
DIGITAL SNA APPC/LU6.2
Programming Interface
for OpenVMS
Programming
Part Number: AA-ET91G-TE

November 1998

This document describes how to use the DIGITAL SNA APPC/LU6.2
Programming Interface for OpenVMS software to enable an OpenVMS
application to exchange messages with a cooperating application on an IBM
host.

Revision/Update Information: This is a revised manual.

Operating System and Version: OpenVMS VAX Versions 6.2, 7.0, or 7.1
OpenVMS Alpha Versions 6.2, 7.0, or 7.1

Software Version: DIGITAL SNA APPC/LU6.2 Programming
Interface for OpenVMS V2.4



The information in this publication is subject to change without notice.

COMPAQ COMPUTER CORPORATION AND ELECTRONIC DATA SYSTEMS CORPORATION
SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS
CONTAINED HEREIN, NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES
RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL.
THIS INFORMATION IS PROVIDED "AS IS" AND COMPAQ COMPUTER CORPORATION
AND ELECTRONIC DATA SYSTEMS CORPORATION DISCLAIM ANY WARRANTIES,
EXPRESS, IMPLIED, OR STATUTORY, AND EXPRESSLY DISCLAIM THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE, GOOD
TITLE, AND AGAINST INFRINGEMENT.

This publication contains information protected by copyright. No part of this publication may
be photocopied or reproduced in any form without prior written consent from Compaq Computer
Corporation and Electronic Data Systems Corporation.

Copyright © 1998 Electronic Data Systems Corporation. All rights reserved.

Copyright © 1988, 1993 Compaq Computer Corporation. All rights reserved.

The software described in this guide is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms of the
agreement.

Compaq and the Compaq logo are registered in the United States Patent and Trademark Office.

The following are trademarks of Compaq Computer Corporation: DEC, DIGITAL SNA
Domain Gateway, DECnet, DIGITAL, OpenVMS, VAX, VAXcluster, VMS, VMScluster, the
AlphaGeneration logo, and the DIGITAL logo.

IBM is a registered trademark of International Business Machines Corporation.

Microsoft, MS-DOS, Windows, and Windows NT are registered trademarks of Microsoft
Corporation.

NT is a trademark of Northern Telecom Limited.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

This document is available on CD-ROM.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction

1.1 Logical Unit Type 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2 APPC/LU6.2 Programming Interface Features . . . . . . . . . . . . . . 1–5
1.3 SNA Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
1.4 Common Interface Transaction Programs . . . . . . . . . . . . . . . . . . 1–6

2 Concepts and Terms

2.1 Sessions and Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.1.1 Requesting a Session for a Conversation . . . . . . . . . . . . . . . . 2–2
2.1.2 Basic and Mapped Conversations . . . . . . . . . . . . . . . . . . . . . . 2–3
2.1.2.1 Generalized Data Stream (GDS) . . . . . . . . . . . . . . . . . . . 2–3
2.1.2.2 Basic Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.1.2.3 Mapped Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.2 Sending Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2.1 Putting the OpenVMS Transaction Program into the Send

State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2.2 Submitting Data for Transmission . . . . . . . . . . . . . . . . . . . . . 2–7
2.2.3 Transmitting the Send Buffer . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.3 Receiving a Request-to-Send Notification . . . . . . . . . . . . . . . . . . . 2–8
2.4 Receiving a Message from the IBM Host Transaction

Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.5 Confirmation Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.6 Sending and Receiving Error Notification . . . . . . . . . . . . . . . . . . 2–11
2.7 Ending a Conversation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.7.1 Normal Deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.7.2 Abnormal Deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.7.3 Local Deallocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13

iii



3 APPC/LU6.2 Programming Interface Features

3.1 Returning Status Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.1 Function Value Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.2 The I/O Status Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.3 Using Status Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.2 Specifying the SNA Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
3.2.1 Specifying a Dynamic Gateway Name . . . . . . . . . . . . . . . . . . 3–6
3.2.2 Specifying a DECnet Node Name . . . . . . . . . . . . . . . . . . . . . . 3–7
3.2.3 Specifying a Internet Node Name . . . . . . . . . . . . . . . . . . . . . 3–7
3.2.4 Specifying an LU6.2 Server Name . . . . . . . . . . . . . . . . . . . . . 3–8
3.2.5 Specifying the Gateway’s TCP/IP Port Information . . . . . . . . 3–8
3.2.5.1 For a DIGITAL SNA Access Server for Windows NT . . . . 3–8
3.2.5.2 For a DIGITAL Gateway Other Than the DIGITAL SNA

Access Server for Windows NT . . . . . . . . . . . . . . . . . . . . . 3–9
3.3 Program Initialization Parameters . . . . . . . . . . . . . . . . . . . . . . . . 3–10
3.3.1 Sending PIP Data to a Remote Transaction Program . . . . . . 3–10
3.3.2 Receiving PIP Data from Remote Transaction Program . . . . . 3–10
3.4 Synchronous and Asynchronous Operation . . . . . . . . . . . . . . . . . 3–10
3.4.1 Synchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
3.4.2 Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12
3.4.2.1 Event Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14
3.5 Session Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
3.6 Session Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16
3.7 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16
3.8 Defining IBM Access Information . . . . . . . . . . . . . . . . . . . . . . . . 3–17
3.9 Contention Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
3.10 Outbound Conversations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
3.11 Notification of Session Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
3.12 Notification of Conversation Deallocation . . . . . . . . . . . . . . . . . . 3–19
3.13 Gateway LU Security Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–20

4 Procedure Calling Format: Conversation Verbs

4.1 SNALU62$ALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
4.1.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.1.2 Valid Conversation State for SNALU62$ALLOCATE . . . . . . . 4–9
4.1.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9
4.2 SNALU62$CONFIRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
4.2.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
4.2.2 Valid Conversation State for SNALU62$CONFIRM . . . . . . . . 4–11
4.2.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12
4.3 SNALU62$CONFIRMED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13

iv



4.3.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13
4.3.2 Valid Conversation State for SNALU62$CONFIRMED . . . . . 4–13
4.3.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14
4.4 SNALU62$DEALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–15
4.4.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17
4.4.2 Valid Conversation States for SNALU62$DEALLOCATE . . . 4–18
4.4.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–18
4.5 SNALU62$FLUSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19
4.5.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19
4.5.2 Valid Conversation State for SNALU62$FLUSH . . . . . . . . . . 4–19
4.5.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–19
4.6 SNALU62$GET_ATTRIBUTES . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20
4.6.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22
4.6.2 Valid Conversation States for

SNALU62$GET_ATTRIBUTES . . . . . . . . . . . . . . . . . . . . . . . 4–23
4.6.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–23
4.7 SNALU62$GET_PIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24
4.7.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25
4.7.2 Valid Conversation State for SNALU62$GET_PIP . . . . . . . . . 4–25
4.7.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–25
4.8 SNALU62$GET_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26
4.8.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26
4.8.2 Valid Conversation States for SNALU62$GET_TYPE . . . . . . 4–27
4.8.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–27
4.9 SNALU62$POST_ON_RECEIPT . . . . . . . . . . . . . . . . . . . . . . . . . 4–28
4.9.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30
4.9.2 Valid Conversation State for

SNALU62$POST_ON_RECEIPT . . . . . . . . . . . . . . . . . . . . . . 4–30
4.9.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–30
4.10 SNALU62$PREPARE_TO_RECEIVE . . . . . . . . . . . . . . . . . . . . . . 4–31
4.10.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33
4.10.2 Valid Conversation State for

SNALU62$PREPARE_TO_RECEIVE . . . . . . . . . . . . . . . . . . . 4–33
4.10.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33
4.11 SNALU62$RECEIVE_AND_WAIT . . . . . . . . . . . . . . . . . . . . . . . . 4–34
4.11.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–38
4.11.2 Valid Conversation States for

SNALU62$RECEIVE_AND_WAIT . . . . . . . . . . . . . . . . . . . . . 4–39
4.11.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–39
4.12 SNALU62$RECEIVE_IMMEDIATE . . . . . . . . . . . . . . . . . . . . . . 4–41
4.12.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–45
4.12.2 Valid Conversation State for

SNALU62$RECEIVE_IMMEDIATE . . . . . . . . . . . . . . . . . . . 4–46

v



4.12.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–46
4.13 SNALU62$REQUEST_TO_SEND . . . . . . . . . . . . . . . . . . . . . . . . 4–47
4.13.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–47
4.13.2 Valid Conversation States for

SNALU62$REQUEST_TO_SEND . . . . . . . . . . . . . . . . . . . . . 4–48
4.13.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–48
4.14 SNALU62$SEND_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–49
4.14.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–51
4.14.2 Valid Conversation State for SNALU62$SEND_DATA . . . . . . 4–51
4.14.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–51
4.15 SNALU62$SEND_ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–52
4.15.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–53
4.15.2 Valid Conversation States for SNALU62$SEND_ERROR . . . 4–54
4.15.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–54
4.16 SNALU62$SUPPLY_PIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–55
4.16.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–56
4.16.2 Valid Conversation States for SNALU62$SUPPLY_PIP . . . . . 4–56
4.16.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–56
4.17 SNALU62$WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–57
4.17.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–57
4.17.2 Valid Conversation State for SNALU62$WAIT . . . . . . . . . . . 4–58
4.17.3 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–58

5 Procedure Calling Format: Control Operator Verbs

5.1 SNALU62$ACTIVATE_SESSION . . . . . . . . . . . . . . . . . . . . . . . . 5–3
5.1.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4
5.1.2 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
5.2 SNALU62$DEACTIVATE_SESSION . . . . . . . . . . . . . . . . . . . . . . 5–6
5.2.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–7
5.3 SNALU62$DEFINE_REMOTE . . . . . . . . . . . . . . . . . . . . . . . . . . 5–8
5.3.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–11
5.4 SNALU62$DEFINE_TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–12
5.4.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14
5.5 SNALU62$DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–15
5.5.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–16

vi



6 Compiling and Linking a Transaction Program

6.1 Creating and Compiling Your Program . . . . . . . . . . . . . . . . . . . . 6–1
6.2 Linking Your Program to the Shareable Program Image . . . . . . . 6–2

A Summary of Parameter Notation

B Programming Examples

B.1 FORTRAN Programming Example . . . . . . . . . . . . . . . . . . . . . . . B–2
B.2 Pascal Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . B–6
B.3 Pascal Symbol and Structure Definitions . . . . . . . . . . . . . . . . . . . B–12
B.4 BASIC Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . . B–13
B.5 MACRO Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . B–17
B.6 COBOL Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . B–22
B.7 VAX PL/I Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . B–27
B.8 C Programming Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B–32
B.9 Second C Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . B–39
B.10 Third C Programming Example . . . . . . . . . . . . . . . . . . . . . . . . . . B–52

C Return Codes and State Changes

C.1 Return Codes and State Changes for Conversations . . . . . . . . . . C–1
C.2 Return Codes for Control Operator Verbs . . . . . . . . . . . . . . . . . . C–2

D Conversation State Transitions

D.1 Using the Conversion State Transitions Table . . . . . . . . . . . . . . . D–2

E APPC/LU6.2 Interface Procedures and Status Messages

F Definitions for the APPC/LU6.2 Interface

G APPC/LU6.2 Programming Interface Compatibility Features

G.1 The SNALU62$DEFINE Procedure . . . . . . . . . . . . . . . . . . . . . . . G–1
G.1.1 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–3
G.1.2 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–4
G.2 Status Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–4
G.3 Obsolete Definitions for the APPC/LU6.2 Programming

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G–4

vii



H Status Codes

I Problem Solving

J DIGITAL SNA Access Server for Windows NT Programming
Considerations

J.1 SNALU62$DEFINE_REMOTE . . . . . . . . . . . . . . . . . . . . . . . . . . J–1
J.2 SNALU62_DEFINE_TP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J–2
J.3 SNALU62$ALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J–2
J.4 SNALU62$DEALLOCATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J–3
J.5 SNALU62$GET_ATTRIBUTES . . . . . . . . . . . . . . . . . . . . . . . . . . J–3

Glossary

Index

Figures

1–1 APPC/LU6.2 Using DIGITAL SNA Gateway Connection to
IBM Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2

1–2 APPC/LU6.2 Using OpenVMS SNA Connection to IBM Host
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3

2–1 Basic Conversation Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2–2 Mapped Conversation Buffer . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
3–1 I/O Status Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
D–1 Conversion State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . D–3
E–1 Status Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2

Tables

A–1 Parameter Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1
G–1 LU Attribute Identifiers and Attributes . . . . . . . . . . . . . . . . . G–3

viii



Preface

The DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS enables
OpenVMS users to communicate with remote IBM host transaction programs
on systems running OpenVMS SNA, or connected to either of the following
SNA gateways:

• DECnet SNA Gateway-CT

• DECnet SNA Gateway-ST

• DIGITAL SNA Domain Gateway

• DIGITAL SNA Peer Server

• DIGITAL SNA Access Server for Windows NT

Note

Unless otherwise stated, the term SNA gateway refers to the DECnet
SNA Gateway-CT, the DECnet SNA Gateway-ST, the DIGITAL SNA
Domain Gateway, the DIGITAL SNA Peer Server, the DIGITAL SNA
Access Server for Windows NT, or the OpenVMS SNA (OpenVMS VAX
Version 6.2 and Version 7.1 only) when used in this manual.

You can use this interface to develop a complementary transaction program on
an OpenVMS system that uses an IBM SNA logical unit (LU) type 6.2 session,
to communicate with a corresponding IBM LU6.2 application.

Manual Objectives
The DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS
Programming tells you how to write a transaction on an OpenVMS system to
establish an LU-to-LU type 6.2 session with a remote IBM host transaction
program.

ix



Intended Audience
This manual is for OpenVMS programmers. To use the DIGITAL SNA
APPC/LU6.2 Programming Interface, you need a general understanding
of IBM’s Systems Network Architecture (SNA) and Advanced Program-to-
Program Communication (APPC). For information, see IBM’s An Introduction
to Advanced Program-to-Program Communication (APPC), Order No. GG24-
1584.

Structure of This Manual
This manual has six chapters, nine appendixes, and a glossary.

Chapter 1 DIGITAL SNA application interface products and the
features of the APPC/LU6.2 Programming Interface.

Chapter 2 APPC/LU6.2 concepts and terms, and the way the
Programming Interface requests services and functions.

Chapter 3 Features of the Programming Interface that help you write
and execute your transaction.

Chapter 4 Calling format and parameter list for each conversation
verb that the Programming Interface provides.

Chapter 5 Calling format and parameter list for each control operator
verb that the Programming Interface provides.

Chapter 6 Procedures for compiling and linking a OpenVMS
transaction program using a shareable image.

Appendix A Summary of the notation that describes parameters in the
Programming Interface.

Appendix B Programming examples in several commonly used
languages.

Appendix C Status codes returned by a conversation verb, and the state
change, if any, that a conversation has undergone. Also,
status codes that can be returned by a control operator verb.

Appendix D Table indicating whether a transaction can issue a
procedure call when a conversation is in a particular state.
Also, state transition information for each APPC/LU6.2
verb.

Appendix E Table correlating procedures and status messages used by
the Programming Interface.

Appendix F Symbols and values to use when writing your transaction
program, if a definition file is unavailable for a particular
language.

x



Appendix G Features compatible with earlier versions of the Programming
Interface.

Appendix H Status codes that the Programming Interface returns to the
OpenVMS transaction program.

Appendix I Problems you may encounter when using the
Programming Interface. Supplements the following:
DECnet SNA Gateway-CT Problem Solving (OpenVMS
& ULTRIX), DECnet SNA Gateway-ST Problem Solving
(OpenVMS), OpenVMS SNA Problem Solving and DIGITAL
SNA Peer Server Management.

Appendix J Considerations when using the DIGITAL SNA Access Server
for Windows NT.

Glossary Definitions of terms in this manual.

Associated Documents
You may need to refer to the following IBM documents:

• An Introduction to Advanced Program-to-Program Communication (APPC),
Order No. GG24-1584. Provides general information about the LU6.2
architecture.

• CICS/OS/VS Version 1, Release 7, Application Programmer’s Reference
Manual (Command Level), Order No. SC33-0241. A general programming
reference for CICS Version 1, Release 7; contains information about
mapped conversations using CICS.

• CICS/OS/VS Version 1, Release 7, Intercommunication Facilities Guide,
Order No. SC33-0230. Contains information about basic conversations
using CICS Version 1, Release 7.

• Systems Network Architecture Concepts and Products, Order No. GC30-
3072. Provides basic information on SNA for readers wanting an overview
of SNA.

• Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic, Order No. SC30-3112. Provides comprehensive
information on the formats and protocols of SNA nodes.

• Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2, Order No. SC30-3269. Provides
detailed information about formats and protocols for LU6.2.

• Systems Network Architecture LU6.2 Reference: Peer Protocols, Order No.
SC31-6808.

xi



• Systems Network Architecture Reference Summary, Order No. GA27-3136.
Provides summary information on SNA formats and sequences.

• Systems Network Architecture - Sessions Between Logical Units, Order No.
GC20-1868. Contains reference information on SNA formats and protocols
for LU types other than 6.2.

• Systems Network Architecture Technical Overview, Order No. GC30-3073.
Provides a technical description of how SNA functions allow network users
to be independent of SNA network characteristics and operations.

• System Network Architecture Transaction Programmer’s Reference Manual
for LU Type 6.2, Order No. GC30-3084. Provides the architectural
definition for LU6.2.

• VTAM Programming for LU6.2, Version 3, Release 2, Order no. SC30-3400.

You should have the following DIGITAL documents available for reference:

• DECnet SNA Gateway-CT Installation

• DECnet SNA Gateway-CT Management (OpenVMS)

• DECnet SNA Gateway-CT Problem Solving (OpenVMS & ULTRIX)

• DECnet SNA Gateway-CT Guide to IBM Parameters

• DECnet SNA Gateway-ST Installation

• DECnet SNA Gateway-CT Management (OpenVMS)

• DECnet SNA Gateway-ST Problem Solving (OpenVMS)

• DECnet SNA Gateway-ST Guide to IBM Parameters

• DIGITAL SNA Domain Gateway Installation

• DIGITAL SNA Domain Gateway Management

• DIGITAL SNA Domain Gateway Guide to IBM Resource Definition

• DIGITAL SNA Peer Server Installation and Configuration

• DIGITAL SNA Peer Server Management

• DIGITAL SNA Peer Server Network Control Language Reference

• DIGITAL SNA Peer Server Guide to IBM Resource Definition

• DIGITAL SNA Access Server for Windows NT Installation and
Configuration

• DIGITAL SNA Access Server for Windows NT Guide to IBM Resource
Definition

xii



• OpenVMS SNA Installation

• OpenVMS SNA Management

• OpenVMS SNA Problem Solving

• OpenVMS SNA Guide to IBM Parameters

• OpenVMS Install Utility Manual

• OpenVMS Linker Reference Manual

• OpenVMS Linker Utility Manual

• OpenVMS Run-Time Library Routines Reference Manual

• OpenVMS System Services Reference Manual

• Introduction to OpenVMS System Routines

xiii



Graphic Conventions
This manual uses the following conventions:

Convention Meaning

Special type Indicates an example of either user or system
input.

UPPERCASE LETTERS Represent constant values, or symbols. Code these
as specified.

lowercase italics Represent variables for which you must supply a
value.

[ ] Enclose parameters or symbols that are either
optional or conditional. Specify the parameter and
value if you want the condition to apply. Do not
type the brackets in the line of code. The following
rules generally apply to parameters:

• You may code or omit an optional parameter.
Omitting an optional parameter may impact a
related parameter or may cause a default value
to be specified.

• You may code or omit a conditional parameter.
Your choice is determined by how other
parameters, in the same or different
procedures, are coded.

( ) Enclose a group of values you must specify for a
parameter. Type these values in the line of code
in the order indicated. Type parentheses exactly
where they must appear in a line of code.

Numbers Decimal unless otherwise noted.

Return Ends a command line. Unless otherwise specified,
end every command line by pressing the Return
key.

Ctrl/x Indicates a control character, where x is an
alphabetic character. Press the Ctrl key and the
appropriate alphabetic key simultaneously.

xiv



1
Introduction

Using the DIGITAL SNA APPC/LU6.2 Programming Interface or OpenVMS,
you can develop complementary OpenVMS transaction programs that
exchange messages with remote IBM host transaction programs. To exchange
these messages, an OpenVMS transaction program needs support from the
Programming Interface when establishing a session with any IBM host using
SNA Logical Unit (LU) type 6.2. The Programming Interface uses either one
of the SNA gateway products of DIGITAL or the OpenVMS SNA interconnect
product for communication between a DIGITAL and an IBM system.

Figure 1–1 shows the connection between an IBM host and a DIGITAL
network using the APPC/LU6.2 Programming Interface and a DIGITAL SNA
gateway product. The DIGITAL SNA gateway in the figure can be any one of
the following gateway products:

• DECnet SNA Gateway-CT

• DECnet SNA Gateway-ST

• DIGITAL SNA Domain Gateway

• DIGITAL SNA Peer Server

• DIGITAL SNA Access Server for Windows NT

DIGITAL SNA Access Server for Windows NT Note

The DIGITAL SNA Access Server for Windows NT product does not
fully support the APPC/LU6.2 Programming Interface. In most cases,
you will not have to rewrite APPC/LU6.2 programs when using the
DIGITAL SNA Access Server for Windows NT. Notes like this one
throughout this manual describe any differences when using the
DIGITAL SNA Access Server for Windows NT. For a summary of
how the DIGITAL SNA Access Server for Windows NT affects the
APPC/LU6.2 verbs, see Appendix J.

Introduction 1–1



Figure 1–1 APPC/LU6.2 Using DIGITAL SNA Gateway Connection to IBM Host

LKG−4418−93R

Ethernet

OpenVMS system

OpenVMS
transaction

DIGITAL SNA

program

IBM

APPC/LU6.2

communications

gateway

controller

IBM host system

OpenVMS

CICS

system

CICS

CICS

OpenVMS

transaction

system

program

Figure 1–2 shows a single connection between an OpenVMS system and an
IBM SNA host using the OpenVMS SNA product (OpenVMS VAX Version 6.2
and Version 7.1 only) and the APPC/LU6.2 Programming Interface.

The APPC/LU6.2 Programming Interface is one of four DIGITAL SNA for
OpenVMS programming interface products. The other three, the DIGITAL
SNA 3270 Data Stream Programming Interface, the DIGITAL SNA Application
Programming Interface (API) and the Remote 3270 Application Services

1–2 Introduction



Figure 1–2 APPC/LU6.2 Using OpenVMS SNA Connection to IBM Host

LKG−4419−93R

OpenVMS system

IBM
communications
controller

APPC/LU6.2

OpenVMS

IBM host system

CICS

CICS

transaction
program

transaction
program

Interface (R3270), enable you to exchange messages with cooperating
applications on an IBM host as follows:

• The DIGITAL SNA 3270 Data Stream Programming Interface supports
OpenVMS applications in establishing sessions with an LU type 2. This
interface can receive uninterpreted 3270 data streams, or it can convert
the 3270 data stream into a virtual screen image, which it then updates
and returns to the IBM host.

• The DIGITAL SNA Application Programming Interface supports OpenVMS
applications that need to establish sessions with LU types 0, 1, 2, and 3.

• The Remote 3270 Application Services Interface (R3270) supports
OpenVMS applications that generate and interpret all instances of the
3270 data stream for sessions with LU types 0, 1, 2, and 3.

To use the APPC/LU6.2 Programming Interface, your IBM host system must
support SNA LU type 6.2 sessions and either CICS/ESA or VTAM Version 3.2
or later. Refer to the Software Product Description (SPD) for details.

If your system does not support LU type 6.2 sessions, one of the other
DIGITAL SNA programming interfaces may be able to meet your programming
needs.

For more information about IBM’s advanced program-to-program
communication, see An Introduction to Advanced Program-to-Program
Communication (APPC), Order No. GG24-1584.

Introduction 1–3



1.1 Logical Unit Type 6.2
Logical Unit 6.2 is a general purpose architecture that enables IBM products
to communicate with one another. Unlike other IBM LUs, which are designed
with specific products in mind, LU6.2 has general function as the goal, that is,
a common LU for all products.

The LU6.2 architecture defines a set of protocols. To communicate with one
another, products must implement LU6.2 according to these protocols. They
can, however, implement that definition in different ways. There are two
general implementations of LU6.2:

• "Open-box" implementations

• "Closed-box" implementations

"Open-box" implementations allow users to write their own communications
code to solve business problems. The DIGITAL SNA APPC/LU6.2
Programming Interface for OpenVMS and IBM’s CICS/ESA, Intersystem
Communication (ISC) are examples of open-box implementations.

For open-box implementations, IBM’s architectural definition for LU6.2
provides a set of procedures, also called verbs—that programmers use to
design distributed transactions. CICS ISC implements the verb functions
with EXEC CICS commands. OpenVMS transaction programs, using the
APPC/LU6.2 Programming Interface, implement the verb functions with
OpenVMS procedures. Whether products use verbs, EXEC CICS commands,
or procedures, they implement the IBM architecture and enable cooperating
transactions to communicate. Programmers use the various procedures to
make calls from their transaction program. The procedures function as
subroutines within the transaction; that is, they execute their function and
then return control to the transaction program.

LU6.2 provides the procedures for transaction programs to call. Transaction
programs written in different programming languages can use the LU6.2
procedures to exchange messages. Regardless of the language they are written
in, the transaction programs must cooperate. Then, as long as both sides
of the communication use the LU6.2 interface and can handle the data, the
transactions can communicate with each other.

"Closed-box" implementations apply to turnkey products. The user cannot
develop customized solutions for business problems. The MR/SNADS Facility
and IBM’s DISOSS/370 are examples of closed-box implementations.

1–4 Introduction



1.2 APPC/LU6.2 Programming Interface Features
Using the APPC/LU6.2 Programming Interface, an OpenVMS transaction
program can:

• Perform peer-to-peer communications (distributed transaction processing)
as opposed to traditional hierarchical host-to-device communications

• Perform a wide range of distributed transaction processing, provided the
cooperating transaction uses identical record formats and functions

Communication using LU6.2 is analogous in function to the DECnet task-
to-task communication over a DECnet logical link. As with DECnet,
communication between transaction programs using LU6.2 is transparent.
You can move to a remote IBM host transaction program without knowing the
details of the underlying networks.

LU6.2 transaction programs exchange information by means of a conversation,
a temporary logical path established between two cooperating transaction
programs. As in DECnet task-to-task communication, transaction programs
must cooperate during the transmission process. For instance, when one
transaction program issues a command to send data, the other transaction
program must issue a command to receive the data. In cooperating transaction
programs, you can make calls to the APPC/LU6.2 Programming Interface
procedures to:

• Establish LU 6.2 sessions

• Set up conversations between transaction programs

• Send and receive data

• Support mapped conversations

• Support basic conversations

• Confirm data exchange

For information about tearing down conversations and terminating LU6.2
sessions on OpenVMS systems, see the Introduction to OpenVMS System
Routines.

Note

The DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS
does not support the following functions:

• Conversations with a synchronization level of SYNCPT

• Backout and Sync Level Syncpoint procedures

Introduction 1–5



• Parallel sessions (The Microsoft SNA Server does support parallel
sessions. Because all session control occurs in the Microsoft SNA
Server software, the DIGITAL SNA APPC/LU6.2 Programming
Interface for OpenVMS product effectively supports parallel
sessions when using a Microsoft SNA Server.)

• Control operator procedures other than DEFINE_REMOTE,
DEFINE_TP, ACTIVATE_SESSION, DEACTIVATE_SESSION,
DELETE_REMOTE and DELETE_TP

You can find the calling format for each of the procedures that the
Programming Interface supports in Chapter 4 and Chapter 5.

1.3 SNA Concepts
You can develop a variety of transaction programs using the Programming
Interface. Because the interface sends, receives, and interprets SNA protocol
messages on behalf of the OpenVMS transaction program, you need not
be concerned with SNA message formats and protocols. Nevertheless, this
manual assumes a general knowledge of SNA and an awareness of LU type 6.2
architecture. For further details, see An Introduction to Advanced Program-
to-Program Communication (APPC), Order No. GG24-1584, and the System
Network Architecture Programmer’s Reference Manual for LU Type 6.2, Order
No. GC30-3084.

1.4 Common Interface Transaction Programs
You can use the Programming Interface to write transaction programs that
make up the secondary logical unit (SLU) half-session partner in an LU type
6.2 session. For example, you can write transactions that do the following:

• Communicate with IBM’s Distributed Office Support System (DISOSS) on
the IBM host.

• Write cooperating LU-to-LU transaction programs that communicate
directly with each other. Traditionally, to communicate with an IBM
mainframe using a non-IBM product, end users have had to emulate
specific IBM devices with an application. With the advent of LU6.2,
peer-to-peer communications are possible.

1–6 Introduction



DIGITAL SNA Access Server for Windows NT Note

When using the Microsoft SNA Server, you can write transaction
programs that make up the primary logical unit (PLU) half-session
partner.

Introduction 1–7





2
Concepts and Terms

The DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS,
(called the APPC/LU6.2 Programming Interface), enables an OpenVMS
transaction program and a remote IBM host transaction program to take
part in a distributed transaction environment that uses IBM’s Advanced
Program-to-Program Communication.

A transaction involves at least two participants: a requester of a processing
operation and an executor of the operation. The request can be accompanied
by input data, and successful completion of the operation may include
the return of output data. In a distributed transaction, the program that
requests the operation and the program that performs the operation can be on
different computer systems and at different facilities and sites. The programs
communicate through the facilities of a computer network.

In a DIGITAL SNA distributed transaction environment, programs
communicate by means of the combined facilities of TCP/IP or DECnet, SNA,
and an SNA gateway. In a pure SNA configuration, each program is assigned
a logical unit (LU) that performs communication functions and provides access
to the network. The APPC/LU6.2 Programming Interface provides LU6.2
functions for a transaction program running on an OpenVMS system.

This chapter discusses how to:

• Establish sessions and conversations

• Send and receive messages

• Synchronize partner programs

• Deallocate (terminate) a conversation

Concepts and Terms 2–1



2.1 Sessions and Conversations
Before your transaction program and a remote transaction program can
exchange messages, they must first establish a conversation. A conversation is
a short-term logical connection that lasts only for the duration of one complete
transaction. (A transaction can be of any duration, depending upon the amount
of data the program has to transmit.) Neither your transaction program nor
the remote transaction program controls the conversation. Peer-to-peer
communication, rather than hierarchical communication, characterizes these
transactions.

Conversations take place over sessions between logical units (LUs). A session
is a long-term logical connection that permits communication between two
logical units. When your transaction program establishes a conversation,
the interface allocates a session for your transaction program to use for
the duration of your transaction program’s conversation with the remote
transaction program. When your transaction program completes, the
conversation ends. The session, however, remains active and available for
other conversations.

2.1.1 Requesting a Session for a Conversation
To request a session for a conversation, the OpenVMS transaction program
calls the SNALU62$ALLOCATE procedure. By default, the APPC/LU6.2
Programming Interface attempts to allocate an active session for the
conversation.

• If a session is available (that is, if one exists and is not currently allocated
to another conversation), the APPC/LU6.2 Programming Interface starts
the conversation immediately.

• If a session exists but is not currently available, or if an active session does
not currently exist, the APPC/LU6.2 Programming Interface automatically
activates one and allocates it for the conversation.

Both the OpenVMS transaction program and the IBM transaction program
can allocate a conversation; thus, both inbound and outbound conversation
allocation is possible. In order for an IBM transaction program to initiate
a conversation with an OpenVMS transaction program, the OpenVMS
transaction program must activate a session between the two LUs using
the SNALU62$ACTIVATE_SESSION verb.

2–2 Concepts and Terms



2.1.2 Basic and Mapped Conversations
IBM defines two types of conversation, basic and mapped, for advanced
program-to-program communication. The APPC/LU6.2 Programming
Interface supports both types with the same set of procedures described in this
manual. In the APPC/LU6.2 Programming Interface procedures that permit
a choice of conversation types, choose the type you want by specifying the
appropriate symbolic code—either SNALU62$K_BASIC_CONVERSATION
or SNALU62$K_MAPPED_CONVERSATION—in the type parameter of the
SNALU62$ALLOCATE verb.

2.1.2.1 Generalized Data Stream (GDS)
Both basic and mapped conversations use the generalized data stream
(GDS) to transmit data. The GDS is a standard data stream in LU6.2
communications. Because mapped conversations manage the GDS for you,
DIGITAL recommends that you use them. For more information about the
GDS, see An Introduction to Advanced Program-to-Program Communication
(APPC), Order No. GC24-1584, IBM Transaction Programmer’s Reference
Manual for LU Type 6.2, Order No. GC30-3084, and the IBM CICS/ESA,
Application Programmer’s Reference Manual (Command Level), Order No.
SC33-0241.

2.1.2.2 Basic Conversations
Basic conversations are suitable for system programmers who need to
manipulate data-stream information that is exchanged. Transaction programs
using basic conversations are responsible for performing error recovery and
data-stream mapping, and for building and interpreting the GDS headers
when used. When the OpenVMS transaction program uses GDS headers,
it supplies a buffer containing one or more logical records. Each record is
preceded by a 2-byte header indicating the length (LL) of the record you are
transmitting (including the 2-byte header), and the data. The LL is a 16-bit
integer in IBM format; that is, the first byte is the most significant byte and
the second byte is the least significant byte. In the first two bytes of the data,
you have the option of supplying GDS identifiers. These identifiers provide
information about the format and meaning of the following data. Figure 2–1
illustrates the basic conversation buffer. In the illustration, please note that
the buffer can contain more than one record and that GDS ID may or may not
appear.

Concepts and Terms 2–3



Figure 2–1 Basic Conversation Buffer

1 Record

2

0 2 4 n

Buffer

Buffer
1

Buffer

LKG−4562−93R

LL DataGDSGDS
ID

LL Data
ID

GDS

LL DataData GDS
ID

2.1.2.3 Mapped Conversations
Mapped conversations ease the work of writing transaction programs because
they provide a higher level interface than basic conversations. They provide
additional functions for the user-written transaction program such as data-
stream handling, detection of remote program errors, and processing of local
program errors. When you use mapped conversations, you supply a buffer of
data; the APPC/LU6.2 Programming Interface transforms all data being sent to
another transaction program into the GDS, and IBM LU services restores the
data to its original form before the destination transaction program receives it.
With mapped conversations, the OpenVMS transaction program is not aware
of the GDS headers and is not responsible for using or interpreting them.
Figure 2–2 illustrates the mapped conversation buffer.

For more information about conversations, see An Introduction to Advanced
Program-to-Program Communication (APPC), Order No. GG24-1584.

2–4 Concepts and Terms



Figure 2–2 Mapped Conversation Buffer

LKG−4563−93R

0 −1

Data

n

2.2 Sending Messages
Sending a message to the remote IBM host transaction program involves three
separate actions:

• Putting the OpenVMS transaction program into the send state

• Submitting the data to an APPC/LU6.2 Programming Interface buffer

• Transmitting the contents of the APPC/LU6.2 Programming Interface
buffer to the remote IBM host transaction program

2.2.1 Putting the OpenVMS Transaction Program into the Send State
LU6.2 uses states to synchronize conversations (that is, to ensure that the
transaction programs call procedures in the proper sequence) between
two cooperating transaction programs. A state reflects the conditions of
a conversation at any given moment. For example, for communication to
take place, one transaction must be in send state and the other in receive
state. The state of a conversation determines what procedures the OpenVMS
transaction program can call. If the OpenVMS transaction program attempts
to call a procedure when it is not in the proper state (that is, when it is
not synchronized with the cooperating transaction), the error the procedure
will return is SNALU62$_STAERR. When both transaction programs are in
the correct state, the conversations are synchronized. Successfully calling a
procedure changes the state of the conversation.

Concepts and Terms 2–5



To send a message to the remote IBM transaction program, the OpenVMS
transaction program must be in the send state and the remote IBM host
transaction program must be in the receive state. If the OpenVMS transaction
program wishes to send a message but is currently in the receive state, it
must call the SNALU62$RECEIVE_AND_WAIT procedure and wait for the
cooperating transaction to send a SEND notification. The SEND notification
will be received by way of the SNALU62$RECEIVE_AND_WAIT procedure.

The OpenVMS transaction program can also issue the procedure
SNALU62$REQUEST_TO_SEND and the following steps will occur:

1. The OpenVMS transaction program calls the SNALU62$REQUEST_TO_
SEND procedure. The APPC/LU6.2 Programming Interface transmits a
request-to-send to the remote IBM host transaction program.

2. The remote IBM host transaction program receives the request-to-send and
at some point returns a SEND notification to the OpenVMS transaction
program, granting the request. Note that the IBM Host transaction
program can also either ignore or defer granting the request.

3. The OpenVMS transaction program calls the SNALU62$RECEIVE_AND_
WAIT procedure and tests the what_received parameter until it receives
the SNALU62$K_SEND symbol.

Note

The what_received parameter may contain other symbols that place the
conversation in the same or in a different state and require different
action (see Section 4.1.1).

4. The OpenVMS transaction program is now in the send state and the
remote IBM host transaction program is in the receive state.

For this sequence to succeed, the remote IBM host transaction program must
respond exactly as shown here. This response is not automatic: the remote
IBM host transaction program can respond in a manner different from that
described.

Upon successful completion of the SNALU62$ALLOCATE procedure (described
in Section 2.1.1), the OpenVMS transaction program is in the send state and
can transmit data to the remote IBM host transaction program. Once the
OpenVMS transaction program enters the receive state, it cannot return to
the send state until after the SEND notification is delivered by means of a
subsequent SNALU62$RECEIVE_AND_WAIT procedure.

2–6 Concepts and Terms



2.2.2 Submitting Data for Transmission
In the course of a conversation, the OpenVMS transaction program may
wish to submit record data to the APPC/LU6.2 Programming Interface for
transmission to the remote IBM host transaction program. The way data is
submitted depends on whether the transactions are engaged in a mapped
conversation or a basic conversation.

An OpenVMS transaction program engaged in a mapped conversation submits
records to the APPC/LU6.2 Programming Interface one at a time. To submit a
single data record, the OpenVMS transaction program calls the
SNALU62$SEND_DATA procedure and provides a buffer containing the data
record. This record consists entirely of data. The data can include an SNA
function management header (FMH). An FMH is an optional header included
in SNA request units to provide information about the presentation of data at
the destination transaction program.

An OpenVMS transaction program engaged in a basic conversation can submit
records to the APPC/LU6.2 Programming Interface one at a time or in groups.
To submit one or more records, the OpenVMS transaction program calls the
SNALU62$SEND_DATA procedure and provides a buffer containing one or
more logical records. Each logical record consists of a field (LL) 2 bytes long,
followed by a data field.

For both types of submission, the APPC/LU6.2 Programming Interface
transfers the data record(s) from the OpenVMS transaction program’s buffer to
a buffer of its own. When the buffer is filled, the APPC/LU6.2 Programming
Interface sends the contents to the remote IBM host transaction program in a
single transmission.

2.2.3 Transmitting the Send Buffer
By default, the APPC/LU6.2 Programming Interface buffers the data records,
commands, and control information that the OpenVMS transaction program
wants to send to the remote IBM host transaction program. When the buffer is
full, the APPC/LU6.2 Programming Interface sends the contents to the remote
IBM host transaction program in a single transmission.

In some cases, the OpenVMS transaction program may wish to submit a record
or message for immediate transmission. To do this, the transaction program
can call the SNALU62$FLUSH procedure. The APPC/LU6.2 Programming
Interface immediately transmits the contents of the buffer to the remote IBM
host transaction program; however, the OpenVMS transaction program does
not leave the send state.

Concepts and Terms 2–7



The procedures SNALU62$CONFIRM, SNALU62$RECEIVE_AND_WAIT,
SNALU62$SEND_ERROR, and SNALU62$PREPARE_TO_RECEIVE can also
make the APPC/LU6.2 Programming Interface flush its send buffer. These
procedures are described in the sections that follow.

2.3 Receiving a Request-to-Send Notification
At any point during a conversation, the remote IBM host transaction program
can send a request-to-send to the APPC/LU6.2 Programming Interface
indicating that it wants to send a message to the OpenVMS transaction
program. This message can be data, conversation status information, or a
confirmation request.

To notify the OpenVMS transaction program that the remote IBM host
transaction program has sent a request-to-send, the APPC/LU6.2 Programming
Interface uses the rts_rec parameter provided by the following procedures:
SNALU62$CONFIRM, SNALU62$RECEIVE_AND_WAIT, SNALU62$SEND_
DATA, and SNALU62$SEND_ERROR.

The complete operation consists of the following steps:

1. The APPC/LU6.2 Programming Interface receives a request-to-send from
the remote IBM host transaction program. It holds the request, and at
some point, does the following:

• Calls one of the following procedures:

SNALU62$CONFIRM

SNALU62$RECEIVE_AND_WAIT

SNALU62$SEND_DATA

SNALU62$SEND_ERROR

• Specifies a location in the parameter list to receive a TRUE/FALSE
rts_rec indicator resulting from the procedure called

2. When the APPC/LU6.2 Programming Interface returns a value of TRUE
to the rts_rec parameter, the OpenVMS transaction program now has a
choice. It can:

• Issue a receive, and agree to the request, or

• Issue a send, and ignore the request.

2–8 Concepts and Terms



2.4 Receiving a Message from the IBM Host Transaction
Program

To receive a message from the remote IBM host transaction program, the
OpenVMS transaction program calls the SNALU62$RECEIVE_AND_WAIT
procedure. If a message is available, APPC/LU6.2 passes it to the calling
transaction at once. If not, the transaction waits until a message arrives from
the remote IBM host transaction program.

The OpenVMS transaction program can issue an SNALU62$RECEIVE_AND_
WAIT request when it is in either the receive or send state. If it is currently in
the send state, the APPC/LU6.2 Programming Interface immediately flushes
the send buffer and transmits the contents to the remote IBM host transaction
program, along with a send indicator to put the remote host transaction
program into the send state.

The SNALU62$RECEIVE_AND_WAIT procedure provides a way for an
OpenVMS transaction program to enter the receive state and receive a
message from the remote IBM host transaction program. APPC/LU6.2
provides four other procedures that the OpenVMS transaction program can
use to perform similar operations. These are the SNALU62$RECEIVE_
IMMEDIATE procedure, the SNALU62$PREPARE_TO_RECEIVE procedure,
the SNALU62$POST_ON_RECEIPT procedure, and the SNALU62$WAIT
procedure.

