
Digital SNA
Application Programming Interface
for OpenVMS
Programming
Part Number: AA-P591G-TE

May 1996

This manual supplies information about the services provided by the
Digital SNA Application Programming Interface that enables an OpenVMS
application to exchange messages with a cooperating application on an IBM
host.

Revision/Update Information: This is a revised manual.

Operating System and Version: OpenVMS VAX Versions 6.1, 6.2, or 7.0
OpenVMS Alpha Versions 6.1, 6.2, or 7.0

Software Version: Digital SNA Application Programming
Interface for OpenVMS, Version 2.4

May 1996

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or EDS. Digital Equipment
Corporation or EDS assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Digital conducts its business in a manner that conserves the environment.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Copyright © 1989, 1996 Digital Equipment Corporation, EDS Defense Limited
All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: Alpha, DEC, DEC/CMS, DEC
/MSS, DECnet, DECsystem-10, DECSYSTEM-20, DECUS, DECwriter, DIBOL, EduSystem, IAS,
MASSBUS, OpenVMS, PDP, PDT, RSTS, RSX, UNIBUS, VAX, VAXcluster, VMS, VT, and the
Digital logo.

IBM is a registered trademark of International Business Machines Corporation.

Contents

Preface . vii

1 Introduction

1.1 API Features . 1–2
1.2 IBM and SNA Concepts . 1–3
1.3 Common Interface Applications . 1–3

2 Concepts and Terms

2.1 What is an LU-LU Type 0 Session? . 2–1
2.2 Establishing an LU-LU Session . 2–2
2.2.1 Issuing an Active Connect Request . 2–2
2.2.2 Issuing a Passive Connect Request . 2–4
2.2.3 Accepting or Rejecting a BIND Request 2–6
2.3 Using Request/Response Units . 2–7
2.4 Sending Request Units . 2–7
2.4.1 The Request Header . 2–7
2.4.1.1 Chaining Indicators . 2–8
2.4.1.2 Change Direction Indicator . 2–8
2.4.1.3 Bracketing Indicators . 2–8
2.4.1.4 Response Indicators . 2–9
2.4.2 Sequence Numbers and Unique Identifiers 2–9
2.5 Transmitting User Data in Request Unit Chains 2–10
2.6 Transmitting Control Information in Request Unit Chains 2–13
2.7 Transmitting Response Units . 2–14
2.8 Receiving Request/Response Units . 2–15
2.9 Terminating a Session . 2–18
2.10 Reestablishing a Session . 2–18

iii

3 API Features

3.1 Status Codes . 3–1
3.1.1 Function Value Returns . 3–1
3.1.2 The I/O Status Vector . 3–2
3.2 Synchronous and Asynchronous Operation 3–5
3.2.1 Synchronous Mode . 3–5
3.2.2 Asynchronous Mode . 3–6
3.3 Supplying Access Information to the IBM Host 3–8
3.4 Message Classes and Types . 3–9
3.5 State Machine Information . 3–11
3.6 Asynchronous Event Notification . 3–12

4 SNA Functions

4.1 The LU Services Layer . 4–1
4.1.1 Network Services . 4–1
4.1.2 Presentation Services . 4–2
4.2 The Data Flow Control Layer . 4–3
4.2.1 Function Management Profiles . 4–3
4.2.2 Send/Receive Modes . 4–3
4.2.2.1 Half Duplex Flip-Flop Mode . 4–3
4.2.2.2 Half Duplex Contention Mode . 4–4
4.2.2.3 Duplex Mode . 4–4
4.2.3 Chains . 4–4
4.2.4 Response Types . 4–5
4.2.4.1 No Response Chains . 4–5
4.2.4.2 Exception Response Chains . 4–5
4.2.4.3 Definite Response Chains . 4–5
4.2.5 Request/Response Mode Protocols . 4–6
4.2.5.1 Request Modes . 4–6
4.2.5.2 Response Modes . 4–6
4.2.6 Brackets . 4–7
4.2.7 Data Flow Control Requests . 4–8
4.2.7.1 Cancel Request . 4–8
4.2.7.2 Pause Requests . 4–9
4.2.7.3 Cleanup Requests . 4–9
4.2.7.4 Signal Request . 4–10
4.2.7.5 Bracketing Requests . 4–10
4.2.7.6 LU Status Request . 4–10
4.3 Transmission Control Layer . 4–11

iv

4.3.1 Connection Point Manager . 4–11
4.3.1.1 Building the Request/Response Header 4–11
4.3.1.2 Assigning Sequence Numbers and Unique Identifiers . . . 4–11
4.3.1.3 Pacing . 4–12
4.3.2 Session Control . 4–12
4.3.2.1 BIND and UNBIND Requests . 4–13
4.3.2.2 Starting and Clearing Data Traffic 4–13
4.3.2.3 Recovery/Resynchronization Functions 4–14

5 Procedure Calling Formats

5.1 SNALU0$EXAMINE_STATE . 5–2
5.2 SNALU0$RECEIVE_MESSAGE . 5–4
5.3 SNALU0$REQUEST_CONNECT . 5–8
5.4 SNALU0$REQUEST_RECONNECT . 5–11
5.5 SNALU0$REQUEST_DISCONNECT . 5–12
5.6 SNALU0$TRANSMIT_MESSAGE . 5–13
5.7 SNALU0$TRANSMIT_RESPONSE . 5–17

6 Compiling and Linking a Transaction Program

6.1 Creating and Compiling Your Program . 6–1
6.2 Linking Your Program to the Shareable Program Image 6–2

A Summary Chart of Procedure Parameter Notation

B BIND Request Parameters

C The Request Response Header

D Definitions for the Application Programming Interface

E Programming Examples

E.1 FORTRAN Programming Example . E–1
E.2 FORTRAN Definition Files . E–14
E.3 COBOL Programming Example . E–15
E.4 MACRO Programming Example . E–24
E.5 VAX PL/I Programming Example . E–40
E.6 Pascal Programming Example . E–48
E.7 Pascal Symbol and Structure Definitions E–58

v

E.8 C Programming Example . E–59

F Status Codes

G Correlation of Procedures and Status Messages for the API

Index

Figures

1–1 Digital SNA Network . 1–4
2–1 An Active Connect Request . 2–4
3–1 Status Vector . 3–4
4–1 SNA Layers . 4–2
C–1 Request/Response Header . C–3
G–1 Correlation of Procedures and Status Messages for the

API . G–2

Tables

3–1 Request Unit Classes and Types . 3–9
3–2 Symbols Returned by the SNALU0$EXAMINE_STATE

Procedure . 3–11
B–1 Symbolic Codes for the BIND Request B–1
B–2 A BIND Request . B–5
C–1 Symbolic Codes for the Request/Response Header C–1
C–2 Request Header . C–4
C–3 Response Header . C–7
D–1 Definitions for the API . D–1

vi

Preface

The Digital SNA Application Programming Interface (API) for OpenVMS is a
Digital Equipment Corporation software product. It enables OpenVMS users
to communicate with remote IBM host software programs on systems running
OpenVMS SNA and connected to either of the following SNA Gateways:

• DECnet SNA Gateway-ST

• DECnet SNA Gateway-CT

• Digital SNA Domain Gateway-CT

• Digital SNA Domain Gateway-ST

• Digital SNA Peer Server

The API allows you to develop applications on an OpenVMS system that
require support for an IBM SNA logical unit (LU) session for LU type 0, 1, 2,
or 3.

Note

Unless otherwise stated, the term SNA Gateway refers to the DECnet
SNA Gateway-CT, the DECnet SNA Gateway-ST, the Digital SNA
Domain Gateway, the Digital SNA Peer Server, or the OpenVMS SNA
(OpenVMS VAX Version 6.1 and Version 6.2 only) when used in this
manual.

Manual Objectives
The Digital SNA Application Programming Interface for OpenVMS
Programming manual provides the information you need to write an
application on an OpenVMS system to establish an LU-LU session with a
program residing in an IBM host.

vii

Intended Audience
This manual is designed for OpenVMS VAX and OpenVMS Alpha
programmers. To use the API, you must know IBM’s Systems Network
Architecture (SNA). You must also know about the application subsystem you
will connect to on the IBM host, and about the protocols for the LU types you
plan to implement using the API.

Changes and New Features
The Digital SNA Application Programming Interface (API) for OpenVMS,
Version 2.4 differs from the Version 2.3 product only in that it includes support
for utilizing TCP/IP to communicate between API and the SNA Gateways
(Domain and/or Peer Server).

The information relevant to TCP/IP transport support include:

• SNA_TCP_PORT logical

• SNA_TRANSPORT_ORDER logical

• Specifying TCP/IP hostnames

SNA_TCP_PORT Logical
The SNA_TCP_PORT logical refers to the remote connection TCP/IP port. The
default connection TCP/IP port number is 108. For example, if you want the
remote connection TCP/IP port number to be 1234, you can enter the following
command line:

$ define SNA_TCP_PORT 1234

If you want the remote connection TCP/IP port to be made to a service defined
and enabled in the UCX database; for example service_name, you can enter the
following command line:

$ define SNA_TCP_PORT service_name

SNA_TRANSPORT_ORDER Logical
The SNA_TRANSPORT_ORDER logical refers to a transport list, which is used
in automatic selection of transports. Connections are attempted once for each
transport in the list until either a successful connection is made, or an error is
returned when all transports in the list fail to connect.

For example, if you want the software to try the DECnet transport and if this
fails then to try the TCP/IP transport, you can enter the following command
line:

viii

$ define SNA_TRANSPORT_ORDER "decnet, tcp"

If you want the software to try the TCP/IP transport and if this fails then to
try the DECnet transport, you can enter the following command line:

$ define SNA_TRANSPORT_ORDER "tcp, decnet"

If you want the software to never try the DECnet transport and to try only the
TCP/IP transport, you can enter the following command line:

$ define SNA_TRANSPORT_ORDER "nodecnet, tcp"

If you want the software to never try the TCP/IP transport and to try only the
DECnet transport, you can enter the following command line:

$ define SNA_TRANSPORT_ORDER "decnet, notcp"

Note

If the SNA_TRANSPORT_ORDER logical is not defined, the default
transport order for OpenVMS Alpha will be DECnet, TCP/IP; and
the default transport order for OpenVMS VAX will be local, DECnet,
TCP/IP.

Specifying TCP/IP Hostnames
If you want to specify a full path hostname, the hostname must be enclosed in
a pair of double-quotes; for example, "foo.bar.company.com".

If you want the TCP/IP transport to be used as the preferred transport, without
specifying a TCP/IP full path hostname, then define the SNA_TRANSPORT_
ORDER with "tcp" as the first element in the transport list.

If the hostname ends with a single full-colon (":"), then the TCP/IP transport
will be used; for example, "foo:" or foo:.

Note

If you specify a double full-colon ("::"), you force the DECnet transport
to be used; for example, "foo::" or foo::.

ix

Structure of This Manual
This manual consists of six chapters and eight appendixes.

Chapter 1 Discusses the Digital SNA application interface
products and the features of the API.

Chapter 2 Provides an overview of the API and how your
OpenVMS application can make calls to it.

Chapter 3 Describes the features of the API that help you
write and execute your application.

Chapter 4 Provides an overview of the SNA functions that
the OpenVMS application is required to provide in
order to communicate with an IBM application.

Chapter 5 Presents the calling format and parameter list for
each procedure provided by the API.

Chapter 6 Describes the procedure for linking an OpenVMS
application to the API by means of a shareable
image.

Appendix A Provides a summary of the notation used to describe
parameters in the API.

Appendix B Provides locations, values, and meanings for the
BIND request parameters.

Appendix C Provides locations, values, and functions for the
request/response header.

Appendix D Provides symbols, values, and meanings to use
when you write your application if a definition file
is not supplied for the language you want to use.

Appendix E Provides programming examples in various
languages with accompanying explanatory text.

Appendix F Describes the status codes that the API returns to
the OpenVMS application.

Appendix G Correlates procedures and status messages used by
the API.

Associated Documents
The following is a list of documents related to the Application Programming
Interface:

• Digital SNA Application Programming Interface for OpenVMS Installation

• Digital SNA Application Programming Interface for OpenVMS Problem
Solving

x

• Digital SNA Application Programming Interface for OpenVMS
Programming

You should have the following Digital documents available for reference when
you use the Application Programming Interface:

• Digital SNA Domain Gateway Installation

• Digital SNA Domain Gateway Management

• Digital SNA Domain Gateway Guide to IBM Resource Definition

• DECnet SNA Gateway-CT Installation

• DECnet SNA Gateway-CT Problem Solving (OpenVMS & ULTRIX)

• DECnet SNA Gateway-CT Management (OpenVMS)

• DECnet SNA Gateway-CT Guide to IBM Parameters

• DECnet SNA Gateway Problem Determination Guide

• DECnet SNA Gateway-ST Installation

• DECnet SNA Gateway-ST Problem Solving (OpenVMS)

• DECnet SNA Gateway-ST Guide to IBM Parameters

• DECnet SNA Gateway Management for OpenVMS

• Digital Peer Server Installation and Configuration

• Digital Peer Server Management

• Digital Peer Server Network Control Language Reference

• Digital Peer Server Guide to IBM Resource Definition

• OpenVMS SNA Installation

• OpenVMS SNA Problem Solving

• OpenVMS SNA Guide to IBM Parameters

• OpenVMS SNA Management

• OpenVMS SNA Problem Determination Guide

You may need to refer to one of the following IBM documents:

• CICS/OS/VS IBM 3790/3730/8100 Guide, Order No. SC33-0159

• CICS/VS Version 1 Release 7 IBM 3790/3730 Guide, Order No. SC33-0075

• IMS/VS Version 1 Programming Guide for Remote SNA Systems, Order
No. SH20-9054

xi

• Systems Network Architecture Format and Protocol Reference Manual:
Architectural Logic, Order No. SC30-3112

• Systems Network Architecture Formats, Order No. GA27-3136

Conventions Used in This Manual
This manual uses the following conventions:

Convention Meaning

special type This special type indicates an example of user
input.

UPPERCASE Uppercase letters in command syntax indicates
keywords that you can enter. You can enter
keywords in either uppercase or lowercase.

italics Represent variables for which you must supply a
value.

[] Square brackets in command syntax statements
indicate that the enclosed value(s) are optional.
Default values apply for unspecified options. (Do
not type the brackets.)

{ } Braces in command syntax statements indicate
that you must specify one, and only one, of the
enclosed values. (Do not type the braces.)

() Parentheses enclose a group of values that you
must specify for an operand. Type the values
in the line of code in the order indicated. Type
parentheses wherever they appear in a line of
code.

hh:mm:ss Indicates hours, minutes, seconds

RET Indicates that you should press the Return key.

Ctrl/Z Indicates that you should press the z key while
holding the Ctrl key.

Acronyms
The following acronyms appear throughout this manual.

API Digital SNA Application Programming Interface for
OpenVMS software

LU Logical unit

xii

LU0 Logical unit type 0

PLU Primary logical unit

PU Physical unit

RH Request/response header

RU Request/response unit

SLU Secondary logical unit

SNA IBM’s Systems Network Architecture

SSCP System services control point

Terminology
When this manual refers to the OpenVMS application, it means the application
the user writes.

xiii

1
Introduction

The Digital SNA Application Programming Interface (API) for OpenVMS
allows you to develop OpenVMS applications that exchange messages with
cooperating applications on an IBM host. To exchange these messages, the
OpenVMS application requires support from the API to establish a session
with IBM logical units (LU), that conforms to function management (FM) and
transmission services (TS) profiles 3 and 4. The API communicates with either
the DECnet SNA Gateway-ST, the DECnet SNA Gateway-CT, the Digital SNA
Domain Gateway-CT, the Digital SNA Domain Gateway-ST, the Digital SNA
Peer Server or OpenVMS SNA software to provide support for the LU session.

Note

Unless stated otherwise, the term SNA Gateway refers to the DECnet
SNA Gateway-ST, the DECnet SNA Gateway-CT, the Digital SNA
Domain Gateway, the Digital SNA Peer Server, or the OpenVMS SNA
(OpenVMS VAX Version 6.1 and Version 6.2 only) when used in this
manual.

The API is one of three Digital SNA OpenVMS programming interface
products. The remaining two products include the following:

• Digital SNA 3270 Data Stream Programming Interface for OpenVMS
The Digital SNA 3270 Data Stream Programming Interface provides
support to OpenVMS applications that need to establish a session with an
LU type 2.

• Digital SNA APPC/LU6.2 Programming Interface for OpenVMS
The Digital SNA APPC/LU6.2 Programming Interface provides support to
OpenVMS applications that need to establish a session with an LU type
6.2.

Both of these products also enable you to exchange messages with cooperating
applications on an IBM host.

Introduction 1–1

To use the API, you must understand SNA well enough to write the code
for performing the Transmission Control layer and the layers of SNA above
that. In addition, your OpenVMS application must be able to operate as the
secondary logical unit (SLU) while the cooperating IBM application operates as
the primary logical unit (PLU).

1.1 API Features
Using the API, an OpenVMS application can perform the following functions:

• Communicate with logical units 0, 1, 2, and 3, using FM and TS profiles 3
and 4.

• Use different character sets

• Access various IBM equipment

• Restart a session after a failure at exactly the point where the session
failed. (For more information about restarting a session after a failure,
see CICS/OS/VS IBM 3790/3730/8100 Guide, Order No. SC33-0159 and
IMS/VS Version 1 Programming Guide for Remote SNA Systems, Order
No. SH20-9054.)

• Use customized applications

The API provides many services to help you write your application. The API

• Supports LU types 0, 1, 2, and 3, using FM and TS profiles 3 and 4.

• Provides functions common to all LU types.

• Does not include functions limited to a specific LU.

• Provides access to SNA common network functions performed by the SNA
Gateway, such as Path Control and LU Services Manager functions.

• Provides protocol verification software to ensure that neither the IBM nor
the OpenVMS side of the application violates the agreed set of protocols.

• Establishes sessions.

• Creates request/response units (RUs) for transmitted commands and data.

• Constructs request/response headers for RUs.

• Groups RUs into chains.

• Changes requests to responses.

• Generates sequence numbers.

1–2 Introduction

In general, you are responsible for providing the software logic for sending,
receiving, and interpreting the SNA protocol.

1.2 IBM and SNA Concepts
To use the API, you must understand the following:

• IBM’s SNA protocols.

• The subsystem (CICS, for example) running on the IBM host.

• The protocol that will operate in the SNA Function Management (FM)
layer. For instance, to write an application that requires the support of
LU type 1, you need to know about the LU1 protocols, such as the SNA
character set.

1.3 Common Interface Applications
You can use the API to write applications that make up the SLU half-session
partner in an LU-LU session. For example, you can

• Perform file-transfer functions.

• Communicate with LU types 0, 1, 2, and 3, using FM and TS profiles 3 and
4.

• Emulate a terminal.

• Perform remote job entry (RJE).

You can write applications to do a variety of tasks, but your application is
responsible for checking protocols and status. The API allows you to tailor
your applications to your needs.

For example, National Widget Sales, Inc., has IBM 8100 Information Systems
distributed throughout the company. Because of the limited storage on the
8100, National Widget stores its files on an IBM host at company headquarters.
When a branch office or a department needs a file, it transfers the file from the
host, processes the file locally, and returns it to the host.

The 8100 uses the Distributed System Executive (DSX) to implement LU
type 1 protocols to transfer files. Instead of using the 8100, a branch office or
department could run an LU0 API application on OpenVMS VAX to access the
files stored on the IBM host. By using the API, the OpenVMS VAX user can
implement the LU1 protocols necessary for transferring files to or from the

Introduction 1–3

IBM host. Figure 1–1 illustrates the Digital SNA Network environment. Note
that this DECnet environment could also be TCP/IP.

Figure 1–1 Digital SNA Network

LKG−1429−93R

Ethernet

Application
transaction
program

VTAM

IBM
communications
controller

VAX (or AXP)

IBM host

VAX (or AXP)

OpenVMS
transaction
program

API DECnet SNA
Gateway

VAX
(or AXP)

VAX
(or AXP)

VAX
(or AXP)

1–4 Introduction

2
Concepts and Terms

The Digital SNA Application Programming Interface (API) for OpenVMS
consists of procedures that a user-written OpenVMS program can call to
request the following operations for an LU-LU type 0 session:

• Initiate a request to establish a session with an IBM application

• Respond to a session request initiated by an IBM application

• Transmit an SNA request unit containing user data, a data flow control
request, or a session control request to an IBM application

• Receive an SNA request unit containing user data, a data flow control
request, or a session control request from an IBM application

• Transmit and receive SNA response units

• Terminate a session

• Reestablish a session that has been temporarily terminated by the PLU
with an UNBIND type 2 (hold resources) request

After a short description of the characteristics of an LU0 session, this chapter
describes the above-mentioned procedures in more detail.

2.1 What is an LU-LU Type 0 Session?
As defined by IBM SNA terminology, an LU-LU session is the logical
connection between two LUs. An LU-LU type 0 session uses the following
subsets, or profiles, of communication functions:

• Any function management (FM) profile for an LU-LU session. An FM
profile defines a commonly used subset of SNA-defined data flow control
functions and certain other functions.

• Any transmission subsystem (TS) profile for an LU-LU session. A
transmission subsystem profile defines a subset of SNA-defined
transmission control functions and certain other functions.

Concepts and Terms 2–1

• A set of end-user or product-defined protocols to augment or replace SNA
presentation services and other high-level functions.

2.2 Establishing an LU-LU Session
Before end-users of an SNA network can exchange messages, their respective
LUs must first establish an LU-LU session according to SNA protocol.

In general, any LU can issue a request to the system services control point
(SSCP) for a session with another LU. To do this, the requesting LU sends the
SSCP an initiate self (INIT-SELF) request that specifies the LU with which
it wants to have a session. The SSCP selects one of the LUs as the primary
LU (PLU) for the session and the other as the secondary LU (SLU). The SSCP
then sends the PLU a control initiate (CINIT) request. The PLU, in turn,
sends a BIND request to the SLU, proposing the conditions of the session. This
request can be negotiable or nonnegotiable. If it is nonnegotiable, the SLU
examines the BIND request and simply accepts or rejects the session. If it is
negotiable, the SLU can accept or reject a session outright, or accept a session
with specified changes in the proposed conditions.

In LU type 0, or LU0, sessions involving the SNA Gateway the OpenVMS
application is always the SLU. This means that the OpenVMS application is
always the receiver, never the sender, of the BIND request.

The OpenVMS application can issue two kinds of requests to establish an LU0
session: an active connect request and a passive connect request.

2.2.1 Issuing an Active Connect Request
An active connect request informs the API that the OpenVMS application
wants to send an INIT-SELF request to the SSCP to initiate a session with a
specified IBM application.

To issue an active connect request, the OpenVMS application calls the
SNALU0$REQUEST_CONNECT procedure.

Input parameters include the following information that the application passes
to the API:

• An active/passive connection indicator

A value indicating that this is an active session request.

• A SNA Gateway node or host name

2–2 Concepts and Terms

The name of the Gateway DECnet node or TCP/IP host name through
which the OpenVMS application wishes to establish the session. This is
an optional parameter. For OpenVMS SNA, set this parameter to equal an
ASCII 0. If it is omitted, the API assumes you are requesting a connection
via OpenVMS SNA.

• IBM access information

A logical name associated with a list of default information required to gain
access to the IBM host. This is an optional parameter. If it is omitted, the
parameter list must explicitly provide the required values. For details on
access names and IBM access information, see Section 3.3.

• Address of an asynchronous event procedure

The address of a user-written procedure that the API can use to inform
the OpenVMS application that an asynchronous event has occurred. For
details on asynchronous events and the user-written notification procedure,
see Chapter 3.

• Address of a completion procedure

The address of a user-written procedure that the API can use to inform the
OpenVMS application that the SNALU0$REQUEST_CONNECT procedure
has completed.

Output parameters for the SNALU0$REQUEST_CONNECT procedure include
locations to receive the following information from the IBM system:

• A session identifier

A location to receive a unique identifier assigned by the API to the session.
Each time the application issues a request to send or receive a message
on this session, terminate the session, reconnect the session, or obtain
information about the session, the parameter list for the call must include
the session identifier. This is a required parameter.

• BIND buffer

A buffer to receive the BIND request sent by the IBM application (the PLU)
to establish the session. This is an optional parameter. If the application
does not provide a buffer, the API unconditionally accepts the session.

• I/O status block

A quadword status block to receive status information from the API. This
is an optional parameter.

For a complete list of parameters for the SNALU0$REQUEST_CONNECT
procedure, see Section 5.3.

Concepts and Terms 2–3

Figure 2–1 illustrates the following steps taken during a typical active connect
request. Note that this DECnet environment could also be TCP/IP.

1. The OpenVMS application calls the SNALU0$REQUEST_CONNECT
procedure, setting the active request indicator and providing the other
required parameters.

2. The API sends a connect request to the SNA Gateway.

3. The SNA Gateway sends an INIT-SELF request to the SSCP. The SSCP
notifies the PLU.

4. The PLU sends a BIND request to the SNA Gateway.

5. The SNA Gateway sends the BIND request to the API.

6. The API passes the BIND to the OpenVMS application, along with an
identification (ID) value for the session.

Figure 2–1 An Active Connect Request

LKG−1428−93R

IBM host

BIND

CONNECT

DECnet node

VAX (or AXP)
application

SNALU0$REQUEST_CONNECT

Application
interface

SLU

SSCP

DECnet SNA
Gateway

INITSor
VMS/SNA

BIND

SNA
application

PLU

1

6 2

53 4

3

2.2.2 Issuing a Passive Connect Request
A passive connect request informs the API that the OpenVMS application is
ready to engage in a session initiated by an IBM application.

To issue a passive connect request, the OpenVMS application calls the
SNALU0$REQUEST_CONNECT procedure and sets the active/passive
connection indicator to request a passive connect. The OpenVMS application
must also specify the SLU number (via the "access name" or "session address"
parameter) to tell the API which session to listen for. The remaining
parameters are the same as for an active request.

2–4 Concepts and Terms

A typical passive connect request for a session includes the following steps:

1. The OpenVMS application calls the SNALU0$REQUEST_CONNECT
procedure, setting the passive request indicator and providing the other
required parameters.

2. The API sends a message to the SNA Gateway indicating that the
OpenVMS application is ready to receive a session request initiated by
the IBM application.

3. At some point, the SNA application sends a BIND request to the SNA
Gateway.

4. The SNA Gateway sends the BIND request to the API.

5. The API passes the BIND request to the OpenVMS application, along with
a value to identify the session.

Input Parameters Meaning

A passive connection indicator A boolean flag indicating that the OpenVMS
application is ready to receive a BIND request from
an IBM application. This is a required parameter.

A Gateway DECnet node or TCP
/IP host name

The name of the Gateway DECnet node or TCP/IP
host name through which the OpenVMS application
wishes to establish the session. This is an optional
parameter. If it is omitted, the API obtains a
default Gateway node.

IBM access information A logical name associated with a list of default
information (defined by the Gateway manager)
required to gain access to the IBM host. This
is an optional parameter. If it is omitted, the
parameter list must explicitly provide the required
values. For details on access names and IBM access
information, see Section 3.3.

Address of an asynchronous
event procedure

The address of a user-written procedure that the
API can use to inform the OpenVMS application
that an asynchronous event has occurred. This is
an optional parameter. For details on asynchronous
events and the user-written notification procedure,
see Section 3.6.

Concepts and Terms 2–5

Input Parameters Meaning

Address of a completion
procedure

Address of a user-written procedure that the API
can use to inform the OpenVMS application that
the SNALU0$CONNECT procedure has completed.

Output Parameters Meaning

A session identifier A location to receive a unique session identifier that
the OpenVMS application will use in all subsequent
references to the session. Each time the application
issues a request to send or receive a message,
terminate a session, reconnect a session, or obtain
information about an active session, the parameter
list for the call must include a session identifier.
This is a required parameter.

BIND buffer A buffer to receive the BIND request sent by the
PLU to establish the session. This is an optional
parameter.

I/O status block A quadword status block to receive status
information from the API. This is an optional
parameter.

2.2.3 Accepting or Rejecting a BIND Request
If the OpenVMS application provides a buffer, the API places in it the
negotiable or nonnegotiable BIND request received from the IBM application.
The OpenVMS application examines the BIND request and either accepts or
rejects the session outright or, if negotiable, accepts it with specified changes.
The BIND request states whether the request is negotiable. The OpenVMS
application accepts or rejects a BIND request in one of the following ways:

• To accept a session proposed in a negotiable or nonnegotiable BIND
request, the OpenVMS application calls the SNALU0$TRANSMIT_
RESPONSE procedure and specifies a positive response as described in
Section 2.8.

• To reject a session proposed in a negotiable or nonnegotiable BIND request,
the OpenVMS application calls the TRANSMIT_RESPONSE procedure and
specifies a negative response as described in Section 2.8.

• To accept a session proposed in a negotiable BIND request on the condition
that certain parameters are changed, the OpenVMS application calls the
TRANSMIT_RESPONSE procedure, specifies a positive response, and
modifies the BIND buffer to reflect these changes.

2–6 Concepts and Terms

If the OpenVMS application does not specify a buffer to receive the BIND
request, the API accepts the session.

2.3 Using Request/Response Units
SNA defines two categories of messages, requests, and responses, known
collectively as request/response units (RUs). The acronym RU refers to either
a request unit or a response unit.

A request can consist of data that one application wants to send to another, or
it can consist of control information. Ordinarily, a response is simply a positive
or negative acknowledgment of a request.

The procedure that the OpenVMS application uses to send request units is
described in Section 2.5.

The procedure for sending response units is described in Section 2.7.

The procedure for receiving request units and response units is described in
Section 2.8.

2.4 Sending Request Units
In an SNA network, LUs exchange data and control messages in packages
called request units. As defined by SNA, a request unit is a message of a
specific size consisting of user data or control information. The maximum size
that can be sent and received is specified in the BIND request used to establish
the session and is enforced by the API.

As part of the control information required for transmission, each request unit
carries a request header and a sequence number or other unique identifier.

2.4.1 The Request Header
In transmissions involving the SNA Gateway, the API is responsible for
constructing a request header (RH) for each request unit and setting the
indicators as required. The OpenVMS application can control the way the API
sets certain RH indicators. These include:

• Chaining indicators

• Change direction indicator

• Bracketing indicators

• Response indicators

Concepts and Terms 2–7

2.4.1.1 Chaining Indicators
In an SNA network, a chain is a recoverable unit of transmission. All request
units (with their attached headers) travel in chains. A chain may consist of
multiple request units or a single request unit. The following list provides
information about chaining indicators that delimit the beginning and end of
different kinds of chains:

• In a chain consisting of multiple request units, the first request carries a
begin chain indicator (BCI) in the request header to indicate that it is the
first request in the series. The last request unit in the chain carries an end
chain indicator (ECI) to indicate that it is the last request in the series.

• In a chain consisting of a single request unit, the request unit carries both
the BCI and the ECI.

In transmissions involving the SNA Gateway, the API handles chaining by
default for the OpenVMS application. If desired, however, the OpenVMS
application can control the setting of the chaining indicators. The OpenVMS
application controls the setting of the ECI by means of the more-data
parameter in the TRANSMIT_MESSAGE procedure.

2.4.1.2 Change Direction Indicator
If the session is using half duplex flip-flop mode for sending and receiving
chains (see Section 4.2.2.1), the last request unit in a transmitted chain
normally carries a change direction indicator (CDI) in the RH. The CDI
indicates that the OpenVMS application has finished sending a chain and
that it is now the IBM application’s turn to send a chain. When brackets are
used, the CDI has no meaning between brackets.

On each chain that the OpenVMS application submits for transmission in a
half duplex flip-flop session, the API sets the CDI by default. If the OpenVMS
application wishes to send consecutive multiple chains, it must tell the API
not to set the CDI. To do this, the OpenVMS application uses the "turn retain"
parameter described in Section 2.6.

