE displays to tell you how it is
responding to your command or statement.

Customizing DATATRIEVE Messages 6–1

Customizing DATATRIEVE Messages
6.1 DATATRIEVE Messages

A list describing the severity level, code, name, and text for all DATATRIEVE
messages is supplied on-line as part of the DATATRIEVE installation procedure.
See Appendix B for information on how to access the on-line message
documentation.

6.1.1 DATATRIEVE Messages and the Call Interface
When a calling program passes DATATRIEVE a command or statement,
DATATRIEVE returns a message. For example, if DATATRIEVE successfully
executes your command or statement, it returns the following information:

Severity level: Informational

Code: 008D8563

Name: DTR$_SUCCESS

Text: Statement completed successfully.

Your program can determine the severity level, code, and message text by
examining the contents of the DAB$L_CONDITION and DAB$A_MSG_BUF
fields of the DATATRIEVE Access Block after each call. Your program can use
the message names in place of the code values by declaring the names as external
constants and linking with the DATATRIEVE shareable image. See Chapter 2 for
more information on handling DATATRIEVE messages in a calling program.

6.1.2 Messages in Interactive DATATRIEVE
When you enter a command or statement using interactive DATATRIEVE,
DATATRIEVE does not always display a message. For example, if you complete a
command or statement successfully in interactive DATATRIEVE, you do not see
the DTR$_SUCCESS message.

However, in many situations, interactive DATATRIEVE does display messages in
response to your commands and statements. Here is an example:

DTR> READY PERSONEL
Element "PERSONEL" not found in dictionary. 1
DTR> READY
[Looking for dictionary path name] 2
CON> PERSONNEL AS PERS
DTR> PRINT PERS WITH DEPT = D98
"D98" not field, assumed literal. 3

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

02943 EXPERIENCED CASS TERRY D98 2-Jan-1980 $29,908 39485
39485 EXPERIENCED DEE TERRICK D98 2-May-1977 $55,829 00012
49843 TRAINEE BART HAMMER D98 4-Aug-1981 $26,392 39485
84375 EXPERIENCED MARY NALEVO D98 3-Jan-1976 $56,847 39485

6–2 Customizing DATATRIEVE Messages

Customizing DATATRIEVE Messages
6.1 DATATRIEVE Messages

DTR>

Table 6–1 lists the severity level, code, name, and text for each message in this
example:

Table 6–1 Sample DATATRIEVE Messages

Example
Number

Severity
Level Code Name Text

1 Error 008D8192 DTR$_ELTNOTDIC Element < . . . > not found
in dictionary.

2 Informational 008D857B DTR$_LOOKINFOR [Looking for < . . . >]

3 Warning 008D84E0 DTR$_ASSUMELIT < . . . > not field, assumed
literal.

You cannot change the severity level, code, or name of any message. However,
you can change the message text. The following sections describe how to do this.

6.2 How to Change DATATRIEVE Messages
To change DATATRIEVE messages, you must perform the following steps:

1. Copy the DATATRIEVE message source file DTRMSGS.MSG from
DTR$LIBRARY to your own directory.

2. Edit the message source file to make the desired changes.

3. Compile the message source file to create an object file.

4. Link the object file to create the file DTRMSGS.EXE.

5. Replace the old DTRMSGS.EXE file with the new one.

The following sections describe each of these steps.

6.2.1 Copy the Message Source File
The message source file DTRMSGS.MSG is located in DTR$LIBRARY. Use the
COPY command to copy this file to one of your own directories. For example:

$ COPY DTR$LIBRARY:DTRMSGS.MSG DB3:[CASSIDY.WORK]DTRMSGS.MSG

This command creates a copy of DTRMSGS.MSG in the DB3:[CASSIDY.WORK]
directory.

Customizing DATATRIEVE Messages 6–3

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

6.2.2 Edit the Message Source File
After you copy DTRMSGS.MSG, use an editor, such as EDT, to make the desired
changes to the message text. The following sections describe the structure of
DTRMSGS.MSG and explain how to edit it.

6.2.2.1 Structure of the Message Source File
DTRMSGS.MSG, the message source file, contains information that defines each
DATATRIEVE message.

At the top of the file is a .TITLE directive that identifies the message source
file. Following the title is the .FACILITY statement that identifies the software
product. The /SYSTEM qualifier means that DATATRIEVE is a facility supplied
by DIGITAL. The /PREFIX qualifier indicates that each message name has a
DTR$_ prefix.

Following the facility definition is the number specifier and definition for each
DATATRIEVE message.

The .BASE message number specifier is a value used to calculate the message
code. You should not modify this number.

After each message number specifier is a message definition. The message
definition has the following format:

name /FAO=n/severity-level -
<message-text>

name

Is a text string that is combined with the DTR$_ prefix to make up the message
name.

/FAO=n

Specifies the number of formatted ASCII output (FAO) arguments to be included
in the message. See Section 6.2.2.3 for more information on FAO arguments.

/severity-level

Indicates the severity level associated with the message.

message-text

Is the message text that DATATRIEVE displays. The text must be on one
line and it can be up to 255 bytes long. The delimiters of the text can be
angle brackets (< >) or double quotation marks (" "). The text can include
FAO directives that insert ASCII strings into the resulting message. See
Section 6.2.2.3 for more information on FAO directives.

6–4 Customizing DATATRIEVE Messages

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

The only part of the message source file that you should change is the message
text. If you change any other part of the file, DATATRIEVE may not display error
messages correctly.

The following section explains how to change the message text.

6.2.2.2 Changing the Message Text
The following example shows a message you may want to change:

DTR> READY PERSONNEL
Bad record size. Defined: 43 File: 41
DTR>

The error in this example, DTR$_BADRECSIZ, occurs when a user attempts to
ready a domain whose record definition specifies a size that does not match the
size of the record in the data file.

The message definition for DTR$_BADRECSIZ in DTRMSGS.MSG is as follows:

BADRECSIZ/FAO=2/ERROR-
<Bad record size. Defined: !UW File: !UW >

Suppose you want to supply more information about why the READY statement
in this example failed. You want DATATRIEVE to display the following message:

DTR> READY PERSONNEL

Your record definition describes each record as 43 bytes long.
In your file each record is 41 bytes long.

DTR>

To cause DATATRIEVE to display this new message, edit DTRMSGS.MSG and
change the message definition as follows:

BADRECSIZ/FAO=2/ERROR-
<!/Your record definition describes each record as !UW bytes long.
!/In your file each record is !UW bytes long.!/>

You should not alter the name or the FAO=n and severity level qualifiers of
messages you modify. You should edit only the message text. Note that the
message text must be on one line with a maximum size of 255 characters. Do not
include line feeds or carriage returns in the message text.

The new message text in DTRMSGS.MSG contains characters preceded by
an exclamation mark (!) such as !UW and !/. These are FAO directives. The
following section explains how to use FAO directives to format message texts.

Customizing DATATRIEVE Messages 6–5

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

6.2.2.3 Using FAO Directives to Format Message Text
DATATRIEVE uses the Formatted ASCII Output (FAO) system service to:

• Insert character string data into message texts

• Convert binary values into the ASCII representation of their decimal or
hexadecimal values and substitute the values into the message text

• Format the message text

See the VMS documentation set for information on the FAO service. Table 6–2
summarizes the FAO directives used in DATATRIEVE message texts and lists the
number of parameters required by each directive.

Table 6–2 FAO Directives Used in DATATRIEVE Messages

Directive Function
Number of
Parameters

Substitution

!AC Inserts a counted ASCII string. 1

!AD Inserts an ASCII string. 2

!AF Inserts an ASCII string; replaces
nonprintable codes with periods (.).

2

!AS Inserts an ASCII string. 1

!SL Converts a signed decimal longword. 1

!UL Converts an unsigned decimal
longword.

1

!UW Converts an unsigned decimal word. 1

!XL Converts a longword to hexadecimal. 1

(continued on next page)

6–6 Customizing DATATRIEVE Messages

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

Table 6–2 (Cont.) FAO Directives Used in DATATRIEVE Messages

Directive Function
Number of
Parameters

Output String Formatting

!/ Inserts a new line (<CR> and <LF>). None

!_ Inserts a tab. None

!^ Inserts a form feed. None

!! Inserts an exclamation point. None

!%S Inserts the letter S if the most recently
converted numeric value is not 1.

None

!n<
!>

Defines an output field width of n
characters. All data within delimiters
is left justified and blank filled. The
outer delimiters of the message text
should be changed to "".

None

!n*c Repeats the specified character c, n
times.

None

Parameter Interpretation

!- Reuses the last parameter in the list. None

!+ Skips the next parameter in the list. None

The following sections describe how to use FAO directives.

6.2.2.3.1 Substitution Directives The following example shows how
DATATRIEVE uses two FAO substitution directives:

DTR> FIND
[Looking for name of domain, collection, or list]
CON> FIRST 10 PERSONNEL
[10 records found]

DTR>

The statement in this example results in two messages. The first is DTR$_
LOOKINFOR. This message has the following definition:

LOOKINFOR/FAO=1/INFORMATIONAL-
<[Looking for !AC] >

Customizing DATATRIEVE Messages 6–7

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

DATATRIEVE substitutes the string ‘‘name of domain, collection, or list’’ for
the directive !AC. If you want to modify this or other variable strings that
DATATRIEVE substitutes, you must edit the file DTRTEXT.MAR. See Chapter 8
for information about modifying DATATRIEVE text.

The second message in the example is DTR$_RECFOUND. DTR$_RECFOUND
has the following definition:

RECFOUND/FAO=1/INFORMATIONAL-
<[!UL record!%S found] >

DATATRIEVE substitutes the number of records found for the directive !UL. In
addition, the !%S formatting directive causes DATATRIEVE to insert an ‘‘s’’ at the
end of ‘‘record’’ when more than one record is found.

You can delete substitution directives and cause DATATRIEVE not to perform
the substitution. If there are more than one substitution directives, you can
change their order, as described in Section 6.2.2.3.3, you should not replace
one substitution directive with another or insert a substitution directive into
message text. Replacing or inserting substitution directives can cause errors in
the messages DATATRIEVE displays.

6.2.2.3.2 Formatting Directives While you should not change substitution
directives, you can use formatting directives to reformat messages.

The following example shows how you can reformat a message:

DTR> PRINT AVERAGE PRICE OF YACHTS WITH RIG = "SLOOP"

AVERAGE
PRICE

[Function computed using 38 of 96 values.]
$20,464

DTR>

The informational message in this example is DTR$_STAMISDAT; it has the
following definition:

STAMISDAT/FAO=2/INFORMATIONAL-
<[Function computed using !UL of !UL values.] >

When DATATRIEVE displays this message, it substitutes the number of YACHTS
records that RIG = ‘‘SLOOP’’ groups together in the second !UL directive. It
substitutes the number of YACHTS whose price is not missing in the first
directive.

6–8 Customizing DATATRIEVE Messages

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

Suppose you want to reformat the DTR$_STAMISDAT message so that
DATATRIEVE displays it as follows:

DTR> PRINT AVERAGE PRICE OF YACHTS WITH RIG = "SLOOP"

AVERAGE
PRICE

This function was computed using 38 of 96 values.
Values not used are missing.

$20,464

DTR>

To make this change, edit DTRMSGS.MSG and use the !_ and !/ formatting
directives to insert tabs and new lines. Be sure that the message text is on one
line:

<!_!_This function was computed using !UL of !UL values.!/!_!_Values
not used are missing.!/ >

6.2.2.3.3 Parameter Interpretation Directives You can use parameter
interpretation directives to change the order of substitution directives. For
example, the following message contains two string substitution directives:

DTR> PRIMT EMPLOYEES WITH LOCATION = "MK"
PRIMT EMPLOYEES WITH LOCATION = "MK"
^
Expected statement, encountered "PRIMT".
DTR>

The mistyped word in this example causes the error DTR$_SYNTAX, which has
following message definition:

SYNTAX/FAO=3/ERROR-
<Expected !AC, encountered "!AD". >

When DATATRIEVE displays the error message, it substitutes the string
‘‘statement’’ for !AC and the string ‘‘PRIMT’’ for !AD. Note that the FAO=3
qualifier specifies the total number of parameters for all directives in the message
text. Remember that !AD takes two parameters.

Suppose you want to reformat the DTR$_SYNTAX error message. You want to
change the dialogue in the previous example to:

DTR> PRIMT EMPLOYEES WITH LOCATION = "MK"
PRIMT EMPLOYEES WITH LOCATION = "MK"
^
You entered "PRIMT".
I was expecting a statement . . . Try again.
DTR>

Customizing DATATRIEVE Messages 6–9

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

To make this change, use an editor to edit the current message text in
DTRMSGS.MSG:

<Expected !AC, encountered "!AD". >

Change this text to:

<You entered !+"!AD".!/I was expecting a !-!-!-!AC!3*. Try again. >

In this example, the parameter interpretation directives !+ and !- are used to
indicate the reversal of the order of the substitution directives. In the original
message definition, DATATRIEVE substitutes one parameter for !AC and then
two for !AD.

