
Digital SNA 3270 Data Stream
Programming Interface
for OpenVMS
Programming
Part Number: AA–ET84E–TE

May 1996

This document supplies information about the services provided by the
Digital SNA 3270 Data Stream Programming Interface that enable an
OpenVMS application to exchange messages with a cooperating application
on the IBM host.

Revision/Update Information: This is a revised manual.

Operating System and Version: OpenVMS VAX Versions 6.1, 6.2, or 7.0
OpenVMS Alpha Versions 6.1, 6.2, or 7.0

Software Version: Digital SNA 3270 Data Stream
Programming Interface for OpenVMS,
Version 1.5



May 1996

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation or EDS. Digital Equipment
Corporation or EDS assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Digital conducts its business in a manner that conserves the environment.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

Copyright © 1989, 1996 Digital Equipment Corporation, EDS Defense Limited
All Rights Reserved.

The following are trademarks of Digital Equipment Corporation: Alpha, DEC, DEC/CMS,
DEC/MSS, DECnet, DECsystem-10, DECSYSTEM-20, DECUS, DECwriter, DIBOL, EduSystem,
IAS, MASSBUS, OpenVMS, PDP, PDT, RSTS, RSX, UNIBUS, VAX, VAXcluster, VMS, VT, and
the Digital logo.

IBM is a registered trademark of International Business Machines Corporation.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Part I Introduction

1 Introduction

1.1 3270 Data Stream Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.2 SNA Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.3 Common Interface Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3

Part II Tutorial

2 3270 Data Stream Programming Interface Overview

2.1 Establishing an LU-LU Type 2 Session . . . . . . . . . . . . . . . . . . . . 2–1
2.2 Specifying a Connection Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.3 Data Stream Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.3.1 Transmitting a 3270 Data Stream . . . . . . . . . . . . . . . . . . . . . 2–5
2.3.2 Receiving a 3270 Data Stream . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.3.2.1 Acknowledging the Stream . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.3.2.2 Receiving a Request to Send Multiple Consecutive

Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.4 Field Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.4.1 The Character Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.4.2 The Attributes Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.4.3 The Screen Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.4.4 Receiving a 3270 Screen Image . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.4.5 Retrieving Fields From a 3270 Screen Image . . . . . . . . . . . . 2–16
2.4.6 Using the FDB: An Example . . . . . . . . . . . . . . . . . . . . . . . . . 2–22
2.4.7 Writing a Field Into a 3270 Screen Image . . . . . . . . . . . . . . . 2–32
2.4.8 Transmitting a 3270 Screen Image . . . . . . . . . . . . . . . . . . . . 2–32
2.5 Terminating a Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33

iii



3 Interface Features

3.1 Returning Status Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.1 Function Value Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.2 The I/O Status Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.1.3 Using Status Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.2 Asynchronous Event Notification . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
3.3 Synchronous and Asynchronous Operation . . . . . . . . . . . . . . . . . 3–8
3.3.1 Synchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
3.3.2 Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
3.4 Supplying Access Information to the IBM Host . . . . . . . . . . . . . . 3–11

4 Linking an Application With the 3270 Data Stream Interface

5 Programming Examples

5.1 FORTRAN Programming Example–Field Mode . . . . . . . . . . . . . . 5–2
5.2 PL/I Programming Example–Data Stream Mode . . . . . . . . . . . . . 5–11
5.3 C Programming Example–Data Stream Mode . . . . . . . . . . . . . . . 5–19
5.4 COBOL Programming Example–Data Stream Mode . . . . . . . . . . 5–22
5.5 BLISS Programming Example–Field Mode . . . . . . . . . . . . . . . . . 5–27
5.6 MACRO Programming Example–Data Stream Mode . . . . . . . . . . 5–32
5.7 Pascal Programming Example–Data Stream Mode . . . . . . . . . . . 5–37

Part III Reference

6 Procedure Calling Formats

6.1 SNA3270$ACKNOWLEDGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.2 SNA3270$LOCK_SCREEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5
6.3 SNA3270$READ_FIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
6.4 SNA3270$RECEIVE_SCREEN . . . . . . . . . . . . . . . . . . . . . . . . . . 6–9
6.5 SNA3270$RECEIVE_STREAM . . . . . . . . . . . . . . . . . . . . . . . . . . 6–11
6.6 SNA3270$REQUEST_CONNECT . . . . . . . . . . . . . . . . . . . . . . . . 6–13
6.7 SNA3270$REQUEST_DISCONNECT . . . . . . . . . . . . . . . . . . . . . 6–18
6.8 SNA3270$TRANSMIT_LUSTAT . . . . . . . . . . . . . . . . . . . . . . . . . 6–20
6.9 SNA3270$TRANSMIT_SCREEN . . . . . . . . . . . . . . . . . . . . . . . . . 6–21
6.10 SNA3270$TRANSMIT_SIGNAL . . . . . . . . . . . . . . . . . . . . . . . . . 6–23
6.11 SNA3270$TRANSMIT_STREAM . . . . . . . . . . . . . . . . . . . . . . . . . 6–25
6.12 SNA3270$WRITE_FIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–27

iv



Part IV Appendixes

A Attention Identification Values

B Summary of Procedure Parameter Notation

C Definitions for the 3270 Data Stream Programming Interface

D Status Codes

D.1 Success Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–1
D.2 Informational Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–2
D.3 Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–3
D.4 Fatal Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D–10

E Low-Level Status Codes

E.1 General Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–1
E.2 General Subfailure Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–2
E.3 Status Codes for Abort Reasons Returned From Gateway . . . . . . E–4
E.4 Fatal Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E–8

F Correlation of Procedures and Status Messages for the 3270
Data Stream

Index

Figures

1–1 DECnet SNA Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
2–1 An Active Connect Request . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2–2 Character Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2–3 Attributes Vector With Mask Flags . . . . . . . . . . . . . . . . . . . . 2–10
2–4 The Screen Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2–5 Write Control Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2–6 The Field Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2–7 Attributes and Associated Symbols for the Field Descriptor

Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18

v



2–8 AMNU Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
2–9 AMNU Operator Instructions Screen . . . . . . . . . . . . . . . . . . . 2–26
2–10 ABRW Field Filled on Option Screen . . . . . . . . . . . . . . . . . . . 2–28
2–11 Transaction Number Field Filled on Option Screen . . . . . . . . 2–30
2–12 AMNU File Browse Screen . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
3–1 Status Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4

Tables

2–1 Symbols and Meanings of Attribute Masks . . . . . . . . . . . . . . 2–10
2–2 The Screen Descriptor Block and Associated Symbols . . . . . . 2–13
2–3 Write Control Character and Associated Symbols . . . . . . . . . 2–15
2–4 Field Descriptor Block Fields and Associated Symbols . . . . . . 2–17
2–5 Field Descriptor Block Attributes and Associated

Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
2–6 Symbols and Meanings of the Operation Selection Fields of

the Field Descriptor Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
A–1 Attention Identification Values . . . . . . . . . . . . . . . . . . . . . . . . A–1
C–1 Definitions for the 3270 Data Stream Programming

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C–1
F–1 Procedures and Status Messages Correlation for the 3270

Data Stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F–2

vi



Preface

The Digital SNA 3270 Data Stream Programming Interface for OpenVMS is
a Digital Equipment Corporation software product. It enables OpenVMS VAX
users or Alpha systems users running OpenVMS SNA (OpenVMS VAX Version
6.1 and Version 6.2 only) with programs running on an IBM host or connected
to either of the following SNA Gateways:

• DECnet SNA Gateway-ST

• DECnet SNA Gateway-CT

• Digital SNA Domain Gateway

• Digital SNA Peer Server

The Interface allows you to develop applications on an OpenVMS system that
require support for an IBM SNA logical unit (LU) type 2 session.

Note

Unless otherwise stated, the term SNA Gateway or the Gateway refers
to the DECnet SNA Gateway-CT, the DECnet SNA Gateway-ST, the
Digital SNA Domain Gateway, the Digital SNA Peer Server, or the
OpenVMS SNA (OpenVMS VAX Version 6.1 and Version 6.2 only) when
used in this manual. If, when using the OpenVMS SNA software,
you recieve an error message that refers to the SNA Gateways or
the Gateway, assume the message also refers to the OpenVMS SNA
software.

Manual Objectives
The Digital SNA 3270 Data Stream Programming Interface Guide provides
the information you need to write an application on an OpenVMS system to
conduct an LU-LU type 2 session with a program residing in an IBM host.

vii



Intended Audience
This manual is designed for OpenVMS programmers. To use the 3270 Data
Stream Interface you need a general understanding of IBM’s Systems Network
Architecture (SNA), but you do not need a detailed knowledge of SNA.

Changes and New Features
The Digital SNA 3270 Data Stream Programming Interface for OpenVMS,
Version 1.5 differs from the Version 1.4 product only in that it includes support
for utilizing TCP/IP to exchange messages with a cooperating application on
the IBM host.

The information relevant to TCP/IP transport support include:

• SNA_TCP_PORT Logical

• SNA_TRANSPORT_ORDER Logical

• Specifying TCP/IP hostnames

SNA_TCP_PORT Logical
The SNA_TCP_PORT logical refers to the remote connection TCP/IP port. The
default connection TCP/IP port number is 108. For example, if you want the
remote connection TCP/IP port number to be 1234, you can enter the following
command line:

$ define SNA_TCP_PORT 1234

If you want the remote connection TCP/IP port to be made to a service defined
and enabled in the UCX database; for example service_name, you can enter the
following command line:

$ define SNA_TCP_PORT service_name

SNA_TRANSPORT_ORDER Logical
The SNA_TRANSPORT_ORDER logical refers to a transport list, which is used
in automatic selection of transports. Connections are attempted once for each
transport in the list until either a successful connection is made, or an error is
returned when all transports in the list fail to connect.

For example, if you want the software to try the DECnet transport and if this
fails then to try the TCP/IP transport, you can enter the following command
line:

$ define SNA_TRANSPORT_ORDER "decnet, tcp"

viii



If you want the software to try the TCP/IP transport and if this fails then to
try the DECnet transport, you can enter the following command line:

$ define SNA_TRANSPORT_ORDER "tcp, decnet"

If you want the software to never try the DECnet transport and to try only the
TCP/IP transport, you can enter the following command line:

$ define SNA_TRANSPORT_ORDER "nodecnet, tcp"

If you want the software to never try the TCP/IP transport and to try only the
DECnet transport, you can enter the following command line:

$ define SNA_TRANSPORT_ORDER "decnet, notcp"

Note

If the SNA_TRANSPORT_ORDER logical is not defined, the default
transport order for OpenVMS Alpha will be decnet, tcp; and the default
transport order for OpenVMS VAX will be local, decnet, tcp.

Specifying TCP/IP Hostnames
If you want to specify a full path hostname, the hostname must be enclosed in
a pair of double-quotes; for example, "foo.bar.company.com".

If you want the TCP/IP transport to be used as the preferred transport, without
specifying a TCP/IP full path hostname, then define the SNA_TRANSPORT_
ORDER with "tcp" as the first element in the transport list.

If the hostname ends with a single full-colon (":"), then the TCP/IP transport
will be used; for example, "foo:" or foo:.

Note

If you specify a double full-colon ("::"), you force the DECnet transport
to be used; for example, "foo::" or foo::.

ix



Structure
The Digital SNA 3270 Data Stream Programming Interface Guide is divided
into four parts.

Part I Contains Chapter 1, which provides a philosophical
statement that addresses the questions "How do I know
which DECnet SNA application interface product to buy?"
and "What can I do with this product?".

Part II Provides a tutorial that discusses use of the Interface
and describes its features. It also contains a chapter of
programming examples you can use as a guide to writing
applications. Part II contains the following four chapters:

Chapter 2 Provides an overview of the Interface, describing its
two modes of operation and, in general terms, how your
OpenVMS application can make calls to it.

Chapter 3 Describes features of the Interface that help you write and
execute your application.

Chapter 4 Describes the procedure for linking an OpenVMS application
to the Interface using a shareable image.

Chapter 5 Provides programming examples in several commonly used
languages to illustrate how your application makes calls to
the Interface.

Part III Provides reference material you need for writing an
application that uses the Interface. It contains the following
chapter:

Chapter 6 Presents the calling format and parameter list for each
procedure provided by the Interface.

Part IV Appendixes

Appendix A Provides attention identification (AID) key values with
symbols and keyboard equivalents.

Appendix B Provides a summary of the notation used to describe
parameters in the Interface.

Appendix C Provides symbols, values, and meanings to use when you
write your application if a definition file is not supplied for
the language you want to use.

Appendix D Describes the status codes that the Interface returns to the
OpenVMS application.

Appendix E Provides low-level status codes that you might receive when
you use the Interface.

Appendix F Correlates procedures and status messages used by the
Interface.

x



Associated Documents
The following is a list of documents related to the Digital SNA 3270 Data
Stream Programming Interface:

• Digital SNA 3270 Data Stream Programming Interface for OpenVMS
Installation

• Digital SNA 3270 Data Stream Programming Interface for OpenVMS
Problem Solving

• Digital SNA 3270 Data Stream Programming Interface for OpenVMS
Programming

You should have the following Digital documents available for reference when
you use the Digital SNA 3270 Data Stream Programming Interface:

• Digital SNA Domain Gateway Installation

• Digital SNA Domain Gateway Management

• Digital SNA Domain Gateway Guide to IBM Resource Definition

• DECnet SNA Gateway-CT Installation

• DECnet SNA Gateway-CT Problem Solving (OpenVMS & ULTRIX)

• DECnet SNA Gateway-CT Management (OpenVMS)

• DECnet SNA Gateway-CT Guide to IBM Parameters

• DECnet SNA Gateway Problem Determination Guide

• DECnet SNA Gateway-ST Installation

• DECnet SNA Gateway-ST Problem Solving (OpenVMS)

• DECnet SNA Gateway-ST Guide to IBM Parameters

• DECnet SNA Gateway Management for OpenVMS

• Digital Peer Server Installation and Configuration

• Digital Peer Server Management

• Digital Peer Server Network Control Language Reference

• Digital Peer Server Guide to IBM Resource Definition

• OpenVMS SNA Installation

• OpenVMS SNA Problem Solving

• OpenVMS SNA Guide to IBM Parameters

xi



• OpenVMS SNA Management

• OpenVMS SNA Problem Determination Guide

See the following documents for more information about the IBM 3270
Information Display System:

• ACF for VTAM Version 2, Messages and Codes (IBM Order No. SC27-0614)

• IBM 3270 Information Display System and 3274 Control Unit Description
and Programmer’s Guide (IBM Order No. GA23-0061)

• IBM 3287 Printer Models 1 and 2 Component Description (IBM Order No.
GA27-3153)

• MVS/TSO/VTAM Data Set Print Program Description/Operations Manual
(IBM Order No. SB21-2070)

• IBM 3270 Information Display System, Order No. GA23-0060

• IBM 3270 Information Display System Data Stream Programmer’s
Reference, Order No. GA23-0059

• Systems Network Architecture—Introduction to Sessions Between Logical
Units, Order No. GC20-1869

• Systems Network Architecture—Sessions Between Logical Units, Order No.
GC20-1868

• IBM 3270 Information Display System: Operator’s Guide, Order No.
GA27-2742

Conventions
This manual uses the following conventions:

Convention Meaning

CAPITAL LETTERS Represent constant values, or symbols. Code these
exactly as they are specified.

lowercase italics Represent variables for which you must supply a value.

xii



Convention Meaning

[ ] Square brackets enclose parameters or symbols
that are either optional or conditional. Specify the
parameter and value if you want the condition to
apply. Do not type the brackets in the line of code. The
following rules generally apply to parameters:

• You may code or omit an optional parameter.
Omitting an optional parameter may impact a
related parameter or may cause a default value to
be specified.

• You may code or omit a conditional parameter.
Your choice is determined by how other parameters
are coded.

( ) Parentheses delimit the argument list. The arguments
must be typed in the line of code in the order indicated.
Parentheses must be typed where they appear in a line
of code.

Special type Examples of system output and user input are printed
in this special type.

Numbers Numbers are decimal unless otherwise noted.

RET Unless otherwise specified, every command line is
terminated by pressing the RETURN key.

CTRL/x Control characters are shown as CTRL/x , where x
is an alphabetic character. The CTRL key and the
appropriate key should be pressed simultaneously.

Terminology
When this manual refers to the OpenVMS application, it means the application
the user writes. When the manual refers to the Application Interface, it means
the Digital software that performs LU2 functions for the OpenVMS application.

This manual uses the following two abbreviations for Digital SNA 3270 Data
Stream Programming Interface:

• the Interface

• the 3270 DS Interface

The term SNA Gateway or Gateway refers to any of the following Digital
products:

• DECnet SNA Gateway-ST

xiii



• DECnet SNA Gateway-CT

• OpenVMS SNA

• Digital SNA Domain Gateway-ST

• Digital SNA Domain Gateway-CT

• Digital SNA Peer Server

xiv



Part I
Introduction





1
Introduction

The Digital SNA 3270 Data Stream Programming Interface allows you to
develop OpenVMS applications that exchange messages with cooperating
applications on an IBM host. In order to exchange these messages, the
OpenVMS application requires support from the Interface to establish a
session with an IBM SNA logical unit (LU) type 2. An LU type 2 session is
a connection between two systems that exchange messages via the IBM 3270
data stream. This interface interacts with Digital’s SNA Gateway to provide
support for the LU type 2 session.

The 3270 DS Interface is one of three Digital SNA programming interface
products. The other two are the Digital SNA Application Programming
Interface and the Digital SNA APPC/LU6.2 Programming Interface. Both
of these products also enable you to exchange messages with cooperating
applications on an IBM host.

• The Digital SNA Application Programming Interface provides support
to OpenVMS applications that need to establish a session with any LU
(except LU type 6.2).

• The Digital SNA APPC/LU6.2 Programming Interface provides support to
OpenVMS applications that need to establish a session with an LU type
6.2.

To use the 3270 Data Stream Programming Interface, your IBM system
must support SNA LU type 2 sessions. If your system does not support LU
type 2 sessions, one of the other programming interfaces discussed above may
be able to solve your programming needs.

Introduction 1–1



1.1 3270 Data Stream Features
Using the 3270 Interface, a OpenVMS application can perform the following
functions:

• Create a virtual 3270 display

• Receive an uninterpreted IBM 3270 data stream

• Access data on both your OpenVMS and IBM computer systems

• Connect to 3270 transactions already residing on your IBM host

• Perform inquiry/response transactions

Note

Do not use the Digital SNA 3270 Data Stream Programming Interface
to update a distributed database. Because the Interface is unable
to restart a session after a failure at exactly the point where the
session failed, you cannot reliably update a database. If updating
a distributed database is important to you, use the Digital SNA
Application Programming Interface, which supports LU0.

The 3270 DS Interface has two modes of operation that you can use, depending
upon the function you want to perform: data stream mode and field mode.

In data stream mode, the Interface establishes LU-LU type 2 sessions to
send and receive uninterpreted 3270 data streams. In this mode, the Interface
performs SNA services up to and including the Data Flow Control layer. It is
the OpenVMS user’s responsibility to:

• Interpret the data stream for orders and commands. For information
about the data stream, see the IBM 3270 Information Display System
3274 Control Unit Description and Programmer’s Guide, IBM Order No.
GA23-0061-1.

• Build and manipulate a screen image (if desired).

• Build the data stream from the screen image before transmitting it to IBM.

In field mode, the Interface converts the received data stream into a virtual
screen image. In this mode, the Interface performs SNA services up to and
including the Presentation Services layer. The application can then update the
screen by calling on the Interface to read and write specified fields. To return
an updated screen to the IBM host, the Interface converts the screen image
back into a 3270 data stream for transmission.

1–2 Introduction



1.2 SNA Concepts
You can develop a variety of applications using the 3270 Data Stream
Programming Interface. Because the Interface sends, receives, and interprets
SNA protocol messages for you, you need not be concerned with SNA message
formats and protocols. Nevertheless, this manual assumes a general knowledge
of SNA. Familiarity with the following concepts will help you use the 3270
Data Stream Programming Interface efficiently:

• General nature of IBM’s LU type 2—The LU type 2 provides a 3270
type display and uses a 3270 data stream to transmit data.

• Half-duplex flip-flop communications—Two LUs in communication
with each other use this mechanism to alternate sending data to one
another.

• Session processing states—These states control the processing of SNA
commands, responses, and user data transmissions.

• Bracketing—This is the way SNA groups data into logical entities
(complete transactions).

• Chaining—This is the way SNA breaks large blocks of data into pieces for
transmission.

For further details and complete descriptions of these concepts, please see
the IBM 3270 Information Display System 3274 Control Unit Description and
Programmer’s Guide, IBM Order No. GA23-0061-1, and Systems Network
Architecture–Sessions Between Logical Units, IBM Order No. GC20-1868.

1.3 Common Interface Applications
You can use the Digital SNA 3270 Data Stream Programming Interface to
write applications that make up the secondary logical unit (SLU) half-session
partner in an LU type 2 session. For example, you can write:

• An application that emulates functions of an IBM 3270 terminal.

• A file-transfer application that uses the 3270 data stream to communicate
with a third-party software product running in the IBM host.

• An OpenVMS application that needs to communicate with an existing IBM
application that was designed for 3270 terminal input/output.

For instance, the United States Widget Manufacturing Company wishes
to collect inventory information using OpenVMS systems. Widget uses an
OpenVMS system in its manufacturing plant to track local parts inventory
while storing companywide inventory in the IBM data center at company
headquarters.

Introduction 1–3



To keep the companywide inventory current, the OpenVMS system must
transmit an updated local inventory to the IBM host once a day after the
close of business. Using the 3270 Data Stream Programming Interface and
going through a SNA Gateway, the OpenVMS application can connect to a
cooperating transaction on the IBM host and transmit the day’s transactions.
Figure 1–1 shows Digital terminals linked to a an SNA Gateway in the DECnet
environment. Note that this DECnet environment could also be TCP/IP.

Figure 1–1 DECnet SNA Network

LKG−8074−93R

Terminals

DECnet
environment

OpenVMS

Manufacturing plant
in Boston

SNA
environment

DECnet SNA

Home office in New York

Gateway

IBM
host

VAX or AXP

1–4 Introduction



Part II
Tutorial





2
3270 Data Stream Programming Interface

Overview

The Digital SNA 3270 Data Stream Programming Interface consists of
procedures that a user-written OpenVMS program can call to request the
following operations for an LU-LU type 2 session:

• Establish a session with an IBM application

• Receive and transmit a 3270 data stream

• Receive and transmit a virtual 3270 screen image

• Read and write fields in a 3270 screen image

2.1 Establishing an LU-LU Type 2 Session
Before end users of an SNA network can exchange messages, their respective
logical units (LUs) must first establish an LU-LU session according to SNA
protocol.

Any LU can issue a request to the system services control point (SSCP) for
a session with another LU. To do this, the requesting LU sends the SSCP
an initiate self (INIT-SELF) request that specifies the desired LU. The SSCP
selects one of the LUs as the primary LU (PLU) for the session and the
other as the secondary LU (SLU). The SSCP then sends to the PLU a control
initiate (CINIT) request. The PLU in turn sends a BIND request to the SLU,
proposing the conditions of the session. The SLU examines the BIND request
and accepts or rejects the session.

In type 2 sessions involving the SNA Gateway, the Interface performs LU
functions for the user application. In these sessions the Interface is always the
SLU. This means that the Interface is always the receiver, never the sender, of
the BIND.

3270 Data Stream Programming Interface Overview 2–1



The OpenVMS application can issue two kinds of requests to the Interface
to establish an LU type 2 session: an active connect request and a passive
connect request.

• An active connect request informs the Interface that the OpenVMS
application wants to send an INIT-SELF to the SSCP to initiate a session
with a specified IBM application.

• A passive connect request informs the Interface that the OpenVMS
application is ready to engage in a session initiated by an IBM application.

To issue an active or passive connect request, the OpenVMS application calls
the SNA3270$REQUEST_CONNECT procedure. Input parameters include the
following information that the application passes to the Interface:

• An active/passive connect indicator

A value indicating whether this is an active or passive connect request.

• A mode type indicator

A value indicating whether this is a data stream mode connection or a field
mode connection. Data stream mode is described in Section 2.3; field mode
is described in Section 2.4.

• A Gateway DECnet node name or TCP/IP host name

The Gateway’s DECnet node name or TCP/IP host name through which
the OpenVMS application is to establish the session. This is an optional
parameter. For OpenVMS SNA, set this parameter equal to an ASCII 0. If
it is omitted, the Interface assumes that you are requesting a connection
through OpenVMS SNA.

• IBM access information

An identifier associated with a list of default information required to gain
access to the IBM host. This is an optional parameter. If it is omitted, the
parameter list must explicitly provide the required values. For details on
access names and IBM access information, see Section 3.4.

Output parameters for the SNA3270$REQUEST_CONNECT procedure include
locations to receive the following information from the IBM system:

• A session identifier

A location to receive a unique identifier assigned by the Interface to the
session. Each time the application issues a request to send or receive
a data stream on this session, send a signal request, or terminate the
session, the parameter list for the call must include the session identifier.

2–2 3270 Data Stream Programming Interface Overview



For a complete list of parameters for the SNA3270$REQUEST_CONNECT
procedure, see Section 6.6.

In a typical active request for a session, the following steps occur (see
Figure 2–1).

1. The OpenVMS application calls the SNA3270$REQUEST_CONNECT
procedure, setting the active request indicator and providing the other
required parameters.

2. The Interface sends a connect request to the SNA Gateway.

3. The Gateway sends an INIT-SELF request to the SSCP. The SSCP notifies
the PLU.

4. The PLU sends a BIND request to the Gateway.

5. The Gateway sends the BIND request to the Interface. The Interface
examines the BIND, accepts the session, and sends a response to the
Gateway.

6. The Gateway forwards the positive response to the PLU.

7. The Interface completes the connect request by returning control to the
user, setting an event flag, or calling an asynchronous system trap (AST)
routine.

Figure 2–1 An Active Connect Request

IBM host

BIND

CONNECT

DECnet node

VAX (or AXP)
application

SNA3270$REQUEST_CONNECT

Application
interface

SLU

SNA
applicationRSP

SSCP

PLU

LKG−8075−93R

DECnet SNA
Gateway

INITS

BIND

1

7 2

5 4

3

6

3270 Data Stream Programming Interface Overview 2–3



A typical passive request for a session includes the following steps.

1. The OpenVMS application calls the SNA3270$REQUEST_CONNECT
procedure, setting the passive request indicator and providing the other
required parameters.