1. The SNALU62$RECEIVE_IMMEDIATE procedure provides the simplest
way for an OpenVMS transaction program to enter the receive state.
If a message is available, APPC/LU6.2 passes it at once to the calling
transaction. The OpenVMS transaction program does not have to wait for
a message from the remote IBM host transaction program before it can
enter the receive state.

2. The SNALU62$PREPARE_TO_RECEIVE procedure causes the
APPC/LU6.2 Programming Interface to flush the send buffer and send
a SEND notification to the remote IBM host transaction program. The
remote transaction enters the send state when it receives the SEND
notification. The APPC/LU6.2 Programming Interface always flushes
the send buffer when the OpenVMS transaction program issues the
SNALU62$PREPARE_TO_RECEIVE procedure.

3. The SNALU62$POST_ON_RECEIPT procedure allows you to watch for
received data on multiple conversations. SNALU62$POST_ON_RECEIPT
causes the Programming Interface to notify the specified conversation
when information is available for receipt by the OpenVMS transaction

Concepts and Terms 2–9



program. The information can be data, conversation status, or a request
for confirmation. Notification can occur in three ways:

• Setting the event flag parameter (if available)

• Calling a user-specified AST routine

• Allowing a call to a pending SNALU62$WAIT procedure to complete.

4. The SNALU62$WAIT procedure suspends execution of the OpenVMS
transaction program and waits for notification to occur on any conversation
from a list of conversations. The user must issue the
SNALU62$RECEIVE_AND_WAIT procedure to transfer the data into the
buffer.

Note

If the conversation is in the send state, the OpenVMS transaction
program must issue the SNALU62$PREPARE_TO_RECEIVE
procedure before issuing the SNALU62$POST_ON_RECEIPT
procedure.

2.5 Confirmation Processing
In an LU6.2 conversation, a confirmation is an exchange of messages that
enables two transaction programs to agree that a particular operation either
has succeeded or failed. If the operation has failed, the confirmation includes
the exchange of error messages indicating the reason for the failure.

Using the APPC/LU6.2 Programming Interface, an OpenVMS transaction
program can request a confirmation from the remote IBM host transaction
program and can respond positively to a confirmation request sent by the
remote IBM host.

To request a confirmation, the OpenVMS transaction program calls the
SNALU62$CONFIRM procedure, specifies a conversation, and waits for a
response. When the procedure completes, the status vector contains the
response.

To receive a confirmation request from the remote IBM host transaction
program, the OpenVMS transaction program uses the SNALU62$RECEIVE_
AND_WAIT procedure (see discussion of the what_received parameter in
Section 4.11.

2–10 Concepts and Terms



To send a positive response to a confirmation request, the OpenVMS
transaction
program calls the SNALU62$CONFIRMED procedure. The APPC/LU6.2
Programming Interface sends the confirmation message to the remote IBM
host transaction program.

2.6 Sending and Receiving Error Notification
At some point in a conversation, the OpenVMS transaction program or the
remote IBM host transaction program may need to inform its partner that it
has detected an error.

To report an error, the OpenVMS transaction program calls the
SNALU62$SEND_ERROR procedure. The parameter list includes a type
indicator that the OpenVMS transaction program uses to specify whether it
is reporting an end-user transaction program error or an LU services error (a
software error that occurs with basic conversations).

If the remote IBM host transaction program reports an error, the APPC/LU6.2
Programming Interface returns the message to the next procedure called by
the OpenVMS transaction program. Errors are returned in a status vector
specified by the OpenVMS transaction program (see Section 3.1.3).

2.7 Ending a Conversation
To end a conversation, the OpenVMS transaction program calls the
SNALU62$DEALLOCATE procedure. When the procedure completes, the
conversation ends. The session, however, remains active and available for
other conversations.

You can deallocate a conversation in three ways, although not all ways are
legitimate in every conversation state:

• Normal deallocation initiated by the OpenVMS transaction program

• Abnormal deallocation initiated by the OpenVMS transaction program

• Local deallocation initiated by the OpenVMS transaction program after the
remote IBM host transaction program has deallocated the conversation

Concepts and Terms 2–11



2.7.1 Normal Deallocation
The OpenVMS transaction program initiates a normal deallocation. To perform
a normal deallocation, the OpenVMS transaction program must be in the send
state after either completing a receive with the what_received parameter equal
to SNALU62$K_SEND or having completed a send request. There are two
types of normal deallocation; flush and sync-level:

• In a flush deallocation (type equals SNALU62$K_FLUSH), the
Programming Interface first sends all data in its internal buffer and then
deallocates the conversation.

• In a sync-level deallocation (type equals SNALU62$K_SYNC_LEVEL),
the APPC/LU6.2 Programming Interface sends all data in its internal
buffer but requests confirmation if the sync-level is CONFIRM. If the
confirm response is positive, the conversation is deallocated. If the confirm
response is negative, the SNALU62$DEALLOCATE procedure completes
with an error code such as program error purging (SNALU62$_PRERPU)
or program error truncating (SNALU62$_PRERTR). The remote IBM host
transaction program returns an error code indicating what went wrong.
The OpenVMS transaction program is now in receive state and the remote
IBM host transaction program is now in send state. The way the OpenVMS
transaction program recovers from the error is program dependent.

2.7.2 Abnormal Deallocation
The OpenVMS transaction program initiates abnormal (ABEND) deallocation.
To perform an abnormal deallocation, the APPC/LU6.2 Programming Interface
can be in send, receive, or confirm state. Abnormal deallocation is a method of
reporting program failure to the remote IBM host transaction program. There
are three types of abnormal deallocation, and DIGITAL supports two: abend
program and abend SVC.

• Abend program (type equals SNALU62$K_ABEND_PROG) indicates that
the OpenVMS transaction program has detected a fatal error, such as
insufficient memory or no output device available, and that the abend
program cannot continue.

• Abend SVC (type equals SNALU62$K_ABEND_SVC) indicates that the
protocol agreed to by the two cooperating transaction programs was
violated and that the abend program does not know how to continue.

Note

Abend program or abend SVC are application specific. On the IBM side
of the communication, the IBM host transaction program issues abend
program and the LU issues abend SVC. The APPC/LU6.2 Programming

2–12 Concepts and Terms



Interface does not have this restriction, so the OpenVMS programmer
can use the two types of abnormal deallocation to convey the kind of
program failure that has occurred.

DIGITAL SNA Access Server for Windows NT Note

On mapped conversations using the DIGITAL SNA Access Server for
Windows NT, the abend program and abend SVC options are changed
to the generic AP_ABEND option supported by the Microsoft SNA
Server.

2.7.3 Local Deallocation
The OpenVMS transaction program initiates local deallocation. When the
remote IBM host transaction program deallocates its end of a conversation
with a normal or abend deallocation, the OpenVMS transaction program enters
deallocate state. As described in Section 2.7.1, there are two types of normal
deallocations, and the response of the OpenVMS transaction program depends
on which type the remote IBM host transaction program uses.

• For the flush deallocation, the conversation actually enters the deallocate
state when the OpenVMS transaction program is notified by means of the
status returned on a receive.

• For the sync-level deallocation, the conversation enters the deallocate
state when the OpenVMS transaction program responds positively to the
confirmation request.

The abend deallocation is reported by means of the status returned on a
receive, as in normal (flush) deallocation.

Once in the deallocate state, the OpenVMS transaction program can issue
the deallocate local (type equals SNALU62$K_LOCAL). If a conversation is in
deallocate state and you do not issue a deallocate local, the SNA session you
were using can still be used for other conversations. The local deallocation
frees virtual memory. If the OpenVMS transaction program does not issue a
local deallocation, memory used by APPC/LU6.2 is not freed, but failing to
issue a local deallocation does not tie up the SNA session.

Concepts and Terms 2–13





3
APPC/LU6.2 Programming Interface

Features

The DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS provides
features that assist you in writing and executing your OpenVMS transaction
program. The Programming Interface performs the SNA communications
function, while you concentrate on your application program(s). APPC/LU6.2
features include the following:

• Mechanisms for returning status information

• Support for DECnet and TCP/IP gateway nodes and OpenVMS/SNA

• Program initialization parameters

• Synchronous and asynchronous operation

• Session activation

• Security information

• Supplying access information to the IBM host

• Outbound conventions

• Contention polarity

• Session failure notification

• Conversation deallocation notification

• LU security support

APPC/LU6.2 Programming Interface Features 3–1



3.1 Returning Status Information
The APPC/LU6.2 Programming Interface uses two mechanisms to return
status codes to the OpenVMS transaction program:

• Function value returns

• An I/O status vector

For a description of all the status codes returned by the Programming
Interface, see Appendix H.

3.1.1 Function Value Returns
When an APPC/LU6.2 Programming Interface procedure finishes its attempt
to perform an operation, it returns a function value to indicate whether the
operation succeeded or failed. It places this value in register R0. After each
call to an APPC/LU6.2 Programming Interface procedure, you must check this
status value.

Each high-level language provides some mechanism for testing the return
status value in R0. Often you need only check the low-order bit, such as by
a test for TRUE (success or information return) or FALSE (error or warning
return).To check the entire value for a specific return condition, each language
provides a way for your program to determine the values associated with
specific symbolically defined codes. Always use these symbolic names when you
write tests for specific conditions.

3.1.2 The I/O Status Vector
All APPC/LU6.2 Programming Interface procedures return completion status
to the OpenVMS transaction program by means of a status vector that provides
the transaction with complete information about error conditions. The status
vector contains a top-level completion code that is the same as the function
value and, in certain cases, supplies additional qualifying codes.

The format of the status vector (see Figure 3–1) is identical to that of the
$PUTMSG message vector used by OpenVMS.

3.1.3 Using Status Vectors
If an error occurs, each component of the network involved can pass a message
to the APPC/LU6.2 Programming Interface, which uses this information to
build the status vector.

Usually, the transaction program displays the error by means of the OpenVMS
system service call to $PUTMSG. $PUTMSG translates the status vector into a
human-readable message and sends it to a terminal or file.

3–2 APPC/LU6.2 Programming Interface Features



$PUTMSG uses the following format:

SYS$PUTMSG msgvec [,actrtn][,facnam][,actprm]

where

msgvec is the message argument vector. It contains the address of the
status vector.

actrtn is a user-supplied action routine executed during message
processing.

facnam is a facility prefix used in the first or only message written by
$PUTMSG.

actprm is a parameter passed to the action routine.

For further information about dealing with errors, see the sections "Condition
Handling" and "$PUTMSG" of the OpenVMS System Services Reference
Manual.

If you do not want to call $PUTMSG, you can use LIB$SIGNAL or LIB$STOP,
by means of a call to LIB$CALLG, to generate a signal indicating that an
exception condition has occurred in your program. If your high-level language
does not allow you to do this, you should use the $PUTMSG system service to
display the messages.

LIB$CALLG uses the following format:

LIB$CALLG argument list, procedure

where

argument list is the status vector

procedure is LIB$SIGNAL or LIB$STOP

For further information about LIB$CALLG, LIB$SIGNAL, and LIB$STOP, see
the OpenVMS Run-Time Library Routines Reference Manual.

The APPC/LU6.2 Programming Interface returns status vectors in the format
shown in Figure 3–1.

APPC/LU6.2 Programming Interface Features 3–3



Figure 3–1 I/O Status Vector

LKG−8087−93R

Default message

1st new message
flags

FAO count for
1st message

FAO arguments for 2nd message

2nd new message

FAO arguments for 1st message

flags
FAO count for
2nd message

1st message identification

31 0

flag Argument count

2nd message identification

The following list provides a description of the fields that make up the status
vector:

• Argument count

Specifies the total number of longwords in the status vector, excluding the
longword that contains the argument count and default message flags.

• Default message flags

Specifies a mask defining the portions of the message(s) to be requested.
If a mask is not specified, the process default message flags are used. If a
mask is specified, it is passed to $GETMSG as the FLAGS argument. For
further information, see "Get Message" in the OpenVMS System Services
Reference Manual.

This mask establishes the default flags for each message in the call until
a new set of flags (if any) is specified. Each specified "new message flags"
field sets a new default.

3–4 APPC/LU6.2 Programming Interface Features



Bits 4 through 15 must be zeros.

• Message identification

32-bit numeric value that uniquely identifies a message. Messages can
be identified by symbolic names defined for system return status codes,
OpenVMS RMS status codes, and so on.

• FAO count

Number of Formatted ASCII Output ($FAO) arguments, if any, that follow
a message in the status vector. For further information, see $FAO in the
OpenVMS System Services Reference Manual.

• New message flags

New mask for the $GETMSG flags that defines a new default for the
message and all subsequent messages.

• FAO arguments

FAO arguments required by the message.

3.2 Specifying the SNA Gateway
The SNALU62$DEFINE_REMOTE procedure uses the parameter gwynode
to determine to which SNA gateway the APPC interface should connect.
Depending on your gateway and on your network environment, you can use
this parameter to specify one of the following:

• a name that is dynamic and can be interpreted as a DECnet node name
(all gateways except the DIGITAL SNA Access Server for Windows NT), an
internet node name (all gateways except the DIGITAL SNA Access Server
for Windows NT), or an LU6.2 Server name (DIGITAL SNA Access Server
for Windows NT only). See Section 3.2.1.

• a DECnet node name (all gateways except the DIGITAL SNA Access Server
for Windows NT. See Section 3.2.2.

• an internet node name (all gateways except the DIGITAL SNA Access
Server for Windows NT. See Section 3.2.3.

• an LU6.2 Server name (DIGITAL SNA Access Server for Windows NT
only). See Section 3.2.4.

APPC/LU6.2 Programming Interface Features 3–5



3.2.1 Specifying a Dynamic Gateway Name
By default, the APPC interface attempts to dynamically interpret the supplied
gateway name. It interprets the gateway name using the following process:

1. Checks for an LU6.2 Server name

When you specify a dynamic gateway name, the interface first checks to
see if you are supplying a LU6.2 Server name directly. To do this, the
interface scans the supplied gateway node name for the presence of a slash
(/) character. If the slash character is found, the interface interprets the
supplied gateway node name as an LU6.2 Server name as described in
Section 3.2.4.

2. Checks for a reference to a OpenVMS logical specifying the gateway node
name information

If the slash character is not found, the interface checks to see if you are
referencing a OpenVMS logical that indirectly specifies the gateway node
name information. The interface uses the supplied node name to construct
the OpenVMS logical SNALU62$node-name_GWY. The interface then tests
for the existence of this logical. If this logical is defined, the interface
translates the logical and scans the value of the logical for the presence of
a slash (/) character. If the slash character is found, the interface interprets
the supplied gateway node name as an LU6.2 Server name as described in
Section 3.2.4.

3. Assumes a DECnet or internet node name and checks for transport order
logical

If the checks for the existence of an LU6.2 Server name specification fail
(either directly or during the scan of the SNALU62$node-name_GWY
logical), the interface assumes that the node name must be a DECnet or
internet node name.

Note

By now, the interface knows it is not dealing with a DIGITAL SNA
Access Server for Windows NT because the gateway name is not an
LU6.2 Server name specification (there is no slash character).

The interface then checks for the existence of the SNA_TRANSPORT_
ORDER logical. This value of this logical directs the interface which
transports to use to reach the gateway and in what order to try the
transports. The following values are possible:

3–6 APPC/LU6.2 Programming Interface Features



decnet,tcp Attempt a DECnet connection first. If this fails, attempt
a TCP/IP connection.

tcp,decnet Attempt a TCP/IP connection first. If this fails, attempt
a DECnet connection.

decnet,notcp Attempt only a DECnet connection.

nodecnet,tcp Attempt only a TCP/IP connection.

If the SNA_TRANSPORT_ORDER logical is undefined, the interface tries
the DECnet transport first, then the TCP/IP transport.

3.2.2 Specifying a DECnet Node Name
DIGITAL SNA Access Server for Windows NT Note

This option is not available for the DIGITAL SNA Access Server for
Windows NT.

To force the APPC interface to interpret the supplied gateway node name as a
DECnet node name (and therefore use exclusively DECnet transport protocols),
specify a valid DECnet node name followed by a double colon. For example,
to force the APPC interface to use DECnet transport protocols to reach the
DECnet node BOSTON, specify the gateway node name BOSTON::.

Alternatively, you can leave off the double colon and specify the value of the
SNA_TRANSPORT_ORDER logical as decnet,notcp .

Note that you can specify a DECnet node name either directly or indirectly
(through the use of the SNALU62$node-name_GWY logical).

3.2.3 Specifying a Internet Node Name
DIGITAL SNA Access Server for Windows NT Note

This option is not available for the DIGITAL SNA Access Server for
Windows NT.

To force the APPC interface to interpret the supplied gateway node name
as a internet node name (and therefore use exclusively TCP/IP transport
protocols), specify a valid internet node name followed by a single colon. For
example, to force the APPC interface to use TCP/IP transport protocols to
reach the internet node boston.cmp.com , specify the gateway node name
boston.cmp.com: .

Alternatively, you can leave off the single colon and specify the value of the
SNA_TRANSPORT_ORDER logical as nodecnet,tcp .

APPC/LU6.2 Programming Interface Features 3–7



Note that you can specify a internet node name either directly or indirectly
(through the use of the SNALU62$node-name_GWY logical).

3.2.4 Specifying an LU6.2 Server Name
Note

This option is only available for the DIGITAL SNA Access Server for
Windows NT.

To force the APPC interface to interpret the supplied gateway node name as an
LU6.2 Server name, specify the gateway node name using the following format:

node-name/[server-name/transport]

where:

node-name Specifies the DECnet or internet node name where the LU6.2 Server
is located.

server-name Specifies the name of the LU6.2 Server. Note that this is the LU6.2
Server name, not the server’s network service name. If this field is
not specified, the interface uses the name LU62_SRV.

transport Specifies the transport to use to reach the LU6.2 Server. If this field
is not specified, the interface uses DECnet transports.

Note that to specify exclusively an LU6.2 Server name you must include at
least one slash character in the supplied gateway node name.

3.2.5 Specifying the Gateway’s TCP/IP Port Information
If you have either explicitly or implicitly selected the TCP/IP transport, you
must define the TCP/IP port on the gateway to which the interface should
connect. The method you use to do this depends on the gateway you are using.

3.2.5.1 For a DIGITAL SNA Access Server for Windows NT
If you are using a DIGITAL SNA Access Server for Windows NT system,
you must define the LU6.2 Server’s network service name locally in the
DIGITAL TCP/IP Services for OpenVMS database. On the DIGITAL SNA
Access Server for Windows NT, an LU6.2 Server Name is defined using the
"Manage Services" dialog box. When an LU6.2 Server Name is defined, the
Access Server automatically creates a network service name using the LU6.2
Server Name with a suffix of _CLI. The port number is assigned dynamically
by the DIGITAL SNA Access Server for Windows NT software and displayed as
you create the service. If you fail to note the port number during Access Server
configuration, the network service name and TCP/IP port number are stored in

3–8 APPC/LU6.2 Programming Interface Features



the file %SystemRoot%\system32\drivers\etc\SERVICES on the Windows NT
system.

On an OpenVMS system, you add a network service name by using the
SET SERVICE command in the UCX utility provided with the DIGITAL
TCP/IP Service for OpenVMS software. For example, to define the service
LU62_SRV_CLI, use the following command:

SET SERVICE LU62_SRV_CLI /PORT=8001 /PROCESS=LU62_SRV
/PROTOCOL=TCP /USER=NONE /FILE=NL

The /PORT value must match the port number on the Access Server. The
/PROCESS qualifier must be set to a unique value (for example, the LU6.2
Server Name). The /USER and /FILE parameters are required but can be set
to any value. To improve troubleshooting, you should use the Access Server’s
network service name as the service name on the OpenVMS system.

For more information about how to change the DIGITAL TCP/IP Services for
OpenVMS database, see the DIGITAL TCP/IP Services for OpenVMS product
documentation.

3.2.5.2 For a DIGITAL Gateway Other Than the DIGITAL SNA Access Server for
Windows NT
If you are using a DIGITAL gateway other than a DIGITAL SNA Access Server
for Windows NT system, you can use the SNA_TCP_PORT logical to specify
the LU6.2 TCP/IP port number on the gateway. For example, if you want
the interface to connect to TCP/IP port number 1234 on the gateway, define
the SNA_TCP_PORT logical as follows (you must use the number sign (#) as
shown:

$ define SNA_TCP_PORT #1234

If you have defined a TCP/IP service name in the DIGITAL TCP/IP Services for
OpenVMS database that references the desired TCP/IP port number, you can
use this service name as the logical value. For example, if you have the service
name LU62GWY defined in the database, you can define the SNA_TCP_PORT
logical as follows:

$ define SNA_TCP_PORT LU62GWY

The default connection TCP/IP port number is 108.

APPC/LU6.2 Programming Interface Features 3–9



3.3 Program Initialization Parameters
Program Initialization Parameters (PIPs) are a means of passing initialization
parameters or environment setup information to the remote IBM transaction
program. For example, your application may require that the output of
the remote transaction program be directed to a printer or screen display.
The content of a PIP variable is application dependent. The procedure
SNALU62$GET_PIP is used to obtain PIP variables that were supplied by the
remote transaction.

3.3.1 Sending PIP Data to a Remote Transaction Program
PIP parameters are supplied to a remote transaction program when an
OpenVMS transaction program allocates a conversation. The
SNALU62$SUPPLY_PIP procedure allocates an internal data structure to hold
PIP information; it stores the address of the data structure in the pip_context
variable that is supplied on a call to SNALU62$ALLOCATE. PIP parameters
are sent to the remote transaction program when the sending conversation first
goes into receive state.

3.3.2 Receiving PIP Data from Remote Transaction Program
The OpenVMS transaction program receives notification that the remote
transaction program has initiated a conversation to it. The SNALU62$GET_
PIP procedure returns the PIP parameters that were specified by the remote
transaction program.

3.4 Synchronous and Asynchronous Operation
Different transaction programs require different amounts of cooperation
between the sender and receiver of information. To satisfy these differences,
a transaction program that calls an APPC/LU6.2 Programming Interface
procedure can specify one of two modes of operation: synchronous and
asynchronous.

There are two categories of verbs:

1. Verbs that do not contain the EFN or ASTADR parameters

These verbs are totally synchronous in operation. The user calls the verb,
and then when the verb returns, the operation is complete. The verb will
never cause the program to go into a wait state. An obvious exception
is SNALU62$WAIT, which is meant to wait and, therefore, can only be
specified in synchronous mode.

3–10 APPC/LU6.2 Programming Interface Features



The synchronous-only verbs are as follows:
SNALU62$CONFIRMED
SNALU62$DEFINE_REMOTE
SNALU62$DEFINE_TP
SNALU62$FLUSH
SNALU62$GET_ATTRIBUTES
SNALU62$GET_PIP
SNALU62$GET_TYPE
SNALU62$POST_ON_RECEIPT
SNALU62$RECEIVE_IMMEDIATE
SNALU62$SUPPLY_PIP
SNALU62$WAIT

2. Verbs that contain the EFN and ASTADR parameters

These verbs can be used either synchronously or asynchronously:

• Synchronous mode — The verb functions in synchronous mode if
both the EFN and ASTADR parameters are omitted (or 0 is supplied)
on the call to the verb.

• Asynchronous mode — The verb functions in asynchronous mode if
the EFN and/or the ASTADR parameter(s) are supplied on the call to
the verb.

The verbs in this category are:
SNALU62$ACTIVATE_SESSION
SNALU62$DEACTIVATE_SESSION
SNALU62$ALLOCATE
SNALU62$CONFIRM
SNALU62$DEALLOCATE
SNALU62$DELETE
SNALU62$PREPARE_TO_RECEIVE
SNALU62$RECEIVE_AND_WAIT
SNALU62$SEND_DATA
SNALU62$SEND_ERROR

3.4.1 Synchronous Mode
In synchronous or wait mode, the following steps occur:

1. The OpenVMS transaction program calls a procedure and provides the
required list of parameters. If the parameters are invalid, step 2 occurs. If
the parameters are valid, step 3 occurs.

APPC/LU6.2 Programming Interface Features 3–11



2. The APPC/LU6.2 Programming Interface returns status information
immediately as a function value, with additional information in the status
vector. The OpenVMS transaction program can resume execution.

3. The APPC/LU6.2 Programming Interface sends the request to the IBM host
transaction program, and suspends the OpenVMS transaction program.

4. The remote cooperating transaction program sends information back to the
OpenVMS transaction program.

5. The APPC/LU6.2 Programming Interface procedure returns a function
value to indicate the success or failure of the operation. The procedure
also places the status code and other information in the status vector. The
OpenVMS transaction program can resume execution.

3.4.2 Asynchronous Mode
In asynchronous mode, the transaction program issues a call to request
an operation and immediately resumes execution. It does not wait for the
operation to be completed. For this reason, transaction programs that call
procedures asynchronously must specify an event flag (see Section 3.4.2.1 or
provide a completion procedure that the APPC/LU6.2 Programming Interface
can call to indicate that it has completed its attempt to perform the operation).

The completion procedure is an asynchronous system trap (AST). For
additional information about the AST, event flag services, and AST services,
see the OpenVMS System Services Reference Manual. An asynchronous call
involves the following steps:

1. The OpenVMS transaction program calls a procedure and requests an
operation.

2. The procedure immediately returns a status code as a function value. If
success is returned, step 4 occurs. If failure is returned, step 3 occurs.

3. The procedure places a status code and other information in the status
vector. The APPC/LU6.2 Programming Interface does not attempt to
perform the operation. The transaction program resumes execution with
the completion of the operation outstanding.

4. At the completion of the operation, the APPC/LU6.2 Programming Interface
performs the following:

• Fills in the status vector with completion information indicating success
or failure.

• Sets an event flag.

3–12 APPC/LU6.2 Programming Interface Features



• Calls a completion procedure to inform the transaction program that
the APPC/LU6.2 Programming Interface has finished its attempt to
perform the requested operation.

Notes

• APPC/LU6.2 uses AST routines in its internal layers to make
data available for presenting to the user application. These AST
routines are temporarily blocked when a user application AST
routine, such as a notify, attach, or verb completion routine is
executing. Therefore, be careful when using APPC/LU6.2 verbs in
an AST routine.

For example, a SNALU62$RECEIVE_IMMEDIATE call in an
attach routine that returns "NDAVAIL" (no data is available),
will continue to return that status while called from the attach
routine. This will prevent data from being made available due to
the occupied AST level. (In this situation, use a SNALU62$POST_
ON_RECEIPT with specified AST completion routine in the attach
routine and then exit the attach routine.)

• An AST cannot be interrupted by another AST. ASTs are queued
and serviced sequentially. Therefore, the notify routine cannot be
interrupted by completion ASTs and completion ASTs cannot be
interrupted by the notify routine.

• In asynchronous mode, no other conversation verb can be issued
while an asynchronous verb is in progress for a specific session.

• Only verbs in category 2 (Section 3.3) can be both synchronous
and asynchronous. Verbs specified without the efn and astadr
asynchronous parameters cannot be called as synchronous verbs
within ASTs.

• If an asynchronous verb is called using the synchronous format
(that is, without the efn and astadr parameters specified) and
ASTs are disabled, then within the call, ASTs will be temporarily
reenabled.

Both synchronous and asynchronous procedures have the following format:

status=SNALU62$procedure_name (parameters)

APPC/LU6.2 Programming Interface Features 3–13



where:

status is a status code entered in general register R0
when a procedure returns. It indicates successful
completion or error condition.

SNALU62$procedure_name is the name of the APPC/LU6.2 Programming
Interface asynchronous procedure you want to call.

parameters is a list of information needed to perform the
requested procedure.

Both conversation and operator control verbs can be used asynchronously.
However, for asynchronous completion, the parameter list must include efn
and/or astadr:

efn An event flag set when notification of asynchronous
completion becomes due.

astadr The address of a caller’s AST routine when
notification of asynchronous completion becomes
due.

astprm A parameter to pass to the AST routine (by
reference) when notification occurs. You can use
the astprm parameter to provide a pointer to
a data structure containing the resource ID in
multithreaded applications.

3.4.2.1 Event Flags
Event flags should be allocated before use. Use the LIB$GET_EF (or
LIB$RESERVE_EF) and LIB$FREE_EF Run Time Library routines to handle
allocation and deallocation.

With the limited number of event flags, it is possible to use event flags that
have not been specifically allocated. Due to this it is possible to have multiple
asynchronous operations sharing these limited resources. Problems may occur
when one asynchronous operation sets a shared event flag, as this may indicate
to other users of that event flag that their operation has completed.

If there are not enough event flags for the number of conversations, use
the $SYNC routine and specify the event flag and cleared (unique) status_
vector (as iosb). Use a different event flag/status_vector combination for each
conversation. $SYNC will not complete until both the event flag is set and the
status_vector is filled in. See the OpenVMS System Services Reference Manual,
and the OpenVMS Run-Time Library Routines Reference Manual for more
information.

3–14 APPC/LU6.2 Programming Interface Features



3.5 Session Activation
The APPC/LU6.2 Programming Interface has two ways of activating a session:

1. Active connect — Initiate a session by requesting the remote LU to
send a BIND. This brings a session up immediately. Request session
activation through the SNALU62$DEFINE_REMOTE procedure
initiate_type parameter, with the value SNALU62$K_INITIATE_ONLY
specified. A subsequent call to either SNALU62$ACTIVATE_SESSION or
SNALU62$ALLOCATE activates the session.

Note

The SNALU62$ALLOCATE verb will also allocate a conversation.

2. Passive connect — Listen on a specific LU for a BIND to arrive. The
session does not come up immediately. Wait for session activation using
the SNALU62$DEFINE_REMOTE procedure, initiate_type parameter, with
the value SNALU62$K_INITIATE_OR_QUEUE specified. A subsequent
call to either SNALU62$ACTIVATE_SESSION or SNALU62$ALLOCATE
waits for the IBM TP to activate the session.

Note

The SNALU62$ALLOCATE verb will also allocate a conversation.

DIGITAL SNA Access Server for Windows NT Note

When a session activation request with a DIGITAL SNA Access Server
for Windows NT fails, your program may not receive the exact error
returned by the host IBM system. You must use the Windows NT
event log viewer to determine the exact cause of the session activation
failure.

APPC/LU6.2 Programming Interface Features 3–15



3.6 Session Deactivation
The APPC/LU6.2 Programming Interface has several ways to deactivate a
session using either of two verbs.

The SNALU62$DEACTIVATE_SESSION verb deactivates a specific session.
The verb supports both normal and cleanup deactivation. If the argument type
is SNALU62$K_DEACT_NORMAL, the session deactivates after conversation
ends. The synchronous form of SNALU62$DEACTIVATE_SESSION, called
with argument type SNALU62$K_DEACT_NORMAL, should only be called if
there is no current conversation for the session.

If the argument type is SNALU62$K_DEACT_CLEANUP, the session
deactivates immediately regardless of the current state of the conversation or
session. Any outstanding verb is canceled, and its AST routine is called.

Note

If the outstanding verb is SNALU62$POST_ON_RECEIPT, its AST
routine is not called because this is a notification AST and not a
completion AST.

A second verb, SNALU62$DELETE, deactivates all sessions associated with
the specified LU name. SNALU62$DELETE returns only after the current
conversation has ended.

3.7 Security
You can use session-level security from your OpenVMS transaction program,
but only if the IBM host system is running CICS Version 1, Release 7, or later.

• Session-level security has a mechanism to password-protect an LU on the
IBM system. Only OpenVMS applications that know the password can
establish an SNA session with that LU.

• Inbound conversation-level security has a mechanism to allow certain
users to use specified transaction programs on the IBM system. The IBM
system manager sets up a transaction program such that only a particular
set of users can access that transaction program. When the OpenVMS
transaction program allocates a conversation to the IBM transaction
program, it must supply a valid USERNAME/PASSWORD pair.

3–16 APPC/LU6.2 Programming Interface Features



The APPC/LU6.2 Programming Interface has two functions to assist you with
security: partner-LU verification and partner-end-user verification.

• Partner-LU verification is the session level security provided through
the SNALU62$ACTIVATE_SESSION and SNALU62$DEFINE_REMOTE
procedures. Password and logon information can be specified in parameters
to the SNALU62$DEFINE_REMOTE procedure. See Chapter 5 for
additional information on these procedures.

• Partner-end-user verification is inbound conversation-level security that
takes place at the time a conversation starts. You can specify access
security information in parameters to the
SNALU62$ALLOCATE procedure. The remote LU uses this access security
information to validate access to the program and resources. See Chapter 4
for additional information on this procedure.

DIGITAL SNA Access Server for Windows NT Note

The DIGITAL SNA Access Server for Windows NT does not itself
support partner-LU verification. This level of verification is provided
by the Microsoft SNA Server.

3.8 Defining IBM Access Information
To establish a session with a remote IBM host transaction program, the
OpenVMS transaction program must supply the IBM host with the following
access information:

• Physical Unit (PU) identification. A value identifying the gateway
PU, or the OpenVMS SNA PU (for example, SNA-0) used to establish the
session. For OpenVMS SNA, DECnet SNA Gateway-CT, and DECnet SNA
Gateway-ST only.

• Session address. A value indicating the SLU that you want to use to
establish a session with the IBM host. For OpenVMS SNA, DIGITAL SNA
Domain Gateway-ST, and DIGITAL SNA Domain Gateway-CT only.

• Logical Unit (LU) identification. A value identifying the gateway LU
used to establish the session. For DIGITAL SNA Domain Gateway-ST,
DIGITAL SNA Domain Gateway-CT, and DIGITAL SNA Peer Server only.

• Application name. A character string identifying the PLU application
(for example, CICS) that you want to connect to in the IBM host.

APPC/LU6.2 Programming Interface Features 3–17



• Logon mode name. A string specifying an entry in a logon mode table
that gives a set of BIND parameters for the session.

• LU-LU password. A string used for session level LU-LU verification
during session activation.

For complete details about IBM access information for the SNA gateway
and OpenVMS SNA, see OpenVMS SNA Management, DIGITAL SNA Domain
Gateway Management, DIGITAL SNA Peer Server Management, DIGITAL SNA
Access Server for Windows NT Installation and Configuration, or OpenVMS
SNA Installation.

Providing access information involves two steps:

1. An OpenVMS transaction program calls the SNALU62$DEFINE_REMOTE
procedure, specifies a local name for the IBM LU, and supplies a list
of access information as parameters. The APPC/LU6.2 Programming
Interface associates the locally defined name with the access information.

2. An OpenVMS transaction program calls the SNALU62$ALLOCATE or
SNALU62$ACTIVATE_SESSION procedure and includes the locally
defined LU name in the parameter list. The APPC/LU6.2 Programming
Interface uses the access information associated with the name to establish
a session to support one or more transaction conversations.

3.9 Contention Polarity
Contention for session resources occurs when both partners attempt to begin a
conversation simultaneously on the same session. The contention is resolved
according to the polarity agreed upon by both partners when the session was
established. The contention winner (first speaker) always receives the session
resources and the contention loser (bidder) always has to wait.

The DIGITAL SNA APPC/LU6.2 Programming Interface, allows the OpenVMS
transaction program to be either the contention winner or the contention loser.

If the OpenVMS transaction is the contention loser, a call to
SNALU62$ALLOCATE will not complete until the contention has been
resolved. If the IBM transaction is also attempting to begin a conversation, the
allocate request will complete with a resource failure retry error.

3–18 APPC/LU6.2 Programming Interface Features



3.10 Outbound Conversations
Outbound conversations enable an IBM transaction program to initiate
a conversation. In order for the remote transaction program to initiate a
conversation, an SNA session must:

• Be already activated by the OpenVMS program

• Be waiting for an attach request from a remote IBM transaction
program to a transaction program that has been defined by a call to
the SNALU62$DEFINE_TP procedure.

The OpenVMS program must use the SNALU62$DEFINE_TP verb to define
the name of the transaction program with which the IBM program initiates a
conversation. When the IBM transaction program initiates a conversation, the
attach routine specified on the SNALU62$DEFINE_TP verb is called. If the
remote IBM TP attempts to initiate a conversation with a transaction program
that is undefined by the OpenVMS transaction program, then conversation
initiation fails. The attach routine is called with the resource_id parameter;
the new conversation is then in receive state. The resource_id parameter
passed to the routine also affects subsequent conversation verbs.

3.11 Notification of Session Failure
The APPC/LU6.2 Programming Interface has the ability to notify the
OpenVMS transaction of session failure. If a verb is outstanding at the time
of the session failure, status is returned on that verb indicating the nature
of the failure. If no verb is outstanding, the OpenVMS transaction is notified
through the notify routine and the status is returned through the notify block.
The notification parameters can be specified on the SNALU62$ACTIVATE_
SESSION verb. See Chapter 5 for more details on the session notification
parameters.

3.12 Notification of Conversation Deallocation
The APPC/LU6.2 Programming Interface has the ability to notify the
OpenVMS transaction of the receipt of a conversation deallocation request.
If a verb is outstanding at the time of the deallocation, status is returned on
that verb. If no verb is outstanding, the the notification routine is called with
the notification parameter. Notification parameters can be specified on the
SNALU62$ALLOCATE verb.

APPC/LU6.2 Programming Interface Features 3–19



DIGITAL SNA Access Server for Windows NT Note

The DIGITAL SNA Access Server for Windows NT does not support
conversation deallocation notification. Any notification parameters
specified on the SNALU62$ALLOCATE verb are ignored.

The notification parameters available on the SNALU62$ACTIVATE_SESSION
and SNALU62$ALLOCATE verbs provide two separate functions, notification
of session termination and conversation termination, respectively. To utilize
both of these functions, call SNALU62$ACTIVATE_SESSION before calling
SNALU62$ALLOCATE.

Note

Since the conversation notification can notify an application that a
DEALLOCATE has been received while the application is receiving
other data, Digital Equipment Corporation recommends using the
notification only to note that a DEALLOCATE has been received.
The conversation is not actually deallocated until a call to either
SNALU62$RECEIVE_AND_WAIT or
SNALU62$RECEIVE_IMMEDIATE returns with one of the
DEALLOCATE status values. Failure to continue to process receives
will leave the conversation active (locally) and may prevent further
processing for that session.

3.13 Gateway LU Security Support
The interface, along with the SNA gateway, also supports LU security. You can
use the authorization_password argument for SNALU62$DEFINE_REMOTE
to specify the password assigned to a particular LU or set of LUs on the SNA
gateway. In addition to authorization_password, you can also protect gateway
LUs by assigning a node name, user id, and terminal id. These parameters are
obtained internally by the interface and passed to the gateway. The user ID is
obtained from the current process unless an alternate process ID is specified.
See the DIGITAL SNA Domain Gateway Management, or the DIGITAL SNA
Peer Server Management manuals, for additional information on LU security.

3–20 APPC/LU6.2 Programming Interface Features



4
Procedure Calling Format: Conversation

Verbs

This chapter describes the calling format, status codes, and transition states
for conversation procedures provided by the Programming Interface. The
following procedures are available:

• SNALU62$ALLOCATE

• SNALU62$CONFIRM

• SNALU62$CONFIRMED

• SNALU62$DEALLOCATE

• SNALU62$FLUSH

• SNALU62$GET_ATTRIBUTES

• SNALU62$GET_PIP

• SNALU62$GET_TYPE

• SNALU62$POST_ON_RECEIPT

• SNALU62$PREPARE_TO_RECEIVE

• SNALU62$RECEIVE_AND_WAIT

• SNALU62$RECEIVE_IMMEDIATE

• SNALU62$REQUEST_TO_SEND

Procedure Calling Format: Conversation Verbs 4–1



• SNALU62$SEND_DATA

• SNALU62$SEND_ERROR

• SNALU62$SUPPLY_PIP

• SNALU62$WAIT

Calls to these procedures have the following general format:

status=SNALU62$procedure name ([argument],...,argument)

where

status is a status code returned as a function value.

procedure_name is the procedure that you want to call.

( ) delimits the argument list.

argument is a symbol containing information that the OpenVMS
transaction program passes to the Programming Interface.
Shorthand notation describes the argument’s characteristics.
Appendix A summarizes the notation.

[argument] indicates an optional argument.

Arguments pass to the Programming Interface in two ways:

• By reference (or address). The argument is the address of an area or
field that contains the value. An argument passed by address is usually
expressed as a reference name or label associated with an area or field.

• By descriptor. This argument is also an address for a special data
structure called a descriptor (see the Introduction to OpenVMS System
Routines).

In this chapter, the argument definitions for each procedure specify how each
argument is passed.

Which procedures an OpenVMS transaction program calls depends upon the
state of the conversation. When an OpenVMS transaction program calls a
procedure, the state of a conversation may change as a result of

• The function of the procedure

• The result of a procedure called by the remote IBM host transaction
program

• Network errors

The following conversation states are possible when you call one of the
procedures described in this chapter:

• Reset — the OpenVMS transaction program can allocate a conversation.

4–2 Procedure Calling Format: Conversation Verbs



• Send — the OpenVMS transaction program can send data or request
confirmation.

• Receive — the OpenVMS transaction program can receive information
from the remote IBM host transaction program.

• Confirm — the OpenVMS transaction program can reply to a request for
confirmation.

• Deallocate — the remote IBM host transaction program has deallocated
the conversation and the OpenVMS transaction program can deallocate the
conversation locally.

Figure D–1 shows the conversation state transitions that can occur when
a program issues a conversation verb. The figure correlates each verb to a
conversation state.

Procedure Calling Format: Conversation Verbs 4–3



4.1 SNALU62$ALLOCATE
The SNALU62$ALLOCATE procedure initiates a basic or mapped conversation
between a local OpenVMS transaction program and a remote IBM host
transaction program. The conversation requires an SNA session to support
it. By default, the SNALU62$ALLOCATE procedure attempts to allocate an
active available LU6.2 session for the conversation. If such a session does not
exist, the procedure establishes an LU6.2 session and then allocates it to the
conversation.

Format:

status.wlc.v=SNALU62$ALLOCATE (resource_id.wlu.r,
status_blk.wx.dx,
[lu_name.rlu.r],
other.rt.dx,
[mode_name.rt.dx],
tpn.rt.dx,
[type.rlu.r],
[ret_ctrl.rlu.r],
[sync_level.rlu.r],
[security.rlu.r],
[user.rt.dx],
[password.rt.dx],
[profile.rt.dx],
[pip_context.rlu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r],
[notify_rtn.szem.r],
[notify_prm.rlu.r],
[polarity.rlu.r])

4–4 Procedure Calling Format: Conversation Verbs



Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id A location to receive an ID value assigned to the conversation
by the APPC/LU6.2 Programming Interface. This ID must be
supplied on all subsequent verb calls for this conversation.
Passed by reference.

status_blk A longword status vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

lu_name A value indicating whether the partner transaction program is
located at the local LU or at a remote LU. This parameter takes
the following value:

• SNALU62$K_OTHER indicates that the partner program is
located at another LU (the default).