2.4.1.3 Bracketing Indicators
Chains of request units and their responses (see Section 4.2.6) can be grouped
together within delimiters called brackets. Brackets define a group of chains as
a complete unit of work. The following list provides information about bracket
indicators that delimit the beginning and end of a bracket:

• The first request unit in the first chain carries a begin bracket indicator
(BBI) in its RH.

• The first request unit in the last chain carries an end bracket indicator
(EBI).

2–8 Concepts and Terms

The BIND request specifies whether brackets will be used in the session and
how the EBI is set.

In sessions involving the SNA Gateway, the API sets the BBI to indicate the
beginning of a bracketed chain. If the BIND request allows the SLU to send
the EBI, the OpenVMS application is responsible for setting the EBI.

Note

If bracketing is used, one LU is designated "first speaker" and can
begin a bracket without asking permission of the other LU. The
other LU becomes the "bidder" and must ask permission by sending
a BID request. If the SLU is specified as the "bidder," the OpenVMS
application is responsible for sending the BID request and receiving a
response. Certain IBM host applications allow the bidder to omit the
BID and simply take a chance on setting the BBI in the first chain.

2.4.1.4 Response Indicators
The OpenVMS application can specify the type of response required for a chain
that it transmits. The response type can be none, definite, or exception. The
response type can also include a number (1, 2, or 3) that conveys additional
information to the IBM application. Normally, response type 1 is used and
given no special meaning.

2.4.2 Sequence Numbers and Unique Identifiers
Each request unit that travels on the normal data flow in an SNA network
carries a sequence number to identify its position in its chain. Each request
unit that travels on the expedited flow carries a unique identifier.

In transmissions involving the SNA Gateway, the API is responsible for
assigning a sequence number to each request unit that it sends to the IBM
application on the normal flow. The API returns to the OpenVMS application
the sequence number that it assigns to both the first request unit and the last
request unit in the chain.

The API assigns a unique identifier to each request unit that it transmits on
the expedited flow. The API returns this value to the OpenVMS application.

Concepts and Terms 2–9

2.5 Transmitting User Data in Request Unit Chains
To transmit user data to an IBM application, the OpenVMS application
calls the SNALU0$TRANSMIT_MESSAGE procedure and provides a buffer
containing the data.

By default, the API packages the user data into one or more request units of
the maximum size possible, adds RHs and sequence numbers, and transmits
the units to the IBM host over the normal flow as a complete chain. The API
sets the BCI in the RH of the first request unit and the ECI in the RH of the
last request unit.

Input parameters for the SNALU0$TRANSMIT_MESSAGE procedure can pass
the following information to the API:

• Session identifier

A value specifying the session on which the API is to transmit the request
unit chain. (This is the value returned by the SNALU0$REQUEST_
CONNECT procedure when the session is established.)

• Transmit buffer

The buffer containing the user data that the OpenVMS application wants
to transmit to the IBM host.

• Message class indicator

A value indicating whether the buffer contains formatted or unformatted
user data.

• More data indicator

A TRUE/FALSE flag indicating whether the application intends to add
more request units to the current chain (by issuing one or more additional
calls to the SNALU0$TRANSMIT_MESSAGE procedure).

1. If FALSE (no more data), the API sets the ECI in the last request unit
it constructs from the contents of the buffer. The chain is complete.
The next time the OpenVMS application calls the TRANSMIT_
MESSAGE procedure, the API begins a new chain, setting the BCI in
the first request unit.

2. If TRUE (more data), the API does not set the ECI and the chain
remains open. The next time the OpenVMS application calls the
TRANSMIT_MESSAGE procedure, the API adds requests units to the
existing chain.

• End bracket indicator

2–10 Concepts and Terms

A TRUE/FALSE flag telling the API whether to set the EBI on the request
unit carrying the BCI for the last chain in the bracket. This parameter is
valid only if the BIND request for the session specified bracketing and the
SLU is allowed to send EBI.

1. If TRUE, the API sets the EBI on the request unit carrying the BCI.
The bracket is complete.

2. If FALSE, the API does not set the EBI and the bracket remains open.

• Response type indicator

A value indicating the type of response to be supplied by the IBM
application to the request unit carrying the ECI.

To specify "no response," you must set the resp-type parameter for each
TRANSMIT call that pertains to the chain to SNALU0$K_RSP_NONE.
The API sets the response indicator for each RU in the chain to indicate
"no response." The default is "no response."

To specify "exception response," you must set the resp-type parameter for
each TRANSMIT call that pertains to the current chain to SNALU0$K_
RSP_RQEn (where n=1, 2, or 3). The API sets the response indicator for
each request unit in the chain to indicate "exception response."

To specify "definite response," you must set the resp-type parameter for
each TRANSMIT call that pertains to the current chain as follows:

• If the transmit buffer contains either the beginning or the middle of a
chain, resp-type equals SNALU0$K_RSP_RQEn (where n=1, 2, or 3).
You must specify the same exception response type number for each
TRANSMIT call that pertains to the current chain.

• If the transmit buffer contains a complete chain or the end of a chain,
resp-type equals SNALU0$K_RSP_RQDn, where n is the same type
number you specified for the exception response.

The API sets the first and middle RUs to indicate "exception response" and
sets the last RU to indicate "definite response."

• Turn retain indicator

A TRUE/FALSE flag telling the API whether to set the CDI on the
transmitted request unit carrying the ECI. This parameter is valid only for
sessions using the half duplex flip-flop mode of message exchange.

1. If FALSE, the API sets the CDI on the request unit carrying the ECI.
The IBM application can now send a message.

Concepts and Terms 2–11

2. If TRUE, the API does not set the CDI. The OpenVMS application can
call the TRANSMIT_MESSAGE procedure to send more data.

Output parameters include the following locations to receive information from
the IBM application:

• First and last sequence number

Locations to receive the sequence number that the API assigned to both
the first and the last request in the transmitted chain. (For a single-unit
chain, the API returns the same value to both locations.)

In the simplest type of data transmission involving the SNA Gateway, the
following steps occur:

1. The OpenVMS application calls the SNALU0$TRANSMIT_MESSAGE
procedure and passes a buffer. The application indicates whether the
buffer contains formatted or unformatted user data.

2. The API creates the first request unit from the user data, adds a header,
and assigns a sequence number.

3. The API sets the BCI in the header for the first request unit and transmits
the unit to the IBM host over the normal flow.

4. As long as data remains in the buffer, the API continues to create request
units of the maximum size possible, add headers, assign sequence numbers,
and send the units to the IBM host.

5. The API creates the last request unit from the remaining data in the
buffer, adds a header, and assigns a sequence number.

6. The API sets the ECI in the header for the last request unit for
transmission and sends the unit to the IBM host.

If the more-data parameter for the TRANSMIT_MESSAGE call equals
TRUE, the API does not set the ECI on the last request unit. As a result,
the chain remains open. When the application issues subsequent calls to
the SNALU0$TRANSMIT_MESSAGE procedure to send user data, the API
continues to add the data to the existing chain until the OpenVMS application
issues a TRANSMIT_MESSAGE call with the more-data parameter set to
FALSE.

2–12 Concepts and Terms

2.6 Transmitting Control Information in Request Unit Chains
The OpenVMS application is responsible for exchanging data flow control and
session control commands with the IBM application.

To transmit a data flow control or session control command to an IBM
application, the OpenVMS application calls the SNALU0$TRANSMIT_
MESSAGE procedure and supplies the command. The API then packages the
command as a single request unit and transmits it to the IBM host over the
appropriate flow as a single request unit chain.

Input parameters for the SNALU0$TRANSMIT_MESSAGE procedure include
the following:

• Session identifier

A value specifying the session on which the API is to transmit the request
unit chain. (This is the value returned by the SNALU0$REQUEST_
CONNECT procedure when the session is established.)

• Transmit buffer

A data control command or session control command that the OpenVMS
application wants to transmit to the IBM host.

• Message class indicator

A value indicating whether the buffer contains a data flow control
command or a session control command.

• End bracket indicator

A TRUE/FALSE flag telling the API whether to set the EBI on this request
unit. For session control requests, the EBI equals 0. For data flow control
requests, the EBI is normally 0.

• More data indicator

A TRUE/FALSE flag telling the API whether the application intends to add
more request units to the current chain (by issuing one or more additional
calls to the SNALU0$TRANSMIT_MESSAGE procedure).

• Response type indicator

A value indicating the type of response to be supplied by the IBM
application to the request unit carrying the ECI. This flag is required for a
single-request chain. The default is no response requested.

• Turn retain indicator

Concepts and Terms 2–13

A TRUE/FALSE flag telling the API whether to set the CDI on the request
unit. For session control requests, the CDI equals 0. For data flow control
requests, the CDI is normally 0.

The complete parameter list specifies locations to receive the following
information from the API:

• Unique identifier

A location to receive a unique identifier assigned by the API to the single
request unit in the chain. This is the same as the location to receive the
first sequence number. The API also returns this identifier to the location
specified for the last sequence number.

In the simplest type of command transmission involving the SNA Gateway, the
following events occur:

1. The OpenVMS application calls the SNALU0$TRANSMIT_MESSAGE
procedure and passes the command. The application indicates whether the
command is a data flow control command or a session control command.

2. The API packages the command as a request unit, adds a header, and
assigns a unique identifier.

3. The API sets the BCI and the ECI in the header and sends the unit to the
IBM host as a single unit chain.

2.7 Transmitting Response Units
Unless the IBM application specifies that no response is required, the
OpenVMS application must return a response to each request unit it receives.
This includes a request that specifies an exception response. The API needs
to know that it does not need to send a negative response and can therefore
update its internal state tables.

If the application does not wish to generate a negative response, a response
should only be issued to the last request unit in a chain. For example, this
situation occurs when the SNALU0$RECEIVE_MESSAGE procedure returns a
value of FALSE for the more-data parameter.

To send a response, the OpenVMS application calls the SNALU0$TRANSMIT_
RESPONSE procedure.

Input parameters for the call include the following:

• Session identifier

2–14 Concepts and Terms

A value specifying the session on which the API is to transmit the
response. (This is the value returned by the SNALU0$REQUEST_
CONNECT procedure when the session is established.)

• Request buffer address

A buffer containing the received request to which the application is
responding.

• Request buffer size

A value indicating the size of the request buffer.

• Response type

A value indicating whether the response is positive or negative.

• Sense data

Sense data (IBM error codes) to be returned to the PLU if the response is
negative.

2.8 Receiving Request/Response Units
During the course of a session, the OpenVMS application typically receives
three types of messages from the IBM application:

• A single request unit or multiple request units containing user data and
comprising either a complete or a partial chain.

• A single request unit containing a data flow control command or a session
control command and comprising either a complete or a partial chain.

• A single response unit.

To receive any of these types of messages, the OpenVMS application calls the
SNALU0$RECEIVE_MESSAGE procedure and provides a buffer.

The OpenVMS application passes the location of a data buffer to the API by
descriptor. Most languages handle descriptors transparently. (Exceptions are
BLISS, MACRO, and C.) The application simply passes the name of the buffer
to the API procedure.

For applications that specify descriptor types, class S (static) descriptors and
class D (dynamic) descriptors, as described in the "VAX Procedure Calling and
Condition Handling Standard," are recommended for passing the location of a
data buffer to the API.

If the parameter list specifies a class S descriptor, the API copies the message
from its own buffer into the buffer pointed to by the descriptor.

Concepts and Terms 2–15

If the parameter list specifies a class D descriptor, the API fills in the descriptor
with a pointer to its own buffer, which contains the received message. The API
also places the size of the buffer in the descriptor. It returns the actual length
of the data as a separate parameter. Note that the class D descriptor provides
a more efficient means for an application to receive a normal flow message
than does the class S descriptor, which requires the API to copy the received
message from one location to another.

The OpenVMS application must not write into a class D descriptor that it uses
to pass a receive buffer. Class D descriptors must be manipulated only by
means of system library string routines.

If a class D descriptor is used, the OpenVMS application is responsible for
ensuring that buffer space is returned to free memory once it is no longer
needed. To return a buffer to free memory, the application can call the system
library procedure LIB$SFREE1_DD or STR$FREE1_DX. If the application
fails to free the buffer space, the process will quickly run out of virtual memory,
producing unpredictable results. Typically, calls to API procedures will return
with an insufficient virtual memory error.

Required and optional input parameters include the following information that
the application supplies to the API:

• Session identifier

A value specifying the session on which the API is to receive the
request unit chain or response unit. (This is the value returned by
the SNALU0$REQUEST_CONNECT procedure when the session is
established.)

• Receive buffer

A buffer to contain the received message. If the buffer is not large enough
to contain all the RUs in the chain, the API passes as many units as it can.

NOTE

This buffer must be large enough to contain at least one RU plus a
7-byte header.

Output parameters for the SNALU0$RECEIVE_MESSAGE procedure include
the following locations to receive information from the API:

• Message length

A location to receive from the API a value indicating the actual length of
the message including the 7-byte header.

2–16 Concepts and Terms

• Request/response indicator

A location to receive a value from the API indicating whether the buffer
contains a request unit chain or a response unit.

• Message class indicator

A location to receive a value from the API indicating the class of the
received command. Command classes are described in Section 3.4.

• Message type indicator

If the receive buffer contains a data flow control or session control
command, the API returns a value to this location indicating the type of
the received command. Command types are described in Section 3.4.

• More data indicator

A location to receive a TRUE/FALSE flag indicating whether the last
request unit in the receive buffer carries the end chain indicator.

• Flow indicator

A location to receive a value indicating whether the received chain arrived
on the normal flow or the expedited flow.

• Alternate code indicator

A location to receive a TRUE/FALSE flag indicating the presence of a
character set other than EBCDIC in the received chain.

• Bracket indicators

Two locations to receive TRUE/FALSE flags indicating that the first request
carries the BBI and that the last request carries the EBI. The BBI and EBI
equal 0.

• Response type indicator

A location to receive a value indicating the type of response requested by
the received chain.

• End data indicator

A location to receive a TRUE/FALSE flag indicating whether the received
chain carries the CDI. The CDI equals 0.

• First and last sequence numbers

Locations to receive either the sequence numbers for the first and last
request in a received chain or the unique identifier for a single-unit chain
containing a control message.

Concepts and Terms 2–17

2.9 Terminating a Session
To terminate an LU-LU session, the OpenVMS application calls the
SNALU0$REQUEST_DISCONNECT procedure and specifies the session.

As a result of this call, the SNA Gateway sends an unconditional TERMINATE
SELF request to the SSCP, and the API deallocates all resources allocated to
the session. If the session is already inactive when the application calls the
SNALU0$REQUEST_DISCONNECT procedure, the API deallocates resources
but the SNA Gateway does not send a TERMINATE SELF message.

2.10 Reestablishing a Session
In an SNA network, the PLU can terminate a session by sending the SLU
an UNBIND type 2 (hold resources) request to indicate that another BIND
request will soon follow to reestablish the session. The application receives
an UNBIND type 2 via asynchronous event notification. An UNBIND type 2
requests the SLU to reserve the resources allocated to the session.

To respond to an UNBIND type 2 request sent from the IBM application, the
OpenVMS application calls the SNALU0$REQUEST_RECONNECT procedure.
The API places the session in a BIND_PENDING state and, if possible,
reserves the resources allocated to the session.

2–18 Concepts and Terms

3
API Features

The Digital SNA Application Programming Interface (API) for OpenVMS
provides features to assist you in writing and executing your application.
These features include the following:

• Status information

• Synchronous and asynchronous operation

• IBM access names

• Message classes and types

• State machine information

• Asynchronous event notification

3.1 Status Codes
The API uses two mechanisms to return status codes to the OpenVMS
application:

• Function value returns

• An I/O status vector

For a description of all the status codes returned by the API, see Appendix F.

3.1.1 Function Value Returns
When an API procedure finishes its attempt to perform an operation, it returns
a function value to indicate whether the operation succeeded or failed. It
places this value in register R0. After each call to an API procedure, you must
check this status value. The value in the low-order word indicates either that
the procedure completed successfully or that some specific error prevented the
procedure from performing all or some of its functions.

API Features 3–1

Each high-level language provides some mechanism for testing the return
status value in R0. Often you need to check only the low-order bit, such as by
a test for TRUE (success or informational return) or FALSE (error or warning
return).

To check the entire value for a specific return condition, each language
provides a way for your program to determine the values associated with
specific symbolically defined codes. Always use these symbolic names when you
write tests for specific conditions.

3.1.2 The I/O Status Vector
All procedures return status messages via a data structure called a status
vector. Status vectors provide complete information about error conditions and
use a format identical to the message vector format used by OpenVMS. Status
vectors supply:

• Success messages

• Warning messages

• Error messages

• Informational messages

• Severe error messages

Figure 3–1 shows the format of the status vector. The status vector can contain
one or more error messages, depending upon the kind of error that occurred.

If an error occurs, each component of the network involved can pass a message
to the API. The API uses this information to build the status vector. The
completed status vector is available to the application program at call
completion.

Usually, the application displays the error via the OpenVMS system service
call to $PUTMSG. $PUTMSG translates the status vector into a human-
readable message and sends it to a terminal or file. If you do not want to call
$PUTMSG, you can use LIB$SIGNAL or LIB$STOP, by means of a call to
LIB$CALLG, to generate a signal indicating that an exception condition has
occurred in your program. LIB$CALLG uses the following format:

LIB$CALLG argument list, procedure

where

argument list is the status vector

3–2 API Features

procedure is LIB$SIGNAL or LIB$STOP

The application does not have to signal, however. The programmer can choose
other options, such as having the program attempt to recover from the error.

For further information about dealing with errors, see under "Condition
Handling" and "$PUTMSG" in the OpenVMS System Services Reference
Manual. See under "LIB$CALLG," "LIB$SIGNAL," and "LIB$STOP" in the
OpenVMS Run-Time Library Routines Reference Manual).

Note

You must define a vector of minimum size, using the SNALU0$K_
MIN_STATUS_VECTOR literal, and provide a descriptor pointing to
it in each procedure call. The API can then fill in the vector at the
completion of the operation.

API Features 3–3

Figure 3–1 Status Vector

LKG−8087−93R

Default message

1st new message
flags

FAO count for
1st message

FAO arguments for 2nd message

2nd new message

FAO arguments for 1st message

flags
FAO count for
2nd message

1st message identification

31 0

flag Argument count

2nd message identification

The following list provides a description of the fields in the status vector.

• Argument count

Specifies the total number of longwords in the status vector.

• Default message flags

Specifies a mask defining the portions of the message(s) to be requested.
If a mask is not specified, the process default message flags are used. If a
mask is specified, it is passed to $GETMSG as the FLAGS argument. For
further information, see "Get Message" in the OpenVMS System Services
Reference Manual).

This mask establishes the default flags for each message in this call until a
new set of flags (if any) is specified. That is, each "new message flags" field
specified sets a new default.

Bits 20 through 31 must be zeros.

• Message identification

3–4 API Features

32-bit numeric value that uniquely identifies this message. Messages can
be identified by symbolic names defined for system return status codes,
VAX–11 RMS status codes, and so on.

• FAO count

Number of Formatted ASCII Output ($FAO) arguments, if any, for this
message that follow in the status vector. For further information see
"$FAO" in the OpenVMS System Services Reference Manual).

• New message flags

New mask for the $GETMSG flags, defining a new default for this message
and all subsequent messages.

• FAO arguments

FAO arguments required by the message.

3.2 Synchronous and Asynchronous Operation
An application that calls an API procedure can specify two modes of operation:
synchronous and asynchronous.

3.2.1 Synchronous Mode
In synchronous, or wait, mode, the following steps occur:

1. The OpenVMS application calls a procedure and provides the required
list of parameters. If the parameters are invalid, step 2 occurs. If the
parameters are valid, step 3 occurs.

2. The API returns status information immediately as a function value and
with further information in the status vector.

3. The API sends the request to the SNA Gateway and suspends the
OpenVMS application.

4. The SNA Gateway performs the operation and sends the result to the API.

5. The API procedure returns a function value to indicate the success
or failure of the operation. The procedure also places the status code
and further information in the status vector. The application resumes
execution.

A synchronous call has the following general format:

SNALU0$procedure_W (parameters)

where

API Features 3–5

SNALU0$procedure_W is the name of the procedure, and parameters is a
list of information needed to perform the requested
operation.

3.2.2 Asynchronous Mode
In asynchronous mode, the application issues a call to request an operation
and immediately resumes execution. It does not wait for the operation to be
completed. For this reason, applications that call procedures asynchronously
must either specify an event flag or provide a completion procedure that the
API can call to indicate that the SNA Gateway has completed its attempt to
perform the operation.

The API completion procedure is an asynchronous system trap (AST). For
information about the AST, event flag services, and AST services, see the
OpenVMS System Services Reference Manual).

Note

Use system service calls to enable and disable ASTs. The API is based
upon AST completion. If you disable ASTs and leave them disabled, no
requests will be able to complete.

An asynchronous call involves the following steps:

1. The application issues a call to an API procedure to request an operation.

2. The procedure immediately returns a status code as a function value. If
the application issues the call successfully, step 3 occurs. If the call fails,
step 4 occurs.

3. The procedure returns a function value indicating success of the call, and
the application resumes execution. At the completion of the operation, the
API will perform the following steps:

• Fill in the status vector with completion information indicating success
or failure

• Set an event flag

• Call a completion procedure if one was specified to inform the
application that the API has finished its attempt to perform the
requested operation

3–6 API Features

4. The procedure returns a function value indicating that the call was
unsuccessful. The procedure also places the status code and other
information in the status vector. The API does not attempt to perform
the operation. The application resumes execution.

Note

The notify routine is not interrupted by completion ASTs rather, the
ASTs are queued and serviced sequentially. Similarly, the completion
ASTs are not interrupted by the notify routine.

An asynchronous call has the following general format:

SNALU0$procedure (parameters)

where

SNALU0$procedure is the name of the procedure, and parameters is a list
of information needed to perform the requested
operation. The user-written procedure that an
API procedure calls to indicate that the SNA
Gateway has completed its attempt to perform a
requested operation has the following calling format:
procedure (ast-par.rlu.r)

where

procedure is the name of the user’s routine that is being called.
(procedure is specified as the ast-addr parameter in
an asynchronous call to an API procedure.)

ast-par is a parameter passed to the user-written procedure.
You can use the ast-par to provide a pointer to the
session-id or a data structure containing the session-
id in multisession applications. (ast-par is specified
as the ast-par parameter in an asynchronous call to
an API procedure.)

Note

In both synchronous and asynchronous calls, the application is
responsible for providing an event flag number in the parameter
list for use by the API procedure. If the application omits the event
flag number, the API assumes event flag 0. You should always specify
a nonzero event flag because zero is often the default and may result in
programming errors.

API Features 3–7

3.3 Supplying Access Information to the IBM Host
In order to establish a session with an IBM application, the OpenVMS
application must supply the following information to the IBM host:

• PU identification - A value identifying the Gateway Physical Unit (PU)
(for example, LC-0) or the OpenVMS/SNA PU (SNA-0) used to establish the
session. This information is supplied only to Gateway-ST and Gateway-CT
style gateways.

• Application name - An ASCII character string identifying the PLU
application (for example, CICS) that you want to connect to in the IBM
host.

• Session address - A value indicating the SLU address that you want
to use to establish a session with the IBM host. The value you specify
should be the same as the session address (LOCADDR parameter) defined
in the NCP (and VTAM) definitions which the SNA Gateway you are
using is connected to. This information is not used when specifying LU
identification information.

• Logon mode name - An ASCII character string specifying an entry in a
logon mode table that gives a set of BIND parameters for the session. (See
your VTAM system programmer for more information.)

• IBM user identification - A value identifying the user to the IBM
session. This value is inserted into the "requester ID" field of the
INIT-SELF message.

• IBM password - A string associated with the IBM user ID. This value is
inserted into the "password" field of the INIT-SELF message. (Some IBM
applications require a password others do not.)

• Optional user data - Data passed to the IBM application. (The meaning
of the data is IBM application dependent.)

• LU identification - A value identifiying the Gateway LU (for example,
H010A00E) used to establish the session.

Note

VTAM normally ignores both the "requester ID" and "password" fields.
See the IBM Systems Network Architecture Format and Protocol
Reference Manual: Architectural Logic, Order No. SC30-3112, for
further information.

3–8 API Features

The application supplies this information as parameters each time it issues a
call to the SNALU0$REQUEST_CONNECT procedure.

The Gateway manager can define a complete or partial list of IBM
access information and associate the list with an access name. If the
application specifies the access name in the parameter list of a call to
SNALU0$REQUEST_CONNECT, all IBM access information defaults to the
values in the associated list. To override a value associated with an access
name, specify a new value in the parameter list. For further information about
IBM access information and access names, see the DECnet SNA Gateway-ST
Installation, the DECnet SNA Gateway-CT Installation, or the OpenVMS SNA
Installation.

3.4 Message Classes and Types
All SNA request units exchanged between the OpenVMS application and
the IBM application are identified by class. There are four message classes:
formatted user data, unformatted user data, data flow control, and session
control.

Request units that contain a data flow control or session control command are
also identified by type. The type indicates the control function that is being
requested.

Class names have the following general format:

SNALU0$K_MCLASS_class

where class is one of the values listed in Table 3–1.

Type names have the following general format:

SNALU0$K_MTYPE_type

where type is one of the values listed in Table 3–1.

In Table 3–1 the facility code prefix (SNALU0$K_) has been left off the
message types. For instance, cancel is actually SNALU0$K_MTYPE_CANCEL

Table 3–1 Request Unit Classes and Types

Class Type Description

MCLASS_FORMATTED_FM Formatted user
data

(continued on next page)

API Features 3–9

Table 3–1 (Cont.) Request Unit Classes and Types

Class Type Description

MCLASS_UNFORMATTED_FM Unformatted user
data

MCLASS_DFC Data flow control
request

MTYPE_BID Bid

MTYPE_BIS Bracket initiation
stopped

MTYPE_CANCEL Cancel

MTYPE_CHASE Chase

MTYPE_LUSTAT LU status

MTYPE_QC Quiesce complete

MTYPE_QEC Quiesce at end of
chain

MTYPE_RELQ Release quiesce

MTYPE_RSHUTD Request
shutdown

MTYPE_RTR Ready to receive

MTYPE_SBI Stop bracket
initiation

MTYPE_SHUTC Shutdown
complete

MTYPE_SHUTD Shutdown

MTYPE_SIG Signal

MCLASS_SESSION_CONTROL Session control
request

MTYPE_RQR Request recovery

MTYPE_STSN Set and test
sequence number

MTYPE_CLEAR Clear data traffic

MTYPE_SDT Start data traffic

3–10 API Features

Note

The symbol SNALU0$K_MCLASS_NETWORK_CONTROL exists, but
the OpenVMS application will never see network control messages
because they are used in SSCP to LU sessions.

3.5 State Machine Information
When the API is in session with IBM, it can, at any time, be in one
of many states. You can learn which state the API is in by calling the
SNALU0$EXAMINE_STATE procedure. The procedure returns the symbolic
codes listed in Table 3–2:

Table 3–2 Symbols Returned by the SNALU0$EXAMINE_STATE Procedure

Symbol Meaning

Session States

SNALU0$K_ST_SES_RESET Session reset

SNALU0$K_ST_SES_P_ACTIVE Active session pending

SNALU0$K_ST_SES_ACTIVE Session active

SNALU0$K_ST_SES_P_RESET Session reset pending

Bracket State Manager

SNALU0$K_ST_BSM_BETB Between brackets

SNALU0$K_ST_BSM_INB In brackets

SNALU0$K_ST_BSM_P_BB Between brackets pending

SNALU0$K_ST_BSM_P_INB In brackets pending

SNALU0$K_ST_BSM_P_TERM_S Pending bracket termination send

SNALU0$K_ST_BSM_P_TERM_R Pending bracket termination
receive

Chain States

SNALU0$K_ST_CHAIN_BETC Between chain

SNALU0$K_ST_CHAIN_INC In chain

SNALU0$K_ST_CHAIN_PURGE Purge chain

Turn States

(continued on next page)

API Features 3–11

Table 3–2 (Cont.) Symbols Returned by the SNALU0$EXAMINE_STATE
Procedure

Symbol Meaning

SNALU0$K_ST_TURN_CONT Contention

SNALU0$K_ST_TURN_CONT_S Contention send

SNALU0$K_ST_TURN_CONT_R Contention receive

SNALU0$K_ST_TURN_SEND Send

SNALU0$K_ST_TURN_RCV Receive

SNALU0$K_ST_TURN_RCV_81B Received 081B sense code

SNALU0$K_ST_TURN_ERPS Error recovery send

SNALU0$K_ST_TURN_ERPR Error recovery receive

Quiesce State

SNALU0$K_ST_QEC_RESET Quiesce reset

SNALU0$K_ST_QEC_PEND Quiesce pending

SNALU0$K_ST_QEC_QUIESCED Quiesced

3.6 Asynchronous Event Notification
The API provides a means of informing the application that one or more
asynchronous events have occurred. This notification can take place at any
point during a session. The asynchronous events that can occur include the
following:

• A network communication error has been detected.

• The IBM host, the SNA Gateway has deliberately unbound the session or
terminated the connection.

• The IBM host has violated the SNA protocol.

• The IBM host has sent an UNBIND type 2–reconnection pending.

• The PLU has sent a CLEAR request to reset the session, and the
application has responded with +RSP.

The OpenVMS application can include a user-written notification procedure
that the API calls each time one of these asynchronous events occurs during a
session.

3–12 API Features

When you call the SNALU0$REQUEST_CONNECT procedure, use the notify-
rtn parameter to indicate the user-written procedure. The notify routine can
examine the event code (listed below) it receives and take action, such as
returning a message to the application about the nature of the asynchronous
event.

The calling format for the user-written procedure is as follows:

notify-rtn.zem.r (event-code.rlu.r,notify-parm.rlu.r)

where

notify-rtn is the name of the procedure specified in the connect call.

event-code is a symbolic code indicating the nature of the event.

• SNAEVT$K_COMERR
A network communication error

• SNAEVT$K_TERM
A deliberate termination of the link by the IBM host, or the
SNA Gateway, (see Section 2.9)

• SNAEVT$K_UNBHLD An UNBIND type 2 sent by IBM–
reconnection pending (see Section 2.10)

• SNAEVT$K_PLURESET The PLU reset the session by
sending CLEAR (see Section 4.3.2.2)

Note

The event-code symbols are defined in
SNALU0DEF.

notify-parm is an optional user-specified parameter to be passed to the
notification procedure. You can use the notify-parm to provide
a pointer to the session-id or a data structure containing the
session-id in multisession applications. Passed by reference.

If one of the asynchronous events described above occurs, the following steps
take place:

1. The API fills out the notify vector supplied by the OpenVMS application in
the REQUEST_CONNECT procedure.

2. The API notifies the OpenVMS application of the asynchronous event by
calling the user-written notify procedure.

3. The OpenVMS application reads the event code returned to the user-
written procedure.

API Features 3–13

4. The OpenVMS application reads the notify vector for detailed information
about the asynchronous event.

Note

The notify routine is not interrupted by completion ASTs rather, the
ASTs are queued and serviced sequentially. Similarly, the completion
ASTs are not interrupted by the notify routine.

The format and function of the notify vector are the same as the status vector
(see Section 3.1.2).

Usually, the application signals an event via the system service call $PUTMSG.
$PUTMSG translates the notify vector into a human-readable message that
can be sent to a terminal or file.

Note

You must define a vector of minimum size using the SNALU0$K_MIN_
NOTIFY_VECTOR literal, and provide a descriptor pointing to it in the
SNALU0$REQUEST_CONNECT procedure call. The API can then fill
in the vector.

