
DEC GKS
CBinding
ReferenceManual,Part 1
Order Number: AA–MJ30C–TE

June 1992

This manual describes the C binding functions provided for DEC GKS™.

Revision/Update Information: This revised manual supersedes
the information in the DEC GKS C
Binding Reference Manual (Order No.
AA–MJ30B–TE).

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, March 1984
Revised, November 1984, May 1986, March 1987, April 1989, February 1990, June 1992

The information in this document is subject to change without notice and should not be construed
as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied
by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1984, 1986, 1987, 1989, 1990, 1992.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical evaluation
to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DDIF, DEC, DEC GKS,
DEC GKS–3D, DECnet, DECstation, DECwindows, LA75, LVP16, MicroVAX, ReGIS, VAX,
VAX Ada, VAX BASIC, VAX C, VAX COBOL, VAX FORTRAN, VAX Pascal, VAXstation,
VAXstation II, VAXstationII/GPX, VMS, VT125, VT240, VT241, VT330, VT340, ULTRIX, ULTRIX
Worksystem Software, and the DIGITAL logo.

BASIC is a registered trademark of Dartmouth College. HP–GL, HP7475, HP7550, HP7580,
HP7585, and Hewlett–Packard are trademarks of Hewlett–Packard Company. Motif and OSF/Motif
are registered trademarks of Open Software Foundation, Inc. MPS–2000 is a trademark of Laser
Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Incorporated. Tektronix is a
registered trademark of Tektronix, Inc.

ZK5680

This manual is available on CDROM.

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . xiii

1 Introduction to DEC GKS

1.1 GKS Function Categories . 1–1
1.2 GKS Levels . 1–4
1.3 Function Presentation Format . 1–4
1.3.1 Function Header . 1–4
1.3.2 Function Operating States . 1–5
1.3.3 Function Syntax . 1–5
1.3.4 Data Structures . 1–6
1.3.5 Constants . 1–6
1.3.6 Function Description . 1–6
1.3.7 See Also Section . 1–6
1.4 DEC GKS Compatibility . 1–8
1.5 Porting DEC GKS Version 4.2 Applications . 1–8
1.6 Porting DEC GKS–3D Version 1.2 Applications . 1–8
1.6.1 Using Compatibility Mode . 1–9
1.6.2 Using Manual Porting . 1–10
1.6.2.1 Changes to Choice Input Devices . 1–10
1.6.2.2 Changes to Locator Input Devices . 1–11
1.6.2.3 Changes to String Input Devices . 1–11
1.6.2.4 Changes to Valuator Input Devices . 1–12
1.6.2.5 Changes to the Gcobundl Data Structure . 1–12
1.6.2.6 Changes to Enumeration Types . 1–12
1.6.2.7 Changes to the Input Inquiry Functions . 1–13

2 VMS Programming Considerations

2.1 Including Definition Files . 2–1
2.2 Compiling, Linking, and Running Your Programs 2–2
2.3 Opening a Workstation . 2–2
2.3.1 Specifying the Connection Identifier . 2–2
2.3.2 Specifying the Workstation Type . 2–2
2.4 DEC GKS Logical Names . 2–3
2.5 Defining Logical Names . 2–3
2.6 Types of Logical Names . 2–3
2.6.1 General Logical Names . 2–3
2.7 Error Handling . 2–4
2.7.1 Error Codes . 2–4
2.7.2 Error Files . 2–4

iii

3 ULTRIX Programming Considerations

3.1 Including Definition Files . 3–1
3.2 Compiling, Linking, and Running Your Programs 3–1
3.2.1 Linking the Program on ULTRIX Systems with RISC Processors 3–2
3.3 Opening a Workstation . 3–2
3.3.1 Specifying the Connection Identifier . 3–2
3.3.2 Specifying the Workstation Type . 3–3
3.4 DEC GKS Environment Variables . 3–3
3.5 Defining Environment Variables . 3–3
3.6 The Default Environment Variable File . 3–4
3.7 Environment Variable Types . 3–5
3.7.1 General Environment Variables . 3–5
3.8 Error Handling . 3–6
3.8.1 Error Codes . 3–6
3.8.2 Error Files . 3–6
3.9 Configuration Files . 3–7
3.9.1 Customizing the Configuration File at System Level 3–7
3.9.2 Customizing the Configuration File at User Level 3–7