2. The Interface sends a message to the SNA Gateway indicating that the
OpenVMS application is ready to receive a BIND request from the IBM
application.

3. At some point, the PLU sends a BIND request to the Gateway.

4. The Gateway sends the BIND request to the Interface. The Interface
examines the BIND request, accepts the session, and notifies the Gateway.

5. The Gateway sends a positive response to the PLU.

6. The Interface completes the connect request by returning control to the
OpenVMS application, setting an event flag, or calling an AST routine.

2.2 Specifying a Connection Mode
The 3270 Data Stream Programming Interface provides two modes of
connection for sessions established between an OpenVMS application and an
IBM application subsystem: data stream mode and field mode.

• In data stream mode, the OpenVMS application and the application
subsystem exchange complete 3270 data streams as defined by IBM. Data
stream mode is described in Section 2.3.

• In field mode, the OpenVMS application and the application subsystem
exchange data in the form of virtual screen images consisting of various
data fields. Field mode is described in Section 2.4.

2.3 Data Stream Mode
As defined by IBM, a complete 3270 data stream is a sequence of application
data, commands, structured field functions, orders, and control information
that normally forms a complete screen buffer. The complete stream is
transmitted between a cluster controller and a host. For details on the 3270
data stream, see the IBM 3270 Information Display System: 3274 Control Unit
Description and Programmer’s Guide.

To establish a session for the purpose of exchanging a 3270 data stream
with an IBM host, the OpenVMS application calls the SNA3270$REQUEST_
CONNECT procedure and sets the connection mode indicator in the parameter
list to specify data stream mode.

2–4 3270 Data Stream Programming Interface Overview



Once the session is established, the OpenVMS application can call procedures
provided by the Interface to transmit and receive 3270 data streams.

2.3.1 Transmitting a 3270 Data Stream
To transmit a 3270 data stream, the OpenVMS application calls the
SNA3270$TRANSMIT_STREAM procedure, indicates a session, and specifies
a buffer that contains a complete or partial data stream. The OpenVMS
application must leave room in the buffer for SNA header information. The
number of bytes that you must reserve is defined by the symbol SNA3270$K_
BUF_HDLEN.

• If the OpenVMS application indicates that the buffer contains a complete
data stream (see the last-flag parameter in Section 6.11), the Interface
transmits the data and relinquishes the OpenVMS application’s turn to
send.

• If the application indicates a partial data stream, the Interface transmits
the data but does not relinquish the OpenVMS application’s turn to send.

When the procedure has completed, the buffer is immediately available for
reuse.

In normal LU type 2 communications, the OpenVMS application and the IBM
application subsystem alternate between sending and receiving data streams.
In certain cases, however, the OpenVMS application may wish to send two or
more consecutive streams. If the OpenVMS application has relinquished its
turn to send, the application can request to send another stream in one of two
ways:

• If the last transmit completed with the status SNA3270$_OK_CONT, the
OpenVMS application can send another stream.

• If the last transmit completed with the status SNA3270$_OK, it is the IBM
application’s turn to send. The OpenVMS application can send a SIGNAL
request asking the IBM application to relinquish its turn to send.

In the second case, the IBM application is not obligated to honor the SIGNAL
request. Therefore, the Interface does not wait to receive the flag indicating
who can send before returning from the SNA3270$TRANSMIT_SIGNAL
procedure call. Thus, the OpenVMS application does not know whether the
IBM application accepted the SIGNAL request or whether it is giving up its
turn to send. The application will always get an error if it tries to send when
it is not its turn. After sending the SIGNAL request the application should
post a receive, which eventually completes with SNA3270$_OK_CONT or
SNA3270$_OK.

3270 Data Stream Programming Interface Overview 2–5



2.3.2 Receiving a 3270 Data Stream
To receive a 3270 data stream, the OpenVMS application calls the
SNA3270$RECEIVE_STREAM procedure, indicates a session, and specifies a
buffer to contain the data stream.

In the simplest case, the Interface fills the buffer and returns a status message
to indicate that the buffer contains a complete 3270 data stream. The first
SNA3270$K_BUF_HDLEN bytes contain SNA header information, which
you can ignore. If the buffer is too small to contain a complete stream,
the Interface returns a status message to indicate that the procedure has
completed successfully but that more data remains. The OpenVMS application
then issues additional calls to the SNA3270$RECEIVE_STREAM procedure
until the Interface returns a status message to indicate that the complete
stream has been transferred.

If a receive completes with the status SNA3270$_OK_MORE (more data) or
SNA3270$_OK_NYT (not your turn) issue another receive to receive more data
or to wait for IBM to relinquish its turn to send.

2.3.2.1 Acknowledging the Stream
Once the complete stream has been transferred, the OpenVMS application
must inform the IBM application subsystem that the received data is
acceptable or unacceptable. To do this, the OpenVMS application calls the
SNA3270$ACKNOWLEDGE procedure and specifies the appropriate positive or
negative response. If you call the SNA3270$TRANSMIT_STREAM procedure
before calling the SNA3270$ACKNOWLEDGE procedure, the Interface
performs an implied positive acknowledge. In other words, the acknowledge is
only required to acknowledge the received stream negatively.

2.3.2.2 Receiving a Request to Send Multiple Consecutive Streams
In normal LU type 2 communications, the OpenVMS application and the IBM
application subsystem alternate between sending and receiving data streams.

At any point, however, the IBM subsystem may issue a request to the Interface
to send another data stream immediately after the one just sent. If the IBM
application relinquished its turn to send, it can request to send another stream
in one of two ways:

• If the last receive or transmit completed with the status SNA3270$_OK_
CONT, the IBM application can BID to send another stream.

The Interface accepts the BID request and notifies the OpenVMS
application when it has received the data. The OpenVMS application
can cause the Interface to reject the BID by calling the SNA3270$LOCK_
SCREEN procedure before the BID request is received. When using

2–6 3270 Data Stream Programming Interface Overview



SNA3270$LOCK_SCREEN, the OpenVMS application is saying it wants to
be sure the PLU will not send more data while the OpenVMS application
is preparing to send data. Once a BID request has been accepted, a call to
the SNA3270$LOCK_SCREEN procedure will have no effect.

• If the last receive completed with the status SNA3270$_OK, it is the
OpenVMS application’s turn to send. IBM can send a SIGNAL request
asking the OpenVMS application to relinquish its turn to send.

The Interface is obligated to accept the SIGNAL request and relinquish its
turn to send to the IBM application. The Interface notifies the OpenVMS
application that it has lost its turn to send. In this case, the OpenVMS
application cannot call the SNA3270$LOCK_SCREEN procedure and cause
the Interface to reject the SIGNAL request.

2.4 Field Mode
In field mode, the OpenVMS application receives and sends information by
means of two display vectors—a character vector and an attributes vector—
that represent a 3270 block-mode screen image consisting of one or more fields.
Because these two vectors contain all the information necessary to produce a
3270 block-mode screen image on a Digital terminal, they are said to represent
a virtual 3270 screen image.

3270 Data Stream Programming Interface Overview 2–7



To establish a session for the purpose of receiving and sending virtual 3270
screen images, the OpenVMS application calls the SNA3270$REQUEST_
CONNECT procedure, sets the connection mode indicator in the parameter list
to specify field mode, and provides a character vector and an attribute vector to
contain the virtual 3270 screen images. As part of the request procedure, the
Interface builds a structure called a screen descriptor block, which it uses to
supply information about the vectors.

Once the session has been established, the OpenVMS application typically
issues calls to request the following sequence of operations:

1. Receive a 3270 screen image from the application subsystem in the IBM
host

2. Read fields in the screen image

3. Write fields in the screen image

4. Transmit the screen image to the IBM host

2–8 3270 Data Stream Programming Interface Overview



2.4.1 The Character Vector
The character vector contains a series of 8-bit EBCDIC characters that
correspond to the characters displayed in a screen image. Figure 2–2
illustrates a character vector. Each character is assigned a vector address
that corresponds to a screen position.

Figure 2–2 Character Vector

LKG−8076−93R

ByteByte
n

Byte
5

Byte
4

Byte
3

Byte
21

Byte
0

Note

A screen position is normally described by row and column coordinates
x and y starting from position 1. To translate these coordinates into a
vector address, the application can use the formula

i = c(x� 1) + (y � 1)

where i is a vector position and c is the number of columns in the
display. For example, in an 80-column display, the character in row 5,
column 22 is in vector position 80(4) + 21, or 341.

2.4.2 The Attributes Vector
The attributes vector is built by the Interface using the field attribute
character(s) in the 3270 data stream. The attributes vector consists of a
series of 16-bit words. Each word is a mask that specifies the attributes of
the corresponding character in the character vector. For example, the mask
specifies whether the character is located at the beginning of a field, whether it
is protected or nonprotected, or whether it has been modified by the IBM host
or the OpenVMS application. Figure 2–3 illustrates the attributes vector.

3270 Data Stream Programming Interface Overview 2–9



Figure 2–3 Attributes Vector With Mask Flags

Modified by host

Protected/nonprotected

Start of field

Display/nondisplay/intensified (2 bits)

Reserved (2 bits)

Alphanumeric/numeric

Sixteen−bit
maskmask

LKG−8077−93R

ByteByte
n

Byte
−1

Byte
3

Byte
21

Byte
0

Sixteen−bit
mask

Modified data tag

Reserved fields

Sixteen−bit

n

Table 2–1 lists the symbols and meanings of the attributes masks in order from
least significant to most significant bit.

Table 2–1 Symbols and Meanings of Attribute Masks

Symbol

OpenVMS
Position
(Bit) Meaning

Masks Used With the Attributes Vector

SNA3270$M_ATTR_MDT 0 Modified data tag

SNA3270$M_ATTR_DSP 2,3 Display/Intensity

SNA3270$M_ATTR_NUM 4 Numeric

SNA3270$M_ATTR_PRO 5 Protected

SNA3270$M_ATTR_MBH 8 Modified by host

(continued on next page)

2–10 3270 Data Stream Programming Interface Overview



Table 2–1 (Cont.) Symbols and Meanings of Attribute Masks

Symbol

OpenVMS
Position
(Bit) Meaning

Masks Used With the Attributes Vector

SNA3270$M_ATTR_SOF 91 Start of field

The SNA3270$M_ATTR_DSP has four possible values:

SNA3270$K_ATTR_NORM Normal intensity, nondetectable

SNA3270$K_ATTR_PEN_
DET

Normal intensity, detectable

SNA3270$K_ATTR_HIGH High intensity, detectable

SNA3270$K_ATTR_INVIS Nondisplayed, nondetectable

1The start-of-field bit indicates whether the corresponding character in the character vector is at
the start of a field.

Note

The display/intensity values listed in Table 2–1 are values to be
inserted into a 2-bit field (the values are 0, 1, 2, and 3, respectively).
Many languages do not have the ability to insert values into a bit field;
therefore, you must shift the values 0, 1, 2, or 3 left by two places.
Then use an inclusive OR to insert the values into the field.

2.4.3 The Screen Descriptor Block
For each field mode session requested, the OpenVMS application allocates a
data structure called the screen descriptor block (SDB). The Interface uses this
block to provide the application with information about the 3270 screen image
in the display vectors. Figure 2–4 illustrates an SDB. A brief description of the
components of the SDB follows:

• Current cursor address: If the OpenVMS application uses the
SNA3270$READ_FIELD and SNA3270$WRITE_FIELD procedures, the
Interface updates this address automatically. If the OpenVMS application
modifies the display vectors directly, the application must also update the
cursor address. Initially, the IBM system sets the value of this field with
an insert cursor order in the data stream.

• Current screen size: The total number of characters in the display.

3270 Data Stream Programming Interface Overview 2–11



• Default number of rows and columns specified at BIND time.

• Alternate number of rows and columns specified at BIND time.

• The current number or rows and columns in the display.

• Flags that describe the action that affected the screen image. A list of
these flags and their meanings follows:

Symbol Meaning

SNA3270$M_SDB_RESET_INHIB Reset keyboard inhibit condition

SNA3270$M_SDB_PSA_PEND Presentation space is altered

SNA3270$M_SDB_SCR_ERASED Screen is erased

SNA3270$M_SDB_SIZE_CHANGED Screen size is changed

SNA3270$M_SDB_FORMAT_SCR Screen is formatted

SNA3270$M_SDB_WRAP_SCR Screen is wrapped

• Write control character from the 3270 data stream. This value should not
be modified by the application.

2–12 3270 Data Stream Programming Interface Overview



Figure 2–4 The Screen Descriptor Block

LKG−8078−93R

Cursor address

Default number
of rows

Default number
of columns

Flags

Current number

Alternate number

Write control

of rows

character

Current number

of rows

of columns

Alternate number

Byte 8

of columns

Byte 4

Byte 10

Byte 0

Byte 6

Byte 2Maximum screen size

Table 2–2 lists the field names and associated symbols for the screen descriptor
block. All of the fields are used for output.

Table 2–2 The Screen Descriptor Block and Associated Symbols

Field Name

Position

(Byte) Symbol

Cursor address 0,1 SNA3270$W_SDB_CURSOR_ADDR

Maximum screen size 2,3 SNA3270$W_SDB_MAX_SCRSIZE

Default number of
columns

4 SNA3270$B_SDB_DEF_COLS

Default number of rows 5 SNA3270$B_SDB_DEF_ROWS

(continued on next page)

3270 Data Stream Programming Interface Overview 2–13



Table 2–2 (Cont.) The Screen Descriptor Block and Associated Symbols

Field Name

Position

(Byte) Symbol

Alternate number of
columns

6 SNA3270$B_SDB_ALT_COLS

Alternate number of
rows

7 SNA3270$B_SDB_ALT_ROWS

Current number of
columns

8 SNA3270$B_SDB_CUR_COLS

Current number of rows 9 SNA3270$B_SDB_CUR_ROWS

Write control character 10 SNA3270$B_SDB_WCC

Flags 11 SNA3270$B_SDB_FLAGS

Figure 2–5 illustrates the write control character and the symbols and
meanings that represent the various bits. It also illustrates the different
way IBM and OpenVMS systems number bits for the write control character.

Figure 2–5 Write Control Character

LKG−8079−93R

MDTrestore
Reset

alarm
Keyboard

Bit

Sound

BitBit BitBit
75
0

2
Bit

2
6IBM
1

4
5 3

1
Bit
3

6 4OpenVMS

Printout
printformat

Bit
0

Reserved Start

7

Table 2–3 lists the names and associated symbols for the write control
character.

2–14 3270 Data Stream Programming Interface Overview



Table 2–3 Write Control Character and Associated Symbols

Name

OpenVMS
Position
(Bit) Symbol

Reset modified
data tags

0 SNA3270$M_WCC_RESET_MDT

Keyboard
restore

1 SNA3270$M_WCC_KBD_RST

Sound audible
alarm

2 SNA3270$M_WCC_ALARM

Start print 3 SNA3270$M_WCC_PRINT

Printer format
(not used under
SNA)

4,5 SNA3270$M_WCC_PRT_FMT

2.4.4 Receiving a 3270 Screen Image
To receive a virtual 3270 screen image from the IBM host, the OpenVMS
application calls the SNA3270$RECEIVE_SCREEN procedure and indicates
the session. The Interface places a complete virtual screen image in the display
vectors specified for the session.

While the display vectors are being modified, the user is prevented from
altering information in the vectors. Once the Interface has finished modifying
the screen image in the display vectors, the OpenVMS application can begin
reading and modifying fields in the display vectors.

Note

The SNA3270$READ_FIELD and SNA3270$WRITE_FIELD
procedures do not allow vector modification if the keyboard restore
bit is set off. The OpenVMS application is responsible for this function
if it does not use SNA3270$READ_FIELD and SNA3270$WRITE_
FIELD. For instance, data may continue coming in and you will modify
an incomplete screen.

3270 Data Stream Programming Interface Overview 2–15



2.4.5 Retrieving Fields From a 3270 Screen Image
To retrieve a field from a 3270 virtual screen image, the OpenVMS application
calls the SNA3270$READ_FIELD procedure with the field descriptor block
(FDB). The FDB is specified in the SNA3270$REQUEST_CONNECT procedure
and is used throughout the session. The FDB provides space for the offset
address of the target field, attributes that the Interface should use to locate
the field, and symbols to specify the desired operation. Figure 2–6 illustrates
the FDB. The OpenVMS application also specifies a buffer to receive the read
field.

Figure 2–6 The Field Descriptor Block

LKG−8080−93R

Requested attributes value

Requested attributes mask

Requested operation

Requested displacement

Reserved for user

Actual attributes

Actual displacement

Byte count

Last−field−read displacement

Reserved for Digital Byte 18

Byte 16

Byte 10

Byte 6

Byte 12

Byte 0

Byte 8

Byte 4

Byte 14

Byte 2

User input

Interface
supplies

Table 2–4 lists the field names and associated symbols for the field descriptor
block. The table also indicates whether the field is used for input or for output.

2–16 3270 Data Stream Programming Interface Overview



Table 2–4 Field Descriptor Block Fields and Associated Symbols

Field Name

Position

(Byte) Symbol Input/Output

Requested
attributes
value

0,1 SNA3270$W_FDB_ATT_VALUE Input to READ_FIELD

Requested
attributes
mask

2,3 SNA3270$W_FDB_ATT_MASK Input to READ_FIELD

Requested
operation

4,5 SNA3270$W_FDB_SELECT Input to READ_FIELD

Requested
displacement

6,7 SNA3270$W_FDB_BUFOFF Input to READ_FIELD

Reserved for
customer

8,9 SNA3270$W_FDB_FILLER2

Actual
attributes

10,11 SNA3270$W_FDB_FLD_ATTR Output from
READ_FIELD,
WRITE_FIELD

Actual
displacement

12,13 SNA3270$W_FDB_FLD_
BUFOFF

Output from READ_FIELD

Input to WRITE_FIELD

Byte count 14,15 SNA3270$W_FDB_FLD_COUNT Output from READ_FIELD

Last-field-read
displacement

16,17 SNA3270$W_FDB_LFR_
BUFOFF

Output from READ_FIELD

Figure 2–7 illustrates the symbols and meanings for the various bits in the
requested attributes value and requested attributes mask fields of the FDB.

3270 Data Stream Programming Interface Overview 2–17



Figure 2–7 Attributes and Associated Symbols for the Field Descriptor Block

LKG−8081−93R

data tag
ModifiedReservedDisplay

74
0

2
3

5IBM
25OpenVMS

Protected

0

Reserved Numeric

7
6
1

1
6

3
4

The following list provides a description of the fields in the FDB:

• Requested attributes value: This field works in conjunction with the
requested attributes mask field. Specify the attribute values of the field
which the application needs to locate and read, using the symbols defined
in Table 2–5. For example, to locate a numeric-only field the OpenVMS
application would set this field to SNA3270$M_ATTR_NUM.

• Requested attributes mask: This field works in conjunction with
the requested attributes value field. This field is used to specify which
attributes the application is interested in checking. A bit set in this field
causes the Interface to compare the corresponding attributes with the value
specified in the requested attributes value field. A bit clear in this field
causes the Interface to ignore the corresponding attribute. For example, to
specify a nonprotected, numeric field in FORTRAN with the FDB defined
with the statement RECORD /SNA3270_FDB/ FDB, the requested value
and attribute fields would be set as follows:

FDB.SNA3270$W_FDB_ATT_MASK = SNA3270$M_ATTR_NUM +
SNA3270$M_ATTR_PRO

FDB.SNA3270$W_FDB_ATT_VALUE = SNA3270$M_ATTR_NUM

In this example, the mask specifies that the user is interested in only the
numeric and protected attributes. The value specifies that the numeric
attribute flag should be set and the protected attribute flag should be reset.

Table 2–5 lists the names and associated symbols for the requested attributes
in the FDB.

2–18 3270 Data Stream Programming Interface Overview



Table 2–5 Field Descriptor Block Attributes and Associated Symbols

Name

OpenVMS
Position
(Bit) Symbol

Modified data tag 0 SNA3270$M_ATTR_MDT

Displayable/intensity
/light pen detectable

2,3 SNA3270$M_ATTR_DSP

Numeric 4 SNA3270$M_ATTR_NUM

Protected 5 SNA3270$M_ATTR_PRO

Modified by host 8 SNA3270$M_ATTR_MBH

Start of field 9 SNA3270$M_ATTR_SOF

• Requested operation: This field indicates the operation the application
desires to perform.

Table 2–6 provides symbols and meanings you can specify for the attributes
and operation selection fields of the FDB.

Table 2–6 Symbols and Meanings of the Operation Selection Fields of the
Field Descriptor Block

Symbol Meaning

SNA3270$K_SEL_READ Read at specified offset

SNA3270$K_SEL_SEARCH Search from specified offset

SNA3270$K_SEL_READ_NEXT Read next field

SNA3270$K_SEL_SEARCH_NEXT Search starting from next field

• Requested displacement: The offset at which you want to begin
searching or reading a field.

• Reserved for user: A field reserved for the user to include such
information as a pointer or a counter.

• Actual attributes: The actual attributes of the field you just read or are
about to write into.

• Actual displacement: The actual offset of the field you searched for and
read is returned in this location.

3270 Data Stream Programming Interface Overview 2–19



• Byte count: The actual number of bytes read from or written to a field.

• Last-field-read displacement: The offset of the last field read by the
Interface. This field is used in the search operation for the SNA3270$K_
SEL_READ_NEXT or the SNA3270$K_SEL_SEARCH_NEXT operation.

• Reserved for Digital: Empty fields reserved for future releases of the
product.

The OpenVMS application can use the FDB to specify the following types
of read and search operations to retrieve a field. The specified displacement
should always be the address of the attributes of the field.

• Read the field that begins at the specified offset address

The OpenVMS application provides an FDB containing an offset address
with the requested operation field set to SNA3270$K_SEL_READ to specify
the operation. If the offset is the beginning of a field, the Interface returns
the field to the specified buffer. If the offset is not the beginning of a field,
the Interface returns the SNA3270$_BADOFFSET status value.

• Read the field that begins at the specified offset address if the field
has the specified attribute

The OpenVMS application provides an FDB containing an offset address,
an attribute mask and value, and the requested operation field set to
SNA3270$K_SEL_READ to specify the operation. If the offset is the
beginning of a field and the field has the specified attribute, the Interface
returns the field. If the offset is not the beginning of a field, the Interface
returns the SNA3270$_BADOFFSET status value; or if the field does
not have the specified attribute, the Interface returns the SNA3270$_
NOFIELD status value.

• Read the next field

The OpenVMS application provides an FDB with the requested operation
field set to SNA3270$K_SEL_READ_NEXT to specify the operation. The
Interface returns the next field. If no field follows the last field read, the
Interface returns the SNA3270$_NOFIELD status value.

2–20 3270 Data Stream Programming Interface Overview



• Read the next field if the field has the specified attribute

The OpenVMS application provides an FDB containing an attribute mask
and value with the requested operation field set to SNA3270$K_SEL_
READ_NEXT to specify the operation. If the next field has the specified
attribute, the Interface returns the field. If not, the Interface returns the
SNA3270$_NOFIELD status value.

• Search for a field, starting at the specified offset address

The OpenVMS application provides an FDB containing an offset address
with the requested operation field set to SNA3270$K_SEL_SEARCH to
specify the operation. Starting at this offset, the Interface searches the
screen image sequentially until it encounters the beginning of a field. It
returns this field to the OpenVMS application. If the specified offset is out
of range, the Interface returns the SNA3270$_BADOFFSET status value.
If no field begins after this offset, the Interface returns the SNA3270$_
NOFIELD status value.

• Search for a field with the specified attribute, starting at the
specified offset

The OpenVMS application provides an FDB containing an offset address,
an attribute mask and value, and the requested operation field set to
SNA3270$K_SEL_SEARCH to specify the operation. Starting at the
specified offset, the Interface searches the screen image sequentially for a
field with the specified attribute. If it finds such a field, it returns it to the
OpenVMS application. If the specified offset is out of range, the Interface
returns the SNA3270$_BADOFFSET status value. If the Interface does
not locate the field, it returns the SNA3270$_NOFIELD status value.

• Search for a field, starting after the last field read

The OpenVMS application provides an FDB with the requested operation
field set to SNA3270$K_SEL_SEARCH_NEXT to specify the operation.
Starting after the last field read, the Interface searches sequentially for
the next field. If the screen image contains another field after the last
field read, the Interface returns it to the OpenVMS application. If not, the
Interface returns the SNA3270$_NOFIELD status value.

3270 Data Stream Programming Interface Overview 2–21



• Search for a field with the specified attribute, starting after the last
field read

The OpenVMS application provides an FDB containing an attribute mask
and value and the requested operation field set to SNA3270$K_SEL_
SEARCH_NEXT to specify the operation. Starting after the last field read,
the Interface searches for a field with the specified attribute. If the screen
image contains such a field, the Interface returns it. If not, it returns the
SNA3270$_NOFIELD status value.

2.4.6 Using the FDB: An Example
The following FORTRAN programming fragment will take you step by step
through the use of the FDB. Interspersed between pieces of code you will find
commentary and illustrations to explain what the program is doing. Ellipses
represent information that has been omitted from the FORTRAN program.

The goal of the program is to show you how to extract fields from a typical
IBM application screen by using the FDB. The program begins by establishing
a session with IBM and providing an FDB. It then locates the first unprotected
field. This sample OpenVMS program writes the AMNU IBM transaction.
Upon completion, the entire screen of data is sent to IBM. The IBM responds
with a screen of information from which the program can make a selection
for the operation it desires. The program searches for the first unprotected
field. It then writes the ABRW browse option. The program searches for the
next unprotected field and the transaction number in that field. The IBM then
responds with the browse screen.

At this point, the programming example presented here comes to an end.
In an actual work environment, the application would continue reading and
searching for fields in a manner similar to that used to locate fields in the
AMNU transaction. For instance, the FDB can be used to read the employee
number of John Doe and update his pay using the AUPD option.

INCLUDE ’SYS$LIBRARY:SNA3270DF/NOLIST’ ! Include 3270
! definitions

A library of 3270 definitions has been loaded. The following lines define session
variables.

INTEGER*4 STATUS_VECTOR (SNA3270$K_MIN_STATUS_VECTOR)
INTEGER*4 NOTIFY_VECTOR (SNA3270$K_MIN_NOTIFY_VECTOR)
INTEGER*4 SESSION_ID
INTEGER*4 RETURN_CODE, CONN_TYPE

.

.

.

2–22 3270 Data Stream Programming Interface Overview



The following lines define field mode structures. The FDB is a data block
used to (1) describe fields in the screen image (Figure 2–4), and (2) supply
the address and/or attributes of the field it will be reading in future
SNA3270$READ_FIELD and SNA3270$WRITE_FIELD calls.