In the new message definition, the !+ directive causes DATATRIEVE to skip the
first parameter and substitute the next two in !AD. The three !- directives cause
DATATRIEVE to back up to the first parameter and substitute it in !AC.

In addition to the parameter interpretation directives, this example contains two
formatting directives. The !/ directive inserts a new line, and the !3*. directive
inserts three periods (. . .).

6.2.3 Compile the Message Source File
After you edit DTRMSGS.MSG to make the desired changes, use the MESSAGE
command to compile the message source file:

$ MESSAGE DTRMSGS.MSG

This command creates a DTRMSGS.OBJ file in your default directory.

For more information about the MESSAGE command, enter HELP MESSAGE or
refer to the VMS documentation set.

6.2.4 Link the Object File
After you create an object file, use the LINK command to create the file
DTRMSGS.EXE:

$ LINK/SHAREABLE=DTRMSGS.EXE DTRMSGS.OBJ

The DTRMSGS.EXE file that the LINK command creates is a nonexecutable
message file.

6–10 Customizing DATATRIEVE Messages

Customizing DATATRIEVE Messages
6.2 How to Change DATATRIEVE Messages

6.2.5 Replace the Old DTRMSGS.EXE File with the New One
If you want DATATRIEVE to display the changed messages to all users on your
system, copy the new DTRMSGS.EXE message file to SYS$COMMON. You must
have write access to SYS$COMMON to do this. Use the command:

$ COPY DTRMSGS.EXE SYS$COMMON:DTRMSGS.EXE

If you want DATATRIEVE to display the changed messages only to selected
users, assign the process logical DTRMSGS to the new DTRMSGS.EXE file
for each of these users. For example, if the new DTRMSGS.EXE is in the
DB3:[CASSIDY.WORK] directory, use the following command:

$ ASSIGN "DB3:[CASSIDY.WORK]DTRMSGS.EXE" DTRMSGS

Users who want DATATRIEVE to display the changed messages can include this
command in their LOGIN.COM file.

Customizing DATATRIEVE Messages 6–11

7
Customizing ADT and Guide Mode

ADT (Application Design Tool) is a DATATRIEVE utility that helps users define
domains, records, and files. Operating interactively, ADT guides the user through
the process of defining data and creating data files. In addition, ADT lets the
user insert domain and record definitions in the dictionary.

To use ADT, enter the following command at the DATATRIEVE prompt:

DTR> ADT

Guide Mode is a DATATRIEVE utility that guides you through a DATATRIEVE
session with a series of prompts. In Guide Mode, you can get a list of all the valid
commands, statements, names, or value expressions that can be entered at the
point the list is requested.

Guide Mode is particularly useful to the new user who wants assistance during
a DATATRIEVE session. To try a session in Guide Mode, enter the following
command:

DTR> SET GUIDE

This chapter explains how you can customize ADT and Guide Mode to suit the
needs of your working environment.

7.1 Customizing ADT
ADT displays a series of prompts and provides help text to aid users in defining
data and creating data files. To change these prompts or help text, follow these
steps:

1. Copy the ADT text file to one of your own directories.

2. Use DATATRIEVE to modify or add ADT text.

3. Replace the old ADT text file with the new one.

The following sections describe these steps.

Customizing ADT and Guide Mode 7–1

Customizing ADT and Guide Mode
7.1 Customizing ADT

7.1.1 Copy the ADT Text File
The ADT text file, DTRADT.DAT, is located in SYS$LIBRARY. Copy it to one of
your directories, keeping the name DTRADT.DAT; for example:

$ COPY SYS$LIBRARY:DTRADT.DAT DB0:[CASSIDY.DTR]DTRADT.DAT

7.1.2 Modify ADT Text
Before you begin to modify ADT text, you should have enough experience with
ADT to know what ADT text elements you want to change. Note that ADT offers
you two sets of prompts to guide you through a session: brief and detailed.

All ADT prompts and help text are in the file DTRADT.DAT. You can modify all
text by using the DATATRIEVE domain ADT_TEXT.

7.1.2.1 Ready the ADT_TEXT Domain
After you copy DTRADT.DAT to one of your directories, invoke DATATRIEVE
from that directory. Set your default dictionary directory to
CDD$TOP.DTR$LIB.ADT and ready the domain ADT_TEXT:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.ADT
DTR> READY ADT_TEXT MODIFY

ADT_TEXT has the following definition:

DOMAIN ADT_TEXT USING ADT_TEXT_REC ON DTRADT.DAT;

ADT_TEXT has the following record definition:

RECORD ADT_TEXT_REC USING
01 KEYED_TEXT.

05 ACCESS_KEY WORD.
05 TEXT_STRING PIC X(80).

;

7.1.2.2 Modify ADT Text Strings
You can change any ADT text line using DATATRIEVE and the ADT_TEXT
domain. For example, the first ADT prompt is as follows:

Do you want detailed prompts? (YES or NO) :

If you respond with NO, ADT displays its brief prompt:

Enter domain name :

If you type YES, ADT displays its detailed prompt:

Enter the name for your domain. Start with a letter and use letters, digits,
hyphens (-), or underscores (_). (No spaces or tabs) :

7–2 Customizing ADT and Guide Mode

Customizing ADT and Guide Mode
7.1 Customizing ADT

The following example shows one way to modify the detailed prompt.

DTR> PRINT ADT_TEXT WITH TEXT_STRING CONT "for your domain"

ACCESS TEXT
KEY STRING

6146
Enter the name for your domain.

DTR> ! Use the ACCESS_KEY to find all lines of this prompt:
DTR> FIND ADT_TEXT WITH ACCESS_KEY = 6146
[4 records found]
DTR> PRINT ALL TEXT_STRING

TEXT
STRING

Enter the name for your domain.
Start with a letter and use letters,
digits, hyphens (-), or underscores (_).
(No spaces or tabs) :

DTR> SELECT 4
DTR> MODIFY TEXT_STRING
Enter TEXT_STRING: Do not use spaces or tabs :
DTR> PRINT TEXT_STRING

TEXT
STRING

Do not use spaces or tabs :

DTR>

You should modify only the TEXT_STRING field of ADT_TEXT records. Changing
the ACCESS_KEY field can result in errors during ADT sessions.

Some of the text strings contain FAO directives such as !+ and !AC. These
directives are used to format ADT text and to substitute text strings in ADT text
lines. You can use FAO directives to format ADT text in the same way you use
these directives to format DATATRIEVE messages. For information about using
FAO directives, refer to Chapter 6 and to the VMS documentation set.

7.1.2.3 Add ADT Text Strings
You can add to the ADT prompts and help text. For example, when ADT prompts
for a file name, entering a question mark produces the following help text:

DATATRIEVE uses this file name in the DEFINE DOMAIN command
to find your data for the domain

Customizing ADT and Guide Mode 7–3

Customizing ADT and Guide Mode
7.1 Customizing ADT

The following example shows how you can modify and add to this text:

DTR> READY ADT_TEXT WRITE
DTR> FIND THIS IN ADT_TEXT WITH TEXT_STRING CONT
CON> "uses this file name"
[1 record found]
DTR> SELECT
DTR> LIST THIS.ACCESS_KEY

ACCESS_KEY : 3843

DTR> FOR ADT_TEXT WITH ACCESS_KEY = THIS.ACCESS_KEY
CON> BEGIN
CON> PRINT SKIP, TEXT_STRING(-), SKIP
CON> MODIFY TEXT_STRING
CON> END

DATATRIEVE uses this file name in the DEFINE DOMAIN command

Enter TEXT_STRING: DATATRIEVE creates a file with the name you specify.

to find your data for the domain.

Enter TEXT_STRING: For example, if you enter EMPLOYEE,
DTR> REPEAT 2 STORE ADT_TEXT USING
CON> BEGIN
CON> ACCESS_KEY = THIS.ACCESS_KEY
CON> TEXT_STRING = *."new text"
CON> END
Enter new text: DATATRIEVE creates a file named EMPLOYEE.DAT.
Enter new text: DATATRIEVE uses this file to store your data.
DTR> PRINT TEXT_STRING OF ADT_TEXT WITH
CON> ACCESS_KEY = THIS.ACCESS_KEY

TEXT
STRING

DATATRIEVE creates a file with the name you specify.
For example, if you enter EMPLOYEE,
DATATRIEVE creates a file named EMPLOYEE.DAT.
DATATRIEVE uses this file to store your data.

DTR>

This example shows that you can add records to DTRADT.DAT. The records you
add should use an existing ACCESS_KEY. If you define a record with a new
ACCESS_KEY, ADT does not display the associated text.

7–4 Customizing ADT and Guide Mode

Customizing ADT and Guide Mode
7.1 Customizing ADT

7.1.2.4 Messages During an ADT Session
Some text that you see during an ADT session is not in the DTRADT.DAT file.
For example, if you incorrectly answer a prompt that requires a YES or NO, you
get the following message:

Please answer with either YES (Y) or NO (N).

This message and a number of others are located in the DATATRIEVE message
file DTRMSGS.MSG. Messages specific to ADT begin with the letters ADT. If you
want to modify these messages, follow the procedure described in Chapter 6.

7.1.3 Replace the Old ADT Text File with the New One
If you want ADT to display your new text to all DATATRIEVE users, copy your
new DTRADT.DAT file to SYS$LIBRARY:

$ COPY DTRADT.DAT SYS$LIBRARY:DTRADT.DAT/PROTECTION=WORLD:R

You must have write access to SYS$LIBRARY to do this.

If you want DATATRIEVE to display the new ADT text only to selected users,
assign the process logical name DTRADT to the new DTRADT.DAT file for
each of these users. For example, if the new DTRADT.DAT file is in the
DB0:[CASSIDY.DTR] directory, use the following command:

$ ASSIGN "DB0:[CASSIDY.DTR]DTRADT.DAT" DTRADT

Users who want DATATRIEVE to display the new ADT text can include this
command in their LOGIN.COM files.

DATATRIEVE supplies the file specification SYS$LIBRARY:DTRADT.DAT, which
becomes SYS$SYSROOT:[SYSLIB]DTRADT.DAT. If the file specification in the
ASSIGN command is not complete, DATATRIEVE does not replace that part of
the specification. For example:

$ ASSIGN "DBA3:DTRADT" DTRADT

The full file specification for the ADT text file becomes
DBA3:[SYSLIB]DTRADT.DAT. DATATRIEVE will not look in your default
directory for the file.

7.2 Customizing Guide Mode
You can invoke Guide Mode at two different levels: simple and advanced. When
you enter the command SET GUIDE, you get the simple level of Guide Mode. If
you enter SET GUIDE ADVANCED, you get the advanced level.

Customizing ADT and Guide Mode 7–5

Customizing ADT and Guide Mode
7.2 Customizing Guide Mode

The difference between these levels is the commands, statements, or options you
can use. Table 7–1 shows what is available at the simple and advanced levels.

Table 7–1 Guide Mode Levels

Command, Statement, or
Option Level at which it is available

FIND Both

MODIFY Both

PLOT Advanced

PRINT Both

READY Both

REPORT Advanced

SELECT Both

SET Both

SHOW Both

SORT Both

STORE Both

: (to invoke procedures) Advanced

AUTO_FINISH Neither

This table shows the default distribution of the available commands and
statements. You can change the default and specify which commands are
available at what level. You can also use the AUTO_FINISH option to specify
whether or not DATATRIEVE completes words as they are entered at the
terminal.

The following steps are necessary to customize Guide Mode:

1. Copy the DTRGUIDE.DAT file to one of your own directories.

2. Use DATATRIEVE to modify the distribution of commands, statements, and
options available at each Guide Mode level.

3. Replace the old DTRGUIDE.DAT file with the new one.

The following sections describe each of these steps.

In addition to distributing features between GUIDE and GUIDE ADVANCED,
you can customize all of the Guide Mode prompts and informational text. This
text is located in DTR$LIBRARY:DTRMSGS.MSG. Prompt messages begin with

7–6 Customizing ADT and Guide Mode

Customizing ADT and Guide Mode
7.2 Customizing Guide Mode

GPR and informational messages begin with GUI. Chapter 6 explains how to
customize these messages.

7.2.1 Copy the DTRGUIDE.DAT File
The file DTRGUIDE.DAT is located in SYS$LIBRARY. It contains data that
defines the distribution of commands, statements, and options in simple and
advanced Guide Mode.