3–14 API Features

4
SNA Functions

The responsibility for providing SNA functions in an LU-LU type 0 (LU0)
session is divided between the SNA Gateway, the API, and the OpenVMS
application.

SNA functions are grouped in "layers" of related functions (see Figure 4–1.
This chapter summarizes the functions performed at each of the following
layers and indicates which are handled by the OpenVMS application, which
are handled by the API, and which are handled by the SNA Gateway.

• The LU Services layer (Section 4.1)

• The Data Flow Control layer (Section 4.2)

• The Transmission Control layer (Section 4.3)

4.1 The LU Services Layer
SNA defines two categories of LU services: LU network services and LU
presentation services.

4.1.1 Network Services
LU network services include procedures for requesting initiation and
termination of an LU-LU session.

To request initiation of a session, an LU sends an initiate self (INIT-SELF)
request to the SSCP. In an LU0 session involving the SNA Gateway, the SNA
Gateway sends INIT-SELF in response to an SNALU0$REQUEST_CONNECT
call from the OpenVMS application.

To request termination, the LU sends a terminate self (TERM-SELF)
request to the SSCP. The SNA Gateway sends TERM-SELF in response to
an SNALU0$REQUEST_DISCONNECT call from the application.

SNA Functions 4–1

Figure 4–1 SNA Layers

LKG−0071−93R

Gateway

LU Services

Functions performed by the

Functions performed by the
Data Link
Control

Path
Control

Transmission
Control

Data Flow
Control

application (a few functions
provided by the Gateway)

4.1.2 Presentation Services
Presentation services (PS) components convert user data into a format that
is appropriate to the particular kind of data and to the application that
receives it. In many LU-LU sessions, the PS components at both ends of
the session communicate by means of function management headers (FMHs)
located within the request unit. The OpenVMS application is responsible for
providing all required presentation services, including the construction and
interpretation of FMHs.

An example of presentation services is code translation. The OpenVMS
application must perform all required ASCII/EBCDIC translations.

4–2 SNA Functions

4.2 The Data Flow Control Layer
The Data Flow Control (DFC) layer, working in cooperation with the
Transmission Control layer, ensures the proper flow of response units (RUs)
between end users. Every session includes a data flow control component that
is tailored to serve that session.

Peer DFC elements at either end of the session communicate by means of DFC
RUs and by information included in the request/response headers attached to
user data RUs.

4.2.1 Function Management Profiles
SNA defines subsets of commonly used data flow control functions in function
management (FM) profiles. Each FM profile specifies a group of required and
optional DFC functions for a session. The FM profile field in the BIND request
indicates the subset of DFC functions that will be used during a session.

The SNA Gateway supports FM profiles 3, 4, 7, and 18.

4.2.2 Send/Receive Modes
DFC send/receive modes describe the way normal-flow RUs will travel between
half-sessions. The BIND request specifies the type of send/receive mode to be
used during the session. The API handles normal-flow RU traffic according to
the specified mode.

SNA defines three send/receive modes:

• Half duplex flip-flop mode

• Half duplex contention mode

• Duplex mode

4.2.2.1 Half Duplex Flip-Flop Mode
In half duplex flip-flop mode, the SLU and the PLU take turns being the sender
of requests. At any moment, the LU currently designated as "requester" can
shift this role to the other LU by sending a change direction indicator (CDI)
in the request header attached to the RU. A DFC RU called SIGNAL (see
Section 4.2.2.1) can be used by either LU to request the other LU to send the
CDI. The CDI does not exist when the session is between brackets.

In LU type 0 sessions, the OpenVMS application is responsible for setting the
CDI in the request header (via the turn-retain parameter in the TRANSMIT_
MESSAGE procedure) and sending the SIGNAL request as required for half
duplex flip-flop mode.

SNA Functions 4–3

4.2.2.2 Half Duplex Contention Mode
In half duplex contention mode, either LU can send a request. If a request is
received by the LU currently sending a request or request chain contention
occurs. (See Section 4.2.3 for information about chains.) If this mode is used,
the PLU and the SLU must agree at session establishment on who will win the
contention. The contention resolution field in the BIND request specifies the
winner. The API supports data exchanges in half duplex contention mode.

4.2.2.3 Duplex Mode
In duplex mode, requests flow in both directions simultaneously. The flow of
requests in one direction is independent of the flow of requests in the other.
The API supports data exchanges in duplex mode.

4.2.3 Chains
Chaining is a technique used to send a series of RUs through the network as
a single entity. RUs in a chain are either accepted or rejected as a unit by the
receiving LU.

A chain can consist of a single RU or multiple RUs. All RUs in a chain are sent
sequentially to the same destination. The chain is the basic unit of recovery.
Chaining specifier fields in the BIND request specify whether or not the SLU
or the PLU can send single- or multiple-element chains during the session.

The RH includes a chaining indicator field to indicate the position of each RU
in the chain. There are three chaining indicators:

• Begin chain indicator (BCI) carried by the first RU

• End chain indicator (ECI) carried by the last RU

• Middle of chain indicator carried by all other RUs

By default, the API packages user data and commands into the appropriate
RUs and transmits the RUs to the IBM host as a complete chain, setting
the chaining indicators in the RH as required. If desired, the OpenVMS
application can control the setting of the ECI (by means of the "more data"
parameter in the TRANSMIT_MESSAGE procedure).

If a large enough buffer is provided, the API can receive a complete chain of
RUs.

4–4 SNA Functions

4.2.4 Response Types
SNA defines three types of responses:

• No response

• Exception response

• Definite response

Chain response specifier fields in the BIND request specify the type or types
of response that can be used during the session. The form of the response
requested field in the RH specifies the type of response required for a particular
RU.

The OpenVMS application is responsible both for generating the proper
responses to the requests it receives during a session and for providing sense
data for negative responses, if necessary. The API adds the response header
and chaining indicators required for transmitting the response to the PLU. The
application is also responsible for interpreting received responses.

4.2.4.1 No Response Chains
If the sender specifies "no response" in the RH, the receiver sends no response
to any RU received in the chain. In a no response chain, every request unit in
the chain carries a no response indicator. If the application responds when no
response is required, it receives an error code.

4.2.4.2 Exception Response Chains
If the sender specifies "exception response" in the RH, the receiver sends a
response only in the event of an error. If no error occurs, the whole chain can
be sent without acknowledgment from the receiver. In an exception response
chain, every request unit in the chain carries an exception request indicator.
The user must respond at the end of an exception response chain. The API will
send the response if necessary and free resources.

4.2.4.3 Definite Response Chains
If the sender specifies "definite response" in the RH for the last RU in a chain,
the receiver must return a positive or negative response to that request. In
a definite response chain, the last request unit in the chain carries a definite
response indicator. All other requests carry an exception response indicator.

SNA Functions 4–5

4.2.5 Request/Response Mode Protocols
If the session requires definite responses or exception responses for each chain,
the communicating LUs also decide whether the sending LU must wait for
responses before it sends additional requests. SNA request/response modes
define the type and the number of chains that an LU can send before waiting
for a response. There are two control modes:

• Immediate control mode

• Delayed control mode

In immediate control mode, each chain specifies a definite response, and only
one chain requiring a response can be outstanding. In delayed control mode,
multiple RU chains are allowed.

4.2.5.1 Request Modes
If the session uses delayed control mode, the LUs must also decide on a request
mode. SNA defines two request modes:

• Immediate request mode

• Delayed request mode

Request mode fields in the BIND request specify the request mode that the
PLU and SLU can use during the session. In immediate request mode, only
one chain requiring a definite response can be outstanding. In delayed request
mode, more than one chain requiring a definite response can be outstanding.

The API rejects any user requests that violate the mode specified in the BIND
agreement for the session.

4.2.5.2 Response Modes
Each response carries an indicator–a sequence number or a unique ID–of
the request to which it belongs. Response modes affect the order in which
responses are sent. SNA defines two response modes:

• Immediate response mode

• Delayed response mode

In immediate response mode, the order in which requests are received
determines the order in which responses are sent. In delayed response mode,
the responses can be sent in any order.

4–6 SNA Functions

4.2.6 Brackets
Brackets are indicators within the RH that define a series of RUs (requests and
responses going in both directions) as a unit of work. A bracket is delimited by
a begin bracket indicator (BBI) in the RH of the first request in the first chain,
and an end bracket indicator (EBI) in the RH of the first request of the last
chain.

At session establishment, the LUs agree on whether to use brackets for the
session. If brackets are used, one LU is designated "first speaker." The first
speaker can begin a bracket without asking permission of the other LU. The
other LU becomes the "bidder." The bidder must ask permission to begin a
bracket by sending a DFC bid request, as described in Section 4.2.7.5.

The BIND request contains the following fields that describe the way brackets
will be used during a session:

• The bracket usage field specifies whether brackets will be used during the
session.

• End bracket indicator (EBI) fields specify whether the SLU or the PLU can
send the EBI.

• The bracket termination rule specifier field indicates whether bracket
termination rule 1 or bracket termination rule 2 will be used for the
session.

• The bracket first speaker field in the BIND request designates either the
SLU or the PLU as first speaker.

Under bracket termination rule 1, the type of response required by the last-
in-chain element (in a chain in which the EBI has been set) determines the
way the bracket terminates. If the last-in-chain element requires a definite
response, the bracket is terminated when the definite response is returned.
If the last-in-chain element requires an exception response, the bracket ends
when the last element of the chain is successfully received.

Under bracket termination rule 2, the bracket ends unconditionally upon
receipt of the last-in-chain element of a chain in which the EBI indicator has
been set.

In LU type 0 sessions involving the SNA Gateway, the API is responsible for
setting the BBI if the session is using brackets. The OpenVMS application sets
the EBI as required.

If the session is between brackets (the EBI was set in the last chain sent or
received), the CDI does not exist and the LU may send.

SNA Functions 4–7

4.2.7 Data Flow Control Requests
The DFC components in communicating LUs can generate their own requests
to exchange control information. At session initiation, the LUs agree on the
control requests that they can exchange.

The OpenVMS application is responsible for generating the DFC requests
required for the session. The API adds the RH, the unique identifier or
sequence number, and the chain indicators needed for sending the DFC request
to the PLU. The API also determines whether to use normal or expedited flow.
The OpenVMS application is responsible for processing DFC requests. The API
ensures that the response is appropriate. These include the following:

• Cancel request

• Pause requests

Quiesce at end of chain

Quiesce complete

Release quiesce

• Cleanup requests

Chase

Shutdown

Shutdown complete

Request shutdown

• Signaling request

• Bracket requests

Bid request

Ready to receive request

• LU status request

4.2.7.1 Cancel Request
The cancel (CANCEL) request can be sent by an LU to terminate a partially
sent chain of RUs. CANCEL is sent only when a chain is in progress. The
API first completes the receive with the more-data parameter set to true. The
API then returns the CANCEL request on the next receive and discards all the
remaining RUs in the chain. The user must discard all RUs received before
the CANCEL.

FM profiles 3 and 4 specify SLU and PLU support for the CANCEL function.

4–8 SNA Functions

4.2.7.2 Pause Requests
For any number of reasons, the application or LU at one end of the session
may ask the application or LU at the other end to pause for a while in its
transmission of data. There are three pause requests:

• Quiesce at end of chain (QEC)

• Quiesce complete (QC)

• Release quiesce (RELQ)

Profile 4 specifies SLU and PLU support for QEC, QC, and RELQ. Profile 3
does not support pause requests. A logical place to pause is at the end of a
chain of requests. To request the PLU to stop sending normal-flow requests
at the end of the current chain, the SLU issues a QEC request on the normal
flow.

When the PLU receives a QEC request, it returns a QC RU on the normal flow.
QC is a normal-flow synchronizing request. It is the last normal flow request
that the PLU sends until the SLU indicates that it is ready to resume receiving
data.

To remove the quiesce condition imposed on the PLU, the SLU sends a RELQ
request on the expedited flow. After receiving RELQ, the PLU can resume
sending normal flow requests.

Note

QEC, QC, and RELQ affect normal-flow requests only. They do not
affect expedited RUs or responses to normal-flow requests.

4.2.7.3 Cleanup Requests
There are three cleanup requests:

• Chase (CHASE)

• Shutdown (SHUTD)

• Shutdown complete (SHUTC)

• Request shutdown (RSHUTD)

FM profile 3 and 4 specify SLU and PLU support for these cleanup requests.

SNA Functions 4–9

The CHASE request tells the receiving LU to return all outstanding normal-
flow responses and to send a response when this is done. Both the PLU and
the SLU can send CHASE on the normal flow in preparation for a quiesce
or shutdown to ensure that all preceding requests and responses have been
processed before termination occurs.

SHUTD and SHUTC requests bring about an orderly termination of a session.

The PLU sends the SLU a SHUTD request on the expedited flow to say that
the work is done, to instruct the SLU to complete end-of-session processing,
and to quiesce when ready to end the session.

The SLU sends the PLU a SHUTC on the expedited flow to say that it has
finished end-of-session processing and is entering the quiesce state.

The SLU sends the PLU an RSHUTD request on the normal flow to indicate
that the work is done and to request either an UNBIND request or a CLEAR
and UNBIND. (Note that, in spite of its name, RSHUTD does not request a
SHUTD RU, but rather termination of the session.)

4.2.7.4 Signal Request
The signal (SIGNAL) request is an expedited request that can be sent between
half-sessions, regardless of the status of the normal flows. The request carries
a 4-byte signal code: the first 2 bytes are the signal field and the last 2 bytes
are the signal extension field. Profiles 3 and 4 specify SLU and PLU support
for SIGNAL.

4.2.7.5 Bracketing Requests
There are two bracketing requests:

• Bid (BID)

• Ready to receive (RTR)

If the SLU and the PLU agree to use bracketing, the normal flow BID request
enables the half-session designated bidder to request permission to initiate a
bracket.

The RTR request, issued on the normal flow by the first speaker, tells the
bidder that it can now initiate a bracket. This RTR request is sent only after
the PLU has a sent a negative response to a BID request.

4.2.7.6 LU Status Request
The LU status (LUSTAT) request is typically used to report on failures and
error recovery conditions for a local device of the LU. Either the PLU or the
SLU can issue the LUSTAT request on the normal flow.

4–10 SNA Functions

4.3 Transmission Control Layer
Half-session support for an LU includes a Transmission Control (TC) layer that
contains the the following principal components:

• Connection point manager

• Session control

SNA defines subsets of TC functions in transmission subsystem (TS) profiles.
Each TS profile specifies a group of required and optional TC functions for
a session. The BIND request includes a TS profile field that indicates the
subset of functions that can be used during the session. The BIND request
also includes TS usage fields that specify the optional TC functions that will be
used in the session.

4.3.1 Connection Point Manager
The connection point manager (CPMGR) is the half-session’s interface to the
common transmission network. The CPMGR performs the following functions:

• Constructs the RH for all outgoing RUs.

• Assigns a sequence number to each outgoing RU on the normal flow and
interprets the sequence number for each incoming RU on the normal flow.

• Assigns a unique identifier for each outgoing RU on the expedited flow
and interprets the ID for each incoming RU on the expedited flow. The
OpenVMS application performs this function.

• Paces the sending of normal flow requests. The SNA Gateway performs
this function.

4.3.1.1 Building the Request/Response Header
The API is responsible for building a request/response header (RH) for each
outgoing RU and for interpreting the RH header for each incoming RU. The
OpenVMS application can control the setting of certain RH indicators. RH
fields are described in Appendix C.

4.3.1.2 Assigning Sequence Numbers and Unique Identifiers
The API is responsible for assigning a sequence number to each RU that it
sends out on the normal flow and a unique identifier to each RU that it sends
out on the expedited flow. The API passes to the OpenVMS application the
sequence number or identifier for each received RU.

Each response has the same sequence number or unique ID as its associated
request. This enables the receiver of the response to correlate responses with
requests and to wait, if necessary, for the response to arrive.

SNA Functions 4–11

4.3.1.3 Pacing
At session establishment, each LU agrees not to send messages at a rate faster
than the receiving LU can handle them. The agreement states that the sender
will send up to a specified maximum of RUs. After that, it must wait for a
go-ahead signal from the receiver before it can send more.

Pacing is handled by the API and the SNA Gateway. In most cases, the go-
ahead signal is the pacing indicator in the RH of the next response. In the case
of no-response exchanges, the receiver sends a special isolated pacing response.
This is a message with no data, just the RH (with pacing indicator) and other
headers.

The BIND request includes two pacing fields for the SLU: the send pacing field
and the receive pacing field. The SLU send pacing field specifies the rate at
which the SLU can send messages to the PLU. The SLU receive pacing field
specifies the rate at which the PLU can send messages to the SLU. In SNA
Gateway communications, the Gateway reads the SLU pacing fields in the
BIND request.

For a session involving the SNA Gateway, the send pacing field must be zero
filled, signifying that the SNA Gateway (representing the SLU) cannot ask the
PLU to return pacing responses. The PLU is assumed to have enough buffer
space to handle any transmission from the SLU. If this field is not zero filled,
the SNA Gateway rejects the BIND request.

The value in the receive pacing field specifies the number of incoming RUs that
can be buffered by the SNA Gateway. After the PLU transmits the number of
RUs specified in this field, it requests a pacing response. If the SNA Gateway
can accept more RUs, it returns the pacing response, and the PLU continues to
send. If it cannot accept more RUs, it withholds the pacing response until such
time as it can accept them.

4.3.2 Session Control
Session control functions for LU-LU sessions involve the following requests:

• Requests for managing the activation/deactivation of the session

1. BIND

2. UNBIND

• Requests for starting and clearing data traffic for an activated session

1. Start data traffic (SDT)

2. CLEAR

4–12 SNA Functions

• Requests for assisting upper-level functions to resynchronize if an RU is
lost or out of sequence

1. Request recovery (RQR)

2. Set and test sequence number (STSN)

4.3.2.1 BIND and UNBIND Requests
To activate a session, the PLU sends the SLU a BIND request on the expedited
flow. The BIND request consists of fields that the PLU sets to specify the rules
and characteristics of the session. The SLU reads the BIND request and either
accepts or rejects the session according to the characteristics specified.

In SNA Gateway communications, the IBM application sends the BIND request
to the SNA Gateway. The SNA Gateway passes the BIND request to the
OpenVMS application. The OpenVMS application inspects the BIND request
and accepts or rejects the session. In SNA Gateway communications, the BIND
request can be either negotiable or nonnegotiable. If negotiable, the OpenVMS
application can accept a session proposed by a BIND request on the condition
that certain parameters are changed. The OpenVMS application changes the
values of these parameters in the BIND buffer and returns the entire buffer to
IBM using the TRANSMIT_RESPONSE procedure.

To deactivate a session, the PLU sends an UNBIND (other than type 2)
request. In SNA Gateway communications, the SNA Gateway receives the
UNBIND request and notifies the OpenVMS application via the SNAEVT$K_
TERM event code. At the time the OpenVMS application is notified, the
session has already been terminated, and the OpenVMS application can only
disconnect and release resources within the API.

The OpenVMS application is notified of the receipt of an UNBIND type 2 via
the SNAEVT$K_UNBHLD notify event. To respond to an UNBIND type 2,
the application must issue an SNALU0$REQUEST_RECONNECT. When the
reconnect completes, the application must acknowledge the BIND and wait to
receive the SDT (see Section 4.3.2.2).

4.3.2.2 Starting and Clearing Data Traffic
To activate data traffic in a session, the PLU sends the SLU a start data
traffic (SDT) request on the expedited flow. SDT starts the traffic flow for both
directions.

To purge all RUs that may be traveling over the network, the PLU sends the
SLU a CLEAR request on the expedited flow. CLEAR inhibits further normal
flow traffic until the PLU issues an SDT.

SNA Functions 4–13

Expedited data is received just as any other data message, through
SNALU0$RECEIVE_MESSAGE. No other notification is given. The CLEAR
RU is also received through SNALU0$RECEIVE_MESSAGE. After the
applications +RSP’s to the CLEAR, then the application is notified that the
session has been "reset".

4.3.2.3 Recovery/Resynchronization Functions
To direct data traffic recovery procedures, the SLU sends the PLU a request
recovery (RQR) request on the expedited flow. The OpenVMS application can
send the RQR request.

To resynchronize the sequence numbers at both ends of the session, the PLU
sends a set and test sequence number (STSN) request on the expedited flow.
The OpenVMS application is always the SLU and therefore never sends STSN.

The API takes care of the manipulation of sequence numbers for the OpenVMS
application the application is simply informed that it is happening. The
OpenVMS application, however, is responsible for responding to the STSN. It
does this by issuing an SNALU0$TRANSMIT_RESPONSE with a resp-type
of SNALU0$K_POSITIVE_RSP. The application is also responsible for setting
and testing its own copy of sequence numbers, if it is maintaining one.

4–14 SNA Functions

5
Procedure Calling Formats

This chapter describes the calling formats for the procedures provided by the
Digital SNA Application Programming Interface (API) for OpenVMS product.
These procedures include:

• SNALU0$EXAMINE_STATE

• SNALU0$RECEIVE_MESSAGE

• SNALU0$REQUEST_CONNECT

• SNALU0$REQUEST_RECONNECT

• SNALU0$REQUEST_DISCONNECT

• SNALU0$TRANSMIT_MESSAGE

• SNALU0$TRANSMIT_RESPONSE

Calls to the API procedures have the following general format:

status=SNALU0$procedure-name[W] (argument,....,[argument])

where

status is a status code returned as a function value.

procedure-name is the name of the API procedure you want to call.

_W specifies a synchronous operation.

() delimits the argument list.

[argument] indicates an optional argument.

argument is a symbol containing information that the application
passes to the API. The arguments associated with each
of the procedures in this chapter use shorthand notation
to describe the argument’s characteristics. You can find a
summary of these notations in Appendix A.

Procedure Calling Formats 5–1

You can pass arguments to the API two ways:

• By reference (or address). The argument is the address of an area or
field that contains the value. An argument passed by address is usually
expressed as a reference name or label associated with an area or field.

• By descriptor. This argument is also an address, but of a special data
structure called a character string descriptor.

In this chapter, the argument definitions for each procedure specify how each
argument is to be passed.

5.1 SNALU0$EXAMINE_STATE
The SNALU0$EXAMINE_STATE procedure returns the following information
about the port state for the specified session:

• General session state

• Transmit "turn"

• Bracket state

• Chain state

• Quiesce state

• Current value of the sequence number for transmits and receives on the
normal and expedited flow

Format:

status.wlc.v =SNALU0$EXAMINE_STATE[_W](session-id.rlu.r ,
status-blk.wz.dx ,
[session-state.wbu.r],
[bracket-state.wbu.r],
[chain-send.wbu.r],
[chain-receive.wbu.r],
[turn-state.wbu.r],
[quiesce-send.wbu.r],
[quiesce-receive.wbu.r],
[normal-send-seqno.wwu.r],
[normal-receive-seqno.wwu.r],
[expedited-seqno.wwu.r])

Arguments:

5–2 Procedure Calling Formats

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A session identifier assigned at connect time. Passed by
reference.

status-blk A data structure to contain status information on completion
of the procedure. Passed by descriptor.

session-state A location to receive a value indicating the general session
state (see Table 3–2). Passed by reference.

bracket-state A location to receive a value indicating the bracket state for
the session (see Table 3–2). Passed by reference.

chain-send A location to receive a value indicating the chain send state
for the session (see Table 3–2).

chain-receive A location to receive a value indicating the chain receive
state for the session (see Table 3–2).

turn-state A location to receive a value indicating the transmit turn
state for the session (see Table 3–2). Passed by reference.

quiesce-send A location to receive a value indicating the quiesce send
state for the session (see Table 3–2). Passed by reference.

quiesce-receive A location to receive a value indicating the quiesce receive
state for the session (see Table 3–2).

normal-send-seqno A location to receive the current sequence number value for
normal flow transmits. Passed by reference.

normal-receive-seqno A location to receive the current sequence number value for
normal flow receives. Passed by reference.

expedited-seqno A location to receive the current sequence number value for
expedited flow transmits. Passed by reference.

The SNALU0$EXAMINE_STATE procedure can return the following status
codes:

• SNALU0$_INVSESID

• SNALU0$_NORMAL

• SNALU0$_PARERR

Procedure Calling Formats 5–3

5.2 SNALU0$RECEIVE_MESSAGE
The SNALU0$RECEIVE_MESSAGE procedure receives either a complete or
partial chain of request units or a response unit from the PLU.

Format:

status.wlc.r =SNALU0$RECEIVE_MESSAGE[_W] (session-id.rlu.r ,
status-blk.wz.dx ,
buff.wx.dx ,
buff-size.wwu.r ,
req-ind.wbu.r ,
more-data.wbu.r ,
[msg-class.wbu.r],
[msg-type.wbu.r],
[flow.wbu.r],
[alt-code.wbu.r],
[beg-brack.wbu.r],
[end-brack.wbu.r],
[sense-inc.wbu.r],
[resp-type.wbu.r],
[end-data.wbu.r],
[seq-num-first.ww.r],
[seq-num-last.ww.r],
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A session identifier assigned at connect time. Passed by
reference.

status-blk A data structure to contain status information on completion
of the procedure. Passed by descriptor.

buff A buffer to contain either a complete or partial chain of
request units or a response unit. The minimum size of the
buffer is the RU size plus SNABUF$K_HDLEN. Passed by
descriptor.

buff-size A location to contain the actual length of the received data
in bytes. Passed by reference.

5–4 Procedure Calling Formats

req-ind A location to receive a symbol indicating whether the
received RU is a request or a response:

• SNALU0$K_REQUEST indicates a request.

• SNALU0$K_RESPONSE indicates a response.

Passed by reference.

more-data A location to receive a TRUE/FALSE flag specifying whether
more data is to be received as part of the current chain.

• FALSE indicates that the last RU in the buffer carries
the ECI. No more data is forthcoming for the current
chain. The chain is complete.

• TRUE indicates that the last request unit in the buffer
does not carry ECI. More data is forthcoming for the
current chain. The chain is still open.

Passed by reference.

msg-class A location to receive a value indicating the class of the
message received (see Table 3–1). Passed by reference.

msg-type A location to receive a value indicating the type of message
received (see Table 3–1). Passed by reference.

flow A location to receive a symbol indicating the flow on which
the RU was received.

• SNALU0$K_NORMAL_FLOW indicates that the RU
arrived on the normal flow.

• SNALU0$K_EXPEDITED_FLOW indicates that the RU
arrived on the expedited flow.

Passed by reference.

alt-code A location to receive a TRUE/FALSE flag indicating the
presence of a character set other than EBCDIC within the
user data.

• TRUE indicates that a non-EBCDIC character set is
present.

• FALSE indicates that an alternate set is not present.

Passed by reference.

Procedure Calling Formats 5–5

beg-brack A location to receive a TRUE/FALSE flag indicating whether
the first request unit in the chain carries the BBI.

• TRUE indicates that BBI is present.

• FALSE indicates that the BBI is not present.

Passed by reference.

end-brack A location to receive a TRUE/FALSE flag indicating whether
the first request unit in the chain carries the EBI.

• TRUE indicates that the EBI is present.

• FALSE indicates that the EBI is not present.

Passed by reference.

sense-inc Valid for negative responses only. A location to receive a
TRUE/FALSE flag indicating that the first four bytes of the
negative response contain sense data.

• TRUE indicates that sense data is present.

• FALSE indicates that sense data is not present.

Passed by reference.

resp-type A location to receive one of the following symbols specifying
the type of response to be supplied to an RU that carries an
ECI:

1. SNALU0$K_RSP_RQD1

2. SNALU0$K_RSP_RQD2

3. SNALU0$K_RSP_RQD3

4. SNALU0$K_RSP_RQE1

5. SNALU0$K_RSP_RQE2

6. SNALU0$K_RSP_RQE3

7. SNALU0$K_RSP_NONE

Passed by reference.

5–6 Procedure Calling Formats

end-data Valid for half duplex flip-flop mode only. A location to
receive a TRUE/FALSE flag indicating the presence of the
CDI in the request unit carrying the ECI. If the EBI is set
(that is, if the session is between brackets), this parameter
has no meaning (see Section 4.2.6).

• TRUE indicates that the CDI is present. The OpenVMS
application can now send a message.

• FALSE indicates that the CDI is not present.

Passed by reference.

seq-num-first A location to receive the sequence number assigned to the
first RU in the received chain. Passed by reference.

seq-num-last A location to receive the sequence number assigned to the
last RU in the received RU. Passed by reference.

Note

If the receive buffer contains a chain
consisting of a single data flow or
session control RU, seq-num-first and
seq-num-last both receive the unique
ID assigned to the RU.

event-flag An event flag to be set at completion. The default is event
flag 0. Passed by reference.

ast-addr The address of a user-written procedure called by the API
upon completion. Passed by reference.

ast-par An optional user-specified longword parameter to be
passed to the user-written completion procedure. Passed
by reference.

The SNALU0$RECEIVE_MESSAGE procedure can return the following status
codes:

• SNALU0$_EVTCLR

• SNALU0$_GETLU0VM

• SNALU0$_INVBUF

• SNALU0$_INVSESID

• SNALU0$_NORMAL

• SNALU0$_PARERR

• SNALU0$_RCVBFSM

Procedure Calling Formats 5–7

• SNALU0$_RCVFAIL

• SNALU0$_ILEFWT

5.3 SNALU0$REQUEST_CONNECT
The SNALU0$REQUEST_CONNECT procedure issues either an active or a
passive request to establish a session between an OpenVMS application and an
IBM application.

Format:

status.wlc.r =SNALU0$REQUEST_CONNECT[_W](session-id.wlu.r ,
status-blk.wz.dx ,
conn-type.rlu.r ,
[node-desc.rt.dx],
[acc-name.rt.dx],
[pu-name.rt.dx],
[sess-addr.rlu.r],
[applic-prog.rt.dx],
[logon-mode.rt.dx],
[user-id.rt.dx],
[pass-word.rt.dx],
[data.rt.dx],
[notify-rtn.zem.r],
[notify-parm.rlu.r],
[notify-status.wz.dx]
[bind-buf.wt.dx],
[bind-len.wwu.r],
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A location to receive a unique session identifier that will
be used in subsequent references to the session. Passed by
reference.

status-blk A data structure to contain status information on completion
of the procedure. Passed by descriptor.

5–8 Procedure Calling Formats

conn-type A value to specify the type of connection desired.

• SNALU0$K_ACTIVE indicates an active connection
request.

• SNALU0$K_PASSIVE indicates a passive connection
request.

Passed by reference.

node-desc A Gateway DECnet node or TCP/IP host name string. For
OpenVMS SNA, set this parameter to equal an ASCII 0. If
the Gateway DECnet node name string is not supplied, the
API assumes you are requesting a connection via OpenVMS
SNA. Passed by descriptor.

acc-name An access name associated with a list of default PLU
access values. The maximum length is 8 characters. If you
omit the access name, you must supply the IBM access
information required in the parameter list. Passed by
descriptor.

pu-name A string defining the Gateway Physical Unit (PU) (for
example, SNA-0) or the DECnet SNA or OpenVMS SNA
used to establish the session with IBM. For Domain
Gateway and Peer Server, use this string to supply the
LU name in the SNA Gateway used for the session. The
maximum length is 8 bytes. Passed by descriptor.

sess-addr The number (in the range of 1 to 127) of the SLU over which
the session is to take place. This information is not used,
and do not supply it when connecting through a Domain
Gateway or Peer Server. Passed by reference.

applic-prog The PLU application to which you want to connect in the
IBM host. The maximum length is 8 characters. Note
that most IBM application names must be uppercase (for
example, CICS). Passed by descriptor.

logon-mode A logon mode name associated with a set of BIND request
parameters for the session. The maximum length is 8
characters. Passed by descriptor.

user-id A name identifying the user to the SSCP. The maximum
length is 8 characters. Passed by descriptor.

pass-word A password associated with the user ID. The maximum
length is 8 characters. Passed by descriptor.

data Optional user data. The maximum length is 128 characters.
Passed by descriptor.

