
HP DECset for OpenVMS
Guide to Language-Sensitive Editor
Order Number: AA–PQ9LD–TE

July 2005

This guide describes the HP Language-Sensitive Editor (LSE) and explains
how to get started using its basic features.

Revision/Update information: This is a revised manual.

Operating System Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 7.3–2 or 8.2

OpenVMS VAX Version 7.3

Windowing System Version: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS Alpha
Version 1.3–1 or 1.5

DECwindows Motif for OpenVMS VAX
Version 1.2–6

Software Version: HP DECset Version 12.7 for OpenVMS

HP Language-Sensitive Editor for
OpenVMS Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendors standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc. respective holders.

This document is available on CDROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . vii

1 Introduction to LSE

1.1 LSE Features . 1–2
1.2 Getting Started . 1–3
1.2.1 Understanding LSE Concepts . 1–4
1.2.2 LSE Task Areas and Menus . 1–5
1.2.3 Issuing Commands . 1–8
1.2.4 Using Command Languages . 1–9
1.2.5 Using Help . 1–9

2 Using LSE

2.1 Invoking LSE . 2–1
2.2 Opening a File . 2–2
2.3 Manipulating Text . 2–3
2.3.1 Selecting Text for Operations . 2–4
2.3.2 Searching for Text Using the SEARCH Command 2–7
2.3.3 Searching for Text Using DECwindows LSE 2–7
2.3.4 Replacing Text Using the SUBSTITUTE Command 2–8
2.3.5 Replacing Text Using DECwindows LSE 2–9
2.4 Using Multiple Windows . 2–10
2.5 Using Buffers . 2–10
2.5.1 System Buffers . 2–10
2.5.2 User Buffers . 2–11
2.6 Defining Key Commands . 2–17
2.7 Defining Key Sequences . 2–18
2.8 Working with Files . 2–19
2.8.1 Locating, Displaying, and Writing Source Files 2–19
2.8.2 Locating Files in Multiple Directories 2–20
2.8.3 Setting Directory Defaults . 2–21
2.8.4 Rolling Back the Last LSE Function Performed 2–23

iii

2.8.5 Getting Files Through HP Code Management System 2–25
2.8.6 DECwindows LSE/CMS Integration . 2–26
2.8.6.1 CMS Functions from LSE . 2–27
2.8.6.2 LSE Functions from CMS . 2–28
2.8.6.3 Creating an Element in the CMS Library 2–29
2.8.6.4 Fetching a Generation of an Element From the CMS

Library . 2–30
2.8.6.5 Reserving an Element in the CMS Library 2–30
2.8.6.6 Replacing an Element into the CMS Library 2–31
2.8.6.7 Performing CMS Differences Operations 2–32
2.8.7 Editing Features with HP Source Code Analyzer System . . . 2–33
2.9 Recovering From a Failed Editing Session 2–33
2.10 Storing Custom Modifications . 2–35
2.10.1 Using Initialization and Command Files on OpenVMS

Systems . 2–36
2.11 Automating LSE Initialization . 2–38
2.11.1 Creating Environment and Section Files 2–39
2.11.2 Using Environment and Section Files 2–40
2.11.3 Using Multiple Files . 2–41

3 Programming with LSE

3.1 Compiling and Reviewing a Program . 3–1
3.1.1 Invoking LSE from OpenVMS Debugger and from HP

Performance and Coverage Analyzer 3–4
3.2 Using Tokens and Placeholders . 3–5
3.2.1 Expanding a Token or Placeholder . 3–8
3.2.2 Types of Placeholders . 3–11
3.2.3 Indentation Control . 3–11
3.3 Creating Pseudocode . 3–14
3.3.1 Moving Pseudocode to Comments . 3–15
3.3.2 Processing Pseudocode . 3–16
3.4 Formatting Comments . 3–16
3.5 Outlining Programming Code . 3–19
3.5.1 Debugging Adjustment Definitions . 3–21
3.5.2 Special Processing for FORTRAN . 3–23

iv

4 Defining Languages for LSE

4.1 Defining a Text Template . 4–1
4.1.1 Language Definition . 4–2
4.1.2 Placeholder Definitions . 4–3
4.1.3 Token Definitions . 4–6
4.2 Defining a Programming Language . 4–7
4.2.1 Language Definition . 4–9
4.2.2 Defining Language Elements . 4–12
4.2.3 Redefining Language Elements . 4–24
4.3 Defining Adjusted Indentation . 4–27
4.3.1 Adjusting Single Lines . 4–27
4.3.2 Adjusting Multiple Lines . 4–28
4.3.3 Adjusting Lines in Programming Languages Without

Indentation . 4–29
4.3.4 Preventing Text Compression into Overview Lines 4–29
4.3.5 Defining Appropriate Overview Text 4–30
4.3.6 Inheriting Indentation Values . 4–30
4.3.7 Grouping Comment Lines . 4–31
4.3.8 Using Prefixes in Adjustments . 4–32
4.3.9 Adjusting Blank Lines . 4–32
4.3.10 Adjusting Bracketed Comments . 4–33
4.3.11 Adjusting Fixed Comments . 4–34
4.4 Saving Language Definitions . 4–34
4.5 Using Aliases . 4–35
4.6 Using LSE Packages . 4–35

Index

Examples

2–1 Sample Initialization File . 2–37
2–2 Sample Command File . 2–38
4–1 Syntax Summary for the EXAMPLE Language 4–8

v

Figures

1–1 LSE Tasks Area and Menus . 1–6
1–2 Customizing LSE Menus . 1–8
2–1 Opening a File . 2–3
2–2 Substitute Dialog Box . 2–9
2–3 LSE Buffers . 2–12
2–4 LSE/CMS Integration . 2–27
2–5 Performing CMS Functions from LSE 2–28
2–6 Performing LSE Functions from CMS 2–29
3–1 Compiling and Reviewing a Program 3–4
3–2 Expanding a Token . 3–9
3–3 Sample Expanded Token . 3–10
3–4 Aligning and Filling Comments . 3–18
4–1 Memo Template . 4–2
4–2 Extracting a Token . 4–25
4–3 Executing a New Definition . 4–26

Tables

1 Conventions Used in this Guide . ix
1–1 LSE Window Task Areas . 1–7
2–1 Edit Menu Command Operations on Selected Text 2–4
2–2 BOX Command Operations on Selected Text 2–6
2–3 Buffer Attributes . 2–13
2–4 Where LSE Stores Modifications . 2–41
3–1 Commands for Reviewing Compilation Errors 3–2
3–2 Commands and Key Bindings for Placeholders 3–8
3–3 Types of LSE Placeholders . 3–11
3–4 Collapsing and Expanding Programming Language

Constructs . 3–20

vi

Preface

This guide explains how to use the Language-Sensitive Editor (LSE) in
the OpenVMS HP DECwindows environment. The commands described in
this guide are Portable commands available for use on multiple platforms.
However, LSE remains compatible with prior versions of LSE. Users can
alternate between the OpenVMS and Portable command languages by using
the SET COMMAND LANGUAGE command.

Most examples in this guide describe the DECwindows method of using LSE,
but some command-line information is also provided for reference. For more
command-line details, see the DIGITAL Language-Sensitive Editor Command-
Line Interface and Callable Routines Reference Manual and the HP DECset
for OpenVMS Language-Sensitive Editor/ Source Code Analyzer Reference
Manual.

Intended Audience
This guide is intended for software engineers who are responsible for designing
and writing source modules. However, anyone can use LSE to create and edit
text files.

Document Structure
This guide contains the following chapters:

• Chapter 1 is an overview of LSE.

• Chapter 2 describes how to create text files or programming language code
files.

• Chapter 3 describes how to perform language-related editing and writing
tasks.

• Chapter 4 describes how to define your own templates and how to create
and use environment files. It also includes two examples of environment
files created with LSE.

vii

Associated Documents
The following documents might also be helpful when using LSE:

• HP DECset for OpenVMS Installation Guide contains installation
instructions for all HP DECset tools, including the LSE component.

• HP DECset for OpenVMS Language-Sensitive Editor/ Source Code
Analyzer Reference Manual contains command dictionary, parameter
glossary, command summary and translation table information.

• DIGITAL Language-Sensitive Editor Command-Line Interface and Callable
Routines Reference Manual contains command-line interface information
and OpenVMS-specific information.

References to Other Products
Some older products that HP DECset components previously worked with
might no longer be available or supported by HP. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with HP DECset.

Refer to the Software Product Description for a current list of the products that
the HP DECset components are warranted to interact with and support.

viii

Conventions
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in this Guide

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

boldface text Boldface text represents the introduction of a new
term.

monospace boldface text Boldface, monospace text represents user input in
interactive examples.

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

(continued on next page)

ix

Table 1 (Cont.) Conventions Used in this Guide

Convention Description

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

x

1
Introduction to LSE

This chapter introduces you to the HP Language-Sensitive Editor (LSE) and
describes the following topics:

• An overview of LSE features

• Getting started

– Understanding LSE concepts

– LSE window task areas and menus

– Issuing commands

– Using command languages

– Getting help

LSE is a multilanguage, advanced text editor that uses the HP Text Processing
Utility (HP DECTPU) as underlying technology. With LSE, you can perform
the following tasks:

• Compile programming code without exiting from the text editor.

• Review diagnostic information from compilations.

• Format language syntax constructs automatically.

• Use templates for language constructs.

• Outline programming code.

• Enter pseudocode for code design preparation.

• Extract documentation from programming code comments.

• Obtain online help about a programming language.

LSE enables you to customize your editing environment to your programming
preference or style. You can also extend your editing environment to handle
highly specialized editing needs through HP DECTPU.

Introduction to LSE 1–1

Introduction to LSE
1.1 LSE Features

1.1 LSE Features
LSE provides the following features:

• Design support

You can write pseudocode that describes a program’s structure before
you write the actual programming language syntax. LSE provides a
mechanism to preserve your design information in comments when you
enter the source code.

LSE has features for editing comments, including word wrapping within
block comments, paragraph fill, and line-comment alignment.

LSE also lets you view your program at various levels of detail by
collapsing lines of code to hide detail, and expanding the resulting
overviews to see more detail.

• Language-specific templates

LSE contains templates for programming languages that provide quick
and efficient methods of writing language-specific constructs. These
templates assist in the design and implementation of source code. You can
modify existing templates or define your own templates.

• System services and run-time library templates

LSE provides templates for subroutine libraries. In addition, LSE allows
you to define templates for packages of subroutine libraries.

• Error correction and review

You can compile your source code from an LSE session. Supported
compilers provide LSE with compilation diagnostics so you can review
compilation errors in one editing window while displaying the related
source in another window.

In addition, LSE provides a mechanism for interfacing many language
processors to the diagnostic-review facility. See the Software Product
Description (SPD) for a complete list of supported languages.

• LSE customization

You can customize your editing environment in LSE, which uses HP
DECTPU as the base for its text-editing functions. HP DECTPU features
include a compiler, an interpreter, and procedures for screen management
and text manipulation. The HP DECTPU language is block-structured
and provides loop definitions, conditional definitions, case definitions, and
assignment statements, as well as many built-in procedures so you can
perform complex editing tasks. See the Guide to the DEC Text Processing

1–2 Introduction to LSE

Introduction to LSE
1.1 LSE Features

Utility and the DEC Text Processing Utility Reference Manual for more
information.

You also can customize your editing environment by customizing menus,
and defining keys, tokens, placeholders, languages, templates, and aliases.

• Integrated programming environment

LSE integrates the development environment by providing templates
for several languages and by providing access to the other tools. This
environment enables you to design, create, and edit code; view multiple
source modules; compile programs; and review and correct compile-
time errors in a single editing session. LSE integrates the development
environment by providing templates for several languages and by providing
access to the HP Source Code Analyzer (SCA), HP Code Management
System (CMS), and OpenVMS Debugger.

You can invoke LSE directly from your debugger to correct source code
problems found during debugging sessions. On OpenVMS systems, you also
can invoke LSE from PCA to correct performance problems. In addition,
LSE and SCA are integrated to enable browsing of source code from within
SCA.

• EVE/EDT keypads

LSE provides a SET KEYPAD command that sets the key definitions to be
similar to the EVE or EDT basic keypads.

• Online help

LSE provides online help for information on unfamiliar language constructs
and routines. Help is provided for all LSE commands and key definitions.

1.2 Getting Started
This section describes the LSE features to help you accomplish your tasks and
includes the following topics:

• Task areas and menus

• Issuing commands

• Using help

Introduction to LSE 1–3

Introduction to LSE
1.2 Getting Started

1.2.1 Understanding LSE Concepts
Before you start using LSE, you need to understand the concepts of tokens and
placeholders, which are language elements that have been predefined for each
of the supported languages. You can expand these elements into templates for
language constructs.

Tokens are reserved words or function names that you type into the editing
buffer and expand to provide templates for corresponding language constructs.
For example, you can type the keyword IF and then expand it into a complete
skeleton IF statement, with consistent indentation and capitalization.

Placeholders are items surrounded by delimiters that are inserted into
the editing buffer by LSE when you expand other placeholders or tokens.
Placeholders are markers that indicate locations in the source code where you
must provide additional program text, or choose from indicated options.

Placeholders are either required or optional. Required placeholders, indicated
by braces ({}), represent places in the source code where you must provide
program text. Optional placeholders, indicated by brackets ([]), represent
places in the source code where you can either provide additional constructs
or erase the placeholder. For example, a required placeholder might look like
this:

{compilation_unit}

You can expand, erase, or type directly over placeholders. When you type over
a placeholder, it is automatically removed and the text you type is inserted
into the buffer. When you erase a placeholder, it is automatically deleted.
However, if you erase a required placeholder, LSE displays a message saying
that the placeholder is required, and asks if you want to continue the erase
operation. When you press the EXPAND key (CTRL/E) while the cursor is on a
placeholder, one of three events occurs:

• The placeholder is replaced automatically with a template consisting of
language constructs. This type of placeholder is called a nonterminal
placeholder because it inserts a template into the buffer when expanded.

• Text is displayed in a separate window to aid you in supplying a value.
This type of placeholder is called a terminal placeholder because it
does not insert a template into the buffer when expanded. Instead, you
must supply the necessary text. You can press the spacebar to remove the
window.

• A menu is displayed to provide you with options that can be selected
and expanded into templates. This type of placeholder is called a menu
placeholder.

1–4 Introduction to LSE

Introduction to LSE
1.2 Getting Started

In any of these three cases, you can type the desired text over the placeholder,
and it is erased automatically. When expanding a menu placeholder, you can
move through the options by using the up and down arrow keys. To select an
option, press the EXPAND, RETURN, or ENTER key. To exit from the menu
without selecting an option, press the spacebar.

Some placeholders are automatically duplicated when expanded. These
placeholders are called list placeholders.

In addition, LSE provides pseudocode placeholders. Pseudocode
placeholders contain natural-language text that expresses design information.
Pseudocode placeholders, unlike regular placeholders, are not defined by
LSE. LSE inserts pseudocode placeholder delimiters into the editing buffer
when you press the ENTER PSEUDOCODE key (PF1-spacebar). You type
the appropriate design information within the delimiters. You can move
pseudocode placeholder text to program comments. See Chapter 3 for more
details on using pseudocode.

You can construct a complete program by repeatedly expanding templates.
You do not have to continuously expand templates until you reach a terminal
placeholder. Rather, you might find it more appropriate to type in the desired
value yourself at a higher level. See Chapter 3 for additional information on
tokens and placeholders.

1.2.2 LSE Task Areas and Menus
The screen layout for LSE has the following task areas:

• Menu bar

• Work area

• Status line

• Prompt area

• Message area

Figure 1–1 shows a menu map of the LSE main session window menus with
the task areas called out.

Introduction to LSE 1–5

Introduction to LSE
1.2 Getting Started

Figure 1–1 LSE Tasks Area and Menus

Menu bar

Prompt area

Work area

Status line

Message area

1–6 Introduction to LSE

Introduction to LSE
1.2 Getting Started

Table 1–1 describes the LSE task areas.

Table 1–1 LSE Window Task Areas

Task Area Description

Menu bar Provides all the HP DECwindows commands for LSE.

Work area The editing buffers.

Status line Provides information about the associated buffer, such as
the name of the buffer, write or read-only status, insert or
overstrike mode status, and forward or reverse direction
status. Each window in the work area has its own status line.

Prompt area Lets you enter commands.

Message area Located at the bottom of the screen, the message area
displays broadcast messages and messages issued by LSE.

You can customize your menus using the Menus dialog box, shown in
Figure 1–2. You can rearrange existing menus or add new menu items to
the LSE menus.

To access the Menus dialog box, choose the Menus ... item from the Options
menu.

Introduction to LSE 1–7

Introduction to LSE
1.2 Getting Started

Figure 1–2 Customizing LSE Menus

1.2.3 Issuing Commands
LSE provides two ways to issue commands:

• Keypad mode

• Command-line mode

Using the keypad mode, you can also enter commands through keypad and
control-key sequences. You can press keys to perform editing functions rather
than typing commands on the command line. LSE binds commonly used
commands to certain keys to simplify editing. To get help about the keypad,
press PF1-F15 (PF1-Help), or enter the HELP KEYPAD command. To list the
current key definitions, enter the SHOW KEY command.

Using the HP DECwindows interface, you can enter command functions from
the LSE command line obtained by pressing F16 (Do) or PF1-KP7. Enter LSE
commands at the command prompt that appears in the prompt area.

1–8 Introduction to LSE

Introduction to LSE
1.2 Getting Started

Some LSE commands are not bound to menu items or keys. Therefore, they
must be entered in command line mode. There are two command-line prompts:

• LSE Command>

• LSE>

The LSE Command prompt processes one command. After that command is
processed, LSE returns to keypad mode.

Alternatively, the LSE> prompt allows you to enter as many commands as you
want. To get the LSE> prompt, press Ctrl/Z. The LSE> prompt appears near
the bottom of the screen. To return to keypad mode, press Ctrl/Z again or enter
the CONTINUE command.

For information about the LSE commands, choose On Commands from the
Help menu. You can also type Help from the command line.

1.2.4 Using Command Languages
LSE has two command languages available: VMSLSE and Portable. The
VMSLSE command language is the original LSE command language that has
always been present in LSE, and has remained the most used. The Portable
command language is a more recent command language devised for use in
environments other than OpenVMS. The choice of command language is made
in the HP DECset installation, but can be changed at any time.

See the DIGITAL Language-Sensitive Editor Command-Line Interface and
Callable Routines Reference Manual for information on the following topics:

• Setting the default command language

• Invoking LSE command languages

• Using the SET PROMPT KEYPAD command

• Integrating LSE with SCA and CMS

• Integrating HP DECwindows LSE with HP DECwindows SCA

This guide presents examples of both VMSLSE and Portable commands.

1.2.5 Using Help
To obtain language-specific help on routines defined in packages, a particular
keyword, or a placeholder, position the text cursor on the routine, keyword, or
placeholder and press PF1, then PF2. Help is not available for all keywords
and placeholders.

Introduction to LSE 1–9

Introduction to LSE
1.2 Getting Started

The HP DECwindows LSE user interface provides context-sensitive online help
for window items, menu items, buttons, fields, and labels.

To get online help on any menu or submenu item, do the following:

1. Choose On Context from the Help menu. The pointer changes to a question
mark.

2. Position the question mark on a window object and press MB1.

You can also get context-sensitive help as follows:

1. Set the location cursor by selecting the object.

2. Press the Help key.

If the input focus is in a dialog box and you press the Help key, you receive an
overview of the entire dialog box, not just the selected item.

1–10 Introduction to LSE

2
Using LSE

This chapter describes the following LSE operations:

• Invoking LSE

• Opening a file

• Manipulating text

• Using multiple windows

• Using buffers

• Defining key commands

• Defining key sequences

• Working with files

• Recovering from a failed editing session

• Storing custom modifications

• Automating LSE initialization

2.1 Invoking LSE
The format for invoking the LSE command line is as follows:

$ LSEDIT [/qualifiers] [file-spec]

LSEDIT invokes LSE; /qualifiers specify command qualifiers; and file-spec
specifies the file to be edited. It must be an OpenVMS file specification.

To invoke LSE using the HP DECwindows interface, enter the following
command:

$ LSEDIT/INTERFACE=DECWINDOWS [file-specification]

Using LSE 2–1

Using LSE
2.1 Invoking LSE

If you do not specify a file name or file type in your file specification, LSE uses
the file name or file type specified in your last LSEDIT command, if you issued
the EXIT command to end that editing session. Otherwise, LSE creates a new
buffer called $MAIN and prompts you for a file name when you exit from LSE,
if you have added text to the $MAIN buffer.

You can also specify command options on the command line. These are
described in the DIGITAL Language-Sensitive Editor Command-Line Interface
and Callable Routines Reference Manual. However, the DECwindows interface
provides customizing features that eliminate the need for command-line
qualifiers or options after the features have been set up.

To exit from an editing session, choose Exit or Quit from the File menu.
Choosing Exit saves the modifications you made during the editing session;
choosing Quit does not save the modifications. DECwindows LSE can also
be invoked from the DECset pull-down menu in the DECwindows Session
Manager.

When you exit from an editing session, LSE stores information about the
cursor position and the original input file so you can return to the same
position in the file. However, this information is lost if you log out or invoke
LSE from another process.

2.2 Opening a File
When you begin an editing session, you type the name of the file you want to
edit in the LSEDIT command line. If you do not specify a file, LSE creates an
empty buffer called $MAIN.

You can open a file using HP DECwindows in the following ways:

• Choose Open File . . . from the File menu to open a file that already exists.
Specify the name of the file in the Open File dialog box.

• Choose New File . . . from the File menu to open a file that does not yet
exist. Specify the name of the file in the New File dialog box.

• Select an existing file name in another window, then choose Open Selected
File from the File menu.

• Type the name of a file after the LSEDIT command when you invoke LSE.

• Type the OPEN FILE or NEW FILE command.

2–2 Using LSE

Using LSE
2.2 Opening a File

To open the existing OpenVMS file LSE$EXAMPLES:LSE$USER.EXAMPLE,
do the following:

1. Choose Open File . . . from the File menu. The OPEN FILE dialog box is
displayed.

2. Specify LSE$EXAMPLES:LSE$USER.EXAMPLE in the Selection field.

3. Click on OK.

Figure 2–1 shows how to open this file.

Figure 2–1 Opening a File

2.3 Manipulating Text
This section describes some of the text editing functions of LSE, as follows:

• Selecting text for operations

• Searching for text using the SEARCH command

• Searching for text using DECwindows LSE

• Replacing text using the SUBSTITUTE command

Using LSE 2–3

Using LSE
2.3 Manipulating Text

• Replacing text using DECwindows LSE

You can position the cursor anywhere in the buffer by moving the pointer to
the desired spot and pressing MB1. Each time you do this, you set the current
cursor position to that location.

2.3.1 Selecting Text for Operations
You can select text by pressing MB1 in rapid succession as follows:

• Two clicks selects the current word.

• Three clicks selects the current line.

• Four clicks selects the current paragraph.

• Five clicks selects the current buffer.

To select text other than a word, line, paragraph, or buffer, press and hold MB1
and move the pointer to the end of the text you want to select.

When you select text, it becomes highlighted. You then choose an operation
from the Edit menu. In most cases, the operation applies to all text that is
selected.

To cancel a selection, make another selection or press MB1.

Table 2–1 describes the operations on the Edit menu that you can perform on
selected text.

Table 2–1 Edit Menu Command Operations on Selected Text

Operation Description

Cut Deletes the selected text and puts it into the DECwindows
clipboard (or the $paste buffer).1 If you cut or copy another
section of text before pasting the contents of the current
clipboard in the editing buffer, the new section of text is
placed in the clipboard and the previous text is lost.

Copy Places the selected text into the clipboard (or the $paste
buffer), without deleting it from the editing buffer.1 If you
copy another section of text before pasting the contents of the
current clipboard in the editing buffer, the new section of text
is placed in the clipboard and the previous text is lost.

1Controlled with either the DECwindows Global Attributes menu or the Portable command SET
CLIPBOARD ON/OFF (usable in both command languages if prefixed by PLSE).

(continued on next page)

2–4 Using LSE

Using LSE
2.3 Manipulating Text

Table 2–1 (Cont.) Edit Menu Command Operations on Selected Text

Operation Description

Paste Places the contents of the clipboard (or the $paste buffer) into
the editing buffer starting at the current text-cursor position.1

Delete Deletes the selected text from the buffer. The text is not
placed on the clipboard.

Fill Fills the lines of a paragraph with text to the right margin.
In programming language files, this operation applies only
to comments and does not change the structure of the
programming code. See Section 3.4 for more information.

Center Line Centers the text on a line between the left and right margins.
This operation applies only to the last line selected, even if
you select more than one line of text.

Align Aligns programming language comments under the
first selected comment. This operation applies only to
programming language-associated files. See Section 3.4
for more information.

Indentation ... Moves blocks of text or code to the left or right in the buffer.
If you click on Decrease successively in the Indentation
dialog box, you can move all text to the left margin. Clicking
on Increase moves the text to the right, but maintains the
current indentation.

Lowercase Changes any uppercase letters in the selected text area to
lowercase letters.

Uppercase Changes any lowercase letters in the selected text area to
uppercase letters.

Capitalize Changes all words in the selected area to an uppercase first
letter, and lowercase letter on the letters that follow.