4 Control Functions

4.1 The Kernel, Graphics Handlers, and Description Tables 4–1
4.1.1 Workstations . 4–2
4.1.2 Operating States and State Lists . 4–3
4.2 Controlling the Workstation Display Surface . 4–6
4.2.1 Output Deferral . 4–6
4.2.2 Implicit Surface Regenerations . 4–7
4.2.3 Workstation Surface State List Entries . 4–8
4.3 Control Inquiries . 4–8
4.4 Function Descriptions . 4–8

ACTIVATE WORKSTATION . 4–9
CLEAR WORKSTATION . 4–10
CLOSE GKS . 4–11
CLOSE WORKSTATION . 4–12
DEACTIVATE WORKSTATION . 4–13
ESCAPE . 4–14
MESSAGE . 4–17
OPEN GKS . 4–18
OPEN WORKSTATION . 4–19
REDRAW ALL SEGMENTS ON WORKSTATION 4–20
SET DEFERRAL STATE . 4–21
UPDATE WORKSTATION . 4–23

4.5 Program Examples . 4–24

5 Output Functions

5.1 Output and the DEC GKS Operating State . 5–1
5.2 Output Attributes . 5–2
5.3 Transformations and the DEC GKS Coordinate Systems 5–2
5.4 Output Deferral . 5–3
5.5 Output Inquiries . 5–3

iv

5.6 Function Descriptions . 5–3
CELL ARRAY . 5–4
CELL ARRAY 3 . 5–6
FILL AREA . 5–8
FILL AREA 3 . 5–9
FILL AREA SET . 5–10
FILL AREA SET 3 . 5–11
GENERALIZED DRAWING PRIMITIVE . 5–12
GENERALIZED DRAWING PRIMITIVE 3 . 5–14
POLYLINE . 5–16
POLYLINE 3 . 5–17
POLYMARKER . 5–18
POLYMARKER 3 . 5–19
TEXT . 5–20
TEXT 3 . 5–22

5.7 Program Examples . 5–24

6 Attribute Functions

6.1 Types of Attributes . 6–1
6.2 Individual and Bundled Attribute Values . 6–3
6.2.1 Aspect Source Flags (ASFs) . 6–4
6.2.2 Dynamic Changes and Implicit Regeneration 6–4
6.3 Foreground and Background Colors . 6–5
6.4 Attribute Inquiries . 6–5
6.5 Function Descriptions . 6–6

SET ASPECT SOURCE FLAGS . 6–7
SET ASPECT SOURCE FLAGS 3 . 6–9
SET CHARACTER EXPANSION FACTOR . 6–11
SET CHARACTER HEIGHT . 6–12
SET CHARACTER SPACING . 6–13
SET CHARACTER UP VECTOR . 6–14
SET COLOUR MODEL . 6–16
SET COLOUR REPRESENTATION . 6–17
SET EDGE COLOUR INDEX . 6–19
SET EDGE FLAG . 6–20
SET EDGE INDEX . 6–21
SET EDGE REPRESENTATION . 6–22
SET EDGETYPE . 6–24
SET EDGEWIDTH SCALE FACTOR . 6–25
SET FILL AREA COLOUR INDEX . 6–26
SET FILL AREA INDEX . 6–27
SET FILL AREA INTERIOR STYLE . 6–28
SET FILL AREA REPRESENTATION . 6–29
SET FILL AREA STYLE INDEX . 6–31
SET HLHSR IDENTIFIER . 6–32
SET HLHSR MODE . 6–33
SET LINETYPE . 6–34