Procedure Calling Formats 5–9

notify-rtn A notification procedure. This procedure is called by the
API to notify the user application of network-related events.
Although this parameter is optional, Digital strongly
recommends that you provide a notify routine that can
process the network events described in Section 3.6. Passed
by reference.

notify-parm An optional user-specified longword parameter to be passed
to the notification procedure. Passed by reference.

notify-status A data structure to contain information about an
asynchronous event that has occurred during the session.
Passed by descriptor.

bind-buf A buffer to receive the BIND request image. The buffer
should be at least SNABUF$K_LENGTH bytes in length.
Passed by descriptor. If the application specifies a class
S descriptor, the API copies the BIND request image into
the buffer pointed to by the descriptor. If the application
specifies a class D descriptor, the API fills in the descriptor
to point to the BIND request image. The application is
responsible for deallocating dynamic memory.

bind-len A location to receive the length of the BIND request image.
Passed by reference.

event-flag An event flag to be set upon completion. The default is
event flag 0. Passed by reference.

ast-addr The address of a user-written procedure called by the API
upon completion. Passed by reference.

ast-par An optional user-specified longword parameter to be
passed to the user-written completion procedure. Passed
by reference.

The SNALU0$REQUEST_CONNECT procedure can return the following
status codes:

• SNALU0$_ACQLU

• SNALU0$_EVTCLR

• SNALU0$_GETLU0VM

• SNALU0$_INVBUF

• SNALU0$_NORMAL

• SNALU0$_NOSESN

• SNALU0$_NOTVECTSM

• SNALU0$_RCVBFSM

• SNALU0$_RCVFAIL

5–10 Procedure Calling Formats

• SNALU0$_UNALEF

• SNALU0$_ILEFWT

5.4 SNALU0$REQUEST_RECONNECT
The SNALU0$REQUEST_RECONNECT procedure maintains a session
over an LU whose associated general session port state is UNBIND_HOLD
(PENDING). Upon completion of the procedure, the port state is BIND_
PENDING, indicating that the OpenVMS application is awaiting a new BIND
request from the PLU.

Format:

status.wlc.r =SNALU0$REQUEST_RECONNECT[_W] (session-id.rlu.r ,
status-blk.wz.dx ,
[bind-buf.wt.dx],
[bind-len.wwu.r],
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A session identifier assigned at connect time. Passed by
reference.

status-blk A data structure to contain status information on completion
of the procedure. Passed by descriptor.

bind-buf A buffer to receive the BIND request image. Passed by
descriptor. If the application specifies a class S descriptor,
the API copies the BIND request image into the buffer
pointed to by the descriptor. If the application specifies a
class D descriptor, the API fills in the descriptor to point to
the BIND request image. The application is responsible for
deallocating dynamic memory.

bind-len A location to receive the length of the BIND request image.
Passed by reference.

event-flag An event flag to be set upon completion of the procedure.
The default is event flag 0. Passed by reference.

Procedure Calling Formats 5–11

ast-addr The address of a user-written procedure called by the API
upon completion of the procedure. Passed by reference.

ast-par An optional user-specified longword parameter to be
passed to the user-written completion procedure. Passed
by reference.

The SNALU0$REQUEST_RECONNECT procedure can return the following
status codes:

• SNALU0$_EVTCLR

• SNALU0$_GETLU0VM

• SNALU0$_INVBUF

• SNALU0$_INVSESID

• SNALU0$_NORMAL

• SNALU0$_PARERR

• SNALU0$_RCNFAIL

• SNALU0$_RCVBFSM

• SNALU0$_ILEFWT

5.5 SNALU0$REQUEST_DISCONNECT
The SNALU0$REQUEST_DISCONNECT procedure initiates an immediate
termination of the specified session. The SNA Gateway sends an UNBIND
request and waits for the response. When the procedure completes, all
resources allocated to this session by the API are deallocated.

OpenVMS applications also have the ability to send a TERM-SELF request, as
some IBM applications can not accept an UNBIND request. This is done by
using the disconnect-type argument.

Format:

status.wlc.r =SNALU0$REQUEST_DISCONNECT[_W] (session-id.rlu.r ,
status-blk.wz.dx ,
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r],
[disconnect-type])

Arguments:

5–12 Procedure Calling Formats

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A session identifier assigned at connect time. Passed by
reference.

status-blk A data structure to contain status information on completion
of the procedure. Passed by descriptor.

event-flag An event flag to be set upon completion of the procedure.
The default is event flag 0. Passed by reference.

ast-addr The address of a user-written procedure called by the API
upon completion of the procedure. Passed by reference.

ast-par An optional user-specified longword parameter to be
passed to the user-written completion procedure. Passed
by reference.

disconnect-type Either SNALU0$K_UNBIND, or SNALU0$K_TERM-SELF.
The default is SNALU0$K_UNBIND. Transmit a TERM-
SELF or UNBIND and wait for the response passed by
reference.

The SNALU0$REQUEST_DISCONNECT procedure can return the following
status codes:

• SNALU0$_DISCFAIL

• SNALU0$_EVTCLR

• SNALU0$_GETLU0VM

• SNALU0$_INVSESID

• SNALU0$_NORMAL

• SNALU0$_PARERR

• SNALU0$_ILEFWT

5.6 SNALU0$TRANSMIT_MESSAGE
The SNALU0$TRANSMIT_MESSAGE procedure packages user data into one
or more RUs and sends the RUs to the PLU as a complete chain, the beginning
of a chain, the middle of a chain, or the end of a chain, as required.

Procedure Calling Formats 5–13

Format:

status.wlc.r =SNALU0$TRANSMIT_MESSAGE[_W] (session-id.rlu.r ,
status-blk.wz.dx ,
buff.rx.dx ,
buff-size.rwu.r ,
msg-class.rbu.r ,
[alt-code.rbu.r],
[end-brack.rbu.r],
[resp-type.rbu.r],
[more-data.rbu.r],
[turn-retain.rbu.r],
[seq-num-first.wwu.r],
[seq-num-last.wwu.r],
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A session identifier assigned at connect time. Passed by
reference.

status-blk A data structure to contain status information on completion
of the procedure. Passed by descriptor.

buff A buffer containing the data to be transmitted. Passed by
descriptor.

buff-size The size of the user buffer in bytes. Passed by reference.

msg-class The class of the message to be sent (see Table 3–1). Passed
by reference.

alt-code A TRUE/FALSE flag indicating the presence of a character
set other than EBCDIC within the user data.

• TRUE indicates that the character set contains a
non-EBCDIC code.

• FALSE indicates that the character set contains
EBCDIC code only.

The default is FALSE. Passed by reference.

5–14 Procedure Calling Formats

end-brack A TRUE/FALSE flag indicating that the OpenVMS
application wants to end the current bracket.

• TRUE indicates that the OpenVMS application wants
to end the current bracket. The API sets the EBI in the
first RU in the chain that contains ECI.

• FALSE indicates that the OpenVMS application wants
the current bracket to remain open. The API does not
set the EBI.

The default is FALSE. Passed by reference.

resp-type A value to specify the type of response to be supplied to
an RU that carries an ECI. This parameter can take the
following values:

1. SNALU0$K_RSP_RQD1

2. SNALU0$K_RSP_RQD2

3. SNALU0$K_RSP_RQD3

4. SNALU0$K_RSP_RQE1

5. SNALU0$K_RSP_RQE2

6. SNALU0$K_RSP_RQE3

7. SNALU0$K_RSP_NONE

The default is RSP_NONE. Passed by reference.

more-data A TRUE/FALSE flag telling the API whether to set the
ECI on the last RU of the chain built as a result of this
TRANSMIT call.

• If TRUE, the API does not set the ECI indicator in
the last RU. More data is to follow in a subsequent
TRANSMIT_MESSAGE call. The chain remains open.
The turn-retain parameter must be set FALSE (see
below).

• If FALSE, the API sets the ECI indicator in the last
RU. No more data is to follow. The chain is complete.

The default is FALSE. Passed by reference.

Procedure Calling Formats 5–15

turn-retain A TRUE/FALSE flag used to control the setting of the CDI.

• If TRUE, the API does not set the CDI indicator in the
RU carrying the ECI. The IBM application remains the
receiver. The API can send another chain or continue
sending the current chain.

• If FALSE, the API sets the CDI indicator in the RU
carrying the ECI. The IBM application becomes the
sender. The API can receive a chain.

The default is FALSE. Passed by reference.

seq-num-first A location to receive the sequence number assigned by the
API to the first element of the transmitted chain. Passed by
reference.

seq-num-last A location to receive the sequence number assigned by the
API to the last element of the transmitted chain. Passed by
reference.

event-flag An event flag to be set upon completion of the procedure.
The default is event flag 0. Passed by reference.

ast-addr The address of a user-written procedure called by the API
upon completion of the procedure. Passed by reference.

ast-par An optional user-specified longword parameter to be
passed to the user-written completion procedure. Passed
by reference.

The SNALU0$TRANSMIT_MESSAGE procedure can return the following
status codes:

• SNALU0$_EVTCLR

• SNALU0$_FREELU

• SNALU0$_GETLU0VM

• SNALU0$_INVBUF

• SNALU0$_INVSESID

• SNALU0$_NORMAL

• SNALU0$_PARERR

• SNALU0$_XMTFAIL

• SNALU0$_ILEFWT

5–16 Procedure Calling Formats

5.7 SNALU0$TRANSMIT_RESPONSE
The SNALU0$TRANSMIT_RESPONSE procedure transmits a response to a
specified RU or chain of RUs.

Format:

status.wlc.r =SNALU0$TRANSMIT_RESPONSE[_W] (session-id.rlu.r ,
status-blk.wz.dx ,
buff.rx.dx ,
buff-size.rwu.r ,
resp-type.rbu.r ,
[sense.rlu.r],
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a status
value in general register R0. Successful completion is
indicated by a status code with the low-order bit set. The
low-order three bits, together, represent the severity of the
error. Returned as a function value.

session-id A session identifier assigned at connect time. Passed by
reference.

buff The buffer containing the RU associated with the positive
response. Passed by descriptor.

buff-size The size of the buffer. Passed by reference.

resp-type The type of response (positive or negative) to be returned to
the PLU. This parameter takes the following values:

• SNALU0$K_POSITIVE_RSP

• SNALU0$K_NEGATIVE_RSP

Passed by reference.

sense 4 bytes of sense data to be returned to the PLU if a negative
response is being transmitted. Passed by reference.

event-flag An event flag to be set upon completion of the procedure.
This must be in Digital format (least significant byte first)
and not in IBM format. API will perform any manipulation
needed prior to sending the data. Passed by reference.

ast-addr The address of a user-written procedure called by the API
upon completion of the procedure. Passed by reference.

Procedure Calling Formats 5–17

ast-par An optional user-specified longword parameter to be
passed to the user-written completion procedure. Passed
by reference.

The SNALU0$TRANSMIT_RESPONSE procedure can return the following
status codes:

• SNALU0$_EVTCLR

• SNALU0$_GETLU0VM

• SNALU0$_INVBUF

• SNALU0$_INVSESID

• SNALU0$_NORMAL

• SNALU0$_PARERR

• SNALU0$_TONEGRSP

• SNALU0$_TOPOSRS

• SNALU0$_XMTFAIL

• SNALU0$_FREELU0VM

• SNALU0$_ILEFWT

5–18 Procedure Calling Formats

6
Compiling and Linking a Transaction

Program

6.1 Creating and Compiling Your Program
Using the editor of your choice, create a source file containing the language
source statements from one of the supported languages. (Appendix E contains
programming examples for most of the supported languages.)

Invoke the language required compiler to process the source statements. For
example, enter the following command to compile a OpenVMS VAX BASIC
program.

$ BASIC MYPROGRET

Verify that there are no syntax errors or violations of the language rules. The
compiler will search any libraries you have specified, as well as any default
libraries, to locate INCLUDE files referenced in the source program. Your
program should contain an INCLUDE statement with the following reference:

INCLUDE ’SYS$LIBRARY:SNALU0DEF’

If you are using MACRO language, assemble your MACRO program with the
following DCL command:

$ MACRO/OBJECT=MYDIR:MYPROG SYS$LIBRARY:SNALU0DEF+SNALIBDEF+MYDIR:MYPROG

where MYDIRand MYPROGare your directory and program.

If there are no errors, the compiler creates an object module. If errors are
reported, determine the line(s) containing the errors, edit the program to
correct the errors, and then recompile the program.

Compiling and Linking a Transaction Program 6–1

6.2 Linking Your Program to the Shareable Program Image
After you have compiled the source statements, you are ready to link
them with the shareable image of the API procedures. Your image shares
these procedures with other images (on the condition that the shareable
image is installed with the /SHAREABLE attribute with the VMSINSTAL
utility). For additional information, see the Guide to OpenVMS Software
Installation. To use the shareable API procedures, you must specify a linker
options file. This links your executable image with the shareable image
SYS$SHARE:SNALU0SHR.EXE. For example:

$ LINK/EXE/MAP/MYPROG,SYS$INPUT:/OPTION
SYS$SHARE:SNALU0SHR/SHARE
CTRL/Z

$

The following example links your executable image with the debugger and the
shareable image SYS$SHARE:SNALU0SHR.EXE. You must specify a linker
options file.

$ LINK/EXE/MAP/DEBUG MYPROG,SYS$INPUT:/OPTION
SYS$SHARE:SNALU0SHR/SHARE
CTRL/Z

$

Once you have compiled and linked your program, you are ready to run it. For
a detailed description of the LINK command and additional options, see the
OpenVMS Linker Reference Manual. Also, refer to your language manual for
additional information.

6–2 Compiling and Linking a Transaction Program

A
Summary Chart of Procedure Parameter

Notation

This appendix summarizes the notation used to describe parameters in the
Digital SNA Application Programming Interface for OpenVMS. For further
information about notations and their definitions, see the "VAX Procedure
Calling and Condition Handling Standard" in the Introduction to OpenVMS
System Routines.

The following format illustrates the location of the notation in the parameter:

<name>.<access type><data type>.<pass mech><parameter form>

where

1. <Name> is a mnemonic for the procedure.

2. <Access type> is a single letter denoting the type of access that the
procedure will (or can) make to the argument.

3. <Data type> is a letter denoting the primary data type with trailing
qualifier letters to further identify the data type. The routine must
reference only the size specified to avoid improper access violations.

4. <Passing mechanism> is a single letter indicating the parameter passing
mechanism that the called routine expects.

5. <Parameter form> is a letter denoting the form of the argument.

<access type>

c Call after stack unwind
f Function call (before return)
j JMP after unwind
m Modify access
r Read-only access
s Call without stack unwinding
w Write-only access

Summary Chart of Procedure Parameter Notation A–1

<data type>

a Virtual address
adt Absolute data and time
arb 8-bit relative virtual address
arl 32-bit relative virtual address
arw 16-bit relative virtual address
b Byte integer (signed)
blv Bound label value
bpv Bound procedure value
bu Byte logical (unsigned)
c Single character
cit COBOL intermediate temporary
cp Character pointer
d D_floating
dc D_floating complex
dsc Descriptor (used by descriptors)
f F_floating
fc F_floating complex
g G_floating
gc G_floating complex
h H_floating
hc H_floating complex
l Longword integer (signed)
lc Longword return status
lu Longword logical (unsigned)
nl Numeric string, left separate sign
nlo Numeric string, left overpunched sign
nr Numeric string, right separate sign
nro Numeric string, right overpunched sign
nu Numeric string, unsigned
nz Numeric string, zoned sign
o Octaword integer (signed)
ou Octaword logical (unsigned)
p Packed decimal string
q Quadword integer (signed)
qu Quadword logical (unsigned)
r Record
t Character-coded text string
u Smallest addressable storage unit
v Aligned bit string
vt Varying character-coded test string
vu Unaligned bit string
w Word integer (signed)
wu Word logical (unsigned)
x Data type in descriptor
z Unspecified
zem Procedure entry mask
zi Sequence of instruction

<passing mechanism>

A–2 Summary Chart of Procedure Parameter Notation

d By descriptor
r By reference
v By immediate value

<parameter form>

_ Scalar
a Array reference or descriptor
d Dynamic string descriptor
nca Noncontiguous array descriptor
p Procedure reference or descriptor
s Fixed-length string descriptor
sd Scalar decimal descriptor
uba Unaligned bit string array descriptor
ubs Unaligned bit string descriptor
vs Varying string descriptor
vsa Varying string array descriptor
x Class type in descriptor
x1 Fixed-length or dynamic string descriptor

Summary Chart of Procedure Parameter Notation A–3

B
BIND Request Parameters

This appendix shows in Table B–1, the symbolic codes used for the BIND
Request.

Table B–1 Symbolic Codes for the BIND Request

Byte Number Symbolic Code Description

Byte 0 SNABND$B_B0

SNABND$B_CMD BIND command

Byte 1 SNABND$B_B1

SNABND$B_BFMT BIND format

Byte 2 SNABND$B_B2

SNABND$B_FMP FM profile

Byte 3 SNABND$B_B3

SNABND$B_TSP TS profile

Byte 4 SNABND$B_B4 Primary LU protocols

SNABND$V_P_CHU Chaining use

SNABND$V_P_RMS Request mode selection

SNABND$V_P_CHR Chaining responses

SNABND$V_PH_COM 2-phase commit for sync point

SNABND$V_R0 Reserved

(continued on next page)

BIND Request Parameters B–1

Table B–1 (Cont.) Symbolic Codes for the BIND Request

Byte Number Symbolic Code Description

SNABND$V_P_CMP Compression indicator

SNABND$V_P_SEB Send end bracket indicator

Byte 5 SNABND$B_B5 Secondary LU protocols

SNABND$V_S_CHU COLUMN {Chaining use

SNABND$V_S_RMS Request mode selection

SNABND$V_S_CHR Chaining responses

SNABND$V_S_TPC 2-phase commit for sync point

SNABND$V_R1 Reserved

SNABND$V_S_CMP Compression indicator

SNABND$V_S_SEB Send end bracket indicator

Byte 6 SNABND$B_B6 Common protocols

SNABND$V_SEG Session segmenting

SNABND$V_FMU FM header usage

SNABND$V_BIS BIS sent

SNABND$V_BRU Bracket usage

SNABND$V_BTP Bracket termination protocol

SNABND$V_ACS Alternate code selection

SNABND$V_SNA Sequence number availability

SNABND$V_BRQ BIND response queue capability

Byte 7 SNABND$B_B7 Common protocols

SNABND$V_NFM Normal flow mode

SNABND$V_RCR Recovery responsibility

SNABND$V_BFS Bracket first speaker

SNABND$V_ALPI Alternate code processing ASCII-7 or
-8

SNABND$V_CVI Control vectors included

(continued on next page)

B–2 BIND Request Parameters

Table B–1 (Cont.) Symbolic Codes for the BIND Request

Byte Number Symbolic Code Description

SNABND$V_CNR Contention resolution

Byte 8 SNABND$B_B8 Secondary send pacing

SNABND$V_SSI Secondary CPMGRs staging indicator

SNABND$V_R2 Reserved

SNABND$V_SSW Secondary CPMGRs send window
size

Byte 9 SNABND$B_B9 Secondary receive pacing

SNABND$V_R3 Reserved

SNABND$V_SRW Secondary CPMGRs receive window
size

Byte 10 SNABND$B_B10 Maximum secondary RU size

SNABND$V_S_MRU Maximum RU size sent by SLU

SNABND$V_S_MAN Mantissa

SNABND$V_S_EXP Exponent

Byte 11 SNABND$B_B11 Maximum primary RU size

SNABND$V_P_MRU Maximum RU size sent by PLU

SNABND$V_P_MAN Mantissa

SNABND$V_P_EXP Exponent

Byte 12 SNABND$B_B12 Primary send pacing

SNABND$V_PSI Primary CPMGRs staging indicator

SNABND$V_R4 Reserved

SNABND$V_PSW Primary CPMGRs send window size

(continued on next page)

BIND Request Parameters B–3

Table B–1 (Cont.) Symbolic Codes for the BIND Request

Byte Number Symbolic Code Description

Byte 13 SNABND$B_B13 Primary receive pacing

SNABND$V_R5 Reserved

SNABND$V_PRW Primary CPMGRs receive window
size

Byte 14 SNABND$B_B14 PS profile

SNABND$V_PUF PS usage field

SNABND$V_LUT LU type

Bytes 15-27 SNABND$B_Bxx Reserved (xx is a byte number from
15-27)

B–4 BIND Request Parameters

Table B–2 A BIND Request

Field

Location
(IBM
position) Values and Meanings

RU identity Byte 0 An entry of x’31’ identifies this RU
as a BIND request. Mandatory field;
if the values entered in this field are
unacceptable, the SNA Gateway will
reject the BIND.

BIND type/format Byte 1 x’01’ or x’00’ are the only valid entries.
x’01’ means that the bind is not
negotiable, and x’00’ means that the
field is negotiable. Mandatory field;
if the values entered in this field are
unacceptable, the SNA Gateway will
reject the BIND.

FM profile Byte 2 x’02’, x’03’, x’04’, x’07’, or x’12’
depending upon the range of SNA
commands you want to use in a
session. Profile 04 permits you to
use more SNA commands. Mandatory
field; if the values entered in this field
are unacceptable, the SNA Gateway
will reject the BIND. If the values are
unacceptable to the application, the
application must reject them.

TS profile Byte 3 x’02’, x’03’, x’04’, or x’07’ depending
upon the level of transmission recovery
you want to make available to the
session. Mandatory field; if the values
entered in this field are unacceptable,
the SNA Gateway will reject the BIND.
If the values are unacceptable to the
application, the application must reject
them.

PLU protocols Byte 4

Chaining specifier for PLU Byte 4
bit 0

0 means that the PLU can send single-
element chains only. 1 means that
the PLU can send single- or multiple-
element chains.

(continued on next page)

BIND Request Parameters B–5

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

Request mode specifier Byte 4
bit 1

0 means that the session operates in
immediate request mode. The PLU
will not transmit a request if a definite
response is outstanding.

1 means that the session operates in
delayed request mode. More than one
definite response can be outstanding.

Chaining response specifier Byte 4
bits 2,3

00 means the PLU cannot request a
response.

01 means that the PLU can request
exception responses only.

10 means that the PLU can request
definite responses only.

11 means that the PLU can request
definite or exception responses.

Sync point specifier Byte 4
bit 4

For TS profile 4. 0 means that the
2-phase commit is not supported. 1
means that the 2-phase commit is
supported.

(Reserved field) Byte 4
bit 5

Reserved.

Compression indicator for PLU Byte 4
bit 6

0 means that the PLU cannot send
compressed data.

1 means that the PLU can send
compressed data. The SNA Gateway
does not restructure data formats.
User-created data is passed directly to
the cooperating application, which
in turn must perform whatever
conversion is necessary.

End bracket indicator for PLU Byte 4
bit 7

0 means that the PLU cannot send the
EBI.

1 means that the PLU can send the
EBI. If brackets are not allowed for
the session (byte 6, bit 2 is 0), this bit
must not be set.

(continued on next page)

B–6 BIND Request Parameters

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

SLU protocols Byte 5

Chaining specifier for SLU Byte 5
bit 0

0 means that the SLU can send single-
element chains only.

1 means that the SLU can send single-
or multiple-element chains.

Request mode specifier for SLU Byte 5
bit 1

0 means that the session operates in
immediate request mode. The SLU
will not transmit a request if there is a
definite response outstanding.

1 means that the session operates in
delayed request mode. More than one
definite response can be outstanding.

Chaining response specifier for
SLU

Byte 5
bits 2,3

00 means that the SLU cannot request
a response.

01 means that the SLU can request
exception responses only.

10 means that the SLU can request
definite responses only.

11 means the SLU can request either
definite or exception responses.

Sync point specifier Byte 5
bit 4

For TS profile 4. 0 means that 2-phase
commit is not supported. 1 means that
2-phase commit is supported.

(Reserved field) Byte 5
bit 5

Reserved.

Compression indicator for SLU Byte 5
bit 6

0 means that the SLU cannot send
compressed data.

1 means that the SLU can send
compressed data. The SNA Gateway
does not attempt to restructure
data. The cooperating applications
must perform whatever conversion is
necessary.

(continued on next page)

BIND Request Parameters B–7

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

End bracket indicator for SLU Byte 5
bit 7

0 means that the SLU cannot send the
EBI.

1 means that the SLU can send the
EBI.

Common protocols Bytes 6,7

(Reserved field) Byte 6
bit 0

Reserved.

FMH usage indicator Byte 6
bit 1

0 means that function management
headers (FMHs) cannot be exchanged
in this session.

1 means that FMHs can be exchanged
in this session.

Bracket usage indicator Byte 6
bit 2

0 means that the cooperating
applications agree that bracket
protocol will not be used in this
session. If this bit is set to 0, the
following bits in the BIND must also
be 0: byte 4, bit 7; byte 5, bit 7; byte 6,
bit 3.

1 means that the cooperating
applications agree that bracket
protocol will be used in this session. If
this bit is set to 1, byte 4, bit 7 or byte
5, bit 7, or both, must be set to 1. Byte
7, bit 3 must be set to 0; byte 7, bits
0-1 cannot be set to 00; bytes 4 and 5,
bits 2-3 cannot be set to 00.

(continued on next page)

B–8 BIND Request Parameters

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

Bracket termination rule
specifier

Byte 6
bit 3

0 means that bracket termination
rule 2 is used: the bracket ends
unconditionally upon receipt of the
last-in-chain element of a chain in
which the EBI has been set.

1 means that bracket termination rule
1 is used: termination of a bracket
depends upon the type of response
required by the last-in-chain element
of a chain in which the EBI has been
set. If response type = definite, the
bracket is terminated when the definite
response is returned; if response
type = exception, the bracket ends
when the last element of that chain is
successfully received.

When both the BBI and the EBI
are set in the first-in-chain RH, the
bracket ends unconditionally when the
last RU for the chain is sent.

Alternate code indicator Byte 6
bit 4

0 means that the cooperating
applications must use a standard
code (EBCDIC).

1 means that the cooperating
applications can use an alternate
code.

The code selection indicator in the
RHs transmitted by the cooperating
applications should be consistent.

Sequence number availability Byte 6
bit 5

For TS profile 4. 0 means that
sequence numbers are not available.
1 means that sequence numbers are
available.

(Reserved fields) Byte 6
bit 6

Reserved.

(continued on next page)

BIND Request Parameters B–9

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

BIND queuing indicator Byte 6
bit 7

0 means that the BIND cannot be
queued.

1 means that the BIND receiver can
queue the BIND.

Normal flow mode specifier Byte 7
bits 0,1

00 means that the cooperating
applications interact in full duplex
transmission mode. Byte 6, bit 2
must be set to 0, indicating that the
cooperating applications agree that
bracket protocol is not used in this
session.

01 means that the session operates in
half duplex (HDX) contention mode.
If the value entered in this field is
unacceptable, the SNA Gateway will
reject the BIND.

If the cooperating applications agree
that bracket protocol will not be used
in the session, the following settings
will be observed in the BIND:

Byte 4, bit 7 =
0:

PLU cannot send
EBI.

Byte 5, bit 7 =
0:

SLU cannot send
EBI.

Byte 6, bit 2 =
0:

Session is
unbracketed.

Byte 6, bit 3 =
0:

Bracket termi-
nation rule 2 is
used.

Byte 7, bit 7 =
0:

SLU wins
contention.

(continued on next page)

B–10 BIND Request Parameters

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

If the cooperating applications agree
that bracket protocol will be used in
the session, the following settings will
be observed in the BIND:

Byte 4, bit 7 =
1:

PLU can send the
EBI, or

Byte 5, bit 7 =
1:

SLU can send the
EBI.

Byte 4, bit 2 or
3:

Either or both must
be set to 1.

Byte 5, bit 2 or
3:

Either or both must
be set to 1.

Byte 6, bit 2 =
1:

Session uses
bracket protocol.

Byte 7, bit 3 =
1:

SLU is bracket first
speaker.

Byte 7, bit 7 =
0:

SLU wins
contention.

10 means that the cooperating
applications agree to interact in half
duplex flip-flop (HDX-FF) transmission
mode. The applications are written
so that one is in the send state and
in control of the change direction
indicator (CDI), while the other is in
receive state until it gains control of
the CDI.

If byte 7, bit 7 is set to 0, the SLU
is in send state when the session
opens; if byte 7, bit 7 is set to 1, the
PLU is in send state when the session
opens. The application in receive
state can request the CDI by issuing
the SIGNAL request with a code of
x’00000001’ to the application in send
state. The protocol to be observed in
exchanging the CDI must be defined
by the user.

(continued on next page)

BIND Request Parameters B–11

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

If the cooperating applications agree
that the HDX-FF session will not use
bracket protocol, the following settings
will be observed in the BIND:

Byte 4, bit 7 =
0:

The PLU cannot
send the EBI.

Byte 5, bit 7 =
0:

The SLU sends the
EBI.

Byte 6, bit 2 =
0:

The cooperating
applications agree
that brackets will
not be used.

Byte 6, bit 3 =
0:

Bracket termina-
tion rule 2 is used;
the bracket ends
unconditionally
when the last RU
of an EBI chain is
received.

Byte 7, bit 7 = 0
or 1:

Either the PLU or
the SLU must open
the session in the
send state and in
control of the CDI.

If the cooperating applications agree
that the HDX-FF session will use
bracket protocol, the following settings
will be observed in the BIND:

Byte 4, bit 2 or 3 or both, must be set
to 1. The PLU must specify a response
type.

Byte 4, bit 7, or
byte 5, bit 7, or
both = 1:

Either or both
applications can
send the EBI.

(continued on next page)

B–12 BIND Request Parameters

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

Byte 5, bit 2 or
3:

Either or both must
be set to 1. The
SLU must specify a
response type.

Byte 6, bit 2 =
1:

The cooperating
applications agree
that brackets will
be used in the
session.

Byte 7, bit 7: The setting of this
bit has no effect
on a bracketed
HDX-FF session.

Recovery responsibility Byte 7
bit 2

0 means that the SLU goes into
a receive state when it receives
a negative response. The PLU is
responsible for attempting recovery.

1 means that the sending application
remains in send state when a negative
response is returned. Both applications
employ user-defined protocols in
attempting recovery.

(continued on next page)

BIND Request Parameters B–13

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

Bracket first speaker Byte 7
bit 3

0 means that the SLU is bracket first
speaker. If a contention condition
arises (i.e., if both applications
attempt to send simultaneously), the
application will first return a negative
response to the PLU and then begin
a bracket. The negative response
returned by the SLU must contain
sense data indicating whether it will
accept a BID request (a request to
begin a bracket) from the PLU when
the current bracket is ended. If yes,
the SLU must send a ready to receive
(RTR) request to the PLU when the
bracket ends. After receiving the RTR,
the PLU can send a BID.

1 means that the PLU is bracket first
speaker. If this field is set to 1, a
session must open with the SLU in the
receive state. Also, the PLU is bracket
first speaker.

Alternate code processing
identifier

Byte 7
bits 4-5

Byte 6, bit 4 must be set to 1 as this
indicates that an alternate code is
used.

00 means that the application
processes alternate code FMD RUs
as ASCII-7.

01 means that the application
processes alternate code FMD RUs
as ASCII-8.

Control vector Byte 7
bit 6

0 means that control vectors are not
included after the SLU name.

1 means that control vectors are
included after the SLU name.

(continued on next page)

B–14 BIND Request Parameters

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

Contention resolution Byte 7
bit 7

0 means that the SLU always wins
contention. If the session is HDX
contention, this bit must be set to 0.

1 means that the PLU wins contention.
If the session is HDX-FF, unbracketed,
the SLU must open in receive state.