Select All Places all the contents of the current buffer in the selected
range. Any operations that LSE performs on a selected range
then apply to all the contents of the buffer.

1Controlled with either the DECwindows Global Attributes menu or the Portable command SET
CLIPBOARD ON/OFF (usable in both command languages if prefixed by PLSE).

Using LSE 2–5

Using LSE
2.3 Manipulating Text

Table 2–2 BOX Command Operations on Selected Text

Operation Description

BOX COPY Copies the currently selected box to the default
location that can either be the HP DECwindows
clipboard or the paste buffer.

BOX CUT Cuts the selected box to the default location (the
HP DECwindows clipboard or the paste buffer.)

BOX CUT/PAD Indicates that the area of the cut is to be padded
with spaces.

BOX PASTE Copies the contents of the default location (the HP
DECwindows clipboard or the paste buffer)to a box
with its top left hand corner at the current position.

BOX PASTE/OVERSTRIKE Copies the contents of the default location to a box
with its top left hand corner at the current position.
The contents are copied in the OVERSTRIKE mode.

BOX DRAW Draws a box in the OVERSTRIKE mode. The box
is drawn using the plus sign (+) for the corners, the
vertical bar | for the sides and a hyphen (-) for the
top and bottom.

BOX LOWERCASE Changes the case of the text in the selected box to
lowercase.

BOX_UPPERCASE Changes the case of the text in the selected box to
uppercase.

The following restrictions apply:

• A box operation is not allowed if there is overview information in the
records that make up the box.

• If a box operation is performed for which the total size of the records
containing the box before or after the operation is greater than 65535
characters, then the Undo information is reset.

• Auto Erase is switched off during a box paste operation.

• Tabs in the records containing the box are converted to spaces and the
records may be extended with spaces.

2–6 Using LSE

Using LSE
2.3 Manipulating Text

2.3.2 Searching for Text Using the SEARCH Command
The SEARCH command searches through the current buffer for a specified
text string in either a forward or reverse direction, depending on the current
direction setting. If an occurrence of the search string is found, the cursor
is positioned on the first character of the text string and the text string is
highlighted. If the string is not found, the cursor is not moved and an error
message appears in the message buffer.

LSE keeps a search text string until you end the editing session so you can
search again for the same string by entering the SEARCH or SUBSTITUTE
command and pressing Return. You can search for a text string used during
the editing session by entering the SEARCH or SUBSTITUTE command, using
the up arrow key to find a previously used text string, and pressing Return.

LSE supports pattern search operations using the SEARCH command with
the /PATTERN qualifier. For example, the asterisk (*) character can be used
to match any number of characters within one line. The percent sign (%)
character can be used to match any one character.

If you want to search for an asterisk (*) or percent sign (%) as part of your
pattern, you must include a backslash (\) before using the asterisk (*) or
percent sign (%) in the pattern search string, enclosed in quotation marks.

For example, if you want to search for 20%, 22%, and so on, in a buffer, enter
the following command:

LSE> SEARCH/PATTERN "2%\%"

2.3.3 Searching for Text Using DECwindows LSE
The Search menu lets you search for text in the following ways:

• Choose Search . . . from the Search menu and specify a text string in the
Search dialog box. Clicking on Apply finds the next (or previous) text
string that matches starting from the current cursor position; clicking on
OK does the same thing, but dismisses the Search dialog box.

• Choose Search Next to find the next occurrence (or previous occurrence,
depending on the search direction) of the most recent text string specified
in the Search dialog box.

• Select a text string and choose Search Selected to find the next occurrence
(or previous occurrence, depending on the search direction) of the selected
text string.

Using LSE 2–7

Using LSE
2.3 Manipulating Text

• Choose Substitute . . . to search for a text string and replace it with
another text string. Section 2.3.5 describes how to replace text using
DECwindows LSE.

Choose Search Attributes . . . from the Options menu to set such search
attributes as spanning spaces in strings, case sensitivity, diacritic sensitivity,
and automatic searches of text in the opposite direction of the search. You can
also choose OpenVMS system pattern searches.

2.3.4 Replacing Text Using the SUBSTITUTE Command
The SUBSTITUTE command replaces occurrences of one text string with
another text string. When you enter the SUBSTITUTE command, LSE
prompts you for the search string and the value of the replacement string.

For example, you can use the SUBSTITUTE command to replace all
occurrences of APPEND with PREFIX, as follows:

LSE> SUBSTITUTE APPEND PREFIX

LSE provides case-sensitive substitution with the SUBSTITUTE command and
/EXACT qualifier, which lets you specify that the case of the replacement string
should be altered to match the case of the string located by a search operation.

For example, you can search for the APPEND string name and replace it with
PREFIX by entering the following command:

LSE> SUBSTITUTE/EXACT APPEND PREFIX

LSE alters the case of prefix to match the case of append found in your file.

LSE highlights each occurrence and prompts you for an action, as follows:

• Yes (or pressing Return) instructs LSE to replace the occurrence.

• No instructs LSE not to replace the occurrence, but to search for the next
occurrence.

• Quit ends the command without replacing the occurrence and stops the
SUBSTITUTE operation.

• Last instructs LSE to replace the occurrence and then ends the command.

• ALL replaces the occurrence and all remaining occurrences without further
prompting.

If you use the SUBSTITUTE command with the ALL keyword, LSE replaces
all occurrences it finds without prompting you for an action.

2–8 Using LSE

Using LSE
2.3 Manipulating Text

You can use the SUBSTITUTE command with the /PATTERN qualifier for
pattern replacement operations using the same pattern expressions as those
with the SEARCH command. The following example shows how to use the
SUBSTITUTE/PATTERN command:

LSE> SUBSTITUTE/PATTERN "NAME_%_LENGTH" "NAME_B_LENGTH"

2.3.5 Replacing Text Using DECwindows LSE
Choose Substitute . . . from the Search menu. Figure 2–2 shows how to replace
the text string Begin with BEGIN with case sensitivity in the Substitute dialog
box.

Figure 2–2 Substitute Dialog Box

To replace all subsequent occurrences of a string from the text cursor position,
click on the Forward button and click on All.

To replace the next occurrence of a string, click on Apply or OK; clicking on OK
dismisses the Substitute dialog box.

If you want to review each occurrence before the replacement is made, click
on Find Next to find the next occurrence of the specified text string. Click
on Apply or OK to confirm replacement, or click on Find Next to skip that
occurrence of the text string.

Using LSE 2–9

Using LSE
2.4 Using Multiple Windows

2.4 Using Multiple Windows
You can display multiple windows during an LSE session. A window is a
section of your work region that displays the contents of a buffer. When you
create a new window, LSE divides the work area evenly in the session window.
You can expand the work area by using the mouse pointer to expand the
session window.

To create a new window, choose New Window from the View menu.

To move the text cursor to another window, click on the other window where
you want to edit.

The following commands manipulate windows:

DELETE WINDOW
GOTO BUFFER
NEW WINDOW
NEXT WINDOW
OPEN FILE
PREVIOUS WINDOW
SET BALANCE WINDOWS ON or OFF
SET HEIGHT
SET MAXIMUM WINDOWS
SET MINIMUM WINDOW LENGTH
SET NUMBER OF WINDOWS
SET WIDTH
TWO WINDOWS

2.5 Using Buffers
LSE uses buffers, which hold information. There are two kinds of buffers:
system buffers and user buffers. System buffers provide information about
your editing session and LSE status. User buffers let you type input into a
work area and can be stored in a file when you exit and save your input.

2.5.1 System Buffers
LSE uses system buffers for special purposes. Unlike user buffers, system
buffers do not correspond to files. You can edit a system buffer like any other
buffer, but you should avoid changing its contents. By convention, system
buffer names start with a dollar sign ($). System buffers are displayed using
the SHOW SYSTEM BUFFER command.

2–10 Using LSE

Using LSE
2.5 Using Buffers

The most frequently used system buffers are $DEFAULTS, $HELP,
$MESSAGES, $REVIEW, and $SHOW. The following list briefly describes
each of these buffers:

• $DEFAULT—The $DEFAULT buffer contains the default attributes for any
buffer you create in the current editing session. You can modify certain
default attributes by entering LSE commands (for example, SET BUFFER
LEFT MARGIN) from within the $DEFAULT buffer. Subsequent buffers
that you create will assume these defaults.

• $HELP—The $HELP buffer displays help information when you enter a
HELP command.

• $MESSAGES—The $MESSAGES buffer displays information about
operations performed while in an editing session (for example, notification
that a file has been written).

• $REVIEW—When you enter the REVIEW command, the $REVIEW buffer
displays sets of diagnostic messages that result from a compilation.

• $SHOW—The $SHOW buffer displays output from any SHOW command
(for example, SHOW BUFFER).

2.5.2 User Buffers
LSE sets the user buffer attributes and properties for each newly created
buffer. To override these settings by using an initialization file, do the
following:

1. Create an initialization file in which to put your commands.

2. When you want these buffer attributes, enter the following command:

$ LSEDIT/INITIALIZATION=init_filename filename

You can modify the attributes of the $DEFAULT buffer. When a new buffer is
created, it adopts the attributes in the $DEFAULT buffer.

The following commands set buffer attributes:

SET BUFFER AUTO_ERASE
SET BUFFER CLOSE
SET BUFFER DIRECTION
SET BUFFER INDENTATION
SET BUFFER LANGUAGE
SET BUFFER LEFT MARGIN
SET BUFFER MODIFIABLE
SET BUFFER OUTPUT
SET BUFFER RIGHT MARGIN

Using LSE 2–11

Using LSE
2.5 Using Buffers

SET BUFFER TAB INCREMENT
SET BUFFER TEXT
SET BUFFER WRAP

There are several cases where these attributes are overridden, as follows:

• If you can determine a language from the file type, the attributes for that
language are in effect.

• If a newly created buffer is associated with a defined language, the left
margin, right margin, tab increment, and wrap attributes defined for that
language are used.

Figure 2–3 shows how to display buffer information by choosing Show Buffer *
from the Show menu. All buffers from the current LSE session are listed in
the split screen.

Figure 2–3 LSE Buffers

109 lines read from file DISK12:[JONES]MMS.DOCS.TXT;1
1256 lines read from file DISK12:[JONES]6091CHAPT1.SDML;2

DISK12:[JONES]6091CHAPT1.SDML;2

DISK12:[JONES]6091CHAPT1_SDML.TPU$JOURNAL;2

As the example shows, you can expand the information about a buffer by
double clicking on it in the $SHOW_LSE$BUFFER buffer. Note that the
6091CHAPT1.SDML source is displayed in the upper window, whereas the
6091CHAPT1.SDML buffer information is expanded in the lower window. In
addition, the MMSDOCS.TXT buffer shows only two values in its collapsed
view. Double clicking again collapses the information.

2–12 Using LSE

Using LSE
2.5 Using Buffers

You can also examine a buffer’s contents by selecting it and choosing Goto
Source from the Source menu. In addition, you can revert to the collapsed view
by again choosing Show Buffer * from the Show menu.

Table 2–3 lists the numerous LSE buffer attributes.

Table 2–3 Buffer Attributes

Attribute Description

buffer name A buffer has a name that is displayed in the status line. Buffers
are usually named by the name and type of their associated
input file. The OPEN FILE, NEW FILE, and NEW BUFFER
commands can create buffers that you can edit.

input file Specifies the name of the file in the buffer. The OPEN FILE
command creates a buffer and reads a file into it. The INCLUDE
FILE command reads an existing file into the current buffer.

output file By default, the output file has the same name as the input
file. You can write the buffer to another file name by entering
the SET BUFFER OUTPUT command, which will change the
property of this attribute.

journal file Specifies the DECTPU-defined name of the buffer in which all
keystrokes and buffer actions are stored during your editing
session.

journal name Same name as the buffer.

safe for journaling A buffer is safe for journaling if it is empty, has never been
modified, or has not been modified since the last time it was
written to a file. You can set this attribute using built-in
procedures.

journaling Sets whether all keystrokes and buffer actions are stored in the
journal file during your editing session.

language This attribute determines which language is used for the
language-sensitive features. The file type of the input file
associated with your current buffer determines the language
LSE uses. You can move between different languages in different
buffers, and LSE will provide the interfaces to the appropriate
compilers. The SET BUFFER LANGUAGE command associates
a language with a buffer.

key map list This attribute is informational only and shows the name of
the key map list. It is modifiable only through DECTPU
programming.

modified Specifies whether any changes have been made to the buffer.

(continued on next page)

Using LSE 2–13

Using LSE
2.5 Using Buffers

Table 2–3 (Cont.) Buffer Attributes

Attribute Description

modifiable Unmodifiable buffers protect the contents of a given buffer. You
cannot change an unmodifiable buffer. If you want to modify
an unmodifiable buffer, you must enter the SET BUFFER
MODIFIABLE ON command.

There are some relationships between the close attributes (read-
only and save) and the modifiable buffer attributes. Given these
attributes, a buffer can be in one of four possible states. The
following list describes these states and explains how to create
these states for a buffer:

• Modifiable On and Close Save

The SET BUFFER CLOSE SAVE command sets buffers to
this state. It is also the default for the file specified in the
LSEDIT command line. The buffer can be modified and is
written when you exit from the editing session, if it has been
modified.

• Modifiable On and Close Read-Only

This is the default for the NEW BUFFER command that you
use to create a scratch buffer. This temporary work buffer
can be modified, but it is not written when you exit from the
editing session.

• Modifiable Off and Close Read-Only

The SET BUFFER CLOSE READ_ONLY command sets
buffers in this state. The buffer cannot be modified. If
you enter a SET BUFFER MODIFIABLE ON command on
this buffer and modify the contents, LSE does not save the
contents when you exit from the editing session, unless you
also enter the SET BUFFER CLOSE SAVE command for the
buffer.

• Modifiable Off and Close Save

You can set a buffer to this state when you have completed
a set of changes to a buffer in the modifiable and writable
state and then entered a SET BUFFER MODIFIABLE
OFF command for the buffer. This protects the buffer from
accidental change for the remainder of the editing session.
LSE saves the file when you exit from the editing session, if
it has been changed during the session.

(continued on next page)

2–14 Using LSE

Using LSE
2.5 Using Buffers

Table 2–3 (Cont.) Buffer Attributes

Attribute Description

unmodifiable record Shows whether the buffer contains one or more unmodifiable
records.

close Buffers have either the read-only or save property. The close
attribute indicates that the contents of the buffer are not written
to a file when you exit from the editing session. The close
attribute set to save indicates that the buffer is written to a file
when you exit from the editing session. Enter the SET BUFFER
CLOSE command to change this attribute.

Usually, a file is associated with a buffer by the OPEN FILE
command, which creates a buffer and fills it with the contents
of a file. When the buffer is written, it is written to the file. If
no file is associated with a buffer that has the save attribute,
LSE prompts for a file specification when you exit from the
editing session. A buffer is written only if its contents have been
modified.

erase unmodifiable Specifies whether you can erase unmodifiable records.

text LSE has two text entry modes: insert and overstrike. In insert
mode, text is inserted into the buffer at the cursor position. Text
to the right of the cursor moves to the right. In overstrike mode,
text typed at the cursor replaces text that is currently under the
cursor.

When you start an editing session, the buffer is automatically
placed in insert mode. To change the text entry mode, you can
use the SET BUFFER TEXT INSERT or SET BUFFER TEXT
OVERSTRIKE command.

direction LSE maintains a current direction for each buffer. The current
direction is displayed in the status line. This direction is used
for search operations and most GOTO and ERASE commands.
When you start an editing session, the buffer direction is set to
forward by default. To set the current direction to forward, use
the SET BUFFER DIRECTION FORWARD command. To set the
current direction to reverse, use the SET BUFFER DIRECTION
REVERSE command. Alternatively, you can use the CHANGE
DIRECTION command to change the current direction.

(continued on next page)

Using LSE 2–15

Using LSE
2.5 Using Buffers

Table 2–3 (Cont.) Buffer Attributes

Attribute Description

indentation level LSE maintains two settings to control the action of the Tab
key: current indentation level and tab increment. When you
are at the left margin, the Tab key indents to the current
indentation level. If you are not at the left margin, the Tab
key takes you to the next tab column based on the tab increment
setting. The SET BUFFER INDENTATION command sets the
current indentation level; the SET BUFFER TAB INCREMENT
command sets the size of the tab increment.

auto erase Using the SET BUFFER AUTO ERASE command, if the
auto erase attribute is set to ON, LSE erases the placeholder
the cursor is on as soon as you insert a character over the
placeholder.

overviews The SET BUFFER OVERVIEW ON command enables the
COLLAPSE, FOCUS, and VIEW SOURCE commands, and
the use of the EXPAND command on an overview line.

wrap Using the SET BUFFER WRAP command, if the wrap attribute
is set to ON, LSE automatically inserts a carriage return and
indents in the left margin when the text reaches the right
margin.

record size Shows the maximum length for records (lines) in the buffer.

record count Shows the number of records currently in the buffer.

record number Shows the record number on which the cursor is positioned.

LSE left margin The SET BUFFER LEFT MARGIN command sets the left margin
for the indicated buffer. By default, the LSE left margin is set at
column 1. The LSE left margin affects features specific to LSE.

TPU left margin By default, the DECTPU left margin is set at column 1. The
DECTPU left margin affects features specific to DECTPU.

right margin The SET BUFFER RIGHT MARGIN command sets the right
margin for the indicated buffer to the column number you specify.
By default, the right margin is set at column 80. The right
margin controls where LSE wraps words when you type text
into a buffer. The right margin also controls how the FILL
command reformats text. The right margin is the same for LSE
and DECTPU.

offset Specifies the number of characters between the left margin and
the cursor position. The left margin is counted as position 0. A
tab is counted as one character, regardless of width. Window
shifts have no effect on the value of the offset.

(continued on next page)

2–16 Using LSE

Using LSE
2.5 Using Buffers

Table 2–3 (Cont.) Buffer Attributes

Attribute Description

offset column Specifies the column in which DECTPU displays the character
at the cursor position. This value reflects the location of the
left margin and the width of tabs preceding the cursor position.
Window shifts have no effect on the value of the offset column;
DECTPU treats a window that is in the current buffer as not
shifted.

tab increment LSE maintains two settings to control the action of the Tab
key: current indentation level and tab increment. When you
are at the left margin, the Tab key indents to the current
indentation level. If you are not at the left margin, the Tab
key takes you to the next tab column based on the tab increment
setting. The SET BUFFER INDENTATION command sets the
current indentation level; the SET BUFFER TAB INCREMENT
command sets the size of the tab increment.

tab stops Shows the column numbers where tab stops are set.

window count Shows the number of windows in which the current buffer is
displayed.

2.6 Defining Key Commands
With LSE, you can associate any command or keystroke sequence with a key
or control-key combination on the keyboard. LSE provides default command
definitions for some keys, such as the key-command association for the keypad
(press PF2 to see these). You can redefine the default command definitions.

To see the current definition of all the keys, choose Show Key * from the Show
menu.

To define a key-command association, choose New Key ... from the Options
menu and specify the required information on the New Key dialog box.

You can also define a key interactively by using the NEW KEY command. You
must include the name of the key you want defined and the command string
you want bound to that key. (For key names, see the NEW KEY command
description in the online Help on LSE, in the ‘‘On Commands’’ area.)

For example, if you want to define a key to exit from LSE, enter the following
command:

LSE> NEW KEY F9 "EXIT"

Now you can press F9 to exit from this editing session.

Using LSE 2–17

Using LSE
2.6 Defining Key Commands

The following example shows how you can define the NEW KEY command to
execute whenever you press Ctrl/A:

Command: NEW KEY
_Key: Ctrl/A
LSE Command: NEW KEY

After this definition, pressing Ctrl/A immediately displays the _Key: prompt.
If you do not know the name of a key, such as Ctrl/A, you can automatically
display the name of a key by pressing PF1-Ctrl/V and then the key you want
to define.

Note

You can use PF1-Ctrl/V only if you first enter the SET PROMPT
KEYPAD command.

In addition, you can bind several commands to a key. To do this, you must
use the DO command and place quotation marks around each command. The
following example shows how to bind the ENTER LINE and TAB commands to
the Return key (specified by CTRL/M_KEY):

DEF KEY CTRL/M_KEY "DO ""ENTER LINE"",""ENTER TAB"""

When you issue this command, position the cursor at the end of the line above
where you want to insert text, and press the Return key. A blank line is
inserted and the cursor is placed at the proper depth for your code.

2.7 Defining Key Sequences
As an alternative to binding commands to a key, you can bind a sequence of
keystrokes to a key. This is called a learn sequence. To begin recording a
learn sequence, enter the following command:

LSE> NEW LEARN KEY

At the prompt, press the key that you want to define, F17 for example. LSE
echoes the key name.

Next, press the Return key to start recording keystrokes. Every key that you
press now will be recorded. This includes all keys that enter text into the
editing buffer. All commands typed at the LSE Command> prompt and all
responses to prompts such as ‘‘_Search for:’’ are also recorded.

To end the sequence, press the key that you are defining, in this case F17.
Pressing F17 again replays the learn sequence.

2–18 Using LSE

Using LSE
2.7 Defining Key Sequences

Pointer actions are not recorded.

2.8 Working with Files
This section describes the following file-manipulation operations:

• Locating, displaying, and writing source files

• Locating files in multiple directories

• Setting directory defaults

• Rolling back the last LSE function performed

• Getting files through the HP Code Management System

• Editing features with the HP Source Code Analyzer System

2.8.1 Locating, Displaying, and Writing Source Files
LSE provides the following commands for locating and displaying source files
within your editing sessions:

Command Description

GOTO DECLARATION Displays the source file corresponding to the specified or
indicated symbol declaration.

INCLUDE FILE Inserts a copy of a file at the current cursor position. The
cursor position does not change.

GOTO SOURCE Displays the source file corresponding to the current
diagnostic or query item.

OPEN FILE Locates a file and reads it into a buffer.

NEW FILE Creates a new file in a buffer.

LSE provides the following commands for writing the contents of buffers into
files:

Command Description

COMPILE First saves the current buffer (if it is not read-only), if it
has been modified, and saves any other modified buffers
associated with the same language. It then compiles the file
associated with the current buffer.

Using LSE 2–19

Using LSE
2.8 Working with Files

Command Description

EXIT Ends an editing session and saves buffers that have been
modified, provided they are not marked as read-only buffers.
Buffers that are read-only are not written out by an EXIT
command. (If you do not want to save your modifications, use
the QUIT command to end your editing session.)

SAVE FILE Saves your current buffer or a specified buffer in a file using
the current file name. Your editing session continues until
you enter an EXIT or QUIT command.

SAVE AS Saves your current buffer or a specified buffer in a file you
specify. Your editing session continues until you enter an
EXIT or QUIT command.

2.8.2 Locating Files in Multiple Directories
You can specify a list of directories for LSE to use when locating files by using
the command SET DIRECTORY SOURCE. For example, type the following
command:

LSE> SET DIRECTORY SOURCE DIR 1 DIR 2 DIR 3 DIR 4

LSE searches the directories in the order specified on the SET DIRECTORY
SOURCE command line.

When you specify a file on the OPEN FILE command line, LSE resolves it
by using the search list established with the SET DIRECTORY SOURCE
command.

Note

The directory search list cannot contain commas. Substitute the
appropriate operating-system-specific directory specifications for DIR 1,
DIR 2, DIR 3, and DIR 4 in the previous command example.

LSE searches through directories DIR 1 through DIR 4, in order, until the
source file is found.

You can include CMS$LIB in the SET DIRECTORY SOURCE directory list so
LSE will fetch files directly from your CMS library into buffers. The CMS SET
LIBRARY command must be entered first.

The following commands use the source list to locate files:

GOTO SOURCE
GOTO DECLARATION

2–20 Using LSE

Using LSE
2.8 Working with Files

INCLUDE FILE
OPEN FILE

The GOTO SOURCE command displays a source file that is specified in the
diagnostics file, or SCA data that corresponds to your current review or query
operation. If LSE cannot find the file within an existing buffer, it tries to find
the exact file specified by the current diagnostic or query operation. If that file
cannot be found, LSE uses the SET DIRECTORY SOURCE list to locate the
file.

The GOTO DECLARATION command displays the source file for the
declaration of the specified or indicated symbol.

The INCLUDE FILE command also uses the SET DIRECTORY SOURCE
list to resolve file specifications. The INCLUDE FILE command inserts the
contents of a file into the buffer at the current cursor position. The cursor is
positioned on the first character of the inserted text, rather than remaining on
the original character, or at the end of the buffer.

2.8.3 Setting Directory Defaults
With the SET DIRECTORY commands, you can set the default CLOSE status
of files in a specified directory. Initially, all directories are set to save.

The SET DIRECTORY CLOSE READ_ONLY directory command enables you
to specify directories containing files that you do not want to change. If you
specify the READ_ONLY keyword, LSE brings the files contained in those
directories into unmodifiable, read-only buffers.

The SET DIRECTORY CLOSE SAVE directory command allows you to modify
and write to files.

Using Default Settings
If you are working on a software project, you might have the following
directories set up:

• cur_dir—Your current directory.

• my_dir—Contains the files you are working on, such as MODULE1.PAS
and MODULE3.PAS.

• proj_dir—Contains the files that comprise your project, for example,
MODULE1.PAS, MODULE2.PAS, MODULE3.PAS, MODULE4.PAS, and
MODULE5.PAS. These files are shared by your project team and must not
be modified.

