
DEC GKS
GKS3D$Binding
ReferenceManual,Part 1
Order Number: AA–PQP7A–TE

June 1992

This manual describes the GKS3D$ native interface functions provided
for DEC GKS™.

Revision/Update Information: This is a new manual.

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, June 1992

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1992.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DDIF, DEC, DEC GKS,
DEC GKS–3D, DEC FORTRAN, DECnet, DECstation, DECwindows, LA75, LVP16, MicroVAX,
ReGIS, VAX, VAX Ada, VAX BASIC, VAX C, VAX COBOL, VAX FORTRAN, VAX Pascal,
VAXstation, VAXstation II, VAXstationII/GPX, VMS, VT125, VT240, VT241, VT330, VT340, ULTRIX,
ULTRIX Worksystem Software, and the DIGITAL logo.

BASIC is a registered trademark of Dartmouth College. HP–GL, HP7475, HP7550, HP7580,
HP7585, and Hewlett–Packard are trademarks of Hewlett–Packard Company. Motif and OSF/Motif
are registered trademarks of Open Software Foundation, Inc. MPS–2000 is a trademark of Laser
Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Incorporated. Tektronix is a
registered trademark of Tektronix, Inc.

ZK5678

This manual is available on CDROM.

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . xi

1 Introduction to DEC GKS

1.1 GKS Function Categories . 1–1
1.2 GKS Levels . 1–4
1.3 Function Presentation Format . 1–4
1.3.1 Function Header . 1–4
1.3.2 Function Operating States . 1–5
1.3.3 Function Syntax . 1–5
1.3.4 Constants . 1–6
1.3.5 Function Description . 1–6
1.3.6 See Also Section . 1–6

2 VMS Programming Considerations

2.1 Including Definition Files . 2–1
2.2 Compiling, Linking, and Running Your Programs 2–2
2.3 Opening a Workstation . 2–2
2.3.1 Specifying the Connection Identifier . 2–2
2.3.2 Specifying the Workstation Type . 2–3
2.4 DEC GKS Logical Names . 2–3
2.5 Defining Logical Names . 2–3
2.6 Types of Logical Names . 2–3
2.6.1 General Logical Names . 2–4
2.7 Error Handling . 2–4
2.7.1 Error Codes . 2–5
2.7.2 Error Files . 2–5

3 ULTRIX Programming Considerations

3.1 Including Definition Files . 3–1
3.2 Compiling, Linking, and Running Your Programs 3–2
3.2.1 Linking a C Program on ULTRIX Systems with RISC Processors 3–2
3.3 Opening a Workstation . 3–3
3.3.1 Specifying the Connection Identifier . 3–3
3.3.2 Specifying the Workstation Type . 3–3
3.4 DEC GKS Environment Variables . 3–3
3.5 Defining Environment Variables . 3–4
3.6 The Default Environment Variable File . 3–4
3.7 Environment Variable Types . 3–5
3.7.1 General Environment Variables . 3–5
3.8 Error Handling . 3–6
3.8.1 Error Codes . 3–6

iii

3.8.2 Error Files . 3–7
3.9 Configuration Files . 3–7
3.9.1 Customizing the Configuration File at System Level 3–7
3.9.2 Customizing the Configuration File at User Level 3–8

4 Control Functions

4.1 The Kernel, Graphics Handlers, and Description Tables 4–1
4.1.1 Workstations . 4–2
4.1.2 Operating States and State Lists . 4–3
4.2 Controlling the Workstation Display Surface . 4–6
4.2.1 Output Deferral . 4–6
4.2.2 Implicit Surface Regenerations . 4–7
4.2.3 Workstation Surface State List Entries . 4–8
4.3 Control Inquiries . 4–8
4.4 Function Descriptions . 4–8

ACTIVATE WORKSTATION . 4–9
CLEAR WORKSTATION . 4–10
CLOSE GKS . 4–11
CLOSE WORKSTATION . 4–12
DEACTIVATE WORKSTATION . 4–13
ESCAPE . 4–14
MESSAGE . 4–19
OPEN GKS . 4–20
OPEN WORKSTATION . 4–21
REDRAW ALL SEGMENTS ON WORKSTATION 4–22
SET DEFERRAL STATE . 4–23
UPDATE WORKSTATION . 4–25

4.5 Program Examples . 4–27

5 Output Functions

5.1 Output and the DEC GKS Operating State . 5–1
5.2 Output Attributes . 5–2
5.3 Transformations and the DEC GKS Coordinate Systems 5–2
5.4 Output Deferral . 5–3
5.5 Output Inquiries . 5–3
5.6 Function Descriptions . 5–3

CELL ARRAY . 5–4
CELL ARRAY 3 . 5–6
FILL AREA . 5–8
FILL AREA 3 . 5–9
FILL AREA SET . 5–10
FILL AREA SET 3 . 5–11
GENERALIZED DRAWING PRIMITIVE . 5–12
GENERALIZED DRAWING PRIMITIVE 3 . 5–15
POLYLINE . 5–17
POLYLINE 3 . 5–18
POLYMARKER . 5–19
POLYMARKER 3 . 5–20

iv

TEXT . 5–21
TEXT 3 . 5–22

5.7 Program Examples . 5–23

6 Attribute Functions

6.1 Types of Attributes . 6–1
6.2 Individual and Bundled Attribute Values . 6–3
6.2.1 Aspect Source Flags (ASFs) . 6–4
6.2.2 Dynamic Changes and Implicit Regeneration 6–4
6.3 Foreground and Background Colors . 6–5
6.4 Attribute Inquiries . 6–5
6.5 Function Descriptions . 6–6

SET ASPECT SOURCE FLAGS . 6–7
SET ASPECT SOURCE FLAGS 3 . 6–9
SET CHARACTER EXPANSION FACTOR . 6–11
SET CHARACTER HEIGHT . 6–12
SET CHARACTER SPACING . 6–13
SET CHARACTER UP VECTOR . 6–14
SET COLOUR MODEL . 6–15
SET COLOUR REPRESENTATION . 6–16
SET EDGE COLOUR INDEX . 6–18
SET EDGE FLAG . 6–19
SET EDGE INDEX . 6–20
SET EDGE REPRESENTATION . 6–21
SET EDGETYPE . 6–23
SET EDGEWIDTH SCALE FACTOR . 6–24
SET FILL AREA COLOUR INDEX . 6–25
SET FILL AREA INDEX . 6–26
SET FILL AREA INTERIOR STYLE . 6–27
SET FILL AREA REPRESENTATION . 6–29
SET FILL AREA STYLE INDEX . 6–31
SET HLHSR IDENTIFIER . 6–32
SET HLHSR MODE . 6–33
SET LINETYPE . 6–34
SET LINEWIDTH SCALE FACTOR . 6–35
SET MARKER SIZE SCALE FACTOR . 6–36
SET MARKER TYPE . 6–37
SET PATTERN REFERENCE POINT . 6–38
SET PATTERN REFERENCE POINT AND VECTORS 6–39
SET PATTERN REPRESENTATION . 6–40
SET PATTERN SIZE . 6–41
SET PICK IDENTIFIER . 6–42
SET POLYLINE COLOUR INDEX . 6–43
SET POLYLINE INDEX . 6–44
SET POLYLINE REPRESENTATION . 6–45
SET POLYMARKER COLOUR INDEX . 6–47
SET POLYMARKER INDEX . 6–48

v

SET POLYMARKER REPRESENTATION . 6–49
SET TEXT ALIGNMENT . 6–51
SET TEXT COLOUR INDEX . 6–53
SET TEXT FONT AND PRECISION . 6–54
SET TEXT INDEX . 6–56
SET TEXT PATH . 6–57
SET TEXT REPRESENTATION . 6–59

6.6 Program Examples . 6–61

7 Transformation Functions

7.1 World Coordinates and Normalization Transformations 7–3
7.1.1 The Normalized Device Coordinate System . 7–4
7.1.2 Overlapping Viewports . 7–6
7.2 View Transformations . 7–7
7.3 Device Transformations . 7–7
7.4 Transformation Inquiries . 7–9
7.5 Function Descriptions . 7–9

ACCUMULATE TRANSFORMATION MATRIX 7–10
ACCUMULATE TRANSFORMATION MATRIX 3 7–12
EVALUATE TRANSFORMATION MATRIX . 7–14
EVALUATE TRANSFORMATION MATRIX 3 7–16
EVALUATE VIEW MAPPING MATRIX 3 . 7–18
EVALUATE VIEW ORIENTATION MATRIX 3 7–20
SELECT NORMALIZATION TRANSFORMATION 7–22
SET CLIPPING INDICATOR . 7–23
SET VIEW INDEX . 7–24
SET VIEW REPRESENTATION 3 . 7–25
SET VIEW TRANSFORMATION INPUT PRIORITY 7–26
SET VIEWPORT . 7–27
SET VIEWPORT 3 . 7–28
SET VIEWPORT INPUT PRIORITY . 7–29
SET WINDOW . 7–30
SET WINDOW 3 . 7–31
SET WORKSTATION VIEWPORT . 7–32
SET WORKSTATION VIEWPORT 3 . 7–33
SET WORKSTATION WINDOW . 7–34
SET WORKSTATION WINDOW 3 . 7–35

7.6 Program Examples . 7–36

8 Segment Functions

8.1 Creating, Using, and Deleting Segments . 8–1
8.1.1 Pick Identification . 8–2
8.2 Workstations and Segment Storage . 8–2
8.3 Segments and Surface Update . 8–3
8.4 Segment Attributes . 8–5
8.4.1 Detectability . 8–5
8.4.2 Highlighting . 8–6
8.4.3 Priority . 8–6

vi

8.4.4 Transformation . 8–7
8.4.4.1 Normalization and Segment Transformations, and Clipping 8–9
8.4.5 Visibility . 8–10
8.5 Segment Inquiries . 8–10
8.6 Function Descriptions . 8–10

ASSOCIATE SEGMENT WITH WORKSTATION 8–11
CLOSE SEGMENT . 8–12
COPY SEGMENT TO WORKSTATION . 8–13
CREATE SEGMENT . 8–14
DELETE SEGMENT . 8–15
DELETE SEGMENT FROM WORKSTATION 8–16
INSERT SEGMENT . 8–17
INSERT SEGMENT 3 . 8–19
RENAME SEGMENT . 8–21
SET DETECTABILITY . 8–22
SET HIGHLIGHTING . 8–23
SET SEGMENT PRIORITY . 8–24
SET SEGMENT TRANSFORMATION . 8–25
SET SEGMENT TRANSFORMATION 3 . 8–26
SET VISIBILITY . 8–27

8.7 Program Examples . 8–28

9 Input Functions

9.1 Physical Input Devices . 9–1
9.2 Logical Input Devices . 9–1
9.2.1 Identifying a Logical Input Device . 9–1
9.2.2 Controlling the Appearance of the Logical Input Device 9–2
9.2.3 Activating and Deactivating a Logical Input Device 9–2
9.2.4 Initializing a Logical Input Device . 9–3
9.2.5 Obtaining Measures from a Logical Input Device 9–3
9.2.6 The Input Class . 9–3
9.3 Prompt and Echo Types . 9–5
9.3.1 DEC GKS Prompt and Echo Types . 9–6
9.3.1.1 Choice-Class Prompt and Echo Types . 9–6
9.3.1.2 Locator-Class Prompt and Echo Types . 9–6
9.3.1.3 Pick-Class Prompt and Echo Types . 9–7
9.3.1.4 String-Class Prompt and Echo Type . 9–7
9.3.1.5 Stroke-Class Prompt and Echo Types . 9–7
9.3.1.6 Valuator-Class Prompt and Echo Types . 9–8
9.3.2 Input Data Records . 9–8
9.3.2.1 Choice Class . 9–9
9.3.2.2 Locator Class . 9–9
9.3.2.3 Pick Class . 9–12
9.3.2.4 String Class . 9–12
9.3.2.5 Stroke Class . 9–12
9.3.2.6 Valuator Class . 9–13
9.4 Initializing Input . 9–14
9.5 Input Operating Modes . 9–14
9.5.1 Request Mode . 9–15
9.5.2 Sample Mode . 9–16

vii

9.5.3 Event Mode . 9–17
9.5.3.1 Event Input Queue Overflow . 9–18
9.6 Overlapping Viewports . 9–19
9.7 Input Inquiries . 9–19
9.7.1 Default and Current Input Values . 9–20
9.7.2 Device-Independent Programming . 9–20
9.8 Function Descriptions . 9–21

AWAIT EVENT . 9–22
FLUSH DEVICE EVENTS . 9–24
GET CHOICE . 9–25
GET LOCATOR . 9–26
GET LOCATOR 3 . 9–27
GET PICK . 9–28
GET STRING . 9–29
GET STROKE . 9–30
GET STROKE 3 . 9–32
GET VALUATOR . 9–34
INITIALIZE CHOICE . 9–35
INITIALIZE CHOICE 3 . 9–37
INITIALIZE LOCATOR . 9–39
INITIALIZE LOCATOR 3 . 9–41
INITIALIZE PICK . 9–43
INITIALIZE PICK 3 . 9–45
INITIALIZE STRING . 9–47
INITIALIZE STRING 3 . 9–49
INITIALIZE STROKE . 9–51
INITIALIZE STROKE 3 . 9–53
INITIALIZE VALUATOR . 9–55
INITIALIZE VALUATOR 3 . 9–57
REQUEST CHOICE . 9–59
REQUEST LOCATOR . 9–60
REQUEST LOCATOR 3 . 9–61
REQUEST PICK . 9–62
REQUEST STRING . 9–63
REQUEST STROKE . 9–65
REQUEST STROKE 3 . 9–67
REQUEST VALUATOR . 9–69
SAMPLE CHOICE . 9–70
SAMPLE LOCATOR . 9–71
SAMPLE LOCATOR 3 . 9–72
SAMPLE PICK . 9–73
SAMPLE STRING . 9–74
SAMPLE STROKE . 9–75
SAMPLE STROKE 3 . 9–77
SAMPLE VALUATOR . 9–79
SET CHOICE MODE . 9–80
SET LOCATOR MODE . 9–81
SET PICK MODE . 9–82

viii

SET STRING MODE . 9–83
SET STROKE MODE . 9–84
SET VALUATOR MODE . 9–85
SIZEOF . 9–86

9.9 Program Examples . 9–87

10 Metafile Functions

10.1 Creating a GKSM or GKS3 Metafile . 10–1
10.2 Creating a CGM . 10–3
10.3 Reading a GKSM or GKS3 Metafile . 10–4
10.4 Metafile Inquiries . 10–5
10.5 Function Descriptions . 10–5

GET ITEM TYPE FROM GKSM . 10–6
INTERPRET ITEM . 10–7
READ ITEM FROM GKSM . 10–8
WRITE ITEM TO GKSM . 10–9

Index

Examples

4–1 CLEAR WORKSTATION and the GKS Control Functions 4–27
4–2 Supported Escapes Program . 4–29
4–3 VAXstation Output for Escape Program . 4–34
5–1 Cell Array Output . 5–23
5–2 Generalized Drawing Primitive Output . 5–26
6–1 SET COLOUR REPRESENTATION Function 6–61
6–2 SET FILL AREA REPRESENTATION Function 6–63
6–3 SET LINETYPE Function . 6–66
6–4 SET TEXT ALIGNMENT Function . 6–69
7–1 Showing the Cumulative Effect of ACCUMULATE

TRANSFORMATION MATRIX . 7–36
7–2 The Effects of a Segment Transformation . 7–41
7–3 Controlling Clipping at the World Viewport . 7–45
7–4 Establishing a Workstation Viewport . 7–49
8–1 Comparing ASSOCIATE SEGMENT WITH WORKSTATION and

COPY SEGMENT TO WORKSTATION . 8–28
8–2 Inserting a Segment’s Primitives into Another Segment 8–33
8–3 Highlighting a Segment . 8–38
9–1 Using a Locator-Class Logical Input Device in Event Mode 9–87
9–2 Using a Pick-Class Logical Input Device in Sample Mode 9–92
9–3 Using a String-Class Logical Input Device in Request Mode 9–99
9–4 Using a Valuator-Class Logical Input Device in Sample Mode 9–103

ix

Figures

1–1 DEC GKS Output Primitives . 1–3
1–2 Functionality by GKS Levels . 1–5
4–1 CLEAR WORKSTATION and the GKS Control Functions 4–29
5–1 Cell Array Output . 5–25
5–2 Generalized Drawing Primitive Output . 5–27
6–1 SET COLOUR REPRESENTATION Output . 6–63
6–2 SET FILL AREA REPRESENTATION Output 6–66
6–3 SET LINETYPE Output . 6–68
6–4 SET TEXT ALIGNMENT Output . 6–72
7–1 The DEC GKS Two-Dimensional Transformation Pipeline 7–1
7–2 The DEC GKS Three-Dimensional Transformation Pipeline 7–2
7–3 The Clipping Rectangle . 7–5
7–4 First Transformation Component of ACCUMULATE

TRANSFORMATION MATRIX . 7–39
7–5 Fourth Transformation Component of ACCUMULATE

TRANSFORMATION MATRIX . 7–40
7–6 Output Prior to Segment Transformation . 7–43
7–7 Effect of Segment Transformation . 7–44
7–8 SET CLIPPING INDICATOR with Clipping Enabled 7–47
7–9 SET CLIPPING INDICATOR with Clipping Disabled 7–48
7–10 Output Using the Default Normalization Transformation 7–52
7–11 Output After Changes to the Workstation Viewport 7–53
8–1 Output with Two Segments . 8–31
8–2 Output with Associated Segment . 8–32
8–3 Output of Original and Inserted Segments . 8–36
8–4 Output of Redrawn Segments . 8–37
8–5 Output Prior to Highlighting . 8–40
8–6 Effects of SET HIGHLIGHTING . 8–41
9–1 Visual Interfaces for Logical Input Classes . 9–5
9–2 Input Prompt Near the Top of the Screen . 9–92
9–3 Picking the Correct Triangle . 9–99
9–4 Requesting Input from a String-Class Logical Input Device in Request

Mode . 9–103
9–5 Workstation Surface after Activating a Valuator-Class Logical Input

Device in Sample Mode . 9–108

Tables

2–1 General Logical Names for DEC GKS . 2–4
3–1 General Environment Variables for DEC GKS 3–5
4–1 Workstation Categories . 4–2
6–1 Geometric and Nongeometric Attributes . 6–2
8–1 Surface Regeneration from Changes to Segments 8–4

x

Preface

This manual contains complete descriptions for the GKS3D$ native interface
binding functions provided for DEC GKS. Use this reference material to program
DEC GKS on any supported operating system, using any of the languages
supported by DEC GKS.

Intended Audience
This manual is for programmers who have experience developing graphics
applications in one of the languages supported by DEC GKS. They also should
be familiar with the principles of programming DEC GKS, as described in the
DEC GKS User’s Guide.

Structure of This Document
This manual is divided into two parts. Each chapter deals with a specific subject
or group of functions, describing the syntax and arguments for each function. The
appendixes provide additional information you may find useful. Part 1 includes
the following chapters:

• Chapter 1 provides an introduction to DEC GKS.

• Chapter 2 provides information about DEC GKS and the VMS™ operating
system.

• Chapter 3 provides information about DEC GKS and the ULTRIX™ operating
system.

• Chapter 4 describes the functions you use to control DEC GKS and
workstation environments.

• Chapter 5 describes the functions you use to generate output primitives.

• Chapter 6 describes the functions you use to generate attributes.

• Chapter 7 describes the functions you use to set up and perform normalization
and workstation transformations.

• Chapter 8 describes the functions you use to store output primitives in
segments.

• Chapter 9 describes the functions you use to accept input from workstations.

• Chapter 10 describes the functions you use to store graphic images as
metafiles.

Part 2 includes the following chapters and appendixes:

• Chapter 11 describes the functions you use to inquire for information about
the capabilities and state of the DEC GKS system.

• Chapter 12 describes the functions you use to handle errors.

xi

• Appendix A lists DEC GKS error codes, along with the corresponding severity
code and message for each one.

• Appendix B lists constants defined for the GKS3D$ binding interface.

• Appendix C provides a list of code examples available throughout this
manual, listed alphabetically, by function.

• Appendix D provides language-specific programming information.

• Appendix E lists specific input values that apply to the DEC GKS
workstations that perform both input and output.

• Appendix F provides implementation-specific information about DEC GKS.

Associated Documents
You may find the following documents useful when using DEC GKS:

• DEC GKS User’s Guide—for programmers who need information that
supplements the DEC GKS binding manuals

• DEC GKS GKS$ Binding Reference Manual—for programmers who need
specific syntax and argument descriptions for the GKS$ binding

• DEC GKS C Binding Reference Manual—for programmers who need specific
syntax and argument descriptions for the C binding

• DEC GKS FORTRAN Binding Reference Manual—for programmers who need
specific syntax and argument descriptions for the FORTRAN binding

• Device Specifics Reference Manual for DEC GKS and DEC PHIGS—for
programmers who need information about specific devices

• Building a Device Handler System for DEC GKS and DEC PHIGS—for
programmers who need to build workstation graphics handlers

xii

Conventions
The following conventions are used in this manual:

Convention Meaning

RETURN The symbol RETURN represents a single stroke
of the Return key on a terminal.

Boldface text Boldface text represents the introduction of a new
term. In interactive examples, user input appears
in boldface type.

Italic text Italic text indicates a parameter name or a book
name. DEC GKS description table and state list
entry names, and workstation description tables
and state list entry names are also italicized.

UPPERCASE TEXT Uppercase text indicates a DEC GKS function or
symbol name.

.

.

.

A vertical ellipsis indicates that not all of the text
of a program or program output is illustrated.
Only relevant material is shown in the example.

. . . A horizontal ellipsis indicates that additional
arguments, options, or values can be entered.
A comma preceding the ellipsis indicates that
successive items must be separated by commas.

Horizontal ellipses in illustrations indicate that
there is information not illustrated that either
precedes or follows the information included in
the illustration itself.

[] Square brackets, in function synopses and a few
other contexts, indicate that a syntactic element
is optional.

xiii

Introduction

Insert tabbed divider here. Then discard this sheet.

1
Introduction to DEC GKS

DEC GKS is a development tool that creates two- and three-dimensional graphics
applications that are system and device independent. It is Digital’s level 2c
implementation, compliant with the Graphical Kernel System (GKS) defined
by the American Standards Institute (ANSI X3.124–1985), the International
Standard (ISO/IS 7942), and the Graphical Kernel System for Three Dimensions
(GKS–3D) defined by the International Standard (ISO/IS 8805).

DEC GKS is a system- and device-independent graphics library that enables
the development of GKS applications that can be moved to other platforms
(hardware devices or operating systems) or that generate output on other graphic
devices without modification to the source code. It provides functionality such
as output primitives, logical workstation management, workstation-dependent
and workstation-independent segment storage, six types of logical input
devices, synchronous and asynchronous input, inquiries returning the system’s
capabilities, and metafile input and output.

DEC GKS implements syntactical language bindings. For DEC GKS, these
include the DEC GKS FORTRAN and DEC GKS C bindings. The language
bindings in general, and specifically the FORTRAN binding, provide standard
function names and a standard number of function parameters. If you write
programs to be transported across systems or across GKS implementations, you
should use the appropriate language binding. Digital recommends that you use
the C or FORTRAN language bindings, because you will have better portability
and ease of use.

DEC GKS also implements the functional standard using function names
beginning with the prefixes GKS$ and GKS3D$. If you use the GKS$ or GKS3D$
functions, you have to edit your program if you want to transport the program
across systems or across GKS implementations.

1.1 GKS Function Categories
The DEC GKS function categories are as follows:

• Control

• Output

• Attribute

• Transformation

• Segment

• Input

Introduction to DEC GKS 1–1

Introduction to DEC GKS
1.1 GKS Function Categories

• Metafile

• Inquiry

• Error-Handling

The control functions determine which DEC GKS functions you can call at a
given point in your program. They also control the buffering of output and the
regeneration of segments on the workstation surface.

The output functions produce picture components, called primitives, of the
following types:

• Polylines—Lines

• Polymarkers—Symbols

• Fill Areas—Filled polygons

• Text—Character strings

• Cell Array—Filled cells of a rectangle

• Generalized Drawing Primitives—A workstation-dependent image such as a
circle

Figure 1–1 illustrates possible representations of output primitives.

1–2 Introduction to DEC GKS

Introduction to DEC GKS
1.1 GKS Function Categories

Figure 1–1 DEC GKS Output Primitives

ZK−5346−GE

*
*
*
*

*

hello

Polyline

Polymarker

Fill area

Cell array

Text

GDP

Output attributes affect the appearance of a primitive. For example, by changing
the line type attribute, you can produce solid, dashed, dotted, or dashed-dotted
lines.

Transformations affect the composition of the graphic picture and the
presentation of that picture. There are normalization, workstation, and
viewing transformations. The normalization transformations allow you to use
various coordinate ranges for different primitives within a single picture. In this
way, you can use a coordinate range that suits each particular primitive in a
large picture.

The workstation transformations control the portion of the picture that you see
on the workstation’s surface, and the portion of the surface used to display the
picture. Using workstation transformations, you can pan across a picture, zoom
into a picture, or zoom out of a picture.

The viewing transformations control the orientation and projection of the picture.

The segment functions store and manipulate groups of primitives called
segments.

Introduction to DEC GKS 1–3

Introduction to DEC GKS
1.1 GKS Function Categories

The input functions allow an application to accept data from a user.

The metafile functions allow you to store and recall an audit of calls to DEC GKS
functions. Using metafiles, you can store a DEC GKS session so that another
application can interpret that session, thus reproducing the picture created by the
original application. For more information concerning metafiles, see Chapter 10,
Metafile Functions.

The inquiry functions obtain either default or current information from the
DEC GKS data structures.

The error-handling functions allow you to invoke a user-written error handler
when a call to another DEC GKS function generates an error. For more
information concerning error handling, see Chapter 12.

If you need more tutorial information concerning DEC GKS concepts, see the
DEC GKS User’s Guide.

1.2 GKS Levels
The GKS standard defines levels of a GKS implementation that address the
most common classes of graphic devices and application needs. The levels are
determined primarily by input and output capabilities. The output level values
are represented by the characters m, 0, 1, and 2. The input level values are
represented by the characters a, b, and c.

The DEC GKS software is a level 2c implementation, incorporating all the GKS
output capabilities (level 2) and all the input capabilities (level c). This manual
uses the term DEC GKS when describing the 2c level DEC GKS product.

Figure 1–2 defines the 12 upwardly compatible levels of GKS. DEC GKS
implements all listed functionality.

Pick input is one of the DEC GKS logical input classes used to specify segments
present on the surface of a device. Request, sample, and event are GKS input
operating modes. DEC GKS supports all three input operating modes. For more
information on pick input or operating modes, see Chapter 9, Input Functions.

Workstation independent segment storage (WISS) provides a way to store
segments so that one segment can be transported to different devices. For more
information, see Chapter 8, Segment Functions.

1.3 Function Presentation Format
The following sections describe the format used to present each of the DEC GKS
function descriptions.

1.3.1 Function Header
Each function header in this manual includes the English version of the function
name at the top of the page. This function name is located at the top of each
subsequent page of the function description.

1–4 Introduction to DEC GKS

Introduction to DEC GKS
1.3 Function Presentation Format

Figure 1–2 Functionality by GKS Levels

ZK−5027−GE

Input Levels

Set viewport input priority. All of level mc, above.

All of level 1b, above.

a b c

m

0

1

No input, minimal control,
individual attributes, one
settable normalization
transformation, subset
of output and attribute
functions.

2

Sample and event input
no pick.

Basic control,
bundled attributes,
multiple normalization
transformations, all output
and attribute functions,
optional metafiles.

Full output including
settable bundles,
multiple workstations,
basic segmentation, no
workstation independent
segment storage,
metafiles.

Workstation independent
segment storage

Request pick, set operating
mode and initialize
functions for pick input.

Sample and event input
for pick.

Output
Levels

Request input, set
operating mode and
initialize functions for input
devices, no pick input.

1.3.2 Function Operating States
The operating states section lists the valid operating states during which a
call to the function is permitted (for more information, see Chapter 4, Control
Functions).

1.3.3 Function Syntax
The syntax section lists the syntax of a call to the DEC GKS function. This
syntax includes the argument list. Each argument is described in the Syntax
section.

Introduction to DEC GKS 1–5

Introduction to DEC GKS
1.3 Function Presentation Format

The argument descriptions for each of the functions appear as follows:

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier

The arguments passed to DEC GKS functions must be of specific data types and
must be passed by specific mechanisms. In the function descriptions, these data
types are described following each of the argument names.

For each argument, the specified values include:

• The data type of the argument

• The type of access made by the argument

• The argument-passing mechanism and form

See the appropriate platform compiler documentation for compiler-dependent
data types.

Note

The GKS3D$ interface does not require strings to be null terminated.
Therefore, the string length element of a string descriptor data structure
is the actual length of the string.

All the DEC GKS functions always return an integer condition status value. For
the FORTRAN language, the status value is only accessible with a nonstandard
extension of the FORTRAN binding. For a description of the status value, see
Appendix A. For information concerning DEC GKS error handling, see Chapter
12.

1.3.4 Constants
The constants section lists the DEC GKS constants that are defined for each
enumerated type and a description of each, in order of appearance in the function
call. For a complete list of the DEC GKS constants, see Appendix B. Note that
the constants are the same for all languages except Ada. The Ada constant
names do not include the dollar sign ($). The constant names listed throughout
this manual include the dollar sign ($).

1.3.5 Function Description
The description section describes the function in detail. The description contains
pertinent information about the DEC GKS operating state, the GKS description
table and state list, and the workstation description table and state list.

1.3.6 See Also Section
Most of the functions include a See Also section. This section lists related
functions and gives pointers to code examples, located at the end of each chapter,
that include the specified function.

1–6 Introduction to DEC GKS

Introduction to DEC GKS
1.3 Function Presentation Format

Program Examples Section
Appendix C lists all the functions called in the code examples. The program
examples are also available on line. They are located in GKS$EXAMPLES on
VMS systems, and in /usr/lib/GKS/examples on ULTRIX systems.

Because DEC GKS allows workstations to defer, or buffer, output, you have to
update the screen with a call to UPDATE WORKSTATION to view the picture
created by all previous function calls in the program. The call to the AWAIT
EVENT function causes program execution to pause.

Considering that the rate of deferral may differ on various workstations, you may
wish to use the function INQUIRE WORKSTATION DEFERRAL AND UPDATE
STATES to check the current deferral mode. If the deferral mode is anything
other than ASAP, you may wish to update the workstation surface periodically
when you are debugging your program. If you want to change the deferral mode
so the workstation surface is always current, you can call the function SET
DEFERRAL STATE to change the current deferral mode to ASAP.

For detailed information concerning the DEC GKS deferral mode, see Chapter 4,
Control Functions.

Also, most program examples include the following lines of code:

.

.

.
default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT ;

gks3d$open_ws(&ws_id, &default_conid, &default_wstype);
.
.
.

This code tells DEC GKS to use the default values for the connection identifier
and the workstation type. The default values are defined by the logical names
GKS$CONID and GKS$WSTYPE on VMS systems, and by the environment
variables GKSconid and GKSwstype on ULTRIX systems. To change the default
values of GKS$CONID and GKS$WSTYPE on a VMS system, enter the following
commands:

$ DEFINE GKS$CONID FOOBAR::0 RETURN

$ DEFINE GKS$WSTYPE 211 RETURN

After entering these commands, the new value for GKS$CONID is the FOOBAR
node, and the new value for GKS$WSTYPE is 211 (DECwindows™ XUI
workstation).

To change the values of GKSconid and GKSwstype on an ULTRIX system, enter
the following commands:

setenv GKSconid FOOBAR::0 RETURN

setenv GKSwstype 211 RETURN

After entering these commands, the new value for GKSconid is the FOOBAR
node, and the new value for GKSwstype is 211 (DECwindows XUI workstation).
For more information on specifying environment options on VMS and ULTRIX
operating systems, see Chapter 2 and Chapter 3.

Introduction to DEC GKS 1–7

Introduction to DEC GKS
1.3 Function Presentation Format

Following many of the program examples, there is an illustration representing
the graphic image generated on the surface of the DECwindows XUI workstation.
Because there are visual differences between the written page and the
workstation surface, the image may appear different on your device surface.
Also, different devices produce different results.

For example, the lines may not be as perfectly smooth as presented in the figure.
The figures in this manual serve the purpose of showing relative positioning
and general shape of the graphic image on the surface of a DECwindows XUI
workstation.

1–8 Introduction to DEC GKS

VMS Programming

Insert tabbed divider here. Then discard this sheet.

2
VMS Programming Considerations

The specific method for using DEC GKS software depends on the features and
conventions of each programming language. This section describes general issues
that must be considered when using any programming language with DEC GKS
on a VMS system.

The information contained in this chapter was correct when the manual went to
press. However, the information may have been changed. For the most up-to-date
information on using DEC GKS on VMS systems, see the following files:

SYS$HELP:DECGKS_G3DBIND_OP_SPEC.PS
SYS$HELP:DECGKS_G3DBIND_OP_SPEC.TXT

2.1 Including Definition Files
You use DEC GKS software primarily by placing calls to DEC GKS functions in
your program. However, when using DEC GKS, you need statements in your
program other than calls to GKS functions. The specific statements that are
needed depend on the programming language you use.

DEC GKS constants and their values must be made available to all programs
that call DEC GKS functions, regardless of the programming language you use.
All high-level programming languages that use DEC GKS have a method for
inserting an external file into the program source code stream at compile time.
Incorporating an external file is the method for making DEC GKS constants
available.

Your installation kit includes several files that contain DEC GKS constants,
and separate files that contain DEC GKS completion status code constants. You
incorporate these files into your program with a statement appropriate for the
programming language you are using.

C provides the include statement for inserting an external file into a program.
Therefore, any C program that uses the DEC GKS GKS3D$ binding should
contain the following line:

include <gks3d_defs.h>

In the previous statement, the angle brackets (< >) show the files containing
DEC GKS constants are contained in the system library.

The language definition files located in SYS$LIBRARY are as follows:

Language Definition File Error Message File

ADA gksdefs.ada gksmsgs.ada

BASIC gksdefs.bas gksmsgs.bas

VMS Programming Considerations 2–1

VMS Programming Considerations
2.1 Including Definition Files

Language Definition File Error Message File

C gksdefs.h
gksdescrip.h

gksmsgs.h

COBOL gksdefs.lib gksmsgs.lib

FORTRAN gksdefs.for gksmsgs.for

MACRO gksdefs.r32 gksmsgs.r32

Pascal gksdefs.pas gksmsgs.pas

PL/1 gksdefs.pli
gksdefs.pl2

gksmsgs.pli

The files include comments that describe the exact method for using a given
definition file.

2.2 Compiling, Linking, and Running Your Programs
A program that uses DEC GKS function calls should be compiled and executed as
any other program. Use the compile command appropriate for the programming
language you are using, and use the LINK and RUN commands to link the object
file and execute the program image.

DEC GKS functions are supplied as an installed shareable image library,
which makes linking faster and easier, makes the resulting executable image
file smaller, and allows your application to be upgraded with new versions of
DEC GKS without having to be rebuilt.

On VMS systems, a DEC GKS program can be linked with the following DCL
command:

$ LINK program RETURN

2.3 Opening a Workstation
The following sections contain information on specifying the workstation
connection identifier and workstation type.

2.3.1 Specifying the Connection Identifier
An application can specify the connection to a device by passing the connection
identifier (ID) to the OPEN WORKSTATION function in any of the following
ways:

• By logical name: Pass a logical name specifying the connection ID.

• By file or device name: Pass the connection ID as a string, by descriptor.

• By default: Pass either the value 0 or a null string. DEC GKS then attempts
to translate the logical name GKS$CONID. If no translation exists, GKS uses
GKS_DEFAULT.OUTPUT, which specifies a file in the current directory as the
connected device. The user can define the VMS logical name GKS$CONID.

2–2 VMS Programming Considerations

VMS Programming Considerations
2.3 Opening a Workstation

2.3.2 Specifying the Workstation Type
The application can specify the workstation type to the OPEN WORKSTATION
function in either of the following ways:

• Use the DEC GKS workstation types. Pass any of the workstation types
defined in the appropriate language file (SYS$LIBRARY:GKS3D_DEFS.*).

• Use the default workstation type by passing a value of 0. DEC GKS attempts
to translate the VMS logical name GKS$WSTYPE. If no translation exists,
DEC GKS uses the workstation type 35 (LA75™ printer). The user can define
the VMS logical name GKS$WSTYPE.

2.4 DEC GKS Logical Names
Within DEC GKS there are a number of logical names that are interpreted at
run time. These logical names allow a specific application (or system) to tailor
DEC GKS to best suit the needs of the application or device. Each of the logical
names controls some aspect of the overall run-time environment of the DEC GKS
session. All the logical names have to be set before starting a GKS session and
remain constant during a session. Altering logical names during a session has no
effect on the logicals.

2.5 Defining Logical Names
On VMS systems, the logical names are defined at DCL level as follows:

$ define GKS$logical value

Logical names and values can be either uppercase or lowercase strings.

DEC GKS searches for VMS logical names in three different locations. Once the
logicals are found, the search stops. The locations are searched in the following
order:

1. The PROCESS logical table.

2. The GROUP logical table.

3. The SYSTEM logical table. This is the default location to define logical
names.

2.6 Types of Logical Names
The DEC GKS logical names can be divided into two groups:

• General DEC GKS logical names

• Graphics-handler logical names

The following section describes the general logical names available with
DEC GKS. For information on the graphics-handler logical names, see the
Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

VMS Programming Considerations 2–3

VMS Programming Considerations
2.6 Types of Logical Names

2.6.1 General Logical Names
Table 2–1 lists the general logical names available with DEC GKS.

Table 2–1 General Logical Names for DEC GKS

Logical Name Value Description

GKS$ASF INDIVIDUAL or
BUNDLED

Specifies the default aspect source flag (ASF) setting
to be either BUNDLED or INDIVIDUAL. The
predefined value is INDIVIDUAL.

GKS$CONID String containing any
valid workstation
connection identifier

Specifies the default workstation connection
identifier to be used in the call to OPEN
WORKSTATION, if the caller passes CONID 0.
The predefined setting is platform-dependent.

GKS$DEF_MODE ASAP, BNIG, BNIL or
ASTI

Specifies the default deferral mode to be ASAP (as
soon as possible), BNIG (before the next interaction
globally), BNIL (before the next interaction locally),
or ASTI (at some time). The predefined value is
defined in the workstation description table.

GKS$ERRFILE String containing
any valid error file
specification

Specifies the default error file to be used in the
OPEN GKS function, if the user passes a NIL (0)
error file descriptor. On VMS systems, this is set to
SYS$ERROR: by default.

GKS$ERROR ON or OFF Specifies whether the default standard error
checking is ON or OFF. The default value is ON.
Note that if you turn error checking OFF, you
may improve overall DEC GKS throughput, but
DEC GKS may terminate in an uncontrolled way.

GKS$IRG SUPPRESSED or
ALLOWED

Specifies the default implicit regeneration mode
(IRG) to be set to either SUPPRESSED or
ALLOWED. The predefined value is defined in
the workstation description table.

GKS$METAFILE_TYPE GKSM or GKS3 Specifies the dimension of the metafile output. The
value GKSM is for two-dimensional metafile output;
GKS3 is for three-dimensional metafile output. The
default value is GKS3.

GKS$NDC_CLIP ON or OFF Specifies the default normalized device coordinate
(NDC) clipping to ON or OFF. The predefined value
is ON.

GKS$STROKE_FONT1 String containing the
file path for stroke font1

Specifies the default stroke font 1 to be used.

GKS$WSTYPE String containing any
valid workstation type
number

Specifies the default workstation type to be used
in the call to OPEN WORKSTATION, if the caller
passes wstype 0. The predefined setting is platform-
dependent.

2.7 Error Handling
The following sections contain information on error codes and error files.

2–4 VMS Programming Considerations

VMS Programming Considerations
2.7 Error Handling

2.7.1 Error Codes
Each DEC GKS function call returns a DEC GKS error value to the calling
routine. All the returned error values are defined in the language file
GKS3D_ERRORS.H.

The function call can include a check of the returned status. The value
GKS3D$_SUCCESS (0) is returned if the function has executed successfully.
If this value is not returned, the function has failed to execute successfully. See
Appendix A for more information about DEC GKS errors codes.

2.7.2 Error Files
Error messages are normally written to an error logging file. The application can
specify the error logging file by passing the file name to the OPEN GKS function
in either of the following ways:

• Explicitly, by specifying the file name.

• By logical: Pass a logical name specifying the error file, by descriptor.

• By default, by passing the value 0 or a null string.

DEC GKS opens the default error file. To do this, it first attempts to translate
GKS$ERRFILE. If no translation exists, DEC GKS uses SYS$ERROR as the
file pointer. The user can define the VMS logical name GKS$ERRFILE.

If no messages have been written to the error file, a call to CLOSE GKS deletes
the file.

VMS Programming Considerations 2–5

ULTRIX Programming

Insert tabbed divider here. Then discard this sheet.

3
ULTRIX Programming Considerations

The specific method for using DEC GKS software depends on the features and
conventions of each programming language. This section describes general
issues that must be considered when using the ULTRIX™ C (cc) compiler with
DEC GKS.

The information contained in this chapter was correct when the manual went
to press. However, the information may have been changed. For the most
up-to-date information on using DEC GKS on ULTRIX systems, see the following
files:

/usr/lib/GKS/doc/decgks_g3dbind_op_spec.ps
/usr/lib/GKS/doc/decgks_g3dbind_op_spec.txt

3.1 Including Definition Files
You use DEC GKS software primarily by placing calls to DEC GKS functions in
your program. However, when using DEC GKS, you need statements in your
program other than calls to GKS functions. The specific statements that are
needed depend on the programming language you use.

DEC GKS constants and their values must be made available to all programs
that call DEC GKS functions, regardless of the programming language you use.
Incorporating an external file is the method for making DEC GKS constants
available.

Your installation kit includes several files that contain DEC GKS constants and
separate files that contain DEC GKS completion status code constants.

The language definition files are as follows:

• /usr/include/GKS/gks3d_defs.h

• /usr/include/GKS/gks3d_defs.ada

• /usr/include/GKS/gksdescrip.h

• /usr/include/GKS/gks3d_errors.h

• /usr/include/GKS/gks3d_errors.ada

The files include comments that describe the exact method for using a given
definition file.

You incorporate these files into your program with a statement appropriate for
the language you are using. For example, C provides the include statement for
inserting an external file into a program. Therefore, any C program that uses the
DEC GKS GKS3D$ binding should contain the following line:

include /usr/include/GKS/gks3d_defs.h

ULTRIX Programming Considerations 3–1

ULTRIX Programming Considerations
3.2 Compiling, Linking, and Running Your Programs

3.2 Compiling, Linking, and Running Your Programs
A program that uses DEC GKS function calls should be compiled and executed
as any other program. Use the compile command appropriate for the processor
you are using. To run an executable program, type the executable file name that
you specified. The following sections describe how to compile, link, and run your
programs on ULTRIX systems with RISC processors.

3.2.1 Linking a C Program on ULTRIX Systems with RISC Processors
To compile and link a DEC GKS program on ULTRIX systems with RISC
processors using all device handlers except the DECwindows XUI device handler,
use the following command:

cc -I/usr/include/GKS -o program program.c [gksconfig.c] -lGKS \ RETURN

/usr/lib/DXM/lib/Mrm/libMrm.a /usr/lib/DXM/lib/Xm/libXm.a \ RETURN

/usr/lib/DXM/lib/Xt/libXt.a -lddif -lcursesX -lc -lX11 -llmf -lm RETURN

To compile and link a DEC GKS program on ULTRIX systems with RISC
processors using the DECwindows XUI device handler, use the following
command:

cc -I/usr/include/GKS -o program program.c gks_decw_config.c -lGKS \ RETURN

-lddif -ldwt -lcursesX -lc -lX11 -llmf -lm RETURN

The gksconfig.c file is optional. The file gks_decw_config.c is required by the
DECwindows XUI device handler.

A workstation or device handler can be deliberately excluded from the executable
image to minimize image size and link time. This can be done by customizing the
configuration file and specifying the customized version in the link command.
The installed version of the configuration file is /usr/lib/GKS/gksconfig.c.

There is also an installed version of the configuration file that must
be used when linking with the DECwindows XUI device handler. It is
/usr/lib/GKS/gks_decw_config.c. See Section 3.9 for more information on how
to use configuration files.

The switches to the link command are required if certain default handlers are
included in the configuration file, as follows:

• The switches [-lc] and [-lx11] are required for the DECwindows XUI and
Motif® device handlers.

• The switch [-ldwt] is required for the DECwindows XUI device handler.

• The switch [-lddif] is required for the DDIF™ device handler.

• The library [-lcursesX] is required for any device handler for workstations
capable of input, output, or both.

• The following libraries are required for the Motif device handler:

/usr/lib/DXM/lib/Mrm/libMrm.a
/usr/lib/DXM/lib/Xm/libXm.a
/usr/lib/DXM/lib/Xt/libXt.a

3–2 ULTRIX Programming Considerations

ULTRIX Programming Considerations
3.3 Opening a Workstation

3.3 Opening a Workstation
The following sections contain information on specifying the workstation
connection identifier and workstation type.

3.3.1 Specifying the Connection Identifier
The application can specify the connection by passing the connection ID to the
OPEN WORKSTATION function in any of the following ways:

• By environment variable: Pass an environment variable specifying the
connection ID.

• By file or device name: Pass the connection ID as a string, by descriptor.

• By default: Pass either the value 0 or a null string. DEC GKS then attempts
to translate the environment variable GKSconid. If no translation exists,
DEC GKS uses gks_default.output, which specifies a file in the current
directory as the connected device. To specify an environment option, the user
can do either of the following:

Define the environment variable GKSconid.

Use the user defaults file ~/.GKSdefaults, or the system defaults file
/usr/lib/GKS/.GKSdefaults.

3.3.2 Specifying the Workstation Type
The application can specify the workstation type to the OPEN WORKSTATION
function in either of the following ways:

• Use the DEC GKS workstation types. Pass any of the workstation types
defined in the language file /usr/include/GKS/gks3d_defs.h.

• Use the default workstation type by passing a value of 0. DEC GKS attempts
to translate the environment variable GKSwstype. If no translation exists,
DEC GKS uses the workstation type 35 (LA75 printer). The user can do
either of the following:

Define the environment variable GKSwstype.

Use the user defaults file ~/.GKSdefaults, or the system defaults file
/usr/lib/GKS/.GKSdefaults.

3.4 DEC GKS Environment Variables
Within DEC GKS there are a number of environment variables that are
interpreted at run time. These environment variables allow a specific application
(or system) to tailor DEC GKS to best suit the needs of the application or device.
Each of the environment variables controls some aspect of the overall run-time
environment of the DEC GKS session. All the environment variables have to
be set before starting a GKS session, and remain constant during a session.
Altering environment variables during a session has no effect on the value of the
environment variable.

ULTRIX Programming Considerations 3–3

ULTRIX Programming Considerations
3.5 Defining Environment Variables

3.5 Defining Environment Variables
On ULTRIX systems, the environment variables are defined in a file named
.GKSdefaults in the user’s login directory, or in the system file
/usr/lib/GKS/.GKSdefaults.

The following examples show the syntax you use to define environment variables
in the .GKSdefaults file:

GKSconid : gks_default.output # connection id, device, or file name
GKSwstype : 35 # workstation type (LA 75)

The environment variables can also be defined at the csh or sh level. To define an
environment variable at csh level, use the following syntax:

setenv GKSenvironment_variable value

To define an environment variable at sh level, use the following syntax:

GKSenvironment_variable=value

The values you assign to environment variables can be either uppercase or
lowercase strings. However, the environment variable names are case sensitive.

DEC GKS searches for the environment variables in three different locations.
Once the environment variables are found, the search stops. The locations are
searched in the following order:

1. User-specific ULTRIX environment variables.

2. User-specific environment variables defined in the file ~/.GKSdefaults. Digital
recommends that you define the environment variables in this file.

3. System-wide environment variables defined in the file
/usr/lib/GKS/.GKSdefaults.

3.6 The Default Environment Variable File
The default environment variable file, .GKSdefaults, contains the following:

!
! GKS Default Settings
!
GKSconid : gks_default.output # connection id, device, or file name
GKSwstype : 35 # workstation type (LA 75)
GKSerror : on # on or off
GKSasf : individual # bundled or individual
GKSndc_clip : on # on or off
GKSerrfile : stderr # device or file name
GKSmetafile_type : gks3
GKSstroke_font1 : /usr/lib/GFX/font/gfx_font_neg1 # Stroke font 1
!
! file : /usr/lib/GKS/.GKSdefaults
!
! GKS System-Wide Environment Definitions
! ==
!
! Environment variables allow you to customize the DEC GKS environment
! to suit your needs.
!
! i) Modify the GKS system wide default settings.
!
! Edit this file to change GKS system-wide environment variable
! default settings.
!

3–4 ULTRIX Programming Considerations

ULTRIX Programming Considerations
3.6 The Default Environment Variable File

! ii) Modify the GKS user-specific environment variable default settings
! using the ~/.GKSdefaults file
!
! Copy this file into your login account i.e. ~/.GKSdefaults and
! modify it to suit your needs.
!
! iii) Modify the GKS user-specific settings using ULTRIX
! environment variables.
!
! For example : setenv GKSwstype 10
!
!
!
! The DEC GKS search order for environment variables translation is :
! ---
!
! 1) User-specific ULTRIX environment variable
!
! 2) User-specific environment variables defined in the file ~/.GKSdefaults
!
! 3) System-wide environment variables defined in the file
! /usr/lib/GKS/.GKSdefaults
!
!
! The allowed syntax in this file is :
! ----------------------------------
!
! Comments start with ! or # character
! Space, tabs, and " characters are ignored
! Associations are done by the = (equal) or : (colon) character
!

3.7 Environment Variable Types
The DEC GKS environment variables can be divided into two groups:

• General DEC GKS environment variables

• Graphics-handler environment variables

The following section describes the general DEC GKS environment variables.
For information on the graphics-handler environment variables, see the Device
Specifics Reference Manual for DEC GKS and DEC PHIGS.

3.7.1 General Environment Variables
Table 3–1 lists the general environment variables available with DEC GKS.

Table 3–1 General Environment Variables for DEC GKS

Variable Value Description

GKSasf INDIVIDUAL or
BUNDLED

Specifies the default aspect source flag (ASF) setting
to be either BUNDLED or INDIVIDUAL. The
predefined value is INDIVIDUAL.

GKSconid String containing any
valid workstation
connection identifier

Specifies the default workstation connection
identifier to be used in the call to OPEN
WORKSTATION, if the caller passes conid 0. The
predefined setting is platform-dependent.

(continued on next page)

ULTRIX Programming Considerations 3–5

ULTRIX Programming Considerations
3.7 Environment Variable Types

Table 3–1 (Cont.) General Environment Variables for DEC GKS

Variable Value Description

GKSdefmode ASAP, BNIG, BNIL or
ASTI

Specifies the default deferral mode to be ASAP (as
soon as possible), BNIG (before the next interaction
globally), BNIL (before the next interaction locally),
or ASTI (at some time). The predefined value is
defined in the workstation description table.

GKSerrfile String containing
any valid error file
specification

Specifies the default error file to be used in the
OPEN GKS function, if the user passes a NIL (0)
error file descriptor. On ULTRIX systems, this is set
to stderr by default.

GKSerror ON or OFF Specifies whether the default standard error
checking is ON or OFF. The predefined value is
ON. Note that if you turn error checking OFF, you
may improve overall DEC GKS throughput, but
DEC GKS may terminate in an uncontrolled way.

GKSirg SUPPRESSED or
ALLOWED

Specifies the default implicit regeneration mode
(IRG) to be set to either SUPPRESSED or
ALLOWED. The predefined value is defined in
the workstation description table.

GKSmetafile_type GKSM or GKS3 Specifies the dimension of the metafile output. The
value GKSM is for two-dimensional metafiles; GKS3
is for three-dimensional metafiles. The default value
is GKS3.

GKSndc_clip ON or OFF Specifies the default NDC clipping to ON or OFF.
The predefined value is ON.

GKSstroke_font1 String containing the
file path for stroke font1

Specifies the default stroke font 1 to be used.

GKSwstype String containing any
valid workstation type
number

Specifies the default workstation type to be used
in the call to OPEN WORKSTATION, if the caller
passes wstype 0. The predefined setting is platform-
dependent.

3.8 Error Handling
The following sections contain information on error codes and error files.

3.8.1 Error Codes
Each DEC GKS function call returns a DEC GKS error value to the calling
routine. All the returned error values are defined in the following language files:

• /usr/include/GKS/gks3d_errors.ada

• /usr/include/GKS/gks3d_errors.h

The function call can include a check of the returned status. If the function has
executed successfully, the value GKS3D_SUCCESS (0) is returned. If this value
is not returned, the function has failed to execute successfully. See Appendix A
for information about the DEC GKS errors returned.

3–6 ULTRIX Programming Considerations

ULTRIX Programming Considerations
3.8 Error Handling

3.8.2 Error Files
Error messages are normally written to an error logging file. The application can
specify the error logging file by passing the file name to the OPEN GKS function
in any of the following ways:

• Explicitly, by specifying the file name.

• By environment option: Pass an environment variable specifying the error
file, by descriptor.

• By default, by passing the value 0 or a null string: This causes DEC GKS to
open the default error file. To do this, it first attempts to translate GKSerrfile.
If no translation exists, DEC GKS translates stderr to find the error logging
file. The user can do either of the following:

Define the environment variable GKSerrfile.

Use the user defaults file ~/.GKSdefaults or system defaults file
/usr/lib/GKS/.GKSdefaults.

If no messages have been written to the error file, a call to CLOSE GKS deletes
the file.

3.9 Configuration Files
A configuration file contains the list of workstations to be linked with a DEC GKS
application. There are two configuration files:

• gksconfig.c—for all device handlers except the DECwindows XUI handler

• gks_decw_config.c—for all device handlers except the Motif handler

You can use either of the two files, but you cannot use both. If you use the
default configuration file (gksconfig.c) included in the DEC GKS libraries, all the
device handlers supplied by Digital (except DECwindows XUI) will be linked into
the program. If you use the gks_decw_config.c configuration file, all the device
handlers supplied by Digital (except Motif) will be linked into the program. These
files allow you to use numerous device handlers without relinking your program.
However, this usually results in longer link times and larger executable images
than are necessary. To reduce link time and image size, you can customize
these files at either the system or user level. In either case, you customize the
configuration file by changing either the INCLUDE macro to EXCLUDE, or vice
versa for each device handler specified in the file. For a list of the workstation
handlers and more information on the INCLUDE and EXCLUDE macros, see the
configuration file gksconfig.c or gks_decw_config.c.

3.9.1 Customizing the Configuration File at System Level
To customize the file at the system level, edit the configuration file and exclude
those handlers you do not wish to have included automatically in any program.
Compile the file to create the new configuration module and use the command
ar(1) to replace the file in the library /usr/lib/libGKS.a. When you replace
the configuration module, other users must create their own copies of the
configuration file (and link to it) to include handlers not contained in the system
version of the file.

ULTRIX Programming Considerations 3–7

ULTRIX Programming Considerations
3.9 Configuration Files

3.9.2 Customizing the Configuration File at User Level
To customize the file at the user level, make a private copy of the configuration
file and edit it to include only the desired handlers. Compile the private copy
of the file to create the new configuration module and link this private module
before linking to the DEC GKS libraries.

3–8 ULTRIX Programming Considerations

Control Functions

Insert tabbed divider here. Then discard this sheet.

4
Control Functions

The control functions establish the DEC GKS and workstation environments, and
control the workstation surface.

In a typical program, you need very few lines of code to tell DEC GKS about
the type of implementation you are using, the type of device you are using for
input or output, and the functionality allowed with that particular type of device.
(Input, output, and other types of devices are called workstations.)

You usually start a GKS application by calling the functions OPEN GKS, OPEN
WORKSTATION, and ACTIVATE WORKSTATION. These functions initiate
actions by the DEC GKS kernel that involve various operating states, tables, and
lists. The tables and lists that are accessible at a given time during program
execution determine what types of tasks you can perform (such as input requests
and output generation). The following sections describe the DEC GKS kernel, the
DEC GKS operating states, and the various tables and lists involved in working
with DEC GKS.

4.1 The Kernel, Graphics Handlers, and Description Tables
The DEC GKS environment consists of the kernel, one or more graphics
handlers, at least two description tables, and a series of state lists. This section
describes all but the state lists, which are described in detail in Section 4.1.2.

The DEC GKS kernel performs basic operations that do not depend on
capabilities specific to input, output, or the use of storage devices. The kernel
gives the DEC GKS functions access to the information and tools necessary to
perform properly. The kernel operations include calling certain inquiry functions,
maintaining certain tables, and issuing calls to graphics handlers.

The DEC GKS handlers consist of functions that the kernel calls to perform
graphics operations on a particular workstation. The functions include obtaining
input, relaying output, and responding to inquiries for workstation-specific
information.

DEC GKS supplies graphics handlers for various devices such as Motif®,
PostScript®, CGM, and DDIF™ (Digital Document Interchange Format). If you
are uncertain which devices your DEC GKS programs will use, you should review
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS. In this
way, you can become familiar with the range of capabilities of a particular device,
and you can gain a sense of how the supported devices vary.

The DEC GKS description table contains constant information about the
GKS implementation you are using. No matter what functions you call in your
program or no matter what application you run, the information in the DEC GKS
description table does not change. The DEC GKS kernel uses this constant
information about DEC GKS to initialize sections of the GKS state list.

Control Functions 4–1

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

The DEC GKS description table contains information such as the level of GKS
you are using (DEC GKS is level 2c), the number of available workstation types,
the list of workstation types, the maximum allowable open workstations, and so
on. The DEC GKS description table is contained in the DEC GKS kernel.

A workstation description table contains constant information about one
particular device. No matter what functions you call in your program or what
application you run, the information in a device’s workstation description
table does not change, as long as you always use the same graphics handler.
Each graphics handler contains a workstation description table describing that
particular device. The workstation description table is used to initialize sections
of the workstation state list.

The workstation description table contains information such as the workstation
type, the workstation category, the device-specific maximum coordinate values,
the default bundled output attribute values, and so on.

4.1.1 Workstations
A workstation provides a common interface through which a DEC GKS
application program controls a graphics device. A workstation is usually a
physical device that has input capabilities, output capabilities, or both. (The
GKS3D$K_WSCAT_MO, GKS3D$K_WSCAT_MI, and GKS3D$K_WSCAT_WISS
workstations are exceptions and are described in Table 4–1.)

The various capabilities of the workstation determine the workstation
category. Every workstation description table has an entry for the workstation
category of that particular type of workstation. Table 4–1 describes the six
workstation categories.

Table 4–1 Workstation Categories

Category Description

GKS3D$K_WSCAT_
OUTPUT

A workstation of the category GKS3D$K_WSCAT_OUTPUT
can only display graphic images on a single display surface.
A workstation of this category can process all output
functions. Because the generalized drawing primitive
(GDP) functions are device-dependent, not all GDPs can be
displayed on all output workstations. For more information
concerning GDPs, see Chapter 5. For a list of the supported
GDPs for a particular output device, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

GKS3D$K_WSCAT_INPUT A workstation of the category GKS3D$K_WSCAT_INPUT
can only accept input, which must be accepted by at least
one type of logical input device. A workstation of this
category cannot accept the generation of graphic images
by DEC GKS output functions. For more information
concerning input functions, see Chapter 9.

GKS3D$K_WSCAT_OUTIN A workstation of the category GKS3D$K_WSCAT_OUTIN
combines the capabilities of GKS3D$K_WSCAT_OUTPUT
and GKS3D$K_WSCAT_INPUT workstations. This type of
workstation can display graphic images on the workstation
surface as well as accept input from the logical input
devices. Also, this type of workstation must include at least
one logical input device of each class. For more information
concerning logical input devices, see Chapter 9.

(continued on next page)

4–2 Control Functions

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

Table 4–1 (Cont.) Workstation Categories

Category Description

GKS3D$K_WSCAT_MO A workstation of the category GKS3D$K_WSCAT_MO
(Metafile Output) stores image-specific data in a file for use
in reproducing the graphic image at a later time, perhaps
in another application program. For more information
concerning metafiles, see Chapter 10.

GKS3D$K_WSCAT_MI A workstation of the category GKS3D$K_WSCAT_MI
(Metafile Input) allows an application program to read and
interpret items in a file that contains image-specific data
used to reproduce a graphic image. The file containing the
data to be interpreted must be produced by a GKS3D$K_
WSCAT_MO workstation. For more information concerning
metafiles, see Chapter 10.

GKS3D$K_WSCAT_WISS A workstation of the category GKS3D$K_WSCAT_WISS
(workstation independent segment storage) can store
output primitives as a single unit during the execution
of a single application. The group of output primitives is
called a segment. You can manipulate the group of output
primitives within the defined segment as a single entity.
The only way to transfer segments from one workstation to
another is to store the segment in workstation independent
segment storage (WISS) and then copy that segment to
whichever open or active workstation you desire. For more
information concerning segments, see Chapter 8.

4.1.2 Operating States and State Lists
The previous sections described the constructs, data structures, and tables needed
to maintain the static attributes of the DEC GKS implementation and each
workstation.

The DEC GKS and workstation states are not static. You can generate many
types of output with many different effects on the surface of the workstation, use
several devices, or create different segments. DEC GKS must keep track of the
current state of both the DEC GKS and the workstation environments.

For example, the DEC GKS kernel must have access to a flag that designates
whether the DEC GKS software has been initialized, allowing access to
description tables and other structures. As another example, if you want to
output to a workstation, DEC GKS must have access to another flag that
designates whether that workstation is active or not.

To keep track of the information that is available to DEC GKS at a given time,
DEC GKS maintains its operating state and several different state lists.

The DEC GKS operating states are as follows:

• GKCL—GKS is closed.

• GKOP—GKS is open.

• WSOP—At least one workstation is open.

• WSAC—At least one workstation is active.

• SGOP—A segment is open.

The following sections describe the DEC GKS operating states at various points
in a program.

Control Functions 4–3

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

Open GKS
Before you invoke DEC GKS, the operating state value is GKCL. When DEC GKS
is closed, you can call INQUIRE OPERATING STATE VALUE, which returns
the current operating state; you can call OPEN GKS; or you can call DEC GKS
functions to log and handle errors. To log and handle errors, DEC GKS maintains
the error state list. The error state list contains entries that specify the error
state and the error log file. If you attempt to call DEC GKS functions while
DEC GKS is closed (other than those highlighted in this paragraph), the call
generates an error message. For more information on inquiry functions, see
Chapter 11; for more information on error codes, see Appendix A.

To perform more tasks using DEC GKS, you must set the operating state to
GKOP. To do this, call to the control function OPEN GKS, and pass to the
function the name of an error log file so DEC GKS knows where to write error
messages. If you specify the default error file (or the value 0), and have not
redefined that environment option, DEC GKS writes error messages to your
terminal.

Once you open DEC GKS, you have enabled access to the DEC GKS description
table and the workstation description tables of the supported graphics handlers.
By calling OPEN GKS, you have also allowed access to the GKS state list. The
GKS state list contains entries that designate changeable information reflecting
the current status of DEC GKS (such as the set of open workstations, the current
normalization number, and the current character height.)

Once DEC GKS is open, you can then specify output attributes (see Chapter 6,
Attribute Functions), set normalization transformations (see Chapter 7,
Transformation Functions), obtain values from the GKS state list, and obtain
values from the DEC GKS and workstation description tables (see Chapter 11). If
you attempt to call other functions, DEC GKS generates an error message.

Open a Workstation
To perform further tasks using DEC GKS (such as requesting input), you
must open at least one workstation. When you open the first workstation,
the DEC GKS operating state changes from GKOP to WSOP (at least one
workstation open). To accomplish this, call OPEN WORKSTATION and pass a
numeric workstation identifier, a physical device name or connection identifier,
and a workstation type. (See OPEN WORKSTATION in this chapter for more
information.) The workstation identifier is an integer value chosen by you for use
in all references in the program to a specific, open or active workstation.

For each workstation you open, there exists a workstation state list. This
list contains entries that specify whether output is deferred (buffered or on
hold), whether you have to update the workstation surface (redraw the picture
to fulfill a request for a picture change), whether the workstation surface is
empty as defined by DEC GKS, whether the picture on the surface represents
all the requests for output made thus far by the application program, and so on.
Many control functions affect the values in this table. See Section 4.2.1 for more
information.

Once at least one workstation is open, you can call all functions except those
functions that open or close DEC GKS, perform output to a workstation, create
or insert segments, or write an item to a metafile output workstation. If you
attempt to call these functions, DEC GKS produces an appropriate error message.

4–4 Control Functions

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

Activate a Workstation
To perform output on a given workstation, you need to activate that workstation.
When you activate the first workstation, the DEC GKS operating state changes
from WSOP to WSAC (at least one workstation active). To activate a workstation,
call the control function ACTIVATE WORKSTATION, and pass a workstation
identifier specifying an open workstation. When DEC GKS is in this operating
state, you can call all DEC GKS functions except OPEN GKS, CLOSE GKS, or
CLOSE SEGMENT. If you attempt to call these functions, DEC GKS produces an
error message.

Create a Segment
When you create a segment using the function CREATE SEGMENT, the
DEC GKS operating state changes from WSAC to SGOP (segment open). You
must pass a segment name to the CREATE SEGMENT function. The segment
name is chosen by you for use in all references in the program to a specific
segment. That segment is stored on all active workstations. To add output
primitives to the segment, you need only call the desired DEC GKS output
functions. Unless workstation independent segment storage (WISS) is open and
active during segment creation, segments stored on workstations cannot be copied
from one workstation to another. You can copy segments only from WISS to an
open or active workstation; you cannot copy a segment from any other type of
workstation.

When you create a segment, DEC GKS creates a segment state list. The
segment state list contains entries that specify information about the current
state of the segment, such as the segment name, the set of associated
workstations, and the detectability of the segment.

In the SGOP operating state, you can call all GKS functions except those
that open or close DEC GKS, associate or copy the open segment to another
workstation, attempt to change the state of the workstation, clear the workstation
(CLEAR WORKSTATION), or create segments (CREATE SEGMENT). If you
attempt to call those functions, DEC GKS generates an error message.

Close a Segment
When you close the open segment using the CLOSE SEGMENT function, the
DEC GKS kernel changes the operating state from SGOP to WSAC.

Deactivate and Close a Workstation
Calling the function DEACTIVATE WORKSTATION deactivates the specified
workstation. If you deactivate the last active workstation, the kernel changes
the DEC GKS operating state from WSAC to WSOP. Similarly, if you close the
last open workstation (using the function CLOSE WORKSTATION), the kernel
changes the DEC GKS operating state to GKOP.

Close GKS
The final call in a single DEC GKS session should be to CLOSE GKS; after the
call, access to the DEC GKS environment is closed and your DEC GKS session
ends.

As you end your DEC GKS session, you must close an open segment (if one
exists), close and deactivate workstations, and close DEC GKS, in the correct
order. If you do not, your DEC GKS session does not end properly.

For example, if you fail to deactivate and to close an active workstation before
ending your program, the workstation may not return control to the user,
depending on the device.

Control Functions 4–5

Control Functions
4.2 Controlling the Workstation Display Surface

4.2 Controlling the Workstation Display Surface
Depending on the type of device with which you are working, and depending on
the values of certain entries in the workstation description tables and state lists,
there may be times during program execution when the picture does not contain
all the changes previously requested by the application program. DEC GKS
allows a workstation to delay the actions requested by a program to utilize most
efficiently the capabilities of a workstation.

Output deferral is one workstation attribute that affects the rate of picture
generation. By setting the deferral mode, you can buffer the generation of
output images before transmission to the surface to improve overall rate of
transmission, if a given workstation supports such buffering. Other times, you
can release buffered output so the display surface reflects the picture defined by
the application.

4.2.1 Output Deferral
DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are as follows:

• ASAP—Generates output as soon as possible.

• BNIG—Generates output before the next interaction globally.

• BNIL—Generates output before the next interaction locally.

• ASTI—Generates output at some time (as defined by workstation).

An interaction is a request for input using the DEC GKS input functions. A
local interaction happens on the workstation specified at the time of the surface
update, and a global interaction happens on any open workstation.

Depending on the capabilities of the workstation, it can defer output at any level
up to the level specified in the call to SET DEFERRAL STATE. If the workstation
can defer output at the requested level, it does. If the workstation cannot defer
output at the requested level, it defers output at the next supported lower level.

For example, if you specify ASAP in a call to SET DEFERRAL STATE, the
workstation must generate output as soon as possible. If you specify BNIG,
the workstation can defer output at either ASAP or BNIG, depending on its
capabilities. If you specify BNIL, the workstation can defer output on any level
up to and including BNIL, depending on its capabilities. If you specify ASTI,
the workstation can defer output at any of the four levels, depending on its
capabilities.

You can specify a suggested level of deferral by calling the function SET
DEFERRAL STATE. To determine the default deferral state of a given
workstation type, you can call INQUIRE DEFAULT DEFERRAL STATE
VALUES. To determine the current state of the deferral mode, you can call
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES.

Writing applications with other graphics programs, you need to ‘‘flush the
output buffer’’ to include all output in your picture. The DEC GKS equivalent
of this action is to ‘‘release deferred output’’ (if there is any). To see if generated
output has been deferred by the workstation, you call the function INQUIRE
WORKSTATION DEFERRAL AND UPDATE STATES. To release deferred
output without updating the screen in any other way, call the function UPDATE
WORKSTATION and pass the argument GKS3D$K_POSTPONE_FLAG. For
example, DECwindows, Motif, and ReGIS devices such as the VT240™, VT330™,

4–6 Control Functions

Control Functions
4.2 Controlling the Workstation Display Surface

and VT340™ defer output by default. If you are using those devices, you need to
release deferred output if you want to place the current image on the workstation
surface.

4.2.2 Implicit Surface Regenerations
Suppressed implicit regeneration of the currently generated output primitives
is the second workstation attribute that can place the workstation surface out of
date.