You can copy DTRGUIDE.DAT to one of your directories as follows:

$ COPY SYS$LIBRARY:DTRGUIDE.DAT DB0:[HAMMOND.DTR]

You can also have DATATRIEVE create a new DTRGUIDE.DAT file as follows:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.GUIDE
DTR> :STORE_DEFAULT_OPTIONS

7.2.2 Modify the Distribution of Commands and Statements
After you have a copy of DTRGUIDE.DAT in your default VMS direc-
tory, invoke DATATRIEVE and set your default dictionary directory to
CDD$TOP.DTR$LIB.GUIDE. You can then invoke the procedure LIST_OPTIONS
to see the current distribution:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.GUIDE
DTR> :LIST_OPTIONS
STORE_OPT : BOTH
MODIFY_OPT : BOTH
PLOT_OPT : ADVANCED
REPORT_OPT : ADVANCED
PRINT_OPT : BOTH
SORT_OPT : BOTH
SELECT_OPT : BOTH
FIND_OPT : BOTH
READY_OPT : BOTH
SHOW_OPT : BOTH
SET_OPT : BOTH
PROCEDURE_OPT : ADVANCED
AUTO_FINISH : NEITHER

DTR>

The left-hand column lists each command, statement, or option available in Guide
Mode. The right-hand column indicates at what level each is available. You have
the following choices for each command, statement, or option:

• BOTH (0)

The command, statement, or option can be used in both levels of Guide Mode.

• ADVANCED (1)

Customizing ADT and Guide Mode 7–7

Customizing ADT and Guide Mode
7.2 Customizing Guide Mode

The command, statement, or option can be used only in advanced Guide
Mode.

• SIMPLE (2)

The command, statement, or option can be used only in simple Guide Mode.

• NEITHER (3)

The command, statement, or option cannot be used in either Guide Mode.

To see what choice corresponds to what number, enter:

DTR> SHOW OPTIONS_TABLE

To change the distribution of commands, statements, and options, use the domain
OPTIONS. Ready the domain for modify access and print its single record:

DTR> READY OPTIONS MODIFY
DTR> PRINT OPTIONS

STORE MODIFY PLOT REPORT PRINT SORT SELECT FIND READY SHOW SET PROCEDURE AUTO
OPT OPT OPT OPT OPT OPT OPT OPT OPT OPT OPT OPT FINISH
0 0 1 1 0 0 0 0 0 0 0 1 3

DTR>

Change the distribution of commands, statements, or options to suit your needs.
For example:

DTR> FIND OPTIONS
[1 record found]
DTR> SELECT
DTR> !Make the plot statement available at both levels
DTR> MODIFY PLOT_OPT
Enter PLOT_OPT: 0
DTR> !Make the STORE statement available only in advanced Guide Mode
DTR> MODIFY USING STORE_OPT = "ADVANCED" VIA OPTIONS_TABLE
DTR>

7.2.3 Replace the Old DTRGUIDE.DAT with the New One
If you want your new arrangement of simple and advanced Guide Mode to be the
default for all users, copy the new DTRGUIDE.DAT file to SYS$LIBRARY:

$ COPY DTRGUIDE.DAT SYS$LIBRARY:DTRGUIDE.DAT/PROTECTION=WORLD:R

You must have write access to SYS$LIBRARY to do this.

If you want your arrangement to be available only to selected users, assign
the process logical name DTRGUIDE to the new DTRGUIDE.DAT file for
those users. For example, if the new DTRGUIDE.DAT is in the directory
DB0:[HAMMOND.DTR], use the following command:

$ ASSIGN "DB0:[HAMMOND.DTR]DTRGUIDE.DAT" DTRGUIDE

7–8 Customizing ADT and Guide Mode

Customizing ADT and Guide Mode
7.2 Customizing Guide Mode

Users who want to use your arrangement of Guide Mode can include this
command in their LOGIN.COM file.

Note that DATATRIEVE supplies the default file specification of
SYS$LIBRARY:DTRGUIDE.DAT, which becomes
SYS$SYSROOT:[SYSLIB]DTRGUIDE.DAT. If the file specification in the ASSIGN
command is not complete, DATATRIEVE does not replace that part of the
specification. For example:

$ ASSIGN "DBA3:DTRGUIDE" DTRGUIDE

The full file specification for the Guide Mode file becomes
DBA3:[SYSLIB]DTRGUIDE.DAT. DATATRIEVE will not look in your default
directory for the file.

Customizing ADT and Guide Mode 7–9

8
Customizing DATATRIEVE Text

Chapters 5, 6, and 7 explain how to customize DATATRIEVE help text, messages,
ADT, and Guide Mode. There are other text elements that DATATRIEVE
understands or displays. This chapter explains how to customize these additional
text elements.

To customize DATATRIEVE text, you must create and install a new
DATATRIEVE shareable image. This requires the privileges SYSPRV and
CMKRNL.

8.1 DATATRIEVE Text
You can modify several types of DATATRIEVE text:

• Syntax prompts

• Responses to SHOW commands

• Date text

• Default edit strings

• Statistical expressions

• Keywords

The following sections give examples of each type of text.

8.1.1 Syntax Prompt Text
Some DATATRIEVE text is embedded in the DATATRIEVE syntax prompt
message, which is defined in the DATATRIEVE message file DTRMSGS.MSG.
Here is an example:

Customizing DATATRIEVE Text 8–1

Customizing DATATRIEVE Text
8.1 DATATRIEVE Text

DTR> READY
[Looking for dictionary path name] 1
CON> PERSONNEL
DTR> FIND
[Looking for name of domain, collection, or list] 1
CON> PERSONNEL
[24 records found]
DTR> SORT
[Looking for sort list] 1
CON> BY LAST_NAME
DTR>

Each of the messages highlighted by the callout 1 is an instance of DTR$_
LOOKINFOR, the DATATRIEVE syntax prompt. The DTR$_LOOKINFOR
message has the following format:

[Looking for <text string>]

The text string DATATRIEVE inserts in this message depends on the context of
your command or statement.

If you want to change the ‘‘Looking for’’ part of the message, follow the procedure
described in Chapter 6. The remainder of this chapter explains how to change
DATATRIEVE text such as ‘‘dictionary path name,’’ ‘‘name of domain, collection,
or list,’’ and ‘‘sort list.’’

8.1.2 SHOW Text
Another kind of text is what DATATRIEVE displays in response to a SHOW
command. Here is an example:

DTR> SHOW FIELDS PERSONNEL
PERSONNEL

PERSON
ID <Number, primary key>
EMPLOYEE_STATUS (STATUS) <Character string>
EMPLOYEE_NAME (NAME)

FIRST_NAME (F_NAME) <Character string>
LAST_NAME (L_NAME) <Character string>

DEPT <Character string>
START_DATE <Date>
SALARY <Number>
SUP_ID <Number>

DTR>

In this example, you can change the text that describes the fields Primary key,
Number, Character string, and Date.

8–2 Customizing DATATRIEVE Text

Customizing DATATRIEVE Text
8.1 DATATRIEVE Text

8.1.3 Date Text
DATATRIEVE text that you can customize includes date text, as illustrated in
the following example:

DTR> DECLARE X DATE.
DTR> X = "YESTERDAY"
DTR> PRINT X

X

16-Sep-1982

DTR>

In this example, you can change the DATATRIEVE date value expression
‘‘YESTERDAY.’’ You can also change the value expressions ‘‘TODAY,’’
‘‘TOMORROW,’’ and ‘‘NOW.’’ For example, you can translate these words or
month and day names into a foreign language.

8.1.4 Default Edit Strings
In the previous example, DATATRIEVE displays a date in the default format:

16-Sep-1982

You can change the default edit strings for dates, standard deviations, and
floating point numbers.

8.1.5 Statistical Text
You can use a number of statistical expressions such as COUNT, TOTAL, and
AVERAGE to summarize your data. Here is an example:

DTR> FIND PERSONNEL WITH DEPT = "D98"
[5 records found]
DTR> PRINT COUNT, AVERAGE SALARY, STD_DEV SALARY

STANDARD
AVERAGE DEVIATION

COUNT SALARY SALARY

5 $40,095 1.3369E+04

DTR>

In this example, you can change the default headers COUNT, AVERAGE and
STANDARD DEVIATION.

Customizing DATATRIEVE Text 8–3

Customizing DATATRIEVE Text
8.1 DATATRIEVE Text

8.1.6 Keywords
You can customize all DATATRIEVE keywords by using the DECLARE
SYNONYM statement.

You can also customize the following keywords as DATATRIEVE text:

ADT HELP_WINDOW

CLOSE HELP_LINES

EDIT NO_HELP_PROMPT

EXIT NO_HELP_WINDOW

GUIDE OPEN

HELP @ (command file invocation)

HELP_PROMPT

If you change any of these commands in the text file, DATATRIEVE no longer
recognizes the original command as a keyword. For example, if you translate
HELP to HILFE, you remove the keyword HELP from the DATATRIEVE
vocabulary. If you need to use both the HELP and HILFE commands, you can
declare HELP as a synonym for HILFE.

8.2 How to Change DATATRIEVE Text
Follow these steps to change DATATRIEVE text:

1. Copy the DATATRIEVE text file to one of your own directories.

2. Edit the text file to make the desired changes.

3. Assemble the text file to produce the text object file.

4. Replace the text object file in DTRLIBxx.OLB.

5. Relink the DATATRIEVE shareable image.

The following sections describe each of these steps.

8.2.1 Copy the DATATRIEVE Text File
The DATATRIEVE text file DTRTEXT.MAR is located in DTR$LIBRARY. Use the
COPY command to copy this file to one of your own directories:

$ COPY DTR$LIBRARY:DTRTEXT.MAR DB0:[NAPRA]*.*

This command creates a copy of DTRTEXT.MAR in the DB0:[NAPRA] directory.

8–4 Customizing DATATRIEVE Text

Customizing DATATRIEVE Text
8.2 How to Change DATATRIEVE Text

8.2.2 Edit the Text File
The DATATRIEVE text file DTRTEXT.MAR is written in VAX MACRO. It
contains all the DATATRIEVE text entries. Here is one of them:

DTRTEXT_ENTRY DTR$$K_TXT_PRM_RSE,-
^\name of domain, collection, or list\

This entry defines a prompting text string. DATATRIEVE displays this text in its
‘‘[Looking for . . .]’’ syntax prompt.

Each entry in DTRTEXT.MAR has a similar format. The DATATRIEVE text is
enclosed by the opening circumflex and backslash (^ \) and closing backslash (\)
delimiters. This is the only part of the text file you should change. Changing
any other part of the file may cause errors when you attempt to assemble
DTRTEXT.MAR or in the text DATATRIEVE displays.

Use an editor to make the desired changes to the text within the ^\ and
\ delimiters. For example, if you want to change the default format that
DATATRIEVE uses to display dates, find the following entry:

DTRTEXT_ENTRY DTR$$K_TXT_DAT_PIC,-
^\DD-MMM-YYYY\

Change the text to:

^\DD-M(9)-YYYY\

Here is the result of this change:

DTR> DECLARE X DATE.
DTR> X = "YESTERDAY"
DTR> PRINT X

X

16-September-1987

DTR>

If you want to change the value expression ‘‘YESTERDAY,’’ find the entry in
DTRTEXT.MAR:

DTRTEXT_ENTRY DTR$$K_TXT_DAT_YESTER,-
^\YESTERDAY\

Now use an editor to change the string ‘‘YESTERDAY.’’ This is all that is required
to edit the DATATRIEVE text file.

Customizing DATATRIEVE Text 8–5

Customizing DATATRIEVE Text
8.2 How to Change DATATRIEVE Text

8.2.3 Assemble the Text File
After you edit DTRTEXT.MAR, assemble it with the following command:

$ MACRO DTRTEXT

This command creates the object file DTRTEXT.OBJ in your default directory.

8.2.4 Replace the Text Object File in DTRLIBxx.OLB
After you create the text object file, replace it in the library file
DTR$LIBRARY:DTRLIBxx.OLB. If the new object file is in your default directory,
you can use the command:

$ LIBRARY/REPLACE DTR$LIBRARY:DTRLIBxx DTRTEXT

8.2.5 Relink the DATATRIEVE Shareable Image
After you replace the DTRTEXT.OBJ in the library file, you must relink the
DATATRIEVE shareable image. Use the command procedure DTRBLDxx.COM to
relink DATATRIEVE. When you relink, you must be sure that the shareable
image you relink against is from the most recently installed version of
DATATRIEVE.

To relink VAX DATATRIEVE, execute the command file DTRBLDxx:

$ @DTR$LIBRARY:DTRBLDxx

8–6 Customizing DATATRIEVE Text

9
Translating DATATRIEVE

This chapter shows you how to translate DATATRIEVE into a foreign language.
It describes how you should plan your translation and how to implement the
translation.