Using LSE 2–21

Using LSE
2.8 Working with Files

For example, enter the following commands to set your default settings:

SET DIRECTORY SOURCE cur_dir my_dir proj_dir
SET DIRECTORY CLOSE proj_dir READ_ONLY

Then, enter an OPEN FILE or GOTO SOURCE command. LSE searches
through cur_dir, my_dir, and proj_dir to locate files. Those files located in your
current directory and my_dir can be modified. However, those files located in
proj_dir cannot be modified by default because of the READ_ONLY keyword on
the SET DIRECTORY command. Thus, you can modify files MODULE1.PAS
and MODULE3.PAS, and refer to the other project files without the possibility
of modifying the wrong files.

The following example gets the file from proj_dir and puts the file into an
unmodifiable, read-only buffer:

OPEN FILE MODULE2.PAS

The following example gets the file from my_dir and puts the file into a
modifiable, writable buffer:

OPEN FILE MODULE1.PAS

Overriding Default Settings
The GOTO FILE command has the following qualifiers:

• /WRITE

• /READ_ONLY

• /MODIFY

You can use these qualifiers to override any settings established by the SET
DIRECTORY command. (See the GOTO FILE command in the HP DECset for
OpenVMS Language-Sensitive Editor/ Source Code Analyzer Reference Manual
for more details.) You can also use the /WRITE and /READ_ONLY qualifiers on
the GOTO SOURCE command to override any settings established by the SET
DIRECTORY command.

If you want to modify MODULE2.PAS in the [PROJECT_DIRECTORY], enter
the following command:

LSE> GOTO FILE/WRITE MODULE2.PAS

LSE gets MODULE2.PAS out of the PROJECT_DIRECTORY and puts the file
into a modifiable/writable buffer.

LSE> SET WRITE

2–22 Using LSE

Using LSE
2.8 Working with Files

The GOTO FILE/WRITE command sets a buffer to both modifiable and
writable. Thus, you could issue the following command if you find that you
need to make changes to MODULE4.PAS that you want to keep:

LSE> GOTO FILE/WRITE MODULE4.PAS

Because the file is located in a /READ_ONLY directory, LSE issues an
information message to that effect.

On the other hand, you might find that you do not want to modify
MODULE1.PAS, even though it is not located in a READ_ONLY directory.

If you want to look at MODULE1.PAS in MY_DIRECTORY, but you do not
want to modify the file, enter the following command:

LSE> GOTO FILE/READ_ONLY MODULE1.PAS

This command overrides the current settings established by the previous
SET DIRECTORY command, and it brings MODULE1.PAS into a read-
only/unmodifiable buffer. If you want to modify the file, issue the following
command:

LSE> SET MODIFY

2.8.4 Rolling Back the Last LSE Function Performed
The LSE operations or commands that might need undoing fall into the
following categories:

• Internal:

Those that affect settings

Those that affect buffers

• External:

Those that affect external resources (disk files)

LSE does not have complete control over external resources. For this reason,
operations or commands that influence external resources cannot be undone.
Examples of such commands are as follows:

• LSE WRITE

• LSE CMS RESERVE

The LSE operations or commands that can be rolled back are limited to those
that modify the user buffers.

Using LSE 2–23

Using LSE
2.8 Working with Files

The following UNDO and REDO commands are implemented in both character-
cell and DECwindows interfaces to facilitate the rolling back of LSE operations
or commands. Note that these operations are limited to the current user buffer
only.

UNDO Command
Multiple UNDO commands reverse previous buffer modifications in the current
user buffer, one at a time. Multiple UNDO commands are by default restricted
to reversing the last 100 buffer modifications per user buffer. When this
limit is reached in the current buffer, the UNDO command is disabled in the
DECwindows interface. The UNDO command is reenabled only after another
command is executed (including a REDO command) in the current user buffer.

You can use the SET MAX_UNDO command to set the number of maximum
allowable UNDO commands for the current buffer (or the specified buffer) to a
number other than the default value of 100, as follows:

LSE> SET MAX_UNDO[/buffer=buffer_name] number

For more information on the UNDO command, see the HP DECset for
OpenVMS Language-Sensitive Editor/ Source Code Analyzer Reference Manual.

REDO Command
Multiple REDO commands reverse the effects of previous UNDO commands in
the current user buffer. In the case where all previous UNDO commands have
been redone for the current user buffer, the REDO command is disabled in the
DECwindows interface. The REDO command is reenabled only after another
UNDO command is executed in the current user buffer.

For more information on the REDO command, see the HP DECset for
OpenVMS Language-Sensitive Editor/ Source Code Analyzer Reference Manual.

Note

Enable the global UNDO (and REDO) feature by setting SET MODE
UNDO=ON, and disable them with the command SET MODE
UNDO=OFF. For details, see the HP Language-Sensitive Editor/Source
Code Analyzer for OpenVMS Reference Manual.

2–24 Using LSE

Using LSE
2.8 Working with Files

2.8.5 Getting Files Through HP Code Management System
With LSE, you can access files stored in HP Code Management System (CMS)
directly. You can also issue all CMS commands from within LSE. The LSE
commands related to CMS are as follows:

• CMS [cms-command]

• SET CMS

• GOTO FILE

• GOTO SOURCE

• INCLUDE

• READ

• RESERVE

• UNRESERVE

• REPLACE

CMS [cms-command] Command
With the CMS [cms-command] command, you can execute any CMS command
from within LSE. This command operates on your current CMS library.

SET CMS Command
The SET CMS command sets the defaults for CMS qualifier values for CMS
operations performed by the following commands: GOTO FILE, GOTO
SOURCE, INCLUDE, READ, REPLACE, RESERVE, and UNRESERVE.

GOTO FILE, GOTO SOURCE, INCLUDE, and READ Commands
When you issue the GOTO FILE, GOTO SOURCE, INCLUDE, or READ
command, if the directory for a file you are looking for is the same as your
current CMS library, LSE fetches the element from CMS and puts it into
a read-only/unmodifiable buffer. LSE prompts you for confirmation when
performing a fetch operation. This fetch operation does not create a file.

For example, enter the following command and response to locate and fetch a
CMS element:

LSE> GOTO FILE CMS$LIB:FILE.TYP
FILE.TYP found in CMS library DISK:[PROJECT_CMS_LIBRARY]
Do you want to fetch it [Yes]: Y

LSE fetches the element FILE.TYP and reads it into a buffer of the same
name. LSE does not create a file in your current directory when doing a fetch
operation.

Using LSE 2–25

Using LSE
2.8 Working with Files

RESERVE Command
With the RESERVE command, you can reserve an element in your current
CMS library. This element is put into an editing buffer. Enter the following
command:

LSE> RESERVE element-name

LSE reserves the element element-name in your current CMS library and
reads it into a buffer. If you omit the element-name parameter, the RESERVE
command reserves the element of the same name and type as the input file
associated with your current buffer.

UNRESERVE Command
With the UNRESERVE command, you can unreserve the CMS element of the
same name and type as the file associated with your current buffer in your
current CMS library. Enter the following command:

LSE> UNRESERVE

LSE unreserves the element in your current buffer that you reserved in the
last example.

REPLACE Command
The REPLACE command replaces the CMS element of the same name and
type as the file associated with your current buffer in your current CMS
library. Enter the following command:

LSE> REPLACE

LSE replaces the element in your current buffer into your current CMS library.

2.8.6 DECwindows LSE/CMS Integration
LSE is integrated with CMS to ease the management of source code between
the two DECset components, as follows:

• From within LSE, enter commands or select menu choices to manipulate
CMS elements, LSE buffers, or disk files.

• From within CMS, select menu choices to manipulate CMS elements, LSE
buffers, or disk files.

As shown in Figure 2–4, you can fetch and reserve an element from a CMS
library, edit the file or perform differences, or replace or create a file to the
library.

2–26 Using LSE

Using LSE
2.8 Working with Files

Figure 2–4 LSE/CMS Integration

LSE

Fetch
Reserve

Differences

Replace
Create

CMS
Library

2.8.6.1 CMS Functions from LSE
From LSE, you can perform all CMS operations on the CMS library of your
choice. To see which library is set, issue the following command:

LSE> CMS SHOW LIBRARY

The following example shows a typical system response that might appear in
the LSE buffer:

Your CMS library list consists of:
DISK11:[EXCERPTS.CMS.VMS]

To reset to another CMS library, issue a command similar to the following:

LSE> CMS SET LIBRARY DISK11:[SUMMARIES.CMS.VMS]

The following list further describes the major CMS functions available from
LSE integrated functions, and presents examples:

• Reserve (and unreserve) an element in the CMS library into an LSE buffer.
Use the LSE File menu or the LSE command line. The following example
shows how to reserve generation 12 of a CMS element at the LSE command
line:

LSE> CMS RESERVE COPY.PAS/GENERATION=12

• Replace an element into the CMS library from an LSE buffer. Use the LSE
File menu or the LSE command line. The following example shows how to
replace a CMS element at the LSE command line:

LSE> CMS REPLACE COPY.PAS "Nov 1998 update"

• Perform CMS differences between any combination of CMS element and
disk file, putting the results into a disk file. Use the LSE command line
only. The following example shows how to perform differences between
generation 15 of a CMS element and version 2 of the related disk file at the
LSE command line:

Using LSE 2–27

Using LSE
2.8 Working with Files

LSE> CMS DIFFERENCES COPY.PAS/GENERATION=15 COPY.PAS;2

Figure 2–5 shows the CMS commands available from the LSE File menu. The
sample LSE command line shows a CMS DIFFERENCES operation between
the current LSE buffer and generation 2 of the related CMS element.

Figure 2–5 Performing CMS Functions from LSE

All other CMS operations are available via the LSE command-line interface.

2.8.6.2 LSE Functions from CMS
From the CMS File pull-down menu, you can do the following:

• Create an element in the CMS library from the current LSE buffer.

• Fetch a generation of an element from the CMS library into an LSE buffer.

• Reserve an element in the CMS library into an LSE buffer.

• Replace an element into the CMS library from an LSE buffer.

• Perform CMS differences between two generations of elements.

• Perform CMS differences between the current LSE buffer and its
corresponding CMS element or a file.

2–28 Using LSE

Using LSE
2.8 Working with Files

Figure 2–6 shows the CMS commands available for integration with LSE. Only
one pull-down menu can be activated at a time.

Figure 2–6 Performing LSE Functions from CMS

2.8.6.3 Creating an Element in the CMS Library
To create a CMS element, use one of the following methods:

• Create a CMS element using LSE.
To create a CMS element from the LSE command line, issue a command
similar to the following:

LSE> CMS CREATE ELEMENT COPY.PAS "Dec 1998 update"

If the specified file is in the current LSE buffer and is different from the
latest version on disk, a new version is saved and that version is used for
the CMS element.

• Create a CMS element using CMS.
You can create an element in the CMS library from the contents of the
current LSE buffer via the CMS pull-down menu. If the specified file name
is currently in an LSE buffer, the LSE buffer is written to disk and that
version of the CMS element is created.

Using LSE 2–29

Using LSE
2.8 Working with Files

To create an element using the CMS menu, do the following:

1. From the CMS File menu, choose New, Element to access the New
Element dialog box.

2. Specify an LSE edit buffer in the Element text field, or accept the
current LSE edit buffer (if LSE is running). The buffer name must
be a valid CMS element name, as defined in the Guide to HP Code
Management System for OpenVMS Systems. If the text in the current
LSE buffer has changed from an older version on disk, a new version is
written to disk at the same time that the new element is created in the
CMS library.

You can also import a file by clicking the Input File toggle button and
typing a file name in the associated text field. The Input File and
Element choices are mutually exclusive. That is, you can specify either
an input file or an LSE edit buffer, but not both.

2.8.6.4 Fetching a Generation of an Element From the CMS Library
To fetch a CMS element, use one of the following methods:

• Fetch a CMS element using LSE.
To fetch a CMS element in LSE, either select Fetch from the File menu, or
issue a command similar to the following at the command line:

LSE> CMS FETCH COPY.PAS "Modify Dec 1998 update"

To fetch an earlier generation, specify the /GENERATION=n qualifier. If
DECwindows LSE is running, the specified CMS element is fetched and
displayed in an LSE buffer with the same name. For a different file name,
use the /OUTPUT=file-spec qualifier.

• Fetch a CMS element using CMS.
You can fetch a generation of an element from the CMS library into an LSE
buffer via the CMS File menu, or by double clicking on the element name.
If DECwindows LSE is running, the specified CMS element is fetched and
displayed in an LSE buffer with the same name.

2.8.6.5 Reserving an Element in the CMS Library
To reserve (or unreserve) a CMS element, use one of the following methods:

• Reserve a CMS element using LSE.
To reserve a CMS element in LSE, either select Reserve from the File
menu, or issue a command similar to the following at the command line:

LSE> CMS RESERVE COPY.PAS "Modify Dec 1998 update"

2–30 Using LSE

Using LSE
2.8 Working with Files

To reserve an earlier generation, specify the /GENERATION=n qualifier. If
DECwindows LSE is running, the specified CMS element is reserved and
displayed in an LSE buffer with the same name. For a different file name,
use the /OUTPUT=file-spec qualifier.

• Reserve a CMS element using CMS.
You can reserve an element in the CMS library into an LSE buffer via
the CMS File menu. If DECwindows LSE is running, the specified CMS
element is reserved and displayed in an LSE buffer with the same name.

2.8.6.6 Replacing an Element into the CMS Library
To replace a CMS element, use one of the following methods:

• Replace a CMS element using LSE.
To replace a CMS element in LSE, either select Replace from the File
menu, or issue a command similar to the following at the command line:

LSE> CMS REPLACE COPY.PAS "Oct 1998 update, mod. Dec 1998"

To avoid creating a new generation if the input file has no changes from
the reserved generation, use the /IF_CHANGED qualifier.

• Replace a CMS element using CMS.
You can replace an element into the CMS library from an LSE buffer via
the CMS File menu. If the specified file name is currently in an LSE buffer,
the LSE buffer is written to disk and that version of the CMS element is
replaced. Do the following:

1. From the CMS File menu, choose Replace to access the Replace dialog
box.

2. Verify the selected CMS elements in the Selected list box, change
element names or generations, or click on Cancel to return to the CMS
window. If you did not select an element in the CMS window, the
cursor appears in the Element text field for your input. However, if you
did select an element, the Element text field is unavailable.

To avoid creating a new generation if the input file has no changes from the
reserved generation, activate the Create New Generation Only if Changed
toggle button in the Replace Options dialog box.

Using LSE 2–31

Using LSE
2.8 Working with Files

2.8.6.7 Performing CMS Differences Operations
To perform CMS differences operations, use one of the following methods:

• Perform CMS differences from LSE.
Enter the command and specify which items to use to perform the
operation. Enter only the file name for an LSE buffer, add version numbers
for disk files, or add the /GENERATION=n qualifier for CMS elements, as
shown in the following examples:

The first example performs differences between generation 2 of a CMS
element and version 8 of a disk file.

LSE> CMS DIFFERENCES COPY.PAS/GENERATION=2 COPY.PAS;8

The second example performs differences between generation 2 of a
CMS element and generation 1 of the same CMS element.

LSE> CMS DIFFERENCES COPY.PAS/GENERATION=2 COPY.PAS/GENERATION=1

• Perform CMS differences from CMS.
Access the Differences dialog box from the Data pull-down menu in
DECwindows CMS. Use the Primary Input region to identify the first
item to be compared, and the Secondary Input region for the second item.
Select the two items with the following buttons and fields:

Selected—If you selected a CMS element, that element appears in the
Selected field of the Primary Input region. You can either accept that
element, change its generation number, or select another element or
file. If you did not select a CMS element, the Selected area is inactive.

By default, CMS uses the highest mainline generation (1+), unless you
selected a specific generation. To compare any other generation, supply
the exact generation number in the form ELEMENT\n.

Generation—To compare a CMS element, click the Generation toggle
button and enter the generation value in the text field.

Element/File—Click on the Element/File label and specify either an
OpenVMS file specification or a CMS element. The OpenVMS file can
be specified without a version number, but a CMS element must be
specified with a generation number. For a CMS element, click the
Generation button to specify that the file is an element and not an
OpenVMS file. If no CMS element was selected, the text field remains
blank in both the Primary Input and Secondary Input areas.

2–32 Using LSE

Using LSE
2.8 Working with Files

2.8.7 Editing Features with HP Source Code Analyzer System
LSE is tightly integrated with SCA. All SCA commands are available within
LSE. LSE/SCA enables you to design, create, compile, correct, and inspect
source code within a single editing session. For example, to modify the
characteristics of a variable, you can use SCA to locate all of the uses of the
variable across the system and make the changes without leaving LSE.

You can perform SCA queries within LSE by combined use of the LSE
command prompt (command-line interface) and the basic LSE navigational
commands (HP DECwindows interface). Alternatively, you can use the LSE
command-line interface exclusively. For example, you can use the LSE
command prompt to set the SCA library and query the library for occurrences
of symbols. You can then use basic LSE navigational commands (point and
click operations via MB1) to examine the corresponding source code for a
particular occurrence. You can then use the query buffer pop-up menu to move
between items and source. In addition, you can use the LSE command prompt
in place of any basic LSE navigational command.

The LSE and SCA windows must be displayed to the same X server but do not
need to be running on the same node. For example, LSE can be running locally
while SCA runs remotely on a server system.

For more information on LSE or SCA features or integration, see Using HP
DECset for OpenVMS Systems.

2.9 Recovering From a Failed Editing Session
LSE provides mechanisms to recover edits that exist as changes in LSE buffers
when a system or editor failure occurs. LSE can journal your edits in two
ways: keystroke journaling and buffer-change journaling. Keystroke journaling
records the keys that you press over the course of an editing session. Buffer-
change journaling records the changes made to a buffer over the course of an
editing session.

Keystroke journal files have a file type of .TJL and buffer-change journal files
have a file type of .TPU$JOURNAL. Both types of journaling periodically
save information to their respective journal files. When an editing session is
terminated abnormally, a journal file might not contain a record of the last few
operations that were performed. When you recover using a journal file, your
cursor remains at the position corresponding to the location where the last
journaled edit was made.

Using LSE 2–33

Using LSE
2.9 Recovering From a Failed Editing Session

Using a Keystroke Journal File
Keystroke journal files contain the exact sequence of keys that you pressed
over the course of the editing session. When you recover using a keystroke
journal file, you must be sure to restore your environment to the state that
it was in when the journaled editing session was started. The following list
describes the types of things that must be restored to your environment before
you can successfully complete a recovery using a keystroke journal file:

• All files created during the editing session must be either deleted or placed
in a directory that will not be referenced during the recovery operation.
This will prevent the wrong version of the file from being accessed during
the keystroke-journal recovery operation.

You can determine what files were created during an editing session by
examining the creation date of the .TJL file. For example, to determine the
creation date of a keystroke journal file, enter the following command:

$ DIRECTORY/DATE=CREATE MEMO.TJL

This produces output similar to the following:

Directory DUA0:[SMITH]

MEMO.TJL;1 15-JUN-1998 08:42:20.69

Total of 1 file.

To move files from specific directories that were created since that date to
a directory that is not referenced during the recovery operation, enter the
following commands:

$ CREATE/DIRECTORY DUA0:[SMITH.TEMP]
$ COPY/SINCE=15-JUN-1998:08:42:20 -
_$ DUA0:[SMITH...],DUA0:[PROJECT...] DUA0:[SMITH.TEMP]
$ DELETE/SINCE=15-JUN-1998:08:42:20 -
_$ DUA0:[SMITH...],DUA0:[PROJECT...]

• You must set the terminal characteristics of the terminal to match the
terminal characteristics that were in effect at the time the journaled
editing session was started.

• You must invoke LSE with the same command line that you used to
start the journaled editing session. Additionally, you must specify the
/RECOVER qualifier on the command line.

You might have to take other actions, depending on the events that might have
occurred over the course of your editing session.

2–34 Using LSE

Using LSE
2.9 Recovering From a Failed Editing Session

If you reserve or replace elements in a CMS library during the editing session,
you might not be able to perform a recovery using a keystroke journal file
because changes in the CMS library cannot be undone. In such cases, use a
buffer-change journal file.

Using a Buffer-Change Journal File
A buffer-change journal file contains a record of the changes that you made
to a buffer over the course of an editing session. There is one buffer-change
journal file for each editing buffer.

To recover changes with a buffer-change journal file, do the following:

1. Invoke LSE.

2. Enter the RECOVER BUFFER command and specify the name of the file
that you want to recover.

3. Examine the information displayed by LSE to verify that the journal file
corresponds to the source file you want.

4. Enter Y at the prompt if you want to recover the buffer.

After you instruct LSE to start the recovery using a buffer-change journal file,
LSE reads the source file that corresponds to the buffer-change journal file and
begins to apply the journaled changes to the file.

When you recover changes using a buffer-change journal file, you do not have
to worry about the files that were created during the editing session, or the
command line that you used to invoke LSE. Using a buffer-change journal file
is much quicker than using a keystroke journal file because LSE recovers only
files that it is directed to recover.

2.10 Storing Custom Modifications
The previous sections explained how to make modifications interactively. Such
modifications remain in effect only for the current editing session. If you want
to keep your modifications, put them in a file and access that file whenever you
want to use the modifications. Alternatively, you can create an initialization
file or a command file that allows you to automatically access the modifications
at LSE startup.

To store your modifications in a file, create a text file with a file type of .LSE.
Similarly, if you want to keep your HP DECTPU statements, create a text file
with a .TPU file type.

Using LSE 2–35

Using LSE
2.10 Storing Custom Modifications

With LSE, you can use these files interactively when you need them. The
following examples show how you execute your commands. The EXECUTE
BUFFER command directs LSE to execute the commands found in the specified
buffer. In both examples, the current buffer is used.

Press Ctrl/Z to get the command prompt, and enter the following commands:

For LSE commands:

$ NEW FILE filename.LSE
$ EXECUTE BUFFER LSE

For HP DECTPU statements:

$ NEW FILE filename.TPU
$ EXECUTE BUFFER TPU

The commands contained in the text file that you execute with the EXECUTE
BUFFER commands affect the current editing session.

2.10.1 Using Initialization and Command Files on OpenVMS Systems
You might want your modifications automatically executed when you invoke
LSE. You can do this by specifying either an initialization or command file
when you invoke LSE. An initialization file contains LSE commands, whereas
a command file contains HP DECTPU statements.

To use your LSE modifications, enter the following command:

$ LSEDIT/INITIALIZATION=device:[directory]filename.LSE ...

To use your HP DECTPU file, enter the following command:

$ LSEDIT/COMMAND=device:[directory]filename.TPU ...

You can use both the /INITIALIZATION and /COMMAND qualifiers on the
LSEDIT command line to use both your files.

You can also use your initialization and command files without specifying the
files each time you invoke LSE. To execute the initialization and command files
each time you issue the LSEDIT command, add the following commands to
your LOGIN.COM file.

$ DEFINE LSE$INITIALIZATION device:[directory]filename.LSE
$ DEFINE LSE$COMMAND device:[directory]filename.TPU

2–36 Using LSE

Using LSE
2.10 Storing Custom Modifications

Example 2–1 shows the types of modifications you can put into an initialization
file.

Example 2–1 Sample Initialization File

!Sample initialization file
!
! Command to spawn a subprocess, run MAIL, and clear the message
! buffer when the editing session is resumed.
!
DEFINE COMMAND MAIL "DO ""SPAWN MAIL"",""CLEAR_MESSAGE"""
!
! Command to clear the message window by writing three blank lines
!
DEFINE COMMAND CLEAR_MESSAGE-

"DO/TPU ""MESSAGE("""""""")"",""MESSAGE("""""""")"",""MESSAGE("""""""")"""
!
! Command to bind the MAIL command to a key.
!
NEW KEY F20 "MAIL"
!
! DEFINE ALIAS command for abbreviating the name of an include file in Pascal.
!
DEFINE ALIAS DEFS/LANGUAGE=PASCAL "USER1:[PROJECT]COMMON_DEFINITIONS.PAS"
!
! DEFINE TOKEN command to redefine the DO token in C, so that it always contains a
! compound statement
!
DEFINE TOKEN DO -

/LANGUAGE=C -
/DESCRIPTION="executes a statement as long as a particular condition is satisfied" -
/TOPIC="Language_topics Statements do"

"do"
"{"
" {@statement@}..."
"}"
"while ({@expression@});"

END DEFINE
!
! HP DECTPU statement to change the scrolling of LSE windows so that the
! screen only scrolls when the cursor is at the bottom or top of the screen.
!
SET SCROLL_MARGINS 00

Using LSE 2–37

Using LSE
2.10 Storing Custom Modifications

Example 2–2 shows the types of HP DECTPU procedures you can put into a
command file. Procedure definitions must precede statements in a command
file.