If you request a change to an output attribute bundle index, a segment attribute,
or the current workstation window or viewport, the workstation can either make
the change to the surface dynamically (IMM) or can implicitly regenerate the
entire picture to comply with the requested change (IRG).

Whether a workstation makes the change dynamically or requires an implicit
regeneration is a static capability of the particular workstation. You can call
either the function INQUIRE DYNAMIC MODIFICATION OF SEGMENT
ATTRIBUTES or INQUIRE DYNAMIC MODIFICATION OF WORKSTATION
ATTRIBUTES to determine if a workstation can make a certain change
immediately or if the picture must be implicitly regenerated.

If a workstation makes changes dynamically, only the output primitives in the
picture affected by the change are regenerated and the surface does not become
out of date. For example, for many of the supported workstations, a call to the
function SET COLOUR REPRESENTATION (see Chapter 6, Attribute Functions)
changes color table entries dynamically.

When an implicit regeneration occurs, the workstation clears the surface,
implements the change, and then redraws only the segments on the workstation
surface. You lose all output primitives not contained in segments. For example,
for many of the supported workstations, a call to the function SET POLYLINE
REPRESENTATION (see Chapter 6, Attribute Functions) causes an implicit
regeneration on many workstations.

If a workstation makes changes by implicit regeneration, the workstation
may or may not regenerate the workstation surface at that point in the
program to implement the change. The implicit regeneration mode entry in
the workstation state list specifies whether the workstation currently allows
implicit regenerations, or if it suppresses them, leaving the workstation
surface out of date. You can call the function INQUIRE WORKSTATION
DEFERRAL AND UPDATE STATES to determine if the workstation is allowing
regenerations (GKS3D$K_IRG_ALLOWED) or suppressing them (GKS3D$K_
IRG_SUPPRESSED).

Many of the DEC GKS supported devices suppress implicit regenerations because
of the possible loss of output primitives caused by an allowed regeneration. If you
wish to change the implicit regeneration mode entry in the workstation state list,
you can call the control function SET DEFERRAL STATE. Suppressing implicit
regenerations allows you to make many changes to the picture without incurring
the overhead of a regeneration for every change.

When you are ready to update the workstation surface, you can call UPDATE
WORKSTATION, passing GKS3D$K_PERFORM_FLAG, to perform the single
implicit regeneration. Remember that if you call UPDATE WORKSTATION to
force a surface regeneration, you lose all primitives not contained in segments.

Control Functions 4–7

Control Functions
4.2 Controlling the Workstation Display Surface

4.2.3 Workstation Surface State List Entries
When controlling the workstation surface, you should be aware of the display
surface empty and the new frame action necessary at update entries in the
workstation state list.

Several of the control functions clear the workstation surface if the display
surface empty entry is GKS3D$K_EMPTY. Under certain conditions, when
you are working with different clipping rectangles and generalized drawing
primitives (GDPs), the entry may contain GKS3D$K_NOTEMPTY when the
surface is actually empty. In such situations, when the entry contains GKS3D$K_
NOTEMPTY, the application program must decide whether or not there exists
any ‘‘invisible’’ output to the workstation surface.

Also, you may wish to check the new frame action necessary at update entry
to determine if an implicit regeneration will occur if you update the surface
by calling UPDATE WORKSTATION (passing GKS3D$K_PERFORM_FLAG
as an argument). If the new frame entry is GKS3D$K_NEWFRAME_
NOTNECESSARY, you can update the surface without the fear of losing
primitives not contained in segments. If the new frame entry is GKS3D$K_
NEWFRAME_NECESSARY, a call to UPDATE WORKSTATION with the
GKS3D$K_PERFORM_FLAG argument will cause an implicit regeneration,
causing all primitives not contained in segments to be lost.

4.3 Control Inquiries
The following list presents the inquiry functions that you should use to obtain
control function information when writing device-independent code:

INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES
INQUIRE LEVEL OF GKS
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES
INQUIRE OPERATING STATE VALUE
INQUIRE SET OF ACTIVE WORKSTATIONS
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES
INQUIRE WORKSTATION MAXIMUM NUMBERS
INQUIRE WORKSTATION STATE
INQUIRE WORKSTATION CONNECTION AND TYPE

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

4.4 Function Descriptions
This section describes the DEC GKS control functions in detail.

4–8 Control Functions

ACTIVATE WORKSTATION

ACTIVATE WORKSTATION

Operating States

WSOP, WSAC

Syntax

gks3d$activate_ws (ws_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier

Description

The ACTIVATE WORKSTATION function activates the specified workstation,
allowing all subsequently generated output to be sent to the workstation. You
must open DEC GKS and the workstation you wish to activate before calling
this function. If the newly activated workstation is the only active workstation,
DEC GKS changes the operating state from WSOP (at least one workstation
open) to WSAC (at least one workstation active).

See Also

Example 4–1 for a program example using the ACTIVATE WORKSTATION
function

Control Functions 4–9

CLEAR WORKSTATION

CLEAR WORKSTATION

Operating States

WSOP, WSAC

Syntax

gks3d$clear_ws (ws_id, flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
flag Integer

(constant)
Read Reference Clear screen flag

Constants

Defined
Argument Constant Description

flag GKS3D$K_CLEAR_CONDITIONALLY Clear if the surface is not empty.
GKS3D$K_CLEAR_ALWAYS Clear the workstation always.

Description

The CLEAR WORKSTATION function generates all deferred output and clears
the display surface.

This function performs the following tasks:

1. Generates all deferred output (see the SET DEFERRAL STATE function).

2. If the display surface entry in the workstation state list is NOT EMPTY, this
function always clears the surface. If the display surface entry is EMPTY,
this function only clears the surface if you specify CLEAR ALWAYS as an
argument. If no other workstations are associated with the segment, the
segment is deleted.

After executing this function, DEC GKS sets the display surface entry in the
workstation state list to EMPTY, the workstation transformation update entry
to NOT PENDING, and the new frame necessary at update entry to NOT
NECESSARY.

See Also

Example 4–1 for a program example using the CLEAR WORKSTATION function

4–10 Control Functions

CLOSE GKS

CLOSE GKS

Operating States

GKOP

Syntax

gks3d$close_gks ()

Description

The CLOSE GKS function releases the DEC GKS buffers, closes the error log
file, and deletes the file if it is empty. The function also releases the DEC GKS
description table, the GKS state list, and the workstation description tables. You
must end each DEC GKS session with a call to this function.

You must call both the DEACTIVATE WORKSTATION function for each active
workstation and the CLOSE WORKSTATION function for each open workstation
before you call CLOSE GKS. If you do not, DEC GKS logs an error message.

A call to this function changes the DEC GKS operating state from GKOP (GKS
open) to GKCL (GKS closed).

See Also

DEACTIVATE WORKSTATION
OPEN GKS
Example 4–1 for a program example using the CLOSE GKS function

Control Functions 4–11

CLOSE WORKSTATION

CLOSE WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$close_ws (ws_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier

Description

The CLOSE WORKSTATION function updates the workstation (equivalent
to a call to the UPDATE WORKSTATION function with the regeneration
mode argument), closes a workstation opened by a previous call to the OPEN
WORKSTATION function, and releases the specified workstation’s state list.

This function deassigns the channel used for both input and output to the device
and removes the workstation from the set of open workstations in the GKS state
list.

If you call this function to close the last open workstation, this function changes
the DEC GKS operating state from WSOP (at least one workstation open) to
GKOP (GKS open).

Be sure to deactivate a workstation with a call to the DEACTIVATE
WORKSTATION function before you attempt to close a workstation with this
function. If you do not, DEC GKS logs an error message.

See Also

DEACTIVATE WORKSTATION
OPEN WORKSTATION
Example 4–1 for a program example using the CLOSE WORKSTATION function

4–12 Control Functions

DEACTIVATE WORKSTATION

DEACTIVATE WORKSTATION

Operating States

WSAC

Syntax

gks3d$deactivate_ws (ws_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier

Description

The DEACTIVATE WORKSTATION function deactivates a specific workstation so
subsequent output will not be sent to that workstation. This function removes the
workstation from the set of active workstations in the GKS state list. Segments
stored on the workstation are retained.

If a call to this function deactivates the last active workstation, this function
changes the DEC GKS operating state from WSAC (at least one workstation
active) to WSOP (at least one workstation open).

You must deactivate a workstation before you can close that workstation. Also,
you must deactivate and close all workstations (if applicable) before you can close
DEC GKS. Otherwise, DEC GKS logs an error message.

See Also

ACTIVATE WORKSTATION
Example 4–1 for a program example using the DEACTIVATE WORKSTATION
function

Control Functions 4–13

ESCAPE

ESCAPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$escape (func_id, in_data, in_len, out_data, out_len, rec_out_len)

Argument Data Type Access Passed by Description

func_id Integer
(constant)

Read Reference Escape function identifier.

in_data Record Read Reference Input escape data record buffer.
in_len Integer Read Reference Number of bytes in the escape input

data record.
out_data Record Write Reference Pointer to the output escape data

record buffer.
out_len Integer Modify Reference Number of bytes in the escape output

data record. On input, this argument
is the size (in bytes) of the output
data record buffer. On output, this
argument is the number of bytes that
have been written into the output data
record.

rec_out_len Integer Write Reference This argument is the number of bytes
required by a completely filled-in
output escape data record.

Constants

Escape Identifier Description

GKS3D$K_ESC_SET_SPEED Set Display Speed
GKS3D$K_ESC_PRINT Generate Hardcopy of Workstation

Surface
GKS3D$K_ESC_BEEP Beep
GKS3D$K_ESC_POP_WORKSTATION Pop Workstation
GKS3D$K_ESC_PUSH_WORKSTATION Push Workstation
GKS3D$K_ESC_ERROR_HANDLING_MODE Set Error Handling Mode
GKS3D$K_ESC_SET_VIEWPORT_EVENT Set Viewport Event
GKS3D$K_ESC_ASSOC_WSTYPE_CONID Associated Workstation Type and

Connection ID
GKS3D$K_ESC_SET_SOFT_CLIP Software Clipping
GKS3D$K_ESC_SET_WRITING_MODE Set Writing Mode
GKS3D$K_ESC_SET_LINE_CAP Set Line Cap Style

4–14 Control Functions

ESCAPE

Escape Identifier Description

GKS3D$K_ESC_SET_LINE_JOIN Set Line Join Style
GKS3D$K_ESC_SET_EDGE_CTL Set Edge Control Flag
GKS3D$K_ESC_SET_EDGE_TYPE Set Edge Type
GKS3D$K_ESC_SET_EDGE_WIDTH Set Edge Width Scale Factor
GKS3D$K_ESC_SET_EDGE_COLOUR_IND Set Edge Color Index
GKS3D$K_ESC_SET_EDGE_INDEX Set Edge Index
GKS3D$K_ESC_SET_EDGE_ASF Set Edge Aspect Source Flag
GKS3D$K_ESC_BEGIN_TRANS_BLOCK Begin Transformation Block
GKS3D$K_ESC_END_TRANS_BLOCK End Transformation Block
GKS3D$K_ESC_SET_SEG_HIGHL_MODE Set Segment Highlighting Method
GKS3D$K_ESC_SET_HIGHL_MODE Set Highlighting Method
GKS3D$K_ESC_BEGIN_TRANS_BLOCK_3 Begin Transformation Block 3
GKS3D$K_ESC_SET_EDGE_REP Set Edge Representation
GKS3D$K_ESC_SET_WINDOW_TITLE Set Window Title
GKS3D$K_ESC_SET_RESET_STRING Set Reset String
GKS3D$K_ESC_SET_CANCEL_STRING Set Cancel String
GKS3D$K_ESC_SET_ENTER_STRING Set Enter String
GKS3D$K_ESC_SET_ICON_BITMAPS Set Icon Bit Maps
GKS3D$K_ESC_INQ_WRITING_MODE Inquire Current Writing Mode
GKS3D$K_ESC_INQ_LINE_CAP Inquire Current Line Cap Style
GKS3D$K_ESC_INQ_LINE_JOIN Inquire Current Line Join Style
GKS3D$K_ESC_INQ_EDGE_ATTR Inquire Current Edge Attributes
GKS3D$K_ESC_INQ_VIEWPORT_DATA Inquire Viewport Data
GKS3D$K_ESC_INQ_SPEED Inquire Current Display Speed
GKS3D$K_ESC_INQ_LIST_EDGE_INDEX Inquire List of Edge Indexes
GKS3D$K_ESC_INQ_SEGMENT_EXTENT Inquire Segment Extent
GKS3D$K_ESC_INQ_WINDOW_IDS Inquire Window Identifiers
GKS3D$K_ESC_INQ_SEG_HIGHL_MODE Inquire Segment Highlighting Method
GKS3D$K_ESC_INQ_HIGHL_MODE Inquire Highlighting Method
GKS3D$K_ESC_INQ_PASTBOARD_ID Inquire Pasteboard Identifier
GKS3D$K_ESC_INQ_MENU_BAR_ID Inquire Menu Bar Identifier
GKS3D$K_ESC_INQ_SHELL_ID Inquire Shell Identifier
GKS3D$K_ESC_INQ_LIST_ESC Inquire List of Available Escapes
GKS3D$K_ESC_INQ_DEF_SPEED Inquire Default Display Speed
GKS3D$K_ESC_INQ_LINE_CAP_JOIN_F Inquire Line Cap and Join Facilities
GKS3D$K_ESC_INQ_EDGE_FAC Inquire Edge Facilities
GKS3D$K_ESC_INQ_PREDEF_EDGE_REP Inquire Predefined Edge Representation
GKS3D$K_ESC_INQ_MAX_EDGE_BUNDLE Inquire Maximum Number of Edge

Bundles
GKS3D$K_ESC_INQ_LIST_HIGHL_MODE Inquire List of Highlighting Methods
GKS3D$K_ESC_INQ_EDGE_REP Inquire Edge Representation

Control Functions 4–15

ESCAPE

Escape Identifier Description

GKS3D$K_ESC_MAP_NDC_OF_WC Evaluate NDC Mapping of WC Point
GKS3D$K_ESC_MAP_DC_OF_NDC Evaluate DC Mapping of an NDC Point
GKS3D$K_ESC_MAP_WC_OF_NDC Evaluate WC Mapping of NDC Point
GKS3D$K_ESC_MAP_NDC_OF_DC Evaluate NDC Mapping of DC Point
GKS3D$K_ESC_INQ_GDP_EXTENT Inquire Extent of a GDP
GKS3D$K_ESC_DOUBLE_BUFFER Set Double Buffering
GKS3D$K_ESC_SET_BCKGRND_PIXMAP Set Background Pixmap
GKS3D$K_ESC_INQ_DBUFFER_PIXMAP Inquire Double Buffer Pixmap
GKS3D$K_ESC_INQ_BCKGRND_PIXMAP Inquire Background Pixmap

Note

If you pass the value 0 as the argument out_len (size of the output
data record), ESCAPE checks for errors, returns the size of the output
data record in out_len, but does not perform the escape. You can use
this functionality to check the size of the output data record without
performing the escape action.

Description

The ESCAPE function invokes a specified escape function. This function provides
a method for DEC GKS to access capabilities of a specific workstation that are
not fully utilized by other functions.

For example, the DEC GKS implementation uses this function call to produce
a hardcopy dump of a VT125 or VT240 terminal screen, or to set the LVP16™
plotter pen speed.

Note that there are two data record size arguments. On input, the out_len
argument specifies the size (in bytes) of the output data buffer. On output, it
is the output buffer size (in bytes) actually written. The rec_out_len argument
always returns the total record size (in bytes) required by the escape. After the
call is completed, if the total size of the output data record does not match the
out_len argument, the record was truncated to fit in the allocated space.

For more information concerning the available escapes, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS. When calling the control
function ESCAPE, you may need to pass a data record. DEC GKS has a standard
escape data record that contains three integer elements and up to four array
addresses.

To use an escape data record, you need to perform the following tasks:

1. Determine the size and contents of the required data record (if one is
required).

2. Declare the data record as determined by your particular programming
language. Each of the seven elements of the data record is an integer value.
The record is read only, passed by reference.

3. Pass to ESCAPE only the data record elements required by the escape. For
example, if an escape requires only five data record elements, omit values
from elements 6 and 7.

4–16 Control Functions

ESCAPE

4. Pass to ESCAPE the exact size of the valid portion of the data record. For
example, if an escape requires five valid elements to the data record, pass the
value 20 as the data record size (each element being a longword in length).

The DEC GKS standard escape data record is as follows:

Element Data Type Description

1 Integer Number of integer values passed in the data record
2 Integer Number of real values passed in the data record
3 Integer Number of string addresses passed in the data record
4 Integer

(address)
Address of an array of integers with exactly as many
elements as the number specified in element number
1

5 Integer
(address)

Address of an array of real numbers with exactly as
many elements as the number specified in element
number 2

6 Integer
(address)

Address of an array of string lengths with exactly as
many elements as the number specified in element
number 3

7 Integer
(address)

Address of an array of string addresses with exactly
as many elements as the number specified in element
number 3

After performing a task, some escape functions pass information back to you
through an output data record. This output data record is identical in format
to the input data record, except that the elements of the output data record are
modifiable. You pass the buffer sizes in the first three elements and the addresses
of your buffers in the last four elements. DEC GKS modifies the first three
elements to contain the number of elements DEC GKS actually used to write
output data to each of the corresponding buffers.

If you use an escape function and need to determine the size required by the
entire output data record buffer, you can pass the value 0 to the output record
buffer size (documented as the argument out_len in the ESCAPE function
description.) When you pass the value 0 as this argument, ESCAPE does not
perform the escape, but instead returns the size of the output data record to
the argument rec_out_len. In this manner, you can be sure that you declared an
output data record buffer large enough to hold the entire data record.

To place array addresses in the fourth, fifth, sixth, and seventh elements of the
data record, you need to use a technique specific to your programming language.
For more information concerning addresses and pointers, see the documentation
set for your programming language.

Note

Remember that the DEC GKS input data records have a format that is
completely different from the GKS standard escape data record format.
To review the GKS standard input data records, see Chapter 9. To review
the actual data records required by the DEC GKS graphics handlers, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Control Functions 4–17

ESCAPE

See Also

SIZEOF
Example 4–2 for a program example using the ESCAPE function

4–18 Control Functions

MESSAGE

MESSAGE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$message (ws_id, message)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
message Character

string
Read Descriptor Message text

Description

The MESSAGE function allows an application program to deliver a message to
the user at an implementation-dependent location on the workstation surface, or
on a separate device associated with the workstation. This function may have a
local effect on the workstation. For example, the message might request that the
operator change the paper in a plotter before a picture is generated.

See the Device Specifics Reference Manual for DEC GKS and DEC PHIGS for
more information on workstation-specific capabilities.

See Also

Example 9–1 for a program example using the MESSAGE function

Control Functions 4–19

OPEN GKS

OPEN GKS

Operating States

GKCL

Syntax

gks3d$open_gks (err_file, memory)

Argument Data Type Access Passed by Description

err_file Character
string

Read Descriptor Logical or physical name of a device or
file that points to the error log file

memory Integer Read Reference Dummy argument for conformance
with the GKS standard

Description

The OPEN GKS function permits subsequent access to the GKS state list,
DEC GKS description table, and the workstation description tables.

The function changes the DEC GKS operating state from GKCL (GKS closed) to
GKOP (GKS open). The error file entry in the error state list is set to the value
passed as an argument to this function.

When using DEC GKS, you usually call this function first. All functions except
EMERGENCY CLOSE, ERROR HANDLING, ERROR LOGGING, and INQUIRE
OPERATING STATE VALUE require at least the GKOP operating state.

See Also

CLOSE GKS
Example 4–1 for a program example using the OPEN GKS function

4–20 Control Functions

OPEN WORKSTATION

OPEN WORKSTATION

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$open_ws (ws_id, conn_id, ws_type)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
conn_id Character

string
Read Descriptor Absolute specification of a device

connection, or the name of an
environment option to be translated
to obtain the specification of a device
connection

ws_type Integer Read Reference Workstation type

Description

The OPEN WORKSTATION function initializes a workstation for use by
DEC GKS, permitting subsequent access to the specified workstation’s state
list.

This function associates the workstation identifier with a particular device of
a specified type, and initializes the workstation. If establishing the first open
workstation, this function changes the DEC GKS operating state from GKOP
(GKS open) to WSOP (at least one workstation open).

This function clears the display surface of previously generated images. You must
call this function, followed by a call to the ACTIVATE WORKSTATION function,
before you attempt to generate output to this workstation.

See Also

ACTIVATE WORKSTATION
Example 4–1 for a program example using the OPEN WORKSTATION function

Control Functions 4–21

REDRAW ALL SEGMENTS ON WORKSTATION

REDRAW ALL SEGMENTS ON WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$redraw_seg_on_ws(ws_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier

Description

The REDRAW ALL SEGMENTS ON WORKSTATION function clears the screen
and redraws all defined, visible segments.

This function performs the following tasks:

1. Generates all deferred output (see the SET DEFERRAL STATE function).

2. If the display surface empty entry in the workstation state list is NOT
EMPTY, this function clears the surface.

3. Places into effect pending workstation transformations.

4. Redisplays all visible segments that existed on the workstation surface before
the screen was cleared. All output not contained in segments is lost.

After executing this function, DEC GKS sets the workstation transformation
update state list entry to NOT PENDING, and the new frame necessary at update
state list entry to NOT NECESSARY.

Note

You should use this function if you need to redraw the picture regardless
of the status of the new frame necessary at update entry. Otherwise, use
the UPDATE WORKSTATION function.

See Also

UPDATE WORKSTATION
Example 8–1 for a program example using the REDRAW ALL SEGMENTS ON
WORKSTATION function

4–22 Control Functions

SET DEFERRAL STATE

SET DEFERRAL STATE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_defer_state (ws_id, defer_mode, regen_mode)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
defer_mode Integer

(constant)
Read Reference Maximum allowable deferral mode

regen_mode Integer
(constant)

Read Reference Implicit regeneration mode

Constants

Defined
Argument Constant Description

defer_mode GKS3D$K_ASAP Generate images as soon as possible.
GKS3D$K_BNIG
GKS3D$K_BNIL

Generate images before the next
interaction globally, or before a sample
or event input occurs.

GKS3D$K_BNIL Generate images before the next
interaction locally, or before a sample
or event input occurs.

GKS3D$K_ASTI Generate images at some time. The
exact time is determined by the
workstation.

regen_mode GKS3D$K_IRG_SUPPRESSED Image regeneration is suppressed.
GKS3D$K_IRG_ALLOWED Image regeneration is allowed.

Description

The SET DEFERRAL STATE function sets the workstation state list entries
deferral mode and implicit regeneration mode.

The deferral mode specifies the rate of output generation. Depending on the
capabilities of the workstation, it can defer output at any level up to the level
specified in the call to the SET DEFERRAL STATE function. If the workstation
can defer output at the requested level, it does. If the workstation cannot defer
output at the requested level, it defers output at the next supported lower level.
Using this function, you can allow a workstation to defer output, or you can either
suppress or allow implicit regenerations.

Control Functions 4–23

SET DEFERRAL STATE

For example, if you specify ASAP in a call to this function, the workstation
must generate output as soon as possible. If you specify BNIG, the workstation
can defer output at either ASAP or BNIG, depending on its capabilities. If you
specify BNIL, the workstation can defer output on any level up to and including
BNIL, depending on its capabilities. If you specify ASTI, the workstation
can defer output at any of the four levels, depending on its capabilities. (For
more information concerning the definitions of the constants described in this
paragraph, see the deferral mode argument description.)

The implicit regeneration mode determines whether implicit regenerations
are allowed or suppressed. If you allow implicit regenerations, and the
workstation supports implicit regeneration for the specified change, any pending
or subsequent surface change requiring regeneration (for example, output
bundle index changes, segment attribute changes, or workstation transformation
changes) occurs at the time of request. If you suppress regenerations, changes
requiring regenerations place the screen out of date (DEC GKS sets the new
frame necessary at update entry in the workstation state list to NEWFRAME
NECESSARY).

By suppressing implicit regenerations, you can make all necessary changes
without altering the workstation surface. When you have requested all changes,
call the UPDATE WORKSTATION function to perform all the suppressed actions
in a single regeneration of the surface.

Note

When regenerating the surface of the workstation, DEC GKS clears the
surface before redrawing only the visible segments. All output primitives
not contained in segments are lost.

See Also

UPDATE WORKSTATION
Example 5–1 for a program example using the SET DEFERRAL STATE function

4–24 Control Functions

UPDATE WORKSTATION

UPDATE WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$update_ws (ws_id, flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
flag Integer

(constant)
Read Reference Image regeneration flag

Constants

Defined
Argument Constant Description

flag GKS3D$K_PERFORM_FLAG Perform regeneration of image.
GKS3D$K_POSTPONE_FLAG Postpone regeneration of image.

Description

The UPDATE WORKSTATION function generates all deferred output for the
specified workstation and can also redisplay all visible segments.

If the new frame necessary at update entry in the workstation state list is
NEWFRAME NECESSARY, and if you specify the value GKS3D$K_PERFORM_
FLAG to this function, it performs the following tasks:

1. Clears the screen if the display surface empty entry in the workstation state
list is NOT EMPTY.

2. Places into effect pending workstation transformations.

3. Redisplays all visible segments that were stored on the workstation. All
output primitives not contained in segments are lost.

After executing these tasks, DEC GKS sets the display surface empty entry in
the workstation state list to EMPTY or to NOT EMPTY according to the current
state of the workstation surface, the workstation transformation update state
entry to NOT PENDING, and the new frame necessary at update entry to NOT
NECESSARY.

However, if at the call to this function the new frame necessary at update entry
in the workstation state list is NOT NECESSARY, or if you specify the value
GKS3D$K_POSTPONE_FLAG as an argument to this function, it initiates only
the transmission of any deferred output.

Control Functions 4–25

UPDATE WORKSTATION

See Also

Example 4–1 for a program example using the UPDATE WORKSTATION
function

4–26 Control Functions

Control Functions
4.5 Program Examples

4.5 Program Examples
Example 4–1 illustrates the use of several control functions.

Example 4–1 CLEAR WORKSTATION and the GKS Control Functions

/*
* This program writes a text string to the screen, and then clears the
* screen using the function CLEAR WORKSTATION.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS3D$ binding definitions file */

main ()
{

int default_conid;
int default_wstype;
int device_num;
int input_class;
float larger = 0.03;
float points[2];
struct dsc$descriptor_s text_dsc;
char *text_name = "CLEAR WORKSTATION should erase this";
float timeout = 10.00;
int update_flag;
int clear_flag;
int ws_id = 1;

/* Set up the string descriptor. */

text_dsc.dsc$a_pointer = text_name;
text_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_dsc.dsc$b_class = DSC$K_CLASS_S;
text_dsc.dsc$w_length = strlen(text_name);

/*
* Open the GKS environment. Specifying 0 for the two arguments tells
* DEC GKS to use the default values (output to the terminal surface
* and the default GKS error file).
*/

gks3d$open_gks (0, 0);

/*
* Open the workstation environment. When you call this function, you
* assign the workstation a numeric identifier (in this example, the
* number 1), a device name (in this example, DEC GKS translates the
* connection identifier environment option to determine the device name),
* and a workstation type (in this example, DEC GKS translates the workstation
* type environment option to determine the workstation type).
*/

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT ;

gks3d$open_ws (&ws_id, &default_conid, &default_wstype);

(continued on next page)

Control Functions 4–27

Control Functions
4.5 Program Examples

Example 4–1 (Cont.) CLEAR WORKSTATION and the GKS Control Functions

/*
* When activating a workstation using the function ACTIVATE WORKSTATION,
* use the workstation identifier you specified as the first argument in
* the call to OPEN WORKSTATION (in this example, the number 1).
*/

gks3d$activate_ws (&ws_id);

/*
* Using the default windows and viewports, the TEXT function writes a
* character string to the screen starting at the WC (0.1, 0.5).
*/

points[0] = 0.1;
points[1] = 0.5;

gks3d$set_text_height (&larger);
gks3d$text (points, &text_dsc);

/* Release the deferred output. Wait 10 seconds. */

update_flag = GKS3D$K_POSTPONE_FLAG;

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/*
* The CLEAR WORKSTATION function, when passed the flag GCONDITIONALLY,
* clears the workstation under the condition that the surface contains
* output primitives. Since the previous function call wrote a character
* string to the workstation surface, this call clears the screen.
*/

clear_flag = GKS3D$K_CLEAR_CONDITIONALLY;

gks3d$clear_ws (&ws_id, &clear_flag);

/*
* When deactivating and closing the open workstation, pass the numeric
* workstation identifier previously specified in the call to OPEN
* WORKSTATION (in this example, the value 1).
*/

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 4–1 shows the first screen display on a VAXstation™ workstation running
DECwindows software. When the program ends, the screen is cleared.

4–28 Control Functions

Control Functions
4.5 Program Examples

Figure 4–1 CLEAR WORKSTATION and the GKS Control Functions

ZK−4014A−GE

Example 4–2 illustrates the use of the ESCAPE function.

Example 4–2 Supported Escapes Program

/*
* This program opens GKS and the default workstation, inquires the
* workstation type, queries the list of escapes supported by the workstation,
* tests a few of the escapes, and closes the workstation and GKS.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS$ binding definition file */

define FALSE 0
define MAX_BUFFER 80
define MAX_INTS 100
define TRUE 1

(continued on next page)

Control Functions 4–29

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

/*
* This routine inquires the list of supported escapes for the specified
* workstation type.
*/

void inquire_escapes (wstype, escape_list)

int escape_list[MAX_INTS];
int wstype;

{
int escape_id;
int in_data_size;
int in_esc_data[7];
int out_data_size;
int out_esc_data[7];
int total_size;

escape_id = GKS3D$K_ESC_INQ_LIST_ESC;
in_data_size = 4 * sizeof(int);
in_esc_data[0] = 1;
in_esc_data[1] = 0;
in_esc_data[2] = 0;
in_esc_data[3] = &wstype;
out_data_size = 4 * sizeof(int);
out_esc_data[0] = MAX_INTS; /* maximum array dimension */
out_esc_data[1] = 0;
out_esc_data[2] = 0;
out_esc_data[3] = escape_list;

gks3d$escape (&escape_id, in_esc_data, &in_data_size,
out_esc_data, &out_data_size, &total_size);

} /* End inquire_escapes */

/*
* This routine determines whether the specified escape identifier
* (esc_id) is in the list of supported escapes (escape_list). A value
* of TRUE is returned if the specified escape is supported. A value of
* FALSE is returned if the specified escape is not supported.
*/

int esc_support (esc_id, escape_list)

int esc_id;
int escape_list[MAX_INTS];

{
int escape_supported;
int n;

escape_supported = FALSE;
for (n = 3; n < 3+escape_list[2]; n++)

if (esc_id == escape_list[n])
{
escape_supported = TRUE;
break;
}

return (escape_supported);

} /* End esc_support */

(continued on next page)

4–30 Control Functions

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

/*
* This routine sets double buffering ON or OFF as requested. Nothing
* will be done if the escape is not supported by the workstation type.
*/

void set_double_buffer (ws_id, escape_list, double_buffer_flag)

int double_buffer_flag;
int escape_list[MAX_INTS];
int ws_id;

{
int escape_id;
int in_data_size;
int in_esc_data[7];
int int_array[2];
int out_data_size;
int out_esc_data[7];
int total_size;

/* Determine if the escape is supported by the workstation. */

if (!esc_support(GKS3D$K_ESC_DOUBLE_BUFFER, escape_list))
return;

/* Turn double buffering ON or OFF as requested. */

escape_id = GKS3D$K_ESC_DOUBLE_BUFFER;
in_data_size = 4 * sizeof(int);
in_esc_data[0] = 2;
in_esc_data[1] = 0;
in_esc_data[2] = 0;
in_esc_data[3]= int_array;
int_array[0] = ws_id;
int_array[1] = double_buffer_flag;
out_data_size = 0;

gks3d$escape (&escape_id, in_esc_data, &in_data_size,
out_esc_data, &out_data_size, &total_size);

} /* End set_double_buffer */

/*
* This routine inquires the X window and display identifiers of
* the GKS workstation. Nothing will be done if the escape is not supported
* by the workstation type.
*/

void inq_window_ids (ws_id, escape_list, x_display_id, x_window_id)

int escape_list[MAX_INTS];
int ws_id;
int *x_display_id;
int *x_window_id;

{
int escape_id;
int in_data_size;
int in_esc_data[7];
int int_array[2];
int out_data_size;
int out_esc_data[7];
int total_size;

/* Determine if the escape is supported by the workstation. */

(continued on next page)

Control Functions 4–31

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

if (!esc_support(GKS3D$K_ESC_INQ_WINDOW_IDS, escape_list))
return;

/* Inquire the X display identifier and the X window identifier. */

escape_id = GKS3D$K_ESC_INQ_WINDOW_IDS;
in_data_size = 4 * sizeof(int);
in_esc_data[0] = 1;
in_esc_data[1] = 0;
in_esc_data[2] = 0;
in_esc_data[3] = &ws_id;
out_data_size = 4 * sizeof(int);
out_esc_data[0] = 2;
out_esc_data[1] = 0;
out_esc_data[2] = 0;
out_esc_data[3] = int_array;

gks3d$escape (&escape_id, in_esc_data, &in_data_size,
out_esc_data, &out_data_size, &total_size);

*x_display_id = int_array[0];
*x_window_id = int_array[1];

printf ("\n Escape: Inquire Window Identifiers\n");
printf (" X Display ID: %x\n", *x_display_id);
printf (" X Window ID: %x\n", *x_window_id);

} /* End inq_window_ids */

/*
* This routine sets the window title to the specified string. Nothing will
* be done if the escape is not supported by the workstation type.
*/

void set_window_title (ws_id, escape_list, new_title)

int escape_list[MAX_INTS];
char *new_title;
int ws_id;

{
int escape_id;
int in_data_size;
int in_esc_data[7];
int new_title_size;
int out_data_size;
int out_esc_data[7];
int total_size;

/* Determine if the escape is supported by the workstation. */

if (!esc_support(GKS3D$K_ESC_SET_WINDOW_TITLE, escape_list))
return;

(continued on next page)

4–32 Control Functions

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

/* Change the window title. */

in_data_size = 7 * sizeof(int);
in_esc_data[0] = 1;
in_esc_data[1] = 0;
in_esc_data[2] = 1;
in_esc_data[3] = &ws_id;
in_esc_data[4] = 0;
in_esc_data[5] = &new_title_size;
in_esc_data[6] = &new_title;
new_title_size = strlen(new_title);
out_data_size = 0;

escape_id = GKS3D$K_ESC_SET_WINDOW_TITLE;
gks3d$escape (&escape_id, in_esc_data, &in_data_size,

out_esc_data, &out_data_size, &total_size);

} /* End set_window_title */

main ()

{
char conn_id[80];
struct dsc$descriptor conn_id_dsc;
int conn_id_size;
int double_buffer_flag;
int error_ind;
int escape_list [MAX_INTS];
int n;
int ws_id = 1;
int wstype;
int x_window_id;
int x_display_id;

/* Open GKS and the default workstation. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, 0, 0);

/* Set up the descriptor. Inquire the workstation type. */

conn_id_dsc.dsc$w_length = (unsigned short)(strlen(conn_id));
conn_id_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
conn_id_dsc.dsc$b_class = DSC$K_CLASS_S;
conn_id_dsc.dsc$a_pointer = conn_id;

gks3d$inq_ws_type (&ws_id, &error_ind, &conn_id_dsc,
&wstype, &conn_id_size);

/* Inquire the list of supported escapes. */

inquire_escapes (wstype, escape_list);
if (escape_list[0] != 0)

{
gks3d$emergency_close ();
printf ("Error inquiring list of supported escapes %d\n",

escape_list[0]);
exit ();
}

(continued on next page)

Control Functions 4–33

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

/* Set the window title. */

set_window_title (ws_id, escape_list, "DEC GKS puts life in perspective");

/* Turn on double buffering. */

double_buffer_flag = 1;

set_double_buffer (ws_id, escape_list, double_buffer_flag);

/* Inquire the X display identifier and X window identifier. */

inq_window_ids (ws_id, escape_list, &x_display_id, &x_window_id);

/* Close the workstation and GKS. */

gks3d$close_ws (&ws_id);
gks3d$close_gks ();

/* Print the workstation type and its supported escapes. */

printf ("\n Workstation type %d supports %d escapes (%d returned):\n",
wstype, escape_list[1], escape_list[2]);

for (n = 3; n < escape_list[2] + 3; n++)
printf (" %d\n", escape_list[n]);

} /* End main */

This program performs various escapes, depending on the workstation type.
Example 4–3 shows the output from a VAXstation workstation running
DECwindows software.

Example 4–3 VAXstation Output for Escape Program

Escape: Inquire Window Identifiers
X Display ID: 1f8010
X Window ID: 700013

(continued on next page)

4–34 Control Functions

Control Functions
4.5 Program Examples

Example 4–3 (Cont.) VAXstation Output for Escape Program

Workstation type 211 supports 35 escapes (35 returned):
-104
-105
-151
-152
-103
-150
-309
-308
-307
-106
-107
-206
-304
-202
-203
-204
-205
-500
-501
-502
-503
-109
-401
-403
-303
-358
-108
-110
-251
-252
-253
-305
-350
-400
-402

Control Functions 4–35

Output Functions

Insert tabbed divider here. Then discard this sheet.

5
Output Functions

The DEC GKS output functions generate the basic components, or primitives, of
all graphic pictures.

When you generate primitives on the workstation surface, you should be aware of
the following:

• DEC GKS operating state

• DEC GKS coordinate systems

• Transformations

• Clipping

• Deferred transformations and output

The following sections describe these issues related to output, and point to the
appropriate chapters in this manual that describe the topics in full detail.

5.1 Output and the DEC GKS Operating State
When you call control functions, DEC GKS allows access to certain tables and
lists. You can never call a DEC GKS function that requires access to a table or
list that has not yet been made available. To determine which tables and lists
are accessible, and which DEC GKS functions you can call at a given point in the
application program, DEC GKS maintains an operating state (see Section 4.1.2).

To call any of the output functions described in this chapter, the DEC GKS
operating state must be WSAC or SGOP. To place DEC GKS into the WSAC
operating state, you need to do the following:

• Open DEC GKS (by calling OPEN GKS).

• Open at least one workstation (by calling OPEN WORKSTATION).

• Activate at least one workstation (by calling ACTIVATE WORKSTATION).

If you call an output function, DEC GKS generates the primitive on all active
workstations. If you call an output function during the SGOP operating state,
the output primitive becomes part of a segment. (For complete information
concerning segments, see Chapter 8, Segment Functions.)

If you wish to output to an active workstation, the workstation must be of type
OUTPUT, OUTIN, or MO (see Table 4–1). Only workstations of those categories
support image generation. OUTPUT and OUTIN workstations generate output
primitives on the workstation surface; MO workstations store information
about the function call in a file. For more information concerning metafiles, see
Chapter 10, Metafile Functions. For more information concerning workstation
categories or the DEC GKS operating states, see Chapter 4, Control Functions.

Output Functions 5–1

Output Functions
5.2 Output Attributes

5.2 Output Attributes
All the output primitives have attributes that are stored in the GKS state list.
Attributes are properties of the primitive, such as line thickness, color, and style.
Each attribute has an initial value, provided as a default setting. When you call
an output function, the current values of its attributes are bound to the function,
so that the output primitive reflects the current attribute values.

Output attribute functions can radically affect how the output primitive appears
on the workstation surface. For example, depending on the current text attribute
values, the positioning point passed to the output function TEXT may be the
center point for the text string, the position of the first character in the text
string, or the position of the last character in the text string. The text output
attributes also determine whether the string runs horizontal to the workstation
X axis, vertical to the workstation X axis, or at a specified angle on the display
surface.

This chapter requires that you be familiar with the following attribute issues:

• The types of attributes available for a primitive.

• The effects of using individual and bundled attributes.

• The use of nominal sizes and scale factors.

• The use of foreground and background color.

For complete information on these and any other output attribute topics, see
Chapter 6, Attribute Functions.

5.3 Transformations and the DEC GKS Coordinate Systems
The DEC GKS transformation functions allow you to compose a picture, control
how much of the picture is displayed on the workstation surface, orient the
picture, and control how much of the workstation surface is used to display the
picture.

When you request input and generate output on the workstation surface, you
actually work with a number of coordinate systems. The image is transformed
from one coordinate system to the next.

Using DEC GKS, you work with a geometric transformation pipeline. The
pipeline consists of a number of transformations that affect various coordinate
systems.

Note if you are working only with two-dimensional primitives, your WC system
is an imaginary Cartesian coordinate system with the origin at (0, 0), and X and
Y axes that extend to infinity in all directions. The two-dimensional WC plane is
positioned at z = 0.

DEC GKS uses two separate transformations to translate your WC points to NDC
points, and to translate your NDC points to device coordinate points. During this
process, portions of your primitives may be removed from the final picture due
to clipping. You need to be aware of the effects of transformations and clipping
on your generated output primitives. For complete information concerning
transformations, see Chapter 7, Transformation Functions.

5–2 Output Functions

Output Functions
5.4 Output Deferral

5.4 Output Deferral
When you output primitives, a workstation may postpone the generation of the
image on the workstation surface depending on the workstation’s capabilities.
This postponement is called output deferral.

DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are ASAP (generates output as
soon as possible), BNIG (generates output before the next interaction globally),
BNIL (generates output before the next interaction locally), and ASTI (at some
time).

You can specify a suggested level of deferral by calling the function SET
DEFERRAL STATE. Depending on the capabilities of the workstation, it can
defer output at the highest level up to the level specified in the call to SET
DEFERRAL STATE.

For detailed information concerning SET DEFERRAL STATE and deferral, see
Chapter 4, Control Functions.

5.5 Output Inquiries
The following list presents the inquiry functions that you can use to obtain output
information when writing device-independent code:

INQUIRE GENERALIZED DRAWING PRIMITIVE
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES
INQUIRE OPERATING STATE
INQUIRE PIXEL
INQUIRE PIXEL ARRAY
INQUIRE PIXEL ARRAY DIMENSIONS
INQUIRE SET OF ACTIVE WORKSTATIONS
INQUIRE TEXT EXTENT

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

5.6 Function Descriptions
This section describes the DEC GKS output functions in detail.

Output Functions 5–3

CELL ARRAY

CELL ARRAY

Operating States

WSAC, SGOP

Syntax

gks3d$cell_array (point_p, point_q, col_num, row_num, n_columns, n_rows,
col_ind_val)

Argument Data Type Access Passed by Description

point_p,
point_q

Array of 2
reals

Read Reference Arrays containing the 2D coordinates
of the upper left and lower right corner
points of the rectangular area

col_num Integer Read Reference First column in color index array
row_num Integer Read Reference First row in color index array
n_columns Integer Read Reference Number of columns in color index

array
n_rows Integer Read Reference Number of rows in color index array
col_ind_val Array of

integers
Read Descriptor Color index array

Description

The CELL ARRAY function divides a designated rectangular area into cells, and
displays each cell in a specified color or shade.

You pass a two-dimensional array containing color index values as one argument
to this function. DEC GKS maps the color index values to corresponding cells
within a rectangular area of the workstation surface. In addition to the color
index array, you specify an offset into the color array (a starting element), and
the number of array columns and rows to be mapped.

There is a one-to-one correspondence between the number of specified array
columns and rows, and the number of columns and rows by which DEC GKS
divides the cell array rectangle. Each of the columns within the rectangle is
of equal width, and each of the rows within the rectangle is of equal height.
DEC GKS maps the color index values from each specified color index array
element to the corresponding cell, moving from the starting point towards the
diagonal point along the X axis.

For more information on the initial color index values for a given workstation, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

To alter the color associated with a certain index value, you can use the GKS
function SET COLOUR REPRESENTATION.

The following figure illustrates how the cells are arranged in the cell array
primitive.

5–4 Output Functions

CELL ARRAY

X

X

P DX

DY

Q

1

2

3

.

.

CELL ARRAY
DX x DY CELLS

1 2 3

ZK−4581A−GE

. .

See Also

SET COLOUR REPRESENTATION
Example 5–1 for a program example using the CELL ARRAY function

Output Functions 5–5

CELL ARRAY 3

CELL ARRAY 3

Operating States

WSAC, SGOP

Syntax

gks3d$cell_array3 (point_p, point_q, point_r, col_num, row_num, n_columns, n_rows,
col_ind_val)

Argument Data Type Access Passed by Description

point_p,
point_q,
point_r

Array of 3
reals

Read Reference Arrays of the lower left front corner
point, the upper right front corner
point, and the upper right back
corner point. These points define
the parallelogram.

col_num Integer Read Reference First column in color index array.
row_num Integer Read Reference First row in color index array.
n_columns Integer Read Reference Number of columns in color index

array.
n_rows Integer Read Reference Number of rows in color index array.
col_ind_val Array of

integers
Read Descriptor Color index array.

Description

The CELL ARRAY 3 function divides a designated parallelogram into cells and
displays each cell in a specified color.

You pass a two-dimensional array containing color index values as one argument
to this function. DEC GKS maps the color index values to corresponding cells
within a parallelogram-shaped area of the workstation surface. In addition to the
color index array, you specify an offset into the color array (a starting element),
and the number of array columns and rows to be mapped.

There is a one-to-one correspondence between the number of specified
array columns and rows, and the number of columns and rows by which
DEC GKS divides the cell array parallelogram. Each of the columns within the
parallelogram is of equal width, and each of the rows within the parallelogram
is of equal height. DEC GKS maps the color index values from each specified
color index array element to the corresponding cell, moving from the starting
point towards the diagonal point along the X axis. The grid defined by the
three parallelogram vertices and n_columns and n_rows is subject to all
transformations.

For more information on the initial color index values for a given workstation, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

To alter the color associated with a certain index value, you can use the GKS
function SET COLOUR REPRESENTATION.

5–6 Output Functions

CELL ARRAY 3

The following figure illustrates a transformed cell array 3 primitive.

DY

3D CELL ARRAY

1
2

3

ZK−4582A−GE

.

R

P

DX
Q

1

2

3

.

See Also

SET COLOUR REPRESENTATION
Example 5–1 for a program example using the CELL ARRAY function

Output Functions 5–7

FILL AREA

FILL AREA

Operating States

WSAC, SGOP

Syntax

gks3d$fill_area (n_points, pts_array)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of points in the polygon.
pts_array Array of

reals
Read Reference Array of WC X and Y values. The

number of array elements must be
twice the value of n_points. The points
are stored in the order X1, Y1, X2,
Y2, . . . Xn, Yn, where n is the number
of points in the polygon.

Description

The FILL AREA function draws a polygon and fills it with an interior style that
has already been selected. If you do not specify a closed polygon, DEC GKS
connects the last point specified to the first point.

The fill area interior style can be either hollow, solid, hatched, or patterned. For
example, the default fill area interior style for most supported workstation types
is hollow. In that case, the function draws the outline of the polygon, leaving the
interior hollow.

See Also

SET FILL AREA COLOUR INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN REPRESENTATION
SET PICK IDENTIFIER
Example 6–1 for a program example using the FILL AREA function

5–8 Output Functions

FILL AREA 3

FILL AREA 3

Operating States

WSAC, SGOP

Syntax

gks3d$fill_area3 (n_points, pts_array)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of points in the polygon.
pts_array Array of

reals
Read Reference Array of 3D WC values. The number

of array elements must be three times
the value of n_points. The points are
stored in the order X1, Y1, Z1, X2,
Y2, Z2, . . . Xn, Yn, Zn, where n is the
number of points in the polygon.

Description

The FILL AREA 3 function draws a three-dimensional polygon and fills it with
an interior style that has already been selected. If you do not specify a closed
polygon, DEC GKS connects the last point specified to the first point.

The fill area interior style can be either hollow, solid, hatched, or patterned. For
example, the default fill area interior style for most supported workstation types
is hollow. In that case, the function draws the outline of the polygon, leaving the
interior hollow.

See Also

SET FILL AREA COLOUR INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN REPRESENTATION
SET PICK IDENTIFIER
Example 6–1 for a program example using the FILL AREA function

Output Functions 5–9

FILL AREA SET

FILL AREA SET

Operating States

WSAC, SGOP

Syntax

gks3d$fill_area_set (n_areas, n_pts_area, pts_array)

Argument Data Type Access Passed by Description

n_areas Integer Read Reference Number of fill areas in the set.
n_pts_area Array of

integers
Read Reference Array of numbers of points in each

area. There is one array element for
each fill area.

pts_array Array of
reals

Read Reference Array of 2D WC points. For each fill
area, the points are stored in the order
X1, Y1, X2, Y2, . . . Xn, Yn, where n is
the number of points in the fill area.

Description

The FILL AREA SET function draws a set of two-dimensional polygons and fills
them with an interior style. The fill area interior style can be either hollow,
solid, hatched, or patterned. For example, the default fill area interior style for
most supported workstation types is hollow. In that case, the function draws the
outline of the polygons, leaving the interiors hollow.

5–10 Output Functions

FILL AREA SET 3

FILL AREA SET 3

Operating States

WSAC, SGOP

Syntax

gks3d$fill_area_set3 (n_areas, n_pts_area, pts_array)

Argument Data Type Access Passed by Description

n_areas Integer Read Reference Number of fill areas in the set.
n_pts_area Array of

integers
Read Reference Array of numbers of points in each

area. There is one array element for
each fill area.

pts_array Array of
reals

Read Reference Array of 3D WC points. For each fill
area, the points are stored in the order
X1, Y1, Z1, X2, Y2, Z2, . . . Xn, Yn, Zn,
where n is the number of points in the
fill area.

Description

The FILL AREA SET 3 function draws a set of three-dimensional polygons and
fills them with an interior style. The fill area interior style can be either hollow,
solid, hatched, or patterned. For example, the default fill area interior style for
most supported workstation types is hollow. In that case, the function draws the
outline of the polygons, leaving the interiors hollow.

Output Functions 5–11

GENERALIZED DRAWING PRIMITIVE

GENERALIZED DRAWING PRIMITIVE

Operating States

WSAC, SGOP

Syntax

gks3d$gdp (n_points, pts_array, gdp_id, data_rec, data_rec_len)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of points in GDP.
pts_array Array of

reals
Read Reference Array of X and Y values of WC points.

The number of array elements should
match the value of n_points.

gdp_id Integer
(constant)

Read Reference GDP identifier.

data_rec Record Read Reference GDP data record address. See the
Device Specifics Reference Manual for
DEC GKS and DEC PHIGS for the
appropriate data record.

data_rec_
len

Integer Read Reference GDP data record size, in bytes.

Constants

GDP Identifier Description

GKS3D$K_GDP_DISJOINT_PLINE Disjoint Polyline
GKS3D$K_GDP_CIRCLE_CTR_PT Circle: Center and Point on

Circumference
GKS3D$K_GDP_CIRCLE_3PT Circle: Three Points on Circumference
GKS3D$K_GDP_CIRCLE_CTR_RAD Circle: Center and Radius
GKS3D$K_GDP_CIRCLE_2PT_RAD Circle: Two Points on Circumference, and

Radius
GKS3D$K_GDP_ARC_CTR_2PT Arc: Center and Two Points on Arc
GKS3D$K_GDP_ARC_3PT Arc: Three Points on Circumference
GKS3D$K_GDP_ARC_CTR_2V_RAD Arc: Center, 2 Vectors, and a Radius
GKS3D$K_GDP_ARC_2PT_RAD Arc: Two Points on Arc and Radius
GKS3D$K_GDP_ARC_CTR_PT_ANG Arc: Center, Starting Point, and Angle
GKS3D$K_GDP_ELLIPSE_CTR_AXES Ellipse: Center, and Two Axis Vectors
GKS3D$K_GDP_ELLIPSE_FOCII_PT Ellipse: Focal Points and Point on

Circumference
GKS3D$K_GDP_ELIARC_CTR_AXES_2V Elliptic Arc: Center, Two Axis Vectors,

and Two Vectors

5–12 Output Functions

GENERALIZED DRAWING PRIMITIVE

GDP Identifier Description

GKS3D$K_GDP_ELIARC_FOCII_2PT Elliptic Arc: Focal Points and Two Points
on Circumference

GKS3D$K_GDP_RECT_2PT Rectangle: Two Corners
GKS3D$K_GDP_FILL_AREA_SET Fill Area Set
GKS3D$K_GDP_FCIRCLE_CTR_PT Filled Circle: Center and Point on

Circumference
GKS3D$K_GDP_FCIRCLE_3PT Filled Circle: Three Points on

Circumference
GKS3D$K_GDP_FCIRCLE_CTR_RAD Filled Circle: Center and Radius
GKS3D$K_GDP_FCIRCLE_2PT_RAD Filled Circle: Two Points on

Circumference, and Radius
GKS3D$K_GDP_FARC_CTR_2PT Filled Arc: Center and Two Points on Arc
GKS3D$K_GDP_FARC_3PT Filled Arc: Three Points on Circumference
GKS3D$K_GDP_FARC_CTR_2V_RAD Filled Arc: Center, Two vectors, and a

Radius
GKS3D$K_GDP_FARC_2PT_RAD Filled Arc: Two Points on Arc, and Radius
GKS3D$K_GDP_FARC_CTR_PT_ANG Filled Arc: Center, Starting Point, and

Angle
GKS3D$K_GDP_FELLIPSE_CTR_AXES Filled Ellipse: Center and Two Axis

Vectors
GKS3D$K_GDP_FELLIPSE_FOCII_PT Filled Ellipse: Focal Points and Point on

Circumference
GKS3D$K_GDP_FELIARC_CTR_AXES_2V Filled Elliptic Arc: Center, Two Axis

Vectors, and Two Vectors
GKS3D$K_GDP_FELIARC_FOCII_2PT Filled Elliptic Arc: Focal Points and Two

Points on Circumference
GKS3D$K_GDP_FRECT_2PT Filled Rectangle: Two Corners
GKS3D$K_GDP_IMAGE_ARRAY Packed Cell Array

Description

The GENERALIZED DRAWING PRIMITIVE function generates a generalized
drawing primitive (GDP) of the type you specify, using specified points and any
additional information contained in a data record.

A GDP is a device-specific primitive that is not supported as a primitive by GKS.
For example, using DEC GKS, you can pass a center WC point and a perimeter
WC point to this function, and the specified workstation that supports such a
GDP draws a circle on the workstation surface.

The definition of the particular GDP primitive specifies which sets of attributes
the workstation uses to generate the primitive. For example, the GDPs that
generate circles use the set of polyline attributes.

Depending on the workstation-dependent requirements of the GDP, DEC GKS
may or may not generate the primitive if certain points fall outside the current
workstation window. If a workstation cannot generate a GDP because points
fall outside of the current workstation window, DEC GKS generates an error
message.

Output Functions 5–13

GENERALIZED DRAWING PRIMITIVE

For more information on GDPs, see the Device Specifics Reference Manual for
DEC GKS and DEC PHIGS.

See Also

SIZEOF
Example 5–2 for a program example using the GENERALIZED DRAWING
PRIMITIVE function

5–14 Output Functions

GENERALIZED DRAWING PRIMITIVE 3

GENERALIZED DRAWING PRIMITIVE 3

Operating States

WSAC, SGOP

Syntax

gks3d$gdp3 (n_points, pts_array, gdp_id, data_rec, data_rec_len)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of points in GDP.
pts_array Array of

reals
Read Reference Array of X, Y, Z values of WC points.

The number of array elements should
match the value of n_points.

gdp_id Integer Read
(constant)

Reference GDP identifier.

data_rec Record Read Reference GDP data record address. See the
Device Specifics Reference Manual for
DEC GKS and DEC PHIGS for the
appropriate data record.

data_rec_
len

Integer Read Reference GDP data record size, in bytes.

Description

The GENERALIZED DRAWING PRIMITIVE 3 function generates a generalized
drawing primitive (GDP) of the type you specify, using specified points and any
additional information contained in a data record.

A GDP is a device-specific primitive that is not supported as a primitive by GKS.
For example, using DEC GKS, you can pass a center WC point and a perimeter
WC point to this function, and the specified workstation that supports such a
GDP draws a circle on the workstation surface.

The definition of the particular GDP primitive specifies which sets of attributes
the workstation uses to generate the primitive. For example, the GDPs that
generate circles use the set of polyline attributes.

Depending on the workstation-dependent requirements of the GDP, DEC GKS
may or may not generate the primitive if certain points fall outside the current
workstation window. If a workstation cannot generate a GDP because points
fall outside of the current workstation window, DEC GKS generates an error
message.

Note

Three-dimensional GDPs are not currently supported. If you call this
function, DEC GKS generates an error message.

Output Functions 5–15

GENERALIZED DRAWING PRIMITIVE 3

See Also

SIZEOF
Example 5–2 for a program example using the GENERALIZED DRAWING
PRIMITIVE function

5–16 Output Functions

POLYLINE

POLYLINE

Operating States

WSAC, SGOP

Syntax

gks3d$polyline (n_points, pts_array)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of points in polyline.
pts_array Array of

reals
Read Reference Array of X and Y coordinates of WC

points describing the polyline. The
coordinates are stored in the order X1,
Y1, X2, Y2, . . . Xn, Yn, where n is the
number of points in the polyline.

Description

The POLYLINE function draws one or more straight lines, connecting the WC
points passed to this function in the order specified. By default, this function
draws line segments as solid lines, at the nominal width, in the foreground color.

See Also

SET LINETYPE
SET LINEWIDTH SCALE FACTOR
SET PICK IDENTIFIER
SET POLYLINE COLOUR INDEX
Example 6–3 for a program example using the POLYLINE function

Output Functions 5–17

POLYLINE 3

POLYLINE 3

Operating States

WSAC, SGOP

Syntax

gks3d$polyline3 (n_points, pts_array)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of points in polyline.
pts_array Array of

reals
Read Reference Array of X, Y, and Z coordinates of WC

points describing the polyline. The
points are stored in the order X1, Y1,
Z1, X2, Y2, Z2, . . . Xn, Yn, Zn, where n
is the number of points in the polyline.

Description

The POLYLINE 3 function draws one or more straight lines, connecting the
three-dimensional WC points passed to this function in the order specified. By
default, this function draws line segments as solid lines, at the nominal width, in
the foreground color.

See Also

SET LINETYPE
SET LINEWIDTH SCALE FACTOR
SET PICK IDENTIFIER
SET POLYLINE COLOUR INDEX
Example 6–3 for a program example using the POLYLINE function

5–18 Output Functions

POLYMARKER

POLYMARKER

Operating States

WSAC, SGOP

Syntax

gks3d$polymarker (n_points, pts_array)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of polymarker coordinate
locations.

pts_array Array of
reals

Read Reference Array containing values of 2D WC
points. The number of array elements
must be twice the value of n_points.
The points are stored in the order X1,
Y1, X2, Y2, . . . Xn, Yn, where n is the
number of polymarker locations.

Description

The POLYMARKER function places one or more special symbols called
polymarkers at the specified WC points. By default, this function produces
an asterisk polymarker, at the nominal size, in the workstation-specific default
foreground color.

If clipping is enabled, and if the polymarker coordinate point is outside of the
clipping rectangle, DEC GKS clips the entire polymarker. If clipping is enabled, if
the polymarker coordinate point is inside of the clipping rectangle, and if portions
of the polymarker exceed the boundaries of the clipping rectangle, the extent of
the clipping is device dependent.

See Also

SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE
SET PICK IDENTIFIER
SET POLYMARKER COLOUR INDEX
Example 6–4 for a program example using the POLYMARKER function

Output Functions 5–19

POLYMARKER 3

POLYMARKER 3

Operating States

WSAC, SGOP

Syntax

gks3d$polymarker3 (n_points, pts_array)

Argument Data Type Access Passed by Description

n_points Integer Read Reference Number of polymarker coordinate
locations.

pts_array Array of
reals

Read Reference Array containing values of 3D WC
points. The number of array elements
must be three times the value of n_
points. The points are stored in the
order X1, Y1, Z1, X2, Y2, Z2, . . . Xn,
Yn, Zn, where n is the number of
polymarker locations.

Description

The POLYMARKER 3 function places one or more special symbols called
polymarkers at the specified three-dimensional WC points. By default, this
function produces an asterisk polymarker, at the the nominal size, in the
workstation-specific default foreground color.

If clipping is enabled, and if the polymarker coordinate point is outside the
clipping rectangle, DEC GKS clips the entire polymarker. If clipping is enabled,
if the polymarker coordinate point is inside the clipping rectangle, and if portions
of the polymarker exceed the boundaries of the clipping rectangle, the extent of
the clipping is device dependent.

See Also

SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE
SET PICK IDENTIFIER
SET POLYMARKER COLOUR INDEX
Example 6–4 for a program example using the POLYMARKER function

5–20 Output Functions

TEXT

TEXT

Operating States

WSAC, SGOP

Syntax

gks3d$text (point, text_string)

Argument Data Type Access Passed by Description

point Array of
reals

Read Reference X and Y WC values for the text
starting position

text_string Character
string

Read Descriptor Text string to be written to the
workstation

Description

The TEXT function writes a character string that DEC GKS positions according
to the specified WC point and the current text attributes.

Depending on the current text attributes, DEC GKS positions the first character,
the last character, or the middle of the text string at this WC point. By default,
DEC GKS positions the first character in the string at this point and writes
subsequent characters to the right of the starting point.

The shape of the characters within the text string may vary depending on
the current text attributes, the current normalization transformation, and the
particular workstation capabilities.

There are text attributes that control the nongeometric text properties (text font
and precision, character expansion factor, character spacing, and text color index)
and the geometric text properties (character height, character up vector, character
path, and character alignment).

The portion of the string that DEC GKS clips depends on both the current text
attributes and the workstation capabilities as follows:

• String precision: The string is clipped in a workstation-dependent manner.

• Character precision: The string is clipped character by character.

• Stroke precision: The string is clipped exactly at the normalization viewport.

See Also

SET CHARACTER EXPANSION FACTOR
SET CHARACTER HEIGHT
SET CHARACTER SPACING
SET CHARACTER UP VECTOR
SET PICK IDENTIFIER
SET TEXT ALIGNMENT
SET TEXT COLOUR INDEX
SET TEXT FONT AND PRECISION
SET TEXT PATH
Example 6–4 for a program example using the TEXT function

Output Functions 5–21

TEXT 3

TEXT 3

Operating States

WSAC, SGOP

Syntax

gks3d$text3 (point, dir_vec1, dir_vec2, text_string)

Argument Data Type Access Passed by Description

point Array of 3
reals

Read Reference Array containing WC point coordinates
for string positioning.

dir_vec1,
dir_vec2

Array of 3
reals

Read Reference Two 3D vectors describing the
text plane. The text plane is
vector_1�vector_2.

text_string Character
string

Read Descriptor Text string to be written to the
workstation.

Description

The TEXT 3 function writes a character string that DEC GKS positions according
to the specified WC point and the current text attributes.

Depending on the current text attributes, DEC GKS positions the first character,
the last character, or the middle of the text string at this WC point. By default,
DEC GKS positions the first character in the string at this point and writes
subsequent characters to the right of the starting point.

The orientation of the characters is given by text direction vectors. The shape of
the characters depends on the current text attributes, the current normalization
transformation, and the workstation capabilities.

The portion of the string that DEC GKS clips depends on both the current text
attributes and the workstation capabilities as follows:

• String precision: The string is clipped in a workstation-dependent manner.

• Character precision: The string is clipped character by character.

• Stroke precision: The string is clipped exactly at the normalization viewport.

See Also

SET CHARACTER EXPANSION FACTOR
SET CHARACTER HEIGHT
SET CHARACTER SPACING
SET CHARACTER UP VECTOR
SET PICK IDENTIFIER
SET TEXT ALIGNMENT
SET TEXT COLOUR INDEX
SET TEXT FONT AND PRECISION
SET TEXT PATH
Example 6–4 for a program example using the TEXT function

5–22 Output Functions

Output Functions
5.7 Program Examples

5.7 Program Examples
Example 5–1 illustrates the use of the CELL ARRAY function.

Example 5–1 Cell Array Output

/*
* This code example draws alternating white and black vertical stripes
* using the CELL ARRAY function.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS3D$ binding definition file */

define XDIM 10
define YDIM 1

main()
{

int colia[XDIM][YDIM];
int default_conid;
int default_wstype;
int defer_mode;
int device_num;
float diag_pt[2];
int i;
int input_class;
int input_status;
float loc_x;
float loc_y;
int num_ydim;
int num_xdim;
int offset_x;
int offset_y;
int regen_mode;
float start_pt[2];
float timeout;
int update_flag;
int ws_id;
int xform;

/*
* Set up the color 2D array descriptor. See gksdescrip.h for more
* information.
*/

define DIMCT 2

struct
{
struct dsc$descriptor_a dsc;
char *dsc$a_a0;
long dsc$l_m [DIMCT];
struct
{
long dsc$l_l; /* Lower bound */
long dsc$l_u; /* Upper bound */
} dsc$bounds [DIMCT];

} colia_d;

(continued on next page)

Output Functions 5–23

Output Functions
5.7 Program Examples

Example 5–1 (Cont.) Cell Array Output

/*
* Initialize the color array descriptor.
*
* An alternate coding method is to use the macro INIT_CC_INT_2DARRAY, which
* is defined in gksdescrip.h. The syntax is as follows:
* INIT_CC_INT_2DARRAY (colia_d, colia, XDIM, YDIM)
* See gksdescrip.h for more information on the descriptor elements.
*/

colia_d.dsc.dsc$w_length = sizeof (int);
colia_d.dsc.dsc$b_dtype = DSC$K_DTYPE_L;
colia_d.dsc.dsc$b_class = DSC$K_CLASS_A;
colia_d.dsc.dsc$a_pointer = (char *)colia;
*(char *)&colia_d.dsc.dsc$b_aflags = 0;
*(char *)&colia_d.dsc.dsc$b_aflags =

(0<<4) | (0<<5) | (1<<6) | (1<<7);
colia_d.dsc.dsc$b_dimct = 2;
colia_d.dsc.dsc$l_arsize = XDIM * YDIM * sizeof(int);
colia_d.dsc$a_a0 = (char *)colia;
colia_d.dsc$l_m[0] = XDIM;
colia_d.dsc$l_m[1] = YDIM;
colia_d.dsc$bounds[0].dsc$l_l = 0;
colia_d.dsc$bounds[0].dsc$l_u = XDIM-1;
colia_d.dsc$bounds[1].dsc$l_l = 0;
colia_d.dsc$bounds[1].dsc$l_u = YDIM-1;

/* Initialize the color index array. */

for (i = 0; i < 10; i += 2)
{
colia[i][0] = 0;
colia[i+1][0] = 1;
}

/* Open the GKS and workstation environments. */

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT;
defer_mode = GKS3D$K_ASAP;
regen_mode = GKS3D$K_IRG_ALLOWED;
ws_id = 1;

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);
gks3d$set_defer_state (&ws_id, &defer_mode, ®en_mode);

/* Draw the stripes. Wait 5 seconds. */

diag_pt[0] = 1.0;
diag_pt[1] = 1.0;
num_xdim = XDIM;
num_ydim = YDIM;
offset_x = 0;
offset_y = 0;
start_pt[0] = 0.0;
start_pt[1] = 0.0;
timeout = 5.0;
update_flag = GKS3D$K_POSTPONE_FLAG;

(continued on next page)

5–24 Output Functions

Output Functions
5.7 Program Examples

Example 5–1 (Cont.) Cell Array Output

gks3d$cell_array (start_pt, diag_pt, &offset_x, &offset_y,
&num_xdim, &num_ydim, &colia_d);

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/* Release the GKS and workstation environments. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 5–1 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Figure 5–1 Cell Array Output

ZK−4015A−GE

Output Functions 5–25

Output Functions
5.7 Program Examples

Example 5–2 illustrates the use of the GENERALIZED DRAWING PRIMITIVE
function.

Example 5–2 Generalized Drawing Primitive Output

/*
* This program creates an unfilled circle using the GDP
* GKS3D$K_GDP_CIRCLE_3PT (-102).
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS3D$ binding definition file */

main()
{

int data_record[1];
int default_conid;
int default_wstype;
int device_num;
int gdp_id;
int input_class;
int num_points = 3;
float pts_array[3][2];
int record_size = 0;
float timeout = 5.00;
int update_flag;
int ws_id = 1;

/* Open the GKS and workstation environments. */

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT;

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/* Specify the points that define the circle. */

pts_array[0][0] = 0.1; pts_array[0][1] = 0.5;
pts_array[1][0] = 0.5; pts_array[1][1] = 0.1;
pts_array[2][0] = 0.9; pts_array[2][1] = 0.5;

/*
* The constant GKS3D$K_GDP_CIRCLE_3PT specifies the GDP identification
* number -102. This GDP creates a circle using three points on a circle’s
* circumference. This particular GDP does not require a data record to
* perform its task. Notice that DEC GKS uses the current polyline
* attributes to create the circle.
*/

gdp_id = GKS3D$K_GDP_CIRCLE_3PT;
update_flag = GKS3D$K_PERFORM_FLAG;

gks3d$gdp (&num_points, pts_array, &gdp_id, data_record,
&record_size);

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

(continued on next page)

5–26 Output Functions

Output Functions
5.7 Program Examples

Example 5–2 (Cont.) Generalized Drawing Primitive Output

/* Release the GKS and workstation environments. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 5–2 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Figure 5–2 Generalized Drawing Primitive Output

ZK−4013A−GE

Output Functions 5–27

Attribute Functions

Insert tabbed divider here. Then discard this sheet.

6
Attribute Functions

The DEC GKS attribute functions affect the appearance of generated output
primitives.

The GKS state list stores the current value of the attributes for each output
function. These attributes specify the exact appearance of the object drawn. For
example, when you call POLYLINE, the attributes line type, width scale factor,
and color specify the form, thickness, and color of the line. In the GKS state list,
these current attributes are stored in the entries current line type, current line
width scale factor, and current polyline color index.

When you call a DEC GKS output function, the attributes are bound to the
primitive. If the primitive’s attributes are individual, then you cannot change
these attributes; changes to attributes only affect subsequent output. If the
primitive’s attributes are bundled, then you may be able to change the attributes
of previously generated primitives by calling one of the representation functions,
depending on the capabilities of your device. See Section 6.2 for more information
concerning individual and bundled attributes.