Passed by reference.

other A locally defined name for the remote LU. Valid only if
SNALU62$K_OTHER is specified for the lu_name param-
eter. This value must be a locally defined name using the
SNALU62$DEFINE_REMOTE verb. The name is associated
with a remote lu_name as well as the information necessary to
place the conversation on a session. Passed by descriptor as an
ASCII string.

mode_name A logon mode table entry name to be passed to the remote LU.
The mode_name parameter designates the network properties for
the session to be allocated for the conversation. If mode_name is
not specified, the APPC/LU6.2 Programming Interface uses the
one specified in the
SNALU62$DEFINE_REMOTE procedure. The mode_name
parameter overrides a name specified by means of the
SNALU62$DEFINE_REMOTE procedure. Passed by descriptor
as an eight-character ASCII string.

DIGITAL SNA Access Server for Windows NT Note: The
value for the mode_name parameter must match a mode name
defined on the Microsoft SNA Server.

tpn An identifier of the remote IBM host transaction program that
the OpenVMS transaction program wants to engage in an
LU6.2 conversation. This identifier is not translated. Passed
by descriptor as an EBCDIC string.

Procedure Calling Format: Conversation Verbs 4–5



type This value specifies the type of conversation to be allocated:

• SNALU62$K_BASIC_CONVERSATION specifies a basic
conversation.

• SNALU62$K_MAPPED_CONVERSATION specifies a
mapped conversation (the default).

For information on basic and mapped conversations, see
Chapter 2, "Concepts and Terms." Passed by reference.

ret_ctrl A value indicating when the the APPC/LU6.2 Programming
Interface performs the SNALU62$ALLOCATE operation and
returns control to the OpenVMS transaction program. The
parameter takes the following value:

• SNALU62$K_WHEN_SESSION_ALLOC Allocate a session
to the conversation and then return control to the OpenVMS
transaction program. This is the default.

Passed by reference.

sync_level A value specifying the synchronization level that the local
OpenVMS transaction program and the remote IBM host
transaction program can use on this conversation. This
parameter takes the following values:

• SNALU62$K_SL_NONE This value indicates that the
program will not perform confirmation processing or sync-
point processing on this conversation.

• SNALU62$K_SL_CONFIRM This value indicates that the
program can perform confirmation processing but not sync-
point processing on this conversation. SNALU62$K_SL_
CONFIRM is the default.

Passed by reference.

4–6 Procedure Calling Format: Conversation Verbs



security A value specifying access security information that the remote
LU uses to validate access to the remote program and its
resources. This parameter is valid only if you are using CICS,
Version 1.7 or later. The parameter can take the following
values:

• SNALU62$K_NONE specifies that access security
information is not specified in this allocation request.

• SNALU62$K_SAME specifies that you are to use access
security information defined by a previous conversation on
the same session.

If no access security information has been previously
defined, the Programming Interface will use the user ID
of the current process, or the process specified by the PID
parameter on SNALU62$DEFINE_REMOTE. The length of
the user ID must not exceed 10 characters or security will
be downgraded to "none." If an acceptable user ID has been
specified or is obtained from the OpenVMS process, it is
passed to the host as an "already verified" user ID.

• SNALU62$K_PGM specifies that you are to use access
security information supplied in the USER_ID, PASSWORD,
and PROFILE parameters to this verb. Specify a value for
each parameter as a string descriptor, 10 alphanumeric
characters or less in length.

Passed by reference.

user_id A value that identifies the end-user making the allocation
request. Valid only if SNALU62$K_PGM is specified on the
security parameter. Passed by descriptor.

password The remote LU uses this value and the user ID to verify the
identity of the end-user making the allocation request. Valid
only if SNALU62$K_PGM is specified on the security parameter.
Passed by descriptor.

profile The remote LU uses this value, in addition to or in place of the
user ID, to determine which remote resources the local program
can access, and which resources the remote program can access.
Valid only if SNALU62$K_PGM is specified on the security
parameter. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note: The
profile parameter is ignored by the Microsoft SNA Server.

pip_context pip_context is a context variable that allows the OpenVMS
transaction program to supply PIP parameters to the remote
transaction program. The actual PIP parameters are specified by
a call to the SNALU62$SUPPLY_PIP procedure. pip context is
returned by SNALU62$SUPPLY_PIP. Passed by reference.

Procedure Calling Format: Conversation Verbs 4–7



efn An event flag to set when notification becomes due. If this
parameter is omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes
due. Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs.
This AST routine is called with this parameter only. Passed by
reference.

notify_rtn Notify service routine to be executed when the APPC interface
receives a DEALLOCATE message from the remote application
and cannot report either on the current verb or its absence.
Passed by reference.

DIGITAL SNA Access Server for Windows NT Note: The
notify_prm parameter is ignored by the Microsoft SNA Server.

notify_prm Notify parameter to be passed to the notify service routine
specified by the notify_rtn parameter. Passed by reference. The
user-written notify routine has the following calling format:
notify_rtn(notify_prm.rlu.r)

DIGITAL SNA Access Server for Windows NT Note: The
notify_prm parameter is ignored by the Microsoft SNA Server.

polarity Specifies the contention polarity for the session. SNALU62$K_
FIRST_SPEAKER indicates the local LU will be the contention
winner. SNALU62$K_BIDDER indicates that the local LU will
be the contention loser. SNALU62$K_FIRST_SPEAKER is the
default value. Passed by reference.

4.1.1 Status Codes
The SNALU62$ALLOCATE procedure returns the following successful
completion code:

• SNALU62$_OK

The SNALU62$ALLOCATE procedure returns the following error codes:

• SNALU62$_ALLERR

• SNALU62$_DEALNOR

• SNALU62$_PARERR

• SNALU62$_RESFRET

• SNALU62$_STAERR

4–8 Procedure Calling Format: Conversation Verbs



• SNALU62$_UNSUC

DIGITAL SNA Access Server for Windows NT Note

If no session is available, the SNALU62$ALLOCATE procedure
performs the function of the SNALU62$ACTIVATE_SESSION
procedure. In this case, if the error occurred before the DIGITAL
SNA Access Server for Windows NT attempted to connect with the IBM
system, the error code is correct. If the error occurred while connecting
to the IBM system, the DIGITAL SNA Access Server for Windows NT
always returns SNALU62$_RESFRET and any sense code information
is lost.

If an SNALU62$_RESFRET error code occurs while using the DIGITAL
SNA Access Server for Windows NT, use the Microsoft Event Viewer
to determine why the session activation failed. Refer to the Microsoft
SNA Server and Event Viewer documentation for more information.

4.1.2 Valid Conversation State for SNALU62$ALLOCATE
SNALU62$ALLOCATE can only be issued when the conversation state is reset
(that is, the conversation does not yet exist).

4.1.3 State Transition
When the return code is OK, the conversation enters the send state.

Procedure Calling Format: Conversation Verbs 4–9



4.2 SNALU62$CONFIRM
The SNALU62$CONFIRM procedure sends a confirmation request to the
remote IBM host transaction program and waits for a reply. The OpenVMS
transaction program waits for the APPC/LU6.2 Programming Interface to
return a reply to the status vector on completion. As a result of this procedure,
the APPC/LU6.2 Programming Interface flushes its send buffer. This verb
allows synchronization between the conversation partners.

Format:

status.wlc.v=SNALU62$CONFIRM (resource_id.rlu.r,
status_blk.wx.dx,
[rts_rec.wlu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during conversation allocation. Passed
by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

rts_rec A location to receive one of the following values indicating
whether the remote IBM host transaction program has requested
permission to send a message. When TRUE, the least significant
bit is set. When FALSE, the least significant bit is clear.

• TRUE: The remote IBM host transaction program has
requested that the OpenVMS transaction program enter
receive state and thereby place the remote program in send
state.

• FALSE: The remote IBM host transaction program has not
requested that the OpenVMS transaction program enter
receive state.

Passed by reference.

4–10 Procedure Calling Format: Conversation Verbs



efn An event flag to set when notification becomes due. If this
parameter is omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes
due. Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs.
This AST routine is called with this parameter only. Passed by
reference.

4.2.1 Status Codes
The SNALU62$CONFIRM procedure can return the following successful
completion code:

• SNALU62$_OK

The SNALU62$CONFIRM procedure can return the following error codes:

• SNALU62$_ALLERR

• SNALU62$_DEABPR

• SNALU62$_DEABSVC

• SNALU62$_DEABTIM

• SNALU62$_FMHNOT

• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_PARERR

• SNALU62$_PRERPU

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCERPU

• SNALU62$_UNSUC

4.2.2 Valid Conversation State for SNALU62$CONFIRM
The SNALU62$CONFIRM procedure can only be issued in the send state.

Procedure Calling Format: Conversation Verbs 4–11



4.2.3 State Transition
When the return code indicates OK, there is no state transition.

4–12 Procedure Calling Format: Conversation Verbs



4.3 SNALU62$CONFIRMED
The SNALU62$CONFIRMED procedure sends a confirmation reply to the
remote IBM host transaction program. This verb allows the local and remote
transaction programs to synchronize their processing. Call this procedure
upon receipt of an SNALU62$CONFIRM request from the remote IBM host
transaction program.

Format:

status.wlc.v=SNALU62$CONFIRMED (resource_id.rlu.r,
status_blk.wx.dx)

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during conversation allocation. Passed
by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

4.3.1 Status Codes
The SNALU62$CONFIRMED procedure returns the following successful
completion code:

• SNALU62$_OK

The SNALU62$CONFIRMED procedure returns the following error codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

• SNALU62$_UNSUC

4.3.2 Valid Conversation State for SNALU62$CONFIRMED
The SNALU62$CONFIRMED procedure can only be issued in the confirm
state.

Procedure Calling Format: Conversation Verbs 4–13



4.3.3 State Transition
The following state transitions can occur with the SNALU62$CONFIRMED
procedure:

• The conversation enters receive state when CONFIRM was received on
the preceding SNALU62$RECEIVE_AND_WAIT or SNALU62$RECEIVE_
AND_WAIT procedure.

• The conversation enters send state when CONFIRM_SEND was received
on the preceding SNALU62$RECEIVE_AND_WAIT or
SNALU62$RECEIVE_IMMEDIATE procedure.

• The conversation enters deallocate state when CONFIRM_DEALLOCATE
was received on the preceding SNALU62$RECEIVE_AND_WAIT or
SNALU62$RECEIVE_IMMEDIATE procedure.

4–14 Procedure Calling Format: Conversation Verbs



4.4 SNALU62$DEALLOCATE
The SNALU62$DEALLOCATE procedure deallocates a conversation between
an OpenVMS transaction program and a remote IBM host transaction
program. When the procedure completes, the conversation that has been using
the session ends. The session, however, remains active and available for use by
another conversation.

Format:

status.wlc.v=SNALU62$DEALLOCATE (resource_id.rlu.r,
status_blk.wx.dx,
[type.rlu.r],
[log_data.rx.dx],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during conversation allocation. Passed
by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

Procedure Calling Format: Conversation Verbs 4–15



type A value indicating the type of deallocation to be performed:
sync level (default), flush, abend, or local. Local deallocation is
performed after the partner transaction program has deallocated
its end of the conversation (indicated by the result of a previous
call). This type of deallocation frees resources (virtual memory)
allocated when the conversation was allocated. The other
deallocation types are used to initiate the deallocation of a
conversation.

This parameter can take the following values:

• SNALU62$K_SYNC_LEVEL
This is the default. The synchronization level specified
for this conversation determines the way the deallocation
is performed: If SYNC_LEVEL(NONE), flush the send
buffer and deallocate the conversation normally. If SYNC_
LEVEL(CONFIRM), execute the SNALU62$CONFIRM
function and, if it is successful, deallocate the conversation.
If it is not successful, the state of the conversation is
determined by the return code.

• SNALU62$K_FLUSH
Execute the function of the SNALU62$FLUSH procedure
and deallocate the conversation normally.

• SNALU62$K_ABEND_PROG
Intended to be used by a transaction program when an error
condition is detected that prevents the successful completion
of the transaction. (Program-defined)
SNALU62$K_ABEND_SVC
Intended to be used by an LU services component when it
detects an error condition caused by its peer LU services
component in the remote LU. (Product-defined)
SNALU62$K_ABEND_TIMER
Intended to be used by an LU services component when
it detects or is informed of a condition that requires
the conversation to be deallocated without further
communications. (Product-defined)

DIGITAL SNA Access Server for Windows NT Note:
On mapped conversations using the DIGITAL SNA Access
Server for Windows NT, all abend options are changed to the
generic AP_ABEND option supported by the Microsoft SNA
Server.

Note

Flush the send buffer and deallocate the conversation abnormally.
Truncation of logical records can occur when the conversation is in
the send state, if the buffer being flushed contains less than a full
record. Data purging can occur when the conversation is in the receive

4–16 Procedure Calling Format: Conversation Verbs



state and the APPC/LU6.2 Programming Interface buffer is flushed
before the data is passed to the OpenVMS transaction program. These
three abnormal deallocations are used for controlled crashing when
catastrophic errors are detected.

• SNALU62$K_LOCAL
Deallocate the conversation locally. You must specify this
type of deallocation if and only if the conversation is in the
deallocate state. The conversation enters the deallocate state
when the OpenVMS transaction program receives a status
code (returned as the result of a previous call) indicating
that the conversation has been deallocated. This type of
deallocation frees up local resources (virtual memory) that
were allocated when the conversation was allocated.

Passed by reference.

log_data Product specific error information to be placed in the system
error logs of the LUs supporting this conversation. The log
data is not seen by the partner transaction program. Passed by
descriptor.

efn An event flag to set when notification becomes due. If this
parameter is omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes
due. Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs.
This AST routine is called with this parameter only. Passed by
reference.

4.4.1 Status Codes
The SNALU62$DEALLOCATE procedure returns the following successful
completion code:

• SNALU62$_OK

The SNALU62$DEALLOCATE procedure returns the following error codes:

• SNALU62$_ALLERR

• SNALU62$_DEABPR

• SNALU62$_DEABSVC

• SNALU62$_DEABTIM

• SNALU62$_FMHNOT

Procedure Calling Format: Conversation Verbs 4–17



• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_PARERR

• SNALU62$_PRERPU

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCERPU

• SNALU62$_UNSUC

4.4.2 Valid Conversation States for SNALU62$DEALLOCATE
The valid conversation states for SNALU62$DEALLOCATE are as follows:

• The valid conversation state for DEALLOCATE TYPE(FLUSH) and
DEALLOCATE TYPE(SYNC_LEVEL) is send.

• The valid conversation states for DEALLOCATE TYPE(ABEND) are send,
receive, and confirm.

• The valid conversation state for DEALLOCATE TYPE(LOCAL) is
deallocate.

4.4.3 State Transition
When the return code indicates OK, the conversation enters the reset state
(the conversation no longer exists).

4–18 Procedure Calling Format: Conversation Verbs



4.5 SNALU62$FLUSH
The SNALU62$FLUSH procedure causes the APPC/LU6.2 Programming
Interface to flush its send buffer and transmit the contents to the remote IBM
host transaction program.

Format:

status.wlc.v=SNALU62$FLUSH ( resource_id.rlu.r,
status_blk.wx.dx)

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during conversation allocation. Passed
by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

4.5.1 Status Codes
The SNALU62$FLUSH procedure returns the following successful completion
code:

• SNALU62$_OK

The SNALU62$FLUSH procedure returns the following error codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

• SNALU62$_UNSUC

4.5.2 Valid Conversation State for SNALU62$FLUSH
The valid conversation state for SNALU62$FLUSH is send.

4.5.3 State Transition
When the return code indicates OK, the conversation undergoes no state
transition.

Procedure Calling Format: Conversation Verbs 4–19



4.6 SNALU62$GET_ATTRIBUTES
The SNALU62$GET_ATTRIBUTES procedure returns information about the
specified conversation.

Format:

status.wlc.v=SNALU62$GET_ATTRIBUTES(resource_id.rlu.r,
status_blk.wx.dx,
[qualified_own_lu_name.wt.dx],
[partner_lu_name.wt.dx],
[qualified_partner_lu_name.wt.dx],
[mode_name.wt.dx],
[sync_level.wlu.r],
[security_user_id.wt.dx],
[security_profile.wt.dx],
[luw_identifier.wlu.r],
[conversation_correlator.wlu.r],
[conv_state.wlu.r],
[session_id.wlu.r])

Arguments:

status When a procedure finishes execution, it returns a
numeric status value in general register R0. Successful
completion is indicated by a status code with the low-
order bit set. The low-order three bits together represent
the severity of the error. Returned by function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during session allocation. Passed
by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming
Interface to provide the user with complete status
information. Passed by descriptor.

qualified_own_lu_name A location to receive the fully qualified name used by
the SNA network to identify the local LU. The name is
returned in ASCII. If the LU name is unknown, a null
value is returned. Passed by descriptor.

partner_lu_name A location to receive the locally known name of the
remote LU. The name is returned in ASCII. Passed by
descriptor.

qualified_partner_lu_name A location to receive the fully qualified name used by the
SNA network to identify the remote LU. The name is
returned in ASCII. Passed by descriptor.

4–20 Procedure Calling Format: Conversation Verbs



mode_name A location to receive the logon mode entry name for
the session allocated to the conversation. The name is
returned in ASCII. Passed by descriptor.

sync_level A location to receive one of the following values
indicating the level of synchronization used by the
conversation:

• SNALU62$K_SL_NONE - The conversation is
allocated with no synchronization.

• SNALU62$K_SL_CONFIRM - The conversation is
allocated with a synchronization level of CONFIRM.

Passed by reference.

security_user_id A location to receive the user ID carried on the allocation
request. Passed by descriptor.

security_profile A location to receive the profile carried on the allocation
request. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
This parameter is not returned by the DIGITAL SNA
Access Server for Windows NT.

luw_identifier Reserved for future use. This parameter is ignored.
Passed by reference.

conversation_correlator Reserved for future use. This parameter is ignored.
Passed by reference.

Procedure Calling Format: Conversation Verbs 4–21



conv_state A location to receive a value indicating the current state
of the conversation. Possible values are:

• SNALU62$K_STATE_RESET is the state in which
the program can allocate the conversation.

• SNALU62$K_STATE_SEND is the state in which
the program can send data, request confirmation, or
request sync point.

• SNALU62$K_STATE_RECEIVE is the state in
which the program can receive information from the
remote program.

• SNALU62$K_STATE_CONFIRM is the state in
which the program can reply to a confirmation
request.

• SNALU62$K_STATE_CONFIRM_DEALLOC is the
state in which the program can reply to a deallocate
request.

• SNALU62$K_STATE_DEALLOCATE is the state in
which the program can deallocate the conversation
locally.

Passed by reference.

session_id A location to receive an ID value assigned to the session
by the APPC/LU6.2 Programming Interface. Passed by
reference.

4.6.1 Status Codes
The SNALU62$GET_ATTRIBUTES procedure returns the following successful
completion code:

• SNALU62$_OK

The SNALU62$GET_ATTRIBUTES procedure returns the following error
codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

• SNALU62$_UNSUC

4–22 Procedure Calling Format: Conversation Verbs



4.6.2 Valid Conversation States for SNALU62$GET_ATTRIBUTES
SNALU62$GET_ATTRIBUTES is valid in all states except reset.

4.6.3 State Transition
None.

Procedure Calling Format: Conversation Verbs 4–23



4.7 SNALU62$GET_PIP
The SNALU62$GET_PIP verb returns Program Initialization Parameters
(PIPs) that were supplied by the remote TP when it initiated the conversation.
The content of the PIP is application dependent; it has meaning only to the
cooperating transaction programs. For example, the name of a database can
be sent by the IBM transaction program to the OpenVMS transaction program
as PIP information. Program initialization parameters are not acted upon or
examined by the LU.

Format:

status.wlc.v=SNALU62$GET_PIP (resource_id.rlu.r,
status_blk.wx.dx
num_pip.wlu.r,
[pip_01.wt.dx],
[pip_02.wt.dx],
[pip_03.wt.dx],
.
.
.
[pip_14.wt.dx],
[pip_15.wt.dx],
[pip_16.wt.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits together represent the severity of the
error. Returned by function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during conversation allocation.
Passed by descriptor.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming
Interface to provide the user with complete status
information. Passed by descriptor.

num_pip A value indicating the number of PIPs supplied with the
call to this procedure. If the remote TP specifies 5 Program
Initialization Parameters (PIPs), num pip will be set to 5.
Passed by reference.

pip_01,...,pip_16 Each pip_01,...,pip_16 is a location containing individual
program initialization data that was specified by the remote
TP. Passed by descriptor.

4–24 Procedure Calling Format: Conversation Verbs



4.7.1 Status Codes
The SNALU62$GET_PIP procedure returns the following successful completion
code:

• SNALU62$_OK

The SNALU62$GET_PIP procedure returns the following error code:

• SNALU62$_UNSUC

4.7.2 Valid Conversation State for SNALU62$GET_PIP
SNALU62$GET_PIP cannot be used in reset or deallocate state.

4.7.3 State Transition
None.

Procedure Calling Format: Conversation Verbs 4–25



4.8 SNALU62$GET_TYPE
The SNALU62$GET_TYPE procedure returns a value indicating whether the
specified conversation is a mapped or a basic conversation.

Format:

status.wlc.v=SNALU62$GET_TYPE (resource_id.rlu.r,
status_blk.wx.dx,
[type.wlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during session allocation. Passed by
reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

type A variable to receive one of the following values indicating the
conversation type:

• SNALU62$K_BASIC_CONVERSATION

• SNALU62$K_MAPPED_CONVERSATION

Passed by reference.

4.8.1 Status Codes
The SNALU62$GET_TYPE procedure can return the following successful
completion code:

• SNALU62$_OK

The SNALU62$GET_TYPE procedure returns the following error codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

• SNALU62$_UNSUC

4–26 Procedure Calling Format: Conversation Verbs



4.8.2 Valid Conversation States for SNALU62$GET_TYPE
The valid conversation states for SNALU62$GET_TYPE are send, receive, and
confirm.

4.8.3 State Transition
None.

Procedure Calling Format: Conversation Verbs 4–27



4.9 SNALU62$POST_ON_RECEIPT
The SNALU62$POST_ON_RECEIPT procedure causes the APPC/LU6.2
Programming Interface to notify the OpenVMS transaction program when
data, conversation status, or a request for confirmation is received from the
remote IBM host transaction program. Notification can be made by means of
an event flag, an asynchronous system trap (AST), or SNALU62$WAIT (See
Section 4.17). The data or status is input into a user buffer by means of the
SNALU62$RECEIVE_AND_WAIT procedure.

Format:

status.wlc.v=SNALU62$POST_ON_RECEIPT (resource_id.rlu.r,
status_blk.wx.dx,
[fill.rlu.r],
[length.rwu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits together represent the severity of the
error. Returned by function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during session allocation. Passed by
reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming
Interface to provide the user with complete status
information. Passed by descriptor.

4–28 Procedure Calling Format: Conversation Verbs



fill A value specifying when notification is to occur. For
mapped conversations, only SNALU62$K_LL is valid.
The parameter can take one of two values:

• SNALU62$K_BUFFER
Notify when data is available whose length is at least
equal to that specified on the length parameter, or when
the end of data is available.

• SNALU62$K_LL
Notify when a complete logical record or the remainder
of a previously truncated logical record is available,
or when part of a logical record is available whose
length is at least equal to that specified on the length
parameter, whichever occurs first. This value is the
default.

Passed by reference.

length Used with the fill parameter. A value specifying the
maximum length of logical record data that the OpenVMS
transaction program can receive before notification.

• If fill SNALU62$K_BUFFER is specified, the program
is notified when a complete message is received.

• If fill SNALU62$K_LL is specified, the program is
notified when a complete logical record is received.

Passed by reference.

efn An event flag to set when notification becomes due. If
this parameter is omitted, event flag 0 is set. Passed by
reference.

astadr The address of an AST routine to call when notification
becomes due. Passed by reference.

astprm A parameter to pass to the AST routine when notification
occurs. This AST routine is called with this parameter only.
Passed by reference. When notification becomes due, the
user-written AST procedure is called as follows:

ast_procedure (user_prm.rlu.r)

where

ast_procedure is the name of the user’s routine that is being called.
(ast_procedure is specified as the astadr parameter in
the SNALU62$POST_ON_RECEIPT procedure call.)

Procedure Calling Format: Conversation Verbs 4–29



user_prm is a parameter passed to the user-written routine. (user_
prm is specified as astprm in the SNALU62$POST_ON_
RECEIPT procedure.)

4.9.1 Status Codes
The SNALU62$POST_ON_RECEIPT procedure can return the following
successful completion code:

• SNALU62$_OK

The SNALU62$POST_ON_RECEIPT procedure returns the following error
codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

• SNALU62$_UNSUC

4.9.2 Valid Conversation State for SNALU62$POST_ON_RECEIPT
The valid conversation state for SNALU62$POST_ON_RECEIPT is receive.

4.9.3 State Transition
None.

4–30 Procedure Calling Format: Conversation Verbs



4.10 SNALU62$PREPARE_TO_RECEIVE
The SNALU62$PREPARE_TO_RECEIVE procedure changes the conversation
from send to receive in preparation for receiving data from the remote
IBM host transaction program. This procedure includes the function of
the SNALU62$FLUSH or SNALU62$CONFIRM procedure. For additional
information, see Appendix D.

Format:

status.wlc.v=SNALU62$PREPARE_TO_RECEIVE (resource_id.rlu.r,
status_blk.wx.dx,
[type.rlu.r],
[locks.rlu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during conversation allocation. This
ID must be used on all subsequent calls for this conversation.
Passed by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

Procedure Calling Format: Conversation Verbs 4–31



type A value specifying the type of SNALU62$PREPARE_TO_
RECEIVE to be performed for this conversation. This parameter
can take the following values:

• SNALU62$K_SYNC_LEVEL
This is the default. The synchronization level of the
conversation determines the effect of the
SNALU62$PREPARE_TO_RECEIVE function: If SYNC_
LEVEL(NONE), execute the SNALU62$FLUSH function
and enter the receive state. If SYNC_LEVEL(CONFIRM),
execute the SNALU62$CONFIRM function and, if successful,
enter the receive state. If the SNALU62$CONFIRM is not
successful, the state of the conversation is determined by the
return code (see Appendix C).

• SNALU62$K_FLUSH
Execute the SNALU62$FLUSH function and enter the
receive state.

Passed by reference.

locks A value that indicates when control is to be returned to the
OpenVMS transaction program. Valid only when the type
parameter specifies SNALU62$K_SYNC_LEVEL and the
conversation is using SNALU62$CONFIRM processing. The
parameter can have the following values:

• SNALU62$K_SHORT
Return control when an affirmative reply is received.
This is the default. If the synchronization level for
the conversation is CONFIRM, return control when an
SNALU62$CONFIRMED reply is received.

• SNALU62$K_LONG
Return control when information such as data is received
from the remote IBM host transaction program following an
affirmative reply. If the synchronization level is CONFIRM,
return control when information is received following an
SNALU62$CONFIRMED reply.

Passed by reference.

efn An event flag to set when notification becomes due. If this
parameter is omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes
due. Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs.
This AST routine is called with this parameter only. Passed by
reference.

4–32 Procedure Calling Format: Conversation Verbs



4.10.1 Status Codes
The SNALU62$PREPARE_TO_RECEIVE procedure returns the following
successful completion code:

• SNALU62$_OK

The SNALU62$PREPARE_TO_RECEIVE procedure returns the following error
codes:

• SNALU62$_ALLERR

• SNALU62$_DEABPR

• SNALU62$_DEABSVC

• SNALU62$_DEABTIM

• SNALU62$_DEALNOR

• SNALU62$_FMHNOT

• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_PARERR

• SNALU62$_PRERPU

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCERPU

• SNALU62$_UNSUC

4.10.2 Valid Conversation State for SNALU62$PREPARE_TO_RECEIVE
The valid conversation state for SNALU62$PREPARE_TO_RECEIVE is send.

4.10.3 State Transition
When the return code indicates OK, the conversation enters receive state when
TYPE(FLUSH) is specified, or when TYPE(SYNC_LEVEL) is specified and the
synchronization level is NONE or CONFIRM.

Procedure Calling Format: Conversation Verbs 4–33



4.11 SNALU62$RECEIVE_AND_WAIT
The SNALU62$RECEIVE_AND_WAIT procedure waits for information to
arrive on a conversation from the remote IBM host transaction program
and receives it. When this occurs, the APPC/LU6.2 Programming Interface
passes the message to the OpenVMS transaction program and the procedure
completes. The information may be data, conversation status, or a request for
confirmation.

If the OpenVMS transaction program calls the procedure while in the send
state, the APPC/LU6.2 Programming Interface flushes the send buffer and the
OpenVMS transaction program goes into the receive state.

For a basic conversation, the fill parameter determines the format of the data
received. For a mapped conversation, data is received one record at a time,
and it does not contain the LL header.

Format:

status.wlc.v=SNALU62$RECEIVE_AND_WAIT (resource_id.rlu.r,
status_blk.wx.dx,
[fill.rlu.r],
[length.wwu.r],
[rts_rec.wlu.r],
[data.wx.dx],
[what_received.wlu.r],
[map_name.wx.dx],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value
in general register R0. Successful completion is indicated by a status
code with the low-order bit set. The low-order three bits together
represent the severity of the error. Returned by function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2 Programming
Interface during session allocation. Passed by reference.

status_blk A longword vector allocated by the OpenVMS transaction program and
filled in by the APPC/LU6.2 Programming Interface to provide the user
with complete status information. Passed by descriptor.

4–34 Procedure Calling Format: Conversation Verbs



fill A value indicating whether the data is received in logical-record format
or independent of logical-record format.

• SNALU62$K_BUFFER
Fill the buffer equal to the length specified in the buffer descriptor
or until the end of the data is detected independent of the logical
record format. For D-type descriptors, data is received until the
end of the data is detected. Not valid for mapped conversations.

• SNALU62$K_LL
Receive a complete or truncated logical record up to the length
specified in the buffer descriptor. This is the default. For class D
descriptors, a complete logical record is received.

This parameter only has meaning for basic conversations. Passed by
reference.

length A location to receive the actual length of the data received. Updated
only if the received message is data. Passed by reference.

rts_rec A location to receive one of the following values indicating whether the
remote IBM host transaction program has requested permission to send
a message. When TRUE, the least significant bit is set. When FALSE,
the least significant bit is clear.

• TRUE: The remote IBM host transaction program has requested
that the OpenVMS transaction program enter receive state and
thereby place the remote program in send state.

• FALSE: The remote IBM host transaction program has not
requested that the OpenVMS transaction program enter receive
state.

Passed by reference.

Procedure Calling Format: Conversation Verbs 4–35



Note

Unless SNALU62$K_SEND or SNALU62$K_CONFIRM_SEND is
returned in the what_received parameter on this verb, the OpenVMS
transaction program must issue another SNALU62$K_RECEIVE_
AND_WAIT call in order to transition into the receive state. The setting
of the rts_rec parameter has no effect on the resultant state of the
conversation.

data A buffer to receive data from the remote IBM host transaction program.
Data is moved to the buffer depending on the values indicated in the
fill and what_received parameters. The parameter gives the total size of
the buffer area; it should be large enough to contain the largest record
expected. The actual length filled is returned in the length parameter.
For a basic conversation:

• If the fill parameter equals SNALU62$K_LL, the buffer contains a
2-byte length field (LL) followed by a data field (see Figure 2–1).

• If the fill parameter equals SNALU62$K_BUFFER, the buffer
potentially contains multiple records, each consisting of a 2-
byte length field followed by a data field. The last record may
be truncated.

For a mapped conversation, only one record is returned and it does not
contain the LL header (see Figure 2–2).

The data parameter is passed by descriptor. If the descriptor is
dynamic, the buffer will be allocated by the interface and returned
to the user.

4–36 Procedure Calling Format: Conversation Verbs



what_
received

A location to receive a value indicating the type of message received.
This location can contain the following values:

• SNALU62$K_DATA
A value returned when fill = SNALU62$K_BUFFER is specified,
and data has been received by the OpenVMS transaction program.
In a basic conversation, this indicates that data has been received
independent of the logical record structure.

• SNALU62$K_DATA_COMPLETE
A value returned when fill = SNALU62$K_LL is specified, and a
complete logical record has been received. In a basic conversation,
this indicates that a complete logical record has been received.

• SNALU62$K_DATA_INCOMPLETE
A value returned when fill = SNALU62$K_LL is specified, and less
than a complete logical record has been received. In a mapped
conversation, this indicates that less than a complete data record
has been received.

• SNALU62$K_LL_TRUNCATED
A value returned when fill = SNALU62$K_LL is specified, and the
2-byte LL field of a logical record has been truncated after the first
byte.

• SNALU62$K_FMH_DATA_COMPLETE
A value that indicates a complete data record or the last remaining
portion thereof is received by the program and the data record
contains FM headers. This value can only be returned for mapped
conversations. In a mapped conversation, this indicates that less
than a complete data record has been received.

• SNALU62$K_FMH_DATA_INCOMPLETE
In a mapped conversation, this indicates that less than a complete
logical record plus function management header has been received.

Procedure Calling Format: Conversation Verbs 4–37



• SNALU62$K_SEND
A value that indicates that the remote IBM host transaction
program has entered receive state, putting the OpenVMS
transaction program in the send state. The OpenVMS transaction
program may now call the SNALU62$SEND_DATA procedure.

• SNALU62$K_CONFIRM
A value that indicates if the remote IBM host transaction program
has issued an SNALU62$CONFIRM to force a synchronization
point. The OpenVMS transaction program must respond by issuing
SNALU62$CONFIRMED or SNALU62$SEND_ERROR.

• SNALU62$K_CONFIRM_SEND
A value indicating that the remote IBM host transaction program
has issued SNALU62$PREPARE_TO_RECEIVE with type
SYNC_LEVEL and the synchronization level is CONFIRM.
The OpenVMS transaction program can respond by calling the
SNALU62$CONFIRMED procedure or another procedure, such as
SNALU62$SEND_ERROR.

• SNALU62$K_CONFIRM_DEALLOCATE
A value indicating that the remote IBM host transaction program
has issued SNALU62$DEALLOCATE with type SYNC_LEVEL and
the synchronization level is CONFIRM. The OpenVMS transaction
program can respond by calling SNALU62$CONFIRMED or by
calling another procedure, such as SNALU62$SEND_ERROR.

This call results in either data or a single status indicator. Data is
never received together with a status indicator. Passed by reference.

map_name Reserved for future use. This parameter is ignored. Passed by
descriptor.

efn An event flag to set when notification becomes due. If this parameter is
omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes due.
Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs. This
AST routine is called with this parameter only. Passed by reference.

4.11.1 Status Codes
The SNALU62$RECEIVE_AND_WAIT procedure can return the following
successful completion code:

• SNALU62$_OK

The SNALU62$RECEIVE_AND_WAIT procedure returns the following error
codes:

• SNALU62$_ALLERR

4–38 Procedure Calling Format: Conversation Verbs



• SNALU62$_DEABPR

• SNALU62$_DEABSVC

• SNALU62$_DEABTIM

• SNALU62$_DEALNOR

• SNALU62$_FMHNOT

• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_PARERR

• SNALU62$_PRERNTR

• SNALU62$_PRERPU

• SNALU62$_PRERTR

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCENTR

• SNALU62$_SVCERPU

• SNALU62$_SVCERTR

• SNALU62$_UNSUC

4.11.2 Valid Conversation States for SNALU62$RECEIVE_AND_WAIT
The valid conversation states for SNALU62$RECEIVE_AND_WAIT are send
and receive.

4.11.3 State Transition
When the return code indicates OK:

• The conversation enters receive state when the procedure is issued in
send state and when the what_received parameter indicates DATA, DATA_
COMPLETE, DATA_INCOMPLETE, FMH_DATA_COMPLETE, or FMH_
DATA_INCOMPLETE.

• The conversation enters send state when the what_received parameter
indicates send.

Procedure Calling Format: Conversation Verbs 4–39



• The conversation enters confirm state when the what_received parameter
indicates CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE.

• The conversation does not undergo a state change when the procedure is
issued in receive state and when what_received indicates DATA, DATA_
COMPLETE, DATA_INCOMPLETE, FMH_DATA_COMPLETE, or FMH_
DATA_INCOMPLETE.

4–40 Procedure Calling Format: Conversation Verbs



4.12 SNALU62$RECEIVE_IMMEDIATE
The SNALU62$RECEIVE_IMMEDIATE procedure checks to see if information
has arrived from the remote IBM host transaction program. The procedure can
only be called in the receive state. The information may be data, conversation
status, or a request for confirmation. If the procedure returns the status
code SNALU62$_UNSUC, with the suberror SNALU62$_NDAVAIL (no data
available), then either insufficient data or no data transferred into the user’s
buffer.

For a basic conversation, the fill parameter determines the format of the data
received. For a mapped conversation, data is received one record at a time.

Format:

status.wlc.v=SNALU62$RECEIVE_IMMEDIATE (resource_id.rlu.r,
status_blk.wx.dx,
[fill.rlu.r],
[length.wwu.r],
[rts_rec.wlu.r],
[data.wx.dx],
[what_received.wlu.r],
[map_name.wx.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned to the conversation by the APPC/LU6.2
Programming Interface during session allocation. Passed by
reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

Procedure Calling Format: Conversation Verbs 4–41



fill A value indicating whether the data is to be received in logical-
record format or independent of logical-record format.

• SNALU62$K_BUFFER
Fill the buffer equal to the length specified in the
buffer descriptor or until the end of the data is detected
independent of the logical record format. For D-type
descriptors, data is received until the end of the data is
detected.

• SNALU62$K_LL
Receive a complete or truncated logical record up to the
length specified in the buffer descriptor. This is the default.
For class D descriptors, a complete logical record is received.

This parameter only has meaning for basic conversations. Passed
by reference.

length A location to receive the actual length of the data received.
Updated only if the received message is data. Passed by
reference.

rts_rec A location to receive one of the following values indicating
whether the remote IBM host transaction program has requested
permission to send a message. When TRUE, the least significant
bit is set. When FALSE, the least significant bit is clear.

• TRUE: The remote IBM host transaction program has
requested that the OpenVMS transaction program enter
receive state and thereby place the remote program in send
state.

• FALSE: The remote IBM host transaction program has not
requested that the OpenVMS transaction program enter
receive state.

Passed by reference.

4–42 Procedure Calling Format: Conversation Verbs



data A buffer to receive data from the remote IBM host transaction
program. Data is moved to the buffer depending on the values
indicated in the fill and what_received parameters. The
parameter gives the total size of the buffer area; it should be
large enough to contain the largest record expected. The actual
length filled is returned in the length parameter. For a basic
conversation:

• If the fill parameter equals SNALU62$K_LL, the buffer
contains a 2-byte length field (LL) followed by a data field
(see Figure 2–1).

• If the fill parameter equals SNALU62$K_BUFFER, the
buffer potentially contains multiple records, each consisting
of a 2-byte length field followed by a data field. The last
record may be truncated.

For a mapped conversation, only one record is returned and
it does not contain the LL header (see Figure 2–2). Passed by
descriptor.

Procedure Calling Format: Conversation Verbs 4–43



what_received A location to receive a value indicating the type of message
received. This location can contain the following values:

• SNALU62$K_DATA
A value returned when fill = SNALU62$K_BUFFER is
specified, and data has been received by the OpenVMS
transaction program. In a basic conversation, this indicates
that data has been received independent of the logical record
structure.

• SNALU62$K_DATA_COMPLETE
A value returned when fill = SNALU62$K_LL is specified,
and a complete logical record has been received. In a basic
conversation, this indicates that a complete logical record
has been received. In a mapped conversation, this indicates
that a complete data record or the last part of a record has
been received.

• SNALU62$K_DATA_INCOMPLETE
A value returned when fill = SNALU62$K_LL is specified,
and less than a complete logical record has been received.
In a mapped conversation, this indicates that less than a
complete data record has been received.

• SNALU62$K_LL_TRUNCATED
A value returned when fill = SNALU62$K_LL is specified,
and the 2-byte LL field of a logical record has been truncated
after the first byte.

• SNALU62$K_FMH_DATA_COMPLETE
A value that indicates a complete data record or its last
remaining portion is received by the program and the data
record contains FM headers. This value can only be returned
for mapped conversations.

• SNALU62$K_FMH_DATA_INCOMPLETE
In a mapped conversation, this indicates that less than a
complete logical record plus function management header
has been received.

4–44 Procedure Calling Format: Conversation Verbs



• SNALU62$K_SEND
A value that indicates that the remote IBM host transaction
program has entered receive state, putting the OpenVMS
transaction program in the send state. The OpenVMS
transaction program may now call the SNALU62$SEND_
DATA procedure.

• SNALU62$K_CONFIRM
A value that indicates if the remote IBM host transaction
program has issued an SNALU62$CONFIRM to force a
synchronization point. The OpenVMS transaction program
must respond by issuing SNALU62$CONFIRMED or
SNALU62$SEND_ERROR.

• SNALU62$K_CONFIRM_SEND
A value indicating that the remote IBM host transaction
program has issued SNALU62$PREPARE_TO_RECEIVE
with type SYNC_LEVEL, and synchronization level is
CONFIRM. The OpenVMS transaction program can respond
by calling the SNALU62$CONFIRMED procedure or another
procedure, such as SNALU62$SEND_ERROR.

• SNALU62$K_CONFIRM_DEALLOCATE
A value indicating that the remote IBM host transaction
program has issued SNALU62$DEALLOCATE with type
SYNC_LEVEL, and the synchronization level is CONFIRM.
The OpenVMS transaction program can respond by calling
SNALU62$CONFIRMED or by calling another procedure,
such as SNALU62$SEND_ERROR.

This call results in either data or a single status indicator. Data
is never received together with a status indicator. Passed by
reference.

map_name Reserved for future use. This parameter is ignored. Passed by
descriptor.