v

SET LINEWIDTH SCALE FACTOR . 6–35
SET MARKER SIZE SCALE FACTOR . 6–36
SET MARKER TYPE . 6–37
SET PATTERN REFERENCE POINT . 6–38
SET PATTERN REFERENCE POINT AND VECTORS 6–39
SET PATTERN REPRESENTATION . 6–40
SET PATTERN SIZE . 6–41
SET PICK IDENTIFIER . 6–42
SET POLYLINE COLOUR INDEX . 6–43
SET POLYLINE INDEX . 6–44
SET POLYLINE REPRESENTATION . 6–45
SET POLYMARKER COLOUR INDEX . 6–47
SET POLYMARKER INDEX . 6–48
SET POLYMARKER REPRESENTATION . 6–49
SET TEXT ALIGNMENT . 6–51
SET TEXT COLOUR INDEX . 6–53
SET TEXT FONT AND PRECISION . 6–54
SET TEXT INDEX . 6–56
SET TEXT PATH . 6–57
SET TEXT REPRESENTATION . 6–58

6.6 Program Examples . 6–60

7 Transformation Functions

7.1 World Coordinates and Normalization Transformations 7–3
7.1.1 The Normalized Device Coordinate System . 7–4
7.1.2 Overlapping Viewports . 7–6
7.2 View Transformations . 7–7
7.3 Device Transformations . 7–7
7.4 Transformation Inquiries . 7–9
7.5 Function Descriptions . 7–9

ACCUMULATE TRANSFORMATION MATRIX 7–10
ACCUMULATE TRANSFORMATION MATRIX 3 7–12
EVALUATE TRANSFORMATION MATRIX . 7–14
EVALUATE TRANSFORMATION MATRIX 3 7–16
EVALUATE VIEW MAPPING MATRIX 3 . 7–18
EVALUATE VIEW ORIENTATION MATRIX 3 7–21
SELECT NORMALIZATION TRANSFORMATION 7–23
SET CLIPPING INDICATOR . 7–24
SET VIEW INDEX . 7–25
SET VIEW REPRESENTATION 3 . 7–26
SET VIEW TRANSFORMATION INPUT PRIORITY 7–27
SET VIEWPORT . 7–28
SET VIEWPORT 3 . 7–29
SET VIEWPORT INPUT PRIORITY . 7–30
SET WINDOW . 7–31
SET WINDOW 3 . 7–32
SET WORKSTATION VIEWPORT . 7–33

vi

SET WORKSTATION VIEWPORT 3 . 7–34
SET WORKSTATION WINDOW . 7–35
SET WORKSTATION WINDOW 3 . 7–36

7.6 Program Examples . 7–37

8 Segment Functions

8.1 Creating, Using, and Deleting Segments . 8–1
8.1.1 Pick Identification . 8–2
8.2 Workstations and Segment Storage . 8–2
8.3 Segments and Surface Update . 8–3
8.4 Segment Attributes . 8–5
8.4.1 Detectability . 8–5
8.4.2 Highlighting . 8–6
8.4.3 Priority . 8–6
8.4.4 Transformation . 8–7
8.4.4.1 Normalization and Segment Transformations, and Clipping 8–9
8.4.5 Visibility . 8–10
8.5 Segment Inquiries . 8–10
8.6 Function Descriptions . 8–10

ASSOCIATE SEGMENT WITH WORKSTATION 8–11
CLOSE SEGMENT . 8–12
COPY SEGMENT TO WORKSTATION . 8–13
CREATE SEGMENT . 8–14
DELETE SEGMENT . 8–15
DELETE SEGMENT FROM WORKSTATION 8–16
INSERT SEGMENT . 8–17
INSERT SEGMENT 3 . 8–19
RENAME SEGMENT . 8–21
SET DETECTABILITY . 8–22
SET HIGHLIGHTING . 8–23
SET SEGMENT PRIORITY . 8–24
SET SEGMENT TRANSFORMATION . 8–25
SET SEGMENT TRANSFORMATION 3 . 8–26
SET VISIBILITY . 8–27