Secondary pacing, SLU to PLU Byte 8 This field is zero-filled, meaning that
the SNA Gateway cannot ask the PLU
to return pacing responses. Digital
recommends that you use a value
of 0, but you can use values from 0
to 3F. It is assumed that the PLU
buffering capability is adequate for any
transmission from the SLU. Mandatory
field. If the value entered in this field
is unacceptable, the SNA Gateway will
reject the BIND.

Secondary pacing, PLU to SLU Byte 9 The value entered in this byte defines
the number of RUs that can be
buffered by the SNA Gateway. After
the PLU transmits the number of RUs
specified in this byte, it requests a
pacing response. If the SNA Gateway
can accept more RUs, it will return
the pacing response, enabling the
PLU to continue sending. If the SNA
Gateway does not return a pacing
response, transmission will halt and
then resume when the response is
returned. If the value entered in this
field is unacceptable, the SNA Gateway
will reject the BIND.

(continued on next page)

BIND Request Parameters B–15

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

RU size, SLU to PLU Byte 10 Specifies the maximum length of RUs
that can be transmitted from the SLU
to the PLU. The value entered is not
checked by the SNA Gateway. For
SNA Gateway V1.2 or earlier, this
value must be less than or equal to
256. For later versions of the SNA
Gateway, you can use any value up to
4096.

RU size, PLU to SLU Byte 11 Specifies the maximum length of RUs
that can be transmitted from PLU
to the SLU. The value entered is not
checked by the SNA Gateway

Primary pacing Bytes 12,13

Primary pacing stages Byte 12
bit 0

0 means that the primary send window
size and the secondary receive window
size are for two-stage pacing.

1 means that the primary send window
size and the secondary receive window
size are for one-stage pacing.

(Reserved bit) Byte 12
bit 1

Reserved.

Primary send pacing Byte 12
bits 2-7

The binary values entered here
indicate the primary send window
size for session-level pacing.

(Reserved bits) Byte 13
bits 0-1

Reserved.

Primary receive pacing Byte 13
bits 2-7

The binary values entered here
indicate the primary receive window
size for session-level pacing.

(continued on next page)

B–16 BIND Request Parameters

Table B–2 (Cont.) A BIND Request

Field

Location
(IBM
position) Values and Meanings

SLU type Byte 14 x’00’, x’01’, x’02’, or x’03’ are the only
valid entries. This value specifies the
LU type used.

Session-related values Bytes
15-27

Values that can be entered here depend
upon individual session parameters.
(See SNA documentation.)

BIND Request Parameters B–17

C
The Request Response Header

A definition of the request/response header is included in the SNALIBDEF file
for each language. Table C–1 provides a list of symbolic codes you can use to
reference each bit of the request/response header. Figure C–1 illustrates the
position of each bit in the request/response header.

Table C–1 Symbolic Codes for the Request/Response Header

Byte Number Symbolic Code Description

Byte 0 SNARH$V_ECI End chain indicator

SNARH$V_BCI Begin chain indicator

SNARH$V_SDI Sense data included indicator

SNARH$V_FI Format indicator

SNARH$V_RE0 Reserved field

SNARH$V_RUC Request/response unit category

SNARH$V_RRI Request/response indicator

Byte 1 SNARH$V_PI Pacing indicator

SNARH$V_QRI Queued response indicator

SNARH$V_RE1 Reserved field

SNARH$V_ER1 Exception response indicator (request
only)

SNARH$V_RTI Response type indicator (response
only)

SNARH$V_DR2I Definite response 2 indicator

(continued on next page)

The Request Response Header C–1

Table C–1 (Cont.) Symbolic Codes for the Request/Response Header

Byte Number Symbolic Code Description

SNARH$V_RE2 Reserved field

SNARH$V_DR1I Definite response 1 indicator

Byte 2 SNARH$V_RE3 Reserved field

SNARH$V_PDI Padded data indicator

SNARH$V_EDI Enciphered data indicator

SNARH$V_CSI Code selection indicator

SNARH$V_RE4 Reserved field

SNARH$V_CDI Change direction indicator

SNARH$V_EBI End bracket indicator

SNARH$V_BBI Begin bracket indicator

C–2 The Request Response Header

Figure C–1 Request/Response Header

LKG−0165−93R

RU
Category

Reserved

Reserved

Reserved

Reserved

Reserved

Definite
Response 1
Indicator
(DR1I)

Definite
Response 2
Indicator
(DR2I)

Exception**
Response
Indicator
(ERI)

Format
Indicator
(FI)

Sense
Data
Indicator
(SDI)

Begin
Chain
Indicator
(BCI)

End
Chain
Indicator
(ECI)

Pacing
Indicator
(PI)

Queued
Response
Indicator
(QRI)

Padded
Data
Indicator
(PDI)

Enciphered
Data
Indicator
(EDI)

Code
Selection
Indicator
(CSI)

Request
Response
Indicator
(RRI)

Begin
Bracket
Indicator
(BBI)

End
Bracket
Indicator
(EBI)

Change
Bracket
Indicator
(CBI)

* Bits numbered according to IBM.
** Request header only. In a response header,
 this bit is the response type indicator (RTI).

Byte 0

Byte 1

Byte 2

0* 7

The Request Response Header C–3

Note

Application programs do not deal with the following session control
commands:

• Activate physical unit

• Activate logical unit

• Deactivate physical unit

• Deactivate logical unit

Asterisks mark these commands in Table C–2.

Table C–2 Request Header

Field Location Values and Functions

Request indicator Byte 0
bit 0

0 is the only valid value for this field.
It means that the accompanying
message is a request.

RH category Byte 0
bits 1,2

00 means that function management
data follows.

01 means that network control data
follows. This data is not valid for
LU-LU sessions.

10 means that DFC data follows. This
RH is valid for the following RUs:

Logical unit status (LUSTAT)
Ready to receive BBI (RTR)
Quiesce at end of chain (QEC)
Quiesce complete (QC)
Release quiesce (RELQ)
Cancel chain (CANCEL)
Chase (CHASE)
Shutdown (SHUTD)
Shutdown complete (SHUTC)
Request shutdown (RSHUTD)
Bid for begin bracket (BID)

(continued on next page)

C–4 The Request Response Header

Table C–2 (Cont.) Request Header

Field Location Values and Functions

11 means that session control (SC)
data follows. This RH is valid for the
following RUs:

* Activate physical unit (ACTPU)
* Activate logical unit (ACTLU)
Bind session (BIND)
Start data traffic (SDT)
Clear (CLEAR)
Set and test sequence numbers
(STSN)
Request recovery (RQR)
Unbind session (UNBIND)
* Deactivate logical unit
(DACTLU)
* Deactivate physical unit
(DACTPU)

(Reserved field) Byte 0
bit 3

Reserved.

Format indicator Byte 0
bit 4

0 means that RU is unformatted.
1 means that the RU contains an
FMH.
This field is set to 1 for all DFC, SC,
and NC commands.

Sense data included Byte 0
bit 5

In a request, this bit is always set
to 0, meaning that sense data is not
included in the accompanying RU.

Chaining indicator Byte 0
bits 6,7

10 means that associated message is
first in chain.
00 means that associated message is
middle of chain.
01 means that associated message is
last in chain. Cancel chain is always
last in chain.
11 means that associated message is
only in chain. All commands listed,
except cancel chain, are only in chain.

(continued on next page)

The Request Response Header C–5

Table C–2 (Cont.) Request Header

Field Location Values and Functions

Form of response indicated Byte 1
bits 0,2,3;
bit 1x is
reserved

1x00 means that a definite response,
either positive or negative, is
requested. All SC and DFC commands
listed request a definite response by
means of this bit configuration.

0x10 or 1x10 can also be used to
request a definite response.

1x01, or 0x11, or 1x11 can be used to
request an exception response. An
exception response is returned only if
it is negative.

0x00 means that a response is not
requested.

(Reserved field) Byte 1
bits 4-6

Reserved.

Pacing indicator Byte 1
bit 7

0 means that a pacing response is not
requested. Expedited SC and DFC
commands, listed below, do not request
a pacing response:

Start data traffic (SDT)
Clear (CLEAR)
Set and test sequence number
(STSN)
Request recovery (RQR)
Request shutdown (RSHUTD)
Shutdown (SHUTD)
Shutdown complete (SHUTC)
Quiesce at end of chain (QEC)
Release quiesce (RELQ)

1 means that a pacing response is
requested.

All normal flow commands can use
either a 1 or a 0 setting in this
field. The SNA Gateway and the
API determine the value of this field.

(continued on next page)

C–6 The Request Response Header

Table C–2 (Cont.) Request Header

Field Location Values and Functions

Begin bracket indicator Byte 2
bit 0

0 means that this transmission does
not begin a bracket.

1 means that this transmission does
begin a bracket.

All commands listed have a 0 setting
for this field.

End bracket indicator Byte 2
bit 1

0 means that this transmission does
not end a bracket.

1 means that this transmission does
end a bracket.

All commands listed have a 0 setting
for this field.

Change direction indicator Byte 2
bit 2

Used only in HDX-FF exchange mode
on the normal flow. If bit is set, the
receiver of the message is driven to the
send state, and the sender is driven to
receive state.

(Reserved bit) Byte 2
bit 3

Code selection indicator Byte 2
bit 4

0 means that the applications agree to
use EBCDIC code.

1 means that the applications agree to
use an alternate code.

All commands listed use a 0 setting in
this field.

Table C–3 Response Header

Field Location Values and Functions

Response indicator Byte 0
bit 0

1 is the only valid entry for this
field. It means that the message is
a response.

RH category Byte 0
bits 1,2

The entry in this field must echo the
entry in the corresponding field of the
RH.

(continued on next page)

The Request Response Header C–7

Table C–3 (Cont.) Response Header

Field Location Values and Functions

(Reserved field) Byte 0
bit 3

Reserved.

Format indicator Byte 0
bit 4

Entry in this field must echo the entry
in the corresponding field of the RH.

Sense data included Byte 0
bit 5

0 means that the accompanying
response does not carry any sense
data. If this field is set to 0, then
either definite response 1 indicator
(DR1I) or definite response 2 indicator
(DR2I) in the RH must have been set
to 1, and response type indicator (RTI)
in this RH must be set to 0, indicating
a positive response.

1 means that the accompanying
response carries 4 bytes of sense data.
If this field is set to 1, then DR1I and
DR2I in the RH must have been set to
1, and RTI in this RH must be set to 1,
indicating a negative response.

Chaining indicators Byte 0
bits 6,7

11 is the only valid setting for these
fields. Indicates that the response is
only in chain.

Form of response requested Byte 1
bits 0-2

Entries in these fields must echo
entries in the corresponding fields of
the RH.

Bit 1x and bit 2 are reserved.

Response type indicator Byte 1
bit 3

0 means that this is a positive
response.

1 means that this is a negative
response. The sense data included
indicator (SDI) must also be set if this
bit is set.

(Reserved field) Byte 1
bits 4-6

Reserved.

(continued on next page)

C–8 The Request Response Header

Table C–3 (Cont.) Response Header

Field Location Values and Functions

Pacing indicator Byte 1
bit 7

0 means that this is not a pacing
response.

1 means that this is a pacing response.
Indication of pacing response can be
sent alone (isolated pacing response) or
can be included in another response.

(Reserved field) Byte 2 Reserved.

The Request Response Header C–9

D
Definitions for the Application

Programming Interface

Table D–1 presents symbols, values, and meanings to use when you write
your application. Digital recommends that you use the definition files that
accompany the API. This will insulate you from changes made in future
releases of the product. Definition files, however, are not provided for every
language. If the language you plan to use does not have a definition file, use
the information in the following table to write your application.

Table D–1 Definitions for the API

Symbol Value Meaning

SNAEVT$K_COMERR 4 Network communication error

SNAEVT$K_PLURESET 5 PLU reset session by sending
CLEAR

SNAEVT$K_RCVEXP 1 Data received on expedited
flow

SNAEVT$K_TERM 3 Link termination by IBM host
or SNA Gateway

SNAEVT$K_UNBHLD 2 UNBIND type 2 sent by IBM
host

SNALU0$K_ACTIVE 1 Active connect

SNALU0$K_EXPEDITED_FLOW 1 Expedited flow

SNALU0$K_MAX 4 Maximum message class code

SNALU0$K_MCLASS_DFC 2 Message class data flow
control

SNALU0$K_MCLASS_FORMATTED_
FM

0 Formatted user data

(continued on next page)

Definitions for the Application Programming Interface D–1

Table D–1 (Cont.) Definitions for the API

Symbol Value Meaning

SNALU0$K_MCLASS_NETWORK_
CONTROL

1 Network control request unit

SNALU0$K_MCLASS_SESSION_
CONTROL

3 Session control request unit

SNALU0$K_MCLASS_UNFORMATTED_
FM

4 Unformatted user data

SNALU0$K_MIN 0 Minimum message class code

SNALU0$K_MTYPE_BID 200 Bid

SNALU0$K_MTYPE_BIS 112 Bracket initiation stopped

SNALU0$K_MTYPE_CANCEL 131 Cancel

SNALU0$K_MTYPE_CHASE 132 Chase

SNALU0$K_MTYPE_CLEAR 161 Clear

SNALU0$K_MTYPE_LUSTAT 4 LU status

SNALU0$K_MTYPE_QC 129 Quiesce complete

SNALU0$K_MTYPE_QEC 128 Quiesce at end of chain

SNALU0$K_MTYPE_RELQ 130 Release quiesce

SNALU0$K_MTYPE_RQR 163 Request recover

SNALU0$K_MTYPE_RSHUTD 194 Request shutdown

SNALU0$K_MTYPE_RTR 5 Ready to receive

SNALU0$K_MTYPE_SBI 113 Stop bracket initiation

SNALU0$K_MTYPE_SDT 160 Start data traffic

SNALU0$K_MTYPE_SHUTC 193 Shutdown complete

SNALU0$K_MTYPE_SHUTD 192 Shutdown

SNALU0$K_MTYPE_SIG 201 Signal

SNALU0$K_MTYPE_STSN 162 Set and test sequence number

SNALU0$K_NEGATIVE_RSP 1 Negative response

SNALU0$K_NORMAL_FLOW 0 Normal flow

SNALU0$K_PASSIVE 0 Passive connect

SNALU0$K_POSITIVE_RSP 0 Positive response

SNALU0$K_REQUEST 0 Request

(continued on next page)

D–2 Definitions for the Application Programming Interface

Table D–1 (Cont.) Definitions for the API

Symbol Value Meaning

SNALU0$K_RESPONSE 1 Response

SNALU0$K_RSP_NONE 0 No response

SNALU0$K_RSP_RQD1 8 Definite response required

SNALU0$K_RSP_RQD2 2 Definite response required

SNALU0$K_RSP_RQD3 10 Definite response required

SNALU0$K_RSP_RQE1 9 Exception response

SNALU0$K_RSP_RQE2 3 Exception response

SNALU0$K_RSP_RQE3 11 Exception response

SNALU0$K_ST_BSM_BETB 1 Between brackets

SNALU0$K_ST_BSM_INB 2 In brackets

SNALU0$K_ST_BSM_P_BB 3 Between brackets pending

SNALU0$K_ST_BSM_P_INB 4 In brackets pending

SNALU0$K_ST_BSM_P_TERM_R 6 Pending bracket termination
receive

SNALU0$K_ST_BSM_P_TERM_S 5 Pending bracket termination
send

SNALU0$K_ST_CHAIN_BETC 1 Between chain

SNALU0$K_ST_CHAIN_INC 2 In chain

SNALU0$K_ST_CHAIN_PURGE 3 Purge chain

SNALU0$K_ST_QEC_PEND 2 Quiesce pending

SNALU0$K_ST_QEC_QUIESCED 3 Quiesced

SNALU0$K_ST_QEC_RESET 1 Quiesce reset

SNALU0$K_ST_SES_ACTIVE 3 Session active

SNALU0$K_ST_SES_P_ACTIVE 2 Active session pending

SNALU0$K_ST_SES_P_RESET 4 Session reset pending

SNALU0$K_ST_SES_RESET 1 Session reset

SNALU0$K_ST_TURN_CONT 1 Contention

SNALU0$K_ST_TURN_CONT_R 3 Contention receive

SNALU0$K_ST_TURN_CONT_S 2 Contention send

(continued on next page)

Definitions for the Application Programming Interface D–3

Table D–1 (Cont.) Definitions for the API

Symbol Value Meaning

SNALU0$K_ST_TURN_ERPR 8 Error recovery receive

SNALU0$K_ST_TURN_ERPS 7 Error recovery send

SNALU0$K_ST_TURN_RCV 5 Receive

SNALU0$K_ST_TURN_RCV_81B 6 Received 081B sense code

SNALU0$K_ST_TURN_SEND 4 Send

D–4 Definitions for the Application Programming Interface

E
Programming Examples

This appendix contains programming examples designed to show you how
to make calls to the Digital SNA Application Programming Interface (API)
for OpenVMS in your OpenVMS applications. One complete programming
example and fragments of several programs illustrate how to use the API. In
addition, the examples provide tips that will help you solve problems you may
encounter in using the different languages. The examples use the following
languages:

• FORTRAN

• COBOL

• MACRO

• VAX PL/I

• Pascal

• C

Numbered callouts refer to comments at the end of each programming
example. Where the same numbered callout appears twice within an example,
the comment applies to all the text between the two numbered callouts.

E.1 FORTRAN Programming Example
This program connects to CICS and activates the CSFE transaction (a remote
loopback program). It prompts you for the Gateway DECnet node name and
the CICS access name. The application then establishes a connection with
CICS and requests the CSFE transaction. After the CSFE instruction screen
is received, some test data is generated. The data is converted to EBCDIC and
sent to CSFE. The data is echoed from CSFE and the session is disconnected.

Programming Examples E–1

PROGRAM LU0_EXAMPLE

C
C Declaration
C

[1] INCLUDE ’SYS$LIBRARY:SNALU0DEF/NOLIST’
[1] INCLUDE ’SYS$LIBRARY:SNALIBDEF/NOLIST’

[2] EXTERNAL NOTIFY_RTN ! Define notify routine

PARAMETER (BUFFER_LENGTH = 4103,
1 LU0_EFN = 10)

INTEGER*2 REQ_IND, MORE_DATA,MSG_CLASS, MSG_TYPE,FLOW,ALT_CODE
INTEGER*2 BEG_BRACKET, END_BRACKET, SENSE_INC, RESP_TYPE
INTEGER*2 END_DATA, FIRST_SEQ_NUM, LAST_SEQ_NUM
INTEGER*4 SESSION_ID, DATA_LENGTH, SESSION_ADDRESS
INTEGER*4 RETURN_CODE
INTEGER*4 STATUS_VECTOR(SNALU0$K_MIN_STATUS_VECTOR)
INTEGER*4 NOTIFY_VECTOR(SNALU0$K_MIN_NOTIFY_VECTOR)
INTEGER*4 ISTAT
CHARACTER*4 ASCII_TPN_NAME/’CSFE’/
CHARACTER*8 NODE_NAME, ACC_NAME
CHARACTER*52 CANNED_MESSAGE

1 /’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’/
CHARACTER*(BUFFER_LENGTH) DATA_BUFFER
PARAMETER (SESSION_ADDRESS = 0)

C
C Global data
C

[3] COMMON /NOTIFY/NOTIFY_VECTOR

E–2 Programming Examples

C
C Get gateway node and access name
C

TYPE 9001 ! Prompt for gateway node
ACCEPT 9002, NODE_NAME ! Input gateway node
TYPE 9003 ! Prompt for access name
ACCEPT 9002, ACC_NAME ! Input access name

C
C Request connection
C

RETURN_CODE = SNALU0$REQUEST_CONNECT_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 %REF(SNALU0$K_ACTIVE),
3 NODE_NAME,
4 ACC_NAME,,
5 SESSION_ADDRESS,,,,,, [4]
6 NOTIFY_RTN,
7 SESSION_ID,
8 %DESCR(NOTIFY_VECTOR),
9 DATA_BUFFER,
A DATA_LENGTH,
B %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’CONNECT failed’

ENDIF

C***
C* *
C* Acknowledge Bind - in this example we assume the BIND is *
C* satisfactory. Normally you would have to examine the bind image *
C* to verify that your application can handle the session defined by *
C* the BIND. *
C* *
C* A negotiable BIND would be effected by modifying the BIND image *
C* and positively responding. *
C* *
C***

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

Programming Examples E–3

C
C Receive start data traffic (SDT)
C

RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,
H %REF(LU0_EFN))

IF ((.NOT.RETURN_CODE).OR.(MSG_TYPE.NE.SNALU0$K_MTYPE_SDT))
1 THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’Failed to receive SDT’

ENDIF

C
C Acknowledge SDT
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

E–4 Programming Examples

C
C Receive BID
C

RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,
H %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’Failed to receive initial bid’

ENDIF

C
C Acknowledge BID
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

C
C Receive CICS logo
C

RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,

Programming Examples E–5

H %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’Failed to receive CICS logo’

ENDIF

C
C Acknowledge CICS logo
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

C
C For this test program, the EBI or CDI should be received on this
C call. If an EBI or CDI is not received, then there is more data to
C be received. Usually, the data that has already been received is
C used to receive the rest of the data.
C

IF ((END_BRACKET .NE. 1) .AND. (END_DATA .NE. 1)) THEN
RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,

1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,
H %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’Failed to receive CICS logo’

ENDIF

E–6 Programming Examples

C
C Acknowledge rest of CICS logo
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

ENDIF

C
C Send "clear screen" request
C

DATA_LENGTH = SNABUF$K_HDLEN+1
DATA_BUFFER(8:8) = CHAR(’6D’X) ! EBCDIC code for clear

[5] MSG_CLASS = SNALU0$K_MCLASS_UNFORMATTED_FM

RETURN_CODE = SNALU0$TRANSMIT_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 MSG_CLASS,
5 %REF(.FALSE.),
6 %REF(.FALSE.),
7 %REF(SNALU0$K_RSP_RQE1),
8 %REF(.FALSE.),
9 %REF(.FALSE.),
A FIRST_SEQ_NUM,
B LAST_SEQ_NUM,
C %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’TRANSMIT_MESSAGE failed’

ENDIF

Programming Examples E–7

C
C Receive clear screen command
C

RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,
H %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’Failed to receive clear screen command’

ENDIF

C
C Acknowledge clear screen command
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

C
C Transmit transaction name (CSFE)
C

CALL SEND_MESSAGE(SESSION_ID, STATUS_VECTOR, ASCII_TPN_NAME,
1 DATA_BUFFER)

E–8 Programming Examples

C
C Receive CSFE operator screen
C

RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,
H %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_MESSAGE failed’

ENDIF

C
C Acknowledge CSFE operator screen
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

C
C Send test message
C

CALL SEND_MESSAGE(SESSION_ID, STATUS_VECTOR, CANNED_MESSAGE,
1 DATA_BUFFER)

Programming Examples E–9

C
C Receive test message
C

RETURN_CODE = SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 DATA_BUFFER,
3 DATA_LENGTH,
4 REQ_IND,
5 MORE_DATA,
6 MSG_CLASS,
7 MSG_TYPE,
8 FLOW,
9 ALT_CODE,
A BEG_BRACKET,
B END_BRACKET,
C SENSE_INC,
D RESP_TYPE,
E END_DATA,
F FIRST_SEQ_NUM,
G LAST_SEQ_NUM,
H %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_MESSAGE failed’

ENDIF

C
C Acknowledge data [6]
C

CALL XMIT_POS_RESP(SESSION_ID, STATUS_VECTOR, DATA_BUFFER,
1 DATA_LENGTH)

C
C Disconnect session [7]
C

RETURN_CODE = SNALU0$REQUEST_DISCONNECT_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’DISCONNECT failed’

ENDIF

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP

E–10 Programming Examples

C
C Format statements
C
9001 FORMAT(1X,’Enter gateway node: ’,2X,$)
9002 FORMAT(A8)
9003 FORMAT(1X,’Enter access name: ’,2X,$)

END

SUBROUTINE XMIT_POS_RESP(SESSION_ID,STATUS_VECTOR,BUFFER,LENGTH)

INCLUDE ’SYS$LIBRARY:SNALU0DEF/NOLIST’
INTEGER*4 STATUS_VECTOR(SNALU0$K_MIN_STATUS_VECTOR)
INTEGER*4 SESSION_ID, LENGTH, RETURN_CODE
INTEGER*4 ISTAT
CHARACTER*(*) BUFFER

RETURN_CODE = SNALU0$TRANSMIT_RESPONSE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 BUFFER,
3 LENGTH,
4 %REF(SNALU0$K_POSITIVE_RSP))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’TRANSMIT_RESPONSE failed’

ENDIF

RETURN
END

SUBROUTINE SEND_MESSAGE(SESSION_ID, STATUS_BLOCK, MESSAGE, BUFFER)

INCLUDE ’SYS$LIBRARY:SNALU0DEF/NOLIST’
INCLUDE ’SYS$LIBRARY:SNALIBDEF/NOLIST’

INTEGER*4 STATUS_VECTOR(SNALU0$K_MIN_STATUS_VECTOR)
INTEGER*4 SESSION_ID, RETURN_CODE
INTEGER*4 FIRST_CHAR, LAST_CHAR, LENGTH, ISTAT
INTEGER*2 MSG_CLASS/SNALU0$K_MCLASS_UNFORMATTED_FM/
CHARACTER*(*) MESSAGE, BUFFER

C
C Translate data to EBCDIC
C

[8] FIRST_CHAR = SNABUF$K_HDLEN + 3 + 1 [9]
LAST_CHAR = FIRST_CHAR + LEN(MESSAGE) - 1
LENGTH = LAST_CHAR

[10] ISTAT = LIB$TRA_ASC_EBC(MESSAGE, BUFFER(FIRST_CHAR:LAST_CHAR))

IF (.NOT.ISTAT) STOP ’LIB$TRA_ASC_EBC failed’

BUFFER(8:8) = CHAR(’7D’X) ! Enter key code
BUFFER(9:9) = CHAR(’40’X) ! Cursor Position
BUFFER(10:10) = CHAR(’C4’X) ! = CHAR(04) (encoded)

Programming Examples E–11

C
C Transmit test data
C

RETURN_CODE = SNALU0$TRANSMIT_MESSAGE_W(SESSION_ID,
1 %DESCR(STATUS_VECTOR),
2 BUFFER,
3 LENGTH,
4 MSG_CLASS,
5 %REF(.FALSE.),
6 %REF(.FALSE.),
7 %REF(SNALU0$K_RSP_RQE1), ! resp_type
8 %REF(.FALSE.),
9 %REF(.FALSE.),
A FIRST_SEQ_NUM,
B LAST_SEQ_NUM,
C %REF(LU0_EFN))

IF (.NOT.RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’TRANSMIT_MESSAGE failed’

ENDIF

RETURN
END

SUBROUTINE NOTIFY_RTN(EVENT_CODE, NOTIFY_PARM)

INCLUDE ’SYS$LIBRARY:SNALU0DEF/NOLIST’
INCLUDE ’SYS$LIBRARY:SNALIBDEF/NOLIST’

INTEGER*4 NOTIFY_VECTOR(SNALU0$K_MIN_NOTIFY_VECTOR)
INTEGER*4 EVENT_CODE
CHARACTER*31 RCVEXP_EVENT/’Data received on expedited flow’/
CHARACTER*27 COMERR_EVENT/’Gateway communication error’/
CHARACTER*30 TERM_EVENT/’Session terminated by IBM host’/
CHARACTER*33 PLURESET_EVENT/’Half session state machines reset’/
CHARACTER*22 UNBHLD_EVENT/’Unbind type 2 received’/
CHARACTER*35 UNKNOWN_EVENT/’Unknown asynchronous event reported’/

C
C Global data
C

COMMON /NOTIFY/NOTIFY_VECTOR

E–12 Programming Examples

[11] IF (EVENT_CODE .EQ. SNAEVT$K_RCVEXP) THEN
TYPE 9100, RCVEXP_EVENT

ELSEIF (EVENT_CODE .EQ. SNAEVT$K_UNBHLD) THEN
TYPE 9100, UNBHLD_EVENT

ELSEIF (EVENT_CODE .EQ. SNAEVT$K_TERM) THEN
TYPE 9100, TERM_EVENT

ELSEIF (EVENT_CODE .EQ. SNAEVT$K_COMERR) THEN
TYPE 9100, COMERR_EVENT

ELSEIF (EVENT_CODE .EQ. SNAEVT$K_PLURESET) THEN
TYPE 9100, PLURESET_EVENT

ELSE
TYPE 9100, UNKNOWN_EVENT

ENDIF
ISTAT = SYS$PUTMSG(NOTIFY_VECTOR)
RETURN

9100 [11] FORMAT(3X,’Asynchronous notification: ’,A35//)
END

COMMENTS

1. Include the LU0 and basic API symbol definition libraries.

2. Define the notify routine externally so the compiler knows it is an address
and not a variable.

3. Note that the notify vector is global. This enables the notify routine and
main program to access it. The vector is not passed to the notify routine.

4. Commas indicate that you do not want to specify values for the parameters
and will accept the default values provided by the Interface.

5. Be sure to set the message class to unformatted otherwise the format
indicator will be set, and IBM will reject the message.

6. A more complete program would verify the data stream before
acknowledging it.

7. This is an abrupt session termination that may cause error logging on
some IBM subsystems. See other examples for a more orderly session
termination.

8. The actual data (CSFE) starts in position 11 of the buffer. The first 7 bytes
are reserved for the API header and the next 3 bytes contain data stream
control characters (aid key and cursor position).

Programming Examples E–13

9. SNABUF$K_HDLEN is a literal defining the API header length in the
SNALIBDEF or SNALU0DEF file. The extra 4 bytes position the message
text after the header and 3 bytes of data stream control characters.

10. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

11. Literals for event codes are defined in SNALIBDEF or SNALU0DEF.

E.2 FORTRAN Definition Files
The FORTRAN definition files, SYS$LIBRARY:SNALU0DEF.FOR and
SYS$LIBRARY:SNALIBDEF.FOR, were built for FORTRAN compilers
supporting structure definitions. If you plan to use a FORTRAN compiler
which does not have this support, you can edit the definition files to remove
the structure definitions. You should comment out or delete all lines between
the STRUCTURE and END STRUCTURE keywords except for PARAMETER
statements.

E–14 Programming Examples

E.3 COBOL Programming Example
This program connects to CICS and activates the CSFE transaction (a remote
loopback program). It prompts you for the Gateway DECnet node or TCP/IP
host name and the CICS access name. The application then establishes a
connection with CICS and requests the CSFE transaction. After the CSFE
instruction screen is received, some test data is generated. The data is
converted to EBCDIC and sent to CSFE. The data is echoed from CSFE and
the session is disconnected.

IDENTIFICATION DIVISION.
PROGRAM-ID. LU0TEST.

DATA DIVISION.

*
* Declaration
*
WORKING-STORAGE SECTION.
[1] ACCNAM PIC X(08) VALUE SPACES.
01 ALT-CODE PIC 9(04) COMP.
01 BEG-BRACKET PIC 9(04) COMP.
01 BIND-BUF-LEN PIC 9(08) COMP.
01 END-BRACKET PIC S9(04) COMP.
01 END-DATA PIC S9(04) COMP.
01 FLOW PIC 9(04) COMP.
01 IDX1 PIC 9(04) COMP.
01 IDX2 PIC 9(04) COMP.
01 MORE-DATA PIC 9(04) COMP.
01 MSG-CLASS PIC 9(04) COMP.
01 MSG-TYPE PIC 9(04) COMP.
01 NODNAM PIC X(06) VALUE SPACES.
01 NOTIFY-RTN-NAME PIC X(06) VALUE "NOTIFY".
01 NOTIFY-RTN-ADDR PIC 9(09) COMP.
01 NOTIFY-VEC PIC X(64).
01 NUM-BYTES-CONVERT PIC 9(04) COMP.
01 PLU-FIRST-SEQ-NUM PIC 9(04) COMP.
01 PLU-LAST-SEQ-NUM PIC 9(04) COMP.
01 REQ-IND PIC 9(04) COMP.
01 RESP-TYPE PIC 9(04) COMP.
01 SENSE-INC PIC 9(04) COMP.
01 SESS-ID PIC 9(08) COMP.
01 SESSION-ADDRESS PIC 9(08) COMP VALUE 0.
01 SLU-FIRST-SEQ-NUM PIC 9(04) COMP.
01 SLU-LAST-SEQ-NUM PIC 9(04) COMP.
01 SS-STATUS PIC S9(09) COMP.
01 STATUS-VEC PIC X(64).
[1] 01 TURN-RETAIN PIC 9(04) COMP.
01 BIND-BUFFER.