STRUCTURE /DSC/
INTEGER*2 DSC$W_LENGTH
BYTE DSC$B_DTYPE, DSC$B_CLASS
INTEGER*4 DSC$A_POINTER

END STRUCTURE
RECORD /SNA3270_SDB/ SDB
RECORD /SNA3270_FDB/ FDB
RECORD /DSC/ SDB_DSC
RECORD /DSC/ FDB_DSC
INTEGER*4 SDB_DSC(2), FDB_DSC(2)
CHARACTER*256 FIELD_DATA INTEGER*2 FIELD_ATTR,
1 FIELD_OFFSET, LENGTH

.

.

.

In the next code, the SNA3270$REQUEST_CONNECT procedure establishes a
field mode session between the OpenVMS application and the IBM application.
The procedure points to the FDB in the event the Interface needs the FDB for
future operations.

RETURN_CODE = SNA3270$REQUEST_CONNECT_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(SNA3270$K_ACTIVE),
2 %REF(SNA3270$K_FIELD_MODE), %DESCR(NODE_NAME),
3 %DESCR(ACC_NAME),,,,,,,, SCREEN_IMAGE,
4 %DESCR(ATTR_VECTOR),
5 %DESCR(FIELD_VECTOR), SDB_DSC, FDB_DSC, NOTIFY_RTN,
6 SESSION_ID, %DESCR(NOTIFY_VECTOR), %REF(LU2_EFN))

IF (.NOT. RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’CONNECT failed’

ENDIF

.

.

.

You will then receive the CICS logo screen. The program sends a clear screen
request. IBM will respond with a cleared (blank) screen.

The following program code transmits AMNU to the IBM application. The code
begins by describing the field to be located as an unprotected field.

FDB.SNA3270$W_FDB_ATT_MASK = SNA3270$M_ATTR_PRO
FDB.SNA3270$W_FDB_ATT_VALUE = 0

3270 Data Stream Programming Interface Overview 2–23



The program searches for the first unprotected field beginning from character
position 0.

FDB.SNA3270$W_FDB_BUFOFF = 0
FDB.SNA3270$W_FDB_SELECT = SNA3270$K_SEL_SEARCH

The first unprotected field on the screen is located.

RETURN_CODE = SNA3270$READ_FIELD (SESSION_ID,
1 %DESCR(STATUS_VECTOR))

IF (.NOT. RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’READ_FIELD failed’

ENDIF

AMNU is set as the transaction name, and the string is converted to EBCDIC.

FIELD_DATA = ’AMNU’
ISTAT = LIB$TRA_ASC_EBC (DATA, DATA)
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

Using the SNA3270$WRITE_FIELD procedure, AMNU is entered into the field
the OpenVMS application just located (see Figure 2–8).

2–24 3270 Data Stream Programming Interface Overview



Figure 2–8 AMNU Screen

AMNU

LKG−8082−93R

RETURN_CODE = SNA3270$WRITE_FIELD(SESSION_ID,
1 %DESCR(STATUS_VECTOR),DATA)
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’WRITE_FIELD failed’

ENDIF
.
.
.

The following code transmits the updated AMNU screen back to the IBM
system. IBM responds with a screen that displays operator instructions (see
Figure F2H9).

3270 Data Stream Programming Interface Overview 2–25



Figure 2–9 AMNU Operator Instructions Screen

LKG−8083−93R

OPERATOR INSTRUCTIONS
OPERATOR INSTR − ENTER AMNU
FILE INQUIRY   − ENTER AINQ AND NUMBER
FILE BROWSE    − ENTER ABRW AND NUMBER
FILE ADD       − ENTER AADD AND NUMBER
FILE UPDATE    − ENTER AUPD AND NUMBER
PRESS PA1 TO PRINT−−PRESS CLEAR TO EXIT
ENTER TRANSACTION:      NUMBER

RETURN_CODE = SNA3270$RECEIVE_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_SCREEN failed’

ENDIF

.

.

.

The following program code transmits the transaction name and number to the
IBM application. The field to be located is described as an unprotected field on
the operator instructions screen.

FDB.SNA3270$W_FDB_ATT_MASK = SNA3270$M_ATTR_PRO
FDB.SNA3270$W_FDB_ATT_VALUE = 0

2–26 3270 Data Stream Programming Interface Overview



The search begins starting from character position 0.

FDB.SNA3270$W_FDB_ATT_BUFOFF = 0
FDB.SNA3270$W_FDB_SELECT = SNA3270$K_SEL_SEARCH

The first unprotected field on the screen is located.

RETURN_CODE = SNA3270$READ_FIELD(SESSION_ID,
1 %DESCR(STATUS_VECTOR))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’READ_FIELD failed’

ENDIF

ABRW is set as the transaction name, and the string is converted to EBCDIC.

FIELD_DATA = ’ABRW’
ISTAT = LIB$TRA_ASC_EBC (DATA, DATA)
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

The user enters the browse code ABRW into the field just located (see
Figure 2–10).

3270 Data Stream Programming Interface Overview 2–27



Figure 2–10 ABRW Field Filled on Option Screen

LKG−8084−93R

OPERATOR INSTRUCTIONS
OPERATOR INSTR − ENTER AMNU
FILE INQUIRY   − ENTER AINQ AND NUMBER
FILE BROWSE    − ENTER ABRW AND NUMBER
FILE ADD       − ENTER AADD AND NUMBER
FILE UPDATE    − ENTER AUPD AND NUMBER
PRESS PA1 TO PRINT−−PRESS CLEAR TO EXIT
ENTER TRANSACTION: ABRW NUMBER

RETURN_CODE = SNA3270$WRITE_FIELD(SESSION_ID,
1 %DESCR(STATUS_VECTOR), DATA)

IF (.NOT. RETURN_CODE) THEN ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’WRITE_FIELD failed’

ENDIF

In the next code, the number field is described as an unprotected field. Note
that the field attribute mask and attribute value have not changed.

FDB.SNA3270$W_FDB_ATT_MASK = SNA3270$M_ATTR_PRO
FDB.SNA3270$W_FDB_ATT_VALUE = 0

A search for the next unprotected field starts after the last field read.

FDB.SNA3270$W_FDB_ATT_SELECT = SNA3270$K_SEL_SEARCH_NEXT

2–28 3270 Data Stream Programming Interface Overview



The next unprotected field on the screen is located.

RETURN_CODE = SNA3270$READ_FIELD(SESSION_ID,
1 %DESCR(STATUS_VECTOR))

IF (.NOT. RETURN_CODE) THEN ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’READ_FIELD failed’

ENDIF

The program sets the the transaction number to 000001 and converts the
string to EBCDIC.

FIELD_DATA = ’000001’
ISTAT = LIB$TRA_ASC_EBC (DATA, DATA)
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

The transaction number 000001 is written into the field just located (see
Figure 2–11).

3270 Data Stream Programming Interface Overview 2–29



Figure 2–11 Transaction Number Field Filled on Option Screen

LKG−8085−93R

OPERATOR INSTRUCTIONS
OPERATOR INSTR − ENTER AMNU
FILE INQUIRY   − ENTER AINQ AND NUMBER
FILE BROWSE    − ENTER ABRW AND NUMBER
FILE ADD       − ENTER AADD AND NUMBER
FILE UPDATE    − ENTER AUPD AND NUMBER
PRESS PA1 TO PRINT−−PRESS CLEAR TO EXIT
ENTER TRANSACTION: ABRW NUMBER 000001

RETURN_CODE = SNA3270$WRITE_FIELD(SESSION_ID,
1 %DESCR(STATUS_VECTOR), DATA)
IF (.NOT. RETURN_CODE) THEN ISTAT = SYS$PUTMSG(STATUS_VECTOR)

STOP ’WRITE_FIELD failed’
ENDIF

.

.

.

The completed options screen is sent to IBM, and IBM responds with the
screen shown in Figure 2–12.

2–30 3270 Data Stream Programming Interface Overview



Figure 2–12 AMNU File Browse Screen

LKG−8086−93R

FILE BROWSE
NUMBER          NAME           AMOUNT
000001  MICHAEL WALTER       94369.99
000002  MIKE WILLIAMS        945988.9
000003  JONATHON DUPONT      12340.00
000004  MARGARET FOGG        48000.00
PRESS PF1 OR TYPE F TO PAGE FORWARD
PRESS PF2 OR TYPE B TO PAGE BACKWARD

3270 Data Stream Programming Interface Overview 2–31



2.4.7 Writing a Field Into a 3270 Screen Image
To write a field into the display vectors, the OpenVMS application calls
the SNA3270$WRITE_FIELD procedure, specifies the buffer containing
the field, and uses the field descriptor block to specify the address of the
field in the actual displacement field (SNA3270$_FDB_FLD_BUFOFF).
Use the SNA3270$READ_FIELD procedure to set up the FDB for the
SNA3270$WRITE_FIELD. In particular, SNA3270$READ_FIELD sets
the actual attributes and the actual displacement which are inputs to the
SNA3270$WRITE_FIELD. The Interface places the contents of the buffer in
the specified field, unless that field is protected or of a different data type. If
the specified data is larger than the field in the screen image, the procedure
returns the SNA3270$_OK_TRUNC status value.

2.4.8 Transmitting a 3270 Screen Image
To transmit a 3270 screen image to the IBM host, the OpenVMS application
calls the SNA3270$TRANSMIT_SCREEN procedure and specifies a session.
The Interface builds a 3270 data stream from the contents of the display
vectors assigned to the session and transmits the data stream to the IBM host.

Note

In an LU2 session, the OpenVMS application normally alternates
between receiving screens and sending screens. If the application
issues two SNA3270$TRANSMIT_SCREEN requests in a row, the
Interface returns the status message SNA3270$_NYTXMIT, indicating
that it is "Not your turn." The OpenVMS application can use the
SNA3270$TRANSMIT_SIGNAL procedure described in Section 6.10
to request the IBM application to allow the OpenVMS application
to transmit again. As described in Section 2.3.1, the OpenVMS
application must wait for the IBM application to return the flag
indicating who can send before issuing another SNA3270$TRANSMIT_
SCREEN.

2–32 3270 Data Stream Programming Interface Overview



2.5 Terminating a Session
To terminate an LU-LU session, the OpenVMS application calls the
SNA3270$REQUEST_DISCONNECT procedure and specifies the session.

As a result of this call, the Interface requests termination and deallocates all
resources allocated to the session. The SNA3270$REQUEST_DISCONNECT
procedure causes the Interface to send an UNBIND to the IBM system
and results in a log message on the IBM system. SNA3270$REQUEST_
DISCONNECT does not perform an orderly shutdown of the session and/or log
off the IBM subsystem. If the session is already inactive when the application
calls the SNA3270$REQUEST_DISCONNECT procedure, the Interface just
deallocates resources.

3270 Data Stream Programming Interface Overview 2–33





3
Interface Features

The Digital SNA 3270 Data Stream Programming Interface provides features
to assist you in writing and executing your application. These features include
mechanisms for:

• Returning status information

• Asynchronous event notification

• Synchronous and asynchronous operation

• Supplying access information to the IBM host

3.1 Returning Status Information
The Interface can return status codes to the OpenVMS application with either
of the following:

• Function value returns

• An I/O status vector

See Appendix D for a description of all the status codes returned by the
Interface.

3.1.1 Function Value Returns
When an Interface procedure finishes its attempt to perform an operation, it
returns a function value to indicate whether the operation succeeded or failed.
It places this value in register R0. After each call to an Interface procedure,
you must check this status value. The value in the low-order word indicates
that the procedure completed successfully or that some specific error prevented
the procedure from performing all or some of its functions.

Each high-level language provides some mechanism for testing the return
status value in R0. Often you need to check only the low-order bit, such as by
a test for TRUE (success or informational return) or FALSE (error or warning
return).

Interface Features 3–1



To check the entire value for a specific return condition, each language
provides a way for your program to determine the values associated with
specific symbolically defined codes. Always use these symbolic names when you
write tests for specific conditions.

3.1.2 The I/O Status Vector
All Interface procedures return status messages to the OpenVMS application
via a status vector. The status vector is a data structure that supplies the
application with complete information about error conditions, including:

• Success messages

• Warning messages

• Error messages

• Informational messages

• Severe error messages

The status vector can contain one or more error messages, depending upon
the kind of error that occurred. The format of the status vector is identical
to the format of the message vector supplied to the OpenVMS system service
procedure $PUTMSG.

Note

If a procedure returns a status message, a violation may have
occurred that requires action. For example, if you issue the
SNA3270$RECEIVE_STREAM procedure and receive the SNA3270$_
OK_NYT success message, you cannot transmit. Rather, you must post
another receive.

3.1.3 Using Status Vectors
If an error occurs, each component of the network involved can pass a message
to the Interface. The Interface uses this information to fill a status vector
supplied by the OpenVMS application. See Figure 3–1 for an illustration of the
status vector.

Usually, the application displays the error via the OpenVMS system service
call to $PUTMSG. $PUTMSG translates the status vector into a human-
readable message and sends it to a terminal or file. If you do not want to call
$PUTMSG, you can use LIB$SIGNAL or LIB$STOP, by means of a call to
LIB$CALLG, to generate a signal indicating that an exception condition has
occurred in your program. LIB$CALLG uses the following format:

3–2 Interface Features



LIB$CALLG argument list, procedure

where

argument list is the status vector.

procedure is LIB$SIGNAL or LIB$STOP.

For further information about dealing with errors, see under "Condition
Handling" and "$PUTMSG" in the OpenVMS System Services Reference
Manual. See under "LIB$CALLG", "LIB$SIGNAL", and "LIB$STOP" in the
RTL Library (LIB$) Manual.

The application does not have to signal an error through $PUTMSG. Instead,
the programmer may choose to take corrective action. For example, the
programmer may wish to reestablish a session if the session was inadvertently
terminated.

Interface Features 3–3



Note

The user must define a vector of minimum size, using the SNA3270$K_
MIN_STATUS_VECTOR literal, and provide a descriptor pointing to it
in each procedure call. The Interface can then fill in the vector at the
completion of the operation.

Figure 3–1 Status Vector

LKG−8087−93R

Default message

1st new message
flags

FAO count for
1st message

FAO arguments for 2nd message

2nd new message

FAO arguments for 1st message

flags
FAO count for
2nd message

1st message identification

31 0

flag Argument count

2nd message identification

The following list provides a description of the fields that make up the status
vector.

• Argument count

Specifies the total number of longwords in the status vector.

• Default message flags

3–4 Interface Features



Specifies a mask defining the portions of the message(s) to be requested.
If a mask is not specified, the process default message flags are used. If
a mask is specified, it is passed to $GETMSG as the FLAGS argument.
For further information, see under "$GETMSG" in the OpenVMS System
Services Reference Manual.

This mask establishes the default flags for each message in this call until
a new set of flags (if any) is specified. That is, each specified new message
flags field sets a new default.

Bits 20 through 31 must be zeros.

• Message identification

32-bit numeric value that uniquely identifies this message. Messages can
be identified by symbolic names defined for system return status codes,
VAX-11 RMS status codes, and so on.

• FAO count

Number of Formatted ASCII Output ($FAO) arguments for this message,
if any, that follow in the status vector. For further information see under
"$FAO" in the OpenVMS System Services Reference Manual.

• New message flags

New mask for the $GETMSG flags, defining a new default for this message
and all subsequent messages.

• FAO arguments

FAO arguments required by the message.

3.2 Asynchronous Event Notification
The 3270 Interface provides a means of informing the application that one or
more asynchronous events have occurred. This notification can take place at
any point during a session. The asynchronous events that can occur include
the following:

• A network communication error has been detected.

• The IBM host or the SNA Gateway has deliberately terminated the link.

• The IBM host has violated the SNA protocol.

• The IBM host has sent an UNBIND type 2.

• The session has been reconnected–resume normal operations.

• The session has received a CLEAR.

Interface Features 3–5



• A protocol processing error has been detected.

• The PLU has taken the SLU’s turn to send.

• Data has arrived and there is no receive pending from the application. This
notification takes place only when the OpenVMS and IBM applications are
in contention state (that is, either the OpenVMS or IBM application can
transmit).

The OpenVMS application can include a user-written notification procedure
that the Interface calls each time one of these asynchronous events occurs
during a session. When you call SNA3270$REQUEST_CONNECT, use the
notify-rtn parameter to indicate the user-written procedure. The notify routine
can examine the event code it receives and take action, such as return a
message to the application about the nature of the asynchronous event.

The calling format for the user-written procedure is as follows:

notify-rtn ( event-code.rz.r,notify-parm.rlu.r )

where

notify-rtn is the name of the procedure specified in the connect call.

event-code is a symbol for the asynchronous event indicating the nature of the
event.

• SNA3270$K_EVT_TERMINATE–A deliberate termination of the
link by the IBM host or the SNA Gateway has occurred. This is
a fatal error; you must reestablish the session.

• SNA3270$K_EVT_UNBINDT2–An UNBIND type 2 has been
sent by IBM. The session should be automatically reestablished
by the Interface. See the RECONNECTED event below.

• SNA3270$K_EVT_RECONNECTED–The session is ready to
resume normal operations after an UNBIND type 2.

• SNA3270$K_EVT_CLEAR–The session has received a CLEAR
sent by primary session control to reset the data traffic Finite
State Machines (FSMs) in the primary and secondary half-
sessions (and boundary function, if any). Reset the session and
resume normal data.

• SNA3270$K_EVT_PROPROERR–A protocol processing error
has been detected. This is a fatal error; you must reestablish
the session.

• SNA3270$K_EVT_DATA–Data has arrived and there is no
corresponding receive pending from the application.

3–6 Interface Features



• SNA3270$K_EVT_TURNGONE–The SLU’s turn
to send was taken by the PLU. The application
should issue a SNA3270$RECEIVE_STREAM or
SNA3270$RECEIVE_SCREEN, depending on the
connection mode.

notify-parm is an optional user-specified parameter to be passed to the
notification procedure. For example, you can use the notify-parm
to provide a pointer to the session-id or a data structure containing
the session-id in multisession applications. Passed by reference.

If one of the asynchronous events described in the preceding list occurs, the
following steps take place:

1. The Interface fills out the notify vector supplied by the OpenVMS
application in the SNA3270$REQUEST_CONNECT procedure.

2. The Interface notifies the OpenVMS application of the asynchronous event
by calling the user-written notify procedure.

3. The OpenVMS application reads the event code supplied to the user-written
procedure.

4. The OpenVMS application reads the notify vector for detailed information
about the asynchronous event.

Note

The notify routine is not interrupted by completion ASTs; rather, the
ASTs are queued and serviced sequentially. Similarly, the completion
ASTs are not interrupted by the notify routine.

The format and function of the notify vector is the same as that of the status
vector. See Section 3.1.2 for further information.

Usually, the application signals an event via the system service call $PUTMSG.
$PUTMSG translates the notify vector into a human-readable message that
can be sent to a terminal or file.

Note

The user must define a vector of minimum size, using the SNA3270$K_
MIN_STATUS_VECTOR literal, and provide a descriptor pointing to it

Interface Features 3–7



in the SNA3270$REQUEST_CONNECT procedure call. The Interface
can then fill in the vector.

3.3 Synchronous and Asynchronous Operation
An application that calls an Interface procedure can specify two modes of
operation: synchronous mode and asynchronous mode.

3.3.1 Synchronous Mode
In synchronous, or wait, mode, the following steps occur:

1. The OpenVMS application calls a procedure and provides the required
list of parameters. If the parameters are invalid, step 2 occurs. If the
parameters are valid, step 3 occurs.

2. The Interface returns status information immediately as a function value
and with further information in the status vector.

3. The Interface sends the request to the Gateway and suspends the
OpenVMS application.

4. The Gateway performs the operation and sends the result to the Interface.

5. The Interface procedure returns a function value to indicate the success
or failure of the operation. The procedure also places the status code
and further information in the status vector. The application resumes
execution.

A synchronous call has the following general format:

SNA3270$procedure_W (parameters)

where

SNA3270$procedure_W is the name of the procedure.

parameters is a list of information needed to perform the requested
operation.

3–8 Interface Features



3.3.2 Asynchronous Mode
In asynchronous mode, the application issues a call to request an operation
and immediately resumes execution. It does not wait for the operation to be
completed. For this reason, applications that call procedures asynchronously
must specify an event flag or provide a completion procedure that the Interface
can call to indicate that the Gateway has completed its attempt to perform the
operation.

The completion procedure is an asynchronous system trap (AST). For
information about the AST, event flag services, and AST services, see the
OpenVMS System Services Reference Manual.

Note

The Interface is based upon AST completion. If you disable ASTs and
leave them disabled, no requests will be able to complete.

An asynchronous call involves the following steps:

1. The application issues a call to an Interface procedure to request an
operation.

2. The procedure immediately returns a status code as a function value. If
the application issues the call successfully, step 3 occurs. If the call fails,
step 4 occurs.

3. The Interface procedure returns a function value indicating success of
the call, and the application resumes execution. At the completion of the
operation, the Interface will perform the following steps:

• Fill in the status vector with completion information indicating success
or failure

• Set an event flag

• Call a completion procedure to inform the application that the Interface
has finished its attempt to perform the requested operation

4. The Interface procedure returns a function value indicating that the call
was unsuccessful. The procedure also places the status code and other
information in the status vector. The Interface does not attempt to perform
the operation. The application resumes execution.

Interface Features 3–9



Note

The completion AST is not interrupted by the notify routine; rather, the
notify routine is queued and serviced sequentially. Similarly, the notify
routine is not interrupted by the completion ASTs.

An asynchronous call has the following general format:

SNA3270$procedure (parameters)

where

SNA3270$procedure is the name of the procedure.

parameters is a list of information needed to perform the requested
operation. The user-written procedure that an Interface
procedure calls to indicate that the Interface has completed
its attempt to perform a requested operation has the
following calling format: procedure ast-par.rlu.r

where

procedure is the name of the user’s routine that is being
called. (procedure is specified as the ast-
addr parameter in an asynchronous call to
an Interface procedure.)

ast-par is a parameter passed to the user-written
procedure. You can use the ast-par to provide a
pointer to the session-id or a data structure
containing the session-id in multisession
applications. (ast-par is specified as the ast-
par parameter in an asynchronous call to an
Interface procedure.)

3–10 Interface Features



Note

In both synchronous and asynchronous calls, the application is
responsible for providing an event flag number in the parameter
list for use by the Interface procedure. If the application omits the
event flag number, the Interface assumes event flag 0.

3.4 Supplying Access Information to the IBM Host
To establish a session with an IBM application, the OpenVMS application must
supply the following information to the IBM host:

• Physical Unit (PU) identification. A value identifying the DECnet
Gateway PU or OpenVMS SNA (for example, SNA-0) used to establish
the session. This information can only be supplied to the DECnet
SNA Gateways and OpenVMS SNA. It is replaced by the Logical Unit
Identifaction for the Digital SNA Domain Gateway and the Digital SNA
Peer Server.

• Application name. An ASCII character string identifying the PLU
application (for example, CICS) that you want to connect to in the IBM
host.

• Session address. A value indicating the SLU that you want to use
to establish a session with the IBM host. This information can only be
supplied to the DECnet SNA Gateways and OpenVMS SNA. It is ignored
for the Domain Gateway and the Peer Server.

• Logical Unit (LU) identification. A value identifying the Gateway LU
used to establish the session. This information can only be supplied to the
Domain Gateway and Peer Server.

• Logon mode name. An ASCII character string specifying an entry in a
logon mode table that gives a set of BIND parameters for the session. (See
your VTAM system programmer for more information.)

• IBM user identification. A value identifying the user to the IBM session.

• IBM password. A string associated with the IBM user ID. (Some IBM
applications require a password, others do not.)

• Optional user data. Data passed to the IBM application. (The meaning
of the data depends on the IBM application.)

Interface Features 3–11



The application supplies this information as parameters each time it issues a
call to the SNA3270$REQUEST_CONNECT procedure.

3–12 Interface Features



The Gateway manager can define a complete or partial list of IBM
access information and associate the list with an access name. If the
application specifies the access name in the parameter list of a call to
SNA3270$REQUEST_CONNECT, all IBM access information defaults to the
values in the associated list. To override a value associated with an access
name, specify a new value in the SNA3270$REQUEST_CONNECT call.
For further information about IBM access information and access names,
see the Digital SNA Domain Gateway Management, DECnet SNA Gateway
Management for OpenVMS, OpenVMS SNA Management, or the DECnet SNA
Gateway-CT Management (OpenVMS).

Interface Features 3–13





4
Linking an Application With the 3270 Data

Stream Interface

After you have written your application and compiled the modules, you are
ready to link them with the Interface procedures. You must use the shareable
image of Interface procedures to link your program.

The following example links your executable image and the shareable image
SYS$SHARE:SNA3270SH.EXE. You must specify a linker options file.

$ LINK/EXE/MAP SYS$INPUT:/OPTION
USERPROG2
SYS$SHARE:SNA3270SH/SHARE

CTLR/Z

$

The following example links your executable image with the debugger and the
shareable image SYS$SHARE:SNA3270SH.EXE. You must specify a linker
options file.

$ LINK/EXE/MAP/DEBUG SYS$INPUT:/OPTION
USERPROG2
SYS$SHARE:SNA3270SH/SHARE

CTLR/Z

$

For a detailed description of the LINK command and additional options, see
the OpenVMS Linker Utility Manual.

Linking an Application With the 3270 Data Stream Interface 4–1





5
Programming Examples

This chapter contains programming examples designed to show you how to
make calls to the Digital SNA 3270 Data Stream Programming Interface
in your OpenVMS applications. Two complete programming examples and
fragments of several programs illustrate how to use the Interface in data
stream mode and field mode. The programming fragments are provided for
information only; they are not complete programs and will not run if you enter
them into your system. In addition, the examples provide tips that will help
you solve problems you may encounter in using the different languages. The
examples use the following languages:

• FORTRAN (a complete field mode example)

• PL/I (a complete data stream mode example)

• C

• COBOL

• BLISS

• MACRO

• Pascal

Explanatory text accompanies each example. The explanations are keyed to
the examples by means of a special numeric symbol.

Programming Examples 5–1



5.1 FORTRAN Programming Example–Field Mode
The FORTRAN program that follows uses field mode in the 3270 Data Stream
Interface to connect to the AMNU transaction, a sample program, running
under CICS. The program prompts the user for the Gateway DECnet node
name or TCP/IP host name and the CICS access name and then connects the
OpenVMS application with CICS and requests the AMNU transaction. After
the application receives the AMNU operator screen, it requests the browse
function of the AMNU program by writing "ABRW" and "000001" into the two
unprotected fields of the operator screen.