Example 2–2 Sample Command File

! Sample command file
!
! HP DECTPU procedure to replace tabs with spaces. In this example, the tabs
! are set at 8.
PROCEDURE ELIMINATE_TABS

local target,
n,
saved_mode;

position(beginning_of(current_buffer));
loop

target := search(ascii(9), FORWARD);
exitif (target = 0);
position(beginning_of(target));
erase_character(1);
n := current_offset;
n := n - (8 * (n / 8));
saved_mode := get_info (current_buffer, "mode");
set (insert, current_buffer);
copy_text(substr(" ", 1, 8 - n));
set (saved_mode, current_buffer);

endloop;
ENDPROCEDURE

! LSE command to invoke the ELIMINATE_TABS procedure.
LSE$DO_COMMAND("DEFINE COMMAND NOTABS ""CALL ELIMINATE_TABS""");
! Command to change the text of the "Working..." message to "BUSY..."
SET (TIMER, ON, "BUSY...");

! HP DECTPU procedure to change the scrolling of LSE windows so that the screen
! only scrolls when the cursor is at the bottom or top of the screen.
LSE$DO_COMMAND "SET SCROLL_MARGINS 00"

2.11 Automating LSE Initialization
LSE provides two mechanisms to automate LSE initialization:

• An environment file that contains all language-specific definitions

• A section file that contains all key definitions and HP DECTPU procedures

Because both environment and section files are binary files, LSE does not have
to execute them each time LSE is invoked. This saves time at LSE startup.

2–38 Using LSE

Using LSE
2.11 Automating LSE Initialization

In addition, environment files and section files have a mechanism for a system
manager to provide users with a tailored environment while still allowing
you to do some customization of your own with the use of command files and
initialization files.

If your initialization file or command file is large, you might want to put
your changes into an environment file or a section file. If you do, save your
source files for future LSE updates because LSE requires you to rebuild your
environment and section files when you install a new version of LSE.

2.11.1 Creating Environment and Section Files
To create an environment or section file, establish the language definitions,
placeholder definitions, command and key definitions, and mode settings that
you want to save. Then, enter the SAVE ENVIRONMENT or SAVE SECTION
command while in an editing session.

The SAVE ENVIRONMENT command saves the following:

languages routines

packages parameters

placeholders adjustments

tokens keywords

aliases tags

The SAVE SECTION command saves the following:

key definitions pending delete

cursor free/bound HP DECTPU procedures and variables

learn sequences bell

user-defined commands bell broadcast

search attributes keypad

balance windows tabs visible

minimum window size height

width

You must include the name of the environment or section file, including device
and directory names, when you enter the SAVE ENVIRONMENT or SAVE
SECTION command.

Using LSE 2–39

Using LSE
2.11 Automating LSE Initialization

The following examples show you how to create environment and section files.
Press Ctrl/Z to get the command prompt and enter the following commands:

To create environment files:

$ NEW FILE LANGUAGE_DEFINITION.LSE
$ EXECUTE BUFFER LSE
$ SAVE ENVIRONMENT filename

To create section files:

$ NEW FILE TPU_PROGRAM.TPU
$ EXECUTE BUFFER TPU
$ SAVE SECTION filename

2.11.2 Using Environment and Section Files
To use your definitions, you must inform LSE about them by issuing the
/ENVIRONMENT or /SECTION qualifiers on the LSE command line.

To use your environment file, enter the following command:

$ LSEDIT/ENVIRONMENT=device:[directory]filename.ENV

You can include a list of file specifications with the /ENVIRONMENT qualifier.

To use your section file, enter the following command:

$ LSEDIT/SECTION=device:[directory]filename.TPU$SECTION

You can automatically access all language-specific definitions from one editing
session to another without specifying the /ENVIRONMENT qualifier each time
you invoke LSE. To do this, add the following command to your LOGIN.COM
file:

$ DEFINE LSE$ENVIRONMENT device:[directory]filename.ENV

You can automatically access all your key definitions and HP DECTPU
procedures from one editing session to another without specifying the
/SECTION qualifier each time you invoke LSE. To do this, add the following
command to your LOGIN.COM file:

$ DEFINE LSE$SECTION device:[directory]filename.TPU$SECTION

2–40 Using LSE

Using LSE
2.11 Automating LSE Initialization

2.11.3 Using Multiple Files
With LSE, you can specify any combination of the /INITIALIZATION,
/COMMAND, /ENVIRONMENT, and /SECTION qualifiers on the command
line. LSE processes these files in the following order:

1. /SECTION

2. /COMMAND

3. /ENVIRONMENT

4. /INITIALIZATION

If you specify more than one environment file with the /ENVIRONMENT
qualifier, the definitions in the first file on the list take precedence over
definitions in subsequent environment files. All environment file definitions
take precedence over any administrator-supplied/SYSTEM_ENVIRONMENT
file definitions.

Table 2–4 lists where your modifications to LSE are stored.

Table 2–4 Where LSE Stores Modifications

Text Files Binary Files

Initialization Command Environment Section

LSE commands HP DECTPU
statements

Language-specific
definitions

Key definitions

HP DECTPU procedures

HP DECTPU symbol
names

DEFINE COMMAND
definitions

Learn sequences

LSE mode settings

Using LSE 2–41

3
Programming with LSE

This chapter describes the following topics:

• Compiling and reviewing a program

• Using tokens and placeholders

• Creating pseudocode

• Formatting comments

• Outlining programming code

3.1 Compiling and Reviewing a Program
While writing your program, you can use the COMPILE and REVIEW
commands to compile your code and review compilation errors without leaving
the editing session. Supported OpenVMS compilers generate a file of compile-
time diagnostic information that LSE can use to review compilation errors.
The diagnostic information is generated with the /DIAGNOSTICS qualifier.

The COMPILE command issues a DCL command in a subprocess to invoke the
appropriate compiler. LSE checks to see if the language supports diagnostics
capabilities. If so, LSE appends the /DIAGNOSTICS qualifier to the COMPILE
command.

For example, if you issue the COMPILE command while in the buffer
TEST.ADA, the resulting DCL command is as follows:

$ ADA DEV:[DIRECTORY]TEST.ADA/DIAGNOSTICS=DEV:[DIRECTORY]TEST.DIA

LSE supports all of the compiler’s command qualifiers, as well as user-supplied
command procedures. You can specify DCL qualifiers, such as /LIBRARY, when
invoking the compiler from LSE. In addition, you can specify the /DESIGN
qualifier to process designs. For example, to invoke the compiler with the
/DESIGN qualifier, enter the following command:

LSE> COMPILE /DESIGN

Programming with LSE 3–1

Programming with LSE
3.1 Compiling and Reviewing a Program

The REVIEW command displays any diagnostic messages that resulted from
a compilation. LSE displays the compilation errors in one window, with the
corresponding source code displayed in a second window.

Multiwindow capability allows you to review your errors while examining the
associated source code. This eliminates tedious steps in the error correction
process and helps ensure that all the errors are fixed before looping back
through the compilation process.

LSE provides several commands to help you review errors and examine your
source code. Table 3–1 lists these commands and their functions. Default key
bindings are also shown where available.

Table 3–1 Commands for Reviewing Compilation Errors

Command Function

COMPILE/REVIEW Compiles the contents of a buffer and then displays a set of
diagnostic messages that results from the compilation.

COMPILE Compiles the contents of a buffer.

REVIEW Selects and displays a set of diagnostic messages that results
from a compilation.

END REVIEW Ends an LSE REVIEW session.

GOTO SOURCE Displays the source corresponding to the current diagnostic
item. Use Ctrl/G on EDT, EVE VT100, and EVE VT200
keypads.

NEXT STEP Moves the cursor forward to the next error. Use Ctrl/F on
EDT, EVE VT100, and EVE VT200 keypads.

PREVIOUS STEP Moves the cursor back to the previous error. Use Ctrl/B on
EDT, EVE VT100, and EVE VT200 keypads.

3–2 Programming with LSE

Programming with LSE
3.1 Compiling and Reviewing a Program

The following example demonstrates how to compile and review errors
within your editing session. This example and the sample language, called
EXAMPLE, do not have compiler support. Therefore, when experimenting
with the COMPILE command, construct your own example using one of the
languages that has compiler support.

If you are editing a program and you want to compile it, do the following:

1. Press Ctrl/Z for the LSE> prompt and enter the COMPILE command.

While the compilation is running, you can continue to use LSE to edit.
When the compilation ends, a message is displayed in the message buffer.

2. Enter the REVIEW command at the LSE> prompt.

The REVIEW command instructs LSE to review the compilation errors
generated by the COMPILE command.

3. Press Ctrl/Z to move from the LSE> prompt to the buffer and begin
reviewing the errors.

You can use the NEXT STEP key (Ctrl/F) and the PREVIOUS STEP key
(Ctrl/B) to step from error to error in the $REVIEW buffer. Any cursor
movement keys can be used to examine the contents of the $REVIEW
buffer. If you want to correct the source code associated with a particular
error, press the GOTO SOURCE key (Ctrl/G) while the cursor is positioned
on that error.

In addition to the NEXT STEP and PREVIOUS STEP commands, you can
use any cursor-movement keys to move around in the $REVIEW buffer.
You can enter the GOTO SOURCE command to go to the associated source
code. Thus, you can examine other lines of code associated with an error.

4. Press Ctrl/G (the GOTO SOURCE key) to correct the source code associated
with the first error.

Corrections accompany some errors. You can accept or reject the correction.

5. Enter Y after the following prompt to accept the correction:

Keep the indicated correction [Y OR N]?

6. Press Ctrl/F (the NEXT STEP key) to move to the next error.

7. Press Ctrl/G (the GOTO SOURCE key) to display source lines with this
error in the $REVIEW buffer.

8. Press PF1-up arrow (the PREVIOUS WINDOW key) to go to the $REVIEW
buffer.

9. Press the up arrow key to move the cursor to lines within the $REVIEW
buffer.

Programming with LSE 3–3

Programming with LSE
3.1 Compiling and Reviewing a Program

10. Press Ctrl/G (the GOTO SOURCE key) to correct the source code associated
with the next error. When you finish correcting your program, you can
return to a single window containing the source code.

11. Press Ctrl/Z to get the LSE> prompt and enter the END REVIEW
command.

To compile your program using the HP DECwindows interface, choose Compile
Buffer from the Source menu. If errors are indicated in the message window,
choose Review Buffer from the Source menu. Figure 3–1 shows the review and
text buffers after compiling the text buffer and reviewing the error status.

Figure 3–1 Compiling and Reviewing a Program

If you double click on an error message in the review buffer, LSE automatically
places the text cursor on the corresponding line in the text buffer.

3.1.1 Invoking LSE from OpenVMS Debugger and from HP
Performance and Coverage Analyzer

While in the OpenVMS Debugger (debugger) or the HP Performance and
Coverage Analyzer (PCA), you can invoke LSE to edit your code.

The command syntax to invoke LSE from the debugger or PCA is as follows:

DBG> EDIT [/EXIT] [[module-name\] line-number]

3–4 Programming with LSE

Programming with LSE
3.1 Compiling and Reviewing a Program

LSE positions the cursor at the line in the file that corresponds to the specified
module and line in the debugger or PCA. The default file and line are taken
from the current source display.

The rules for specifying the module-name and line-number qualifiers are as
follows:

• If both the module-name and line-number are specified, their values
determine the module and line at which the file is positioned in LSE.

• If only the line-number is specified, the module is assumed to be the
module of the current source display.

• If neither the module-number nor line-number is specified, the module
is assumed to be the module of the current source display, and the line
number is assumed to be the central line in the window of that display.

When you invoke LSE from the debugger or PCA, a subprocess is spawned
for the editing session. Control automatically returns to the debugger or PCA
after the editing is completed.

You use the edit command to tell LSE exactly what file you are editing. The
EDIT command also checks the file in the debugger or the PCA source display
to see if it is the most recent version. LSE always edits the most recent version
of the file. If the displayed version is not the most recent version, LSE issues
an error message.

When debugging and editing code, it is faster to use the EDIT/EXIT command
at the DBG> prompt instead of returning to the debugger and typing the
EXIT command. This is useful when only minor editing must be done before
recompiling.

3.2 Using Tokens and Placeholders
LSE provides predefined programming language elements, called tokens and
placeholders, for each of the supported programming languages. You can
expand these elements into templates for language constructs. For information
about the predefined programming-language elements, see Chapter 4.

Tokens are typically keywords in programming languages. When expanded,
tokens provide additional language constructs. Tokens are typed directly into
the buffer. Generally, tokens are used in situations when you want to add
additional language constructs where there are no placeholders. For example,
typing IF and pressing the EXPAND key causes a template for an IF construct
to appear on your screen. Tokens are also used to bypass long menus in
situations where expanding a placeholder, such as {statement}, would result in
a lengthy menu.

Programming with LSE 3–5

Programming with LSE
3.2 Using Tokens and Placeholders

You can use tokens to insert text when editing an existing file. Because most
languages have tokens for built-in functions and keywords, you enter the
name for a function or keyword and press the EXPAND key. In addition, most
languages provide a token named statement or expression that expands into a
menu of all possible statements or expressions.

The following example demonstrates how to use tokens to edit an existing
program. In this case, the buffer TEST.EXAMPLE contains the following code:

PROCEDURE test ()

IF A = B
THEN

A = C + 1
ENDIF

ENDPROCEDURE test

If you want to add more statements to this program before the IF construct, do
the following:

1. Move the cursor to the beginning of the IF statement line.

2. Press the OPEN LINE key (PF1-KP0).

3. Press the Tab key.

Note that the cursor is placed at the same level of indentation as the IF
statement line.

4. Type statement and press the EXPAND key.

In the menu of statements now displayed, use the arrow keys to scroll through
the menu. To select a menu item, press the EXPAND, Enter, or Return key.
Press the spacebar to exit from a menu without selecting an item.

Pseudocode placeholders are placeholders that contain natural language text
that expresses design information.

Pseudocode is easy to write and provides a way to sketch your design ideas.
You can convert pseudocode into comments, thus providing a way to preserve
design information. You can use a compiler to process pseudocode to detect
syntax errors and generate SCA data.

For example, the following code fragment contains pseudocode delimited by the
special brackets « and » defined by the DEFINE LANGUAGE command:

3–6 Programming with LSE

Programming with LSE
3.2 Using Tokens and Placeholders

procedure my_proc (file_name : in out my_type) is
begin

«read the file»;
if «the file is empty» then

«clean up»;
«stop»;

else
«process the file»;

end if;
put_message;

end my_proc;

Pseudocode placeholders can appear only in well-defined places, such as in
place of statements, expressions, and declarations; otherwise, the compiler will
issue an error message. The following example shows pseudocode placeholders
used in place of statements:

procedure do_something is
begin

«Open the file.»
«Read and process records.»
«Write the file.»
«Close the file.»

end do_something;

The following examples show pseudocode used in place of expressions:

if «it is a leap year»

while «there is snow» or «it is winter» loop

max := «the largest number in the list»

d := «current temperature» + 50

CASE color FROM «the darkest» to «the lightest» OF

put («the person’s full name»);

Table 3–2 shows the commands and key bindings for manipulating
placeholders.

Programming with LSE 3–7

Programming with LSE
3.2 Using Tokens and Placeholders

Table 3–2 Commands and Key Bindings for Placeholders

Description Key Binding Portable Command

Expand a token. Ctrl/E EXPAND

Collapse a token. PF1-Ctrl/E COLLAPSE

Go to next placeholder. Ctrl/N NEXT PLACEHOLDER

Go to previous placeholder. Ctrl/P PREVIOUS PLACEHOLDER

Delete a placeholder. Ctrl/K DELETE PLACEHOLDER

Restore a deleted placeholder. PF1-Ctrl/K RESTORE PLACEHOLDER

Enter pseudocode.1 PF1-spacebar ENTER PSEUDOCODE

Enter a comment (block).1 PF1-B ENTER COMMENT BLOCK

Enter a comment (line).1 PF1-L ENTER COMMENT LINE

1See Section 3.3 for information about pseudocode programming.

3.2.1 Expanding a Token or Placeholder
To expand a token or placeholder, place the text cursor on the token or
placeholder and use the EXPAND command (or press Ctrl/E). Placeholders
help you supply the appropriate syntax in a given context.

You do not have to type an entire token name with LSE. You can abbreviate
token names, usually by supplying the first three or four characters. If there
are other tokens with the same initial string of characters, LSE provides you
with a menu to select the token you want when you press Ctrl/E to expand the
token. LSE will not provide you with a menu if the abbreviation is the actual
name of another token.

You can type a token name anywhere in the editing buffer and press Ctrl/E to
produce the template for that token. A token name does not have to be typed
over a placeholder.

3–8 Programming with LSE

Programming with LSE
3.2 Using Tokens and Placeholders

Figure 3–2 shows how to expand a text string and select a token (PROGRAM)
from the list that is displayed. In this case, the cursor is positioned over
the first character of the placeholder %{user_defined_id}% and CTRL/E has
been pressed. The menu has appeared at the bottom of the screen, allowing
you to select either PROGRAM ABSTRACT or PROGRAM DESCRIPTION.
Depending on your selection, the appropriate template will be inserted into the
buffer at the current cursor position, immediately preceding (and displacing to
a later location) the placeholder.

Figure 3–2 Expanding a Token

Programming with LSE 3–9

Programming with LSE
3.2 Using Tokens and Placeholders

Figure 3–3 shows the effect of choosing PROGRAM ABSTRACT in Figure 3–2
from the list.

Figure 3–3 Sample Expanded Token

If you type over a placeholder, it is automatically removed and the text you
type is inserted in its place.

LSE initially provides a template containing language-specific placeholders
when you create a new file using the language specified by the file name’s
extension. For example, a file created with a .C extension results in LSE
placing initial placeholders for the C language into the empty editing buffer.

The following example shows required and optional placeholders. Consider
the first placeholder in the following example; when expanded, it becomes the
second placeholder.

INTEGER {identifier}...

INTEGER id,
[identifier]...

The first appearance of the identifier placeholder is surrounded by braces
because you must supply at least one identifier in this declaration. The
second appearance is surrounded by brackets because additional identifiers are
optional.

3–10 Programming with LSE

Programming with LSE
3.2 Using Tokens and Placeholders

3.2.2 Types of Placeholders
Table 3–3 describes the types of LSE placeholders.

Table 3–3 Types of LSE Placeholders

Placeholder Type Description

Non-terminal
placeholder

When expanded, inserts a programming language template or
additional language constructs.

Terminal placeholder When expanded, supplies a description in another window of
what needs to be typed in place of the placeholder.

Menu placeholder When expanded, provides you with options that can be
selected and expanded into templates. When you expand
a menu placeholder, you can move through the options by
using the arrow keys. To select an option, press Ctrl/E,
Return, or Enter. To exit from the menu without selecting an
option, press the space bar.

List placeholder When expanded, is automatically duplicated. Generally, these
placeholders represent items such as identifiers, statements,
or expressions.

Pseudocode
placeholder

Contains comments about design information. Unlike regular
placeholders, pseudocode placeholders are obtained by using
the ENTER PSEUDOCODE command (or pressing
PF1-spacebar); LSE inserts pseudocode placeholder delimiters
into the editing buffer within which you can enter your design
information. You can move pseudocode placeholder text into
program comments.

You can construct a complete program by repeatedly expanding placeholders,
but you do not have to continuously expand placeholders until you reach a
terminal placeholder. Instead, you might find it more appropriate to type in
the desired program text yourself at a higher level.

3.2.3 Indentation Control
LSE controls the indentation of tokens and placeholders placed in an editing
buffer with the EXPAND command. Tabulation is determined by the format of
the placeholder or token template. In addition, LSE provides the SET BUFFER
TAB INCREMENT command, which enables you to adjust indentation to your
needs.

When LSE expands a template, it inspects each line of the template for
leading tab characters. Each tab character is evaluated using the current
tab-increment setting. Thus, if the tab increment is three, a leading tab is
expanded into three spaces. The initial tab increment for a buffer is taken

Programming with LSE 3–11

Programming with LSE
3.2 Using Tokens and Placeholders

from the language definition. You can change the tab increment setting with
the SET BUFFER TAB INCREMENT command.

The starting column for the expansion is determined by the first line of the
template. If the first line is null (an empty string), the expansion starts under
the first nonblank character in the line containing the item being expanded. If
the line is not empty, the expansion starts in the first character position of the
item being expanded.

For example, suppose you have a placeholder with <TAB> indicating a single
ASCII tab character defined, as follows:

PLSE NEW PLACEHOLDER RECORD_TYPE_DEFINITION NONTERMINAL
. . .

PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION
PLSE SET PLACEHOLDER BODY LINE " TAB record" -

EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION
PLSE SET PLACEHOLDER BODY LINE " TAB TAB [component declaration]..." -

EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION
PLSE SET PLACEHOLDER BODY LINE " TAB TAB [variant_part]" -

EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION
PLSE SET PLACEHOLDER BODY LINE " TAB end record" -

EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

You have the following text:

type MYTYPE is {record_type_definition};

If you expand the placeholder with the tab increment set to 4, the result is as
follows:

type MYTYPE is
record

[component declaration]...
[variant_part]

end record

The third and fourth lines each have a single leading tab and no leading
spaces, whereas the second and fifth lines each have four leading spaces. This
is because LSE compresses spaces into tabs after positioning the expanded
text.

3–12 Programming with LSE

Programming with LSE
3.2 Using Tokens and Placeholders

Using the same example text, remove the first empty line in the placeholder
definition and the first tab from the remaining lines, as follows:

PLSE NEW PLACEHOLDER RECORD_TYPE_DEFINITION NONTERMINAL
. . .

PLSE SET PLACEHOLDER BODY LINE "record" -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE " TAB [component declaration]..." -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE " TAB [variant_part]" -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE "end record" -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

Then, if you expand the placeholder with the tab increment set to 4, the result
is as follows:

type MYTYPE is record
[component_declaration]...
[variant_part]

end record

Insert a line containing a single blank at the front of the definition, as follows:

PLSE NEW PLACEHOLDER RECORD_TYPE_DEFINITION NONTERMINAL
. . .

PLSE SET PLACEHOLDER BODY LINE " " -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE "record" -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE " TAB [component declaration]..." -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE " TAB [variant_part]" -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

PLSE SET PLACEHOLDER BODY LINE "end record" -
EXPAND 0 SPACE NEXT ADD RECORD_TYPE_DEFINITION

If you expand the placeholder with the tab increment set to 4, the result is as
follows:

type MYTYPE is
record

[component_declaration]...
[variant_part]

end record

Programming with LSE 3–13

Programming with LSE
3.3 Creating Pseudocode

3.3 Creating Pseudocode
Pseudocode lets you sketch your design ideas. Pseudocode placeholders
are placeholders enclosed in double angle brackets («») containing natural-
language text that expresses design information. They can be customized by
using the SET LANGUAGE PSEUDOCODE DELIMIT command.

You can mix pseudocode and final source code, as shown below. Enter
pseudocode by issuing the ENTER PSEUDOCODE (PF1 Spacebar) command,
then type your pseudocode text. For example:

#include <stdlib>
typedef int integer_matrix[10][10];
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right);

/*
**++
** FUNCTIONAL DESCRIPTION:
**
** This function computes the matrix product of two integer matrices.
**
** It uses a simple, triple-nested loop, and does not do any checking to
** see if the matrices conform.
**
** FORMAL PARAMETERS:
**
** left:
** The left operand.
**
** right:
** The right operand.
**
** RETURN VALUE:
**
** The result of multiplying the two matrices.
**
**--
*/
integer_matrix *matrix_multiply (integer_matrix *left, integer_matrix *right)
{

integer_matrix result_matrix; 1

«Loop over the rows of the left matrix» 2
return result_matrix; 3

}

3–14 Programming with LSE

Programming with LSE
3.3 Creating Pseudocode

The callouts in the previous example denote the following:

1 Shows final source code

2 Uses pseudocode as a loop statement

3 Shows final source code

To use pseudocode, pseudocode placeholder delimiters must be defined for the
target language. You can use a compiler to process pseudocode to detect syntax
errors and generate SCA data. See Section 3.1 for information about compiling
a program with LSE.

3.3.1 Moving Pseudocode to Comments
LSE allows you to preserve the descriptive pseudocode text for later use as
design information. To change pseudocode to comment lines issue the ENTER
COMMENT command. For example, if you apply the ENTER COMMENT (PF1
B) command to the pseudocode line shown in the example code in Section 3.3,
the result is as follows:

/*
** Loop over the rows of the left matrix
*/
{@tbs@}
return result_matrix;

You can now fill in the next level of detail of your design, as follows:

/*
** Loop over the rows of the left matrix
*/
for (i = 1; i < «matrix size»; i++)
{

«Loop over the columns of the right matrix» 1
};
return result_matrix;

Note that 1 shows a new pseudocode line.

If you place the cursor in an existing comment and press PF1-L or PF1-B, LSE
converts the next pseudocode placeholder into a comment. If the cursor is not
in a comment or on a placeholder when you press PF1-L or PF1-B, LSE inserts
a new comment and puts the cursor on the first placeholder after the beginning
of the comment.

Programming with LSE 3–15

Programming with LSE
3.3 Creating Pseudocode

3.3.2 Processing Pseudocode
When you compile pseudocode, the compiler checks for syntax errors and
generates analysis (.ANA) files. SCA uses these files to generate reports
about pseudocode, including call trees, dependency tables, and other cross-
referencing. SCA provides query support for pseudocode just as it does for
source code.

To compile your unfinished programs with LSE, choose Compile Buffer from
the Source menu. If your program has errors in it, choose Review Buffer from
the Source menu and see what syntax errors you have.

You might want to load the .ANA file into the SCA and generate a Program
Design Facility (PDF) report. See the Source Code Analyzer Command-Line
Interface and Callable Routines Reference Manual and the Guide to Detailed
Program Design for OpenVMS Systems for more information.