Programming Examples E–15

02 BIND-BUF1 PIC 9(07).
02 BIND-BUF2.

03 BIND-BUFFER2 OCCURS 4096 TIMES PIC X.
01 DATA-BUFFER.

02 DATA-BUF OCCURS 10 TIMES PIC X(02).
01 TEMP-LONGWORD.

02 TEMP-BYTES OCCURS 4 TIMES PIC 9(01).

01 TEST-DATA.
02 TST-DATA OCCURS 4103 TIMES PIC X.

*
* SNA symbol definitions
*
01 SNALU0$K_ACTIVE PIC 9(08) COMP VALUE 1.
01 SNALU0$K_HDLEN PIC 9(08) COMP VALUE 7.
01 SNALU0$K_MCLASS_UNFORMATTED_FM

PIC 9(08) COMP VALUE 4.
01 SNALU0$K_MTYPE_BID PIC 9(08) COMP VALUE 200.
01 SNALU0$K_MTYPE_SDT PIC 9(08) COMP VALUE 160.
01 SNALU0$K_POSITIVE_RSP

PIC 9(08) COMP VALUE 0.
01 SNALU0$K_RSP_RQE1 PIC 9(08) COMP VALUE 9.

PROCEDURE DIVISION.

*
* Main program
*
MAIN.
[2] PERFORM GET-NODE-ACC-NAME.

PERFORM GET-NOTIFY-RTN-ADDR.
PERFORM REQUEST-CONNECT.

E–16 Programming Examples

* *
* Acknowledge Bind - in this example we assume the BIND is *
* satisfactory. Normally you would have to examine the bind image to *
* verify that your application can handle the session defined by the *
* BIND. *
* *
* A negotiable BIND would be effected by modifying the BIND image and *
* positively responding. *
* *

PERFORM TRANSMIT-RESPONSE.
PERFORM RECEIVE-MESSAGE.
IF (MSG-TYPE IS EQUAL TO SNALU0$K_MTYPE_SDT)

THEN
PERFORM TRANSMIT-RESPONSE

ELSE
PERFORM EXIT-PROGRAM.

[2] PERFORM RECEIVE-MESSAGE.
IF (MSG-TYPE IS EQUAL TO SNALU0$K_MTYPE_BID)

THEN
PERFORM TRANSMIT-RESPONSE

ELSE
PERFORM EXIT-PROGRAM.

PERFORM RECEIVE-MESSAGE.
PERFORM TRANSMIT-RESPONSE.

* For this test program, the EBI or CDI should be received on this *
* call. If an EBI or CDI is not received, then there is more data to *
* be received. Usually, the data that has already been received is *
* used to receive the rest of the data. *

IF (END-BRACKET IS FAILURE) AND (END-DATA IS FAILURE)
THEN

PERFORM RECEIVE-MESSAGE
PERFORM TRANSMIT-RESPONSE.

PERFORM CLEAR-SCREEN.
PERFORM TRANSMIT-MESSAGE.
PERFORM RECEIVE-MESSAGE.
PERFORM TRANSMIT-RESPONSE.
PERFORM CSFE.
PERFORM TRANSMIT-MESSAGE.
PERFORM RECEIVE-MESSAGE.
PERFORM TRANSMIT-RESPONSE.
PERFORM CONVERT-DATA.
PERFORM TRANSMIT-MESSAGE.
PERFORM RECEIVE-MESSAGE.
PERFORM TRANSMIT-RESPONSE.
PERFORM REQUEST-DISCONNECT.
PERFORM EXIT-PROGRAM.

Programming Examples E–17

*
* Get node name and access name
*
GET-NODE-ACC-NAME.

DISPLAY "Enter gateway node: " WITH NO ADVANCING.
ACCEPT NODNAM.
DISPLAY "Enter access name: " WITH NO ADVANCING.
ACCEPT ACCNAM.

*
* Get address of notify routine
*
GET-NOTIFY-RTN-ADDR.

CALL "COB$CALL" USING BY DESCRIPTOR NOTIFY-RTN-NAME
GIVING NOTIFY-RTN-ADDR.

*
* Request a connection with the IBM
*
REQUEST-CONNECT.

CALL "SNALU0$REQUEST_CONNECT_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY REFERENCE SNALU0$K_ACTIVE,
BY DESCRIPTOR NODNAM, ACCNAM,
BY VALUE 0,
BY REFERENCE SESSION-ADDRESS,
BY VALUE 0,0,0,0,0,
BY VALUE NOTIFY-RTN-ADDR,
BY VALUE 0,
BY DESCRIPTOR NOTIFY-VEC,
BY DESCRIPTOR BIND-BUFFER,
BY REFERENCE BIND-BUF-LEN,
BY VALUE 0,0,0,
GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

*
* Respond to the last RU received
*
TRANSMIT-RESPONSE.

CALL "SNALU0$TRANSMIT_RESPONSE_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR BIND-BUFFER,
BY REFERENCE BIND-BUF-LEN,
BY REFERENCE SNALU0$K_POSITIVE_RSP,
BY VALUE 0,0,0,0
GIVING SS-STATUS.

E–18 Programming Examples

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

*
* Receive a message from the IBM
*
RECEIVE-MESSAGE.

CALL "SNALU0$RECEIVE_MESSAGE_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR BIND-BUFFER,
BY REFERENCE BIND-BUF-LEN,
BY REFERENCE REQ-IND,
BY REFERENCE MORE-DATA,
BY REFERENCE MSG-CLASS,
BY REFERENCE MSG-TYPE,
BY REFERENCE FLOW,
BY REFERENCE ALT-CODE,
BY REFERENCE BEG-BRACKET,
BY REFERENCE END-BRACKET,
BY REFERENCE SENSE-INC,
BY REFERENCE RESP-TYPE,
BY REFERENCE END-DATA,
BY REFERENCE PLU-FIRST-SEQ-NUM,
BY REFERENCE PLU-LAST-SEQ-NUM,
BY VALUE 0,0,0
GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

Programming Examples E–19

*
* Transmit "clear screen"
*
CLEAR-SCREEN.

MOVE 8 TO BIND-BUF-LEN.
[3] MOVE "6D" TO DATA-BUFFER.

MOVE 0 TO ALT-CODE.
MOVE 0 TO END-BRACKET.
MOVE 0 TO MORE-DATA.
MOVE 0 TO TURN-RETAIN.
MOVE 2 TO NUM-BYTES-CONVERT.
PERFORM CONVERT-TO-HEX.

*
* Transmit message to IBM
*
TRANSMIT-MESSAGE.

CALL "SNALU0$TRANSMIT_MESSAGE_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR BIND-BUFFER,
BY REFERENCE BIND-BUF-LEN,
BY REFERENCE SNALU0$K_MCLASS_UNFORMATTED_FM,
BY REFERENCE ALT-CODE,
BY REFERENCE END-BRACKET,
BY REFERENCE SNALU0$K_RSP_RQE1,
BY REFERENCE MORE-DATA,
BY REFERENCE TURN-RETAIN,
BY REFERENCE SLU-FIRST-SEQ-NUM,
BY REFERENCE SLU-LAST-SEQ-NUM,
BY VALUE 0,0,0
GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

E–20 Programming Examples

*
* Convert "CSFE" to hex.
*
CSFE.

MOVE 0 TO ALT-CODE.
MOVE 0 TO END-BRACKET.
MOVE 0 TO MORE-DATA.
MOVE 0 TO TURN-RETAIN.
MOVE " CSFE" TO TEST-DATA.
PERFORM TRANSLATE-ASC-EBC.

[4] MOVE "7D40C4" TO DATA-BUFFER.
MOVE 6 TO NUM-BYTES-CONVERT.
PERFORM CONVERT-TO-HEX.
MOVE 14 TO BIND-BUF-LEN.

*
* Convert data to ebcdic.
*
CONVERT-DATA.

MOVE 0 TO ALT-CODE.
MOVE 0 TO END-BRACKET.
MOVE 0 TO MORE-DATA.
MOVE 0 TO TURN-RETAIN.
MOVE " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

TO TEST-DATA.
PERFORM TRANSLATE-ASC-EBC.
MOVE "7D40C4" TO DATA-BUFFER.
MOVE 6 TO NUM-BYTES-CONVERT.
PERFORM CONVERT-TO-HEX.
MOVE 62 TO BIND-BUF-LEN.

*
* Disconnect link
*
REQUEST-DISCONNECT.

CALL "SNALU0$REQUEST_DISCONNECT_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY VALUE 0,0,0,0,0
GIVING SS-STATUS.

*
* Convert the specified byte from a text hex number to a hex value
*
CONVERT-TO-HEX.

CALL "LIB$CVT_HTB" USING BY VALUE NUM-BYTES-CONVERT,
BY REFERENCE DATA-BUFFER,
BY REFERENCE TEMP-LONGWORD,
GIVING SS-STATUS.

Programming Examples E–21

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.
DIVIDE NUM-BYTES-CONVERT BY 2 GIVING NUM-BYTES-CONVERT.
MOVE 1 TO IDX1.
MOVE NUM-BYTES-CONVERT TO IDX2.
PERFORM PLACE-IN-BIND-BUFFER NUM-BYTES-CONVERT TIMES.

*
* Store a byte into a specified location
*
PLACE-IN-BIND-BUFFER.

MOVE TEMP-BYTES(IDX2) TO BIND-BUFFER2(IDX1).
ADD 1 TO IDX1.
SUBTRACT 1 FROM IDX2.

*
* Convert the specifed buffer from ASCII form to EBCDIC form
*
[5] TRANSLATE-ASC-EBC.

CALL "LIB$TRA_ASC_EBC" USING
BY DESCRIPTOR TEST-DATA,
BY DESCRIPTOR BIND-BUFFER,
GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

*
* Exit the program with the status of the last call
*
EXIT-PROGRAM.

CALL "SYS$PUTMSG" USING STATUS-VEC.
STOP RUN.

IDENTIFICATION DIVISION.
PROGRAM-ID. NOTIFY INITIAL.

DATA DIVISION.

*
* Declaration
*
WORKING-STORAGE SECTION.

01 SNAEVT$K_RCVEXP PIC 9(08) COMP VALUE 1.
01 SNAEVT$K_UNBHLD PIC 9(08) COMP VALUE 2.
01 SNAEVT$K_TERM PIC 9(08) COMP VALUE 3.
01 SNAEVT$K_COMERR PIC 9(08) COMP VALUE 4.
01 SNAEVT$K_PLURESET PIC 9(08) COMP VALUE 5.

LINKAGE SECTION.
01 EVENT-CODE PIC 9(08).

E–22 Programming Examples

PROCEDURE DIVISION USING EVENT-CODE.

*
* Notify routine
*
BEGIN.

IF EVENT-CODE IS EQUAL TO SNAEVT$K_RCVEXP
THEN

DISPLAY "Asynchronous notification: Data received on expedited flow".
IF EVENT-CODE IS EQUAL TO SNAEVT$K_UNBHLD

THEN
DISPLAY "Asynchronous notification: Unbind type 2 received".

IF EVENT-CODE IS EQUAL TO SNAEVT$K_TERM
THEN

DISPLAY "Asynchronous notification: Session terminated by IBM host".
IF EVENT-CODE IS EQUAL TO SNAEVT$K_COMERR

THEN
DISPLAY "Asynchronous notification: Gateway communication error".

IF EVENT-CODE IS EQUAL TO SNAEVT$K_PLURESET
THEN

DISPLAY "Asynchronous notification: Half session state machines reset".
EXIT PROGRAM.

END PROGRAM NOTIFY.
END PROGRAM LU0TEST.

COMMENTS

1. Define the symbols you will need to write your application.

2. Break the application into simple procedures. Note that all of the
procedures listed here are not shown in this programming fragment, but
they are similar to those presented in this example.

3. 6D = an aid key (clear)

4. This data represents several pieces of information:

• 7D = an aid key (enter)

• 40C4 = the cursor address

5. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC and vice versa.

Programming Examples E–23

E.4 MACRO Programming Example
This program connects to CICS and activates the CSFE transaction (a remote
loopback program). It prompts you for the Gateway DECnet node or TCP/IP
host name and the CICS access name. The application then establishes a
connection with CICS and requests the CSFE transaction. After the CSFE
instruction screen is received, some test data is generated. The data is
converted to EBCDIC and sent to CSFE. The data is echoed from CSFE and
the session is disconnected.

.TITLE LU0MAR
[1] LU0LIBDEF
[1] SNALIBDF

.PSECT RWDATA,WRT,NOEXE,QUAD

;
; Declaration
;
TEST_SRC: .ASCID

/ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz/
ND_PROMP: .ASCID /Enter gateway node: /
AC_PROMP: .ASCID /Enter access name: /
STATUS : .BLKL 10
SESS_ID: .LONG 0 ;session-id
STS_VEC: .BLKB SNALU0$K_MIN_STATUS_VECTOR ;status-vector
STS_DSC: .LONG SNALU0$K_MIN_STATUS_VECTOR

.ADDRESS STS_VEC
BIND_BUF: .BLKB ^X1007 ;bind-buffer
BIND_DSC: .LONG ^X010E1007

.ADDRESS BIND_BUF
BIND_LEN: .LONG 0 ;bind-buffer-length
TEST_BUF: .BLKB ^X003E
TEST_DSC: .LONG ^X010E003E

.ADDRESS TEST_BUF
ND_NAME: .LONG ^X020E0000 ;node-name

.ADDRESS 0
AC_NAME: .LONG ^X020E0000 ;access-name

.ADDRESS 0
REQ_IND: .LONG 0
MORE_DATA:.LONG 0
MSG_CLASS:.LONG 0
MSG_TYP: .LONG 0
FLOW: .LONG 0
ALT_CODE: .LONG 0
BEG_BRAC: .LONG 0
END_BRAC: .LONG 0
SENS_INC: .LONG 0
SES_ADDR: .LONG 0

E–24 Programming Examples

RESP_TYP: .LONG 0
END_DATA: .LONG 0
PLU_F_NO: .LONG 0
PLU_L_NO: .LONG 0
SLU_F_NO: .LONG 0
SLU_L_NO: .LONG 0
NT_VEC : .BLKB SNALU0$K_MIN_NOTIFY_VECTOR ;notify-vector
NT_DSC: .LONG SNALU0$K_MIN_NOTIFY_VECTOR

.ADDRESS NT_VEC
RCVEXP: .ASCID

/Asynchronous notification: Data received on expedited flow/
COMERR: .ASCID

/Asynchronous notification: Gateway communication error/
TERM: .ASCID

/Asynchronous notification: Session termination by IBM host/
PLURST: .ASCID

/Asynchronous notification: Half session state machines reset/
UNBHLD: .ASCID

/Asynchronous notification: Unbind type 2 received/
UNKNOWN: .ASCID

/Asynchronous notification: Unknown asynchronous event reported/

.PSECT CODE,NOWRT,EXE,LONG

;
; Notify routine
;

[2] .ENTRY NOTIFY$RTN, ^M<> ;notify-routine entry point
MOVL 4(AP), R1

MOVAL SNAEVT$K_RCVEXP, R2
CMPL R1, R2
BNEQ 10$
PUSHAQ RCVEXP ;expedited-flow-received
BRW 60$

10$:
MOVAL SNAEVT$K_UNBHLD, R2
CMPL R1, R2
BNEQ 20$
PUSHAQ UNBHLD ;unbind type 2
BRW 60$

20$:
MOVAL SNAEVT$K_TERM, R2
CMPL R1, R2
BNEQ 30$
PUSHAQ TERM ;session termination
BRW 60$

Programming Examples E–25

30$:
MOVAL SNAEVT$K_COMERR, R2
CMPL R1, R2
BNEQ 40$
PUSHAQ COMERR ;communication error
BRW 60$

40$:
MOVAL SNAEVT$K_PLURESET, R2
CMPL R1, R2
BNEQ 50$
PUSHAQ PLURST ;plu-reset
BRW 60$

50$:
PUSHAQ UNKNOWN ;unknown event

60$:
CALLS #1,G^LIB$PUT_OUTPUT ;display the event
$PUTMSG_S NT_VEC ;display notify-vector
RET

;
;Main Program entry point
;

.ENTRY LU0MAR, ^M<>

;
; Get node name and access name
;

PUSHAQ ND_PROMP
PUSHAQ ND_NAME
CALLS #2,G^LIB$GET_INPUT
BLBS R0, 110$
BRW EXITS

E–26 Programming Examples

110$:
PUSHAQ AC_PROMP
PUSHAQ AC_NAME
CALLS #2,G^LIB$GET_INPUT
BLBS R0, 120$
BRW EXITS

120$:
[3] CLRL R0

PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ NT_DSC ;notify-vector
PUSHL #0 ;notify-parameter
PUSHAL NOTIFY$RTN ;notify-routine address
PUSHL #0 ;data
PUSHL #0 ;password
PUSHL #0 ;user id
PUSHL #0 ;logon mode
PUSHL #0 ;application
PUSHAL SES_ADDR ;session address
PUSHL #0 ;circuit id
PUSHAL AC_NAME ;access-name
PUSHAL ND_NAME ;node-name
PUSHAL #SNALU0$K_ACTIVE ;conn-type
PUSHAQ STS_DSC ;status-vector

[3] PUSHAL SESS_ID ;session-id

;
; Request connection
;

CALLS #20,G^SNALU0$REQUEST_CONNECT_W
BLBS R0, 130$
BRW EXITS

Programming Examples E–27

130$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 140$
BRW EXITS

140$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

E–28 Programming Examples

;
;Receive message
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 150$
BRW EXITS

;
;Check whether start data traffic (SDT) received
;
150$:

MOVL MSG_TYP, R1
MOVAL SNALU0$K_MTYPE_SDT, R2
CMPL R1, R2
BEQL 160$
BRW EXITS

160$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge SDT
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 170$
BRW EXITS

Programming Examples E–29

170$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Receive message
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 180$
BRW EXITS

;
;Check whether BID received
;
180$:

MOVL MSG_TYP, R1
MOVAL SNALU0$K_MTYPE_BID, R2
CMPL R1, R2
BEQL 190$
BRW EXITS

E–30 Programming Examples

190$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge BID
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 200$
BRW EXITS

200$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Receive ’CICS’ logo
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 210$
BRW EXITS

Programming Examples E–31

210$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge ’CICS’ logo
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 220$
BRW EXITS

220$:
;
; For this test program, the EBI or CDI should be received on this
; call. If an EBI or CDI is not received, then there is more data to
; be received. Usually, the data that has already been received is
; used to receive the rest of the data.
;

MOVL END_BRAC, R1
BLBS R1, 230$
MOVL END_DATA, R1
BLBC R1, 240$

230$:
JMP 260$

E–32 Programming Examples

240$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Receive rest of ’CICS’ logo
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 250$
BRW EXITS

250$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge rest of ’CICS’ logo
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 260$
BRW EXITS

Programming Examples E–33

260$:
MOVAL BIND_BUF, R10
MOVB #109,B^7(R10) ;setup clear message
PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAL SLU_L_NO ;slu-last-seq-num
PUSHAL SLU_F_NO ;slu-first-seq-num
PUSHAL #0 ;turn-retain
PUSHAL #0 ;more-data
PUSHAL #SNALU0$K_RSP_RQE1 ;response-type
PUSHAL #0 ;end-bracket
PUSHAL #0 ;alt-code
PUSHAL #SNALU0$K_MCLASS_UNFORMATTED_FM

;response-type
PUSHAL #8 ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Transmit "CLEAR SCREEN"
;

CALLS #15,G^SNALU0$TRANSMIT_MESSAGE_W
BLBS R0, 270$
BRW EXITS

270$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

E–34 Programming Examples

;
;Receive "CLEAR SCREEN" message
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 280$
BRW EXITS

280$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge "CLEAR SCREEN" message
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 290$
BRW EXITS

290$:
MOVAL BIND_BUF, R10
MOVQ #^X00C5C6E2C3C4407D,B^7(R10)

;Transmit CSFE
PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAL SLU_L_NO ;slu-last-seq-num
PUSHAL SLU_F_NO ;slu-first-seq-num
PUSHAL #0 ;turn-retain
PUSHAL #0 ;more-data
PUSHAL #SNALU0$K_RSP_RQE1 ;response-type
PUSHAL #0 ;end-bracket
PUSHAL #0 ;alt-code
PUSHAL #SNALU0$K_MCLASS_UNFORMATTED_FM

;response-type
PUSHAL #14 ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Transmit "CSFE"
;

CALLS #15,G^SNALU0$TRANSMIT_MESSAGE_W
BLBS R0, 300$
BRW EXITS

Programming Examples E–35

300$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Receive "CSFE" message
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 310$
BRW EXITS

310$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge "CSFE" message
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 320$
BRW EXITS

320$:
PUSHAQ TEST_DSC
PUSHAQ TEST_SRC

E–36 Programming Examples

;
;Translate a test buffer to transmit to the IBM
;

CALLS #2,G^LIB$TRA_ASC_EBC
BLBS R0, 330$
BRW EXITS

330$:
MOVAL TEST_BUF, R10
MOVW #^X7D40,B^7(R10) ;prefix test buffer
MOVB #^XC4,B^9(R10)
PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAL SLU_L_NO ;slu-last-seq-num
PUSHAL SLU_F_NO ;slu-first-seq-num
PUSHAL #0 ;turn-retain
PUSHAL #0 ;more-data
PUSHAL #SNALU0$K_RSP_RQE1 ;response-type
PUSHAL #0 ;end-bracket
PUSHAL #0 ;alt-code
PUSHAL #SNALU0$K_MCLASS_UNFORMATTED_FM

;response-type
PUSHAL #62 ;test-buffer-length
PUSHAQ TEST_DSC ;test-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Transmit test buffer
;

CALLS #15,G^SNALU0$TRANSMIT_MESSAGE_W
BLBS R0, 340$
BRW EXITS

Programming Examples E–37

340$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL PLU_L_NO ;plu-last-seq-num
PUSHAL PLU_F_NO ;plu-first-seq-num
PUSHAL END_DATA ;end-data
PUSHAL RESP_TYP ;response-type
PUSHAL SENS_INC ;sense-indicator
PUSHAL END_BRAC ;end-bracket
PUSHAL BEG_BRAC ;begin-bracket
PUSHAL ALT_CODE ;alternate-code
PUSHAL FLOW ;message-flow
PUSHAL MSG_TYP ;message-type
PUSHAL MSG_CLASS ;message-class
PUSHAL MORE_DATA ;more-data-indicator
PUSHAL REQ_IND ;request/response indicator
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Receive test message
;

CALLS #20,G^SNALU0$RECEIVE_MESSAGE_W
BLBS R0, 350$
BRW EXITS

350$:
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHL #0 ;sense code
PUSHAL #SNALU0$K_POSITIVE_RSP ;response-type
PUSHAL BIND_LEN ;bind-buffer-length
PUSHAQ BIND_DSC ;bind-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

;
;Acknowledge test message
;

CALLS #9,G^SNALU0$TRANSMIT_RESPONSE_W
BLBS R0, 360$
BRW EXITS

360$:
PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

E–38 Programming Examples

;
;Disconnect
;

CALLS #5,G^SNALU0$REQUEST_DISCONNECT_W

EXITS: $PUTMSG_S STS_VEC [4] ;display status-vector
$EXIT_S
.END LU0MAR

COMMENTS

1. You must compile the API symbol definition file with your MACRO source
file. For example:

$ MACRO SYS$LIBRARY:SNALIBDEF+SNALU0DEF+SYS$DISK:[]source

2. Note that in this program the notify routine only indicates that the
application received the event. Normally, the application would take some
action.

3. Arguments are passed on the stack.

4. Display the status vector by using $PUTMSG.

Programming Examples E–39

E.5 VAX PL/I Programming Example
This program connects to CICS and activates the CSFE transaction (a remote
loopback program). The program prompts you for the Gateway DECnet
node or TCP/IP host name and the CICS access name. The application then
establishes a connection with CICS and requests the CSFE transaction. After
the CSFE instruction screen is received, some test data is generated. The data
is converted to EBCDIC and sent to CSFE. The data is echoed from CSFE and
the session is disconnected.

MAIN: PROCEDURE OPTIONS(MAIN) RETURNS (FIXED BINARY(31));

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE SYS$PUTMSG; /* System Service */

[1]%INCLUDE ’SYS$LIBRARY:SNALU0DEF.PLI’; /* LU0 symbols and */
/* routine definitions */

[1]%INCLUDE ’SYS$LIBRARY:SNALIBDEF.PLI’; /* Basic AI symbols and */
/* routine definitions */

/**/
/* Declare External Routines first */
/**/
DECLARE

EXAMPLE$NOTIFY POINTER GLOBALREF,

LIB$GET_INPUT EXTERNAL ENTRY (
CHARACTER (*), /* Data */
CHARACTER (*), /* Prompt */
FIXED BIN (15)) /* Size */

RETURNS (FIXED BIN(31)),

LIB$TRA_ASC_EBC EXTERNAL ENTRY (
CHARACTER (*), /* Input buffer */
CHARACTER (*)) /* Output Buffer */

RETURNS (FIXED BIN(31));

/***/
/* Declarations */
/***/
%REPLACE CSFE_SIZE BY 14;
%REPLACE TEST_SIZE BY 62;
%REPLACE BUFFER_SIZE BY 4103;
%REPLACE SESSION_ADDRESS BY 0;

E–40 Programming Examples

DECLARE
NODE_NAME CHARACTER (6),
NODE_NAME_SIZE FIXED BIN (15),
NODE_PROMPT CHARACTER (26) STATIC INITIAL(’Enter gateway node: ’),
ACCESS_NAME CHARACTER (6),
ACCESS_NAME_SIZE FIXED BIN (15),
ACCESS_PROMPT CHARACTER (20) STATIC INITIAL(’Enter access name: ’),
SESSION_ID FIXED BIN (31),
DATA_SIZE FIXED BIN (15),
BIND_SIZE FIXED BIN (15),
MSG_TYPE FIXED BIN (7),
MSG_CLASS FIXED BIN (7),
MSG_EBI FIXED BIN (7),
FIRST_SEQNO FIXED BIN (15),
LAST_SEQNO FIXED BIN (15),
STATUS_VECTOR CHARACTER (SNALU0$K_MIN_STATUS_VECTOR),
NOTIFY_VECTOR GLOBALDEF CHARACTER (SNALU0$K_MIN_NOTIFY_VECTOR),
CSFE_TEXT CHARACTER (CSFE_SIZE) INITIAL(’ CSFE’),
DATA_BUFFER_PTR POINTER,
DATA_BUFFER CHARACTER (BUFFER_SIZE),
DATA_BUFFER_ARRAY (BUFFER_SIZE) CHARACTER BASED (DATA_BUFFER_PTR),
TEST_MESSAGE CHARACTER (TEST_SIZE) INITIAL

(’ ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’);

DATA_BUFFER_PTR = ADDR(DATA_BUFFER);

STS$VALUE = EXAMPLE$MAIN();
STOP;
/**/
/* The END */
/**/

EXAMPLE$MAIN: PROCEDURE RETURNS (FIXED BINARY(31));

/**/
/* Get node name and access name. Use this information */
/* to establish a session with IBM. */
/**/
STS$VALUE = LIB$GET_INPUT(NODE_NAME,

NODE_PROMPT,
NODE_NAME_SIZE);

IF ^STS$SUCCESS THEN RETURN(STS$VALUE);

STS$VALUE = LIB$GET_INPUT(ACCESS_NAME,
ACCESS_PROMPT,
ACCESS_NAME_SIZE);

IF ^STS$SUCCESS THEN RETURN(STS$VALUE);

Programming Examples E–41

STS$VALUE = SNALU0$REQUEST_CONNECT_W(
SESSION_ID,
STATUS_VECTOR,
SNALU0$K_ACTIVE,
NODE_NAME,
ACCESS_NAME,
,
SESSION_ADDRESS,

[2] ,,,,,
ADDR(EXAMPLE$NOTIFY),
,
NOTIFY_VECTOR,
DATA_BUFFER,
BIND_SIZE,
,,);

IF ^STS$SUCCESS THEN GOTO EXIT;

/**/
/* Assume the BIND is OK and just send +RSP to it */
/**/
STS$VALUE = SNALU0$TRANSMIT_RESPONSE_W(

SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE,
SNALU0$K_POSITIVE_RSP,
,,,);

IF ^STS$SUCCESS THEN GOTO EXIT;

/**/
/* Issue three receives to get : */
/* */
/* Start Data Traffic (SDT) */
/* BID */
/* CICS logo */
/**/
STS$VALUE = EXAMPLE$READ_DATA();
IF ^STS$SUCCESS THEN GOTO EXIT;
STS$VALUE = EXAMPLE$READ_DATA();
IF ^STS$SUCCESS THEN GOTO EXIT;
STS$VALUE = EXAMPLE$READ_DATA();
IF ^STS$SUCCESS THEN GOTO EXIT;

/**/
/* Transmit a CSFE message to test the session and get the */
/* response message. */
/**/

[3]STS$VALUE = LIB$TRA_ASC_EBC(
CSFE_TEXT,
CSFE_TEXT);

IF ^STS$SUCCESS THEN GOTO EXIT;

E–42 Programming Examples

[4]DATA_BUFFER = CSFE_TEXT;
DATA_BUFFER_ARRAY(SNABUF$K_HDLEN+1) = BYTE(125); /* AID */
DATA_BUFFER_ARRAY(SNABUF$K_HDLEN+2) = BYTE(64); /*Cursor */

[4]DATA_BUFFER_ARRAY(SNABUF$K_HDLEN+3) = BYTE(196); /*Address */
FIRST_SEQNO = LAST_SEQNO + 1;
LAST_SEQNO = FIRST_SEQNO; /* Single element chain */

STS$VALUE = SNALU0$TRANSMIT_MESSAGE_W(
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
CSFE_SIZE,
SNALU0$K_MCLASS_UNFORMATTED_FM,
,,
SNALU0$K_RSP_RQE1,
,,
FIRST_SEQNO,
LAST_SEQNO,
,,);

IF ^STS$SUCCESS THEN GOTO EXIT;

STS$VALUE = EXAMPLE$READ_DATA();
IF ^STS$SUCCESS THEN GOTO EXIT;

/**/
/* Transmit a test message to test the session and get the */
/* response message. */
/**/
STS$VALUE = LIB$TRA_ASC_EBC(

TEST_MESSAGE,
TEST_MESSAGE);

IF ^STS$SUCCESS THEN GOTO EXIT;

DATA_BUFFER = TEST_MESSAGE;
DATA_BUFFER_ARRAY(SNABUF$K_HDLEN+1) = BYTE(125); /* AID */
DATA_BUFFER_ARRAY(SNABUF$K_HDLEN+2) = BYTE(64); /*Cursor */
DATA_BUFFER_ARRAY(SNABUF$K_HDLEN+3) = BYTE(196); /*Addres */
FIRST_SEQNO = LAST_SEQNO + 1;
LAST_SEQNO = FIRST_SEQNO; /* Single element chain */

STS$VALUE = SNALU0$TRANSMIT_MESSAGE_W(
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
TEST_SIZE,
SNALU0$K_MCLASS_UNFORMATTED_FM,
,,
SNALU0$K_RSP_RQE1,
,,
FIRST_SEQNO,
LAST_SEQNO,
,,);