6.1 Types of Attributes
Attributes can affect geometric, nongeometric, viewing, and pick
identification aspects of a graphic image. The geometric, nongeometric,
and viewing aspects of a graphic image directly affect how the primitive appears
on the workstation surface. The viewing attributes are the view index and the
HLHSR identifier. The view index is a pointer to a workstation view table entry.
The HLHSR identifier provides hidden line and hidden surface information
about the primitive. For more information on viewing, see Chapter 7. The pick
identification attribute is used to identify a primitive, or group of primitives, in
a segment when that segment is picked. For complete details concerning pick
input, see Chapter 9.

Most output functions have nongeometric attributes that are changeable.
Nongeometric attributes affect the style and the pattern of the output primitives
(such as polyline color, text spacing, and fill area interior style). Because the
nongeometric attributes are scale factors and nominal sizes, the effects of these
attributes are device dependent.

Nominal sizes are the default sizes of markers and line widths as defined by a
graphics handler. In most cases the nominal size is also the smallest size that a
workstation can produce, but not always. DEC GKS multiplies the scale factor
values by the nominal size to reset a marker size or polyline width. The default
value for a scale factor is 1.0 (the nominal size multiplied by the value 1.0,
producing no change in size).

Attribute Functions 6–1

Attribute Functions
6.1 Types of Attributes

Geometric attributes affect the size or positioning of text, fill area, and fill area
set primitives (such as text height, character path, and pattern size). Text,
fill area, and fill area set are the only output primitives that have changeable
geometric attributes. The geometric attributes are specified in world coordinate
(WC) units. Therefore, because the WC units are device independent, the
geometric attributes are device independent.

Table 6–1 lists the attributes and whether an attribute is geometric or
nongeometric.

Table 6–1 Geometric and Nongeometric Attributes

Function Attribute Type

Polyline Polyline index Nongeometric

Line type Nongeometric

Line width scale factor Nongeometric

Polyline color index Nongeometric

Polymarker Polymarker index Nongeometric

Marker type Nongeometric

Marker size scale factor Nongeometric

Polymarker color index Nongeometric

Text Text index Nongeometric

Text font and precision Nongeometric

Character expansion factor Nongeometric

Character spacing Nongeometric

Text color index Nongeometric

Character height Geometric

Character up vector Geometric

Text path Geometric

Text alignment Geometric

Fill area Fill area index Nongeometric

Fill area interior style Nongeometric

Fill area style index Nongeometric

Fill area color index Nongeometric

Pattern size Geometric

Pattern reference point and vectors Geometric

(continued on next page)

6–2 Attribute Functions

Attribute Functions
6.1 Types of Attributes

Table 6–1 (Cont.) Geometric and Nongeometric Attributes

Function Attribute Type

Fill area set Fill area index Nongeometric

Fill area interior style Nongeometric

Fill area style index Nongeometric

Fill area color index Nongeometric

Edge index Nongeometric

Edge flag Nongeometric

Edge type Nongeometric

Edge width scale factor Nongeometric

Edge color index Nongeometric

Pattern size Geometric

Pattern reference point and vectors Geometric

Notice that there are no geometric or nongeometric attribute functions specifically
designed to alter the cell array or the generalized drawing primitives (GDPs). A
cell array is simply an array of indexes that point to the workstation’s color table.

The GDP has no geometric or nongeometric attributes specifically designed for it.
Depending on the workstation-specific GDP data record, you may need to specify
any number of the polyline, polymarker, text, fill area, or fill area set attribute
values, depending on the nature of the GDP.

6.2 Individual and Bundled Attribute Values
The current values of each attribute are listed individually in the GKS state list.
By default, a call to an output function uses these individual attribute values
to generate the primitive. Because DEC GKS stores these individual attributes
in the GKS state list, they are device independent. If you specify attributes
individually, you cannot change a primitive’s appearance on the workstation
surface once you have generated it.

However, there is a second method used to specify attribute values. Each
workstation can define a number of attribute bundles for an output primitive.
Each bundle is an entry in a table that contains attribute values for each of the
nongeometric values of that particular output primitive. DEC GKS stores bundle
tables in the workstation state lists, thereby making the bundle table entries
device dependent. You specify bundle table entries by specifying a bundle index
value that points into the table. Most workstations provide a fill area bundle
index 1, but the resulting fill area can look different on each workstation.

For example, a polyline bundle contains table entries for polyline index, line
type, line width scale factor, and polyline color index. A workstation can define
a bundle table entry with the index 1 that specifies a solid line type. The same
workstation can define another bundle table entry with the index 2 that specifies
a dashed line type. The attributes associated with a bundle table index constitute
that index’s representation.

When you call an output function, DEC GKS uses the current individual output
values stored in the GKS state list, by default. If you wish to use the device-
dependent bundle table indexes, you must change the attribute’s aspect source
flag (ASF). The ASFs are described in Section 6.2.1.

Attribute Functions 6–3

Attribute Functions
6.2 Individual and Bundled Attribute Values

If you use bundled attributes for primitives, you can change the appearance of
the generated primitive by redefining its bundle index representation. For many
workstations, changing index representations requires an implicit regeneration,
which erases all primitives not contained in segments. For complete information
concerning the representation functions, see Section 6.2.2.

To review the initial individual attributes and the bundle tables available on a
given workstation, see Appendix E.

6.2.1 Aspect Source Flags (ASFs)
When you call an output function, DEC GKS uses the individual output attributes
by default. To use bundle tables of attributes, you must establish a set of aspect
source flags (ASFs).

The set of ASFs is a 13-element integer array, one element for every nongeometric
attribute. Each element contains either the value GKS3D$K_ASF_BUNDLED
(0) or the value GKS3D$K_ASF_INDIVIDUAL (1). By passing this array to the
function SET ASPECT SOURCE FLAGS, DEC GKS uses either the individual
attribute value or the bundled value in the bundle table specified by the current
bundle index.

For a complete description of ASFs, see the SET ASPECT SOURCE FLAGS
function description in this chapter.

Note

If you store primitives in a segment and if you want to be able to change
the primitive’s appearance elsewhere in the program, you must set the
primitive’s ASF to be GKS3D$K_ASF_BUNDLED before you generate the
primitive. In this way, the primitive’s ASF is stored in the segment with
the primitive. If you want to change the primitive’s appearance, call the
appropriate SET REPRESENTATION function (see Section 6.2.2) for the
primitive’s bundle index. If you store the primitive in a segment using
individual attributes, the appearance of the primitive cannot be changed.

6.2.2 Dynamic Changes and Implicit Regeneration
When working with bundled attributes, you can use any bundle index value
predefined by your workstation. You can even alter the existing bundles
table entries, or create new entries, using the representation functions (SET
POLYLINE REPRESENTATION, SET POLYMARKER REPRESENTATION, and
so on).

If you use the SET . . . REPRESENTATION functions, use caution. Depending
on the capabilities of your workstation, DEC GKS may implement the change
immediately, or the change may require an implicit regeneration of the surface.
An implicit regeneration clears the screen and only redraws the visible segments.
You lose all primitives not contained in segments. Many of the DEC GKS
supported workstations suppress implicit regenerations because of the loss of all
primitives not contained in segments.

For a detailed description of implicit regeneration, see Chapter 4.

6–4 Attribute Functions

Attribute Functions
6.3 Foreground and Background Colors

6.3 Foreground and Background Colors
The default color index value is 1, which corresponds to the workstation’s
foreground color. All the default individual color indexes in the GKS state list are
set to the value 1.

On an OUTIN or OUTPUT workstation, the color of a ‘‘blank’’ surface is called
the background color. The color of characters written to the workstation surface
is called the foreground color.

Unless you change these color index values using the function SET COLOUR
REPRESENTATION, the color index value 0 corresponds to the workstation’s
background color, and the color index value 1 corresponds to the workstation’s
default foreground color. If the workstation supports more than two color indexes,
values greater than 1 correspond to alternative foreground colors.

6.4 Attribute Inquiries
The following list presents the inquiry functions that you can use to obtain
attribute information when writing device-independent code:

INQUIRE COLOUR FACILITIES
INQUIRE COLOUR REPRESENTATION
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES (3)
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES (3)
INQUIRE FILL AREA FACILITIES
INQUIRE FILL AREA REPRESENTATION
INQUIRE LIST OF COLOUR INDICES
INQUIRE LIST OF FILL AREA INDICES
INQUIRE LIST OF PATTERN INDICES
INQUIRE LIST OF POLYLINE INDICES
INQUIRE LIST OF POLYMARKER INDICES
INQUIRE LIST OF TEXT INDICES
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES
INQUIRE PATTERN FACILITIES
INQUIRE PATTERN REPRESENTATION
INQUIRE POLYLINE FACILITIES
INQUIRE POLYLINE REPRESENTATION
INQUIRE POLYMARKER FACILITIES
INQUIRE POLYMARKER REPRESENTATION
INQUIRE PREDEFINED COLOUR REPRESENTATION
INQUIRE PREDEFINED EDGE REPRESENTATION
INQUIRE PREDEFINED FILL AREA REPRESENTATION
INQUIRE PREDEFINED PATTERN REPRESENTATION
INQUIRE PREDEFINED POLYLINE REPRESENTATION
INQUIRE PREDEFINED POLYMARKER REPRESENTATION
INQUIRE PREDEFINED TEXT REPRESENTATION
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE TEXT FACILITIES
INQUIRE TEXT REPRESENTATION

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

Attribute Functions 6–5

Attribute Functions
6.5 Function Descriptions

6.5 Function Descriptions
This section describes the DEC GKS attribute functions in detail.

6–6 Attribute Functions

SET ASPECT SOURCE FLAGS

SET ASPECT SOURCE FLAGS

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_asf (flags)

Argument Data Type Access Passed by Description

flags Array of
integers
(constant)

Read Reference Array of 13 ASFs

Constants

Defined
Argument Constant Description

flags GKS3D$K_ASF_BUNDLED Bundled attributes
GKS3D$K_ASF_INDIVIDUAL Individual attributes

Description

The SET ASPECT SOURCE FLAGS function specifies to DEC GKS whether
to use the bundled or the individual method for designating each of the
nongeometric output attributes.

There are 13 nongeometric ASFs. These flags are as follows:

1. Polyline type

2. Polyline width

3. Polyline color

4. Polymarker type

5. Polymarker size

6. Polymarker color

7. Text font and precision

8. Character expansion

9. Character spacing

10. Text color

11. Fill area interior style

12. Fill area style index

13. Fill area color

Attribute Functions 6–7

SET ASPECT SOURCE FLAGS

If the value in the corresponding element is GKS3D$K_ASF_INDIVIDUAL, DEC
GKS uses the individual attribute setting. If the value in the corresponding
element is GKS3D$K_ASF_BUNDLED, DEC GKS uses the bundle table index to
find the attribute setting.

The initial value for each ASF is GKS3D$K_ASF_INDIVIDUAL, which causes
the output functions to use the current individual value for each nongeometric
attribute. Remember that when specified individually, attributes are workstation-
independent; when specified as a bundle, the attributes are workstation-
dependent. For example, most workstations provide a fill area bundle index
1, but the resulting fill area can look different on each workstation. For more
information concerning the bundle table indexes available for your workstation,
see the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET FILL AREA INDEX
SET POLYLINE INDEX
SET POLYMARKER INDEX
SET TEXT INDEX
Example 6–2 for a program example using the SET ASPECT SOURCE FLAGS
function

6–8 Attribute Functions

SET ASPECT SOURCE FLAGS 3

SET ASPECT SOURCE FLAGS 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_asf3 (flags)

Argument Data Type Access Passed by Description

flags Array of
integers
(constant)

Read Reference Array of 17 ASFs

Constants

Defined
Argument Constant Description

flags GKS3D$K_ASF_BUNDLED Bundled attributes
GKS3D$K_ASF_INDIVIDUAL Individual attributes

Description

The SET ASPECT SOURCE FLAGS 3 function specifies to DEC GKS whether
to use the bundled or the individual method for designating each of the
nongeometric output attributes.

There are 17 nongeometric ASFs. These flags are as follows:

1. Polyline type

2. Polyline width

3. Polyline color

4. Polymarker type

5. Polymarker size

6. Polymarker color

7. Text font and precision

8. Character expansion

9. Character spacing

10. Text color

11. Fill area interior style

12. Fill area style index

13. Fill area color

14. Edge flag

Attribute Functions 6–9

SET ASPECT SOURCE FLAGS 3

15. Edge type

16. Edge width

17. Edge color

If the value in the corresponding element is GKS3D$K_ASF_INDIVIDUAL, DEC
GKS uses the individual attribute setting. If the value in the corresponding
element is GKS3D$K_ASF_BUNDLED, DEC GKS uses the bundle table index to
find the attribute setting.

The initial value for each ASF is GKS3D$K_ASF_INDIVIDUAL, which causes
the output functions to use the current individual value for each nongeometric
attribute. Remember that when specified individually, attributes are workstation-
independent; when specified as a bundle, the attributes are workstation-
dependent. For example, most workstations provide a fill area bundle index
1, but the resulting fill area can look different on each workstation. For more
information concerning the bundle table indexes available for your workstation,
see the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET FILL AREA INDEX
SET POLYLINE INDEX
SET POLYMARKER INDEX
SET TEXT INDEX
Example 6–2 for a program example using the SET ASPECT SOURCE FLAGS
function

6–10 Attribute Functions

SET CHARACTER EXPANSION FACTOR

SET CHARACTER EXPANSION FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_expfac (exp_fac)

Argument Data Type Access Passed by Description

exp_fac Real Read Reference Character expansion factor

Description

The SET CHARACTER EXPANSION FACTOR function sets the current character
expansion factor entry in the GKS state list to the specified value. This function
alters the width of the generated characters, but not the height. The character
expansion factor is multiplied by the width-to-height ratio specified in the original
font specification to give the new character width.

The default for the current character expansion factor is the value 1.0, which
displays text using the width-to-height ratio specified in the font design.

When DEC GKS calculates the character width using the default character
height, the resulting text string is legible. However, certain normalization
transformations distort the text. You can use either the SET CHARACTER
EXPANSION FACTOR function or the SET CHARACTER HEIGHT function to
reestablish a legible character width.

See Also

SET ASPECT SOURCE FLAGS
SET CHARACTER HEIGHT
SET CHARACTER SPACING
SET TEXT INDEX
SET TEXT REPRESENTATION
TEXT

Attribute Functions 6–11

SET CHARACTER HEIGHT

SET CHARACTER HEIGHT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_height (height)

Argument Data Type Access Passed by Description

height Real Read Reference Character height in WC values. The
default value is 0.01.

Description

The SET CHARACTER HEIGHT function sets the geometric attribute, current
character height entry in the GKS state list to the specified WC unit value.

DEC GKS uses the value specified in the call to SET CHARACTER HEIGHT for
all subsequent calls to TEXT until you specify another value. If you specify a new
height to this function, DEC GKS expands text output to the closest height the
workstation is capable of producing. The default for the current text height is the
WC unit value 0.01. This is 0.01 of the default normalization window height (1.0).
Exercise caution if you change the size of the current normalization window, as
you may also have to readjust the character height.

Also remember that changing the text height automatically changes the character
expansion factor and the character spacing, in proportion to the text height
adjustment.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET WINDOW
Example 6–4 for a program example using the SET CHARACTER HEIGHT
function

6–12 Attribute Functions

SET CHARACTER SPACING

SET CHARACTER SPACING

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_spacing (spac_percent)

Argument Data Type Access Passed by Description

spac_
percent

Real Read Reference Spacing as a percentage of character
height. The default value is 0.0, which
displays text with adjacent character
bodies.

Description

The SET CHARACTER SPACING function sets the current text spacing entry in
the GKS state list to the specified value.

DEC GKS measures the spacing between characters as a fraction of the character
height; adjusting character height automatically adjusts spacing proportionately.
The character spacing value 0.0 places the character bodies next to each other
without any separating space contained in the font specification for the letter
bodies. Whether the characters actually touch depends on the type of font you are
using. Positive spacing values increase the space between characters; negative
values decrease the space. Using negative spacing values, it is possible to overlap
characters, or to actually reverse the text so that characters are written in the
opposite direction.

See Also

SET ASPECT SOURCE FLAGS
SET TEXT FONT AND PRECISION
SET TEXT INDEX
SET TEXT REPRESENTATION
TEXT

Attribute Functions 6–13

SET CHARACTER UP VECTOR

SET CHARACTER UP VECTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_upvec (up_vector)

Argument Data Type Access Passed by Description

up_vector Array of
reals

Read Reference X and Y unit values that specify the
slope of the character up vector. The
default value is (0.0, 1.0).

Description

The SET CHARACTER UP VECTOR function sets the geometric attribute,
current character up vector entry in the GKS state list to the specified value.

DEC GKS uses the value specified in the call to SET CHARACTER UP VECTOR
for all subsequent calls to TEXT until you specify another value. When you call
TEXT, you specify the starting point for the text. To establish an imaginary
line on which to output text, you must establish an upward direction. Once
an upward direction has been established, DEC GKS draws an imaginary line
perpendicular to this upward direction that runs through the starting point.
This perpendicular line is the imaginary line on which you can output text, by
positioning the text extent rectangle.

You specify the upward direction for character placement as a directional vector.
The vector begins at the starting point and proceeds in the direction of the current
character up vector entry. You establish the character up vector by specifying a
slope for the line.

For example, if you specify the WC unit values (1.0, 1.0) as the character up
vector, the up direction for the display of text follows the line passing from the
starting point to the point one point above and one point to the right of the
starting point. This would correspond to a 45-degree angle of rotation. Specifying
the values (200.0, 200.0), or the values (5.0, 5.0), is equivalent to specifying
(1.0, 1.0).

The initial value for the current character up vector entry is (0.0, 1.0), which
orients text perpendicular to the X axis and parallel to the Y axis, if the current
character path is RIGHT or LEFT.

See Also

SET CHARACTER HEIGHT
SET TEXT PATH

6–14 Attribute Functions

SET COLOUR MODEL

SET COLOUR MODEL

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_colour_model (ws_id, model)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
model Integer

(constant)
Read Reference Color model value

Constants

Defined
Argument Constant Description

model GKS3D$K_COLOUR_MODEL_RGB Red, green, and blue color model
GKS3D$K_COLOUR_MODEL_CIE Commision Internationale de

l’Eclairage color model
GKS3D$K_COLOUR_MODEL_HSV Hue, saturation, and value color model
GKS3D$K_COLOUR_MODEL_HLS Hue, lightness, and saturation color

model

Description

The SET COLOUR MODEL function sets the color model of the specified
workstation to the specified model value.

This function implicitly regenerates the workstation surface. Implicit
regeneration is described in the DEC GKS User’s Guide.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS. For a
description of the color models, see the DEC GKS User’s Guide.

Attribute Functions 6–15

SET COLOUR REPRESENTATION

SET COLOUR REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_colour_rep (ws_id, col_ind, comp1, comp2, comp3)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
col_ind Integer Read Reference Color index value.
comp1,
comp2,
comp3

Real Read Reference Color components. The values must be
in the range 0.0 to 1.0.

Description

The SET COLOUR REPRESENTATION function allows the user to redefine
an existing color index representation, or to define a new representation,
by specifying the color triplet associated with a specified bundle index. The
workstation maps the color you specify to the nearest available color the
workstation can produce.

All workstations define default color table entry indexes 0 and 1. By default, the
value 0 corresponds to the default background color (the color of an empty display
surface), and the value 1 corresponds to the default foreground color. Values
greater than 1 correspond to alternative foreground colors.

There are four different color models, and the values you use for the color triplet
vary according to the color model you use. The color models and their required
values are as follows:

Model Description Values

RGB Red intensity, green
intensity, blue
intensity

Each component must be in the range 0.0 to
1.0.

CIE X and Y chromaticity
coefficients,
luminance value
Y

Each component must be in the range 0.0 to
1.0.

HSV Hue, saturation, and
value

The hue component must be in the range
0.0 to 360.0, and the saturation and value
components must be in the range 0.0 to 1.0.

HLS Hue, lightness, and
saturation

The hue component must be in the range
0.0 to 360.0, and the saturation and value
components must be in the range 0.0 to 1.0.

Depending on the capabilities of your workstation, a call to this function may
cause DEC GKS to implicitly regenerate the workstation surface.

6–16 Attribute Functions

SET COLOUR REPRESENTATION

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

INQUIRE COLOUR FACILITIES
INQUIRE COLOUR REPRESENTATION
Example 6–1 for a program example using the SET COLOUR
REPRESENTATION function

Attribute Functions 6–17

SET EDGE COLOUR INDEX

SET EDGE COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_edge_colour_index (col_ind)

Argument Data Type Access Passed by Description

col_ind Integer Read Reference Edge color index

Description

The SET EDGE COLOUR INDEX function selects the current edge color index
entry in the GKS state list to the specified value. This value controls the display
of subsequent fill area set output primitives when the current edge color index
ASF has been set to INDIVIDUAL by the function SET ASPECT SOURCE
FLAGS 3. If this ASF is set to BUNDLED, the current edge flag has no effect.

The edge color index points into the color tables of the workstation and is a
positive integer. If the specified color index is not present in a workstation color
table, a workstation-dependent color index is used.

See Also

Example 6–4 for a program example using a SET . . . COLOUR INDEX function

6–18 Attribute Functions

SET EDGE FLAG

SET EDGE FLAG

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_edge_flag (flag)

Argument Data Type Access Passed by Description

flag Integer
(constant)

Read Reference Edge flag

Constants

Defined
Argument Constant Description

flag GKS3D$K_EDGE_FLAG_OFF Edge off. This is the default value.
GKS3D$K_EDGE_FLAG_ON Edge on.

Description

The SET EDGE FLAG function sets or resets the current edge flag entry in the
GKS state list to the specified value.

The current edge flag enables the display of subsequent fill area set output
primitives when the current edge flag ASF has been set to INDIVIDUAL by the
function SET ASPECT SOURCE FLAGS 3. If this ASF is set to BUNDLED, the
current edge flag has no effect.

Attribute Functions 6–19

SET EDGE INDEX

SET EDGE INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_edge_index (edge_ind)

Argument Data Type Access Passed by Description

edge_ind Integer Read Reference Edge index. The default value is 1.

Description

The SET EDGE INDEX function sets the current edge index entry in the GKS
state list to the specified index value. The edge bundle table contains entries for
the attribute values, edge flag, edge type, edge width scale factor, and edge color
index.

SET EDGE INDEX controls which edge bundle table entry will be used when
subsequent fill area set primitives are generated. Attribute values are taken
from the edge bundle table only if the edge ASFs were set to BUNDLED by the
function SET ASPECT SOURCE FLAG 3.

See Also

Example 6–2 for a program example using a SET . . . INDEX function

6–20 Attribute Functions

SET EDGE REPRESENTATION

SET EDGE REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gksd3d$set_edge_rep (ws_id, edge_ind, edge_flag, edgetype, edge_scale, col_ind)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
edge_ind Integer Read Reference Edge bundle table index value
edge_flag Integer

(constant)
Read Reference Edge flag

edgetype Integer
(constant)

Read Reference Edge type

edge_scale Real Read Reference Scale factor applied to nominal edge
width

col_ind Integer Read Reference Edge color index

Constants

Defined
Argument Constant Description

edge_flag GKS3D$K_EDGE_FLAG_OFF Edge off. This is the default value.
GKS3D$K_EDGE_FLAG_ON Edge on.

edgetype GKS3D$K_LINETYPE_SOLID Solid edge. This is the default
value.

GKS3D$K_LINETYPE_DASHED Dashed edge.
GKS3D$K_LINETYPE_DOTTED Dotted edge.
GKS3D$K_LINETYPE_DASHED_DOTTED Dashed-dotted edge.

Note

Other, nonstandard, edge types are available. See Appendix B.

Description

The SET EDGE REPRESENTATION function allows the user to redefine the
representation of an existing edge bundle table index, or to define a new edge
bundle table index value. If fill area sets are displayed with an edge index value
that is not in the edge bundle table, edge index 1 is used.

Attribute Functions 6–21

SET EDGE REPRESENTATION

This function implicitly regenerates the workstation surface if the workstation is
capable of implicit regeneration. Implicit regeneration is described in the DEC
GKS User’s Guide.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

Example 6–1 for a program example using a SET . . . REPRESENTATION
function

6–22 Attribute Functions

SET EDGETYPE

SET EDGETYPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_edgetype (type)

Argument Data Type Access Passed by Description

type Integer
(constant)

Read Reference Edge type

Constants

Defined
Argument Constant Description

type GKS3D$K_LINETYPE_SOLID Solid edge. This is the default
value.

GKS3D$K_LINETYPE_DASHED Dashed edge.
GKS3D$K_LINETYPE_DOTTED Dotted edge.
GKS3D$K_LINETYPE_DASHED_DOTTED Dashed-dotted edge.

Note

Other, nonstandard, edge types are available. See Appendix B.

Description

The SET EDGETYPE function sets the current edge type entry in the GKS
state list to the specified value. The value of this entry controls the display of
subsequent fill area set output primitives when the current edge type ASF has
been set to INDIVIDUAL by the function SET ASPECT SOURCE FLAGS 3. If
this ASF is set to BUNDLED, the current edge flag has no effect.

See Also

Example 6–3 for a program example using a SET . . . TYPE function

Attribute Functions 6–23

SET EDGEWIDTH SCALE FACTOR

SET EDGEWIDTH SCALE FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_edgewidth_scale_fac (scale)

Argument Data Type Access Passed by Description

scale Real Read Reference Edge width scale factor. The default
value is 1.0.

Description

The SET EDGEWIDTH SCALE FACTOR function sets the current edge width
scale factor entry in the GKS state list to the specified value. This value controls
the display of subsequent fill area set output primitives when the current edge
width factor ASF has been set to INDIVIDUAL by the function SET ASPECT
SOURCE FLAGS 3. If this ASF is set to BUNDLED, the current edge flag has no
effect.

The edge width scale factor is supplied to the nominal workstation edge width,
and the result is mapped to the workstation in the nearest available edge width.

6–24 Attribute Functions

SET FILL AREA COLOUR INDEX

SET FILL AREA COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_fill_colour_index (col_ind)

Argument Data Type Access Passed by Description

col_ind Integer Read Reference Fill area color index. The default value
is 1, which designates the default
foreground color.

Description

The SET FILL AREA COLOUR INDEX function sets the current fill area color
index entry in the GKS state list to the specified index value. The specified
index value is used for the display of subsequent FILL AREA and FILL AREA
SET output primitives, created when the current fill area color index ASF is
INDIVIDUAL. This value does not affect the display of subsequent FILL AREA
and FILL AREA SET output primitives, created when the current fill area color
index ASF is BUNDLED.

If the specified color index is not present in a workstation color table, a
workstation-dependent color index is used on that workstation.

See Also

SET ASPECT SOURCE FLAGS
SET COLOUR REPRESENTATION
SET FILL AREA INDEX
SET FILL AREA REPRESENTATION
Example 6–1 for a program example using the SET FILL AREA COLOUR INDEX
function

Attribute Functions 6–25

SET FILL AREA INDEX

SET FILL AREA INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_fill_index (index)

Argument Data Type Access Passed by Description

index Integer Read Reference Fill area bundle index. The default
value is 1.

Description

The SET FILL AREA INDEX function establishes the index value pointing into
the fill area bundle table. This table contains entries for the attribute values, fill
area interior style, fill area style index, and fill area color index. When calling
the SET FILL AREA INDEX function, DEC GKS uses the bundle table only if the
corresponding ASF has been set to BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET FILL AREA REPRESENTATION
Example 6–2 for a program example using the SET FILL AREA INDEX function

6–26 Attribute Functions

SET FILL AREA INTERIOR STYLE

SET FILL AREA INTERIOR STYLE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_fill_int_style (int_style)

Argument Data Type Access Passed by Description

int_style Integer
(constant)

Read Reference Fill area interior style

Constants

Defined
Argument Constant Description

int_style GKS3D$K_INTSTYLE_HOLLOW Hollow interior. This is the default
value.

GKS3D$K_INTSTYLE_SOLID Solid interior.
GKS3D$K_INTSTYLE_PATTERN Patterned interior.
GKS3D$K_INTSTYLE_HATCH Hatched interior.

Description

The SET FILL AREA INTERIOR STYLE function sets the current fill area
interior style entry in the GKS state list to be hollow, solid, pattern, or hatched.
If you set the fill area interior style to SOLID, the FILL AREA function fills the
color designated by the current fill area color index.

If you select pattern, the FILL AREA function replicates a pattern (alternating
colors) to fill the interior of the polygon. The fill area attributes, pattern size,
and pattern reference point define the size and position of the start of the pattern
(see the SET PATTERN SIZE and the SET PATTERN REFERENCE POINT
functions). The fill area style index specifies the pattern to replicate (see the SET
FILL AREA STYLE INDEX function). Patterns cover underlying primitives.

If you select hatched, the FILL AREA function fills the interior of the polygon
with a series of parallel or cross-hatch lines in the color specified by the fill area
color index. The fill area style index specifies the chosen hatch style. The space
between the parallel or cross-hatch lines is transparent.

See the Device Specifics Reference Manual for DEC GKS and DEC PHIGS for
information on the hatch patterns available on your device.

Attribute Functions 6–27

SET FILL AREA INTERIOR STYLE

See Also

FILL AREA
SET ASPECT SOURCE FLAGS
SET FILL AREA INDEX
SET FILL AREA REPRESENTATION
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN SIZE
Example 6–1 for a program example using the SET FILL AREA INTERIOR
STYLE function

6–28 Attribute Functions

SET FILL AREA REPRESENTATION

SET FILL AREA REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_fill_rep (ws_id, fill_ind, int_style, style_ind, col_ind)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
fill_ind Integer Read Reference Fill area bundle table index value.
int_style Integer

(constant)
Read Reference Interior style index value.

style_ind Integer Read Reference Fill area style index. If the interior
style argument is either HOLLOW
or SOLID, DEC GKS ignores this
argument.

col_ind Integer Read Reference Fill area color index.

Constants

Defined
Argument Constant Description

int_style GKS3D$K_INTSTYLE_HOLLOW Hollow interior. This is the default
value.

GKS3D$K_INTSTYLE_SOLID Solid interior.
GKS3D$K_INTSTYLE_PATTERN Patterned interior.
GKS3D$K_INTSTYLE_HATCH Hatched interior.

Description

The SET FILL AREA REPRESENTATION function allows the user to redefine
an existing fill area bundle table index representation, or to define a new fill area
bundle table index value, by specifying the fill area interior style, fill area style
index value, and fill area color index associated with the specified bundle index.

Depending on the capabilities of your workstation, a call to the SET FILL AREA
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Attribute Functions 6–29

SET FILL AREA REPRESENTATION

See Also

SET ASPECT SOURCE FLAGS
SET FILL AREA INDEX
SET FILL AREA INTERIOR STYLE
Example 6–2 for a program example using the SET FILL AREA
REPRESENTATION function

6–30 Attribute Functions

SET FILL AREA STYLE INDEX

SET FILL AREA STYLE INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_fill_style_index (style_index)

Argument Data Type Access Passed by Description

style_index Integer Read Reference Fill area style index. The default value
is 1.

Description

The SET FILL AREA STYLE INDEX function sets the current fill area style index
entry in the GKS state list to the specified index value.

If the interior style is hollow or solid, the current style index is ignored for the
call to FILL AREA. If the interior style is pattern, you must pass a pattern index
value to this function. If the interior style is hatch, you must pass a hatch style
value to this function. For device-dependent hatch styles, the hatch style index is
always a negative number.

If the requested style index is not available on the specified workstation, the
workstation uses the style index 1. If style index 1 is not present on the
workstation, the resulting output is workstation dependent.

See Also

SET ASPECT SOURCE FLAGS
SET FILL AREA INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA REPRESENTATION
SET PATTERN REFERENCE POINT
SET PATTERN REPRESENTATION
SET PATTERN SIZE

Attribute Functions 6–31

SET HLHSR IDENTIFIER

SET HLHSR IDENTIFIER

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_hlhsr_id (hlhsr_id)

Argument Data Type Access Passed by Description

hlhsr_id Integer
(constant)

Read Reference HLHSR identifier

Constants

Defined
Argument Constant Description

hlhsr_id GKS3D$K_HLHSR_ID_NONE No HLHSR processing. This is the
default value.

GKS3D$K_HLHSR_ID_PAINTER Painters algorithm.

Description

The SET HLHSR IDENTIFIER function sets the current hidden line and hidden
surface removal (HLHSR) identifier to the value specified. If the requested
HLHSR identifier cannot be interpreted at the workstation, the workstation uses
another HLHSR identifier.

6–32 Attribute Functions

SET HLHSR MODE

SET HLHSR MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_hlhsr_mode (ws_id, hlhsr_mode)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
hlhsr_mode Integer

(constant)
Read Reference HLHSR mode

Constants

Defined
Argument Constant Description

hlhsr_mode GKS3D$K_HLHSR_MODE_OFF No HLHSR processing.
GKS3D$K_HLHSR_MODE_NONE No HLHSR processing. This is the

default value.
GKS3D$K_HLHSR_MODE_ON Use HLHSR processing.
GKS3D$K_HLHSR_MODE_
PAINTER

Painters algorithm.

Description

The SET HLHSR MODE function sets the requested HLHSR mode entry in the
workstation state list of the specified workstation to the specified mode value.
The effect of the specified mode value is influenced by the current settings of the
dynamic modification accepted for HLHSR mode (DMA) entry in the workstation
description table and the display surface empty (DSE) entry in the workstation
state list. If the DMA entry is IMM, or if the DSE entry is EMPTY, then the
current HLHSR mode is set to the specified value, and the HLHSR update state
is set to NOTPENDING. Otherwise, the current HLHSR mode is not changed,
and the HLHSR update state is set to PENDING.

Attribute Functions 6–33

SET LINETYPE

SET LINETYPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pline_linetype (type)

Argument Data Type Access Passed by Description

type Integer
(constant)

Read Reference Polyline type

Constants

Defined
Argument Constant Description

type GKS3D$K_LINETYPE_SOLID Solid line. This is the default
value.

GKS3D$K_LINETYPE_DASHED Dashed line.
GKS3D$K_LINETYPE_DOTTED Dotted line.
GKS3D$K_LINETYPE_DASHED_DOTTED Dashed-dotted line.

Note

Other, nonstandard, polyline types are available. See Appendix B.

Description

The SET LINETYPE function sets the current polyline type entry in the GKS
state list to solid, dashed, dotted, dashed-dotted, or any one of the device-
dependent types.

Every workstation capable of output (DEC GKS workstation category OUTPUT or
OUTIN) defines at least four line types. For more information concerning possible
polyline type values, see the Device Specifics Reference Manual for DEC GKS and
DEC PHIGS.

See Also

SET POLYLINE REPRESENTATION
Example 6–3 for a program example using the SET LINETYPE function

6–34 Attribute Functions

SET LINEWIDTH SCALE FACTOR

SET LINEWIDTH SCALE FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pline_linewidth (line_width)

Argument Data Type Access Passed by Description

line_width Real Read Reference Line width scale factor. The default
value is 1.0.

Description

The SET LINEWIDTH SCALE FACTOR function sets the current polyline width
scale factor entry in the GKS state list.

DEC GKS calculates line width as the nominal line width, multiplied by the line
width scale factor. The line width scale factor is a real number that you pass to
this function. The graphics handler maps the value to the nearest available line
width defined by the graphics handler.

Attribute Functions 6–35

SET MARKER SIZE SCALE FACTOR

SET MARKER SIZE SCALE FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pmark_size (mark_size)

Argument Data Type Access Passed by Description

mark_size Real Read Reference Marker size scale factor. The default
value is 1.0.

Description

The SET MARKER SIZE SCALE FACTOR function sets the current marker size
scale factor entry in the GKS state list to the specified value for all polymarker
types.

DEC GKS calculates polymarker size for all types (except the dot polymarker
type) as the nominal polymarker size multiplied by the polymarker size scale
factor. The polymarker size scale factor is a real number that you pass to
this function. The graphics handler maps the value to the nearest available
polymarker size defined by the handler. (The dot polymarker type is always the
smallest dot that the workstation can produce.)

See Also

POLYMARKER
SET ASPECT SOURCE FLAGS
SET POLYMARKER INDEX
SET POLYMARKER REPRESENTATION

6–36 Attribute Functions

SET MARKER TYPE

SET MARKER TYPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pmark_type (type)

Argument Data Type Access Passed by Description

type Integer
(constant)

Read Reference Polymarker type

Constants

Defined
Argument Constant Description

type GKS3D$K_MARKTYPE_DOT Dot.
GKS3D$K_MARKTYPE_PLUS Plus sign.
GKS3D$K_MARKTYPE_ASTERISK Asterisk. This is the

default value.
GKS3D$K_MARKTYPE_CIRCLE Circle.
GKS3D$K_MARKTYPE_DIAGONAL_CROSS Diagonal cross.

Note

Other, nonstandard, polymarker types are available. See Appendix B.

Description

The SET MARKER TYPE function sets the current marker type entry in the
GKS state list to be dot, plus sign, asterisk, circle, diagonal cross, or any of the
device-dependent types.

Every workstation capable of output (DEC GKS workstation category OUTPUT or
OUTIN) defines at least five polymarker types. For more information concerning
predefined polymarker type values, see the Device Specifics Reference Manual for
DEC GKS and DEC PHIGS.

See Also

POLYMARKER
SET MARKER SIZE SCALE FACTOR
SET POLYMARKER COLOUR INDEX
SET POLYMARKER INDEX
SET POLYMARKER REPRESENTATION
Example 6–4 for a program example using the SET MARKER TYPE function

Attribute Functions 6–37

SET PATTERN REFERENCE POINT

SET PATTERN REFERENCE POINT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pat_ref_pt (pr_pt)

Argument Data Type Access Passed by Description

pr_pt Array of
two reals

Read Reference Pattern reference point in WC values

Description

The SET PATTERN REFERENCE POINT function sets the geometric attribute,
current pattern reference point entry in the GKS state list.

The current pattern reference point attribute represents the starting point for
a pattern used to fill the designated area. DEC GKS uses this value for all
subsequent calls to FILL AREA until you specify another value.

Most of the DEC GKS supported workstations do not fully support this function.
They do accept the function call, but do not make any changes to the pattern. For
more information concerning patterns, see the Device Specifics Reference Manual
for DEC GKS and DEC PHIGS.

See Also

FILL AREA
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN SIZE

6–38 Attribute Functions

SET PATTERN REFERENCE POINT AND VECTORS

SET PATTERN REFERENCE POINT AND VECTORS

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pat_ref_pt_vec (pr_pt, ref_vec1, ref_vec2)

Argument Data Type Access Passed by Description

pr_pt Array of
three reals

Read Reference Pattern reference point coordinates in
WC values

ref_vec1,
ref_vec2

Array of
three reals

Read Reference Pattern reference vector coordinates in
WC values

Description

The SET PATTERN REFERENCE POINT AND VECTORS function sets the
geometric attributes, current pattern reference points 3 and current pattern
reference vectors entries in the GKS state list.

The current pattern reference point 3 attribute represents the starting point
for a pattern used to fill the designated area. DEC GKS uses this value for all
subsequent calls to the FILL AREA function until another value is specified.
When the currently selected fill area interior style is PATTERN, the current
pattern reference vectors attribute is used in conjunction with the current
pattern width and height vectors to display the fill area and fill area set output
primitives.

Most of the DEC GKS supported workstations do not fully support this function.
They do accept the function call, but do not make any changes to the pattern.

Attribute Functions 6–39

SET PATTERN REPRESENTATION

SET PATTERN REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_pat_rep (ws_id, patt_ind, offset_col_n, offset_row_n, num_columns,
num_rows, col_ind_arr)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
patt_ind Integer Read Reference Pattern bundle table index
offset_col_n,
offset_row_n

Integer Read Reference Offset into the color index array

num_columns,
num_rows

Integer Read Reference Number of rows and columns in the
color index array

col_ind_arr Array of
integers

Read Descriptor 2D array of color index values

Description

The SET PATTERN REPRESENTATION function allows the user to redefine an
existing pattern bundle table index representation, or to define a new pattern
bundle table index value, by specifying the number of cells high, the number of
cells wide, and an array containing each cell’s color index fill area associated with
the specified bundle index.

Depending on the capabilities of your workstation, a call to the SET PATTERN
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

CELL ARRAY
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN SIZE

6–40 Attribute Functions

SET PATTERN SIZE

SET PATTERN SIZE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pat_size (patt_width, patt_height)

Argument Data Type Access Passed by Description

patt_width,
patt_height

Real Read Reference Pattern width and height in WC values

Description

The SET PATTERN SIZE function specifies the geometric attribute, current
pattern size entry in the GKS state list, which is the height and width vectors in
WC units.

DEC GKS begins replicating the pattern representation at the pattern reference
point, and continues until the polygonal fill area in WC space is full. DEC GKS
uses this value for all subsequent calls to FILL AREA until you specify another
value.

Most of the DEC GKS supported workstations do not fully support this function.
They do accept the function call, but do not make any changes to the pattern. For
more information concerning patterns, see the Device Specifics Reference Manual
for DEC GKS and DEC PHIGS.

See Also

FILL AREA
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX

Attribute Functions 6–41

SET PICK IDENTIFIER

SET PICK IDENTIFIER

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pick_id (pick_id)

Argument Data Type Access Passed by Description

pick_id Integer Read Reference New pick identifier

Description

The SET PICK IDENTIFIER function sets the current pick identifier entry in
the GKS state list to the specified value. All subsequent output primitives stored
in segments are assigned the value specified to the SET PICK IDENTIFIER
function, until you change it.

Setting pick identifiers allows you another level of naming sections within
segments so that a user can pick portions of a segment without having to pick the
whole segment.

Note

DEC GKS continues to recognize the last pick identifier specified, even
after you close a segment. If you open another segment, DEC GKS
continues to associate the current segment identifier with the newly
output images. Consequently, if you specify a pick identifier in one
segment, make sure that you set the pick identifier properly when
opening another segment.

See Also

GET PICK
REQUEST PICK
SAMPLE PICK
Example 9–2 for a program example using the SET PICK IDENTIFIER function

6–42 Attribute Functions

SET POLYLINE COLOUR INDEX

SET POLYLINE COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pline_colour_index (col_ind)

Argument Data Type Access Passed by Description

col_ind Integer Read Reference Polyline color index. The default value
is 1.

Description

The SET POLYLINE COLOUR INDEX function sets the current polyline color
index entry in the GKS state list to the specified index value. The specified index
value is used for the display of subsequent polyline output primitives, created
when the current polyline color index ASF is INDIVIDUAL. This value does
not affect the display of subsequent polyline output primitives created when the
current fill area color index ASF is BUNDLED.

If the specified color index is not present in a workstation color table, a
workstation-dependent color index is used on that workstation.

See Also

SET COLOUR REPRESENTATION
Example 6–4 for a program example using a SET . . . COLOUR INDEX function

Attribute Functions 6–43

SET POLYLINE INDEX

SET POLYLINE INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pline_index (index)

Argument Data Type Access Passed by Description

index Integer Read Reference Polyline bundle table index. The
default value is 1.

Description

The SET POLYLINE INDEX function establishes the index value pointing into
the polyline bundle table.

The polyline bundle table contains entries for the attribute values, polyline color
index, polyline type, and polyline width scale factor. When calling this function,
DEC GKS uses the bundle table only if the corresponding ASF has been set to
BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET POLYLINE REPRESENTATION
Example 6–2 for a program example using a SET . . . INDEX function

6–44 Attribute Functions

SET POLYLINE REPRESENTATION

SET POLYLINE REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_pline_rep (ws_id, pline_index, line_type, line_width, col_ind)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
pline_index Integer Read Reference Polyline bundle table index
line_type Integer

(constant)
Read Reference Polyline type

line_width Real Read Reference Polyline width scale factor
col_ind Integer Read Reference Color index of polyline

Constants

Defined
Argument Constant Description

line_type GKS3D$K_LINETYPE_SOLID Solid line. This is the default
value.

GKS3D$K_LINETYPE_DASHED Dashed line.
GKS3D$K_LINETYPE_DOTTED Dotted line.
GKS3D$K_LINETYPE_DASHED_DOTTED Dashed-dotted line.

Note

Other, nonstandard, polyline types are available. See Appendix B.

Description

The SET POLYLINE REPRESENTATION function allows the user to redefine an
existing polyline bundle table index representation, or to define a new polyline
bundle table index value, by specifying the line type, the line width, and the line
color index associated with the specified bundle index.

Depending on the capabilities of your workstation, a call to the SET POLYLINE
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Attribute Functions 6–45

SET POLYLINE REPRESENTATION

See Also

SET ASPECT SOURCE FLAGS
SET LINETYPE
SET LINEWIDTH SCALE FACTOR
SET POLYLINE COLOUR INDEX
Example 6–1 for a program example using a SET . . . REPRESENTATION
function

6–46 Attribute Functions

SET POLYMARKER COLOUR INDEX

SET POLYMARKER COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pmark_colour_index (col_ind)

Argument Data Type Access Passed by Description

col_ind Integer Read Reference Polymarker color index. The default
value is 1, which designates the
default foreground color.

Description

The SET POLYMARKER COLOUR INDEX function sets the current polymarker
color index entry in the GKS state list to the specified value. The specified
index value is used for the display of subsequent polymarker output primitives,
created when the current polymarker color index ASF in the GKS state list is
INDIVIDUAL. This value does not affect the display of subsequent polymarker
output primitives created when the current fill area color index ASF in the GKS
state list is BUNDLED.

If the specified color index is not present in a workstation color table, a
workstation-dependent color index is used on that workstation.

See Also

SET ASPECT SOURCE FLAGS
SET POLYMARKER INDEX
SET POLYMARKER REPRESENTATION
Example 6–4 for a program example using the SET POLYMARKER COLOUR
INDEX function

Attribute Functions 6–47

SET POLYMARKER INDEX

SET POLYMARKER INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_pmark_index (index)

Argument Data Type Access Passed by Description

index Integer Read Reference Polymarker bundle index. The default
value is 1.

Description

The SET POLYMARKER INDEX function establishes the index value pointing
into the polymarker bundle table. This table contains entries for the attribute
values, polymarker color index, polymarker type, and polymarker size scale
factor. When calling the SET POLYMARKER INDEX function, DEC GKS uses
the bundle table only if the corresponding ASF has been set to BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET POLYMARKER REPRESENTATION
Example 6–2 for a program example using a SET . . . INDEX function

6–48 Attribute Functions

SET POLYMARKER REPRESENTATION

SET POLYMARKER REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_pmark_rep (ws_id, pmark_ind, mark_type, mark_size, col_ind)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
pmark_ind Integer Read Reference Polymarker bundle table index value
mark_type Integer

(constant)
Read Reference Polymarker type

mark_size Real Read Reference Polymarker size scale factor
col_ind Integer Read Reference Polymarker color index

Constants

Defined
Argument Constant Description

mark_type GKS3D$K_MARKTYPE_DOT Dot.
GKS3D$K_MARKTYPE_PLUS Plus sign.
GKS3D$K_MARKTYPE_ASTERISK Asterisk. This is the

default value.
GKS3D$K_MARKTYPE_CIRCLE Circle.
GKS3D$K_MARKTYPE_DIAGONAL_CROSS Diagonal cross.

Note

Other, nonstandard, polymarker types are available. See Appendix B.

Description

The SET POLYMARKER REPRESENTATION function allows the user to
redefine an existing polymarker bundle table index representation, or to define
a new polymarker bundle table index value, by specifying the polymarker type,
the polymarker size, and the polymarker color index associated with the specified
bundle index.

Depending on the capabilities of your workstation, a call to the SET
POLYMARKER REPRESENTATION function may cause DEC GKS to implicitly
regenerate the workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Attribute Functions 6–49

SET POLYMARKER REPRESENTATION

See Also

SET ASPECT SOURCE FLAGS
SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE
SET POLYMARKER COLOUR INDEX
SET POLYMARKER INDEX
Example 6–1 for a program example using a SET . . . REPRESENTATION
function

6–50 Attribute Functions

SET TEXT ALIGNMENT

SET TEXT ALIGNMENT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_align (hor_align, vert_align)

Argument Data Type Access Passed by Description

hor_align Integer
(constant)

Read Reference Horizontal alignment

vert_align Integer
(constant)

Read Reference Vertical alignment

Constants

Defined
Argument Constant Description

hor_align GKS3D$K_TEXT_HALIGN_NORMAL Normal horizontal alignment. This
is the default value.

GKS3D$K_TEXT_HALIGN_LEFT Left horizontal alignment.
GKS3D$K_TEXT_HALIGN_CENTRE Center horizontal alignment.
GKS3D$K_TEXT_HALIGN_RIGHT Right horizontal alignment.

vert_align GKS3D$K_TEXT_VALIGN_NORMAL Normal vertical alignment. This is
the default value.

GKS3D$K_TEXT_VALIGN_TOP Top vertical alignment.
GKS3D$K_TEXT_VALIGN_CAP Cap vertical alignment.
GKS3D$K_TEXT_VALIGN_HALF Half vertical alignment.
GKS3D$K_TEXT_VALIGN_BASE Base vertical alignment.
GKS3D$K_TEXT_VALIGN_BOTTOM Bottom vertical alignment.

Description

The SET TEXT ALIGNMENT function sets the current text alignment entry in
the GKS state list to a value that specifies the positioning of the text extent
rectangle.

DEC GKS uses the value specified in a call to SET TEXT ALIGNMENT for
all subsequent calls to TEXT until you specify another value. Once you have
determined the starting point, the text path (see the SET TEXT PATH function),
and the character up vector (see the SET CHARACTER UP VECTOR function),
you have in effect established an imaginary line running through the starting
point, on which to output text. At this point, you can use this function to shift
the text extent rectangle along this established line.

Attribute Functions 6–51

SET TEXT ALIGNMENT

The values passed to this function establish the horizontal and vertical position
of the text extent rectangle on the imaginary text line. For example, you can
position the text extent rectangle horizontally so the starting point is to the left,
in the center, or to the right of the text extent rectangle.

Not only can you position the text extent rectangle horizontally along the
imaginary text line, but you can also position the rectangle vertically along the
same line. For example, you can position the text extent rectangle so the starting
point is aligned with the top of the characters in the string, with the cap of
the characters, with the half line of the characters, with the base line of the
characters, or with the bottom line of the characters.

See Also

SET CHARACTER UP VECTOR
SET TEXT PATH
Example 6–4 for a program example using the SET TEXT ALIGNMENT function

6–52 Attribute Functions

SET TEXT COLOUR INDEX

SET TEXT COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_colour_index (col_ind)

Argument Data Type Access Passed by Description

col_ind Integer Read Reference Text color index. The default value
is 1, which designates the default
foreground color.

Description

The SET TEXT COLOUR INDEX function sets the current text color index entry
in the GKS state list to the specified value.

If the current text font ASF is set to INDIVIDUAL, the text color index value is
used in subsequent text and text 3 primitives. If the ASF setting is BUNDLED,
the value has no effect. If the specified color is not available, a workstation-
dependent color is used on that workstation.

See Also

SET COLOUR REPRESENTATION
Example 6–4 for a program example using a SET . . . COLOUR INDEX function

Attribute Functions 6–53

SET TEXT FONT AND PRECISION

SET TEXT FONT AND PRECISION

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_fontprec (font_val, prec_val)

Argument Data Type Access Passed by Description

font_val Integer Read Reference Font value. The default value is 1.
prec_val Integer

(constant)
Read Reference Precision value.

Constants

Defined
Argument Constant Description

prec_val GKS3D$K_TEXT_PRECISION_STRING String precision. DEC GKS
evaluates character height and
width attributes only; this is the
default precision value.

GKS3D$K_TEXT_PRECISION_CHAR Character precision. DEC GKS
evaluates each character for
compliance to all other specified
text attributes.

GKS3D$K_TEXT_PRECISION_STROKE Stroke precision. DEC GKS looks
for exact compliance with all
specified text attributes.

Description

The SET TEXT FONT AND PRECISION function sets the current text font
and precision entry in the GKS state list to the specified value. In calls to this
function, the types of fonts available depend on which precision value you pass as
an argument. The values, in order of increasing precision, are as follows:

• String

• Character

• Stroke

As the precision value increases, the precision of clipping, character size,
character spacing, character expansion factor, and the character up vector all
improve.

If you specify string precision and a starting position for the string located outside
of the current normalization viewport, a call to this function causes the entire
text string to be clipped. If the starting point for the string is located inside of the

6–54 Attribute Functions

SET TEXT FONT AND PRECISION

current normalization viewport, this function may cause the string to be clipped
by character or by stroke depending on the capabilities of the workstation.

If you specify character precision, a call to this function causes the text string
to be clipped at the current normalization viewport on a character-by-character
basis.

If you require string or character precision, you cannot use the DEC GKS
software fonts; you can only specify the numbers of the device-dependent fonts
available on your particular workstation. For more information concerning the
fonts available on a workstation, see the Device Specifics Reference Manual for
DEC GKS and DEC PHIGS.

If you specify stroke precision, a call to this function causes the text string
to be clipped exactly at the current normalization viewport. This is the
highest precision. When using this precision, you may make use of the device-
independent fonts that are available on all workstations.

Be aware that all images are clipped at the current workstation window.

Together, text font and precision specify the display quality of text and the speed
at which the text is displayed. Typically, use of a software font in stroke precision
produces higher-quality character symbols than use of a hardware font in either
character or string precision. However, character and string precision use the
workstation character generator (if available) to display text, and thus, produce
the images somewhat faster than stroke precision. Also, since character and
string precision are less precise in the application of the other text attributes
(for example, height and width), they require less calculation to represent each
character in a text string.

The default value for the current text font and precision entry specifies the
hardware font number 1, and string precision.

See Also

SET TEXT REPRESENTATION

Attribute Functions 6–55

SET TEXT INDEX

SET TEXT INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_index (index)

Argument Data Type Access Passed by Description

index Integer Read Reference Text bundle index. The default value
is 1.

Description

The SET TEXT INDEX function establishes the index value pointing into the
text bundle table. This table contains entries for the attribute values, text font
and precision, character expansion factor, character spacing, and text color
index. When calling this function, DEC GKS uses the bundle table only if the
corresponding ASF has been set to BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET TEXT REPRESENTATION
Example 6–2 for a program example using a SET . . . INDEX function

6–56 Attribute Functions

SET TEXT PATH

SET TEXT PATH

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_text_path (text_path)

Argument Data Type Access Passed by Description

text_path Integer
(constant)

Read Reference Text path

Constants

Defined
Argument Constant Description

text_path GKS3D$K_TEXT_PATH_RIGHT Text string reads from left to right.
This is the default value.

GKS3D$K_TEXT_PATH_LEFT Text string reads from right to left.
GKS3D$K_TEXT_PATH_UP Text string reads from bottom to top.
GKS3D$K_TEXT_PATH_DOWN Text string reads from top to bottom.

Description

The SET TEXT PATH function sets the geometric attribute, current text path
entry in the GKS state list to be the writing direction for the display of text.

DEC GKS uses the value specified in a call to SET TEXT PATH for all subsequent
calls to TEXT until you specify another value. Once you have determined the
starting point and the character up vector (see the SET CHARACTER UP
VECTOR function), you have in effect established an imaginary line running
through the starting point to use when generating text primitives. You can
output your text string with your aligned letter at the starting point (see the SET
TEXT ALIGNMENT function). According to the current text path, the string
reads either to the right along the imaginary line (the default), to the left along
the imaginary line, upwards in a perpendicular direction from the imaginary line,
or downwards in a perpendicular direction from the imaginary line.

If using the default text alignment (see the SET TEXT ALIGNMENT function),
DEC GKS places the first letter of this string at the starting point, and
subsequent letters are written along the imaginary line in the direction specified
by a call to this function. The default text path is left to right along the imaginary
line (text path RIGHT).

Attribute Functions 6–57

SET TEXT PATH

See Also

SET CHARACTER UP VECTOR
SET TEXT ALIGNMENT
Example 6–4 for a program example using the SET TEXT PATH function

6–58 Attribute Functions

SET TEXT REPRESENTATION

SET TEXT REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_text_rep (ws_id, text_index, font_value, prec_val, exp_fac, char_spac,
col_ind)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
text_index Integer Read Reference Text bundle table index.
font_value Integer Read Reference Font number.
prec_val Integer

(constant)
Read Reference Level of precision.

exp_fac Real Read Reference Character expansion factor. This
value multiplied by the width-to-
height ratio specified in the original
font specification determines the new
character width. The character height
remains the same.

char_spac Real Read Reference Character spacing value specified as a
fraction of the font-nominal character
height.

col_ind Integer Read Reference Color index of text.

Constants

Defined
Argument Constant Description

prec_val GKS3D$K_TEXT_PRECISION_STRING String precision. DEC GKS
evaluates character height and
width attributes only; this is the
default precision value.

GKS3D$K_TEXT_PRECISION_CHAR Character precision. DEC GKS
evaluates each character for
compliance to all other specified
text attributes.

GKS3D$K_TEXT_PRECISION_STROKE Stroke precision. DEC GKS looks
for exact compliance with all
specified text attributes.

Attribute Functions 6–59

SET TEXT REPRESENTATION

Description

The SET TEXT REPRESENTATION function allows the user to redefine an
existing text bundle table index representation, or to define a new text bundle
table index value, by specifying the text font and precision, the character
expansion factor, the character spacing, and the text color index associated with
the specified bundle index.

This function allows you to change numerous text attributes, including the
character expansion factor and the character spacing. When you change the
value for the character expansion factor, the new value is multiplied by the
width-to-height ratio specified in the original font specification to determine the
new character width. The character height remains the same.

If you change the character spacing, using a positive number increases the
spacing between letters (for example, the value 0.1 sets spacing to 0.1 times the
character height). Using a negative number decreases the spacing and characters
may overlap. The value 0.0 makes the bodies of the characters adjacent, without
any separating space other than that defined as part of the character body by the
font design.

Depending on the capabilities of your workstation, a call to the SET TEXT
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET ASPECT SOURCE FLAGS
SET CHARACTER SPACING
SET TEXT FONT AND PRECISION
SET TEXT INDEX
Example 6–1 for a program example using a SET . . . REPRESENTATION
function

6–60 Attribute Functions

Attribute Functions
6.6 Program Examples

6.6 Program Examples
Example 6–1 illustrates the use of the SET COLOUR REPRESENTATION
function.

Example 6–1 SET COLOUR REPRESENTATION Function

/*
* This program calls the SET COLOUR REPRESENTATION function to change
* the color representation of a particular index from color1 to color2.
* This program assumes an RGB color model. To avoid making such
* an assumption, use the SET COLOUR MODEL function to set the color
* model to RGB explicity.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ binding definitions */

main ()
{

int color1 = 4;
float color2_comp1;
float color2_comp2;
float color2_comp3;
int default_conid = GKS3D$K_CONID_DEFAULT;
int default_wstype = GKS3D$K_WSTYPE_DEFAULT;
int device_num;
int figure = 1;
int input_class;
int int_style;
int n_points = 20;
float pts_array[40];
float timeout = 5.00;
int update_flag;
int ws_id = 1;

/* Open the GKS and workstation environments. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/*
* Store the figure in a segment. Set the fill index
* to color1, set the fill interior style to solid,
* initialize the points, and draw a fill area.
*/

int_style = GKS3D$K_INTSTYLE_SOLID;

pts_array[0] = 0.1; pts_array[1] = 0.1;
pts_array[2] = 0.4; pts_array[3] = 0.1;
pts_array[4] = 0.4; pts_array[5] = 0.2;
pts_array[6] = 0.6; pts_array[7] = 0.2;
pts_array[8] = 0.6; pts_array[9] = 0.1;
pts_array[10] = 0.9; pts_array[11] = 0.1;
pts_array[12] = 0.9; pts_array[13] = 0.4;
pts_array[14] = 0.8; pts_array[15] = 0.4;
pts_array[16] = 0.8; pts_array[17] = 0.6;
pts_array[18] = 0.9; pts_array[19] = 0.6;

(continued on next page)

Attribute Functions 6–61

Attribute Functions
6.6 Program Examples

Example 6–1 (Cont.) SET COLOUR REPRESENTATION Function
pts_array[20] = 0.9; pts_array[21] = 0.9;
pts_array[22] = 0.6; pts_array[23] = 0.9;
pts_array[24] = 0.6; pts_array[25] = 0.8;
pts_array[26] = 0.4; pts_array[27] = 0.8;
pts_array[28] = 0.4; pts_array[29] = 0.9;
pts_array[30] = 0.1; pts_array[31] = 0.9;
pts_array[32] = 0.1; pts_array[33] = 0.6;
pts_array[34] = 0.2; pts_array[35] = 0.6;
pts_array[36] = 0.2; pts_array[37] = 0.4;
pts_array[38] = 0.1; pts_array[39] = 0.4;

gks3d$create_seg (&figure);
gks3d$set_fill_colour_index (&color1);
gks3d$set_fill_int_style (&int_style);
gks3d$fill_area (&n_points, pts_array);
gks3d$close_seg ();

/* Wait 5 seconds. */

update_flag = GKS3D$K_POSTPONE_FLAG;

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/*
* Change the color representation of color1 to color2. This will
* change the fill color of the figure from color1 to color2.
* Wait 5 seconds.
*/

color2_comp1 = 1.0;
color2_comp2 = 0.43;
color2_comp3 = 0.09;
update_flag = GKS3D$K_PERFORM_FLAG;

gks3d$set_colour_rep (&ws_id, &color1, &color2_comp1,
&color2_comp2, &color2_comp3);

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/* Close the GKS and workstation environments. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 6–1 shows the program’s effect on a VAXstation workstation running
DECwindows software.

6–62 Attribute Functions

Attribute Functions
6.6 Program Examples

Figure 6–1 SET COLOUR REPRESENTATION Output

ZK−4010A−GE

Example 6–2 illustrates the use of the SET FILL AREA REPRESENTATION
function.

Example 6–2 SET FILL AREA REPRESENTATION Function

/*
* This program sets the attribute source flags (ASFs) to BUNDLED,
* shows the fill area corresponding to the index 6, then
* changes the attributes associated with fill area index 6, using
* the SET FILL AREA REPRESENTATION function.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ binding definitions */

(continued on next page)

Attribute Functions 6–63

Attribute Functions
6.6 Program Examples

Example 6–2 (Cont.) SET FILL AREA REPRESENTATION Function

main ()
{

int default_conid = GKS3D$K_CONID_DEFAULT;
int default_wstype = GKS3D$K_WSTYPE_DEFAULT;
int device_num;
int figure = 1;
int fill_index = 6;
int fill_int_style;
int flags[13];
int input_class;
int n_points = 20;
int new_fill_color;
int new_fill_int_style;
int new_fill_style;
float pts_array[40];
float timeout = 5.00;
int update_flag;
int ws_id = 1;

/* Open the GKS and workstation environments. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/* Set the attribute source flags (ASFs) to BUNDLED. */

flags[0] = GKS3D$K_ASF_BUNDLED;
flags[1] = GKS3D$K_ASF_BUNDLED;
flags[2] = GKS3D$K_ASF_BUNDLED;
flags[3] = GKS3D$K_ASF_BUNDLED;
flags[4] = GKS3D$K_ASF_BUNDLED;
flags[5] = GKS3D$K_ASF_BUNDLED;
flags[6] = GKS3D$K_ASF_BUNDLED;
flags[7] = GKS3D$K_ASF_BUNDLED;
flags[8] = GKS3D$K_ASF_BUNDLED;
flags[9] = GKS3D$K_ASF_BUNDLED;
flags[10] = GKS3D$K_ASF_BUNDLED;
flags[11] = GKS3D$K_ASF_BUNDLED;
flags[12] = GKS3D$K_ASF_BUNDLED;

gks3d$set_asf (flags);

/*
* Put all output in a segment, initialize the fill area
* points, and show the fill area corresponding to the
* index value 6.
*/

pts_array[0] = 0.1; pts_array[1] = 0.1;
pts_array[2] = 0.4; pts_array[3] = 0.1;
pts_array[4] = 0.4; pts_array[5] = 0.2;
pts_array[6] = 0.6; pts_array[7] = 0.2;
pts_array[8] = 0.6; pts_array[9] = 0.1;
pts_array[10] = 0.9; pts_array[11] = 0.1;
pts_array[12] = 0.9; pts_array[13] = 0.4;
pts_array[14] = 0.8; pts_array[15] = 0.4;
pts_array[16] = 0.8; pts_array[17] = 0.6;
pts_array[18] = 0.9; pts_array[19] = 0.6;
pts_array[20] = 0.9; pts_array[21] = 0.9;

(continued on next page)

6–64 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–2 (Cont.) SET FILL AREA REPRESENTATION Function
pts_array[22] = 0.6; pts_array[23] = 0.9;
pts_array[24] = 0.6; pts_array[25] = 0.8;
pts_array[26] = 0.4; pts_array[27] = 0.8;
pts_array[28] = 0.4; pts_array[29] = 0.9;
pts_array[30] = 0.1; pts_array[31] = 0.9;
pts_array[32] = 0.1; pts_array[33] = 0.6;
pts_array[34] = 0.2; pts_array[35] = 0.6;
pts_array[36] = 0.2; pts_array[37] = 0.4;
pts_array[38] = 0.1; pts_array[39] = 0.4;

gks3d$create_seg (&figure);
gks3d$set_fill_index (&fill_index);
gks3d$fill_area (&n_points, pts_array);
gks3d$close_seg ();

/* Wait 5 seconds. */

update_flag = GKS3D$K_POSTPONE_FLAG;

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/* Change the attributes associated with a fill area index value of 6. */

new_fill_color = 1;
new_fill_int_style = GKS3D$K_INTSTYLE_HATCH;
new_fill_style = -9;

gks3d$set_fill_rep (&ws_id, &fill_index, &new_fill_int_style,
&new_fill_style, &new_fill_color);

/*
* Cause a regeneration of the screen to see the change on
* the workstation and wait 5 seconds.
*/

update_flag = GKS3D$K_PERFORM_FLAG;

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/* Close the GKS and workstation environments. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 6–2 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Attribute Functions 6–65

Attribute Functions
6.6 Program Examples

Figure 6–2 SET FILL AREA REPRESENTATION Output

ZK−4011A−GE

Example 6–3 illustrates the use of the SET LINETYPE function.

Example 6–3 SET LINETYPE Function

/*
* This program calls the SET LINETYPE function to set the
* line type to the dashed and dotted line. The program
* draws a line figure displaying the set line type.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ definition file */

(continued on next page)

6–66 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–3 (Cont.) SET LINETYPE Function

main ()
{

int default_conid = GKS3D$K_CONID_DEFAULT;
int default_wstype = GKS3D$K_WSTYPE_DEFAULT;
int device_num;
int input_class;
int line_type;
int n_points = 29;
float pts_array[58];
float timeout = 5.00;
int update_flag;
int ws_id = 1;

/* Open the GKS and workstation environments. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/* Point data. */

pts_array[0] = 0.4; pts_array[1] = 0.9;
pts_array[2] = 0.1; pts_array[3] = 0.9;
pts_array[4] = 0.1; pts_array[5] = 0.6;
pts_array[6] = 0.2; pts_array[7] = 0.6;
pts_array[8] = 0.2; pts_array[9] = 0.4;
pts_array[10] = 0.1; pts_array[11] = 0.4;
pts_array[12] = 0.1; pts_array[13] = 0.1;
pts_array[14] = 0.4; pts_array[15] = 0.1;
pts_array[16] = 0.4; pts_array[17] = 0.2;
pts_array[18] = 0.6; pts_array[19] = 0.2;
pts_array[20] = 0.6; pts_array[21] = 0.1;
pts_array[22] = 0.9; pts_array[23] = 0.1;
pts_array[24] = 0.9; pts_array[25] = 0.4;
pts_array[26] = 0.8; pts_array[27] = 0.4;
pts_array[28] = 0.8; pts_array[29] = 0.6;
pts_array[30] = 0.9; pts_array[31] = 0.6;
pts_array[32] = 0.9; pts_array[33] = 0.9;
pts_array[34] = 0.6; pts_array[35] = 0.9;
pts_array[36] = 0.6; pts_array[37] = 0.8;
pts_array[38] = 0.3; pts_array[39] = 0.8;
pts_array[40] = 0.3; pts_array[41] = 0.3;
pts_array[42] = 0.7; pts_array[43] = 0.3;
pts_array[44] = 0.7; pts_array[45] = 0.7;
pts_array[46] = 0.4; pts_array[47] = 0.7;
pts_array[48] = 0.4; pts_array[49] = 0.4;
pts_array[50] = 0.6; pts_array[51] = 0.4;
pts_array[52] = 0.6; pts_array[53] = 0.6;
pts_array[54] = 0.5; pts_array[55] = 0.6;
pts_array[56] = 0.5; pts_array[57] = 0.5;

/*
* Set the linetype to dashed and dotted lines, initialize
* the points defining the line, and draw the line figure.
*/

line_type = GKS3D$K_LINETYPE_DASHED_DOTTED;

gks3d$set_pline_linetype (&line_type);
gks3d$polyline (&n_points, pts_array);

(continued on next page)

Attribute Functions 6–67

Attribute Functions
6.6 Program Examples

Example 6–3 (Cont.) SET LINETYPE Function

/* Wait 5 seconds. */

update_flag = GKS3D$K_POSTPONE_FLAG;

gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout, &ws_id, &input_class, &device_num);

/* Close the GKS and workstation environments. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 6–3 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Figure 6–3 SET LINETYPE Output

ZK−4012A−GE

6–68 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–4 illustrates the use of the SET TEXT ALIGNMENT function.