3.4 Formatting Comments
LSE recognizes many of the comments that occur in code. In many cases, LSE
handles comments specially to help you keep comments aligned. You can use
the ALIGN command to align all the comments within a region so they line up
in the same column. You can use the FILL command to both align comments
and fill out each comment line by putting as many words on a line as will fit
within the margins. In addition, LSE treats comments specially when you
erase or duplicate a placeholder.

Special handling of comments applies only to trailing comments. A trailing
comment is one that occurs as the last item on a line, excluding blank space.
Lines containing only comments are considered to be trailing comments.

Two types of comments are recognized: bracketed comments and line
comments. A bracketed comment requires both a beginning and ending
delimiter. For example, Pascal uses either braces ({}) or parentheses and
asterisks ((**)) as bracketed comment delimiters. A line comment begins
with a comment delimiter, but is terminated by the end of the line. For
example, Ada uses a double dash (��) to introduce a line comment, whereas
HP Fortran uses an exclamation mark (!).

Note that some languages, such as BLISS, have both bracketed and line
comments. The ALIGN command aligns all trailing comments within the
current selected region so they start in the same column. The default behavior
is to align the comments under the first comment within the region. You can
also specify an explicit column with the /COMMENT_COLUMN qualifier.

3–16 Programming with LSE

Programming with LSE
3.4 Formatting Comments

In the following examples, /COMMENT_COLUMN=CONTEXT_DEPENDENT
is in effect. An example of the ALIGN command is as follows:

IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + l ;
j := j + i ; ! another comment

!to be filled

When aligned, it would look like this:

IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + l ;
j := j + i ; ! another comment

! to be filled

The operation of the FILL command depends on the FILL setting of the
current language. If the FILL setting is TEXT, the FILL command performs
an ordinary FILL operation. This is useful for text files or for files written in
a markup language, such as HP Standard Runoff, but is usually inappropriate
for most programming languages. If the FILL setting is COMMENTS, the
FILL command affects only the text within the trailing comments of the
region. As with the ALIGN command, you can use the /COMMENT_COLUMN
qualifier to explicitly specify the column in which to align the comments.

An example of the FILL command is as follows:

IF (col >= R_Margin) THEN ! This is the start of an
BEGIN ! extended end-of-line comment block
i := i + l ;
j := j + i ; ! another comment

!to be filled

When filled, it would look like this:

IF (col >= R_Margin) THEN ! This is the start of an extended
BEGIN ! end-of-line comment block
i := i + l ;
j := j + i ; ! another comment to be filled

Note that LSE deleted a comment delimiter. LSE inserts or deletes comment
delimiters as necessary when you expand or erase placeholders inside
comments.

Comments at the end of a line are called trailing comments. Lines that
contain only comments are also considered trailing comments. You can
automatically format trailing comment-line boundaries without changing the
format of the programming code by choosing Align or Fill from the Edit menu.

Programming with LSE 3–17

Programming with LSE
3.4 Formatting Comments

Aligning comment areas left-justifies comments in a selected area, but
maintains the comments as they were entered. Filling comment areas also
left-justifies comments, but fills the comment line out to the right margin and
reformats the comments; comment text is maintained. LSE aligns and fills
comments under the first comment in the selected area.

To align comment areas, select the text and choose Align from the Edit menu.
To fill comment areas, select the text and choose Fill from the Edit menu.
Figure 3–4 shows the effect of aligning and filling comments.

Figure 3–4 Aligning and Filling Comments

LSE inserts comment delimiters as necessary when you expand placeholders
inside comments. LSE will delete comment delimiters as necessary when you
erase placeholders.

3–18 Programming with LSE

Programming with LSE
3.5 Outlining Programming Code

3.5 Outlining Programming Code
LSE generates overview lines to outline programming code. An overview line
represents a sequence of lines in a buffer. An overview line is displayed as a
pseudocode placeholder with an ellipsis (. . .) inside it. For example:

«--Put each pair of numbers in order...»

You can collapse a programming language construct into an overview line
based on its indentation value. LSE determines the relative level of a line in
a program by comparing the indentation of programming language constructs
with the indentation of other constructs. LSE has two kinds of indentation:
visible indentation and adjusted indentation.

The visible indentation is the column number of the first visible character on
the line. The visible indentation of a blank line is 0.

The adjusted indentation is a defined value you give to assign relative position
to program constructs so they can be outlined. You cannot see adjusted
indentation because LSE does not move any text; LSE treats lines as though
the indentation has changed.

Details of the overviews are specific to the language you are using. Sometimes
visible indentation information alone is not enough to generate useful
overviews.

By collapsing levels of programming code into overview lines, you can get
an overview of a program’s outline. You can move the text cursor through
the program outline and expand the overview lines to expose the underlying
programming code.

Programming with LSE 3–19

Programming with LSE
3.5 Outlining Programming Code

Table 3–4 shows the commands for outlining and expanding programming
language constructs.

Table 3–4 Collapsing and Expanding Programming Language Constructs

Menu Command Description

Overview Source Shows a top-level overview of the buffer.

View Source Shows the source code in the buffer.

Focus Replaces all programming language constructs above and below
the current construct to an overview line. Focus also collapses all
lines within the current programming language construct that
are at a greater level of indentation than the construct under the
cursor to overview lines.

Expand Replaces an overview line with the next level of detail for the
underlying source code.

Expand All Replaces an overview line with the actual source code it conceals
(the lowest level of detail).

Collapse Replaces a sequence of source code lines with an overview line.

Collapse All Replaces all programming language constructs with overview
lines.

The grouping of lines depends on indentation conventions, combined with
simple language-specific syntax processing. In the following example, the first
five lines constitute a group:

WHILE x
BEGIN
a = b
c = d
END

q = r

When the group is compressed, a single line represents the five lines, as
follows:

«WHILE x...»
q = r

3–20 Programming with LSE

Programming with LSE
3.5 Outlining Programming Code

You can nest groups of lines so you can present a single program at various
levels of detail. The following example shows an indented, nested group of
lines associated with an if statement:

--Put each pair of numbers in order
for J in 1 .. HOW_MANY - 1 loop

if NUMBERS(J) > NUMBERS(J+1) then
--Interchange the numbers
TEMP := NUMBERS(J);
NUMBERS(J) := NUMBERS(J+1);
NUMBERS(J+1) := TEMP;

--We are not finished sorting
SORTED := FALSE;

end if;
end loop;

The indented lines can be represented by overview lines, as follows:

--Put each pair of numbers in order
for J in 1 .. HOW_MANY - 1 loop

if NUMBERS(J) > NUMBERS(J+1) then
« --Interchange the numbers...»
« --We are not finished sorting...»

end if;
end loop;

The entire code fragment can be represented by a single overview line, as
follows:

« --Put each pair of numbers in order...»

3.5.1 Debugging Adjustment Definitions
There are two ways to debug SET ADJUSTMENT definitions. One way
is to use the viewing commands on sample text and experiment with SET
ADJUSTMENT definitions until you are satisfied with the results.

Alternatively, you can debug your definitions by using the VIEW SOURCE
DEBUG command. This command generates a representation of the
source buffer, indented as LSE perceives the indentation, as specified
by the adjustment definitions. The result is displayed in a system buffer,
$OVERVIEW. For example:

NEW ADJUSTMENT "!"
SET ADJUSTMENT CURRENT -1
SET ADJUSTMENT UNIT ON

NEW ADJUSTMENT BEGIN
SET ADJUSTMENT SUBSEQUENT 2
SET ADJUSTMENT COMPRESS OFF

Programming with LSE 3–21

Programming with LSE
3.5 Outlining Programming Code

NEW ADJUSTMENT END
SET ADJUSTMENT CURRENT -1
SET ADJUSTMENT SUBSEQUENT -2

Suppose you have executed the VIEW SOURCE DEBUG command when the
cursor is in a buffer containing the following source text (assuming each line
begins in column 1):

! Swap the numbers
BEGIN
temp = a;
a = b;
! Get the value from temporary storage.
b = temp
END

This puts the following text in the $OVERVIEW buffer:

U 3 0 0 ! Swap the numbers.
NC 4 0 1 BEGIN

1 2 3 temp = a;
1 2 3 a = b;

U 3 2 2 ! Get the value from temporary storage.
1 2 3 b = temp
5 2 2 END

--
Left margin numbers (in order):

adjustment number
/SUBSEQUENT running total
effective indentation

U = /UNIT NC = /NOCOMPRESS NO = /NOOVERVIEW N# = /NOCOUNT
IP = /INHERIT=PREV IN = /INHERIT=NEXT, I0 = /INHERIT=NEITHER
I< = /INHERIT=MINIMUM, I> = /INHERIT=MAXIMUM

Adjustment
number: name use count

1: default 3
2: default blank 0
3: ! 2
4: BEGIN 1
5: END 1

The information in the $OVERVIEW buffer explains the following:

• The first line "U 3 0 0 ! Swap the numbers."; the
adjustment for ‘‘!’’ used adjustment 3. This adjustment includes a
UNIT ON value. This line’s effective indentation is 0 because its visible
indentation is 1 and its adjustment includes CURRENT –1 value.

3–22 Programming with LSE

Programming with LSE
3.5 Outlining Programming Code

• The second line used adjustment 4 (the adjustment for BEGIN). This
adjustment includes a COMPRESS OFF value. This line’s effective
indentation is 1. The adjustment for this line also includes
SUBSEQUENT 2, so the subsequent running total for the next line is 2.

• The third line used the default adjustment (adjustment 1) because its text
does not match the pattern of any defined adjustment. This line’s effective
indentation is 3 because its visible indentation is 1 and the running total of
subsequent values is 2.

• The fourth and sixth lines are similar to the third line.

• The fifth line used the same adjustment as the first line. Because the
running total of subsequent values is 2 when you reach this line, its
effective indentation is 2.

• The seventh line used adjustment 5 (the adjustment for END). This line’s
effective indentation is 2, and its visible indentation is 1. This is adjusted
by the subsequent running total of 2, and the adjustment keyword
CURRENT –1. The calculation is: 1 + 2 –1 = 2.

You can judge the quality of your definitions by looking at the relative
indentation of the lines. A line hides all the lines that follow it until a
line occurs that has the same or less indentation. In this example, the first
comment hides all the other lines; the second comment hides only one line; and
none of the assignment lines hide any lines.

When some lines have an adjusted indentation that is negative, the display is
appropriately altered.

3.5.2 Special Processing for FORTRAN
In the FORTRAN language, the adjustment actions LSE applies depend on
whether a line is a comment line, a continuation line, or neither of these.

A continuation line is treated as though defined with the following commands:

SET ADJUSTMENT INHERIT MAXIMUM
SET ADJUSTMENT CURRENT 1
SET ADJUSTMENT UNIT ON

If the line is a comment line, LSE matches against adjustments that contain
the FORTRAN_COMMENT pattern element (described later in this section).
If the line is neither a comment nor a continuation line, LSE matches
against adjustments for noncomments (adjustments that do not contain
the FORTRAN_COMMENT pattern element) and examines only the text in the
statement field. CURRENT 1 refers to the first column in the statement field.

Pattern elements defined for FORTRAN are as follows:

Programming with LSE 3–23

Programming with LSE
3.5 Outlining Programming Code

FORTRAN_FUNCTION
LSE defines a special pattern, called FORTRAN_FUNCTION, to match the
first line of a FORTRAN function subprogram. The format of such a line is as
follows:

type [*number] FUNCTION

type
Is one of the following keywords:

BYTE DOUBLE COMPLEX LOGICAL

CHARACTER DOUBLE PRECISION REAL

COMPLEX INTEGER

number
Is either a series of digits or an asterisk (*).

FORTRAN_COMMENT
LSE recognizes a special pattern element, FORTRAN_COMMENT. This
pattern element can appear only as the first element of a pattern and can
apply the definition only if the source line is known to be a comment. This
is conceptually similar to CURRENT, which applies the definition if the text
starts in the correct column.

An adjustment is a comment adjustment if the pattern begins with
FORTRAN_COMMENT. Otherwise, it is a noncomment adjustment.

Examples
Each of the following examples starts in column 1. All examples are for ANSI
format.

1. The following definition matches each of the subsequent lines of code:

SET ADJUSTMENT "$(FORTRAN_COMMENT)C**"

C**
c**
C**stuff

However, the definition does not match any of the following lines:

3–24 Programming with LSE

Programming with LSE
3.5 Outlining Programming Code

C stuff
C **
CC**

C**

!**
12345 x = y

end
1continuation

2. The following definition matches each of the subsequent lines of code:

SET ADJUSTMENT "$(FORTRAN_COMMENT)!"

!stuff
!
!*

However, it does not match either of the following lines:

C
!

3. The following definition matches each of the subsequent lines of code:

SET ADJUSTMENT "endif"

12345 endif
endif

0endif
52 endif

endif

However, it does not match either of the following lines:

C endif
1endif

4. The following definition matches each of the subsequent lines of code:

SET ADJUSTMENT "$(COLUMN=1)end"

12345 end
end

0end

Programming with LSE 3–25

Programming with LSE
3.5 Outlining Programming Code

However, it does not match any of the following lines:

12345 end
end

C end

3–26 Programming with LSE

4
Defining Languages for LSE

This chapter describes how to define your own templates and how to create
and use environment files. It also includes two examples of environment files
created with LSE. The following information is presented:

• Defining a text template for a programming language

• Defining a programming language

• Defining adjusted indentation

• Saving language definitions

• Using aliases

• Using LSE packages

LSE provides a mechanism for interfacing non-HP processors to the diagnostic
review facility.

4.1 Defining a Text Template
When defining a language, you create a file in which to put LSE commands
that will be used to define elements of your language. Once the file is complete,
you execute the commands in the source file and create an environment file
for use with LSE. The following section describes how to create a language
for writing memos. This memo language is defined using LSE language,
placeholder, and token definitions.

Before starting, note the following coding rules:

• If a command and its keywords extend beyond one line, a hyphen (-) must
be the last character on each continuation line, except the last line of the
command.

• Comment lines begin with an exclamation point (!) and ignore leading
blank spaces.

• Lines containing only comments do not terminate continued commands.

Defining Languages for LSE 4–1

Defining Languages for LSE
4.1 Defining a Text Template

Figure 4–1 shows a screen display of the memo template as it appears after
you expand the initial string, {memo_template}.

Figure 4–1 Memo Template

4.1.1 Language Definition
All template definitions, whether text- or language-oriented, must begin with
a language definition. To define a language, use the LSE command NEW
LANGUAGE. This command takes keywords that set the characteristics of the
language.

The following examples show the Portable language definition commands for a
memo:

PLSE NEW LANGUAGE memo
PLSE SET LANGUAGE FILE TYPES ".MEMO .FOO" ADD memo
PLSE SET LANGUAGE INITIAL STRING "{memo_template}" memo
PLSE SET LANGUAGE REQUIRED DELIMIT "{" "}" memo
PLSE SET LANGUAGE REQUIRED LIST DELIMIT "{" "}..." memo
PLSE SET LANGUAGE OPTIONAL DELIMIT "[" "]" memo
PLSE SET LANGUAGE OPTIONAL LIST DELIMIT "[" "]..." memo
PLSE SET LANGUAGE IDENTIFIER CHARACTERS -
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890" memo
PLSE SET LANGUAGE PUNCTUATION CHARACTERS ",;()" memo
PLSE SET LANGUAGE TAB INCREMENT 4 memo

4–2 Defining Languages for LSE

Defining Languages for LSE
4.1 Defining a Text Template

The IDENTIFIER CHARACTERS keywords determine what sequences of
characters LSE considers to be a word. A word is any sequence of identifier
characters delimited by either blank space or a nonidentifier character. The
IDENTIFIER CHARACTERS keywords also specify what characters can
appear in alias names. Typically, identifier characters include the alphabet
(both uppercase and lowercase), digits, and a few special characters.

The INITIAL STRING keywords specify the initial text that appears in a newly
created file. LSE automatically inserts this text whenever you use either the
LSEDIT command from the command line or the NEW FILE command from
within LSE to create a new file.

The FILE TYPES keywords specify what file types correspond to this language.
In this case, when you edit a file with the file type .MEMO or .FOO, LSE
automatically sets the language MEMO for the buffer.

The TAB INCREMENT keywords set the tab stops at every four columns.

The DELIMIT keywords specify the starting and ending strings that delimit
placeholders. Placeholders can be required or optional, and they can specify
single constructs or lists of constructs. There are four types of placeholder
delimiters: required, optional, required list, and optional list. The delimiters
for each type are specified as a pair of quoted strings and parentheses. By
convention, list placeholders are indicated by appending ellipses (. . .) to the
corresponding nonlist placeholders.

The PUNCTUATION CHARACTERS keywords specify the characters that
are considered punctuation marks or delimiters. Punctuation characters are
not important to the MEMO language. The value specified in the language
definition is the default value. See Section 4.2 for a more detailed description
of both punctuation characters and identifier characters.

4.1.2 Placeholder Definitions
There are three types of placeholders:

• Nonterminal placeholders, which expand into text that is inserted into the
buffer

• Terminal placeholders, which expand into descriptive text that is displayed
in a temporary window

• Menu placeholders, which provide a list of options for expanding the
placeholder

Defining Languages for LSE 4–3

Defining Languages for LSE
4.1 Defining a Text Template

To define a placeholder, use the NEW PLACEHOLDER command. For
the MEMO language example, define the initial string "memo_template"
as a nonterminal placeholder. In this case, the definition will contain a
placeholder body. A placeholder body contains the text that is inserted in
the buffer when you expand the placeholder. Each line of the placeholder body
must be enclosed in quotation marks. Quotation marks with no text produce a
blank line when expanded.

The following example shows how the "memo_template" placeholder is defined:

PLSE NEW PLACEHOLDER "memo_template" NONTERMINAL memo
PLSE SET PLACEHOLDER AUTO SUBSTITUTE OFF "memo_template" memo
PLSE SET PLACEHOLDER DESCRIPTION "Interoffice Memorandum" "memo_template" memo
PLSE SET PLACEHOLDER DUPLICATION CONTEXT_DEPENDENT "memo_template" memo
PLSE SET PLACEHOLDER PSEUDOCODE ON "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "-------------------------------------" EXPAND 0 SPACE

NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE " N O C T U R N A L A V I A T I O N INTEROFFICE

MEMORANDUM" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "-------------------------------------" EXPAND 0 SPACE

NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "To: {name}" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "Date: {current_date}" EXPAND 0 SPACE NEXT ADD

"memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "From: Benjamin Tyler" EXPAND 0 SPACE NEXT ADD "memo_template"

memo
PLSE SET PLACEHOLDER BODY LINE "Dept: FT Publications" EXPAND 0 SPACE NEXT ADD

"memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "[additional_info]..." EXPAND 0 SPACE NEXT ADD

"memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "Subject: {subject_line}" EXPAND 0 SPACE NEXT ADD

"memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD "memo_template" memo
PLSE SET PLACEHOLDER BODY LINE "{memo_body}" EXPAND 0 SPACE NEXT ADD "memo_template" memo

The DESCRIPTION keyword specifies a single line of text displayed along with
the placeholder name whenever the placeholder appears in a menu.

The text following the DESCRIPTION keyword in the "memo_template"
placeholder definition is the placeholder body. Placeholder bodies represent
the text that is inserted into the buffer when the placeholder is expanded.
Text within a placeholder body can include additional placeholders. These
placeholders must include the appropriate delimiters so LSE will know how to
expand them.

4–4 Defining Languages for LSE

Defining Languages for LSE
4.1 Defining a Text Template

All placeholders found within a placeholder body must be defined. These
placeholders do not have to be defined in any particular order. When defining
placeholders, do not include delimiters.

In this case, you have defined the {name}, {current_date}, {subject_line},
and {memo_body} placeholders as terminal placeholders, specified by the
TERMINAL keyword. Terminal placeholders, when expanded, provide a
description of the appropriate values that you must type over the text to
replace the placeholder. The text for a terminal placeholder can be as many
lines as needed to explain the correct text insertion for the placeholder. You
must use quotation marks at the beginning and end of each line of text.

The [additional_info] placeholder appears within the delimiters for an
optional list. See the [additional_info] placeholder definition at the end of
this section for more information on list placeholders.

The following example shows how the terminal placeholders are defined:

PLSE NEW PLACEHOLDER name TERMINAL memo
PLSE SET PLACEHOLDER TERMINAL LINE "Name of the person receiving this memo." -

NEXT ADD name memo

PLSE NEW PLACEHOLDER current_date TERMINAL memo
PLSE SET PLACEHOLDER TERMINAL LINE "Date the memo is written." -

NEXT ADD current_date memo
PLSE SET PLACEHOLDER TERMINAL LINE "Date can be of the format day/month/year." -

NEXT ADD current_date memo

PLSE NEW PLACEHOLDER subject_line TERMINAL memo
PLSE SET PLACEHOLDER TERMINAL LINE "Subject of the memo." -

NEXT ADD subject_line memo

PLSE NEW PLACEHOLDER memo_body TERMINAL memo
PLSE SET PLACEHOLDER DESCRIPTION "Body of the memo." memo_body memo
PLSE SET PLACEHOLDER TERMINAL LINE "Supply the text of the memo here." -

NEXT ADD memo_body memo

The "additional_info" placeholder is defined as a menu placeholder, as
follows:

PLSE NEW PLACEHOLDER "additional_info" MENU memo
PLSE SET PLACEHOLDER AUTO SUBSTITUTE OFF "additional_info" memo
PLSE SET PLACEHOLDER DESCRIPTION "Additional identification information" -

"additional_info" memo
PLSE SET PLACEHOLDER DUPLICATION VERTICAL "additional_info" memo
PLSE SET PLACEHOLDER PSEUDOCODE ON "additional_info" memo
PLSE SET PLACEHOLDER MENU LINE "Phone" "phone number" TEXT OFF NEXT ADD -

"additional_info" memo
PLSE SET PLACEHOLDER MENU LINE "Location" "building location" TEXT OFF -

NEXT ADD "additional_info" memo
PLSE SET PLACEHOLDER MENU LINE "Network" "node address" TEXT OFF -

NEXT ADD "additional_info" memo
PLSE SET PLACEHOLDER MENU LINE "CC" "carbon copy" TEXT OFF NEXT ADD "additional_info" memo
PLSE SET PLACEHOLDER MENU LINE "All" "" TEXT OFF NEXT ADD "additional_info" memo

Defining Languages for LSE 4–5

Defining Languages for LSE
4.1 Defining a Text Template

Use the MENU keyword to specify that this is a menu placeholder. The
placeholder body for a menu placeholder is defined the same way as a
nonterminal placeholder and contains the elements of the menu. In this
case, each element in the menu is defined as a token. Section 4.1.3 describes
how to define tokens.

The "additional_info" placeholder is also used as an optional list
placeholder, indicated by brackets ([]) Because "additional_info"
is used as a list placeholder, you need to specify what type of duplication
should be performed when the placeholder is expanded by using the
DUPLICATION keyword. Duplication options are VERTICAL, HORIZONTAL,
and CONTEXT_DEPENDENT. In this case, the VERTICAL option is used,
which places the duplicate placeholder on the next line immediately under the
original placeholder.

4.1.3 Token Definitions
Tokens are keywords that you type directly into the buffer and expand into
additional templates. This example uses tokens for additional fields of the
memo header. By using tokens instead of placeholders, you simplify the entry
of frequently used options.

To define a token, use the LSE command NEW TOKEN. The LANGUAGE
keyword in the following token definitions tells LSE that this token is defined
for the MEMO language.

With the DESCRIPTION keyword, you can supply a text string that is
displayed with the token name in a menu. In this case, each token definition
includes the DESCRIPTION keyword. Thus, when the "additional_info"
placeholder is expanded into a menu, each token and its description is
displayed.

The body of a token is defined in the same way for nonterminal and terminal
placeholders.

By defining these elements as tokens, you can type the token name you want
directly into the buffer and expand it without going through a menu.

4–6 Defining Languages for LSE

Defining Languages for LSE
4.1 Defining a Text Template

The following example shows how tokens are defined:

PLSE NEW TOKEN "All" TERMINAL memo
PLSE SET TOKEN DESCRIPTION "Choose all options in menu." "All" memo
PLSE SET TOKEN BODY LINE "Phone" CURRENT 0 SPACE NEXT ADD "All" memo
PLSE SET TOKEN BODY LINE "Location" CURRENT 0 SPACE NEXT ADD "All" memo
PLSE SET TOKEN BODY LINE "Network" CURRENT 0 SPACE NEXT ADD "All" memo
PLSE SET TOKEN BODY LINE "CC" CURRENT 0 SPACE NEXT ADD "All" memo

PLSE NEW TOKEN "CC" TERMINAL memo
PLSE SET TOKEN DESCRIPTION "Name of person to receive a copy of this memo" CC memo
PLSE SET TOKEN BODY LINE "CC: {name}" CURRENT 0 SPACE NEXT ADD CC memo

PLSE NEW TOKEN "Location" TERMINAL memo
PLSE SET TOKEN DESCRIPTION "Office location" "Location" memo
PLSE SET TOKEN BODY LINE "LOC: URE-0096" CURRENT 0 SPACE NEXT ADD "Location" memo

PLSE NEW TOKEN "Network" TERMINAL memo
PLSE SET TOKEN DESCRIPTION "Network address" "Network" memo
PLSE SET TOKEN BODY LINE "NET: EMLEN::SNYDER" CURRENT 0 SPACE NEXT ADD "Network" memo

PLSE NEW TOKEN "Phone" TERMINAL memo
PLSE SET TOKEN DESCRIPTION "Office phone number" "Phone" memo
PLSE SET TOKEN BODY LINE "Phone: 523-440-3287" CURRENT 0 SPACE NEXT ADD "Phone" memo

The token definitions for "CC" and "All" include the {name} placeholder. All
placeholders found within a token body must be defined. In this case, you
defined {name} in the previous section, so you do not have to define it again.