IF ^STS$SUCCESS THEN GOTO EXIT;

Programming Examples E–43

STS$VALUE = EXAMPLE$READ_DATA();
IF ^STS$SUCCESS THEN GOTO EXIT;

STS$VALUE = SNALU0$REQUEST_DISCONNECT_W(
SESSION_ID,
STATUS_VECTOR);

EXIT:
STS$VALUE = SYS$PUTMSG(STATUS_VECTOR);
END;

/**/
/* Receive data and send a +RSP */
/**/
EXAMPLE$READ_DATA: PROCEDURE RETURNS (FIXED BIN);

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE ’SYS$LIBRARY:SNALU0DEF.PLI’; /* SNALU0 symbols and */

/* routine definitions */
DECLARE

RRI FIXED BINARY (7),
MORE_DATA FIXED BINARY (7),
RCV_FLOW FIXED BINARY (7),
RCV_CODE FIXED BINARY (7),
RCV_BBI FIXED BINARY (7),
RCV_SDI FIXED BINARY (7),
RCV_RTYPE FIXED BINARY (7),
RCV_CDI FIXED BINARY (7);

STS$VALUE = SNALU0$RECEIVE_MESSAGE_W(
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE,
RRI,
MORE_DATA,
MSG_CLASS,
MSG_TYPE,
RCV_FLOW,
RCV_CODE,
RCV_BBI,
MSG_EBI,
RCV_SDI,
RCV_RTYPE,
RCV_CDI,
FIRST_SEQNO,
LAST_SEQNO,
,,);

E–44 Programming Examples

IF STS$SUCCESS
THEN

STS$VALUE = SNALU0$TRANSMIT_RESPONSE_W(
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE,
SNALU0$K_POSITIVE_RSP,
,,,);

/**/
/* For this test program, the EBI or CDI should be received on this */
/* call. If an EBI or CDI is not received, then there is more data */
/* to be received. Usually, the data that has already been received */
/* is used to receive the rest of the data. */
/**/
IF STS$SUCCESS & ^(MSG_EBI = 1) & ^(RCV_CDI = 1) &

^(POSINT(MSG_TYPE) = SNALU0$K_MTYPE_SDT) &
^(POSINT(MSG_TYPE) = SNALU0$K_MTYPE_BID)

THEN
BEGIN;
STS$VALUE = SNALU0$RECEIVE_MESSAGE_W(

SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE,
RRI,
MORE_DATA,
MSG_CLASS,
MSG_TYPE,
RCV_FLOW,
RCV_CODE,
RCV_BBI,
MSG_EBI,
RCV_SDI,
RCV_RTYPE,
RCV_CDI,
FIRST_SEQNO,
LAST_SEQNO,
,,);

IF STS$SUCCESS
THEN

STS$VALUE = SNALU0$TRANSMIT_RESPONSE_W(
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE,
SNALU0$K_POSITIVE_RSP,
,,,);

END;
RETURN(STS$VALUE);

Programming Examples E–45

END;
END;

/**/
/* Asynchronous Notify Routine */
/**/
EXAMPLE$NOTIFY: PROCEDURE(EVENT_CODE,

EVENT_PARAMETER);

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE SYS$PUTMSG; /* System Service */
%INCLUDE ’SYS$LIBRARY:SNALU0DEF.PLI’; /* SNA3270 symbols and routine*/

/* definitions */
%INCLUDE ’SYS$LIBRARY:SNALIBDEF.PLI’; /* Basic AI symbols and */

/* routine definitions */

/**/
/* Declare External Routines first */
/**/
DECLARE

LIB$PUT_OUTPUT EXTERNAL ENTRY (
CHARACTER (*)) /* Data */

RETURNS (FIXED BIN(31));

/**/
/* Declarations */
/**/
DECLARE

EVENT_CODE FIXED BINARY (31),
EVENT_PARAMETER FIXED BINARY (31),
NOTIFY_VECTOR GLOBALREF CHARACTER,
RCVEXP_EVENT CHARACTER (58) STATIC INITIAL

(’Asynchronous notification: Data receive on expedited flow’),
COMERR_EVENT CHARACTER (54) STATIC INITIAL

(’Asynchronous notification: Gateway communication error’),
TERM_EVENT CHARACTER (57) STATIC INITIAL

(’Asynchronous notification: Session terminated by IBM host’),
PLURESET_EVENT CHARACTER (60) STATIC INITIAL

(’Asynchronous notification: Half session state machines reset’),
UNBHLD_EVENT CHARACTER (49) STATIC INITIAL

(’Asynchronous notification: Unbind type 2 received’),
UNKNOWN_EVENT CHARACTER (62) STATIC INITIAL

(’Asynchronous notification: Unknown asynchronous event reported’);

SELECT (EVENT_CODE);
WHEN (SNAEVT$K_RCVEXP)

STS$VALUE = LIB$PUT_OUTPUT(RCVEXP_EVENT);
WHEN (SNAEVT$K_UNBHLD)

STS$VALUE = LIB$PUT_OUTPUT(UNBHLD_EVENT);
WHEN (SNAEVT$K_TERM)

STS$VALUE = LIB$PUT_OUTPUT(TERM_EVENT);
WHEN (SNAEVT$K_COMERR)

STS$VALUE = LIB$PUT_OUTPUT(COMERR_EVENT);

E–46 Programming Examples

WHEN (SNAEVT$K_PLURESET)
STS$VALUE = LIB$PUT_OUTPUT(PLURESET_EVENT);

OTHERWISE
STS$VALUE = LIB$PUT_OUTPUT(UNKNOWN_EVENT);

END;
STS$VALUE = SYS$PUTMSG(NOTIFY_VECTOR); [6]
END;

COMMENTS

1. Include the LU0 and basic API symbol definition libraries.

2. Commas indicate that you do not want to specify values for the parameters
and will accept the default values provided by the API.

3. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

4. The application must leave room in the buffer for header information.

5. The asynchronous notify routine, notify parameter, and notify vector
are specified in the REQUEST_CONNECT procedure. If you are using
multiple sessions, specify session-id or an internal session data structure
in the event-parameter, so you can identify a particular session. For more
information, see Section 3.6.

6. Display the NOTIFY_VECTOR by using $PUTMSG.

Programming Examples E–47

E.6 Pascal Programming Example
This program connects to CICS and activates the CSFE transaction (a remote
loopback program). It prompts you for the Gateway DECnet node or TCP/IP
host name and the CICS access name. The application then establishes a
connection with CICS and requests the CSFE transaction. After the CSFE
instruction screen is received, some test data is generated. The data is
converted to EBCDIC and sent to CSFE. The data is echoed from CSFE and
the session is disconnected.

[1] [INHERIT (’SYS$LIBRARY:SNALU0DEF.PEN’, ’SYS$LIBRARY:SNALIBDEF.PEN’)]
PROGRAM LU0_EXAMPLE(INPUT,OUTPUT);

(* %INCLUDE ’SNALU0DEF/NOLIST’ *)
(* %INCLUDE ’SNALIBDEF/NOLIST’ *)

[HIDDEN] TYPE (**** Pre-declared data types ****)
$BYTE = [BYTE] -128..127;
$WORD = [WORD] -32768..32767;
$UBYTE = [BYTE] 0..255;
$UWORD = [WORD] 0..65535;

[ASYNCHRONOUS,EXTERNAL(SYS$PUTMSG)] FUNCTION $PUTMSG
(%REF MSGVEC : [UNSAFE] ARRAY

[$l1..$u1:INTEGER] OF $UBYTE;
%IMMED [UNBOUND, ASYNCHRONOUS]

PROCEDURE ACTRTN := %IMMED 0;
FACNAM : [CLASS_S] PACKED ARRAY

[$l3..$u3:INTEGER] OF CHAR
:= %IMMED 0;

%IMMED ACTPRM : INTEGER := %IMMED 0)
: INTEGER; EXTERNAL;

[ASYNCHRONOUS] FUNCTION LIB$TRA_ASC_EBC
(IN_BUFFER : [CLASS_S] PACKED ARRAY

[$l1..$u1:INTEGER] OF CHAR;
VAR OUT_BUFFER : [CLASS_S] PACKED ARRAY

[$l2..$u2:INTEGER] OF CHAR):
INTEGER;
EXTERNAL;

[ASYNCHRONOUS] FUNCTION LIB$GET_INPUT
(%STDESCR IN_BUFFER: CHAR): INTEGER;
EXTERNAL;

E–48 Programming Examples

[ASYNCHRONOUS] FUNCTION LIB$STOP
(COND_VAL: UNSIGNED): INTEGER;
EXTERNAL;

(**)
(* Declaration *)
(**)

LABEL
999;

CONST
BUFFER_LENGTH = 4103;
LU0_EFN = 10;
SESSION_ADDRESS = 0;

VAR
ACCESS_NAME : VARYING[8] OF CHAR;
ASCII_CSFE_STR : PACKED ARRAY [1..4] OF CHAR;
ASCII_TEST_DATA : PACKED ARRAY [1..52] OF CHAR;
CANNED_MESSAGE : PACKED ARRAY [1..28] OF CHAR;
CSFE_STR : PACKED ARRAY [1..4] OF CHAR;

[2] BUFFER_HEADER : PACKED ARRAY [1..SNABUF$K_HDLEN] OF CHAR;
DATA_BUFFER : PACKED ARRAY [1..BUFFER_LENGTH] OF CHAR;

[2] DS_HEADER : PACKED ARRAY [1..3] OF CHAR;
NODE_NAME : VARYING[8] OF CHAR;
NOTIFY_MESSAGE : PACKED ARRAY [1..28] OF CHAR;
NOTIFY_VECTOR : PACKED ARRAY [1..SNALU0$K_MIN_NOTIFY_VECTOR] OF CHAR;
STATUS_VECTOR : PACKED ARRAY [1..SNALU0$K_MIN_STATUS_VECTOR] OF CHAR;
TEST_DATA : PACKED ARRAY [1..52] OF CHAR;
LIB_STATUS : UNSIGNED;
SNA_STATUS : UNSIGNED;
EVENT_CODE : INTEGER;
SESSION_ID : INTEGER;
DATA_LENGTH : $WORD;
PLU_1ST_SEQ_NUM : $WORD;
PLU_LAST_SEQ_NUM: $WORD;
SLU_1ST_SEQ_NUM : $WORD;
SLU_LAST_SEQ_NUM: $WORD;
ALT_CODE : $BYTE;
BEG_BRACKET : $BYTE;
END_BRACKET : $BYTE;
END_DATA : $BYTE;
FLOW : $BYTE;
MORE_DATA : $BYTE;
MSG_CLASS : $BYTE;
MSG_TYPE : $BYTE;
REQ_IND : $BYTE;
RESP_TYPE : $BYTE;
SENSE_INC : $BYTE;

FUNCTION XMIT_POS_RESP: BOOLEAN;

Programming Examples E–49

BEGIN
SNA_STATUS := SNALU0$TRANSMIT_RESPONSE_W(SESSION_ID,

STATUS_VECTOR,
DATA_BUFFER,
DATA_LENGTH,
%REF(SNALU0$K_POSITIVE_RSP));

IF SNA_STATUS :: BOOLEAN
THEN

XMIT_POS_RESP := TRUE
ELSE

BEGIN
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
WRITELN(’TRANSMIT_RESPONSE failed’);
XMIT_POS_RESP := FALSE;

END
END;

FUNCTION RECEIVE : BOOLEAN;
BEGIN

SNA_STATUS := SNALU0$RECEIVE_MESSAGE_W(SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_LENGTH,
REQ_IND,
MORE_DATA,
MSG_CLASS,
MSG_TYPE,
FLOW,
ALT_CODE,
BEG_BRACKET,
END_BRACKET,
SENSE_INC,
RESP_TYPE,
END_DATA,
PLU_1ST_SEQ_NUM,
PLU_LAST_SEQ_NUM,
%REF(LU0_EFN));

E–50 Programming Examples

[3] IF SNA_STATUS :: BOOLEAN
[3] THEN

RECEIVE := TRUE
ELSE

BEGIN
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
WRITELN(’RECEIVE_MESSAGE failed’);
RECEIVE := FALSE

END;
END;

FUNCTION RECEIVE_SDT : BOOLEAN;
BEGIN

RECEIVE_SDT := RECEIVE; (* Receive start data traffic *)
IF (MSG_TYPE <> SNALU0$K_MTYPE_SDT)
THEN

WRITELN(’Failed to receive SDT’)
ELSE

RECEIVE_SDT := XMIT_POS_RESP; (* Acknowledge SDT *)
END;

FUNCTION RECEIVE_DATA : BOOLEAN;
BEGIN

IF RECEIVE (* Receive data or BID *)
THEN

IF (MSG_TYPE = SNALU0$K_MTYPE_BID) (* Check for BID, if received,*)
THEN (* acknowledge it and issue a *)

IF XMIT_POS_RESP (* receive to get CICS logo *)
THEN

RECEIVE_DATA := RECEIVE
ELSE

RECEIVE_DATA := FALSE
ELSE

RECEIVE_DATA := TRUE
ELSE

RECEIVE_DATA := FALSE;
END; (* Return with data or error *)

FUNCTION TRANSMIT(LENGTH : INTEGER;
BUFFER : PACKED ARRAY [LB..UB : INTEGER] OF CHAR) : BOOLEAN;

BEGIN
SNA_STATUS := SNALU0$TRANSMIT_MESSAGE_W(SESSION_ID,

STATUS_VECTOR,
BUFFER,
LENGTH,
MSG_CLASS,
%REF(FALSE),
%REF(FALSE),
%REF(SNALU0$K_RSP_RQE1),
%REF(FALSE),
%REF(FALSE),
SLU_1ST_SEQ_NUM,

Programming Examples E–51

SLU_LAST_SEQ_NUM,
%REF(LU0_EFN));

IF SNA_STATUS :: BOOLEAN
THEN

TRANSMIT := TRUE
ELSE

BEGIN
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
WRITELN(’TRANSMIT_MESSAGE failed’)

END;
END;

PROCEDURE NOTIFY_RTN(EVENT_CODE, NOTIFY_PARM : INTEGER);
BEGIN

WRITE(’Asynchronous notification: ’);
CASE EVENT_CODE OF

SNAEVT$K_RCVEXP:
WRITELN(’Data received on expedited flow’);

SNAEVT$K_UNBHLD:
WRITELN(’Unbind type 2 received’);

SNAEVT$K_TERM:
WRITELN(’Session terminated by IBM host’);

SNAEVT$K_COMERR:
WRITELN(’Gateway communication error’);

SNAEVT$K_PLURESET:
WRITELN(’Half session state machines reset’);

OTHERWISE
WRITELN(’Unknown asynchronous event reported’);

END;
LIB_STATUS := $PUTMSG(NOTIFY_VECTOR);

END;

E–52 Programming Examples

BEGIN
BUFFER_HEADER := ’ ’;
DATA_BUFFER := ’ ’;
WRITE(’Enter gateway node:’);
READLN(NODE_NAME);
WRITE(’Enter access name: ’);
READLN(ACCESS_NAME);

(**)
(* Request connection *)
(**)

SNA_STATUS := SNALU0$REQUEST_CONNECT_W(SESSION_ID,
STATUS_VECTOR,
%REF(SNALU0$K_ACTIVE),
NODE_NAME,
ACCESS_NAME,,
%REF(SESSION_ADDRESS),
,,,,,
%IMMED NOTIFY_RTN,
SESSION_ID,
NOTIFY_VECTOR,
DATA_BUFFER,
DATA_LENGTH,
%REF(LU0_EFN));

IF (NOT SNA_STATUS :: BOOLEAN)
THEN

BEGIN
LIB_STATUS := $PUTMSG(STATUS_VECTOR);
GOTO 999

END;

(**)
(* *)
(* Acknowledge Bind - in this example we assume the BIND is *)
(* satisfactory. Normally you would have to examine the bind image *)
(* to verify that your application can handle the session defined by *)
(* the BIND. *)
(* *)
(* A negotiable BIND would be effected by modifying the BIND image *)
(* and positively responding. *)
(* *)
(**)

IF (NOT XMIT_POS_RESP)
THEN

GOTO 999;

Programming Examples E–53

(**)
(* Receive start data traffic *)
(**)

IF (NOT RECEIVE_SDT)
THEN

BEGIN
WRITELN(’Failed to receive Start Data Traffic’);
GOTO 999

END;

(**)
(* Receive CICS logo *)
(**)

IF (NOT RECEIVE_DATA)
THEN

BEGIN
WRITELN(’Failed to receive CICS logo’);
GOTO 999

END;

(**)
(* Acknowledge CICS logo *)
(**)

IF (NOT XMIT_POS_RESP)
THEN

GOTO 999;

(**)
(* For this test program, the EBI or CDI should be received on this *)
(* call. If an EBI or CDI is not received, then there is more data *)
(* to be received. Usually, the data that has already been received *)
(* is used to receive the rest of the data. *)
(**)

IF (NOT (END_BRACKET = 1) AND NOT(END_DATA = 1))
THEN

BEGIN
IF (NOT RECEIVE_DATA)
THEN

BEGIN
WRITELN(’Failed to receive CICS logo’);
GOTO 999

END;
IF (NOT XMIT_POS_RESP)
THEN

GOTO 999;
END;

E–54 Programming Examples

(**)
(* Send clear screen request *)
(**)

DATA_LENGTH := SNABUF$K_HDLEN+1;

(**)
(* Set EBCDIC code for clear *)
(**)

DATA_BUFFER[8] := CHR(%X’6D’);
MSG_CLASS := SNALU0$K_MCLASS_UNFORMATTED_FM;
IF (NOT TRANSMIT(DATA_LENGTH, DATA_BUFFER))
THEN

BEGIN
WRITELN(’Failed to transmit clear screen request’);
GOTO 999

END;

(**)
(* Receive clear screen command *)
(**)

IF (NOT RECEIVE_DATA)
THEN

BEGIN
WRITELN(’Failed to receive clear screen command’);
GOTO 999

END;

(**)
(* Acknowledge clear screen command *)
(**)

IF (NOT XMIT_POS_RESP)
THEN

GOTO 999;

(**)
(* Transmit CSFE string and 3270 data stream control characters (3). *)
(**)

ASCII_CSFE_STR := ’CSFE’;

Programming Examples E–55

(**)
(* Translate CSFE string to EBCDIC *)
(**)

LIB_STATUS := LIB$TRA_ASC_EBC(ASCII_CSFE_STR, CSFE_STR);
IF (NOT LIB_STATUS :: BOOLEAN)
THEN

LIB$STOP(LIB_STATUS);

(**)
(* Insert the 3 3270 control characters AID key = ENTER, Cursor *)
(* position = 04 (encoded) *)
(**)

DS_HEADER := ’’(%X’7D’,%X’40’,%X’C4’)’’;
MSG_CLASS := SNALU0$K_MCLASS_UNFORMATTED_FM;
DATA_LENGTH := SNABUF$K_HDLEN + 3 + 4;
IF (NOT TRANSMIT(DATA_LENGTH,

(BUFFER_HEADER + DS_HEADER + CSFE_STR)))
THEN

BEGIN
WRITELN(’Failed to transmit the CSFE string’);
GOTO 999

END;

(**)
(* Receive CSFE message *)
(**)

IF (NOT RECEIVE_DATA)
THEN

BEGIN
WRITELN(’Failed to receive CSFE message’);
GOTO 999

END;

(**)
(* Acknowledge CSFE message *)
(**)

IF (NOT XMIT_POS_RESP)
THEN

GOTO 999;

(**)
(* Transmit test message *)
(**)

ASCII_TEST_DATA :=
’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’;

E–56 Programming Examples

(**)
(* Translate test message to EBCDIC *)
(**)

LIB_STATUS := LIB$TRA_ASC_EBC(ASCII_TEST_DATA, TEST_DATA);
IF (NOT LIB_STATUS :: BOOLEAN)
THEN

LIB$STOP(LIB_STATUS);

(**)
(* Insert the 3 3270 control characters *)
(* AID key = ENTER, Cursor position = 04 (encoded) *)
(**)

DS_HEADER := ’’(%X’7D’,%X’40’,%X’C4’)’’;
MSG_CLASS := SNALU0$K_MCLASS_UNFORMATTED_FM;
DATA_LENGTH := SNABUF$K_HDLEN+55;
IF (NOT TRANSMIT(DATA_LENGTH,

(BUFFER_HEADER + DS_HEADER + TEST_DATA)))
THEN

BEGIN
WRITELN(’Failed to transmit the TEST string’);
GOTO 999

END;

(**)
(* Receive TEST message *)
(**)

IF (NOT RECEIVE_DATA)
THEN

BEGIN
WRITELN(’Failed to receive TEST message’);
GOTO 999

END;

(**)
(* Acknowledge TEST message *)
(**)

IF (NOT XMIT_POS_RESP)
THEN

GOTO 999;

(**)
(* Disconnect session *)
(**)

SNA_STATUS := SNALU0$REQUEST_DISCONNECT_W(SESSION_ID,
STATUS_VECTOR);

999:
LIB_STATUS := $PUTMSG(STATUS_VECTOR);

END.

Programming Examples E–57

COMMENTS

1. Include the LU0 and basic API symbol definition libraries.

2. Three buffers are defined for the 3270 data stream message:

• Data buffer

• Buffer header (to reserve space for the API)

• Data stream header (to reserve 3 bytes for 3270 data stream control
characters)

The buffers are concatenated by means of the Pascal string operators.

3. Use the type cast operator to override the declared type for the returned
status.

E.7 Pascal Symbol and Structure Definitions
The API supplies symbol and structure definitions used by the application
program. For Pascal, these are provided in source code files SNALU0DEF.PAS
and SNALIBDEF.PAS, and in environmental files SNALU0DEF.PEN and
SNALIBDEF.PEN. These environmental files must be generated using the
PASCAL compiler on your OpenVMS system. To generate the environmental
files, enter the following commands:

$ PASCAL/NOOBJECT/ENVIRONMENT=SYS$LIBRARY:SNALIBDEF.PEN -
$_ SYS$LIBRARY:SNALIBDEF.PAS
$ PASCAL/NOOBJECT/ENVIRONMENT=SYS$LIBRARY:SNALU0DEF.PEN -
$_ SYS$LIBRARY:SNALU0DEF.PAS_FOR_PEN

E–58 Programming Examples

E.8 C Programming Example
This program connects to CICS and activates the CSFE transaction (a remote
loopback program). It prompts you for the Gateway DECnet node or TCP/IP
host name and the CICS access name. The application then establishes a
connection with CICS and requests the CSFE transaction. After the CSFE
instruction screen is received, some test data is generated. The data is
converted to EBCDIC and sent to CSFE. The data is echoed from CSFE and
the session is disconnected.

#module LU0_TEST

[1] #include <SNALU0DEF>
#include descrip /* VMS descriptor definitions*/
#include stsdef /* Define STS$type_name */

#define S_SIZE snalu0$k_min_status_vector
#define N_SIZE snalu0$k_min_notify_vector

/***/
/* Declaration */
/***/

globaldef int STATUS_VEC[S_SIZE],NOTIFY_VEC[N_SIZE],SID,RCV_COUNT;
globaldef int RET,NOTIFY_PARM,SENSE_CODE;
globaldef struct dsc$descriptor BUF_D;

$DESCRIPTOR(STATUS_D, STATUS_VEC);
$DESCRIPTOR(NOTIFY_D, NOTIFY_VEC);

main()
{
extern CONNECT(),RECEIVE(),TRANSMIT();

RET=CONNECT(); /* Get the BIND and acknowledge it */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

RET=RECEIVE(); /* Receive SDT and send +RSP */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

Programming Examples E–59

RET=RECEIVE(); /* Receive BID and send +RSP */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

RET=RECEIVE(); /* Receive CICS logo and send +RSP */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

RET=TRANSMIT(); /* Transmit and receive some data */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

/***/
/* Disconnect the session and exit with status */
/***/

RET= SNALU0$REQUEST_DISCONNECT_W(
&SID,
&STATUS_D
);

SYS$PUTMSG(STATUS_VEC);
}

/***/
/* */
/* Get the node name and access name to use in establishing a */
/* session. Issue a SNALU0$REQUEST_CONNECT_W to get the BIND. Send */
/* a +RSP to the BIND and return. */
/* */
/***/

#include <SNALU0DEF> /* external definition file */
#include descrip /* VMS descriptor definitions*/
#include stsdef /* Define STS$type_name */

/***/
/* Declaration */
/***/

globalref int SID,RET,SENSE_CODE,STATUS_VEC[];
globalref struct dsc$descriptor BUF_D;

CONNECT()
{

extern NOTIFY_RTN(), BIND_CHK();
extern STATUS_D, NOTIFY_D;

E–60 Programming Examples

int BIND_LENGTH, SESSION_ADDRESS;
char NODE_NAME[8],ACC_NAME[8];
struct dsc$descriptor NODE_D,ACC_D;

/***/
/* Initialize the descriptors we are going to use */
/***/

NODE_D.dsc$b_dtype = DSC$K_DTYPE_T;
NODE_D.dsc$b_class = DSC$K_CLASS_S;
NODE_D.dsc$a_pointer = NODE_NAME;

ACC_D.dsc$b_dtype = DSC$K_DTYPE_T;
ACC_D.dsc$b_class = DSC$K_CLASS_S;
ACC_D.dsc$a_pointer = ACC_NAME;

BUF_D.dsc$w_length = 0;
BUF_D.dsc$b_dtype = DSC$K_DTYPE_T;
BUF_D.dsc$b_class = DSC$K_CLASS_D;
BUF_D.dsc$a_pointer = 0;
SESSION_ADDRESS = 0;

/***/
/* Get the node name and access name to use in establishing a */
/* session with IBM. */
/***/

printf("Enter gateway node name:");
scanf("%s",NODE_NAME);

printf("Enter acess name:");
scanf("%s",ACC_NAME);

NODE_D.dsc$w_length = strlen(NODE_NAME);
ACC_D.dsc$w_length = strlen(ACC_NAME);

/***/
/* Bring up the session with the IBM system. On error output the */
/* status vector and return. */
/***/

RET = SNALU0$REQUEST_CONNECT_W(
&SID,
&STATUS_D,
&snalu0$k_active,
&NODE_D,
&ACC_D,
0,
&SESSION_ADDRESS,

[2] 0,0,0,0,0,
NOTIFY_RTN,
&SID,
&NOTIFY_D,
&BUF_D,
&BIND_LENGTH
);

Programming Examples E–61

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

/***/
/* */
/* Acknowledge Bind - in this example we assume the BIND is */
/* satisfactory. Normally you would have to examine the bind image */
/* to verify that your application can handle the session defined by */
/* the BIND. */
/* */
/* A negotiable BIND would be effected by modifying the BIND image */
/* and positively responding. */
/* */
/***/

RET=SNALU0$TRANSMIT_RESPONSE_W(
&SID,
&STATUS_D,
&BUF_D,
&BIND_LENGTH,
&snalu0$k_positive_rsp
);

LIB$SFREE1_DD(&BUF_D); /* Free up the dynamic buffer
we have been using */

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
}
return(RET);

}

#include <SNALU0DEF> /* Definition file */
#include descrip /* VMS descriptor definitions*/
#include stsdef /* Status definition file */
#define RL 4103 /* Define data buffer size */

/***/
/* Declaration */
/***/

globalref int SID,RET,STATUS_VEC[];
globalref struct dsc$descriptor BUF_D;

extern STATUS_D;
int RCV_COUNT,RCV_EFN;
int BUFFER_LENGTH,FIRST_SQN,LAST_SQN;
unsigned char RID,MORE,MSG_CLASS,MSG_TYPE,FLOW_TYPE,ALT_CODE,BBI,EBI;
unsigned char SENSE,RESP_TYPE,CDI,RCV_BUF[RL];

RECEIVE()
{

E–62 Programming Examples

/***/
/* Initialize descriptors and put up a receive */
/***/

BUF_D.dsc$w_length = RL;
BUF_D.dsc$b_dtype = DSC$K_DTYPE_T;
BUF_D.dsc$b_class = DSC$K_CLASS_D;
BUF_D.dsc$a_pointer = RCV_BUF;

RET=SNALU0$RECEIVE_MESSAGE_W(
&SID,
&STATUS_D,
&BUF_D,
&BUFFER_LENGTH,
&RID,
&MORE,
&MSG_CLASS,
&MSG_TYPE,
&FLOW_TYPE,
&ALT_CODE,
&BBI,
&EBI,
&SENSE,
&RESP_TYPE,
&CDI,
&FIRST_SQN,
&LAST_SQN,
0,
0,
0
);

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

/***/
/* If receive was successful send a +RSP */
/***/

RET = SNALU0$TRANSMIT_RESPONSE_W(
&SID,
&STATUS_D,
&BUF_D,
&BUFFER_LENGTH,
&snalu0$k_positive_rsp,
0,
0,
0,
0
);

Programming Examples E–63

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

/***/
/* For this test program, the EBI or CDI should be received on this */
/* call. If an EBI or CDI is not received, then there is more data */
/* to be received. Usually, the data that has already been received */
/* is used to receive the rest of the data. */
/***/

if (!(EBI & STS$M_SUCCESS) && !(CDI & STS$M_SUCCESS) &&
(MSG_TYPE != snalu0$k_mtype_sdt) &&
(MSG_TYPE != snalu0$k_mtype_bid))

{
RET=SNALU0$RECEIVE_MESSAGE_W(

&SID,
&STATUS_D,
&BUF_D,
&BUFFER_LENGTH,
&RID,
&MORE,
&MSG_CLASS,
&MSG_TYPE,
&FLOW_TYPE,
&ALT_CODE,
&BBI,
&EBI,
&SENSE,
&RESP_TYPE,
&CDI,
&FIRST_SQN,
&LAST_SQN,
0,
0,
0
);

E–64 Programming Examples

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

/***/
/* If receive was successful send a +RSP */
/***/

RET = SNALU0$TRANSMIT_RESPONSE_W(
&SID,
&STATUS_D,
&BUF_D,
&BUFFER_LENGTH,
&snalu0$k_positive_rsp,
0,
0,
0,
0
);

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
}

}

return(RET);
}

#include <SNALU0DEF> /* external definition file */
#include <SNALIBDEF> /* external definition file */
#include descrip /* VMS descriptor definitions*/
#include stsdef /* Define STS$type_name */
#define CLEAR_LEN 8
#define TEST_LEN 62
#define CSFE_LEN 14

/***/
/* Declaration */
/***/
globalref int SID, RET, SENSE_CODE, STATUS_VEC[];

TRANSMIT()
{

extern STATUS_D, RECEIVE();
int BIND_LENGTH, SLU_FIRST_SEQ, SLU_LAST_SEQ;
int I;
char TEST_BUF[TEST_LEN];
struct dsc$descriptor TEST_D;

Programming Examples E–65

/***/
/* Initialize the descriptor we are going to use */
/***/

TEST_D.dsc$b_class = DSC$K_CLASS_S;
TEST_D.dsc$b_dtype = DSC$K_DTYPE_T;
TEST_D.dsc$w_length = TEST_LEN;
TEST_D.dsc$a_pointer = TEST_BUF;
for (I = 0; I < 62; I = I + 1)
{

TEST_BUF[I] = 0;
}

/***/
/* Send clear screen request */
/***/

TEST_BUF[SNABUF$K_HDLEN] = 109;

RET = SNALU0$TRANSMIT_MESSAGE_W(
&SID,
&STATUS_D,
&TEST_D,
&CLEAR_LEN,
&snalu0$k_mclass_unformatted_fm,
0,0,
&snalu0$k_rsp_rqe1,
0,0,
&SLU_FIRST_SEQ,
&SLU_LAST_SEQ,
0,0,0
);

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

RET=RECEIVE(); /* Get clear message back and send +RSP */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

/***/
/* Fill the test buffer with the characters "CSFE" */
/***/

TEST_BUF[SNABUF$K_HDLEN] = 0;
TEST_BUF[SNABUF$K_HDLEN + 3] = 67;
TEST_BUF[SNABUF$K_HDLEN + 4] = 83;
TEST_BUF[SNABUF$K_HDLEN + 5] = 70;
TEST_BUF[SNABUF$K_HDLEN + 6] = 69;

E–66 Programming Examples

RET = LIB$TRA_ASC_EBC(&TEST_D, &TEST_D);
if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

TEST_BUF[SNABUF$K_HDLEN] = 125;
TEST_BUF[SNABUF$K_HDLEN + 1] = 64;
TEST_BUF[SNABUF$K_HDLEN + 2] = 196;

RET = SNALU0$TRANSMIT_MESSAGE_W(
&SID,
&STATUS_D,
&TEST_D,
&CSFE_LEN,
&snalu0$k_mclass_unformatted_fm,
0,0,
&snalu0$k_rsp_rqe1,
0,0,
&SLU_FIRST_SEQ,
&SLU_LAST_SEQ,
0,0,0
);

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}
RET=RECEIVE(); /* Get message back and send +RSP */
if (!(RET & STS$M_SUCCESS))
{

return(RET);
}

/***/
/* Send a test message */
/***/

TEST_BUF[SNABUF$K_HDLEN] = 0;
TEST_BUF[SNABUF$K_HDLEN + 1] = 0;
TEST_BUF[SNABUF$K_HDLEN + 2] = 0;
for (I = 0; I < 52; I = I + 1)
{

if (I < 26)
TEST_BUF[SNABUF$K_HDLEN + 3 + I] = 65 + I;

else
TEST_BUF[SNABUF$K_HDLEN + 3 + I] = 97 + I - 26;

}

Programming Examples E–67

RET = LIB$TRA_ASC_EBC(&TEST_D, &TEST_D);
if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

TEST_BUF[SNABUF$K_HDLEN] = 125;
TEST_BUF[SNABUF$K_HDLEN + 1] = 64;
TEST_BUF[SNABUF$K_HDLEN + 2] = 196;

RET = SNALU0$TRANSMIT_MESSAGE_W(
&SID,
&STATUS_D,
&TEST_D,
&TEST_LEN,
&snalu0$k_mclass_unformatted_fm,
0,0,
&snalu0$k_rsp_rqe1,
0,0,
&SLU_FIRST_SEQ,
&SLU_LAST_SEQ,
0,0,0
);

if (!(RET & STS$M_SUCCESS))
{

SYS$PUTMSG(STATUS_VEC);
return(RET);

}

RET=RECEIVE(); /* Get message back and send +RSP */
return(RET);

}

#include <SNALIBDEF> /* Basic AI source */

/***/
/* Declaration */
/***/
globalref int NOTIFY_VEC[],STATUS_VEC[];

E–68 Programming Examples

NOTIFY_RTN(EVENT_CODE, P_SESSION_ID)
int EVENT_CODE,P_SESSION_ID;
{

if (EVENT_CODE == SNAEVT$K_RCVEXP)
printf("Asynchronous notification: Data received on expedited flow");

else if (EVENT_CODE == SNAEVT$K_UNBHLD)
printf("Asynchronous notification: Unbind type 2 received");

else if (EVENT_CODE == SNAEVT$K_TERM)
printf("Asynchronous notification: Session terminated by IBM host");

else if (EVENT_CODE == SNAEVT$K_COMERR)
printf("Asynchronous notification: Gateway communication error");

else if (EVENT_CODE == SNAEVT$K_PLURESET)
printf("Asynchronous notification: Half session state machines
reset");

else
printf("Asynchronous notification: Unknown asynchronous event
reported");

[3] SYS$PUTMSG(NOTIFY_VEC);
}

COMMENTS

1. Include the LU0 and basic API symbol definition libraries.

2. The commas and zeros indicate that you do not want to specify values for
the parameters and will accept the default values provided by the API.