You can translate all DATATRIEVE information management services for
speakers of foreign languages. For example, here is a sample dialogue with
DATATRIEVE in German:

$ DTR32
VAX DATATRIEVE V5.0
DEC Abfrage und Report System
Tippe HILFE fuer Hilfe
DTR> ZEIGE BEREICHE
Bereiche:

* BESITZER * FAMILIEN * JACHTEN * JAHRESBERICHT
* PERSONAL

DTR> AKTIVIERE PERSONAL
DTR> ZEIGE BERIRT
Element "BERIRT" nicht im Lexikon gefunden.
DTR> ZEIGE ACTIVIERT
Bereitete Bereiche:

PERSONAL: Bereich, RMS indiziert, geschuetzter Lesezugriff
<CDD$TOP.KELLER.PERSONAL>

Keine Tabellen geladen.

DTR> ZEIGE FELDER FUER PERSONAL
PERSONAL

PERSON
AUSWEISNUMMER (NUMMER) <Zahl, indiziertes Schluesselfeld>
STATUS <Zeichenfolge>
NAME (NAME)

VORNAME <Zeichenfolge>
NACHNAME <Zeichenfolge>

ABTEILUNG (ABT) <Zeichenfolge>
ANFANGSDATUM (DATUM) <Datum>
GEHALT <Nummer>
VORGESETZTER_NUMMER <Nummer>

Translating DATATRIEVE 9–1

Translating DATATRIEVE

DTR> SUCHE PERSON IN PERSONAL MIT ABTEILUNG = "D98"
[4 Saetze gefunden]
DTR> DRUCKE NACHNAME, NUMMER, DATUM, GEHALT VON
[Suche Name eines Bereichs, einer Sammlung, oder Liste]
CON> PERSON SORTIERT NACH DATUM DRUCKE
[Suche Anweisung]
CON> DRUCKE SPALTE 30, SUMME GEHALT ("GESAMTGEHALT") IM AUSGABEFORMAT
[Suche Masken- oder Aufbereitungszeichenkette]
CON> 999B999B"DM"

AUSWEIS ANFANGS
NACHNAME NUMMER DATUM GEHALT

NALEVO 84375 3-Jan-1976 56 847 DM
TERRICK 39485 2-Mai-1977 55 829 DM
TERRY 02943 2-Jan-1980 29 908 DM
HAMMER 49843 4-Aug-1981 26 392 DM

GESAMTGEHALT

168 976 DM

DTR> ENDE
$

As the example shows, you can make DATATRIEVE understand and respond in a
foreign language. This chapter explains how.

9.1 Planning Your Translation
Before you begin your translation, you should read Chapters 4, 5, 6, 7, and 8
to learn about the elements of DATATRIEVE you need to translate. Knowing
what these elements are and how to customize them will help you plan your
translation.

DATATRIEVE runs on the VMS operating system and works with a number
of other software products. In designing your translation of DATATRIEVE,
you should take into account how these interrelated products will affect your
DATATRIEVE translation. For example, when you invoke a text editor such as
EDT or VAXTPU with the EDIT command, the messages and help text that the
editor displays belong to the editor and not to DATATRIEVE. Thus, to completely
translate DATATRIEVE, you also need to translate the help text and messages
for the editor, if possible.

Another service DATATRIEVE uses is the VMS Help facility. The help text
DATATRIEVE displays is part of DATATRIEVE. However, the prompts ‘‘Topic?’’
and ‘‘Subtopic?’’ at the bottom of the display come from the VMS Help facility. To
translate these prompts, you need to translate the VMS Help library.

9–2 Translating DATATRIEVE

Translating DATATRIEVE
9.1 Planning Your Translation

Other text DATATRIEVE displays come from a VAX CDD/Repository dictionary,
VAX Record Management Services (RMS), VAX DBMS, and other VAX software
products. This chapter discusses only the translation of DATATRIEVE.

9.2 How to Translate DATATRIEVE
To translate DATATRIEVE, you need to translate:

• Keywords

• Help text

• Messages

• ADT text

• Remaining text elements

• Names of functions

Then you need to relink the DATATRIEVE shareable image. To create a new
shared image you must have the privileges SYSPRV and CMKRNL.

9.2.1 Translating Keywords
In order to make DATATRIEVE respond to commands and statements in a
foreign language, you must translate all DATATRIEVE keywords. Refer to the
VAX DATATRIEVE Reference Manual for a list of keywords.

You can translate keywords by declaring foreign-language synonyms for each
keyword and inserting these declarations in your DATATRIEVE startup command
file.

If you do not have a DATATRIEVE startup command file, create one as follows:

1. Use an editor to create a file. For example:

$ EDIT DB2:[KELLER.DTR]DTRSTART.COM

2. Assign the logical name DTR$STARTUP to this file. For example, insert the
following command in your LOGIN.COM file:

$ ASSIGN "DB2:[KELLER.DTR]DTRSTART.COM" DTR$STARTUP

Each time you invoke DATATRIEVE, DATATRIEVE executes the contents of
your startup command file. Thus, you can include your keyword translations in
this file. For example, you can insert the following statement into your startup
command file:

Translating DATATRIEVE 9–3

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

DECLARE SYNONYM ALLES FOR ALL,
ALLE FOR ALL,
BEREICH FOR DOMAIN,
BEREICHE FOR DOMAINS,
AKTIVIERE FOR READY,
ACTIVIERT FOR READY,
DATUM FOR DATE,
DRUCKE FOR PRINT,
HILFE FOR HELP,
ZEIGE FOR SHOW

Each phrase in this statement creates a German equivalent for an English
keyword.

Note that some English keywords require more than one German synonym. For
example, the English word READY has a different function in the following
examples:

DTR> READY PERSONNEL

DTR> SHOW READY

In German, each of these uses of READY requires a different translation:

DTR> AKTIVIERE PERSONNEL

DTR> ZEIGE ACTIVIERT

Other DATATRIEVE keywords require multiple translations. For example, the
keyword ALL requires two translations in German and three in Spanish:

English German Spanish

SHOW ALL ZEIGE ALLES MUESTRA TODO

PRINT ALL
EMPLOYEES

DRUCKE ALLE
ANGESTELLTE

IMPRIME TODOS EMPLEADOS

IMPRIME TODAS EMPLEADAS

9.2.2 Translating Help Text
After you translate the DATATRIEVE keywords, you can translate help text for
them. Use the following procedure:

1. Copy the DATATRIEVE help library to one of your directories:

$ COPY SYS$HELP:DTRHELP.HLB
$_To: DB2:[KELLER.HELP]NEWHELP.HLB

2. Use the LIBRARY command to extract all the help text from the library:

$ LIBRARY/HELP/EXTRACT=* NEWHELP

This command creates the text file NEWHELP.HLP in your default directory.

9–4 Translating DATATRIEVE

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

3. Translate the text file NEWHELP.HLP. The following example shows the help
text for the statement FIND:

1 FIND
The FIND statement brings together a collection of records from a
domain or a previously established collection. The form of the
statement is:

FIND rse

where rse is a record selection expression (see HELP RSE). The
number of records found is printed on your terminal.

For example, gather a collection of yachts:

FIND YACHTS WITH LENGTH_OVER_ALL BETWEEN 26 AND 30

This makes a collection named CHEAP_ONES:

FIND CHEAP_ONES IN YACHTS WITH PRICE < 15000

Use a text editor to translate this text. The following example shows a sample
translation:

1 SUCHE
Die SUCHE Anweisung enthaelt eine Satzsammlung von einem
Bereich oder von einer vorher aufgestellten Sammlung.
Das Format der Anweisung ist:

SUCHE sa

worin "sa" ein Auswahlkriterium ist (siehe HILFE SA). Die
Zahl der gefundenen Saetze ist auf Ihrem Bildschirm angezeigt.

Zum Beispiel, stelle eine Sammlung von JACHTEN auf:

SUCHE JACHTEN MIT LAENGE ZWISCHEN 26 UND 30

Oder, stelle eine Sammlung genannt BILLIGE auf:

SUCHE BILLIGE IN JACHTEN MIT PREIS < 15000

4. Replace the translated text file NEWHELP.HLP in the help library:

$ LIBRARY/HELP/REPLACE
_Library: NEWHELP.HLB
_File: NEWHELP.HLP

5. Replace the old DTRHELP.HLB file with the new one. You can do this in two
ways:

• To access the translated text from your current process, assign the logical
name DTRHELP to NEWHELP.HLB:

$ ASSIGN "DB2:[KELLER.HELP]NEWHELP.HLB" DTRHELP

Translating DATATRIEVE 9–5

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

• To update the help file for all users on the system, copy the
NEWHELP.HLB file to DTRHELP.HLB in the SYS$HELP directory
(you must have write access to SYS$HELP to do this):

$ COPY DB2:[KELLER.HELP]NEWHELP.HLB
_To: SYS$HELP:DTRHELP.HLB

When you invoke DATATRIEVE and enter HILFE SUCHE, DATATRIEVE
displays your translated help text.

For more detailed information about modifying DATATRIEVE help text, refer to
Chapter 5.

9.2.3 Translating Messages
To translate DATATRIEVE messages follow these steps:

1. Copy the DATATRIEVE message source file to one of your own directories:

$ COPY DTR$LIBRARY:DTRMSGS.MSG
_To: DB2:[KELLER.MSG]NEWMSGS.MSG

This command creates a copy of DTRMSGS.MSG called NEWMSGS.MSG in
your default directory.

2. Edit the message source file to make the desired changes. For example, to
change the top line of the ADT video display, find the following message
definition:

ADTIVIDEO/FAO=0/INFORMATIONAL-
<A D T ? - Help ! - Fields < - Back up PF2 - Screen Help>

Translate the text portion of the message definition:

ADTIVIDEO/FAO=0/INFORMATIONAL-
<A D T ? - Hilfe ! - Felder < - Zurueckgehen PF2 - Bildschirm Hilfe>

3. Compile the translated message source file to create an object file:

$ MESSAGE DB2:[KELLER.MSG]NEWMSGS.MSG

4. Link the object file to create the file NEWMSGS.EXE:

$ LINK/EXECUTABLE=NEWMSGS.EXE NEWMSGS.OBJ

5. Replace the old DTRMSGS.EXE file with the new one. You can do this in two
ways:

• To access the translated text from your current process, assign the logical
name DTRMSGS to NEWMSGS.EXE:

$ ASSIGN "DB2:[KELLER.MSG]NEWMSGS.EXE" DTRMSGS

9–6 Translating DATATRIEVE

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

• To update the message file for all users on the system, copy the
NEWMSGS.EXE to DTRMSGS.EXE in the SYS$MESSAGE directory.
(You must have write access to SYS$MESSAGE to do this.)

$ COPY DB2:[KELLER.MSG]NEWMSGS.EXE
_To: SYS$MESSAGE:DTRMSGS.EXE

For more detailed information about modifying DATATRIEVE messages, refer to
Chapter 6.

9.2.4 Translating ADT
To translate ADT, follow these steps:

1. Copy the ADT text file to one of your own directories:

$ COPY SYS$LIBRARY:DTRADT.DAT
_To: DB0:[CASS.DTR]DTRADT.DAT

2. Invoke DATATRIEVE and use the ADT_TEXT domain to translate text
entries:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.ADT
DTR> READY ADT_TEXT WRITE
DTR> FIND ADT_TEXT WITH TEXT_STRING CONT
CON> "Enter domain name :"
[1 record found]
DTR> MODIFY CURRENT USING
CON> TEXT_STRING = "Bereichsname eingeben :"
DTR>

3. Replace the old DTRADT.DAT file with the new one. You can do this in two
ways:

• To access the translated text from your current process, assign the logical
name DTRADT to your version of the file:

$ ASSIGN "DB0:[CASS.DTR]DTRADT" DTRADT

• To update the text file for all users on the system, copy the new
DTRADT.DAT to the SYS$LIBRARY directory. (You must have write
access to SYS$LIBRARY to do this.)

$ COPY DB0:[CASS.DTR]DTRADT.DAT
_To: SYS$LIBRARY:DTRADT.DAT

For more detailed information about modifying ADT text, refer to Chapter 7.

Translating DATATRIEVE 9–7

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

9.2.5 Translating the Remaining Text Elements
After you translate help, ADT, and messages, you need to translate the remaining
DATATRIEVE display text. Use the following procedure to translate this text:

1. Copy the DATATRIEVE text file to one of your own directories:

$ COPY DTR$LIBRARY:DTRTEXT.MAR
_To: DB2:[KELLER.TXT]DTRTEXT.MAR

2. Edit the text file to make the desired changes. For example, to translate the
month names DATATRIEVE displays, find the text entries for each month:

DTRTEXT_ENTRY DTR$$K_TXT_DAT_JAN,-
^\January\

.

.

.
DTRTEXT_ENTRY DTR$$K_TXT_DAT_DEC,-

^\December\

Translate the text between the backslashes:

DTRTEXT_ENTRY DTR$$K_TXT_DAT_JAN,-
^\Januar\

.