When the template definition is complete, you must execute your source
file. Section 4.4 describes how to execute your source files and create an
environment file for later use.

4.2 Defining a Programming Language
This section describes how to define templates for a programming language.
The concepts and coding rules for defining templates for a programming
language are similar to those introduced in the MEMO language. However,
some advanced features necessary for handling more complex templates are
introduced.

The following sections explain how the EXAMPLE language was defined. The
EXAMPLE language is available on line with LSE.

You should follow a grammar, or other syntax summary, as a guide if you
are defining a programming language. A grammar provides a summary from
which to work when defining the equivalent LSE definitions. It also helps you
avoid mistakes. Example 4–1 contains a syntax summary for the EXAMPLE
language.

Defining Languages for LSE 4–7

Defining Languages for LSE
4.2 Defining a Programming Language

Those expressions on the left side of the syntax summary are known as
nonterminals. Typically, nonterminals with multiple options, such as
statement, are defined as menu placeholders. Nonterminals that expand into
a single option, such as if_stmnt, are defined as nonterminal placeholders
or tokens. Nonterminals that expand into text you must supply, such
as identifier, are defined as terminal placeholders. Optional syntactic
elements, such as [ELSE statement_list], require placeholders that do not
explicitly appear as nonterminals in the syntax summary. Major keywords,
such as IF, are defined as tokens.

Example 4–1 Syntax Summary for the EXAMPLE Language

program_unit ::= PROCEDURE procedure_name [(parameter_list)] IS
[variable_declarations]
BEGIN
statement_list
END
ENDPROCEDURE procedure_name

procedure_name ::= identifier
identifier ::= alphabetic | alphabetic identifier_chars
identifier_chars ::= alphanumeric | alphanumeric identifier_chars
alphabetic ::= a | b | ... | z
numeric ::= 0 | 1 | ... | 9
alphanumeric ::= alphabetic | numeric
parameter_list ::= parameter:type | parameter:type, parameter_list
parameter ::= identifier
var_decl_list ::= var_decl; | var_decl; var_decl_list
var_decl ::= identifier_list : type [init_value_list]
identifier_list ::= identifier | identifier, identifier_list
init_value_list ::= initial_value | initial_value, init_value_list
initial_value ::= boolean_exp | arithmetic_exp
statement_list ::= statement; | statement; statement_list
statement ::= if_stmnt | assignment_stmt | loop_construct |exit_stmt
if_stmnt ::= IF expression THEN statement_list [ELSE statement_list] ENDIF
assignment_stmnt ::= identifier := expression
expression ::= boolean_exp | arithmetic_exp
boolean_exp ::= identifier | unary identifier | identifier relop identifier
relop ::= = | <> | < | > | <= | >=
arithmetic_exp ::= identifier oper identifier
oper ::= + | - | * | /
unary ::= NOT
loop_construct ::= [label:] LOOP statement_list END LOOP
label ::= identifier
exit_stmt ::= EXIT [label] WHEN expression
type ::= BOOLEAN | INTEGER

4–8 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

4.2.1 Language Definition
To define a language (in this case, EXAMPLE), use the NEW LANGUAGE
command and its keywords. The following example shows the language
definition for the EXAMPLE language:

PLSE NEW LANGUAGE EXAMPLE
PLSE SET LANGUAGE FILE TYPES ".example" ADD EXAMPLE
PLSE SET LANGUAGE INITIAL STRING "{program_unit}" EXAMPLE
PLSE SET LANGUAGE REQUIRED DELIMIT "{" "}" EXAMPLE
PLSE SET LANGUAGE REQUIRED LIST DELIMIT "{" "}..." EXAMPLE
PLSE SET LANGUAGE OPTIONAL DELIMIT "[" "]" EXAMPLE
PLSE SET LANGUAGE OPTIONAL LIST DELIMIT "[" "]..." EXAMPLE
PLSE SET LANGUAGE PSEUDOCODE DELIMIT "<" ">" EXAMPLE
PLSE SET LANGUAGE EXPAND CASE AS_IS EXAMPLE
PLSE SET LANGUAGE DIAGNOSTICS OFF EXAMPLE
PLSE SET LANGUAGE COMPILE COMMAND "" EXAMPLE
PLSE SET LANGUAGE BRACKETED COMMENTS "/*" "*/" ADD EXAMPLE
PLSE SET LANGUAGE TRAILING COMMENTS "--" ADD EXAMPLE
PLSE SET LANGUAGE IDENTIFIER CHARACTERS -
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890$_" EXAMPLE
PLSE SET LANGUAGE PUNCTUATION CHARACTERS ",;().’:" EXAMPLE
PLSE SET LANGUAGE QUOTES "" EXAMPLE
PLSE SET LANGUAGE LEFT MARGIN 0 EXAMPLE
PLSE SET LANGUAGE RIGHT MARGIN 80 EXAMPLE
PLSE SET LANGUAGE TAB INCREMENT 4 EXAMPLE
PLSE SET LANGUAGE HELP TOPIC "" EXAMPLE
PLSE SET LANGUAGE VERSION "2.3" EXAMPLE
PLSE SET LANGUAGE WRAP OFF EXAMPLE

The DIAGNOSTICS keyword specifies whether the compiler for the
language creates a diagnostic file when it is compiled from within LSE. If
DIAGNOSTICS is specified, LSE automatically appends the DIAGNOSTICS
keyword to the COMPILE command. There is no compiler for the EXAMPLE
language. This is consistent with the COMPILE command keywords having a
null value. If a compiler existed, it could optionally produce a diagnostic file
upon compilation. The LSE command REVIEW would then use this file.

The COMMENTS keywords specify the character sequences of comments in
the language. The /* and */ keywords specify that bracketed comments begin
with the sequence /* and terminate with the sequence */. Bracketed comments
can extend over several lines. The trailing comment—specifies that trailing
comments begin with a pair of dashes. Trailing comments terminate at the end
of the line.

The COMPILE COMMAND keywords specify the default command string to
be used to invoke the language processor when you enter the LSE command
COMPILE. If there were an actual compiler for the EXAMPLE language, you
would specify the command that invokes that compiler here. In the definition

Defining Languages for LSE 4–9

Defining Languages for LSE
4.2 Defining a Programming Language

of the HP C language, for example, the keywords are COMPILE COMMAND
‘‘cc’’.

The EXPAND CASE keywords specify the case that the text of inserted
templates is to have. The AS_IS option specifies that the expanded text is to
keep the same case as in the placeholder or token definition.

The FILE TYPES keywords specify what file type corresponds to the
EXAMPLE language. When you specify the file type .EXAMPLE, LSE
automatically sets the language EXAMPLE for the buffer. You must not
specify a file type that is already associated with another language.

The HELP TOPIC keyword specifies a common prefix string to which the
topic_string parameter specified in a placeholder or token definition is
concatenated. For example, suppose a language topic string is ‘‘Pascal’’, and
the help library keyword is null. The definition of the token IF contains the
keywords HELP TOPIC ‘‘statement IF_THEN_ELSE’’. If a user gives the
HELP INDICATED command while positioned on the token IF in a Pascal
buffer, LSE forms the string ‘‘PASCAL STATEMENT IF_THEN_ELSE’’ and
uses that as an index.

If there is a common prefix for all the help topics for a language, the HELP
TOPIC keyword should not be specified. If you have created your own help
library for the language, and help for this language is the only topic in this
help library, do not specify the HELP TOPIC keyword. By default, LSE looks
up the single topic in the library.

The IDENTIFIER CHARACTERS keyword specifies what characters are
considered as part of a word. A word in LSE is defined as either any nonblank
space, nonidentifier character, or a sequence of identifier characters delimited
by blank space or a nonidentifier character. In addition to all alphanumeric
characters, you might want to have other characters as identifier characters,
such as those that often appear in variable names (for example, $ or _).

The PUNCTUATION CHARACTERS keyword specifies those characters that
LSE considers punctuation characters. LSE uses punctuation characters in
two ways. Note that both affect how LSE deletes placeholders. The two ways
are as follows:

• When a placeholder is erased and only punctuation characters are left on
the line, the line is deleted and the punctuation characters are moved to
the end of the preceding line. For example:

INTEGER (x,
[var]);

4–10 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

When the placeholder [var] is erased, only); is left on the line. Assuming
both) and ; are specified as punctuation characters for the language,); is
moved to the end of the preceding line. (The comma after x is also erased,
if specified as the separator for var.)

• When a placeholder is erased, LSE examines the characters immediately
before and after the placeholder. If neither of these are punctuation
characters, LSE inserts a blank between them. For example:

IF [NOT]{boolean_expression} THEN

If the optional placeholder is deleted and the brace is a punctuation
character, the following results:

IF {boolean_expression} THEN

Thus, in this case it would be better to have the brace not be included as a
punctuation character.

The INITIAL STRING keyword specifies the initial text that appears in
a newly created buffer. For example, when you create a new file with
an extension of .EXAMPLE, the buffer contains just the initial string
{program_unit}.

The LEFT MARGIN and RIGHT MARGIN keywords specify the left and
right margin values, respectively, to be associated with the language. LEFT
MARGIN CONTEXT_DEPENDENT means that the left margin varies
depending on the surrounding context. For example, the FILL command
uses the indentation of the first line of the text being filled as the left margin
for the fill operation. When wrap mode is enabled, the right margin value
is used to determine where to break the line. It is also used by the FILL
command. The FILL command packs text up to, but not beyond, the right
margin. When filling comments, the close comment delimiters are placed at
the right margin.

The DELIMIT keywords specify the starting and ending strings that delimit
placeholders. Placeholders can be required or optional, and they can specify
single constructs or lists of constructs. By convention, braces are used for
required placeholder delimiters, and square brackets are used for optional
delimiters in all HP languages. If these characters are part of the syntax of the
language, then some other character is used with them. For example, because
braces ({}) have meaning in the C programming language, {@ and @} are used
as placeholder delimiters.

The TAB INCREMENT keyword indicates that tab stops are set at every four
columns.

Defining Languages for LSE 4–11

Defining Languages for LSE
4.2 Defining a Programming Language

The QUOTES keyword specifies the characters to be used in the language as
delimiters for strings and escape characters.

For example, SET LANGUAGE QUOTES """’" and SET LANGUAGE
ESCAPE "\", which is the specification for some HP languages, specifies that
strings in the language can be delimited by either double quotation marks (" ")
or single quotation marks (’ ’), and that the escape character for the language
is the backslash (\). LSE always assumes that the strings begin and end
with the same character, but different strings can use different delimiters.
The value being provided for the QUOTES keyword must be surrounded by
quotation marks; if you want to include the quotation mark character within
this value, you must use double quotation marks.

You can optionally use the VERSION keyword to help you keep track of
your product. LSE does not actually use this value, except to display it in
the SHOW LANGUAGE command. You might want to use it to show what
revision number the language definition is, for example, or what version of the
associated compiler the templates support.

The WRAP ON keyword specifies whether wrap mode is in effect by default in
the language. The WRAP keyword affects the left margin value if the LEFT
MARGIN keyword was specified with a value of CONTEXT_DEPENDENT.

4.2.2 Defining Language Elements
You can define the placeholders that can be used in the EXAMPLE language.
To define a placeholder, use the NEW PLACEHOLDER command. Referring
to the syntax summary, start with the top-level nonterminal of the language,
program_unit. This is a nonterminal placeholder.

4–12 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

For example:

PLSE NEW PLACEHOLDER program_unit NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER AUTO SUBSTITUTE OFF program_unit EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Program unit" program_unit EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION CONTEXT_DEPENDENT program_unit EXAMPLE
PLSE SET PLACEHOLDER PSEUDOCODE ON program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "-- [procedure level comments]" EXPAND 0 SPACE NEXT ADD

program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "PROCEDURE {procedure_name} ([parameter list]...) IS"

EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " [variable_declaration]...;" EXPAND 0 SPACE NEXT ADD

program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "BEGIN" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " [statement]...;" EXPAND 0 SPACE NEXT ADD program_unit

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "END {procedure_name};" EXPAND 0 SPACE NEXT ADD program_unit

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "-- [procedure level comments]" EXPAND 0 SPACE NEXT ADD

program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "PROCEDURE {procedure_name} ([parameter list]...) IS"

EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " [variable_declaration]...;" EXPAND 0 SPACE NEXT ADD

program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "BEGIN" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " [statement]...;" EXPAND 0 SPACE NEXT ADD program_unit

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "END {procedure_name};" EXPAND 0 SPACE NEXT ADD program_unit

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "" EXPAND 0 SPACE NEXT ADD program_unit EXAMPLE

The NONTERMINAL keyword means that the body for the placeholder follows.
The placeholder body for program_unit is specified after the keywords. A
placeholder body is the template inserted into the buffer when you expand
program_unit. Each line of the placeholder body is enclosed in quotation
marks. Quotation marks with no text inside produce blank lines at expansion.

The SET PLACEHOLDER DESCRIPTION command supplies the description
"Program unit" for the program_unit placeholder.

The placeholder body for program_unit references other placeholders that have
not yet been defined, specifically, procedure-level comments, procedure_name,
parameter list, variable_declaration, and statement.

Defining Languages for LSE 4–13

Defining Languages for LSE
4.2 Defining a Programming Language

The "procedure level comments" placeholder is enclosed by optional
placeholder delimiters ([]). Therefore, if you do not want to have comments
at the top of your EXAMPLE program, you can erase the placeholder. LSE
recognizes the fact that the placeholder is the only item in a trailing comment.
After erasing the placeholder, LSE also erases the comment string and line.
This way, unwanted blank comment lines are not left behind. For example:

PLSE NEW PLACEHOLDER "procedure level comments" NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Procedure-level comment template" "procedure level

comments" EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION CONTEXT_DEPENDENT "procedure level comments" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "PROCEDURE:" EXPAND 0 SPACE NEXT ADD "procedure level

comments" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " " EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " {tbs}" EXPAND 0 SPACE NEXT ADD "procedure level

comments" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " " EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "AUTHOR:" EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " " EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " {tbs}" EXPAND 0 SPACE NEXT ADD "procedure level

comments" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " " EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "DESCRIPTION:" EXPAND 0 SPACE NEXT ADD "procedure level

comments" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " " EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " {tbs}..." EXPAND 0 SPACE NEXT ADD "procedure level

comments" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE " " EXPAND 0 SPACE NEXT ADD "procedure level comments"

EXAMPLE

The placeholder name can contain spaces, but if it does, the name must be put
in quotation marks.

The "procedure level comments" placeholder is another nonterminal
placeholder. It expands into a template for comments at the head of the
procedure. Templates like this are useful for projects where you want to
be sure certain information appears consistently throughout the project. In
this case, there are three pieces of information: PROCEDURE, AUTHOR, and
DESCRIPTION. For each category, there exists the single placeholder {tbs}.
The placeholder body contains no comment characters. When you expand a
multiline or vertically duplicating placeholder within a comment, the lines
into which it expands have comment characters inserted automatically. For
example:

-- [procedure level comments]

4–14 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

When you expand it, LSE recognizes that -- is a comment string and repeats
the comment string at the beginning of each line of the expansion, which
produces the following:

-- PROCEDURE:
--
-- {tbs}
--
-- AUTHOR:
--
-- {tbs}
--
-- DESCRIPTION:
--
-- {tbs}...
--

The lines in the placeholder body that are a quoted-space character correspond
to lines in the expansion containing only the comment delimiter. If the lines in
the placeholder body were null strings, the corresponding line in the expansion
would be completely empty.

Note that the {tbs} placeholder under DESCRIPTION is a list placeholder,
denoted by an ellipsis (...), whereas the other two are not. List placeholders
are automatically duplicated when expanded or typed over. The duplicate
placeholder is always optional.

You should use required list delimiters to indicate a list that must be replaced
by at least one element, for example, {tbs}.... You should use optional list
delimiters to indicate a list that is optional, for example, [parameter list]....

The "tbs" placeholder is a terminal placeholder. Its definition is as follows:

PLSE NEW PLACEHOLDER "tbs" TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "enter text information" "tbs" EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION VERTICAL "tbs" EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE "to be specified" ADD "tbs" EXAMPLE

Because the placeholder is a list placeholder, you should specify the
DUPLICATION keyword. It tells LSE how to duplicate the placeholder. In
this case, VERTICAL is specified, telling LSE to duplicate the placeholder on
the next line. As with the previous example, when you type on the list "tbs"
placeholder, it gets duplicated, and LSE automatically inserts the comment
string at the beginning of the line.

When defining a terminal placeholder, the text can be as many lines as are
needed to explain the correct text insertion for the placeholder. You must use
quotation marks at the beginning and end of each line of text. In this case, the
text "to be specified" is displayed when you expand the "tbs" placeholder.
When you press any key, the text is removed from the screen.

Defining Languages for LSE 4–15

Defining Languages for LSE
4.2 Defining a Programming Language

The next placeholder to be defined is the "procedure_name" placeholder:

PLSE NEW PLACEHOLDER "procedure_name" TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "The name of a procedure" "procedure_name" EXAMPLE
PLSE SET PLACEHOLDER AUTO SUBSTITUTE ON "procedure_name" EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE "A string of letters and digits starting with a

letter" ADD "procedure_name" EXAMPLE

The SET PLACEHOLDER AUTO SUBSTITUTE ON command specifies
that during source code entry, the next occurrence of "procedure_name" is
automatically replaced with the same text that you typed over the current
"procedure_name" placeholder. This is useful for languages that require
matching names.

In this case, the text "A string of letters and digits starting with a
letter" is displayed when you expand "procedure_name".

The "parameter list" placeholder is defined next. It expands to a template
corresponding to the form for a parameter list given in the syntax summary.
Because it is a list placeholder, the DUPLICATION keyword is specified. The
SEPARATOR keyword is also given. The definition is as follows:

PLSE NEW PLACEHOLDER "parameter list" NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER AUTO SUBSTITUTE OFF "parameter list" EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "List of procedure parameters" "parameter list"

EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION CONTEXT_DEPENDENT "parameter list" EXAMPLE
PLSE SET PLACEHOLDER PSEUDOCODE ON "parameter list" EXAMPLE
PLSE SET PLACEHOLDER LEADING "(" "parameter list" EXAMPLE
PLSE SET PLACEHOLDER TRAILING ")" "parameter list" EXAMPLE
PLSE SET PLACEHOLDER SEPARATOR "; " "parameter list" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "{param_name} : {type}" EXPAND 0 SPACE NEXT ADD "parameter

list" EXAMPLE

The definition of "parameter list" is described later in this section.

The DUPLICATION keyword tells LSE that the duplicated parameter list
placeholder should be duplicated according to context (the context being
whether the placeholder is the only item within its code fragment).

The SEPARATOR keyword indicates that a semicolon (;) is inserted in the text
to separate the duplicated placeholders. Note also the trailing space on the
SEPARATOR keyword. This makes a horizontal expansion more readable.

4–16 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

The expansion contains two placeholders, "param_name" and "type". The
definition for "param_name" is as follows:

PLSE NEW PLACEHOLDER "param_name" TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "The name of a parameter" "param_name" EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE -
"A string of letters and digits starting with a letter" ADD "param_name" EXAMPLE

The DUPLICATION keyword tells LSE that the "param_name" placeholder
should be duplicated horizontally. That is, the duplicated placeholder appears
on the same line, following the original placeholder.

The SEPARATOR keyword indicates that a comma (,) is inserted in the
text to separate the duplicated placeholders. Note the trailing space on the
SEPARATOR keyword. This makes a horizontal expansion more readable.

The TYPE placeholder is defined as a menu placeholder, as follows:

PLSE NEW PLACEHOLDER TYPE MENU EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Data Type" TYPE EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION CONTEXT_DEPENDENT TYPE EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "INTEGER" "Integer data type" TEXT OFF NEXT ADD TYPE EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "BOOLEAN" "Boolean data type" TEXT OFF NEXT ADD TYPE EXAMPLE

When TYPE is expanded, a menu is displayed in the buffer. The placeholder
body for a menu placeholder is defined in a similar way as a nonterminal
placeholder and contains the elements of the menu.

The expansion of "variable_declaration" looks much like the expansion of
parameter list. The difference is the addition of an optional initial_value
placeholder. In the EXAMPLE language, the placeholder enables you to
optionally initialize the variables you are declaring, as follows:

PLSE NEW PLACEHOLDER "variable_declaration" NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Declares a variable" "variable_declaration" EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION VERTICAL "variable_declaration" EXAMPLE
PLSE SET PLACEHOLDER TRAILING ";" "variable_declaration" EXAMPLE
PLSE SET PLACEHOLDER SEPARATOR "; " "variable_declaration" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "{identifier}... : {type} := [initial_value]..." -

EXPAND 0 SPACE NEXT ADD "variable_declaration" EXAMPLE

If you do not have any variables to declare in your program, you can erase
the optional "variable_declaration" placeholder, but you do not want to
leave the semicolon (;) behind. The TRAILING keyword (in the definition
of variable_declaration TRAILING ";") specifies that the string ";" be
associated with the "variable_declaration" placeholder. If the placeholder is
deleted, LSE looks immediately to the right (not including blank space). If it
sees the trailing string, LSE deletes it.

Defining Languages for LSE 4–17

Defining Languages for LSE
4.2 Defining a Programming Language

The "initial_value" placeholder is defined as follows:

PLSE NEW PLACEHOLDER "initial_value" TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Variable declaration initial value" -

"initial_value" EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION HORIZONTAL "initial_value" EXAMPLE
PLSE SET PLACEHOLDER LEADING ":=" "initial_value" EXAMPLE
PLSE SET PLACEHOLDER SEPARATOR ", " "initial_value" EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE -

"The initial value(s) of identifier(s) - either Integer or Boolean value(s)" -
NEXT ADD "initial_value" EXAMPLE

If you do not want to initialize the variables, you can erase the optional
placeholder, but you do not want to leave the ":=" behind. This is similar to
the ";" after the "variable_declaration" placeholder. In this case, LEADING
":=" specifies that the string ":=" be associated with the "initial_value"
placeholder. If the placeholder is deleted, LSE looks immediately to the left
(not including blank space). If it sees the leading string, LSE deletes it. A
placeholder can have both leading and trailing text strings associated with it.

The preceding descriptions of the LEADING and TRAILING keywords are
not quite complete. Based on the descriptions given thus far, the definition of
"parameter_list", repeated here for convenience, would appear to be wrong:

PLSE NEW PLACEHOLDER "parameter list" NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "List of procedure parameters" "parameter list"

EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION CONTEXT_DEPENDENT "parameter list" EXAMPLE
PLSE SET PLACEHOLDER LEADING "(" "parameter list" EXAMPLE
PLSE SET PLACEHOLDER TRAILING ")" "parameter list" EXAMPLE
PLSE SET PLACEHOLDER SEPARATOR "; " "parameter list" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "{param_name} : {type}" -

EXPAND 0 SPACE NEXT ADD "parameter list" EXAMPLE

For example, after a few expansions of program_unit, the following code
fragment might result:

PROCEDURE x (a : INTEGER; [parameter list]...) IS

Deleting optional placeholders based on the previous description incorrectly
leaves the following:

PROCEDURE X (a : INTEGER IS

That is, both the separator string ";", and the trailing string "") have
been removed. However, if you go through these steps using the EXAMPLE
language provided with LSE, you find that this does not happen. What actually
results is correct, as follows:

PROCEDURE X (a : INTEGER) IS

4–18 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

The full procedure that LSE goes through when a placeholder is deleted is as
follows:

1. Is the placeholder in a comment? If so, delete the comment characters
as well (leading, trailing, and separator characters are not used in this
situation).

2. Is a separator defined for the placeholder? Is the placeholder preceded by
the separator? If so, delete it and skip the next step.

3. Have leading or trailing strings been defined for the placeholder? If so,
look for the leading and trailing strings, and if they are found, delete them.

4. If, after these deletions, nothing or only punctuation characters remain on
the line, delete the blank space except one blank.

5. Finally, if one or both characters immediately to the left and right of the
deletion are punctuation characters, delete all blank space.

In the example, Step 2 causes the "parameter_list" placeholder to work as
you want it to. Because the placeholder was expanded, a separator character
was present. After LSE found and deleted it, LSE did not go on to look for
leading or trailing strings. Thus, the parentheses correctly remained around
the parameter.