The OpenVMS application receives the first screen of the browse function and
makes successive calls to SNA3270$READ_FIELD to read each field on the
screen. Each field is displayed giving its attributes, text, and length. You can
use this technique to analyze any screen image that an IBM application might
send.

The following list provides a step-by-step description of what this program
does:

1. Prompts the user for a Gateway DECnet node name or TCP/IP host name
and access name

2. Requests a connection with IBM

3. Receives the CICS logo

4. Sends a clear screen request

5. Receives a clear screen command

6. Requests the AMNU transaction

7. Receives the AMNU operator screen

8. Requests the browse operation

9. Finds the first unprotected field

10. Inserts "ABRW" in the first unprotected field

11. Finds the next unprotected field

12. Inserts "000001" in the next unprotected field

13. Sends the browse request with the AID key equal to enter

14. Receives the browse screen

15. Finds the next field with the unspecified attributes

16. Displays the field number, attributes, size, and contents

5–2 Programming Examples



17. Successively reads fields until it has displayed them all

18. Issues a disconnect request

PROGRAM LU2_EXAMPLE
C

[1] INCLUDE ’SYS$LIBRARY:SNA3270DF/NOLIST’ ! Include 3270
! definitions

C
C define misc. session variables
C

INTEGER*4 STATUS_VECTOR (SNA3270$K_MIN_STATUS_VECTOR)
INTEGER*4 NOTIFY_VECTOR (SNA3270$K_MIN_NOTIFY_VECTOR)
INTEGER*4 SESSION_ID
INTEGER*4 RETURN_CODE, CONN_TYPE
PARAMETER LU2_EFN = 10
EXTERNAL NOTIFY_RTN ! Define notify routine

C
C Define screen image
C

INTEGER*4 SCREEN_SIZE ! Define screen size
[2] PARAMETER (SCREEN_SIZE = 3169)

CHARACTER*(SCREEN_SIZE) SCREEN_IMAGE
C
C Define field mode structures
C
C STRUCTURE /DSC/
C INTEGER*2 DSC$W_LENGTH
C [3] BYTE DSC$B_DTYPE, DSC$B_CLASS
C INTEGER*4 DSC$A_POINTER
C END STRUCTURE

RECORD /SNA3270_SDB/ SDB
RECORD /SNA3270_FDB/ FDB

C RECORD /DSC/ SDB_DSC
C RECORD /DSC/ FDB_DSC

INTEGER*4 SDB_DSC(2), FDB_DSC(2)
CHARACTER*256 FIELD_DATA
INTEGER*2 FIELD_ATTR, FIELD_OFFSET, LENGTH
LOGICAL*1 FIELD_VECTOR(SCREEN_SIZE/8+1)
INTEGER*2 ATTR_VECTOR(SCREEN_SIZE)
CHARACTER*8 NODE_NAME,ACC_NAME

C
C Global data
C

COMMON /SESSION_DATA/ SESSION_ID, STATUS_VECTOR
COMMON /NOTIFY/NOTIFY_VECTOR ! So notify routine

! can access
C
C Initialize FDB and SDB descriptors
C

SDB_DSC(1) = SNA3270$K_SDB_LENGTH
[4] SDB_DSC(2) = %LOC (SDB)

Programming Examples 5–3



FDB_DSC(1) = SNA3270$K_FDB_SIZE
FDB_DSC(2) = %LOC (FDB)

C
C Get gateway or TCP/IP host name and access name
C

TYPE 9001 ! Prompt for gateway or TCP/IP host name
[5] ACCEPT 9002, NODE_NAME ! Input gateway or TCP/IP host name

TYPE 9003 ! Prompt for access name
[5] ACCEPT 9002, ACC_NAME ! Input access name

C
C Request Field Mode connection (null parameters are explicit
C access parameters, access name is used instead)
C

RETURN_CODE = SNA3270$REQUEST_CONNECT_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(SNA3270$K_ACTIVE),
2 %REF(SNA3270$K_FIELD_MODE), %DESCR(NODE_NAME),
3 %DESCR(ACC_NAME),,,,,, [6] SCREEN_IMAGE, [7]
4 %DESCR(ATTR_VECTOR),

[8] 5 %DESCR(FIELD_VECTOR), SDB_DSC, FDB_DSC, NOTIFY_RTN,
6 SESSION_ID, %DESCR(NOTIFY_VECTOR), %REF(LU2_EFN))

IF (.NOT. RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’CONNECT failed’

ENDIF
C
C Receive CICS logo
C

RETURN_CODE = SNA3270$RECEIVE_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_SCREEN failed’

ENDIF
C
C Send clear screen request
C

RETURN_CODE = SNA3270$TRANSMIT_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(SNA3270$K_AID_CLEAR),
2 %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’TRANSMIT_SCREEN failed’

ENDIF
C
C Receive clear screen command
C

RETURN_CODE = SNA3270$RECEIVE_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_SCREEN failed’

5–4 Programming Examples



ENDIF

C
C Transmit transaction name (AMNU)
C

FIELD_DATA = ’AMNU’
CALL WRITE_NEXT_FIELD (FIELD_DATA(1:4), FDB)

RETURN_CODE = SNA3270$TRANSMIT_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(SNA3270$K_AID_ENTER),
2 %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’TRANSMIT_SCREEN failed’

ENDIF
C
C Receive AMNU operator screen
C

RETURN_CODE = SNA3270$RECEIVE_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_SCREEN failed’

ENDIF
C
C Request browse operation
C

FIELD_DATA = ’ABRW’
CALL WRITE_NEXT_FIELD (FIELD_DATA(1:4), FDB)

C
C
C

FIELD_DATA = ’000001’
CALL WRITE_NEXT_FIELD (FIELD_DATA(1:6), FDB)

RETURN_CODE = SNA3270$TRANSMIT_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(SNA3270$K_AID_ENTER),
2 %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’TRANSMIT_SCREEN failed’

ENDIF
C
C Receive browse screen
C

RETURN_CODE = SNA3270$RECEIVE_SCREEN_W (SESSION_ID,
1 %DESCR(STATUS_VECTOR), %REF(LU2_EFN))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’RECEIVE_SCREEN failed’

ENDIF

Programming Examples 5–5



C
C Read a field
C

[9] FDB.SNA3270$W_FDB_ATT_VALUE = SNA3270$M_ATTR_PRO
[9] FDB.SNA3270$W_FDB_ATT_MASK = SNA3270$M_ATTR_PRO

FDB.SNA3270$W_FDB_SELECT = SNA3270$K_SEL_SEARCH_NEXT

[10] DO 100 I=1,20
[11] RETURN_CODE = SNA3270$READ_FIELD (SESSION_ID,

1 %DESCR(STATUS_VECTOR), FIELD_DATA)

IF (.NOT. RETURN_CODE) THEN
C IF (STATUS_VECTOR(4) .NE. SNA3270$_RTRUNC) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’READ_FIELD failed’

C ENDIF
ENDIF

C
C Get field length, but limit length to maximum output
C length.
C

LENGTH = FDB.SNA3270$W_FDB_FLD_COUNT
IF (LENGTH .GT. 62) LENGTH = 62

C
C Translate to EBCDIC and display
C

ISTAT = LIB$TRA_EBC_ASC(FIELD_DATA(:LENGTH),
1 FIELD_DATA(:LENGTH))
TYPE 9000, I, FDB.SNA3270$W_FDB_FLD_ATTR,
1 FDB.SNA3270$W_FDB_FLD_COUNT, FIELD_DATA(:LENGTH)

100 CONTINUE
C
C Disconnect session
C

RETURN_CODE = SNA3270$REQUEST_DISCONNECT (SESSION_ID,
1 %DESCR(STATUS_VECTOR))
IF (.NOT. RETURN_CODE) THEN

ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’DISCONNECT failed’

ENDIF

STOP ’End of LU2 example’
C
C Format statements
C

9000 FORMAT (1X,I2,2X,Z4,2X,I5,2X,62A)
9001 FORMAT (1X,’Enter gateway DECnet node name or TCP/IP host name: ’,2X,$)
9002 FORMAT (A8)
9003 FORMAT (1X,’Enter access name: ’,2X,$)

END

SUBROUTINE NOTIFY_RTN (EVENT_CODE, NOTIFY_PARM)

5–6 Programming Examples



C**********************************************************************
C *
C This is the asynchronous event notification routine. All this *
C implementation does is report that an event has occurred. A more *
C complete implementation might take specific action based on the *
C event, such as trying to reestablish a session that was terminated *
C or issuing a receive if the data event was received. *
C *
C**********************************************************************

INCLUDE ’SYS$LIBRARY:SNA3270DF/NOLIST’ ! Include 3270
! definitions

INTEGER*4 NOTIFY_VECTOR (SNA3270$K_MIN_NOTIFY_VECTOR)
INTEGER*4 EVENT_CODE
CHARACTER CLEAR_EVENT*14/’Clear received’/
CHARACTER DATA_EVENT*13/’Data received’/
CHARACTER PROERR_EVENT*27/’SNA protocol error detected’/
CHARACTER RECON_EVENT*19/’Session reconnected’/
CHARACTER TERM_EVENT*18/’Session terminated’/
CHARACTER TURN_EVENT*15/’PLU RTS honored’/
CHARACTER UNBIND_EVENT*22/’Unbind type 2 received’/

C
C Global data
C

COMMON /SESSION_DATA/ SESSION_ID, STATUS_VECTOR
COMMON /NOTIFY/NOTIFY_VECTOR ! So notify routine

! can access

Programming Examples 5–7



IF (EVENT_CODE .EQ. SNA3270$K_EVT_CLEAR) THEN
TYPE 9100, CLEAR_EVENT

ENDIF
IF (EVENT_CODE .EQ. SNA3270$K_EVT_DATA) THEN

TYPE 9100, DATA_EVENT
ENDIF
IF (EVENT_CODE .EQ. SNA3270$K_EVT_PROPROERR) THEN

TYPE 9100, PROERR_EVENT
ENDIF
IF (EVENT_CODE .EQ. SNA3270$K_EVT_RECONNECTED) THEN

TYPE 9100, RECON_EVENT
ENDIF
IF (EVENT_CODE .EQ. SNA3270$K_EVT_TERMINATE) THEN

TYPE 9100, TERM_EVENT
ENDIF
IF (EVENT_CODE .EQ. SNA3270$K_EVT_TURNGONE) THEN

TYPE 9100, TURN_EVENT
ENDIF
IF (EVENT_CODE .EQ. SNA3270$K_EVT_UNBINDT2) THEN

TYPE 9100, UNBIND_EVENT
ENDIF
ISTAT = SYS$PUTMSG(NOTIFY_VECTOR)
RETURN

9100 FORMAT (3X,’Asynchronous notification: ’,A30//)
END

SUBROUTINE WRITE_NEXT_FIELD (DATA, FDB)

C**********************************************************************
C *
C This routine first calls SNA3270$READ_FIELD to position the FDB *
C pointers to the next unprotected field. It then translates the *
C data into EBCDIC and calls SNA3270$WRITE_FIELD to write the data *
C into the screen image. *
C *
C**********************************************************************

INCLUDE ’SYS$LIBRARY:SNA3270DF/NOLIST’

CHARACTER*(*) DATA
INTEGER*4 STATUS_VECTOR (SNA3270$K_MIN_STATUS_VECTOR)
INTEGER*4 SESSION_ID
INTEGER*4 RETURN_CODE
RECORD /SNA3270_FDB/ FDB

COMMON /SESSION_DATA/ SESSION_ID, STATUS_VECTOR

C
C Find the next unprotected field
C

FDB.SNA3270$W_FDB_ATT_VALUE = 0
FDB.SNA3270$W_FDB_ATT_MASK = SNA3270$M_ATTR_PRO
FDB.SNA3270$W_FDB_BUFOFF = 0
FDB.SNA3270$W_FDB_SELECT = SNA3270$K_SEL_SEARCH_NEXT

5–8 Programming Examples



RETURN_CODE = SNA3270$READ_FIELD (SESSION_ID,
1 %DESCR(STATUS_VECTOR))

IF (.NOT. RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’READ_FIELD failed’

ENDIF
C
C Convert string to EBCDIC
C

ISTAT = LIB$TRA_ASC_EBC (DATA, DATA)
[12] IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

C
C Update the screen image
C

RETURN_CODE = SNA3270$WRITE_FIELD(SESSION_ID,
1 %DESCR(STATUS_VECTOR),DATA)

IF (.NOT. RETURN_CODE) THEN
ISTAT = SYS$PUTMSG(STATUS_VECTOR)
STOP ’WRITE_FIELD failed’

ENDIF

RETURN
END

Comments

1. Include the 3270 Library.

2. The screen image must be one element greater than the larger of the
default and alternate screen size (3168 + 1). The first byte is reserved.

3. In FORTRAN, the built-in descriptor mechanism does not allow you to pass
a structure by descriptor. To solve this problem, add your own statements
to build a structure defining the descriptor, fill in the descriptor and then
pass it by reference.

4. The filled-in descriptors.

5. The input for NODE_NAME and ACC_NAME is case sensitive. Use the
case appropriate for your needs.

6. Commas indicate that you do not want to specify values for the parameters
and will accept the default values provided by the Interface.

7. The SCREEN_IMAGE is defined as a character string and passed by
descriptor by default.

8. The SDB_DSC and FDB_DSC are passed by reference, the default for
structures.

Programming Examples 5–9



9. If you specify 0 (no preference) for the attributes, the Interface locates the
next field no matter what the attribute.

10. The number of loop counts (for example, 20) you can do is installation
dependent.

11. The READ_FIELD procedure always completes synchronously even though
no _W is present.

12. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

5–10 Programming Examples



5.2 PL/I Programming Example–Data Stream Mode
The PL/I application shown here uses stream mode in the 3270 Data Stream
Interface to connect to IBM. The program invokes the CSFE transaction (a
remote loopback program) running under CICS and transmits a string of
data to it. IBM then writes the string back to the OpenVMS application. The
application then compares the data that it sent with the data returned by IBM.

The following list provides a step-by-step description of what this program
does:

1. Requests a connection with IBM

2. Receives the CICS logo

3. Acknowledges the CICS logo

4. Sends a clear screen request

5. Receives a clear screen command

6. Acknowledges a clear screen command

7. Requests the CSFE transaction

8. Receives the CSFE instruction screen

9. Acknowledges the CSFE instruction screen

10. Sends the data string to CSFE

11. Receives data string from CSFE

12. Acknowledges receiving data from CSFE

13. Compares CSFE data with data OpenVMS application originally sent

14. Issues a disconnect request

MAIN: PROCEDURE OPTIONS(MAIN) RETURNS (FIXED BINARY(31));

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE SYS$PUTMSG; /* System Service */

[1]%INCLUDE ’SYS$LIBRARY:SNA3270DF.PLI’; /* SNA3270 symbols and */
/* routine definitions */

/****************************************************************/
/* */
/* Declare external routines first */
/* */
/****************************************************************/

DECLARE

EXAMPLE$NOTIFY POINTER GLOBALREF,

Programming Examples 5–11



LIB$GET_INPUT EXTERNAL ENTRY (
CHARACTER (*), /* Data */
CHARACTER (*), /* Prompt */
FIXED BIN (15)) /* Size */

RETURNS (FIXED BIN(31)),

LIB$TRA_ASC_EBC EXTERNAL ENTRY (
CHARACTER (*), /* Input buffer */
CHARACTER (*)) /* Output Buffer*/

RETURNS (FIXED BIN(31));

/****************************************************************/
/* */
/* Declare variables and structures */
/* */
/****************************************************************/

%REPLACE TEXT_SIZE BY 56;

DECLARE NODE_NAME CHARACTER (6),
NODE_NAME_SIZE FIXED BIN (15),
NODE_PROMPT CHARACTER (18)

STATIC INITIAL(’Enter node name: ’),

ACCESS_NAME CHARACTER (6),
ACCESS_NAME_SIZE FIXED BIN (15),
ACCESS_PROMPT CHARACTER (20)

STATIC INITIAL(’Enter access name: ’),

SESSION_ID FIXED BIN (31),
DATA_SIZE FIXED BIN (31),
STATUS_VECTOR CHARACTER (SNA3270$K_MIN_STATUS_VECTOR),

NOTIFY_VECTOR GLOBALDEF
CHARACTER (SNA3270$K_MIN_NOTIFY_VECTOR),

I FIXED BINARY (8) INITIAL (0),
LOOP_COUNT FIXED DECIMAL (3) INITIAL (0),
ERROR_COUNT FIXED BINARY (16) INITIAL (0),

ASCII_TEXT CHARACTER (TEXT_SIZE) INITIAL
[2] (’..........
[3] ABCDEFGHIJKLMNOPQRSTUVWXYZ

1234567890.,?/$*’),

DATA_BUFFER_PTR_1 POINTER,
[4] DATA_BUFFER_1 CHARACTER (2048),

DATA_BUFFER_ARRAY_1 (2048)
CHARACTER BASED (DATA_BUFFER_PTR_1),

DATA_BUFFER_PTR_2 POINTER,
[5] DATA_BUFFER_2 CHARACTER (TEXT_SIZE),

DATA_BUFFER_ARRAY_2 (TEXT_SIZE)
CHARACTER BASED (DATA_BUFFER_PTR_2);

5–12 Programming Examples



DATA_BUFFER_PTR_1 = ADDR (DATA_BUFFER_1);
DATA_BUFFER_PTR_2 = ADDR (DATA_BUFFER_2);

/****************************************************************/
/* */
/* Get node name and access name. Use this information */
/* to establish a session with IBM. */
/* */
/****************************************************************/

STS$VALUE = LIB$GET_INPUT ( NODE_NAME,
NODE_PROMPT,
NODE_NAME_SIZE);

IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

STS$VALUE = LIB$GET_INPUT ( ACCESS_NAME,
ACCESS_PROMPT,
ACCESS_NAME_SIZE);

IF ^STS$SUCCESS THEN RETURN (STS$VALUE);

STS$VALUE = SNA3270$REQUEST_CONNECT_W (
SESSION_ID,
STATUS_VECTOR,
SNA3270$K_ACTIVE,
SNA3270$K_STREAM_MODE,
NODE_NAME,
ACCESS_NAME,

[6] ,,,,,,,,,,,,
ADDR(EXAMPLE$NOTIFY),
,
NOTIFY_VECTOR,
,,,);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

/****************************************************************/
/* */
/* Read in normal data, this should be the CICS logo */
/* */
/****************************************************************/

STS$VALUE = EXAMPLE$READ_STREAM (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_1,
DATA_SIZE);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

/****************************************************************/
/* */
/* Clear the screen so CICS will restore keyboard */
/* */
/****************************************************************/

DATA_BUFFER_ARRAY_2 (8) = BYTE (SNA3270$K_AID_CLEAR);

Programming Examples 5–13



[7]DATA_SIZE = SNA3270$K_BUF_HDLEN + 10;

STS$VALUE = SNA3270$TRANSMIT_STREAM_W (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_1,
DATA_SIZE,
SNA3270$K_END_OF_DATA,
,, /* EFN,AST,Parm */
);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

STS$VALUE = EXAMPLE$READ_STREAM (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_1,
DATA_SIZE);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

/****************************************************************/
/* */
/* Run the "CSFE" transaction */
/* */
/****************************************************************/

DATA_BUFFER_ARRAY_1 (8) = BYTE(SNA3270$K_AID_ENTER); /* AID */
DATA_BUFFER_ARRAY_1 (9) = BYTE (40); /*Cursor*/
DATA_BUFFER_ARRAY_1 (10)= BYTE (40); /* Addr */
DATA_BUFFER_ARRAY_1 (11) = BYTE (131); /* c */
DATA_BUFFER_ARRAY_1 (12) = BYTE (162); /* s */

[8]DATA_BUFFER_ARRAY_1 (13) = BYTE (134); /* f */
DATA_BUFFER_ARRAY_1 (14) = BYTE (133); /* e */
DATA_SIZE = SNA3270$K_BUF_HDLEN + 7;

STS$VALUE = SNA3270$TRANSMIT_STREAM_W (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_1,
DATA_SIZE,
SNA3270$K_END_OF_DATA,
,, /* EFN,AST,Parm */
);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

STS$VALUE = EXAMPLE$READ_STREAM (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_1,
DATA_SIZE);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

5–14 Programming Examples



/****************************************************************/
/* */
/* Loop a block of data back and forth. Check integrity */
/* of data after each receive. Print statistics and quit. */
/* */
/****************************************************************/

[9]STS$VALUE = LIB$TRA_ASC_EBC (
ASCII_TEXT,
DATA_BUFFER_2
);

DATA_BUFFER_ARRAY_1 (8) = BYTE(SNA3270$K_AID_ENTER); /* AID */
[10]DATA_BUFFER_ARRAY_1 (9) = BYTE (40); /*Cursor*/
[10]DATA_BUFFER_ARRAY_1 (10)= BYTE (40); /* Addr */

DO LOOP_COUNT = 1 TO 10;

DATA_SIZE = TEXT_SIZE;
STS$VALUE = SNA3270$TRANSMIT_STREAM_W (

SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_2,
DATA_SIZE,
SNA3270$K_END_OF_DATA,
,, /* EFN,AST,Parm */
);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

STS$VALUE = EXAMPLE$READ_STREAM (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER_1,
DATA_SIZE);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

[11] DO I = SNA3270$K_BUF_HDLEN + 4 TO TEXT_SIZE;
IF DATA_BUFFER_ARRAY_1 (I-1) ^= DATA_BUFFER_ARRAY_2 (I) THEN
DO;

PUT SKIP LIST (’Error in data byte ’,I,’ on pass ’,LOOP_COUNT);
PUT SKIP LIST (’ Expected to find ’, DATA_BUFFER_ARRAY_1(I));
PUT SKIP LIST (’ But found instead ’,DATA_BUFFER_ARRAY_2(I+1));
ERROR_COUNT = ERROR_COUNT + 1;

END;
END;

END;

STS$VALUE = SNA3270$REQUEST_DISCONNECT (
SESSION_ID,
STATUS_VECTOR,
,,
);

IF ^STS$SUCCESS THEN GOTO ERROR_FROM_INTERFACE;

Programming Examples 5–15



PUT SKIP (2) LIST (’Exiting after ’,LOOP_COUNT-1,’ passes with ’
, ERROR_COUNT, ’ errors’);

RETURN (1);

ERROR_FROM_INTERFACE:
STS$VALUE = SYS$PUTMSG (STATUS_VECTOR);
END;

/****************************************************************/
/* */
/* Receive data and acknowledge it */
/* */
/****************************************************************/

EXAMPLE$READ_STREAM: PROCEDURE (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE)

RETURNS (FIXED BIN);

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE ’SYS$LIBRARY:SNA3270DF.PLI’; /* SNA3270 symbols and */

/* routine definitions */
DECLARE SESSION_ID FIXED BIN (31),

DATA_BUFFER CHARACTER (*),
DATA_SIZE FIXED BIN (31),
STATUS_VECTOR CHARACTER (*);

STS$VALUE = SNA3270$RECEIVE_STREAM_W (
SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_SIZE,
,, /* AST,EFN,Parm */
);

IF STS$VALUE = 1
THEN

DO

[12] STS$VALUE = SNA3270$ACKNOWLEDGE (
SESSION_ID,
STATUS_VECTOR,
SNA3270$K_ACK_ACCEPT
);

END;

RETURN (STS$VALUE);

END;

5–16 Programming Examples



/****************************************************************/
/* */
/* Asynchronous notify routine */
/* */
/****************************************************************/

EXAMPLE$NOTIFY: PROCEDURE (
EVENT_CODE,
EVENT_PARAMETER); [13]

%INCLUDE $STSDEF; /* System status codes */
%INCLUDE SYS$PUTMSG; /* System Service */
%INCLUDE ’SYS$LIBRARY:SNA3270DF.PLI’; /* SNA3270 symbols and */

/* routine definitions */
DECLARE EVENT_CODE FIXED BINARY (31),

EVENT_PARAMETER FIXED BINARY (31),
NOTIFY_VECTOR GLOBALREF CHARACTER;

/****************************************************************/
/* */
/* Ignore "Data Arrived" events, display all others */
/* */
/****************************************************************/

IF EVENT_CODE ^= SNA3270$K_EVT_DATA
THEN

STS$VALUE = SYS$PUTMSG (NOTIFY_VECTOR);

END;

Comments

1. Include the 3270 Library.

2. The periods are place holders for Interface headers (7 bytes for the
Interface header and 3 bytes for the data stream header).

3. Test string is being sent to IBM.

4. Input buffers. DATA_BUFFER_1 receives all data (e.g., the CICS logo).

5. Output buffers. DATA_BUFFER_2 is used to build and transmit the data
image.

6. Commas indicate that you do not want to specify values for the parameters
and will accept the default values provided by the Interface.

7. The application must leave room in the buffer for header information.

8. CSFE is the remote loopback program running under CICS on IBM.

9. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

Programming Examples 5–17



10. The cursor address is encoded. For information about these codes, see IBM
3270 Information Display System Data Stream Programmer’s Reference,
Order No. GA23-0059.

11. Note that the input header (4 bytes) and output header (3 bytes) have
different lengths. Three bytes in both the input and output headers contain
3270 data stream control characters (AID key and cursor address). The
fourth byte of the input header contains the write control character. This
code compares the data the OpenVMS application sent with the data
returned by IBM and diagnoses any errors.

12. The SNA3270$ACKNOWLEDGE procedure would normally be called after
examination of the data stream header. The application would reject any
unsupported or illegal data stream control characters.

13. The asynchronous notify routine, notify parameter, and notify vector
are specified in the REQUEST_CONNECT procedure. If you are using
multiple sessions, specify a session-id or an internal session data structure
in the event-parameter, so you can identify a particular session. For more
information, see Section 3.2.

5–18 Programming Examples



5.3 C Programming Example–Data Stream Mode
The C program fragment shown here initiates a session with CICS and then
clears the screen. It then terminates the session. You can use this program to
verify that you can connect with IBM.