3. Display the NOTIFY_VECTOR by using $PUTMSG.

Programming Examples E–69

F
Status Codes

Status messages that are returned by the Digital SNA Application
Programming Interface (API) for OpenVMS, as well as the lower layers of SNA
software, are displayed at your terminal in the following format:

where

facility is the SNALU0 or the SNA component name. A percent sign (%) prefixes
the first message displayed on your screen, and a hyphen prefixes each
subsequent message. SNALU0 refers to those messages received from
the extended mode of the API and SNA refers to those messages received
from the basic mode.

l is the severity level indicator. It has one of the following values:

S indicates success. The system performed your request; your
procedure completed without failure.

I indicates information. The system performed your request; your
command completed without failure. Information about the
circumstances under which the operation completed is included.

W indicates warning. Warning messages indicate that the command
may have performed part, but not all, of your request. You need
to verify the command or program output.

E indicates error. Error messages are top-level errors that a
procedure returns to the status vector. They indicate conditions
that prevent a procedure from completing successfully. Additional
suberror messages may be displayed explaining why the
operation failed.

F indicates fatal. Fatal messages indicate that the system cannot
continue execution of the request. You cannot recover from a fatal
error. You must try to correct the condition that is causing the
error.

ident is an abbreviation of the message text.

text is the explanation of the status code.

Status Codes F–1

Both the facility name and severity level indicator have been removed from the
messages listed in this appendix. Messages are listed alphabetically by ident.
A status message is displayed on your screen as follows:

%SNALU0-E-EVTCLR, failed to clear an event flag

The following status messages are returned by the API:

ABNSESTER, session terminated abnormally

Facility: SNA

Explanation: Either the link between the SNA Gateway and IBM was
lost or IBM deactivated the physical unit or the line leading to the SNA
Gateway.

User Action: Determine why the link was lost. Retry when the connection
with IBM returns.

ACCINTERR, Gateway detected an error in the Gateway access routines

Facility: SNA

Explanation: This is a fatal error.

User Action: Copy the error messages that appear on your screen at this
time and report the problem to your system manager.

ACCROUFAI, error from Gateway access routine, gateway unknown or
unreachable

Facility: SNA

Explanation: SNA Gateway is unknown or unreachable; Transport list
(defined by SNA_TRANSPORT_ORDER logical) is defined incorrectly or
SNA Gateway specified does not support transport selected; or TCP/IP Port
(defined by SNA_TCP_PORT logical) does not match the remote connection
TCP/IP Port.

User Action: Check the SNA Gateway, the SNA_TRANSPORT_ORDER
logical, or the SNA_TCP_PORT logical.

ACCTOOLON, access name is too long

Facility: SNA

Explanation: The access name must be no longer than 8 characters.

F–2 Status Codes

User Action: Correct the call to the API procedure.

ACQLU, unable to acquire a logical unit

Facility: SNALU0

Explanation: The API failed to obtain a port into the SNA network.

User Action: Examine the status vector for further information.

AEFOUTRAN, asynchronous event flag number is out of range

Facility: SNA

Explanation: The event flag number specified was greater than 127.

User Action: Correct the call to the API procedure.

AEVTER, error processing an async event

Facility: SNALU0

Explanation: Insufficient resources were available for the API while in an
internal AST routine.

User Action: Write down all the messages associated with this error and
report the problem to your system manager.

APPNOTSPE, IBM application name was not specified

Facility: SNA

Explanation: You did not specify the IBM application name in the
SNA$CONNECT call, and the access name that you used did not supply
one either.

User Action: Either explicitly supply the IBM application in the
parameter list or implicitly supply it through the access name.

APPTOOLON, application name is too long

Facility: SNA

Explanation: The application name must be no longer than 8 characters.

User Action: Correct the call to the API procedure.

Status Codes F–3

BINSPEUNA, the BIND image specified unacceptable values

Facility: SNA

Explanation: The SNA Gateway rejected the BIND request image.

User Action: Run a trace to find out why the SNA Gateway rejected
the BIND request. The IBM application could be specifying too large
an outbound RU or an illegal FM or TS profile, or it could have sent a
pacing value that was out of bounds (see the Digital SNA Guide to IBM
Parameters).

BUFTOOSHO, transmit buffer is too short

Facility: SNA

Explanation: The transmit buffer must be at least SNABUF$K_HDLEN
bytes long.

User Action: You probably forgot to leave SNABUF$K_HDLEN bytes at
the front of your transmit buffer for API use.

BUGCHK, internal error detected in LU0 module

Facility: SNALU0

Explanation: A fatal error has occurred.

User Action: Write down all the messages associated with this error and
report the problem to your system manager.

CONREQREJ, connect request rejected by IBM host, sense code %X’IBM sense
code’

Facility: SNA

Explanation: The IBM host rejected the connect request for the reason
given in the sense code.

User Action: Determine the meaning of the sense code from the IBM
documentation and take the appropriate action.

DATTOOLON, too much user data specified

Facility: SNA

Explanation: The user data you can specify must be limited to 128 bytes.

F–4 Status Codes

User Action: Correct the call to the API procedure.

DISCFAIL, call to SNALU0$REQUEST_DISCONNECT[_W] failed

Facility: SNALU0

Explanation: The call to this procedure failed.

User Action: Examine the status vector for further information.

EVFOUTRAN, event flag number is out of range

Facility: SNA

Explanation: The event flag number specified was greater than 127.

User Action: Correct the call to use a valid event flag number.

EVTCLR, failed to clear an event flag

Facility: SNALU0

Explanation: The event flag parameter could not be cleared.

User Action: Make sure that a valid event flag was specified.

EXIT, Gateway server task terminated

Facility: SNALU0

Explanation: The SNA Gateway access server has exited abnormally.

User Action: See the Digital SNA Gateway Problem Determination
Guide or the OpenVMS/SNA Problem Determination Guide for additional
information. If you still cannot solve your problem, notify the system
manager.

FAIALLBUF, failed to allocate memory for a buffer

Facility: SNA

Explanation: The API failed to allocate dynamic memory for an internal
buffer. The most likely reason is that no free memory is available.

User Action: If you are using class D descriptors, make sure you return
used buffers to free memory with LIB$SFREE1_DD or STR$FREE1_DX.

Status Codes F–5

FAIALLCTX, failed to allocate memory for a context block

Facility: SNA

Explanation: The API failed to allocate memory for an internal context
block. The most likely reason is that no free memory is available.

User Action: If you are using class D descriptors, make sure you return
used buffers to free memory with LIB$SFREE1_DD or STR$FREE1_DX.

FAIASSCHA, failed to assign a DECnet channel

Facility: SNA

Explanation: The error indicates an abnormal DECnet condition.

User Action: Examine the subsequent DECnet error messages and report
the problem to your system manager.

FAIBLDNCB, failed to build DECnet network connect block

Facility: SNA

Explanation: The API failed to build a DECnet network connect block in
order to communicate with the SNA Gateway.

User Action: Examine the error code in the second longword of the I/O
status block (IOSB) for more information.

FAICONMBX, failed to convert mailbox name

Facility: SNA

Explanation: The API could not create a mailbox for establishing a logical
link.

User Action: Examine subsequent error messages to find the reason. The
most likely additional message is SYSTEM-F-NOPRIV, which indicates
no privilege for attempted operation. This means that you lack TMPMBX
privilege.

FAICOPBIN, failed to copy BIND request image into caller’s buffer

Facility: SNA

Explanation: The API could not copy the entire BIND request image into
the BIND request buffer provided by the application.

F–6 Status Codes

User Action: Examine the error code in the second longword of the IOSB
for more information. Make sure that you specify a BIND buffer large
enough to receive the largest BIND that the IBM application will send you.

FAICOPBUF, failed to copy data into caller’s buffer

Facility: SNA

Explanation: The API could not copy all of the received RU into the
buffer provided by the application.

User Action: Examine the error code in the second longword of the IOSB
for more information. Make sure that you specify a data buffer that is
large enough to receive the largest data RU that the IBM application will
send you.

FAIESTLIN, failed to establish a link to the Gateway

Facility: SNA

Explanation: The API cannot connect to the SNA Gateway.

User Action: Examine the subsequent DECnet error messages and take
appropriate action.

FATINTERR, internal error in Gateway access routines

Facility: SNA

Explanation: This is a fatal error.

User Action: Write down all the messages that appear on your screen at
this time and report the problem to your system manager.

FUNCABORT, access routine function aborted

Facility: SNA

Explanation: The API procedure did not complete successfully and the
session has been or is being terminated.

User Action: Ignore the error. You have or will get notification of an
asynchronous event that will tell you why the session has terminated.

FUNNOTVAL, function not valid with port in current state

Facility: SNA

Status Codes F–7

Explanation: The API is invalid with the port in the current state. You
issued API calls in the wrong order–for example, an SNA$TRANSMIT
before an SNA$ACCEPT.

User Action: Correct the code in your application.

GATCOMERR, error communicating with Gateway node

Facility: SNA

Explanation: There was an error in communicating with the SNA
Gateway node.

User Action: Examine the DECnet error message in the second longword
of the IOSB and take appropriate action.

GATINTERR, internal error in Gateway node, code %O’xx’,subcode %O’xx’

Facility: SNA

Explanation: A fatal error has occurred.

User Action: Report the error to your system manager. Also ensure that
the log from the SNA Gateway console is saved the log will have messages
of the form

GAS—Fatal Session Error FSE$xxx

GETLU0VM, failed to obtain memory for LU 0 processing

Facility: SNALU0

Explanation: The API was unable to obtain virtual memory for internal
data structures.

User Action: Make sure that the application is returning memory space
that it has finished using. If you are using class D descriptors, make
sure you return used buffers to free memory with LIB$SFREE1_DD or
STR$SFREE_DX.

ILLASTSTA, ASTs are disabled or an AST routine is currently in progress

Facility: SNA

Explanation: A call was made to an API procedure either while ASTs
were disabled or from within an AST routine. Because AST delivery is
disabled, there is no way that the procedure can complete. Therefore, no
action has been taken by the procedure.

F–8 Status Codes

User Action: Change the application so that API procedures are not
called from AST routines or with ASTs disabled.

INCVERNUM, Gateway access routines are incompatible with the Gateway

Facility: SNA

Explanation: The software on the SNA Gateway is incompatible with the
SNA software on the local system.

User Action: Make sure that the correct versions of the software are
installed on both the SNA Gateway and the local system.

INSGATRES, insufficient Gateway resources for session establishment

Facility: SNA

Explanation: The SNA Gateway has insufficient resources for
establishing a session. The active sessions currently in the SNA Gateway
are using the total resources available.

User Action: Wait until some of the sessions have finished, then retry.

INSRESOUR, insufficient resources to establish session

Facility: SNA

Explanation: The API could not allocate enough system resources to
establish the session.

User Action: Examine the second longword in the IOSB for more
information.

INVBUF, invalid buffer

Facility: SNALU0

Explanation: The application supplied an invalid buffer.

User Action: Examine the status vector for additional information.

INVFMBIND, BIND specified an invalid FM profile of 19

Facility: SNALU0

Explanation: The BIND received was rejected because it specified an FM
profile of 19.

Status Codes F–9

User Action: Check to see that your transaction is not specifying an
access name that could send this type of BIND. Consult your IBM system
manager if the correct BIND is being sent.

INVRECLOG, SNA$DEF_NUMREC is incorrectly defined

Facility: SNA

Explanation: This internal logical name is set up improperly.

User Action: SNA$DEF_NUMREC is a logical name that determines the
number of receives the API keeps outstanding on the DECnet logical link.
If you do not wish to use the default value, use the DEFINE command (for
example, DEFINE SNA$DEF_NUMREC 5).

INVSESID, invalid session ID supplied

Facility: SNALU0

Explanation: The session ID passed by the application is not a session ID
returned by the SNALU0$REQUEST_CONNECT procedure.

User Action: Verify that the session is still active. Supply the correct
session ID.

LENTOOLON, data length is too long

Facility: SNA

Explanation: The DATALEN parameter to SNA$TRANSMIT specified
a message length longer than the length field in the transmit buffer
descriptor parameter.

User Action: Correct the call to specify actual length of the data you wish
to transmit.

LMTTOOLON, logon mode name is too long

Facility: SNA

Explanation: The logon mode name must be no longer than 8 characters.

User Action: Correct the call to the API procedure.

LOGUNIDEA, SSCP has deactivated the session

Facility: SNA

F–10 Status Codes

Explanation: The IBM SSCP has deactivated the session by sending a
DACTLU command. Some applications deactivate sessions by deactivating
the LU rather than by sending an UNBIND command.

MAXSESACT, maximum number of sessions already active

Facility: SNA

Explanation: You have already established 120 sessions, the maximum
number allowed.

User Action: Make sure you have called the SNA$TERMINATE
procedure for each session that has terminated.

MUTOEXR, MU was converted to an exception request/response

Facility: SNA

Explanation: The message unit was converted to an exception request
/response.

MUTORCVCHK, MU generated a receive check, sense code %X’IBM sense
code’

Facility: SNA

Explanation: The message unit returned a receive check sense code.

User Action: Consult your IBM manual for the sense code.

MUTOSENDCHK, MU generated a send check, sense code %X’IBM sense code’

Facility: SNA

Explanation: The message unit returned a send check sense code.

User Action: Consult your IBM manual for the sense code.

NETSHUT, network node is not accepting connects

Facility: SNALU0

Explanation: The SNA Gateway has been told to shut down.

User Action: Try again later when a SNA Gateway is activated.

Status Codes F–11

NO_GWYNOD, SNA$DEF_GATEWAY is undefined and GWY-NODE was not
specified

Facility: SNA

Explanation: A SNA Gateway node was not specified in the
SNA$CONNECT or SNA$LISTEN call, and the logical name SNA$DEF_
GATEWAY was not defined.

User Action: Either supply an explicit SNA Gateway node specification or
define SNA$DEF_GATEWAY using the OpenVMS DEFINE command.

NO_SUCACC, access name not recognized by Gateway node

Facility: SNA

Explanation: You specified a nonexistent access name.

User Action: Check with your system manager to determine which access
name you need.

NO_SUCPU, PU name not recognized by Gateway node

Facility: SNA

Explanation: Either you or the access name you used specified a
nonexistent PU.

User Action: Check with your system manager to determine which PU
name or access name you need.

NO_SUCSES, session address not recognized by Gateway node

Facility: SNA

Explanation: Either you or the access name you used specified a
nonexistent session address.

User Action: Check with your system manager to determine which
session address or access name you need.

NOEVEPEN, no event pending

Facility: SNA

Explanation: You issued an SNA$READEVENT and there were no
outstanding events to read for the session.

F–12 Status Codes

User Action: Wait until the API notifies you of an asynchronous event for
the session and then issue another SNA$READEVENT.

NOSESN, failed to start session

Facility: SNALU0

Explanation: The call to the SNALU0$REQUEST_CONNECT[_W]
procedure failed to start a session with the PLU.

User Action: Examine the status vector for further information.

NOTVECTSM, notify vector is too small

Facility: SNALU0

Explanation: The notify vector is too small to contain the largest notify
message.

User Action: Make sure that notify vector contains at least SNALU0$K_
MIN_NOTIFY_VECTOR bytes.

PARERR, parameter error, routine SNALU0$xxx[_W]

Facility: SNALU0

Explanation: The application supplied a bad parameter for the
SNALU0$xxx[_W] procedure.

User Action: Examine the status vector to determine the bad parameter
and change it.

PASTOOLON, password is too long

Facility: SNA

Explanation: The IBM password must be no longer than 8 characters.

User Action: Correct the call to the API procedure.

PLUPROVIO, PLU violated SNA protocol rules, sense code %X’IBM sense code’

Facility: SNA

Explanation: The PLU violated SNA protocol rules.

User Action: Consult your IBM manual for the sense code.

Status Codes F–13

PROUNBREC, IBM application detected a protocol error, sense code %X’IBM
sense code’

Facility: SNA

Explanation: The IBM application sent an UNBIND request with the
indicated sense code. It did this because the application detected the
protocol error specified by the code.

User Action: Determine the meaning of the sense code from the IBM
documentation and take the appropriate action.

PUNOTAVA, PU has not been activated

Facility: SNA

Explanation: The PU on the SNA Gateway has not been activated by
IBM.

User Action: Ask the VTAM operator to check the line and physical unit
from the IBM host and activate them if necessary. If they are activated,
there may be a hardware problem between the SNA Gateway and the IBM
host.

PUNOTSPE, PU name was not specified

Facility: SNA

Explanation: You did not specify a PU name in the SNA$CONNECT or
the SNA$LISTEN call, and the access name that you used did not supply
one either.

User Action: Either explicitly supply the PU name in the parameter list
or implicitly supply it through the access name.

PUTOOLON, PU name is too long

Facility: SNA

Explanation: The PU name must be no longer than 8 characters.

User Action: Correct the call to the API procedure.

RCNFAIL, call to SNALU0$REQUEST_RECONNECT[_W] failed

Facility: SNALU0

F–14 Status Codes

Explanation: The call to this procedure failed.

User Action: Examine the status vector for further information.

RCVBFSM, receive buffer is too small, must be xxx bytes while yyy were
supplied

Facility: SNALU0

Explanation: The receive buffer for the SNALU0$REQUEST_CONNECT,
SNALU0$REQUEST_RECONNECT, or SNALU0$RECEIVE_MESSAGE is
too small.

User Action: For a REQUEST_CONNECT or REQUEST_RECONNECT
call, make the buffer size equal to or greater than SNABUF$K_LENGTH.
For a RECEIEVE_MESSAGE call, make the buffer size equal to
SNABUF$K_HDLEN plus the maximum outbound (that is, from PLU to
OpenVMS application) RU size for the session.

RCVFAIL, call to receive failed

Facility: SNALU0

Explanation: The attempt to receive a message from the PLU failed.

User Action: Examine the status vector for further information.

RECTOOLAR, receive count is too large

Facility: SNA

Explanation: You have specified more than 10 outstanding receives.

User Action: Correct the SNA$CONNECT or SNA$LISTEN call to specify
numrec to be 10 or less, or omit the parameter so that the API uses the
default of 3 outstanding receives.

SESIN_USE, session address is already in use

Facility: SNA

Explanation: Someone else is using this session address.

User Action: Retry using a different session address. If you are unsure of
a valid choice, ask your system manager.

Status Codes F–15

SESINUNAC, session address already in use or not activated

Facility: SNA

Explanation: All session addresses in the range specified by the access
name are in use or are not activated.

User Action: Ask the IBM VTAM operator to activate more SLUs, or wait
for an active one to become available.

SESNOTAVA, session address has not been activated

Facility: SNA

Explanation: The SLU has not been activated from the IBM side.

User Action: Ask the IBM VTAM operator to check the LU from the IBM
host and activate it if necessary.

TERMPEND, SNA$TERMINATE has already been issued

Facility: SNA

Explanation: You have called SNA$TERMINATE more than once for the
session.

User Action: Ignore the error or correct the logical error in your
application.

TONEGRSP, failed to change RU to negative response

Facility: SNALU0

Explanation: The API was unable to convert the buffer supplied by the
application into a negative response.

User Action: Make sure that the buffer header reserved for the API has
not been modified.

TOOFEWPAR, not enough parameters specified

Facility: SNA

Explanation: An API procedure was called with too few parameters.

User Action: Supply the required parameters.

F–16 Status Codes

TOOMANPAR, too many parameters specified

Facility: SNA

Explanation: An API procedure was called with too many parameters.

User Action: Use only the specified parameters when calling a procedure.

TOPOSRSP, failed to change RU to positive response

Facility: SNALU0

Explanation: The API was unable to convert the buffer supplied by the
application into a positive response.

User Action: Make sure that the buffer header reserved for the API has
not been modified.

UNABLELUCB, unable to obtain lucb

Facility: SNA

Explanation: Insufficient virtual memory.

User Action: Increase virtual memory.

UNABLEMUCB, unable to obtain mucb

Facility: SNA

Explanation: Insufficient virtual memory.

User Action: Increase virtual memory.

UNABLESCB, unable to obtain scb

Facility: SNA

Explanation: Insufficient virtual memory.

User Action: Increase virtual memory.

UNALEF, unable to get an internal local event flag

Facility: SNALU0

Explanation: The API was unable to obtain an event flag for its internal
use.

Status Codes F–17

User Action: Make sure the OpenVMS application calls LIB$FREE_EF to
free any temporary event flags that it uses.

UNBINDREC, UNBIND request received from IBM application

Facility: SNA

Explanation: The IBM application has terminated the session by sending
a normal UNBIND RU.

UNUUNBREC, UNBIND of type %X’type’ received from IBM application

Facility: SNA

Explanation: The IBM application sent the specified type of UNBIND
request.

User Action: Determine the meaning of this code from the IBM
documentation on the UNBIND request and take the appropriate action.

USETOOLON, user name is too long

Facility: SNA

Explanation: The user name must be no longer than 8 characters.

User Action: Correct the call to the API procedure.

XMTFAIL, call to SNALU0$TRANSMIT[_W] failed

Facility: SNALU0

Explanation: The call to SNALU0$TRANSMIT_MESSAGE[_W] or
SNALU0$TRANSMIT_RESPONSE[_W] failed.

User Action: Examine the status vector for further information.

F–18 Status Codes

G
Correlation of Procedures and Status

Messages for the API

Figure G–1 illustrates the correlation between API procedures and the status
messages they can return.

Correlation of Procedures and Status Messages for the API G–1

Figure G–1 Correlation of Procedures and Status Messages for the API

LKG−8104−93R

SNALU0$_ACQLU

SNALU0$_DISCFAIL

SNALU0$_EVTCLR

SNALU0$_GETLU0VM

SNALU0$_INVBUF

SNALU0$_INVSESID

SNALU0$_NORMAL

SNALU0$_NOSESN

SNALU0$_PARERR

SNALU0$_RCNFAIL

SNALU0$_RCVBFSM

SNALU0$_RCVFAIL

SNALU0$_TOPOSRS

SNALU0$_UNALEF

SNALU0$_XMTFAIL

SNALU0$_FREELU

SNALU0$_FREELU0VM

SNALU0$_ILEFWT

X

X

X X

X X

X X

X

X X

X

X X

X X

X X

X

X

X X

X X

X

X X

X X

X X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X

X X

X XX

Status message

SNALU0$_TONEGRSP X

X

X

G–2 Correlation of Procedures and Status Messages for the API

Index

A
Access information, IBM, 3–8

access name, 3–9
Gateway Physical Unit, 3–8
OpenVMS/SNA PU identification, 3–8
optional user data, 3–8
password, 3–8
PLU application name, 3–8
SLU session address, 3–8
user identification, 3–8

Access information, IMB
logon mode name, 3–8

Access name, 3–9
Active connect request

issuing, 2–2
issuing a typical active connect request,

2–4
API procedures

correlation with status messages, G–1
SNALU0$EXAMINE_STATE, 5–2
SNALU0$RECEIVE_MESSAGE, 5–4
SNALU0$REQUEST_CONNECT, 5–8
SNALU0$REQUEST_DISCONNECT,

5–12
SNALU0$REQUEST_RECONNECT,

5–11
SNALU0$TRANSMIT_MESSAGE, 5–13
SNALU0$TRANSMIT_RESPONSE, 5–17

API symbol definitions, D–1
Arguments

passing, 5–2

Asynchronous event notification, 3–12
Asynchronous mode operation, 3–6

completion procedure, use of, 3–6
event flag, use of, 3–6

B
BID request, 4–10
BIND request, 4–13, B–1

accepting or rejecting, 2–6
Bracketing requests, 4–10
Brackets, 2–8, 4–7

bracket termination rule 1, 4–7
bracket termination rule 2, 4–7

C
C programming example, E–59
CANCEL request, 4–8
Chaining, 2–8, 4–4

chaining indicators, 2–8, 4–4
control modes, 4–5
request modes, 4–6
response modes, 4–6

CHASE request, 4–10
Cleanup requests, 4–9
CLEAR request, 4–13
COBOL programming example, E–15
Communication functions

function management (FM) profile, 2–1
transmission subsystem (TS) profile, 2–1

Compiling a transaction program, 6–1
Completion procedure

use in asynchronous mode operation, 3–6

Index–1

Connection point manager (CPMGR), 4–11

D
Data flow control requests, 4–8
Definite responses, 4–5
Descriptors, use of, 2–15

E
Event flag

use by API procedures, 3–7
use in asynchronous mode operation, 3–6

Exception responses, 4–5

F
FORTRAN Definition Files, E–14
FORTRAN programming example, E–1
Function management (FM) profiles, 4–3
Function value returns, 3–1

G
Gateway PU identification, 3–8

I
IBM password, 3–8
IBM user identification, 3–8

L
Linking

application, with shareable image, 6–2
transaction program, 6–1

Logon mode name, 3–8
LU network services, 4–1
LU session control functions, 4–12
LU status (LUSTAT) request, 4–10
LU-LU type 0 session, 2–1

establishing a session, 2–2
issuing a passive connect request,

2–4
issuing an active connect request,

2–2

LU-LU type 0 session (cont’d)
reestablishing, 2–18
terminating, 2–18

M
MACRO programming example, E–24
Message classes and types, 3–9

N
No response chains, 4–5

O
OpenVMS/SNA PU identification, 3–8

P
Pacing, 4–12
Pascal programming example, E–48
Pascal Symbol and Structure Definitions,

E–58
Passive connect request

issuing, 2–4
issuing a typical passive connect request,

2–5
Pause requests, 4–9
PLU application name, 3–8
Presentation services, 4–2
Procedure parameter notation, A–1
Procedures

See API procedures
Programming examples

C, E–59
COBOL, E–15
FORTRAN, E–1
MACRO, E–24
Pascal, E–48
VAX PL/I, E–40

Programming Examples, E–1

Index–2

Q
Quiesce at end of chain (QEC) request, 4–9
Quiesce complete (QC) request, 4–9

R
Ready to receive (RTR) request, 4–10
Release quiesce (RELQ) request, 4–9
Request header, 2–7
Request modes, 4–6
Request recover (RQR) request, 4–14
Request shutdown (RSHUTD) request, 4–10
Request unit chains

transmission of control information, 2–13
transmission of user data, 2–10

Request unit classes and types
table, 3–9

Request units
bracketing, 2–8
chains as, 2–8
change direction indicator (CDI), 2–8
request header, 2–7
sending, 2–7
sequence numbers, 2–9
unique identifiers, 2–9

Request/response header (RH), C–4
building, 4–11

Request/response mode protocols, 4–6
Request/response unit (RU), 2–7

receiving, 2–15
Response modes, 4–6
Response types, 4–5

definite response chains, 4–5
exception response chains, 4–5
no response chains, 4–5

Response units
transmitting, 2–14

S
Secondary logical unit (SLU)

with Digital SNA Gateway, 2–2
Send/receive modes, 4–3

duplex mode, 4–4
half duplex contention mode, 4–4
half duplex flip-flop mode, 4–3

Sequence number field (SNF), 4–11
Session, LU-LU

establishing, 2–2
issuing a passive connect request,

2–4
issuing an active connect request,

2–2
reestablishing, 2–18
terminating, 2–18

Set and test sequence number (STSN)
request, 4–14

Shutdown (SHUTD) request, 4–10
Shutdown complete (SHUTC) request, 4–10
SIGNAL request, 4–10
SLU session address, 3–8
SNA layers, 4–1

Data Flow Control layer, 4–3
LU services layer, 4–1
Transmission Control layer, 4–11

Start data traffic (SDT) request, 4–13
Status codes, 3–1, F–1

function value returns, 3–1
status vector, 3–2

Status messages
correlation with API procedures, G–1

Status vector
and $PUTMSG, 3–2
illustration, 3–4
using, 3–2

Synchronous mode operation, 3–5

Index–3

T
Transmission of user data, 2–10

simplest type, 2–12
Transmission subsystem (TS) profiles, 4–11
Transmitting control information, 2–13

U
UNBIND request, 4–13

V
VAX PL/I programming example, E–40

W
Wait mode operation, 3–5

Index–4