The "statement" placeholder is defined as a menu placeholder. It is also used
as a list placeholder, as specified in the program_unit placeholder definition:

PLSE NEW PLACEHOLDER "statement" MENU EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "EXAMPLE statements" "statement" EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION VERTICAL "statement" EXAMPLE
PLSE SET PLACEHOLDER TRAILING ";" "statement" EXAMPLE
PLSE SET PLACEHOLDER SEPARATOR "; " "statement" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "ASSIGNMENT" "" TOKEN OFF NEXT ADD "statement" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "IF" "" TOKEN OFF NEXT ADD "statement" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "LOOP" "" TOKEN OFF NEXT ADD "statement" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "EXIT" "" TOKEN OFF NEXT ADD "statement" EXAMPLE

The DUPLICATION keyword tells LSE that the "statement" list placeholder
should be duplicated vertically. The SEPARATOR keyword indicates that a
semicolon is used to separate the duplicated placeholders.

The SET PLACEHOLDER MENU LINE commands indicate that
ASSIGNMENT, IF, LOOP, and EXIT are tokens. They are defined as tokens so
you can type ASSIGNMENT, IF, LOOP, or EXIT directly into the buffer.

Defining Languages for LSE 4–19

Defining Languages for LSE
4.2 Defining a Programming Language

When "statement" is expanded, a menu is displayed and another copy of
statement with optional list delimiters is inserted on the next line in the
buffer. When this menu is displayed, the text strings associated with the
DESCRIPTION keyword on the token definitions is displayed as well. These
text strings are also displayed when you enter the SHOW TOKEN command.

Token Definitions for the EXAMPLE Language
Tokens are defined for keywords or punctuation characters that you want
to type directly into the buffer. When expanded, they provide templates for
corresponding language constructs.

ASSIGNMENT, IF, LOOP, and EXIT are defined as tokens. To define a token,
use the NEW TOKEN command, as follows:

PLSE NEW TOKEN ASSIGNMENT TERMINAL EXAMPLE
PLSE SET TOKEN DESCRIPTION "Assignment statement" ASSIGNMENT EXAMPLE
PLSE SET TOKEN BODY LINE "{identifier} := {expression}" -

CURRENT 0 SPACE NEXT ADD ASSIGNMENT EXAMPLE

The DESCRIPTION keyword supplies the description "Assignment statement"
for the token ASSIGNMENT. This text string appears in the menu when you
expand {statement} . . . as well as when you enter the SHOW TOKEN
command.

Token names can consist of any combination of characters. However, token
names cannot have leading or trailing blank space. This feature enables you to
define tokens with names that are suited for the context in which they will be
used. It would be useful to define the assignment operator (:=) as a token so
that if you want to insert an assignment operation into an editing buffer, you
can type the assignment operator (:=) followed by the EXPAND key and have
{identifier} := {expression} placed in the editing buffer.

In addition to the ASSIGNMENT token, the assignment operator (:=) is
defined to be a token, as follows:

PLSE NEW TOKEN ":=" TERMINAL EXAMPLE
PLSE SET TOKEN DESCRIPTION "Assignment statement" ":=" EXAMPLE
PLSE SET TOKEN BODY LINE "{identifier} := {expression}" CURRENT 0 SPACE NEXT ADD ":=" -

EXAMPLE

4–20 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

In the following example, the IF statement contains an optional ELSE
statement_list construct, as indicated in the syntax summary. Therefore, you
must include the construct in the IF token definition and define an additional
placeholder for ELSE statement_list, as follows:

PLSE NEW TOKEN IF TERMINAL EXAMPLE
PLSE SET TOKEN DESCRIPTION "IF {expression} THEN..." IF EXAMPLE
PLSE SET TOKEN BODY LINE "IF {boolean_exp} " CURRENT 0 SPACE NEXT ADD IF EXAMPLE
PLSE SET TOKEN BODY LINE "THEN" CURRENT 0 SPACE NEXT ADD IF EXAMPLE
PLSE SET TOKEN BODY LINE " {statement}...;" CURRENT 0 SPACE NEXT ADD IF EXAMPLE
PLSE SET TOKEN BODY LINE "[ELSE {statement}...]" CURRENT 0 SPACE NEXT ADD IF EXAMPLE
PLSE SET TOKEN BODY LINE "END IF" CURRENT 0 SPACE NEXT ADD IF EXAMPLE

The definition for the LOOP token is as follows:

PLSE NEW TOKEN LOOP TERMINAL EXAMPLE
PLSE SET TOKEN DESCRIPTION "[loop_id]: LOOP ... END LOOP;" LOOP EXAMPLE
PLSE SET TOKEN BODY LINE "[loop_id]: LOOP" CURRENT 0 SPACE NEXT ADD LOOP EXAMPLE
PLSE SET TOKEN BODY LINE " {statement}...;" CURRENT 0 SPACE NEXT ADD LOOP EXAMPLE
PLSE SET TOKEN BODY LINE "END LOOP" CURRENT 0 SPACE NEXT ADD LOOP EXAMPLE

The colon (:) following the optional [loop_id] placeholder presents a problem
similar to the ‘‘;’’ after the "variable_declaration" placeholder. That is, if the
optional placeholder is erased the colon is left behind. For example:

PLSE NEW PLACEHOLDER "loop_id" TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "LOOP LABEL" "loop_id" EXAMPLE
PLSE SET PLACEHOLDER TRAILING ":" "loop_id" EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE "A string of letters and digits starting with a letter." -

NEXT ADD "loop_id" EXAMPLE

Once again, use the TRAILING keyword. If the "loop_id" placeholder is
erased, LSE looks immediately to the right for the colon (:). If it is found, it is
erased.

Finally, the definition for the token EXIT follows:

PLSE NEW TOKEN EXIT TERMINAL EXAMPLE
PLSE SET TOKEN DESCRIPTION "EXIT [loop_id] WHEN ... " EXIT EXAMPLE
PLSE SET TOKEN BODY LINE "EXIT [loop_id] WHEN {boolean_exp} " -

CURRENT 0 SPACE NEXT ADD EXIT EXAMPLE

Defining Languages for LSE 4–21

Defining Languages for LSE
4.2 Defining a Programming Language

All placeholders referenced in token definitions must be defined. The
"identifier" placeholder is a terminal placeholder and is defined as follows:

PLSE NEW PLACEHOLDER IDENTIFIER TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Identifier" IDENTIFIER EXAMPLE
PLSE SET PLACEHOLDER DUPLICATION HORIZONTAL IDENTIFIER EXAMPLE
PLSE SET PLACEHOLDER SEPARATOR ", " IDENTIFIER EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE "A string of letters and digits starting with a letter." -

NEXT ADD IDENTIFIER EXAMPLE

In the syntax summary, EXPRESSION is specified as a menu placeholder and is
defined as follows:

PLSE NEW PLACEHOLDER EXPRESSION MENU EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Boolean or arithmetic expression" EXPRESSION EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "boolean_exp" "use AND OR NOT" PLACEHOLDER -

OFF NEXT ADD EXPRESSION EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "arithmetic_exp" "use + - * /" PLACEHOLDER -

OFF NEXT ADD EXPRESSION EXAMPLE

Use the DESCRIPTION keyword to specify that "boolean_exp" and
"arithmetic_exp" are placeholders. As such, they need to be defined.
When you expand {expression} and select one of the menu options, the
DESCRIPTION keyword causes the expansion of the menu item to be placed
into the buffer, not the menu item itself. For example:

PLSE NEW PLACEHOLDER "boolean_exp" NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Boolean expression" "boolean_exp" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "[NOT] {identifier} [relop identifier]" -

EXPAND 0 SPACE NEXT ADD "boolean_exp" EXAMPLE

PLSE NEW PLACEHOLDER "arithmetic_exp" TERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "arithmetic expression" "arithmetic_exp" EXAMPLE
PLSE SET PLACEHOLDER TERMINAL LINE "An arithmetic expression" NEXT ADD "arithmetic_exp" -

EXAMPLE

For example, if you select boolean_exp from the menu, the following is inserted
into the buffer:

[NOT] {identifier} [relop identifier]

If the TEXT keyword is used with MENU LINE, the literal menu item is
inserted. If this is formatted as a placeholder, {boolean_exp}, the string
{boolean_exp} is placed in the buffer.

You would have to expand {boolean_exp} again to have it inserted into the
buffer. Because "arithmetic_exp" is a terminal placeholder, selecting it causes
{arithmetic_exp} to appear in the buffer along with its expanded description.
The same thing occurred earlier in the definition of statement. For example,
ASSIGNMENT was a menu item. Choosing ASSIGNMENT from the menu
causes the expansion of the ASSIGNMENT token to appear in the buffer.

4–22 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

If you do not want automatic expansion, the definition of EXPRESSION appears
as follows:

PLSE NEW PLACEHOLDER EXPRESSION MENU EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Boolean or arithmetic expression" EXPRESSION EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "{boolean_exp}" "use AND OR NOT" TEXT -

OFF NEXT ADD EXPRESSION EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "{arithmetic_exp}" "use + - * /" TEXT -

OFF NEXT ADD EXPRESSION EXAMPLE

NOT is a keyword, therefore it should be defined as a token. However, it is also
used as a placeholder in the expansion of {boolean_exp}. This is an example
of a situation in which you could use the alternate form of the NEW TOKEN
command, as follows:

PLSE NEW TOKEN NOT ALIAS EXAMPLE
PLSE SET TOKEN PLACEHOLDER NOT EXAMPLE

PLSE NEW PLACEHOLDER NOT NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Keyword NOT" NOT EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "NOT" EXPAND 0 SPACE NEXT ADD NOT EXAMPLE

The token NOT takes its parameters from the placeholder NOT. That is, even
though it is not explicitly specified, the token is associated with the EXAMPLE
language and has the description "Keyword NOT".

The final placeholders are defined as follows:

PLSE NEW PLACEHOLDER "relop identifier" NONTERMINAL EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "Optional part of a boolean expression" -

"relop identifier" EXAMPLE
PLSE SET PLACEHOLDER BODY LINE "{relop} {identifier}" -

EXPAND 0 SPACE NEXT ADD "relop identifier" EXAMPLE

PLSE NEW PLACEHOLDER "relop" MENU EXAMPLE
PLSE SET PLACEHOLDER DESCRIPTION "relative operator" "relop" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "=" "" TEXT OFF NEXT ADD "relop" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "<" "" TEXT OFF NEXT ADD "relop" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE ">" "" TEXT OFF NEXT ADD "relop" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE "<=" "" TEXT OFF NEXT ADD "relop" EXAMPLE
PLSE SET PLACEHOLDER MENU LINE ">=" "" TEXT OFF NEXT ADD "relop" EXAMPLE

Defining Languages for LSE 4–23

Defining Languages for LSE
4.2 Defining a Programming Language

Additional placeholders for the arithmetic expressions are not defined. Rather,
the "arithmetic_exp" placeholder is defined as a terminal placeholder to
notify you that an arithmetic expression is required. A choice such as this is
strictly up to the author of the templates. It all depends on the level of detail
you want. A relevant criterion might be, for example, the knowledge of the
people using the templates.

Now that the template definition is complete, you must execute the commands
in your source file. See Section 4.4 for details on executing your source file and
creating an environment file for later use.

4.2.3 Redefining Language Elements
You can redefine token, placeholder, package, and language definitions
interactively. Thus, you can add or delete constructs, reformat menus, or
edit descriptions within existing definitions. The EXTRACT command places
the current definition of a token, placeholder, package, or language in the
current buffer. You can then make the appropriate modifications and execute
the new definitions.

To redefine a token, placeholder, package, or language, do the following:

1. Enter the NEW BUFFER command and a new buffer name to enter an
empty buffer.

2. Enter the EXTRACT TOKEN, EXTRACT PLACEHOLDER, EXTRACT
PACKAGE, or EXTRACT LANGUAGE command, followed by the name of
the token, placeholder, or language.

3. Edit the definition of the selected token, placeholder, package, or language.

4. Enter the EXECUTE BUFFER LSE command to execute the new
definition.

4–24 Defining Languages for LSE

Defining Languages for LSE
4.2 Defining a Programming Language

When redefining tokens or placeholders, the previous definitions must be
deleted. As shown in Figure 4–2, the EXTRACT command automatically puts
a DELETE command before the NEW command when it places the definition
in the buffer. The DELETE TOKEN command deletes the previous definition
of a token, and the NEW TOKEN command provides a new definition.

Figure 4–2 Extracting a Token

For example, if you want to add a BEGIN/END construct to the definition of a
Pascal WHILE statement, do the following:

1. Enter the following command while in an empty buffer:

EXTRACT TOKEN WHILE PASCAL

2. Press Ctrl/Z to remove the command prompt and edit the token by adding
BEGIN and END statements.

3. Press Ctrl/Z to get the command prompt after you have the definition the
way you want it.

4. Enter the EXECUTE BUFFER LSE command to execute the new
definition, as shown in Figure 4–3.

Defining Languages for LSE 4–25

Defining Languages for LSE
4.2 Defining a Programming Language

Figure 4–3 Executing a New Definition

Thereafter, each time you use the WHILE token in Pascal in the current
editing session, LSE provides you with the new definition.

You can use the SET LANGUAGE commands as an alternate method for
redefining language definitions. This method works best when you want to
modify just one or two keywords in your language definition, or the attributes
of all the languages.

For example, if you want to change the setting of the EXPAND_CASE keyword
from AS_IS to UPPER, enter the following command:

SET LANGUAGE EXPAND_CASE UPPER PASCAL

The SET LANGUAGE command lets you modify your language definition
without having to execute the language definition again.

4–26 Defining Languages for LSE

Defining Languages for LSE
4.3 Defining Adjusted Indentation

4.3 Defining Adjusted Indentation
Adjusted indentation is a defined value you give to assign relative position
to program constructs so they can be outlined. You cannot see adjusted
indentation because LSE does not move any text; LSE treats lines as though
the indentation has changed.

Before you define adjustment values for overviews, see the default adjustment
values for the programming language you want to use by entering the SHOW
ADJUSTMENT * command.

When you define adjustment values to match your own coding conventions, the
following criteria might be helpful for judging the quality of the overviews you
can generate with your adjustments:

• Each major language construct should be compressible to a single line.

• Comments should conceal the constructs they describe.

• Lower-level constructs should never hide higher-level constructs.

Adjustments are defined on the LSE command line. Press F16 (the Do key)
to make the command-line prompt appear. See the HP DECset for OpenVMS
Language-Sensitive Editor/ Source Code Analyzer Reference Manual for
information about the SET ADJUSTMENT command and its qualifiers, or type
HELP LSE SET ADJUSTMENT at the system prompt for online information.

The following sections describe several methods for adjusting indentation for
outlining your programs.

4.3.1 Adjusting Single Lines
The SET ADJUSTMENT CURRENT n command sets the current line to the
indentation value you specify. This is a logical value; the actual position of the
text on the line does not change. For example, the following statement shows
the IF, THEN, and ELSE clauses in the same column:

IF P
THEN

ADD 5 TO K
END-ADD

ELSE
ADD 6 TO K
END-ADD

Defining Languages for LSE 4–27

Defining Languages for LSE
4.3 Defining Adjusted Indentation

By entering the following commands, LSE treats the actual text as if it looked
like the subsequent text:

SET ADJUSTMENT CURRENT 1 then
SET ADJUSTMENT CURRENT 1 else

IF P
THEN

ADD 5 TO K
END-ADD

ELSE
ADD 6 TO K
END-ADD

With the adjusted indentation, the actual code can be compressed into the
following overview line:

«IF P»

You can adjust the indentation of a line to the left instead of to the right by
supplying a negative value to the SET ADJUSTMENT CURRENT command.
For example:

SET ADJUSTMENT CURRENT -1 "*"

Comments should frequently be adjusted to the left so programming code can
be concealed by an overview line that contains the comment about the code.

4.3.2 Adjusting Multiple Lines
If a program construct does not have an indented body, you can specify a pair
of SET ADJUSTMENT SUBSEQUENT n commands to logically indent the
whole construct. For example, if the lines between the BLISS BEGIN and
END statement are not indented, you can adjust for that with the following
definitions:

SET ADJUSTMENT SUBSEQUENT 1 begin
SET ADJUSTMENT SUBSEQUENT -1 end

Specifying a 1 for BEGIN logically indents all subsequent lines by one;
specifying a �1 resets lines after the END clause to their original position.

Adjustments are cumulative. If nested BEGIN-END statements occurred, lines
after each BEGIN clause would be indented by one and moved to the left after
each END clause.

4–28 Defining Languages for LSE

Defining Languages for LSE
4.3 Defining Adjusted Indentation

When you use the SET ADJUSTMENT SUBSEQUENT command, be sure
the total of the values for a single construct add up to zero. For example, in
Ada and Pascal, the PROCEDURE keyword sometimes has a matching END
and sometimes does not. Therefore, the SET ADJUSTMENT SUBSEQUENT
command should not be applied to PROCEDURE.

You do not need to specify the SET ADJUSTMENT SUBSEQUENT command
in pairs, with values of N and �N. Many definitions are acceptable as long as
the combined values add up to zero.

You should choose whether to adjust language clauses and constructs to the left
or right depending on how you want the interaction of an adjusted indentation
definition with other definitions, particularly those involving comments.
Moving comments to the left and moving code to the right works well for most
situations.

4.3.3 Adjusting Lines in Programming Languages Without Indentation
Languages without indentation can still take advantage of overviews. For
example, products such as HP DECdocument use files containing markup-
language tags. Many of these tags are constructs with well-marked beginnings
and ends that can be treated as follows:

SET ADJUSTMENT SUBSEQUENT 2 "<NOTE>"
SET ADJUSTMENT SUBSEQUENT -2 "<ENDNOTE>"
SET ADJUSTMENT CURRENT -1 "<ENDNOTE>"

You can treat HP DECdocument markup-language constructs that do not have
visible endings as follows:

SET ADJUSTMENT CURRENT -1 "<CHAPTER>"
SET ADJUSTMENT CURRENT -1 "<HEAD1>"
SET ADJUSTMENT CURRENT -1 "<HEAD2>"
SET ADJUSTMENT CURRENT -1 "<HEAD3>"

4.3.4 Preventing Text Compression into Overview Lines
The SET ADJUSTMENT COMPRESS OFF command does not allow a specified
construct to be compressed into an overview line. For example, you might
decide that LSE should not compress BEGIN constructs into overview lines
like the following:

«BEGIN»

Defining Languages for LSE 4–29

Defining Languages for LSE
4.3 Defining Adjusted Indentation

The following definition instructs LSE to display the detailed text instead of
the overview line:

SET ADJUSTMENT COMPRESS OFF begin

Note

Programming-language constructs can be concealed in overview lines
that are compressed from higher-level constructs.

4.3.5 Defining Appropriate Overview Text
LSE typically uses the first line of a group of text to form an overview line.
Because this text might not be appropriate (for example, if it is a blank line,
an empty comment, or a row of asterisks), you can explicitly control what
text appears in overview lines by using the SET ADJUSTMENT OVERVIEW
command. If a string is inappropriate as overview text, you can define it using
the SET ADJUSTMENT OVERVIEW OFF command. For example, suppose a
HP C program is formatted as follows:

char *
getline(row)
int row;
{

...
}

If each C function is compressed to a single line, char * becomes the overview
text despite its uninformative nature. The text getline is the function name
and should be the overview text. To prevent char * from appearing as the
overview text, use the following definition:

SET ADJUSTMENT OVERVIEW OFF "char *"

4.3.6 Inheriting Indentation Values
In some situations, the visible indentation of a line is not a good indication of
what its adjusted indentation should be. The visible indentation of a blank line
is always 0. The visible indentation of a FORTRAN or COBOL comment line is
usually 1. In these situations, you can use the SET ADJUSTMENT INHERIT
command to cause a line to inherit its visible indentation from the adjusted
indentation of a neighboring line.

4–30 Defining Languages for LSE

Defining Languages for LSE
4.3 Defining Adjusted Indentation

The SET ADJUSTMENT INHERIT command is typically used in adjustments
for blank lines, form feeds, conditional compilations, and labeled lines. It has
the following keywords:

Keyword Description

PREVIOUS The visible indentation for the current line is taken from the
adjusted indentation of the previous line.

NEXT The visible indentation for the current line is taken from the
adjusted indentation of the next line.

MINIMUM The visible indentation for the current line is taken from the
adjusted indentation of either the previous line or the next line,
whichever is smaller.

MAXIMUM The visible indentation for the current line is taken from the
adjusted indentation of either the previous line or the next line,
whichever is larger.

With C conditional compilation, a common coding convention is to type the
conditional compilation lines at the left margin, although the corresponding
program code is indented. For example:

SET ADJUSTMENT INHERIT NEXT "$(COLUMN=1)#if"

When you use this definition, LSE takes the indentation of a conditional
compilation line from the indentation of the line below it.

4.3.7 Grouping Comment Lines
You can treat contiguous comment lines as a single unit if they have the
same adjusted indentation by specifying the SET ADJUSTMENT UNIT ON
command. For example:

! Store away the info needed to update
! the history.
Update_info::Edit_no = Edit_no
Update_info::Version_record = Rec_num

Without grouping the comments into a unit, the second comment in this
example becomes the overview line for the assignments. To treat both comment
lines as one unit, and to have the first comment become the overview for both
comment lines and the associated statements, combine the comment lines into
one group by using the following commands:

SET ADJUSTMENT UNIT ON
SET ADJUSTMENT CURRENT= -1 "!"

Defining Languages for LSE 4–31

Defining Languages for LSE
4.3 Defining Adjusted Indentation

4.3.8 Using Prefixes in Adjustments
In some situations, such as a label construct, you want to avoid having the
starting text of a line determine indentation or influence adjustment. Use the
SET ADJUSTMENT PREFIX ‘‘prefix-text’’ command to ignore specified text at
the beginning of lines.

The following example instructs LSE to treat an identifier followed by a colon
as a prefix, if a BEGIN construct follows the identifier and colon on a source
line:

SET ADJUSTMENT PREFIX ADJUSTMENT FOLLOWING "$(IDENTIFIER):$(PREFIX)BEGIN"

The BEGIN clause is the first text after the prefix.

4.3.9 Adjusting Blank Lines
The default adjustment for blank lines is as follows:

SET ADJUSTMENT INHERIT MAXIMUM
SET ADJUSTMENT UNIT ON
SET ADJUSTMENT COUNT OFF

This usually causes a blank line to be absorbed into a neighboring group of
source code lines. For example:

BEGIN

a = b;

In this example, the blank line following BEGIN inherits the adjusted
indentation of the a = b line because that line is indented more than the
BEGIN line. Therefore, the blank line is part of the group that starts with the
BEGIN line.

Consider the following code fragment:

IF something
THEN

a = b;

ELSE
c = d;

The blank line preceding ELSE inherits the adjusted indentation of the a = b
line. Therefore, the blank line is part of the group that starts with the THEN
line.

4–32 Defining Languages for LSE

Defining Languages for LSE
4.3 Defining Adjusted Indentation

To redefine the behavior of blank lines, you must define an adjustment for the
LINE_END predefined pattern. For example:

NEW ADJUSTMENT "$(LINE_END)"
SET ADJUSTMENT UNIT ON
SET ADJUSTMENT COUNT OFF
SET ADJUSTMENT INHERIT NEXT
SET ADJUSTMENT CURRENT -1
SET ADJUSTMENT COMPRESS OFF

You might use this adjustment if you want a blank line to terminate a group
started by a preceding comment line. For example, suppose you use this
definition with the following code fragment:

! comment text
IF something

THEN
a = b;

c = d;

The group started by the comment line will include only the lines through the
a = b line.

In languages where there is little syntax to distinguish program constructs,
such as HP C, you can define empty space to be significant. For example:

NEW ADJUSTMENT "$(LINE_END)"
SET ADJUSTMENT CURRENT -1
NEW ADJUSTMENT "$(FORMFEED)"
SET ADJUSTMENT CURRENT -2

This definition causes every blank line to have an adjusted indentation of�1
because its visible indentation is always 0, and every form-feed line to have an
adjusted indentation of �1 (if each form feed is in column 1).

4.3.10 Adjusting Bracketed Comments
Language compilers and LSE do not necessarily have the same definitions
for comments. LSE treats a line as a comment only if it includes comment
delimiting text. The second line in the following example is not considered a
comment by LSE:

/*
Open the file.

*/

Consider the following adjustment definition:

NEW ADJUSTMENT "/*"
SET ADJUSTMENT CURRENT -1

Defining Languages for LSE 4–33

Defining Languages for LSE
4.3 Defining Adjusted Indentation

This particular style does not present a problem for the overview facility.
Because the inner lines of a comment are indented further than the comment
delimiter text, LSE treats the whole comment as one group.

You can write definitions for /* and */ with the /SUBSEQUENT qualifier to
cause intervening lines to indent. Use this approach with caution, however,
because if */ does not appear at the beginning of a line, LSE cannot detect the
*/.

4.3.11 Adjusting Fixed Comments
In some languages, such as FORTRAN and COBOL, the indentation of a
comment is of no interest because it is in a fixed column. One way to handle
this situation is to adjust the comment to inherit the indentation from the line
after the comment line. To do this, use the INHERIT keyword, as follows:

NEW ADJUSTMENT "$(COLUMN=1)C"
SET ADJUSTMENT INHERIT NEXT
SET ADJUSTMENT CURRENT -1
SET ADJUSTMENT UNIT ON

Another approach is to ignore the comment marker and take the visible
indentation from the text that follows on the line. To do this, use the PREFIX
keyword, as follows:

NEW ADJUSTMENT "$(COLUMN=1)*$(PREFIX)"
SET ADJUSTMENT PREFIX FOLLOWING CURRENT

See Section 3.5.2 for FORTRAN-specific information.