#include "sys$library:descrip.h" /* Descriptor definitions */
#include "sys$library:ssdef.h" /* System services */
#include "sys$library:stsdef.h"

[1]#include "sys$library:sna3270df.h" /* 3270 library */

int

sense_code,
status;

unsigned int
status_vec[SNA3270$K_MIN_STATUS_VECTOR],
notify_vec[SNA3270$K_MIN_NOTIFY_VECTOR],
session_id = 0,
end_chain = SNA3270$K_END_OF_DATA,
conn_typ = SNA3270$K_ACTIVE,
mode_typ = SNA3270$K_STREAM_MODE;

short unsigned int
data_length;

struct {
char sna_header [SNA3270$K_BUF_HDLEN]; [2]
char sna_data [2000];
} db;

static $DESCRIPTOR(node_dsc, "BOOJUM");
static $DESCRIPTOR(acc_name_dsc, "XCICS");

struct dsc$descriptor
status_vec_dsc = {SNA3270$K_MIN_STATUS_VECTOR,0,

0,status_vec},
notify_vec_dsc = {SNA3270$K_MIN_NOTIFY_VECTOR,0,

0,notify_vec},
.
.
.

/* */
/* Start by bringing up a session, i.e. connect to CICS */
/* */

Programming Examples 5–19



status = SNA3270$REQUEST_CONNECT_W(&session_id,
&status_vec_dsc,
&conn_typ,
&mode_typ,
&node_dsc,
&acc_name_dsc,
0,0,0,0,0,0,0,0,0,0,0,0, [3]
&notify_rtn,
0,
&notify_vec_dsc,
0,0,0
);

if (!(status & STS$M_SUCCESS)) {
.
.
.

/* */
/* Clear the screen */
/* */

data_length = SNA3270$K_BUF_HDLEN + 1;
db.sna_data[0] = SNA3270$K_AID_CLEAR;

status = SNA3270$TRANSMIT_STREAM_W(&session_id,
&status_vec_dsc,
&data_bufr_dsc,
&data_length,
&end_chain,
0,0,0
);

if (!(status & STS$M_SUCCESS)) {
goto terminate;

}

status = SNA3270$RECEIVE_STREAM_W(&session_id,
&status_vec_dsc,
&data_bufr_dsc,
&data_length,
0,0,0
);

if (!(status & STS$M_SUCCESS)) {
.
.
.

5–20 Programming Examples



/* */
/* Done, Disconnect the session */
/* */

terminate:
status = SNA3270$REQUEST_DISCONNECT_W(&session_id,

&status_vec_dsc,
0,0,0
);

.

.

.

Comments

1. Include the 3270 Library.

2. The application must leave room in the buffer for header information.

3. The commas and zeros indicate that you do not want to specify values for
the parameters and will accept the default values provided by the Interface.

Programming Examples 5–21



5.4 COBOL Programming Example–Data Stream Mode
This COBOL program fragment initiates a session with CICS. It then invokes
the CSFE transaction (a remote loopback program) running under CICS and
transmits a string of data to it. After receiving the CSFE screen from IBM, the
program terminates the session.

IDENTIFICATION DIVISION.
PROGRAM-ID. TEST2.
DATA DIVISION.

WORKING-STORAGE SECTION.

01 SS-STATUS PIC S9(09) COMP.
01 SESS-ID PIC 9(08) COMP.
01 STATUS-VEC PIC X(64).
01 SNA3270$L_ACTIVE PIC 9(08) COMP VALUE 1.
01 SNA3270$L_STREAM_MODE PIC 9(08) COMP VALUE 2.
01 NODNAM PIC X(06) VALUE SPACES.

[1] ACCNAM PIC X(08) VALUE SPACES.
01 NOTIFY-RTN-NAME PIC X(06) VALUE "NOTIFY".
01 NOTIFY-RTN-ADDR PIC 9(09) COMP.
01 WS-STATUS PIC X(10).
01 NOTIFY-VEC PIC X(64).
01 WS-NOTIFY-VEC PIC X(64).
01 WS-STATUS-VEC PIC X(64).

01 TEMP-DATA-BUF.
02 TEMP-DATA-BUFFER OCCURS 256 TIMES PIC X.

01 SNA3270$L_ACK_ACCEPT PIC 9(08) COMP VALUE 0.
01 LAST-FLAG PIC 9(08) COMP VALUE 1.

01 DATA-BUFFER.
02 WS-DATA-BUF OCCURS 1000 TIMES PIC X(02).

01 DATA-BUF.
02 DATA-BUF1 PIC 9(7).
02 DATA-BUF2.

03 DATA-BUFFER2 OCCURS 1000 TIMES PIC X.
01 IDX PIC 9(02).
01 SUB PIC 9(02).
01 BUF-LEN PIC 9(08) COMP.
01 TEST-DATA.

02 TST-DATA OCCURS 52 TIMES PIC X.

5–22 Programming Examples



PROCEDURE DIVISION.
MAIN.

PERFORM GET-NODE-ACC-NAME.
PERFORM GET-NOTIFY-RTN-ADDR.
PERFORM REQUEST-CONNECT.
PERFORM RECEIVE-CICS.
PERFORM ACKNOWLEDGE-DATA.
PERFORM TRANSMIT-CLEAR-SCREEN.
PERFORM RECEIVE-CLEAR-SCREEN.

[2] PERFORM ACKNOWLEDGE-DATA.
PERFORM TRANSMIT-CSFE.
PERFORM RECEIVE-CSFE.
PERFORM ACKNOWLEDGE-DATA.
PERFORM TRANSMIT-DATA.
PERFORM RECEIVE-DATA.
PERFORM ACKNOWLEDGE-DATA.
PERFORM REQUEST-DISCONNECT.
PERFORM EXIT-PROGRAM.

***************************************************************
* Get the address of the notify routine
***************************************************************
GET-NOTIFY-RTN-ADDR.

CALL "COB$CALL"
USING BY DESCRIPTOR NOTIFY-RTN-NAME
GIVING NOTIFY-RTN-ADDR.

.

.

.

***************************************************************
* Try to bring up a session in stream mode
***************************************************************

REQUEST-CONNECT.
CALL "SNA3270$REQUEST_CONNECT_W" USING

BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY REFERENCE SNA3270$L_ACTIVE,

SNA3270$L_STREAM_MODE,
BY DESCRIPTOR NODNAM, ACCNAM,
BY VALUE 0,0,0,0,0,0,0,0,0,0,0,0,
BY VALUE NOTIFY-RTN-ADDR,
BY VALUE 0,
BY DESCRIPTOR NOTIFY-VEC,
BY VALUE 0,0,0,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

Programming Examples 5–23



****************************************************************
* Receive the CICS logo
****************************************************************

RECEIVE-CICS.

MOVE SPACES TO DATA-BUF.
MOVE ZEROS TO BUF-LEN.
CALL "SNA3270$RECEIVE_STREAM_W" USING

BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR DATA-BUF,
BY REFERENCE BUF-LEN,
BY VALUE 0,0,0,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

****************************************************************
* Acknowledge data received
****************************************************************

ACKNOWLEDGE-DATA.

CALL "SNA3270$ACKNOWLEDGE" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY REFERENCE SNA3270$L_ACK_ACCEPT,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

.

.

.

****************************************************************
* Convert CSFE to hex and transmit
****************************************************************

TRANSMIT-CSFE.
MOVE ZEROS TO DATA-BUF1.
MOVE SPACES TO DATA-BUF2.
MOVE 14 TO BUF-LEN.
MOVE 1 TO IDX.

[3] MOVE "7D40C483A28685" TO DATA-BUFFER.
PERFORM CONVERT-TO-HEX 14 TIMES.

5–24 Programming Examples



CALL "SNA3270$TRANSMIT_STREAM_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR DATA-BUF,
BY REFERENCE BUF-LEN,
BY REFERENCE LAST-FLAG,
BY VALUE 0,0,0,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

****************************************************************
* Receive CSFE screen
****************************************************************

RECEIVE-CSFE.
MOVE SPACES TO DATA-BUF.
MOVE ZEROS TO BUF-LEN.

CALL "SNA3270$RECEIVE_STREAM_W" USING
BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY DESCRIPTOR DATA-BUF,
BY REFERENCE BUF-LEN,
BY VALUE 0,0,0,

GIVING SS-STATUS.

IF SS-STATUS IS FAILURE
THEN

PERFORM EXIT-PROGRAM.

.

.

.

****************************************************************
* Disconnect link, we are done with the session
****************************************************************

REQUEST-DISCONNECT.
CALL "SNA3270$REQUEST_DISCONNECT_W" USING

BY REFERENCE SESS-ID,
BY DESCRIPTOR STATUS-VEC,
BY VALUE 0,0,0,

GIVING SS-STATUS.

EXIT-PROGRAM.
CALL "SYS$PUTMSG" USING STATUS-VEC.
STOP RUN.

Programming Examples 5–25



CONVERT-TO-HEX.
CALL "LIB$CVT_HTB" USING BY VALUE 2,

BY REFERENCE WS-DATA-BUF(IDX),
BY REFERENCE DATA-BUFFER2(IDX),

GIVING SS-STATUS.
ADD 1 TO IDX.

[4]TRANSLATE-ASC-EBC.
CALL "LIB$TRA_ASC_EBC" USING BY DESCRIPTOR TST-DATA(SUB),

DATA-BUFFER2(IDX),
GIVING SS-STATUS.

ADD 1 TO SUB.
ADD 1 TO IDX.

TRANSLATE-EBC-ASC.
CALL "LIB$TRA_EBC_ASC" USING BY DESCRIPTOR DATA-BUFFER2(IDX),

TEMP-DATA-BUFFER(SUB),
GIVING SS-STATUS.

ADD 1 TO SUB.
ADD 1 TO IDX.

Comments

1. Define symbols you will need to write your application.

2. Break the application into simple procedures. Note that all of the
procedures listed here are not shown in this programming fragment,
but they are similar to those used in this example.

3. This data represents three pieces of information:

• 7D = an AID key (enter)

• 40C4 = cursor address

• 83A28685 = CSFE

4. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

5–26 Programming Examples



5.5 BLISS Programming Example–Field Mode
This BLISS program fragment initiates a session with CICS using field mode.
It then invokes the CSFE transaction (a remote loopback program) running
under CICS and transmits a string of data to it.

MODULE TESTFM (MAIN = FM$MAIN) =

BEGIN

[1]REQUIRE ’SYS$LIBRARY:SNA3270DF’;
LIBRARY ’SYS$LIBRARY:STARLET’;

EXTERNAL ROUTINE
LIB$TRA_ASC_EBC :ADDRESSING_MODE (GENERAL),
LIB$TRA_EBC_ASC :ADDRESSING_MODE (GENERAL),
LIB$PUT_OUTPUT :ADDRESSING_MODE (GENERAL),
LIB$GET_INPUT :ADDRESSING_MODE (GENERAL);

FORWARD ROUTINE
FM$MAIN : NOVALUE,
NOTIFY$RTN : NOVALUE;

LITERAL
INPUT_BUFFER_SIZE = 132;

GLOBAL
SESS_ID,
NOTIFY_VECTOR : VECTOR [SNA3270$K_MIN_NOTIFY_VECTOR, LONG],
NOTIFY_DSC : BLOCK [8, BYTE],
STATUS_VECTOR : VECTOR [SNA3270$K_MIN_STATUS_VECTOR, LONG],
STATUS_DSC : BLOCK [8, BYTE];

GLOBAL
BIND

NOTIFY_VECTOR_SIZE = SNA3270$K_MIN_NOTIFY_VECTOR,
STATUS_VECTOR_SIZE = SNA3270$K_MIN_STATUS_VECTOR;

GLOBAL ROUTINE FM$MAIN : NOVALUE =

!
!
! This routine tests the field mode connection.
!
!

BEGIN

Programming Examples 5–27



LITERAL
BUFFER_SIZE = 132,
DATA_BUFFER_SIZE = 1000,
FIELD_VECTOR_SIZE = 397,
CHAR_VECTOR_SIZE = 3169,
ATTR_VECTOR_SIZE = 6338,
SDB_SIZE = SNA3270$K_SDB_LENGTH,
FDB_SIZE = SNA3270$K_FDB_SIZE,
TEXT_DSC_SIZE = 52;

.

.

.

OWN
ACCESS_DSC :BLOCK [8, BYTE],
DATA_DSC :BLOCK [8, BYTE],
NODE_DSC :BLOCK [8, BYTE],
CHAR_DSC :BLOCK [8, BYTE],
ATTR_DSC :BLOCK [8, BYTE],
FIELD_DSC :BLOCK [8, BYTE],
SDB_DSC :BLOCK [8, BYTE],
FDB_DSC :BLOCK [8, BYTE],
SDB :SNA3270_SDB,
FDB :SNA3270_FDB,
CHAR_VECTOR :VECTOR [CHAR_VECTOR_SIZE, BYTE],
ATTR_VECTOR :VECTOR [ATTR_VECTOR_SIZE, WORD],
FIELD_VECTOR :VECTOR [FIELD_VECTOR_SIZE, BYTE],
ACCESS_BUF :VECTOR [BUFFER_SIZE, BYTE],
NODE_BUF :VECTOR [BUFFER_SIZE, BYTE],
DATA_BUFFER :VECTOR [DATA_BUFFER_SIZE, BYTE];

BIND
TEXT_DSC = %ASCID %STRING (

’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’)
:BLOCK [8, BYTE];

STATUS_DSC [DSC$W_LENGTH] = STATUS_VECTOR_SIZE;
STATUS_DSC [DSC$A_POINTER] = STATUS_VECTOR;
STATUS_DSC [DSC$B_CLASS] = DSC$K_CLASS_S;

NOTIFY_DSC [DSC$W_LENGTH] = NOTIFY_VECTOR_SIZE;
NOTIFY_DSC [DSC$A_POINTER] = NOTIFY_VECTOR;
NOTIFY_DSC [DSC$B_CLASS] = DSC$K_CLASS_S;

FIELD_DSC [DSC$W_LENGTH] = FIELD_VECTOR_SIZE;
FIELD_DSC [DSC$A_POINTER] = FIELD_VECTOR;
FIELD_DSC [DSC$B_CLASS] = DSC$K_CLASS_S;

.

.

.

5–28 Programming Examples



STATUS = SNA3270$REQUEST_CONNECT_W (
SESS_ID,
STATUS_DSC,
%REF (SNA3270$K_ACTIVE),
%REF (SNA3270$K_FIELD_MODE),
NODE_DSC,
ACCESS_DSC,

[2] 0,0,0,0,0,0,0,
CHAR_DSC,
ATTR_DSC,
FIELD_DSC,
SDB_DSC,
FDB_DSC,
NOTIFY$RTN,
0,
NOTIFY_DSC,
0,0,0,
);

IF NOT .STATUS
THEN

$PUTMSG (MSGVEC = STATUS_VECTOR);
!
!
! Receive the CICS logo
!
!

STATUS = SNA3270$RECEIVE_SCREEN_W (
SESS_ID,
STATUS_DSC);

IF NOT .STATUS
THEN

$PUTMSG (MSGVEC = STATUS_VECTOR);

.
[3] .

.

!
!
! Transmit CSFE
!
!

DATA_BUFFER [0] = %X ’83’;
DATA_BUFFER [1] = %X ’A2’;

[4] DATA_BUFFER [2] = %X ’86’;
DATA_BUFFER [3] = %X ’85’;

DATA_DSC [DSC$W_LENGTH] = 4;
DATA_DSC [DSC$A_POINTER] = DATA_BUFFER;

Programming Examples 5–29



STATUS = SNA3270$WRITE_FIELD (
SESS_ID,
STATUS_DSC,
DATA_DSC);

STATUS = SNA3270$TRANSMIT_SCREEN_W (
SESS_ID,
STATUS_DSC,
%REF (SNA3270$K_AID_ENTER));

IF NOT .STATUS
THEN

$PUTMSG (MSGVEC = STATUS_VECTOR);

!
!
! Receive CSFE screen
!
!

STATUS = SNA3270$RECEIVE_SCREEN_W (
SESS_ID,
STATUS_DSC);

IF NOT .STATUS
THEN

$PUTMSG (MSGVEC = STATUS_VECTOR);

DATA_DSC [DSC$W_LENGTH] = TEXT_DSC_SIZE;
DATA_DSC [DSC$A_POINTER] = DATA_BUFFER;

STATUS = LIB$TRA_ASC_EBC (TEXT_DSC, DATA_DSC);
!
!
! Write contents of buffer in the field and transmit
!
!

[5] STATUS = SNA3270$WRITE_FIELD (
SESS_ID,
STATUS_DSC,
DATA_DSC);

STATUS = SNA3270$TRANSMIT_SCREEN_W (
SESS_ID,
STATUS_DSC,
%REF (SNA3270$K_AID_ENTER));

.

.

.

STATUS = SNA3270$REQUEST_DISCONNECT_W (
SESS_ID,
STATUS_DSC);

5–30 Programming Examples



IF NOT .STATUS
THEN

$PUTMSG (MSGVEC = STATUS_VECTOR);

END;
GLOBAL ROUTINE NOTIFY$RTN (EVENT_CODE_PTR, EVENT_PARM_PTR)

: NOVALUE =
BEGIN

BIND
EVENT_CODE = .EVENT_CODE_PTR,
EVENT_PARM = .EVENT_PARM_PTR;

LOCAL
STATUS_VECTOR : VECTOR [SNA3270$K_MIN_STATUS_VECTOR, LONG],
STATUS_DSC : BLOCK [8, BYTE],
STATUS;

STATUS = LIB$PUT_OUTPUT ($DESCRIPTOR (’ ’));
STATUS = LIB$PUT_OUTPUT ($DESCRIPTOR

(’ Entering Notify routine’));

$PUTMSG (MSGVEC = NOTIFY_VECTOR);
RETURN;

END;
END
ELUDOM

Comments

1. Include the 3270 Library.

2. The zeros and commas indicate that you do not want to specify values for
the parameters and will accept the default values provided by the Interface.

3. To write the screen image, you must clear the screen at this point.

4. The data equals "csfe".

5. Note that the FDB is not manipulated. The screen image is unformatted,
unlike in the FORTRAN example (Section 5.1).

Programming Examples 5–31



5.6 MACRO Programming Example–Data Stream Mode
This MACRO fragment initiates a session with CICS using stream mode.
It then invokes the CSFE transaction (a remote loopback program) running
under CICS and transmits a string of data to it. After receiving the CSFE
screen from IBM, the program terminates the session.

.TITLE MARSM
SNA3270DF

.PSECT RWDATA,WRT,NOEXE,QUAD

[1] PROMPT: .ASCID /Entering notify routine /
STATUS : .BLKL 10
SESS_ID: .LONG 0 ;session-id
STS_VEC: .BLKB SNA3270$K_MIN_STATUS_VECTOR ;status-vector
STS_DSC: .LONG SNA3270$K_MIN_STATUS_VECTOR

.ADDRESS STS_VEC
[2] DATA_BUF:.BLKB 1000 ;data-buffer
[3] DATA_DSC:.LONG 1000

.ADDRESS DATA_BUF
DATA_LEN:.LONG 0 ;data-length
LAST_FLG:.LONG 0
NT_VEC : .BLKB SNA3270$K_MIN_NOTIFY_VECTOR ;notify-vector
NT_DSC: .LONG SNA3270$K_MIN_NOTIFY_VECTOR

.ADDRESS NT_VEC
ND_NAME: .ASCID /BOOJUM/ ;node-name
AC_NAME: .ASCID /XCICS/ ;access-name

[4] TST_DATA:.ASCID /ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz/
TMP_BUF :.BLKB 52
TMP_DSC: .LONG 52

.ADDRESS TMP_BUF

.PSECT CODE,NOWRT,EXE,LONG

[5] .ENTRY NOTIFY$RTN, ^M<> ;notify-routine entry point
PUSHAQ PROMPT
CALLS #1,G^LIB$PUT_OUTPUT
$PUTMSG_S NT_VEC ;display notify-vector
RET

5–32 Programming Examples



.ENTRY MARSM, ^M<> ;main program entry point
CLRL R0
PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAQ NT_DSC ;notify-vector
PUSHL #0 ;notify-parameter
PUSHAL NOTIFY$RTN ;notify-routine address
PUSHL #0 ;fdb
PUSHL #0 ;sdb
PUSHL #0 ;field-vector
PUSHL #0 ;attribute-vector
PUSHL #0 ;character-vector

[5] PUSHL #0 ;data
PUSHL #0 ;password
PUSHL #0 ;userid
PUSHL #0 ;logon-mode
PUSHL #0 ;application program
PUSHL #0 ;session-address
PUSHL #0 ;circuit
PUSHAL AC_NAME ;access-name
PUSHAL ND_NAME ;node-name
PUSHAL #SNA3270$K_STREAM_MODE ;mode-type
PUSHAL #SNA3270$K_ACTIVE ;conn-type
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

CALLS #24,G^SNA3270$REQUEST_CONNECT_W
BLBS R0, 10$
BRW EXITS ;exit if error

10$: PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL DATA_LEN ;data-length
PUSHAQ DATA_DSC ;data-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

CALLS #7,G^SNA3270$RECEIVE_STREAM_W ;receive CICS logo
BLBS R0, 20$
BRW EXITS ;exit if error

20$: PUSHAL #SNA3270$K_ACK_ACCEPT ;accept CICS logo
PUSHAL STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

CALLS #3,G^SNA3270$ACKNOWLEDGE
BLBS R0, 30$
BRW EXITS ;exit if error

Programming Examples 5–33



30$: [6] MOVL #^X<6D>,DATA_BUF -
+ SNA3270$K_BUF_HDLEN ;move "clear-screen"

MOVL #^X<1>,LAST_FLG
MOVL #^X<8>,DATA_LEN

PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAL LAST_FLG ;last-flag indicator
PUSHAL DATA_LEN ;data-length
PUSHAQ DATA_DSC ;data-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;sesion-id

CALLS #8,G^SNA3270$TRANSMIT_STREAM_W ;clear screen
;to CICS

BLBS R0, 40$
BRW EXITS ;exit if error

40$: PUSHL #0 ;ast parameter
PUSHL #0 ;ast address
PUSHL #0 ;event-flag
PUSHAL DATA_LEN ;data-length
PUSHAQ DATA_DSC ;data-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

CALLS #7,G^SNA3270$RECEIVE_STREAM_W ;clear screen
;command from CICS

BLBS R0, 50$
BRW EXITS ;exit if error

50$: PUSHAL #SNA3270$K_ACK_ACCEPT
PUSHAL STS_DSC ;status-vector
PUSHAL SESS_ID ;session-id

CALLS #3,G^SNA3270$ACKNOWLEDGE
BLBS R0, 60$
BRW EXITS ;exit if error

60$: [7] MOVQ #^X<8586A283C4407D>,DATA_BUF -
+ SNA3270$K_BUF_HDLEN ;move "csfe"

MOVL #^X<1>,LAST_FLG
MOVL #^X<E>,DATA_LEN

.

.

.

PUSHL #0 ;ast-parameter
90$: PUSHAQ TMP_DSC ;temporary buffer

PUSHAQ TST_DATA ;test-data

5–34 Programming Examples



[8] CALLS #2,G^LIB$TRA_ASC_EBC ;translate data to ebcdic
MOVL #^X<1>,LAST_FLG
MOVL #^D<62>,DATA_LEN
MOVL #^D<52>,R3 ;set maximum index value
MOVL #^X<0>,R4 ;initialize index

MOVL #^X<C4407D>,DATA_BUF -
+ SNA3270$K_BUF_HDLEN ;move control data after header

[9] MOVL #^X<A>,R5 ;initialize index leaving
;10 bytes for header/control data

LOOP: MOVB TMP_BUF[R4] ,DATA_BUF[R5]
ADDL I^#1,R4 ;transfer data from temp buffer
ADDL I^#1,R5 ;to data-buffer before
CMPL R4, R3 ;transmitting
BNEQ LOOP

PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAL LAST_FLG ;last-flag indicator
PUSHAL DATA_LEN ;data-length
PUSHAQ DATA_DSC ;data-buffer
PUSHAQ STS_DSC ;status-vector
PUSHAL SESS_ID ;sesion-id

CALLS #8,G^SNA3270$TRANSMIT_STREAM_W
.
.
.

110$: PUSHL #0 ;ast-parameter
PUSHL #0 ;ast-address
PUSHL #0 ;event-flag
PUSHAQ STSD_SC ;status-vector
PUSHAL SESS_ID ;session-id

CALLS #5,G^SNA3270$REQUEST_DISCONNECT_W

EXITS:[10] $PUTMSG_S STS_VEC ;display status-vector
$EXIT_S
.END MARSM

Comments

1. Assemble this MACRO program with a DCL command such as the
following:

$ MACRO/OBJECT=MYDIR:MYPROG SYS$LIBRARY:SNA3270DF+MYDIR:MYPROG

where

MYDIR and MYPROG are your directory and program.

Programming Examples 5–35



2. Note that the program uses a null class and type; that is, the class and
type byte = 0.

3. Test string being sent to IBM.

4. Note that in this program the notify routine only indicates that the
application received the event. Normally, the application would take
some action.

5. Arguments are passed on the stack.

6. The 6D represents an AID key code (clear) that is positioned after the
Interface header.

7. This data represents three pieces of information. Note the reverse order of
the data; it is read starting from the least significant byte.

• 8586A283 = CSFE

• C440 = cursor address

• 7D = an AID key (enter)

8. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

9. Note the reverse order of the data; it is read starting from the least
significant byte.

10. Display the status vector by using $PUTMSG.

5–36 Programming Examples



5.7 Pascal Programming Example–Data Stream Mode
This Pascal program fragment initiates a session with CICS using stream
mode. It then invokes the CSFE transaction (a remote loopback program)
running under CICS and transmits a string of data to it, then terminates the
session.

[1] [INHERIT(’SNA3270DF.PEN’)] PROGRAM TESTPAS(INPUT,OUTPUT);

LABEL
10;

CONST
BUFFER_SIZE = 132;

VAR
SESSION_ID :INTEGER;
CONN_TYPE :INTEGER;
MODE_TYPE :INTEGER;
NOTIFY_VECTOR:PACKED ARRAY [1..SNA3270$K_MIN_NOTIFY_VECTOR]

OF CHAR;
STATUS_VECTOR:PACKED ARRAY [1..SNA3270$K_MIN_NOTIFY_VECTOR]

OF CHAR;
NODE_NAME :PACKED ARRAY [1..6] OF CHAR;
ACCESS_NAME :PACKED ARRAY [1..8] OF CHAR;
STATUS :INTEGER;
DATA_LENGTH :INTEGER;
IDX :INTEGER;
TMP_IDX :INTEGER;
OUT_BUFFER :PACKED ARRAY[1..52] OF CHAR;
TEMP_BUFFER :PACKED ARRAY[1..52] OF CHAR;
DATA_BUFFER :PACKED ARRAY[1..1000] OF CHAR;

[EXTERNAL,ASYNCHRONOUS] FUNCTION LIB$TRA_ASC_EBC
(%STDESCR TEMP_BUFFER:PACKED ARRAY[$l1..$u1:INTEGER] OF CHAR;

%STDESCR OUT_BUFFER :PACKED ARRAY[$l2..$u2:INTEGER] OF CHAR)
:INTEGER; EXTERNAL;

[ASYNCHRONOUS,EXTERNAL(SYS$PUTMSG)] FUNCTION $PUTMSG
.
.
.