.

.
DTRTEXT_ENTRY DTR$$K_TXT_DAT_DEC,-

^\Dezember\

3. When you finish translating the text entries, assemble the text file to produce
the text object file:

$ MACRO DB2:[KELLER.TXT]DTRTEXT

This command creates the file DTRTEXT.OBJ in your default directory.

4. Replace the text object file in the object library DTRLIBxx.OLB:

$ LIBRARY/REPLACE DTR$LIBRARY:DTRLIBxx.OLB
_File: DB2:[KELLER.TXT]DTRTEXT.OBJ

To see the results of your translation, you must relink DATATRIEVE as described
at the end of this chapter.

For more detailed information about modifying DATATRIEVE text, refer to
Chapter 8.

9–8 Translating DATATRIEVE

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

9.2.6 Translating the Names of Functions
You can use a number of DATATRIEVE functions to perform specific tasks. The
VAX DATATRIEVE Reference Manual describes these functions. Here is one
example:

DTR> PRINT FN$SQRT(2)

FN$SQRT

1.4142E+00

DTR>

The function in this example is FN$SQRT. You can translate the name of this and
all other DATATRIEVE functions. You can also translate the default header that
DATATRIEVE displays when you invoke the function. Thus, you can invoke the
FN$SQRT as follows:

DTR> DRUCKE QUADRATWURZEL(2)

Quadratwurzel

1.4142E+00

DTR>

To translate functions, follow these steps:

1. Copy the function definition file to one of your own directories:

$ COPY DTR$LIBRARY:DTRFNDxx.MAR
_To: DB2:[KELLER.FUN]DTRFNDxx.MAR

2. Edit the function definition file. For example, here is the definition of the
function FN$SQRT:

DTRFUN_DEF FN$SQRT, MTH$SQRT, 1
DTRFUN_OUT_ARG TYPE = FUN$K_VALUE, DTYPE = DSC$K_DTYPE_F
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_F, -

ORDER = 1
DTRFUN_END_DEF

Change the name of the function in the DTRFUN_DEF statement. For
example, change the name FN$SQRT to QUADRATWURZEL, the word for
square root in German. Next, use the DTRFUN_HEADER statement to
specify the default header for the function value. For example, insert the
following statement after DTR$FUN_DEF:

DTRFUN_HEADER HDR = <"Quadratwurzel">

Translating DATATRIEVE 9–9

Translating DATATRIEVE
9.2 How to Translate DATATRIEVE

Your translated function definition is as follows:

DTRFUN_DEF QUADRATWURZEL, MTH$SQRT, 1
DTRFUN_HEADER HDR = <"Quadratwurzel">
DTRFUN_OUT_ARG TYPE = FUN$K_VALUE, DTYPE = DSC$K_DTYPE_F
DTRFUN_IN_ARG TYPE = FUN$K_REF, DTYPE = DSC$K_DTYPE_F, -

ORDER = 1
DTRFUN_END_DEF

3. After you finish editing DTRFNDxx.MAR, assemble it with the command:

$ MACRO DB2:[KELLER.FUN]DTRFNDxx.MAR

This command creates the object file DTRFNDxx.OBJ.

4. Replace DTRFNDxx.OBJ in the function library DTR$LIBRARY:DTRFUNxx.
Use the following command:

$ LIBRARY/REPLACE DTR$LIBRARY:DTRFUNxx.OLB
_File: DB2:[KELLER.FUN]DTRFNDxx.OBJ

You should now relink the DATATRIEVE shareable image.

9.2.7 Relinking the DATATRIEVE Shareable Image
After you replace DTRFNDxx.OBJ in the object module library, you must
relink the DATATRIEVE shareable image. You use the command procedure
DTRBLDxx.COM to relink. When you relink, you must be sure that the
shareable image you link against is from the most recently installed version
of DATATRIEVE.

To relink DATATRIEVE, execute the command file
DTR$LIBRARY:DTRBLDxx.COM:

$ @DTR$LIBRARY:DTRBLDxx

Note that the files DTRFNDxx.MAR, DTRFUNxx.OLB, DTRLIBxx.OLB, and
DTRBLDxx.COM may have a suffix appended to the file name. For example,
DTRBLDxx.COM might be DTRBLDFMS.COM.

9–10 Translating DATATRIEVE

A
Definitions of the DATATRIEVE Access

Block

This appendix points you to directory locations where you can find definitions of
the DATATRIEVE Access Blocks (DABs). It also tells you where to find sample
programs and, finally, it describes the structure of the DAB for users who need
to define the DAB themselves to call DATATRIEVE routines from other VAX
languages.

A.1 Location of DATATRIEVE Access Blocks
The definitions of the DATATRIEVE Access Block (DAB) in VAX FORTRAN,
VAX COBOL, VAX BASIC, VAX Pascal, VAX PL/I, and VAX C are available
on-line. Copies of these inclusion files are supplied with the DATATRIEVE
installation kit and are placed in the DTR$LIBRARY directory.

Table A–1 lists the names of the DAB files for each language.

Table A–1 DAB Definition Files in DTR$LIBRARY

Language File Name

VAX BASIC DTR$LIBRARY:DAB.BAS

VAX COBOL DTR$LIBRARY:DAB.LIB

VAX FORTRAN DTR$LIBRARY:DAB.FOR

VAX Pascal DTR$LIBRARY:DAB.PAS

VAX PL/I DTR$LIBRARY:DAB.PLI

VAX C DTR$LIBRARY:DAB.H

Definitions of the DATATRIEVE Access Block A–1

Definitions of the DATATRIEVE Access Block
A.2 Location of Sample Programs

A.2 Location of Sample Programs
Users unfamiliar with DATATRIEVE can use the following FORTRAN, COBOL,
BASIC, Pascal, PL/I, and C programs to display data from three sample
DATATRIEVE domains. These programs are located in the DTR$LIBRARY
directory. Table A–2 shows you the programs name and the programming
language they refer to.

Table A–2 Sample Programs

Programming Language Program Name

FORTRAN EXAMPLE.FOR

COBOL EXAMPLE.COB

BASIC EXAMPLE.BAS

Pascal EXAMPLE.PAS

PL/I EXAMPLE.PLI

C EXAMPLE.C

To run these programs, you need copies of the sample data files and domain
definitions that the DATATRIEVE installation procedure provides. See the
VAX DATATRIEVE User’s Guide for information on running the NEWUSER.COM
procedure to set up the sample databases.

Furthermore, you can find sample FORTRAN, BASIC, and COBOL programs
that call DATATRIEVE in the DTR$LIBRARY directory. These programs show
you how you can call DATATRIEVE to perform calculations on data, store and
retrieve data, and create data management applications for end users.

Table A–3 lists the names of the program files for each language.

Table A–3 Files Containing Sample Programs that Call DATATRIEVE

Language File Name

VAX FORTRAN CALCULATE.FOR, CHOOSE.FOR, CLEAR.FOR, COMMON.FOR,
CORRELATE.FOR, DISPLAY.FOR, ESTABLISH.FOR, MENU.FOR,
MESSAGE.FOR, MODIFY.FOR, PARSE.FOR, REPORT.FOR,
SORT.FOR, STORE.FOR

VAX BASIC COLUMNS.BAS, LINEAR.BAS

VAX COBOL ENTRY.COB, PAYROLL.COB, UPDATE.COB

A–2 Definitions of the DATATRIEVE Access Block

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

A.3 Defining the DATATRIEVE Access Block in Other
VAX Languages

You can use the DATATRIEVE Call Interface with any VAX high-level language
that complies with the VAX Calling Standard. However, if you use a language
other than FORTRAN, COBOL, BASIC, Pascal, PL/I, or C, you will have to define
the DATATRIEVE Access Block within your program.

To create your own DAB, you must define the following:

• The access block

• The message buffers

• DATATRIEVE constants

The following sections describe each component of the DATATRIEVE Access Block
separately.

A.3.1 Defining the Access Block
The DATATRIEVE Access Block is a 100-byte record block that DATATRIEVE
and your program use to communicate. Figure A–1 illustrates the structure of
the Access Block and Table A–4 describes the data type and purpose of each field.

Definitions of the DATATRIEVE Access Block A–3

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

Figure A–1 Structure of the DATATRIEVE Access Block

.

.

.

15 0
DAB$B_BLN DAB$B_BID

DAB$L_CONDITION

DAB$A_MSG_BUF

DAB$W_MSG_BUF_LEN
DAB$W_MSG_LEN

DAB$A_AUX_LEN

DAB$W_AUX_BUF_LEN
DAB$W_AUX_LEN
DAB$W_IDI
DAB$W_STATE

DAB$L_FLAGS

DAB$L_OPTIONS

DAB$W_REC_LEN
DAB$W_VERSION
DAB$W_LEVEL

DAB$W_BASE_LEVEL DAB$B_VER_LETTER

DAB$W_COLUMNS_PAGE
DAB$W_TT_CHANNEL
DAB$W_CTLC_CHANNEL

DAB$L_KEYTABLE_ID

DAB$L_COMMAND_KEYBOARD

DAB$L_PROMPT_KEYBOARD

DAB$A_LOG_RAB

DAB$A_LMF_CONTEXT

DAB$L_RETURN_VALUE

DAB$W_MAIN_WINDOW_X

DAB$W_MAIN_WINDOW_Y

DAB$REST_OF_DAB

(21 bytes)

DAB$W_UDK_INDEX

A–4 Definitions of the DATATRIEVE Access Block

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

Table A–4 Fields of the DATATRIEVE Access Block

DAB Field Name Data Type Content of Field

DAB$B_BID Byte integer Reserved to Digital

DAB$B_BLN Byte integer Reserved to Digital

DAB$L_CONDITION Longword
integer

A condition code that identifies the
status of the last call to DATATRIEVE

DAB$A_MSG_BUF Longword
integer,
unsigned

Address of the message buffer

DAB$W_MSG_BUF_LEN Word integer Length of the message buffer

DAB$W_MSG_LEN Word integer Length of the current message string
stored in the message buffer

DAB$A_AUX_BUF Longword
integer,
unsigned

Address of the auxiliary message buffer

DAB$W_AUX_BUF_LEN Word integer Length of the auxiliary message buffer

DAB$W_AUX_LEN Word integer Length of the current message string
stored in the auxiliary message buffer

DAB$W_IDI Word integer Reserved to Digital

DAB$W_STATE Word integer Value of the current stallpoint

DAB$L_FLAGS Longword
integer

A bit mask representing options to use
when a DATATRIEVE routine is called

DAB$L_OPTIONS Longword
integer

A bit mask representing the options
specified when the DATATRIEVE
Interface was initialized

DAB$W_REC_LEN Word integer Length of the record DATATRIEVE is
either ready to pass to or to receive from
the calling program (for use with the
DTR$GET_PORT and DTR$PUT_PORT
calls)

DAB$W_VERSION Word integer Reserved to Digital

DAB$W_LEVEL Word integer Reserved to Digital

DAB$B_VER_LETTER Byte string
character

Reserved to Digital

DAB$W_BASE_LEVEL Word integer Reserved to Digital

(continued on next page)

Definitions of the DATATRIEVE Access Block A–5

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

Table A–4 (Cont.) Fields of the DATATRIEVE Access Block

DAB Field Name Data Type Content of Field

DAB$W_UDK_INDEX Word integer The index for a DATATRIEVE or user-
defined keyword that the user entered

DAB$W_COLUMNS_PAGE Word integer Reserved to Digital

DAB$W_TT_CHANNEL Word integer The input/output channel for ADT,
Guide Mode, and help1

DAB$W_CTLC_CHANNEL Word integer The input channel for trapping CTRL/C
interrupts

DAB$L_KEYTABLE_ID Longword
integer

The key table ID for key definitions for
the command and prompt keyboards

DAB$L_COMMAND_
KEYBOARD

Longword
integer

The virtual keyboard ID that the
terminal server uses for command
input from the terminal (DATATRIEVE
uses the Run-Time Library Screen
Management Facility for input from the
keyboard)

DAB$L_PROMPT_
KEYBOARD

Longword
integer

The virtual keyboard ID that the
terminal server uses for input associated
with the prompts to the terminal
(DATATRIEVE uses separate keyboard
IDs for command input and prompting)

DAB$A_LOG_RAB Longword
integer

The RAB of the .LOG file

DAB$L_LMF_CONTEXT Longword
integer

Reserved to Digital

DAB$L_RETURN_VALUE Longword
integer

DAB$W_MAIN_WINDOW_
X

Word integer The X value of the current main window

DAB$W_MAIN_WINDOW_
Y

Word integer The Y value of the current main window

DAB$REST_OF_DAB 21 bytes
(unspecified)

Reserved for future use

1Form managements (namely FMS, TDMS, DECforms) require a value different from zero to operate.