Example 6–4 SET TEXT ALIGNMENT Function

/*
* This program calls the SET TEXT ALIGNMENT function to write a
* string to the workstation using the normal text alignments for
* each of four text paths.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ binding definition file */

main ()
{
#define TEXT_STRING1 " TEXT LINE 1"
#define TEXT_STRING2 " TEXT LINE 2"
#define TEXT_STRING3 " TEXT LINE 3"
#define TEXT_STRING4 " TEXT LINE 4"

int default_conid = GKS3D$K_CONID_DEFAULT;
int default_wstype = GKS3D$K_WSTYPE_DEFAULT;
int device_num;
int horiz_align;
int input_class;
float larger = 0.07;
int one_pmark = 1;
int path_down;
int path_left;
int path_right;
int path_up;
int pmark_type;
float pts_array[2];
int red = 2;
struct dsc$descriptor_s text_dsc;
float timeout1 = 1.00;
float timeout2 = 5.00;
int update_flag;
int vert_align;
int ws_id = 1;

/* Data initialization. */

pts_array[0] = 0.5;
pts_array[1] = 0.5;
update_flag = GKS3D$K_POSTPONE_FLAG;

/* Open the GKS and workstation environments. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

(continued on next page)

Attribute Functions 6–69

Attribute Functions
6.6 Program Examples

Example 6–4 (Cont.) SET TEXT ALIGNMENT Function

/*
* Set the polymarker color index and the polymarker type.
* Draw the polymarker to provide a point of reference for
* the lines of text.
*/

pmark_type = GKS3D$K_MARKTYPE_PLUS;

gks3d$set_pmark_colour_index (&red);
gks3d$set_pmark_type (&pmark_type);
gks3d$polymarker (&one_pmark, pts_array);
gks3d$update_ws (&ws_id, &update_flag);

/* Set the text character height and the text alignment. */

horiz_align = GKS3D$K_TEXT_HALIGN_NORMAL;
vert_align = GKS3D$K_TEXT_VALIGN_NORMAL;

gks3d$set_text_height (&larger);
gks3d$set_text_align (&horiz_align, &vert_align);

/* Initialize the text descriptor. */

text_dsc.dsc$a_pointer = TEXT_STRING1;
text_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_dsc.dsc$b_class = DSC$K_CLASS_S;
text_dsc.dsc$w_length = strlen (TEXT_STRING1);

/*
* Set a rightward text path and write a character string.
* Wait 1 second.
*/

path_right = GKS3D$K_TEXT_PATH_RIGHT;

gks3d$set_text_path (&path_right);
gks3d$text (pts_array, &text_dsc);
gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout1, &ws_id, &input_class, &device_num);

/* Initialize the text descriptor. */

text_dsc.dsc$a_pointer = TEXT_STRING2;
text_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_dsc.dsc$b_class = DSC$K_CLASS_S;
text_dsc.dsc$w_length = strlen (TEXT_STRING2);

/*
* Set a leftward text path, and write a character string.
* Wait 1 second.
*/

path_left = GKS3D$K_TEXT_PATH_LEFT;

gks3d$set_text_path (&path_left);
gks3d$text (pts_array, &text_dsc);
gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout1, &ws_id, &input_class, &device_num);

(continued on next page)

6–70 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–4 (Cont.) SET TEXT ALIGNMENT Function

/* Initialize the text descriptor. */

text_dsc.dsc$a_pointer = TEXT_STRING3;
text_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_dsc.dsc$b_class = DSC$K_CLASS_S;
text_dsc.dsc$w_length = strlen (TEXT_STRING3);

/*
* Set an upward text path, and write a character string.
* Wait 1 second.
*/

path_up = GKS3D$K_TEXT_PATH_UP;

gks3d$set_text_path (&path_up);
gks3d$text (pts_array, &text_dsc);
gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout1, &ws_id, &input_class, &device_num);

/* Initialize the text descriptor. */

text_dsc.dsc$a_pointer = TEXT_STRING4;
text_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_dsc.dsc$b_class = DSC$K_CLASS_S;
text_dsc.dsc$w_length = strlen (TEXT_STRING4);

/*
* Set a downward text path, and write a character string.
* Wait 5 seconds.
*/

path_down = GKS3D$K_TEXT_PATH_DOWN;

gks3d$set_text_path (&path_down);
gks3d$text (pts_array, &text_dsc);
gks3d$polymarker (&one_pmark, pts_array);
gks3d$update_ws (&ws_id, &update_flag);
gks3d$await_event (&timeout2, &ws_id, &input_class, &device_num);

/* Close the GKS and workstation environments. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 6–4 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Attribute Functions 6–71

Attribute Functions
6.6 Program Examples

Figure 6–4 SET TEXT ALIGNMENT Output

ZK−4009A−GE

6–72 Attribute Functions

Transformation Functions

Insert tabbed divider here. Then discard this sheet.

7
Transformation Functions

The DEC GKS transformation functions allow you to compose a picture, control
how much of the picture is displayed on the workstation surface, and control how
much of the workstation surface is used to display the picture.

When you request input and generate output on the workstation surface, you
actually work with a number of coordinate systems. The image is transformed
from one coordinate system to the next.

Using DEC GKS, you work with a transformation pipeline. The transformation
pipeline consists of a number of transformations that affect various coordinate
systems. To meet the needs of graphics programming, DEC GKS supports both
the two-dimensional and three-dimensional transformation pipelines. Figure 7–1
illustrates the two-dimensional pipeline.

Figure 7–1 The DEC GKS Two-Dimensional Transformation Pipeline

Segments

Transformation

Normalization
Clip

Normalized Device
Coordinates

Segment
No Segments

Normalization
Transformation

World Coordinates

ZK−4035A−GE

Workstation Clip

Device Coordinates

Workstation
Transformation

Transformation Functions 7–1

Transformation Functions

The three coordinate systems work as a pipeline and ultimately create a
two-dimensional object on your physical display device. You use portions of the
world coordinate (WC) system to plot the output primitives, a portion of the
device-independent normalized device coordinate (NDC) plane to compose a
complete picture, and a portion of the device coordinate plane to present all or
part of your picture on all or part of the surface of the workstation. Figure 7–2
illustrates the three-dimensional pipeline.

Figure 7–2 The DEC GKS Three-Dimensional Transformation Pipeline

Segments

Transformation

Normalization
Clip

View Orientation
Transformation

Transformation

View Clip

HLHSR

View Reference
Coordinates

Normalized Projection
Coordinates

Normalized Device
Coordinates

Segment

View Mapping

No Segments

Normalization
Transformation

World Coordinates

ZK−4036A−GE

Workstation Clip

Device Coordinates

Workstation
Transformation

7–2 Transformation Functions

Transformation Functions

The five transformations illustrated in Figure 7–2 work as a pipeline and
ultimately create a three-dimensional object on your physical display device.
You use portions of the WC system to plot the output primitives, a portion of
the device-independent NDC plane to compose a complete picture, portions of
the view reference coordinate (VRC) system to orient the picture, portions of the
normalized projection coordinate (NPC) system to determine projection volume,
and a portion of the device coordinate plane to present all or part of your picture
on all or part of the surface of the workstation.

For both transformation pipelines, the WC system is an imaginary coordinate
plane used to plot a graphic image. The NDC system is a device-independent,
imaginary coordinate plane on which you compose a picture using designated
portions of the WC plane. Once you compose a two-dimensional picture in the
NDC space, you can display all or part of the picture in NDC space on the
surface of the physical device. If the picture is three-dimensional, you can orient
(translate and rotate) your picture through the VRC system. The VRC image
is then projected to the NPC system. The NPC system lets you determine how
much of the picture plotted in WC points will be mapped to the device coordinate
system. You can display all or part of the picture in NPC space on the surface of
the physical device.

When you call one of the DEC GKS output functions, you specify WC points.
Using a series of default windows and viewports, the output primitive is
transformed from an image on the WC plane to an image on the NDC plane,
oriented and clipped through the VRC and NPC systems if the picture is
three-dimensional, and is finally transformed to the surface of the workstation.

If you do not change the default transformation settings, image shape and
position are consistent, and your ability to compose complex pictures may be
limited to what you can form on one area of the WC system. The DEC GKS
transformation functions allow you to set the windows, viewports, and other
transformation features that control the transformation process, and usually, how
generated output appears on the workstation surface.

7.1 World Coordinates and Normalization Transformations
The WC system is an imaginary, Cartesian coordinate system whose X and Y axes
extend infinitely in all four directions. If you are using the three-dimensional
pipeline, the X, Y, and Z axes extend infinitely in all six directions. The origin
of the two-dimensional system is the point (0.0, 0.0). The origin of the three-
dimensional system is (0.0, 0.0, 0.0). Depending on the type of data needed to
plot your images, you can use any portion of the WC plane. For example, if the
necessary data contains negative numbers, you can use the portions of the WC
system that extend into the negative portions of the axes.

By default, DEC GKS, for two dimensions, transforms images according to a
planar WC range whose lower left corner is the point (0.0, 0.0) and whose sides
extend from the point 0.0 to 1.0 on the X and Y axes. For three dimensions, DEC
GKS, transforms images according to a volumetric WC range whose lower left
corner is the point (0.0, 0.0, 0.0) and whose sides extend from the point 0.0 to 1.0
on the X, Y, and Z axes. The range is called the default normalization window.

DEC GKS transforms the plotted images, according to the current window, to an
area on the NDC plane. You can reset the window many times while generating
output primitives, or you can use only the default window, depending on the
needs of your application. If your image is composed of points that lie outside of
the window, those points may or may not be part of the image on the NDC plane

Transformation Functions 7–3

Transformation Functions
7.1 World Coordinates and Normalization Transformations

depending on the current clipping indicator. Clipping is described in detail in
Section 7.1.1. Example 7–3 illustrates resetting the normalization viewport.

7.1.1 The Normalized Device Coordinate System
As mentioned in the previous section, the normalization transformation is
the transposition of WC points to NDC points. The NDC system is a device-
independent coordinate plane on which you compose graphic pictures. The
two-dimensional NDC system has X and Y axes that, in theory, extend infinitely
in all four directions with an origin at point (0.0, 0.0); but in practice, only images
contained in the range ([0,1] x [0,1]) can ultimately be transformed to the surface
of a physical device. The three-dimensional NDC system has X, Y, and Z axes
that, in theory, extend infinitely in all six directions with an origin at point (0.0,
0.0, 0.0); but in practice, only images contained in the range ([0,1] x [0,1] x [0,1])
can ultimately be transformed to the surface of a physical device.

When DEC GKS transforms an image from the normalization window to the NDC
plane, there must be a corresponding volume on which to map the contents of
the window. This volume portion of the NDC space is called the normalization
viewport. The two-dimensional default viewport has the range ([0,1] x [0,1]),
and the three-dimensional default viewport has the range ([0,1] x [0,1] x [0,1]), in
NDC points.

By default, DEC GKS maps the normalization window ([0,1] x [0,1]) in WC
points to the viewport ([0,1] x [0,1]) in NDC points. This transformation is
called the unity transformation, which has the normalization transformation
number 0. You cannot reset the window and viewport associated with the unity
transformation. DEC GKS for three dimensions maps the normalization window
([0,1] x [0,1] x [0,1]) in WC points to the viewport ([0,1] x [0,1] x [0,1]) in NDC
points.

Think of the normalization process as a way of transposing a number of areas
of the WC plane onto the NDC plane with respect to the current normalization
window and viewport. For example, DEC GKS maps the contents of the current
normalization window onto the current viewport. If clipping is enabled (which is
the default), the effect is like cutting the window from the WC plane, mapping,
and then pasting the window to the viewport on the NDC plane. DEC GKS
maps only images or portions of images plotted within the boundaries of the
normalization window to the area within the viewport on NDC space. If clipping
is disabled, DEC GKS also maps the points that lie outside of the normalization
window boundary to NDC space outside of the normalization viewport, but within
the two-dimensional range ([0,1] x [0,1]), or the three-dimensional range ([0,1] x
[0,1] x [0,1]).

Because DEC GKS clips images at the boundary of the normalization viewport,
this viewport is also called the clipping volume. You can enable and disable
clipping by calling the function SET CLIPPING INDICATOR. Figure 7–3
illustrates the clipping process according to the argument passed to SET
CLIPPING INDICATOR.

7–4 Transformation Functions

Transformation Functions
7.1 World Coordinates and Normalization Transformations

Figure 7–3 The Clipping Rectangle

ZK−5139−GE

CLIP

NOCLIP

Normalization window
(world coordinates)

Possible
normalization

viewports
(NDC coordinates)

When creating a picture, consider that you can select different normalization
transformations with different windows and viewports, thus mapping various
portions of the WC space onto different portions of the NDC space. (In DEC GKS,
valid normalization transformation numbers range from 0 to 255, and you can
associate windows and viewports with all but the unity transformation number 0.)
You can achieve the same effect by reassigning different windows and viewports
to a single normalization number.

In essence, you use the WC space as a scratch pad and the NDC space as a
pasteboard on which to compose an entire picture. For example, if you want
an output primitive to appear on the right side of a picture displayed on the
workstation surface, you map the primitive to the right side of the NDC space
during the normalization transformation. All picture composition is done using
normalization transformations. Once you compose a picture in the NDC space
, you can output all or part of the picture to all or part of various workstation
surfaces. By selecting a different normalization transformation with a different
viewport, you can transpose the same window onto another portion of the NDC
space.

Transformation Functions 7–5

Transformation Functions
7.1 World Coordinates and Normalization Transformations

7.1.2 Overlapping Viewports
When you define normalization viewports, it is possible to cause them to overlap
in NDC space. You must consider the effects this has during input requests.
Viewport input priority does not affect output; the order of the output function
calls determines which primitive overwrites the other. If you are working
with segments, the segment priorities affect overlapping segments. (For more
information on segments, see Chapter 8.)

To illustrate the need for a viewport priority list during input, consider two
viewports: the viewport of the unity (identity) transformation number 0 having
the two-dimensional range ([0,1] x [0,1]), or the three-dimensional range ([0,1] x
[0,1] x [0,1]), and a viewport, belonging to normalization transformation number
1, having the two-dimensional range ([0.5,1] x [0.5,1]), or the three-dimensional
range ([0.5,1] x [0.5,1] x [0.5,1]), in NDC points. Notice that the viewport of
normalization transformation number 1 overlaps the right side of the unity
viewport.

During stroke and locator input, the user positions the cursor on the device
surface, which returns one point (locator) or a series of points (stroke) in device
coordinates. DEC GKS translates the device coordinate points to NDC points.
(Section 7.3 describes this process in detail.)

Once the device coordiante points are transformed to NDC points, DEC GKS
must transform the NDC points to WC points. To transform the point, DEC GKS
transforms the point from its viewport (NDC) value to the corresponding window
(WC) value. However, if the user chooses a point on the right half of the default
viewport, DEC GKS must calculate whether to use the unity viewport or the
overlapping viewport of transformation number 1 to transform the point to WC
values. DEC GKS needs to know to which normalization window the point is to
be mapped: the window that corresponds to either normalization transformation
number 0 or number 1.

To calculate which viewport has a higher input priority, DEC GKS maintains a
priority list. By default, DEC GKS assigns the highest priority to the unity
transformation (0). So, in the previous example concerning overlapping
viewports, DEC GKS would use the unity viewport to transform the NDC
point. The viewports of all remaining transformations decrease in priority as
their transformation numbers increase (viewport 0 higher than viewport 1, 1
higher than 2, 2 higher than 3, and so on).

To change the order of the viewport input priority list, call the function SET
VIEWPORT INPUT PRIORITY. You specify a normalization transformation
number whose priority is to be changed (for example, 1), a normalization
transformation number as a reference (for example, 0), and a flag that specifies
that the first transformation is to have a lower or higher priority than the
reference transformation.

If you call SET VIEWPORT INPUT PRIORITY to give transformation number 1
a higher transformation (1 higher than 0, 0 higher than 2, 2 higher than 3, and so
on), DEC GKS would use the viewport corresponding to transformation number 1
in all cases when viewports 1 and 0 overlap during locator and stroke input.

For more information concerning locator and stroke input, see Chapter 9.

7–6 Transformation Functions

Transformation Functions
7.2 View Transformations

7.2 View Transformations
View transformations apply only to the three-dimensional transformation
pipeline.

Once your object is defined in NDC space you need to tell DEC GKS from which
direction you are looking at your picture and what direction is up. The viewing
transformation is the mechanism that lets you accomplish this.

The viewing transformation is workstation-dependent because it requires the
use of information stored in the state list or description table of the output
workstations.

Each workstation stores a workstation-specific number of view entries in a view
table, which is part of the workstation state list. The view entries are numbered
consecutively, starting with 0. View 0 is predefined to the identity transformation
and cannot be modified. Other entries can be modified with the function SET
VIEW REPRESENTATION 3. Each view entry contains a view orientation
matrix, a view mapping matrix and clipping information.

You can change the orientation (translate and rotate) your picture by employing
the view orientation matrix to define what direction you are viewing the
picture from, as well as what direction is up. DEC GKS computes the view
orientation matrix using the EVALUATE VIEW ORIENTATION MATRIX 3
function. The view orientation matrix establishes the VRC system (the UVN
axes). The view orientation matrix is used to map each NDC point to an
appropriate point in the VRC system. Although the VRC points are in the same
units as NDC points, the VRC system is effectively a shifted and rotated version
of the NDC system.

Once your picture is oriented in the VRC system, it is mapped to the NPC
system. DEC GKS computes the view mapping matrix using the EVALUATE
VIEW MAPPING MATRIX 3 function. The view transformation employs the view
mapping matrix to map the VRC points to NPC points.

This transformation allows you to select a parallel or perspective projection for
your picture. For more information on viewing, and parallel and perspective
projections, see the DEC GKS User’s Guide.

Each workstation can select, or clip, some part of its NPC space to be displayed
somewhere on the physical display device of the workstation. You can clip your
picture in NPC space according to the defined view clipping limits. The six NPC
points are set by the SET VIEWPORT 3 function. For more information on
clipping, see DEC GKS User’s Guide.

7.3 Device Transformations
DEC GKS must map the picture on the two-dimensional NDC plane, or the three-
dimensional NPC space, to the surface of one or more workstations. To do this,
DEC GKS uses a second window and viewport called the workstation window
and the workstation viewport. The workstation window is the rectangular
portion of the two-dimensional NDC plane, or the rectangular parallelepiped of
the three-dimensional NPC space, that is mapped to the workstation viewport.
The workstation viewport is a portion of the display space. There can be
numerous normalization transformations, but only one current workstation
window and one current workstation viewport.

Transformation Functions 7–7

Transformation Functions
7.3 Device Transformations

DEC GKS uses a default workstation window of the two-dimensional range
([0,1] x [0,1]), or the three-dimensional range ([0,1] x [0,1] x [0,1]). If you
choose, you can change the workstation window, but the new boundaries can
be no larger than the default workstation window boundaries ([0,1] x [0,1])
for two dimensions, or ([0,1] x [0,1] x [0,1]) for three dimensions. DEC GKS
clips all points that exceed the default workstation window boundaries before
it transforms the picture to device coordinate points, regardless of the current
clipping flag setting.

If you are using the two-dimensional pipeline, the normalization transformation
composes the picture in NDC space, and the workstation transformation presents
all or part of the picture on all or part of the device surface. For example,
by setting the workstation window with the SET WORKSTATION WINDOW
function, you can create the illusion of panning across a picture, showing
successive portions of it at a time, or zooming in, showing smaller portions of a
picture at a time. The DEC GKS User’s Guide describes this process in detail.

If you are using the three-dimensional pipeline, the view transformation composes
the picture in NPC space, and the workstation transformation presents all or
part of the picture on all or part of the device surface. For example, by setting
the workstation window with the SET WORKSTATION WINDOW 3 function, you
can create the illusion of panning across a picture, showing successive portions of
it at a time, or zooming in, showing smaller portions of a picture at a time. The
DEC GKS User’s Guide describes this process in detail.

Your application may require that you change the portion of the workstation
surface used to display the picture. However, if your program runs on several
devices, you may not know the proportions of the device coordinate system with
which you are working. The proportions of the device coordinate system are
completely device dependent; each device can have a completely dissimilar device
coordinate plane with dissimilar maximum X and Y coordinate values for two
dimensions, or dissimilar maximum X, Y, and Z coordinate values for three
dimensions.

To determine the maximum boundary of the workstation viewport, you should
use the function, INQUIRE DISPLAY SPACE SIZE (3), which returns the
maximum X and Y values (X, Y, and Z values for three dimensions) of the
workstation display surface. (For more information, see Chapter 11, and SET
WORKSTATION VIEWPORT (3) in this chapter.)

When you set the workstation window (by calling SET WORKSTATION
WINDOW (3)) or the workstation viewport (by calling SET WORKSTATION
VIEWPORT (3)), the new window or viewport may not come into effect
immediately, depending on the capabilities of your device. Depending on your
device, the new workstation window or workstation viewport may become current
immediately, or the workstation surface may need to be implicitly regenerated
before the new window or viewport becomes current. If the workstation needs
to regenerate its surface to make a workstation transformation current, the
screen is cleared and only the primitives stored in segments are redrawn. You
lose all primitives not contained in segments. Example 7–4 illustrates how to
change the workstation window and viewport on a device that suppresses implicit
regenerations. The DEC GKS User’s Guide contains examples of working with
the proportions of workstation windows and viewports.

7–8 Transformation Functions

Transformation Functions
7.4 Transformation Inquiries

7.4 Transformation Inquiries
You can use the following inquiry functions to obtain transformation information
when writing device-independent code:

INQUIRE CLIPPING (3)
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER
INQUIRE DISPLAY SPACE SIZE (3)
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION
INQUIRE NORMALIZATION TRANSFORMATION (3)
INQUIRE WORKSTATION TRANSFORMATION (3)

For more information concerning device-independent programming, see the DEC
GKS User’s Guide. For more information on the inquiry functions, see Chapter
11.

7.5 Function Descriptions
This section describes the DEC GKS transformation functions in detail.

Transformation Functions 7–9

ACCUMULATE TRANSFORMATION MATRIX

ACCUMULATE TRANSFORMATION MATRIX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$accum_xform_matrix (in_matrix, fix_pt, shift_vec, rotation_z, scale_x, scale_y,
coord_flag, out_matrix)

Argument Data Type Access Passed by Description

in_matrix 2�3 array
of reals

Read Reference Input transformation matrix, created
previously by a call to either
EVALUATE TRANSFORMATION
MATRIX or ACCUMULATE
TRANSFORMATION MATRIX.

fix_pt Array of
reals

Read Reference Fixed point for rotation.

shift_vec Array of
reals

Read Reference Shift vector. To avoid scaling or
rotating the segment, pass the value
0.0 for both coordinates.

rotation_z Real Read Reference Segment rotation angle, in radians. To
avoid rotating the segment, pass the
value 0.0 for this argument. Positive
angles result in counterclockwise
rotations.

scale_x,
scale_y

Real Read Reference Scale factors. To avoid scaling the
segment, pass the value 1.0 for these
coordinates.

coord_flag Integer
(constant)

Read Reference Flag for WC or NDC points.

out_matrix 2�3 array
of reals

Write Reference Output transformation matrix. Use
this value as an argument to the SET
SEGMENT TRANSFORMATION
function to establish a segment
transformation.

Constants

Defined
Argument Constant Description

coord_flag GKS3D$K_COORDINATES_WC The fixed point and shift vector are WC
values.

GKS3D$K_COORDINATES_NDC The fixed point and shift vector are
NDC values.

7–10 Transformation Functions

ACCUMULATE TRANSFORMATION MATRIX

Note

Use caution when specifying GKS3D$K_COORDINATES_WC. DEC
GKS uses the current normalization transformation to transform
the fixed points from WC to NDC values. The current normalization
transformation might not be the same as the one used during primitive
generation. If the current normalization transformation is different, the
result may be unexpected.

Description

The ACCUMULATE TRANSFORMATION MATRIX function accepts a specified
transformation matrix, concatenates new segment transformation component
values, and then writes the accumulated transformation to the last argument of
the function.

The order of transformation is:

1. Specified input matrix

2. Scale (relative to the specified fixed point)

3. Rotate (relative to the specified fixed point)

4. Shift

See the DEC GKS User’s Guide for a description of segment transformation and
transformation matrixes.

See Also

EVALUATE TRANSFORMATION MATRIX
INSERT SEGMENT
SET SEGMENT TRANSFORMATION
Example 7–1 for a program example using the ACCUMULATE
TRANSFORMATION MATRIX function

Transformation Functions 7–11

ACCUMULATE TRANSFORMATION MATRIX 3

ACCUMULATE TRANSFORMATION MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$accum_xform_matrix3 (in_matrix, fix_pt, shift_vec, rotation_x, rotation_y,
rotation_z, scale_x, scale_y, scale_z, coord_flag,
out_matrix)

Argument Data Type Access Passed by Description

in_matrix 3�4 array
of reals

Read Reference Input transformation matrix, created
previously by a call to either
EVALUATE TRANSFORMATION
MATRIX 3 or ACCUMULATE
TRANSFORMATION MATRIX 3.

fix_pt Array of
reals

Read Reference Fixed point for rotation.

shift_vec Array of
reals

Read Reference Shift vector. To avoid translating the
segment, pass the value 0.0 for all
coordinates.

rotation_x,
rotation_y,
rotation_z

Real Read Reference Segment rotation angles, in radians.
To calculate radians, use the formula
360 degrees = 2*pi radians. To avoid
rotating the segment, pass the value
0.0 for these arguments.

scale_x,
scale_y,
scale_z

Real Read Reference Scale factors. To avoid scaling the
segment, pass the value 1.0 for these
arguments.

coord_flag Integer
(constant)

Read Reference Flag for WC or NDC points.

out_matrix 3�4 array
of reals

Write Reference Output transformation matrix. Use
this value as an argument to the SET
SEGMENT TRANSFORMATION
function to establish a segment
transformation.

7–12 Transformation Functions

ACCUMULATE TRANSFORMATION MATRIX 3

Constants

Defined
Argument Constant Description

coord_flag GKS3D$K_COORDINATES_WC The fixed point and shift vector are WC
values.

GKS3D$K_COORDINATES_NDC The fixed point and shift vector are
NDC values.

Note

Use caution when specifying GKS3D$K_COORDINATES_WC. DEC
GKS uses the current normalization transformation to transform
the fixed points from WC to NDC values. The current normalization
transformation might not be the same as the one used during primitive
generation. If the current normalization transformation is different, the
result may be unexpected.

Description

The ACCUMULATE TRANSFORMATION MATRIX 3 function accepts a specified
transformation matrix, concatenates new segment transformation component
values, and then writes the accumulated transformation to the last argument of
the function.

The order of transformation is:

1. Specified input matrix

2. Scale (relative to the specified fixed point)

3. Rotate (relative to the specified fixed point)

4. Shift

See the DEC GKS User’s Guide for a description of segment transformation and
transformation matrixes.

See Also

EVALUATE TRANSFORMATION MATRIX 3
INSERT SEGMENT 3
SET SEGMENT TRANSFORMATION 3
Example 7–1 for a program example using the ACCUMULATE
TRANSFORMATION MATRIX function

Transformation Functions 7–13

EVALUATE TRANSFORMATION MATRIX

EVALUATE TRANSFORMATION MATRIX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$eval_xform_matrix (fix_pt, shift_vec, rotation, scale_x, scale_y, coord_flag,
trans_matrix)

Argument Data Type Access Passed by Description

fix_pt Array of
reals

Read Reference Fixed point for rotation.

shift_vec Array of
reals

Read Reference Shift vector. To avoid translating the
segment, pass the value 0.0 for both
coordinates.

rotation Real Read Reference Segment rotation angle, in radians. To
avoid rotating the segment, pass the
value 0.0 for this argument. Positive
angles result in counterclockwise
rotations.

scale_x,
scale_y

Real Read Reference Scale factors. To avoid scaling the
segment, pass the value 1.0 for these
arguments.

coord_flag Integer
(constant)

Read Reference Flag for WC or NDC points.

trans_
matrix

2�3 array
of reals

Write Reference Segment transformation matrix.
This value can be used as an
argument to the SET SEGMENT
TRANSFORMATION function to
establish a segment transformation.

Constants

Defined
Argument Constant Description

coord_flag GKS3D$K_COORDINATES_WC The fixed point and shift vector are WC
values.

GKS3D$K_COORDINATES_NDC The fixed point and shift vector are
NDC values.

7–14 Transformation Functions

EVALUATE TRANSFORMATION MATRIX

Note

Use caution when specifying GKS3D$K_COORDINATES_WC. DEC
GKS uses the current normalization transformation to transform
the fixed points from WC to NDC values. The current normalization
transformation might not be the same as the one used during primitive
generation. If the current normalization transformation is different, the
result may be unexpected.

Description

The EVALUATE TRANSFORMATION MATRIX function accepts scaling, rotation,
and translation component values, and then writes a transformation matrix
to the last argument of the function. This function can be used to construct
the transformation that can be used as an argument to SET SEGMENT
TRANSFORMATION to establish a segment transformation.

The order of transformation is:

1. Scale (relative to the specified fixed point)

2. Rotate (relative to the specified fixed point)

3. Shift

Segment transformation and transformation matrixes are described in the DEC
GKS User’s Guide.

See Also

ACCUMULATE TRANSFORMATION MATRIX
INSERT SEGMENT
SET SEGMENT TRANSFORMATION
Example 7–2 for a program example using the EVALUATE TRANSFORMATION
MATRIX function

Transformation Functions 7–15

EVALUATE TRANSFORMATION MATRIX 3

EVALUATE TRANSFORMATION MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$eval_xform_matrix3 (fix_pt, shift_vec, rotation_x, rotation_y, rotation_z,
scale_x, scale_y, scale_z, coord_flag, trans_matrix)

Argument Data Type Access Passed by Description

fix_pt Array of
reals

Read Reference Fixed point for rotation.

shift_vec Array of
reals

Read Reference Shift vector. To avoid translating the
segment, pass the value 0.0 for all
coordinates.

rotation_x,
rotation_y,
rotation_z

Real Read Reference Segment rotation angle, in radians.
To calculate radians, use the formula
360 degrees = 2*pi radians. To avoid
rotating the segment, pass the value
0.0 for these arguments.

scale_x,
scale_y,
scale_z

Real Read Reference Scale factors. To avoid scaling the
segment, pass the value 1.0 for these
arguments.

coord_flag Integer
(constant)

Read Reference Flag for WC or NDC points.

trans_
matrix

3�4 array
of reals

Write Reference Segment transformation matrix.
This value can be used as an
argument to the SET SEGMENT
TRANSFORMATION function to
establish a segment transformation.

Constants

Defined
Argument Constant Description

coord_flag GKS3D$K_COORDINATES_WC The fixed point and shift vector are WC
values.

GKS3D$K_COORDINATES_NDC The fixed point and shift vector are
NDC values.

7–16 Transformation Functions

EVALUATE TRANSFORMATION MATRIX 3

Note

Use caution when specifying GKS3D$K_COORDINATES_WC. DEC
GKS uses the current normalization transformation to transform
the fixed points from WC to NDC values. The current normalization
transformation might not be the same as the one used during primitive
generation. If the current normalization transformation is different, the
result may be unexpected.

Description

The EVALUATE TRANSFORMATION MATRIX 3 function accepts scaling,
rotation, and translation component values, and then writes a transformation
matrix to the last argument of the function. This function can be used to
construct the transformation that can be used as an argument to SET SEGMENT
TRANSFORMATION 3 to establish a segment transformation.

The order of transformation is:

1. Scale (relative to the specified fixed point)

2. Rotate (relative to the specified fixed point)

3. Shift

Segment transformation and transformation matrixes are described in the DEC
GKS User’s Guide.

See Also

ACCUMULATE TRANSFORMATION MATRIX 3
INSERT SEGMENT 3
SET SEGMENT TRANSFORMATION 3
Example 7–2 for a program example using the EVALUATE TRANSFORMATION
MATRIX function

Transformation Functions 7–17

EVALUATE VIEW MAPPING MATRIX 3

EVALUATE VIEW MAPPING MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$eval_view_map_matrix3 (window_lim, view_lim, proj_type, proj_ref_pt,
view_dist, front_dist, back_dist, err_stat, map_matrix)

Argument Data Type Access Passed by Description

window_lim Array of
reals

Read Reference Window limits in view reference
coordinate (VRC) points, specified
in the order XMIN, XMAX, YMIN,
YMAX

view_lim Array of
reals

Read Reference Projection viewport limits in NPC,
specified in the order XMIN, XMAX,
YMIN, YMAX, ZMIN, ZMAX

proj_type Integer
(constant)

Read Reference Projection type

proj_ref_pt Array of
reals

Read Reference Projection reference point in VRC

view_dist Real Read Reference View plane distance in VRC
front_dist Real Read Reference Front plane distance in VRC
back_dist Real Read Reference Back plane distance in VRC
err_stat Integer Write Reference Error status
map_
matrix

4�4 array
of reals

Write Reference View mapping matrix

Constants

Defined
Argument Constant Description

proj_type GKS3D$K_PARALLEL Parallel projection
GKS3D$K_PERSPECTIVE Perspective projection

Description

The EVALUATE VIEW MAPPING MATRIX 3 function returns the view mapping
matrix for a specified set of input view parameters, which can be passed as input
to the SET VIEW REPRESENTATION 3 function. The view mapping matrix in
the view representation transforms the GKS coordinate system from VRC points
to NPC points.

To create the view mapping matrix, use the following procedure:

• Specify window limits (view window) within VRC space in the order UMIN,
UMAX, VMIN, VMAX.

7–18 Transformation Functions

EVALUATE VIEW MAPPING MATRIX 3

These restrictions apply:

UMIN < UMAX
VMIN < VMAX

The resulting view window is a rectangular region on the view plane with
sides parallel to the U- and V-axes.

• Specify projection viewport limits (view clipping limits) within NPC space in
the order XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX.

These restrictions apply:

XMIN < XMAX
YMIN < YMAX
ZMIN � ZMAX
XMIN, XMAX, YMIN, YMAX, ZMIN, and ZMAX must be in the range
[0,1], inclusive.

The view clipping limits form a rectangular parallelepiped in NPC space with its
edges parallel to the NPC axes. Although the NPC system conceptually extends
beyond [0,1] � [0,1] �[0,1], the view clipping limits are located in the closed unit
cube [0,1] � [0,1] � [0,1] in NPC space.

The view, back, and front planes are parallel to the UV plane of the VRC system.
They are specified as N coordinate values in the three plane arguments to this
function.

The front and back plane values specify the front and back of the view volume.
Conceptually, the VRC system is oriented, because the VRC points result from
the view orientation transformation. (See the EVALUATE VIEW ORIENTATION
MATRIX 3 function.) Therefore, the front plane should not be positioned behind
the back plane.

The following restrictions apply to the view, front, and back planes:

• Back plane distance < front plane distance

• Back plane distance = front plane distance, if ZMIN = ZMAX

• The N coordinate of the PRP �� view plane distance

• For projection type = PERSPECTIVE, the N coordinate > front plane distance
and < back plane distance

If the view mapping parameters are consistent and well defined (that is, if they
conform to the specified rules and restrictions), a call to this function returns the
4 � 4 view mapping matrix. Otherwise, a nonzero error indicator is returned.

See Also

EVALUATE VIEW ORIENTATION MATRIX 3
SET VIEW REPRESENTATION 3

Transformation Functions 7–19

EVALUATE VIEW ORIENTATION MATRIX 3

EVALUATE VIEW ORIENTATION MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$eval_view_orient_matrix3 (ref_point, normal_vec, up_vec, coord_flag, err_stat,
orient_matrix)

Argument Data Type Access Passed by Description

ref_point Array of
reals

Read Reference View reference point

normal_vec Array of
reals

Read Reference View plane normal vector

up_vec Array of
reals

Read Reference View up vector

coord_flag Integer
(constant)

Read Reference Coordinate flag

err_stat Integer Write Reference Error indicator
orient_
matrix

Array of
reals

Write Reference View orientation matrix

Constants

Defined
Argument Constant Description

coord_flag GKS3D$K_COORDINATES_WC The view reference point, view plane
normal vector, and view up vector are
WC values.

GKS3D$K_COORDINATES_NDC The view reference point, view plane
normal vector, and view up vector are
NDC values.

Note

Use caution when specifying GKS3D$K_COORDINATES_WC. DEC GKS
uses the current normalization transformation to transform the points
from WC to NDC values. The current normalization transformation
might not be the same as the one used during primitive generation. If
the current normalization transformation is different, the result may be
unexpected.

7–20 Transformation Functions

EVALUATE VIEW ORIENTATION MATRIX 3

Description

The EVALUATE VIEW ORIENTATION MATRIX 3 function provides for
three-dimensional translation and rotation of axes. This function returns
a view orientation matrix, which can be passed as input to the SET VIEW
REPRESENTATION 3 function. The view orientation matrix in the view
representation transforms the GKS coordinate system from WC points to VRC
points.

The specified view reference point is a three-dimensional point that defines the
origin of the VRC system.

The specified view plane normal is a three-dimensional vector relative to the
view reference point. It defines the N-axis of the VRC system, which is the third
axis of the system. The view reference plane is the plane in WC points that
contains the view reference point and is perpendicular to the view plane normal.

The specified view up vector is a three-dimensional vector relative to the view
reference point. It is projected onto the view reference plane through a projection
parallel to the view plane normal. The projection of the view up vector onto the
view reference plane determines the V-axis of the VRC system.

These restrictions apply to the specified values:

• View up vector and view plane normal are not parallel; therefore, the view
coordinates can be established.

• The length of view up vector is greater than 0.

• The length of view plane normal is greater than 0.

If the view orientation parameters are consistent and well defined (that is, if they
conform to the specified rules and restrictions), a call to this function returns the
three-dimensional (4 � 4) view orientation matrix. Otherwise, a nonzero error
indicator is returned.

See Also

SET VIEW REPRESENTATION 3

Transformation Functions 7–21

SELECT NORMALIZATION TRANSFORMATION

SELECT NORMALIZATION TRANSFORMATION

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$select_xform (trans_num)

Argument Data Type Access Passed by Description

trans_num Integer Read Reference Normalization transformation number

Description

The SELECT NORMALIZATION TRANSFORMATION function sets the
normalization transformation number entry in the GKS state list as the current
transformation, and uses the associated window and viewport to transform points
from the WC system to the NDC system for subsequent output generation.

To set or reset windows and viewports associated with a transformation number,
pass the normalization transformation number to SET WINDOW and SET
VIEWPORT. After selecting this number, any subsequent calls to output functions
use the window and viewport associated with this number.

By default, DEC GKS uses the unity normalization transformation number 0.
Use the default when you want to map the default normalization window to the
default NDC viewport.

See Also

SET VIEWPORT
SET VIEWPORT 3
SET WINDOW
SET WINDOW 3
Example 7–3 for a program example using the SELECT NORMALIZATION
TRANSFORMATION function

7–22 Transformation Functions

SET CLIPPING INDICATOR

SET CLIPPING INDICATOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_clipping (clip)

Argument Data Type Access Passed by Description

clip Integer
(constant)

Read Reference Clipping flag

Constants

Defined
Argument Constant Description

clip GKS3D$K_NOCLIP Clipping disabled
GKS3D$K_CLIP Clipping enabled

Description

The SET CLIPPING INDICATOR function enables or disables clipping of the
image at the normalization viewport boundary by setting the clipping flag in the
GKS state list.

If clipping is enabled, DEC GKS clips all generated output primitives at the
normalization viewport boundary. If clipping is disabled, primitives may exceed
the normalization viewport boundaries. By default, DEC GKS clips primitives.

Note

This function works only for the normalization viewport. Pictures are
always clipped at the workstation window, despite the current status of
the clipping flag.

See Also

INSERT SEGMENT
Example 7–3 for a program example using the SET CLIPPING INDICATOR
function

Transformation Functions 7–23

SET VIEW INDEX

SET VIEW INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_view_ind (view_ind)

Argument Data Type Access Passed by Description

view_ind Integer Read Reference View index number. The default value
is 0.

Description

The SET VIEW INDEX function sets the value of the current view index in
the GKS state list. This index is bound to all output primitives. This function
associates the view representation of the specified view bundle table entry with
all subsequently defined output primitives. The entry contains the following:

• View orientation matrix

• View mapping matrix

• View clipping limits

• XY clipping indicator

• Back clipping indicator

• Front clipping indicator

You can create and change view table indexes and associated table entries with
the SET VIEW REPRESENTATION 3 function.

See Also

SET VIEW REPRESENTATION 3

7–24 Transformation Functions

SET VIEW REPRESENTATION 3

SET VIEW REPRESENTATION 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_view_rep3 (ws_id, view_ind, orient_matrix, map_matrix, clip_limits,
xy_clip_ind, b_clip_ind, f_clip_ind)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
view_ind Integer Read Reference View index
orient_
matrix

4�4 array
of reals

Read Reference View orientation matrix

map_
matrix

4�4 array
of reals

Read Reference View mapping matrix

clip_limits Array of
reals

Read Reference View clipping limits, in the order
XMIN, XMAX, YMIN, YMAX, ZMIN,
ZMAX

xy_clip_ind,
b_clip_ind,
f_clip_ind

Integer
(constant)

Read Reference XY, back, and front clipping
indicators

Constants

Defined
Argument Constant Description

xy_clip_ind,
b_clip_ind,
f_clip_ind

GKS3D$K_NOCLIP
GKS3D$K_CLIP

Clipping disabled
Clipping enabled

Description

The SET VIEW REPRESENTATION 3 function modifies the specified view table
entries. View changes are applied when the display is updated.

The clipping indicators control whether the planes defined by the clipping limits
are active or inactive. If a clipping indicator is turned on, NPC data is clipped at
the corresponding plane defined by the clip limits. If a clipping indicator is off,
the NPC data is not clipped at the plane. Instead it is allowed to extend through
the clip plane until it is conceptually clipped at the NPC system boundary.

Transformation Functions 7–25

SET VIEW TRANSFORMATION INPUT PRIORITY

SET VIEW TRANSFORMATION INPUT PRIORITY

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_view_xform_priority (ws_id, view_ind, ref_view_ind, rel_priority)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
view_ind Integer Read Reference View index number. If the view index

and the reference view index are the
same, the function has no effect.

ref_view_
ind

Integer Read Reference Reference view index.

rel_priority Integer
(constant)

Read Reference Relative priority.

Constants

Defined
Argument Constant Description

rel_priority GKS3D$K_HIGHER Next higher priority
GKS3D$K_LOWER Next lower priority

Description

The SET VIEW TRANSFORMATION INPUT PRIORITY function sets the view
transformation input priority of the specified views.

View transformation input priority determines which view transformation
is selected to map locator and stroke points from NPC to NDC points. You
specify whether the first number is of the next higher or lower priority than
the reference number. If you specify lower, the first number is placed directly
behind the reference number in the sequential priority list. If you specify higher,
DEC GKS places the first number directly in front of the reference number in the
sequential priority list. By default, the view representation for view index 0 has
the highest view transformation input priority.

If the view index and the reference view index are the same, this function has no
effect.

7–26 Transformation Functions

SET VIEWPORT

SET VIEWPORT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_viewport (trans_num, view_area)

Argument Data Type Access Passed by Description

trans_num Integer Read Reference Normalization transformation number
view_area Array of

reals
Read Reference Viewport area, in the order XMIN,

XMAX, YMIN, YMAX

Description

The SET VIEWPORT function specifies the viewport limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangle in WC points (the normalization window) that is to be mapped to
a specified rectangle in NDC points (the normalization viewport). If the two
rectangles do not have the same aspect ratios, mapping is not uniform.

SET VIEWPORT modifies the X and Y components of the specified normalization
viewport. By default, all normalization transformations have their windows set
to [0,1] in X and Y, and their viewports set to [0,1] in X and Y.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT INPUT PRIORITY
SET WINDOW
Example 7–3 for a program example using the SET VIEWPORT function

Transformation Functions 7–27

SET VIEWPORT 3

SET VIEWPORT 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_viewport3 (trans_num, view_vol)

Argument Data Type Access Passed by Description

trans_num Integer Read Reference Normalization transformation number
view_vol Array of

reals
Read Reference Viewport volume, in the order XMIN,

XMAX, YMIN, YMAX, ZMIN, ZMAX

Description

The SET VIEWPORT 3 function specifies the viewport limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangular parallelepiped in WC points (the normalization window) that
is to be mapped to a specified rectangular parallelepiped in NDC points (the
normalization viewport). If the two parallelepipeds do not have the same aspect
ratios, mapping is not uniform.

SET VIEWPORT 3 modifies the X, Y, and Z components of the specified
normalization viewport. By default, all normalization transformations have
their windows set to [0,1] in X, Y, and Z; and their viewports set to [0,1] in X, Y,
and Z.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT INPUT PRIORITY
SET WINDOW 3
Example 7–3 for a program example using the SET VIEWPORT function

7–28 Transformation Functions

SET VIEWPORT INPUT PRIORITY

SET VIEWPORT INPUT PRIORITY

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_viewport_priority (trans_num, ref_trans_num, rel_priority)

Argument Data Type Access Passed by Description

trans_num Integer Read Reference Normalization transformation number
ref_trans_
num

Integer Read Reference Reference normalization
transformation number

rel_priority Integer
(constant)

Read Reference Relative priority

Constants

Defined
Argument Constant Description

rel_priority GKS3D$K_INPUT_PRIORITY_HIGHER Higher priority
GKS3D$K_INPUT_PRIORITY_LOWER Lower priority

Description

The SET VIEWPORT INPUT PRIORITY function sets the viewport input priority
of the specified normalization transformation.

Viewport input priority determines which normalization transformation is
selected to map locator and stroke points from NDC points to WC points. By
default, the normalization transformations are ordered in a sequential list so
that transformation number 0 has the highest viewport input priority and
transformation number 255 has the lowest. If you specify HIGHER priority,
DEC GKS places the first number directly in front of this reference number in the
sequential priority list. If you specify LOWER priority, the first number is placed
directly behind this reference number in the sequential priority list.

If the normalization transformation number and the reference normalization
transformation numbers are the same, this function has no effect.

See Also

GET LOCATOR
GET STROKE
REQUEST LOCATOR
REQUEST STROKE
SAMPLE LOCATOR
SAMPLE STROKE
SELECT NORMALIZATION TRANSFORMATION
SET WINDOW

Transformation Functions 7–29

SET WINDOW

SET WINDOW

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_window (trans_num, window_area)

Argument Data Type Access Passed by Description

trans_num Integer Read Reference Normalization transformation number
window_
area

Array of
reals

Read Reference Window area, in the order XMIN,
XMAX, YMIN, YMAX

Description

The SET WINDOW function specifies the window limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangle in WC points (the normalization window) that is to be mapped to
a specified rectangle in NDC points (the normalization viewport). If the two
rectangles do not have the same aspect ratios, mapping is not uniform.

SET WINDOW modifies the X and Y components of the specified normalization
window. By default, all normalization transformations have their windows set to
[0,1] in X and Y; and their viewports set to [0,1] in X and Y.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT
SET VIEWPORT INPUT PRIORITY
Example 7–3 for a program example using the SET WINDOW function

7–30 Transformation Functions

SET WINDOW 3

SET WINDOW 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$set_window3 (trans_num, window_vol)

Argument Data Type Access Passed by Description

trans_num Integer Read Reference Normalization transformation number
window_vol Array of

reals
Read Reference Window volume, in the order XMIN,

XMAX, YMIN, YMAX, ZMIN, ZMAX

Description

The SET WINDOW 3 function specifies the window limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangular parallelepiped in WC points (the normalization window) that
is to be mapped to a specified rectangular parallelepiped in NDC points (the
normalization viewport). If the two parallelepipeds do not have the same aspect
ratios, mapping is not uniform.

SET WINDOW 3 modifies the X, Y, and Z components of the specified
normalization window. By default, all normalization transformations have
their windows set to [0,1] in X, Y, and Z; and their viewports set to [0,1] in X, Y,
and Z.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT 3
SET VIEWPORT INPUT PRIORITY
Example 7–3 for a program example using the SET WINDOW function

Transformation Functions 7–31

SET WORKSTATION VIEWPORT

SET WORKSTATION VIEWPORT

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_ws_viewport (ws_id, view_area)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
view_area Array of

reals
Read Reference Viewport area in device coordinate

points, in the order XMIN, XMAX,
YMIN, YMAX

Description

The SET WORKSTATION VIEWPORT function establishes the portion of the
workstation surface on which DEC GKS maps the workstation window. Make
sure the X and Y values are located within the display surface limits of the
specified workstation. Use the function INQUIRE DISPLAY SPACE SIZE to
determine the maximum X and Y values of the workstation display surface.

The default workstation viewport is the largest square on the workstation surface,
beginning with the lower left corner. If you define a new workstation viewport
or window such that the two are not proportionally equivalent, DEC GKS may
not use the entire viewport. DEC GKS only uses the portion of the viewport that
maintains the shape of the picture in the workstation window.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the requested settings. If the surface is regenerated, the surface
is cleared and only output primitives stored in segments are redrawn.
You lose any primitives not contained in segments.

See Also

INQUIRE DISPLAY SPACE SIZE
SET WORKSTATION WINDOW
Example 7–4 for a program example using the SET WORKSTATION VIEWPORT
function

7–32 Transformation Functions

SET WORKSTATION VIEWPORT 3

SET WORKSTATION VIEWPORT 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_ws_viewport3 (ws_id, view_vol)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
view_vol Array of

reals
Read Reference Viewport volume in device coordinate

points, in the order XMIN, XMAX,
YMIN, YMAX, ZMIN, ZMAX

Description

The SET WORKSTATION VIEWPORT 3 function establishes the portion of the
workstation surface on which DEC GKS maps the workstation window. Make
sure the X, Y, and Z values are located within the display surface limits of the
specified workstation. Use the function INQUIRE DISPLAY SPACE SIZE 3 to
determine the maximum X, Y, and Z values of the workstation display surface.

The default workstation viewport is the largest cube on the workstation surface,
with the origin at the lower left corner furthest from the observer of the display
space. If you define a new workstation viewport or window such that the two are
not proportionally equivalent, DEC GKS may not use the entire viewport. DEC
GKS only uses the portion of the viewport that maintains the shape of the picture
in the workstation window.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the requested settings. If the surface is regenerated, the surface
is cleared and only output primitives stored in segments are redrawn.
You lose any primitives not contained in segments.

See Also

INQUIRE DISPLAY SPACE SIZE 3
SET WORKSTATION WINDOW 3
Example 7–4 for a program example using the SET WORKSTATION VIEWPORT
function

Transformation Functions 7–33

SET WORKSTATION WINDOW

SET WORKSTATION WINDOW

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_ws_window (ws_id, window_area)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
window_
area

Array of
reals

Read Reference Window area in NDC points, in the
order XMIN, XMAX, YMIN, YMAX

Description

The SET WORKSTATION WINDOW function establishes the portion of the
composed picture, on the NDC plane, that DEC GKS maps to the current
workstation viewport.

Despite the current value of the clipping flag, DEC GKS clips all pictures at the
workstation window boundary. By default, DEC GKS uses the entire picture,
mapping the default workstation window range ([0,1] � [0,1]) onto the largest
square that the workstation can produce.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the current settings. If the surface is regenerated, the surface is
cleared and only output primitives stored in segments are redrawn. You
lose any primitives not contained in segments.

See Also

SET WORKSTATION VIEWPORT

7–34 Transformation Functions

SET WORKSTATION WINDOW 3

SET WORKSTATION WINDOW 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_ws_window3 (ws_id, window_vol)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
window_vol Array of

reals
Read Reference Window volume in NDC points, in the

order XMIN, XMAX, YMIN, YMAX,
ZMIN, ZMAX

Description

The SET WORKSTATION WINDOW 3 function establishes the portion of the
composed picture, in NDC space, that DEC GKS maps to the current workstation
viewport.

Despite the current value of the clipping flag, DEC GKS clips all pictures at the
workstation window boundary. By default, DEC GKS uses the entire picture,
mapping the default workstation window range ([0,1] � [0,1] � [0,1]) onto the
largest cube that the workstation can produce.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the current settings. If the surface is regenerated, the surface is
cleared and only output primitives stored in segments are redrawn. You
lose any primitives not contained in segments.

See Also

SET WORKSTATION VIEWPORT 3

Transformation Functions 7–35

Transformation Functions
7.6 Program Examples

7.6 Program Examples
Example 7–1 illustrates the use of the ACCUMULATE TRANSFORMATION
MATRIX function.

Example 7–1 Showing the Cumulative Effect of ACCUMULATE
TRANSFORMATION MATRIX

/*
* This program shows how using the ACCUMULATE TRANSFORMATION MATRIX
* function lets you add transformation components to a previously
* set transformation.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS3D$ definitions file */

main ()
{

int clip_indicator = GKS3D$K_NOCLIP;
int coord_flag = GKS3D$K_COORDINATES_WC;
int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
float fix_pt[2];
int house = 1;
int in_class;
int lower_left_corner = 1;
float no_change = 1.0;
float null = 0;
int num_points = 9;
float pts_array[18];
int regen_flag = GKS3D$K_PERFORM_FLAG;
float shift_vec[2];
float time_out = 5.00;
float view_area[4];
int ws_id = 1;
int ws_type = GKS3D$K_WSTYPE_DEFAULT;
float xform_matrix[6];

/* Open and activate GKS and the workstation environment. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$activate_ws (&ws_id);

/*
* Set the viewport limits for the specified normalization
* transformation.
*/

view_area[0] = 0.0;
view_area[1] = 0.5;
view_area[2] = 0.0;
view_area[3] = 0.5;

gks3d$set_viewport (&lower_left_corner, view_area);

(continued on next page)

7–36 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–1 (Cont.) Showing the Cumulative Effect of ACCUMULATE
TRANSFORMATION MATRIX

/*
* This call selects a normalization transformation with the
* new viewport.
*/

gks3d$select_xform (&lower_left_corner);
gks3d$set_clipping (&clip_indicator);

/* Create the segment. */

pts_array[0] = 0.4; pts_array[1] = 0.1;
pts_array[2] = 0.1; pts_array[3] = 0.1;
pts_array[4] = 0.1; pts_array[5] = 0.7;
pts_array[6] = 0.4; pts_array[7] = 0.7;
pts_array[8] = 0.25; pts_array[9] = 0.9;
pts_array[10] = 0.1; pts_array[11] = 0.7;
pts_array[12] = 0.4; pts_array[13] = 0.1;
pts_array[14] = 0.4; pts_array[15] = 0.7;
pts_array[16] = 0.1; pts_array[17] = 0.1;

gks3d$create_seg (&house);
gks3d$polyline (&num_points, pts_array);
gks3d$close_seg ();

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Shift the house upwards and sidewards by 0.2 world coordinates. */

fix_pt[0] = 0.0;
fix_pt[1] = 0.0;
shift_vec[0] = 0.2;
shift_vec[1] = 0.2;

gks3d$eval_xform_matrix (fix_pt, shift_vec, &null, &no_change,
&no_change, &coord_flag, xform_matrix);

/*
* Transform the segment and update the screen. Calling SET SEGMENT
* TRANSFORMATION changes the segment transformation in the segment list,
* and sets flags in the workstation state list, telling GKS that the
* display surface is out of date and that an update is necessary.
*/

gks3d$set_seg_xform (&house, xform_matrix);

/*
* Calling UPDATE WORKSTATION updates the position of the image on the
* workstation surface. Wait 5 seconds.
*/

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/*
* Using ACCUMULATE TRANSFORMATION MATRIX, you can add transformation
* components to a previously set transformation. The house gradually
* moves upward, one Y world coordinate point at a time.
*/

gks3d$accum_xform_matrix (xform_matrix, fix_pt, shift_vec,
&null, &no_change, &no_change, &coord_flag, xform_matrix);

(continued on next page)

Transformation Functions 7–37

Transformation Functions
7.6 Program Examples

Example 7–1 (Cont.) Showing the Cumulative Effect of ACCUMULATE
TRANSFORMATION MATRIX

/* Transform the segment and update the screen. */

gks3d$set_seg_xform (&house, xform_matrix);

/* Release the deferred output. Wait 3 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Again, shift the house upwards by 1 more world coordinate. */

gks3d$accum_xform_matrix (xform_matrix, fix_pt, shift_vec,
&null, &no_change, &no_change, &coord_flag, xform_matrix);

/* Transform the segment. */

gks3d$set_seg_xform (&house, xform_matrix);

/* Update the surface to initiate the change. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Deactivate and close the workstation environment and GKS. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 7–4 and Figure 7–5 show the first and last positions of the house. Each
of the four house positions illustrates an added transformation component in the
ACCUMULATE TRANSFORMATION MATRIX function.

7–38 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–4 First Transformation Component of ACCUMULATE
TRANSFORMATION MATRIX

ZK−4019A−GE

Transformation Functions 7–39

Transformation Functions
7.6 Program Examples

Figure 7–5 Fourth Transformation Component of ACCUMULATE
TRANSFORMATION MATRIX

ZK−4022A−GE

Example 7–2 illustrates the use of the EVALUATE TRANSFORMATION MATRIX
function.

7–40 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–2 The Effects of a Segment Transformation

/*
* This program transforms the house contained in a segment. The
* program shows the effects of segment transformation through the
* use of the EVALUATE TRANSFORMATION MATRIX function.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS3D$ definitions file */

main ()
{

int clip_indicator = GKS3D$K_NOCLIP;
int coord_flag = GKS3D$K_COORDINATES_WC;
int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
float fix_pt[2];
int house = 1;
int in_class;
int lower_left_corner = 1;
int num_points = 9;
float pts_array[18];
int regen_flag_1 = GKS3D$K_POSTPONE_FLAG;
int regen_flag_2 = GKS3D$K_PERFORM_FLAG;
float rotation;
float scale_x = .5;
float scale_y = .5;
float shift_vec[2];
float time_out = 5.00;
float view_area[4];
int ws_id = 1;
int ws_type = GKS3D$K_WSTYPE_DEFAULT;
float xform_matrix[6];

/* Open and activate GKS and the workstation environment. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$activate_ws (&ws_id);

/* Set the viewport limits for the specified normalization transformation. */

view_area[0] = 0.0;
view_area[1] = 0.5;
view_area[2] = 0.0;
view_area[3] = 0.5;

gks3d$set_viewport (&lower_left_corner, view_area);
gks3d$select_xform (&lower_left_corner);
gks3d$set_clipping (&clip_indicator);

/* Create the segment. */

pts_array[0] = 0.4; pts_array[1] = 0.1;
pts_array[2] = 0.1; pts_array[3] = 0.1;
pts_array[4] = 0.1; pts_array[5] = 0.7;
pts_array[6] = 0.4; pts_array[7] = 0.7;
pts_array[8] = 0.25; pts_array[9] = 0.9;
pts_array[10] = 0.1; pts_array[11] = 0.7;
pts_array[12] = 0.4; pts_array[13] = 0.1;
pts_array[14] = 0.4; pts_array[15] = 0.7;
pts_array[16] = 0.1; pts_array[17] = 0.1;

(continued on next page)

Transformation Functions 7–41

Transformation Functions
7.6 Program Examples

Example 7–2 (Cont.) The Effects of a Segment Transformation

gks3d$create_seg (&house);
gks3d$polyline (&num_points, pts_array);
gks3d$close_seg ();

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag_1);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Rotation equals pi divided by 6 (30 degrees). */

rotation = 3.14/6.0;

/*
* You can change the segment transformation that affects the
* rotation, scaling, and translation components of segment
* appearance. The EVALUATE TRANSFORMATION MATRIX call assists in the
* creation of a new transformation matrix, that will permit you to
* specify rotation, scaling, and translation values.
*/

fix_pt[0] = .25;
fix_pt[1] = .9;
shift_vec[0] = .0;
shift_vec[1] = .2;

gks3d$eval_xform_matrix (fix_pt, shift_vec, &rotation, &scale_x,
&scale_y, &coord_flag, xform_matrix);

/* Transform the segment. */

gks3d$set_seg_xform (&house, xform_matrix);

/*
* The UPDATE WORKSTATION function updates the position of the image on
* the workstation surface. All output not contained in segments is lost.
* Wait 5 seconds.
*/

gks3d$update_ws (&ws_id, ®en_flag_2);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Deactivate and close the workstation environment and GKS. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

7–42 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–6 shows the house before the segment transformation.

Figure 7–6 Output Prior to Segment Transformation

ZK−4019A−GE

Transformation Functions 7–43

Transformation Functions
7.6 Program Examples

Figure 7–7 shows the house after the effects of the segment transformation.

Figure 7–7 Effect of Segment Transformation

ZK−4020A−GE

7–44 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–3 illustrates the use of the SET CLIPPING INDICATOR function.

Example 7–3 Controlling Clipping at the World Viewport

/*
* This program generates a "tall, thin house" that overlaps the
* normalization window and viewport. You can see the overlapping
* portion if clipping is disabled.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks3d_defs.h> /* GKS3D$ definitions file */

main ()
{

int clip_indicator = GKS3D$K_NOCLIP;
int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
int half = 1;
int in_class;
int low_left_corner = 1;
float max_x;
float max_y;
float min_x;
float min_y;
int num_points;
float pts_array[18];
int regen_flag = GKS3D$K_POSTPONE_FLAG;
float time_out = 5.0;
float view_vol[6];
float window_vol[6];
int ws_id = 1;
int ws_type = GKS3D$K_WSTYPE_DEFAULT;

/* Open GKS and the workstation environment. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$activate_ws (&ws_id);

/*
* Outlining the default world window results in the outlining of
* the NDC plane, the workstation window, and the workstation
* viewport, by default.
*/

num_points = 5;
pts_array[0] = 0.0; pts_array[1] = 0.0;
pts_array[2] = 0.5; pts_array[3] = 0.0;
pts_array[4] = 0.5; pts_array[5] = 0.5;
pts_array[6] = 0.0; pts_array[7] = 0.5;
pts_array[8] = 0.0; pts_array[9] = 0.0;

gks3d$polyline (&num_points, pts_array);

(continued on next page)

Transformation Functions 7–45

Transformation Functions
7.6 Program Examples

Example 7–3 (Cont.) Controlling Clipping at the World Viewport

/*
* This window (half of the default window) and viewport(lower
* left corner of the default viewport) are associated with
* normalization transformation number 1.
*/

window_vol[0] = 0.0;
window_vol[1] = 0.9;
window_vol[2] = 0.0;
window_vol[3] = 0.5;
window_vol[4] = 0.0;
window_vol[5] = 0.0;

gks3d$set_window (&half, window_vol);

view_vol[0] = 0.0;
view_vol[1] = 0.5;
view_vol[2] = 0.0;
view_vol[3] = 0.5;
view_vol[4] = 0.0;
view_vol[5] = 0.0;

gks3d$set_viewport (&low_left_corner, view_vol);
gks3d$select_xform (&low_left_corner);

/* Draw the polyline and show the clipping. */

num_points = 9;
pts_array[0] = .4; pts_array[1] = .1;
pts_array[2] = .1; pts_array[3] = .1;
pts_array[4] = .1; pts_array[5] = .7;
pts_array[6] = .4; pts_array[7] = .7;
pts_array[8] = .25; pts_array[9] = .9;
pts_array[10] = .1; pts_array[11] = .7;
pts_array[12] = .4; pts_array[13] = .1;
pts_array[14] = .4; pts_array[15] = .7;
pts_array[16] = .1; pts_array[17] = .1;

gks3d$polyline (&num_points, pts_array);

/* Release the deferred output and wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag_1);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Disable clipping. */

gks3d$set_clipping (&clip_indicator);

/* Draw the polyline again. */

gks3d$polyline (&num_points, pts_array);

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag_1);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

7–46 Transformation Functions

Transformation Functions
7.6 Program Examples

/* Close GKS and the workstation environment. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks();

}

Figure 7–8 illustrates the house while clipping is enabled.

Figure 7–8 SET CLIPPING INDICATOR with Clipping Enabled

ZK−4027A−GE

Transformation Functions 7–47

Transformation Functions
7.6 Program Examples

Figure 7–9 illustrates the house while clipping is disabled. The house overlaps
the normalization window and viewport.

Figure 7–9 SET CLIPPING INDICATOR with Clipping Disabled

ZK−4028A−GE

7–48 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–4 illustrates the use of the SET WORKSTATION VIEWPORT
function.

Example 7–4 Establishing a Workstation Viewport

/*
* This program uses the default normalization transformations,
* generates a "tall, thin house," updates the screen, changes
* the workstation viewport to the lower left corner of the display
* surface, and generates the output again.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks3d_defs.h> /* GKS3D$ definition file */

main ()
{

int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
float device_x;
float device_y;
float dis_size[2];
int error;
int house = 1;
int in_class;
int meters;
int not_used;
int num_points;
float pts_array[18];
float raster_x;
float raster_y;
int regen_flag = GKS3D$K_PERFORM_FLAG;
float time_out = 5.00;
float view_vol[6];
int ws_id = 1;
int ws_trans;
int ws_type = GKS3D$K_WSTYPE_DEFAULT;

/* Open GKS and the workstation environment. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$activate_ws (&ws_id);

/*
* Outlining the default world window results in outlining
* the NDC plane, the workstation window, and the workstation
* viewport, by default.
*/

num_points = 5;
pts_array[0] = 0.0; pts_array[1] = 0.0;
pts_array[2] = 1.0; pts_array[3] = 0.0;
pts_array[4] = 1.0; pts_array[5] = 1.0;
pts_array[6] = 0.0; pts_array[7] = 1.0;
pts_array[8] = 0.0; pts_array[9] = 0.0;

gks3d$polyline (&num_points, pts_array);

(continued on next page)

Transformation Functions 7–49

Transformation Functions
7.6 Program Examples

Example 7–4 (Cont.) Establishing a Workstation Viewport

/* Create and draw the house. */

num_points = 9;
pts_array[0] = .4; pts_array[1] = .1;
pts_array[2] = .1; pts_array[3] = .1;
pts_array[4] = .1; pts_array[5] = .7;
pts_array[6] = .4; pts_array[7] = .7;
pts_array[8] = .25; pts_array[9] = .9;
pts_array[10] = .1; pts_array[11] = .7;
pts_array[12] = .4; pts_array[13] = .1;
pts_array[14] = .4; pts_array[15] = .7;
pts_array[16] = .1; pts_array[17] = .1;

gks3d$create_seg (&house);
gks3d$polyline (&num_points, &pts_array, &pts_array);
gks3d$close_seg ();

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Inquire the display size. */

gks3d$inq_max_ds_size (&ws_type, &error, &meters, dis_size,
&raster_x, &raster_y);

/* Set the viewport with the return values. */

view_vol[0] = 0.0;
view_vol[1] = dis_size[0]/2.0;
view_vol[2] = 0.0;
view_vol[3] = dis_size[1]/2.0;
view_vol[4] = 0.0;
view_vol[5] = 0.0;

gks3d$set_ws_viewport(&ws_id, view_vol);

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/*
* Check whether the workstation viewport change required an implicit
* regeneration (IRG), thereby deleting all information not retained
* in a segment.
*/

gks3d$inq_dyn_mod_ws_attb (&ws_type, &error, ¬_used, ¬_used,
¬_used, ¬_used, ¬_used, ¬_used, &ws_trans);

if (ws_trans == GKS3D$K_IRG)
{
num_points = 5;
pts_array[0] = 0.0; pts_array[1] = 0.0;
pts_array[2] = 1.0; pts_array[3] = 0.0;
pts_array[4] = 1.0; pts_array[5] = 1.0;
pts_array[6] = 0.0; pts_array[7] = 1.0;
pts_array[8] = 0.0; pts_array[9] = 0.0;

gks3d$polyline (&num_points, pts_array);
}

(continued on next page)

7–50 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–4 (Cont.) Establishing a Workstation Viewport

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Close GKS and the workstation environment. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 7–10 illustrates how the house is displayed using the default
normalization transformation.

Transformation Functions 7–51

Transformation Functions
7.6 Program Examples

Figure 7–10 Output Using the Default Normalization Transformation

GKS

ZK−4029A−GE

Figure 7–11 illustrates how the house is displayed with changes to the
workstation viewport.

7–52 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–11 Output After Changes to the Workstation Viewport

Help

ZK−4030A−GE

GKS

File Edit Commands Options Print

Transformation Functions 7–53

Segment Functions

Insert tabbed divider here. Then discard this sheet.

8
Segment Functions

The DEC GKS segment functions create, manipulate, and delete stored groups of
output primitives called segments.

When producing output, you may wish to reproduce a graphic image at different
positions within a single picture, possibly across different devices, and possibly
at different points during program execution. It is inefficient to call all the
DEC GKS output and attribute functions every time you want to reproduce such
an image. DEC GKS provides a method of storing groups of output primitives,
output attributes, and clipping information in a segment.

8.1 Creating, Using, and Deleting Segments
To use segments, your workstation should be one of the categories OUTPUT,
OUTIN, MO, or WISS (described in Section 8.2). When you create a segment, the
segment is stored on all active workstations.

To create a segment, DEC GKS must be in the operating state WSAC (at
least one workstation active). When DEC GKS is in this state, you can call
CREATE SEGMENT, which creates a segment on all active workstations. The
only argument passed to CREATE SEGMENT is the segment name. You use a
segment name to identify a particular segment.

After you call CREATE SEGMENT, the DEC GKS operating state changes to
SGOP (segment open). Subsequent calls to the DEC GKS output and attribute
functions produce primitives stored in the segment on all active workstations.
When you have created the desired image, call CLOSE SEGMENT. This call
closes the segment, causing the DEC GKS operating state to change back to
WSAC.

When you call CREATE SEGMENT, the DEC GKS operating state changes from
WSAC to SGOP. SGOP signifies that a segment is open, or being created. Also,
calling CREATE SEGMENT establishes the segment state list associated with
the segment name, and DEC GKS records the segment name (in the GKS state
list) as the name of the currently open segment.

Segments cannot contain other segments; in other words, segments cannot
be nested. Therefore, if you call CREATE SEGMENT, you must call CLOSE
SEGMENT before you attempt to call CREATE SEGMENT again. Until you call
CLOSE SEGMENT, DEC GKS associates all generated output primitives with
the name of the open segment. When you call CLOSE SEGMENT, the DEC GKS
operating state changes from SGOP back to WSAC. After you close a segment,
you cannot reopen the segment to add more output primitives.

If you need to, you can rename the segment using the function RENAME
SEGMENT. If you are keeping an ordered list of segments, calls to this function
may be useful.

Segment Functions 8–1

Segment Functions
8.1 Creating, Using, and Deleting Segments

There are three ways to delete segments. If you use the function DELETE
SEGMENT FROM WORKSTATION, DEC GKS deletes the segment from the
specified workstation. If you use DELETE SEGMENT, DEC GKS deletes the
specified segment from all workstations storing the segment. If you call CLEAR
WORKSTATION, and if the surface is cleared, you delete all segments stored on
that workstation.

For more information concerning the DEC GKS operating states or the segment
state list, see Chapter 4.