PROCEDURE NOTIFY_RTN;

BEGIN

WRITELN;
WRITELN (’Entering notify routine’);

END;

BEGIN (* Main program *)

Programming Examples 5–37



(***************************************************************)
(* Get node and access names *)
(***************************************************************)

.

.

.

(***************************************************************)
(* Request connect *)
(***************************************************************)

STATUS := SNA3270$REQUEST_CONNECT_W (SESSION_ID,STATUS_VECTOR,
SNA3270$K_ACTIVE,
SNA3270$K_STREAM_MODE,
NODE_NAME,
ACCESS_NAME,

[2] ,,,,,,,,,,,,
%IMMED NOTIFY_RTN,,
NOTIFY_VECTOR);

IF NOT (STATUS) :: BOOLEAN
THEN

GOTO 10;

(***************************************************************)
(* Receive CICS logo *)
(***************************************************************)

STATUS := SNA3270$RECEIVE_STREAM_W (SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_LENGTH);

IF NOT (STATUS) :: BOOLEAN
.
.
.

(***************************************************************)
(* Acknowledge CICS logo *)
(***************************************************************)

STATUS := SNA3270$ACKNOWLEDGE (SESSION_ID,
STATUS_VECTOR,
SNA3270$K_ACK_ACCEPT);

.

.

.

5–38 Programming Examples



(***************************************************************)
(* Transmit CSFE *)
(***************************************************************)

DATA_BUFFER [SNA3270$K_BUF_HDLEN + 1] :=’’(%X’7D’)’’; (* cont- *)
DATA_BUFFER [SNA3270$K_BUF_HDLEN + 2] :=’’(%X’40’)’’; (* rol *)
DATA_BUFFER [SNA3270$K_BUF_HDLEN + 3] :=’’(%X’C4’)’’; (* data *)

[3] DATA_BUFFER [SNA3270$K_BUF_HDLEN + 4] :=’’(%X’83’)’’; (* ’c’ *)
DATA_BUFFER [SNA3270$K_BUF_HDLEN + 5] :=’’(%X’A2’)’’; (* ’s’ *)
DATA_BUFFER [SNA3270$K_BUF_HDLEN + 6] :=’’(%X’86’)’’; (* ’f’ *)
DATA_BUFFER [SNA3270$K_BUF_HDLEN + 7] :=’’(%X’85’)’’; (* ’e’ *)

DATA_LENGTH := 14;

STATUS := SNA3270$TRANSMIT_STREAM_W (SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_LENGTH,
SNA3270$K_END_OF_DATA);

.

.

.

(***************************************************************)
(* Receive CSFE *)
(***************************************************************)

STATUS := SNA3270$RECEIVE_STREAM_W (SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_LENGTH);

.

.

.

(***************************************************************)
(* Acknowledge CSFE *)
(***************************************************************)

STATUS := SNA3270$ACKNOWLEDGE (SESSION_ID,
STATUS_VECTOR,
SNA3270$K_ACK_ACCEPT);

.

.

.

(***************************************************************)
(* Translate data from ASCII to EBCDIC *)
(***************************************************************)

[4] TEMP_BUFFER :=
’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’;

[5] STATUS := LIB$TRA_ASC_EBC (TEMP_BUFFER,OUT_BUFFER);

Programming Examples 5–39



(***************************************************************)
(* Move control information and data to data-buffer after *)
(* header *)
(***************************************************************)

DATA_BUFFER [SNA3270$K_BUF_HDLEN + 1] :=’’(%X’7D’)’’;
[6] DATA_BUFFER [SNA3270$K_BUF_HDLEN + 2] :=’’(%X’40’)’’;

DATA_BUFFER [SNA3270$K_BUF_HDLEN + 3] :=’’(%X’C4’)’’;

IDX := 11;
TMP_IDX := 1;

WHILE TMP_IDX < 53 DO
BEGIN

DATA_BUFFER[IDX] := OUT_BUFFER[TMP_IDX];

IDX := IDX + 1;
TMP_IDX := TMP_IDX + 1;

END;

DATA_LENGTH := 62;

(***************************************************************)
(* Transmit data *)
(***************************************************************)

STATUS := SNA3270$TRANSMIT_STREAM_W (SESSION_ID,
STATUS_VECTOR,
DATA_BUFFER,
DATA_LENGTH,
SNA3270$K_END_OF_DATA);

.

.

.

(***************************************************************)
(* Disconnect link *)
(***************************************************************)

STATUS := SNA3270$REQUEST_DISCONNECT_W (SESSION_ID,
STATUS_VECTOR);

[7] 10: $PUTMSG (STATUS_VECTOR);

END.

5–40 Programming Examples



Comments

1. The symbol definition file, SNA3270$DF.PAS, has been precompiled into
an environment file. The MODULE and END statements must be deleted
from the file in order to use it as an include file.

2. The commas indicate that you do not want to specify values for the
parameters and will accept the default values provided by the Interface.

3. This data represents three pieces of information:

• 7D = an AID key (enter)

• 40C4 = cursor address

• 83A28685 = CSFE

4. Test string is being sent to IBM.

5. You can use OpenVMS Library routines to do parts of your application,
such as translating ASCII to EBCDIC or vice versa.

6. This data represents two pieces of information:

• 7D = an AID key (enter)

• 40C4 = cursor address

7. Display the status vector by using $PUTMSG.

Programming Examples 5–41





Part III
Reference





6
Procedure Calling Formats

This chapter describes the calling formats for the procedures provided by the
Digital SNA 3270 Data Stream Programming Interface. These procedures
include:

• SNA3270$ACKNOWLEDGE

• SNA3270$LOCK_SCREEN

• SNA3270$READ_FIELD

• SNA3270$RECEIVE_SCREEN

• SNA3270$RECEIVE_STREAM

• SNA3270$REQUEST_CONNECT

• SNA3270$REQUEST_DISCONNECT

• SNA3270$TRANSMIT_LUSTAT

• SNA3270$TRANSMIT_SCREEN

• SNA3270$TRANSMIT_SIGNAL

• SNA3270$TRANSMIT_STREAM

• SNA3270$WRITE_FIELD

Calls to the 3270 Interface procedures have the following general format:

status=SNA3270$procedure-name[_W](argument,...,)[argument]

where

status is a status code returned as a function value.

procedure-name is the name of the Interface procedure that you want to call.

_W specifies a synchronous operation.

( ) delimits the argument list.

Procedure Calling Formats 6–1



[argument] indicates an optional argument.

argument is a variable containing information that the application passes to
or receives from the Interface. The arguments associated with each
of the procedures in this chapter use shorthand notation to describe
the argument’s characteristics. You can find a summary of these
notations in Appendix B.

You can pass arguments to the Interface two ways:

• By reference (or address). The argument is the address of an area or
field that contains the value. An argument passed by address is usually
expressed as a reference name or label associated with an area or field.

• By descriptor. This argument is also an address, but of a special data
structure called a descriptor.

In this chapter, the shorthand notation for each procedure specify how each
argument is to be passed. For more information see the OpenVMS RTL
Library (LIB$) Manual.

6–2 Procedure Calling Formats



6.1 SNA3270$ACKNOWLEDGE
The SNA3270$ACKNOWLEDGE procedure informs the IBM application
subsystem whether the data it received by means of the SNA3270$RECEIVE_
STREAM procedure is acceptable. This procedure is only used in data
stream mode. The Interface performs all acknowledgment in field mode. The
SNA3270$ACKNOWLEDGE always returns synchronously.

Format:

status.wlc.v=SNA3270$ACKNOWLEDGE
(session-id.rlu.r,
status-vec.wz.dx,
sense-code.rlu.r)

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

sense-code A longword containing the response to be sent to the PLU. Passed by
reference. The 3270 documentation offers a multitude of possible values
for this parameter. Some of the most common are listed as follows and
are defined symbolically in the definition file (see Appendix C):

SNA3270$K_ACK_ACCEPT—Accept
SNA3270$K_ACK_NOFUNC—Function not supported
SNA3270$K_ACK_PRMERR—Parameter error
SNA3270$K_ACK_NOCATG—Category not supported
SNA3270$K_ACK_INTREQ—Intervention required
SNA3270$K_ACK_NOPROC—Procedure not supported
SNA3270$K_ACK_PSILOS—Presentation space integrity lost
SNA3270$K_ACK_SLUBUS—SLU busy

The SNA3270$ACKNOWLEDGE procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_ACKFAI

• SNA3270$_INVSID

• SNA3270$_NORSPPEND

Procedure Calling Formats 6–3



When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–4 Procedure Calling Formats



6.2 SNA3270$LOCK_SCREEN
The SNA3270$LOCK_SCREEN procedure causes the Interface to send a
negative response to any BID request received from the IBM host. The
lock screen condition is removed by a subsequent transmit stream or screen
request. This procedure always completes synchronously. See Section 2.4.4 for
more information.

Format:

status.wlc.v=SNA3270$LOCK_SCREEN (session-id.rlu.r,
status-vec.wz.dx)

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

The SNA3270$LOCK_SCREEN procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_INVSID

• SNA3270$_LOCFAI

Procedure Calling Formats 6–5



When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–6 Procedure Calling Formats



6.3 SNA3270$READ_FIELD
The SNA3270$READ_FIELD procedure reads the specified field from the
display vectors. You describe the desired field characteristics in the field
descriptor block (FDB). See Section 2.4.5 for information about the use of the
FDB. This procedure always completes synchronously.

Format:

status.wlc.v=SNA3270$READ_FIELD
(session-id.rlu.r,
status-vec.wz.dx,
[data-bufr.wr.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

data-bufr The descriptor of a buffer to receive the field specified in the field
descriptor block. If null, no data is copied into the buffer and the
Interface only returns the field offset and size of the field in the FDB.
Passed by descriptor.

The SNA3270$READ_FIELD procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_OK_TRUNC

• SNA3270$_BADOFFSET

• SNA3270$_INVSID

• SNA3270$_NOFIELD

• SNA3270$_NOTINFMOD

• SNA3270$_RDFLDFAI

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the

Procedure Calling Formats 6–7



application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–8 Procedure Calling Formats



6.4 SNA3270$RECEIVE_SCREEN
The SNA3270$RECEIVE_SCREEN procedure receives a complete 3270 screen
image and places it in the display vectors specified for the session. This
procedure updates the screen descriptor block (SBD). See Section 2.4.3 for
more information about the SDB.

Format:

status.wlc.v=SNA3270$RECEIVE_SCREEN[_W]

(session-id.rlu.r,
status-vec.w.dx,
[event-flag.rlu.r],
[ast-addr.szem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

event-flag An event flag to be set at completion. Passed by reference.

ast-addr A user-written procedure called by the application upon completion.
Passed by reference.

ast-par An optional user-specified longword parameter to be passed to the user-
written completion procedure. Passed by reference.

The SNA3270$RECEIVE_SCREEN procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_OK_CONT

• SNA3270$_OK_NYT

• SNA3270$_INVSID

• SNA3270$_NOTINFMOD

Procedure Calling Formats 6–9



• SNA3270$_NYTRCV

• SNA3270$_SCRACT

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–10 Procedure Calling Formats



6.5 SNA3270$RECEIVE_STREAM
The SNA3270$RECEIVE_STREAM procedure receives a 3270 data stream
transmitted from the IBM host.

Format:

status.wlc.v=SNA3270$RECEIVE_STREAM[_W]

(session-id.rlu.r,
status-vec.wz.dx,
[data-bufr.wr.dx],
[data-length.wlu.r],
[event-flag.rlu.r],
[ast-addr.zem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

data-bufr The data buffer to receive the 3270 data stream. Passed by descriptor.

data-length A longword variable to receive the number of bytes sent by IBM. Passed
by reference.

event-flag An event flag to be set at completion. Passed by reference.

ast-addr A user-written procedure called by the application upon completion.
Passed by reference.

ast-par An optional user-specified longword parameter to be passed to the user-
written completion procedure. Passed by reference.

The SNA3270$RECEIVE_STREAM procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_OK_CONT

• SNA3270$_OK_MORE

• SNA3270$_OK_NYT

• SNA3270$_BUFSMALL

• SNA3270$_INVSID

Procedure Calling Formats 6–11



• SNA3270$_NYTRCV

• SNA3270$_RECVSTFAI

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–12 Procedure Calling Formats



6.6 SNA3270$REQUEST_CONNECT
The SNA3270$REQUEST_CONNECT procedure issues an active or passive
request to establish a data stream mode or field mode session between an
OpenVMS application and IBM application.

Format:

status.wlc.v=SNA3270$REQUEST_CONNECT[_W]

(session-id.wlu.r,
status-vec.wz.dx,
conn-typ.rlu.r,
mode-typ.rlu.r,
[node-desc.rt.dx],
[acc-name.rt.dx],
[pu-name.rt.dx],
[sess-addr.rlu.r],
[applic-prog.rt.dx],
[logon-mode.rt.dx],
[user-id.rt.dx],
[pass-word.rt.dx],
[data.rt.dx],
[char-vec.mx.dx],
[attr-vec.mx.dx],
[field-vec.mx.dx],
[sdb-dsc.wz.dx],
[fdb-dsc.mz.dx],
[notify-rtn.zem.r],
[notify-parm.rlu.r],
[notify-vec.wz.dx],
[event-flag.rlu.r],
[ast-addr.zem.r],
[ast-par.rlu.r]
[lu-password.rt.dx]
[pid.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id A location to receive a unique session identifier that will be used in
subsequent references to the session. Passed by reference.

Procedure Calling Formats 6–13



status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

conn-typ A value that specifies the type of connection desired. SNA3270$K_
ACTIVE indicates an active connection. SNA3270$K_PASSIVE indicates
a passive connection. Passed by reference.

mode-typ A value that specifies the mode of connection desired. The connection
is either a SNA3270$K_STREAM_MODE connection or a SNA3270$K_
FIELD_MODE connection. Passed by reference.

node-desc A Gateway DECNet node name or TCP/IP host name string. For
OpenVMS SNA, set this parameter equal to an ASCII 0. If this
parameter is not supplied, the Interface assumes you are requesting a
connection by means of OpenVMS SNA. Passed by descriptor.

acc-name An access name associated with a list of default PLU access values.
The maximum length is 8 bytes. If you omit the access name, you must
supply some or all of the required IBM access information in the six
parameters that follow. Passed by descriptor.

pu-name A string defining the Gateway PU or LU used to establish the session
with IBM. The maximum length is 8 bytes. For OpenVMS SNA, DECnet
SNA Gateway-CT and DECnet SNA Gateway-ST, this parameter contains
a PU name in the form of SNA-#, where # is a value between 0 and 3.

For the Digital SNA Domain Gateway and Digital SNA Peer Server,
this parameter contains an LU name as defined in the Gateway. If
this parameter is not supplied or specifies a zero length descriptor, the
appropriate information is taken from the access name.

Passed by descriptor.

sess-addr The number of the SLU over which the session is to take place. Passed
by reference.

applic-prog A string defining the PLU application that you want to connect to in
the IBM host. The maximum length is 8 bytes. Note that most IBM
application names must be uppercase (for example, CICS). Passed by
descriptor.

logon-mode A string defining the logon mode name associated with a set of BIND
request parameters for the session. The maximum length is 8 bytes.
Passed by descriptor.

user-id A string identifying the user to the SSCP. The maximum length is 8
bytes. Passed by descriptor.

pass-word A string specifying the password associated with the user ID. The
maximum length is 8 bytes. Passed by descriptor.

data Optional user data. The maximum length is 128 characters. Passed by
descriptor.

6–14 Procedure Calling Formats



char-vec The character vector is required for field mode connection only. The
MODE_TYP must be SNA3270$K_FIELD_MODE. The character vector
must be one byte greater than the larger of the default or alternate
display size specified in the connection parameters received from IBM.
If it is smaller than what IBM specified, the request completes with an
error. Each character in the display is represented by a byte. Passed by
descriptor.

attr-vec The attribute vector is required for field mode connection only. The
MODE_TYP must be SNA3270$K_FIELD_MODE. Each character in
the display is represented by a word in the attribute vector. Passed by
descriptor.

field-vec The field vector is required for field mode connection only. The MODE_
TYP must be SNA3270$K_FIELD_MODE. Each character in the display
is represented by a bit in the field vector. If the bit is set (1), then this
character position marks the start of the field. All other bits are set off
(0). Passed by descriptor.

sdb-dsc The screen descriptor block is required for field mode connection only. It
is a data structure used to describe the screen image (see Figure 2–4).
The write control character, cursor address, and screen format are
contained in this structure. Passed by descriptor.

fdb-dsc The field descriptor block is required for field mode connection only. It is
a data block used to describe a field in the screen image (see Figure 2–5).
The OpenVMS application uses the field descriptor block to supply the
address or attributes, or both, of the field it wants the Interface to read
with the SNA3270$READ_FIELD procedure. Upon successful completion
of the read procedure, the Interface uses the FDB to supply the address
and attributes of the field it has placed in the user’s buffer. Passed by
descriptor.

notify-rtn The address of the notification procedure. This procedure is called by the
Interface to notify the user application of network-related events. Passed
by reference.

notify-
parm

An optional user-specified parameter to be passed to the notification
procedure. Passed by reference.

notify-vec A longword vector allocated by the OpenVMS application and filled
with asynchronous event information by the Interface. The application
may display the event via the system service call $PUTMSG. This
structure should be global so the notify routine can reference it. Passed
by descriptor.

event-flag An event flag to be set upon completion. Passed by reference.

ast-addr A user-written procedure called by the application upon completion.
Passed by reference.

ast-par An optional user-specified longword parameter to be passed to the user-
written completion procedure. Passed by reference.

Procedure Calling Formats 6–15



lu-
password

A DEC multinational character string used to supply an authorization
password that may be required for access to a particular LU. Passed by
descriptor.

pid The OpenVMS identification of the process on whose behalf the
connection is being made. The caller needs GROUP or WORLD privilege
to specify a process that does not have the same UIC as the calling
process.

The 3270DS interface passes a username and terminal name to
the Gateway which may be needed for LU authorization purposes.
Ordinarily, the interface passes the username and terminal for the
process in which it is running. However, you can change the username
and terminal indirectly by specifying the "pid" parameter. The pid is
used when the process issuing the call is doing so on behalf of some other
process in the system.

The SNA3270$REQUEST_CONNECT procedure can return the following
status messages.

• SNA3270$_OK

• SNA3270$_ATTRSHO

• SNA3270$_BADVEC

• SNA3270$_CHARSHO

• SNA3270$_CONFAI

• SNA3270$_FDBLENERR

• SNA3270$_FVECSHO

• SNA3270$_ILLCONTYP

• SNA3270$_SCRLENERR

• SNA3270$_UNABD0

• SNA3270$_UNABD1

• SNA3270$_UNABD2

• SNA3270$_UNARANGE

• SNA3270$_UNAVALUE

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss

6–16 Procedure Calling Formats



the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

Procedure Calling Formats 6–17



6.7 SNA3270$REQUEST_DISCONNECT
The SNA3270$REQUEST_DISCONNECT procedure initiates immediate
termination of the session. The Interface disconnects from the IBM network
and deallocates session resources. SNA3270$REQUEST_DISCONNECT must
be called for any session that is started even if the session has terminated due
to an asynchronous event.

Format:

status.wlc.v=SNA3270$REQUEST_DISCONNECT[_W]

(session-id.rlu.r,
status-vec.wz.dx,
[event-flag.rlu.r],
[ast-addr.zem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

event-flag An event flag to be set at completion. Passed by reference.

ast-addr A user-written procedure called by the application upon completion.
Passed by reference.

ast-par An optional user-specified longword parameter to be passed to the user-
written completion procedure. Passed by reference.

The SNA3270$REQUEST_DISCONNECT procedure can return the following
status messages.

• SNA3270$_OK

• SNA3270$_DISFAI

• SNA3270$_INVSID

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss

6–18 Procedure Calling Formats



the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

Procedure Calling Formats 6–19



6.8 SNA3270$TRANSMIT_LUSTAT
The SNA3270$TRANSMIT_LUSTAT procedure sends a Logical Unit Status
(LUSTAT) RU, to the LU on the IBM host. In general, the LUSTAT is used
to report failures and error recovery conditions for a local device of an LU.
The LUSTAT status value and status extension field, each 2 bytes in length,
if specified by the caller, is defined in the optional data-bufr parameter. The
LUSTAT status value and status extension field is a four byte status field
as described the IBM Systems Network Architecture Formats manual. If the
data-bufr parameter is omitted, the default is a status value of X’082B’ and a
status extention field of 0.

Format:

status.wlc.v=SNA3270$TRANSMIT_LUTSTAT
(session-id.wlu.r,
status-vec.wz.dx,
[data-bufr.rt.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

data-bufr A maximum 4 byte data buffer containing the status value and status
extention field of the LUSTAT RU. If omitted the default is a status value
of X’082B’ and a status extention field of 0. Passed by descriptor.

The SNA3270$TRANSMIT_LUSTAT procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_XMTLUSTFAI

• SNA3270$_FUNCABORT

• SNA3270$_XMITSTFAI

• SNA3270$_DFCERR

• SNA3270$_INVSID

6–20 Procedure Calling Formats



6.9 SNA3270$TRANSMIT_SCREEN
The SNA3270$TRANSMIT_SCREEN procedure interprets the character and
attribute vectors to generate a 3270 data stream and transmits the complete
3270 data stream to the IBM host.

Format:

status.wlc.v=SNA3270$TRANSMIT_SCREEN[_W]

(session-id.rlu.r,
status-vec.wz.dx,
aid.rw.r,
[event-flag.rlu.r],
[ast-addr.zem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

aid The attention identification (AID) is a code that the OpenVMS application
sends to the host, alerting it to the action or function that sent the data
stream. Passed by reference.

event-flag An event flag to be set upon completion. Passed by reference.

ast-addr A user-written procedure called by the application upon completion.
Passed by reference.

ast-par An optional user-specified longword parameter to be passed to the user-
written completion procedure. Passed by reference.

The SNA3270$TRANSMIT_SCREEN procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_INVID

• SNA3270$_NYTXMIT

• SNA3270$_RCVPEND

• SNA3270$_REQREJECT

• SNA3270$_SCRACT

Procedure Calling Formats 6–21



• SNA3270$_XMITSCRFAI

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–22 Procedure Calling Formats



6.10 SNA3270$TRANSMIT_SIGNAL
The SNA3270$TRANSMIT_SIGNAL procedure causes the Interface to request
the IBM host to allow the OpenVMS application to transmit again without
first receiving data from IBM. This procedure always completes synchronously.
It does not wait for the IBM application to respond to the request. See
Section 3.3.1 for more information about synchronous completion.

Format:

status.wlc.v=SNA3270$TRANSMIT_SIGNAL
(session-id.rlu.r,
status-vec.wx.dx,
[data-bufr.rx.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

data-bufr This is an optional parameter. If you specify the parameter, the Interface
sends the contents of the buffer. You can send a maximum of four bytes
of data. If you do not specify the parameter, the Interface sends the
signal request. Passed by descriptor.

The SNA3270$TRANSMIT_SIGNAL procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_BUFLARGE

• SNA3270$_INVSID

• SNA3270$_NOTINFMOD

• SNA3270$_XMITSIGFAI

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_

Procedure Calling Formats 6–23



STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–24 Procedure Calling Formats



6.11 SNA3270$TRANSMIT_STREAM
The SNA3270$TRANSMIT_STREAM procedure transmits a complete 3270
data stream to the IBM host.

Format:

status.wlc.v=SNA3270$TRANSMIT_STREAM[_W]

(session-id.rlu.r,
status-vec.wz.dx,
[data-bufr.rr.dx],
[data-length.rlu.r],
[last-flag.rlu.r],
[event-flag.rlu.r],
[ast-addr.zem.r],
[ast-par.rlu.r])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

data-bufr A data buffer containing a 3270 data stream. The data placed into the
buffer must be offset by a value of SNA3270$K_BUF_HDLEN to prevent
the Interface header from overwriting the data stream (see Section 2.3.1).
Passed by descriptor.

data-length The length of the data to be transmitted including the Interface header.
The length must be less than or equal to the size of the buffer. If the
length is zero, the interface transmits the entire contents of the buffer.
Passed by reference.

last-flag A flag set to indicate whether a transmission is made of single or of
multiple calls. If a buffer contains a complete transaction, signal the end
of data with the SNA3270$K_END_OF_DATA flag. If the transaction
requires more than one buffer, signal that more data is coming with the
SNA3270$K_MORE_DATA flag. Be sure to signal the last buffer of a
multiple buffer transaction with the SNA3270$K_END_OF_DATA flag.
Passed by reference.

event-flag An event flag to be set at completion. Passed by reference.

ast-addr A user-written procedure called by the application upon completion.
Passed by reference.

Procedure Calling Formats 6–25



ast-par An optional user-specified longword parameter to be passed to the user-
written completion procedure. Passed by reference.

The SNA3270$TRANSMIT_STREAM procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_INVSID

• SNA3270$_NYTXMIT

• SNA3270$_RCVPEND

• SNA3270$_REQREJECT

• SNA3270$_XMITSTFAI

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_
STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–26 Procedure Calling Formats



6.12 SNA3270$WRITE_FIELD
The SNA3270$WRITE_FIELD procedure writes a field in a 3270 screen image.

Format:

status.wlc.v=SNA3270$WRITE_FIELD
(session-id.rlu.r,
status-vec.wz.dx,
[data-bufr.rt.dx])

Arguments:

status When a procedure finishes execution, it returns a numeric status value in
general register R0. Successful completion is indicated by a status code
with the low-order bit set. The low-order three bits together represent
the severity of the error. Returned as a function value.

session-id The session identifier assigned at connect time. Passed by reference.

status-vec A longword vector allocated by the OpenVMS application and filled in
by the Interface to provide the user with complete status information.
Passed by descriptor.

data-bufr A data buffer containing the EBCDIC text that is written into the screen
image. Passed by descriptor.

The SNA3270$WRITE_FIELD procedure can return the following status
messages.