A–6 Definitions of the DATATRIEVE Access Block

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

A.3.2 Defining the Message Buffers
In addition to the Access Block, DATATRIEVE uses two message buffers to
communicate with your program. These message buffers are static character
strings, with a recommended length of 80 characters. (You can make the message
buffers any length you like. However, if they are shorter than 80 characters,
there is the possibility that DATATRIEVE will have to truncate messages to fit
them in the message buffer.)

A.3.3 Defining DATATRIEVE Constants
In addition to the access block and message buffers, you may want to use
symbolic names for DATATRIEVE stallpoints and options. To use the symbolic
names described in this manual, you should define the constants listed in
Table A–5.

Table A–5 DATATRIEVE Access Block Constants

DAB Constant Data Type Value

Stallpoints

DTR$K_STL_CMD Longword integer 1

DTR$K_STL_PRMPT Longword integer 2

DTR$K_STL_LINE Longword integer 3

DTR$K_STL_MSG Longword integer 4

DTR$K_STL_PGET Longword integer 5

DTR$K_STL_PPUT Longword integer 6

DTR$K_STL_CONT Longword integer 7

DTR$K_STL_UDK Longword integer 8

DTR$K_STL_END_UDK Longword integer 9

Initialization Options

DTR$K_SEMI_COLON_OPT Longword integer 1

DTR$K_UNQUOTED_LIT Longword integer 16

DTR$K_SYNTAX_PROMPT Longword integer 32

DTR$K_IMMED_RETURN Longword integer 64

DTR$K_FORMS_ENABLE Longword integer 128

(continued on next page)

Definitions of the DATATRIEVE Access Block A–7

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

Table A–5 (Cont.) DATATRIEVE Access Block Constants

DAB Constant Data Type Value

Initialization Options

DTR$K_VERIFY Longword integer 256

DTR$K_CONTEXT_SEARCH Longword integer 2048

DTR$K_HYPHEN_DISABLED Longword integer 4096

DTR$K_MORE_COMMANDS Longword integer 8192

DTR$K_ABORT Longword integer 16384

DTR$K_LOCK_WAIT Longword integer 32768

Command Options

DTR$M_OPT_CMD Longword integer 1

DTR$M_OPT_PRMT Longword integer 2

DTR$M_OPT_LINE Longword integer 4

DTR$M_OPT_MSG Longword integer 8

DTR$M_OPT_PGET Longword integer 16

DTR$M_OPT_PPUT Longword integer 32

DTR$M_OPT_CONT Longword integer 64

DTR$M_OPT_UDK Longword integer 128

DTR$M_OPT_DTR_UDK Longword integer 256

DTR$M_OPT_END_UDK Longword integer 512

DTR$M_OPT_UNWIND Longword integer 1024

DTR$M_OPT_CONTROL_C Longword integer 2048

DTR$M_OPT_STARTUP Longword integer 4096

DTR$M_OPT_FOREIGN Longword integer 8192

DTR$M_OPT_BANNER Longword integer 16384

DTR$M_OPT_REMOVE_CTLC Longword integer 32768

DTR$M_OPT_KEYDEFS Longword integer 64536

(continued on next page)

A–8 Definitions of the DATATRIEVE Access Block

Definitions of the DATATRIEVE Access Block
A.3 Defining the DATATRIEVE Access Block in Other VAX Languages

Table A–5 (Cont.) DATATRIEVE Access Block Constants

DAB Constant Data Type Value

User-Defined Keyword Types

DTR$K_UDK_SET Longword integer 1

DTR$K_UDK_SET_NO Longword integer 2

DTR$K_UDK_SHOW Longword integer 3

DTR$K_UDK_STATEMENT Longword integer 4

DTR$K_UDK_COMMAND Longword integer 5

String Token Types

DTR$K_TOK_TOKEN Longword integer 1

DTR$K_TOK_PICTURE Longword integer 2

DTR$K_TOK_FILENAME Longword integer 3

DTR$K_TOK_COMMAND Longword integer 4

DTR$K_TOK_TEST_TOKEN Longword integer 5

DTR$K_TOK_LIST_ELEMENT Longword integer 6

DTR$K_TOK_TEST_EOL Longword integer 7

Definitions of the DATATRIEVE Access Block A–9

B
DATATRIEVE Message Information

The documentation of DATATRIEVE messages is now stored on-line and may be
accessed at the following file specification:

DTR$LIBRARY:DTRMSGS.MEM

This file contains information on the severe, error, warning, and informational
messages that are used in DATATRIEVE. You can search the file for specific
error message information or you can print the file for a hardcopy printout of all
DATATRIEVE messages.

For help with error messages when using DATATRIEVE interactively, you can
also use the on-line DATATRIEVE help files. If you enter the HELP command
and then enter ERROR when prompted for a topic, DATATRIEVE displays a
listing of all error messages. If you enter the name of a specific error message,
DATATRIEVE displays an explanation of the error and a suggested user action.

When DATATRIEVE displays an error message as a result of some user action,
you can type HELP ERROR at the DTR> prompt and DATATRIEVE displays the
help text pertaining to that error. HELP ERROR provides information on the last
error message you received or on any other message that you specify.

DATATRIEVE Message Information B–1

C
Argument Data Types

Each data type implemented for a higher level language uses one of the following
VAX data types for procedure parameters and elements of file records.

Data types fall into three categories: atomic, string, and miscellaneous. You
can generally pass these data types by immediate value (if 32 bits or less), by
reference, or by descriptor. Unless explicitly stated otherwise, all data types
represent signed quantities. The unsigned quantities do not allocate space for the
sign.

All data types have the prefix DSC$K_DTYPE_.

Each of the following tables represents one of the three categories of data types.
Table C–1 lists the atomic data types.

Table C–1 Atomic Data Types

Symbol Code Name/Description

DSC$K_DTYPE_Z 0 Unspecified
The calling program has specified no data type. The
called procedure should assume the argument is of
the correct type.

DSC$K_DTYPE_V 1 Bit
An aligned bit string.

DSC$K_DTYPE_BU 2 Byte logical
An 8-bit unsigned quantity.

DSC$K_DTYPE_WU 3 Word logical
A 16-bit unsigned quantity.

DSC$K_DTYPE_LU 4 Longword logical
A 32-bit unsigned quantity.

(continued on next page)

Argument Data Types C–1

Argument Data Types

Table C–1 (Cont.) Atomic Data Types

Symbol Code Name/Description

DSC$K_DTYPE_QU 5 Quadword logical
A 64-bit unsigned quantity.

DSC$K_DTYPE_OU 25 Octaword logical
A 128-bit unsigned quantity.

DSC$K_DTYPE_B 6 Byte integer
An 8-bit signed two’s-complement integer.

DSC$K_DTYPE_W 7 Word integer
A 16-bit signed two’s-complement integer.

DSC$K_DTYPE_L 8 Longword integer
A 32-bit signed two’s-complement integer.

DSC$K_DTYPE_Q 9 Quadword integer
A 64-bit signed two’s-complement integer.

DSC$K_DTYPE_O 26 Octaword integer
A 128-bit signed two’s-complement integer.

DSC$K_DTYPE_F 10 F_floating
A 32-bit F_floating quantity representing a single-
precision number.

DSC$K_DTYPE_D 11 D_floating
A 64-bit D_floating quantity representing a double-
precision number.

DSC$K_DTYPE_G 27 G_floating
A 64-bit G_floating quantity representing a double-
precision number.

DSC$K_DTYPE_H 28 H_floating
A 128-bit H_floating quantity representing a
quadruple-precision number.

DSC$K_DTYPE_FC 12 F_floating complex
An ordered pair of F_floating quantities, representing
a single-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_DC 13 D_floating complex
An ordered pair of D_floating quantities, representing
a double-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

(continued on next page)

C–2 Argument Data Types

Argument Data Types

Table C–1 (Cont.) Atomic Data Types

Symbol Code Name/Description

DSC$K_DTYPE_GC 29 G_floating complex
An ordered pair of G_floating quantities, representing
a double-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_HC 30 H_floating complex
An ordered pair of H_floating quantities, representing
a quadruple-precision complex number. The lower
addressed quantity is the real part; the higher
addressed quantity is the imaginary part.

DSC$K_DTYPE_CIT 31 COBOL intermediate temporary
Floating-point data with an 18-digit normalized
decimal fraction and a 2-decimal-digit exponent. The
fraction is a packed decimal string. The exponent is
a 16-bit two’s-complement integer.

DSC$K_DTYPE_VU 34 Bit unaligned
The data are 0 to 2**16-1 contiguous bits located
arbitrarily with respect to boundaries. See also bit
(V) data type. Because additional information is
required to specify the bit position of the first bit, this
data type can only be used with the unaligned bit
string and unaligned bit array descriptors.

The string types listed in Table C–2 are ordinarily described by a string
descriptor.

Argument Data Types C–3

Argument Data Types

Table C–2 String Data Types

Symbol Code Name/Description

DSC$K_DTYPE_T 14 Character-coded text
A single 8-bit character (atomic data type) or a
sequence of 0 or more 8-bit characters (string data
type)

DSC$K_DTYPE_VT 37 Varying character-coded text

DSC$K_DTYPE_NU 15 Numeric string, unsigned

DSC$K_DTYPE_NL 16 Numeric string, left separate sign

DSC$K_DTYPE_NLO 17 Numeric string, left overpunched sign

DSC$K_DTYPE_NR 18 Numeric string, right separate sign

DSC$K_DTYPE_NRO 19 Numeric string, right overpunched sign

DSC$K_DTYPE_NZ 20 Numeric string, zoned sign

DSC$K_DTYPE_P 21 Packed decimal string

Table C–3 lists the miscellaneous data types.

Table C–3 Miscellaneous Data Types

Symbol Code Name/Description

DSC$K_DTYPE_ZI 22 Sequence of instructions

DSC$K_DTYPE_ZEM 23 Procedure entry mask

DSC$K_DTYPE_DSC 24 Descriptor
This data type allows a descriptor to be a data type;
thus, levels of descriptors are allowed.

(continued on next page)

C–4 Argument Data Types

Argument Data Types

Table C–3 (Cont.) Miscellaneous Data Types

Symbol Code Name/Description

DSC$K_DTYPE_BPV 32 Bound procedure value
A 2-longword entity in which the first longword
contains the address of a procedure entry mask and
the second longword is the environment value. The
environment value is determined in a language-
specific manner when the original bound procedure
value is generated. When the bound procedure is
called, the calling program loads the second longword
into R1. When the environment value is not needed,
this data type can be passed using the immediate
value mechanism. In this case, the argument list
entry contains the address of the procedure entry
mask and the second longword is omitted.

DSC$K_DTYPE_BLV 33 Bound label value
A two longword entity in which the first longword
contains the address of an instruction and the second
longword is the language-specific environment value.
The environment value is determined in a language
specific manner when the original bound label value
is generated.

DSC$K_DTYPE_ADT 35 Absolute date and time

The codes 36 through 191 are reserved to Digital. Codes 192 through 255 are
reserved for Digital Computer Special Systems Group and for customers for their
own use.