4.12.1 Status Codes
The SNALU62$RECEIVE_IMMEDIATE procedure can return the following
successful completion code:

• SNALU62$_OK

The SNALU62$RECEIVE_IMMEDIATE procedure returns the following error
codes:

• SNALU62$_DEABPR

• SNALU62$_DEABSVC

Procedure Calling Format: Conversation Verbs 4–45



• SNALU62$_DEABTIM

• SNALU62$_DEALNOR

• SNALU62$_FMHNOT

• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_NDAVAIL

• SNALU62$_PARERR

• SNALU62$_PRERNTR

• SNALU62$_PRERPU

• SNALU62$_PRERTR

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCENTR

• SNALU62$_SVCERPU

• SNALU62$_SVCERTR

• SNALU62$_UNSUC

4.12.2 Valid Conversation State for SNALU62$RECEIVE_IMMEDIATE
The valid conversation state for SNALU62$RECEIVE_IMMEDIATE is receive.

4.12.3 State Transition
The conversation does not undergo a state change when the procedure is
issued in receive state and when what received indicates DATA, DATA_
COMPLETE, DATA_INCOMPLETE, FMH_DATA_COMPLETE, or FMH_
DATA_INCOMPLETE.

4–46 Procedure Calling Format: Conversation Verbs



4.13 SNALU62$REQUEST_TO_SEND
The SNALU62$REQUEST_TO_SEND procedure signals the remote IBM host
transaction program that the OpenVMS transaction program wants to send
data. The conversation will be changed to the send state when the OpenVMS
transaction program subsequently receives a SEND indication from the remote
IBM host transaction program by means of the SNALU62$RECEIVE_AND_
WAIT procedure.

Format:

status.wlc.v=SNALU62$REQUEST_TO_SEND (resource_id.rlu.r,
status_blk.wx.dx)

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits together represent the severity of the
error. Returned by function value.

resource_id An ID assigned by the APPC/LU6.2 Programming Interface
to the conversation. Passed by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming
Interface to provide the user with complete status
information. Passed by descriptor.

4.13.1 Status Codes
The SNALU62$REQUEST_TO_SEND procedure can return the following
successful completion code:

• SNALU62$_OK

The SNALU62$REQUEST_TO_SEND procedure can return the following error
codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

• SNALU62$_UNSUC

Procedure Calling Format: Conversation Verbs 4–47



4.13.2 Valid Conversation States for SNALU62$REQUEST_TO_SEND
The valid conversation states for SNALU62$REQUEST_TO_SEND are receive
and confirm.

4.13.3 State Transition
None.

4–48 Procedure Calling Format: Conversation Verbs



4.14 SNALU62$SEND_DATA
The SNALU62$SEND_DATA procedure sends data to the remote IBM
host transaction program. The format of the data depends on the type of
conversation being used:

• In a basic conversation, the OpenVMS transaction program specifies a
user-supplied send buffer that contains one or more logical records. Each
record is preceded by a 2-byte length field (LL) to indicate the length of the
record including the 2-byte prefix (see Section 2.1.2.2.

• In a mapped conversation, the OpenVMS transaction program specifies a
user-supplied send buffer that contains a single data record without the
length field. The data can include a function management header.

Format:

status.wlc.v=SNALU62$SEND_DATA (resource_id.rlu.r,
status_blk.wx.dx,
data.rx.dx,
[length.rwu.r],
[rts_rec.wlu.r],
[map_name.rt.dx],
[fmh_data.rlu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits together represent the severity of the
error. Returned by function value.

resource_id An ID assigned by the APPC/LU6.2 Programming Interface
to the conversation. Passed by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming
Interface to provide the user with complete status
information. Passed by descriptor.

data A buffer containing the data to be sent to the remote IBM
host transaction program. Passed by descriptor.

Procedure Calling Format: Conversation Verbs 4–49



length A value indicating the length of the data to send. If
the value is 0 or is omitted, length is derived from the
length field in the data parameter descriptor. In a basic
conversation, length is the length of the combined logical
records in the buffer. Note that this is not the same as the
value in the 2-byte length field prefix, which indicates the
size of one logical record. In a mapped conversation, length
is the length of the single data record in the buffer. Passed
by reference.

rts_rec A location to receive one longword of the following values
indicating whether the remote IBM host transaction
program has requested permission to send a message.
When TRUE, the least significant bit is set. When FALSE,
the least significant bit is clear.

• TRUE: The remote IBM host transaction program has
requested that the OpenVMS transaction program enter
receive state and so place the remote program in send
state.

• FALSE: The remote IBM host transaction program has
not requested that the OpenVMS transaction program
enter receive state.

Passed by reference.

map_name Reserved for future use. This parameter is ignored. Passed
by descriptor.

fmh_data Valid for a mapped conversation only. A flag indicating
whether the data record includes a function management
header. If this variable tests true, the data record includes
an FM header. If this variable tests false, the data record
does not include FM headers. If this parameter is supplied
for a basic conversation, the error SNALU62$_PARERR is
returned. Passed by reference.

efn An event flag to set when notification becomes due. If
this parameter is omitted, event flag 0 is set. Passed by
reference.

astadr The address of an AST routine to call when notification
becomes due. Passed by reference.

astprm A parameter to pass to the AST routine when notification
occurs. This AST routine is called with this parameter only.
Passed by reference.

4–50 Procedure Calling Format: Conversation Verbs



4.14.1 Status Codes
The SNALU62$SEND_DATA procedure can return the following successful
completion code:

• SNALU62$_OK

The SNALU62$SEND_DATA procedure can return the following status codes:

• SNALU62$_ALLERR

• SNALU62$_DEABPR

• SNALU62$_DEABSVC

• SNALU62$_DEABTIM

• SNALU62$_FMHNOT

• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_PARERR

• SNALU62$_PRERPU

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCERPU

• SNALU62$_UNSUC

4.14.2 Valid Conversation State for SNALU62$SEND_DATA
The valid conversation state for SNALU62$SEND_DATA is send.

4.14.3 State Transition
When the return code indicates OK: none.

Procedure Calling Format: Conversation Verbs 4–51



4.15 SNALU62$SEND_ERROR
The SNALU62$SEND_ERROR procedure informs the remote IBM host
transaction program that the OpenVMS transaction program has detected an
error. The APPC/LU6.2 Programming Interface flushes the send buffer if the
OpenVMS transaction program is in the send state. Upon completion, the
OpenVMS transaction program is in the send state and the remote IBM host
transaction program is in the receive state.

Format:

status.wlc.v=SNALU62$SEND_ERROR (resource_id.rlu.r,
status_blk.wx.dx,
[type.rlu.r],
[log_data.rx.dx],
[rts_rec.wlu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

resource_id An ID assigned by the APPC/LU6.2 Programming Interface to
the conversation during allocation. Passed by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

type A value indicating the type of error being reported. The
OpenVMS transaction program can specify either value. This
parameter can take the following values:

• SNALU62$K_PROG
Indicates an end-user transaction program error. This is the
default.

• SNALU62$K_SVC
Indicates an LU services error.

Passed by reference.

4–52 Procedure Calling Format: Conversation Verbs



log_data Product-specific error information that is to be placed in the
system error logs of the LUs supporting this conversation.
Passed by descriptor.

rts_rec A location to receive one of the following values indicating
whether the remote IBM host transaction program has requested
permission to send a message. When TRUE, the least significant
bit is set. When FALSE, the least significant bit is clear.

• TRUE: The remote IBM host transaction program has
requested that the OpenVMS transaction program enter
receive state and so place the remote program in send state.

• FALSE: The remote IBM host transaction program has not
requested that the OpenVMS transaction program enter
receive state.

Passed by reference.

efn An event flag to set when notification becomes due. If this
parameter is omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes
due. Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs.
This AST routine is called with this parameter only. Passed by
reference.

4.15.1 Status Codes
The SNALU62$SEND_ERROR procedure can return the following successful
completion code:

• SNALU62$_OK

The SNALU62$SEND_ERROR procedure can return the following status
codes:

• SNALU62$_ALLERR

• SNALU62$_DEABPR

• SNALU62$_DEABSVC

• SNALU62$_DEABTIM

• SNALU62$_DEALNOR

• SNALU62$_FMHNOT

• SNALU62$_MAPEFAI

• SNALU62$_MAPNFOU

• SNALU62$_PARERR

Procedure Calling Format: Conversation Verbs 4–53



• SNALU62$_PRERPU

• SNALU62$_RESFNO

• SNALU62$_RESFRET

• SNALU62$_STAERR

• SNALU62$_SVCERPU

• SNALU62$_UNSUC

4.15.2 Valid Conversation States for SNALU62$SEND_ERROR
The valid conversation states for SNALU62$SEND_ERROR are send, receive,
and confirm.

4.15.3 State Transition
When the return code indicates OK:

• The conversation enters send state when the procedure call is issued in
receive or confirm state.

• The conversation does not undergo a state change when the procedure call
is issued in send state.

4–54 Procedure Calling Format: Conversation Verbs



4.16 SNALU62$SUPPLY_PIP
The SNALU62$SUPPLY_PIP verb defines Program Initialization Parameters
that can be sent to a remote transaction program on a subsequent
SNALU62$ALLOCATE verb, when a conversation is allocated by the OpenVMS
transaction program.

Format:

status.wlc.v=SNALU62$SUPPLY_PIP (status_blk.wx.dx,
pip_context.wlu.r,
num_pip.rlu.r,
[pip_01.rt.dx],
[pip_02.rt.dx],
[pip_03.rt.dx],
.
.
.
[pip_14.rt.dx],
[pip_15.rt.dx],
[pip_16.rt.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits together represent the severity of the error. Returned by
function value.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

pip_context pip_context is a context variable that is returned by this
procedure. This variable is supplied on a subsequent
SNALU62$ALLOCATE call to actually supply the PIP
parameters to the remote transaction program. Passed by
reference.

num_pip A value indicating the number of PIPs supplied with the
call to this procedure. If you specify 5 PIPs, then locations
for 5 PIPs are created and sent on a subsequent call to the
SNALU62$ALLOCATE procedure. Passed by reference.

pip_01,...,pip_16 Each pip_01,...,pip_16 is a parameter containing program
initialization data to send to the remote transaction program.
Passed by descriptor.

Procedure Calling Format: Conversation Verbs 4–55



4.16.1 Status Codes
The SNALU62$SUPPLY_PIP procedure returns the following successful
completion code:

• SNALU62$_OK

The SNALU62$SUPPLY_PIP procedure returns the following error code:

• SNALU62$_UNSUC

4.16.2 Valid Conversation States for SNALU62$SUPPLY_PIP
Valid in all states.

4.16.3 State Transition
None.

4–56 Procedure Calling Format: Conversation Verbs



4.17 SNALU62$WAIT
The SNALU62$WAIT procedure suspends execution of the OpenVMS
transaction program until data, status, or a confirmation request is received
on one of the specified conversations. These conversations must be set up for
asynchronous completion by means of the SNALU62$POST_ON_RECEIPT
procedure.

Format:

status.wlc.v=SNALU62$WAIT (resource_posted.wlu.r,
status_blk.wx.dx,
resource_list.rx.dx,
[number_ids.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits together represent the severity of the
error. Returned by function value.

resource_posted A longword to receive the resource_id of the conversation
that has received data, status, or confirmation request.
Passed by reference.

status_blk A longword vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming
Interface to provide the user with complete status
information. Passed by descriptor.

resource_list An array of longwords specifying which conversations to
monitor for receive completion. Each longword contains
the resource ID of the conversation to be monitored. Other
conversations will be ignored by this procedure. Passed by
descriptor.

number_ids A longword containing the number of conversations listed
in the resource_list. If this parameter is omitted, the array
size from the resource_list descriptor is used. Passed by
reference.

4.17.1 Status Codes
The SNALU62$WAIT procedure can return the following status codes:

• SNALU62$_UNSUC

Procedure Calling Format: Conversation Verbs 4–57



4.17.2 Valid Conversation State for SNALU62$WAIT
The valid conversation state for SNALU62$WAIT is receive.

4.17.3 State Transition
None.

4–58 Procedure Calling Format: Conversation Verbs



5
Procedure Calling Format: Control

Operator Verbs

This chapter describes the calling format, status codes, and state transitions
for control operator procedures. The following procedures are available:

• SNALU62$ACTIVATE_SESSION

• SNALU62$DEACTIVATE_SESSION

• SNALU62$DEFINE_REMOTE

• SNALU62$DEFINE_TP

• SNALU62$DELETE

Calls to the APPC/LU6.2 Programming Interface procedures have the following
general format:

status=SNALU62$procedure name (argument,...,[argument])

where

status is a status code returned as a function value.

procedure_name is the procedure you want to call.

( ) delimits the argument list.

argument is a symbol containing information that the OpenVMS
transaction program passes to the Programming Interface.
Shorthand notation describes the argument’s characteristics.
Appendix A summarizes the notation.

[argument] indicates an optional argument.

Arguments pass to the APPC/LU6.2 Programming Interface in two ways:

• By reference (or address). The argument is the address of an area or
field that contains the value. An argument passed by address is usually
expressed as a reference name or label associated with an area or field.

Procedure Calling Format: Control Operator Verbs 5–1



• By descriptor. This argument is also an address—for a special data
structure called a descriptor (see the Introduction to OpenVMS System
Routines).

In this chapter, the argument definitions for each procedure specify how each
argument is passed.

Sessions are activated as the result of an OpenVMS transaction request for
a conversation. The SNALU62$ACTIVATE_SESSION control operator verb
activates a session.

You can define, modify and delete the local LU’s operating parameters with the
following verbs:

• SNALU62$DEFINE_REMOTE

• SNALU62$DEFINE_TP

• SNALU62$DELETE

5–2 Procedure Calling Format: Control Operator Verbs



5.1 SNALU62$ACTIVATE_SESSION
The SNALU62$ACTIVATE_SESSION procedure activates an LU-LU session,
and specifies a mode name for the remote LU. The local LU may be either the
contention winner or contention loser depending on the Bind Request received
from the PLU and the requested polarity.

Format:

status.wlc.v=SNALU62$ACTIVATE_SESSION (session_id.wlu.r,
status_blk.wx.dx,
lu_name.rt.dx,
[mode_name.rt.dx],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r],
[notify_rtn.szem.r],
[notify_prm.rlu.r],
[notify_blk.wx.dx],
[polarity.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned by function value.

session_id A location to receive an ID value assigned to the session
by the APPC/LU6.2 Programming Interface. Passed by
reference.

status_blk A longword status vector allocated by the OpenVMS
transaction program and filled in by the APPC/LU6.2
Programming Interface to provide the user with complete
status information. Passed by descriptor.

lu_name A value specifying the name of the remote LU with which
the session is to be activated. This name must be a locally
known LU name defined using the SNALU62$DEFINE_
REMOTE verb. Passed by descriptor.

mode_name A logon mode table name associated with a set of BIND
request parameters for the session. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
This parameter must reference an APPC mode name defined
on the Microsoft SNA Server.

Procedure Calling Format: Control Operator Verbs 5–3



efn An event flag to set when notification becomes due. If
this parameter is omitted, event flag 0 is set. Passed by
reference.

astadr The address of an AST routine to call when notification
becomes due. Passed by reference.

astprm A parameter to pass to the AST routine when notification
occurs. This AST routine is called with this parameter only.
Passed by reference.

notify_rtn Notify which service routine to execute when the session
activated by the procedure fails with no outstanding verb.
Passed by reference.

notify_prm Notify which parameter to pass to the notify service routine
specified by the notify_rtn parameter. The user-written
notify routine has the following calling format: notify_
rtn(notify_prm.rlu.r). Passed by reference.

notify_blk A longword status vector allocated by the OpenVMS
transaction program and filled in by the APPC/LU6.2
Programming Interface with complete status information
regarding the session failure. Passed by descriptor.

polarity Specifies the contention polarity for the session. SNALU62$K_
FIRST_SPEAKER indicates that the local LU will be the
contention winner. SNALU62$K_BIDDER indicates that
the local LU will be the contention loser. SNALU62$K_
FIRST_SPEAKER is the default value. Passed by reference.

5.1.1 Status Codes
The SNALU62$ACTIVATE_SESSION procedure returns the following
successful status codes:

• SNALU62$_OK

• SNALU62$_ASSPEC

• SNALU62$_ASNEG

The SNALU62$ACTIVATE_SESSION procedure returns the following error
codes:

• SNALU62$_PARERR

• SNALU62$_RESFNO

• SNALU62$_RESFRET

5–4 Procedure Calling Format: Control Operator Verbs



• SNALU62$_UNSUC

DIGITAL SNA Access Server for Windows NT Note

If the error occurred before the DIGITAL SNA Access Server for
Windows NT attempted to connect with the IBM system, the error code
is correct. If the error occurred while connecting to the IBM system,
the DIGITAL SNA Access Server for Windows NT always returns
SNALU62$_RESFRET and any sense code information is lost.

If an SNALU62$_RESFRET error code occurs while using the DIGITAL
SNA Access Server for Windows NT, use the Microsoft Event Viewer
to determine why the session activation failed. Refer to the Microsoft
SNA Server and Event Viewer documentation for more information.

5.1.2 State Transition
When the return code is SNALU62$_ASSPEC or SNALU62$_ASNEG, the
session is active.

Procedure Calling Format: Control Operator Verbs 5–5



5.2 SNALU62$DEACTIVATE_SESSION
SNALU62$DEACTIVATE_SESSION deactivates a session between the local
logical unit and the remote logical unit. If the argument type indicates normal,
then the session is not deactivated until all conversation ends. Do not use the
synchronous version of this verb with type=SNALU62$K_DEACT_NORMAL
unless there is no current conversation. If the argument type indicates
cleanup, the session is deactivated immediately, regardless of the current state
of the conversation or session. Any outstanding asynchronous verb, other than
SNALU62$POST_ON_RECEIPT, completes before SNALU62$DEACTIVATE_
SESSION completes.

Format:

status.wlc.v=SNALU62$DEACTIVATE_SESSION (session_id.rlu.r,
status_blk.wx.dx,
[type.rlu.r],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned by function value.

session_id The unique identifier assigned by the Interface to the
session. This value is returned by a previous call to
SNALU62$ACTIVATE_SESSION or SNALU62$GET_
ATTRIBUTES. Passed by reference.

status_blk A data structure to receive status information on completion
of the request. Passed by descriptor.

5–6 Procedure Calling Format: Control Operator Verbs



type A value indicating the type of deactivation to be performed.
The parameter takes the following values:

• SNALU62$K_DEACT_NORMAL indicates a normal
deactivation. The session is not deactivated until all
conversation has ended.

• SNALU62$K_DEACT_CLEANUP indicates a cleanup
deactivation. The session is deactivated immediately
regardless of the current state of the conversation
or session. SNALU62$K_DEACT_CLEANUP is the
default value.

Passed by reference.

efn Number of the event flag to be set when this procedure
completes. Passed by reference.

astadr AST service routine to be executed when the procedure
completes. Passed by reference.

astprm AST parameter to be passed to the AST service routine
specified by the astadr parameter. Passed by reference.

5.2.1 Status Codes
The SNALU62$DEACTIVATE_SESSION procedure returns the following
successful status codes:

• SNALU62$_OK

The SNALU62$DEACTIVATE_SESSION procedure returns the following error
codes:

• SNALU62$_PARERR

• SNALU62$_STAERR

Procedure Calling Format: Control Operator Verbs 5–7



5.3 SNALU62$DEFINE_REMOTE
The SNALU62$DEFINE_REMOTE initializes local LU parameters that control
the operation of the local LU in conjunction with the remote LU.

Format:

status.wlc.v=SNALU62$DEFINE_REMOTE (status_blk.wx.dx,
qualified_luname.rt.dx,
local_luname.rt.dx,
[uninterpreted_luname.rt.dx],
[initiate_type.rlu.r],
[parallel_session_support.rlu.r],
[cnos_support.rlu.r],
[lu_lu_password.rx.dx],
[security_acceptance.rlu.r],
[gwynode.rt.dx],
[accname.rt.dx],
[pu.rt.dx],
[sesaddr.rlu.r],
[plu.rt.dx],
[logon.rt.dx],
[user_data.rx.dx],
[authorization_password.rt.dx],
[process_id.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric
status value in general register R0. Successful completion
is indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned by function value.

status_blk A longword status vector allocated by the OpenVMS
transaction program and filled in by the APPC/LU6.2
Programming Interface to provide the user with complete
status information. Passed by descriptor.

qualified_luname The network name for the remote LU that is being defined.
This parameter is an arbitrary ASCII string, and in the
present implementation, it does not have to be the real
network LU name. ASCII string passed by descriptor.

local_luname The local synonym for the remote LU. This name is an
arbitrary ASCII string. It is the name that is passed to the
ACTIVATE_SESSION or ALLOCATE procedures. ASCII
string passed by descriptor.

uninterpreted_luname Reserved for future use. This parameter is ignored. Passed
by descriptor.

5–8 Procedure Calling Format: Control Operator Verbs



initiate_type A session-initiation type that the local LU is to use on
INITIATE requests. This parameter takes the following
values:

• SNALU62$K_INITIATE_ONLY specifies an ac-
tive connect request (default). A subsequent
SNALU62$ACTIVATE_SESSION or
SNALU62$ALLOCATE call specifying an LUNAME
with the attribute SNALU62$K_INITIATE_ONLY, will
immediately activate a session with the remote LU.

• SNALU62$K_INITIATE_OR_QUEUE specifies a pas-
sive connect request. A subsequent SNALU62$ACTIVATE_
SESSION or
SNALU62$ALLOCATE call specifying an LUNAME
with the attribute SNALU62$K_INITIATE_OR_
QUEUE, will wait for the remote LU to send a BIND to
activate the session. Reserves the LU on the gateway
node.

Passed by reference.

parallel_session_support Reserved for future use. This parameter is ignored. Passed
by reference.

cnos_support Reserved for future use. This parameter is ignored. Passed
by reference.

lu_lu_password Specifies the LU-to-LU password (as defined on the IBM
system) to be used for session level LU-to-LU verification
during session activation. This parameter is a string of 8
bytes. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
Because the Microsoft SNA Server activates the session, the
DIGITAL SNA Access Server for Windows NT does not itself
support LU-to-LU verification during session activation.
Therefore, the interface ignores this parameter when using
the DIGITAL SNA Access Server for Windows NT. Use the
Microsoft SNA Server Manager to supply this parameter.

security_acceptance This parameter is ignored. Passed by reference. Reserved
for future use.

Procedure Calling Format: Control Operator Verbs 5–9



gwynode An ASCII string that specifies the name of the SNA gateway
node. Passed by descriptor. For information about how to
use this parameter to pass a TCP/IP gateway node name or
an LU6.2 Server name, see Section 3.2 and its subsections.

DIGITAL SNA Access Server for Windows NT Note:
If you choose to use the DECnet transport between the
APPC interface and the DIGITAL SNA Access Server
for Windows NT, you must have DIGITAL PATHWORKS
software installed on the DIGITAL SNA Access Server for
Windows NT system.

accname A gateway access name used in setting up a session with
the host. This parameter is an ASCII string one to eight
characters in length. If this parameter is omitted, or the
access name definition does not contain all the required
fields, then access information must be supplied by means
of other parameters (PU, SESADDR, PLU, LOGON, DATA).
Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
Access names on the DIGITAL SNA Access Server for
Windows NT are treated slightly differently than on the
older DECnet SNA gateways. For information about the
differences, see Appendix J.

pu An ASCII string specifying the SNA gateway or OpenVMS
SNA Physical Unit (PU) name or, DIGITAL SNA Domain
Gateway or DIGITAL SNA Peer Server Logical Unit (LU)
name. Passed by descriptor.

• When connecting to the OpenVMS SNA or the DECnet
SNA Gateways, this parameter contains an ASCII
string in the form dev-n. The ASCII string specifies the
gateway or OpenVMS SNA physical unit name.

• When connecting to a DIGITAL SNA Domain Gateway
Gateway or DIGITAL SNA Peer Server, this parameter
contains an ASCII string specifying up to an 8 character
logical unit name.

DIGITAL SNA Access Server for Windows NT Note:
The DIGITAL SNA Access Server for Windows NT supports
two uses of the pu and sesaddr parameters:

• Use the two parameters to specify an old-style
pu[.sesaddr] LU name.

• Use the pu parameter to specify an LU name.

5–10 Procedure Calling Format: Control Operator Verbs



sesaddr The gateway secondary logical unit (SLU) address for a
DECnet SNA Gateway. This parameter is an integer in the
range 1 to 255. This parameter is not used with DIGITAL
SNA Domain Gateways or DIGITAL SNA Peer Server.
Passed by reference.

DIGITAL SNA Access Server for Windows NT Note:
See note under pu parameter.

plu A VTAM name for the primary logical unit (PLU). This
parameter is an ASCII string one to eight characters in
length. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
This parameter must reference a remote LU alias defined
on the DIGITAL SNA Access Server for Windows NT.

logon A logon mode name. This parameter is an ASCII string one
to eight characters in length. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
This parameter must reference an APPC mode name defined
on the Microsoft SNA Server.

user_data A string of 1 to 128 characters that can be used to
complete the logon to the PLU. This character string is
not translated. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT Note:
The interface ignores this parameter when using the
DIGITAL SNA Access Server for Windows NT.

authorization_password A password verified by the SNA gateway. Passed by
descriptor.

process_id Process identifier (PID) of a process logged into the system
(default: current process). Passed by reference.

5.3.1 Status Codes
The SNALU62$DEFINE_REMOTE procedure returns the following successful
status code:

• SNALU62$_OK

The SNALU62$DEFINE_REMOTE procedure returns the following error
codes:

• SNALU62$_PARERR

• SNALU62$_UNSUC

Procedure Calling Format: Control Operator Verbs 5–11



5.4 SNALU62$DEFINE_TP
The SNALU62$DEFINE_TP procedure specifies a valid transaction program
name with which a remote transaction program can initiate a conversation. If
a transaction program on the remote LU attempts to initiate a conversation
with a transaction program name on the local LU that has not been defined
using SNALU62$DEFINE_TP, then conversation initiation will fail.

Format:

status.wlc.v=SNALU62$DEFINE_TP (status_blk.wx.dx,
tp_name.rt.dx,
[tp_status.rlu.r],
[tp_conversation_type.rlu.r],
[tp_synchronization_level.rlu.r],
[security_required.rlu.r],
[security_access.rlu.r],
[security_user_id.rx.dx],
[security_profile.rx.dx],
[pip.rlu.r],
[data_mapping.rlu.r],
[fmh_data.rlu.r],
[tp_privilege.rlu.r],
attach_routine.szem.r,
[attach_param.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a
numeric status value in general register R0. Successful
completion is indicated by a status code with the
low-order bit set. The low-order three bits, together,
represent the severity of the error. Returned by
function value.

status_blk A longword status vector allocated by the OpenVMS
transaction program and filled in by the APPC/LU6.2
Programming Interface to provide the user with
complete status information. Passed by descriptor.

5–12 Procedure Calling Format: Control Operator Verbs



tp_name A valid transaction program name for this LU. If an
attach request specifying this TPN arrives on a session
from the remote LU, the ATTACH routine will be
called. If the TPN in the ATTACH does not match any
of the TPNs defined with this procedure, the ATTACH
will be rejected and the ATTACH routine will not be
called. The data supplied in this parameter is not
translated. Passed by descriptor.

DIGITAL SNA Access Server for Windows NT
Note: All transaction program names must use
characters contained in the standard translation
tables supplied with the Microsoft SNA Server. If you
use a user-defined translation table, you must choose
characters for the TP name that are translated in
the same manner as the standard translation tables
supplied with the Microsoft SNA Server

tp_status Reserved for future use. This parameter is ignored.
Passed by reference.

tp_conversation_type Reserved for future use. This parameter is ignored.
Passed by reference.

tp_synchronization_level Reserved for future use. This parameter is ignored.
Passed by reference.

security_required Reserved for future use. This parameter is ignored.
Passed by reference.

security_access Reserved for future use. This parameter is ignored.
Passed by reference.

security_user_id Reserved for future use. This parameter is ignored.
Passed by descriptor.

security_profile Reserved for future use. This parameter is ignored.
Passed by descriptor.

pip Reserved for future use. This parameter is ignored.
Passed by reference.

data_mapping Reserved for future use. This parameter is ignored.
Passed by reference.

fmh_data Reserved for future use. This parameter is ignored.
Passed by reference.

tp_privilege Reserved for future use. This parameter is ignored.
Passed by reference.

attach_routine A routine address to call if an ATTACH FMH arrives
for the TPN. This parameter is required, even if you
are changing only one of the other parameters. Passed
by reference.

Procedure Calling Format: Control Operator Verbs 5–13



attach_param A parameter to pass to the attach_routine. Passed by
reference.

This user-written attach routine has the following
calling format:
attach_routine (attach_param.rlu.r,resource_id.rlu.r)

where

attach_param is a parameter to pass to the attach_routine. Passed by
reference.

resource_id is the resource_id of the conversation that has now
been attached. Further conversation verbs can now
be issued on this conversation using this resource_id.
Passed by reference.

5.4.1 Status Codes
The SNALU62$DEFINE_TP procedure returns the following successful status
code:

• SNALU62$_OK

The SNALU62$DEFINE_TP procedure returns the following error codes:

• SNALU62$_PARERR

• SNALU62$_UNSUC

• SNALU62$_STAERR

5–14 Procedure Calling Format: Control Operator Verbs



5.5 SNALU62$DELETE
If a remote LU name is specified, the SNALU62$DELETE procedure deletes
the specified remote LU.

Any sessions without active conversations are immediately deactivated.
Sessions with active conversations will be deactivated when the conversation is
deallocated. The verb completes when all sessions have been deactivated and
all LU resources have been returned.

If a TP name is specified, the TPN is deleted from the list of valid TP names.

DIGITAL SNA Access Server for Windows NT Note

When using the DIGITAL SNA Access Server for Windows NT, this
procedure only deletes information local to the APPC interface. It does
not delete remote LU or TP name definitions on the Microsoft SNA
Server.

Format:

status.wlc.v=SNALU62$DELETE (status_blk.wx.dx,
[local_lu.rx.dx],
[remote_lu.rx.dx],
[mode_name.rx.dx],
[tp_name.rx.dx],
[efn.rlu.r],
[astadr.szem.r],
[astprm.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status
value in general register R0. Successful completion is indicated
by a status code with the low-order bit set. The low-order three
bits, together, represent the severity of the error. Returned by
function value.

status_blk A longword status vector allocated by the OpenVMS transaction
program and filled in by the APPC/LU6.2 Programming Interface
to provide the user with complete status information. Passed by
descriptor.

local_lu Reserved for future use. This parameter is ignored. Passed by
descriptor.

remote_lu A remote LU name to be deleted from the list of valid remote LU
names. Passed by descriptor.

Procedure Calling Format: Control Operator Verbs 5–15



mode_name Reserved for future use. This parameter is ignored. Passed by
descriptor.

tp_name A valid TPN to be deleted for this LU. Passed by descriptor.

efn An event flag to set when notification becomes due. If this
parameter is omitted, event flag 0 is set. Passed by reference.

astadr The address of an AST routine to call when notification becomes
due. Passed by reference.

astprm A parameter to pass to the AST routine when notification occurs.
This AST routine is called with this parameter only. Passed by
reference.

5.5.1 Status Codes
The SNALU62$DELETE procedure returns the following successful status
code:

• SNALU62$_OK

The SNALU62$DELETE procedure returns the following error codes:

• SNALU62$_PARERR

• SNALU62$_UNSUC

• SNALU62$_STAERR

5–16 Procedure Calling Format: Control Operator Verbs



6
Compiling and Linking a Transaction

Program

6.1 Creating and Compiling Your Program
Using the editor of your choice, create a source file containing the
language source statements from one of the supported languages (Appendix B
contains a programming example for most of the supported languages.)

Invoke the language required compiler to process the source statements. For
example, enter the following command to compile a VAX BASIC program.

$ BASIC USERPROG2 Return

Verify that there are no syntax errors or violations of the language rules. The
compiler will search any libraries you have specified, as well as any
default libraries, to locate INCLUDE files referenced in the source program.
Your program should contain an INCLUDE statement with the following
reference:

INCLUDE ’SYS$LIBRARY:SNALU62DF.*’

where "*" is replaced with the appropriate extension for the language.
See the programming example for the language being used.

If you are using MACRO language, assemble your MACRO program with the
following DCL command:

$ MACRO/OBJECT=MYDIR:MYPROG SYS$LIBRARY:SNALU62DF+MYDIR:MYPROGReturn

where MYDIR and MYPROG are your directory and program.

If there are no errors, the compiler creates an object module. If errors are
reported, determine the line(s) containing the errors, edit the program to
correct the errors, and then recompile the program.

Compiling and Linking a Transaction Program 6–1



6.2 Linking Your Program to the Shareable Program Image
After you have compiled the source statements, you are ready to link them with
the shareable image of the APPC/LU6.2 Programming Interface procedures.
Your image shares these procedures with other images (on the condition that
the shareable image is installed with the /SHAREABLE attribute with the
VMSINSTAL utility). For additional information, see the OpenVMS Install
Utility Manual.

To use the shareable interface procedures, you must specify a linker
options file. This links your executable image with the shareable image,
SYS$SHARE:SNALU62SH.EXE. For example:

$ LINK/MAP USERPROG2, SYS$INPUT:/OPTION Return

SYS$SHARE:SNALU62SH/SHARE Return

Ctrl/Z

$

The following example links your executable image with the debugger and the
shareable image SYS$SHARE:SNALU62SH.EXE. You must specify a linker
options file.

$ LINK/MAP/DEBUG USERPROG2, SYS$INPUT:/OPTION Return

SYS$SHARE:SNALU62SH/SHARE Return

Ctrl/Z

$

Once you have compiled and linked your program, you are ready to run it. For
a detailed description of the LINK command and any additional options, see
the OpenVMS Linker Utility Manual. Also, refer to your language manual for
additional information.

6–2 Compiling and Linking a Transaction Program



A
Summary of Parameter Notation

Table A-1 shows the parameter notation for the DIGITAL SNA APPC/LU6.2
Programming Interface for OpenVMS. For further information about notations
and their meanings see Introduction to OpenVMS System Routines.

Position the parameter as follows:

<name>.<access type><data type>.<passing mech> <parameter form>

where

1. <name> is a mnemonic for the parameter.

2. <access type> is a single letter denoting the type of access that the
procedure will (or can) make to the argument.

3. <data type> is a letter denoting the primary data type with trailing
qualifier letters to further identify the data type. The routine must
reference only the size specified to avoid improper access violations.

4. <passing mechanism> is a single letter indicating the parameter passing
mechanism that the called routine expects.

5. <parameter form> is a letter denoting the form of the argument.

Table A–1 Parameter Notation

Name Meaning

<access type>

c Call after stack unwind

f Function call (before return)

j JMP after unwind

m Modify access

(continued on next page)

Summary of Parameter Notation A–1



Table A–1 (Cont.) Parameter Notation

Name Meaning

<access type>

r Read-only access

s Call without stack unwinding

w Write-only access

<data type>

a Virtual address

ad Absolute data and time

arb 8-bit relative virtual address

arl 32-bit relative virtual address

arw 16-bit relative virtual address

b Byte integer (signed)

blv Bound label value

bpv Bound procedure value

bu Byte logical (unsigned)

c Single character

cit COBOL intermediate temporary

cp Character pointer

d D_floating

dc D_floating complex

dsc Descriptor (used by descriptors)

f F_floating

fc F_floating complex

g G_floating

gc G_floating complex

(continued on next page)

A–2 Summary of Parameter Notation



Table A–1 (Cont.) Parameter Notation

Name Meaning

<data type>

h H_floating

hc H_floating complex

l Longword integer (signed)

lc Longword return status

lu Longword logical (unsigned)

nl Numeric string, left separate sign

nlo Numeric string, left overpunched sign

nr Numeric string, right separate sign

nro Numeric string, right overpunched sign

nu Numeric string, unsigned

nz Numeric string, zoned sign

o Octaword integer (signed)

ou Octaword logical (unsigned)

p Packed decimal string

q Quadword integer (signed)

qu Quadword logical (unsigned)

r Record

t Character-coded text string

u Smallest addressable storage unit

v Aligned bit string

vt Varying character-coded test string

vu Unaligned bit string

w Word integer (signed)

wu Word logical (unsigned)

(continued on next page)

Summary of Parameter Notation A–3



Table A–1 (Cont.) Parameter Notation

Name Meaning

<data type>

x Data type in descriptor

z Unspecified

zem Procedure entry mask

zi Sequence of instruction

<passing mechanism>

d By descriptor

r By reference

v By immediate value

<parameter form>

_ Scalar

a Array reference or descriptor

d Dynamic string descriptor

nca Noncontiguous array descriptor

p Procedure reference or descriptor

s Fixed-length string descriptor

sd Scalar decimal descriptor

uba Unaligned bit string array descriptor

ubs Unaligned bit string descriptor

vs Varying string descriptor

vsa Varying string array descriptor

x Class type in descriptor

x1 Fixed-length or dynamic string descriptor

A–4 Summary of Parameter Notation



B
Programming Examples

The following programming examples show you how to make calls to the
DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS from your
OpenVMS transaction programs. These examples include comments to help
solve problems you may have with the different languages.

These programs have been proven in field test situations to be valid for
use with DIGITAL SNA products. They may not, however, be valid at all
installations; use the examples as a guide for developing your transaction
programs. The examples use the following languages:

• FORTRAN

• Pascal

• VAX BASIC

• MACRO

• COBOL

• VAX PL/I

• C

Comments follow each programming example.

Allocate event flags before use. Use the LIB$GET_EF (or LIB$RESERVE_EF)
and LIB$FREE_EF Run Time Library routines to handle allocation and
deallocation.

With the limited number of event flags, it is possible to use event flags that
have not been specifically allocated and resulting in multiple asynchronous
operations sharing these limited resources. Problems can occur when one
asynchronous operation sets a shared event flag which can indicate to other
users of the event flag that their operation has completed.

Programming Examples B–1



If there are not enough event flags for the number of conversations, use the
$SYNC routine and specify the event flag and cleared (unique) status_vector
(as iosb). Use a different event flag/status_vector combination for each
conversion. $SYNC does not complete until both the event flag is set and the
status_vector is filled in. See the OpenVMS System Services Reference Manual
and the OpenVMS Run-Time Library Routines Reference Manual for further
information.

B.1 FORTRAN Programming Example
This FORTRAN program connects to AIBR, a sample transaction running
under CICS. After establishing a connect with AIBR, the OpenVMS transaction
program prompts you for the record number you want to send. This record
number is converted to EBCDIC and sent to AIBR. The program receives data
from the AIBR transaction, converts the data to ASCII format, and displays at
your terminal.

PROGRAM LU62_EXAMPLE

C ********************************************************************
C * *
C * This program allocates a session with the AIBR transaction *
C * running under CICS 1.7. It prompts the user for a record *
C * number, requests the record and displays it. A deallocate *
C * message is sent and the session is terminated. Proper operation *
C * can be verified with SNATRACE. This program is intended to *
C * represent the minimal framework for an SNA Gateway Application *
C * Interface program. *
C * *
C ********************************************************************

IMPLICIT NONE

C
C Declaration
C

INCLUDE ’SYS$LIBRARY:SNALU62DF’
INTEGER*4 LIB$GET_EF

INTEGER*4 LIB$GET_INPUT, LIB$TRA_ASC_EBC, LIB$TRA_EBC_ASC
INTEGER*4 LIB$PUT_OUTPUT
INTEGER*4 SYS$CLREF, SYS$WAITFR, SYS$PUTMSG

B–2 Programming Examples



INTEGER*4 RETURN_CODE,RESOURCE_ID,I_STAT, EVENT_FLAG
INTEGER*4 RECORD_NUMBER_LENGTH, DSC$K_DTYPE_T, DSC$K_CLASS_D
INTEGER*4 RTS_REC,RECV_DATA_LENGTH,WHAT_RECEIVED
INTEGER*4 STATUS_VECTOR(SNALU62$K_MIN_STATUS_VECTOR)
INTEGER*2 INPUT_SIZE
CHARACTER*6 NODE_NAME/’ALACK’/
CHARACTER*8 ACC_NAME/’CICSLU62’/
CHARACTER*6 LUNAME/’DUMMY’/,RECORD_NUMBER
CHARACTER*4 ASCII_TPN_NAME/’AIBR’/,TPN_NAME

PARAMETER (RECORD_NUMBER_LENGTH = 6,
1 DSC$K_DTYPE_T = 14,
2 DSC$K_CLASS_D = 2)

STRUCTURE /DSC$DESCRIPTOR/
INTEGER*2 DSC$W_LENGTH
BYTE DSC$B_DTYPE
BYTE DSC$B_CLASS
INTEGER*4 DSC$A_POINTER

END STRUCTURE !DSC$DESCRIPTOR
RECORD /DSC$DESCRIPTOR/ RECV_DATA
RECV_DATA.DSC$B_DTYPE = DSC$K_DTYPE_T
RECV_DATA.DSC$B_CLASS = DSC$K_CLASS_D
RECV_DATA.DSC$W_LENGTH = 0
RECV_DATA.DSC$A_POINTER = 0

C
C Allocate event flag
C

I_STAT = LIB$GET_EF(%REF(EVENT_FLAG))
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

C
C Define LU name
C

RETURN_CODE = SNALU62$DEFINE_REMOTE(%DESCR(STATUS_VECTOR),
1 LUNAME,LUNAME,
2 ,,,,,,
3 NODE_NAME,ACC_NAME)

IF (.NOT.RETURN_CODE) THEN
I_STAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’DEFINE_REMOTE verb failed’

END IF

C
C Translate transaction program name to EBCDIC and allocate
C conversation
C

I_STAT = LIB$TRA_ASC_EBC(ASCII_TPN_NAME, TPN_NAME)
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

I_STAT = SYS$CLREF(%VAL(EVENT_FLAG))
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

Programming Examples B–3



RETURN_CODE = SNALU62$ALLOCATE(RESOURCE_ID,
1 %DESCR(STATUS_VECTOR),%REF(SNALU62$K_OTHER),
2 LUNAME,,%DESCR(TPN_NAME),
3 %REF(SNALU62$K_MAPPED_CONVERSATION),
4 %REF(SNALU62$K_WHEN_SESSION_ALLOC),
5 %REF(SNALU62$K_SL_CONFIRM),
6 ,,,,,EVENT_FLAG)

IF (.NOT.RETURN_CODE) THEN
I_STAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’ALLOCATE verb failed’

END IF

I_STAT = SYS$WAITFR(%VAL(EVENT_FLAG))
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

C
C Ask for record number, translate to EBCDIC and send data
C

I_STAT = LIB$GET_INPUT(RECORD_NUMBER,
1 ’Enter record number: ’, INPUT_SIZE)

IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

IF (INPUT_SIZE .EQ. 0) GOTO 999
I_STAT = LIB$TRA_ASC_EBC(RECORD_NUMBER, RECORD_NUMBER)
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

RETURN_CODE = SNALU62$SEND_DATA(RESOURCE_ID,
1 %DESCR(STATUS_VECTOR), RECORD_NUMBER,
2 %REF(RECORD_NUMBER_LENGTH),
3 RTS_REC)

IF (.NOT.RETURN_CODE) THEN
I_STAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’SEND_DATA verb failed’

END IF

C
C Receive record from CICS/AIBR
C

RECV_DATA_LENGTH = 0
RETURN_CODE = SNALU62$RECEIVE_AND_WAIT(RESOURCE_ID,

1 %DESCR(STATUS_VECTOR),0,RECV_DATA_LENGTH,RTS_REC,
2 RECV_DATA,WHAT_RECEIVED)

IF (.NOT.RETURN_CODE) THEN
I_STAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_AND_WAIT verb failed’

END IF

C
C Convert record to ASCII and display on user terminal
C

I_STAT = LIB$TRA_EBC_ASC(RECV_DATA, RECV_DATA)
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

B–4 Programming Examples



I_STAT = LIB$PUT_OUTPUT(RECV_DATA)
IF (.NOT.I_STAT) CALL LIB$STOP(%VAL(I_STAT))

C
C Receive DEALLOCATE
C

RECV_DATA_LENGTH = 0
RETURN_CODE = SNALU62$RECEIVE_AND_WAIT(RESOURCE_ID,

1 %DESCR(STATUS_VECTOR),0,RECV_DATA_LENGTH,RTS_REC,
2 RECV_DATA,WHAT_RECEIVED)

IF (RETURN_CODE .NE. SNALU62$_DEALNOR) THEN
I_STAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_AND_WAIT verb failed’

END IF

C
C Deallocate conversation
C

RETURN_CODE = SNALU62$DEALLOCATE(RESOURCE_ID,
1 %DESCR(STATUS_VECTOR), %REF(SNALU62$K_LOCAL))

C
C Delete LU name
C

RETURN_CODE = SNALU62$DELETE(%DESCR(STATUS_VECTOR),,
1 LUNAME)

999 I_STAT = SYS$PUTMSG(STATUS_VECTOR)

END

COMMENTS

1. Include the LU6.2 library.

2. A real transaction program would check the what_received parameter
and take appropriate action. In this example, a fixed-sequence message
exchange is assumed.

3. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

4. The AIBR transaction deallocates the conversation after the record
has been transmitted. You must issue the SNALU62$RECEIVE_AND_
WAIT procedure to receive notification and set the conversation state.
Conversations can then be locally deallocated and reused.

5. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

Programming Examples B–5



B.2 Pascal Programming Example
This Pascal program connects to AIBR, a sample transaction running under
CICS. After establishing a connect with AIBR, the OpenVMS transaction
program prompts you for the record number you want to send. This record
number is converted to EBCDIC and sent to AIBR. The program receives data
from the AIBR transaction, converts the data to ASCII format, and displays at
your terminal.

[INHERIT (’SYS$LIBRARY:SNALU62DF.PEN’, ’SYS$LIBRARY:STARLET.PEN’)]
PROGRAM LU62_EXAMPLE (INPUT,OUTPUT);

(********************************************************************)
(* *)
(* This program allocates a session with the AIBR transaction *)
(* running under CICS 1.7. It prompts the user for a record *)
(* number, requests the record and displays it. A deallocate *)
(* message is sent and the session is terminated. Proper operation *)
(* can be verified with SNATRACE. This program is intended to *)
(* represent the minimal framework for an SNA Gateway Application *)
(* Interface program. *)
(* *)
(********************************************************************)

[HIDDEN] TYPE (**** Pre-declared data types ****)
$BYTE = [BYTE] -128..127;
$WORD = [WORD] -32768..32767;
$UBYTE = [BYTE] 0..255;
$UWORD = [WORD] 0..65535;

[ASYNCHRONOUS] FUNCTION LIB$GET_EF(
VAR EVENT_FLAG: [VOLATILE] UNSIGNED)

: INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$GET_INPUT
(VAR IN_BUFFER : [CLASS_S] PACKED ARRAY

[$l1..$u1 : INTEGER] OF CHAR;
PROMPT : [CLASS_S] PACKED ARRAY

[$l2..$u2 : INTEGER] OF CHAR;
VAR LENGTH : $WORD)

: INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$STOP(
STATUS : [IMMEDIATE,UNSAFE] UNSIGNED)

: INTEGER; EXTERNAL;

B–6 Programming Examples



[EXTERNAL] FUNCTION LIB$TRA_ASC_EBC
(VAR IN_BUFFER : [CLASS_S] PACKED ARRAY

[$l1..$u1:INTEGER] OF CHAR;
VAR OUT_BUFFER : [CLASS_S] PACKED ARRAY

[$l2..$u2:INTEGER] OF CHAR)
: INTEGER; EXTERNAL;

[EXTERNAL] FUNCTION LIB$TRA_EBC_ASC
(VAR IN_BUFFER : [CLASS_S] PACKED ARRAY

[$l1..$u1:INTEGER] OF CHAR;
VAR OUT_BUFFER : [CLASS_S] PACKED ARRAY

[$l2..$u2:INTEGER] OF CHAR)
: INTEGER; EXTERNAL;

(********************************************************************)
(* Declaration *)
(********************************************************************)

LABEL 999;

CONST
BUFFER_LENGTH = 2000;
RECORD_NUMBER_LENGTH = 6;

VAR
I_STATUS : UNSIGNED;
SNA_STATUS : UNSIGNED;
LIB_STATUS : UNSIGNED;
STATUS_VECTOR : PACKED ARRAY

[1..SNALU62$K_MIN_STATUS_VECTOR]
OF CHAR;

EVENT_FLAG : UNSIGNED;
EVENT_CODE : INTEGER;
RESOURCE_ID : INTEGER;
RTS_REC : INTEGER;
RECV_DATA_LENGTH : $WORD;
WHAT_RECEIVED : INTEGER;
INPUT_SIZE : $WORD;
NODE_NAME : PACKED ARRAY [1..8] OF CHAR;
ACCESS_NAME : PACKED ARRAY [1..8] OF CHAR;
RECV_DATA : PACKED ARRAY [1..BUFFER_LENGTH] OF CHAR;
LUNAME : PACKED ARRAY [1..5] OF CHAR;
RECORD_NUMBER : PACKED ARRAY [1..RECORD_NUMBER_LENGTH] OF CHAR;
ASCII_TPN_NAME : PACKED ARRAY [1..4] OF CHAR;
TPN_NAME : PACKED ARRAY [1..4] OF CHAR;
RN_PROMPT : PACKED ARRAY [1..22] OF CHAR;
I : INTEGER;

Programming Examples B–7



BEGIN
ASCII_TPN_NAME := ’AIBR’;
LUNAME := ’DUMMY’;
NODE_NAME := ’ALACK’;
ACCESS_NAME := ’CICSLU62’;
RN_PROMPT := ’Enter record number: ’;
RTS_REC := 0;
EVENT_FLAG := 0;

(*******************************************************************)
(* DEFINE LU NAME *)
(*******************************************************************)

SNA_STATUS := SNALU62$DEFINE_REMOTE(STATUS_VECTOR,
LUNAME,
LUNAME,,,,,,,
NODE_NAME,
ACCESS_NAME);

IF (NOT SNA_STATUS :: BOOLEAN)
THEN

BEGIN
WRITELN (’DEFINE failed’);
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999
END;

(********************************************************************)
(* Translate transaction program name to EBCDIC, allocate event *)
(* flag, and allocate conversation *)
(********************************************************************)

LIB_STATUS := LIB$TRA_ASC_EBC (ASCII_TPN_NAME, TPN_NAME);

LIB_STATUS := LIB$GET_EF( EVENT_FLAG );
IF (NOT LIB_STATUS :: BOOLEAN)
THEN

LIB_STATUS := LIB$STOP(LIB_STATUS);

I_STATUS := $CLREF( EVENT_FLAG );

SNA_STATUS := SNALU62$ALLOCATE(RESOURCE_ID,
STATUS_VECTOR,
%REF(SNALU62$K_OTHER),
LUNAME,,
TPN_NAME,
%REF(SNALU62$K_MAPPED_CONVERSATION),
%REF(SNALU62$K_WHEN_SESSION_ALLOC),
%REF(SNALU62$K_SL_CONFIRM),,,,,,
%REF(EVENT_FLAG));

I_STATUS := $WAITFR( EVENT_FLAG );

B–8 Programming Examples



IF (NOT SNA_STATUS :: BOOLEAN)
THEN

BEGIN
WRITELN (’ALLOCATE Failed’);
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999
END;

(********************************************************************)
(* Ask for record number, translate to EBCDIC and send data *)
(********************************************************************)

LIB_STATUS := LIB$GET_INPUT(RECORD_NUMBER,
RN_PROMPT,
INPUT_SIZE);

IF (NOT LIB_STATUS :: BOOLEAN)
THEN

LIB_STATUS := LIB$STOP(LIB_STATUS);

IF (INPUT_SIZE = 0) THEN GOTO 999;

LIB_STATUS := LIB$TRA_ASC_EBC (RECORD_NUMBER, RECORD_NUMBER);

IF (NOT LIB_STATUS :: BOOLEAN)
THEN

LIB_STATUS := LIB$STOP(LIB_STATUS);

SNA_STATUS := SNALU62$SEND_DATA(RESOURCE_ID,
STATUS_VECTOR,
RECORD_NUMBER,
%REF(RECORD_NUMBER_LENGTH),,,
RTS_REC);

IF (NOT SNA_STATUS :: BOOLEAN)
THEN

BEGIN
WRITELN (’SEND_DATA failed’);
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999
END;

(********************************************************************)
(* Receive record form CICS/AIBR *)
(********************************************************************)

RECV_DATA_LENGTH := BUFFER_LENGTH;
SNA_STATUS := SNALU62$RECEIVE_AND_WAIT(RESOURCE_ID,

STATUS_VECTOR,
0,
RECV_DATA_LENGTH,
RTS_REC,
RECV_DATA,
WHAT_RECEIVED);

Programming Examples B–9



IF (NOT SNA_STATUS :: BOOLEAN)
THEN

BEGIN
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999
END;

(********************************************************************)
(* Convert record to ASCII and display on user terminal *)
(********************************************************************)

LIB_STATUS := LIB$TRA_EBC_ASC(RECV_DATA,
RECV_DATA);

FOR I := 1 TO RECV_DATA_LENGTH DO
IF ROUND(I/80) = I/80
THEN

WRITELN(RECV_DATA[I])
ELSE

WRITE(RECV_DATA[I]);
WRITELN;

(********************************************************************)
(* Receive DEALLOCATE *)
(********************************************************************)

RECV_DATA_LENGTH := BUFFER_LENGTH;
SNA_STATUS := SNALU62$RECEIVE_AND_WAIT(RESOURCE_ID,

STATUS_VECTOR,
0,
RECV_DATA_LENGTH,
RTS_REC,
RECV_DATA,
WHAT_RECEIVED);

IF (SNA_STATUS <> SNALU62$_DEALNOR)
THEN

BEGIN
WRITELN (’Failed to receive deallocation’);
WRITELN (’RECEIVE failed’);
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999

END;

(********************************************************************)
(* Deallocate conversation *)
(********************************************************************)

SNA_STATUS := SNALU62$DEALLOCATE(RESOURCE_ID,
STATUS_VECTOR,
%REF(SNALU62$K_LOCAL));

B–10 Programming Examples



IF (NOT SNA_STATUS :: BOOLEAN)
THEN

BEGIN
WRITELN (’DEALLOCATE failed’);
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999

END;

(********************************************************************)
(* Delete LU name *)
(********************************************************************)

SNA_STATUS := SNALU62$DELETE(STATUS_VECTOR,,
LUNAME);

999: LIB_STATUS := $PUTMSG(STATUS_VECTOR);

END.

COMMENTS

1. Specify the LU6.2 environment file.

2. If you are going to send more data, the program should check the rts_rec
parameter between calls.

3. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

4. The AIBR transaction deallocates the conversation after the record
has been transmitted. You must issue the SNALU62$RECEIVE_AND_
WAIT procedure to receive notification and set the conversation state.
Conversations can then be locally deallocated and reused.

5. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

Programming Examples B–11



B.3 Pascal Symbol and Structure Definitions
The APPC/LU6.2 Programming Interface supplies symbol and structure
definitions used by the application program. For Pascal, these definitions
are provided in a source code file (SNALU62DF.PAS), and an environment
file (SNALU62DF.PEN). The environment file was generated with PASCAL
V4.0-02 on OpenVMS VAX. If you do not have this version of Pascal, you may
need to generate a new environment file by editing the SNALU62DF.PAS file
located in the SYS$LIBRARY area and removing the comment delimiters: "(*"
and "*)" surrounding the two statements MODULE SNALU62DF and .END.

Exit the file and enter the following command:

$ PASCAL/NOOBJECT/ENVIRONMENT=SNALU62DF.PEN SYS$LIBRARY:SNALU62DF.PAS

Please remember to go back and delete the edited file of SNALU62DF.PAS
which has the comment delimiters removed.

B–12 Programming Examples



B.4 BASIC Programming Example
This BASIC program connects to AIBR, a sample transaction running under
CICS. After establishing a connect with AIBR, the OpenVMS transaction
program prompts you for the record number you want to send. This record
number is converted to EBCDIC and sent to AIBR. The program receives data
from the AIBR transaction, converts the data to ASCII format, and displays at
your terminal.

1 %TITLE "LU62 BASIC PROGRAM EXAMPLE"

!********************************************************************
!* *
!* This program allocates a session with the AIBR transaction *
!* running under CICS 1.7. It prompts the user for a record *
!* number, requests the record and displays it. A deallocate *
!* message is sent and the session is terminated. Proper operation *
!* can be verified with SNATRACE. This program is intended to *
!* represent the minimal framework for an SNA Gateway Application *
!* Interface program. *
!* *
!********************************************************************
7 OPTION SIZE = INTEGER LONG ! all integer vars are 4 bytes

! long

%INCLUDE "SYS$LIBRARY:SNALU62DF"

9 DECLARE &
LONG CONSTANT &

LU62$K_OTHER = X’00000002’L, &
LU62$K_MAPPED_CONVERSATION = X’00000004’L, &
LU62$K_WHEN_SESSION_ALLOCATED = X’00000005’L,&
LU62$K_SL_CONFIRM = X’00000009’L, &
LU62$K_LOCAL = X’00000020’L, &
LU62$K_ABEND_PROG = X’0000001D’L, &
LU62$K_CONFIRM_DEALLOCATE = X’0000002E’L

15 EXTERNAL INTEGER FUNCTION LIB$TRA_ASC_EBC,SYS$PUTMSG, &
LIB$TRA_EBC_ASC,LIB$GET_EF, &
SYS$CLREF,SYS$WAITFR

Programming Examples B–13



30 !
! Declaration
!
DECLARE &

INTEGER &
STATUS_VECTOR(64),RETURN_CODE,ISTAT, &
RESOURCE_ID,RTS_REC,RECV_DATA_LENGTH, &
WHAT_RECEIVED,RECV_BUFFER_LENGTH,EVENT_FLAG, &

STRING &
TPN_NAME,GWY_NAME,RECV_DATA,RECORD_NUMBER, &
ACCESS_NAME,ASCII_TPN_NAME,LU_NAME

50 READ GWY_NAME,ACCESS_NAME,ASCII_TPN_NAME,LU_NAME, &
RECV_BUFFER_LENGTH

DATA ALACK,CICSLU62,AIBR,DUMMY,2000

90 !
! Define LU name
!
RETURN_CODE = SNALU62$DEFINE_REMOTE (STATUS_VECTOR() BY DESC,&

LU_NAME BY DESC,LU_NAME BY DESC,0,0,0,0,0,0, &
GWY_NAME BY DESC,ACCESS_NAME BY DESC)

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "DEFINE verb failed"
GO TO 999

110 !
! Translate transaction program name to EBCDIC, allocate an

! event flag, and allocate the conversation
!
ISTAT = LIB$TRA_ASC_EBC (ASCII_TPN_NAME BY DESC, &

TPN_NAME BY DESC)

ISTAT = LIB$GET_EF (EVENT_FLAG BY REF)

ISTAT = SYS$CLREF(EVENT_FLAG BY VALUE)

RETURN_CODE = SNALU62$ALLOCATE (RESOURCE_ID BY REF, &
STATUS_VECTOR() BY DESC, LU62$K_OTHER BY REF, &
LU_NAME BY DESC,0,TPN_NAME BY DESC, &
LU62$K_MAPPED_CONVERSATION BY REF, &
LU62$K_WHEN_SESSION_ALLOCATED BY REF, &
LU62$K_SL_CONFIRM BY REF,0,0,0,0,0, &
EVENT_FLAG BY REF)

ISTAT = SYS$WAITFR(EVENT_FLAG BY VALUE)

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "ALLOCATE verb failed"
GO TO 999

B–14 Programming Examples



130 !
! Ask for record number, translate to EBCDIC and send data
!
INPUT "Enter record number: ";RECORD_NUMBER

ISTAT = LIB$TRA_ASC_EBC (RECORD_NUMBER BY DESC, &
RECORD_NUMBER BY DESC)

150 RETURN_CODE = SNALU62$SEND_DATA (RESOURCE_ID BY REF, &
STATUS_VECTOR() BY DESC, RECORD_NUMBER BY DESC, &
0, RTS_REC BY REF)

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "SEND_DATA verb failed"
GO TO 999

170 !
! Receive record from CICS/AIBR
!
RECV_DATA_LENGTH = RECV_BUFFER_LENGTH
RETURN_CODE = SNALU62$RECEIVE_AND_WAIT (RESOURCE_ID BY REF, &

STATUS_VECTOR() BY DESC,0,RECV_DATA_LENGTH BY REF, &
RTS_REC BY REF,RECV_DATA BY DESC,WHAT_RECEIVED BY REF)

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "RECEIVE_AND_WAIT verb failed"
GO TO 999

190 !
! Convert record to ASCII and display on user terminal
!
ISTAT = LIB$TRA_EBC_ASC (RECV_DATA BY DESC,RECV_DATA BY DESC)
PRINT RECV_DATA

210 !
! Receive DEALLOCATE
!
RECV_DATA_LENGTH = RECV_BUFFER_LENGTH
RETURN_CODE = SNALU62$RECEIVE_AND_WAIT (RESOURCE_ID BY REF, &

STATUS_VECTOR() BY DESC,0,RECV_DATA_LENGTH BY REF, &
RTS_REC BY REF,RECV_DATA BY DESC,WHAT_RECEIVED BY REF)

IF (RETURN_CODE <> SNALU62$_DEALNOR)
THEN

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "RECEIVE verb failed"
GO TO 999

END IF
END IF

Programming Examples B–15



230 !
! Deallocate conversation
!
RETURN_CODE = SNALU62$DEALLOCATE (RESOURCE_ID BY REF, &

STATUS_VECTOR() BY DESC,LU62$K_LOCAL BY REF)

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "DEALLOCATE verb failed"
GO TO 999

END IF

!
! Delete LU name
!
RETURN_CODE = SNALU62$DELETE (STATUS_VECTOR() BY DESC, &

0,LU_NAME BY DESC)

IF ((RETURN_CODE AND 1%) <> 1) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)
PRINT "DELETE verb failed"

END IF

999 ISTAT = SYS$PUTMSG(STATUS_VECTOR() BY REF)

END

COMMENTS

1. Include LU6.2 error codes.

2. You must define these symbols. Appendix F lists the symbols.

3. If you are going to send more data, the program should check the rts_rec
parameter between calls.

4. A real transaction program would check the what_received parameter and
take appropriate action (see Sections 2.2.1 and 4.11). In this example, a
fixed-sequence message exchange is assumed.

5. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

6. The AIBR transaction deallocates the conversation after the record
has been transmitted. You must issue the SNALU62$RECEIVE_AND_
WAIT procedure to receive notification and set the conversation state.
Conversations can then be locally deallocated and reused.

7. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

B–16 Programming Examples



B.5 MACRO Programming Example
This MACRO program connects to AIBR, a sample transaction running under
CICS. After establishing a connect with AIBR, the OpenVMS transaction
program prompts you for the record number you want to send. This record
number is converted to EBCDIC and sent to AIBR. The program receives data
from the AIBR transaction, converts the data to ASCII format, and displays at
your terminal.

.TITLE TEST_LU62
;********************************************************************
;* *
;* This program allocates a session with the AIBR transaction *
;* running under CICS 1.7. It prompts the user for a record *
;* number, requests the record and displays it. A deallocate *
;* message is sent and the session is terminated. Proper operation *
;* can be verified with SNATRACE. This program is intended to *
;* represent the minimal framework for an SNA Gateway Application *
;* Interface program. *
;* *
;********************************************************************

$DSCDEF
SNALU62_DEFS

;
; Declaration
;

.PSECT RWDATA,WRT,NOEXE,QUAD

Programming Examples B–17



PROMPT : .ASCID /Enter record number: /
STATUS : .BLKL 10
RESC_ID: .LONG 0 ;session-id
STS_VEC: .BLKB SNALU62$K_MIN_STATUS_VECTOR ;status-vector
STS_DSC: .LONG SNALU62$K_MIN_STATUS_VECTOR

.ADDRESS STS_VEC
RTS_REC: .LONG 0 ;request to send
REC_NUM: .BLKB 6 ;record-number
REC_DSC: .WORD 6

.BYTE DSC$K_DTYPE_T

.BYTE DSC$K_CLASS_S

.ADDRESS REC_NUM
DATA_DSC:.WORD 0 ;data-buffer-dsc

.BYTE DSC$K_DTYPE_T

.BYTE DSC$K_CLASS_D

.ADDRESS 0
DATA_LEN:.LONG 0 ;data-length
ND_NAME: .ASCID /ALACK/ ;node-name
AC_NAME: .ASCID /CICSLU62/ ;access-name
LUNAME : .ASCID /TEST1/ ;luname
TPN_NAM: .ASCID /AIBR/ ;transaction

;program name
WHAT_RC: .LONG 0 ;message type

;received

EVENT_FL:.LONG 0 ;event flag

.PSECT CODE,NOWRT,EXE,LONG

.ENTRY TEST_LU62, ^M<> ;main program
;entry point

;
; Define LU name
;

CLRL R0
PUSHAQ AC_NAME ;access name
PUSHAQ ND_NAME ;gateway node name
PUSHL #0 ;security acceptance
PUSHL #0 ;lu-lu password
PUSHL #0 ;cnos support
PUSHL #0 ;parallel session

;support
PUSHL #0 ;initiate type
PUSHL #0 ;uninterpreted luname
PUSHAQ LUNAME ;local luname
PUSHAQ LUNAME ;qualified luname
PUSHAQ STS_DSC ;status vector

CALLS #11,G^SNALU62$DEFINE_REMOTE ;define a remote LU
BLBS R0, 10$
BRW EXITS ;exit if error

B–18 Programming Examples



;
; Translate transaction program name to EBCDIC, allocate an event
; flag, and allocate a conversation
;
10$: PUSHAQ TPN_NAM ;transaction

PUSHAQ TPN_NAM ;program name

CALLS #2,G^LIB$TRA_ASC_EBC ;translate data
;to ebcdic

PUSHAL EVENT_FL ;efn

CALLS #1,G^LIB$GET_EF ;allocate an event flag

$CLREF_S - ;clear event flag
#5

PUSHAL EVENT_FL ;efn
PUSHL #0 ;pip context
PUSHL #0 ;profile
PUSHL #0 ;password
PUSHL #0 ;user id
PUSHL #0 ;security
PUSHAL #SNALU62$K_SL_CONFIRM ;sync-level
PUSHAL #SNALU62$K_WHEN_SESSION_ALLOC ;return-control
PUSHAL #SNALU62$K_MAPPED_CONVERSATION ;conversation type
PUSHAQ TPN_NAM ;transaction

;program name
PUSHL #0 ;mode name
PUSHAQ LUNAME ;lu-name
PUSHAL #SNALU62$K_OTHER
PUSHAQ STS_DSC ;status-vector
PUSHAL RESC_ID ;resource id

CALLS #15,G^SNALU62$ALLOCATE ;allocate conversation

$WAITFR_S - ;wait for event flag
#5

BLBS R0, 20$
BRW EXITS ;exit if error

;
; Ask for record number, translate to EBCDIC and send data
;
20$: PUSHAL DATA_LEN ;data-length

PUSHAQ PROMPT ;prompt string
PUSHAQ REC_DSC ;record-number

CALLS #3,G^LIB$GET_INPUT ;get record number

PUSHAQ REC_DSC ;translate
PUSHAQ REC_DSC ;record-number

CALLS #2,G^LIB$TRA_ASC_EBC ; to ebcdic

Programming Examples B–19



PUSHAL RTS_REC ;request-to-send
;indicator

PUSHAL DATA_LEN ;data-length
PUSHAQ REC_DSC ;record-number
PUSHAQ STS_DSC ;status-vector
PUSHAL RESC_ID ;resource-id

CALLS #5,G^SNALU62$SEND_DATA ;send data

BLBS R0, 30$
BRW EXITS ;exit if error

;
; Receive record from CICS/AIBR
;
30$: MOVL #^D<0>,DATA_LEN

PUSHAL WHAT_RC ;message type
;received

PUSHAQ DATA_DSC ;data-buffer
PUSHAL RTS_REC ;request-to-send

;indicator
PUSHAL DATA_LEN ;data-length
PUSHL #0 ;fill
PUSHAQ STS_DSC ;status-vector
PUSHAL RESC_ID ;resource-id

CALLS #7,G^SNALU62$RECEIVE_AND_WAIT ;receive data

BLBS R0, 40$
BRW EXITS ;exit if error

;
; Convert record to ASCII and display on user terminal
;
40$: PUSHAQ DATA_DSC ;received

PUSHAQ DATA_DSC ;data-buffer

CALLS #2,G^LIB$TRA_EBC_ASC ;translate data
;to ascii

PUSHAQ DATA_DSC
CALLS #1,G^LIB$PUT_OUTPUT ;display data

;
; Receive DEALLOCATE
;
50$: MOVL #^D<0>,DATA_LEN

PUSHAL WHAT_RC ;message type received
PUSHAQ DATA_DSC ;data-buffer
PUSHAL RTS_REC ;request-to-send

;indicator
PUSHAL DATA_LEN ;data-length
PUSHL #0 ;fill
PUSHAQ STS_DSC ;status-vector
PUSHAL RESC_ID ;resource-id

B–20 Programming Examples



CALLS #7,G^SNALU62$RECEIVE_AND_WAIT ;receive deallocation

;
; Deallocate conversation
;
60$: PUSHAL #SNALU62$K_LOCAL ;deallocation type

PUSHAQ STS_DSC ;status-vector
PUSHAL RESC_ID ;resource-id

CALLS #3,G^SNALU62$DEALLOCATE ;deallocate

;
; Delete LU name
;
70$: PUSHAQ LUNAME ;qualified luname

PUSHL #0 ;local luname
PUSHAQ STS_DSC ;status-vector

CALLS #3,G^SNALU62$DELETE ;delete

EXITS: $PUTMSG_S STS_VEC ;display
;status-vector

$EXIT_S
.END TEST_LU62

COMMENTS

1. Assemble this MACRO program with a DCL command such as:

$ MACRO/OBJECT=MYDIR:MYPROG SYS$LIBRARY:SNALU62DF+MYDIR:MYPROG

where

MYDIR and MYPROG are your directory and program.

2. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

3. An actual transaction program would check the what_received parameter.
This example assumes that what_received equals SNALU62$K_DATA_
COMPLETE.

4. This example incorrectly handles the deallocate normally issued by
the remote IBM host transaction program. The OpenVMS transaction
program should check for the status code SNALU62$_DEALNOR and then
deallocate the conversation.

5. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

Programming Examples B–21



B.6 COBOL Programming Example
This COBOL program connects to AIBR, a sample transaction running under
CICS. After establishing a connect with AIBR, the OpenVMS transaction
program prompts you for the record number you want to send. This record
number is converted to EBCDIC and sent to AIBR. The program receives data
from the AIBR transaction, converts the data to ASCII format, and displays at
your terminal.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST_LU62.

********************************************************************
* *
* This program allocates a session with the AIBR transaction *
* running under CICS 1.7. It prompts the user for a record *
* number, requests the record and displays it. A deallocate *
* message is sent and the session is terminated. Proper operation *
* can be verified with SNATRACE. This program is intended to *
* represent the minimal framework for an SNA Gateway Application *
* Interface program. *
* *
********************************************************************

DATA DIVISION.

*
* Declaration
*
WORKING-STORAGE SECTION.

01 SS-STATUS PIC S9(09) COMP.
01 I-STATUS PIC S9(09) COMP.
01 RESOURCE-ID PIC 9(08) COMP.
01 STATUS-VEC PIC X(64).
01 LUNAME PIC X(06) VALUE "TEST1".
01 NODNAM PIC X(05) VALUE "ALACK".
01 ACCNAM PIC X(08) VALUE "CICSLU62".
01 ASCII-TPN-NAME PIC X(04) VALUE "AIBR".
01 TPN-NAME PIC X(04).
01 EVENT_FLAG PIC 9(08) COMP.
01 WHAT-RECEIVED PIC 9(08) COMP.
01 RECORD-NUMBER PIC X(06).
01 TEMP-DATA-BUFFER PIC X(2000).
01 BUFFER-LENGTH PIC 9(04) VALUE 2000.
01 DATA-BUFFER PIC X(2000).
01 DATA-LENGTH PIC 9(04) COMP.
01 TEMP-LENGTH PIC 9(04).
01 RTS-REC PIC 9(04) COMP.
01 OUTPUT-BUFFER.

02 OUTPUT-BUF OCCURS 25 TIMES PIC X(80).

B–22 Programming Examples



01 SUB PIC 9(03).
*
*
*
**********************************************************************
* SNA symbol definitions
**********************************************************************

01 SNALU62$_DEALNOR PIC 9(08) COMP VALUE 34832986.
01 SNALU62$K_OTHER PIC 9(08) COMP VALUE 2.
01 SNALU62$K_MAPPED_CONVERSATION

PIC 9(08) COMP VALUE 4.
01 SNALU62$K_WHEN_SESSION_ALLOC

PIC 9(08) COMP VALUE 5.
01 SNALU62$K_SL_CONFIRM PIC 9(08) COMP VALUE 9.
01 SNALU62$K_LOCAL PIC 9(08) COMP VALUE 32.

PROCEDURE DIVISION.
MAIN.

PERFORM DEFINE-REMOTE.
PERFORM ALLOCATE.
PERFORM SEND-DATA.
PERFORM RECEIVE-AND-WAIT.
PERFORM TRANSLATE-EBC-ASC.
PERFORM RECEIVE-AND-WAIT.
PERFORM DEALLOCATE.
PERFORM DELETE-PROC.
PERFORM EXIT-PROGRAM.

*
* Define LU name
*
DEFINE-REMOTE.

CALL "SNALU62$DEFINE_REMOTE" USING
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR LUNAME,
BY DESCRIPTOR LUNAME,
BY VALUE 0,0,0,0,0,0,
BY DESCRIPTOR NODNAM,
BY DESCRIPTOR ACCNAM,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

Programming Examples B–23



*
* Translate transaction program name to EBCDIC and allocate
* conversation
*
ALLOCATE.

CALL "LIB$TRA_ASC_EBC" USING BY DESCRIPTOR ASCII-TPN-NAME,
TPN-NAME,

GIVING SS-STATUS.

CALL "LIB$GET_EF" USING BY REFERENCE EVENT_FLAG GIVING I-STATUS.

CALL "SYS$CLREF" USING BY VALUE EVENT_FLAG GIVING I-STATUS.
CALL "SNALU62$ALLOCATE" USING

BY REFERENCE RESOURCE-ID,
BY DESCRIPTOR STATUS-VEC,
BY REFERENCE SNALU62$K_OTHER,
BY DESCRIPTOR LUNAME,
BY VALUE 0,
BY DESCRIPTOR TPN-NAME,
BY REFERENCE SNALU62$K_MAPPED_CONVERSATION,
BY REFERENCE SNALU62$K_WHEN_SESSION_ALLOC,
BY REFERENCE SNALU62$K_SL_CONFIRM,
BY VALUE 0,0,0,0,0,
BY REFERENCE EVENT_FLAG,

GIVING SS-STATUS.
CALL "SYS$WAITFR" USING BY VALUE EVENT_FLAG GIVING I-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

*
* Ask for record number, translate to EBCDIC and send data
*
SEND-DATA.

DISPLAY "Enter record number: " WITH NO ADVANCING.
ACCEPT RECORD-NUMBER.
CALL "LIB$TRA_ASC_EBC" USING BY DESCRIPTOR RECORD-NUMBER,

RECORD-NUMBER,
GIVING SS-STATUS.

MOVE 6 TO DATA-LENGTH.
CALL "SNALU62$SEND_DATA" USING

BY REFERENCE RESOURCE-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR RECORD-NUMBER,
BY REFERENCE DATA-LENGTH,RTS-REC,

GIVING SS-STATUS.
IF SS-STATUS IS FAILURE

THEN
PERFORM EXIT-PROGRAM.

B–24 Programming Examples



*
* Receive record from CICS/AIBR or DEALLOCATE
*
RECEIVE-AND-WAIT.

MOVE BUFFER-LENGTH TO DATA-LENGTH.
CALL "SNALU62$RECEIVE_AND_WAIT" USING

BY REFERENCE RESOURCE-ID,
BY DESCRIPTOR STATUS-VEC,
BY VALUE 0,
BY REFERENCE DATA-LENGTH,RTS-REC,
BY DESCRIPTOR DATA-BUFFER,
BY REFERENCE WHAT-RECEIVED,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

IF NOT SS-STATUS = SNALU62$_DEALNOR
THEN

PERFORM EXIT-PROGRAM.

*
* Convert record to ASCII and display on user terminal
*
TRANSLATE-EBC-ASC.

CALL "LIB$TRA_EBC_ASC" USING BY DESCRIPTOR DATA-BUFFER,
OUTPUT-BUFFER,

GIVING SS-STATUS.

DIVIDE 80 INTO DATA-LENGTH GIVING TEMP-LENGTH ROUNDED.
ADD 1 TO TEMP-LENGTH.
PERFORM DISPLAY-OUTPUT-BUFFER TEMP-LENGTH TIMES.

*
* Deallocate conversation
*
DEALLOCATE.

CALL "SNALU62$DEALLOCATE" USING
BY REFERENCE RESOURCE-ID,
BY DESCRIPTOR STATUS-VEC,
BY REFERENCE SNALU62$K_LOCAL,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

Programming Examples B–25



*
* Delete LU name
*
DELETE-PROC.

CALL "SNALU62$DELETE" USING
BY DESCRIPTOR STATUS-VEC,
BY VALUE 0,
BY DESCRIPTOR LUNAME,

GIVING SS-STATUS.

EXIT-PROGRAM.
CALL "SYS$PUTMSG" USING STATUS-VEC.
STOP RUN.

DISPLAY-OUTPUT-BUFFER.
IF SUB GREATER THAN 0

THEN
DISPLAY OUTPUT-BUF(SUB) WITH NO ADVANCING.

ADD 1 TO SUB.

COMMENTS

1. You must define these symbols. Appendix F lists the symbols.

2. If you are going to send more data, the program should check the rts_rec
parameter between calls.

3. An actual transaction program would check the what_received parameter.
This example assumes that what_received equals SNALU62$K_DATA_
COMPLETE.

4. This example incorrectly handles the deallocate normal issued by the
remote IBM host transaction program. The OpenVMS transaction
program should check for the status code SNALU62$_DEALNOR and then
deallocate the conversation.

5. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

6. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

B–26 Programming Examples



B.7 VAX PL/I Programming Example
This PL/I program connects to AIBR, a sample transaction running under
CICS. After establishing a connect with AIBR, the OpenVMS transaction
program prompts you for the record number you want to send. This record
number is converted to EBCDIC and sent to AIBR. The program receives data
from the AIBR transaction, converts the data to ASCII format, and displays at
your terminal.

MAIN: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY(31));

/********************************************************************/
/* */
/* This program allocates a session with the AIBR transaction */
/* running under CICS 1.7. It prompts the user for a record */
/* number, requests the record and displays it. A deallocate */
/* message is sent and the session is terminated. Proper operation */
/* can be verified with SNATRACE. This program is intended to */
/* represent the minimal framework for an SNA Gateway Application */
/* Interface program. */
/* */
/********************************************************************/

/****************************************************************/
/* Declare External Routines first */
/****************************************************************/

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE SYS$PUTMSG; /* System Services */
%INCLUDE SYS$CLREF;
%INCLUDE SYS$WAITFR;
%INCLUDE ’SYS$LIBRARY:SNALU62DF.PLI’; /* SNALU62 symbols and */

/* routine definitions */

DCL LIB$GET_INPUT EXTERNAL ENTRY (
CHARACTER (*), /* Data */
CHARACTER (*), /* Prompt */
FIXED BIN (15)) /* Size */

RETURNS (FIXED BIN(31));

DCL LIB$GET_EF EXTERNAL ENTRY (
FIXED BIN (31)) /* Event Flag */

RETURNS (FIXED BIN(31));

DCL LIB$PUT_OUTPUT EXTERNAL ENTRY (
CHARACTER (*)) /* Data */

RETURNS (FIXED BIN(31));

Programming Examples B–27



DCL LIB$TRA_ASC_EBC EXTERNAL ENTRY (
CHARACTER (*), /* Input buffer */
CHARACTER (*)) /* Output Buffer */

RETURNS (FIXED BIN(31));

DCL LIB$TRA_EBC_ASC EXTERNAL ENTRY (
CHARACTER (*), /* Input buffer */
CHARACTER (*)) /* Output Buffer */

RETURNS (FIXED BIN(31));

/****************************************************************/
/* Declare variables and structures */
/****************************************************************/

%REPLACE DATA_BUFFER_LENGTH BY 2000;

DECLARE NODE_NAME CHARACTER (5) INITIAL(’ALACK’),

ACCESS_NAME CHARACTER (8) INITIAL(’CICSLU62’),

RECORD_NUMBER CHARACTER (6),
RECORD_NUMBER_SIZE FIXED BIN (15),
RECORD_NUMBER_PROMPT CHARACTER (22)

STATIC INITIAL(’Enter record number: ’),

RESOURCE_ID FIXED BIN (31),
DATA_SIZE FIXED BIN (15),
STATUS_VECTOR CHARACTER (SNALU62$K_MIN_STATUS_VECTOR),

LUNAME CHARACTER (6) INITIAL (’TEST1’),
ASCII_TPN_NAME CHARACTER (4) INITIAL (’AIBR’),
TPN_NAME CHARACTER (4),
WHAT_RECEIVED FIXED BIN (31),
SUB FIXED DECIMAL (3) INITIAL (1),
INDEX FIXED DECIMAL (3) INITIAL (1),
BUFFER_LENGTH FIXED BIN (15),
DATA_BUFFER CHARACTER (DATA_BUFFER_LENGTH),
RTS_REC FIXED BIN (31),
EVENT_FLAG FIXED BIN (31) INITIAL(0);

/********************************************************************/
/* Define LU name */
/********************************************************************/

STS$VALUE = SNALU62$DEFINE_REMOTE( STATUS_VECTOR,
LUNAME,
LUNAME,,,,,,,
NODE_NAME,
ACCESS_NAME);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

/********************************************************************/
/* Translate transaction program name to EBCDIC, allocate an */
/* event flag, and allocate a conversation */
/********************************************************************/

B–28 Programming Examples



STS$VALUE = LIB$TRA_ASC_EBC (
ASCII_TPN_NAME, /* transaction program name */
TPN_NAME
);

IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

STS$VALUE = LIB$GET_EF( EVENT_FLAG );
IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

STS$VALUE = SYS$CLREF( EVENT_FLAG );
STS$VALUE = SNALU62$ALLOCATE (

RESOURCE_ID,
STATUS_VECTOR,
SNALU62$K_OTHER,
LUNAME,
, /* name of remote LU */
TPN_NAME,
SNALU62$K_MAPPED_CONVERSATION,
SNALU62$K_WHEN_SESSION_ALLOC,
SNALU62$K_SL_CONFIRM,
,,,,, /* security,user_id,password,

profile,pip_context*/
EVENT_FLAG);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;
STS$VALUE = SYS$WAITFR( EVENT_FLAG );

/********************************************************************/
/* Ask for record number, translate to EBCDIC and send data */
/********************************************************************/

STS$VALUE = LIB$GET_INPUT ( RECORD_NUMBER,
RECORD_NUMBER_PROMPT,
RECORD_NUMBER_SIZE);

IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

STS$VALUE = LIB$TRA_ASC_EBC (
RECORD_NUMBER,
RECORD_NUMBER
);

DATA_SIZE = 6;

STS$VALUE = SNALU62$SEND_DATA (
RESOURCE_ID,
STATUS_VECTOR,
RECORD_NUMBER,
DATA_SIZE,
RTS_REC, /* request-to-send received */
, /* map name */
, /* fmh_data */
);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

Programming Examples B–29



/********************************************************************/
/* Receive record from CICS/AIBR */
/********************************************************************/

DATA_SIZE = BUFFER_LENGTH;
STS$VALUE = SNALU62$RECEIVE_AND_WAIT (

RESOURCE_ID,
STATUS_VECTOR,
, /* fill */
DATA_SIZE,
RTS_REC, /* request-to-send

received */
DATA_BUFFER,
WHAT_RECEIVED);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

/********************************************************************/
/* Convert record to ASCII and display on user terminal */
/********************************************************************/

STS$VALUE = LIB$TRA_EBC_ASC (
DATA_BUFFER,
DATA_BUFFER
);

IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

STS$VALUE = LIB$PUT_OUTPUT (SUBSTR(DATA_BUFFER, 1, DATA_SIZE));
IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

/********************************************************************/
/* Receive DEALLOCATE */
/********************************************************************/

STS$VALUE = SNALU62$RECEIVE_AND_WAIT (
RESOURCE_ID,
STATUS_VECTOR,
, /* fill */
DATA_SIZE,
RTS_REC, /* request-to-send

received */
DATA_BUFFER,
WHAT_RECEIVED);

/********************************************************************/
/* Deallocate conversation */
/********************************************************************/

STS$VALUE = SNALU62$DEALLOCATE (
RESOURCE_ID,
STATUS_VECTOR,
SNALU62$K_LOCAL
);

B–30 Programming Examples



/********************************************************************/
/* Delete LU name */
/********************************************************************/

STS$VALUE = SNALU62$DELETE (
STATUS_VECTOR,, /* local LU name */
LUNAME
);

ERROR_FROM_INTERFACE:
STS$VALUE = SYS$PUTMSG (STATUS_VECTOR);
END;

COMMENTS

1. Include the LU6.2 library.

2. If you are going to send more data, the program should check the rts_rec
parameter between calls.

3. An actual transaction program would check the what_received parameter.
This example assumes that what_received equals SNALU62$K_DATA_
COMPLETE.

4. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

5. This example incorrectly handles the deallocate normal issued by the
remote IBM host transaction program. The OpenVMS transaction
program should check for the status code SNALU62$_DEALNOR and then
deallocate the conversation.

6. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

Programming Examples B–31



B.8 C Programming Examples
This C program connects to AIBR, a sample transaction running under CICS.
After establishing a connect with AIBR, the OpenVMS transaction program
prompts you for the record number you want to send. This record number is
converted to EBCDIC and sent to AIBR. The program receives data from the
AIBR transaction, converts the data to ASCII format, and displays at your
terminal.

/* LU62 Program */

/********************************************************************/
/* */
/* This program allocates a session with the AIBR transaction */
/* running under CICS 1.7. It prompts the user for a record */
/* number, requests the record and displays it. A deallocate */
/* message is sent and the session is terminated. Proper operation */
/* can be verified with SNATRACE. This program is intended to */
/* represent the minimal framework for an SNA Gateway Application */
/* Interface program. */
/* */
/********************************************************************/

#include "sys$library:descrip.h" /* Descriptor definitions */
#include "sys$library:ssdef.h" /* System services */
#include "sys$library:stsdef.h"
#include "sys$library:snalu62df.h" /* LU62 library */

/********************************************************************/
/* Declaration */
/********************************************************************/

int
status;

unsigned int
status_vec[SNALU62$K_MIN_STATUS_VECTOR],
remote_lu = SNALU62$K_OTHER,
convers_type = SNALU62$K_MAPPED_CONVERSATION,
return_cntrl = SNALU62$K_WHEN_SESSION_ALLOC,
sync_level = SNALU62$K_SL_CONFIRM,
dealloc_type = SNALU62$K_LOCAL,
event_flag = 0,
tpn_name[4],
record_number[6],
resource_id,
what_received,
rts_rec;

short unsigned int
i,
data_length,
buffer_length;

B–32 Programming Examples



struct dsc$descriptor
node_dsc,
acc_name_dsc,
luname_dsc,
asc_tpn_dsc,
prompt_dsc,
status_vec_dsc,
record_num_dsc,
tpn_name_dsc,
data_bufr_dsc,
temp_bufr_dsc;

main( )
{

char *node_nm = "ALACK";
char *acc_nm = "CICSLU62";
char *lu_nm = "TEST1";
char *tpn_nm = "AIBR";
char *prompt = "Enter record number: ";
char *tpn_name = " ";
char *space = " ";

/********************************************************************/
/* Initialize the descriptors */
/********************************************************************/

status_vec_dsc.dsc$a_pointer = status_vec;
status_vec_dsc.dsc$w_length = (SNALU62$K_MIN_STATUS_VECTOR);
status_vec_dsc.dsc$b_class = 0;
status_vec_dsc.dsc$b_dtype = 0;

record_num_dsc.dsc$a_pointer = record_number;
record_num_dsc.dsc$w_length = (6);
record_num_dsc.dsc$b_class = 0;
record_num_dsc.dsc$b_dtype = 0;

tpn_name_dsc.dsc$a_pointer = tpn_name;
tpn_name_dsc.dsc$w_length = (4);
tpn_name_dsc.dsc$b_class = 0;
tpn_name_dsc.dsc$b_dtype = 0;

data_bufr_dsc.dsc$a_pointer = (0);
data_bufr_dsc.dsc$w_length = (0);
data_bufr_dsc.dsc$b_class = DSC$K_CLASS_D;
data_bufr_dsc.dsc$b_dtype = DSC$K_DTYPE_Z;

node_dsc.dsc$a_pointer = node_nm;
node_dsc.dsc$w_length = (5);
node_dsc.dsc$b_class = DSC$K_CLASS_S;
node_dsc.dsc$b_dtype = DSC$K_DTYPE_Z;

Programming Examples B–33



acc_name_dsc.dsc$a_pointer = acc_nm;
acc_name_dsc.dsc$w_length = (8);
acc_name_dsc.dsc$b_class = DSC$K_CLASS_S;
acc_name_dsc.dsc$b_dtype = DSC$K_DTYPE_Z;

luname_dsc.dsc$a_pointer = lu_nm;
luname_dsc.dsc$w_length = (5);
luname_dsc.dsc$b_class = DSC$K_CLASS_S;
luname_dsc.dsc$b_dtype = DSC$K_DTYPE_Z;

asc_tpn_dsc.dsc$a_pointer = tpn_nm;
asc_tpn_dsc.dsc$w_length = (4);
asc_tpn_dsc.dsc$b_class = DSC$K_CLASS_S;
asc_tpn_dsc.dsc$b_dtype = DSC$K_DTYPE_Z;

prompt_dsc.dsc$a_pointer = prompt;
prompt_dsc.dsc$w_length = (22);
prompt_dsc.dsc$b_class = DSC$K_CLASS_S;
prompt_dsc.dsc$b_dtype = DSC$K_DTYPE_Z;

/********************************************************************/
/* Define LU name */
/********************************************************************/

status = SNALU62$DEFINE_REMOTE(&status_vec_dsc,
&luname_dsc,
&luname_dsc,0,0,0,0,0,0,
&node_dsc,
&acc_name_dsc);

if (!(status & STS$M_SUCCESS)) {
SYS$PUTMSG(&status_vec);
goto terminate;

}

/********************************************************************/
/* Translate transaction program name to EBCDIC, allocate an event */
/* flag, and allocate the conversation */
/********************************************************************/

status = LIB$TRA_ASC_EBC (&asc_tpn_dsc,
&tpn_name_dsc);

if (!(status & STS$M_SUCCESS)) {
LIB$SIGNAL(status);
goto terminate;

}

status = LIB$GET_EF (&event_flag);

if (!(status & STS$M_SUCCESS)) {
SYS$PUTMSG(&status_vec);
goto terminate;

}

B–34 Programming Examples



status = SNALU62$ALLOCATE(&resource_id,
&status_vec_dsc,
&remote_lu,
&luname_dsc,
0,
&tpn_name_dsc,
&convers_type,
&return_cntrl,
&sync_level,
0,0,0,0,0,
&event_flag
);

if (!(status & STS$M_SUCCESS)) {
SYS$PUTMSG(&status_vec);
goto terminate;

}

status = SYS$WAITFR(event_flag);
if (!(status & STS$M_SUCCESS)) {

LIB$SIGNAL(status);
}

/********************************************************************/
/* Ask for record number, translate to EBCDIC and send data */
/********************************************************************/

status = LIB$GET_INPUT (&record_num_dsc,
&prompt_dsc);

if (!(status & STS$M_SUCCESS)) {
LIB$SIGNAL(status);
goto terminate;

}

status = LIB$TRA_ASC_EBC (&record_num_dsc,
&record_num_dsc);

if (!(status & STS$M_SUCCESS)) {
LIB$SIGNAL(status);
goto terminate;

}

data_length = 6;

status = SNALU62$SEND_DATA (&resource_id,
&status_vec_dsc,
&record_num_dsc,
&data_length,
&rts_rec
);

if (!(status & STS$M_SUCCESS)) {
SYS$PUTMSG(&status_vec);
goto terminate;

}

Programming Examples B–35



/********************************************************************/
/* Receive record from CICS/AIBR */
/********************************************************************/

data_length = buffer_length;

status = SNALU62$RECEIVE_AND_WAIT(&resource_id,
&status_vec_dsc,
0,
&data_length,
&rts_rec,
&data_bufr_dsc,
&what_received
);

if (!(status & STS$M_SUCCESS)) {
SYS$PUTMSG(&status_vec);
goto terminate;

}

/********************************************************************/
/* Convert record to ASCII and display on user terminal */
/********************************************************************/

status = LIB$TRA_EBC_ASC (&data_bufr_dsc,
&data_bufr_dsc);

if (!(status & STS$M_SUCCESS)) {
LIB$SIGNAL(status);
goto terminate;

}

status = LIB$PUT_OUTPUT (&data_bufr_dsc);

if (!(status & STS$M_SUCCESS)) {
LIB$SIGNAL(status);

goto terminate;

/********************************************************************/
/* Receive DEALLOCATE */
/********************************************************************/

data_length = buffer_length;

status = SNALU62$RECEIVE_AND_WAIT(&resource_id,
&status_vec_dsc,
0,
&data_length,
&rts_rec,
&data_bufr_dsc,
&what_received
);

B–36 Programming Examples



if (!(status & STS$M_SUCCESS)) {
if (status != SNALU62$_DEALNOR &&

LIB$SIGNAL(status);
else goto terminate;

}

/********************************************************************/
/* Deallocate conversation */
/********************************************************************/

terminate:
status = SNALU62$DEALLOCATE ( &resource_id,

&status_vec_dsc,
&dealloc_type
);

if (!(status & STS$M_SUCCESS)) {
SYS$PUTMSG(&status_vec);

}

/********************************************************************/
/* Delete LU name */
/********************************************************************/

status = SNALU62$DELETE( &status_vec_dsc,0,
&luname_dsc

);

exit(status);

}

Programming Examples B–37



COMMENTS

1. Include the LU6.2 library.

2. You can use OpenVMS library routines to do parts of your application, such
as translating ASCII to EBCDIC or vice versa.

3. If you are going to send more data, the program should check the rts_rec
parameter between calls.

4. An actual transaction program would check the what_received parameter.
This example assumes that what_received equals SNALU62$K_DATA_
COMPLETE.

5. This example incorrectly handles the deallocate normal issued by the
remote IBM host transaction program. The OpenVMS transaction
program should check for the status code SNALU62$_DEALNOR and then
deallocate the conversation.

6. Deactivate the session in a clean manner. Use the SNALU62$DELETE
procedure to delete the remote LU defined with SNALU62$DEFINE_
REMOTE.

B–38 Programming Examples



B.9 Second C Programming Example
This C program is functionally similar to the previous example. It establishes
a conversation with AIBR and allows record numbers to be sent inbound. The
specified records are received and displayed at your terminal. This program
is a more realistic example of the state checking your program should do.
It also demonstrates the use of notify routines to handle session failure and
conversation deallocation events.

/*
**++
** FACILITY: LU62
**
** MODULE DESCRIPTION:
**
** Shows how to transmit a record key and get the record back from the
** CICS AIBR transaction. This program is similar to the previous ’C’
** example but it provides some additional state checking. It also
** illustrates the use of the notify vectors on the ACTIVATE_SESSION and
** ALLOCATE verbs.
**
**
** CREATION DATE:
**
** 7/12/1990
**
** DESIGN ISSUES:
**
** This C program allocates a session with the AIBR transaction
** running under CICS 1.7, It prompts the user for a 6 digit record
** number, requests the record from AIBR and displays it.
** This program illustrates some basic LU62 error handling.
**
**
** The following outlines a typical data exchange flow with AIBR
** -------------------------------------------------------------
**
** local lu remote lu (CICS tran)
** ------- ----------------------
** define_remote
** activate_session
** FMH5 attach to AIBR
** allocate_conversation ------------------>CICS when receiving the FMH5
** will start the AIBR transaction
** AIBR will then wait for the
** record key to arrive, use this
** key to retrieve the record from
** the IBM data set and send this
** record back to Open VMS
** application.

Programming Examples B–39



**
** record Key
** send_data ---------------------------> EXEC CICS RECEIVE INTO(buf)
** LENGTH(len)
** .
** .
** <search for record>
** .
** receive_and_wait <--------------------- EXEC CICS SEND FROM(record)
** what_received= DATA LENGTH(length) WAIT LAST
** EXEC CICS RETURN
**
** Receive_and_wait <---------------------
** status= DEALONOR
**
** deallocate(local)
** .
** .
** <now you can start another conversation, with another allocate as above>
** .
**
**--
*/

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <stsdef.h>
#include <snalu62df.h>

/*
* function prototypes
*/

unsigned int define_remote(char *,char *,char *,char *);
unsigned int activate_session(int *,char *,char *);
void activate_session_notify_rtn(unsigned int *);
unsigned int allocate(int,int *,char *,char *,char *);
void allocate_notify_rtn(unsigned int *);
unsigned int confirmed(int);
unsigned int send_data(int,char *);
unsigned int deallocate(int);
unsigned int receive_and_wait(int,char *,int *,int,int *);
unsigned int deallocate(int);
char *get_record_key();
unsigned int process(unsigned int);
void dump_cics_data(char *,unsigned short);
/*
* Type defintions
*/
#define cics_buffer 512
typedef char CICS_BUFFER[cics_buffer];

B–40 Programming Examples



/*
* Macro to build descriptor from a null terminated string
*/
#define DESCRIP(name,string) struct dsc$descriptor_s name= \

{strlen(string),DSC$K_DTYPE_T,DSC$K_CLASS_S,string}

/*
* Global variables
*/
static status_vec[SNALU62$K_MIN_STATUS_VECTOR];
static notify_vec[SNALU62$K_MIN_STATUS_VECTOR];
static struct dsc$descriptor status_vec_dsc;
static struct dsc$descriptor notify_vec_dsc;
static char *remote_lu_name = "remote";
static char *local_lu_name = "local";
static char *access_name = "CICS17B";
static char *remote_transaction = "AIBR";
static char *mode_name = "XL621024";
static char *gateway_name = "VINAL";

/**********************************************************************/
/* main line */
/**********************************************************************/
main()
{
unsigned int session_id;
int status;

/*
Initialize the global status and notify vector descriptors
*/
status_vec_dsc.dsc$a_pointer = &status_vec;
status_vec_dsc.dsc$w_length = SNALU62$K_MIN_STATUS_VECTOR;
status_vec_dsc.dsc$b_class = 0;
status_vec_dsc.dsc$b_dtype = 0;

notify_vec_dsc.dsc$a_pointer = &notify_vec;
notify_vec_dsc.dsc$w_length = SNALU62$K_MIN_STATUS_VECTOR;
notify_vec_dsc.dsc$b_class = 0;
notify_vec_dsc.dsc$b_dtype = 0;

/*
* We now define a local alias name for the remote lu name that we can
* use later when refereing to the remote lu
*/
status= define_remote(remote_lu_name,local_lu_name,access_name,gateway_name);
if(! (status&1))

{
LIB$SIGNAL(status);
exit(1);
}

Programming Examples B–41



/*
Activate the session
*/
status = activate_session(&session_id,local_lu_name,mode_name);
if(! (status&1))

{
LIB$SIGNAL(status);
exit(1);
}

/*
* Ask user for record numbers , and read the record from the CICS transaction
* Interrupt when done
*/

for(;;)
if(! (1&(status = process(session_id))))

{
LIB$SIGNAL(status);
exit(1);

}

}

/**********************************************************************/
/* process */
/**********************************************************************/
unsigned int
process(unsigned int session_id)
{
unsigned int conv_id;
char *key;
unsigned short len;
unsigned int what_received;
int status;
int read_again = TRUE;
enum STATE {START,SEND,RECEIVE,DEALLOCATE,CONFIRM,CONFIRM_SEND,

CONFIRM_DEALLOCATE,ERROR,DONE};
enum STATE state;
CICS_BUFFER cics_data;

state= START;

while(state != DONE && state != ERROR)
switch(state)

{
case(START):

B–42 Programming Examples



status = allocate(session_id,
&conv_id,local_lu_name,mode_name,remote_transaction);

if(! (status&1))
state = ERROR;

else
{
key = get_record_key();
state = SEND;
}

break;

case(SEND):
status = send_data(conv_id,key);
if(! (1&status))

switch(status)
{
case(SNALU62$_DEABPR): /* the remote transaction Abended*/
case(SNALU62$_DEABSVC):
case(SNALU62$_DEABTIM):
case(SNALU62$_RESFNO):
case(SNALU62$_RESFRET):

state = DEALLOCATE;
break;

case(SNALU62$_SVCERPU):
case(SNALU62$_PRERPU):

state = RECEIVE;
break;

default:
state = ERROR;
break;

}
else

state = RECEIVE;

break;
case(RECEIVE):

status=receive_and_wait(conv_id
,cics_data
,&len
,sizeof(cics_data)
,&what_received);

Programming Examples B–43



if(! (1&status))
switch(status)

{
case(SNALU62$_PRERNTR): /* program error no truncate */
case(SNALU62$_SVCENTR): /* service error no truncate */
case(SNALU62$_PRERPU): /* program error purging */
case(SNALU62$_SVCERPU): /* service error purging */
case(SNALU62$_SVCERTR): /* service error truncate */
case(SNALU62$_PRERTR): /* program error truncate */

state = RECEIVE; /* Stay in same state */
break;

case (SNALU62$_DEALNOR): /* deallocate normal */
case(SNALU62$_DEABPR): /* deallocation abend program */
case(SNALU62$_DEABSVC): /* deallocation abend service */
case(SNALU62$_DEABTIM): /* deallocation abend timer */
case(SNALU62$_ALLERR): /* allocation error */
case(SNALU62$_RESFNO): /* resource failure no retry */
case(SNALU62$_RESFRET): /* resource failure retry */

state = DEALLOCATE;
break;

default:
state = ERROR;
break;

}
else

switch(what_received)
{

case(SNALU62$K_DATA):
case(SNALU62$K_DATA_COMPLETE):
case(SNALU62$K_DATA_INCOMPLETE):
case(SNALU62$K_LL_TRUNCATED):

dump_cics_data(cics_data,len);
state = RECEIVE; /* keep same state */
break;

case(SNALU62$K_CONFIRM):
state = CONFIRM;
break;

case(SNALU62$K_CONFIRM_SEND):
state = CONFIRM_SEND;
break;

case(SNALU62$K_CONFIRM_DEALLOCATE):
state = CONFIRM_DEALLOCATE;
break;

B–44 Programming Examples



case(SNALU62$K_SEND):
state = SEND;
break;

default:
state = ERROR; /* this example only handles the above cases*/
break;

}
break;

case(CONFIRM_DEALLOCATE):
status = confirmed(conv_id);
if(! (1&status))

state = ERROR;
else

state = DEALLOCATE;

break;

case(CONFIRM_SEND):
status = confirmed(conv_id);
if(! (1&status))

state = ERROR;
else

state = SEND;

break;

case(CONFIRM):
status = confirmed(conv_id);
if(! (1&status))

state = ERROR;
else

state = RECEIVE;

break;

case(DEALLOCATE):
status = deallocate(conv_id);
if(! (1&status))

state = ERROR;
else

state = DONE;

break;
}

return status;

}

Programming Examples B–45



/**********************************************************************/
/* define_remote */
/**********************************************************************/
unsigned int
define_remote(char *remote_lu_name

,char *local_lu_name
,char *access_name
,char *gateway_name
)

{
int status;
DESCRIP(remote_dsc,remote_lu_name);
DESCRIP(local_dsc,local_lu_name);
DESCRIP(access_dsc,access_name);
DESCRIP(gateway_dsc,gateway_name);
int session_number=53;
$DESCRIPTOR(circuit_dsc,"SNA-0");

status= SNALU62$DEFINE_REMOTE(&status_vec_dsc
,&remote_dsc
,&local_dsc
,0
,0
,0
,0
,0
,0
,&gateway_dsc
,&access_dsc
,&circuit_dsc
,&session_number
);

if(! (status&1))
SYS$PUTMSG(&status_vec);

return status;
}

/**********************************************************************/
/* activate_Session */
/**********************************************************************/
unsigned int
activate_session(int *session_id

,char *lu_name
,char *mode_name
)

{
int status;
DESCRIP(lu_dsc,lu_name);
DESCRIP(mode_dsc,mode_name);
int polarity = SNALU62$K_BIDDER;

B–46 Programming Examples



status = SNALU62$ACTIVATE_SESSION(session_id
,&status_vec_dsc
,&lu_dsc
,&mode_dsc
,0
,0
,0
,activate_session_notify_rtn
,session_id
,&notify_vec_dsc
,&polarity
);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return(status);

}

/**********************************************************************/
/* allocate */
/**********************************************************************/
unsigned int
allocate(int session_id

,int *conv_id
,char *lu_name
,char *mode_name
,char *remote_transaction
)

{
int status;
DESCRIP(lu_name_dsc,lu_name);
DESCRIP(mode_name_dsc,mode_name);
DESCRIP(remote_txn_dsc,remote_transaction);
int lu_type = SNALU62$K_OTHER;
int type = SNALU62$K_MAPPED_CONVERSATION;
int ret_ctrl = SNALU62$K_WHEN_SESSION_ALLOC;
int sync_level = SNALU62$K_SL_NONE;
int security = SNALU62$K_NONE;
int polarity = SNALU62$K_BIDDER;
static short first_time = TRUE;

if(first_time) /* only need to translate once the transaction name */
{
status= LIB$TRA_ASC_EBC(&remote_txn_dsc,&remote_txn_dsc);
if(! (status&1))

return status;

first_time = FALSE;
}

Programming Examples B–47



status= SNALU62$ALLOCATE(conv_id
,&status_vec_dsc
,&lu_type
,&lu_name_dsc
,&mode_name_dsc
,&remote_txn_dsc
,&type
,&ret_ctrl
,&sync_level
,&security
,0,0,0,0,0,0,0
,allocate_notify_rtn
,&session_id
,&polarity);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return(status);

}

/**********************************************************************/
/* confirmed */
/**********************************************************************/
unsigned int
confirmed(int conv_id)
{
int status;

status = SNALU62$CONFIRMED(&conv_id
,&status_vec_dsc);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return(status);

}

/**********************************************************************/
/* send_data */
/**********************************************************************/
unsigned int
send_data(int conv_id

,char *key
)

{
int status;
int fmh_data= FALSE; /* no Function managment included in this RU */
DESCRIP(data,key);

status= LIB$TRA_ASC_EBC(&data,&data);
if(! (status&1))

return status;

B–48 Programming Examples



status= SNALU62$SEND_DATA(&conv_id
,&status_vec_dsc
,&data
,0
,0
,0
,&fmh_data
,0,0,0);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return status;

}

/**********************************************************************/
/* deallocate */
/**********************************************************************/
unsigned int
deallocate(int conv_id)
{
int status;
int type= SNALU62$K_LOCAL;

status= SNALU62$DEALLOCATE(&conv_id
,&status_vec_dsc
,&type
);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return status;

}

/**********************************************************************/
/* receive_and_wait */
/**********************************************************************/
unsigned int
receive_and_wait(int conv_id

,char *into
,int *actual_length
,int max_avaliable
,int *what_rec
)

{
int status;
int fill = SNALU62$K_LL;
int len;
int rts_rec;
$DESCRIPTOR(data,"");

Programming Examples B–49



data.dsc$w_length = max_avaliable;
data.dsc$a_pointer = into;

status= SNALU62$RECEIVE_AND_WAIT(&conv_id
,&status_vec_dsc
,&fill
,actual_length
,&rts_rec
,&data
,what_rec
);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return status;
}

/**********************************************************************/
/* activate_session_notify_rtn */
/**********************************************************************/
void activate_session_notify_rtn(unsigned int *notify_parameter)
/*
AST triggered when no verb is outstanding and the session fails
*/
{

printf("Session %d has failed\n"
,*notify_parameter);

/*
Display the reason for the failure
*/
SYS$PUTMSG(&notify_vec);

/* Here also you may want to set some global flag to notify the
non-ast executing thread of the fact that the session has been terminated.

*/
}

/**********************************************************************/
/* allocate_notify_rtn */
/**********************************************************************/
void allocate_notify_rtn(unsigned int *notify_parameter)
/*
AST triggered when no verb is outstanding and deallocate is received
*/
{

printf("Current conversation received a deallocate message on session %8x\n"
,*notify_parameter);

B–50 Programming Examples



/* Here also you may want to set some global flag to notify the
non-ast executing thread of the fact that the conversation has
received a deallocate request. A conversation verb should then be
issued. The conversation is not in DEALLOCATE state until the
what_received parameter so indicates.

*/

}

/**********************************************************************/
/* dump_cics_data */
/**********************************************************************/
void
dump_cics_data(char *data,unsigned short len)
{
int status;
$DESCRIPTOR(data_dsc,"");

data_dsc.dsc$w_length = len;
data_dsc.dsc$a_pointer = data;

status= LIB$TRA_EBC_ASC(&data_dsc,&data_dsc);
status= LIB$PUT_OUTPUT(&data_dsc);

}

/**********************************************************************/
/* get_record_key */
/**********************************************************************/
char *
get_record_key()
{
static char buf[BUFSIZ];
int i;

/*
* Our sample CICS transaction AIBR requires 6 digit key number
*/
printf("Enter record number to read from CICS (6 number key required) >");
i= scanf("%s",buf);
while(i != 1)

{
fflush(stdin);
printf("retry again, Enter record number >");
i = scanf("%s",buf);
}

return buf;

}

Programming Examples B–51



B.10 Third C Programming Example
This C program demonstrates the use of contention loser polarity. A single
session is established by both inbound and outbound conversations. If there is
contention for the session, the OpenVMS transaction will lose and the allocate
request will fail.

/*
**++
** FACILITY: LU62
**
** MODULE DESCRIPTION:
**
** Shows how to handle contention resolution.
**
** CREATION DATE:
**
** 7/12/1990
**
** DESIGN ISSUES:
**
** We specify that our lu be the contention loser on a conversation
** allocation conflict. If we attempt to allocate a conversation
** at the same time as the remote lu, using the same session,
** our allocate request will fail.
**
**
**
** ABSTRACT:
**
** 1. Defines the remote LU IMSBRIDGE
** 2. Defines a TPN IMSASYNC
** 3. Attempts to allocate an inbound conversation
** with IMS /TEST. We will be the contention loser so
** if an outbound conversation for IMSASYNC is initiated,
** our BID will be rejected and the ALLOCATE request will fail.
** 4. Receives data from the host for either inbound and outbound
** conversations.
** 5. For inbound conversations, data can be sent to the host and
** echoed back.
** 6. The conversation is deallocated locally and the LU is deleted.
**
**--
*/

#include <stdio.h>
#include <descrip.h>
#include <ssdef.h>
#include <stsdef.h>
#include <snalu62df.h>

B–52 Programming Examples



/*
* function prototypes
*/

unsigned int define_remote(char *,char *,char *,char *,char *);
unsigned int allocate(int *,char *,char *,char *);
unsigned int confirmed(int);
unsigned int send_data(int,char *);
unsigned int deallocate(int);
unsigned int receive_and_wait(int,char *,unsigned short *,int,int *);
unsigned int prepare_to_receive(int);
unsigned int delete_lu(char *,char *,char *);
char *get_user_input();
unsigned int process();
void dump_IMS_data(char *,unsigned short);
void attach_routine(); /* ast for FMH attach */
unsigned int define_tp(char *);
unsigned int is_it_bid_rejection();

/*
* Type definitions
*/

#define ims_buffer 512
typedef char IMS_BUFFER[ims_buffer];

/*
* Macro to build descriptor from a null terminated string
*/

#define DESCRIP(name,string) struct dsc$descriptor_s name = \
{strlen(string),DSC$K_DTYPE_T,DSC$K_CLASS_S,string}

/*
* Global variables
*/

static status_vec[SNALU62$K_MIN_STATUS_VECTOR];
static struct dsc$descriptor status_vec_dsc;
static char *remote_lu_name = "remote";
static char *local_lu_name = "local";

static char *tpn_name ="IMSASYNC";
static char *plu_name ="SE40BRDG";
static char *remote_transaction = "/TEST";
static char *mode_name = "XL621024";
static char *gateway_name = "VINAL";
static int ibm_to_vax_session_id;
static int IMS_event_flag;

Programming Examples B–53



/************************************************************/
/* main */
/************************************************************/
main()
{
unsigned int session_id;
int status;

status_vec_dsc.dsc$a_pointer = &status_vec;
status_vec_dsc.dsc$w_length = SNALU62$K_MIN_STATUS_VECTOR;
status_vec_dsc.dsc$b_class =0;
status_vec_dsc.dsc$b_dtype =0;

/*
* Define the LU name
*/

status = define_remote(remote_lu_name
,local_lu_name
,gateway_name,plu_name,mode_name);

if(! (status&1))
{
LIB$SIGNAL(status);
exit(1);
}

/*
* Define the TP name IMSASYNC
*/

status = define_tp(tpn_name);
if(! (status&1))

{
LIB$SIGNAL(status);
exit(1);
}

/*
* Get an event flag to synchronize with ATTACH FMH arrival
*/

status = LIB$GET_EF(&IMS_event_flag);
if(! (status&1))

{
LIB$SIGNAL(status);
exit(1);
}

B–54 Programming Examples



/*
* Process the conversation
*/
if(! (1&(status = process())))

LIB$SIGNAL(status);
else

{
/*
* Delete the LU name resources
*/

status = delete_lu(local_lu_name,remote_lu_name,tpn_name);

if(! (status&1))
LIB$SIGNAL(status);

}

exit(1);

}

/*************************************************************/
/* process */
/*************************************************************/
unsigned int
process()
{
unsigned int conv_id;
char *key;
unsigned short len;
unsigned int what_received;
int status;
int read_again = TRUE;
enum STATE {START,SEND,RECEIVE,DEALLOCATE,CONFIRM,CONFIRM_SEND,

CONFIRM_DEALLOCATE,PREPARE_TO_RECEIVE,ERROR,DONE};
enum STATE state;
IMS_BUFFER ims_data;

state = START;

while(state != DONE && state != ERROR)
switch(state)

{
case(START):

/*
* Attempt to allocate a conversation
*/

status = allocate(&conv_id,local_lu_name,mode_name,remote_transaction);

if(! (status&1))

Programming Examples B–55



/*
* If the allocation has failed, check for a BIDREJ
* error. If this is the case, deallocate the
* conversation locally and wait for the pending
* outbound conversation.
*/

if(is_it_bid_rejection()) /* check if it is a contention loss */
{
status = deallocate(conv_id);

if(! (status&1))
state = ERROR;

else
{
printf("\n IMS wants to transmit first, waiting.. \n");

status = SYS$WAITFR(IMS_event_flag);
if(! (1&status))

state = ERROR;
else

{
conv_id = ibm_to_vax_session_id; /* use the current conv */
state = RECEIVE;
}

}
}

else
state = ERROR;

else
state = RECEIVE; /* now receive the DFS0581 TEST COMMAND COMPLETE*/

/* Response from IMS */

break;

B–56 Programming Examples



case(SEND):
key = get_user_input();
status = send_data(conv_id,key);
if(! (1&status))

switch(status)
{
case(SNALU62$_DEABPR): /* the remote transaction Abended*/
case(SNALU62$_DEABSVC):
case(SNALU62$_DEABTIM):
case(SNALU62$_RESFNO):
case(SNALU62$_RESFRET):

state = DEALLOCATE;
break;

case(SNALU62$_SVCERPU):
case(SNALU62$_PRERPU):

state = PREPARE_TO_RECEIVE;
break;

default:
state = ERROR;
break;

}
else

state = RECEIVE;

break;

case(PREPARE_TO_RECEIVE):
status = prepare_to_receive(conv_id);
if(! (status&1))

state = ERROR;
else

state = RECEIVE;
break;

case(RECEIVE):
status = receive_and_wait(conv_id

,ims_data
,&len
,sizeof(ims_data)
,&what_received);

Programming Examples B–57



if( !(1&status) )
switch(status)

{
case(SNALU62$_PRERNTR): /* program error no truncate */
case(SNALU62$_SVCENTR): /* service error no truncate */
case(SNALU62$_PRERPU): /* program error purging */
case(SNALU62$_SVCERPU): /* service error purging */
case(SNALU62$_SVCERTR): /* service error truncate */
case(SNALU62$_PRERTR): /* program error truncate */

state = RECEIVE; /* Stay in same state */
break;

case (SNALU62$_DEALNOR): /* deallocate normal */
case(SNALU62$_DEABPR): /* deallocation abend program */
case(SNALU62$_DEABSVC): /* deallocation abend service */
case(SNALU62$_DEABTIM): /* deallocation abend timer */
case(SNALU62$_ALLERR): /* allocation error */
case(SNALU62$_RESFNO): /* resource failure no retry */
case(SNALU62$_RESFRET): /* resource failure retry */

state = DEALLOCATE;
break;

default:
state = ERROR;
break;

}
else

switch(what_received)
{

case(SNALU62$K_DATA):
case(SNALU62$K_DATA_COMPLETE):
case(SNALU62$K_DATA_INCOMPLETE):
case(SNALU62$K_LL_TRUNCATED):

dump_IMS_data(ims_data,len);
state = RECEIVE; /* keep same state */

break;

case(SNALU62$K_CONFIRM):
state = CONFIRM;
break;

case(SNALU62$K_CONFIRM_SEND):
state = CONFIRM_SEND;
break;

case(SNALU62$K_CONFIRM_DEALLOCATE):
state = CONFIRM_DEALLOCATE;
break;

B–58 Programming Examples



case(SNALU62$K_SEND):
state = SEND;
break;

default:
state = ERROR; /* this example only handles the above cases*/
break;

}
break;

case(CONFIRM_DEALLOCATE):
status = confirmed(conv_id);
if(! (1&status))

state = ERROR;
else

state = DEALLOCATE;

break;

case(CONFIRM_SEND):
status = confirmed(conv_id);
if(! (1&status))

state = ERROR;
else

state = SEND;

break;

case(CONFIRM):
status = confirmed(conv_id);
if(! (1&status))

state = ERROR;
else

state = RECEIVE;

break;

case(DEALLOCATE):
status = deallocate(conv_id);
if(! (1&status))

state = ERROR;
else

state = DONE;

break;
}

return status;

}

Programming Examples B–59



/*************************************************************/
/* Define_remote */
/*************************************************************/
unsigned int
define_remote(char *remote_lu_name

,char *local_lu_name
,char *gateway_name
,char *plu_name
,char *logon_name
)

{
int status;
DESCRIP(remote_dsc,remote_lu_name);
DESCRIP(local_dsc,local_lu_name);
DESCRIP(gateway_dsc,gateway_name);
DESCRIP(plu_dsc,plu_name);
DESCRIP(logon_dsc,logon_name);
DESCRIP(circuit_dsc,"SNA-0");
int init_only = SNALU62$K_INITIATE_ONLY;
int session_number = 53;

status= SNALU62$DEFINE_REMOTE(&status_vec_dsc
,&remote_dsc
,&local_dsc
,0
,&init_only
,0
,0
,0
,0
,&gateway_dsc
,0
,&circuit_dsc
,&session_number
,&plu_dsc
,&logon_dsc
);

if(! (status&1)) SYS$PUTMSG(&status_vec);

return status;
}

B–60 Programming Examples



/*************************************************************/
/* Delete_lu */
/*************************************************************/
unsigned int
delete_lu(char *local_lu

,char *remote_lu
,char *tpn_name)

{
DESCRIP(local_lu_dsc,local_lu);
DESCRIP(remote_lu_dsc,remote_lu);
DESCRIP(tpn_name_dsc,tpn_name);
int status;

status= SNALU62$DELETE (&status_vec_dsc
,&local_lu_dsc
,&remote_lu_dsc
,0
,&tpn_name_dsc
);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return(status);
}

/*************************************************************/
/* Allocate */
/*************************************************************/
unsigned int
allocate(int *conv_id

,char *lu_name
,char *mode_name
,char *remote_transaction
)

{
int status;
DESCRIP(lu_name_dsc,lu_name);
DESCRIP(mode_name_dsc,mode_name);
DESCRIP(remote_txn_dsc,remote_transaction);
int lu_type = SNALU62$K_OTHER;
int type = SNALU62$K_MAPPED_CONVERSATION;
int ret_ctrl = SNALU62$K_WHEN_SESSION_ALLOC;
int sync_level = SNALU62$K_SL_CONFIRM;
int security = SNALU62$K_NONE;
int polarity = SNALU62$K_BIDDER;
static short first_time = TRUE;

Programming Examples B–61



if(first_time) /* only need to translate once the transaction name */
{
status = LIB$TRA_ASC_EBC(&remote_txn_dsc,&remote_txn_dsc);
if(! (status&1))

return status;

first_time = FALSE;
}

/*
* We use polarity as SNALU62$K_BIDDER meaning that if IMS wishes to
* allocate a conversation also , we lose the contention for the
* session
*/

status = SNALU62$ALLOCATE(conv_id
,&status_vec_dsc
,&lu_type
,&lu_name_dsc
,0
,&remote_txn_dsc
,&type
,&ret_ctrl
,&sync_level
,0
,0,0,0,0,0,0,0,0,0
,&polarity);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return(status);

}

/*************************************************************/
/* Respond with Confirmed */
/*************************************************************/
unsigned int
confirmed(int conv_id)
{
int status;

status = SNALU62$CONFIRMED(&conv_id
,&status_vec_dsc);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return(status);

}

B–62 Programming Examples



/*************************************************************/
/* Send Data */
/*************************************************************/
unsigned int
send_data(int conv_id

,char *key
)

{
int status;
int fmh_data = FALSE; /* no Function managment included in this RU */
DESCRIP(data,key);

status= LIB$TRA_ASC_EBC(&data,&data);
if(! (status&1))

return status;

status = SNALU62$SEND_DATA(&conv_id
,&status_vec_dsc
,&data
,&data.dsc$w_length
,0
,0
,&fmh_data
,0,0,0);

if(! (1&status))
SYS$PUTMSG(&status_vec);

return status;

}
/*************************************************************/
/* Deallocate the local LU resources */
/*************************************************************/

unsigned int
deallocate(int conv_id)
{
int status;
int type= SNALU62$K_LOCAL;

status = SNALU62$DEALLOCATE(&conv_id
,&status_vec_dsc
,&type
);

if( !(1&status) )
SYS$PUTMSG(&status_vec);

return status;

}

Programming Examples B–63



/*************************************************************/
/* Receive data from the host */
/*************************************************************/
unsigned int
receive_and_wait(int conv_id

,char *into
,unsigned short *actual_length
,int max_avaliable
,int *what_rec
)

{
int status;
int fill = SNALU62$K_LL;
int len;
int rts_rec;
$DESCRIPTOR(data,"");

data.dsc$w_length = max_avaliable;
data.dsc$a_pointer = into;

status = SNALU62$RECEIVE_AND_WAIT(&conv_id
,&status_vec_dsc
,&fill
,actual_length
,&rts_rec
,&data
,what_rec
);

if( !(1&status) )
SYS$PUTMSG(&status_vec);

return status;
}

/*************************************************************/
/* Define the TP name INSASYNC */
/*************************************************************/

unsigned int
define_tp(char *tp)
{
int status;
DESCRIP(tp_dsc,tp);

status = LIB$TRA_ASC_EBC(&tp_dsc,&tp_dsc);
if(! (status&1))

return status;

B–64 Programming Examples



status = SNALU62$DEFINE_TP(&status_vec_dsc
,&tp_dsc
,0,0,0,0,0,0,0,0,0,0,0
,attach_routine
);

if( !(1&status) )
SYS$PUTMSG(&status_vec);

return status;
}

/*************************************************************/
/* Prepare to receive */
/*************************************************************/

unsigned int
prepare_to_receive(int conv)
{
int status;

status = SNALU62$PREPARE_TO_RECEIVE(&conv
,&status_vec_dsc
);

if( !(1&status) )
SYS$PUTMSG(&status_vec);

return status;
}

/*************************************************************/
/* Attach routine for outbound conversations */
/*************************************************************/

void
attach_routine(int *parm, int *id) /* AST level */
{

printf("\n IMSASYNC started by bridge \n");
ibm_to_vax_session_id = *id;

SYS$SETEF(IMS_event_flag);

}

/*************************************************************/
/* Display any data received */
/*************************************************************/

Programming Examples B–65



void
dump_IMS_data(char *data,unsigned short len)
{
int status;
$DESCRIPTOR(data_dsc,"");

data_dsc.dsc$w_length = len;
data_dsc.dsc$a_pointer = data;

status= LIB$TRA_EBC_ASC(&data_dsc,&data_dsc);

status= LIB$PUT_OUTPUT(&data_dsc);
printf("\n");

}

/*************************************************************/
/* Get data from the terminal */
/*************************************************************/

char *
get_user_input()
{
static char buf[BUFSIZ];
int i;

printf("Enter Data to send to IMS >");
i = scanf("%s",buf);
while(i != 1)

{
fflush(stdin);
printf("retry again, Enter record number >");
i = scanf("%s",buf);
}

return buf;

}

/*************************************************************/
/* See if this is a SNALU62$_BIDREJ error. It will be */
/* in the third longword of the status vector. It is */
/* preceded by SNALU62$_RESFRET. */
/*************************************************************/
unsigned int
is_it_bid_rejection()
{

/*
* Check the status vector for the error SNALU62$_BIDREJ
*/

if(status_vec[3] == SNALU62$_BIDREJ) return TRUE;

return FALSE;
}

B–66 Programming Examples



C
Return Codes and State Changes

C.1 Return Codes and State Changes for Conversations
Following is a list of top-level status codes returned by a conversation verb,
and the state change, if any, that a conversation has undergone.

Return Code State Change

SNALU62$_ALLERR The conversation is in deallocate state.

SNALU62$_DEABPR The conversation is in deallocate state.

SNALU62$_DEABSVC The conversation is in deallocate state.

SNALU62$_DEABTIM The conversation is in deallocate state.

SNALU62$_DEALNOR The conversation is in deallocate state.

SNALU62$_FMHNOT The conversation is in send state.

SNALU62$_OK The state of the conversation is as defined
for the procedure.

SNALU62$_PARERR The state of the conversation remains
unchanged.

SNALU62$_PRERNTR The conversation is in receive state.