• SNA3270$_OK

• SNA3270$_OK_TRUNC

• SNA3270$_BADOFFSET

• SNA3270$_INVSID

• SNA3270$_NOINPUT

• SNA3270$_NOINFMOD

• SNA3270$_NUMERIC

• SNA3270$_PROTECTED

• SNA3270$_WTFLDFAI

When you write an application for the 3270 Data Stream Programming
Interface, the application needs to check for the different status messages that
the Interface can return to the application. For example, in some procedures,
if the application receives the SNA3270$_NYTXMIT (not your turn to
transmit), it cannot issue a SNA3270$TRANSMIT_STREAM procedure. If the
application checks only for an SNA3270$_OK status at this point, it will miss
the SNA3270$_NYTXMIT and it may try to issue a SNA3270$TRANSMIT_

Procedure Calling Formats 6–27



STREAM. If the application tries to issue a SNA3270$TRANSMIT_STREAM
at this time, you may receive status messages from the Interface that you do
not expect. Therefore, you need to check for the particular status code returned
and not just for the SNA3270$_OK status. For further information about the
success status messages, refer to Section D.1.

6–28 Procedure Calling Formats



Part IV
Appendixes





A
Attention Identification Values

The following table provides values for the attention identification (AID) codes
that the OpenVMS application sends to the IBM host.

Table A–1 Attention Identification Values

Symbol

Hexadecimal
Character
(EBCDIC) Keyboard Equivalent

SNA3270$K_AID_NOAIDD 60 No AID generated (display)

SNA3270$K_AID_NOAIDP E8 No AID generated(print)

SNA3270$K_AID_ENTER 7D Press ENTER key

SNA3270$K_AID_PF1 F1 Press PF1 key

SNA3270$K_AID_PF2 F2 Press PF2 key

SNA3270$K_AID_PF3 F3 Press PF3 key

SNA3270$K_AID_PF4 F4 Press PF4 key

SNA3270$K_AID_PF5 F5 Press PF5 key

SNA3270$K_AID_PF6 F6 Press PF6 key

SNA3270$K_AID_PF7 F7 Press PF7 key

SNA3270$K_AID_PF8 F8 Press PF8 key

SNA3270$K_AID_PF9 F9 Press PF9 key

SNA3270$K_AID_PF10 7A Press PF10 key

SNA3270$K_AID_PF11 7B Press PF11 key

SNA3270$K_AID_PF12 7C Press PF12 key

SNA3270$K_AID_PF13 C1 Press PF13 key

(continued on next page)

Attention Identification Values A–1



Table A–1 (Cont.) Attention Identification Values

Symbol

Hexadecimal
Character
(EBCDIC) Keyboard Equivalent

SNA3270$K_AID_PF14 C2 Press PF14 key

SNA3270$K_AID_PF15 C3 Press PF15 key

SNA3270$K_AID_PF16 C4 Press PF16 key

SNA3270$K_AID_PF17 C5 Press PF17 key

SNA3270$K_AID_PF18 C6 Press PF18 key

SNA3270$K_AID_PF19 C7 Press PF19 key

SNA3270$K_AID_PF20 C8 Press PF20 key

SNA3270$K_AID_PF21 C9 Press PF21 key

SNA3270$K_AID_PF22 4A Press PF22 key

SNA3270$K_AID_PF23 4B Press PF23 key

SNA3270$K_AID_PF24 4C Press PF24 key

SNA3270$K_AID_SLPA 7E Selector-light-pen attention

SNA3270$K_AID_PA1 6C Press PA1 key

SNA3270$K_AID_PA2 6E Press PA2 key

SNA3270$K_AID_PA3 6B Press PA3 key

SNA3270$K_AID_CLEAR 6D Press CLEAR key

SNA3270$K_AID_REQ F0 Press REQUEST key

A–2 Attention Identification Values



B
Summary of Procedure Parameter Notation

This appendix summarizes the notation used to describe parameters in
the Digital SNA 3270 Data Stream Programming Interface. For further
information about notations and their definitions, see the "OpenVMS’
Procedure Calling and Condition Handling Standard" in the Introduction to
OpenVMS System Routines.

The following format illustrates the location of the notation in the parameter:

<name>.<access type><data type>.<pass mech><parameter form>

where

1. <Name> is a mnemonic for the parameter.

2. <Access type> is a single letter denoting the type of access that the
procedure will (or can) make to the argument.

3. <Data type> is a letter denoting the primary data type with trailing
qualifier letters to identify the data type further. The routine must
reference only the size specified to avoid improper access violations.

4. <Pass mech> is a single letter indicating the parameter passing mechanism
that the called routine expects.

5. <Parameter form> is a letter denoting the form of the argument.

Summary of Procedure Parameter Notation B–1



<access type>

c Call after stack unwind
f Function call (before return)
j JMP after unwind
m Modify access
r Read-only access
s Call without stack unwinding
w Write-only access

<data type>

a Virtual address
adt Absolute data and time
arb 8-bit relative virtual address
arl 32-bit relative virtual address
arw 16-bit relative virtual address
b Byte integer (signed)
blv Bound label value
bpv Bound procedure value
bu Byte logical (unsigned)
c Single character
cit COBOL intermediate temporary
cp Character pointer
d D_floating
dc D_floating complex
dsc Descriptor (used by descriptors)
f F_floating
fc F_floating complex
g G_floating
gc G_floating complex
h H_floating
hc H_floating complex
l Longword integer (signed)
lc Longword return status
lu Longword logical (unsigned)
nl Numeric string, left separate sign
nlo Numeric string, left overpunched sign
nr Numeric string, right separate sign
nro Numeric string, right overpunched sign
nu Numeric string, unsigned
nz Numeric string, zoned sign
o Octaword integer (signed)
ou Octaword logical (unsigned)

B–2 Summary of Procedure Parameter Notation



p Packed decimal string
q Quadword integer (signed)
qu Quadword logical (unsigned)
r Record
t Character-coded text string
u Smallest addressable storage unit
v Aligned bit string
vt Varying character-coded test string
vu Unaligned bit string
w Word integer (signed)
wu Word logical (unsigned)
x Data type in descriptor
z Unspecified
zem Procedure entry mask
zi Sequence of instruction

<pass mech>

d By descriptor
r By reference
v By immediate value

<parameter form>

_ Scalar
a Array reference or descriptor
d Dynamic string descriptor
nca Noncontiguous array descriptor
p Procedure reference or descriptor
s Fixed-length string descriptor
sd Scalar decimal descriptor
uba Unaligned bit string array descriptor
ubs Unaligned bit string descriptor
vs Varying string descriptor
vsa Varying string array descriptor
x Class type in descriptor
x1 Fixed-length or dynamic string descriptor

Summary of Procedure Parameter Notation B–3





C
Definitions for the 3270 Data Stream

Programming Interface

The following table presents symbols, values, and meanings to use when you
write your application. Digital recommends that you use the definition files
that accompany the Interface. This will insulate you from changes made in
future releases of the product. Definition files, however, are not provided for
every language. If the language you plan to use does not have a definition file,
use the information in the following table to write your application.

Table C–1 Definitions for the 3270 Data Stream Programming Interface

Symbol Value Meaning

SNA3270$K_ACK_ACCEPT 0 Accept +RSP

SNA3270$K_ACK_INTREQ 134348800 Intervention required -RSP

SNA3270$K_ACK_NOCATG 268894208 Category not supported -RSP

SNA3270$K_ACK_NOFUNC 268632064 Function not supported -RSP

SNA3270$K_ACK_NOPROC 135004160 Procedure not supported

SNA3270$K_ACK_PRMERR 268763136 Parameter error

SNA3270$K_ACK_PSILOS 136970240 Presentation space integrity lost

SNA3270$K_ACK_SLUBUS 137166848 SLU busy

SNA3270$K_ACTIVE 1 Active connect—CON_TYP

SNA3270$K_AID_CLEAR 109 CLEAR (_)

SNA3270$K_AID_ENTER 125 ENTER (’)

SNA3270$K_AID_MAX_PA 110 High end of PA key codes (for read)

SNA3270$K_AID_MIN_PA 107 Low end of PA key codes (for read)

SNA3270$K_AID_NONE 96 No AID pressed (-)

(continued on next page)

Definitions for the 3270 Data Stream Programming Interface C–1



Table C–1 (Cont.) Definitions for the 3270 Data Stream Programming
Interface

Symbol Value Meaning

SNA3270$K_AID_PA1 108 PA 1 (%)

SNA3270$K_AID_PA2 110 PA 2 (>)

SNA3270$K_AID_PA3 107 PA 3 (,)

SNA3270$K_AID_PF1 241 PF 1 (1)

SNA3270$K_AID_PF2 242 PF 2 (2)

SNA3270$K_AID_PF3 243 PF 3 (3)

SNA3270$K_AID_PF4 244 PF 4 (4)

SNA3270$K_AID_PF5 245 PF 5 (5)

SNA3270$K_AID_PF6 246 PF 6 (6)

SNA3270$K_AID_PF7 247 PF 7 (7)

SNA3270$K_AID_PF8 248 PF 8 (8)

SNA3270$K_AID_PF9 249 PF 9 (9)

SNA3270$K_AID_PF10 122 PF10 (:)

SNA3270$K_AID_PF11 123 PF11 (#)

SNA3270$K_AID_PF12 124 PF12 (@)

SNA3270$K_AID_PF13 193 PF13 (A)

SNA3270$K_AID_PF14 194 PF14 (B)

SNA3270$K_AID_PF15 195 PF15 (C)

SNA3270$K_AID_PF16 196 PF16 (D)

SNA3270$K_AID_PF17 197 PF17 (E)

SNA3270$K_AID_PF18 198 PF18 (F)

SNA3270$K_AID_PF19 199 PF19 (G)

SNA3270$K_AID_PF20 200 PF20 (H)

SNA3270$K_AID_PF21 201 PF21 (I)

SNA3270$K_AID_PF22 74 PF22 (¢)

SNA3270$K_AID_PF23 75 PF23 (.)

SNA3270$K_AID_PF24 76 PF24 (<)

SNA3270$K_AID_TESTREQ 240 TEST REQ (0)

(continued on next page)

C–2 Definitions for the 3270 Data Stream Programming Interface



Table C–1 (Cont.) Definitions for the 3270 Data Stream Programming
Interface

Symbol Value Meaning

SNA3270$K_ATTR_HIGH 2 High intensity, detectable

SNA3270$K_ATTR_INVIS 3 Nondisplayed, nondetectable

SNA3270$K_ATTR_LENGTH 2 Data structure size

SNA3270$K_ATTR_NORM 0 Normal intensity, nondetectable

SNA3270$K_ATTR_PEN_DET 1 Normal intensity, detectable

SNA3270$K_BUF_HDLEN 7 Header size

SNA3270$K_CMD_ERALLUNP 111 Erase all unprotected fields

SNA3270$K_CMD_ERWRITE 245 Erase/write all fields

SNA3270$K_CMD_ERWRITEALT 126 Erase/write all fields, use alternate
screen size

SNA3270$K_CMD_NULL 0 No command seen

SNA3270$K_CMD_READ 242 Read buffer

SNA3270$K_CMD_READMOD 246 Read modified field

SNA3270$K_CMD_READMODALL 110 Read modified all fields

SNA3270$K_CMD_WRITE 241 Write

SNA3270$K_CMD_WRITESTRF 243 Write structured field

SNA3270$K_EVT_CLEAR 1 Session has received a CLEAR

SNA3270$K_EVT_DATA 2 Data arrived from PLU

SNA3270$K_EVT_MAX 7 Maximum value for event code

SNA3270$K_EVT_MIN 1 Minimum value for event code

SNA3270$K_EVT_PROPROERR 3 SNA protocol error detected

SNA3270$K_EVT_RECONNECTED 4 Reconnected

SNA3270$K_EVT_TERMINATE 5 Session terminated

SNA3270$K_EVT_TURNGONE 6 Turn to send taken by PLU

SNA3270$K_EVT_UNBINDT2 7 Received an UNBIND type 2

SNA3270$K_FDB_SIZE 18 Field descriptor block size

SNA3270$K_FIELD_MODE 1 Field mode session MODE_TYP

SNA3270$K_ORD_CR 13 Carriage return (P)*

(continued on next page)

Definitions for the 3270 Data Stream Programming Interface C–3



Table C–1 (Cont.) Definitions for the 3270 Data Stream Programming
Interface

Symbol Value Meaning

SNA3270$K_ORD_DUP 28 Duplicate (A)*

SNA3270$K_ORD_EM 25 End message (P)*

SNA3270$K_ORD_EUA 18 Erase unprotected to address*

SNA3270$K_ORD_FF 12 Formfeed (P)*

SNA3270$K_ORD_FM 30 Field mark (A)*

SNA3270$K_ORD_GE 8 Graphics escape*

SNA3270$K_ORD_HYPHEN 96 Hyphen character (A)*

SNA3270$K_ORD_IC 19 Insert cursor*

SNA3270$K_ORD_MAX 63 High end of order range*

SNA3270$K_ORD_MF 44 Modify field*

SNA3270$K_ORD_MIN 1 Low end of order code range*

SNA3270$K_ORD_NL 21 New line (P)*

SNA3270$K_ORD_NUL 0 Null (A)*

SNA3270$K_ORD_PT 5 Program tab*

SNA3270$K_ORD_RA 60 Repeat to address*

SNA3270$K_ORD_SA 40 Set attribute*

SNA3270$K_ORD_SBA 17 Set buffer address*

SNA3270$K_ORD_SF 29 Start field*

SNA3270$K_ORD_SFE 41 Start field extended*

SNA3270$K_ORD_SPACE 64 Space character (A)*

SNA3270$K_ORD_SUB 63 Substitution character*

SNA3270$K_PASSIVE 2 Passive connect—CON_TYP

SNA3270$K_SDB_LENGTH 12 Length of context block

SNA3270$K_SEL_READ 0 Read at specified offset

SNA3270$K_SEL_READ_NEXT 2 Read next field

SNA3270$K_SEL_SEARCH 1 Search from specified offset

SNA3270$K_SEL_SEARCH_
NEXT

3 Search starting from next field

(continued on next page)

C–4 Definitions for the 3270 Data Stream Programming Interface



Table C–1 (Cont.) Definitions for the 3270 Data Stream Programming
Interface

Symbol Value Meaning

SNA3270$K_STREAM_MODE 2 Data stream mode session MODE_
TYP

SNA3270$K_WCC_LENGTH 1 Data structure length

* Write orders can be present in the data field of all write-class commands.
You can distinguish them from displayable characters because they have
values not greater than 3F (hexadecimal). Orders flagged with (P) are for
printer support. Those flagged with (A) are special characters for application
program use rather than real 3270 orders.

Definitions for the 3270 Data Stream Programming Interface C–5





D
Status Codes

The Digital SNA 3270 Data Stream Interface returns the following four types
of status codes:

Success codes indicate that the intended operation succeeded.

Informational codes provide additional information about success of the intended
operation.

Error codes indicate that the intended operation failed but recovery is
possible.

Fatal error codes indicate that the intended operation failed but recovery is
impossible.

D.1 Success Codes
SNA3270$_OK, normal successful completion

Explanation: When the SNA3270$OK message is returned by the
SNA3270$TRANSMIT_SCREEN or SNA3270$TRANSMIT_STREAM
procedures, it means that the data was successfully transmitted. When
this message is returned by the SNA3270$RECEIVE_SCREEN or
SNA3270$RECEIVE_STREAM procedures, it means that the PLU has sent
data and relinquished the CDI (it is now your turn to send). The PLU is no
longer allowed to send data. You will receive an error if you post a receive.
User Action: You must now transmit.

SNA3270$_OK_CONT, successful completion, now in contention
Explanation: For the moment, the PLU has sent all the data it is going
to, and you are now in contention state.
User Action: You can now take one of the following actions:

• Send data with the SNA3270$TRANSMIT_SCREEN or
SNA3270$TRANSMIT_STREAM procedures.

• Post a SNA3270$RECEIVE_SCREEN or SNA3270$RECEIVE_
STREAM procedure and wait for the PLU to send you data.

Status Codes D–1



• Issue a SNA3270$LOCK_SCREEN procedure, which will prevent the
PLU from sending you data. You must now transmit.

See Section 2.3.2.2 for a description of possible communication sequences.

SNA3270$_OK_MORE, successful completion, more data in chain
Explanation: The receive buffer was too small to hold the whole message.
A subsequent receive will pick up the rest of the message and complete
with one of the other success codes.
User Action: Issue another receive request.

SNA3270$_OK_NYT, successful completion, not your turn to transmit
Explanation: The application has successfully received data and the PLU
has more data to send.
User Action: You must issue another receive. If you attempt to transmit,
the transmit will fail and will return a SNA3270$_NYTXMIT message (not
your turn to transmit).

SNA3270$_OK_TRUNC, data truncated, destination string too small
Explanation: The read or write field procedure completed normally
but the destination buffer was not large enough to receive all the data
specified.

D.2 Informational Codes
SNA3270$_CLEARREC, CLEAR received, data traffic now reset

Explanation: The IBM system has sent a clear command.
User Action: Enter the data traffic reset state. See the network manager
for more information.

SNA3270$_DATAREC, data received, issue a SNA3270$RECEIVE_
STREAM
Explanation: Data has been sent by the IBM system.
User Action: Issue a RECEIVE to receive data.

SNA3270$_RECINPR, UNBIND received, reconnection in progress
Explanation: The Interface is attempting to reestablish the session on
your behalf.
User Action: Your notify routine will be called when the reconnection
completes. No data can be transmitted or received until the session is
reconnected.

D–2 Status Codes



SNA3270$_RECONNECTED, session has been reconnected
Explanation: The Interface has successfully reconnected the session.
User Action: You can resume transmitting and receiving data.

D.3 Error Codes
SNA3270$_ACKFAI, failed to acknowledge data

Explanation: The acknowledge request has failed.
User Action: See the status vector for more information.

SNA3270$_ATTRSHO, ATTR_VEC is too short, it must be at least ’nn’
bytes long
Explanation: The attributes vector is too short to accommodate the
building of a screen image.
User Action: Allocate a larger amount of memory for the attributes vector
and reissue the command. The maximum screen size field in the SDB
contains the required size in words.

SNA3270$_BADOFFSET, buffer offset in FDB is not the start of field
Explanation: The buffer offset specified in the field descriptor block is not
the start of a field.
User Action: Change the offset to be the start of a field, then reissue
the command. Alternatively, you may want to change the search mode to
READ_NEXT or SEARCH.

SNA3270$_BADVEC, bad vector descriptor
Explanation: A bad vector descriptor has been supplied as a parameter.
User Action: The vector was improperly specified or has been corrupted,
or the BIND parameters require a size larger than that specified.

SNA3270$_BUFLARGE, SIGNAL message cannot be larger than four
bytes
Explanation: The buffer specified in the message is too large.
User Action: Decrease the buffer to 4 bytes or less.

SNA3270$_BUFSMALL, buffer must be at least SNABUF$K_HDLEN + 1
bytes long
Explanation: The buffer specified in the receive request is too small.
User Action: Increase the buffer to at least the request unit (RU) size.
The RU size can be obtained from your IBM system programmer.

Status Codes D–3



SNA3270$_CHARSHO, CHAR_VEC is too short, it must be at least ’nn’
bytes long
Explanation: The character vector is too short to accommodate the
building of a screen image.
User Action: Allocate a larger amount of memory for the character vector
and reissue the command.

SNA3270$_CLEAR, request aborted due to CLEAR command
Explanation: A clear request was received from the PLU.
User Action: The application must disconnect and reestablish the session.
If the condition persists, the PLU is detecting protocol or data stream
errors. Use the SNA Trace facility to isolate the problem.

SNA3270$_CONFAI, connect failed
Explanation: A connect request failed.
User Action: See the status vector for more information.

SNA3270$_DISFAI, disconnect failed
Explanation: A disconnect request failed.
User Action: See the status vector for more information.

SNA3270$_EXIT, gateway server task terminated
Explanation: The cooperating software in the DECnet SNA Gateway has
failed.
User Action: Look for log messages on the operator’s console of the
Gateway’s loading host. (See your system or network manager for more
information.)

SNA3270$_FDBLENERR, the length of the field descriptor block is
incorrect
Explanation: The length of the field descriptor block is incorrect.
User Action: Adjust the application logic and rerun.

SNA3270$_FVECSHO, FIELD_VEC is too short, it must be at least ’nn’
bytes long
Explanation: The field vector is too short.
User Action: Allocate a larger amount of memory for the field vector, then
reissue the command.

D–4 Status Codes



SNA3270$_GATCOMERR, error communicating with Gateway node
Explanation: A fatal communication error has occurred and your session
is lost.
User Action: See the secondary error code that accompanies this message
for further information. If you require more information, see your network
manager.

SNA3270$_ILLASTSTA, illegal AST state
Explanation: You have issued a synchronous procedure call from within
an AST procedure.
User Action: You must restructure your application.

SNA3270$_ILLCONTYP, illegal connection type
Explanation: The CONN_TYP parameter value in the SNA3270$REQUEST_
CONNECT procedure call was not equal to either SNA3270$K_ACTIVE or
SNA3270$K_PASSIVE.
User Action: Issue SNA3270$REQUEST_CONNTECT with CONN_TYP
equal to either SNA3270$K_ACTIVE or SNA3270$K_PASSIVE.

SNA3270$_ILLMODTYP, illegal mode type
Explanation: The MODE_TYP parameter value in the SNA3270$REQUEST_
CONNECT procedure call was not equal to either SNA3270$K_FIELD_
MODE or SNA3270$K_STREAM_MODE.
User Action: Issue SNA3270$REQUEST_CONNTECT with MODE_TYP
equal to either SNA3270$K_FIELD_MODE or SNA3270$K_STREAM_
MODE.

SNA3270$_INVSID, invalid session ID
Explanation: No session corresponding to passed SESSION_ID.
User Action: Either the session is already inactive or an incorrect
SESSION_ID was supplied.

SNA3270$_LOCFAI, lock screen failed
Explanation: The lock screen request failed.
User Action: See whether you have received an end bracket indicator
(EBI). If you have not received an EBI, you may need to wait for one. See
the status vector for more information.

Status Codes D–5



SNA3270$_NEGRSP, negative response received, sense code %X’nn’
Explanation: A transmission has been rejected by the IBM system.
User Action: Determine why data is rejected on the basis of the sense
code, adjust the application logic, and rerun the program.

SNA3270$_NETSHUT, network node is not accepting connects
Explanation: The Gateway DECnet executive state has changed to SHUT
or OFF.
User Action: See your system or network manager to determine why the
Gateway is not available.

SNA3270$_NOFIELD, no field was found
Explanation: The attempt to read or write a field in the character vector
failed because the field specified by way of the attribute and offset fields
in the FDB either does not exist or was not found before the end of the
character vector was detected.
User Action: Reset the starting position to 0 and search for the field.

SNA3270$_NOINPUT, no input data for WRITE_FIELD verb
Explanation: No data has been provided for a write field verb.
User Action: Adjust the application logic and rerun.

SNA3270$_NORSPPEND, no response is pending
Explanation: The SNA3270$ACKNOWLEDGE procedure was called
when the PLU was not expecting a response. None was sent.
User Action: Check the application logic.

SNA3270$_NOTINFMOD, not in field mode
Explanation: This procedure is valid in field mode only.
User Action: Determine correct mode (SNA3270$K_FIELD_MODE
for field mode) and set the CONN_MODE parameter accordingly in the
connect.

SNA3270$_NUMERIC, data must be numeric
Explanation: An attempt was made to write nonnumeric data in a
numeric field.
User Action: Check and adjust application logic, then rerun.

D–6 Status Codes



SNA3270$_NYTRCV, not your turn to receive data
Explanation: It is not your turn to receive data.
User Action: Your application is in the transmit state; check and adjust
the application logic, then rerun.

SNA3270$_NYTXMIT, not your turn to transmit data
Explanation: It is not your turn to transmit data.
User Action: Your application is in the receive state; you must keep
issuing receives until it completes with OK or OK_CONT. Check and adjust
the application logic, then rerun.

SNA3270$_PROTECTED, field is protected, no modification allowed
Explanation: An attempt was made to write data to a protected field.
User Action: Check and adjust the application logic, then rerun program.

SNA3270$_PROTERR, SNA protocol error
Explanation: A protocol error has occurred in the SNA layer.
User Action: See the secondary error code that accompanies this message
for further information. If you require more information, see your network
manager.

SNA3270$_RCVPEND, call not allowed while a receive is outstanding
Explanation: You have issued a transmit request while a receive is
pending.
User Action: Wait for the receive to complete.

SNA3270$_RDFLDFAI, failed to read field
Explanation: The read field request has failed.
User Action: See the status vector for more information.

SNA3270$_RECSCRFAI, failed to receive a screen of data
Explanation: The receive screen request has failed.
User Action: See the status vector for more information.

SNA3270$_RECVSTFAI, failed to receive 3270 data stream
Explanation: The receive stream request has failed.
User Action: See the status vector for more information.

Status Codes D–7



SNA3270$_REQREJECT, invalid data received, rejected with sense
code %X’nn’
Explanation: Invalid 3270 data was received from the IBM system.
User Action: See your network manager for more information.

SNA3270$_SCRACT, previous TRANSMIT_SCREEN/RECEIVE_SCREEN
has not completed
Explanation: A transmit or receive screen has been attempted before the
previous one has been completed.
User Action: Wait for the previous transmit or receive request to
complete, then retry.

SNA3270$_SCRLENERR, SDB length is incorrect
Explanation: The screen descriptor block length is incorrect.
User Action: Check and adjust the application logic, then rerun.

SNA3270$_SESTERM, session terminated
Explanation: The session has been terminated.
User Action: See the notify vector for more information.

SNA3270$_TURNGONE, not your turn to send anymore
Explanation: A BID has been sent by the IBM system and accepted by
the Interface.
User Action: Issue a receive request to receive the incoming data.
Alternatively, you can use the lock screen command to prevent this from
happening by redesigning the application logic.

SNA3270$_UNABD0, unacceptable BIND image, byte N field name xxx
Explanation: The data described was not acceptable.
User Action: Your IBM system programmer must redefine the parameters
in error as specified in the DECnet SNA Gateway-CT Guide to IBM
Parameters, the DECnet SNA Gateway-ST Guide to IBM Parameters,
or the Digital SNA Domain Gateway Guide to IBM Resource Definition
manual.

D–8 Status Codes



SNA3270$_UNABD1, unacceptable BIND image, byte N, bit B, field
name xxx
Explanation: The data described was not acceptable.
User Action: Your IBM system programmer must redefine the parameters
in error as specified in the DECnet SNA Gateway-CT Guide to IBM
Parameters, the DECnet SNA Gateway-ST Guide to IBM Parameters,
or the Digital SNA Domain Gateway Guide to IBM Resource Definition
manual.