Note

If you store primitives in a segment, and want to be able to change
the primitive’s appearance elsewhere in the program, you must set the
primitive’s ASF to be GKS3D$K_ASF_BUNDLED before you generate
the primitive. In this way, the primitive’s ASF is stored in the segment
with the primitive. If you want to change the primitive’s appearance, call
the appropriate SET . . . REPRESENTATION function for the primitive’s
bundle index. If you store the primitive in a segment using individual
attributes, the appearance of the primitive cannot be changed after
primitive generation. For more information on aspect source flags, see
Chapter 6.

8.1.1 Pick Identification
One of the DEC GKS logical input classes is the pick input class. Using the
function REQUEST PICK, the user can choose a segment, and possibly a portion
of the segment, as displayed on the surface of the workstation.

REQUEST PICK returns the segment name and the pick identifier of the
segment or segment portion chosen by the user. The pick identifier is a numeric
output attribute. Like other output attribute values (line type, line width, color,
text alignment, and so on), the pick identifier is bound to an output primitive
at the time of generation, and you cannot change its value. However, you can
change the current pick identifier value before generating each output primitive.
In doing so, DEC GKS associates a different numeric pick identifier value with
each generated primitive.

During segment creation, you can use pick identifiers to establish a hierarchy
within the segment. During pick input, DEC GKS returns the same segment
name if the pick prompt touches the same segment, but may return different
pick identifiers depending on which primitive within the segment the pick prompt
touches.

To see how to use pick identifiers, see Example 9–2 for a program example that
calls SET PICK IDENTIFIER.

8.2 Workstations and Segment Storage
When DEC GKS stores a segment on an active OUTPUT, OUTIN, or MO
workstation, the method of storage is called workstation dependent segment
storage (WDSS). On these workstations, you can control the segment attributes
(see Section 8.4), move or alter the shape of the segment using the segment
transformation functions (see Section 8.4.4.1), or delete the segment (either from
a single workstation or from all workstations storing the segment).

8–2 Segment Functions

Segment Functions
8.2 Workstations and Segment Storage

If you are creating segments using the WDSS method of storage, you cannot copy
a segment from one workstation to another. Also, you cannot recall a segment
once it has been deleted from a workstation. You can only alter the segment’s
position within the picture by changing the segment transformation.

To copy a segment, or to reassociate a segment with a workstation after deletion
from that particular workstation, you need to store the segment in workstation
independent segment storage (WISS). Once a segment is stored in WISS, the
segment is independent of any workstation and can be copied from WISS to other
workstations.

By storing a segment on a WISS workstation, you can delete a segment from
a non-WISS workstation and recall it again. Then, when you need to use the
deleted segment later in the program, you can associate the segment stored on
WISS with the other workstation, copy the segment to the other workstation, or
insert the segment’s primitives into the output stream of the other workstation.

If you associate a segment stored on a WISS workstation with another
workstation, the other workstation stores an identical segment. If you copy
a segment from a WISS workstation to another workstation, the segment’s
primitives are copied to the surface of the second workstation, but the second
workstation does not store them in a segment. If you insert a segment into the
output stream of another workstation, DEC GKS applies an INSERT SEGMENT
transformation and then copies all the segment’s primitives onto the surface
of the other workstation, but the second workstation does not store them in
a segment. If you are creating a segment, you can insert another segment’s
primitives into the newly created segment, but those primitives become part of
the new segment and are no longer bound by the old segment name (see INSERT
SEGMENT in this chapter for more information).

DEC GKS implements the WISS data structure as a workstation. To store
a segment using WISS, open and then activate WISS specifying GKS3D$K_
WSTYPE_WISS (value 5) as the workstation type. When you open WISS, you
can specify GKS3D$K_CONID_DEFAULT as the connection identifier argument.
(If you specify GKS3D$K_WSTYPE_WISS, DEC GKS ignores the connection
identifier argument.)

Once you activate the WISS workstation and create segments, you can use the
DEC GKS functions ASSOCIATE SEGMENT WITH WORKSTATION, COPY
SEGMENT TO WORKSTATION, and INSERT SEGMENT. Example 8–1 shows
the difference between ASSOCIATE SEGMENT WITH WORKSTATION and
COPY SEGMENT TO WORKSTATION. See Example 8–2 for a program example
using INSERT SEGMENT.

8.3 Segments and Surface Update
When you request changes to segment attributes (described in Section 8.4),
the change may take place immediately (dynamically) or DEC GKS may need
to update the surface to implement the change (an implicit regeneration),
depending on the capabilities of your device. An implicit regeneration clears
the screen and only redraws the primitives stored in segments. All primitives
not stored in segments are lost. You can use the function INQUIRE DYNAMIC
MODIFICATION OF SEGMENT ATTRIBUTES to determine if a request for a
segment attribute change requires an implicit regeneration on your device.

Segment Functions 8–3

Segment Functions
8.3 Segments and Surface Update

There are two ways to determine whether your device requires an implicit
regeneration to implement a change. If you are making only a few changes,
you can call INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES to
determine if the new frame necessary at update entry is YES. If you are making
many different changes, calling this function each time is inefficient.

You can call INQUIRE DYNAMIC MODIFICATION OF SEGMENT
ATTRIBUTES once to determine for which changes your workstation requires
an implicit regeneration. Then, you can set flags to force regenerations only
when you make changes that require them. If you need to regenerate the picture
on the workstation surface when changing segment attributes, call UPDATE
WORKSTATION and pass GKS3D$K_PERFORM_FLAG as an argument.

Note

If you want to redraw all the segments on the workstation surface
regardless of the current status of the new frame flag, call REDRAW ALL
SEGMENTS ON WORKSTATION. A call to this function is equivalent
to a call to UPDATE WORKSTATION while the new frame flag is set to
YES, and while passing the argument GKS3D$K_PERFORM_FLAG.

Requests for changes to segments may require an implicit regeneration of the
screen depending on the capabilities of your device (see Section 8.4 for a complete
descriptions of the segment attributes). Table 8–1 describes surface regeneration
resulting from changes to segments.

Table 8–1 Surface Regeneration from Changes to Segments

Change Possible Effect

Segment priority Calls to the following functions may create a situation
in which two segments of different priorities overlap,
or in which an overlapped segment must now be made
completely visible, or in which visibility changes.

• ASSOCIATE SEGMENT WITH WORKSTATION

• DELETE SEGMENT

• DELETE SEGMENT FROM WORKSTATION

• SET SEGMENT PRIORITY

• SET SEGMENT TRANSFORMATION

• SET VISIBILITY

In all cases, DEC GKS must take the segments’ priorities
into consideration before determining if the picture is out
of date.

Segment transformation Many workstations are unable to reposition segments
dynamically, thus requiring an implicit regeneration.

(continued on next page)

8–4 Segment Functions

Segment Functions
8.3 Segments and Surface Update

Table 8–1 (Cont.) Surface Regeneration from Changes to Segments

Change Possible Effect

Segment visibility Some workstations may be able to make an invisible
segment visible dynamically, but may need an implicit
regeneration to make visible segments invisible, as
visible-to-invisible changes require that the segments
‘‘beneath’’ the segment be redrawn. Some workstations
may need an implicit regeneration to perform both, and
some workstations may be able to make both changes
dynamically.

Segment highlighting Some workstations may need to implicitly regenerate the
surface before they can highlight a segment.

Segment deletion Segment deletion may require reproducing the
segments ‘‘beneath’’ the deleted segment. Calling either
DELETE SEGMENT or DELETE SEGMENT FROM
WORKSTATION can require an implicit regeneration
of the screen, depending on the capabilities of your
workstation.

There are other conditions under which DEC GKS may require a surface
regeneration, depending on the capabilities of your device. For example, if you
attempt to alter the polyline representation (see Chapter 6), the workstation
requires an implicit regeneration to affect this change.

If you are going to make certain output attribute changes or workstation
transformation changes, you need to put all important output primitives into
segments so they are not lost when you update the surface. For complete
information as to changes that may require implicit regeneration on UPDATE
WORKSTATION, or on REDRAW ALL SEGMENTS ON WORKSTATION, see
Chapter 4.

8.4 Segment Attributes
As a workstation stores the output attributes of a primitive when it is a part of a
segment, a workstation stores segment attributes that affect all the primitives
stored within a segment. The segment attributes are as follows:

• Detectability

• Highlighting

• Priority

• Transformation

• Visibility

The following sections describe the segment attributes in detail.

8.4.1 Detectability
The detectability segment attribute determines whether or not the segment can
be chosen during pick input. Pick input is only available on OUTIN workstations.
By default, DEC GKS segments are undetectable (GKS3D$K_UNDETECTABLE).

To pick a segment, it must be both detectable and visible (GKS3D$K_VISIBLE).
In many applications, if you do not want the user to be able to pick a segment,
you should make the segment invisible as well as undetectable. Remember that

Segment Functions 8–5

Segment Functions
8.4 Segment Attributes

making a segment undetectable does not make the segment invisible; these are
two separate segment attributes.

For more information concerning detectability, see SET DETECTABILITY in this
chapter. For more information concerning pick input, see Chapter 9.

8.4.2 Highlighting
The highlighting segment attribute determines whether or not a workstation
presents a highlighted segment on the workstation surface to draw the attention
of the user to that segment. By default, DEC GKS segments are not highlighted
(GKS3D$K_NORMAL).

Highlighting is device dependent and can be implemented in any of the following
ways:

• Blinking all primitives in a segment

• Outlining the segment extent rectangle

• Reversing the foreground and background colors within the segment extent
rectangle

• Outlining of all output primitives stored within the segment

The segment extent rectangle is the rectangle that outlines all the NDC points
of the primitives stored in the segment. For more information concerning
highlighting, see SET HIGHLIGHTING in this chapter.

8.4.3 Priority
The priority segment attribute determines which segment’s primitives take
priority when two segments overlap on the workstation surface. To assign a
priority to a segment, you assign to the segment a real number greater than or
equal to the value 0.0, and less than or equal to the value 1.0. Segments with the
priority 0.0 have the lowest priority, and segments with the priority 1.0 have the
highest priority. By default, DEC GKS segments have a priority value of 0.0.

Different devices implement segment priority differently. A device supports either
an infinite number of priorities (theoretically), or a specific number of priorities.
If the device supports an infinite number of priorities, the maximum number
of segment priorities supported entry in the workstation description table is the
value 0. Otherwise, the entry contains the number of priorities supported. (To
access this table entry, call the function INQUIRE NUMBER OF SEGMENT
PRIORITIES SUPPORTED.)

If the number of priorities supported is not 0, DEC GKS divides the 0.0 to 1.0
priority range into subranges according to the number of supported priorities.
If you specify for two different segments, two different priority values that fall
within the same subrange, those segments have the same priority. For example,
if a workstation supports two segment priorities, all segments with the specified
values between 0.0 and 0.5 inclusive have the same priority, and values between
0.51 and 1.0 have the same priority.

8–6 Segment Functions

Segment Functions
8.4 Segment Attributes

8.4.4 Transformation
When DEC GKS creates a picture containing segments, it places into effect
the current normalization transformation, applies the current segment
transformation to each segment, and if you have enabled clipping, clips the
picture at the current normalization viewport. By default, DEC GKS applies the
identity segment transformation to all segments. The identity transformation
makes no changes to the size or position of the segment.

If you desire, you can change the segment transformation that affects the
following components of segment appearance:

Component Description

Scaling The first step in the segment transformation process is to scale the
segment. Scaling determines the size of the segment extent rectangle,
either enlarging or decreasing the total size of the segment.

Rotation The second step in the segment transformation process is to rotate
the segment. Rotation determines the positioning of the segment by
establishing a fixed coordinate point in the segment, and then rotating
the remaining segment points around the fixed point axis by a specified
number of radians.

Translation The last step in the segment transformation process is to translate the
segment’s coordinate points to new points according to vector coordinate
values. Simply, it shifts the segment position in NDC space.

The first decision you must make when working with segment transformations
is whether to specify your fixed point as a WC or NDC point. If you want
to transform portions of the segment according to the current normalization
transformation mapping, specify WC points. DEC GKS maps the specified WC
point to NDC space and then performs the rotation or scaling.

If you want to transform the segment as stored on the NDC space (regardless of
the current normalization transformation), specify an NDC point as your fixed
point.

Next, if you want to scale or to rotate the segment, you must decide which point
in the segment to use as a fixed point. When DEC GKS scales the segment, the
fixed point is the only point that maintains its position as the segment decreases
or increases in size, either towards or away from the fixed point. When DEC GKS
rotates the segment, it uses the fixed point as the point around which the other
points in the segment rotate. If the rotation is three-dimensional, the fixed point
is the origin for the X, Y, and Z axes of rotation.

If you decide to shift the segment, you need to establish a translation vector.
The translation vector is expressed by real number values that specify by how
much the X and Y segment coordinate values change. When DEC GKS translates
the segment, it adds the values specified in the translation vector to the segment’s
X and Y values, moving the segment within the specified coordinate system. If
you do not wish to translate the segment’s position, you can specify the value
0.0 for all components of the translation vector. The two-dimensional translation
vector has X and Y components only. The three-dimensional translation vector
has X, Y, and Z components, and its use is analogous to the two-dimensional
translation vector.

Segment Functions 8–7

Segment Functions
8.4 Segment Attributes

If you decide to rotate the segment, you must decide on an angle of rotation in
radians. A radian is a measure of an angle. A full circle, 360 degrees, equals 2*pi
radians, one radian equaling 180/pi degrees. The value pi equals approximately
3.14. For three dimensions, DEC GKS rotates the segment through the specified
angle of rotation about the specified axis through the fixed point. For two
dimensions, DEC GKS rotates the segment through the specified angle of rotation
about the fixed axis. Positive rotation values rotate counter clockwise; negative
rotation values rotate clockwise. If you do not wish to rotate the segment, you
can specify 0.0 for the angle of rotation.

Finally, if you decide to scale the segment, you need to establish the scale
factors. You express a scale factor as two real number values; DEC GKS
multiplies the X and Y segment coordinate values by the scale factor components
to determine the new size of the segment. If you do not want to scale the segment
(keeping the segment the same size), specify the value 1.0 for all components
of the scale factor. Values less than 1.0 decrease the segment size, and values
greater than 1.0 increase the segment size. The two-dimensional scale factor has
X and Y components only. The three-dimensional scale factor has X, Y, and Z
components, and its use is analogous to the two-dimensional scale factor.

Once you have decided how to scale, rotate, and translate a segment, you
must construct a transformation matrix. A transformation matrix is an
array of real values. The two-dimensional transformation matrix has six
elements; the three-dimensional transformation matrix has twelve elements.
To assist you in the creation of a transformation matrix, DEC GKS provides
the utility functions EVALUATE TRANSFORMATION MATRIX (3) and
ACCUMULATE TRANSFORMATION MATRIX (3). The function EVALUATE
TRANSFORMATION MATRIX has the following function syntax:

gks3d$eval_xform_matrix (fix_pt, shift_vec, rotation, scale_x, scale_y,
coord_flag, trans_matrix) ;

After evaluating the first six arguments, EVALUATE TRANSFORMATION
MATRIX establishes the appropriate transformation matrix and writes the
6-element array of real numbers to the last argument trans_matrix. For detailed
information concerning this function, see the function description in Chapter 7.

The function ACCUMULATE TRANSFORMATION MATRIX is identical to
EVALUATE TRANSFORMATION MATRIX, except that its first read-only
argument is another 6-element transformation matrix, as follows:

gks3d$accum_xform_matrix (in_matrix, fix_pt, shift_vec, rotation_z,
scale_x, scale_y, coord_flag, out_matrix) ;

If you have a previously constructed transformation matrix to which you
want to add translation, shifting, and scaling values, you call ACCUMULATE
TRANSFORMATION MATRIX. DEC GKS creates a new transformation matrix
using the first matrix and the specified scaling, rotation, and translation
information, and then returns the resulting transformation matrix to the last
argument. For detailed information concerning this function, see the function
description in Chapter 7.

Once you have established the desired transformation matrix, either by
accumulating matrixes or by evaluating a single matrix, you can set the segment
transformation using SET SEGMENT TRANSFORMATION (3), which takes the
name of a segment and the transformation matrix identifier as its arguments.
DEC GKS applies the specified transformation to the stored segment on the NDC
system. This current transformation remains in effect until you change it. Before

8–8 Segment Functions

Segment Functions
8.4 Segment Attributes

copying a segment, or inserting a segment on a workstation, DEC GKS first
checks the current segment transformation in the segment state list, and applies
that transformation to the stored segment.

You may have to update the workstation surface to see the change in the segment
transformation. See Section 8.3 for more information concerning surface update.

See Example 7–2 for a program example on the effects of a segment
transformation.

In some applications, you may want to have more control over the order in which
DEC GKS transforms segments. Simply, you may want to transform the segment
in some order other than scaling, then rotating, and finally translation. You can
accomplish this task by calling ACCUMULATE TRANSFORMATION MATRIX (3)
several times, performing one transformation at a time.

See Example 7–1 for a program example showing the cumulative effect of
ACCUMULATE TRANSFORMATION MATRIX.

8.4.4.1 Normalization and Segment Transformations, and Clipping
When you generate an output primitive during segment creation, DEC GKS
stores the primitive, the currently associated output attributes, the current
clipping rectangle or volume (the current normalization viewport), and the pick
identifier value (see Section 8.1.1).

When DEC GKS generates one of the primitives in a given segment, the primitive
is transformed by the current normalization transformation; then the primitive
is transformed by the specified segment transformation; and finally, if clipping
was enabled before you generated the segment primitive (the default clipping
status), the primitive is clipped at the stored normalization viewport boundary,
not necessarily the current normalization viewport boundary.

If clipping is not enabled at the time you generate an output primitive during
segment creation, DEC GKS stores the default normalization viewport ([0,1] x
[0,1]) as the clipping rectangle, or ([0,1] x [0,1] x [0,1]) as the clipping volume, for
the generated primitive.

Consequently, when you translate a segment’s position, and if the segment crosses
the viewport boundary, whether DEC GKS clips the primitives depends on the
status of the clipping flag at the time of primitive generation.

During transformation, a segment’s primitives may exceed the default
normalization viewport, defined as ([0,1] x [0,1]) for two-dimensional
transformations, and ([0,1] x [0,1] x [0,1]) for three-dimensional transformations.
DEC GKS can store segments that exceed the default normalization viewport in
NDC space.

However, even though DEC GKS can store segments that exceed the default
normalization viewport boundary, those portions cannot be displayed on
the surface of the workstation. DEC GKS clips all pictures at least at
that workstation window boundary during the workstation transformation.
The maximum workstation window is ([0,1] x [0,1]) for two-dimensional
transformations on the NDC plane and ([0,1] x [0,1] x [0,1]) for three-dimensional
transformations in NPC space.

See Example 7–3 for a program example on controlling clipping at the world
viewport.

Segment Functions 8–9

Segment Functions
8.4 Segment Attributes

8.4.5 Visibility
The visibility segment attribute determines if the segment is visible on the
workstation surface. By default, DEC GKS segments are visible (GKS3D$K_
VISIBLE).

Visibility can be used to hide a segment from a user until the segment is needed.
For example, segment visibility is a useful way to control the displaying of
messages and menus, although MESSAGE and REQUEST CHOICE can perform
the same task.

By default, the visibility segment attribute is set to (GKS3D$K_VISIBLE). Keep
in mind that a segment must be both visible and detectable to pick that segment
during pick input (see Chapter 9).

8.5 Segment Inquiries
The following list presents the inquiry functions that you can use to obtain
segment information when writing device-independent code:

INQUIRE CLIPPING (3)
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES (3)
INQUIRE LEVEL OF GKS
INQUIRE NAME OF OPEN SEGMENT
INQUIRE OPERATING STATE VALUE
INQUIRE PICK DEVICE STATE
INQUIRE SEGMENT ATTRIBUTES (3)
INQUIRE SET OF ACTIVE WORKSTATION
INQUIRE SET OF ASSOCIATED WORKSTATIONS
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE SET OF SEGMENT NAMES IN USE
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION CONNECTION AND TYPE
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES
INQUIRE WORKSTATION MAXIMUM NUMBERS
INQUIRE WORKSTATION STATE

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

8.6 Function Descriptions
This section describes the DEC GKS segment functions in detail.

8–10 Segment Functions

ASSOCIATE SEGMENT WITH WORKSTATION

ASSOCIATE SEGMENT WITH WORKSTATION

Operating States

WSOP, WSAC

Syntax

gks3d$assoc_seg_with_ws (ws_id, seg_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
seg_id Integer Read Reference Segment name that identifies a

segment that is stored on a WISS
workstation

Description

The ASSOCIATE SEGMENT WITH WORKSTATION function takes a segment
stored in workstation-independent segment storage (WISS), and stores the
segment on the specified workstation. If the segment is not stored in WISS,
DEC GKS generates an error.

Clipping volumes, clipping indicators, and view indexes are stored unchanged.
This function cannot be invoked when a segment is open.

If the segment is already associated with the specified workstation, this function
has no effect.

See Also

COPY SEGMENT TO WORKSTATION
INSERT SEGMENT
Example 8–1 for a program example using the ASSOCIATE SEGMENT WITH
WORKSTATION function

Segment Functions 8–11

CLOSE SEGMENT

CLOSE SEGMENT

Operating State

SGOP

Syntax

gks3d$close_seg ()

Description

The CLOSE SEGMENT function closes a segment.

After you call this function, you can no longer add output primitives to that
segment. You cannot reopen a segment.

Calling this function changes the DEC GKS operating state from SGOP (segment
open) to WSAC (at least one workstation active).

See Also

CREATE SEGMENT
Example 8–1 for a program example using the CLOSE SEGMENT function

8–12 Segment Functions

COPY SEGMENT TO WORKSTATION

COPY SEGMENT TO WORKSTATION

Operating States

WSOP, WSAC

Syntax

gks3d$copy_seg_to_ws (ws_id, seg_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier. It cannot be of
type GKS3D$K_WSTYPE_WISS.

seg_id Integer Read Reference Segment name. This segment must be
stored on a WISS workstation.

Description

The COPY SEGMENT TO WORKSTATION function copies the output primitives
from a segment stored on the WISS workstation to the specified workstation.

As part of the copy operation, the output primitives are transformed by the
segment transformation stored with the segment, clipped by the clipping volume
or rectangle stored with the primitive, entered into the two- or three-dimensional
transformation pipeline before the normalization clipping step, and are finally
transformed by the workstation transformation and output. See the DEC GKS
User’s Guide for more information.

Primitives are clipped by the clipping volume or rectangle only when the clipping
indicator stored with the primitive is set to CLIP.

See Also

ASSOCIATE SEGMENT WITH WORKSTATION
INSERT SEGMENT
Example 8–1 for a program example using the COPY SEGMENT TO
WORKSTATION function

Segment Functions 8–13

CREATE SEGMENT

CREATE SEGMENT

Operating State

WSAC

Syntax

gks3d$create_seg (seg_id)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name

Description

The CREATE SEGMENT function opens a segment on all active workstations.

When you call CREATE SEGMENT, the DEC GKS operating state is changed
from at least one workstation active (WSAC) to segment open (SGOP).

For every active workstation, the name of the segment is added to the list of
segments stored on that workstation.

The segment state list is set to the initial state of segment visible, undetectable,
and not highlighted. The segment priority is set to 0, and the segment
transformation is set to the identity transformation.

All subsequent output primitives will be added to the segment until the next
CLOSE SEGMENT function is performed.

Only one segment can be open at a time.

See Also

CLOSE SEGMENT
DELETE SEGMENT
RENAME SEGMENT
Example 8–1 for a program example using the CREATE SEGMENT function

8–14 Segment Functions

DELETE SEGMENT

DELETE SEGMENT

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$delete_seg (seg_id)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name

Description

The DELETE SEGMENT function deletes the specified segment from all
workstations storing that segment. Using this function, you can delete any
defined segment, but you cannot delete an open segment.

Calling this function deletes the specified segment’s state list.

See Also

DELETE SEGMENT FROM WORKSTATION

Segment Functions 8–15

DELETE SEGMENT FROM WORKSTATION

DELETE SEGMENT FROM WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$delete_seg_from_ws (ws_id, seg_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
seg_id Integer Read Reference Segment name

Description

The DELETE SEGMENT FROM WORKSTATION function deletes the segment
from the specified workstation. Using this function, you can delete any defined
segment, but you cannot delete an open segment.

If you delete the segment from the last workstation supporting a given segment,
calling this function deletes the specified segment’s state list, which has the same
effect as calling the function DELETE SEGMENT.

See Also

DELETE SEGMENT

8–16 Segment Functions

INSERT SEGMENT

INSERT SEGMENT

Operating States

WSAC, SGOP

Syntax

gks3d$insert_seg (seg_id, ins_xf_mat)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name
ins_xf_mat Array of 6

reals
Read Reference Insertion transformation matrix

Description

The INSERT SEGMENT function takes the specified segment stored in a
WISS workstation and, for each active workstation, copies the primitives in the
specified segment to either the open segment or into the stream of primitives
outside segments. The primitives in the segment are transformed twice: once
according to the segment’s current transformation, and once according to the
transformation matrix specified in the call to this function (the effect of the two
transformations is cumulative).

For each active workstation, the primitives contained in the specified segment are
copied to the workstation. The primitives are added to the open segment if the
GKS state is SGOP (segment open). They are added to the stream of primitives
outside of segments if the GKS state is WSAC (at least one workstation active).

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created.

Output primitives stored in segments have a clipping volume and clipping
indicator stored with the primitive when the primitive is created. The stored
clipping rectangle and clipping indicator are taken from the GKS state list.
The primitives contained in the specified segment are transformed first by the
segment transformation of the specified segment. Then they are transformed by
the specified insertion transformation matrix.

If a transformation has been specified for the segment to be inserted, DEC GKS
calculates the accumulated effect of the segment transformation and then
the insertion calculation, in that order. You can formulate an insertion
transformation using either EVALUATE TRANSFORMATION MATRIX or
ACCUMULATE TRANSFORMATION MATRIX.

The following equation shows the specified insertion transformation matrix. It
also shows the effect of applying the specified insertion transformation matrix to
a coordinate that already has been transformed by the segment transformation.
The insert transformation and the segment transformation (conceptually) take
place in NDC space.

�
��

��

�
�

�
�11 �12 �13
�21 �22 �23

�
�

�
� ��
�

�
�

Segment Functions 8–17

INSERT SEGMENT

The original coordinates are (x, y) and the transformed coordinates are
(x’, y’). Both of these coordinates are NDC points. The values M13 and M23 of
the insertion transformation matrix are also specified in NDC units. All other
matrix elements are unitless.
As part of the copy operation, all segment attributes (except the segment
transformation attribute) are ignored. The ignored attributes are segment
visibility, highlighting, detectability, and priority.

Also as part of the copy operation, the current settings of the attributes in the
GKS state list replace all the clipping indicators and clipping rectangles in the
specified segment.

During the copy operation, all primitives in the specified segment retain the
values of their corresponding primitive attributes that were assigned to them
when they were created.

INSERT SEGMENT does not affect the current settings of the primitive
attributes in the GKS state list.

See Also

ACCUMULATE TRANSFORMATION MATRIX
ASSOCIATE SEGMENT WITH WORKSTATION
COPY SEGMENT TO WORKSTATION
EVALUATE TRANSFORMATION MATRIX
SET SEGMENT TRANSFORMATION
Example 8–2 for a program example using the INSERT SEGMENT function

8–18 Segment Functions

INSERT SEGMENT 3

INSERT SEGMENT 3

Operating States

WSAC, SGOP

Syntax

gks3d$insert_seg3 (seg_id, ins_xf_mat)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name
ins_xf_mat Array of 12

reals
Read Reference Insertion transformation matrix

Description

The INSERT SEGMENT 3 function takes the specified segment stored in a
WISS workstation and, for each active workstation, copies the primitives in the
specified segment to either the open segment or into the stream of primitives
outside segments. The primitives in the segment are transformed twice: once
according to the segment’s current transformation, and once according to the
transformation matrix specified in the call to this function (the effect of the two
transformations is cumulative).

For each active workstation, the primitives contained in the specified segment are
copied to the workstation. The primitives are added to the open segment if the
GKS state is SGOP (segment open). They are added to the stream of primitives
outside of segments if the GKS state is WSAC (at least one workstation active).

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created.

Output primitives stored in segments have a clipping volume and clipping
indicator stored with the primitive when the primitive is created. The stored
clipping volume and clipping indicator are taken from the GKS state list. The
primitives contained in the specified segment are transformed first by the
segment transformation of the specified segment. Then they are transformed by
the specified insertion transformation matrix.

If a transformation has been specified for the segment to be inserted, DEC GKS
calculates the accumulated effect of the segment transformation and then
the insertion calculation, in that order. You can formulate an insertion
transformation using either EVALUATE TRANSFORMATION MATRIX 3 or
ACCUMULATE TRANSFORMATION MATRIX 3.

The following equation shows the specified insertion transformation matrix. It
also shows the effect of applying the specified insertion transformation matrix to
a coordinate that already has been transformed by the segment transformation.
The insert transformation and the segment transformation (conceptually) take
place in NDC space.

�
� �

�

��

��

�
� �

�
��11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34

�
��

�
��
�

�

�

�

�
��

Segment Functions 8–19

INSERT SEGMENT 3

The original coordinates are (x, y, z) and the transformed coordinates are (x’, y’,
z’). Both of these coordinates are NDC points. The values M14, M24, and M34
of the insertion transformation matrix are also specified in NDC units. All other
matrix elements are unitless.
As part of the copy operation, all segment attributes (except the segment
transformation attribute) are ignored. The ignored attributes are segment
visibility, highlighting, detectability, and priority.

Also as part of the copy operation, the current settings of the attributes in the
GKS state list replace all the clipping indicators and clipping rectangles in the
specified segment.

During the copy operation, all primitives in the specified segment retain the
values of their corresponding primitive attributes that were assigned to them
when they were created.

INSERT SEGMENT 3 does not affect the current settings of the primitive
attributes in the GKS state list.

See Also

ACCUMULATE TRANSFORMATION MATRIX 3
ASSOCIATE SEGMENT WITH WORKSTATION
COPY SEGMENT TO WORKSTATION
EVALUATE TRANSFORMATION MATRIX 3
SET SEGMENT TRANSFORMATION 3
Example 8–2 for a program example using the INSERT SEGMENT function

8–20 Segment Functions

RENAME SEGMENT

RENAME SEGMENT

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$rename_seg (old_seg_id, new_seg_id)

Argument Data Type Access Passed by Description

old_seg_id Integer Read Reference Old segment name. After a call to this
function, this identifier can be used to
name another segment.

new_seg_id Integer Read Reference New segment name.

Description

The RENAME SEGMENT function changes the segment name from its current
name to a new name. After you have renamed a segment using this function, you
can reuse the old segment name.

Segment Functions 8–21

SET DETECTABILITY

SET DETECTABILITY

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_seg_detectability (seg_id, det_flag)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name
det_flag Integer

(constant)
Read Reference Detectability flag

Constants

Defined
Argument Constant Description

det_flag GKS3D$K_UNDETECTABLE Segment cannot be picked. This is the
default value.

GKS3D$K_DETECTABLE Segment, if visible, can be picked.

Description

The SET DETECTABILITY function controls the segment attribute that
determines whether the specified segment can be chosen during pick input.
A segment must be both detectable and visible to be picked. The detectability
segment attribute is described in more detail in Section 8.4.1.

See Also

SET VISIBILITY
Example 9–2 for a program example using the SET DETECTABILITY function

8–22 Segment Functions

SET HIGHLIGHTING

SET HIGHLIGHTING

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_seg_highlighting (seg_id, highl_flag)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name.
highl_flag Integer

(constant)
Read Reference Highlighting flag. By default,

DEC GKS segments are not
highlighted.

Constants

Defined
Argument Constant Description

highl_flag GKS3D$K_NORMAL DEC GKS does not highlight the
segment. This is the default value.

GKS3D$K_HIGHLIGHTED DEC GKS highlights the segment, if
visible.

Description

The SET HIGHLIGHTING function controls the segment attribute that
determines whether the specified segment is highlighted.

If you use this function to highlight a segment on a VT241™ terminal, DEC GKS
places the segment extent rectangle into an alternative foreground color to draw
attention to the specified segment.

If you attempt to highlight an invisible segment, the highlighting does not
take effect until you make the segment visible again. For more information on
segment highlighting, see Section 8.4.2.

See Also

Example 8–3 for a program example using the SET HIGHLIGHTING function

Segment Functions 8–23

SET SEGMENT PRIORITY

SET SEGMENT PRIORITY

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_seg_priority (seg_id, priority)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name.
priority Real Read Reference Segment priority. This argument is a

real number between the values 0.0
and 1.0 that determines the segment
priority. The default value is 0.0.

Description

The SET SEGMENT PRIORITY function sets the segment attribute that
determines which segment takes precedence on the workstation surface, and
which segment is chosen if the user chooses the overlapping area during pick
input.

DEC GKS implements segment priority on a scale of real numbers from 0.0 to
1.0. Segments with the priority 0.0 have the lowest priority, and segments with
the priority 1.0 have the highest priority.

Different devices implement segment priority differently. A device supports either
an infinite number of priorities (theoretically) or a specific number of priorities.
For more information on segment priority, see Section 8.4.3.

See Also

GET PICK
REQUEST PICK
SAMPLE PICK

8–24 Segment Functions

SET SEGMENT TRANSFORMATION

SET SEGMENT TRANSFORMATION

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_seg_xform (seg_id, xf_mat)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name
xf_mat Array of 6

reals
Read Reference Transformation matrix

Description

The SET SEGMENT TRANSFORMATION function specifies the segment
transformation that is stored with a specified segment.

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created. At
the time a segment is created, its segment transformation is set to the identity
transformation.

SET SEGMENT TRANSFORMATION changes the segment transformation of the
specified segment. When a segment is displayed, its primitives are transformed
by the specified transformation matrix according to the following equation:

�
��

��

�
�

�
�11 �12 �13
�21 �22 �23

�
�

�
� ��
�

�
�

The original coordinates are (x, y); the transformed coordinates are (x’, y’). Both
of these coordinates are NDC points. The values M13 and M23 of the segment
transformation matrix are also specified in NDC units. All other matrix elements
are unitless.

The functions EVALUATE TRANSFORMATION MATRIX and ACCUMULATE
TRANSFORMATION MATRIX facilitate the construction of matrixes that can be
specified as segment transformation matrixes.

The segment transformation can be reset by calling this function with the
identity matrix. Segment transformations do not affect locator and stroke input
coordinates. Segment transformation is described in more detail in Section 8.4.4.

See Also

ACCUMULATE TRANSFORMATION MATRIX
EVALUATE TRANSFORMATION MATRIX
Example 7–1 for a program example using the SET SEGMENT
TRANSFORMATION function

Segment Functions 8–25

SET SEGMENT TRANSFORMATION 3

SET SEGMENT TRANSFORMATION 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_seg_xform3 (seg_id, xf_mat)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name
xf_mat Array of 12

reals
Read Reference Transformation matrix

Description

The SET SEGMENT TRANSFORMATION 3 function specifies the segment
transformation that is stored in a specified segment.

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created. At
the time a segment is created, its segment transformation is set to the identity
transformation.

SET SEGMENT TRANSFORMATION 3 changes the segment transformation
of the specified segment. When a segment is displayed, its primitives are
transformed by the specified transformation matrix according to the following
equation: �

� �
�

��

��

�
� �

�
��11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34

�
��

�
��
�

�

�

�

�
��

The original coordinates are (x, y, z); the transformed coordinates are (x’, y’, z’).
Both of these coordinates are NDC points. The values M14, M24, and M34 of the
segment transformation matrix are also specified in NDC units. All other matrix
elements are unitless.

The functions EVALUATE TRANSFORMATION MATRIX 3 and ACCUMULATE
TRANSFORMATION MATRIX 3 facilitate the construction of matrixes that can
be specified as segment transformation matrixes.

The segment transformation can be reset by calling this function with the
identity matrix. Segment transformations do not affect locator and stroke input
coordinates. Segment transformation is described in more detail in Section 8.4.4.

See Also

ACCUMULATE TRANSFORMATION MATRIX 3
EVALUATE TRANSFORMATION MATRIX 3
Example 7–1 for a program example using the SET SEGMENT
TRANSFORMATION function

8–26 Segment Functions

SET VISIBILITY

SET VISIBILITY

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_seg_visibility (seg_id, vis_flag)

Argument Data Type Access Passed by Description

seg_id Integer Read Reference Segment name.
vis_flag Integer Read Reference Visibility flag. By default, DEC GKS

segments are visible.

Constants

Defined
Argument Constant Description

vis_flag GKS3D$K_INVISIBLE DEC GKS does not show the segment
on the workstation surface.

GKS3D$K_VISIBLE DEC GKS shows the segment on the
workstation surface. This is the default
value.

Description

The SET VISIBILITY function sets the segment attribute that determines
whether the specified segment is visible on the workstation surface. A segment
must be both visible and detectable to be picked.

Depending on the capabilities of the device, and whether or not the specified
segment overlaps other segments, you may need to call either UPDATE
WORKSTATION or REDRAW ALL SEGMENTS ON WORKSTATION to update
the picture on the surface of the workstation. For more information, see the
Device Specifics Reference Manual for DEC GKS and DEC PHIGS. The visibility
segment attribute is described in more detail in Section 8.4.5.

See Also

REDRAW ALL SEGMENTS ON WORKSTATION
SET DETECTABILITY
UPDATE WORKSTATION

Segment Functions 8–27

Segment Functions
8.7 Program Examples

8.7 Program Examples
Example 8–1 illustrates the use of the ASSOCIATE SEGMENT WITH
WORKSTATION function.

Example 8–1 Comparing ASSOCIATE SEGMENT WITH WORKSTATION and
COPY SEGMENT TO WORKSTATION

/*
* This program draws a house in the lower left corner of the
* screen and a line of text in the upper left corner. The program
* redraws the segments to show the ASSOCIATE SEGMENT WITH
* WORKSTATION and COPY SEGMENT TO WORKSTATION functions.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS3D$ definitions file */

main ()
{

int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
struct dsc$descriptor_s text_dsc;
int house = 1;
int in_class;
float larger = 0.03;
int lower_left_corner = 1;
int num_points = 9;
float point[2];
float pts_array[18];
int regen_flag = GKS3D$K_POSTPONE_FLAG;
char *text_string = "Associated segment.";
float time_out = 5.00;
int title = 2;
int upper_left_corner = 2;
float view_area[4];
int wiss = 2;
int ws_id = 1;
float xform_matrix[6];
int ws_type = GKS3D$K_WSTYPE_DEFAULT;
int ws_type_wiss = GKS3D$K_WSTYPE_WISS;

/* Initialize the text descriptor. */

text_dsc.dsc$a_pointer = text_string;
text_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_dsc.dsc$b_class = DSC$K_CLASS_S;
text_dsc.dsc$w_length = strlen (text_string);

/* Open GKS and the workstation environments. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$open_ws (&wiss, &default_conid, &ws_type_wiss);

/*
* By activating only the WISS workstation, GKS stores created
* segments only on the WISS workstation. The screen remains clear.
*/

gks3d$activate_ws (&wiss);

(continued on next page)

8–28 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–1 (Cont.) Comparing ASSOCIATE SEGMENT WITH WORKSTATION
and COPY SEGMENT TO WORKSTATION

/*
* Set the viewport limits for the specified normalization
* transformations.
*/

view_area[0] = 0.0;
view_area[1] = 0.5;
view_area[2] = 0.0;
view_area[3] = 0.5;

gks3d$set_viewport (&lower_left_corner, view_area);

view_area[0] = 0.0;
view_area[1] = 0.5;
view_area[2] = 0.5;
view_area[3] = 1.0;

gks3d$set_viewport (&upper_left_corner, view_area);

/* Create two segments and store them on the WISS workstation. */

gks3d$create_seg (&house);
gks3d$select_xform (&lower_left_corner);

pts_array[0] = .4; pts_array[1] = .1;
pts_array[2] = .1; pts_array[3] = .1;
pts_array[4] = .1; pts_array[5] = .7;
pts_array[6] = .4; pts_array[7] = .7;
pts_array[8] = .25; pts_array[9] = .9;
pts_array[10] = .1; pts_array[11] = .7;
pts_array[12] = .4; pts_array[13] = .1;
pts_array[14] = .4; pts_array[15] = .7;
pts_array[16] = .1; pts_array[17] = .1;

gks3d$polyline (&num_points, pts_array);
gks3d$close_seg ();
gks3d$create_seg (&title);
gks3d$select_xform (&upper_left_corner);
gks3d$set_text_height (&larger);

point[1] = 0.1;
point[2] = 0.5;

gks3d$text (point, &text_dsc);
gks3d$close_seg ();

/* Activate the WS_ID workstation. */

gks3d$activate_ws (&ws_id);

/*
* By associating the segment containing text, the workstation stores
* the segment. By copying the segment containing the house, GKS draws
* the primitives to the display screen, but the workstation does not
* store the segment.
*/

gks3d$assoc_seg_with_ws (&ws_id, &title);
gks3d$copy_seg_to_ws (&ws_id, &house);

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

(continued on next page)

Segment Functions 8–29

Segment Functions
8.7 Program Examples

Example 8–1 (Cont.) Comparing ASSOCIATE SEGMENT WITH WORKSTATION
and COPY SEGMENT TO WORKSTATION

/*
* When you redraw the segments, you force an update to the screen
* and eliminate primitives not contained in segments. The house
* disappears and the text remains on the display screen because it
* was stored as a segment.
*/

gks3d$redraw_seg_on_ws (&ws_id);

/* Only the text is displayed. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Deactivate and close the wokstation environments and GKS. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$deactivate_ws (&wiss);
gks3d$close_ws (&wiss);
gks3d$close_gks ();

}

Figure 8–1 shows the two segments (the house and the line of text) on the display
surface.

8–30 Segment Functions

Segment Functions
8.7 Program Examples

Figure 8–1 Output with Two Segments

ZK−4017A−GE

Segment Functions 8–31

Segment Functions
8.7 Program Examples

Figure 8–2 shows only the text, which was stored as a segment.

Figure 8–2 Output with Associated Segment

ZK−4018A−GE

Example 8–2 illustrates the use of the INSERT SEGMENT function.

8–32 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–2 Inserting a Segment’s Primitives into Another Segment

/*
* This program illustrates the use of the function INSERT SEGMENT.
* It draws a house in the lower left corner of the screen and then
* inserts that house into other segments.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks3d_defs.h>

main ()
{

int clip_indicator = GKS3D$K_NOCLIP;
int coord_flag = GKS3D$K_COORDINATES_NDC;
int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
float fix_pt[2];
int house_1 = 1;
int house_2 = 2;
int in_class;
int lower_left_corner = 1;
int lower_right_corner;
float no_change = 1.0;
float null = 0;
int num_points = 9;
float pts_array[18];
int regen_flag_1 = GKS3D$K_POSTPONE_FLAG;
float right;
float shift_vec[2];
float time_out = 5.00;
float up;
int upper_left_corner;
int upper_right_corner;
float view_area[4];
int wiss = 2;
int ws_id = 1;
int ws_type = GKS3D$K_WSTYPE_DEFAULT;
int ws_type_wiss = GKS3D$K_WSTYPE_WISS;
float xform_matrix[6];

/* Open and activate GKS and the workstation environments. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$open_ws (&wiss, &default_conid, &ws_type_wiss);
gks3d$activate_ws (&ws_id);
gks3d$activate_ws (&wiss);

/*
* Set the viewport limits for the normalization transformation.
* The normalization window is established to be the lower left
* corner of NDC space.
*/

view_area[0] = 0.0;
view_area[1] = 0.5;
view_area[2] = 0.0;
view_area[3] = 0.5;

gks3d$set_viewport (&lower_left_corner, view_area);

(continued on next page)

Segment Functions 8–33

Segment Functions
8.7 Program Examples

Example 8–2 (Cont.) Inserting a Segment’s Primitives into Another Segment

/* Create a segment in the lower left corner of the surface. */

gks3d$create_seg (&house_1);
gks3d$select_xform (&lower_left_corner);

pts_array[0] = 0.4; pts_array[1] = 0.1;
pts_array[2] = 0.1; pts_array[3] = 0.1;
pts_array[4] = 0.1; pts_array[5] = 0.7;
pts_array[6] = 0.4; pts_array[7] = 0.7;
pts_array[8] = 0.25; pts_array[9] = 0.9;
pts_array[10] = 0.1; pts_array[11] = 0.7;
pts_array[12] = 0.4; pts_array[13] = 0.1;
pts_array[14] = 0.4; pts_array[15] = 0.7;
pts_array[16] = 0.1; pts_array[17] = 0.1;

gks3d$polyline (&num_points, pts_array);
gks3d$close_seg ();

/* Deactivate WISS so no other segments are stored there. */

gks3d$deactivate_ws (&wiss);

/* Turn off the clipping so the transformed houses are visible. */

gks3d$set_clipping (&clip_indicator);

/* Change the matrix value. */

fix_pt[0] = .0;
fix_pt[1] = .0;
shift_vec[0] = .5;
shift_vec[1] = .0;

gks3d$eval_xform_matrix (fix_pt, shift_vec, &null, &no_change,
&no_change, &coord_flag, xform_matrix);

/*
* Create a segment in the lower right corner by inserting
* the primitives for house_1 into house_2.
*/

gks3d$create_seg (&house_2);
gks3d$insert_seg (&house_1, xform_matrix);
gks3d$close_seg ();

/*
* Using EVALUATE TRANSFORMATION MATRIX, you can create the transformation
* matrix that you need to pass to INSERT SEGMENT as an argument. This
* matrix specifies a position translation of 0.5 NDC points to the right.
* When this matrix is passed to INSERT SEGMENT while a segment is open,
* the house’s primitives are transformed and made a part of the open
* segment.
*/

shift_vec[0] = .0;
shift_vec[1] = .5;

gks3d$eval_xform_matrix (fix_pt, shift_vec, &null, &no_change,
&no_change, &coord_flag, xform_matrix);

(continued on next page)

8–34 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–2 (Cont.) Inserting a Segment’s Primitives into Another Segment

/*
* Insert the primitives in the upper left corner using INSERT SEGMENT.
* Inserting segments when the GKS operating state is GKS3D$K_WSAC causes
* the output primitives to be written to the workstation surface, but
* the primitives are not stored in a segment. These segment primitives
* are translated 0.5 NDC points in an upwards direction.
*/

gks3d$insert_seg (&house_1, xform_matrix);

/* Change the matrix value. */

shift_vec[0] = .5;
shift_vec[1] = .5;

gks3d$eval_xform_matrix (fix_pt, shift_vec, &null, &no_change,
&no_change, &coord_flag, xform_matrix);

/*
* Insert the primitives in the upper right corner using
* INSERT SEGMENT.
*/

gks3d$insert_seg (&house_1, xform_matrix);

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag_1);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/*
* The call to REDRAW ALL SEGMENTS ON WORKSTATION redraws all segments
* and deletes all primitives outside of segments. Wait 5 seconds.
*/

gks3d$redraw_seg_on_ws (&ws_id);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Deactivate and close the workstation environments and GKS. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&wiss);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 8–3 shows the original segment, drawn in the lower left corner, inserted
into the upper right and left corners of the display surface.

Segment Functions 8–35

Segment Functions
8.7 Program Examples

Figure 8–3 Output of Original and Inserted Segments

ZK−4023A−GE

Figure 8–4 shows the redrawn segments. The houses not stored in segments have
been deleted.

8–36 Segment Functions

Segment Functions
8.7 Program Examples

Figure 8–4 Output of Redrawn Segments

ZK−4024A−GE

Segment Functions 8–37

Segment Functions
8.7 Program Examples

Example 8–3 illustrates the use of the SET HIGHLIGHTING function.

Example 8–3 Highlighting a Segment

/*
* This program illustrates the SET HIGHLIGHTING function.
* It draws a house in the lower left corner of the screen and
* a highlighted house in the upper right corner.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks3d_defs.h> /* GKS3D$ definitions file */

main()
{

int default_conid = GKS3D$K_CONID_DEFAULT;
int device_num = 1;
int house_1 = 1;
int house_2 = 2;
int highlight_flag = GKS3D$K_HIGHLIGHTED;
int in_class;
int lower_left_corner = 1;
int num_points = 9;
float pts_array[18];
int regen_flag = GKS3D$K_PERFORM_FLAG;
float time_out = 5.00;
int upper_right_corner = 2;
float view_area[4];
int ws_id = 1;
int ws_type = GKS3D$K_WSTYPE_DEFAULT;

/* Open and activate GKS and the workstation environment. */

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &ws_type);
gks3d$activate_ws (&ws_id);

/* Set the viewport limits for the normalization transformations. */

view_area[0] = 0.0;
view_area[1] = 0.5;
view_area[2] = 0.0;
view_area[3] = 0.5;

gks3d$set_viewport (&lower_left_corner, view_area);

view_area[0] = 0.5;
view_area[1] = 1.0;
view_area[2] = 0.5;
view_area[3] = 1.0;

gks3d$set_viewport (&upper_right_corner, view_area);

(continued on next page)

8–38 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–3 (Cont.) Highlighting a Segment

/* Create a segment in the lower left corner of the surface. */

pts_array[0] = .4;
pts_array[1] = .1;
pts_array[2] = .1;
pts_array[3] = .1;
pts_array[4] = .1;
pts_array[5] = .7;
pts_array[6] = .4;
pts_array[7] = .7;
pts_array[8] = .25;
pts_array[9] = .9;
pts_array[10] = .1;
pts_array[11] = .7;
pts_array[12] = .4;
pts_array[13] = .1;
pts_array[14] = .4;
pts_array[15] = .7;
pts_array[16] = .1;
pts_array[17] = .1;

gks3d$create_seg (&house_1);
gks3d$select_xform (&lower_left_corner);
gks3d$polyline (&num_points, pts_array);
gks3d$close_seg ();

/* Create a second segment in the upper right corner of the surface. */

gks3d$create_seg(&house_2);
gks3d$select_xform (&upper_right_corner);
gks3d$polyline (&num_points, pts_array);
gks3d$close_seg ();

/* Release the deferred output. Wait 5 seconds. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Highlight house_2. */

gks3d$set_seg_highlighting (&house_2, &highlight_flag);

/* Update the surface to initiate the change. */

gks3d$update_ws (&ws_id, ®en_flag);
gks3d$await_event (&time_out, &ws_id, &in_class, &device_num);

/* Deactivate and close the workstation environment and GKS. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Segment Functions 8–39

Segment Functions
8.7 Program Examples

Figure 8–5 illustrates the houses before highlighting occurs.

Figure 8–5 Output Prior to Highlighting

ZK−4025A−GE

8–40 Segment Functions

Segment Functions
8.7 Program Examples

Figure 8–6 shows the house in the upper right corner being highlighted.

Figure 8–6 Effects of SET HIGHLIGHTING

ZK−4026A−GE

Segment Functions 8–41

Input Functions

Insert tabbed divider here. Then discard this sheet.

9
Input Functions

The DEC GKS input functions let an application accept input from a user. This
chapter provides information about physical and logical input devices, prompt
and echo types, and general information about input functions. Then it describes
each DEC GKS input function.

9.1 Physical Input Devices
A physical input device provides input to an application. A keyboard, tablet,
and mouse are examples of physical devices. A single application can use input
from many physical input devices.

9.2 Logical Input Devices
Because many kinds of physical input devices exist, DEC GKS maintains device
independence by using logical input devices. A logical input device acts as an
intermediary between a physical input device and the application. That is, the
user inputs data from the physical input device to the application via the logical
input device. GKS lets a single open workstation have zero or more logical input
devices active at the same time.

9.2.1 Identifying a Logical Input Device
A logical input device is identified by a workstation identifier, an input class, and
a device number. The workstation identifier identifies an open workstation
that belongs to the category INPUT or OUTIN. The logical input device is part of
the workstation. How DEC GKS implements the logical input device depends on
what physical input devices the workstation is using.

The input class determines the type of logical input value the logical input
device returns to the application. A logical input device belongs to one of six
input classes. For example, a locator-class logical input device returns cursor
location values. You determine the input class when you activate the logical input
device. (See Section 9.2.3 for information about activating a logical input device
and Section 9.2.6 for a detailed description of input classes.)

The device number distinguishes one logical input device from another of the
same input class on the same workstation. It lets you use more than one logical
input device of the same class on a single workstation. For example, you can use
a display menu as one choice-class logical input device and a keyboard as another
choice-class logical input device.

The device number determines what mechanism triggers the logical input
device. (See Section 9.2.5 for information about triggering a logical input device.)
DEC GKS defines at least four device numbers for each input class. For example,
a choice 1 device number requires the user to press mouse button 1 to trigger the
logical input device. (Without a mouse, the user must press Return.) A choice

Input Functions 9–1

Input Functions
9.2 Logical Input Devices

2 device number requires the user to press the arrow keys or the keys on the
numeric keypad.

The device number also determines the format in which DEC GKS returns data.
For example, a string 1 device number returns a Digital multinational text string,
while a string 3 device number returns an ASCII value.

9.2.2 Controlling the Appearance of the Logical Input Device
The prompt and echo type controls what the logical input device looks like
on the screen. Each input class has its own set of prompt and echo types. For
example, locator-class prompt and echo type 2 marks the current location with
cross hairs, while locator-class prompt and echo type 3 marks it with a tracking
cross. But valuator-class prompt and echo type 2 displays the current value
with a dial or a pointer, while valuator-class prompt and echo type 3 displays
a digital representation of the value. (See Section 9.3 for detailed information
about prompts and echo types.)

DEC GKS displays the prompt and echo type in the echo area. The echo area
cannot be larger than the workstation, but can be smaller than the workstation.
The prompt and echo type cursor is active only within the input echo area.

The echo flag controls the visibility of an active logical input device.

9.2.3 Activating and Deactivating a Logical Input Device
You must activate a logical input device before you use it. To activate the logical
input device, you must place it in one of three operating modes:

• Request

• Sample

• Event

Request mode is the default operating mode. DEC GKS places the logical input
device in request mode when a workstation opens. To activate a logical input
device in request mode, call a REQUEST function. DEC GKS activates the logical
input device and displays the input prompt (if echoing is enabled) when you
call a REQUEST function. For example, to activate a locator-class logical input
device in request mode, you would call REQUEST LOCATOR and supply the
appropriate values to the arguments. DEC GKS deactivates the logical input
device when the REQUEST function completes.

To place a logical input device in request mode, sample mode, or event mode,
you must call a SET MODE function and supply the values for the following
arguments:

• Workstation identifier

• Device number

• Operating mode (request, sample, or event)

• Echo flag (GKS3D$K_ECHO or GKS3D$K_NOECHO)

For example, to place a locator-class logical input device in sample mode, you
must call SET LOCATOR MODE and specify SAMPLE as the operating mode.

When DEC GKS places a logical input device in sample mode, it activates the
logical input device and displays the input prompt (if echoing is enabled). To
have the logical input device return a value to the application, you must call a
SAMPLE function. For example, to have a locator-class logical input device in

9–2 Input Functions

Input Functions
9.2 Logical Input Devices

sample mode return a value, you would call SAMPLE LOCATOR and specify the
workstation identifier and the device number.

When DEC GKS places a logical input device in event mode, it activates the
logical input device and displays the input prompt (if echoing is enabled). To
have the logical input device return a value to the application, you must call
the AWAIT EVENT and the GET functions. For example, to have a locator-class
logical input device in event mode return a value, you would call AWAIT EVENT.
Check the event input class to make sure it is locator, then call GET LOCATOR.

To deactivate a logical input device in sample or event mode, you must place the
device back into request mode by calling a SET MODE function and specifying
REQUEST as the value for the op_mode argument. For example, to deactivate a
locator-class logical input device in sample mode, you would call SET LOCATOR
MODE and specify REQUEST as the operating mode.

9.2.4 Initializing a Logical Input Device
Each workstation has its own default values that a logical input device can
use. However, you also can set your own values for the logical input device.
To set your own values, you must initialize the logical input device using the
INITIALIZE function. The logical input device must be in request mode to be
initialized. For example, to initialize a locator-class logical input device, you
would put it in request mode by calling SET LOCATOR MODE. Then you would
call INITIALIZE LOCATOR and supply the values you want. (See Section 9.4 for
detailed information about initializing a logical input device.)

If you do not initialize the logical input device, it uses the default values.

9.2.5 Obtaining Measures from a Logical Input Device
A logical input device returns a value to the application. The value it returns
is called the measure of the device. Two operating classes, request and event,
require the user to perform an action on a physical input device to return the
measure. The action is called the input trigger. When the user performs the
action, the user triggers the logical input device, which then returns its measure.
The input class and device number determine what kind of action the user must
perform to trigger the logical input device. For example, when using a keyboard,
the user triggers the logical input device by pressing a key on the keyboard.
When using a mouse, the user triggers the logical input device by clicking a
mouse button.

Sample mode does not require the user to trigger a logical input device. For
example, SAMPLE LOCATOR gets the current value of a locator-class logical
input device without any input from the user.

9.2.6 The Input Class
The input class determines the type of input the logical input device returns to
the application. You determine the input class when you activate the logical input
device. DEC GKS uses six input classes:

• Locator

• Stroke

• Valuator

Input Functions 9–3

Input Functions
9.2 Logical Input Devices

• Choice

• String

• Pick

A locator-class logical input device first displays a prompt on the workstation
surface. The user can then move the prompt and, if the application is using an
appropriate input mode, trigger the input device. The locator input class returns
two real numbers that represent world coordinate (WC) values. DEC GKS
transforms the input point from a device coordinate point to a normalized device
coordinate (NDC) point. Then it transforms the NDC point to a corresponding
WC point.

A stroke-class logical input device also displays a prompt on the workstation
surface. The user can then move the prompt, which causes device coordinate
points to be input until the user presses Return. The stroke input class returns
a sequence of real numbers that are the corresponding WC values of the stroke.
DEC GKS transforms the input points from device coordinate points to NDC
points. Then it transforms the NDC points to corresponding WC points.

For more information about the DEC GKS coordinate systems, see Chapter 7,
Transformation Functions.

A valuator-class logical input device displays a picture on the workstation surface
that represents a series of real numbers. You specify the lowest and highest
values in the application. For several workstations, the picture may look like a
slide bar with a pointer to a current value. The user moves the cursor up and
down the scale to the desired position. The valuator input class returns the real
number representing the position of the pointer on the scale.

A choice-class logical input device creates a picture on the workstation surface
that lists a series of choices. The choices are represented internally by integer
values. You can label the choices with text in your application. For several
workstations, the choices can look like a menu, with the currently selected
choice highlighted. The user moves the choice input prompt through the choices,
highlights a choice, and then triggers the device. When the user triggers the
choice logical input device, the choice input class returns the integer representing
the choice the user selected.

A string-class logical input device displays a prompt on the workstation surface
where the user can enter a character string. In the application, you can provide
an initial string for the prompt. DEC GKS appends the input string to the initial
string. The user can enter a string as large as the defined input buffer. On many
workstations, pressing Return triggers the string-class logical input device. The
string input class returns a character string.

A pick-class logical input device positions a prompt on the workstation surface.
The user moves the prompt among the segments on the workstation surface.
If the application is using an appropriate input mode, the user can trigger the
pick device. The pick input class returns integers that represent the name of the
picked segment and the pick identifier associated with parts of a segment. (For
detailed information about pick identifiers, see Chapter 8, Segment Functions.)

Figure 9–1 shows possible visual interfaces for the logical input classes.

9–4 Input Functions

Input Functions
9.2 Logical Input Devices

Figure 9–1 Visual Interfaces for Logical Input Classes

ZK−3061−GE

prompt Yes
Up

Down

Exit

Locator Stroke Valuator Choice String Pick

Significant differences may exist in how workstations implement input classes.
For example, using a stroke-class logical input device on a DECwindows
workstation, you can specify X and Y device coordinate change vectors to tell
the input device when to add another device coordinate point to the stroke. When
the user moves the cursor to a point whose distance from the last entered point
exceeds both the specified X and Y vectors, the input device accepts the point as
the next point in the stroke. This affects the smoothness of the line, allowing
you to create relatively curved shapes instead of jagged lines. If you specify a
relatively short X and Y difference, DEC GKS accepts many of the input points
as you move the cursor.

In contrast, on the VT340™ terminal, you must move the arrow keys and signal
each time you have reached a point you want to be a part of the stroke. For
information on input classes for specific devices, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

9.3 Prompt and Echo Types
A single workstation can prompt the user and echo the input in different ways
when using the same logical input device. Some differences may be subtle. For
example, a workstation may use either a plus sign or a set of cross hairs as a
prompt for a single locator device, both triggered by pressing MB1. One logical
input device can have a number of prompt and echo types. The prompt and echo
types provide different visual interfaces for the logical input device. The GKS
standard defines some prompt and echo types, while others are implementation
dependent.

For example, DEC GKS supports the following prompt types for its locator-class
logical input devices:

• A tracking plus sign (+)

• A cross hair

• A tracking cross (X)

• A line from the initial locator position to the current locator position
(rubber-band line)

• A rectangle whose diagonal connects the initial and current positions
(rubber-band box)

• A numeric representation of the current locator position

The first prompt is implementation dependent. The last five are defined by the
GKS standard.

Input Functions 9–5

Input Functions
9.3 Prompt and Echo Types

The input devices use DEC GKS primitives such as lines, markers, and fill areas
to construct input prompts. However, the input devices may also use additional
information that determines the physical appearance of the prompt and input
echoed on the surface. For example, an input device may use a polyline output
attribute that affects the physical appearance of cross hairs displayed on the
surface. The information depends on the needs of the different prompt and echo
types on different physical devices. It is provided to the input device through
input data records.

9.3.1 DEC GKS Prompt and Echo Types
The following sections describe the prompt and echo types supported by DEC GKS
for each class of logical input devices.

Not all prompt and echo types are available for every logical input device
with every workstation type. To see which ones are available for a particular
workstation type, see the Device Specifics Reference Manual for DEC GKS and
DEC PHIGS.

9.3.1.1 Choice-Class Prompt and Echo Types
DEC GKS supports the following choice-class prompt and echo types:

Prompt and
Echo Type Description

–1 Highlights the current choice using a hollow rectangle.

1 Displays the list of choice strings within the echo area.

2 Displays the list of choice strings within the echo area.

3 Displays the list of choice strings within the echo area.

9.3.1.2 Locator-Class Prompt and Echo Types
DEC GKS supports the following locator-class prompt and echo types:

Prompt and
Echo Type Description

–13 Marks the current location using a segment. The segment is drawn
relative to the current location. The current location is also marked by a
tracking plus sign.

–12 Marks the current location using a rubber-band ellipse centered at the
initial point and the current location at the corner of the bounding
rectangle.

–11 Marks the current location with the world coordinate translation of the
device coordinate position.

–10 Marks the current location using a circle centered at the midpoint of the
initial location and the current location.

–9 Marks the current location using a circle centered at the initial position,
with the current location on the circumference.

–8 Marks the current location using an open-type arc defined by the current
location and two points supplied in the data record.

–7 Marks the current location using a pie-type arc defined by the current
location and two points supplied in the data record.

9–6 Input Functions

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Description

–6 Marks the current location using a chord-type arc defined by the current
location and two points supplied in the data record.

–5 Marks the current location using a horizontal line drawn from the initial
position to the current location.

–4 Marks the current location using a vertical line drawn from the initial
position to the current location.

–3 Marks the current location using two lines connected to two fixed points
supplied by the data record.

–2 Marks the current location using a rectangle that is centered at the initial
points and has a corner at the current location.

–1 Marks the current location with a rectangular box.

1 Marks the current location with a tracking plus sign.

2 Marks the current location by using a vertical and a horizontal line as
cross hairs.

3 Marks the current location using a tracking cross.

4 Marks the current location using a line connecting the current location to
the initial location (rubber band line).

5 Marks the current location using a rectangle whose diagonal is the line
between the current location and the initial location (rubber band box).

6 Marks the current location by displaying a digital representation of the
location.

9.3.1.3 Pick-Class Prompt and Echo Types
DEC GKS supports the following pick-class prompt and echo types:

Prompt and
Echo Type Description

1 Highlights the extent rectangle of the picked output primitive.

2 Highlights the extent rectangle of all the output primitives that share the
pick identifier of the picked primitive.

3 Highlights the extent rectangle of the picked segment.

9.3.1.4 String-Class Prompt and Echo Type
DEC GKS supports the following string-class prompt and echo types:

Prompt and
Echo Type Description

1 Displays the current string value in the echo area.

9.3.1.5 Stroke-Class Prompt and Echo Types
DEC GKS supports the following stroke-class prompt and echo types:

Prompt and
Echo Type Description

1 Displays a line joining successive points of the current stroke.

Input Functions 9–7

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Description

3 Displays a polymarker at each successive point of the current stroke.

4 Displays a line joining successive points of the current stroke.

9.3.1.6 Valuator-Class Prompt and Echo Types
DEC GKS supports the following valuator-class prompt and echo types:

Prompt and
Echo Type Description

–4 Displays the range as floating values (for use only with the hardware
dials).

–3 Displays the range of values in a circular dial (for use only with the VWS
workstations).

–2 Displays the range of values on a horizontal sliding scale.

–1 Displays the range of values on a vertical sliding scale.

1 Displays a graphical representation of the current value (such as a dial or
a pointer).

2 Displays a graphical representation of the current value (such as a dial or
a pointer).

3 Displays a digital representation of the current value.

9.3.2 Input Data Records
If you call one of the INITIALIZE input functions, you must use an input data
record to pass information about a specific prompt and echo type on a given
logical input device. The input data record contains information about the input
prompt interface. For example, the input data record for a locator-class logical
input device may specify output attributes that affect the thickness or color
of cross hairs on the workstation surface. You can use the default input data
record or an application-specified input data record. The application-specified
input data record is an argument to the INITIALIZE input functions. DEC GKS
also uses an input data record to return information to the application with the
INQUIRE . . . DEVICE STATE and INQUIRE DEFAULT . . . DEVICE DATA
functions. (See the GKS International Standard (ISO 8805(E) 1988) for a detailed
description of input data records.)

The GKS standard describes input data records as having required components
and optional components. If a component is required, all input devices use that
component of the data record. If a component is optional, the input device must
be able to accept that component, but may or may not use it when generating
the input prompt and echo. For example, suppose a polyline color is an optional
part of the data record. The GKS implementation cannot generate an error if it
encounters the component and does not have to change the color of the prompt on
the workstation surface.

The following sections list all the prompt and echo data record information for the
GKS3D$ binding. The tables within these sections include the prompt and echo
type, the input data record information, and whether the workstation uses (U) or
ignores (I) the input data record. NA in the column means the information is not
applicable.

9–8 Input Functions

Input Functions
9.3 Prompt and Echo Types

Use the tables to determine which data record information to supply to the
workstation for a particular prompt and echo type associated with an input
device. Then consult the appropriate language-independent header file for
the data type and the exact structure of the data record you need to pass the
information to the workstation. If you are working on a VMS system, use
the header files GKS3D$DEFS.*. On an ULTRIX system, use the header files
gks3ddefs.*. The data type names representing the input data records are easy
to recognize because they correspond to the device type, and the prompt and echo
type numbers.

To determine the size of the input data record for the INITIALIZE function
argument data_len, use a language-dependent operator, a language-defined
function, or the SIZEOF utility function, to calculate the size of the data record in
bytes.

9.3.2.1 Choice Class
This section lists the input data record information required for choice-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

–1, 1, 3 Number of choice alternatives U

Address of array of choice string lengths U

Address of array of choice string addresses U

Title string U

Title string length U

2 Number of choice alternatives U

Address of array of prompts turned off
(GKS3D$K_CHOICE_PROMPT_OFF) or on
(GKS3D$K_CHOICE_PROMPT_ON)

U

9.3.2.2 Locator Class
This section lists the input data record information required for locator-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

–1 X dimension of the box in WC values. U

Y dimension of the box in WC values. U

–11, 1, 2, 3 These prompt and echo types require no input
data record information. Use a dummy data
record.

NA

6 Title string U

Title string length U

Input Functions 9–9

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

–12, –10, –9, –5,
–4, 4

Attribute control flag tells the workstation
to use either the current output attribute
(GKS3D$K_ACF_CURRENT) or the newly
specified attributes provided in the data record
(GKS3D$K_ACF_SPECIFIED).

U

Line type ASF (GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Line width scale factor ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Polyline color index ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Polyline index. I

Line type index. U1

Line width scale factor. U1

Polyline color index. I

–2, 5 Polyline-fill-area control flag tells the
workstation to use either a polyline
(GKS3D$K_ACF_POLYLINE) or a fill area
(GKS3D$K_ACF_FILL_AREA) to draw the
rectangle. Use GKS3D$K_ACF_POLYLINE
because the fill area rectangle is not currently
available.

I2

Attribute control flag tells the workstation
to use either the current output attribute
(GKS3D$K_ACF_CURRENT) or the newly
specified attributes provided in the data record
(GKS3D$K_ACF_SPECIFIED).

U

Line type ASF (GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Line width scale factor ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Polyline color index ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Polyline index. I

Line type index. U1

Line width scale factor. U1

Polyline color index. I

1If the attribute control flag is GKS3D$K_ACF_SPECIFIED, the workstation uses the information. If
the attribute control flag is GKS3D$K_ACF_CURRENT, the workstation ignores the information.
2The workstation ignores this information because DEC GKS supports only the polyline rectangle.
The workstation expects the flag to be GKS3D$K_ACF_POLYLINE.

9–10 Input Functions

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

Fill area interior style ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Fill area style index ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Fill area color index ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Fill area index ASF (GKS3D$K_ASF_BUNDLED
or GKS3D$K_ASF_INDIVIDUAL).

I

Fill area interior style
(GKS3D$K_INTSTYLE_HOLLOW,
GKS3D$K_INTSTYLE_SOLID,
GKS3D$K_INTSTYLE_PATTERN, or
GKS3D$K_INTSTYLE_HATCH).

I

Fill area style index. I

Fill area color index. I

–8, –7, –6, –3 Attribute control flag tells the workstation
to use either the current output attribute
(GKS3D$K_ACF_CURRENT) or the newly
specified attributes provided in the data record
(GKS3D$K_ACF_SPECIFIED).

U

X component of the first WC point. U

Y component of the first WC point. U

X component of the second WC point. U

Y component of the second WC point. U

Line type ASF (GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Line width scale factor ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL).

I

Polyline color ASF (GKS3D$K_ASF_BUNDLED
or GKS3D$K_ASF_INDIVIDUAL).