SNALU62$_PRERPU The conversation is in receive state.

SNALU62$_PRERTR The conversation is in receive state.

SNALU62$_RESFNO The conversation is in deallocate state.

SNALU62$_RESFRET The conversation is in deallocate state.

SNALU62$_SVCENTR The conversation is in receive state.

SNALU62$_SVCERPU The conversation is in receive state.

SNALU62$_SVCERTR The conversation remains in receive state.

SNALU62$_STAERR The conversation state remains unchanged.

SNALU62$_UNSUC The conversation state remains unchanged.

Return Codes and State Changes C–1



C.2 Return Codes for Control Operator Verbs
Following is a table of top-level status codes that can be returned by a control
operator verb.

Return Code

SNALU62$_ASNEG

SNALU62$_ASSPEC

SNALU62$_OK

SNALU62$_PARERR

SNALU62$_RESFNO

SNALU62$_RESFRET

SNALU62$_STAERR

SNALU62$_UNSUC

C–2 Return Codes and State Changes



D
Conversation State Transitions

This appendix shows the conversation state transitions that can occur when a
program issues a conversation verb. A conversation enters a particular state
when either a transaction program issues a verb that causes a state transition,
or a transaction program receives a return code that indicates state transition.

Specific state transitions are defined in individual verb descriptions under the
heading "State Transition," and in return code descriptions under the heading
"Status Codes."

Figure D–1 correlates each conversation verb to the conversation state allowing
its issuance. The columns of the table show the individual conversation state.
The rows show the individual verbs. A verb is shown more than once when a
parameter of the verb or return code determines the state transitions that can
occur.

The conversation states are:

Reset Transaction program can allocate the conversation.

Send Transaction program can send data.

Receive Transaction program can receive information from the
remote program.

Confirm Transaction program can respond to a confirmation request.

Conversation State Transitions D–1



Confirm_Deallocate

Confirm_Send Confirm_Deallocate and Confirm_Send are pseudo-states.
They are used in this table to distinguish events that take
you into the confirm state.

Deallocate Transaction program can deallocate the conversation locally.

Note

Version 2.4 of the APPC/LU6.2 Programming Interface does not
support sync level syncpt.

D.1 Using the Conversion State Transitions Table
Refer to row 1 of Figure D–1 for this example.

Assume no conversation exists, and the state is SNALU62$K_STATE_
RESET (column 1). Issuing the SNALU62$ALLOCATE verb and receiving a
return code of SNALU62$K_OK will cause the conversation to transition to
SNALU62$K_STATE_SEND (column 2).

D–2 Conversation State Transitions



Figure D–1 Conversion State Transitions

State

Verb 1 2 3 4 5 6 7 8 9 10 11 12

Initiating Conversation
SNALU62$ALLOCATE[ok]
SNALU62$ALLOCATE[ae]
SNALU62$ALLOCATE[pe]
SNALU62$ALLOCATE[un]

5
2

12
–
–

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$CONFIRM[ok]
SNALU62$CONFIRM[ae]
SNALU62$CONFIRM[bo]
SNALU62$CONFIRM[dn]
SNALU62$CONFIRM[da]

/
/
/
/
/

–
12
1

12
5

5
12
1

12
5

1
12
1

12
5

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$CONFIRM[rl]
SNALU62$CONFIRMED
SNALU62$DEALLOCATE(F)[ok]
SNALU62$DEALLOCATE(C)[ok]
SNALU62$DEALLOCATE(A)[ok]

/
/
/
/
/

12
/
1
1
1

12
/
/
/
1

12
/
/
/
1

/
/
/
/
1

/
5
/
/
1

/
2
/
/
1

/
12
/
/
1

/
/
/
/
1

/
/
/
/
1

/
/
/
/
1

/
/
/
/
/

SNALU62$DEALLOCATE(L)[ok]
SNALU62$DEALLOCATE(C)[ae]
SNALU62$DEALLOCATE(C)[da]
SNALU62$DEALLOCATE(C)[ep]
SNALU62$DEALLOCATE(C)[rf]

/
/
/
/
/

/
12
12
5

12

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

1
/
/
/
/

SNALU62$FLUSH
SNALU62$GET_ATTRIBUTES
SNALU62$GET_TYPE
SNALU62$POST_ON_RECIEPT
SNALU62$PREPARE_TO_RECEIVE(F)[ok]

/
/
/
/
/

–
–
–
/
5

5
–
–
/
/

1
–
–
/
/

/
–
–
–
/

/
–
–
/
/

/
–
–
/
/

/
–
–
/
/

/
–
–
/
/

/
–
–
/
/

/
–
–
/
/

/
–
–
/
/

SNALU62$PREPARE_TO_RECEIVE(C)[ok]
SNALU62$PREPARE_TO_RECEIVE(C)[ae]
SNALU62$PREPARE_TO_RECEIVE(C)[da]
SNALU62$PREPARE_TO_RECEIVE(C)[ep]
SNALU62$PREPARE_TO_RECEIVE(C)[rf]

/
/
/
/
/

5
12
12
5

12

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

(continued on next page)

Conversation State Transitions D–3



Figure D–1 (Cont.) Conversion State Transitions

State

Verb 1 2 3 4 5 6 7 8 9 10 11 12

SNALU62$RECEIVE_AND_WAIT[ok]{dt}
SNALU62$RECEIVE_AND_WAIT[ok]{se}
SNALU62$RECEIVE_AND_WAIT[ok]{co}
SNALU62$RECEIVE_AND_WAIT[ok]{cs}
SNALU62$RECEIVE_AND_WAIT[ok]{cd}

/
/
/
/
/

5
–
6
7
8

/
/
/
/
/

/
/
/
/
/

–
2
6
7
8

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$RECEIVE_AND_WAIT[ae]
SNALU62$RECEIVE_AND_WAIT[bo]
SNALU62$RECEIVE_AND_WAIT[da]
SNALU62$RECEIVE_AND_WAIT[dn]
SNALU62$RECEIVE_AND_WAIT[en]

/
/
/
/
/

12
1

12
12
5

/
/
/
/
/

/
/
/
/
/

12
1

12
12
–

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$RECEIVE_AND_WAIT[ep]
SNALU62$RECEIVE_AND_WAIT[et]
SNALU62$RECEIVE_AND_WAIT[rl]
SNALU62$RECEIVE_IMMEDIATE[ok]{da}
SNALU62$RECEIVE_IMMEDIATE[ok]{se}

/
/
/
/
/

5
/

12
/
/

/
/
/
/
/

/
/
/
/
/

–
–

12
–
2

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$RECEIVE_IMMEDIATE[ok]{co}
SNALU62$RECEIVE_IMMEDIATE[ok]{cs}
SNALU62$RECEIVE_IMMEDIATE[ok]{cd}
SNALU62$RECEIVE_IMMEDIATE[ae]
SNALU62$RECEIVE_IMMEDIATE[bo]

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

6
7
8

12
–

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$RECEIVE_IMMEDIATE[da]
SNALU62$RECEIVE_IMMEDIATE[dn]
SNALU62$RECEIVE_IMMEDIATE[en]
SNALU62$RECEIVE_IMMEDIATE[ep]
SNALU62$RECEIVE_IMMEDIATE[et]

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

12
12
–
–
–

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$RECEIVE_IMMEDIATE[rf]
SNALU62$RECEIVE_IMMEDIATE[un]
SNALU62$REQUEST_TO_SEND
SNALU62$SEND_DATA[ok]

/
/
/
/

/
/
/
–

/
/
/
/

/
/
/
/

12
–
–
/

/
/
/
/

/
/
–
/

/
/
/
/

/
/
–
/

/
/
/
/

/
/
/
/

/
/
/
/

(continued on next page)

D–4 Conversation State Transitions



Figure D–1 (Cont.) Conversion State Transitions

State

Verb 1 2 3 4 5 6 7 8 9 10 11 12

SNALU62$SEND_DATA[ae]
SNALU62$SEND_DATA[bo]
SNALU62$SEND_DATA[da]
SNALU62$SEND_DATA[ep]
SNALU62$SEND_DATA[rf]

/
/
/
/
/

12

12
5

12

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$SEND_ERROR[ok]
SNALU62$SEND_ERROR[ae]
SNALU62$SEND_ERROR[bo]
SNALU62$SEND_ERROR[da]
SNALU62$SEND_ERROR[dn]

/
/
/
/
/

–
12

12
/

/
/
/
/
/

/
/
/
/
/

2
/
/
/

12

2
/
/
/
/

2
/
/
/
/

2
/
/
/
/

2
/
/
/
/

2
/
/
/
/

2
/
/
/
/

/
/
/
/
/

SNALU62$SEND_ERROR[ep]
SNALU62$WAIT[ok]
SNALU62$WAIT[ae]
SNALU62$WAIT[bo]
SNALU62$WAIT[da]

/
/
/
/
/

5
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
–

12
1

12

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

/
/
/
/
/

SNALU62$WAIT[ok]
SNALU62$WAIT[en]
SNALU62$WAIT[ep]
SNALU62$WAIT[et]
SNALU62$WAIT[pn]
SNALU62$WAIT[rf]

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

12
–
–
–
–

12

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

/
/
/
/
/
/

Parameter Abbreviations (...):

A TYPE(ABEND_PROG), TYPE(ABEND_SVC), or
TYPE(ABEND_TIMER)

C TYPE(CONFIRM), or TYPE(SYNC_LEVEL) with                    
synchronization level CONFIRM

F TYPE(FLUSH)
L TYPE(LOCAL)

What-Received Abbreviations {...}:

co CONFIRM
cd CONFIRM_DEALLOCATE
cs CONFIRM_SEND
dt DATA, DATA_COMPLETE, DATA_INCOMPLETE, or

LL_TRUNCATED
se SEND

Matrix Symbols:

/ Verb cannot be issued in this state.
– Remain in current state.
number Number of next state.

Return-Code Abbreviations [...]:
ae ALLOCATION_ERROR
bo BACKED_OUT
da DEALLOCATE_ABEND_PROG,

DEALLOCATE_ABEND_SVC, or
DEALLOCATE_ABEND_TIMER

dn DEALLOCATE_NORMAL
en PROG_ERROR_NO_TRUNC or SVC_ERROR_NO_TRUNC
ep PROG_ERROR_PURGING or SVC_ERROR_PURGING
et PROG_ERROR_TRUNC or SVC ERROR TRUNC
ok OK
pe PARAMETER_ERROR
pn POSTING_NOT_ACTIVE
rf RESOURCE_FAILURE_NO_RETRY or

RESOURCE_FAILURE_RETRY
un UNSUCCESSFUL

Conversation State Transitions D–5





E
APPC/LU6.2 Interface Procedures and

Status Messages

Figure E–1 illustrates the correlation between the APPC/LU6.2 Programming
Interface procedures and the status messages they can return.

APPC/LU6.2 Interface Procedures and Status Messages E–1



Figure E–1 Status Messages

Status Message

SNALU62$_OK x x x x x x x x x x x x x x x x x x x x x

SNALU62$_ALLERR x x x x x x

SNALU62$_ASNEG x

SNALU62$_ASSPEC x

SNALU62$_DEABPR x x x x x x

SNALU62$_DEABSVC x x x x x x

SNALU62$_DEABTIM x x x x x x

SNALU62$_DEALNOR x x x

SNALU62$_FMHNOT x x x x x x

SNALU62$_MAPEFAI x x x x x x

SNALU62$_MAPNFOU x x x x x x

(continued on next page)

E–2 APPC/LU6.2 Interface Procedures and Status Messages



Figure E–1 (Cont.) Status Messages

Status Message

SNALU62$_PARERR x x x x x x x x x x x x x x x x x x x x x

SNALU62$_PRERNTR x x

SNALU62$_PRERPU x x x x x x

SNALU62$_PRERTR x x x

SNALU62$_RESFNO x x x x x x

SNALU62$_RESFRET x x x x x x x x

SNALU62$_STAERR x x x x x x x x x x x x x x x x x x x

SNALU62$_SVCENTR x x

SNALU62$_SVCERPU x x x x x x

SNALU62$_SVCERTR x x

SNALU62$_UNSUC x x x x x x x x x x x x x x x x x x x x x

APPC/LU6.2 Interface Procedures and Status Messages E–3





F
Definitions for the APPC/LU6.2 Interface

The following table presents symbols, values, and meanings to use when you
write your OpenVMS transaction program. DIGITAL recommends that you
use the definition files that accompany the APPC/LU6.2 Interface. This will
insulate you from changes made in future releases of the product. Definition
files, however, are not provided for every language. If the language you plan to
use does not have a definition file, use the information in the following table to
write your application.

Symbol Value Meaning

SNALU62$K_ABEND_PROG 29 Flush and deallocate abnormally
when in send or defer state

SNALU62$K_ABEND_SVC 30 Flush and deallocate abnormally
when in send or defer state

SNALU62$K_BASIC_CONVERSATION 3 Allocate a basic conversation

SNALU62$K_BUFFER 35 Receive unformatted data

SNALU62$K_CONFIRM 44 Remote program issued confirm

SNALU62$K_CONFIRM_DEALLOCATE 46 Remote program issued
deallocate confirm

SNALU62$K_CONFIRM_SEND 45 Remote program issued prepare
to receive, then confirm

SNALU62$K_DATA 37 Unformatted data transferred

SNALU62$K_DATA_COMPLETE 38 Complete logical record
transferred

SNALU62$K_DATA_INCOMPLETE 39 Incomplete logical record
transferred

SNALU62$K_DEACT_CLEANUP 73 Deactivate cleanup

SNALU62$K_DEACT_NORMAL 72 Deactivate normal

Definitions for the APPC/LU6.2 Interface F–1



Symbol Value Meaning

SNALU62$K_FLUSH 28 Flush and deallocate conversa-
tion

SNALU62$K_FMH_DATA_COMPLETE 40 Complete logical record with
FMH

SNALU62$K_FMH_DATA_INCOMPLETE 41 Incomplete logical record with
FMH

SNALU62$K_INITIATE_ONLY 57 Request session activation

SNALU62$K_INITIATE_OR_QUEUE 58 Wait for session activation

SNALU62$K_LL 36 Receive one logical record

SNALU62$K_LL_TRUNCATED 42 LL count truncated after first
byte

SNALU62$K_LOCAL 32 Deallocate conversation locally

SNALU62$K_LONG 34 Return when information
received

SNALU62$K_MAPPED_CONVERSATION 4 Allocate a mapped conversation

SNALU62$K_MIN_NOTIFY_VECTOR 64 16 longwords = 64 bytes

SNALU62$K_MIN_STATUS_VECTOR 64 16 longwords = 64 bytes

SNALU62$K_NONE 54 Omit access security information
on allocation request

ET91FCH4.SDML

SNALU62$K_OTHER 2 Remote program is located at
another LU

SNALU62$K_OWN 1 Remote program exists at local
LU

SNALU62$K_PGM 56 Use access security information
supplied on allocation request

SNALU62$K_PROG 51 Application program error being
reported

SNALU62$K_SAME 55 Use access security information
from previous allocation request

SNALU62$K_SEND 43 Remote program entered receive
state

SNALU62$K_SHORT 33 Return when affirmative reply
received

SNALU62$K_SL_CONFIRM 9 Perform confirmation processing

F–2 Definitions for the APPC/LU6.2 Interface



Symbol Value Meaning

SNALU62$K_SL_NONE 8 No confirmation or sync-point
processing

SNALU62$K_STATE_CONFIRM 6 Conversation is in confirm state

SNALU62$K_STATE_CONFIRM_
DEALLOC

8 Conversation is in confirm
deallocate state

SNALU62$K_STATE_CONFIRM_SEND 7 Conversation is in confirm send
state

SNALU62$K_STATE_DEALLOCATE 12 Conversation is in deallocate
state

SNALU62$K_STATE_RECEIVE 5 Conversation is in receive state

SNALU62$K_STATE_RESET 1 Conversation is in reset state

SNALU62$K_STATE_SEND 2 Conversation is in send state

SNALU62$K_SVC 52 LU services error being reported

SNALU62$K_SYNC_LEVEL 27 Deallocate based on conversa-
tion sync level

SNALU62$K_WHEN_SESSION_ALLOC 5 Return control when session is
allocated

Definitions for the APPC/LU6.2 Interface F–3





G
APPC/LU6.2 Programming Interface

Compatibility Features

The features described in this appendix, available with Versions 1.0 and 1.1
of the DIGITAL SNA APPC/LU6.2 Programming Interface for OpenVMS, are
supported by Version 2.4 only for compatibility with those earlier versions.
New programs should not be written with these procedures.

The calling format for the APPC/LU6.2 procedures referenced in this appendix,
is in Chapter 4 of this manual.

G.1 The SNALU62$DEFINE Procedure
The SNALU62$DEFINE procedure defines various entities that are associated
with a logical unit.

The parameter list consists of a function parameter to specify the entity to be
defined, followed by one or more parameter pairs with the format

par id, par

where par id is a symbolic name identifying the parameter and par is the
actual parameter.

To undefine an LU name, call the SNALU62$DEFINE procedure and specify
the value SNALU62$K_LUNAME and the name of the LU name to be
undefined. Do not specify any other parameters. Any active sessions that
currently have no conversations on them and were started with this LU name
are immediately deactivated.

If a conversation is currently on a particular session referenced in the
SNALU62$DEFINE procedure call, the session will be deactivated when the
conversation is deallocated.

Note

SNALU62$DEFINE has been superseded by the following procedures:

APPC/LU6.2 Programming Interface Compatibility Features G–1



• SNALU62$DEFINE_REMOTE

• SNALU62$DELETE

Note parameter changes on each verb.

Format:

status.wlc.v=SNALU62$DEFINE (status blk.wx.dx),
function
[par1 id.rlu.r,par1 rx.dx],
[par2 id.rlu.r,par2 rx.dx],
.
.
.
[parN id.rlu.r, parN rx.dx]

Arguments:

status When a procedure finishes execution, it returns
a numeric status value in general register R0.
Successful completion is indicated by a status code
with the low-order bit set. The low-order three
bits, together, represent the severity of the error.
Returned by function value.

status_blk A longword vector allocated by the OpenVMS
transaction program and filled in by the
APPC/LU6.2 Programming Interface to provide
the user with complete status information. Passed
by descriptor.

function The following symbolic name: SNALU62$K_
DEFINE_LUNAME causes the APPC/LU6.2
Programming Interface to define a local name
for a remote LU. Passed by reference.

par1_id,par1 The identifier SNALU62$K_LUNAME followed by
a local name for the remote LU. This name is an
ASCII string. The number of characters in this
string is not limited. The identifier is passed by
reference. The local name is passed by descriptor.

par2 id, par2
.
.
3

parN_id,parN

An identifier followed by an attribute of the LU
specified in par1. The identifier/attribute pairs
are listed in Table G-1. The identifier is passed by
reference. The attribute is passed by descriptor.

G–2 APPC/LU6.2 Programming Interface Compatibility Features



Table G–1 LU Attribute Identifiers and Attributes

Identifier Attribute

SNALU62$K_
GWYNODE

The name of the SNA gateway OpenVMS SNA node.
This parameter is an ASCII string. For OpenVMS SNA
(OpenVMS VAX Version 6.1 and Version 6.2 only), set this
parameter equal to an ASCII 0. If the gateway node name
is not supplied, the APPC/LU6.2 Programming Interface
assumes you are requesting a connection by means of
OpenVMS SNA.

SNALU62$K_
ACCNAME

The gateway access name used in setting up the session.
This parameter is an ASCII string of from 1 to 8 characters.
If this parameter is omitted or if the access name definition
does not include all the required information, access
information must be provided by means of the remaining
parameter pairs described in this table. For complete
information on access names, see the DIGITAL SNA Peer
Server Management and DIGITAL SNA Domain Gateway
Management.

SNALU62$K_CIRCUIT The gateway circuit name. This parameter is an ASCII
string of the form dev-n; for example, SDP-1 for the DX24
Gateway, LC-0 for the DECSA Gateway, or SNA-0 for
OpenVMS/SNA.

SNALU62$K_SESADDR The gateway secondary logical unit (SLU) address. This
parameter is an integer in the range of 1 through 255.
Although this attribute is an integer value, the APPC/LU6.2
Programming Interface requires that the parameter be
passed by descriptor. Most languages will default to passing
the parameter by reference, so you must override the default
mechanism.

SNALU62$K_PLU The VTAM name for the primary logical unit (PLU). This
parameter is an ASCII string of from 1 to 8 characters.

SNALU62$K_LOGON A logon mode table entry name defined at the remote IBM
host. This parameter is an ASCII string of from 1 to 8
characters.

SNALU62$K_USER_
DATA

A string up to 128 characters long that may be needed to
complete the logon to the PLU. This character string is not
translated to EBCDIC.

G.1.1 Status Codes
The SNALU62$DEFINE procedure can return the following status codes:

• SNALU62$_OK

• SNALU62$_PARERR

APPC/LU6.2 Programming Interface Compatibility Features G–3



• SNALU62$_UNSUC

G.1.2 State Transition
None.

G.2 Status Codes
The following list contains obsolete error messages that a procedure returns in
the status vector.

UDEFPAR, unrecognized DEFINE parameter (parameter parameter number,
value parameter id)
Explanation: The indicated parameter has the invalid value shown by the
message.
User Action: Correct the call to SNALU62$DEFINE.

UFUNCOD, unrecognized DEFINE function code (value number)
Meaning: The function code supplied on the SNALU62$DEFINE
procedure is invalid.
User Action: Supply a valid function code to SNALU62$DEFINE.

G.3 Obsolete Definitions for the APPC/LU6.2 Programming
Interface

The following table presents symbols, values and meanings you may have used
with early versions of the APPC/LU6.2 Programming Interface.

Symbol Value Meaning

SNALU62$K_ACCNAME 17 Gateway access name

SNALU62$K_CIRCUIT 18 Gateway circuit name

SNALU62$K_DEFINE_
LUNAME

13 Define an LUNAME

SNALU62$K_GWYNODE 16 SNA gateway nodename

SNALU62$K_LU_NAME 15 Local LUNAME being defined

SNALU62$K_PLU 20 The VTAM name for the primary logical
unit

SNALU62$K_SESADDR 19 Gateway secondary logical unit address

G–4 APPC/LU6.2 Programming Interface Compatibility Features



Symbol Value Meaning

SNALU62$K_USER_DATA 22 A string of up to 128 EBCDIC characters

APPC/LU6.2 Programming Interface Compatibility Features G–5





H
Status Codes

Status messages that are returned by the DIGITAL SNA APPC/LU6.2
Programming Interface for OpenVMS, as well as the lower layers of SNA
software, are displayed at your terminal in the following format:

%facility-l-ident, text

where

facility is the SNALU62$ or the SNA$ component name. A percent sign
(%) prefixes the first message displayed on your screen, and a
hyphen (-) prefixes each subsequent message.

l is the severity level indicator. It has one of the following values:

S indicates success. The system performed your request; your
procedure completed without failure.

I indicates information. The system performed your request;
your command completed without failure. Information about the
circumstances under which the operation completed is included.

W indicates warning. Warning messages indicate that the
command may have performed part, but not all, of your request.
You need to verify the command or program output.
E indicates error. Error messages are top-level errors that a
procedure returns to the status vector. They indicate conditions
that prevent a procedure from completing successfully. Additional
suberror messages may be displayed explaining why the operation
failed.

F indicates fatal. Fatal messages indicate that the system cannot
continue execution of the request. You cannot recover from a fatal
error. You must try to correct the condition that is causing the
error.

ident is an abbreviation of the message text.

text is the explanation of each status code.

Status Codes H–1



Both the facility name and severity level indicator have been removed from the
messages listed in this appendix. Messages are listed alphabetically by ident.
A status message is displayed on your screen as follows:

%SNALU62$-E-ALLBLK, failed to allocate internal data structure

The following status messages are returned by the DIGITAL SNA APPC/LU6.2
Programming Interface:

ABNSESTER, session terminated abnormally
Facility: SNA$
Explanation: Either the link between the gateway and IBM was lost or
IBM deactivated the physical unit (PU) or the line leading to the gateway.
User Action: Determine why the link was lost. Retry when the connection
to IBM returns.

ACCINTERR, Gateway detected an error in the gateway access routines
Facility: SNA$
Explanation: A fatal error has occurred.
User Action: Copy the error messages that appear on your screen at this
time and report the problem to your system manager.

ALLBLK, failed to allocate internal data structure
Facility: SNALU62$
Explanation: The APPC/LU6.2 Programming Interface failed to allocate
memory for an internal data structure. The most likely reason is that no
free virtual memory was available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory using LIB$SFREE1_DD or STR$FREE1_DX.
If your process uses a lot of virtual memory, you may need to increase
the PGFLQUOTA parameter for that user by means of the AUTHORIZE
utility. See the appropriate OpenVMS System Management Guide for your
system for details on how to use this utility.

ALLERR, conversation could not be allocated
Facility: SNALU62$
Explanation: The remote LU rejected the allocation request. Subsequent
error messages identify specific errors. The error may be returned on
procedure calls other than SNALU62$ALLOCATE because of the way
the APPC/LU6.2 Programming Interface uses internal buffers (For more

H–2 Status Codes



information about this, see the IBM Transaction Programmer’s Reference
Manual for LU Type 6.2, Order No. GC30-3084).
User Action: Examine the subsequent error messages, check and adjust
OpenVMS transaction program logic, then rerun the program.

APPNOTSPE, IBM application name was not specified
Facility: SNA$
Explanation: In the connect request, you did not specify the IBM
application name, and the access name that you used did not supply one
either.
User Action: The IBM application must be either explicitly supplied in
the parameter list or implicitly supplied through the access name.

ASIINV, access security information is invalid
Facility: SNALU62$
Explanation: The user is not allowed to access the transaction program.
User Action: Have your IBM system manager add a user ID, password,
and profile to the list of allowable users. Check the call to
SNALU62$ALLOCATE to see if it has specified the correct conversation
level security, user ID, password, and profile.

ASNEG, bind image was negotiated
Facility: SNALU62$
Explanation: The bind image was negotiated; the session was activated
as specified.
User Action: No response required. Successful completion code.

ASSPEC, bind image accepted as specified
Facility: SNALU62$
Explanation: The bind image was accepted; the session was activated
after negotiation.
User Action: No response required. Successful completion code.

BACKOUT, backout
Facility: SNALU62$
Explanation: The transaction program has backed out of the
conversation.
User Action: Examine the subsequent error messages, check and adjust
OpenVMS transaction program logic, then rerun the program.

Status Codes H–3



BIDREJ, Bid request was rejected
Facility: SNALU62$
Explanation: The IBM host has rejected the bid request of the OpenVMS
transaction.
User Action: Retry the SNALU62$ALLOCATE request. This error can
only occur if the OpenVMS transaction is the contention loser. Refer to the
polarity parameter for SNALU62$ALLOCATE.

BINSPEUNA, the BIND image specified unacceptable values
Facility: SNA$
Explanation: The gateway rejected the BIND request image.
User Action: Run a trace to find out why the gateway rejected the BIND
request. The IBM application could be specifying too large an outbound
RU or an illegal function management (FM) or transmission services (TS)
profile, or it could have sent a pacing value that was out of bounds (see the
appropriate installation guide for your transport).

BUFSHO, data length specified exceeds size of supplied buffer
Facility: SNALU62$
Explanation: The length parameter on the SNALU62$SEND_DATA
procedure is greater than the size of the buffer specified by the data
parameter.
User Action: Correct the call to the SNALU62$SEND_DATA procedure.

BUGCHK, internal consistency failure
Facility: SNALU62$
Explanation: An internal software error has been detected.
User Action: The appearance of this error message implies that the
APPC/LU6.2 Programming Interface is operating abnormally. To take
corrective action, copy all the messages associated with the fatal error code
and take them to your DIGITAL system manager, who will decide what
action to take. If you still cannot solve your problem, submit a Software
Performance Report (SPR), or call the DIGITAL support hotline.

H–4 Status Codes



CONREQREJ, connect request rejected by IBM host sense code IBM sense
code
Facility: SNA$
Explanation: The IBM host rejected the connect request for the reason
given in the sense code.
User Action: Determine the meaning of the sense code from the IBM
documentation and take the appropriate action.

CONTMIS, conversation type mismatch
Facility: SNALU62$
Explanation: The remote LU rejected the conversation allocation request
because the remote IBM host transaction program does not support the
requested conversation type. Conversation types are mapped and basic.
User Action: Specify a conversation type on the SNALU62$ALLOCATE
procedure that the remote IBM host transaction program does support and
reissue the procedure.

DEABPR, deallocate abend program
Facility: SNALU62$
Explanation: The remote IBM host transaction program has aborted,
thereby ending the conversation. Subsequent messages identify specific
errors. The conversation is in deallocate state.
User Action: Examine subsequent error messages, then see your IBM
systems programmer for more information. You can now deallocate the
conversation locally.

DEABSVC, deallocate abend services
Facility: SNALU62$
Explanation: An LU services error has occurred, thereby ending the
conversation. If the conversation was in receive state when the deallocate
was issued, information sent by SNALU62$SEND_DATA is purged. The
conversation is in deallocate state.
User Action: Examine subsequent error messages, then see your IBM
systems programmer for more information. You can now deallocate the
conversation locally.

Status Codes H–5



DEABTIM, deallocate abend timer
Facility: SNALU62$
Explanation: The remote IBM host transaction program has ended
(aborted or timed-out) the conversation. If the conversation at the
OpenVMS transaction program was in receive state when the deallocate
was issued, information sent by SNALU62$SEND_DATA is purged. The
conversation is in deallocate state.
User Action: Examine subsequent error messages, then see your IBM
systems programmer for more information. You can now deallocate the
conversation locally.

DEALNOR, deallocate normal
Facility: SNALU62$
Explanation: The remote IBM host transaction program has ended
the conversation under normal circumstances. The conversation is in
deallocate state.
User Action: No response required.

EVTFLG, failed to allocate an event flag
Facility: SNALU62$
Explanation: The APPC/LU6.2 Programming Interface could not allocate
an event flag.
User Action: Adjust your OpenVMS transaction program code to release
all the event flags that it allocates. Event flags are allocated using
LIB$GET_EF and deallocated using LIB$FREE_EF.

EXIT, Gateway server task terminated
Facility: SNALU62$
Explanation: The cooperating software in the SNA gateway has failed.
User Action: Look for log messages on the gateway operator’s console
(console remote for DECSA). (See your DIGITAL system manager or
DIGITAL network manager for more information.)

FAIALLBUF, failed to allocate memory for a buffer
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface failed to allocate
dynamic memory for an internal buffer. The most likely reason is that no
free memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory using LIB$SFREE1_DD or STR$FREE1_DX.

H–6 Status Codes



FAIALLCTX, failed to allocate memory for a context block
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface failed to allocate
memory for an internal context block. The most likely reason is that no
free memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory using LIB$SFREE1_DD or STR$FREE1_DX.

FAIASSCHA, failed to assign a DECnet channel
Facility: SNA$
Explanation: The error indicates an abnormal DECnet condition.
User Action: Examine the subsequent DECnet error messages and report
the problem to your system manager.

FAIBLDNCB, failed to build DECnet network connect block
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface failed to build a
DECnet network connect block in order to communicate with the gateway.
User Action: Examine the subsequent error messages for more
information.

FAICONMBX, failed to convert mailbox name
Facility: SNA$
Explanation: The APPC LU6.2 Programming Interface could not create a
mailbox for establishing a logical link.
User Action: Examine subsequent error messages to find the reason. The
most likely additional message is SYSTEM-F-NOPRIV, which indicates
no privilege for attempted operation. This means that you lack TMPMBX
privilege.

FAICOPBIN, failed to copy BIND request image into caller’s buffer
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface could not copy the
entire BIND request image into the BIND request buffer provided by the
application.
User Action: Make sure you specify a BIND buffer that is large enough to
receive the largest BIND the IBM application will send you.

Status Codes H–7



FAIESTLIN, failed to establish a DECnet link to the gateway
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface cannot connect to
the gateway.
User Action: Examine the subsequent DECnet error messages and take
appropriate action.

FATINTERR, internal error in gateway access routines
Facility: SNA$
Explanation: A fatal error has occurred.
User Action: The appearance of this error message implies that the
APPC/LU6.2 Programming Interface is operating abnormally. To take
corrective action, copy all the messages associated with the fatal error code
and take them to your DIGITAL system manager, who will decide what
action to take. If you still cannot solve your problem, submit a Software
Performance Report (SPR), or call the DIGITAL support hotline, if you
have the services.

FMHNOT, FMH data is not supported
Facility: SNALU62$
Explanation: Data records containing function management headers
(FMHs) were issued to a remote IBM host transaction program that does
not support FM header data. Information sent by SNALU62$SEND_DATA
is purged. The conversation is in send state.
User Action: Remove the fmh data parameter and rerun the OpenVMS
transaction program.

FUNCABORT, access routine function aborted
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface procedure did not
complete successfully and the session has been or is being terminated.
User Action: Ignore the error. You have or will get notification of an
asynchronous event that will tell you why the session has terminated.

H–8 Status Codes



FUNNOTVAL, function not valid with port in current state
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface is invalid with the
port in its current state. You issued APPC/LU6.2 Programming Interface
calls in the wrong order — for example, an SNA$TRANSMIT before an
SNA$ACCEPT.
User Action: Correct the code in your application.

GATCOMERR, error communicating with gateway node
Facility: SNALU62$, SNA$
Explanation: A fatal communication error has occurred with the gateway
node.
User Action: Examine the subsequent DECnet error messages and take
appropriate action.

GATINTERR, internal error in gateway node, code octal_number, subcode
octal_number
Facility: SNA$
Explanation: A fatal error has occurred.
User Action: Report the error to your system manager. Also, ensure that
the log from the gateway console is saved. It will have messages of the
form: GAS — Fatal Session Error FSE$xxx

HOSTERR, error returned from host, error_text error message received from
host
Facility: SNALU62$
Explanation: The remote LU returned an error message. The error text
is a message output by the IBM subsystem that implements the remote
LU. CICS is an example of an IBM subsystem.
User Action: See the IBM subsystem documentation for more information
on the error text.

ILLASTSTA, ASTs are disabled or an AST routine is currently in progress
Facility: SNA$
Explanation: A call was made to an APPC/LU6.2 Programming Interface
procedure either while ASTs were disabled or from within an AST routine.

Status Codes H–9



Because AST delivery is disabled, there is no way that the procedure can
complete. Therefore, the procedure has taken no action.
User Action: Change the application so that APPC/LU6.2 Programming
Interface procedures are not called from AST routines or with ASTs
disabled.

INCVERNUM, Gateway access routines are incompatible with the gateway
Facility: SNA$
Explanation: The software on the gateway is incompatible with the SNA
software on the local DECnet node.
User Action: Make sure that the correct versions of the software are
installed on both the gateway and the DECnet node.

INSGATRES, insufficient gateway resources for session establishment
Facility: SNA$
Explanation: The gateway has insufficient resources for establishing a
session. The active sessions currently in the gateway are using the total
resources available.
User Action: Wait until some of the sessions have finished, then retry.

INSRESOUR, insufficient resources to establish session
Facility: SNA$
Explanation: The APPC/LU6.2 Programming Interface could not allocate
enough system resources to establish the session.
User Action: Examine the subsequent messages for more information.

INVFILL, RECEIVE_AND_WAIT with FILL(LL) is invalid after FILL(BUFFER)
Facility: SNALU62$
Explanation: You issued an SNALU62$RECEIVE_AND_WAIT procedure
with a fill type BUFFER following an SNALU62$RECEIVE_AND_WAIT
procedure with fill type LL. You cannot issue this sequence of procedures
without issuing a call to a valid intervening procedure.
User Action: Correct the algorithm in your OpenVMS transaction
program and rerun.

H–10 Status Codes



INVGDS, invalid GDS ID sent to remote system, code hex_value
Facility: SNALU62$
Explanation: The remote LU did not understand a generalized data
stream (GDS) ID that was sent by the APPC/LU6.2 Programming Interface
on a mapped conversation. This indicates a software problem in the
APPC/LU6.2 Programming Interface or the IBM subsystem with which you
are communicating.
User Action: Ask your DIGITAL system manager to submit an SPR with
a description of the problem, an SNATRACE listing of the affected session,
and a transcription of all the error messages.

INVGWYNOD, parameter gwynode is invalid
Facility: SNA$
Explanation: You entered an invalid value in the gwynode parameter.
User Action: Examine the call that returned the error and take
appropriate action.

INVPAR, invalid value supplied for parameter_name parameter
Facility: SNALU62$
Explanation: You entered an invalid value for the parameter_name
parameter in an APPC/LU6.2 Programming Interface procedure.
User Action: Consult the documentation to determine valid parameter
values and correct the OpenVMS transaction program.

INVRECLOG, SNA$DEF_NUMREC is incorrectly defined
Facility: SNA$
Explanation: This internal logical name is set up improperly.
User Action: SNA$DEF_NUMREC is a logical name that determines
the number of receives the APPC/LU6.2 Programming Interface keeps
outstanding on the DECnet logical link. If you do not wish to use
the default value, use the DCL DEFINE command (for example,
DEFINE SNA$DEF_NUMREC 5).

Status Codes H–11



INVRES, invalid resource_id specified
Facility: SNALU62$
Explanation: You entered an invalid resource_id parameter to an
APPC/LU6.2 procedure. The resource_id for a conversation is returned
by the SNALU62$ALLOCATE procedure. This must be supplied on all
subsequent procedures issued for this conversation.
User Action: Correct the OpenVMS transaction program to supply the
correct resource_id.

INVRLST, entry number in resource_list is not a valid resource ID
Facility: SNALU62$
Explanation: The nth entry in the resource_list specified to the
SNALU62$WAIT is not a valid resource ID.
User Action: Correct the OpenVMS transaction program to supply a valid
list of resource IDs.

INVSES, invalid session_id specified
Facility: SNALU62$
Explanation: You entered an incorrect session_id parameter to an
APPC/LU6.2 procedure. The session_id for a session is returned by either
the SNALU62$ACTIVATE_SESSION or
SNALU62$GET_ATTRIBUTES procedures.
User Action: Correct the OpenVMS transaction program to supply the
correct session_id.

LOGUNIDEA, SSCP has deactivated the session
Facility: SNA$
Explanation: The IBM system services control point (SSCP) has
deactivated the session by sending a DACTLU command. Some
applications deactivate sessions by deactivating the logical unit rather than
by sending an UNBIND command.

LUNAMAL, LU_NAME lu_name is already defined
Facility: SNALU62$
Explanation: SNALU62$DEFINE_REMOTE was called to define an LU
name that already exists.
User Action: Correct the OpenVMS transaction program. Use
SNALU62$DEFINE_REMOTE to define an LU name that does not already
exist. You can undefine existing LU names with

H–12 Status Codes



SNALU62$DELETE by supplying the LU name and specifying no
attributes.

LUNAMUN, associated LU_NAME has been undefined
Facility: SNALU62$
Explanation: An SNALU62$GET_ATTRIBUTES procedure was issued for
a conversation on an SNA session whose LU name has been undefined.
User Action: Do not undefine the LU name if you want to issue a
subsequent SNALU62$GET_ATTRIBUTES procedure.

MAPEFAI, map execution failure
Facility: SNALU62$
Explanation: Reports an error returned by the remote IBM host
transaction program or CICS indicating that the LU could not map the
data record based on the map name.
User Action: See your IBM transaction programmer and determine why
the mapping function failed.

MAPNFOU, map name not found
Facility: SNALU62$
Explanation: Reports an error returned by the remote IBM host
transaction program or CICS indicating that the LU could not map the
data record because the map name is unknown to the LU.
User Action: See your IBM transaction programmer and determine the
correct map name.

MAXSESACT, maximum number of sessions already active
Facility: SNA$
Explanation: You have already established 120 sessions, the maximum
number allowed.
User Action: Make sure you have called the disconnect procedure for each
session that has terminated.

Status Codes H–13



MUCBALL, failed to allocate an MUCB
Facility: SNALU62$
Explanation: The APPC/LU6.2 Programming Interface failed to allocate
memory for an internal data structure (message unit control block). The
most likely reason is that no free virtual memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory using LIB$SFREE1_DD or STR$FREE1_DX.
If your process uses a lot of virtual memory, you may need to increase the
PGFLQUOTA parameter for that user with the AUTHORIZE utility. See
the appropriate OpenVMS System Management Guide for your system for
details on how to use this utility.

MUTORCVCHK, MU generated a receive check, sense code IBM_sense_code
Facility: SNA$
Explanation: The message unit returned a receive check sense code.
User Action: Consult your IBM manual for the sense code.

MUTOSENDCHK, MU generated a send check, sense code IBM_sense_code
Facility: SNA$
Explanation: The message unit returned a send check sense code.
User Action: Consult your IBM manual for the sense code.

NDAVAIL, no data is available
Facility: SNALU62$
Explanation: There is no data available for SNALU62$RECEIVE_
IMMEDIATE.
User Action: Call the SNALU62$RECEIVE_IMMEDIATE* procedure
until data is available, or the SNALU62$_OK status code is returned.

NETSHUT, network node is not accepting connects
Facility: SNALU62$
Explanation: The gateway node is not accepting requests to establish a
DECnet logical link necessary to support an SNA session. This is probably
because the gateway has not finished its initialization sequence.
User Action: Wait a while and try again.

H–14 Status Codes



NO_GWYNOD, SNA$DEF_GATEWAY is undefined and gwynode was not
specified
Facility: SNA$
Explanation: No gateway node was specified and the logical name
SNA$DEF_GATEWAY was not defined.
User Action: Either supply an explicit gateway node specification or
define SNA$DEF_GATEWAY using the OpenVMS DEFINE command.

NO_SUCACC, access name not recognized by gateway node
Facility: SNA$
Explanation: You specified a nonexistent access name.
User Action: Check with your system manager to determine which access
name you need.

NO_SUCPU, PU name not recognized by gateway node
Facility: SNA$
Explanation: Either you or the access name you used specified a
nonexistent physical unit.
User Action: Check with your system manager to determine which PU
name or access name you need.

NO_SUCSES, session address not recognized by gateway node
Facility: SNA$
Explanation: Either you or the access name you used specified a
nonexistent session address.
User Action: Check with your system manager to determine which
session address or access name you need.