8.7 Program Examples . 8–28

9 Input Functions

9.1 Physical Input Devices . 9–1
9.2 Logical Input Devices . 9–1
9.2.1 Identifying a Logical Input Device . 9–1
9.2.2 Controlling the Appearance of the Logical Input Device 9–2
9.2.3 Activating and Deactivating a Logical Input Device 9–2
9.2.4 Initializing a Logical Input Device . 9–3
9.2.5 Obtaining Measures from a Logical Input Device 9–3
9.2.6 The Input Class . 9–3
9.3 Prompt and Echo Types . 9–5

vii

9.3.1 DEC GKS Prompt and Echo Types . 9–6
9.3.1.1 Choice-Class Prompt and Echo Types . 9–6
9.3.1.2 Locator-Class Prompt and Echo Types . 9–6
9.3.1.3 Pick-Class Prompt and Echo Types . 9–7
9.3.1.4 String-Class Prompt and Echo Type . 9–7
9.3.1.5 Stroke-Class Prompt and Echo Types . 9–7
9.3.1.6 Valuator-Class Prompt and Echo Types . 9–8
9.3.2 Input Data Records . 9–8
9.3.2.1 Choice Class . 9–9
9.3.2.2 Locator Class . 9–9
9.3.2.3 Pick Class . 9–11
9.3.2.4 String Class . 9–11
9.3.2.5 Stroke Class . 9–12
9.3.2.6 Valuator Class . 9–13
9.4 Initializing Input . 9–13
9.5 Input Operating Modes . 9–14
9.5.1 Request Mode . 9–14
9.5.2 Sample Mode . 9–15
9.5.3 Event Mode . 9–16
9.5.3.1 Event Input Queue Overflow . 9–17
9.6 Overlapping Viewports . 9–18
9.7 Input Inquiries . 9–19
9.7.1 Default and Current Input Values . 9–19
9.7.2 Device-Independent Programming . 9–20
9.8 Function Descriptions . 9–21

AWAIT EVENT . 9–22
FLUSH DEVICE EVENTS . 9–24
GET CHOICE . 9–25
GET LOCATOR . 9–26
GET LOCATOR 3 . 9–27
GET PICK . 9–28
GET STRING . 9–29
GET STROKE . 9–30
GET STROKE 3 . 9–32
GET VALUATOR . 9–34
INITIALIZE CHOICE . 9–35
INITIALIZE CHOICE 3 . 9–37
INITIALIZE LOCATOR . 9–39
INITIALIZE LOCATOR 3 . 9–43
INITIALIZE PICK . 9–47
INITIALIZE PICK 3 . 9–49
INITIALIZE STRING . 9–51
INITIALIZE STRING 3 . 9–53
INITIALIZE STROKE . 9–55
INITIALIZE STROKE 3 . 9–58
INITIALIZE VALUATOR . 9–61
INITIALIZE VALUATOR 3 . 9–63
REQUEST CHOICE . 9–65
REQUEST LOCATOR . 9–66
REQUEST LOCATOR 3 . 9–68

viii

REQUEST PICK . 9–70
REQUEST STRING . 9–71
REQUEST STROKE . 9–73
REQUEST STROKE 3 . 9–75
REQUEST VALUATOR . 9–77
SAMPLE CHOICE . 9–78
SAMPLE LOCATOR . 9–79
SAMPLE LOCATOR 3 . 9–80
SAMPLE PICK . 9–81
SAMPLE STRING . 9–82
SAMPLE STROKE . 9–83
SAMPLE STROKE 3 . 9–85
SAMPLE VALUATOR . 9–87
SET CHOICE MODE . 9–88
SET LOCATOR MODE . 9–89
SET PICK MODE . 9–90
SET STRING MODE . 9–91
SET STROKE MODE . 9–92
SET VALUATOR MODE . 9–93

9.9 Program Examples . 9–94

10 Metafile Functions

10.1 Creating a GKSM or GKS3 Metafile . 10–1
10.2 Creating a CGM . 10–3
10.3 Reading a GKSM or GKS3 Metafile . 10–4
10.4 Metafile Inquiries . 10–5
10.5 Function Descriptions . 10–5