Argument Data Types C–5

Index

!CMD substitution directive, 3–2
!VAL substitution directive, 3–2

A
Access Block

See DATATRIEVE Access Block
ADT

See Application Design Tool
Application Design Tool, 7–1

channel assignment, 2–13
customizing, 7–1
text file, 7–2
translating, 9–7

Auxiliary message buffer, 2–11, 3–58,
3–82

B
BASIC

DAB, A–1t
INFO inclusion file, 3–49, 3–67
programs

declaring ports, 3–31
DTR$COMMAND call, 3–5
DTR$CREATE_UDK call, 3–16
DTR$DTR call, 3–21
DTR$GET_STRING call, 3–39
DTR$INFO call, 3–54
DTR$INIT call, 3–63
DTR$LOOKUP call, 3–68
DTR$PUT_OUTPUT call, 3–77
DTR$WINDOWS call, 3–96
entering DCL commands from,

3–16

BASIC
programs (cont’d)

entering substitution directives
from, 3–6

initializing DATATRIEVE from,
3–63

simulating interactive
DATATRIEVE, 3–21, 3–96

using message buffers, 2–10
using user-defined keywords,

3–39, 3–53, 3–54
sample programs, A–2

Buffers
See Message buffers

C
C

DAB, A–1t
sample programs, A–2

Call Interface, 1–1
closing, 2–4, 3–25, 3–27

in DECwindows, 3–27
initializing, 2–2, 3–58
messages in, 6–2

Callable DATATRIEVE
compiling programs, 2–4
linking programs, 2–4

Calls to DATATRIEVE, 2–1
and stallpoints, 2–7t
basic steps in, 2–1
DTR$COMMAND, 3–2
DTR$CONTINUE, 3–9
DTR$CREATE_UDK, 3–12
DTR$DTR, 3–17

Index–1

Calls to DATATRIEVE (cont’d)
DTR$END_UDK, 3–23
DTR$FINISH, 3–25
DTR$FINISH_WINDOWS, 3–27
DTR$GET_PORT, 3–29
DTR$GET_STRING, 3–35, 3–52
DTR$INFO, 3–41
DTR$INIT, 3–58
DTR$LOOKUP, 3–65
DTR$PORT_EOF, 3–69
DTR$PRINT_DAB, 3–73
DTR$PUT_OUTPUT, 3–76
DTR$PUT_PORT, 3–79
DTR$PUT_VALUE, 3–82
DTR$UNWIND, 3–85
DTR$WINDOWS, 3–92
how to read format, 3–1

Channel assignment
DAB$L_COMMAND_KEYBOARD,

2–14
DAB$L_PROMPT_KEYBOARD, 2–14
DAB$W_TT_CHANNEL, 2–12
deassigning channels, 2–13

Closing the Call Interface, 2–4, 3–25,
3–27

in DECwindows, 3–27
COBOL

COPY statement and reserved words,
3–30, 3–79

DAB, A–1t
INFO inclusion file, 3–49, 3–67
programs

compiling and linking, 2–4
declaring condition codes, 2–9
displaying print lines, 3–21, 3–96
DTR$COMMAND call, 3–5
DTR$DTR call, 3–21
DTR$GET_PORT call, 3–32
DTR$INIT call, 3–63
DTR$WINDOWS call, 3–96
using ports, 3–32
using record buffers, 3–32

sample programs, A–2
Collections

dropping records from, 3–51

Collections (cont’d)
getting information about, 3–49t
invisible, 3–49

Command processing, 2–17
with DTR$COMMAND call, 2–3, 2–17,

3–2
with DTR$CONTINUE call, 2–17, 3–9
with DTR$DTR call, 2–17
with DTR$PUT_VALUE call, 2–17
with DTR$UNWIND call, 2–17
with DTR$WINDOWS call, 2–17

Command recall, 2–14
and DTR$COMMAND_LINES, 2–14
and DTR$PROMPT_LINES, 2–14

Compiling
DATATRIEVE functions, 4–5
message files, 6–10
programs with DATATRIEVE calls,

2–4
Condition codes

continuing from, 2–19
DAB$L_CONDITION, 2–9, 3–61
how to interpret, 2–19
how to use, 2–9
with DTR$GET_STRING call, 3–37
with DTR$UNWIND call, 3–85

Constants
definition of, A–7

Context searcher
enabling, 3–60

Control breaks
handling with DTR$DTR call, 3–19

Customizing
ADT, 7–1
DATATRIEVE keywords, 8–4
DATATRIEVE text, 8–1
dates, 8–3
files used in, 1–4
Guide Mode, 7–5
Help text, 5–1
interactive DATATRIEVE, 3–22
messages, 6–1
syntax prompts, 8–1

Index–2

D
DAB

See DATATRIEVE Access Block
DAB$L_COMMAND_KEYBOARD field,

2–14, 3–20
DAB$L_CONDITION field, 2–9, 3–61

with DTR$UNWIND call, 3–85
DAB$L_KEYTABLE_ID field, 3–20
DAB$L_OPTIONS field, 2–15, 3–59, 3–61

enabling prompting, 2–15
DAB$L_PROMPT_KEYBOARD field,

2–14, 3–20
DAB$W_AUX_BUF_LEN field, 2–11
DAB$W_AUX_LEN field, 2–11
DAB$W_KEYTABLE_ID field, 2–14
DAB$W_MSG_BUF_LEN field, 2–11
DAB$W_MSG_LEN field, 2–11
DAB$W_REC_LEN field, 2–12
DAB$W_STATE field, 2–12, 2–19

after DTR$COMMAND call, 2–4
possible values for, 2–12t

DAB$W_TT_CHANNEL field, 2–12,
3–20, 3–94

DAB$W_UDK_INDEX field, 2–15, 3–12
with DATATRIEVE keywords, 2–16

Data Manipulation Facility (DMF), 1–2
Data types

VAX, 4–10t, C–1
DATATRIEVE Access Block, 2–1, 2–2,

2–8, A–3f
AUX_BUFF, 2–10
contents of, 2–2, 2–8, A–5t
DAB$L_COMMAND_KEYBOARD,

2–14, 3–20
DAB$L_CONDITION, 2–9
DAB$L_KEYTABLE_ID, 2–14, 3–20
DAB$L_OPTIONS, 2–15, 3–61
DAB$L_PROMPT_KEYBOARD, 2–14,

3–20
DAB$W_REC_LEN, 2–12
DAB$W_STATE, 2–12
DAB$W_TT_CHANNEL, 2–12, 3–20,

3–94

DATATRIEVE Access Block (cont’d)
DAB$W_UDK_INDEX, 2–15, 3–12
defining, A–3
definition files, A–1t
fields in, 2–8t
fields used with user-defined keywords,

2–15
initializing, 3–25, 3–27, 3–61
location of files, 2–2, A–1
message buffers, 2–10
MSG_BUFF, 2–10
printing, 2–20, 3–73
reusing, 3–25, 3–27, 3–61

DATATRIEVE keywords, 2–16
See also User-defined keywords
index values, 2–16t, 3–13

DATATRIEVE objects
getting information about, 3–41, 3–65

DATATRIEVE text
customizing, 8–1
dates, 8–3
editing, 8–5
keywords, 8–4
syntax prompts, 8–1

DATATRIEVE-defined keywords
synonyms for, 2–15

Dates
customizing the format of, 8–3

DCL
See Digital Command Language

Deassigning channels, 2–13, 2–14
Debugging programs, 3–73

DTR$PRINT_DAB call, 2–20
DECLARE PORT statement, 2–17, 3–30,

3–79
DECwindows calls

DTR$FINISH_WINDOWS, 3–27
DTR$WINDOW_MSG, 3–88
DTR$WINDOW_OUTPUT, 3–90

DECwindows terminal server
See also Terminal server
calling from a program, 3–92
ending a session, 3–27
invoking with DTR$WINDOWS call,

2–3

Index–3

DEFINE PORT command, 2–17, 3–30,
3–79

Digital Command Language (DCL)
enabling from DATATRIEVE, 3–14,

3–16
Directives

See FAO directives
DMF

See Data Manipulation Facility (DMF)
Domains

getting information about, 3–49t, 3–67
DTR$COMMAND call, 2–3, 3–2, 3–60

and DTR$K_STL_CMD stallpoint,
2–3, 2–6

and DTR$K_STL_UDK stallpoint, 2–6
DTR$K_MORE_COMMANDS option,

3–4
from BASIC, 3–5
from COBOL, 3–5
from FORTRAN, 3–5
from Pascal, 3–6
to define a port, 3–30

DTR$COMMAND_LINES logical name,
2–14

DTR$CONTINUE call, 2–17, 3–9
and DTR$K_STL_CONT stallpoint,

2–6
and DTR$K_STL_LINE stallpoint, 2–6
and DTR$K_STL_MSG stallpoint, 2–6
from FORTRAN, 3–10
from Pascal, 3–10

DTR$CREATE_UDK call, 2–18, 3–12
from BASIC, 3–16
from FORTRAN, 3–52
specifying indexes, 2–15

DTR$DTR call, 3–17
and DTR$K_STL_CMD stallpoint,

2–3, 2–6
and DTR$K_STL_CONT stallpoint,

2–6
and DTR$K_STL_LINE stallpoint, 2–6
and DTR$K_STL_MSG stallpoint, 2–6
and DTR$K_STL_PRMPT stallpoint,

2–6

DTR$DTR call (cont’d)
DTR$M_OPT_CONTROL_C option,

3–19
DTR$M_OPT_FOREIGN option, 3–16
DTR$M_OPT_STARTUP option, 3–20,

3–21
DTR$M_OPT_UNWIND option, 3–19
from BASIC, 3–21
from COBOL, 3–21
from FORTRAN, 3–21
options, 3–17t, 3–18t
processing user-defined keywords,

2–15, 2–18, 3–13
DTR$END_UDK call, 2–18, 3–23

and DTR$K_STL_END_UDK
stallpoint, 2–7

and DTR$K_STL_UDK stallpoint, 2–6,
3–13

from FORTRAN, 3–24
DTR$FINISH call, 2–4, 3–25

from FORTRAN, 3–26
DTR$FINISH_WINDOWS call, 2–4, 3–27

from FORTRAN, 3–28
DTR$GET_PORT call, 3–29, 3–31

and DTR$K_STL_PGET stallpoint,
2–6, 2–17

from COBOL, 3–32
DTR$GET_STRING call, 2–18, 3–13,

3–35
and DTR$K_STL_UDK stallpoint, 2–6
DTR$K_TOK_TOKEN token type,

3–37
from BASIC, 3–39
from FORTRAN, 3–37, 3–52
token types, 3–35

DTR$INFO call, 2–18, 3–41
DTR$K_INF_COL_INVISIBLE option,

3–49
from BASIC, 3–54
from FORTRAN, 3–51
INFO inclusion file, 3–49
options, 3–42t

DTR$INIT call, 2–2, 3–58
DTR$K_SYNTAX_PROMPT, 2–15
enabling prompting, 2–15

Index–4

DTR$INIT call (cont’d)
from BASIC, 3–63
from COBOL, 3–63
from FORTRAN, 3–62
from Pascal, 3–64
options, 2–15, 3–59

DTR$K_ABORT option, 3–60
DTR$K_CONTEXT_SEARCH option,

3–60
DTR$K_FORMS_ENABLE option, 3–59
DTR$K_HYPHEN_DISABLED option,

3–60
DTR$K_IMMED_RETURN option, 3–9,

3–59
and DTR$K_STL_CONT stallpoint,

2–6
DTR$K_INF_COL_INVISIBLE option,

3–49
DTR$K_LOCK_WAIT option, 3–60
DTR$K_MORE_COMMANDS option,

3–4, 3–60
DTR$K_SEMI_COLON_OPT option,

3–59
DTR$K_STL_CMD stallpoint, 2–3, 2–5,

3–3, 3–13, 3–23, 3–49, 3–60, 3–61,
3–67

after initialization, 2–2
DTR$K_STL_CONT stallpoint, 2–6, 3–9

and DTR$K_IMMED_RETURN option,
2–6

DTR$K_STL_END_UDK stallpoint, 2–7,
3–13, 3–23, 3–49, 3–67

DTR$K_STL_LINE stallpoint, 2–6, 3–9
DTR$K_STL_MSG stallpoint, 2–6, 3–9,

3–31, 3–80, 3–85
DTR$K_STL_PGET stallpoint, 2–6, 2–12,

2–17, 3–31
DTR$K_STL_PPUT stallpoint, 2–6, 2–17,

2–18, 3–69, 3–80
DTR$K_STL_PRMPT stallpoint, 2–6,

2–17, 3–82
DTR$K_STL_UDK stallpoint, 2–6, 3–3,

3–13, 3–23, 3–37, 3–49, 3–67

DTR$K_SYNTAX_PROMPT option, 2–15,
3–59

DTR$K_TOK_TEST_TOKEN token type,
3–37

DTR$K_TOK_TOKEN token type, 3–37
DTR$K_UDK_STATEMENT context,

3–13
DTR$K_UNQUOTED_LIT option, 3–59
DTR$K_VERIFY option, 3–59
DTR$LOOKUP call, 2–18, 3–65

from BASIC, 3–68
from FORTRAN, 3–51, 3–68
INFO inclusion file, 3–67
object types, 3–65
with DTR$INFO call, 3–51

DTR$M_OPT_CMD option, 2–19
DTR$M_OPT_CONTROL_C option, 3–19
DTR$M_OPT_FOREIGN option, 3–16
DTR$M_OPT_KEYDEFS option, 3–18t
DTR$M_OPT_STARTUP option, 3–20,

3–21, 3–94, 3–96
DTR$M_OPT_UDK option, 2–18, 3–13
DTR$M_OPT_UNWIND option, 3–19,

3–94
DTR$PORT_EOF call, 3–69

and DTR$K_STL_PPUT stallpoint,
2–6, 2–18, 3–80

DTR$PRINT_DAB call, 2–20, 3–73
from FORTRAN, 3–74

DTR$PROMPT_LINES logical name,
2–14

DTR$PUT_OUTPUT call, 2–18, 3–76
from BASIC, 3–77

DTR$PUT_PORT call, 3–79
and DTR$K_STL_PPUT stallpoint,

2–6, 2–17
from FORTRAN, 3–69

DTR$PUT_VALUE call, 2–17, 3–82
and DTR$K_STL_PRMPT stallpoint,

2–6, 3–82
contents of message buffers, 3–82
from FORTRAN, 3–83

DTR$UNWIND call, 2–17, 3–85
condition codes, 3–85

Index–5

DTR$WINDOWS call, 2–3, 3–92
and DTR$K_STL_CMD stallpoint,

2–3, 2–6
and DTR$K_STL_CONT stallpoint,

2–6
and DTR$K_STL_LINE stallpoint, 2–6
and DTR$K_STL_MSG stallpoint, 2–6
DTR$M_OPT_FOREIGN option, 3–16
DTR$M_OPT_STARTUP option, 3–94,