SNA3270$_UNABD2, unacceptable BIND image, byte N, bits B1-B2, field
name xxx
Explanation: The data described was not acceptable.
User Action: Your IBM system programmer must redefine the parameters
in error as specified in the DECnet SNA Gateway-CT Guide to IBM
Parameters, the DECnet SNA Gateway-ST Guide to IBM Parameters,
or the Digital SNA Domain Gateway Guide to IBM Resource Definition
manual.

SNA3270$_UNARANGE, needed a value in range %X’nn’ to %X’nn’,
received %X’nn’
Explanation: A value was received in a BIND image that was out of
range.
User Action: The particular BIND field in error is reported in a preceding
message.

SNA3270$_UNAVALUE, expected %X’nnn’!+, received %X’nnn’
Explanation: An unacceptable value was received in a BIND image.
User Action: The particular BIND field in error is reported in a preceding
message.

SNA3270$_WTFLDFAI, failed to write field
Explanation: The write field request has failed.
User Action: See the status vector for more information.

SNA3270$_XMITSCRFAI, failed to transmit a screen of data
User Action: The transmit screen request has failed.
Explanation: See the status vector for more information.

Status Codes D–9



SNA3270$_XMITSIGFAI, failed to transmit signal
Explanation: The transmit signal request has failed.
User Action: See the status vector for more information.

SNA3270$_XMITSTFAI, failed to transmit 3270 data stream
Explanation: The transmit stream request failed.
User Action: See the status vector for more information.

D.4 Fatal Error Codes
SNALU3270$_BUGCHK, internal error detected in routine-name at PC

nnnnnn
Explanation: An internal error has been detected.
User Action: Write down all the messages that appear on your screen at
this time and report the problem to your system manager.

The following secondary error messages appear along with the top-level
SNALU3270$_BUGCHK error. The appearance of any of the following
error messages implies that the 3270 Data Stream Programming Interface
is operating abnormally. To take corrective action, copy all the messages
associated with the fatal error code. Take your list of error messages
to your system manager, who can decide what corrective action to take.
Consult the DECnet SNA Gateway Problem Determination Guide, the
DECnet SNA Gateway-CT Problem Solving (OpenVMS & ULTRIX), or the
DECnet SNA Gateway-ST Problem Solving (OpenVMS) manual, if you are
the system manager. If you cannot solve your problem, submit a Software
Performance Report (SPR) if you have the service.

SNA3270$_BLKTYP, ’xx’ called with invalid block type (value’nn’)

SNA3270$_DFCERR, unexpected result from Data Flow Control

SNA3270$_ERRALLBUF, error allocating dynamic buffer

SNA3270$_FMTFMD, formatted FMD data received

SNA3270$_FREEVM, call to LIB$FREE_VM failed

SNA3270$_INVASY, invalid asynchronous event occurred, code ’nn’

SNA3270$_INVDFC, invalid Data Flow Control (DFC) RU received, RU
code %X’nn’

D–10 Status Codes



SNA3270$_INSRES, insufficient resources to perform requested
operation

SNA3270$_INVSC, invalid session control (SC) RU received, RU code
%X’nn’

SNA3270$_NCSCREC, network control/session control (NC/SC) RU
received on normal flow

SNA3270$_STRFRE, failed to free memory used by a D-type descriptor

SNA3270$_UMBXMSG, unrecognized mailbox message received, code
’nn’W

Status Codes D–11





E
Low-Level Status Codes

This appendix provides information about error codes and messages that you
may receive from lower layers of the Interface.

• General error codes

• General subfailure codes

• Status codes for abort reasons returned from the Gateway

• Fatal error codes

You can find the text for these messages in SYS$MESSAGE:SNA3270MG.EXE.

E.1 General Error Codes
SNA$_MUTORCVCHK, MU generated a receive check, sense code IBM

sense code
Explanation: The message unit returned a receive check sense code.
User Action: Consult your IBM manual for the sense code.

SNA$_MUTOSENDCHK, MU generated a send check, sense code IBM
sense code
Explanation: The message unit returned a send check sense code.
User Action: Consult your IBM manual for the sense code.

SNA$_PLUPROVIO, PLU violated SNA protocol rules, sense code IBM
sense code
Explanation: The primary logical unit violated SNA protocol rules.
User Action: Consult your IBM manual for the sense code.

SNA$_UNABLELUCB, unable to obtain lucb
Explanation: Insufficient virtual memory.
User Action: Increase virtual memory.

Low-Level Status Codes E–1



SNA$_UNABLEMUCB, unable to obtain mucb
Explanation: Insufficient virtual memory.
User Action: Increase virtual memory.

SNA$_UNABLESCB, unable to obtain scb
Explanation: Insufficient virtual memory.
User Action: Increase virtual memory.

E.2 General Subfailure Codes
SNA$_FAIALLBUF, failed to allocate memory for a buffer

Explanation: The Interface failed to allocate dynamic memory for an
internal buffer. The most likely reason is that no free memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory with LIB$SFREE1_DD or STR$FREE1_DX.

SNA$_FAIALLCTX, failed to allocate memory for a context block
Explanation: The Interface failed to allocate memory for an internal
context block. The most likely reason is that no free memory is available.
User Action: If you are using class D descriptors, make sure you return
used buffers to free memory with LIB$SFREE1_DD or STR$FREE1_DX.

SNA$_FAIASSCHA, failed to assign a DECnet channel
Explanation: The error indicates an abnormal DECnet condition.
User Action: Examine the subsequent DECnet error messages and report
the problem to your system manager.

SNA$_FAIBLDNCB, failed to build DECnet network connect block
Explanation: The Interface failed to build a DECnet network connect
block in order to communicate with the Gateway.
User Action: Examine the subsequent error messages for more
information.

SNA$_FAICONMBX, failed to convert mailbox name
Explanation: The Interface could not create a mailbox for establishing a
logical link.
User Action: Examine subsequent error messages to find the reason. The
most likely additional message is SYSTEM-F-NOPRIV, which indicates
no privilege for attempted operation. This means that you lack TMPMBX
privilege.

E–2 Low-Level Status Codes



SNA$_FAICOPBIN, failed to copy BIND request image into caller’s
buffer
Explanation: The Interface could not copy the entire BIND request image
into the BIND request buffer provided by the application.
User Action: Make sure that you specify a BIND buffer that is large
enough to receive the largest BIND that the IBM application will send you.

SNA$_FAIESTLIN, failed to establish a link to the Gateway
Explanation: The Interface cannot connect to the Gateway.
User Action: Examine the subsequent error messages and take
appropriate action.

SNA$_FUNCABORT, access routine function aborted
Explanation: The Interface procedure did not complete successfully and
the session has been or is being terminated.
User Action: Ignore the error. You have or will get notification of an
asynchronous event that will tell you why the session has terminated.

SNA$_FUNNOTVAL, function not valid with port in current state
Explanation: The Interface is invalid with the port in the current
state. You issued Interface calls in the wrong order–for example, an
SNA$TRANSMIT before an SNA$ACCEPT.
User Action: Correct the code in your application.

SNA$_GATCOMERR, error communicating with Gateway node
Explanation: There was a communication error with the Gateway node.
User Action: Examine the subsequent error messages and take
appropriate action.

SNA$_ILLASTSTA, ASTs are disabled or an AST routine is currently in
progress
Explanation: A call was made to an Interface procedure while ASTs were
disabled or from within an AST routine. Because AST delivery is disabled,
there is no way that the procedure can complete. Therefore, no action has
been taken by the procedure.
User Action: Change the application so that Interface procedures are not
called from AST routines or with ASTs disabled.

Low-Level Status Codes E–3



SNA$_INSRESOUR, insufficient resources to establish session
Explanation: The Interface could not allocate enough system resources to
establish the session.
User Action: Examine the subsequent messages for more information.

SNA$_INVGWYNOD, parameter GWY-NODE is invalid
Explanation: You entered an invalid value in the GWY-NODE parameter.
User Action: Examine the call that returned the error and take
appropriate action.

SNA$_INVRECLOG, SNA$DEF_NUMREC is incorrectly defined
Explanation: This internal logical name is set up improperly.
User Action: SNA$DEF_NUMREC is a logical name that determines
the number of receives the Interface keeps outstanding on the DECnet
logical link. If you do not wish to use the default value, use the DEFINE
command (for example, DEFINE SNA$DEF_NUMREC 5).

SNA$_MAXSESACT, maximum number of sessions already active
Explanation: You have already established 120 sessions, the maximum
number allowed.
User Action: Make sure you have called the disconnect procedure for each
session that has terminated.

SNA$_NO_GWYNOD,SNA$DEF_GATEWAY is undefined and GWY-NODE
was not specified
Explanation: No Gateway node was specified, and the logical name
SNA$DEF_GATEWAY was not defined.
User Action: Either supply an explicit Gateway node specification or
define SNA$DEF_GATEWAY using the OpenVMS DEFINE command.

E.3 Status Codes for Abort Reasons Returned From Gateway
After the Interface returns any of the following codes, the session is no
longer active. The application should issue a disconnect request before
attempting to establish another session.

SNA$_ACCINTERR, Gateway detected an error in the Gateway access
routines
Explanation: This indicates a fatal error.
User Action: Copy the error messages that appear on your screen at this
time and report the problem to your system manager.

E–4 Low-Level Status Codes



SNA$_ABNSESTER, session terminated abnormally
Explanation: Either the link between the Gateway and IBM was lost, or
IBM deactivated the physical unit (PU) or the line leading to the Gateway.
User Action: Determine why the link was lost. Retry when the connection
to IBM returns.

SNA$_ACCROUFAI, error from Gateway access routine, gateway
unknown or unreachable
Explanation: SNA Gateway is unknown or unreachable; Transport list
(defined by SNA_TRANSPORT_ORDER logical) is defined incorrectly
or Gateway/Host Name specified does not support transport selected; or
TCP/IP Port (defined by SNA_TCP_PORT logical) does not match the
remote connection TCP/IP Port.
User Action: Check the SNA Gateway, the SNA_TRANSPORT_ORDER
logical, or the SNA_TCP_PORT logical.

SNA$_APPNOTSPE, IBM application name was not specified
Explanation: In the connect request, you did not specify the IBM
application name, and the access name that you used did not supply one
either.
User Action: The IBM application must be either explicitly supplied in
the parameter list or implicitly supplied through the access name.

SNA$_BINSPEUNA, the BIND image specified unacceptable values
Explanation: The Gateway rejected the BIND request image.
User Action: Run a trace to find out why the Gateway rejected the BIND
request. The IBM application could be specifying too large an outbound
RU or an illegal FM or TS profile, or it could have sent a pacing value that
was out of bounds (Refer to the Digital SNA Domain Gateway Installation,
the DECnet SNA Gateway-CT Installation, the DECnet SNA Gateway-CT
Installation, or the Digital Peer Server Installation and Configuration
manual ).

SNA$_CONREQREJ, connect request rejected by IBM host, sense code
%X’IBM sense code’
Explanation: The IBM host rejected the connect request, for the reason
given in the sense code.
User Action: Determine the meaning of the sense code from the IBM
documentation and take the appropriate action.

Low-Level Status Codes E–5



SNA$_GATINTERR, internal error in Gateway node, code %O’xx’,subcode
%O’xx’
Explanation: A fatal error has occurred.
User Action: Report the error to your system manager. Also ensure that
the log from the Gateway console is saved, which will have messages of the
form:

GAS -- Fatal Session Error FSE$xxx

SNA$_INCVERNUM, Gateway access routines are incompatible with
the Gateway
Explanation: The software on the Gateway is incompatible with the SNA
software on the local system.
User Action: Make sure that the correct versions of the software are
installed on both the Gateway and the local system.

SNA$_INSGATRES, insufficient Gateway resources for session
establishment
Explanation: The Gateway has insufficient resources to establish a
session. The active sessions currently in the Gateway are using the total
resources available.
User Action: Wait until some of the sessions have finished, then retry.

SNA$_LOGUNIDEA, SSCP has deactivated the session
Explanation: The IBM SSCP has deactivated the session by sending a
DACTLU command. Some applications deactivate sessions by deactivating
the logical unit rather than by sending an UNBIND command.

SNA$_NOSUCACC, access name not recognized by Gateway node
Explanation: You specified a nonexistent access name.
User Action: Check with your system manager to determine which access
name you need.

SNA$_NOSUCPU, PU name not recognized by Gateway node
Explanation: Either you or the access name you used specified a
nonexistent physical unit.
User Action: Check with your system manager to determine which PU
name or access name you need.

E–6 Low-Level Status Codes



SNA$_NOSUCSES, session address not recognized by Gateway node
Explanation: Either you or the access name you used specified a
nonexistent session address.
User Action: Check with your system manager to determine which
session address or access name you need.

SNA$_PROUNBREC, IBM application detected a protocol error, sense
code %X’IBM sense code’
Explanation: The IBM application sent an UNBIND request with the
indicated sense code. It did this because the application detected the
protocol error specified by the code.
User Action: Determine the meaning of the sense code from the IBM
documentation and take the appropriate action.

SNA$_PUNOTAVA, PU has not been activated
Explanation: The physical unit on the Gateway has not been activated by
IBM.
User Action: Ask the VTAM operator to check the line and physical unit
from the IBM host and activate them if necessary. If they are activated,
there may be a hardware problem between the Gateway and the IBM host.

SNA$_PUNOTSPE, PU name was not specified
Explanation: In the connect request you did not specify a physical unit
name, and the access name that you used did not supply one either.
User Action: The PU name must be either explicitly supplied in the
parameter list or implicitly supplied through the access name.

SNA$_SESINUSE, session address is already in use
Explanation: Someone else is using this session address.
User Action: Retry using a different session address. If you are unsure of
a valid choice, ask your system manager.

SNA$_SESNOTAVA, session address has not been activated
Explanation: The SLU has not been activated from the IBM side.
User Action: Ask the IBM VTAM operator to check the logical unit from
the IBM host and activate it if necessary.

SNA$_UNBINDREC, UNBIND request received from IBM application
Explanation: The IBM application has terminated the session by sending
a normal UNBIND RU.

Low-Level Status Codes E–7



SNA$_UNUUNBREC, UNBIND of type %X’type’ received from IBM
application
Explanation: The IBM application sent the specified type of UNBIND
request.
User Action: Determine the meaning of this from the IBM documentation
on the UNBIND request and take the appropriate action.

E.4 Fatal Error Codes
SNA$_FATINTERR, internal error in Gateway access routines

Explanation: A fatal error has occurred.
User Action: Write down all the messages that appear on your screen at
this time and report the problem to your system manager.

The appearance of any of the following error messages implies that the
3270 Data Stream Programming Interface is operating abnormally. To take
corrective action, copy all the messages associated with the fatal error code.
Take your list of error messages to your system manager, who can decide
what corrective action to take. Consult the Digital SNA Gateway Problem
Determination Guide if you are the system manager. If you cannot solve
your problem, submit a Software Performance Report (SPR) if you have the
service.

SNA$_ABOCTXPRE, abort context block present at port deletion time

SNA$_ABOWAIACC, abort attempt while still waiting for IO$_ACCESS

SNA$_ASTBLKZER, ASTBLK to SNA$$IOEVENT is 0

SNA$_BINDATREC, Bind data received in wrong state

SNA$_CANCELFAI, $CANCEL failed

SNA$_CTXBLKINU, no active ports, but context blocks still in use

SNA$_DCLASTFAI, $DCLAST failed

SNA$_DFCFATAL, SNA$RECEIVE failed

SNA$_FAICOPMBX, failed to copy mailbox message to context block

SNA$_FAICOPRH, failed to copy RH parameters to user buffer

SNA$_FAICREMBX, failed to create a mailbox

E–8 Low-Level Status Codes



SNA$_FAIDEAMBX, failed to deassign mailbox channel

SNA$_FAIFREBUF, failed to free data buffer

SNA$_FAIFREEF, LIB$FREE_EF failed

SNA$_FAIFRENCB, failed to free NCB buffer

SNA$_FAIGETCHA, failed to get mailbox characteristics

SNA$_FAIGETMBX, failed to get context block for mailbox message

SNA$_FAITRIBLA, failed to trim blanks off end of node name

SNA$_FLUBUFREC, Flush Buf message received while not flushing

SNA$_GATTRAFAI, Gateway logical name translation failed

SNA$_GETDVIFAI, failed to get NET device characteristics

SNA$_ILLMBXMSG, illegal or unexpected mailbox message type

SNA$_INCOPYERR, internal copy error

SNA$_INMEMCT, insufficient memory for correlation table

SNA$_INSENDERR, internal send error

SNA$_INVARGLEN, invalid argument block length in SNA$$DOWAIT

SNA$_INVRECCHK, invalid port state for receive check

SNA$_JUNKSTATE, FSM state reached contained unrecognized data

SNA$_LIBFREFAI, LIB$FREE_VM failed

SNA$_LIBGETFAI, LIB$GET_VM failed

SNA$_MBXIOSERR, mailbox read failed with an IOSB error

SNA$_MBXREAFAI, mailbox read returned an error

SNA$_NOINTMUCB, no internal mu could be obtained

SNA$_NOMEMRSP, no memory to send negative response

SNA$_NOTNORDAT, nonnormal data message received from Gateway

Low-Level Status Codes E–9



SNA$_NOTOCCURST, a cannot occur state was reached in FSM

SNA$_OBJTRAFAI, failed to translate object name logical

SNA$_PORREFNON, port data base reference count is not zero

SNA$_PORREFOUT, port data base reference count is out of range

SNA$_PORUNKSTA, port is in an unknown state

SNA$_PROBFREEMEM, problem while freeing memory

SNA$_PROBINREVT, problem with internal SNA$READEVENT call

SNA$_PROERRBIN, protocol error in BIND data message from
Gateway

SNA$_RECBUFINU, no active ports, but receive buffers still in use

SNA$_RECFREFAI, failed to free receive buffer

SNA$_RECPENMSG, RECONPEND message received, state not
RUNNING

SNA$_SNAASSFAI, failed to assign an I/O channel to _SNA0
Explanation: You did not specify a Gateway DECnet node name or
TCP/IP host name when using the SNA Gateway.
User Action: Specify a Gateway DECnet node name or TCP/IP host name
for the Gateway you want to use.

SNA$_STANOTRUN, normal message received, state not RUNNING

SNA$_UNABLEEVT, unable to obtain DFC event block

SNA$_UNDEFSENDCHK, undefined send check encountered

SNA$_UNDQAST, unable to remqueue ast to process

SNA$_UNFREECT, unable to free correlation table

SNA$_UNFREEEVT, unable to free DFC event block

SNA$_UNFREELUCB, unable to free lucb

SNA$_UNFREEMUCB, unable to free mucb

E–10 Low-Level Status Codes



SNA$_UNFREESCB, unable to free scb

SNA$_UNINUMUNK, unit number in mailbox message is unknown

SNA$_UNKDATMSG, unknown data message type received

SNA$_UNKMSGREC, unknown message code received from Gateway

SNA$_UNKUNBREC, unknown UNBIND type received from Gateway

SNA$_UNQAST, unable to insqueue ast to process

SNA$_UNSUSEREC, unsatisfied user receives at port deletion time

Low-Level Status Codes E–11





F
Correlation of Procedures and Status

Messages for the 3270 Data Stream

The following table illustrates the correlation between the 3270 Data Stream
Programming Interface procedures and the status messages they can return.

Correlation of Procedures and Status Messages for the 3270 Data Stream F–1



Table F–1 Procedures and Status Messages Correlation for the 3270 Data Stream

Status Procedure Keys

Message 1 2 3 4 5 6 7 8 9 10 11

SNA3270$_OK
p p p p p p p p p p p

SNA3270$_OK_CONT
p p

SNA3270$_OK_MORE
p

SNA3270$_OK_NYT
p p

SNA3270$_OK_TRUNC
p p

SNA3270$_ACKFAI
p

SNA3270$_ATTRSHO
p

SNA3270$_BADOFFSET
p

SNA3270$_BADVEC
p

SNA3270$_BUFLARGE
p

SNA3270$_BUFSMAL
p

SNA3270$_CHARSHO
p

SNA3270$_CONFAI
p

SNA3270$_DISFAI
p

SNA3270$_FDBLENERR
p

SNA3270$_FVECSHO
p

SNA3270$_ILLCONTYP
p

SNA3270$_ILLMODTYP
p

SNA3270$_INVSID
p p p p p p p p p p p

SNA3270$_LOCFAI
p

SNA3270$_NOFIELD
p

SNA3270$_NOINPUT
p

SNA3270$_NORSPPEND
p

SNA3270$_NOTINFMOD
p p p p

SNA3270$_NUMERIC
p

Procedure Keys

1. Acknowledge
2. Lock Screen
3. Read Field
4. Receive Screen
5. Receive Stream
6. Request Connect
7. Request Disconnect
8. Transmit Screen
9. Transmit Signal

10. Transmit Stream
11. Write Field

(continued on next page)

F–2 Correlation of Procedures and Status Messages for the 3270 Data Stream



Table F–1 (Cont.) Procedures and Status Messages Correlation for the 3270 Data
Stream

Status Procedure Keys

Message 1 2 3 4 5 6 7 8 9 10 11

SNA3270$_NYTRCV
p p

SNA3270$_NYTXMIT
p p

SNA3270$_PROTECTED
p

SNA3270$_RCVPEND
p p

SNA3270$_RDFLDFAI
p

SNA3270$_RECSCRFAI
p

SNA3270$_RECVSTFAI
p

SNA3270$_RECREJECT
p p

SNA3270$_SCRACT
p p

SNA3270$_SCRLENERR
p

SNA3270$_UNABD0
p

SNA3270$_UNABD1
p

SNA3270$_UNABD2
p

SNA3270$_UNARANGE
p

SNA3270$_UNAVALUE
p

SNA3270$_WTFLDFAI
p

SNA3270$_XMITSCRFAI
p

SNA3270$_XMITSIGFAI
p

SNA3270$_XMITSTFAI
p

Procedure Keys

1. Acknowledge
2. Lock Screen
3. Read Field
4. Receive Screen
5. Receive Stream
6. Request Connect
7. Request Disconnect
8. Transmit Screen
9. Transmit Signal

10. Transmit Stream
11. Write Field

Correlation of Procedures and Status Messages for the 3270 Data Stream F–3





Index

A
Access information, IBM, 3–11

access name, 3–13
Gateway PU identification, 3–11
Logical Unit, 3–11
logon mode name, 3–11
OpenVMS SNA PU identification, 3–11
optional user data, 3–11
password, 3–11
PLU application name, 3–11
SLU session address, 3–11
TCP/IP host PU identification, 3–11
user identification, 3–11

Access name, 3–13
Active connect request, 2–2
Active connection request

example, 2–3
Asynchronous event notification, 3–5

asynchronous events, 3–6
notify vector, 3–7

Asynchronous mode operation, 3–9
completion procedure, use of, 3–9
event flag, use of, 3–9

Attributes vector, 2–9

B
BLISS programming example, 5–27

C
C programming example, 5–19
Character vector, 2–9
COBOL programming example, 5–22
Completion procedure

asynchronous mode operation, use in, 3–9
Connection mode

specifying a connection mode, 2–2, 2–4

D
Data stream mode, 2–4

acknowledging a 3270 data stream, 2–6
receiving a 3270 data stream, 2–6
sending multiple consecutive data

streams, 2–6
transmitting a 3270 data stream, 2–5

E
Error codes, D–3
Event flag

asynchronous mode operation, use in, 3–9
Interface procedures, usage by, 3–11

F
Fatal error codes, D–10
Field descriptor block, 2–16

fields, 2–18
fields and associated symbols, 2–16
read and search operations, 2–20

Index–1



Field descriptor block (cont’d)
symbols and meanings for attributes and

operation selection, 2–19
Field mode, 2–7

attributes vector, 2–9
character vector, 2–9
establishing a session, 2–8
retrieving fields, 2–16
screen descriptor block, 2–11

FORTRAN programming example, 5–2
Function value returns, 3–1

G
Gateway circuit identification, 3–11
Gateway node name, 2–2

I
IBM access information, 2–2
IBM password, 3–11
IBM user identification, 3–11
Informational codes, D–2

L
Linking an application, 4–1
Logical Unit, 3–11
Logon mode name, 3–11
Low-level status codes, E–1
LU-LU type 2 session

establishing a session, 2–1

M
MACRO programming example, 5–32

N
Notify vector

$PUTMSG, 3–7
use of, 3–7

O
OpenVMS SNA PU, 3–11

P
Pascal programming example, 5–37
Passive connect request, 2–2
Passive connection request

example, 2–4
PL/I programming example, 5–11
PLU application name, 3–11
Programming examples

BLISS, 5–27
C, 5–19
COBOL, 5–22
FORTRAN, 5–2
MACRO, 5–32
Pascal, 5–37
PL/I, 5–11

S
Screen descriptor block, 2–11

illustration of, 2–13
Screen image

transmission of, 2–32
writing a field, 2–32

Session
active connect request, 2–2
establishing a session, 2–1
identification, 2–2
passive connect request, 2–2
termination of, 2–33

SLU session address, 3–11
SNA3270$ACKNOWLEDGE, 6–3
SNA3270$LOCK_SCREEN, 6–5
SNA3270$READ_FIELD, 6–7
SNA3270$RECEIVE_SCREEN, 6–9
SNA3270$RECEIVE_STREAM, 6–11
SNA3270$REQUEST_CONNECT, 6–13
SNA3270$REQUEST_CONNECT procedure

active or passive connect request, 2–2

Index–2



SNA3270$REQUEST_DISCONNECT, 6–18
SNA3270$TRANSMIT_LUSTAT, 6–20
SNA3270$TRANSMIT_SCREEN, 6–21
SNA3270$TRANSMIT_SIGNAL, 6–23
SNA3270$TRANSMIT_STREAM, 6–25
SNA3270$WRITE_FIELD, 6–27
Status codes, 3–1, D–1, E–1, F–1

abort reasons returned from Gateway,
E–4

fatal error codes, E–8
fatal errors, D–10
function value returns, 3–1
general error codes, E–1
general subfailure codes, E–2
status vector, 3–2

Status vector
error conditions, 3–2
illustration of, 3–4
$PUTMSG, 3–2
use of status vectors, 3–2

Success codes, D–1
Synchronous mode operation, 3–8

T
TCP/IP host name, 2–2

W
Wait mode operation, 3–8

Index–3