GET ITEM TYPE FROM GKSM . 10–6
INTERPRET ITEM . 10–7
READ ITEM FROM GKSM . 10–8
WRITE ITEM TO GKSM . 10–9

Index

Examples

4–1 CLEAR WORKSTATION and the GKS Control Functions 4–24
4–2 Supported Escapes Program . 4–26
4–3 VAXstation Output for Escape Program . 4–32
5–1 Cell Array Output . 5–24
5–2 Generalized Drawing Primitive Output . 5–26
6–1 SET COLOUR REPRESENTATION Function 6–60
6–2 SET FILL AREA REPRESENTATION Function 6–62
6–3 SET LINETYPE Function . 6–65
6–4 SET TEXT ALIGNMENT Function . 6–68
7–1 Showing the Cumulative Effect of ACCUMULATE

TRANSFORMATION MATRIX . 7–37

ix

7–2 The Effects of a Segment Transformation . 7–42
7–3 Controlling Clipping at the World Viewport . 7–46
7–4 Establishing a Workstation Viewport . 7–50
8–1 Comparing ASSOCIATE SEGMENT WITH WORKSTATION and

COPY SEGMENT TO WORKSTATION . 8–28
8–2 Inserting a Segment’s Primitives into Another Segment 8–33
8–3 Highlighting a Segment . 8–38
9–1 Using a Locator-Class Logical Input Device in Event Mode 9–94
9–2 Using a Pick-Class Logical Input Device in Sample Mode 9–98
9–3 Using a String-Class Logical Input Device in Request Mode 9–104
9–4 Using a Valuator-Class Logical Input Device in Sample Mode 9–107

Figures

1–1 DEC GKS Output Primitives . 1–3
1–2 Functionality by GKS Levels . 1–5
4–1 CLEAR WORKSTATION and the GKS Control Functions 4–26
5–1 Cell Array Output . 5–25
5–2 Generalized Drawing Primitive Output . 5–27
6–1 SET COLOUR REPRESENTATION Output . 6–62
6–2 SET FILL AREA REPRESENTATION Output 6–65
6–3 SET LINETYPE Output . 6–67
6–4 SET TEXT ALIGNMENT Output . 6–70
7–1 The DEC GKS Two-Dimensional Transformation Pipeline 7–1
7–2 The DEC GKS Three-Dimensional Transformation Pipeline 7–2
7–3 The Clipping Rectangle . 7–5
7–4 First Transformation Component of ACCUMULATE

TRANSFORMATION MATRIX . 7–40
7–5 Fourth Transformation Component of ACCUMULATE

TRANSFORMATION MATRIX . 7–41
7–6 Output Prior to Segment Transformation . 7–44
7–7 Effect of Segment Transformation . 7–45
7–8 SET CLIPPING INDICATOR with Clipping Enabled 7–48
7–9 SET CLIPPING INDICATOR with Clipping Disabled 7–49
7–10 Output Using the Default Normalization Transformation 7–53
7–11 Output After Changes to the Workstation Viewport 7–54
8–1 Output with Two Segments . 8–31
8–2 Output with Associated Segment . 8–32
8–3 Output of Original and Inserted Segments . 8–36
8–4 Output of Redrawn Segments . 8–37
8–5 Output Prior to Highlighting . 8–40
8–6 Effects of SET HIGHLIGHTING . 8–41
9–1 Visual Interfaces for Logical Input Classes . 9–5
9–2 Input Prompt Near the Top of the Screen . 9–98
9–3 Picking the Correct Triangle . 9–104
9–4 Requesting Input from a String-Class Logical Input Device in Request

Mode . 9–107

x

9–5 Workstation Surface after Activating a Valuator-Class Logical Input
Device in Sample Mode . 9–112

Tables

2–1 General Logical Names for DEC GKS . 2–3
3–1 General Environment Variables for DEC GKS 3–5
4–1 Workstation Categories . 4–2
6–1 Geometric and Nongeometric Attributes . 6–2
8–1 Surface Regeneration from Changes to Segments 8–4

xi

Preface

This manual contains complete descriptions for the C binding functions provided
for DEC GKS. Use this reference material to program DEC GKS on any supported
operating system, using any of the languages supported by DEC GKS.

Intended Audience
This manual is for programmers who have experience developing graphics
applications in one of the languages supported by DEC GKS. They also should
be familiar with the principles of programming DEC GKS, as described in the
DEC GKS User’s Guide.