NOPOST, posting is not active for any of the specified conversations
Facility: SNALU62$
Explanation: SNALU62$WAIT was called when there were no
conversations in which posting was active for the SNALU62$WAIT call.
User Action: Remove the call to SNALU62$WAIT and use
SNALU62$RECEIVE_AND_WAIT instead, or turn posting on for the
conversations that require it, by issuing a
SNALU62$POST_ON_RECEIPT verb prior to the call to SNALU62$WAIT.

Status Codes H–15



NOSYNC, conversation was allocated with SYNC_LEVEL(NONE)
Facility: SNALU62$
Explanation: SNALU62$CONFIRM was called for a conversation that
was allocated with a synchronization level of NONE.
User Action: Do not issue SNALU62$CONFIRM for conversations whose
synchronization level is NONE.

NOTACT, SNA session no longer active
Facility: SNALU62$
Explanation: The SNA session supporting the conversation has been
terminated. Subsequent error messages will give more detail.
User Action: Examine the subsequent error messages.

NOTEST, failed to establish SNA session
Facility: SNALU62$
Explanation: The conversation could not be allocated because of failure
to establish the SNA session. Subsequent error messages will give more
detail.
User Action: Examine the subsequent error messages.

NOTSUP, unsupported value supplied for parameter_name parameter
Facility: SNALU62$
Explanation: A value was supplied for a parameter that is not supported
by this implementation.
User Action: Supply a supported value for the parameter.

OK, normal successful completion
Facility: SNALU62$
Explanation: Normal completion.
User Action: No response required.

OUTPAR, error writing to parameter_name parameter
Facility: SNALU62$
Explanation: A procedure failed to complete because the APPC/LU6.2
Programming Interface could not write into the memory location specified
by the APPC/LU6.2 Programming Interface for the parameter.
User Action: Correct the OpenVMS transaction program so that the
parameter storage is in writable memory.

H–16 Status Codes



PARERR, parameter error, routine name
Facility: SNALU62$
Explanation: A parameter error was detected when the named routine
was called. The conversation state remains unchanged. Subsequent error
messages will provide more information.
User Action: Examine the subsequent error messages, adjust OpenVMS
transaction program logic, then rerun the program.

PARTREC, logical record only partially sent
Facility: SNALU62$
Explanation: An error was returned to SNALU62$CONFIRM because the
last SNALU62$SEND issued did not finish with a full record (LL).
User Action: Issue another SNALU62$SEND and specify the rest of the
record before you issue the SNALU62$CONFIRM.

PIPNALL, PIP data must not be specified
Facility: SNALU62$
Explanation: The remote LU rejected the conversation allocation request
because Program Initialization Parameters (PIP data) were specified on
the SNALU62$ALLOCATE procedure. The remote IBM host transaction
program has no PIP variables defined.
User Action: Eliminate PIP data on the SNALU62$ALLOCATE
procedure. Request that your IBM system manager system generate your
host system to accept PIP data.

PLUPROVIO, PLU violated SNA protocol rules, sense code IBM_sense_code
Facility: SNA$
Explanation: The primary logical unit violated SNA protocol rules.
User Action: Consult your IBM manual for the sense code.

PRERNTR, program error no truncate
Facility: SNALU62$
Explanation: The remote IBM host transaction program has returned
an error message on the SNALU62$RECEIVE_AND_WAIT procedure
while the conversation was in send state. A complete record was sent; no
truncation occurred. The conversation is in receive state.
User Action: Consult the IBM systems programmer for more information.
Also see the IBM Transaction Programmer’s Reference Manual for LU Type
6.2, Order No. GC30-3084, and the System Network Architecture Format

Status Codes H–17



and Protocol Reference Manual: Architecture Logic for LU Type 6.2, Order
No. SC30-3269.

PRERPU, program error purging
Facility: SNALU62$
Explanation: The remote IBM host transaction program has returned
an error message while the conversation was in receive or confirm state.
Information may have been purged. The conversation is now in receive
state.
User Action: Consult the IBM systems programmer for more information.
Also see the IBM Transaction Programmer’s Reference Manual for LU Type
6.2, Order No. GC30-3084 and the System Network Architecture Format
and Protocol Reference Manual: Architecture Logic for LU Type 6.2, Order
No. SC30-3269.

PRERTR, program error truncate
Facility: SNALU62$
Explanation: The remote IBM host transaction program has returned an
error message on the SNALU62$RECEIVE_AND_WAIT procedure while
the conversation was in send state. A logical record was truncated. The
conversation remains in receive state.
User Action: Consult the IBM systems programmer for more information.
Also see the IBM Transaction Programmer’s Reference Manual for LU Type
6.2, Order No. GC30-3084, and the System Network Architecture Format
and Protocol Reference Manual: Architecture Logic for LU Type 6.2, Order
No. SC30-3269.

PROUNBREC, IBM application detected a protocol error, sense code %X’IBM
sense code’
Facility: SNA$
Explanation: The IBM application sent an UNBIND request with the
indicated sense code. It did this because the application detected the
protocol error specified by the code.
User Action: Determine the meaning of the sense code from the IBM
documentation and take the appropriate action.

H–18 Status Codes



PSWLONG, locally defined session level password is too long
Facility: SNALU62$
Explanation: Error code. The LU-to-LU password can be a maximum of
8 bytes in length.
User Action: Consult your IBM system manager for the correct LU-to-LU
password. Correct the password in the SNALU62$DEFINE_REMOTE call.

PSWNDEF, local session level password was not defined
Facility: SNALU62$
Explanation: Error code. Your session level security was defined in the
BIND from the remote LU. No LU-to-LU password ID defined.
User Action: Supply a password to the lu_lu_password parameter in the
SNALU62$DEFINE_REMOTE procedure call.

PUNOTAVA, pu has not been activated
Facility: SNA$
Explanation: BM.
User Action: Ask the VTAM operator to check the line and physical
unit (PU) from the IBM host and activate them if necessary. If they are
activated, there may be a hardware problem between the gateway and the
IBM host.

PUNOTSPE, PU name was not specified
Facility: SNA$
Explanation: In the connect request you did not specify a physical unit,
and the access name that you used did not supply one either.
User Action: The circuit name must be either explicitly supplied in the
parameter list or implicitly supplied through the access name.

RESFNO, resource failure no retry
Facility: SNALU62$
Explanation: The conversation has been terminated because of a protocol
error in the SNA layer. Subsequent messages will identify specific errors.
The conversation is in deallocate state.
User Action: Ask your DIGITAL system manager to submit an SPR with
a description of the problem, an SNATRACE listing of the affected session,
and a transcription of all the error messages.

Status Codes H–19



RESFRET, resource failure retry
Facility: SNALU62$
Explanation: This signifies that the conversation has been temporarily
terminated, usually because of a communication failure. The OpenVMS
transaction program can retry the conversation. Subsequent messages will
provide more information. The conversation is in deallocate state.
User Action: Retry the conversation at a later time.

SESIN_USE, session address is already in use
Facility: SNA$
Explanation: Someone else is using this session address.
User Action: Retry using a different session address. If you are unsure of
a valid choice, ask your system manager.

SESNOTAVA, session address has not been activated
Facility: SNA$
Explanation: The SLU has not been activated from the IBM side.
User Action: Ask the IBM VTAM operator to check the logical unit from
the IBM host and activate it if necessary.

SESSECF, LU-LU session level security failed
Facility: SNALU62$
Explanation: The remote LU cannot be recognized with the LU-to-LU
password defined on the local LU.
User Action: Consult your IBM system manager for the correct LU-to-LU
password. Correct the password in the SNALU62$DEFINE_REMOTE call.

SNAASSFAI, failed to assign an I/O channel to _SNA0
Facility: SNA$
Explanation: You did not specify a gateway node name when using the
SNA gateway.
User Action: Specify a gateway node name for the gateway you want to
use.

H–20 Status Codes



STAERR, LU6.2 verb procedure_name invalid with conversation in current
state
Facility: SNALU62$
Explanation: The OpenVMS transaction program attempted to issue
another APPC/LU6.2 Programming Interface procedure while one is in
process. The conversation state remains unchanged.
User Action: Adjust OpenVMS transaction program logic and rerun the
program.

STRALL, failed to allocate memory for dynamic string
Facility: SNALU62$
Explanation: The APPC/LU6.2 Programming Interface failed to allocate
memory for an internal data structure. The most likely reason is that no
free virtual memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory using LIB$SFREE1_DD or
STR$FREE1_DX. If your process uses a lot of virtual memory, you may
need to increase the PGFLQUOTA parameter for that user with the
AUTHORIZE utility. See the appropriate OpenVMS System Management
Guide for your system for details about using this utility.

STRCOP, failed to copy string
Facility: SNALU62$
Explanation: The APPC/LU6.2 Programming Interface failed to copy data
from one area to another. The most likely reason is that no free virtual
memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory using LIB$SFREE1_DD or
STR$FREE1_DX. If your process uses a lot of virtual memory, you may
need to increase the PGFLQUOTA parameter for that user with the
AUTHORIZE utility. See the appropriate OpenVMS System Management
Guide for your system for details about using this utility.

SUBFLD, invalid subfield in BIND Image Structured Data, value hex value
Facility: SNALU62$
Explanation: A BIND image was received with an invalid subfield in one
of the structured data fields. Valid values for LU6.2 are 0, 2, 3, 4, and 5.
This message indicates an SNA protocol problem.
User Action: If the values are 0, 2, 3, 4, or 5, ask your system manager to
submit an SPR with a description of the problem, an SNATRACE listing of

Status Codes H–21



the affected session, and a transcription of all the error messages. If the
values differ from these, the problem is on the IBM side; see your IBM
systems programmer.

SVCENTR, service error no truncate
Facility: SNALU62$
Explanation: The remote IBM host transaction program has returned
an error message on the SNALU62$RECEIVE_AND_WAIT procedure
while the conversation was in send state. A complete record was sent, no
truncation occurred. The conversation is in receive state.
User Action: Consult your IBM systems programmer to determine the
reason for the error. Also see the IBM Transaction Programmer’s Reference
Manual for LU Type 6.2, Order No. GC30-3084, and the System Network
Architecture Format and Protocol Reference Manual: Architecture Logic for
LU Type 6.2, Order No. SC30-3269.

SVCERPU, service error purging
Facility: SNALU62$
Explanation: The remote IBM host transaction program sent an
error message while the conversation was in receive or confirm state.
Information may have been purged. The conversation is in receive state.
User Action: Consult your IBM systems programmer to determine the
reason for the error. Also see the IBM Transaction Programmer’s Reference
Manual for LU Type 6.2, Order No. GC30-3084, and the System Network
Architecture Format and Protocol Reference Manual: Architecture Logic for
LU Type 6.2, Order No. SC30-3269.

SVCERTR, service error truncate
Facility: SNALU62$
Explanation: The remote IBM host transaction program sent an error
message on the SNALU62$RECEIVE_AND_WAIT procedure while the
conversation was in send state. A logical record was truncated. The
conversation remains in receive state.
User Action: Consult your IBM systems programmer to determine the
reason for the error. Also see the IBM Transaction Programmer’s Reference
Manual for LU Type 6.2, Order No. GC30-3084, and the System Network
Architecture Format and Protocol Reference Manual: Architecture Logic for
LU Type 6.2, Order No. SC30-3269.

H–22 Status Codes



SYNNSUP, requested sync level not supported by remote program
Facility: SNALU62$
Explanation: The remote LU rejected the conversation allocation request
because the remote IBM host transaction program does not support the
synchronization level specified in the SNALU62$ALLOCATE procedure.
User Action: Specify a synchronization level that is supported by the
remote IBM host transaction program.

TPNALDF, TP_NAME tp_name is already defined
Facility: SNALU62$
Explanation: SNALU62$DEFINE_TP was called to define a TP name
that already exists.
User Action: Correct the OpenVMS transaction program. Use
SNALU62$DEFINE_TP to define a TP name that does not already
exist. You can undefine existing TP names with SNALU62$DELETE by
supplying the TP name and specifying no attributes.

TPNLON, TPN is too long
Facility: SNALU62$
Explanation: The transaction program name (TPN) specified on the
SNALU62$ALLOCATE procedure is too long. A TPN name must be no
more than 64 characters in length.
User Action: Correct the OpenVMS transaction program to specify a TPN
name of fewer than 64 characters.

TPNNREC, TPN not recognized by remote system
Facility: SNALU62$
Explanation: The remote LU rejected the conversation allocation
request because the transaction program name (TPN) specified on the
SNA$ALLOCATE procedure was not recognized by the remote LU.
User Action: Specify the correct TPN or ask your IBM systems
programmer to configure the remote IBM host transaction program
correctly on the IBM system.

Status Codes H–23



TPNNRET, remote TPN is not available, no retry possible
Facility: SNALU62$
Explanation: The conversation allocation request was rejected because
the remote LU could not start the requested transaction program (TPN).
This condition must be corrected before you retry.
User Action: See the IBM systems programmer to determine the reason
for the problem.

TPNRET, remote TPN is not available, retry later
Facility: SNALU62$
Explanation: The conversation allocation request was rejected because
the remote LU could not start the requested remote IBM host transaction
program (TPN). This condition is transient.
User Action: Reissue the conversation allocation request at a later time.

UNABD0, unacceptable BIND image, byte number field name field_name
Facility: SNALU62$
Explanation: An SNA BIND image was received with the indicated
invalid field. Either you are using an LU that is not defined on the
IBM system for an LU6.2 type session or the LU has been incorrectly
configured.
User Action: Have your IBM systems programmer define the LU for
LU6.2 use. See the DECnet SNA Gateway-CT Guide to IBM Parameters or
the DECnet SNA Gateway-ST Guide to IBM Parameters for more details.

UNABD1, unacceptable BIND image, byte number, bit number, field name
field_name
Facility: SNALU62$
Explanation: An SNA BIND image was received with the indicated
invalid field. Either you are using an LU that is not defined on the
IBM system for an LU6.2 type session or the LU has been incorrectly
configured. Note that the bit numbers are in IBM notation. That is, the
most significant bit in a byte is bit 0; the least significant is bit 7.
User Action: Have your IBM systems programmer define the LU for
LU6.2 use. See the DECnet SNA Gateway-CT Guide to IBM Parameters or
the DECnet SNA Gateway-ST Guide to IBM Parameters for more details.

H–24 Status Codes



UNABD2, unacceptable BIND image, byte number, bits number, field name
field_name
Facility: SNALU62$
Explanation: An SNA BIND image was received with indicated invalid
field. Either you are using an LU that is not defined on the IBM system
for an LU6.2 type session or the LU has been incorrectly configured. Note
that the bit numbers are in IBM notation. That is, the most significant bit
in a byte is bit 0; the least significant is bit 7.
User Action: Have your IBM systems programmer define the LU for
LU6.2 use. See the DECnet SNA Gateway-CT Guide to IBM Parameters, or
the DECnet SNA Gateway-CT Guide to IBM Parameters for more details.

UNABLELUCB, unable to obtain lucb
Facility: SNA$
Explanation: Insufficient virtual memory.
User Action: Increase virtual memory.

UNABLEMUCB, unable to obtain mucb
Facility: SNA$
Explanation: Insufficient virtual memory.
User Action: Increase virtual memory.

UNABLESCB, unable to obtain scb
Facility: SNA$
Explanation: Insufficient virtual memory.
User Action: Increase virtual memory.

UNARAN, needed a value in range hex_value to hex_value, received hex_value
Facility: SNALU62$
Explanation: A value was received in an SNA BIND image that was
out of range. The particular BIND image field in error is reported in a
preceding message. Either you are using an LU that is not defined on
the IBM system for an LU6.2 type session or the LU has been incorrectly
configured.
User Action: Have your IBM systems programmer define the LU for
LU6.2 use. See the DECnet SNA Gateway-CT Guide to IBM Parameters, or
the DECnet SNA Gateway-ST Guide to IBM Parameters for more details.

Status Codes H–25



UNAVAL, expected hex_value, received hex_value
Facility: SNALU62$
Explanation: An invalid value was received in an SNA BIND image. The
particular BIND image field in error is reported in a preceding message.
Either you are using an LU that is not defined on the IBM system for an
LU6.2 type session or the LU has been incorrectly configured.
User Action: Have your IBM systems programmer define the LU for
LU6.2 use. See the DIGITAL SNA Gateway Guide to IBM Parameters for
more details.

UNBINDREC, UNBIND request received from IBM application
Facility: SNA$
Explanation: The IBM application has terminated the session by sending
a normal UNBIND RU.
User Action: Determine the meaning from the IBM documentation and
take the appropriate action.

UNDTPN, TP_NAME tp_name is not defined
Facility: SNALU62$
Explanation: SNALU62$DELETE was called to undefine a TP name that
does not exist.
User Action: Correct the OpenVMS transaction program that deletes a
TP name that does exist.

UNLUNAM, LU_NAME lu_name is not defined
Facility: SNALU62$
Explanation: SNALU62$DELETE was called to undefine an LU name
that does not exist.
User Action: Correct the OpenVMS transaction program that deletes an
LU name that does exist.

UNSUC, verb did not execute successfully
Facility: SNALU62$
Explanation: The APPC/LU6.2 procedure did not execute successfully.
The conversation state remains unchanged. Subsequent messages will
provide more detail.
User Action: Correct errors pointed out in subsequent error messages.

H–26 Status Codes



UNUUNBREC, UNBIND of type hex_type received from IBM application
Facility: SNA$
Explanation: The IBM application sent the specified type of UNBIND
request.
User Action: Determine the meaning of this from the IBM documentation
on the UNBIND request and take the appropriate action.

USRNACC, user does not have access to the requested resource
Facility: SNALU62$
Explanation: The remote LU denies the user access to the transaction
program. The access security information is invalid.
User Action: See your IBM system manager for access to the specified
transaction program.

Status Codes H–27





I
Problem Solving

This appendix offers solutions to problems you may encounter when using the
APPC/LU6.2 Programming Interface. The following table lists some common
problems. Each problem and its solution then begin a new page.

Problem Solving I–1



Problem
Number Symptom

1 You get compile time errors with your APPC/LU6.2 Programming
Interface transaction program.

2 The linker indicates that the APPC/LU6.2 Programming Interface
symbols in your program are not defined.

3 You receive an error message stating that a particular parameter is
invalid.

4 You receive an error message stating that the contents of a
particular parameter are faulty.

5 You successfully established a session but you cannot request the
required CICS transaction program.

6 You receive the SNALU62$_STAERR error code from APPC/LU6.2
Programming Interface procedures.

7 You receive a BUGCHECK error while your application is running.

8 Your application hangs; that is, it enters either the LEF or MWAIT
state.

9 You receive the secondary error code SNALU62$_HOSTERR
followed by an IBM error code.

I–2 Problem Solving



Problem 1
You get compile time errors with your APPC/LU6.2 Programming Interface
transaction program.

Solution:
This problem could result from one of the following syntax errors:

• Spelling errors in your code

• Incorrect use of definitions
Make sure you include one of the following definition files from the
directory SYS$LIBRARY:

SNALU62DF.ADA
SNALU62DF.BAS
SNALU62DF.FOR
SNALU62DF.H
SNALU62DF.LIB
SNALU62DF.MAR
SNALU62DF.PAS
SNALU62DF.PEN
SNALU62DF.PLI
SNALU62DF.R32

The method for including the definition file is language dependent. For the
exact syntax required, see the programmer’s guide for the language that
you are using.

Problem Solving I–3



Problem 2
The linker indicates that the APPC/LU6.2 Programming Interface symbols in
your program are not defined.

Solution:
Make sure that you have linked to the APPC/LU6.2 Programming Interface
shareable image section. The following command sequence produces the proper
results:

$ LINK/MAP test ,SYS$INPUT/OPTIONS Return

SYS$SHARE:SNALU62SH/SHARE Return

Ctrl/Z

$

where test is the name of your program.

I–4 Problem Solving



Problem 3
You receive an error message stating that a particular parameter is invalid.

Solution:
An invalid parameter error message may indicate that you supplied a
parameter in an incorrect form. This could result, for example, from passing
the parameter by descriptor when you meant to pass it by reference. Check
your code.

Problem Solving I–5



Problem 4
You receive an error message stating that the contents of a particular
parameter are faulty.

Solution:
See the explanation of the particular error.

I–6 Problem Solving



Problem 5
You successfully established a session but you cannot request the required
CICS transaction program.

Solution:
Check that you have translated the transaction program name (TPN) to
EBCDIC.

Problem Solving I–7



Problem 6
You receive the SNALU62$_STAERR error code from APPC/LU6.2
Programming Interface procedures.

Solution:
Add code to the OpenVMS transaction program to trace the procedures called,
the status returned and, where applicable, the values of the what_received
and rts_rec parameters. Use the information in the state transition sections
accompanying each procedure call in Chapter 4 to determine the conversation
state after each call. This tells you what the conversation state was before the
procedure that failed. You can now determine the permissible conversation
states for the procedure you want to call by using the table in Appendix D.
Correct your program logic so that the correct state matches the procedure you
want to call.

For example, in the following FORTRAN segment, the
SNALU62$DEALLOCATE procedure call fails with the SNALU62$_STAERR
error code:

STATUS = SNALU62$ALLOCATE (...)
IF (.NOT. STATUS) THEN ...
.
.
.
ENDIF
STATUS = SNALU62$DEALLOCATE (RESOURCE_ID,
STATUS_VECTOR,
%REF(SNALU62$K_LOCAL))
IF (.NOT. STATUS) THEN ...
.
.
.
ENDIF

Chapter 4 shows that the SNALU62$ALLOCATE procedure enters the send
state upon successful completion; thus, the conversation is in the send
state when the SNALU62$DEALLOCATE procedure is called. Looking at
Appendix D you can see that the SNALU62$DEALLOCATE procedure with
the type parameter set to SNALU62$K_LOCAL requires that the conversation
be in the deallocate state. In other words, the OpenVMS transaction program
cannot deallocate the conversation locally because the conversation is in the
send state. To enter the deallocate state, the remote IBM transaction procedure
must issue the deallocate request. If the OpenVMS transaction program wants
to deallocate the conversation at that point, it must set the type parameter to
one of the following:

SNALU62$K_SYNC_LEVEL

I–8 Problem Solving



SNALU62$K_FLUSH
SNALU62$K_ABEND_PROG
SNALU62$K_ABEND_SVC
SNALU62$K_ABEND_TIMER

Problem Solving I–9



Problem 7
You receive a BUGCHECK error while your application is running.

Solution:
Check to see that:

• Your application is not writing into undeclared or unallocated memory.

• You are using dynamic memory correctly; that is, allocating and
deallocating memory correctly. If you have deallocated a piece of memory,
be sure that you are not still writing to it.

If you are not using dynamic memory, report the problem with a Software
Performance Report (SPR). For information on how to report your problem,
refer to the DECnet SNA Gateway-ST Problem Solving (OpenVMS), DECnet
SNA Gateway-CT Problem Solving (OpenVMS & ULTRIX), or OpenVMS SNA
Problem Solving

I–10 Problem Solving



Problem 8
Your application hangs; that is, it enters either the LEF or MWAIT state.

Solution:
Check the size of your process quotas, particularly the ASTLM quota. Your
quotas may be too small.

Problem Solving I–11



Problem 9
You receive the secondary error code SNALU62$_HOSTERR followed by an
IBM error code.

For example, you receive the following:

%SNALU62-E-DEABPR, deallocate abend program
-SNALU62-E-HOSTERR, error returned from host

DFH2206I TRANSACTION AIBR ABEND ATCV . BACKOUT SUCCESSFUL

Solution:
The secondary SNALU62$_HOSTERR code issued by the APPC/LU6.2
Programmming Interface indicates that a problem has occurred in the remote
IBM host transaction program. The DFH error code (IBM code) provides
details about the problem the remote transaction program is having. In this
example, the problem may be the result of a lack of cooperation between the
OpenVMS and the remote IBM host transaction programs.

Look up the IBM error code in the IBM CICS/VS Version 1, Release 7,
Application Programmer’s Reference Manual (Command Level), IBM Order
No. SC33-0241, to determine what the problem is. Then use the OpenVMS
Symbolic Debugger to determine at what point in your OpenVMS transaction
program the problem occurs. Correct the problem, then recompile and
link your program. For information about the Symbolic Debugger, see
the OpenVMS Debugger Manual, previously entitled, OpenVMS Debugger
Reference Manual.

I–12 Problem Solving



J
DIGITAL SNA Access Server for Windows

NT Programming Considerations

This appendix lists the APPC interface differences you must consider when
migrating to the DIGITAL SNA Access Server for Windows NT product. For
more information about any of these issues, see the appropriate verb definition
and the introductory information in the first three chapters.

J.1 SNALU62$DEFINE_REMOTE

• The plu parameter must reference a remote LU alias on the Microsoft SNA
Server.

• The logon parameter must reference a mode name on the Microsoft SNA
Server.

• The DIGITAL SNA Access Server for Windows NT does not support the
user_data parameter.

• The pu parameter, and optionally the sesaddr parameter, specify the local
LU used on the Microsoft SNA Server. These parameters are used to create
an old-style LU name that must be defined in the Name Mapping section
of the Access Server’s configuration. In addition, the name mapping must
reference an LU6.2 LU in the Microsoft SNA Server.

• The use of the gwynode parameter is expanded to include the ability
to reference a OpenVMS logical that defines the LU6.2 Server on the
DIGITAL SNA Access Server for Windows NT.

Note

If you choose to use the DECnet transport between the APPC interface
and the DIGITAL SNA Access Server for Windows NT, you must have
DIGITAL PATHWORKS software installed on the DIGITAL SNA
Access Server for Windows NT system.)

DIGITAL SNA Access Server for Windows NT Programming Considerations J–1



• Errors in the plu, logon, and pu parameters might not be reported until
another verb, for example, the SNALU62$ACTIVATE_SESSION verb,
references the parameters.

• The access name specified in the accname parameter must reference an
access name on the Access Server that references only LU6.2 LUs. On the
older DECnet SNA Gateways, an access name could reference both LUA
LUs and LU6.2 LUs. This is not supported on the Access Server.

On the older DECnet SNA Gateways, the PU and the session address were
completely independent. That is, an access name could contain a PU (for
example, SNA-0) and a session list (for example, 1 - 10) resulting in 10
LUs (SNA-0.1 through SNA-0.10). An APPC program could specify another
PU to override the access name’s PU (for example, SNA-1) but still use the
access name’s session list resulting in 10 different LUs (SNA-1.1 through
SNA-1.10) that shared the same session address component.

Using the Access Server, the PU and session address are dependent.
Unlike the older DECnet SNA Gateways, when an APPC program
specifies another PU to override the access name’s PU (for example, SNA-1
overriding SNA-0), the LUs referenced use whatever session addresses
were defined for the new PU. For example, if SNA-1 had sessions 51
through 60 defined, using SNA-1 would reference LUs SNA-1.51 through
SNA-1.60)

J.2 SNALU62_DEFINE_TP

• The TP name must match the standard Microsoft translation table. If
a custom translation is used, the characters must be contained in the
Microsoft G translation table. See the Microsoft documentation for more
information about Microsoft translation tables.

J.3 SNALU62$ALLOCATE

• The value for the mode_name parameter must match a mode name defined
on the DIGITAL SNA Access Server for Windows NT.

• The profile parameter is not supported.

J–2 DIGITAL SNA Access Server for Windows NT Programming Considerations



J.4 SNALU62$DEALLOCATE

• On mapped conversations, all three abend types for the type parameter
are changed to the generic ABEND option supported by the Microsoft
SNA Server. The actual ABEND type returned to the remote transaction
program is indeterminate.

J.5 SNALU62$GET_ATTRIBUTES

• The DIGITAL SNA Access Server for Windows NT does not return any
value for the security_profile parameter.

DIGITAL SNA Access Server for Windows NT Programming Considerations J–3





Glossary

ABEND

Certain errors related to the execution of procedures can cause an abnormal
ending (ABEND) of the transaction program. When the LU terminates
a program because of an ABEND condition, it deallocates all active
conversations.

advanced program-to-program communication (APPC)

IBM’s generic interface that uses the LU6.2 architecture. Eventually, LU6.2
will be the common LU for all IBM products. LU6.2 provides a common
language (what IBM refers to as verbs and DIGITAL refers to as procedures)
that transaction programs call as subroutines to perform communication
functions. In advanced program-to-program communication, two cooperating
transaction programs communicate over the network in a peer-to-peer fashion.

APPC/LU6.2 Programming Interface

Shorthand for the DIGITAL SNA APPC/LU6.2 Programming Interface for
OpenVMS software that performs the LU6.2 functions on behalf of the
OpenVMS user.

AST

Asynchronous System Trap (AST) services are documented in the OpenVMS
System Services Reference Manual.

basic conversations

Conversations that require the transaction to build and interpret generalized
data stream (GDS) headers when they are used. The transaction is responsible
for error recovery and data-stream mapping. (See also conversation).

CICS

See Customer Information Control System.

Glossary–1



conversation

A short-term logical connection between two transaction programs that allows
a synchronous exchange of messages during a session. A conversation can be
of whatever duration the transaction program requires.

Customer Information Control System (CICS)

An IBM application subsystem that provides basic functions for data
communications on an IBM host.

descriptor

A data structure used in a calling procedure for passing argument types,
addresses, and other information.

distributed transaction processing

Distributed processing between transaction programs that cooperate with one
another.

Domain Gateway

Shorthand for DIGITAL SNA Domain Gateway. The DIGITAL SNA Domain
Gateway is a multiple system connection into a IBM SNA network. It is a
system of hardware and software that handles the protcol differences between
the IBM SNA network and the Digital Equipment Corportation DIGITAL
network.

event flag

Event flags are status posting bits maintained by OpenVMS for general
programming use. In the APPC/LU6.2 Programming Interface, an event is set
to indicate asynchronous completion of a procedure.

function management header (FMH)

Control information that allows an LU to transmit a data stream to a specific
destination and control the presentation of the data at that destination. FMHs
are the means by which an LU selects the functions it wants the presentation
services components of its session partner to perform. For more information
about FMHs, see IBM’s Systems Network Architecture — Sessions Between
Logical Units, Order No. GC20-1868.

Glossary–2



Gateway

Shorthand for the DIGITAL SNA Gateway. The DIGITAL SNA Gateway is
a multiple system connection into an IBM SNA network. It is a system of
hardware and software that handles the protocol differences between the IBM
SNA network and the Digital Equipment Corporation DIGITAL network.

GDS

See generalized data stream.

generalized data stream (GDS)

A standard data stream used in LU6.2 communication. (See also basic
conversations and mapped conversations.)

I/O status vector

A mechanism that provides the OpenVMS transaction program with complete
information about error conditions. The status vector provides a top-level
completion code, and in many cases, further qualifying codes.

Intersystem Communication (ISC)

CICS method of enabling communication between separate systems by means
of programmable interfaces and SNA. (See also CICS.)

ISC

See Intersystem Communication.

logical link

A temporary conversation path established between two transaction programs
in a DIGITAL network.

logical unit (LU)

An interface through which a user (transaction program) gains access to the
SNA network. The LU provides an environment (that is, provides services
for the transaction program so it can use the network) in which transaction
programs can execute.

LU

See logical unit.

Glossary–3



mapped conversations

Conversations that take place between user-written transaction programs.
Mapped conversations transform all data being sent to another transaction into
the generalized data stream (GDS) and then restore the data to its original
form before the destination program receives it. The OpenVMS transaction
program is not aware of the GDS headers and is not responsible for using or
interpreting them.

OpenVMS SNA

VMS SNA is a single-system connection to an IBM SNA network, supported by
OpenVMS VAX Version 6.1 and Version 6.2 only.

OpenVMS transaction program

The OpenVMS application the user writes using this product.

Peer Server

Shorthand for DIGITAL SNA Peer Server. The DIGITAL SNA Peer Server
is a multiple system connection into an IBM SNA network. It is a system of
hardware and software that handles the protocol differences between the IBM
SNA network and the Digital Equipment Corporation DIGITAL network.

physical unit

An interface through which a user (transaction program) gains access to the
services of the user’s node resources.

PIP

See program initialization parameter.

procedure

An OpenVMS routine entered by means of a call in the transaction program.

program initialization parameter (PIP)

The means of passing program initialization parameters to the destination
transaction program.

reference

An argument in an APPC/LU6.2 Programming Interface procedure passed by
address and usually expressed as a reference name or label associated with an
area or field.

Glossary–4



remote IBM host transaction program

The transaction program residing on the IBM system with which the
OpenVMS transaction program communicates.

session

A logical connection that permits communication between two logical units.

state

The condition of a conversation at a particular point in time. For example,
when a conversation is in receive state, the transaction program cannot send
data; it can only receive data. The state of a conversation determines what
procedures the OpenVMS transaction program can call.

TPN

See transaction program name.

transaction programs

Programs that have been designed to communicate with one another. A
transaction usually involves specific input data that causes the execution of a
specific task or job.

transaction program name (TPN)

The identifier of the remote IBM host transaction program that the OpenVMS
transaction program wants to engage in an LU6.2 conversation.

Virtual Telecommunications Access Method (VTAM)

Software residing in the host IBM system that controls data communications
across SNA networks.

Glossary–5





Index

A
Abend, 2–12
Abnormal deallocation, 2–12
Access information, IBM

gateway circuit ident, 3–18
PLU application name, 3–18
SLU session address, 3–18

APPC/LU6.2
defined, 1–1
obsolete definitions for, G–4
obsolete macros for, G–1

APPC/LU6.2 Programming Interface
procedures, correlating status messages,
E–1

Arguments passed to APPC/LU6.2
by descriptor, 4–2
by reference, 4–2

ASTADR parameter, 3–10, 3–13
Asynchronous mode, 3–12
Asynchronous operation, 3–10

B
Basic conversation

buffer, 2–3
submitting data for transmission to

APPC/LU6.2, 2–7
when to use, 2–3

BASIC programming example, B–13

C
COBOL programming example, B–22
Compatibility features, G–1
Compiling an OpenVMS transaction

program, 6–1
Confirmation processing, 2–10
Contention Polarity

defined, 3–18
Control operator verb, 5–1

arguments for, 5–1
return codes for, C–1

Conversation deallocation
abnormal, 2–11
normal, 2–11

Conversations
basic, 2–3
defined, 2–2
ending, 2–11
mapped, 2–3

Conversation state, 2–5
confirm, 4–3
deallocate, 4–3
receive, 4–3
reset, 4–2
send, 4–3

Conversation verb
procedure calling format for, 4–2
return codes for, C–1
state transitions for, D–1

C programming example, B–32
Creating a program, 6–1

Index–1



D
Data, submitting for transmission, 2–7
Deallocation

abnormal, 2–12
flush, 2–13
local, 2–13
normal, 2–12
sync-level, 2–13

Distributed transactions, 2–1

E
EFN parameter, 3–10, 3–13
Error notification

receiving, 2–11
sending, 2–11

F
FORTRAN programming example, B–2
Function management header (FMH), 2–7
Function value returns, 3–2

G
Gateway circuit identification, 3–18
Generalized data stream (GDS), 2–3

I
I/O status vector, 3–2, 3–4

illustration, 3–3
$PUTMSG, 3–2

IBM access information
application name, 3–18
circuit identification, 3–18
defined, 3–17
logon mode name, 3–18
LU-LU password, 3–18
session address, 3–18
user identification, 3–18

Inbound conversations, 2–2

L
Length (LL) header, in IBM format, 2–3
Linking an OpenVMS transaction program,

6–1
Local deallocation, 2–13
Logical unit, 2–1
Logon mode name, 3–18
LU6.2

"closed-box" implementations, 1–4
concepts and terms, 2–1
conversations, 1–5
creating common transaction programs

with, 1–6
defined, 1–4
"open-box" implementations, 1–4
procedures, 1–4
product features, 1–5
verbs, 1–4

LU attribute identifiers and attributes, G–2
LU-LU password, 3–18
LU name, undefining a local, G–1
LU Security Support, 3–20

M
MACRO programming example, B–17
Mapped conversation

buffer, 2–4
submitting data for transmission during,

2–7
Messages

receiving, 2–9
sending, 2–5

Mode of operation
asynchronous, 3–10
synchronous, 3–10

N
Normal deallocation, 2–12

Index–2



O
Outbound conversations, 2–2

defined, 3–19

P
Parameter notation, A–1
Pascal programming example, B–6
PIP, 4–24

See also Program Initialization
Parameters, 3–10

PIP data
receiving from remote TP, 3–10
sending to remote TP, 3–10

PL/I programming example, B–27
PLU application name, 3–18
Procedure calling format for control operator

verbs, 5–1
Program Initialization Parameters (PIP),

3–10
Programming examples, B–1

BASIC, B–13
C, B–32
C (second), B–39
C (third), B–52
COBOL, B–22
FORTRAN, B–2
MACRO, B–17
Pascal, B–6
PL/I, B–27

R
Request-to-send notification, receiving a,

2–8
Return codes

for control operator verbs, C–1
for state changes in conversations, C–1

S
Second C programming example, B–39
Security

defined, 3–16
inbound conversation-level, 3–16
partner-end-user verification, 3–17
partner-LU verification, 3–17
session-level, 3–16

Send buffer, transmitting contents of, 2–7
Send state, putting the OpenVMS

transaction program into, 2–5
Session activation

active connect, 3–15
passive connect, 3–15

Sessions
defined, 2–2
requesting, 2–2

Shareable program image, 6–2
SLU session address, 3–18
SNA concepts, 1–6
SNALU62$ACTIVATE_SESSION, 5–3

arguments for, 5–3
state transition for, 5–5
status codes for, 5–4

SNALU62$ALLOCATE
arguments for, 4–5
defined, 4–4
state transition for, 4–9
status codes for, 4–8
valid conversation states for, 4–9

SNALU62$CONFIRM, 4–10
arguments for, 4–10
state transition for, 4–12
status codes for, 4–11
valid conversation states for, 4–11

SNALU62$CONFIRMED, 4–13
arguments for, 4–13
state transition for, 4–14
status codes for, 4–13
valid conversation states for, 4–13

SNALU62$DEACTIVATE_SESSION, 5–6
arguments for, 5–6
status codes for, 5–7

Index–3



SNALU62$DEALLOCATE, 4–15
arguments for, 4–15
state transition for, 4–18
status codes for, 4–17
valid conversation states for, 4–18

SNALU62$DEFINE, G–1
arguments for, G–2
state transition for, G–4
status codes for, G–4

SNALU62$DEFINE_REMOTE, 5–8
arguments for, 5–8
status codes for, 5–11

SNALU62$DEFINE_TP, 5–12
arguments for, 5–12
status codes for, 5–14

SNALU62$DELETE, 5–15
arguments for, 5–15
status codes for, 5–16

SNALU62$FLUSH, 4–19
arguments for, 4–19
state transition for, 4–19
status codes for, 4–19
valid conversation states for, 4–19

SNALU62$GET_ATTRIBUTES, 4–20
arguments for, 4–20
state transition for, 4–23
status codes for, 4–22
valid conversation states for, 4–23

SNALU62$GET_PIP, 4–24
arguments for, 4–24
state transition for, 4–25
status codes for, 4–25
valid conversation states for, 4–25

SNALU62$GET_TYPE, 4–26
arguments for, 4–26
state transition for, 4–27
status codes for, 4–26
valid conversation states for, 4–27

SNALU62$POST_ON_RECEIPT, 4–28
arguments for, 4–28
state transition for, 4–30
status codes for, 4–30
valid conversation states for, 4–30

SNALU62$PREPARE_TO_RECEIVE, 4–31
arguments for, 4–31
state transition for, 4–33
status codes for, 4–33
valid conversation states for, 4–33

SNALU62$RECEIVE_AND_WAIT, 4–34
arguments for, 4–34
state transition for, 4–39
status codes for, 4–38
valid conversation states for, 4–39

SNALU62$RECEIVE_IMMEDIATE, 4–41
arguments for, 4–41
state transition for, 4–46
status codes for, 4–45
valid conversation states for, 4–46

SNALU62$REQUEST_TO_SEND, 4–47
arguments for, 4–47
state transition for, 4–48
status codes or, 4–47
valid conversation states for, 4–48

SNALU62$SEND_DATA, 4–49
arguments for, 4–49
state transition for, 4–51
status codes for, 4–51
valid conversation states for, 4–51

SNALU62$SEND_ERROR, 4–52
arguments for, 4–52
state transition for, 4–54
status codes for, 4–53
valid conversation states for, 4–54

SNALU62$SUPPLY_PIP, 4–55
arguments for, 4–55
state transition for, 4–56
status codes for, 4–56
valid conversation states for, 4–56

SNALU62$WAIT, 4–57
arguments for, 4–57
state transition for, 4–58
status codes for, 4–57
valid conversation states for, 4–58

State changes during conversations, C–1
State transitions, in conversation verbs, D–1
Status codes, 3–2, H–1

function value returns for, 3–2
SNALU62$ACTIVATE_SESSION, 5–4

Index–4



Status codes (cont’d)
SNALU62$ALLOCATE, 4–8
SNALU62$CONFIRM, 4–11
SNALU62$CONFIRMED, 4–13
SNALU62$DEACTIVATE_SESSION, 5–7
SNALU62$DEALLOCATE, 4–17
SNALU62$DEFINE, G–3
SNALU62$DEFINE_REMOTE, 5–11
SNALU62$DEFINE_TP, 5–14
SNALU62$DELETE, 5–16
SNALU62$FLUSH, 4–19
SNALU62$GET_ATTRIBUTES, 4–22
SNALU62$GET_PIP, 4–25
SNALU62$GET_TYPE, 4–26
SNALU62$POST_ON_RECEIPT, 4–30
SNALU62$PREPARE_TO_RECEIVE,

4–33
SNALU62$RECEIVE_AND_WAIT, 4–38
SNALU62$RECEIVE_IMMEDIATE,

4–45
SNALU62$REQUEST_TO_SEND, 4–47
SNALU62$SEND_DATA, 4–51
SNALU62$SEND_ERROR, 4–53
SNALU62$SUPPLY_PIP, 4–56
SNALU62$WAIT, 4–57

Status messages, correlating with
APPC/LU6.2 Programming Interface
procedures, E–1

Status vector
$PUTMSG, 3–2
using, 3–2

Summary parameter notation, A–1
Symbol

definitions, F–1
meanings, F–1
values, F–1

Synchronous mode, 3–11
Synchronous operation

ASTADR parameter, 3–10
EFN parameter, 3–10

T
Third C programming example, B–52
Transaction description, 2–1
Transaction program, OpenVMS

compiling, 6–1
linking, 6–1

U
User identification, IBM, 3–18

Index–5