I

Line type index. U1

Line width scale factor. U1

Polyline color index. I

–13 Segment identifier of the segment used for the
cursor segment.

U

1If the attribute control flag is GKS3D$K_ACF_SPECIFIED, the workstation uses the information. If
the attribute control flag is GKS3D$K_ACF_CURRENT, the workstation ignores the information.

Input Functions 9–11

Input Functions
9.3 Prompt and Echo Types

9.3.2.3 Pick Class
This section lists the input data record information required for pick-class prompt
and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

1, 2, 3 Size of the pick aperture (prompt) in device
coordinates

U

9.3.2.4 String Class
This section lists the input data record information required for string-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

1 Number of characters in the input buffer U

Initial cursor position within the string,
1 <= position <= string_length

I

Title string U

Title string length U

9.3.2.5 Stroke Class
This section lists the input data record information required for stroke-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

1 Number of stroke points in the input buffer U

Editing position expressed as a stroke point I

X component of the WC change vector U

Y component of the WC change vector U

Time interval, in seconds I

3 Number of stroke points in the input buffer U

Editing position expressed as a stroke point I

X component of the WC change vector U

Y component of the WC change vector U

Time interval, in seconds I

Attribute control flag tells the workstation
to use either the current output attribute
(GKS3D$K_ACF_CURRENT) or the newly
specified attributes provided in the data record
(GKS3D$K_ACF_SPECIFIED)

U

Polymarker type ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL)

I

9–12 Input Functions

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

Polymarker size factor ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL)

I

Polymarker color ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL)

I

Polymarker bundle index I

Polymarker type index U1

Polymarker scale factor U1

Polymarker color index I

4 Number of stroke points in the input buffer U

Editing position expressed as a stroke point I

X component of the WC change vector U

Y component of the WC change vector U

Time interval, in seconds I

Attribute control flag tells the workstation
to use either the current output attribute
(GKS3D$K_ACF_CURRENT) or the newly
specified attributes provided in the data record
(GKS3D$K_ACF_SPECIFIED)

U

Line type ASF (GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL)

I

Line width scale factor ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL)

I

Polyline color index ASF
(GKS3D$K_ASF_BUNDLED or
GKS3D$K_ASF_INDIVIDUAL)

I

Polyline index I

Line type index U1

Line width scale factor U1

Polyline color index I

1If the attribute control flag is GKS3D$K_ACF_SPECIFIED, the workstation uses the information. If
the attribute control flag is GKS3D$K_ACF_CURRENT, the workstation ignores the information.

9.3.2.6 Valuator Class
This section lists the input data record information required for valuator-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

–3, –2, –1, 1, 2,
3

Low value of the numeric range U

High value of the numeric range U

Input Functions 9–13

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

Title string U

Title string length U

9.4 Initializing Input
INITIALIZE functions let you specify attributes of the logical input devices.
To initialize a logical input device, you must place the device in request mode.
Request mode is the DEC GKS default input mode.

After you put the logical input device into request mode, you can either use its
default attributes or specify your own. To use the default attributes, activate a
logical input device without first calling one of the INITIALIZE functions. To
specify your own attributes, call one of the INITIALIZE functions before you
activate the logical input device.

INITIALIZE functions include:

• INITIALIZE CHOICE (3)

• INITIALIZE LOCATOR (3)

• INITIALIZE PICK (3)

• INITIALIZE STRING (3)

• INITIALIZE STROKE (3)

• INITIALIZE VALUATOR (3)

9.5 Input Operating Modes
DEC GKS supports three input operating modes: request, sample, and event.
You can use any of the six types of logical input devices in any of the three input
operating modes.

Some applications must work synchronously with the input process. That is, the
application must pause to wait for the user to complete the input action. You can
use the request mode to have an application work synchronously.

Some applications must work asynchronously with the input process. That is,
the application must run while the user enters input. You can use sample mode
or event mode to have an application work asynchronously. In sample mode, the
application takes the current measure of an input device without the user having
to trigger it. In event mode, the device handler places triggered input values in a
time-ordered queue that the application accesses when it needs to process input.

To change the input operating mode for a given device, you call one of the SET
MODE functions. Besides changing operating modes, these functions also enable
and disable echoing of the input prompt and the input values. Disabling echoing
is useful when the DEC GKS echo types are inadequate and you must echo the
input in an application-specific manner.

By default, all input prompts are active at once. For example, if you press the
arrow keys, you change all input prompts on the workstation surface whose
devices use the arrow keys. Device handlers can provide ways for the user to
deactivate all but one input prompt, for each logical input device. In this way,
the user can cycle through the devices, changing only one measure at a time,

9–14 Input Functions

Input Functions
9.5 Input Operating Modes

in some device-specific order. ReGIS™ and some Tektronix® workstations let
you cycle through logical input devices. For more information, see the section on
cycling logical input devices in the Device Specifics Reference Manual for DEC
GKS and DEC PHIGS.

Note

You cannot cycle past a device whose echoing is disabled. (Normally,
DEC GKS notifies you of the logical input device’s turn in the cycle by
displaying the logical input device’s prompt.) Using the corresponding
physical device will always change the measure of a nonechoing device.
For example, if you use pick-class logical input device 1 on the VT340
terminal while disabling its echoing, pressing the arrow keys always
changes the measure of this logical input device no matter how you cycle
through the remaining prompting devices.

The following sections describe each of the input operating modes.

9.5.1 Request Mode
In request mode, the application program pauses and DEC GKS waits for the
user either to trigger the end of input or to cancel input. You can use a logical
input device in request mode without calling the SET MODE functions if you
have not previously set the logical input device to another mode. Request mode is
the DEC GKS default input operating mode.

To initialize a logical input device, you must make sure the logical input device’s
input prompt does not currently appear on the workstation surface. The logical
input device must be in request mode to be initialized.

Although you can place any or all the supported logical input devices in request
mode at any one time, you can only request input from one logical input device
at a time. To request input, you must specify a logical input device number and
a workstation identifier and call one of the REQUEST functions. REQUEST
functions include the following:

• REQUEST CHOICE

• REQUEST LOCATOR

• REQUEST PICK

• REQUEST STRING

• REQUEST STROKE

• REQUEST VALUATOR

After the application requests input by calling one of the REQUEST functions,
DEC GKS displays the input prompt (if echoing is enabled).

In request mode, the user can trigger or break a request for input in several
ways. If the user triggers the logical input device, DEC GKS writes the value
GKS3D$K_STATUS_OK to the request function input_status argument. (See
Section 9.2.5 for information about triggering a logical input device.) If the
user performs a break requesting input, DEC GKS writes the value GKS3D$K_
STATUS_NONE to the request function input_status argument. (Different
workstations may require different actions for the user to perform a break.)

Input Functions 9–15

Input Functions
9.5 Input Operating Modes

Choice-class and pick-class logical input devices allow the user another option
besides returning data or breaking input. They let the user end the input process
without choosing or picking. If the user triggers the logical input device without
moving the input prompt, DEC GKS returns one of the appropriate values,
GKS3D$K_STATUS_NOCHOICE or GKS3D$K_STATUS_NOPICK, to the input_
status argument. (DEC GKS also returns GKS3D$K_STATUS_NOPICK if the
user is not currently positioning the aperture on a segment.)

9.5.2 Sample Mode
In sample mode, the application and the input process operate asynchronously.
The user changes the input measure of a given logical input device by changing
the position of the input prompt, but cannot trigger the logical input device.
The application determines when to sample (take) the current measure of the
logical input device. The user specifies input values, but the application controls
when it actually accepts the values. The application ends the input session when
conditions within the program are met.

To place a logical input device in sample mode, you must specify sample mode to
one of the SET MODE functions. As soon as you do, DEC GKS displays the input
prompt (if echoing is enabled). At this point, the user can enter input, but cannot
trigger the logical input device or cancel input.

To sample input, you must specify a logical input device number and a
workstation identifier and call one of the SAMPLE functions. SAMPLE functions
include:

• SAMPLE CHOICE

• SAMPLE LOCATOR

• SAMPLE PICK

• SAMPLE STRING

• SAMPLE STROKE

• SAMPLE VALUATOR

After you place the device in sample mode, you cannot reinitialize the device (by
calling one of the INITIALIZE functions). If you want to reinitialize the device,
you must remove the input prompt from the workstation surface. To remove it,
place the device in request mode, reinitialize the device, and then place the device
back into sample mode.

You can place any or all the supported logical input devices in sample mode at one
time. However, you can sample from only one device at a time. The program can
call a SAMPLE function from any point in the application. The device handler
returns the current measure from the specified workstation and the specified
logical input device. When the program reaches some application-defined
condition, the application can remove the input prompt from the workstation
surface by changing the input mode from sample mode to request mode.

When sampling choice and pick logical input devices, you can obtain an additional
input status. The additional input status can have one of two values: GKS3D$K_
STATUS_NOCHOICE or GKS3D$K_STATUS_NOPICK. You can obtain the value
GKS3D$K_STATUS_NOCHOICE if the user did not alter the device’s measure
since it was activated. You can obtain the value GKS3D$K_STATUS_NOPICK if
the user did not move the aperture or is not currently positioning the aperture on
a segment. Under the specified conditions, DEC GKS writes one of these values
to the input_status argument.

9–16 Input Functions

Input Functions
9.5 Input Operating Modes

9.5.3 Event Mode
EVENT functions remove, read, and flush input reports from the event queue.
In event mode, the application and the input process operate asynchronously.
Event mode differs from sample mode because the user must trigger input values
that DEC GKS then places in a time-ordered queue. Each set of input values is
a report. The application chooses when to remove the reports from the queue,
beginning with the first input value the user entered.

To place a logical input device in event mode, you must specify event mode to one
of the SET functions. As soon as you do, DEC GKS displays the input prompt (if
echoing is enabled). At this point, the user can generate events that the device
handler places in the event input queue.

EVENT functions include:

• AWAIT EVENT

• FLUSH DEVICE EVENTS

• GET CHOICE

• GET LOCATOR

• GET PICK

• GET STRING

• GET STROKE

• GET VALUATOR

After you place the device in event mode, you cannot reinitialize the device (by
calling one of the INITIALIZE functions) until you remove the input prompt
from the workstation surface. To remove it, place the device in request mode,
reinitialize the device, and then place the device back into event mode.

You can process reports the user generates. To remove a report from the event
input queue, call the AWAIT EVENT function. AWAIT EVENT checks the event
queue for a length of time up to the amount specified in the time_out argument.
If the event queue contains at least one report, AWAIT EVENT removes the
oldest report, places it in the current event report entry in the GKS state list, and
lets the application resume. If the queue remains empty for the entire timeout
period, AWAIT EVENT writes GKS3D$K_INPUT_CLASS_NONE to its input_
status argument and lets the application resume.

Each input report contains the following information that corresponds to the
generated event:

• The workstation identifier

• The input class of the device

• The device number

• The input value or values

To process the information in the current event report, you must check the value
written to the input_status argument of AWAIT EVENT. Once you determine the
class of the device that generated the event, you call one of the GET functions.

Input Functions 9–17

Input Functions
9.5 Input Operating Modes

The GET functions obtain information from the current event report. Therefore,
repeated calls to one of the GET functions will write the same values to the
output arguments. The current event report does not change unless you call
AWAIT EVENT to fetch another report from the queue. After you fetch another
report, a subsequent call to one of the GET functions obtains new input values.

If you decide you have enough information from a particular logical input device,
you can stop generating events by placing the logical input device back in request
mode. Then you can flush all the events the logical input device generated that
remain in the event input queue by calling FLUSH DEVICE EVENTS.

Example 9–1 shows a sample program using a locator-class logical input device in
event mode.

9.5.3.1 Event Input Queue Overflow
Because the user can generate events as soon as you call a GET function, the
user may fill the event input queue before the application can remove any of the
event reports. The input event queue could overflow.

If you try to call either AWAIT EVENT or FLUSH DEVICE EVENTS, DEC GKS
logs an initial event input queue overflow error (ERROR_147—Input queue has
overflowed). If you continue calling either AWAIT EVENT or FLUSH DEVICE
EVENTS, the functions still perform their task. However, the logical input
devices cannot accept additional input until you clear the input queue. You can
generate ERROR_147 many times while trying to clear the queue. DEC GKS,
however, logs the error only once, the first time it occurs.

To test for input queue overflow, you can call INQUIRE INPUT QUEUE
OVERFLOW immediately after calling AWAIT EVENT. If the err_stat argument
to INQUIRE INPUT QUEUE OVERFLOW equals 0, the following is true:

• The event input queue has overflowed.

• Information about the overflow is available.

• INQUIRE INPUT QUEUE OVERFLOW writes to its output arguments the
workstation identifier, the input class, and the device number of the logical
input device that last accepted input.

If err_stat does not equal 0, the information needed to write to the output
arguments is not available. In this case, err_stat can equal one of the following
values:

• ERROR_7—GKS not in proper state.

• ERROR_148—Input queue has not overflowed since GKS was opened or since
the last invocation of INQUIRE INPUT QUEUE OVERFLOW.

• ERROR_149—Input queue has overflowed, but the associated workstation has
been closed.

If the event input queue overflows, you can call FLUSH DEVICE EVENTS to
clear the events from the queue. FLUSH DEVICE EVENTS clears the buffer
and lets the user enter input again. Because FLUSH DEVICE EVENTS clears
individual logical input devices, you must call it for each logical input device the
application is using. If you know the input class that caused the overflow, you
can call FLUSH DEVICE EVENTS for only that input class. If you do not know
which input class caused the overflow, you must call FLUSH DEVICE EVENTS
for all the logical input devices and for all the input classes the application was
using.

9–18 Input Functions

Input Functions
9.5 Input Operating Modes

A second way to clear the events from the overflowed queue is to continue calling
AWAIT EVENT, removing the reports one by one until a call returns GKS3D$K_
INPUT_CLASS_NONE.

Using FLUSH DEVICE EVENTS is the preferred way to clear events from an
overflowed queue. If you use AWAIT EVENT, the user may continue generating
input faster than AWAIT EVENT can remove events from the queue.

9.6 Overlapping Viewports
This section assumes you know something about the DEC GKS coordinate
systems. You may want to review Chapter 7, Transformation Functions, before
reading further.

When defining normalization viewports, you may cause them to overlap in NDC
space. The overlap can affect the application during input requests. To prevent
overlap, the application should use a viewport priority list during input.

To illustrate using a viewport priority list, consider two normalization viewports.
The first is the default viewport ([0,1] x [0,1]) of the unity transformation. The
second belongs to normalization transformation number 1 and has the range
([0.5, 1] x [0.5, 1]) in NDC values. The viewport of normalization transformation
number 1 overlaps the right half of the default viewport.

During stroke and locator input, the user positions the cursor on the device
surface and returns one point or a series of points in device coordinates.
DEC GKS translates the device coordinates to NDC points. Then it uses the
viewport input priority to determine which normalization transformation to use
when translating the points to WC points.

DEC GKS maintains a priority list that it uses to decide which normalization
viewport has a higher input priority. By default, DEC GKS assigns the highest
priority to the unity transformation (0). The viewports of all remaining
transformations decrease in priority as their transformation numbers increase.
For example, viewport 0 is higher than viewport 1; 1 is higher than 2; 2 is higher
than 3, and so on.

When using a locator-class input device, DEC GKS uses the normalization
transformation of the highest input priority that contains the input point. When
using stroke input, DEC GKS uses the normalization transformation of the
highest priority that contains all the points in the stroke. A locator or stroke
input device cannot return device coordinate points that can fall outside the
default normalization viewport ([0,1] x [0,1]). Therefore, you can always use the
unity transformation to transform stroke input data.

For more information about transformations and viewport priority, see Chapter 7,
Transformation Functions.

9.7 Input Inquiries
When using the DEC GKS input functions, you may need to inquire from the
workstation description table or from the workstation state list. If you need
default values, you inquire from the description table. If you need the currently
set values, you inquire from the state list.

The following sections describe programming techniques for inquiry functions.

Input Functions 9–19

Input Functions
9.7 Input Inquiries

9.7.1 Default and Current Input Values
Your application can set all the input values individually before it calls one of
the INITIALIZE functions. If you do not want the application to set all the
input values, you can have it pass the input values returned by one of two sets
of inquiry functions. The first set obtains default input values. The second set
obtains current input values.

The following inquiry functions obtain default input values:

• INQUIRE DEFAULT CHOICE DEVICE DATA (3)

• INQUIRE DEFAULT LOCATOR DEVICE DATA (3)

• INQUIRE DEFAULT PICK DEVICE DATA (3)

• INQUIRE DEFAULT STRING DEVICE DATA (3)

• INQUIRE DEFAULT STROKE DEVICE DATA (3)

• INQUIRE DEFAULT VALUATOR DEVICE DATA (3)

The following inquiry functions obtain current input values:

• INQUIRE CHOICE DEVICE STATE (3)

• INQUIRE LOCATOR DEVICE STATE (3)

• INQUIRE PICK DEVICE STATE (3)

• INQUIRE STRING DEVICE STATE (3)

• INQUIRE STROKE DEVICE STATE (3)

• INQUIRE VALUATOR DEVICE STATE (3)

Be careful when passing the argument containing the data record buffer size to
the inquiry functions. The buffer size is a modifiable variable (read/write). When
passed to the inquiry function, the argument must contain the size of the buffer.
If it does not, the inquiry function will not return the contents of the data record
properly.

After the function call, DEC GKS writes the amount of the buffer actually used.
You can compare this value to the data record buffer size to see if DEC GKS had
to truncate the data record when writing it to the buffer. If DEC GKS truncated
the data record, you must decide whether to continue execution or change the
buffer size so the entire data record fits.

9.7.2 Device-Independent Programming
You can use the INQUIRE functions when writing device-independent
applications. Depending on the type of input you use, you may need to call
many INQUIRE functions. For example, your application may need to check the
following information:

• The level of GKS, which determines the supported input operating modes.
This information is important for applications that need to be transported to
other systems. (DEC GKS is a level 2c implementation.)

• The category of the workstation.

• The number of input devices of a given class the workstation supports.

• The prompt and echo types a given workstation supports.

• The maximum possible echo area available on a given workstation.

9–20 Input Functions

Input Functions
9.7 Input Inquiries

• The data record information for a given workstation using a specified prompt
and echo type (see Section 9.7.1).

Use the following INQUIRE functions to obtain input information when writing a
device-independent application:

INQUIRE CHOICE DEVICE STATE (3)
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER
INQUIRE DEFAULT CHOICE DEVICE DATA (3)
INQUIRE DEFAULT LOCATOR DEVICE DATA (3)
INQUIRE DEFAULT PICK DEVICE DATA (3)
INQUIRE DEFAULT STRING DEVICE DATA (3)
INQUIRE DEFAULT STROKE DEVICE DATA (3)
INQUIRE DEFAULT VALUATOR DEVICE DATA (3)
INQUIRE DISPLAY SPACE SIZE (3)
INQUIRE INPUT QUEUE OVERFLOW
INQUIRE LEVEL OF GKS
INQUIRE LOCATOR DEVICE STATE (3)
INQUIRE NORMALIZATION TRANSFORMATION (3)
INQUIRE PICK DEVICE STATE (3)
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE STRING DEVICE STATE (3)
INQUIRE STROKE DEVICE STATE (3)
INQUIRE VALUATOR DEVICE STATE (3)
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION TRANSFORMATION (3)

For information about device-independent programming, see the DEC GKS User’s
Guide.

9.8 Function Descriptions
This section describes the DEC GKS input functions in detail.

Input Functions 9–21

AWAIT EVENT

AWAIT EVENT

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$await_event (time_out, ws_id, input_class, dev_num)

Argument Data Type Access Passed by Description

time_out Real Read Reference Time to wait for event
ws_id Integer Write Reference Accepting workstation identifier
input_class Integer

(constant)
Write Reference Class of accepting input device

dev_num Integer Write Reference Number of accepting input device

Constants

Defined
Argument Constant Description

input_class GKS3D$K_INPUT_CLASS_NONE Input queue is empty
GKS3D$K_INPUT_CLASS_LOCATOR Event from a locator device
GKS3D$K_INPUT_CLASS_STROKE Event from a stroke device
GKS3D$K_INPUT_CLASS_VALUATOR Event from a valuator device
GKS3D$K_INPUT_CLASS_CHOICE Event from a choice device
GKS3D$K_INPUT_CLASS_PICK Event from a pick device
GKS3D$K_INPUT_CLASS_STRING Event from a string device
GKS3D$K_INPUT_CLASS_VIEWPORT Event from a viewport device

Description

The AWAIT EVENT function examines the input queue for all input devices.

DEC GKS searches the input queue for an event and, if the input queue is empty,
suspends the application program until either of the following happens:

• An event appears on the input queue.

• The timeout period specified in the timeout argument expires.

The timeout argument is specified in the format ss.hh, where ss is seconds and
hh is hundredths of a second. This argument cannot be negative and cannot be
larger than 356,400 seconds (99 hours).

If this argument is 0.0, this function allows application execution to continue. It
either removes the oldest event or, if there are no events in the queue, returns
the value GKS3D$K_INPUT_CLASS_NONE to the input class argument.

9–22 Input Functions

AWAIT EVENT

When AWAIT EVENT checks the event input queue, its subsequent action
depends on the state of the queue. If the queue contains reports, this function
performs the following tasks:

• Removes the oldest event report from the queue

• Writes information to the current event report entry in the GKS state list

• Writes the event’s workstation identifier, input class, and logical device
number to its corresponding output arguments

If the timeout period has expired, and if this function finds the queue to be empty,
this function writes input class value GKS3D$K_INPUT_CLASS_NONE to its
output argument.

If you generate the queue overflow error, this function still performs its task.

See Also

Example 9–1 for a program example using the AWAIT EVENT function

Input Functions 9–23

FLUSH DEVICE EVENTS

FLUSH DEVICE EVENTS

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$flush_device_events (ws_id, input_class, dev_num)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
input_class Integer

(constant)
Read Reference Input class identifier

dev_num Integer Read Reference Logical input device number

Constants

Defined
Argument Constant Description

input_class GKS3D$K_INPUT_CLASS_NONE Input queue is empty
GKS3D$K_INPUT_CLASS_LOCATOR Event from a locator device
GKS3D$K_INPUT_CLASS_STROKE Event from a stroke device
GKS3D$K_INPUT_CLASS_VALUATOR Event from a valuator device
GKS3D$K_INPUT_CLASS_CHOICE Event from a choice device
GKS3D$K_INPUT_CLASS_PICK Event from a pick device
GKS3D$K_INPUT_CLASS_STRING Event from a string device
GKS3D$K_INPUT_CLASS_VIEWPORT Event from a viewport device

Description

The FLUSH DEVICE EVENTS function removes all events generated by the
specified logical input device from the input queue. This function performs its
task even if it generates the queue overflow error message.

For information about the viewport input class, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS, under the escapes Set Viewport Event
and Inquire Viewport Data.

9–24 Input Functions

GET CHOICE

GET CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_choice (input_status, choice_value)

Argument Data Type Access Passed by Description

input_
status

Integer
(constant)

Write Reference Status of input process

choice_
value

Integer Write Reference Choice number

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_OK Input obtained
GKS3D$K_STATUS_NOCHOICE Device triggered without choosing

Description

The GET CHOICE function obtains information from the current event report
entry in the GKS state list and writes the choice status and choice value to the
output arguments.

If the report contains input generated by anything other than a choice-class
logical input device, a call to this function generates an error. (See the AWAIT
EVENT function in this chapter for more information concerning device class and
the current event report entry.)

After a successful call to GET CHOICE, the input status parameter contains
either the value GKS3D$K_STATUS_OK or GKS3D$K_STATUS_NOCHOICE.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET CHOICE MODE

Input Functions 9–25

GET LOCATOR

GET LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_locator (trans_num, locator)

Argument Data Type Access Passed by Description

trans_num Integer Write Reference Normalization transformation number
used to transform the locator position
to the WC point

locator Array of 2
reals

Write Reference Locator position in WC values

Description

The GET LOCATOR function obtains information from the current event report
entry in the GKS state list, and writes the normalization transformation number,
and the X and Y WC point values to the output arguments.

If the current event report contains input generated by anything other than a
locator-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET LOCATOR MODE
Example 9–1 for a program example using the GET LOCATOR function

9–26 Input Functions

GET LOCATOR 3

GET LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_locator3 (trans_num, view_ind, locator)

Argument Data Type Access Passed by Description

trans_num Integer Write Reference Normalization transformation number
used to transform the locator position
to the WC point

view_ind Integer Write Reference View index of the view representation
used to transform the locator position
from NPC values to NDC values

locator Array of 3
reals

Write Reference Locator position in WC values

Description

The GET LOCATOR 3 function obtains information from the current event report
entry in the GKS state list, and writes the normalization transformation number;
the view index; and X, Y, and Z WC point values to the output arguments.

If the current event report contains input generated by anything other than a
locator-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

The GET LOCATOR 3 function returns the view index of the viewport mapping
transformation last used to translate the NPC points to the NDC points. See the
DEC GKS User’s Guide for more information on view indexes.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET LOCATOR MODE
Example 9–1 for a program example using the GET LOCATOR function

Input Functions 9–27

GET PICK

GET PICK

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_pick (input_status, seg_num, pick_id)

Argument Data Type Access Passed by Description

input_
status

Integer
(constant)

Write Reference Status of input value

seg_num Integer Write Reference Segment number
pick_id Integer Write Reference Pick identifier

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_OK Input obtained
GKS3D$K_STATUS_NOPICK Device triggered without picking

Description

The GET PICK function obtains information from the current event report entry
in the GKS state list and writes the input status, segment name, and pick
identifier to the output arguments.

If the current event report contains input generated by anything other than a
pick-class logical input device, a call to this function generates an error. (See the
AWAIT EVENT function in this chapter for more information concerning device
class and the current event report entry.)

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET PICK MODE

9–28 Input Functions

GET STRING

GET STRING

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_string (string_buf, string_size, rep_str_size)

Argument Data Type Access Passed by Description

string_buf Character
string

Write Descriptor Buffer for input character string

string_size Integer Write Reference Size of returned string (in bytes)
rep_str_size Integer Write Reference Required string size (in bytes)

Description

The GET STRING function obtains information from the current event report
entry in the GKS state list and writes the string, the string size, and the number
of characters written to the string output argument.

When activating string input, the following two buffers exist:

• The application’s string buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s string buffer, whose size you can specify in the call
to the INITIALIZE STRING function

When reading a string from the current event report using the GET STRING
function, DEC GKS removes characters up to the number that fits into the
application’s buffer. If the size of the string in the current event report is larger
than the application’s buffer, you need to call GET STRING again, using a larger
application buffer, to obtain the entire string contained in the report. (Remember
that the string contained in the current report does not change until you call the
AWAIT EVENT function to replace the current report.)

If the current event report contains input generated by anything other than a
string-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

Note

The initial string appears only in the first generated string event report.
Subsequent string reports do not contain the initial string.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET STRING MODE

Input Functions 9–29

GET STROKE

GET STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_stroke (trans_num, n_points_ent, stroke_buf, n_points_ret)

Argument Data Type Access Passed by Description

trans_num Integer Write Reference Normalization transformation number
used to transform the stroke points to
WC points

n_points_
ent

Integer Write Reference Number of stroke points in the current
event report

stroke_buf Array of
reals

Write Descriptor Buffer containing WC stroke point
values in the order X1, Y1, X2,
Y2, . . . Xn, Yn

n_points_
ret

Integer Write Reference Number of stroke points returned in
stroke_buf

Description

The GET STROKE function obtains information from the current event report
entry in the GKS state list and writes the normalization transformation number,
the number of entered points, the stroke point values, and the number of accepted
stroke point values to the output arguments.

When activating stroke input, the following two buffers exist:

• The application’s stroke buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE function

When reading stroke points from the current event report using the GET
STROKE function, DEC GKS removes points up to the number that fits into the
application’s buffer. If the size of the stroke in the current event report is larger
than the application’s buffer, you need to call GET STROKE again, using a larger
application buffer, to obtain the entire stroke contained in the report. (Remember
that the stroke contained in the current report does not change until you call the
AWAIT EVENT function to replace the current report.)

If the current event report contains input generated by anything other than a
stroke-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

Note

The initial stroke appears only in the first generated stroke event report.
Subsequent stroke reports do not contain the initial stroke.

9–30 Input Functions

GET STROKE

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET STROKE MODE

Input Functions 9–31

GET STROKE 3

GET STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_stroke3 (trans_num, view_ind, n_points_ent, stroke_buf, n_points_ret)

Argument Data Type Access Passed by Description

trans_num Integer Write Reference Normalization transformation number
used to transform the stroke points to
WC points

view_ind Integer Write Reference View index
n_points_
ent

Integer Write Reference Number of points in stroke in the
current event report

stroke_buf Array of
reals

Write Descriptor Buffer containing WC stroke point
values in the order X1, Y1, Z1, X2, Y2,
Z2, . . . Xn, Yn, Zn

n_points_
ret

Integer Write Reference Number of stroke points returned in
stroke_buf

Description

The GET STROKE 3 function obtains information from the current event report
entry in the GKS state list and writes the normalization transformation number,
the number of entered points, the stroke point values, the number of accepted
stroke point values, and the view index used to convert NPC points to NDC
points to the output arguments.

When activating stroke input, the following two buffers exist:

• The application’s stroke buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE 3 function

When reading stroke points from the current event report using the GET
STROKE 3 function, DEC GKS removes points up to the number that fits into
the application’s buffer. If the size of the stroke in the current event report is
larger than the application’s buffer, you need to call GET STROKE 3 again, using
a larger application buffer, to obtain the entire stroke contained in the report.
(Remember that the stroke contained in the current report does not change until
you call the AWAIT EVENT function to replace the current report.)

If the current event report contains input generated by anything other than a
stroke-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

9–32 Input Functions

GET STROKE 3

Note

The initial stroke appears only in the first generated stroke event report.
Subsequent stroke reports do not contain the initial stroke.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET STROKE MODE

Input Functions 9–33

GET VALUATOR

GET VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_valuator (valuator)

Argument Data Type Access Passed by Description

valuator Real Write Reference Measure of valuator device

Description

The GET VALUATOR function obtains the valuator input value from the current
event report entry in the GKS state list and writes the real value to the output
argument.

If the current event report contains input generated by anything other than a
valuator-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET VALUATOR MODE

9–34 Input Functions

INITIALIZE CHOICE

INITIALIZE CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_choice (ws_id, dev_num, choice_status, choice_val, pr_echo_type,
echo_area, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
choice_
status

Integer
(constant)

Read Reference Initial choice status of input device.

choice_val Integer Read Reference Initial choice.
pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_area Array of 4
reals

Read Reference Area of workstation surface on which
prompt appears, specified in the order
XMIN, XMAX, YMIN, YMAX.

data_rec Record Read Reference Choice input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Constants

Defined
Argument Constant Description

choice_status GKS3D$K_STATUS_OK The initial segment and pick identifier
are chosen.

GKS3D$K_STATUS_NOCHOICE No segment or choice identifier is
returned.

Description

The INITIALIZE CHOICE function establishes the initial values of a choice-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the initial choice value, the prompt and echo type, the
echo area, and the data record. Subsequent requests for choice input use the
values you specify.

Input Functions 9–35

INITIALIZE CHOICE

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the choice device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the
function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE CHOICE before you request input from a choice-
class logical input device, DEC GKS uses the default input values. For more
information concerning the default input values, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

See Also

SET CHOICE MODE
SIZEOF
Example 9–3 for a program example using an INITIALIZE . . . function

9–36 Input Functions

INITIALIZE CHOICE 3

INITIALIZE CHOICE 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_choice3 (ws_id, dev_num, choice_status, choice_val, pr_echo_type,
echo_vol, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
choice_
status

Integer
(constant)

Read Reference Initial choice status of input device.

choice_val Integer Read Reference Initial highlighted choice.
pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_vol Array of 6
reals

Read Reference Volume of workstation surface on
which prompt appears, specified in the
order XMIN, XMAX, YMIN, YMAX,
ZMIN, ZMAX.

data_rec Record Read Reference Choice input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Constants

Defined
Argument Constant Description

choice_status GKS3D$K_STATUS_OK The initial segment and pick identifier
are chosen.

GKS3D$K_STATUS_NOCHOICE No segment or choice identifier is
returned.

Description

The INITIALIZE CHOICE 3 function establishes the initial values of a choice-
class logical input device only if the device’s prompt is not currently on the
workstation surface. (The device must be in request mode.)

The initial values include the initial choice value, the prompt and echo type, the
echo volume, and the data record. Subsequent requests for choice input use the
values you specify.

Input Functions 9–37

INITIALIZE CHOICE 3

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the choice device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the
function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE CHOICE 3 before you request input from a
choice-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET CHOICE MODE
SIZEOF
Example 9–3 for a program example using an INITIALIZE . . . function

9–38 Input Functions

INITIALIZE LOCATOR

INITIALIZE LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_locator (ws_id, dev_num, init_locator, trans_num, pr_echo_type,
echo_area, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_locator Array of 2

reals
Read Reference Initial prompt position in WC values.

trans_num Integer Read Reference Normalization transformation number
used to transform the initial point
from WC to NDC points.

pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_area Array of 4
reals

Read Reference Area of workstation surface on which
prompt appears, specified in the order
XMIN, XMAX, YMIN, YMAX.

data_rec Record Read Reference Locator input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Description

The INITIALIZE LOCATOR function establishes the initial values of a locator-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the WC position of the initial locator, the normalization
transformation used to transform the initial locator point, the prompt and echo
type, the echo area, and the data record. Subsequent requests for locator input
use the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the locator device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the
function SIZEOF to determine the size of the data record before calling this
function.

Input Functions 9–39

INITIALIZE LOCATOR

If you do not call INITIALIZE LOCATOR before you request input from a
locator-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET LOCATOR MODE
SET VIEWPORT INPUT PRIORITY
SIZEOF
Example 9–1 for a program example using the INITIALIZE LOCATOR function

9–40 Input Functions

INITIALIZE LOCATOR 3

INITIALIZE LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_locator3 (ws_id, dev_num, init_locator, trans_num, view_ind,
pr_echo_type, echo_vol, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_locator Array of 3

reals
Read Reference Initial prompt position in WC values.

trans_num Integer Read Reference Normalization transformation number
used to transform the initial points
from WC to NDC points.

view_ind Integer Read Reference View index used in the conversion from
NDC to NPC points.

pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_vol Array of 6
reals

Read Reference Volume of workstation surface on
which prompt appears, specified in the
order XMIN, XMAX, YMIN, YMAX,
ZMIN, ZMAX.

data_rec Record Read Reference Locator input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Description

The INITIALIZE LOCATOR 3 function establishes the initial values of a locator-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the WC position of the initial locator, the normalization
transformation used to transform the initial locator point, the initial view index,
the prompt and echo type, the echo volume, and the data record. Subsequent
requests for locator input use the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the locator device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the

Input Functions 9–41

INITIALIZE LOCATOR 3

function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE LOCATOR 3 before you request input from a
locator-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET LOCATOR MODE
SET VIEWPORT INPUT PRIORITY
SIZEOF
Example 9–1 for a program example using the INITIALIZE LOCATOR function

9–42 Input Functions

INITIALIZE PICK

INITIALIZE PICK

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_pick (ws_id, dev_num, init_st, init_seg, init_pick_id, pr_echo_type,
echo_area, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_st Integer

(constant)
Read Reference Initial status of logical input device.

init_seg Integer Read Reference Initially picked segment.
init_pick_id Integer Read Reference Initial pick identifier.
pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_area Array of 4
reals

Read Reference Echo area boundary coordinates,
specified in the order XMIN, XMAX,
YMIN, YMAX.

data_rec Record Read Reference Pick input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Size of data record.

Constants

Defined
Argument Constant Description

init_st GKS3D$K_STATUS_OK The initial segment and pick identifier
are chosen.

GKS3D$K_STATUS_NOPICK No segment or pick identifier is
returned.

Description

The INITIALIZE PICK function establishes the initial values of a pick-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

Input Functions 9–43

INITIALIZE PICK

The initial values include the initial status value, the initial segment, the prompt
and echo type, the echo area, the data record, and the initial pick identifier. A
pick identifier is an integer that represents a portion of a segment, allowing you
to pick subsets of a segment instead of picking the entire segment. Subsequent
requests for pick input use the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction to
Chapter 9 for a description of the required data record information for each of the
PETs for the pick device. See the language-dependent header file (gks3d*defs.*)
for the specific data type and structure associated with a particular PET number.
Use either a language-dependent operator or function, or the function SIZEOF to
determine the size of the data record before calling this function.

If you do not call INITIALIZE PICK before you request input from a pick-
class logical input device, DEC GKS uses the default input values. For more
information concerning the default input values, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

See Also

SET PICK MODE
SIZEOF
Example 9–2 for a program example using the INITIALIZE PICK function

9–44 Input Functions

INITIALIZE PICK 3

INITIALIZE PICK 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_pick3 (ws_id, dev_num, init_st, init_seg, init_pick_id, pr_echo_type,
echo_vol, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_st Integer

(constant)
Read Reference Initial status of logical input device.

init_seg Integer Read Reference Initially picked segment.
init_pick_id Integer Read Reference Initial pick identifier.
pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_vol Array of 6
reals

Read Reference Echo volume boundary coordinates,
specified in the order XMIN, XMAX,
YMIN, YMAX, ZMIN, ZMAX.

data_rec Record Read Reference Pick input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Size of data record.

Constants

Defined
Argument Constant Description

init_st GKS3D$K_STATUS_OK The initial segment and pick identifier
are chosen.

GKS3D$K_STATUS_NOPICK No segment or pick identifier is
returned.

Description

The INITIALIZE PICK 3 function establishes the initial values of a pick-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

Input Functions 9–45

INITIALIZE PICK 3

The initial values include the initial status value, the initial segment, the prompt
and echo type, the echo volume, the data record, and the initial pick identifier. A
pick identifier is an integer that represents a portion of a segment, allowing you
to pick subsets of a segment instead of picking the entire segment. Subsequent
requests for pick input use the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction to
Chapter 9 for a description of the required data record information for each of the
PETs for the pick device. See the language-dependent header file (gks3d*defs.*)
for the specific data type and structure associated with a particular PET number.
Use either a language-dependent operator or function, or the function SIZEOF to
determine the size of the data record before calling this function.

If you do not call INITIALIZE PICK 3 before you request input from a pick-
class logical input device, DEC GKS uses the default input values. For more
information concerning the default input values, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

See Also

SET PICK MODE
SIZEOF
Example 9–2 for a program example using the INITIALIZE PICK function

9–46 Input Functions

INITIALIZE STRING

INITIALIZE STRING

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_string (ws_id, dev_num, init_string, pr_echo_type, echo_area, data_rec,
data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_string Character

string
Read Descriptor Initial string.

pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_area Array of 4
reals

Read Reference Echo area boundary coordinates,
specified in the order XMIN, XMAX,
YMIN, YMAX.

data_rec Record Read Reference String input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Size of data record, in bytes.

Description

The INITIALIZE STRING function establishes the initial values of a string-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the initial string value, the prompt and echo type, the
echo area, and the data record. Subsequent requests for string input use the
values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction to
Chapter 9 for a description of the required data record information for each of the
PETs for the string device. See the language-dependent header file (gks3d*defs.*)
for the specific data type and structure associated with a particular PET number.
Use either a language-dependent operator or function, or the function SIZEOF to
determine the size of the data record before calling this function.

If you do not call INITIALIZE STRING before you request input from the
string-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

Input Functions 9–47

INITIALIZE STRING

See Also

SET STRING MODE
SIZEOF
Example 9–3 for a program example using the INITIALIZE STRING function

9–48 Input Functions

INITIALIZE STRING 3

INITIALIZE STRING 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_string3 (ws_id, dev_num, init_string, pr_echo_type, echo_vol, data_rec,
data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_string Character

string
Read Descriptor Initial string.

pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_vol Array of 6
reals

Read Reference Echo volume boundary coordinates,
specified in the order XMIN, XMAX,
YMIN, YMAX, ZMIN, ZMAX.

data_rec Record Read Reference String input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Size of data record, in bytes.

Description

The INITIALIZE STRING 3 function establishes the initial values of a string-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the initial string value, the prompt and echo type, the
echo volume, and the data record. Subsequent requests for string input use the
values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction to
Chapter 9 for a description of the required data record information for each of the
PETs for the string device. See the language-dependent header file (gks3d*defs.*)
for the specific data type and structure associated with a particular PET number.
Use either a language-dependent operator or function, or the function SIZEOF to
determine the size of the data record before calling this function.

If you do not call INITIALIZE STRING 3 before you request input from the
string-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

Input Functions 9–49

INITIALIZE STRING 3

See Also

SET STRING MODE
SIZEOF
Example 9–3 for a program example using the INITIALIZE STRING function

9–50 Input Functions

INITIALIZE STROKE

INITIALIZE STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_stroke (ws_id, dev_num, n_points, init_stroke, trans_num, pr_echo_type,
echo_area, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
n_points Integer Read Reference Number of points in the initial stroke.
init_stroke Array of

reals
Read Reference Initial stroke points in the order X1,

Y1, X2, Y2, . . . Xn, Yn, where n is the
number of points in the stroke.

trans_num Integer Read Reference Normalization transformation number
used to transform the initial points
from WC to NDC points.

pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_area Array of 4
reals

Read Reference Area of workstation surface on which
prompt appears, specified in the order
XMIN, XMAX, YMIN, YMAX.

data_rec Record Read Reference Stroke input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Description

The INITIALIZE STROKE function establishes the initial values of a stroke-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the number of points in the initial stroke, the WC
points in the initial stroke, the normalization transformation number used to
translate WC points of the initial stroke to NDC points, the prompt and echo
type, the echo area, and the data record. Subsequent requests for stroke input
use the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the stroke device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the

Input Functions 9–51

INITIALIZE STROKE

function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE STROKE before you request input from a stroke-
class logical input device, DEC GKS uses the default input values. For more
information concerning the default input values, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

See Also

SET STROKE MODE
SET VIEWPORT INPUT PRIORITY
SIZEOF
Example 9–3 for a program example using an INITIALIZE . . . function

9–52 Input Functions

INITIALIZE STROKE 3

INITIALIZE STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_stroke3 (ws_id, dev_num, n_points, init_stroke, trans_num, view_ind,
pr_echo_type, echo_vol, data_rec, data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
n_points Integer Read Reference Number of points in the initial stroke.
init_stroke Array of 3

reals
Read Reference Initial stroke points in WC points

in the order X1, Y1, Z1, X2, Y2,
Z2, . . . Xn, Yn, Zn, where n is the
number of points in the stroke.

trans_num Integer Read Reference Normalization transformation number
used to transform the initial points
from WC to NDC points.

view_ind Integer Read Reference View index used in the conversion from
NPC to NDC points.

pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_vol Array of 6
reals

Read Reference Volume of workstation surface on
which prompt appears, specified in the
order XMIN, XMAX, YMIN, YMAX,
ZMIN, ZMAX.

data_rec Record Read Reference Stroke input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Description

The INITIALIZE STROKE 3 function establishes the initial values of a stroke-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the number of points in the initial stroke, the WC
values in the initial stroke, the normalization transformation number used to
translate WC points of the initial stroke to NDC points, the initial view index,
the prompt and echo type, the echo volume, and the data record. Subsequent
requests for stroke input use the values you specify.

Input Functions 9–53

INITIALIZE STROKE 3

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the stroke device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the
function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE STROKE 3 before you request input from a
stroke-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET STROKE MODE
SET VIEWPORT INPUT PRIORITY
SIZEOF
Example 9–3 for a program example using an INITIALIZE . . . function

9–54 Input Functions

INITIALIZE VALUATOR

INITIALIZE VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_valuator (ws_id, dev_num, init_val, pr_echo_type, echo_area, data_rec,
data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_val Real Read Reference Initial valuator value.
pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_area Array of
reals

Read Reference Area of workstation surface on which
prompt appears, specified in the order
XMIN, XMAX, YMIN, YMAX.

data_rec Record Read Reference Valuator input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Description

The INITIALIZE VALUATOR function establishes the initial values of a valuator-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the initial valuator value, the prompt and echo type,
the echo area, and the data record. Subsequent requests for valuator input use
the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the valuator device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the
function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE VALUATOR before you request input from a
valuator-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

Input Functions 9–55

INITIALIZE VALUATOR

See Also

SET VALUATOR MODE
SIZEOF
Example 9–4 for a program example using the INITIALIZE VALUATOR function

9–56 Input Functions

INITIALIZE VALUATOR 3

INITIALIZE VALUATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$init_valuator3 (ws_id, dev_num, init_val, pr_echo_type, echo_vol, data_rec,
data_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier.
dev_num Integer Read Reference Device number.
init_val Real Read Reference Initial valuator value.
pr_echo_
type

Integer Read Reference Prompt and echo type.

echo_vol Array of 6
reals

Read Reference Volume of workstation surface on
which prompt appears, specified in the
order XMIN, XMAX, YMIN, YMAX,
ZMIN, ZMAX.

data_rec Record Read Reference Valuator input data record. See the
appropriate language-dependent
header file (gks3d*defs.*) for the
specific data type and data record
structure.

data_len Integer Read Reference Number of bytes in data record.

Description

The INITIALIZE VALUATOR 3 function establishes the initial values of a
valuator-class logical input device only if the device’s prompt is not currently
present on the workstation surface. (The device must be in request mode.)

The initial values include the initial valuator value, the prompt and echo type,
the echo volume, and the data record. Subsequent requests for valuator input use
the values you specify.

The data record size and contents are dependent on the PET specified in the
argument pr_echo_type and the workstation requirements. See the introduction
to Chapter 9 for a description of the required data record information for each
of the PETs for the valuator device. See the language-dependent header file
(gks3d*defs.*) for the specific data type and structure associated with a particular
PET number. Use either a language-dependent operator or function, or the
function SIZEOF to determine the size of the data record before calling this
function.

If you do not call INITIALIZE VALUATOR 3 before you request input from a
valuator-class logical input device, DEC GKS uses the default input values. For
more information concerning the default input values, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

Input Functions 9–57

INITIALIZE VALUATOR 3

See Also

SET VALUATOR MODE
SIZEOF
Example 9–4 for a program example using the INITIALIZE VALUATOR function

9–58 Input Functions

REQUEST CHOICE

REQUEST CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_choice (ws_id, dev_num, input_status, choice_value)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

choice_
value

Integer Write Reference Choice number

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE Input break
GKS3D$K_STATUS_OK Input obtained
GKS3D$K_STATUS_NOCHOICE Device triggered without choosing

Description

The REQUEST CHOICE function prompts the user for input according to the
specifications passed to the INITIALIZE CHOICE and SET CHOICE MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument, and the
positive integer representing the user’s choice to the input argument.

If the user invokes a break action, the function returns NONE to the status
argument, and the value 0 to the input argument. For choice-class logical input
devices, the value 0 indicates a break; the status OK indicates input; and the
status NOCHOICE indicates that the user did not make a choice (input was
triggered without the cursor being moved).

See Also

INITIALIZE CHOICE
SET CHOICE MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–59

REQUEST LOCATOR

REQUEST LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_locator (ws_id, dev_num, input_status, trans_num, locator)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

trans_num Integer Write Reference Normalization transformation number
locator Array of 2

reals
Write Reference Locator position in WC values

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE No input obtained
GKS3D$K_STATUS_OK Input obtained

Description

The REQUEST LOCATOR function prompts the user for input according to the
specifications passed to the INITIALIZE LOCATOR and SET LOCATOR MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument and writes
the locator information to the output arguments. This information includes the
transformation number used to transform the device coordinate to a WC point,
and the corresponding WC point.

If the user invokes a break action, the function writes NONE to the status
argument and the input values are not valid.

For more information about the locator position and PETs, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

See Also

INITIALIZE LOCATOR
SET LOCATOR MODE
Example 9–3 for a program example using a REQUEST . . . function

9–60 Input Functions

REQUEST LOCATOR 3

REQUEST LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_locator3 (ws_id, dev_num, input_status, trans_num, view_ind, locator)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

trans_num Integer Write Reference Normalization transformation number
view_ind Integer Write Reference View index used in the conversion from

NPC to NDC points
locator Array of 3

reals
Write Reference Locator position in WC values

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE No input obtained
GKS3D$K_STATUS_OK Input obtained

Description

The REQUEST LOCATOR 3 function prompts the user for input according to the
specifications passed to the INITIALIZE LOCATOR 3 and SET LOCATOR MODE
functions, and returns the status and measure of the response.

If the user invokes a break action, the function writes NONE to the status
argument, and the input values are not valid.

If the user enters input, the function writes OK to the status argument and writes
the locator information to the output arguments. The information returned by
the REQUEST LOCATOR 3 function includes the locator position expressed as
a WC point, the normalization transformation number used in the conversion to
a WC point, and the view index used in the conversion from an NPC point to an
NDC point.

See Also

INITIALIZE LOCATOR 3
SET LOCATOR MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–61

REQUEST PICK

REQUEST PICK

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_pick (ws_id, dev_num, input_status, seg_num, pick_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

seg_num Integer Write Reference Picked segment
pick_id Integer Write Reference Pick identifier of picked primitive

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE Break during input
GKS3D$K_STATUS_OK Input obtained
GKS3D$K_STATUS_NOPICK Device triggered without picking

Description

The REQUEST PICK function prompts the user for input according to the
specifications passed to the INITIALIZE PICK and SET PICK MODE functions,
and returns the status and measure of the response.

If the user enters the input, the function writes OK to the status argument,
and writes the integers representing the name of the chosen segment and the
chosen pick identifier (see the SET PICK IDENTIFIER function) to the output
arguments.

If the user invokes a break action, the function returns NONE to the status
argument, and the input values are not valid. If the user triggered the input
measure before moving the prompt, or if the user triggers input while the cursor
is not positioned on a segment, this function writes NOPICK to the status
argument.

See Also

INITIALIZE PICK
SET PICK IDENTIFIER
SET PICK MODE
Example 9–3 for a program example using a REQUEST . . . function

9–62 Input Functions

REQUEST STRING

REQUEST STRING

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_string (ws_id, dev_num, input_status, string, length_ret, length_tot)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Number of device
input_
status

Integer
(constant)

Write Reference Status of input process

string Character
string

Write Descriptor Input character string

length_ret Integer Write Reference Length of returned string, in bytes
length_tot Integer Write Reference Total length of character string, in

bytes

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE No input obtained
GKS3D$K_STATUS_OK Input obtained

Description

The REQUEST STRING function prompts the user for input according to the
specifications passed to the INITIALIZE STRING and SET STRING MODE
functions, and returns the status and measure of the response.

When you call this function, the following two buffers exist:

• The application’s string buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s string buffer, whose size you can specify in the call
to the INITIALIZE STRING function

If the user enters input, the function writes OK to the status argument, the
character string to the application’s buffer, and the length of the character string
to the last argument. If the entered string is larger than the application’s buffer,
then you lose all additional data. You must make sure that your application’s
buffer is as large as the device’s string buffer.

If the user invokes a break action, the function returns NONE to the status
argument, and the input arguments are not valid.

Input Functions 9–63

REQUEST STRING

See Also

INITIALIZE STRING
SET STRING MODE
Example 9–3 for a program example using the REQUEST STRING function

9–64 Input Functions

REQUEST STROKE

REQUEST STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_stroke (ws_id, dev_num, input_status, trans_num, n_points_ent,
stroke_buf, n_points_ret)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

trans_num Integer Write Reference Normalization transformation number
n_points_
ent

Integer Write Reference Total number of points in stroke

stroke_buf Array of
reals

Write Descriptor WC values of the stroke in the order
X1, Y1, X2, Y2, . . . Xn, Yn, where n is
the number of points returned.

n_points_
ret

Integer Write Reference Number of stroke points returned

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE No input obtained
GKS3D$K_STATUS_OK Input obtained

Description

The REQUEST STROKE function prompts the user for input according to the
specifications passed to the INITIALIZE STROKE and SET STROKE MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument, and
writes the normalization transformation number used to translate the device
coordinate points to WC points, the returned stroke points, the total number of
entered points, and the number of returned points as output arguments.

When you call this function, the following two buffers exist:

• The application’s stroke buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE function

Input Functions 9–65

REQUEST STROKE

DEC GKS can return points up to the size of the application’s X and Y coordinate
buffers. If the size of the entered stroke is larger than the number of points
placed in the application’s buffer, you lose all additional data. You must make
sure that your application’s buffer is as large as the device’s stroke buffer.

If the user invokes a break action, the function returns NONE to the status
argument, and the input values are not valid.

See Also

INITIALIZE STROKE
SET STROKE MODE
Example 9–3 for a program example using a REQUEST . . . function

9–66 Input Functions

REQUEST STROKE 3

REQUEST STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_stroke3 (ws_id, dev_num, input_status, trans_num, view_ind,
n_points_ent, stroke_buf, n_points_ret)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

trans_num Integer Write Reference Normalization transformation number
view_ind Integer Write Reference View index used in the conversion from

NPC to NDC points
n_points_
ent

Integer Write Reference Total number of points in stroke

stroke_buf Array of
reals

Write Descriptor WC values of the points in the stroke
in the order X1, Y1, Z1, X2, Y2,
Z2, . . . Xn, Yn, Zn, where n is the
number of points returned.

n_points_
ret

Integer Write Reference Number of points returned

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE No input obtained
GKS3D$K_STATUS_OK Input obtained

Description

The REQUEST STROKE 3 function prompts the user for input according to the
specifications passed to the INITIALIZE STROKE 3 and SET STROKE MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument and
writes the normalization transformation number used to translate the device
coordinates to WC points. It also writes the view index, the returned stroke
points, the total number of entered points and the number of returned points as
output arguments.

Input Functions 9–67

REQUEST STROKE 3

When you call this function, two buffers exist:

• The application’s stroke buffer, whose size is specified by the buffer argument
passed by descriptor to this function

• The logical input device’s stroke buffer, whose size is specified in the call to
the INITIALIZE STROKE 3 function

DEC GKS can return points up to the size of the application’s X, Y, and Z
coordinate buffers. If the size of the entered stroke is larger than the number of
points placed in the application’s buffer, you lose all additional data. You must
make sure that your application’s buffer is as large as the device’s stroke buffer.

If the user invokes a break action, the function returns NONE to the status
argument and the input values are not valid.

See Also

INITIALIZE STROKE 3
SET STROKE MODE
Example 9–3 for a program example using a REQUEST . . . function

9–68 Input Functions

REQUEST VALUATOR

REQUEST VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$request_valuator (ws_id, dev_num, input_status, real_value)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

real_value Real Write Reference Measure of the valuator device

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_NONE No input obtained
GKS3D$K_STATUS_OK Input obtained

Description

The REQUEST VALUATOR function prompts the user for input according to
the specifications passed to the INITIALIZE VALUATOR and SET VALUATOR
MODE functions, and returns the status and measure of the response.

If the user accepts the input, the function writes OK to the status argument, and
the selected real number to the valuator data.

If the user invokes a break action, the function returns NONE to the status
argument, and the input value is not valid.

See Also

INITIALIZE VALUATOR
SET VALUATOR MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–69

SAMPLE CHOICE

SAMPLE CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_choice (ws_id, dev_num, input_status, choice_value)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

choice_
value

Integer Write Reference Measure of the choice device

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_OK Input obtained
GKS3D$K_STATUS_NOCHOICE Sampled without choosing

Description

The SAMPLE CHOICE function writes the current measure of the specified
choice-class logical input device to the corresponding output argument.

If the input is valid, the function writes OK to the status argument and writes
the positive integer representing the user’s choice to the input argument.

If the initial choice status is NOCHOICE, and if the user did not move the prompt
from its initial position, this function writes NOCHOICE to the status argument.
This indicates that the user has not yet made a choice.

See Also

SET CHOICE MODE

9–70 Input Functions

SAMPLE LOCATOR

SAMPLE LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_locator (ws_id, dev_num, trans_num, locator)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
trans_num Integer Write Reference Normalization transformation number
locator Array of 2

reals
Write Reference Locator position in WC values

Description

The SAMPLE LOCATOR function writes the current measure of the specified
locator-class logical input device and the corresponding normalization
transformation number to the appropriate output arguments.

See Also

SET LOCATOR MODE

Input Functions 9–71

SAMPLE LOCATOR 3

SAMPLE LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_locator3 (ws_id, dev_num, trans_num, view_ind, locator)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
trans_num Integer Write Reference Normalization transformation number
view_ind Integer Write Reference View index
locator Array of 3

reals
Write Reference Locator position in WC values

Description

The SAMPLE LOCATOR 3 function writes the current measure of the
specified locator-class logical input device and the corresponding normalization
transformation number to the appropriate output arguments.

The SAMPLE LOCATOR 3 function returns the view index of the view mapping
transformation last used to translate the NPC points to NDC points. See the
DEC GKS User’s Guide for more information on view indexes.

See Also

SET LOCATOR MODE

9–72 Input Functions

SAMPLE PICK

SAMPLE PICK

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_pick (ws_id, dev_num, input_status, seg_num, pick_id)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
input_
status

Integer
(constant)

Write Reference Status of input process

seg_num Integer Write Reference Picked segment
pick_id Integer Write Reference Pick identifier

Constants

Defined
Argument Constant Description

input_status GKS3D$K_STATUS_OK Input obtained
GKS3D$K_STATUS_NOPICK Sampled without picking

Description

The SAMPLE PICK function writes the current measure of the specified pick-
class logical input device to the corresponding output argument. This function
writes OK to the status argument and writes the positive integers representing
the picked segment and the pick identifier to the output arguments if the input is
valid.

If the initial choice status is NOPICK, and if the user did not move the prompt,
this function writes NOPICK to the status argument. This indicates that the user
did not pick a segment yet. The logical input device also returns NOPICK if the
user moved the prompt but the aperture is not touching a segment at the time of
the sample.

See Also

SET PICK MODE
Example 9–2 for a program example using the SAMPLE PICK function

Input Functions 9–73

SAMPLE STRING

SAMPLE STRING

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_string (ws_id, dev_num, string_buf, length_ret, length_tot)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
string_buf Character

string
Write Descriptor Returned character string

length_ret Integer Write Reference Number of bytes in returned string
length_tot Integer Write Reference Total number of bytes in string

Description

The SAMPLE STRING function writes the current measure of the specified
string-class logical input device to the appropriate output arguments.

When you call this function, the following two buffers exist:

• The application’s string buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s string buffer, whose size you can specify in the call
to the INITIALIZE STRING function

When sampling a string, DEC GKS takes the first characters in the entered text
string, including any initial prompt, up to the number of characters specified by
the size of the application’s buffer. If the size of the entered string is larger than
the number of characters placed in the application’s buffer, DEC GKS performs
the following tasks:

• Removes the sampled string (the size of the application’s buffer) from the
device’s buffer.

• Places the sampled string in the application’s buffer.

• Leaves any remaining characters in the device’s buffer. You need to call this
function again to access the remaining characters.

See Also

INITIALIZE STRING
SET STRING MODE

9–74 Input Functions

SAMPLE STROKE

SAMPLE STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_stroke (ws_id, dev_num, trans_num, n_ent_points, stroke_buf,
n_ret_points)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
trans_num Integer Write Reference Normalization transformation

number
n_ent_points Integer Write Reference Total number of points in stroke
stroke_buf Array of

reals
Write Descriptor WC values of the points in

the stroke in the order X1, Y1,
X2, Y2, . . . Xn, Yn, where n
is the number of stroke points
returned.

n_ret_points Integer Write Reference Number of points returned

Description

The SAMPLE STROKE function writes the current measure of the specified
stroke-class logical input device to the corresponding output arguments.

When you call this function, the following two buffers exist:

• The application’s stroke buffer, whose size you specify when you pass the
buffer argument by descriptor to this function

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE function

When sampling stroke input, DEC GKS accepts any initial stroke points
and translates them according to the current normalization transformation.
DEC GKS can accept points up to the number specified by the size of the
application’s buffer. If the size of the entered stroke is larger than the number of
stroke points placed in the application’s buffer, DEC GKS performs the following
tasks:

• Removes the sampled stroke (the size of the application’s buffer) from the
device’s buffer.

• Places the sampled stroke in the application’s buffer.

• Leaves any remaining points in the device’s buffer. You need to call this
function again to access the remaining stroke points.

Input Functions 9–75

SAMPLE STROKE

See Also

INITIALIZE STROKE
SET STROKE MODE

9–76 Input Functions

SAMPLE STROKE 3

SAMPLE STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_stroke3 (ws_id, dev_num, trans_num, view_ind, n_points_ent,
stroke_buf, n_points_ret)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
trans_num Integer Write Reference Normalization transformation

number
view_ind Integer Write Reference View index used in the

conversion from NPC to NDC
points

n_points_ent Integer Write Reference Total number of points in stroke
stroke_buf Array of

reals
Write Reference WC values of the points in the

stroke points in the order X1, Y1,
Z1, X2, Y2, Z2, . . . Xn, Yn, Zn,
where n is the number of stroke
points returned.

n_points_ret Integer Write Reference Number of points returned

Description

The SAMPLE STROKE 3 function writes the current measure of the specified
stroke-class logical input device to the corresponding output arguments. The
measure consists of a sequence of WC points, the normalization transformation
number used in the conversion to WC points, and the view index used to convert
the NPC points to NDC points.

When you call this function, the following two buffers exist:

• The application’s stroke buffer, whose size is specified in the buffer argument
passed by descriptor to this function

• The logical input device’s stroke buffer, whose size is specified in the call to
the INITIALIZE STROKE 3 function.

Input Functions 9–77

SAMPLE STROKE 3

When sampling stroke input, DEC GKS accepts any initial stroke points and
translates them according to the current normalization transformation. DEC
GKS can accept points up to the number specified by the size of the application’s
buffer. If the size of the entered stroke is larger than the number of stroke points
placed in the application’s buffer, DEC GKS performs the following tasks:

• Removes the sampled stroke (the size of the application’s buffer) from the
device’s buffer.

• Places the sampled stroke in the application’s buffer.

• Leaves any remaining points in the device’s buffer. This function must be
called again to access the remaining stroke points.

See Also

INITIALIZE STROKE 3
SET STROKE MODE

9–78 Input Functions

SAMPLE VALUATOR

SAMPLE VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$sample_valuator (ws_id, dev_num, real_value)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
real_value Real Write Reference Current measure of device

Description

The SAMPLE VALUATOR function writes the current measure of the specified
valuator-class logical input device to the corresponding output argument.

See Also

SET VALUATOR MODE
Example 9–4 for a program example using the SAMPLE VALUATOR function

Input Functions 9–79

SET CHOICE MODE

SET CHOICE MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_choice_mode (ws_id, dev_num, op_mode, echo_flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
op_mode Integer

(constant)
Read Reference Operating mode, specifying method of

input
echo_flag Integer

(constant)
Read Reference Echo flag

Constants

Defined
Argument Constant Description

op_mode GKS3D$K_INPUT_MODE_REQUEST Request mode. This is the default
value.

GKS3D$K_INPUT_MODE_SAMPLE Sample mode.
GKS3D$K_INPUT_MODE_EVENT Event mode.

echo_flag GKS3D$K_NOECHO Echo disabled.
GKS3D$K_ECHO Echo enabled. This is the default

value.

Description

The SET CHOICE MODE function sets the specified choice device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified choice device.

See Also

INITIALIZE CHOICE
Example 9–1 for a program example using a SET . . . MODE function

9–80 Input Functions

SET LOCATOR MODE

SET LOCATOR MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_locator_mode (ws_id, dev_num, op_mode, echo_flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
op_mode Integer

(constant)
Read Reference Operating mode, specifying method of

input
echo_flag Integer

(constant)
Read Reference Echo flag

Constants

Defined
Argument Constant Description

op_mode GKS3D$K_INPUT_MODE_REQUEST Request mode. This is the default
value.

GKS3D$K_INPUT_MODE_SAMPLE Sample mode.
GKS3D$K_INPUT_MODE_EVENT Event mode.

echo_flag GKS3D$K_NOECHO Echo disabled.
GKS3D$K_ECHO Echo enabled. This is the default

value.

Description

The SET LOCATOR MODE function sets the specified locator device to the
specified operating mode and sets the echo state of the device as specified.
Depending on the input operating mode, an interaction with the device may begin
or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified locator device.

See Also

INITIALIZE LOCATOR
Example 9–1 for a program example using the SET LOCATOR MODE function

Input Functions 9–81

SET PICK MODE

SET PICK MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_pick_mode (ws_id, dev_num, op_mode, echo_flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
op_mode Integer

(constant)
Read Reference Operating mode, specifying method of

input
echo_flag Integer

(constant)
Read Reference Echo flag

Constants

Defined
Argument Constant Description

op_mode GKS3D$K_INPUT_MODE_REQUEST Request mode. This is the default
value.

GKS3D$K_INPUT_MODE_SAMPLE Sample mode.
GKS3D$K_INPUT_MODE_EVENT Event mode.

echo_flag GKS3D$K_NOECHO Echo disabled.
GKS3D$K_ECHO Echo enabled. This is the default

value.

Description

The SET PICK MODE function sets the specified pick device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified pick device.

See Also

INITIALIZE PICK
Example 9–2 for a program example using the SET PICK MODE function

9–82 Input Functions

SET STRING MODE

SET STRING MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_string_mode (ws_id, dev_num, op_mode, echo_flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
op_mode Integer

(constant)
Read Reference Operating mode, specifying method of

input
echo_flag Integer

(constant)
Read Reference Echo flag

Constants

Defined
Argument Constant Description

op_mode GKS3D$K_INPUT_MODE_REQUEST Request mode. This is the default
value.

GKS3D$K_INPUT_MODE_SAMPLE Sample mode.
GKS3D$K_INPUT_MODE_EVENT Event mode.

echo_flag GKS3D$K_NOECHO Echo disabled.
GKS3D$K_ECHO Echo enabled. This is the default

value.

Description

The SET STRING MODE function sets the specified string device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified string device.

See Also

INITIALIZE STRING
Example 9–1 for a program example using a SET . . . MODE function

Input Functions 9–83

SET STROKE MODE

SET STROKE MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_stroke_mode (ws_id, dev_num, op_mode, echo_flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
op_mode Integer

(constant)
Read Reference Operating mode, specifying method of

input
echo_flag Integer

(constant)
Read Reference Echo flag

Constants

Defined
Argument Constant Description

op_mode GKS3D$K_INPUT_MODE_REQUEST Request mode. This is the default
value.

GKS3D$K_INPUT_MODE_SAMPLE Sample mode.
GKS3D$K_INPUT_MODE_EVENT Event mode.

echo_flag GKS3D$K_NOECHO Echo disabled.
GKS3D$K_ECHO Echo enabled. This is the default

value.

Description

The SET STROKE MODE function sets the specified stroke device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified stroke device.

See Also

INITIALIZE STROKE
Example 9–1 for a program example using a SET . . . MODE function

9–84 Input Functions

SET VALUATOR MODE

SET VALUATOR MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$set_valuator_mode (ws_id, dev_num, op_mode, echo_flag)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Workstation identifier
dev_num Integer Read Reference Device number
op_mode Integer

(constant)
Read Reference Operating mode, specifying method of

input
echo_flag Integer

(constant)
Read Reference Echo flag

Constants

Defined
Argument Constant Description

op_mode GKS3D$K_INPUT_MODE_REQUEST Request mode. This is the default
value.

GKS3D$K_INPUT_MODE_SAMPLE Sample mode.
GKS3D$K_INPUT_MODE_EVENT Event mode.

echo_flag GKS3D$K_NOECHO Echo disabled.
GKS3D$K_ECHO Echo enabled. This is the default

value.

Description

The SET VALUATOR MODE function sets the specified valuator device to the
specified operating mode and sets the echo state of the device as specified.
Depending on the input operating mode, an interaction with the device may begin
or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified valuator device.

See Also

INITIALIZE VALUATOR
Example 9–4 for a program example using the SET VALUATOR MODE function

Input Functions 9–85

SIZEOF

SIZEOF

Operating States

GKCL, GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$sizeof (data_type_id, size)

Argument Data Type Access Passed by Description

data_type_id Integer
(constant)

Read Reference Data type identifier

size Integer Write Reference Data type size, in bytes

Constants

Defined Argument Constant Description

data_type_id GKS3D$K_TYP_INTEGER Integer
GKS3D$K_TYP_CHOICE_REC Choice input data record
GKS3D$K_TYP_LOC_REC Locator input data record
GKS3D$K_TYP_PICK_REC Pick input data record
GKS3D$K_TYP_STRING_REC String input data record
GKS3D$K_TYP_STROKE_REC Stroke input data record
GKS3D$K_TYP_VAL_REC Valuator input data record
GKS3D$K_TYP_ESCAPE_REC Escape data record
GKS3D$K_TYP_GDP_REC GDP data record
GKS3D$K_TYP_REAL Real
GKS3D$K_TYP_ADDRESS Address

Description

The SIZEOF function calculates the size, in bytes, of the data type defined by the
argument data_type_id and returns the size in the output argument size. Use
this function to calculate the size of the input, escape, and GDP data records
required in the INITIALIZE . . . , INQUIRE DEFAULT . . . DEVICE DATA,
INQUIRE . . . DEVICE STATE, ESCAPE, and GENERALIZED DRAWING
PRIMITIVE functions.

9–86 Input Functions

Input Functions
9.9 Program Examples

9.9 Program Examples
Example 9–1 illustrates the use of a logical-class input device in event mode. The
program places a tracking plus sign (+) on the screen.