4.4 Saving Language Definitions
To create and save an environment file for a new language, do the following:

1. Create your source file in an empty buffer. The source file should have an
extension of .LSE.

2. Put all the necessary LSE language, token, and placeholder definitions into
that source file.

3. Execute the commands in the source file with the EXECUTE BUFFER
LSE command while in LSE. This loads the definitions into the current
editing session, but does not save them.

4. Enter the SAVE ENVIRONMENT command while in LSE. This command
saves your definitions and produces a binary file with a file extension of
.ENV.

4–34 Defining Languages for LSE

Defining Languages for LSE
4.4 Saving Language Definitions

The SAVE ENVIRONMENT command writes out all user-defined languages,
placeholders, tokens, and aliases to an editing environment file. This command
executes immediately to save the environment active at the moment you enter
the command.

For information on OpenVMS systems, refer to the HP DECset for OpenVMS
Language-Sensitive Editor/ Source Code Analyzer Reference Manual.

4.5 Using Aliases
An alias is an abbreviation for a long text string or identifier that you want
to expand repeatedly into your source code. When you expand an alias, it is
replaced with the text string you defined for the alias.

For example, you can define the alias PCN by pressing F16 (the Do Key) and
specifying the following command:

NEW ALIAS PCN PAS_COPY_NNT

After you define the alias, you can type the alias and expand it with Ctrl/E.

Aliases that contain nonalphanumeric characters must be defined with
quotation marks. For example:

NEW ALIAS INCR "X = X + 1"

You can define an alias by positioning the text cursor on an identifier or text
string and pressing PF1-Ctrl/A. LSE prompts you for the alias name to be
assigned to your selection.

4.6 Using LSE Packages
LSE provides templates for subroutine packages. These packages define
OpenVMS System Services, Run-Time Library (LIB$, STR$, SMG$), and
OpenVMS Record Management System (HP RMS) routines. In addition, LSE
provides a mechanism for defining packages for your own subroutine libraries.

You can use the SCA REPORT command to generate package definitions
automatically for your subroutine libraries. See the Guide to Detailed Program
Design for OpenVMS Systems for more information.

You can use the following commands to create package definitions:

NEW PACKAGE
NEW ROUTINE

Defining Languages for LSE 4–35

Defining Languages for LSE
4.6 Using LSE Packages

The NEW PACKAGE command defines a subroutine package for which
subroutine-call templates are automatically generated. Packages contain
routine definitions that describe calls to subroutines, and the parameters
for the calls. The NEW ROUTINE command defines templates for a routine
within a subroutine package. This command makes the routine an element of
a package.

The following is an example of a package definition:

PLSE NEW PACKAGE SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE BASIC ADD SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE C ADD SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE C++ ADD SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE COBOL ADD SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE DCL ADD SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE FORTRAN ADD SYSTEM_SERVICES
PLSE SET PACKAGE LANGUAGE PLI ADD SYSTEM_SERVICES
PLSE SET PACKAGE HELP LIBRARY helplib SYSTEM_SERVICES
PLSE SET PACKAGE HELP TOPIC "System_Services " SYSTEM_SERVICES
PLSE SET PACKAGE ROUTINE EXPAND "LSE$PKG_EXPAND_ROUT_" SYSTEM_SERVICES !Special routines
PLSE SET PACKAGE PARAMETER EXPAND "LSE$PKG_EXPAND_PARM_" SYSTEM_SERVICES !for system services

LSE provides two sets of predefined HP DECTPU routines to help you write
your own packages. However, you might want to create your own HP DECTPU
procedures to help you write more complex packages.

The OpenVMS System Services and HP RMS packages consist of routine
definitions and parameter definitions that are available automatically when
you use LSE with any of the supported programming languages. See the
Software Product Description (SPD) for a complete list of programming
languages that LSE supports.

Routines are language-independent and are useful for describing subroutine
libraries. They need to be defined only once. Routine names are used in
the same way tokens are used. For example, if you type the routine name
SYS$FILESCAN and expand it, you get the following results:

sys$filescan ({srcstr},
{valuelst},
[fldflags])

Most languages access OpenVMS System Services and HP RMS routines with
the prefix SYS$. These languages must use the SYSTEM_SERVICES package.
Other languages use different prefixes. For example, Ada prohibits the dollar
sign prefix ($) and must use the STARLET package. BLISS and Pascal require
the dollar sign prefix ($) and must use the KEYWORD_SYSTEM_SERVICES
package.

4–36 Defining Languages for LSE

Defining Languages for LSE
4.6 Using LSE Packages

For example, to call the $SNDOPR system service from a PL/I program, type
status := sys$sndopr and press Ctrl/E with the text cursor positioned after
sys$sndopr to expand it to the following text:

status := sys$sndopr (
{msgbuf},
[chan])

This indicates that the $SNDOPR system service has two parameters: msgbuf
(required) and chan (optional). Because chan is optional, LSE expands it with
an optional placeholder that you can either delete or expand. Languages other
than Ada and BLISS have similar features.

In Ada, the dollar sign is not used as part of the system service name. For
example, you can type starlet.sndopr, then press Ctrl/E to expand it to the
following text:

STARLET.SNDOPR (
STATUS => {status},
MSGBUF => {msgbuf},
[CHAN => {chan}]);

In BLISS, the system services start with a dollar sign without the leading SYS.
For example, you can type status = $sndopr then press Ctrl/E to expand it to
the following text:

status = $sndopr (
msgbuf = {~msgbuf~},
[~chan = {~chan~}~])

When you define a routine, LSE automatically generates the necessary
NEW TOKEN or NEW PLACEHOLDER command to produce the templates for
the given procedure call. Thus, you can expand and unexpand routines in the
same manner as tokens. The following routine definition example shows how
to cause LSE to generate the command, NEW TOKEN SYS$ADD_HOLDER,
with the appropriate body for the current language:

PLSE NEW ROUTINE SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE DESCRIPTION " Add Holder Record To The Rights Database" -

SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE HELP TOPIC "System_Services $ADD_HOLDER" SYS$ADD_HOLDER SYSTEM_SERVICES

PLSE NEW ROUTINE PARAMETER ID.V SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE PARAMETER REQUIRED ID.V SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE PARAMETER VALUE ID.V SYS$ADD_HOLDER SYSTEM_SERVICES

PLSE NEW ROUTINE PARAMETER HOLDER.R SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE PARAMETER REQUIRED HOLDER.R SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE PARAMETER REFERENCE HOLDER.R SYS$ADD_HOLDER SYSTEM_SERVICES

PLSE NEW ROUTINE PARAMETER ATTRIB.V SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE PARAMETER OPTIONAL ATTRIB.V SYS$ADD_HOLDER SYSTEM_SERVICES
PLSE SET ROUTINE PARAMETER VALUE ATTRIB.V SYS$ADD_HOLDER SYSTEM_SERVICES

Defining Languages for LSE 4–37

Defining Languages for LSE
4.6 Using LSE Packages

You can access online help for any of the system services in any programming
language. If you want help on any routine, place the cursor on the routine
name and press PF1-PF2. The HELP entry for the system service contains
information about the parameters.

If you want to view the contents of a given package or routine, use the SHOW
command. If you want to modify the definitions of a package or routine, use
the EXTRACT command.

4–38 Defining Languages for LSE

Index

A
Adjusted indentation, 3–19
Adjusting blank lines, 4–32
Adjusting bracketed comments, 4–33
Adjusting fixed comments, 4–34
Adjusting multiple lines, 4–28
Alias

defining, 4–35
definition of, 4–35
expanding, 4–35

ALIGN command, 3–16
Aligning comment areas, 3–17
Auto erase buffer attribute, 2–16

B
Blank lines

adjusting, 4–32
Bracketed comments, 4–9

adjusting, 4–33
Buffer

searching through, 2–7
using, 2–10

Buffer attributes
auto erase, 2–16
close, 2–15
defining, 2–11
direction, 2–15
erase unmodifiable record, 2–15
indentation, 2–17
indentation level, 2–16
input/output file, 2–13
journal file, 2–13

Buffer attributes (cont’d)
journaling, 2–13
journal name, 2–13
key map list, 2–13
language, 2–13
LSE left margin, 2–16
modifiable/unmodifiable, 2–14
modified, 2–13
names, 2–13
offset, 2–16
offset column, 2–17
overviews, 2–16
record count, 2–16
record number, 2–16
record size, 2–16
right margin, 2–16
safe for journaling, 2–13
tab increment, 2–16, 2–17
tab stops, 2–17
TPU left margin, 2–16
unmodifiable record, 2–15
window count, 2–17
wrap, 2–16

Buffer-change journal file, 2–35
Buffer name attribute, 2–13

C
Close buffer attribute, 2–15
CMS/LSE Integration, 2–26 to 2–32
Command file

creating, 2–35
definition of, 2–35
example file, 2–38
using, 2–36

Index–1

Command languages, 1–9
Command-line mode, 1–9
Command-line qualifiers

/COMMAND qualifier, 2–36
/ENVIRONMENT qualifier, 2–40
/INITIALIZATION qualifier, 2–11, 2–36
/SECTION qualifier, 2–40

Command prompts
LSE>, 1–9

Commands
ALIGN, 3–16
GOTO FILE, 2–25
GOTO SOURCE, 2–25
INCLUDE, 2–25
issuing

keypad mode, 1–8
line mode, 1–9

READ, 2–25
related to HP CMS

CMS [cms-command], 2–25
GOTO FILE, 2–25
GOTO SOURCE, 2–25
INCLUDE, 2–25
READ, 2–25
REPLACE, 2–25
RESERVE, 2–25
SET CMS, 2–25
UNRESERVE, 2–25

REPLACE, 2–26
RESERVE, 2–26
SET CMS [cms-command], 2–25
UNRESERVE, 2–26

Comment areas
aligning, 3–17
filling, 3–17

Comments
aligning, 3–16, 3–17
bracketed, 3–16, 4–33
defining syntax for, 4–9
filling, 3–16, 3–17
formatting, 3–17
grouping lines, 4–31
line, 3–16
trailing, 3–16, 3–17

/COMMENT_COLUMN qualifier, 3–16
COMPILE/REVIEW command, 3–2
COMPILE command, 2–19, 3–1, 3–2, 4–9
Custom modifications

storing, 2–35

D
Debugging adjustment definitions, 3–21
DECwindows LSE

accessing files, 2–2
opening a file, 2–2

Defaults
overriding, 2–22

Defining a text template, 4–1
Defining buffer attributes, 2–11
Defining key commands, 2–17
Defining language elements, 4–12
DELETE TOKEN command, 4–25
DELETE WINDOW command, 2–10
Delimiters, 4–3, 4–11
Design support

See PDF
Diagnostic file support, 3–1
Direction buffer attribute, 2–15
Directory

locating in multiple, 2–20
modifiable, 2–20
overriding, 2–22
read-only, 2–21
search list, 2–20

Directory defaults
setting, 2–21

DO command, 2–18

E
EDT, 3–2
EDT keypad, 1–3
END REVIEW command, 3–2, 3–4
Entering pseudocode, 3–14
Environment file

creating, 2–39, 4–1, 4–7, 4–34
description of, 2–38
saving, 4–34

Index–2

Environment file (cont’d)
using, 2–40

Erase unmodifiable buffer attribute, 2–15
Error correction and review, 1–2
EVE keypad, 1–3
EXACT SUBSTITUTE command, 2–8
EXECUTE BUFFER LSE command, 2–35,

4–34
EXECUTE BUFFER TPU command, 2–35
EXIT command, 2–20
EXPAND command, 3–8
Expanding

alias, 4–35
list placeholder, 1–5, 3–11
menu placeholder, 1–4, 3–11
non-terminal placeholder, 3–11
nonterminal placeholder, 1–4
terminal placeholder, 1–4, 3–11
tokens, 3–8

EXPAND key, 3–6
EXTRACT command, 4–24

F
Features of LSE, 1–2
File

See Command file
See Environment file
See Initialization file
See Section file
accessing through DECwindows LSE, 2–2
accessing through HP Code Management

System, 2–25
accessing through LSE, 2–19
Buffer-change journal, 2–35
creating, 2–19
diagnostics, 3–1
displaying, 2–19
keystroke journal, 2–34
locating, 2–20
locating in multiple directories, 2–20
manipulating, 2–19
opening a, 2–2
writing, 2–19

FILL command, 3–17, 4–11
Filling comment areas, 3–17
Fixed comments, 4–34
FORTRAN_COMMENT pattern, 3–24
FORTRAN_FUNCTION pattern, 3–24

G
GOTO BUFFER command, 2–10
GOTO DECLARATION command, 2–19,

2–20
GOTO DECLARATION Command, 2–21
GOTO FILE command, 2–25
GOTO SOURCE command, 2–19, 2–20,

2–25, 3–2, 3–3
Grouping comment lines, 4–31

H
Help

LSE
accessing, 1–9
keypad layout, 1–8

online, 1–3
HELP KEY command, 1–8
HP CMS

support, 2–25
HP DECdocument, 4–29
HP DECTPU

command file, 2–36
HP Performance and Coverage Analyzer

support, 3–4
terminating, 3–5

I
INCLUDE command, 2–21
INCLUDE FILE command, 2–19, 2–20
Indentation

adjusted, 3–19
conventions, 3–20
inheriting, 4–30
language values without, 4–29
visible, 3–19, 4–30

Index–3

Indentation control, 3–11
Indentation level buffer attribute, 2–16
Initialization

LSE, 2–36
speeding up, 2–38

Initialization file
creating, 2–35
definition of, 2–35
example file, 2–37
using, 2–36

Input file buffer attribute, 2–13
Integrated programming environment, 1–3
Invoking LSE, 2–1

from HP Performance and Coverage
Analyzer, 3–4

from OpenVMS Debugger, 3–4

J
Journal file buffer attribute, 2–13
Journaling

buffer attribute, 2–13
buffer-change, 2–35
keystroke, 2–33

Journal name buffer attribute, 2–13

K
Key commands

defining, 2–17
redefining, 2–17

Key map list buffer attribute, 2–13
Keypad

EDT, 1–3
EVE, 1–3

Keys
EXPAND, 3–6
for reviewing compilation errors, 3–2

Key sequences
defining, 2–18

Keystroke journaling, 2–33

L
Language

See NEW LANGUAGE command
adjusting lines in without indentation,

4–29
redefining, 4–24

Language buffer attribute, 2–13
Language definition keywords, 4–2

See NEW LANGUAGE command
Language-specific templates

definition of, 1–2
Learn sequence

See NEW KEY command
definition of, 2–18

Library
HP CMS, 2–25
LSE

subroutine libraries
Record Management System,

4–36
System Services, 4–36

Line comment, 4–9
List placeholder, 1–5, 3–11

defining, 4–5, 4–16
LSE

automating initialization, 2–38
concepts, 1–4, 3–5
customization, 1–2
features, 1–2
Help, 1–3, 1–9
invoking, 2–1

from Debugger, 3–4
from PCA, 3–4

menus, 1–5
overview, 1–1
task areas, 1–5

LSE$COMMAND, 2–36
LSE$ENVIRONMENT, 2–40
LSE$INITIALIZATION, 2–36
LSE$SECTION, 2–40
LSE$USER.EXAMPLE, 2–3

Index–4

LSE/CMS Integration, 2–26 to 2–32
LSE/SCA Integration, 2–33
LSE left margin buffer attribute, 2–16

M
Menu bar, 1–5, 1–7
Menu placeholder, 1–4, 3–11

defining, 4–3, 4–5, 4–7, 4–17, 4–19
Message area, 1–5, 1–7
Modifiable buffer attribute, 2–14
Modified buffer attribute, 2–13
Multiple files

using, 2–41
Multiple lines

adjusting, 4–28
Multiple windows

using, 2–10

N
NEW ALIAS command, 4–35
NEW FILE command, 2–19
NEW KEY command, 2–17

See also Key commands
NEW LANGUAGE command, 4–9

coding rules, 4–1
COMMENT keyword, 4–9
COMPILE COMMAND keywords, 4–10
DELIMIT keywords, 4–3, 4–11
DIAGNOSTICS keyword, 4–9
example definition, 4–2, 4–9
EXPAND CASE keyword, 4–10
FILE TYPES keywords, 4–3, 4–10
HELP TOPIC keyword, 4–10
IDENTIFIER CHARACTERS keyword,

4–10
IDENTIFIER CHARACTERS keywords,

4–3
INITIAL STRING keywords, 4–3, 4–11
LEFT MARGIN keyword, 4–11
PUNCTUATION CHARACTERS

keywords, 4–3, 4–10
QUOTES keyword, 4–12
RIGHT MARGIN keyword, 4–11

NEW LANGUAGE command (cont’d)
TAB INCREMENT keywords, 4–3, 4–11
VERSION keyword, 4–12
WRAP keyword, 4–12

NEW PACKAGE command, 4–36
NEW PLACEHOLDER command, 4–4,

4–12, 4–16
DESCRIPTION keyword, 4–4, 4–13
DUPLICATION keyword, 4–6, 4–16
LEADING keyword, 4–18
NONTERMINAL keyword, 4–13
SEPARATOR keyword, 4–16
TRAILING keyword, 4–17

NEW ROUTINE command, 4–36
NEW TOKEN command, 4–6

DESCRIPTION keyword, 4–6
LANGUAGE keyword, 4–6

NEW WINDOW command, 2–10
NEXT STEP command, 3–2, 3–3
NEXT WINDOW command, 2–10
Non-terminal placeholder

definition of, 3–11
Nonterminal placeholder

defining, 4–3, 4–7
definition of, 1–4

Nonterminals
definition of, 4–7

O
Offset buffer attribute, 2–16
Offset column buffer attribute, 2–17
Online help, 1–3

See also Help
OPEN FILE command, 2–10, 2–13, 2–15,

2–19, 2–20, 2–22
creating unmodifiable buffers, 2–14

OpenVMS Debugger support
command qualifiers, 3–5
terminating, 3–5

Output file buffer attribute, 2–13
Overview line

example of, 3–21
preventing text compression into, 4–29

Index–5

Overview of LSE, 1–1
Overviews

buffer attribute, 2–16
debugging adjustment definitions, 3–21
finding appropriate text, 4–30
special processing for FORTRAN, 3–23

P
Package

example definition, 4–36
HELP, 4–38
modifying, 4–38
redefining, 4–24
routine names, 4–36
STARLET, 4–36
subroutine libraries, 4–35
viewing, 4–38

Pattern element
FORTRAN_COMMENT, 3–24
FORTRAN_FUNCTION, 3–24

PDF (Program Design Facility), 1–2
Placeholder, 3–5

aligning, 3–16
automatic substitution, 4–16
body, 4–4, 4–13
defining, 4–4
definition of, 1–4, 4–3
delimiters, 1–4, 4–3, 4–11
duplicating, 3–11, 4–6, 4–16
example definitions, 4–4, 4–12
expanding non-terminal, 3–8, 3–10
expanding nonterminal, 1–4
indentation control, 3–11
list, 1–5

See List placeholder
menu, 1–4, 4–3

definition of, 3–11
non-terminal

definition of, 3–11
nonterminal, 4–3

definition of, 1–4
pseudocode, 1–5

definition of, 3–6, 3–14
redefining, 4–24

Placeholder (cont’d)
terminal, 1–4, 4–3

definition of, 3–11
Portable command language, 1–9
Prefixes

using in adjustments, 4–32
Preventing text compression, 4–29
PREVIOUS STEP command, 3–2, 3–3
PREVIOUS WINDOW command, 2–10
Processing pseudocode, 3–16
Program Design Facility

See PDF
Prompt area, 1–5, 1–7
Pseudocode, 1–2

creating, 3–14
entering, 1–5, 3–11, 3–14
moving to comments, 3–15
processing, 3–16

Pseudocode placeholder, 1–5, 3–11
definition of, 3–6, 3–14
example of, 3–6, 3–14

Q
Qualifier

/COMMENT_COLUMN, 3–16

R
READ command, 2–25
Record count buffer attribute, 2–16
Record Management System, 4–35
Record number buffer attribute, 2–16
Record size buffer attribute, 2–16
RECOVER BUFFER command, 2–35
Recovering from a failed editing session,

2–33
REDO command, 2–24
REPLACE command, 2–26
RESERVE command, 2–26
REVIEW command, 3–1, 3–2, 3–3
Review commands

COMPILE, 3–2
COMPILE/REVIEW, 3–2
END REVIEW, 3–2

Index–6

Review commands (cont’d)
GOTO SOURCE, 3–2
NEXT STEP, 3–2
PREVIOUS STEP, 3–2
REVIEW, 3–2

Review mode, 3–1
Right margin buffer attribute, 2–16
Routine

defining, 4–37
example definition, 4–37

Run-Time Library, 1–2, 4–35

S
Safe for journaling buffer attribute, 2–13
SAVE AS command, 2–20
SAVE ENVIRONMENT command, 2–39,

4–34
SAVE FILE command, 2–20
SAVE SECTION command, 2–39
Saving language definitions, 4–34
SCA/LSE Integration, 2–33
Screen manipulation commands

DELETE WINDOW, 2–10
GOTO BUFFER, 2–10
NEW WINDOW, 2–10
NEXT WINDOW, 2–10
OPEN FILE, 2–10
PREVIOUS WINDOW, 2–10
SET BALANCE WINDOWS ON or OFF,

2–10
SET HEIGHT, 2–10
SET MAXIMUM WINDOWS, 2–10
SET MINIMUM WINDOW LENGTH,

2–10
SET NUMBER OF WINDOWS, 2–10
SET WIDTH, 2–10
TWO WINDOWS, 2–10

SEARCH command, 2–7
Section file

creating, 2–39
description of, 2–38
using, 2–40

SET ADJUSTMENT COMPRESS OFF
command, 4–29

SET ADJUSTMENT INHERIT command,
4–31

SET ADJUSTMENT OVERVIEW command,
4–30

SET ADJUSTMENT PREFIX command,
4–32

SET ADJUSTMENT SUBSEQUENT
command, 4–29

SET ADJUSTMENT UNIT ON command,
4–31

SET BALANCE WINDOWS ON or OFF
command, 2–10

SET BUFFER
TAB INCREMENT command, 3–12

SET BUFFER CLOSE READ_ONLY
command, 2–14

creating unmodifiable buffers, 2–14
SET BUFFER CLOSE SAVE command,

2–14
SET BUFFER DIRECTION FORWARD

command, 2–15
SET BUFFER INDENTATION command,

2–16, 2–17
SET BUFFER LANGUAGE command, 2–13
SET BUFFER MODIFIABLE OFF command,

2–14
SET BUFFER MODIFIABLE ON command,

2–14
SET BUFFER OUTPUT command, 2–13
SET BUFFER TAB INCREMENT command,

2–16, 2–17
SET BUFFER TEXT INSERT command,

2–15
SET BUFFER TEXT OVERSTRIKE

command, 2–15
SET CMS command, 2–25
SET CMS [cms-command] command, 2–25
SET DIRECTORY SOURCE command, 2–20
SET HEIGHT command, 2–10
SET KEYPAD command, 1–3

Index–7

SET MAXIMUM WINDOWS command,
2–10

SET MINIMUM WINDOW LENGTH
command, 2–10

SET NUMBER OF WINDOWS command,
2–10

Setting directory defaults, 2–21
SET WIDTH command, 2–10
SHOW KEY command, 1–8
Source code

compiling, 3–1
entering, 1–4, 3–5
error correction, 3–3
reviewing, 3–2

Special processing for FORTRAN, 3–23
Status line, 1–5, 1–7
Storing modifications

in text files, 2–35
SUBSTITUTE command, 2–8
Syntax summary

EXAMPLE language, 4–7
System buffer, 2–10

definition of, 2–10
$MAIN, 2–2
$OVERVIEW, 3–21
$REVIEW, 3–3

System Services, 1–2, 4–36

T
Tab increment buffer attribute, 2–17
Tab stops buffer attribute, 2–17
Task area

LSE, 1–5
Templates

defining text, 4–1
language definition, 4–2, 4–9
language-specific, 1–2, 1–4, 3–5
Run-Time Library, 1–2

Terminal placeholder, 1–4, 3–11
defining, 4–3, 4–5, 4–7, 4–16

Text
replacing using DECwindows, 2–9
replacing using SUBSTITUTE command,

2–8

Text (cont’d)
selecting, 2–4

Text buffer attribute, 2–15
Text string

substituting, 2–8
Text template

defining a, 4–1
Token, 3–5

abbreviating, 3–8
defining, 3–5, 4–6, 4–7, 4–20
definition of, 1–4
example definitions, 4–7
expanding, 3–5, 3–8
indentation control, 3–11
inserting, 3–6
names as punctuation, 4–20
redefining, 4–24

TPU left margin buffer attribute, 2–16
Trailing comments, 3–17
TWO WINDOWS command, 2–10

U
UNDO command, 2–24
Unmodifiable record buffer attribute, 2–15
UNRESERVE command, 2–26
User buffers, 2–10

V
VIEW SOURCE DEBUG command, 3–21
Visible indentation, 3–19
VMSLSE command language, 1–9

W
Window

review mode format, 3–2, 3–3
task area, 1–5

menu bar, 1–7
message area, 1–7
prompt area, 1–7
status line, 1–7
work area, 1–7

Index–8

Window count buffer attribute, 2–17
Work area, 1–5, 1–7, 2–10
Wrap buffer attribute, 2–16

Index–9