3–96
DTR$M_OPT_UNWIND option, 3–94
from BASIC, 3–96
from COBOL, 3–96
from FORTRAN, 3–95
options, 3–92t, 3–93t
processing user-defined keywords,

2–18, 3–13
DTR$WINDOW_MSG, 3–88
DTR$WINDOW_OUTPUT, 3–90
DTRADT logical name, 7–5
DTRHELP logical name, 5–3
DTRMSGS logical name, 6–11

E
Ending DATATRIEVE sessions, 2–4,

3–25, 3–27
in DECwindows, 3–27

Error handling, 2–19, 3–21, 3–95
See also Condition codes

Error messages
See Messages

Exiting DATATRIEVE
See Ending DATATRIEVE sessions

F
FAO directives, 6–4, 6–6t

formatting, 6–8
in ADT, 7–3
interpretive, 6–9
substitution, 6–7

Fields
getting information about, 3–49t

Formatted ASCII output
See FAO directives

Formatting directives, 6–8
Forms interface

channel assignment, 2–13
enabling, 3–59
getting information about, 3–49t

FORTRAN
DAB, A–1t
INFO inclusion file, 3–49, 3–67
programs

defining record buffers, 3–29
DTR$COMMAND call, 3–5
DTR$CONTINUE call, 3–10
DTR$CREATE_UDK call, 3–51
DTR$DTR call, 3–21
DTR$END_UDK call, 3–24
DTR$FINISH call, 3–26
DTR$FINISH_WINDOWS call,

3–28
DTR$GET_STRING call, 3–37,

3–51
DTR$INFO call, 3–51
DTR$INIT call, 3–62
DTR$LOOKUP call, 3–51, 3–68
DTR$PRINT_DAB call, 3–74
DTR$PUT_PORT call, 3–69
DTR$PUT_VALUE call, 3–83
DTR$WINDOWS call, 3–95
entering commands interactively,

3–5
forming record streams, 3–8
handing error messages, 3–21,

3–95
initializing DATATRIEVE, 3–62
printing the DAB, 3–74
processing user-defined keywords,

3–24, 3–26, 3–28, 3–51
suppressing messages, 3–10
using ports, 3–69

sample programs, A–2
Functions

adding to DATATRIEVE, 4–1
creating, 4–4

Index–6

Functions (cont’d)
DATATRIEVE function library, 4–5,

4–16
defining, 4–5
in BASIC, 4–4
in FORTRAN, 4–4
input arguments, 4–7, 4–10t
linking, 4–16
Run-Time Library procedures, 4–3
sample definitions, 4–11
translating, 9–9
using, 4–1

G
Guide Mode, 7–1

channel assignment, 2–13
commands and statements, 7–6t, 7–7
customizing, 7–5
levels, 7–5, 7–7

H
Handling errors, 2–19, 3–21, 3–95

See also Condition codes
Help

adding text, 5–3
changing existing text, 5–1
channel assignment, 2–13
customizing, 5–1
Library, 5–1
modules, 5–2
replacing, 5–2
structure of, 5–2
translating, 9–4

I
Index values

for DATATRIEVE keywords, 2–16t
for user-defined keywords, 3–12, 3–13

Information codes for DTR$INFO call,
3–42t

definition files, 3–49
Initializing DATATRIEVE, 2–2, 3–58

from BASIC, 3–63

Initializing DATATRIEVE (cont’d)
from COBOL, 3–63
from FORTRAN, 3–62
from Pascal, 3–64
options, 2–15, 3–21, 3–59, 3–61, 3–96
running startup file, 2–3

Interactive DATATRIEVE
See Terminal server

K
Key definitions, 2–14

DAB$L_KEYTABLE_ID field, 3–20
DTR$M_OPT_KEYDEFS option, 3–18t

Keywords, 2–15
See also DATATRIEVE keywords
See also User-defined keywords
adding, 3–12
defining synonyms, 8–4, 9–3
getting information about, 3–67
translating, 9–3

L
Linking

DATATRIEVE shareable image, 4–16
message files, 6–10
programs with DATATRIEVE, 2–4

Log files
creating from a program, 2–18
writing records to, 3–76

Logical names
defining in DATATRIEVE, 4–2
DTR$COMMAND_LINES, 2–14
DTR$PROMPT_LINES, 2–14
DTRADT, 7–5
DTRHELP, 5–3
DTRMSGS, 6–11

M
Message buffers, 2–10, 3–9

and stallpoints, 2–10
auxiliary, 2–11, 3–58, 3–82
contents of, 2–10t, 2–19, 3–61, 3–81

Index–7

Message buffers (cont’d)
contents with DTR$PUT_VALUE call,

3–82
creating, 2–2
definition of, A–7
using in BASIC, 2–10

Message file, 6–3
compiling, 6–10
editing, 6–4
linking, 6–10
structure of, 6–4

Messages
codes, 6–1
continuing after, 2–6
customizing, 6–1, 6–3

examples, 6–5, 6–9
DTR$K_STL_MSG stallpoint, 3–9
FAO directives, 6–6t
format, 6–1, 6–3t
in ADT, 7–5
in interactive DATATRIEVE, 6–2
in the Call Interface, 6–2
listing of, B–1
names, 6–1
printing from Pascal procedure, 3–10
severity level, 6–1
suppressing, 3–10
translating, 9–6

Modules
extracting from help libraries, 5–2

O
Objects

getting information about, 2–18, 3–65
Opening the Call Interface, 2–2, 3–58
Options

DTR$K_CONTEXT_SEARCH option,
3–60

DTR$K_HYPHEN_DISABLED option,
3–60

DTR$K_IMMED_RETURN option,
3–9, 3–59

DTR$K_INF_COL_INVISIBLE option,
3–49

Options (cont’d)
DTR$K_MORE_COMMANDS option,

3–4, 3–60
DTR$M_OPT_CMD option, 2–19
DTR$M_OPT_CONTROL_C option,

3–19
DTR$M_OPT_FOREIGN option, 3–16
DTR$M_OPT_STARTUP option, 3–20,

3–21, 3–94, 3–96
DTR$M_OPT_UDK option, 2–18, 3–13
DTR$M_OPT_UNWIND option, 3–19,

3–94
for DTR$DTR call, 3–17t, 3–18t
for DTR$INIT call, 2–15, 3–59
for DTR$WINDOWS call, 3–92t, 3–93t

Options file, 2–4

P
Parsing user-defined keywords, 3–37

DTR$GET_STRING call, 2–18, 3–13
DTR$K_STL_UDK stallpoint, 2–6

Pascal
DAB, A–1t
INFO inclusion file, 3–49, 3–67
programs

DTR$COMMAND call, 3–6
DTR$CONTINUE call, 3–10
DTR$INIT call, 3–64
entering substitution directives,

3–6
initializing DATATRIEVE, 3–64
printing messages, 3–10

sample programs, A–2
Passing commands to DATATRIEVE, 3–2
Passing records, 2–17

from DATATRIEVE, 2–17, 3–29, 3–30
to DATATRIEVE, 2–17, 3–79

PL/I
DAB, A–1t
sample programs, A–2

Plots
getting information about, 3–49t

Ports, 3–29
declaring, 2–17, 3–30
defining, 2–17, 3–30, 3–79

Index–8

Ports
defining (cont’d)

with DTR$COMMAND call, 3–30
in BASIC, 3–31
in COBOL, 3–32
in FORTRAN, 3–69
passing records from, 2–6, 2–17, 3–79
size of, 3–31
storing definitions in the dictionary,

2–17, 3–30
storing records in, 2–6, 2–17, 3–31
terminating processing of, 3–69

Print lines, 3–9
displaying from COBOL, 3–21, 3–96
displaying from Pascal, 3–10
DTR$K_STL_LINE stallpoint, 2–6

Procedures
Run-Time Library, 4–2

Prompting
DTR$K_STL_PRMPT stallpoint, 3–82
enabling, 2–15, 3–59

R
Recalling DATATRIEVE commands, 2–14

and DTR$COMMAND_LINES, 2–14
and DTR$PROMPT_LINES, 2–14

Record buffers
copying from the dictionary, 3–30
defining in FORTRAN, 3–29
size of, 3–31
using in COBOL, 3–32

Record length
DAB$W_REC_LEN, 2–12

Record streams
forming from FORTRAN program, 3–8

Records
from DATATRIEVE, 2–17
locks

waiting for, 3–60
passing to a program, 3–29
passing to DATATRIEVE, 2–17
reading, 2–17
storing, 2–17, 3–31

Remote server, 1–3
Return status

See Condition codes
Run-Time Library procedures, 4–2
Run-Time Library Screen Management

Facility (SMG), 2–14

S
Sample programs

BASIC, A–2
C, A–2
COBOL, A–2
FORTRAN, A–2
Pascal, A–2
PL/I, A–2

Servers, 1–2
Severity level of messages, 6–1
SMG

See Run-Time Library Screen
Management Facility (SMG)

Stallpoints, 2–1, 2–5
and calls, 2–7t
and DAB$W_STATE, 2–12t
and message buffer contents, 2–10t
declaring in a program, 2–12
DTR$K_STL_CMD, 2–5, 3–3, 3–13,

3–23, 3–49, 3–60, 3–61, 3–67
DTR$K_STL_CONT, 2–6, 3–9, 3–59
DTR$K_STL_END_UDK, 2–7, 3–13,

3–23, 3–49, 3–67
DTR$K_STL_LINE, 2–6, 3–9
DTR$K_STL_MSG, 2–6, 3–3, 3–9,

3–31, 3–80, 3–85
DTR$K_STL_PGET, 2–6, 2–12, 3–31
DTR$K_STL_PPUT, 2–6, 3–69, 3–80
DTR$K_STL_PRMPT, 2–6, 2–17, 3–82
DTR$K_STL_UDK, 2–6, 3–3, 3–13,

3–23, 3–37, 3–49, 3–67
handled by DTR$DTR, 3–17t
handled by DTR$WINDOWS, 3–92t
stallpoint numbers, 2–12t

Startup command file, 3–20, 3–94
how to run from calling program, 2–3

Index–9

Substitution directives
See also FAO directives
entering interactively, 3–6
in command strings, 3–2, 3–3

Synonyms, 8–4, 9–3
for DATATRIEVE keywords, 2–15
for user-defined keywords, 2–16

Syntax prompting
enabling, 2–15

T
Terminal server, 1–2

See also DECwindows terminal server
and channel assignments, 2–13
and DAB$L_COMMAND_KEYBOARD,

2–14
and DAB$L_KEYTABLE_ID, 2–14
and DAB$L_PROMPT_KEYBOARD,

2–14
and DAB$W_TT_CHANNEL, 2–12
calling from a program, 3–17, 3–92
command recall, 2–14

and DTR$COMMAND_LINES,
2–14

DECwindows, 3–92
handling control breaks, 3–19
invoking with DTR$DTR call, 2–3
virtual keyboards, 2–14

Terminal Server
command recall

and DTR$PROMPT_LINES, 2–14
Terminating processing

with DTR$FINISH call, 2–4
with DTR$FINISH_WINDOWS call,

2–4
TERMSERVE.OLB file, 2–5
Text

ADT, 7–1
customizing help, 5–1
dates, 8–3
in DATATRIEVE, 8–1
message, 6–1
syntax prompts, 8–1
translating, 9–8

Token types, 3–35t
See also User-defined keywords, 3–35

Translating DATATRIEVE, 9–1
ADT, 9–7
functions, 9–9
help, 9–4
keywords, 9–3
messages, 9–6
text, 9–8

U
UDKs

See User-defined keywords
User-defined keywords, 3–12, 3–24

See also DATATRIEVE keywords
adding, 3–16
and DAB fields, 2–15
context of, 3–12t, 3–13
DAB$W_UDK_INDEX, 2–15, 3–12
DTR$K_STL_UDK stallpoint, 2–6
examples of, 3–14, 3–38
how to use, 2–18, 3–35

in BASIC, 3–39, 3–53
in FORTRAN, 3–24, 3–26, 3–28,

3–51
index values, 3–13
parsing, 3–37
processing with DTR$DTR, 2–15,

2–18, 3–13
processing with DTR$WINDOWS,

2–15, 2–18, 3–13
statements, 3–13
synonyms for, 2–16
terminating processing of, 2–7, 3–23

V
VAX data types, 4–10t, C–1
Virtual keyboards, 2–14

key definitions, 2–14

Index–10

W
Windows

See DECwindows

Index–11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