Example 9–1 Using a Locator-Class Logical Input Device in Event Mode

/*
* This program initializes and generates locator events. Some of
* the calls it uses include: INQUIRE LOCATOR STATE, SET LOCATOR MODE,
* and INITIALIZE LOCATOR.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ constants */

define DEV_NUM_1 1
define TEXT_HEIGHT 0.03
define TIME 0.0

main ()
{

/*
* data_record is a dummy argument. The device handler ignores
* the data record for all supported locator prompt and echo types.
*
* echo_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*/

int class;
int data_record[1];
int default_conid;
int default_wstype;
int device_num;
float echo_area[4];
int echo_flag;
char *error_message = "Error status is not 0.";
char *error_name = "SYS$ERROR";
int error_status;
int input_mode;
int in_rec_len;
float larger;

(continued on next page)

Input Functions 9–87

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

float position1[2];
float position2[2];
float position3[2];
float position4[2];
float position5[2];
float position6[2];
int prompt_echo_type;
int record_buffer_length;
int record_size;
char *text_string1 = "Move the input prompt upwards.";
char *text_string2 = "Trigger until I say to stop.";
char *text_string3 = "You are still far away.";
char *text_string4 = "You are getting closer.";
char *text_string5 = "You are getting REALLY close.";
char *text_string6 = "YOU MADE IT!!!";
float timeout;
int value_type;
float wc_values[2];
int ws_id;
int xform;

struct dsc$descriptor_s error_dsc;
struct dsc$descriptor_s message_dsc;
struct dsc$descriptor_s text_string1_dsc;
struct dsc$descriptor_s text_string2_dsc;
struct dsc$descriptor_s text_string3_dsc;
struct dsc$descriptor_s text_string4_dsc;
struct dsc$descriptor_s text_string5_dsc;
struct dsc$descriptor_s text_string6_dsc;

/*
* Open the graphics environment: open GKS, open the workstation,
* and activate the workstation.
*/

/* Set up the string descriptor for OPEN GKS. */

error_dsc.dsc$a_pointer = error_name;
error_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
error_dsc.dsc$b_class = DSC$K_CLASS_S;
error_dsc.dsc$w_length = strlen (error_name);

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT;
ws_id = 1;

gks3d$open_gks (&error_dsc);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

(continued on next page)

9–88 Input Functions

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

/*
* Use INQUIRE LOCATOR DEVICE STATE to intitialize the variables
* you need to pass to the input functions.
*
* GKS3D$K_VALUE_REALIZED tells the graphics handler to return the
* input values as they are implemented. (Use GKS3D$K_VALUES_SET
* to return the values the way the application set them.)
*
* After the function call, record_buffer_length contains the
* amount of the buffer filled with the written data record. If
* record_size is larger than record_buffer_length, GKS
* truncated the data record to fit into the declared buffer.
*/

device_num = DEV_NUM_1;
in_rec_len = sizeof (data_record);
value_type = GKS3D$K_VALUE_REALIZED;

gks3d$inq_locator_state (&ws_id, &device_num, &value_type,
&in_rec_len, &error_status, &input_mode, &echo_flag, &xform, wc_values,
&prompt_echo_type, echo_area, &record_buffer_length, data_record,
&record_size);

/*
* Check to see if the error status equals 0. Set up the string descriptor
* for the error message.
*/

message_dsc.dsc$a_pointer = error_message;
message_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
message_dsc.dsc$b_class = DSC$K_CLASS_S;
message_dsc.dsc$w_length = strlen (error_message);

if (error_status != 0)
{
gks3d$message (&ws_id, &message_dsc);
goto PROGRAM_END;
}

/* Set the initial position of the input prompt. */

wc_values[0] = 0.9;
wc_values[1] = 0.0;

/* Initialize the logical input device. */

gks3d$init_locator (&ws_id, &device_num, wc_values, &xform,
&prompt_echo_type, echo_area, data_record, &record_size);

/* Activate the logical input device by placing it in event mode. */

input_mode = GKS3D$K_INPUT_MODE_EVENT;
echo_flag = GKS3D$K_ECHO;

gks3d$set_locator_mode (&ws_id, &device_num, &input_mode, &echo_flag);

/* Instruct the user. */

(continued on next page)

Input Functions 9–89

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

/* Create the string descriptors for the screen messages. */

larger = TEXT_HEIGHT;

position1[0] = 0.05;
position1[1] = 0.95;

position2[0] = 0.05;
position2[1] = 0.90;

text_string1_dsc.dsc$a_pointer = text_string1;
text_string1_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string1_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string1_dsc.dsc$w_length = strlen (text_string1);

text_string2_dsc.dsc$a_pointer = text_string2;
text_string2_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string2_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string2_dsc.dsc$w_length = strlen (text_string2);

gks3d$set_text_height (&larger);
gks3d$text (position1, &text_string1_dsc);
gks3d$text (position2, &text_string2_dsc);

/*
* Do until the user moves the input prompt closest to the top of the
* workstation surface.
*/

/* Create the string descriptors for the screen messages. */

text_string3_dsc.dsc$a_pointer = text_string3;
text_string3_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string3_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string3_dsc.dsc$w_length = strlen (text_string3);

text_string4_dsc.dsc$a_pointer = text_string4;
text_string4_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string4_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string4_dsc.dsc$w_length = strlen (text_string4);

text_string5_dsc.dsc$a_pointer = text_string5;
text_string5_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string5_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string5_dsc.dsc$w_length = strlen (text_string5);

text_string6_dsc.dsc$a_pointer = text_string6;
text_string6_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string6_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string6_dsc.dsc$w_length = strlen (text_string6);

/* Position data */

position3[0] = 0.05;
position3[1] = 0.85;

position4[0] = 0.05;
position4[1] = 0.80;

position5[0] = 0.05;
position5[1] = 0.75;

position6[0] = 0.05;
position6[1] = 0.70;

(continued on next page)

9–90 Input Functions

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

/*
* In the while loop, the call to AWAIT EVENT immediately checks
* the input queue (as specified by the timeout argument of 0.0).
* If the user has not yet entered an event or if the application
* has removed all reports generated so far, AWAIT EVENT returns
* GKS3D$K_INPUT_CLASS_NONE to its class argument.
*
* This program uses only the locator input class to generate
* events. The if statement keeps calling GET LOCATOR as long as
* the class argument is GKS3DK$K_INPUT_CLASS_LOCATOR. The
* program stops calling GET LOCATOR when the class argument
* becomes GKS3D$K_INPUT_CLASS_NONE.
*/

timeout = TIME;

while (wc_values[1] < 0.9)
{

/* Check the event queue. */

gks3d$await_event (&timeout, &ws_id, &class, &device_num);

if (class != GKS3D$K_INPUT_CLASS_NONE)
gks3d$get_locator (&xform, wc_values);

/* Tease the user as the prompt gets closer. */

if ((wc_values[1] > 0.1) && (wc_values[1] < 0.5))
gks3d$text (position3, &text_string3_dsc);

if ((wc_values[1] > 0.5) && (wc_values[1] < 0.7))
gks3d$text (position4, &text_string4_dsc);

if ((wc_values[1] > 0.7) && (wc_values[1] < 0.9))
gks3d$text (position5, &text_string5_dsc);

}

gks3d$text (position6, &text_string6_dsc);

/*
* Deactivate the logical input device by placing it in request mode.
* (You only have to return to request mode, though, if you are going
* to use a different type of input mode besides event later in
* the program.)
*/

echo_flag = GKS3D$K_ECHO;
input_mode = GKS3D$K_INPUT_MODE_REQUEST;

gks3d$set_locator_mode (&ws_id, &device_num, &input_mode, &echo_flag);

PROGRAM_END:

/* Deactivate the workstation, close the workstation, and close GKS. */

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 9–2 shows a workstation screen after the user has moved the input
prompt near the top of the screen.

Input Functions 9–91

Input Functions
9.9 Program Examples

Figure 9–2 Input Prompt Near the Top of the Screen

ZK−4076A−GE

Example 9–2 illustrates the use of the SAMPLE PICK function.

Example 9–2 Using a Pick-Class Logical Input Device in Sample Mode

/*
* This program initializes and samples pick input. Some of the
* calls include: SET FILL AREA INTERIOR STYLE, SET PICK ID,
* SET FILL AREA COLOUR INDEX, FILL AREA, CREATE SEGMENT, CLOSE SEGMENT,
* SET TEXT HEIGHT, TEXT, INQUIRE PICK DEVICE STATE, INITIALIZE PICK,
* SET PICK MODE, and SAMPLE PICK.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D constants */

(continued on next page)

9–92 Input Functions

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode
main ()
{

/*
* echo_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*/

int box_1;
int box_2;
int color_index;
float data_record[1];
int default_conid;
int default_wstype;
int detectability;
int device_num = 1;
float echo_area[4];
int echo_flag;
char *error_message = "Error status is not SUCCESS.";
int error_status;
int fill_style;
int initial_status;
int input_mode;
int input_status;
int in_rec_len;
float larger;
char *number_one = "1";
char *number_two = "2";
int num_points;
int pick_id;
static float position1[2] = {0.20, 0.45}, /* Text string positions */

position2[2] = {0.30, 0.45},
position3[2] = {0.70, 0.45},
position4[2] = {0.80, 0.45},
position5[2] = {0.05, 0.95},
position6[2] = {0.05, 0.90},
position7[2] = {0.05, 0.85},
position8[2] = {0.05, 0.80},
position9[2] = {0.05, 0.75},
position10[2] = {0.05, 0.70};

int prompt_echo_type;
int record_size;
int record_buffer_length = 4;
int segment;
char *text_string1 = "Move the cursor to a triangle.";
char *text_string2 = "I will say if it is correct." ;
char *text_string3 = "You are pretty far away.";
char *text_string4 = "You are getting closer.";
char *text_string5 = "You are REALLY close.";
char *text_string6 = "YOU MADE IT!!!";
int triangle_1;

(continued on next page)

Input Functions 9–93

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode
int triangle_2;
int value_type;
float wc_values[8]; /* Box coordinates */
int ws_id = 1;

struct dsc$descriptor_s message_dsc;
struct dsc$descriptor_s number_one_dsc;
struct dsc$descriptor_s number_two_dsc;
struct dsc$descriptor_s text_string1_dsc;
struct dsc$descriptor_s text_string2_dsc;
struct dsc$descriptor_s text_string3_dsc;
struct dsc$descriptor_s text_string4_dsc;
struct dsc$descriptor_s text_string5_dsc;
struct dsc$descriptor_s text_string6_dsc;

/*
* Open the graphics environment: open GKS, open the workstation,
* and activate the workstation.
*/

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT;

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/* Create the divided boxes. */

fill_style = GKS3D$K_INTSTYLE_SOLID;

gks3d$set_fill_int_style (&fill_style);

/* Establish the position of the first box.
* Place the box on the left side of the workstation surface
* and place it in a segment. Divide the box diagonally and
* set pick identifiers for each of the created triangles.
*/

box_1 = 1;
color_index = 2;
num_points = 4;
triangle_1 = 1;
triangle_2 = 2;
wc_values[0] = 0.1; /* Initial box coordinates, in x and y */
wc_values[1] = 0.3;
wc_values[2] = 0.4;
wc_values[3] = 0.6;
wc_values[4] = 0.1;
wc_values[5] = 0.6;
wc_values[6] = 0.1;
wc_values[7] = 0.3;

gks3d$create_seg (&box_1);
gks3d$set_pick_id (&triangle_1);
gks3d$set_fill_colour_index (&color_index);
gks3d$fill_area (&num_points, wc_values);

color_index = 3;
wc_values[4] = 0.4;
wc_values[5] = 0.3;

gks3d$set_pick_id (&triangle_2);
gks3d$set_fill_colour_index (&color_index);
gks3d$fill_area (&num_points, wc_values);
gks3d$close_seg ();

(continued on next page)

9–94 Input Functions

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode

/*
* Reset the X and Y world coordinate values to change the
* position of the box.
*/

wc_values[0] = 0.6;
wc_values[2] = 0.9;
wc_values[4] = 0.6;
wc_values[5] = 0.6;
wc_values[6] = 0.6;

/*
* Place the box on the right side of the workstation surface
* and place it in a segment. Divide the box diagonally and
* set pick identifiers for each of the created triangles.
*/

gks3d$set_pick_id (&triangle_1);

box_2 = 2;
color_index = 2;

gks3d$create_seg (&box_2);
gks3d$set_fill_colour_index (&color_index);
gks3d$fill_area (&num_points, wc_values);

wc_values[4] = 0.9;
wc_values[5] = 0.3;

color_index = 3;

gks3d$set_pick_id (&triangle_2);
gks3d$set_fill_colour_index (&color_index);
gks3d$fill_area (&num_points, wc_values);
gks3d$close_seg ();

detectability = GKS3D$K_DETECTABLE;

gks3d$set_seg_detectability (&box_1, &detectability);
gks3d$set_seg_detectability (&box_2, &detectability);

/* Create the descriptor strings for the numbers. */

number_one_dsc.dsc$a_pointer = number_one;
number_one_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
number_one_dsc.dsc$b_class = DSC$K_CLASS_S;
number_one_dsc.dsc$w_length = strlen (number_one);

number_two_dsc.dsc$a_pointer = number_two;
number_two_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
number_two_dsc.dsc$b_class = DSC$K_CLASS_S;
number_two_dsc.dsc$w_length = strlen (number_two);

/* Label the triangles by their pick identifiers. */

larger = TEXT_HEIGHT;

gks3d$set_text_height (&larger);
gks3d$text (position1, &number_one_dsc);
gks3d$text (position2, &number_two_dsc);
gks3d$text (position3, &number_one_dsc);
gks3d$text (position4, &number_two_dsc);

(continued on next page)

Input Functions 9–95

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode
/*
* Declare a data length of one long word that will hold the
* size of the pick prompt.
*/

in_rec_len = sizeof (data_record);

/*
* Use INQUIRE PICK DEVICE STATE to initialize the variables
* you need to pass to the input function. GKS$K_VALUE_REALIZED
* tells the graphics handler to pass the input values as they
* are implemented. (Use GKS$K_VALUE_SET to tell the application
* to pass the input values the way the application set them.
*
* After the function call, record_buffer_length contains the
* amount of the buffer filled with the written data record. If
* record_size is larger than record_buffer_length,
* GKS truncated the data record to fit into the declared buffer.
*/

device_num = DEV_NUM_1;
value_type = GKS3D$K_VALUE_REALIZED;

gks3d$inq_pick_state (&ws_id, &device_num, &value_type,
&in_rec_len, &error_status, &input_mode, &echo_flag, &initial_status,
&segment, &pick_id, &prompt_echo_type, echo_area,
&record_buffer_length, data_record, &record_size);

/* Set up the string descriptor for the error message. */

message_dsc.dsc$a_pointer = error_message;
message_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
message_dsc.dsc$b_class = DSC$K_CLASS_S;
message_dsc.dsc$w_length = strlen (error_message);

/* Check to see if the error status equals 0. */

if (error_status != 0)
{
gks3d$message (&ws_id, &message_dsc);
goto PROGRAM_END;
}

/*
* Use INITIALIZE PICK to initialize the logical input device.
* Assign new values to the input variables.
*/

initial_status = GKS3D$K_STATUS_OK;
pick_id = triangle_1;
segment = box_1;

gks3d$init_pick (&ws_id, &device_num, &initial_status, &segment, &pick_id,
&prompt_echo_type, echo_area, data_record, &record_size);

(continued on next page)

9–96 Input Functions

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode
/*
* Activate the logical input device by placing it in sample mode.
* The input prompt now appears on the workstation surface and the
* user can change the measure of the device.
*/

echo_flag = GKS3D$K_ECHO;
input_mode = GKS3D$K_INPUT_MODE_SAMPLE;

gks3d$set_pick_mode (&ws_id, &device_num, &input_mode, &echo_flag);

/* Set up the string descriptors for the screen messages. */

text_string1_dsc.dsc$a_pointer = text_string1;
text_string1_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string1_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string1_dsc.dsc$w_length = strlen (text_string1);

text_string2_dsc.dsc$a_pointer = text_string2;
text_string2_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string2_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string2_dsc.dsc$w_length = strlen (text_string2);

text_string3_dsc.dsc$a_pointer = text_string3;
text_string3_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string3_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string3_dsc.dsc$w_length = strlen (text_string3);

text_string4_dsc.dsc$a_pointer = text_string4;
text_string4_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string4_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string4_dsc.dsc$w_length = strlen (text_string4);

text_string5_dsc.dsc$a_pointer = text_string5;
text_string5_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string5_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string5_dsc.dsc$w_length = strlen (text_string5);

text_string6_dsc.dsc$a_pointer = text_string6;
text_string6_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
text_string6_dsc.dsc$b_class = DSC$K_CLASS_S;
text_string6_dsc.dsc$w_length = strlen (text_string6);

/* Tell the user the task. */

larger = TEXT_HEIGHT;

gks3d$set_text_height (&larger);
gks3d$text (position5, &text_string1_dsc);
gks3d$text (position6, &text_string2_dsc);

/*
* Retrieve the current input value without the user having to
* trigger the device by using SAMPLE PICK. Use WHILE to do it
* until the user picks the second triangle in the second box.
*/

while ((segment != 2) || (pick_id != 2))
{
gks3d$sample_pick (&ws_id, &device_num, &input_status,

&segment, &pick_id);

/*
* Tease the user by saying how close the aperture is to
* segment 2, pick identifier 2.
*/

(continued on next page)

Input Functions 9–97

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode

if ((segment == 1) && (pick_id == 1))
gks3d$text (position7, &text_string3_dsc);

else if ((segment == 1) && (pick_id == 2))
gks3d$text (position8, &text_string4_dsc);

else if ((segment == 2) && (pick_id == 1))
gks3d$text (position9, &text_string5_dsc);

}

gks3d$text (position10, &text_string6_dsc);

/*
* Deactivate the logical input device by placing it in request mode.
* The device handler removes the input prompt from the workstation
* surface and the user can no longer enter input.
*/

echo_flag = GKS3D$K_ECHO;
input_mode = GKS3D$K_INPUT_MODE_REQUEST;

gks3d$set_pick_mode (&ws_id, &device_num, &input_mode, &echo_flag);

PROGRAM_END:

/*
* Deactivate the workstation, close the workstation, and
* close GKS.
*/

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

}

Figure 9–3 shows the workstation surface when the user picks the correct
triangle.

9–98 Input Functions

Input Functions
9.9 Program Examples

Figure 9–3 Picking the Correct Triangle

ZK−4077A−GE

1 1 22

Example 9–3 illustrates the use of the INITIALIZE STRING function.

Example 9–3 Using a String-Class Logical Input Device in Request Mode

/*
* This program initializes and requests string input. Some of the
* calls it uses include: INQUIRE STRING DEVICE STATE, INITIALIZE STRING,
* SET STRING MODE, and REQUEST STRING.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ binding constants */

(continued on next page)

Input Functions 9–99

Input Functions
9.9 Program Examples

Example 9–3 (Cont.) Using a String-Class Logical Input Device in Request
Mode

define DEV_NUM_1 1
define STRING_SIZE 80
define BUFFER_LENGTH 4

main ()
{

/*
* The data record contains the buffer length and the initial editing
* position for all logical input prompt and echo types. The buffer
* can be only as long as the maximum size the workstation supports.
* To obtain the maximum buffer size, call INQUIRE DEFAULT STRING
* DEVICE DATA.
*
* echo_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*
* The defined string variables contain a string that is the length of
* the terminal screen. You can change the maximum size of the input
* string every time you initialize the string logical input device by
* changing the value associated with the buffer length.
*/

int buffer_length;
int default_conid;
int cursor_pos;
int data_record[BUFFER_LENGTH];
char default_string[STRING_SIZE+1];
int default_wstype;
int device_num;
float echo_area[4];
int echo_flag;
char *error_message = "Error status is not SUCCESS.";
int error_status;
int input_mode;
int input_status;
char input_string[STRING_SIZE+1];
int in_rec_len;
int length_tot;
int prompt_echo_type;
char *prompt_string = "GKS>";
int record_buffer_length;
int record_size;
int string_return_size;
int string_size;
int tot_str_len;
int ws_id = 1;

/* Initialize the string descriptor. */

struct dsc$descriptor_s default_string_dsc;
struct dsc$descriptor_s input_string_dsc;
struct dsc$descriptor_s message_dsc;
struct dsc$descriptor_s prompt_string_dsc;

(continued on next page)

9–100 Input Functions

Input Functions
9.9 Program Examples

Example 9–3 (Cont.) Using a String-Class Logical Input Device in Request
Mode

/*
* Open the graphics environment: open GKS, open the workstation,
* and activate the workstation.
*/

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT;

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/*
* Use INQUIRE STRING DEVICE STATE to initialize the variables
* you need to pass to the input functions.
*
* After the function call, record_buffer_length contains the
* amount of the buffer filled with the written data record. If
* record_size is larger than record_buffer_length, GKS truncated
* the data record to fit into the declared buffer.
*/

data_record[0] = (int) &buffer_length;
data_record[1] = (int) &cursor_pos;

default_string_dsc.dsc$w_length = STRING_SIZE;
default_string_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
default_string_dsc.dsc$b_class = DSC$K_CLASS_S;
default_string_dsc.dsc$a_pointer= default_string;

device_num = DEV_NUM_1;
in_rec_len = sizeof (data_record);

gks3d$inq_string_state (&ws_id, &device_num, &in_rec_len,
&error_status, &input_mode, &echo_flag, &string_return_size,
&default_string_dsc, &tot_str_len, &prompt_echo_type, echo_area,
&record_buffer_length, data_record, &record_size);

/* Check to see if the error status equals 0. */

/* Set up the string descriptor for the error message. */

message_dsc.dsc$a_pointer = error_message;
message_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
message_dsc.dsc$b_class = DSC$K_CLASS_S;
message_dsc.dsc$w_length = strlen (error_message);

if (error_status != 0)
{
gks3d$message (&ws_id, &error_message);
goto PROGRAM_END;
}

(continued on next page)

Input Functions 9–101

Input Functions
9.9 Program Examples

Example 9–3 (Cont.) Using a String-Class Logical Input Device in Request
Mode

/* Assign new values to the input variables. */

buffer_length = 15;
prompt_echo_type = 1;

/* Initialize the logical input device. */

/* Create the string descriptor for the prompt. */

prompt_string_dsc.dsc$w_length = strlen (prompt_string);
prompt_string_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
prompt_string_dsc.dsc$b_class = DSC$K_CLASS_S;
prompt_string_dsc.dsc$a_pointer = prompt_string;

gks3d$init_string (&ws_id, &device_num, &prompt_string_dsc,
&prompt_echo_type, echo_area, data_record, &record_buffer_length);

/*
* Activate the logical input device by calling REQUEST STRING.
* GKS writes the string to the next_to_last argument. The last
* argument contains the size of the input string.
*/

input_string_dsc.dsc$w_length = STRING_SIZE;
input_string_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
input_string_dsc.dsc$b_class = DSC$K_CLASS_S;
input_string_dsc.dsc$a_pointer = input_string;

gks3d$request_string (&ws_id, &device_num, &input_status,
&input_string_dsc, &string_size, &length_tot);

PROGRAM_END:

/*
* Deactivate the workstation, close the workstation, and
* close GKS.
*/

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

/* Output the input string and its size. */

input_string[string_size] = 0;
printf ("string %s , size %d, status %d \n", input_string_dsc.dsc$a_pointer,

string_size, input_status);

}

9–102 Input Functions

Input Functions
9.9 Program Examples

Figure 9–4 shows a workstation screen at the request for input.

Figure 9–4 Requesting Input from a String-Class Logical Input Device in
Request Mode

ZK−4078A−GE

Example 9–4 illustrates the use of the SAMPLE VALUATOR function.

Example 9–4 Using a Valuator-Class Logical Input Device in Sample Mode

/*
* This program initializes and samples valuator input. Some of
* the calls include: INQUIRE VALUATOR DEVICE STATE, INITIALIZE VALUATOR,
* SET VALUATOR MODE, and SAMPLE VALUATOR, EVALUATE TRANSFORMATION
* MATRIX, and SET SEGMENT TRANSFORMATION.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gksdescrip.h> /* GKS descriptor file */
include <gks3d_defs.h> /* GKS GKS3D$ constants */

(continued on next page)

Input Functions 9–103

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

#define DEV_NUM_1 1
#define BUFFER_LENGTH 2
#define TEXT_HEIGHT 0.03

main ()
{
/*
* echo_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*
* The graphics handler uses two parts of the valuator input data
* record for prompt and echo type 1: the real value representing
* an upper limit and another real value representing a lower limit.
*
* Your terminal might support one of three valuator prompt and echo
* types represented by the integers 1, 2, and 3. Types 1 and 2
* prompt the user with a rectangle and a horizontal scale. To use
* the first two types, the user uses the arrow keys or the mouse to
* move an arrow along the scale between the upper and lower limits.
* With type 3, GKS changes a single digital representation of the real
* values between the upper and lower limits. The user controls the change
* of numbers with the arrow keys or the mouse.
*/

float angle;
int box;
float box_points[10];
int coordinate_flag;
float data_record[BUFFER_LENGTH];
int default_conid;
int default_wstype;
int device_num;
float echo_area[4];
int echo_flag;
char *error_message = "Error status is not 0.";
int error_status;
int fill_int_style;
float fixed_points[2];
float high_value;
float init_value;
int input_mode;
int input_status;
int in_rec_len;
float larger;
char *instruction_1 = "Change the box’s size.";
char *instruction_2 = "To stop, set the value to 2.0.";
float low_value;
int points;

(continued on next page)

9–104 Input Functions

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

static float
position1[2] = {0.05, 0.95}, /* Position of text */
position2[2] = {0.05, 0.90};

int prompt_echo_type;
int record_buffer_length;
int record_size;
float rotation;
float sampled_value;
float scale_x;
float scale_y;
float xform_matrix[6];
float vectors[2];
int ws_flag;
int ws_id = 1;

struct dsc$descriptor_s inst1_dsc;
struct dsc$descriptor_s inst2_dsc;
struct dsc$descriptor_s message_dsc;

/*
* Open the graphics environment: open GKS, open the workstation,
* and activate the workstation.
*/

default_conid = GKS3D$K_CONID_DEFAULT;
default_wstype = GKS3D$K_WSTYPE_DEFAULT;

gks3d$open_gks (0, 0);
gks3d$open_ws (&ws_id, &default_conid, &default_wstype);
gks3d$activate_ws (&ws_id);

/*
* Use INQUIRE VALUATOR DEVICE STATE to initialize the variables
* you need to pass to the input functions.
*
* After the function call, record_buffer_length contains the
* amount of the buffer filled with the written data record. If
* record_size is larger than record_buffer_length, GKS
* truncated the data record to fit into the declared buffer.
*/

device_num = DEV_NUM_1;
record_buffer_length = sizeof (data_record);

gks3d$inq_valuator_state (&ws_id, &device_num, in_rec_len, &error_status,
&input_mode, &echo_flag, &init_value, &prompt_echo_type, echo_area,
data_record, &record_buffer_length, &record_size);

/* Set up the string descriptor for the error message. */

message_dsc.dsc$a_pointer = error_message;
message_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
message_dsc.dsc$b_class = DSC$K_CLASS_S;
message_dsc.dsc$w_length = strlen (error_message);

/* Check to see if the error status equals 0. */

if (error_status != 0)
{
gks3d$message (&ws_id, &message_dsc);
goto PROGRAM_END;
}

(continued on next page)

Input Functions 9–105

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

/* Assign new values to the input variables. */

data_record[0] = 0.001; /* Low value of valuator */
data_record[1] = 2.0; /* High value of valuator */
init_value = 1.0;
prompt_echo_type = 1;

/* Initialize the logical input device. */

gks3d$init_valuator (&ws_id, &device_num, &init_value, &prompt_echo_type,
echo_area, data_record, &record_size);

/*
* Activate the logical input device by placing it in sample mode.
* The input prompt now appears on the workstation surface and
* the user can change the measure of the device.
*/

echo_flag = GKS3D$K_ECHO;
input_mode = GKS3D$K_INPUT_MODE_SAMPLE;

gks3d$set_valuator_mode (&ws_id, &device_num, &input_mode, &echo_flag);

/*
* Create a box. (The program will scale the box according to
* the sample values of the logical input device.
*/

box = 1;
fill_int_style = GKS3D$K_INTSTYLE_SOLID;
larger = TEXT_HEIGHT;
points = 5;

gks3d$set_fill_int_style (&fill_int_style);
gks3d$set_text_height (&larger);

box_points[0] = 0.4;
box_points[1] = 0.4;

box_points[2] = 0.6;
box_points[3] = 0.4;

box_points[4] = 0.6;
box_points[5] = 0.6;

box_points[6] = 0.4;
box_points[7] = 0.6;

box_points[8] = 0.4;
box_points[9] = 0.4;

gks3d$create_seg (&box);
gks3d$fill_area (&points, box_points);
gks3d$close_seg ();

/* Set up the string descriptors for the messages. */

inst1_dsc.dsc$a_pointer = instruction_1;
inst1_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
inst1_dsc.dsc$b_class = DSC$K_CLASS_S;
inst1_dsc.dsc$w_length = strlen (instruction_1);

inst2_dsc.dsc$a_pointer = instruction_2;
inst2_dsc.dsc$b_dtype = DSC$K_DTYPE_T;
inst2_dsc.dsc$b_class = DSC$K_CLASS_S;
inst2_dsc.dsc$w_length = strlen (instruction_2);

(continued on next page)

9–106 Input Functions

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

/* Display instructions to the user. */

gks3d$text (position1, &inst1_dsc);
gks3d$text (position2, &inst2_dsc);

/* Sample the user input by using SAMPLE VALUATOR
*
* The call to SAMPLE VALUATOR retrieves the current input value
* (without the user having to trigger the logical input device).
* The while loop ends when the user moves the prompt to 2.0.
*/

sampled_value = 1.0;

while (sampled_value != 2.0)
{
gks3d$sample_valuator (&ws_id, &device_num, &sampled_value);

/*
* Scale the segment according to the init_value argument
* using EVALUATE TRANSFORMATION MATRIX.
*/

angle = 0.0;
coordinate_flag = GKS3D$K_COORDINATES_WC;
fixed_points[0] = 0.5;
fixed_points[1] = 0.5;
scale_x = sampled_value;
scale_y = sampled_value;
vectors[0] = 0.0;
vectors[1] = 0.0;

gks3d$eval_xform_matrix (fixed_points, vectors, &angle,
&scale_x, &scale_y, &coordinate_flag, xform_matrix);

if (sampled_value != 1.0)
{
ws_flag = GKS3D$K_PERFORM_FLAG;

gks3d$set_seg_xform (&box, xform_matrix);
gks3d$update_ws (&ws_id, &ws_flag);
}

}

/* Deactivate the logical input device by placing it in request mode. */

echo_flag = GKS3D$K_ECHO;
input_mode = GKS3D$K_INPUT_MODE_REQUEST;

gks3d$set_valuator_mode (&ws_id, &device_num, &input_mode, &echo_flag);

PROGRAM_END:

(continued on next page)

Input Functions 9–107

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

/*
* Deactivate the workstation, close the workstation, and
* close GKS.
*/

gks3d$deactivate_ws (&ws_id);
gks3d$close_ws (&ws_id);
gks3d$close_gks ();

/* Display the sampled value. */

printf ("%f\n",sampled_value);

}

Figure 9–5 shows the workstation surface after DEC GKS activates the valuator-
class logical input device in sample mode.

Figure 9–5 Workstation Surface after Activating a Valuator-Class Logical Input
Device in Sample Mode

ZK−4079A−GE

9–108 Input Functions

Metafile Functions

Insert tabbed divider here. Then discard this sheet.

10
Metafile Functions

The DEC GKS metafile functions provide a mechanism for long-term storage,
communication, and reproduction of a graphic image. Metafiles created by an
application can be used by other applications on other computer systems to
reproduce a picture. When you store picture information in a metafile, you store
specific information concerning the output primitives contained in the picture,
the corresponding output attributes, and other information that may be needed to
reproduce the picture.

When DEC GKS creates a metafile, it uses one of two formats to store
the information about the generated picture. DEC GKS can create either
GKS Metafiles (GKSM or GKS3) or Computer Graphics Metafiles (CGM).
GKSM metafiles are two-dimensional metafiles and GKS3 metafiles are
three-dimensional metafiles.

The GKSM format is defined by the GKS standard; the GKS3 format is defined
by the GKS–3D standard. When using the GKSM or GKS3 format, DEC GKS
stores an audit of the generation of DEC GKS primitives. For more information
concerning GKSM and GKS3 format, see Section 10.1 and the metafile appendix
in the DEC GKS User’s Guide.

The CGM format is defined by the CGM ANSI X3.122-1986 standard. This
metafile format consists of a set of elements that can be used to describe a single
graphic picture. CGM format is designed for use with many types of graphics
applications, including DEC GKS applications. If you need to create a CGM
for use with other applications, possibly on other systems, you can use DEC
GKS to create the file. However, DEC GKS cannot read CGM format. For more
information concerning CGM, see Section 10.2.

A short-term method of storing output primitives is to store them in segments.
For more information concerning segments, see Chapter 8, Segment Functions.

10.1 Creating a GKSM or GKS3 Metafile
To create a GKSM or GKS3, you open and then activate a metafile workstation
using the constant GKS3D$K_GKSM_OUTPUT (numeric value 2) as a
workstation type for category GKS3D$K_WSCAT_MO workstations. As the
device connection, name the file that is to contain the metafile information. DEC
GKS uses the file name exactly as specified, without using a default file extension.
You can open and activate as many GKS3D$K_GKSM_OUTPUT workstations as
determined by the maximum allowable open and active workstations, sending
output to the active GKS3D$K_GKSM_OUTPUT workstation. Specify the file
type values, GKSM or GKS3, with the appropriate environment option to indicate
a two- or three-dimensional GKS metafile. For more information on these
environment options, see Chapter 2 and Chapter 3.

Metafile Functions 10–1

Metafile Functions
10.1 Creating a GKSM or GKS3 Metafile

Once the GKS3D$K_GKSM_OUTPUT type workstation is active, DEC GKS
records information about the current state of the picture, such as output
attribute information. Then, as you call DEC GKS functions, pertinent
information about the function call is recorded in a metafile record. Category
metafile output workstations record the following information:

• The control functions that affect the appearance of the picture on the
workstation surface.

• Output primitives, if the GKS3D$K_GKSM_OUTPUT workstation is active at
the time of the function call. The primitives are stored in a form equivalent
to NDC points.

• Output attribute settings that are current at the time of primitive generation.

• Segments, if the GKS3D$K_GKSM_OUTPUT workstation is active at the
time of the call to CREATE SEGMENT.

• Geometric attribute data (such as character height, character-up vector, and
so on) affecting stored text primitives, in a form equivalent to NDC points.

• Normalization transformation information such as the clipping rectangle.
DEC GKS does not record workstation transformations.

• Data specific to the application, or information that DEC GKS metafiles
cannot store through standard calls to DEC GKS functions (stored using the
function WRITE ITEM TO GKSM).

If a call to a DEC GKS function is not applicable to the graphical picture, such as
calls to certain control or inquiry functions, DEC GKS does not store the function
call information in the metafile. Because metafiles record information pertinent
to output only, DEC GKS metafiles do not record information about input function
calls.

When you create a GKSM or GKS3 metafile, DEC GKS produces a metafile
header, and for each function call necessary to reproduce the current
environment, DEC GKS writes a series of items to the metafile. The metafile
header contains information such as the author of the metafile, the date, the
version number, and the length of the different fields in the data record. The
items generated by a function call roughly correspond to the actual function call
or to the state of the picture when the call was made.

For each item, DEC GKS produces an item header and an item data record.
The DEC GKS standard specifies this general format for data storage within
a GKSM or GKS3 (metafile header followed by an item header followed by
an item data record, and so on), but the individual item data record format is
implementation specific. For example, some implementations may store all item
data as a string of characters, whereas other implementations may store some
information as binary-encoded integer values and some information in character
strings.

An item type is an integer value that corresponds to a DEC GKS function. For
example, an item of type 3 corresponds to a call to UPDATE WORKSTATION.
The item type is contained in the item header. For a list of the integer values,
see the appendix on metafiles in DEC GKS User’s Guide.

When creating a GKSM or GKS3 metafile, you do not need to know the
information contained in the item header or the item data record. Once you
activate a type GKS3D$K_GKSM_OUTPUT workstation and call output

10–2 Metafile Functions

Metafile Functions
10.1 Creating a GKSM or GKS3 Metafile

functions, DEC GKS formats the graphic output information within the metafile
for you.

When you close the GKS3D$K_GKSM_OUTPUT workstation, DEC GKS writes
an item of type 0 to the metafile to specify that it is the last item in the metafile.

10.2 Creating a CGM
To create a CGM, you open and then activate a workstation using the constant
GKS3D$K_CGM_OUTPUT (numeric value 7) as a workstation type for category
GKS3D$K_WSCAT_MO workstations. As the device connection, name the file
that is to contain the metafile information. DEC GKS uses the file name exactly
as specified, without using a default file extension. You can open and activate
as many type GKS3D$K_CGM_OUTPUT workstations as determined by the
maximum allowable open and active workstations, sending appropriate output to
the appropriate active type GKS3D$K_CGM_OUTPUT workstation.

Once the GKS3D$K_CGM_OUTPUT workstation is active, DEC GKS places the
graphic information into elements, by category. The element categories are as
follows:

Category Description

Delimiter elements Separate structures within the metafile.

Metafile descriptor elements Describe the functional content and unique
characteristics of the CGM.

Picture descriptor elements Define the limits of the virtual device
coordinates (VDC) and the parameter modes
for the attribute elements.

Control elements Specify size and precision of VDC points, and
format descriptions of the CGM elements.

Graphic primitive elements Describe the geometric objects in the picture.

Attribute elements Describe the various appearances of the
graphic elements.

Escape elements Describe device- and system-specific
functionality.

External elements Pass information not needed for the creation
of a picture (for example, a message sent to
the user of the metafile).

The elements may have associated data. For example, the graphic primitive
elements may specify VDC points. (The DEC GKS NDC points correspond to the
CGM VDC points.) DEC GKS determines the element data from your DEC GKS
function calls.

All the CGM elements are grouped into structures similar in appearance to an
application program. DEC GKS creates a metafile description at the top of the
file. Other structures include the metafile default structure and the metafile
picture structure. Each structure begins and ends with the appropriate delimiter
elements.

Unlike GKSM or GKS3 items, CGM elements have a certain format, or
encoding. DEC GKS can create CGM elements in one of the following encodings:

Metafile Functions 10–3

Metafile Functions
10.2 Creating a CGM

Encoding Description

Character This encoding requires that the CGM elements and their parameters be
stored in a character-coded format as specified by the CGM standard. With
this encoding, your metafiles use a minimum amount of physical storage.

Binary This encoding requires that the CGM elements and their parameters be
stored in binary code. Using this encoding, many of the applications and
machines can store and read a CGM with greater ease.

Clear text This encoding requires that the CGM elements and their parameters be
stored in text. Using this encoding, you can type, print, or edit the CGM
so you can review its contents before reading the file.

You can use bit mask constant values within your program to specify an encoding.
An example of such a GKS3D$ binding call (in C) is as follows:

define CGM_NAME "cgm_file.txt"

wstype = GKS3D$K_CGM_OUTPUT | GKS3D$M_CHARACTER_ENCODING;
filedesc.dsc$w_length = sizeof(CGM_NAME) - 1;
filedesc.dsc$b_dtype = DSC$K_DTYPE_T;
filedesc.dsc$b_class = DSC$K_CLASS_S;
filedesc.dsc$a_pointer = CGM_NAME;

gks3d$open_ws (&wsid, &filedesc, &wstype);

All the available constant values are listed in the language-dependent header
files. The Device Specifics Reference Manual for DEC GKS and DEC PHIGS
contains extended information concerning bitmasks.

When you create a CGM, you do not need to know the information contained in
the individual elements. Once you activate a type GKS3D$K_CGM_OUTPUT
workstation and call output functions, DEC GKS formats the graphic output
information within the metafile for you.

For detailed information concerning the CGM format for the supported encodings,
see the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

10.3 Reading a GKSM or GKS3 Metafile
To reproduce a graphic image from a GKSM or GKS3, you must open a metafile
input (GKS3D$K_WSCAT_MI) workstation. DEC GKS defines the constant
GKS3D$K_GKSM_INPUT (numeric value 3) as the workstation type for category
GKS3D$K_WSCAT_MI workstations. Also, when you open the type GKS3D$K_
GKSM_INPUT workstation, specify the name of the file containing the recorded
data items as the connection identifier argument. DEC GKS uses the file name
exactly as specified, without using a default file extension. You can open only
one type GKS3D$K_GKSM_INPUT workstation for every corresponding physical
file. DEC GKS distinguishes between GKSM and GKS3 files directly from the
contents of the files.

When you open a type GKS3D$K_GKSM_INPUT workstation, the first item
written to the metafile becomes the current item. The current item is the item
processed when you call the function GET ITEM TYPE FROM GKSM. You can
open as many type GKS3D$K_GKSM_INPUT workstations as DEC GKS permits
in total workstations, interpreting items from the appropriate metafile on the
appropriate active workstations.

10–4 Metafile Functions

Metafile Functions
10.3 Reading a GKSM or GKS3 Metafile

To reproduce the graphic image stored in the metafile, you must call the following
functions for all the applicable items in the metafile, until you reach the item
type 0 (signifying the last item):

• GET ITEM TYPE FROM GKSM—Returns the item type and the length of
the data record of the current item.

• READ ITEM FROM GKSM—Returns the item data record and causes the
next item in the metafile to become the current item.

• INTERPRET ITEM—Reads information about an item and reproduces the
desired action on all active workstations of categories GKS3D$K_WSCAT_
OUTPUT and GKS3D$K_WSCAT_OUTIN.

In most applications, you call INTERPRET ITEM for all items in a metafile.
However, there are cases when you may not wish to do this.

For example, if the creator of the metafile called the function WRITE ITEM
TO GKSM to pass user-defined data to the metafile, you need to handle this
information in a special manner. For example, if the user-defined data is a text
string containing information for the application programmer, then instead of
passing the record to INTERPRET ITEM, you should store or write the text
string as desired. You can identify user-defined data by checking the item type;
all item types greater than 100 are GKSM user-defined items. Item types less
than 0 are GKS3 user-defined items. DEC GKS metafiles reserve item data
numbers 0 to 100. If you are not using a DEC GKS GKSM or GKS3, the reserved
item numbers may differ.

As another example, if you checked the item type and found it to be 3 (which
is a call to the function UPDATE WORKSTATION), you may not want to
interpret that item if it would delete important output primitives already on
the workstation surface. For more information concerning the effects of a call to
UPDATE WORKSTATION, see Chapter 4, Control Functions.

If after calling GET ITEM TYPE FROM GKSM, you decide that you do not want
to interpret the item, pass the value 0 as the data length argument to READ
ITEM FROM GKSM. This skips the current item, causing the next item in the
file to become the current item.

10.4 Metafile Inquiries
The following list presents the inquiry functions that you can use to obtain
information when writing device-independent code:

INQUIRE LEVEL OF GKS
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES
INQUIRE OPERATING STATE VALUE
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE WORKSTATION STATE

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

10.5 Function Descriptions
This section describes the DEC GKS metafile functions in detail.

Metafile Functions 10–5

GET ITEM TYPE FROM GKSM

GET ITEM TYPE FROM GKSM

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$get_item (ws_id, item_type, record_len)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Open metafile input workstation.
item_type Integer Write Reference Metafile item type. Item types and

corresponding function names are
given in the DEC GKS User’s Guide.

record_len Integer Write Reference Length of the item data record, in
bytes.

Description

The GET ITEM TYPE FROM GKSM function returns the item type and the
length of the item data record from the current item in a metafile to the last
argument.

See Also

OPEN WORKSTATION
READ ITEM FROM GKSM
WRITE ITEM TO GKSM

10–6 Metafile Functions

INTERPRET ITEM

INTERPRET ITEM

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gks3d$interpret_item (item_type, record_len, record_name)

Argument Data Type Access Passed by Description

item_type Integer Read Reference Metafile item type. This value can be
obtained by calling the GET ITEM
FROM GKSM function.

record_len Integer Read Reference Length of item data record, in bytes.
The function GET ITEM FROM GKSM
returns this value.

record_
name

Record Read Reference Item data record. The function READ
ITEM FROM GKSM returns this
value.

Description

The INTERPRET ITEM function interprets an item data record obtained by a
call to READ ITEM FROM GKSM.

If the item type corresponds to a call to a function that affects graphic
representation, this function makes appropriate changes to the GKS state
list, and generates the specified graphic output on all active workstations of
categories OUTPUT and OUTIN.

If the item type identifies user-defined data, this function generates an error
indicating that it cannot interpret the item.

See Also

GET ITEM TYPE FROM GKSM
READ ITEM FROM GKSM

Metafile Functions 10–7

READ ITEM FROM GKSM

READ ITEM FROM GKSM

Operating States

WSOP, WSAC, SGOP

Syntax

gks3d$read_item (ws_id, max_record_len, record_name)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Open metafile input workstation.
max_
record_
len

Integer Read Reference Maximum length of record, in bytes.
If the actual data record is larger
than this maximum value, DEC GKS
truncates the item data record.

record_
name

Record Write Reference Item data record.

Description

The READ ITEM FROM GKSM function reads the data record of the current
metafile item and then writes the record to its last argument.

You should compare the maximum length for the data record (as passed to this
function) with the actual length of the data record (as GET ITEM TYPE FROM
GKSM writes to one of its arguments). If the actual size of the record is larger
than the maximum allocated space, DEC GKS truncates the record, causing
loss of information. To skip an item, specify the value 0 as the maximum record
length.

After returning the data record to the application program, this function makes
the next item in the metafile the current item.

See Also

GET ITEM TYPE FROM GKSM
INTERPRET ITEM

10–8 Metafile Functions

WRITE ITEM TO GKSM

WRITE ITEM TO GKSM

Operating States

WSAC, SGOP

Syntax

gks3d$write_item (ws_id, item_type, record_len, record_name)

Argument Data Type Access Passed by Description

ws_id Integer Read Reference Active metafile output workstation
item_type Integer Read Reference Metafile item type
record_len Integer Read Reference Length of item data record, in bytes
record_
name

Record Read Reference Item data record

Description

The WRITE ITEM TO GKSM function writes a user-defined data item record to a
metafile.

You can precede each call to an output function by writing a character string to
the metafile, describing the component of the picture generated by the subsequent
function call. You can establish a specific item type value greater than 100 to
specify such a description for a GKSM file. The application program can treat any
item type value greater than 100 as such a description. In a GKS3 file, values
less than 0 indicate a user-defined item.

If you use a metafile structure that is different from the structure of a GKSM or
GKS3, you may have to specify different item data record values to this function.

See Also

ACTIVATE WORKSTATION
OPEN WORKSTATION

Metafile Functions 10–9

Index

A
Access type, Part 1, 1–6
ACCUMULATE TRANSFORMATION MATRIX 3

function, Part 1, 7–12
ACCUMULATE TRANSFORMATION MATRIX

function, Part 1, 7–10
example, Part 1, 7–36

Accumulating
segment transformations, Part 1, 8–9

Action pending states
list of, Part 2, B–13

ACTIVATE WORKSTATION function, Part 1, 4–9
example, Part 1, 4–27

Activating workstations, Part 1, 4–5
Alignment

text, Part 1, 6–51
Angles

See also Segments
rotation, Part 1, 8–8

ANSI
CGM standard, Part 1, 10–1
GKS standard, Part 1, 1–1

Appearance
attributes, Part 1, 6–1

Applications
programming information, Part 2, D–1

Arguments
characteristics of, Part 1, 1–6
descriptions, Part 1, 1–6
inquiry error status, Part 2, 11–3
inquiry value type argument, Part 2, 11–4
passing by descriptor, Part 2, D–1

Arrays
color index, Part 1, 5–4, 5–6
descriptors, Part 2, D–1

ASAP, Part 1, 1–7
ASFs, Part 1, 6–4
Aspect ratio

See also Transformations
Aspect source flags

list of, Part 2, B–1
ASSOCIATE SEGMENT WITH WORKSTATION

function, Part 1, 8–11
example, Part 1, 8–28

Association
See also Segments
segments, Part 1, 8–3
windows and viewports, Part 1, 7–5

Asynchronous input, Part 1, 9–14
See also Input

Attribute control flags
list of, Part 2, B–2

Attribute functions, Part 1, 6–1 to 6–72
introduction to, Part 1, 6–1 to 6–5

Attributes, Part 1, 1–3
attribute source flags, Part 1, 6–4
bound to primitives, Part 1, 6–1
bundled, Part 1, 6–3
fill area, Part 1, 6–2
fill area set, Part 1, 6–3
GDPs, Part 1, 6–3
geometric and nongeometric, Part 1, 6–1
implicit regenerations, Part 1, 6–4

segments, Part 1, 8–3
individual, Part 1, 6–3
initial values, Part 2, E–1 to E–4
input prompt and echo types, Part 1, 9–5
list of errors, Part 2, A–6 to A–10
metafiles, Part 1, 10–2
pick identification, Part 1, 8–2
polyline, Part 1, 6–2
polymarker, Part 1, 6–2
segments, Part 1, 8–5
text, Part 1, 6–2

Attribute source flags, Part 1, 6–4
Audit metafiles, Part 1, 10–1
AWAIT EVENT function, Part 1, 9–17, 9–22

example, Part 1, 9–87
Axes, Part 1, 7–1

See also Coordinates
See also Segments
segment fixed point, Part 1, 8–7

B
Background

color, Part 1, 6–5
BASIC programming information, Part 2, D–2
Binding

attributes to primitives, Part 1, 6–1
list of GKS3D$ constants, Part 2, B–1 to B–17

Index–1

Boundaries, Part 1, 7–8
See Windows or Viewports

Break input, Part 1, 9–15
Buffers

See also Data records
See also Input
input data record, Part 1, 9–8
string input, Part 1, 9–4
stroke input, Part 1, 9–4

Bundles, Part 1, 6–3
See also Attributes
color, Part 1, 6–16
edge, Part 1, 6–21
fill area, Part 1, 6–26, 6–29
pattern styles, Part 1, 6–40
polyline, Part 1, 6–44, 6–45
polymarker, Part 1, 6–48, 6–49
text, Part 1, 6–56, 6–59

C
Calling sequences, Part 2, D–2
Calls

error handler, Part 2, 12–1
function

reproducing, Part 1, 10–2
Categories

See also Workstations
of functions, Part 1, 1–1
workstations, Part 1, 4–2

list of, Part 1, 4–2
CELL ARRAY 3 function, Part 1, 5–6
CELL ARRAY function, Part 1, 5–4

example, Part 1, 5–23
Cell arrays, Part 1, 5–4, 5–6
CGM metafiles

ANSI standard, Part 1, 10–1
creating, Part 1, 10–3 to 10–4

Change vectors
input, Part 1, 9–5
segment translation, Part 1, 8–7

Characters
height, Part 1, 6–12
strings, Part 1, 5–21, 5–22

Choice
See also Input
input class, Part 1, 9–4
specifying NOCHOICE input, Part 1, 9–16

Choice input prompt flags
list of, Part 2, B–2

Choice status types
list of, Part 2, B–2

Classes
See also Input
See also Logical input devices
choice, Part 1, 9–4
locator, Part 1, 9–4

Classes (cont’d)
pick, Part 1, 9–4
string, Part 1, 9–4
stroke, Part 1, 9–4
valuator, Part 1, 9–4

Cleanup
error handling, Part 2, 12–1

Clearing
See also Workstations
workstation surface, Part 1, 4–10

implicit regeneration, Part 1, 4–7
Clear screen states

list of, Part 2, B–2
CLEAR WORKSTATION function, Part 1, 4–10

example, Part 1, 4–27
Clipping, Part 1, 7–4, 7–7

See also Transformations
disable, Part 1, 7–4
enable, Part 1, 7–4
segments, Part 1, 8–9
text precision, Part 1, 6–54

Clipping flag
initial value, Part 2, E–4

Clipping flags
list of, Part 2, B–2

CLOSE GKS function, Part 1, 4–11
example, Part 1, 4–27

CLOSE SEGMENT function, Part 1, 8–12
example, Part 1, 8–28

CLOSE WORKSTATION function, Part 1, 4–12
example, Part 1, 4–27

Closing
See also GKS
See also Workstations
GKS, Part 1, 4–5

error handling, Part 2, 12–1
segments, Part 1, 4–5
workstations, Part 1, 4–5

COBOL programming information, Part 2, D–2 to
D–5

Color
See also Attributes
background, Part 1, 6–5
fill area, Part 1, 6–25
foreground, Part 1, 6–5
markers, Part 1, 6–47
model, Part 1, 6–15
polyline, Part 1, 6–43
representation, Part 1, 6–16
text, Part 1, 6–53

Color availability flags
list of, Part 2, B–2

Color models
list of, Part 2, B–2

Colors
indexes

2D arrays, Part 1, 5–4

Index–2

Colors
indexes (cont’d)

3D arrays, Part 1, 5–6
Color validity states

list of, Part 2, B–2
Compiling

ULTRIX programs, Part 1, 3–2
VMS programs, Part 1, 2–2

Completion states, Part 2, A–1
Components

See also Rotation
See also Scale
See also Translation
segment transformations, Part 1, 8–7

Composition
See also Transformations
picture, Part 1, 1–3, 7–1

Conditions
error, Part 2, 12–1, A–1 to A–37

Configuration files, Part 1, 3–7 to 3–8
customizing

system level, Part 1, 3–7
user level, Part 1, 3–8

Connection identifier
default value, Part 2, B–3

Connection identifiers, Part 1, 4–21
metafiles, Part 1, 10–1, 10–4
specifying on ULTRIX, Part 1, 3–3
specifying on VMS, Part 1, 2–2

Constants
action pending states, Part 2, B–13
aspect source flags, Part 2, B–1
attribute control flags, Part 2, B–2
choice input prompt flags, Part 2, B–2
choice status types, Part 2, B–2
clear screen states, Part 2, B–2
clipping flags, Part 2, B–2
color availability flags, Part 2, B–2
color models, Part 2, B–2
color validity states, Part 2, B–2
coordinate switch, Part 2, B–3
data type identifiers, Part 2, B–3
default connection identifier, Part 2, B–3
deferral modes, Part 2, B–3
detectability flags, Part 2, B–3
device coordinate units, Part 2, B–3
display surface states, Part 2, B–3
dynamic modification states, Part 2, B–4
echo states, Part 2, B–4
edge flags, Part 2, B–4
edge types, Part 2, B–4
error handling modes, Part 2, B–4
escape identifiers, Part 2, B–4
fill area hatch styles, Part 2, B–6
fill area interior styles, Part 2, B–6
GDP bundle types, Part 2, B–7
GDPs, Part 2, B–7
GKS3D$ binding, Part 2, B–1 to B–17

Constants (cont’d)
GKS level types, Part 2, B–8
GKS operating states, Part 2, B–8
highlighting flags, Part 2, B–9
highlighting methods, Part 2, B–9
HLHSR identifiers, Part 2, B–9
HLHSR modes, Part 2, B–9
horizontal alignment types, Part 2, B–12
implicit regeneration states, Part 2, B–9
input classes, Part 2, B–9
input mode types, Part 2, B–10
input priority states, Part 2, B–10
input status types, Part 2, B–10
line cap styles, Part 2, B–10
line join styles, Part 2, B–10
line types (DEC GKS implementation-specific),

Part 2, B–10
line types (standard), Part 2, B–10
list of, Part 2, B–1 to B–17
logical types, Part 2, B–11
marker types (DEC GKS implementation-

specific), Part 2, B–11
marker types (standard), Part 2, B–11
new frame action necessary states, Part 2,

B–11
pick status types, Part 2, B–12
projection types, Part 2, B–12
regeneration flag states, Part 2, B–12
requirements, Part 1, 2–1, 3–1
returned type values, Part 2, B–12
simultaneous events flags, Part 2, B–12
text horizontal alignment types, Part 2, B–12
text path types, Part 2, B–12
text precision types, Part 2, B–13
text vertical alignment types, Part 2, B–13
update states, Part 2, B–13
vertical alignment types, Part 2, B–13
viewport priority states, Part 2, B–13
visibility flags, Part 2, B–13
workstation category types, Part 2, B–13
workstation class types, Part 2, B–14
workstation color availability states, Part 2,

B–14
workstation MI types, Part 2, B–14
workstation MO types, Part 2, B–14
workstation states, Part 2, B–14
workstation types, Part 2, B–14
writing modes, Part 2, B–16
WSTYPE/CONID association modes, Part 2,

B–17
Control

error handling, Part 2, 12–1
workstation surface, Part 1, 4–6

Control functions, Part 1, 4–1 to 4–35
introduction to, Part 1, 4–1 to 4–8
metafiles, Part 1, 10–2

Index–3

Coordinates
See also Transformations
input change vectors, Part 1, 9–5
locator and stroke input, Part 1, 9–4
maximum device, Part 1, 7–8
systems, Part 1, 7–1

used for output, Part 1, 5–2
viewport input priority, Part 1, 7–6, 9–19

Coordinate switch
list of, Part 2, B–3

Copying segments, Part 1, 8–3
COPY SEGMENT TO WORKSTATION function,

Part 1, 8–13
example, Part 1, 8–28

C programming information, Part 2, D–2
CREATE SEGMENT function, Part 1, 8–14

example, Part 1, 8–28
Creating

metafiles, Part 1, 10–1
segments, Part 1, 4–5, 8–1

Current
See also Transformations
metafile item, Part 1, 10–4
windows and viewports, Part 1, 7–8

Current event report entry, Part 1, 9–17
See also Event mode
See also Input

Cycling
disabled input echo, Part 1, 9–15
logical input device control, Part 1, 9–14

D
Data

user defined
metafiles, Part 1, 10–2

Data records
See also Escapes
See also Input
escape

standard, Part 1, 4–16
input, Part 1, 9–8

prompt and echo types, Part 1, 9–5 to 9–14
sizes, Part 1, 9–20
standard, Part 1, 9–8
using inquiry functions, Part 1, 9–20

metafile
item, Part 1, 10–2

Data structures
See also GKS

Data type identifiers
list of, Part 2, B–3

Data types
arguments, Part 1, 1–6

DEACTIVATE WORKSTATION function, Part 1,
4–13

example, Part 1, 4–27
Deactivating

See also Workstations
workstations, Part 1, 4–5

Declaring
GKS functions

externally, Part 2, D–1
Defaults

See also Attributes
See also Transformations
colors, Part 1, 6–5
GKS–3D error handler, Part 2, 12–4
identity segment transformation, Part 1, 8–7
normalization window, Part 1, 7–3
unity transformation, Part 1, 7–4

Deferral
See also Implicit regenerations
DECwindows, Part 1, 1–7
output, Part 1, 4–6, 5–3

Deferral mode
GKS3D$K_ASAP, Part 1, 4–23

Deferral modes
list of, Part 2, B–3

Definition files
declaring external functions, Part 2, D–1
including, Part 1, 2–1, 3–1
list of, Part 1, 2–1; Part 2, B–1

Degrees
See also GDPs
See also Segments
translating to radians, Part 1, 8–8

DELETE SEGMENT FROM WORKSTATION
function, Part 1, 8–16

DELETE SEGMENT function, Part 1, 8–15
Deleting segments, Part 1, 8–2
Descriptions

functions, Part 1, 1–4
Description tables, Part 1, 4–1

GKS, Part 2, 11–1
workstation, Part 2, 11–1

Descriptors
passing arguments, Part 2, D–1
problems passing, Part 2, D–2 to D–5

Detectability flags
list of, Part 2, B–3

Detecting
errors, Part 2, 12–1
segments, Part 1, 8–5

Device
transformations, Part 1, 7–7 to 7–8

Device coordinates, Part 1, 7–1
See also Transformations
See also Workstations

Index–4

Device coordinate units
list of, Part 2, B–3

Device dependent
bundled attributes, Part 1, 6–3

Device independent
attributes, Part 1, 6–1

Device-independent programming
input, Part 1, 9–20

Device number, Part 1, 9–1
Devices

See also Workstations
connection, Part 1, 4–21
logical input, Part 1, 9–1 to 9–3
manipulation

GKS3D$ESCAPE, Part 1, 4–14
maximum coordinate values, Part 1, 7–8
physical input, Part 1, 9–1

Display
See also Workstations
surface, Part 1, 7–1
surface control, Part 1, 4–10, 4–22, 4–23, 4–25,

7–1
Display surface states

list of, Part 2, B–3
Dynamic modification

See also Implicit regenerations
attributes, Part 1, 4–7
workstation transformations, Part 1, 4–7

Dynamic modification states
list of, Part 2, B–4

E
Echo

See also Input
cycling and disabled echo, Part 1, 9–15
input values, Part 1, 9–2, 9–3, 9–14
prompt and echo types, Part 1, 9–5 to 9–14

Echo area, Part 1, 9–2
Echo states

list of, Part 2, B–4
Edge

index, Part 1, 6–20
representation, Part 1, 6–21
type, Part 1, 6–23
width scale factor, Part 1, 6–24

Edge flags
list of, Part 2, B–4

Edge types
list of, Part 2, B–4

Emergency
closure of GKS, Part 2, 12–1

EMERGENCY CLOSE GKS function, Part 2,
12–3

example, Part 2, 12–7

Ending
GKS session, Part 1, 4–11

Entries
See also GKS
bundle table, Part 1, 6–3

Environment
GKS, Part 1, 4–1
workstation, Part 1, 4–1

Environment variables, Part 1, 3–3
default file, Part 1, 3–4
defining

at csh, Part 1, 3–4
at sh, Part 1, 3–4
in file, Part 1, 3–4

GKSasf, Part 1, 3–5
GKSconid, Part 1, 3–3, 3–5
.GKSdefaults, Part 1, 3–4
GKSdefmode, Part 1, 3–5
GKSerrfile, Part 1, 3–6, 3–7
GKSerror, Part 1, 3–6
GKSirg, Part 1, 3–6
GKSmetafile_type, Part 1, 3–6
GKSndc_clip, Part 1, 3–6
GKSstroke_font1, Part 1, 3–6
GKSwstype, Part 1, 3–6
search order, Part 1, 3–4
stderr, Part 1, 3–7
system defaults file, Part 1, 3–3
types, Part 1, 3–5

general, Part 1, 3–5
user defaults file, Part 1, 3–3

Error codes
defined, Part 1, 2–5, 3–6
ULTRIX, Part 1, 3–6
VMS, Part 1, 2–5

Error files
default, Part 1, 2–5
defined, Part 1, 3–7
ULTRIX, Part 1, 3–7
VMS, Part 1, 2–5

Error handling, Part 1, 2–4, 2–5, 3–6 to 3–7
GKS, Part 1, 1–4

ERROR HANDLING function, Part 2, 12–4
Error-handling functions, Part 2, 12–1 to 12–8

introduction to, Part 2, 12–1 to 12–2
Error handling modes

list of, Part 2, B–4
ERROR LOGGING function, Part 2, 12–5

example, Part 2, 12–7
Errors

file, Part 2, 12–2
inquiry error status argument, Part 2, 11–3
logging, Part 1, 4–4; Part 2, 12–5
messages, Part 2, A–1 to A–37

attributes, Part 2, A–6 to A–10
escapes, Part 2, A–15
fatal, Part 2, A–36 to A–37

Index–5

Errors
messages (cont’d)

implementation-specific, Part 2, A–19 to
A–36

input, Part 2, A–12 to A–14
metafiles, Part 2, A–14 to A–15
miscellaneous, Part 2, A–15 to A–16
operating state, Part 2, A–1 to A–2
output, Part 2, A–10 to A–11
segments, Part 2, A–11 to A–12
system, Part 2, A–16 to A–19
transformations, Part 2, A–5 to A–6
workstation, Part 2, A–3 to A–5

states, Part 2, 12–1
Error status files

list of, Part 1, 2–2, 3–1
ESCAPE function, Part 1, 4–14

example, Part 1, 4–29
Escape identifiers

list of, Part 2, B–4
Escapes

data records, Part 1, 4–16
GKS3D$ESCAPE, Part 1, 4–14
list of errors, Part 2, A–15

EVALUATE TRANSFORMATION MATRIX 3
function, Part 1, 7–16

EVALUATE TRANSFORMATION MATRIX
function, Part 1, 7–14

example, Part 1, 7–40
EVALUATE VIEW MAPPING MATRIX 3 function,

Part 1, 7–18
EVALUATE VIEW ORIENTATION MATRIX 3

function, Part 1, 7–20
Event functions, Part 1, 9–17
Event input queue, Part 1, 9–17

overflow, Part 1, 9–18
Event mode, Part 1, 9–17 to 9–19

See also Input
cycling devices, Part 1, 9–14

Examples
list of functions, Part 2, C–1
table of, Part 2, C–1

Executing
ULTRIX programs, Part 1, 3–2
VMS programs, Part 1, 2–2

Expansion
See also Scale
See also Segments
segments, Part 1, 8–7
text, Part 1, 6–11

Extent rectangle
See also Attributes
See also Segments
See also Text
segments

highlighting, Part 1, 8–6

External functions
declaring GKS functions, Part 2, D–1

F
Fatal errors, Part 2, 12–1

list of, Part 2, A–36 to A–37
Files

definition, Part 2, B–1
list of, Part 1, 2–1

error, Part 2, 12–2
error status

list of, Part 1, 2–2, 3–1
File specifications

metafiles, Part 1, 10–1
FILL AREA 3 function, Part 1, 5–9
FILL AREA function, Part 1, 5–8

example, Part 1, 6–61
Fill area hatch styles

list of, Part 2, B–6
Fill area interior styles

list of, Part 2, B–6
Fill areas, Part 1, 5–8

See also Attributes
See also gks3d$fill_area_set3 function
See also gks3d$fill_area_set function
attributes

SET FILL AREA COLOUR INDEX, Part
1, 6–25

SET FILL AREA INDEX, Part 1, 6–26
SET FILL AREA STYLE INDEX, Part 1,

6–31
SET PATTERN REFERENCE POINT,

Part 1, 6–38
SET PATTERN SIZE, Part 1, 6–41

bundles, Part 1, 6–26
3D, Part 1, 5–9
initial attributes, Part 2, E–3
interior styles, Part 1, 6–27
representation, Part 1, 6–29
style indexes, Part 1, 6–31

Fill area set, Part 1, 5–10, 5–11
FILL AREA SET 3 function, Part 1, 5–11
FILL AREA SET function, Part 1, 5–10
Fill area sets

initial attributes, Part 2, E–3 to E–4
Fixed points

See also Rotation
See also Scale
See also Segments
segment transformations, Part 1, 8–7

Flags
See also Attributes
ASF, Part 1, 6–7, 6–9
aspect source, Part 1, 6–4
edge flag, Part 1, 6–19

Index–6

Flush
event queue, Part 1, 9–18

FLUSH DEVICE EVENTS, Part 1, 9–18
FLUSH DEVICE EVENTS function, Part 1, 9–24
Fonts

establishing, Part 1, 6–54
Foreground color, Part 1, 6–5
Format

function descriptions, Part 1, 1–4
metafiles, Part 1, 10–2

Function
constants, Part 1, 1–6
description, Part 1, 1–6
header, Part 1, 1–4
operating states, Part 1, 1–5
presentation, Part 1, 1–4 to 1–8
Program Examples sections, Part 1, 1–7
See Also sections, Part 1, 1–6
syntax, Part 1, 1–5

Functional standards
See also GKS

Functions
See also GKS
arguments passed by descriptor, Part 2, D–1
attribute, Part 1, 6–6
control, Part 1, 4–8
DEC GKS categories, Part 1, 1–1
declaring GKS functions, Part 2, D–1
error-handling, Part 2, 12–1 to 12–2
input, Part 1, 9–21
metafile, Part 1, 10–5
output, Part 1, 5–3
segment, Part 1, 8–10
transformation, Part 1, 7–9

G
GDP

list of, Part 2, B–7
GDP bundle types

list of, Part 2, B–7
GDPs, Part 1, 5–12 to 5–16

attributes, Part 1, 6–3
GENERALIZED DRAWING PRIMITIVE 3

function, Part 1, 5–15
GENERALIZED DRAWING PRIMITIVE function,

Part 1, 5–12
example, Part 1, 5–26

Generalized drawing primitives
See also GDPs

Generation
See also Output
output, Part 1, 5–1

attributes, Part 1, 6–1
pictures, Part 1, 7–1

Geometric attributes, Part 1, 6–1
GET CHOICE function, Part 1, 9–25
GET functions, Part 1, 9–17
GET ITEM TYPE FROM GKSM function, Part 1,

10–6
GET ITEM TYPE FROM METAFILE

See GET ITEM TYPE FROM GKSM function
GET LOCATOR 3 function, Part 1, 9–27
GET LOCATOR function, Part 1, 9–26

example, Part 1, 9–87
GET PICK function, Part 1, 9–28
GET STRING function, Part 1, 9–29
GET STROKE 3 function, Part 1, 9–32
GET STROKE function, Part 1, 9–30
GET VALUATOR function, Part 1, 9–34
GKS

ANSI and ISO standards, Part 1, 1–1
categories of functions, Part 1, 1–1
closing, Part 1, 4–5
description table, Part 1, 4–1
environment, Part 1, 4–1
error handling, Part 1, 1–4; Part 2, 12–1
functions

declared as external, Part 2, D–1
input

levels of, Part 1, 1–4
introduction to, Part 1, 1–1 to 1–4
kernel, Part 1, 4–1
levels, Part 1, 1–4
metafile standard, Part 1, 10–1
opening, Part 1, 4–4
operating state

errors, Part 2, A–1 to A–2
output

levels of, Part 1, 1–4
GKS$ASF, Part 1, 2–4
GKS$CONID, Part 1, 2–4
GKS$DEF_MODE, Part 1, 2–4
GKS$ERRFILE, Part 1, 2–4
GKS$ERROR, Part 1, 2–4
GKS$IRG, Part 1, 2–4
GKS$METAFILE_TYPE, Part 1, 2–4
GKS$NDC_CLIP, Part 1, 2–4
GKS$STROKE_FONT1, Part 1, 2–4
GKS$WSTYPE, Part 1, 2–4
gks3d$accum_xform_matrix3 function, Part 1,

7–12
gks3d$accum_xform_matrix function, Part 1, 7–10
gks3d$activate_ws function, Part 1, 4–9
gks3d$assoc_seg_with_ws function, Part 1, 8–11
gks3d$await_event function, Part 1, 9–22
GKS3D$ binding files