Structure of This Document
This manual is divided into two parts. Each chapter deals with a specific subject
or group of functions, describing the syntax and arguments for each function. The
appendixes provide additional information you may find useful. Part 1 includes
the following chapters:

• Chapter 1 provides an introduction to DEC GKS.

• Chapter 2 provides information about DEC GKS and the VMS™ operating
system.

• Chapter 3 provides information about DEC GKS and the ULTRIX™ operating
system.

• Chapter 4 describes the functions you use to control DEC GKS and
workstation environments.

• Chapter 5 describes the functions you use to generate output primitives.

• Chapter 6 describes the functions you use to generate attributes.

• Chapter 7 describes the functions you use to set up and perform normalization
and workstation transformations.

• Chapter 8 describes the functions you use to store output primitives in
segments.

• Chapter 9 describes the functions you use to accept input from workstations.

• Chapter 10 describes the functions you use to store graphic images as
metafiles.

Part 2 includes the following chapters and appendixes:

• Chapter 11 describes the functions you use to inquire for information about
the capabilities and state of the DEC GKS system.

• Chapter 12 describes the functions you use to handle errors.

xiii

• Appendix A lists DEC GKS error codes, along with the corresponding severity
code and message for each one.

• Appendix B lists constants defined for the C binding interface.

• Appendix C provides an example program written in C using the C binding.

• Appendix D lists the DEC GKS functions and the corresponding C binding
names.

• Appendix E lists specific input values that apply to all DEC GKS workstations
that perform both input and output.

• Appendix F provides implementation-specific information about DEC GKS.

Associated Documents
You may find the following documents useful when using DEC GKS:

• DEC GKS User’s Guide—for programmers who need information that
supplements the DEC GKS binding manuals

• DEC GKS GKS$ Binding Reference Manual—for programmers who need
specific syntax and argument descriptions for the GKS$ binding

• DEC GKS GKS3D$ Binding Reference Manual—for programmers who need
specific syntax and argument descriptions for the GKS3D$ binding

• DEC GKS FORTRAN Binding Reference Manual—for programmers who need
specific syntax and argument descriptions for the FORTRAN binding

• Device Specifics Reference Manual for DEC GKS and DEC PHIGS—for
programmers who need information about specific devices

• Building a Device Handler System for DEC GKS and DEC PHIGS—for
programmers who need to build workstation graphics handlers

The C language binding of GKS follows the standards and conventions of
VAX C™. For information on the C language, see the VAX C documentation set.

xiv

Conventions
The following conventions are used in this manual:

Convention Meaning

RETURN The symbol RETURN represents a single stroke
of the Return key on a terminal.

Boldface text Boldface text represents the introduction of a new
term. In interactive examples, user input appears
in boldface type.

Italic text Italic text indicates a parameter name or a book
name. DEC GKS description table and state list
entry names, and workstation description tables
and state list entry names are also italicized.

UPPERCASE TEXT Uppercase text indicates a DEC GKS function or
symbol name.

.

.

.

A vertical ellipsis indicates that not all of the text
of a program or program output is illustrated.
Only relevant material is shown in the example.

. . . A horizontal ellipsis indicates that additional
arguments, options, or values can be entered.
A comma preceding the ellipsis indicates that
successive items must be separated by commas.

Horizontal ellipses in illustrations indicate that
there is information not illustrated that either
precedes or follows the information included in
the illustration itself.

[] Square brackets, in function synopses and a few
other contexts, indicate that a syntactic element
is optional.

xv

Introduction

Insert tabbed divider here. Then discard this sheet.

1
Introduction to DEC GKS

DEC GKS is a development tool that creates two- and three-dimensional graphics
applications that are system- and device-independent. It is Digital’s level 2c
implementation, compliant with the Graphical Kernel System (GKS) defined
by the American Standards Institute (ANSI X3.124-1985), the International
Standard (ISO/IS 7942), and the Graphical Kernel System for Three Dimensions
(GKS–3D) defined by the International Standard (ISO/IS 8805). The DEC GKS C
binding is based on the ISO GKS DP 8651/4 (first draft) and is extended to three
dimensions by Digital. Future versions of DEC GKS will conform to the ISO GKS
and GKS–3D C binding standards when they become available.