ULTRIX, Part 1, 3–1
VMS, Part 1, 2–1

gks3d$cell_array3 function, Part 1, 5–6

Index–7

gks3d$cell_array function, Part 1, 5–4
gks3d$clear_ws function, Part 1, 4–10
gks3d$close_gks function, Part 1, 4–11
gks3d$close_seg function, Part 1, 8–12
gks3d$close_ws function, Part 1, 4–12
GKS3D$ constants, Part 2, B–1 to B–17
gks3d$copy_seg_to_ws function, Part 1, 8–13
gks3d$create_seg function, Part 1, 8–14
gks3d$deactivate_ws function, Part 1, 4–13
gks3d$delete_seg function, Part 1, 8–15
gks3d$delete_seg_from_ws function, Part 1, 8–16
gks3d$emergency_close function, Part 2, 12–3
gks3d$error_handler function, Part 2, 12–4
gks3d$escape function, Part 1, 4–14
gks3d$eval_view_map_matrix3 function, Part 1,

7–18
gks3d$eval_view_orient_matrix3 function, Part 1,

7–20
gks3d$eval_xform_matrix3 function, Part 1, 7–16
gks3d$eval_xform_matrix function, Part 1, 7–14
gks3d$fill_area3 function, Part 1, 5–9
gks3d$fill_area function, Part 1, 5–8
gks3d$fill_area_set3 function, Part 1, 5–11
gks3d$fill_area_set function, Part 1, 5–10
gks3d$flush_device_events function, Part 1, 9–24
gks3d$gdp3 function, Part 1, 5–15
gks3d$gdp function, Part 1, 5–12
gks3d$get_choice function, Part 1, 9–25
gks3d$get_item function, Part 1, 10–6
gks3d$get_locator3 function, Part 1, 9–27
gks3d$get_locator function, Part 1, 9–26
gks3d$get_pick function, Part 1, 9–28
gks3d$get_string function, Part 1, 9–29
gks3d$get_stroke3 function, Part 1, 9–32
gks3d$get_stroke function, Part 1, 9–30
gks3d$get_valuator function, Part 1, 9–34
gks3d$init_choice3 function, Part 1, 9–37
gks3d$init_choice function, Part 1, 9–35
gks3d$init_locator3 function, Part 1, 9–41
gks3d$init_locator function, Part 1, 9–39
gks3d$init_pick3 function, Part 1, 9–45
gks3d$init_pick function, Part 1, 9–43
gks3d$init_string3 function, Part 1, 9–49
gks3d$init_string function, Part 1, 9–47
gks3d$init_stroke3 function, Part 1, 9–53
gks3d$init_stroke function, Part 1, 9–51
gks3d$init_valuator3 function, Part 1, 9–57
gks3d$init_valuator function, Part 1, 9–55
gks3d$inq_active_ws function, Part 2, 11–126
gks3d$inq_avail_gdp3 function, Part 2, 11–71
gks3d$inq_avail_gdp function, Part 2, 11–70
gks3d$inq_choice_state3 function, Part 2, 11–7
gks3d$inq_choice_state function, Part 2, 11–5
gks3d$inq_clip3 function, Part 2, 11–10
gks3d$inq_clip function, Part 2, 11–9
gks3d$inq_colour_fac function, Part 2, 11–11

gks3d$inq_colour_indexes function, Part 2, 11–73
gks3d$inq_colour_model function, Part 2, 11–12
gks3d$inq_colour_model_fac function, Part 2,

11–13
gks3d$inq_colour_rep function, Part 2, 11–14
gks3d$inq_current_xformno function, Part 2,

11–22
gks3d$inq_def_choice_data3 function, Part 2,

11–30
gks3d$inq_def_choice_data function, Part 2, 11–28
gks3d$inq_def_defer_state function, Part 2, 11–32
gks3d$inq_def_locator_data3 function, Part 2,

11–34
gks3d$inq_def_locator_data function, Part 2,

11–33
gks3d$inq_def_pick_data3 function, Part 2, 11–37
gks3d$inq_def_pick_data function, Part 2, 11–35
gks3d$inq_def_string_data3 function, Part 2,

11–41
gks3d$inq_def_string_data function, Part 2, 11–39
gks3d$inq_def_stroke_data3 function, Part 2,

11–45
gks3d$inq_def_stroke_data function, Part 2,

11–43
gks3d$inq_def_valuator_data3 function, Part 2,

11–49
gks3d$inq_def_valuator_data function, Part 2,

11–47
gks3d$inq_dyn_mod_seg_attb function, Part 2,

11–53
gks3d$inq_dyn_mod_ws_attb3 function, Part 2,

11–57
gks3d$inq_dyn_mod_ws_attb function, Part 2,

11–55
gks3d$inq_edge_fac function, Part 2, 11–59
gks3d$inq_edge_indexes function, Part 2, 11–74
gks3d$inq_edge_rep function, Part 2, 11–60
gks3d$inq_fill_fac function, Part 2, 11–62
gks3d$inq_fill_indexes function, Part 2, 11–75
gks3d$inq_fill_rep function, Part 2, 11–63
gks3d$inq_gdp3 function, Part 2, 11–65
gks3d$inq_gdp function, Part 2, 11–64
gks3d$inq_hlhsr_fac function, Part 2, 11–66
gks3d$inq_hlhsr_id function, Part 2, 11–15
gks3d$inq_hlhsr_mode function, Part 2, 11–67
gks3d$inq_indiv_attb3 function, Part 2, 11–19
gks3d$inq_indiv_attb function, Part 2, 11–16
gks3d$inq_input_dev function, Part 2, 11–93
gks3d$inq_input_queue_overflow function, Part 2,

11–68
gks3d$inq_level function, Part 2, 11–69
gks3d$inq_locator_state3 function, Part 2, 11–84
gks3d$inq_locator_state function, Part 2, 11–82
gks3d$inq_max_ds_size3 function, Part 2, 11–52
gks3d$inq_max_ds_size function, Part 2, 11–51

Index–8

gks3d$inq_max_ws_state_table3 function, Part 2,
11–87

gks3d$inq_max_ws_state_table function, Part 2,
11–86

gks3d$inq_max_xform function, Part 2, 11–88
gks3d$inq_more_simul_events function, Part 2,

11–89
gks3d$inq_name_open_seg function, Part 2, 11–90
gks3d$inq_open_ws function, Part 2, 11–128
gks3d$inq_operating_state function, Part 2, 11–95
gks3d$inq_pat_fac function, Part 2, 11–96
gks3d$inq_pat_indexes function, Part 2, 11–77
gks3d$inq_pat_rep function, Part 2, 11–97
gks3d$inq_pick_id function, Part 2, 11–23
gks3d$inq_pick_state3 function, Part 2, 11–100
gks3d$inq_pick_state function, Part 2, 11–98
gks3d$inq_pixel function, Part 2, 11–102
gks3d$inq_pixel_array function, Part 2, 11–103
gks3d$inq_pixel_array_dim function, Part 2,

11–105
gks3d$inq_pline_fac function, Part 2, 11–106
gks3d$inq_pline_indexes function, Part 2, 11–78
gks3d$inq_pline_rep function, Part 2, 11–108
gks3d$inq_pmark_fac function, Part 2, 11–110
gks3d$inq_pmark_indexes function, Part 2, 11–79
gks3d$inq_pmark_rep function, Part 2, 11–112
gks3d$inq_predef_colour_rep function, Part 2,

11–114
gks3d$inq_predef_edge_rep function, Part 2,

11–115
gks3d$inq_predef_fill_rep function, Part 2, 11–116
gks3d$inq_predef_pat_rep function, Part 2,

11–117
gks3d$inq_predef_pline_rep function, Part 2,

11–118
gks3d$inq_predef_pmark_rep function, Part 2,

11–119
gks3d$inq_predef_text_rep function, Part 2,

11–120
gks3d$inq_predef_view_rep function, Part 2,

11–121
gks3d$inq_prim_attb3 function, Part 2, 11–26
gks3d$inq_prim_attb function, Part 2, 11–24
gks3d$inq_seg_attb3 function, Part 2, 11–124
gks3d$inq_seg_attb function, Part 2, 11–122
gks3d$inq_seg_names function, Part 2, 11–129
gks3d$inq_seg_names_on_ws function, Part 2,

11–130
gks3d$inq_seg_priority function, Part 2, 11–94
gks3d$inq_set_assoc_ws function, Part 2, 11–127
gks3d$inq_string_state3 function, Part 2, 11–133
gks3d$inq_string_state function, Part 2, 11–131
gks3d$inq_stroke_state3 function, Part 2, 11–137
gks3d$inq_stroke_state function, Part 2, 11–135
gks3d$inq_text_extent3 function, Part 2, 11–140
gks3d$inq_text_extent function, Part 2, 11–139

gks3d$inq_text_fac function, Part 2, 11–141
gks3d$inq_text_indexes function, Part 2, 11–80
gks3d$inq_text_rep function, Part 2, 11–143
gks3d$inq_valuator_state3 function, Part 2,

11–147
gks3d$inq_valuator_state function, Part 2, 11–145
gks3d$inq_view_fac function, Part 2, 11–149
gks3d$inq_view_indexes function, Part 2, 11–81
gks3d$inq_view_rep3 function, Part 2, 11–150
gks3d$inq_wstype_list function, Part 2, 11–72
gks3d$inq_ws_category function, Part 2, 11–152
gks3d$inq_ws_classification function, Part 2,

11–153
gks3d$inq_ws_defer_and_update function, Part 2,

11–155
gks3d$inq_ws_max_num function, Part 2, 11–157
gks3d$inq_ws_state function, Part 2, 11–158
gks3d$inq_ws_type function, Part 2, 11–154
gks3d$inq_ws_xform3 function, Part 2, 11–160
gks3d$inq_ws_xform function, Part 2, 11–159
gks3d$inq_xform3 function, Part 2, 11–92
gks3d$inq_xform function, Part 2, 11–91
gks3d$inq_xform_list function, Part 2, 11–76
gks3d$insert_seg3 function, Part 1, 8–19
gks3d$insert_seg function, Part 1, 8–17
gks3d$interpret_item function, Part 1, 10–7
GKS3D$K_PERFORM_FLAG, Part 1, 4–25
GKS3D$K_POSTPONE_FLAG, Part 1, 4–25
gks3d$log_error function, Part 2, 12–5
gks3d$message function, Part 1, 4–19
gks3d$open_gks function, Part 1, 4–20
gks3d$open_ws function, Part 1, 4–21
gks3d$polyline3 function, Part 1, 5–18
gks3d$polyline function, Part 1, 5–17
gks3d$polymarker3 function, Part 1, 5–20
gks3d$polymarker function, Part 1, 5–19
gks3d$read_item function, Part 1, 10–8
gks3d$redraw_seg_on_ws function, Part 1, 4–22
gks3d$rename_seg function, Part 1, 8–21
gks3d$request_choice function, Part 1, 9–59
gks3d$request_locator3 function, Part 1, 9–61
gks3d$request_locator function, Part 1, 9–60
gks3d$request_pick function, Part 1, 9–62
gks3d$request_string function, Part 1, 9–63
gks3d$request_stroke3 function, Part 1, 9–67
gks3d$request_stroke function, Part 1, 9–65
gks3d$request_valuator function, Part 1, 9–69
gks3d$sample_choice function, Part 1, 9–70
gks3d$sample_locator3 function, Part 1, 9–72
gks3d$sample_locator function, Part 1, 9–71
gks3d$sample_pick function, Part 1, 9–73
gks3d$sample_string function, Part 1, 9–74
gks3d$sample_stroke3 function, Part 1, 9–77
gks3d$sample_stroke function, Part 1, 9–75
gks3d$sample_valuator function, Part 1, 9–79
gks3d$select_xform function, Part 1, 7–22

Index–9

gks3d$set_asf3 function, Part 1, 6–9
gks3d$set_asf function, Part 1, 6–7
gks3d$set_choice_mode function, Part 1, 9–80
gks3d$set_clipping function, Part 1, 7–23
gks3d$set_colour_model function, Part 1, 6–15
gks3d$set_colour_rep function, Part 1, 6–16
gks3d$set_defer_state function, Part 1, 4–23
gks3d$set_edgetype function, Part 1, 6–23
gks3d$set_edgewidth_scale_fac function, Part 1,

6–24
gks3d$set_edge_colour_index function, Part 1,

6–18
gks3d$set_edge_flag function, Part 1, 6–19
gks3d$set_edge_index function, Part 1, 6–20
gks3d$set_error_handler function, Part 2, 12–6
gks3d$set_fill_colour_index function, Part 1, 6–25
gks3d$set_fill_index function, Part 1, 6–26
gks3d$set_fill_int_style function, Part 1, 6–27
gks3d$set_fill_rep function, Part 1, 6–29
gks3d$set_fill_style_index function, Part 1, 6–31
gks3d$set_hlhsr_id function, Part 1, 6–32
gks3d$set_hlhsr_mode function, Part 1, 6–33
gks3d$set_locator_mode function, Part 1, 9–81
gks3d$set_pat_ref_pt function, Part 1, 6–38
gks3d$set_pat_ref_pt_vec function, Part 1, 6–39
gks3d$set_pat_rep function, Part 1, 6–40
gks3d$set_pat_size function, Part 1, 6–41
gks3d$set_pick_id function, Part 1, 6–42
gks3d$set_pick_mode function, Part 1, 9–82
gks3d$set_pline_colour_index function, Part 1,

6–43
gks3d$set_pline_index function, Part 1, 6–44
gks3d$set_pline_linetype function, Part 1, 6–34
gks3d$set_pline_linewidth function, Part 1, 6–35
gks3d$set_pline_rep function, Part 1, 6–45
gks3d$set_pmark_colour_index function, Part 1,

6–47
gks3d$set_pmark_index function, Part 1, 6–48
gks3d$set_pmark_rep function, Part 1, 6–49
gks3d$set_pmark_size function, Part 1, 6–36
gks3d$set_pmark_type function, Part 1, 6–37
gks3d$set_seg_detectability function, Part 1, 8–22
gks3d$set_seg_highlighting function, Part 1, 8–23
gks3d$set_seg_priority function, Part 1, 8–24
gks3d$set_seg_visibility function, Part 1, 8–27
gks3d$set_seg_xform3 function, Part 1, 8–26
gks3d$set_seg_xform function, Part 1, 8–25
gks3d$set_string_mode function, Part 1, 9–83
gks3d$set_stroke_mode function, Part 1, 9–84
gks3d$set_text_align function, Part 1, 6–51
gks3d$set_text_colour_index function, Part 1,

6–53
gks3d$set_text_expfac function, Part 1, 6–11
gks3d$set_text_fontprec function, Part 1, 6–54
gks3d$set_text_height function, Part 1, 6–12
gks3d$set_text_index function, Part 1, 6–56

gks3d$set_text_path function, Part 1, 6–57
gks3d$set_text_rep function, Part 1, 6–59
gks3d$set_text_spacing function, Part 1, 6–13
gks3d$set_text_upvec function, Part 1, 6–14
gks3d$set_valuator_mode function, Part 1, 9–85
gks3d$set_viewport3 function, Part 1, 7–28
gks3d$set_viewport function, Part 1, 7–27
gks3d$set_viewport_priority function, Part 1,

7–29
gks3d$set_view_ind function, Part 1, 7–24
gks3d$set_view_rep3 function, Part 1, 7–25
gks3d$set_view_xform_priority function, Part 1,

7–26
gks3d$set_window3 function, Part 1, 7–31
gks3d$set_window function, Part 1, 7–30
gks3d$set_ws_viewport3 function, Part 1, 7–33
gks3d$set_ws_viewport function, Part 1, 7–32
gks3d$set_ws_window3 function, Part 1, 7–35
gks3d$set_ws_window function, Part 1, 7–34
gks3d$sizeof, Part 1, 9–86
gks3d$text3 function, Part 1, 5–22
gks3d$text function, Part 1, 5–21
gks3d$update_ws function, Part 1, 4–25
gks3d$write_item function, Part 1, 10–9
GKS3 metafiles

creating, Part 1, 10–1 to 10–3
GKSasf, Part 1, 3–5
gksconfig.c, Part 1, 3–7
GKSconid, Part 1, 3–5
gksd3d$set_edge_rep function, Part 1, 6–21
GKSdefmode, Part 1, 3–5
GKSerrfile, Part 1, 3–6
GKSerror, Part 1, 3–6
GKSirg, Part 1, 3–6
GKS level types

list of, Part 2, B–8
GKSmetafile_type, Part 1, 3–6
GKSM metafiles, Part 1, 10–1

creating, Part 1, 10–1 to 10–3
GKSndc_clip, Part 1, 3–6
GKS operating states

list of, Part 2, B–8
GKSstroke_font1, Part 1, 3–6
GKSwstype, Part 1, 3–6
gks_decw_config.c, Part 1, 3–7
Graphics handlers, Part 1, 4–1

See also Devices
See also Workstations
input, Part 1, 9–5
nominal sizes, Part 1, 6–1

H
Handlers

See also Devices
See also Workstations
See Graphics handlers
errors, Part 2, 12–1

Index–10

Handlers (cont’d)
set and realized values, Part 2, 11–4

Hardware fonts, Part 1, 6–54
See also Fonts

Hatches, Part 1, 6–27
See also Fill areas
fill areas, Part 1, 5–8, 5–9
style index values, Part 1, 6–31

Height
See also Attributes
See also Transformations
text, Part 1, 6–12

Highlighting
segments, Part 1, 8–6

Highlighting flags
list of, Part 2, B–9

Highlighting methods
list of, Part 2, B–9

HLHSR identifiers
list of, Part 2, B–9

HLHSR modes
list of, Part 2, B–9

Hollow
fill area interior style, Part 1, 6–27
fill areas, Part 1, 5–8, 5–9

Horizontal alignment types
list of, Part 2, B–12

I
Identifiers

pick, Part 1, 8–2, 9–4
Identity

segment transformation, Part 1, 8–8
transformation, Part 1, 7–7

Implementation-specific errors
list of, Part 2, A–19 to A–36

Implicit regenerations, Part 1, 4–7
See also Deferral
attribute changes, Part 1, 6–4
segments, Part 1, 8–3
workstation transformations, Part 1, 7–8

Implicit regeneration states
list of, Part 2, B–9

Include
definition files, Part 1, 2–1, 3–1

INCLUDE statement
all languages, Part 1, 2–1, 3–1

Index
See also Attributes
See also Bundles
color, Part 1, 6–16

2D arrays, Part 1, 5–4
3D arrays, Part 1, 5–6

edge, Part 1, 6–21
edge color, Part 1, 6–18
fill area, Part 1, 6–26, 6–29

Index
fill area (cont’d)

styles, Part 1, 6–31
into bundle tables, Part 1, 6–3
pattern styles, Part 1, 6–40
polyline, Part 1, 6–45
polymarker, Part 1, 6–49
text, Part 1, 6–56, 6–59

Individual attributes, Part 1, 6–3
Initialize

See also GKS
See also Workstations
GKS environment, Part 1, 4–20
workstation environment, Part 1, 4–21

INITIALIZE CHOICE 3 function, Part 1, 9–37
INITIALIZE CHOICE function, Part 1, 9–35
INITIALIZE functions, Part 1, 9–3
INITIALIZE LOCATOR 3 function, Part 1, 9–41
INITIALIZE LOCATOR function, Part 1, 9–39

example, Part 1, 9–87
INITIALIZE PICK 3 function, Part 1, 9–45
INITIALIZE PICK function, Part 1, 9–43

example, Part 1, 9–92
INITIALIZE STRING 3 function, Part 1, 9–49
INITIALIZE STRING function, Part 1, 9–47

example, Part 1, 9–99
INITIALIZE STROKE 3 function, Part 1, 9–53
INITIALIZE STROKE function, Part 1, 9–51
INITIALIZE VALUATOR 3 function, Part 1, 9–57
INITIALIZE VALUATOR function, Part 1, 9–55

example, Part 1, 9–103
Initializing a logical input device, Part 1, 9–3
Initializing input, Part 1, 9–14
Initial string

input, Part 1, 9–4
Input

asynchronous, Part 1, 9–14
breaking, Part 1, 9–15
classes, Part 1, 9–1, 9–4
current values, Part 1, 9–20
cycling device control, Part 1, 9–14
data record

sizes, Part 1, 9–20
standard, Part 1, 9–8
using inquiry functions, Part 1, 9–20

default values, Part 1, 9–20
device-independent programming, Part 1, 9–20
event mode, Part 1, 9–17 to 9–19

flushing the queue, Part 1, 9–18
event queue, Part 1, 9–17
event queue overflow, Part 1, 9–18
initializing, Part 1, 9–14
inquiry function use, Part 1, 9–19
list of errors, Part 2, A–12 to A–14
menus, Part 1, 9–4
metafiles, Part 1, 10–1, 10–2
operating modes, Part 1, 9–2, 9–3, 9–14 to

9–19

Index–11

Input (cont’d)
pick

visibility, Part 1, 8–10
pick identification, Part 1, 8–2
request mode, Part 1, 9–15 to 9–16
sample mode, Part 1, 9–16
segment detectability, Part 1, 8–5
segments, Part 1, 8–2
specifying no input, Part 1, 9–15
synchronous, Part 1, 9–14
text, Part 1, 9–4
triggers, Part 1, 9–3, 9–15
viewport priority, Part 1, 7–6, 9–19
workstation categories, Part 1, 4–2

Input classes
list of, Part 2, B–9

Input data records
determing size of, Part 1, 9–9
sizes, Part 1, 9–20

Input functions, Part 1, 9–1 to 9–108
gks3d$sizeof, Part 1, 9–86
introduction to, Part 1, 9–1 to 9–19

Input mode types
list of, Part 2, B–10

Input operating modes, Part 1, 9–14
Input priority

initial value, Part 2, E–4
Input priority states

list of, Part 2, B–10
Input status types

list of, Part 2, B–10
INQUIRE ASPECT SOURCE FLAGS

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE CHARACTER BASE VECTOR
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE CHARACTER EXPANSION FACTOR

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE CHARACTER HEIGHT
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE CHARACTER SPACING

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE CHARACTER UP VECTOR
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE CHARACTER WIDTH

See INQUIRE CURRENT PRIMITIVE
ATTRIBUTE VALUES function

INQUIRE CHOICE DEVICE STATE 3 function,
Part 2, 11–7

INQUIRE CHOICE DEVICE STATE function,
Part 2, 11–5

INQUIRE CLIPPING 3 function, Part 2, 11–10
INQUIRE CLIPPING function, Part 2, 11–9
INQUIRE COLOUR FACILITIES function, Part

2, 11–11
INQUIRE COLOUR MODEL FACILITIES

function, Part 2, 11–13
INQUIRE COLOUR MODEL function, Part 2,

11–12
INQUIRE COLOUR REPRESENTATION function,

Part 2, 11–14
INQUIRE CURRENT HLHSR IDENTIFIER

VALUE function, Part 2, 11–15
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE

VALUES 3 function, Part 2, 11–19
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE

VALUES function, Part 2, 11–16
INQUIRE CURRENT NORMALIZATION

TRANSFORMATION NUMBER function,
Part 2, 11–22

INQUIRE CURRENT PICK IDENTIFIER VALUE
function, Part 2, 11–23

INQUIRE CURRENT PRIMITIVE ATTRIBUTE
VALUES 3 function, Part 2, 11–26

INQUIRE CURRENT PRIMITIVE ATTRIBUTE
VALUES function, Part 2, 11–24

INQUIRE DEFAULT CHOICE DEVICE DATA 3
function, Part 2, 11–30

INQUIRE DEFAULT CHOICE DEVICE DATA
function, Part 2, 11–28

INQUIRE DEFAULT DEFERRAL STATE
VALUES function, Part 2, 11–32

INQUIRE DEFAULT LOCATOR DEVICE DATA 3
function, Part 2, 11–34

INQUIRE DEFAULT LOCATOR DEVICE DATA
function, Part 2, 11–33

INQUIRE DEFAULT PICK DEVICE DATA 3
function, Part 2, 11–37

INQUIRE DEFAULT PICK DEVICE DATA
function, Part 2, 11–35

INQUIRE DEFAULT STRING DEVICE DATA 3
function, Part 2, 11–41

INQUIRE DEFAULT STRING DEVICE DATA
function, Part 2, 11–39

INQUIRE DEFAULT STROKE DEVICE DATA 3
function, Part 2, 11–45

INQUIRE DEFAULT STROKE DEVICE DATA
function, Part 2, 11–43

INQUIRE DEFAULT VALUATOR DEVICE DATA
3 function, Part 2, 11–49

INQUIRE DEFAULT VALUATOR DEVICE DATA
function, Part 2, 11–47

INQUIRE DISPLAY SPACE SIZE 3 function, Part
2, 11–52

Index–12

INQUIRE DISPLAY SPACE SIZE function, Part
2, 11–51

example, Part 1, 7–49
INQUIRE DYNAMIC MODIFICATION OF

SEGMENT ATTRIBUTES function, Part 2,
11–53

INQUIRE DYNAMIC MODIFICATION OF
WORKSTATION ATTRIBUTES 3 function,
Part 2, 11–57

INQUIRE DYNAMIC MODIFICATION OF
WORKSTATION ATTRIBUTES function,
Part 2, 11–55

example, Part 1, 7–49
INQUIRE EDGE FACILITIES function, Part 2,

11–59
INQUIRE EDGE REPRESENTATION function,

Part 2, 11–60
INQUIRE FILL AREA COLOUR INDEX

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE FILL AREA FACILITIES function,
Part 2, 11–62

INQUIRE FILL AREA INTERIOR STYLE
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUES function
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE FILL AREA REPRESENTATION

function, Part 2, 11–63
INQUIRE FILL AREA STYLE INDEX

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE GENERALIZED DRAWING
PRIMITIVE 3 function, Part 2, 11–65

INQUIRE GENERALIZED DRAWING
PRIMITIVE function, Part 2, 11–64

INQUIRE HLHSR FACILITIES function, Part 2,
11–66

INQUIRE HLHSR MODE function, Part 2, 11–67
INQUIRE INPUT QUEUE OVERFLOW function,

Part 1, 9–18; Part 2, 11–68
INQUIRE LEVEL OF GKS function, Part 2,

11–69
INQUIRE LINETYPE

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE LINEWIDTH SCALE FACTOR
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUES function
INQUIRE LIST OF AVAILABLE GENERALIZED

DRAWING PRIMITIVES 3 function, Part 2,
11–71

INQUIRE LIST OF AVAILABLE GENERALIZED
DRAWING PRIMITIVES function, Part 2,
11–70

INQUIRE LIST OF AVAILABLE WORKSTATION
TYPES function, Part 2, 11–72

INQUIRE LIST OF COLOUR INDICES function,
Part 2, 11–73

INQUIRE LIST OF EDGE INDICES function,
Part 2, 11–74

INQUIRE LIST OF FILL AREA INDICES
function, Part 2, 11–75

INQUIRE LIST OF NORMALIZATION
TRANSFORMATION NUMBERS function,
Part 2, 11–76

INQUIRE LIST OF PATTERN INDICES function,
Part 2, 11–77

INQUIRE LIST OF POLYLINE INDICES function,
Part 2, 11–78

INQUIRE LIST OF POLYMARKER INDICES
function, Part 2, 11–79

INQUIRE LIST OF TEXT INDICES function,
Part 2, 11–80

INQUIRE LIST OF VIEW INDICES function,
Part 2, 11–81

INQUIRE LOCATOR DEVICE STATE 3 function,
Part 2, 11–84

INQUIRE LOCATOR DEVICE STATE function,
Part 2, 11–82

example, Part 1, 9–87
INQUIRE MARKER SIZE SCALE FACTOR

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE MARKERTYPE
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUES function
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUESfunction
INQUIRE MAXIMUM LENGTH OF

WORKSTATION STATE TABLES 3
function, Part 2, 11–87

INQUIRE MAXIMUM LENGTH OF
WORKSTATION STATE TABLES
function, Part 2, 11–86

INQUIRE MAXIMUM NORMALIZATION
TRANSFORMATION NUMBER function,
Part 2, 11–88

INQUIRE MORE SIMULTANEOUS EVENTS
function, Part 2, 11–89

INQUIRE NAME OF OPEN SEGMENT function,
Part 2, 11–90

INQUIRE NORMALIZATION
TRANSFORMATION 3 function, Part
2, 11–92

Index–13

INQUIRE NORMALIZATION
TRANSFORMATION function, Part 2,
11–91

INQUIRE NUMBER OF AVAILABLE LOGICAL
INPUT DEVICES function, Part 2, 11–93

INQUIRE NUMBER OF SEGMENT PRIORITIES
SUPPORTED function, Part 2, 11–94

INQUIRE OPERATING STATE function, Part 2,
11–95

INQUIRE PATTERN FACILITIES function, Part
2, 11–96

INQUIRE PATTERN REFERENCE POINT
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE PATTERN REPRESENTATION

function, Part 2, 11–97
INQUIRE PATTERN SIZE

See INQUIRE CURRENT PRIMITIVE
ATTRIBUTE VALUES function

INQUIRE PICK DEVICE STATE 3 function, Part
2, 11–100

INQUIRE PICK DEVICE STATE function, Part 2,
11–98

example, Part 1, 9–92
INQUIRE PIXEL ARRAY DIMENSIONS function,

Part 2, 11–105
INQUIRE PIXEL ARRAY function, Part 2, 11–103
INQUIRE PIXEL function, Part 2, 11–102
INQUIRE POLYLINE COLOUR INDEX

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

INQUIRE POLYLINE FACILITIES function, Part
2, 11–106

INQUIRE POLYLINE INDEX
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUES function
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUESfunction
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE POLYLINE REPRESENTATION

function, Part 2, 11–108
INQUIRE POLYMARKER FACILITIES function,

Part 2, 11–110
INQUIRE POLYMARKER INDEX

See INQUIRE CURRENT PRIMITIVE
ATTRIBUTE VALUES function

INQUIRE POLYMARKER REPRESENTATION
function, Part 2, 11–112

INQUIRE PREDEFINED COLOUR
REPRESENTATION function, Part 2,
11–114

INQUIRE PREDEFINED EDGE
REPRESENTATION function, Part 2,
11–115

INQUIRE PREDEFINED FILL AREA
REPRESENTATION function, Part 2, 11–116

INQUIRE PREDEFINED PATTERN
REPRESENTATION function, Part 2,
11–117

INQUIRE PREDEFINED POLYLINE
REPRESENTATION function, Part 2, 11–118

INQUIRE PREDEFINED POLYMARKER
REPRESENTATION function, Part 2, 11–119

INQUIRE PREDEFINED TEXT
REPRESENTATION function, Part 2,
11–120

INQUIRE PREDEFINED VIEW
REPRESENTATION function, Part 2,
11–121

INQUIRE SEGMENT ATTRIBUTES 3 function,
Part 2, 11–124

INQUIRE SEGMENT ATTRIBUTES function,
Part 2, 11–122

INQUIRE SET OF ACTIVE WORKSTATIONS
function, Part 2, 11–126

INQUIRE SET OF ASSOCIATED
WORKSTATIONS function, Part 2,
11–127

INQUIRE SET OF OPEN WORKSTATIONS
function, Part 2, 11–128

INQUIRE SET OF SEGMENT NAMES IN USE
function, Part 2, 11–129

INQUIRE SET OF SEGMENT NAMES ON
WORKSTATION function, Part 2, 11–130

INQUIRE STRING DEVICE STATE 3 function,
Part 2, 11–133

INQUIRE STRING DEVICE STATE function,
Part 2, 11–131

example, Part 1, 9–99
INQUIRE STROKE DEVICE STATE 3 function,

Part 2, 11–137
INQUIRE STROKE DEVICE STATE function,

Part 2, 11–135
INQUIRE TEXT ALIGNMENT

See INQUIRE CURRENT PRIMITIVE
ATTRIBUTE VALUES function

INQUIRE TEXT COLOUR INDEX
See INQUIRE CURRENT INDIVIDUAL

ATTRIBUTE VALUES function
INQUIRE TEXT EXTENT 3 function, Part 2,

11–140
INQUIRE TEXT EXTENT function, Part 2,

11–139
INQUIRE TEXT FACILITIES function, Part 2,

11–141
INQUIRE TEXT FONT AND PRECISION

See INQUIRE CURRENT INDIVIDUAL
ATTRIBUTE VALUES function

Index–14

INQUIRE TEXT INDEX
See INQUIRE CURRENT PRIMITIVE

ATTRIBUTE VALUES function
INQUIRE TEXT PATH

See INQUIRE CURRENT PRIMITIVE
ATTRIBUTE VALUES function

INQUIRE TEXT REPRESENTATION function,
Part 2, 11–143

INQUIRE VALUATOR DEVICE STATE 3 function,
Part 2, 11–147

INQUIRE VALUATOR DEVICE STATE function,
Part 2, 11–145

example, Part 1, 9–103
INQUIRE VIEW FACILITIES function, Part 2,

11–149
INQUIRE VIEW REPRESENTATION 3 function,

Part 2, 11–150
INQUIRE WORKSTATION CATEGORY function,

Part 2, 11–152
INQUIRE WORKSTATION CLASSIFICATION

function, Part 2, 11–153
INQUIRE WORKSTATION CONNECTION AND

TYPE function, Part 2, 11–154
example, Part 1, 4–29

INQUIRE WORKSTATION DEFERRAL AND
UPDATE STATES function, Part 2, 11–155

INQUIRE WORKSTATION MAXIMUM
NUMBERS function, Part 2, 11–157

INQUIRE WORKSTATION STATE function, Part
2, 11–158

INQUIRE WORKSTATION TRANSFORMATION
3 function, Part 2, 11–160

INQUIRE WORKSTATION TRANSFORMATION
function, Part 2, 11–159

Inquiry functions, Part 2, 11–1 to 11–160
input use, Part 1, 9–19
introduction to, Part 2, 11–1 to 11–4

Inserting segments, Part 1, 8–3
INSERT SEGMENT 3 function, Part 1, 8–19
INSERT SEGMENT function, Part 1, 8–17

example, Part 1, 8–32
Interface

prompt and echo types, Part 1, 9–5 to 9–14
Interior styles

See also Attributes
See also Hatches
See also Patterns
of fill areas, Part 1, 6–27

Interpret
metafiles, Part 1, 10–1

INTERPRET ITEM function, Part 1, 10–7
Items

metafile header, Part 1, 10–2

K
Kernel

GKS, Part 1, 4–1

L
Languages

BASIC, Part 2, D–2
C, Part 2, D–2
COBOL, Part 2, D–2
declaring external functions, Part 2, D–1
Pascal, Part 2, D–5
programming information, Part 2, D–1 to D–6

Lengths
See also Data records
See also Input
input data record, Part 1, 9–8
metafile data record, Part 1, 10–4

Levels
of GKS, Part 1, 1–4

Line cap styles
list of, Part 2, B–10

Line join styles
list of, Part 2, B–10

Lines
See also Attributes
See also Output
generating, Part 1, 5–17, 5–18
types, Part 1, 1–3, 6–34
width, Part 1, 6–35

Line types
DEC GKS implementation-specific

list of, Part 2, B–10
standard

list of, Part 2, B–10
Linking, Part 1, 2–2, 3–2

reducing time, Part 1, 3–7
RISC processors, Part 1, 3–2

Lists
See also GKS
See also Input
See also Workstations
GKS state, Part 2, 11–1
segment state, Part 2, 11–1
viewport input priority, Part 1, 7–6, 9–19
workstation state, Part 2, 11–1

Locator
input class, Part 1, 9–4
viewport input priority, Part 1, 7–6, 9–19

Logging
errors, Part 2, 12–5

Logical device number
See Device number

Index–15

Logical input devices, Part 1, 9–1 to 9–3
See also Input
activating, Part 1, 9–2, 9–3
classes, Part 1, 9–1
controlling the appearance of, Part 1, 9–2
deactivating, Part 1, 9–2, 9–3
device number, Part 1, 9–1
initializing, Part 1, 9–3
triggering, Part 1, 9–3
workstation identifier, Part 1, 9–1

Logical names, Part 1, 2–3
defining

at DCL level, Part 1, 2–3
general, Part 1, 2–4
GKS$ASF, Part 1, 2–4
GKS$CONID, Part 1, 2–4
GKS$DEF_MODE, Part 1, 2–4
GKS$ERRFILE, Part 1, 2–4
GKS$ERROR, Part 1, 2–4
GKS$IRG, Part 1, 2–4
GKS$METAFILE_TYPE, Part 1, 2–4
GKS$NDC_CLIP, Part 1, 2–4
GKS$STROKE_FONT1, Part 1, 2–4
GKS$WSTYPE, Part 1, 2–4
search order, Part 1, 2–3
types, Part 1, 2–3
VMS

default, Part 1, 2–2
GKS$CONID, Part 1, 2–2
GKS$ERRFILE, Part 1, 2–5
GKS$WSTYPE, Part 1, 2–3

Logical types
list of, Part 2, B–11

M
Mapping

See also Transformations
color indexes, Part 1, 5–4, 5–6
device transformations, Part 1, 7–7

Markers, Part 1, 5–19, 5–20
See also Attributes
See also Output
size, Part 1, 6–36
types, Part 1, 6–37

Marker types
DEC GKS implementation-specific

list of, Part 2, B–11
standard

list of, Part 2, B–11
Matrix

See also Rotation
See also Scale
See also Translation
segment transformation, Part 1, 8–8

Matrixes
view mapping, Part 1, 7–7
view orientation, Part 1, 7–7

Measure
See also Logical input devices
cycling input device control, Part 1, 9–14

Menus
See also Choice
input, Part 1, 9–4

MESSAGE function, Part 1, 4–19
example, Part 1, 9–87

Messages
See also Errors
error, Part 2, A–1 to A–37
produced by error handler, Part 2, 12–2
sent to workstations, Part 1, 4–19

Metafile functions, Part 1, 1–4, 10–5 to 10–9
introduction to, Part 1, 10–1 to 10–5

Metafiles, Part 1, 10–1
creating, Part 1, 10–1
creating CGM metafiles, Part 1, 10–3
current item, Part 1, 10–4
item header, Part 1, 10–2
list of errors, Part 2, A–14 to A–15
reading, Part 1, 10–4 to 10–5
reproducing pictures, Part 1, 10–1
reserved data numbers, Part 1, 10–5
structure, Part 1, 10–2
user-defined data, Part 1, 10–5
workstation categories, Part 1, 4–2

Mirror images
2D cell arrays, Part 1, 5–4
3D cell arrays, Part 1, 5–6

Mode
See also Input
control

SET CHOICE MODE, Part 1, 9–80
SET LOCATOR MODE, Part 1, 9–81
SET PICK MODE, Part 1, 9–82
SET STRING MODE, Part 1, 9–83
SET STROKE MODE, Part 1, 9–84
SET VALUATOR MODE, Part 1, 9–85

event, Part 1, 9–2, 9–3, 9–17
AWAIT EVENT, Part 1, 9–22
FLUSH DEVICE EVENTS, Part 1, 9–24
GET CHOICE, Part 1, 9–25
GET LOCATOR, Part 1, 9–26
GET LOCATOR 3, Part 1, 9–27
GET PICK, Part 1, 9–28
GET STRING, Part 1, 9–29
GET STROKE, Part 1, 9–30
GET STROKE 3, Part 1, 9–32
GET VALUATOR, Part 1, 9–34

input operating, Part 1, 9–2, 9–3, 9–14
request, Part 1, 9–2, 9–3, 9–15

REQUEST CHOICE, Part 1, 9–59
REQUEST LOCATOR, Part 1, 9–60
REQUEST LOCATOR 3, Part 1, 9–61

Index–16

Mode
request (cont’d)

REQUEST PICK, Part 1, 9–62
REQUEST STRING, Part 1, 9–63
REQUEST STROKE, Part 1, 9–65
REQUEST STROKE 3, Part 1, 9–67
REQUEST VALUATOR, Part 1, 9–69

sample, Part 1, 9–2, 9–3, 9–16
SAMPLE CHOICE, Part 1, 9–70
SAMPLE LOCATOR, Part 1, 9–71
SAMPLE LOCATOR 3, Part 1, 9–72
SAMPLE PICK, Part 1, 9–73
SAMPLE STRING, Part 1, 9–74
SAMPLE STROKE, Part 1, 9–75
SAMPLE STROKE 3, Part 1, 9–77
SAMPLE VALUATOR, Part 1, 9–79

Model
color, Part 1, 6–15

Multiple tranformations
See also Segments
See also Transformations

N
Names

error messages, Part 2, 12–2
segment, Part 1, 8–1

NDC
See also Transformations
See Normalized device coordinates
fixed points, Part 1, 8–7

New frame necessary at update entry, Part 1, 8–4
New frame action necessary states

list of, Part 2, B–11
Nominal sizes, Part 1, 6–1
Nongeometric attributes, Part 1, 6–1

See also Attributes
Normalization

clipping, Part 1, 7–4
overlapping viewports, Part 1, 7–6
transformations, Part 1, 1–3

maximum number, Part 1, 7–5
viewports, Part 1, 7–4
windows, Part 1, 7–3

Normalization transformations
See also Transformations
See Transformations

Normalized device coordinates, Part 1, 7–1
Normalized projection coordinates, Part 1, 7–1,

7–7
NPC

See Normalized projection coordinates
Numbers

See also Errors
See also Input
error, Part 2, A–1
error messages

Numbers
error messages (cont’d)

handling, Part 2, 12–2

O
OFF

error state, Part 2, 12–1
ON

error state, Part 2, 12–1
One-to-one

See also Mapping
OPEN GKS function, Part 1, 4–20

example, Part 1, 4–27
Opening

GKS, Part 1, 4–4
GKSM metafile workstations, Part 1, 10–1
segments, Part 1, 4–5, 8–1
workstations, Part 1, 4–4

Opening a workstation, Part 1, 2–2, 3–3
OPEN WORKSTATION function, Part 1, 4–21

example, Part 1, 4–27
Operating modes

input, Part 1, 9–2, 9–3, 9–14 to 9–19
Operating states, Part 1, 4–3

list of errors, Part 2, A–1 to A–2
using output, Part 1, 5–1

Operating system
ULTRIX, Part 1, 3–1

Order
See also Transformations
viewport input priority, Part 1, 7–6

Origin
See also Transformations
world coordinate system, Part 1, 7–3

Output
See also Attributes
altering the primitive, Part 1, 5–2
attribute functions

See Attribute functions, Part 1, 6–1
attributes, Part 1, 1–3, 5–2
bound attributes, Part 1, 6–1
default windows and viewports, Part 1, 5–2
deferral, Part 1, 4–6, 5–3

DECwindows, Part 1, 1–7
list of errors, Part 2, A–10 to A–11
list of primitives, Part 1, 1–2
lost during transformations, Part 1, 7–8
metafiles, Part 1, 10–1, 10–2
pick identification, Part 1, 8–2
pictures, Part 1, 7–1
segments, Part 1, 8–1
valid operating states, Part 1, 5–1
workstation categories, Part 1, 4–2, 5–1

Output attributes
See Attributes

Index–17

Output functions, Part 1, 5–1 to 5–27
introduction to, Part 1, 5–1 to 5–3

Overflow
event input queue, Part 1, 9–18

Overlapping
See also Transformations
segments, Part 1, 8–6
viewports, Part 1, 7–6, 9–19

P
Parallel projection, Part 1, 7–7
Pascal programming information, Part 2, D–5
Passing by descriptor, Part 2, D–2

problems, Part 2, D–1
Passing mechanisms

arguments, Part 1, 1–6
Pasteboard

See also Transformations
normalization viewport, Part 1, 7–5

Path
See also Text
text, Part 1, 6–57

Patterns, Part 1, 6–27
See also Attributes
fill areas, Part 1, 5–8, 5–9
reference points, Part 1, 6–38
reference point vector, Part 1, 6–39
representation, Part 1, 6–40
specifying size, Part 1, 6–41
style index values, Part 1, 6–31

Pending
See also Implicit regenerations
bundle changes, Part 1, 4–7
output generation, Part 1, 4–6
segment attribute changes, Part 1, 4–7
workstation transformations, Part 1, 4–7

Perspective projection, Part 1, 7–7
Physical input devices, Part 1, 9–1
pi, Part 1, 8–8
Pick

See also Input
See also Segments
identifier, Part 1, 8–2, 9–4
input class, Part 1, 9–4
segment detectability, Part 1, 8–5
specifying NOPICK input, Part 1, 9–16
visibility, Part 1, 8–10

Pick status types
list of, Part 2, B–12

Pictures
See also Output
See also Transformations
composition, Part 1, 1–3, 7–1
reproducing

metafiles, Part 1, 10–1

Pipeline
See also Segments

Plotting
See also Transformations
pictures, Part 1, 7–1

Pointers
See also Bundles
into bundle tables, Part 1, 6–3

Points
See also Transformations
coordinate, Part 1, 7–1
pattern reference, Part 1, 6–38, 6–39
segments

fixed points, Part 1, 8–7
viewport input priority, Part 1, 7–6

Polygons
See also Attributes
See also Output
fill areas, Part 1, 5–8, 5–9
using GKS3D$POLYLINE3 function, Part 1,

5–18
using GKS3D$POLYLINE function, Part 1,

5–17
Polyline

See also Attributes
See also Output
attributes

SET LINETYPE, Part 1, 6–34
SET LINEWIDTH SCALE FACTOR, Part

1, 6–35
SET POLYLINE COLOUR INDEX, Part 1,

6–43
bundles, Part 1, 6–44
line type, Part 1, 1–3, 6–34
representation, Part 1, 6–45

POLYLINE 3 function, Part 1, 5–18
POLYLINE function, Part 1, 5–17

example, Part 1, 6–66
Polylines

initial attributes, Part 2, E–1
Polymarker

See also Output
See also Transformations
attributes

SET MARKER SIZE SCALE FACTOR,
Part 1, 6–36

SET MARKER TYPE, Part 1, 6–37
SET POLYMARKER COLOUR INDEX,

Part 1, 6–47
SET POLYMARKER INDEX, Part 1, 6–48

bundle table, Part 1, 6–48
representation, Part 1, 6–49

POLYMARKER 3 function, Part 1, 5–20
POLYMARKER function, Part 1, 5–19

example, Part 1, 6–69

Index–18

Polymarkers
initial attributes, Part 2, E–1 to E–2

Positioning
primitives, Part 1, 7–5

Precision
text, Part 1, 6–54

Presentation
See also Transformations
pictures, Part 1, 7–7

Primitives
See also Attributes
See also Output
attributes, Part 1, 6–1
bound attributes, Part 1, 6–1
clipping segments, Part 1, 8–9
highlighting, Part 1, 8–6
input prompt and echo types, Part 1, 9–5
list, Part 1, 1–2
lost during regeneration, Part 1, 4–7
lost during transformations, Part 1, 7–8
output, Part 1, 5–1 to 5–3
pick identification, Part 1, 8–2
reproducing

metafiles, Part 1, 10–1
segment detectability, Part 1, 8–5
segments, Part 1, 8–1
transformation, Part 1, 7–3

Priority
See also Input
segments, Part 1, 8–6
viewport input, Part 1, 7–6, 9–19

Program examples, Part 2, C–1 to C–3
Programming

See also GKS
BASIC, Part 2, D–2
C, Part 2, D–2
COBOL, Part 2, D–2
device-independent input, Part 1, 9–20
error handling, Part 2, 12–1
language-specific information, Part 2, D–1
Pascal, Part 2, D–5

Programs
execution of, Part 1, 2–2, 3–2
pausing, Part 1, 1–7

Projections
parallel, Part 1, 7–7
perspective, Part 1, 7–7

Projection types
list of, Part 2, B–12

Prompt and echo types, Part 1, 9–2, 9–5 to 9–14
See also Input
standard data records, Part 1, 9–8

Proportionate
See also Transformations

Q
Queue

event input, Part 1, 9–17

R
Radians

translating to degrees, Part 1, 8–8
Ranges

See also Transformations
windows and viewports, Part 1, 7–3

Ratio
See also Transformations

Reading a metafile, Part 1, 10–4
READ ITEM FROM GKSM function, Part 1, 10–8
READ ITEM FROM METAFILE

See READ ITEM FROM GKSM function
Realized values, Part 2, 11–4
Real numbers

input, Part 1, 9–4
Records

See also Escapes
See also GDPs
See also Input
escape data, Part 1, 4–16
input, Part 1, 9–8

prompt and echo types, Part 1, 9–5 to 9–14
standard, Part 1, 9–8

Rectangles
See also Attributes
See also Tranformations
clipping, Part 1, 7–4

segments, Part 1, 8–9
REDRAW ALL SEGMENTS ON WORKSTATION

function, Part 1, 4–22
example, Part 1, 8–28

Regeneration flag states
list of, Part 2, B–12

Regenerations
segments, Part 1, 8–3
workstation surface, Part 1, 4–7
workstation transformations, Part 1, 7–8

Releasing
DEC GKS buffers, Part 1, 4–11

RENAME SEGMENT function, Part 1, 8–21
Renaming

segments, Part 1, 8–1
Reports

current event on input queue, Part 1, 9–17
Representation

See also Attributes
bundle table entries, Part 1, 6–3
color, Part 1, 6–16
edge, Part 1, 6–21
fill area, Part 1, 6–29

Index–19

Representation (cont’d)
functions, Part 1, 6–4
implicit regenerations, Part 1, 6–4
pattern, Part 1, 6–40
polyline, Part 1, 6–45
polymarker, Part 1, 6–49
text, Part 1, 6–59

Reproducing
metafiles, Part 1, 10–1

REQUEST CHOICE function, Part 1, 9–59
REQUEST functions, Part 1, 9–2, 9–3, 9–15
REQUEST LOCATOR 3 function, Part 1, 9–61
REQUEST LOCATOR function, Part 1, 9–60
Request mode, Part 1, 9–15 to 9–16

See also Input
breaking, Part 1, 9–15

REQUEST PICK function, Part 1, 9–62
REQUEST STRING function, Part 1, 9–63

example, Part 1, 9–99
REQUEST STROKE 3 function, Part 1, 9–67
REQUEST STROKE function, Part 1, 9–65
REQUEST VALUATOR function, Part 1, 9–69
Returned type values

list of, Part 2, B–12
Reverse video

highlighting segments, Part 1, 8–6
Rotation

fixed points, Part 1, 8–7
segments, Part 1, 8–7

RUN DCL command, Part 1, 2–2

S
SAMPLE CHOICE function, Part 1, 9–70
SAMPLE functions, Part 1, 9–16
SAMPLE LOCATOR 3 function, Part 1, 9–72
SAMPLE LOCATOR function, Part 1, 9–71
Sample mode, Part 1, 9–16
SAMPLE PICK function, Part 1, 9–73

example, Part 1, 9–92
SAMPLE STRING function, Part 1, 9–74
SAMPLE STROKE 3 function, Part 1, 9–77
SAMPLE STROKE function, Part 1, 9–75
SAMPLE VALUATOR function, Part 1, 9–79

example, Part 1, 9–103
Scale

See also Segments
edge width factor, Part 1, 6–24
fixed points, Part 1, 8–7
segments, Part 1, 8–7
valuator input, Part 1, 9–4

Scale factors, Part 1, 6–1
Scratch pad

See also Transformations
normalization window, Part 1, 7–5

Segment functions, Part 1, 8–1 to 8–41
introduction to, Part 1, 8–1 to 8–10

Segments
accumulated transformations, Part 1, 8–9
associating, Part 1, 8–3
attributes, Part 1, 8–5

SET DETECTABILITY, Part 1, 8–22
SET HIGHLIGHTING, Part 1, 8–23
SET SEGMENT PRIORITY, Part 1, 8–24
SET VISIBILITY, Part 1, 8–27

clipping, Part 1, 8–9
closing, Part 1, 4–5
copying, Part 1, 8–3
creating, Part 1, 4–5, 8–1
deleting, Part 1, 8–2
detectability, Part 1, 8–5
highlighting, Part 1, 8–6
initial attributes, Part 2, E–4
input, Part 1, 8–2
inserting, Part 1, 8–3
list of errors, Part 2, A–11 to A–12
metafiles, Part 1, 10–2
names, Part 1, 8–1
opening, Part 1, 4–5, 8–1
order of transformation, Part 1, 8–9
overlapping, Part 1, 8–6
priority, Part 1, 8–6
redrawn, Part 1, 4–7
renaming, Part 1, 8–1
rotating, Part 1, 8–7
scaling, Part 1, 8–7
selecting a transformation, Part 1, 8–8
state list, Part 1, 8–1
storage, Part 1, 8–2
surface update, Part 1, 8–3
transformation, Part 1, 8–7 to 8–9

ACCUMULATE TRANSFORMATION
MATRIX, Part 1, 7–10

ACCUMULATE TRANSFORMATION
MATRIX 3, Part 1, 7–12

EVALUATE TRANSFORMATION MATRIX,
Part 1, 7–14

EVALUATE TRANSFORMATION MATRIX
3, Part 1, 7–16

EVALUATE VIEW MAPPING MATRIX 3,
Part 1, 7–18

EVALUATE VIEW ORIENTATION
MATRIX 3, Part 1, 7–20

SET SEGMENT TRANSFORMATION,
Part 1, 8–25

SET SEGMENT TRANSFORMATION 3,
Part 1, 8–26

transformation matrix, Part 1, 8–8
translating, Part 1, 8–7
view mapping matrix 3, Part 1, 7–18
view orientation matrix 3, Part 1, 7–20
visibility, Part 1, 8–10
WDSS, Part 1, 8–2

Index–20

Segments (cont’d)
WISS, Part 1, 8–3

SELECT NORMALIZATION TRANSFORMATION
function, Part 1, 7–22

example, Part 1, 7–45
SET ASPECT SOURCE FLAGS 3 function, Part

1, 6–9
SET ASPECT SOURCE FLAGS function, Part 1,

6–7
example, Part 1, 6–63

SET CHARACTER EXPANSION FACTOR
function, Part 1, 6–11

SET CHARACTER HEIGHT function, Part 1,
6–12

example, Part 1, 6–69
SET CHARACTER SPACING function, Part 1,

6–13
SET CHARACTER UP VECTOR function, Part 1,

6–14
SET CHOICE MODE function, Part 1, 9–80
SET CLIPPING INDICATOR function, Part 1,

7–23
example, Part 1, 7–45

SET COLOUR MODEL function, Part 1, 6–15
SET COLOUR REPRESENTATION function,

Part 1, 6–16
example, Part 1, 6–61

SET DEFERRAL STATE function, Part 1, 4–23
example, Part 1, 5–23

SET DETECTABILITY function, Part 1, 8–22
example, Part 1, 9–92

SET EDGE COLOUR INDEX function, Part 1,
6–18

SET EDGE FLAG function, Part 1, 6–19
SET EDGE INDEX function, Part 1, 6–20
SET EDGE REPRESENTATION function, Part 1,

6–21
SET EDGETYPE function, Part 1, 6–23
SET EDGEWIDTH SCALE FACTOR function,

Part 1, 6–24
SET ERROR HANDLER function, Part 2, 12–6
SET FILL AREA COLOUR INDEX function, Part

1, 6–25
example, Part 1, 6–61

SET FILL AREA INDEX function, Part 1, 6–26
example, Part 1, 6–63

SET FILL AREA INTERIOR STYLE function,
Part 1, 6–27

example, Part 1, 6–61
SET FILL AREA REPRESENTATION function,

Part 1, 6–29
example, Part 1, 6–63

SET FILL AREA STYLE INDEX function, Part 1,
6–31

SET HIGHLIGHTING function, Part 1, 8–23
example, Part 1, 8–38

SET HLHSR IDENTIFIER function, Part 1, 6–32
SET HLHSR MODE function, Part 1, 6–33
SET LINE COLOUR INDEX

See SET POLYLINE COLOUR INDEX function
SET LINE INDEX

See SET POLYLINE INDEX function
SET LINE REPRESENTATION

See SET POLYLINE REPRESENTATION
function

SET LINETYPE function, Part 1, 6–34
example, Part 1, 6–66

SET LINEWIDTH SCALE FACTOR function,
Part 1, 6–35

SET LOCATOR MODE function, Part 1, 9–81
example, Part 1, 9–87

SET MARKER COLOUR INDEX
See SET POLYMARKER COLOUR INDEX

function
SET MARKER INDEX

See SET POLYMARKER INDEX function
SET MARKER REPRESENTATION

See SET POLYMARKER REPRESENTATION
function

SET MARKER SIZE SCALE FACTOR function,
Part 1, 6–36

SET MARKER TYPE function, Part 1, 6–37
example, Part 1, 6–69

SET MODE functions, Part 1, 9–2, 9–3, 9–14,
9–15, 9–16

SET PATTERN REFERENCE POINT AND
VECTORS function, Part 1, 6–39

SET PATTERN REFERENCE POINT function,
Part 1, 6–38

SET PATTERN REPRESENTATION function,
Part 1, 6–40

SET PATTERN SIZE function, Part 1, 6–41
SET PICK IDENTIFIER function, Part 1, 6–42

example, Part 1, 9–92
SET PICK MODE function, Part 1, 9–82

example, Part 1, 9–92
SET POLYLINE COLOUR INDEX function, Part

1, 6–43
SET POLYLINE INDEX function, Part 1, 6–44
SET POLYLINE REPRESENTATION function,

Part 1, 6–45
SET POLYLINE TYPE

See SET LINETYPE function
SET POLYLINE WIDTH SCALE FACTOR

See SET LINEWIDTH SCALE FACTOR
function

SET POLYMARKER COLOUR INDEX function,
Part 1, 6–47

example, Part 1, 6–69
SET POLYMARKER INDEX function, Part 1,

6–48

Index–21

SET POLYMARKER REPRESENTATION
function, Part 1, 6–49

SET POLYMARKER SIZE SCALE FACTOR
See SET MARKER SIZE SCALE FACTOR

function
SET POLYMARKER TYPE

See SET MARKER TYPE function
SET SEGMENT PRIORITY function, Part 1, 8–24
SET SEGMENT TRANSFORMATION 3 function,

Part 1, 8–26
SET SEGMENT TRANSFORMATION function,

Part 1, 8–25
example, Part 1, 7–36

SET STRING MODE function, Part 1, 9–83
SET STROKE MODE function, Part 1, 9–84
SET TEXT ALIGNMENT function, Part 1, 6–51

example, Part 1, 6–69
SET TEXT COLOUR INDEX function, Part 1,

6–53
SET TEXT EXPANSION FACTOR

See SET CHARACTER EXPANSION FACTOR
function

SET TEXT FONT AND PRECISION function,
Part 1, 6–54

SET TEXT HEIGHT
See SET CHARACTER HEIGHT function

SET TEXT INDEX function, Part 1, 6–56
SET TEXT PATH function, Part 1, 6–57

example, Part 1, 6–69
SET TEXT REPRESENTATION function, Part 1,

6–59
SET TEXT SPACING

See SET CHARACTER SPACING function
SET TEXT UP VECTOR

See SET CHARACTER UP VECTOR function
Settings

See also Attributes
See also Transformations
attribute values, Part 1, 6–1
pattern sizes, Part 1, 6–41
segment transformations, Part 1, 8–8

SET VALUATOR MODE function, Part 1, 9–85
example, Part 1, 9–103

Set values, Part 2, 11–4
SET VIEW INDEX function, Part 1, 7–24
SET VIEWPORT 3 function, Part 1, 7–28
SET VIEWPORT function, Part 1, 7–27

example, Part 1, 7–45
SET VIEWPORT INPUT PRIORITY function,

Part 1, 7–29
SET VIEW REPRESENTATION 3 function, Part

1, 7–18, 7–25
SET VIEW TRANSFORMATION INPUT

PRIORITY function, Part 1, 7–26
SET VISIBILITY function, Part 1, 8–27

SET WINDOW 3 function, Part 1, 7–31
SET WINDOW function, Part 1, 7–30

example, Part 1, 7–45
SET WORKSTATION VIEWPORT 3 function,

Part 1, 7–33
SET WORKSTATION VIEWPORT function, Part

1, 7–32
example, Part 1, 7–49

SET WORKSTATION WINDOW 3 function, Part
1, 7–35

SET WORKSTATION WINDOW function, Part 1,
7–34

Shift segments, Part 1, 8–7
Shrink segments, Part 1, 8–7
Simultaneous events flags

list of, Part 2, B–12
SIZEOF function, Part 1, 9–86
Sizes

input data record, Part 1, 9–20
markers, Part 1, 6–36
patterns, Part 1, 6–41
segments, Part 1, 8–8

Software fonts, Part 1, 6–54
Solid

See also Attributes
fill area interior style, Part 1, 6–27
fill areas, Part 1, 5–8, 5–9

Spacing
text, Part 1, 6–13

Standards
See also ANSI
See also GKS
DEC GKS escape data records, Part 1, 4–16
metafiles, Part 1, 10–1

State lists
GKS, Part 1, 4–3, 4–20, 8–1; Part 2, 11–1

attributes, Part 1, 6–1
segment, Part 1, 4–3, 8–1
segments, Part 2, 11–1
surface control entries, Part 1, 4–8
workstation, Part 1, 4–3; Part 2, 11–1

attributes, Part 1, 6–3
Statements

include, Part 1, 2–1, 3–1
States

error, Part 2, 12–1
operating, Part 1, 4–3

Status
inquiry error status argument, Part 2, 11–3

Storage
metafiles, Part 1, 1–4, 10–1
segments, Part 1, 8–2

Strings
See also Text
input class, Part 1, 9–4

Index–22

Stroke
input class, Part 1, 9–4
viewport input priority, Part 1, 9–19
viewport priority, Part 1, 7–6

Structure
metafiles, Part 1, 10–2

Styles
See also Attributes
fill areas, Part 1, 6–31

Surface
See also Implicit regenerations
control, Part 1, 4–6
foreground and background colors, Part 1, 6–5
implicit regenerations

attribute changes, Part 1, 6–4
regeneration, Part 1, 4–7
state list entries, Part 1, 4–8
update

segments, Part 1, 8–3
Symbols

polymarkers, Part 1, 5–19, 5–20
Synchronous input, Part 1, 9–14

See also Input
Syntax

format, Part 1, 1–5
System defaults file, Part 1, 3–7
System errors

list of, Part 2, A–16 to A–19

T
Tables

See also Attributes
See also Bundles
attribute bundle, Part 1, 6–3
color index, Part 1, 6–16
edge bundle index, Part 1, 6–21
fill area bundle index, Part 1, 6–29
GKS description, Part 2, 11–1
pattern style bundle index, Part 1, 6–40
polyline bundle index, Part 1, 6–45
polymarker bundle index, Part 1, 6–49
text bundle index, Part 1, 6–59
workstation description, Part 2, 11–1

Terminate
GKS environment, Part 1, 4–11
workstation environment, Part 1, 4–12

Terminating
error handling, Part 2, 12–1
request input, Part 1, 9–15

Text, Part 1, 5–21
See also Attributes
See also TEXT function
alignment, Part 1, 6–51
attributes

SET CHARACTER EXPANSION FACTOR,
Part 1, 6–11

Text
attributes (cont’d)

SET CHARACTER HEIGHT, Part 1, 6–12
SET CHARACTER SPACING, Part 1, 6–13
SET CHARACTER UP VECTOR, Part 1,

6–14
SET TEXT ALIGNMENT, Part 1, 6–51
SET TEXT COLOUR INDEX, Part 1, 6–53
SET TEXT FONT AND PRECISION, Part

1, 6–54
SET TEXT INDEX, Part 1, 6–56
SET TEXT PATH, Part 1, 6–57

bundles, Part 1, 6–56
character width, Part 1, 6–11
expansion factor, Part 1, 6–11
fonts, Part 1, 6–54
height, Part 1, 6–12
initial attributes, Part 2, E–2
input, Part 1, 9–4
path, Part 1, 6–57
precision, Part 1, 6–54
representation, Part 1, 6–59
spacing, Part 1, 6–13
up-vector, Part 1, 6–14

TEXT 3 function, Part 1, 5–22
TEXT function, Part 1, 5–21

example, Part 1, 6–69
Text horizontal alignment types

list of, Part 2, B–12
Text path types

list of, Part 2, B–12
Text precision types

list of, Part 2, B–13
Text vertical alignment types

list of, Part 2, B–13
Toggling

logical input device control, Part 1, 9–14
Transformation functions, Part 1, 7–1 to 7–53

introduction to, Part 1, 7–1 to 7–8
transformation matrix, Part 1, 7–10, 7–14
transformation matrix 3, Part 1, 7–12, 7–16

Transformations
device, Part 1, 7–7
identity, Part 1, 7–7
identity (segment), Part 1, 8–8
implicit regenerations, Part 1, 7–8
input change vectors, Part 1, 9–5
list of errors, Part 2, A–5 to A–6
metafiles, Part 1, 10–2
normalization, Part 1, 1–3, 7–3 to 7–6

clipping, Part 1, 7–4
initial attributes, Part 2, E–4
maximum number, Part 1, 7–5
overlapping viewports, Part 1, 7–6
text height, Part 1, 6–12

normalization viewports, Part 1, 7–4
normalization windows, Part 1, 7–3
overlapping viewports, Part 1, 9–19

Index–23

Transformations (cont’d)
segments, Part 1, 8–7 to 8–9

accumulating, Part 1, 8–9
fixed points, Part 1, 8–7
matrix, Part 1, 8–8

unity, Part 1, 7–4
used for output, Part 1, 5–2
view, Part 1, 7–7
viewport input priority, Part 1, 9–19
workstation, Part 1, 1–3

Translations
segments, Part 1, 8–7
viewport input priority, Part 1, 7–6

Transporting
metafiles, Part 1, 10–1

Transposing
pictures, Part 1, 7–4

Triggers
input, Part 1, 9–3, 9–15

Truncation
metafile data record, Part 1, 10–8

Types
edge type, Part 1, 6–23
inquiry value type argument, Part 2, 11–4
lines, Part 1, 6–34
markers, Part 1, 6–37
prompt and echo, Part 1, 9–5 to 9–14
workstation

metafile, Part 1, 10–1
workstations, Part 1, 4–2

U
ULTRIX linking

RISC processors, Part 1, 3–2
ULTRIX operating system, Part 1, 3–1 to 3–8
Unity transformation, Part 1, 7–4
Update

See also Implicit regenerations
attribute changes, Part 1, 6–4
regenerating the surface, Part 1, 4–7
releasing deferred output, Part 1, 4–6
surface

segments, Part 1, 8–3
the workstation surface, Part 1, 4–6

Update states
list of, Part 2, B–13

UPDATE WORKSTATION function, Part 1, 4–25
example, Part 1, 4–27

Up-vector
text, Part 1, 6–14

User defaults file, Part 1, 3–7
User defined

error handler, Part 2, 12–1

V
Valuator

input class, Part 1, 9–4
Values

attribute, Part 1, 6–1
initial attribute, Part 2, E–1 to E–4
maximum device coordinates, Part 1, 7–8
of constants, Part 2, B–1 to B–17

VAX languages, Part 2, D–1
Vectors

See also GDPs
See also Segments
pattern reference point, Part 1, 6–39
text up-vector, Part 1, 6–14
translation point, Part 1, 8–7

Vertical alignment types
list of, Part 2, B–13

View
reference plane, Part 1, 7–21
transformations, Part 1, 7–7
volume, Part 1, 7–19

View mapping matrix, Part 1, 7–7
View orientation matrix, Part 1, 7–7
View plane, Part 1, 7–7
Viewport priority states

list of, Part 2, B–13
Viewports

See also Transformations
input priority, Part 1, 7–6, 9–19
normalization, Part 1, 7–4

initial value, Part 2, E–4
overlapping, Part 1, 7–6, 9–19
workstation, Part 1, 7–7

View reference coordinates, Part 1, 7–1
VRC, Part 1, 7–7

View table, Part 1, 7–7
Visibility flags

list of, Part 2, B–13
Visibility segments, Part 1, 8–10
Visual interface

See also Input
input prompt and echo types, Part 1, 9–5 to

9–14
VMS logical names

GKS$CONID, Part 1, 2–2
GKS$ERRFILE, Part 1, 2–5
GKS$WSTYPE, Part 1, 2–3

VRC
See View reference coordinates

Index–24

W
WDSS, Part 1, 8–2

See also Segments
Width

See also Attributes
See also Transformations
character, Part 1, 6–11
lines, Part 1, 6–35

Windows
See also Transformations
normalization

initial value, Part 2, E–4
workstation, Part 1, 7–7

WISS, Part 1, 4–2, 8–3
Workstation category types

list of, Part 2, B–13
Workstation class types

list of, Part 2, B–14
Workstation color availability states

list of, Part 2, B–14
Workstation identifier, Part 1, 9–1
Workstation MI types

list of, Part 2, B–14
Workstation MO types

list of, Part 2, B–14
Workstations

activating, Part 1, 4–5
attributes, Part 1, 6–1
clearing the surface, Part 1, 4–10
closing, Part 1, 4–5
deactivating, Part 1, 4–5
definition of, Part 1, 4–2
description tables, Part 1, 4–1
device coordinates, Part 1, 7–1
device manipulation

GKS3D$ESCAPE, Part 1, 4–14
device number, Part 1, 9–1
environment, Part 1, 4–1

initializing, Part 1, 4–21
terminating, Part 1, 4–12

foreground and background colors, Part 1, 6–5
identifiers

input, Part 1, 9–1
implicit regenerations

transformations, Part 1, 7–8
list of errors, Part 2, A–3 to A–5
maximum device coordinates, Part 1, 7–8
nominal sizes, Part 1, 6–1
opening, Part 1, 4–4
sending messages to, Part 1, 4–19
state list

attributes, Part 1, 6–3
color table, Part 1, 6–15, 6–16
edge bundle table, Part 1, 6–21
fill area bundle table, Part 1, 6–29
pattern style bundle table, Part 1, 6–40

Workstations
state list (cont’d)

polyline bundle table, Part 1, 6–45
polymarker bundle table, Part 1, 6–49
text bundle table, Part 1, 6–59

stored segments, Part 1, 8–1
surface, Part 1, 7–1
surface control, Part 1, 4–6
surface regeneration, Part 1, 4–7
transformations, Part 1, 1–3, 7–7 to 7–8
types, Part 1, 4–2

metafile, Part 1, 10–1
update

segments, Part 1, 8–3
Workstation states

list of, Part 2, B–14
Workstation type

default, Part 1, 2–3, 3–3
defined, Part 1, 2–3, 3–3
specifying on ULTRIX, Part 1, 3–3
specifying on VMS, Part 1, 2–3

Workstation types
list of, Part 2, B–14

World coordinates, Part 1, 7–1
See also Transformations
fixed points, Part 1, 8–7
origin, Part 1, 7–3

WRITE ITEM TO GKSM function, Part 1, 10–9
Writing modes

list of, Part 2, B–16
Writing to metafiles, Part 1, 10–2
WSTYPE/CONID association modes

list of, Part 2, B–17

Index–25

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