DEC GKS is a system- and device-independent graphics library that enables
the development of GKS applications that can be moved to other platforms
(hardware devices or operating systems) or that generate output on other graphic
devices without modification to the source code. It provides functionality such
as output primitives, logical workstation management, workstation-dependent
and workstation-independent segment storage, six types of logical input
devices, synchronous and asynchronous input, inquiries returning the system’s
capabilities, and metafile input and output.

DEC GKS implements syntactical language bindings. For DEC GKS, these
include the DEC GKS FORTRAN and DEC GKS C bindings. The language
bindings in general, and specifically the FORTRAN binding, provide standard
function names and a standard number of function parameters. If you write
programs to be transported across systems or across GKS implementations, you
should use the appropriate language binding. Digital recommends that you use
the C or FORTRAN language bindings, because you will have better portability
and ease of use.

DEC GKS also implements the functional standard using function names
beginning with the prefixes GKS$ and GKS3D$. If you use the GKS$ or GKS3D$
functions, you have to edit your program if you want to transport the program
across systems or across GKS implementations.

1.1 GKS Function Categories
The DEC GKS function categories are as follows:

• Control

• Output

• Attribute

• Transformation

• Segment

• Input

• Metafile

Introduction to DEC GKS 1–1

Introduction to DEC GKS
1.1 GKS Function Categories

• Inquiry

• Error-Handling

The control functions determine which DEC GKS functions you can call at a
given point in your program. They also control the buffering of output and the
regeneration of segments on the workstation surface.

The output functions produce picture components, called primitives, of the
following types:

• Polylines—Lines

• Polymarkers—Symbols

• Fill Areas—Filled polygons

• Text—Character strings

• Cell Array—Filled cells of a rectangle

• Generalized Drawing Primitives—A workstation-dependent image such as a
circle

Figure 1–1 illustrates possible representations of output primitives.

1–2 Introduction to DEC GKS

Introduction to DEC GKS
1.1 GKS Function Categories

Figure 1–1 DEC GKS Output Primitives

ZK−5346−GE

*
*
*
*

*

hello

Polyline

Polymarker

Fill area

Cell array

Text

GDP

Output attributes affect the appearance of a primitive. For example, by changing
the line type attribute, you can produce solid, dashed, dotted, or dashed-dotted
lines.

Transformations affect the composition of the graphic picture and the
presentation of that picture. There are normalization, workstation, and
viewing transformations. The normalization transformations allow you to use
various coordinate ranges for different primitives within a single picture. In this
way, you can use a coordinate range that suits each particular primitive in a
large picture.

The workstation transformations control the portion of the picture that you see
on the workstation’s surface, and the portion of the surface used to display the
picture. Using workstation transformations, you can pan across a picture, zoom
into a picture, or zoom out of a picture.

The viewing transformations control the orientation and projection of the picture.

The segment functions store and manipulate groups of primitives called
segments.

Introduction to DEC GKS 1–3

Introduction to DEC GKS
1.1 GKS Function Categories

The input functions allow an application to accept data from a user.

The metafile functions allow you to store and recall an audit of calls to DEC GKS
functions. Using metafiles, you can store a DEC GKS session so that another
application can interpret that session, thus reproducing the picture created by the
original application. For more information concerning metafiles, see Chapter 10,
Metafile Functions.

The inquiry functions obtain either default or current information from the
DEC GKS data structures.

The error-handling functions allow you to invoke a user-written error handler
when a call to another DEC GKS function generates an error. For more
information concerning error handling, see Chapter 12.

If you need more tutorial information concerning DEC GKS concepts, see the
DEC GKS User’s Guide.

1.2 GKS Levels
The GKS standard defines levels of a GKS implementation that address the
most common classes of graphic devices and application needs. The levels are
determined primarily by input and output capabilities. The output level values
are represented by the characters m, 0, 1, and 2. The input level values are
represented by the characters a, b, and c.

The DEC GKS software is a level 2c implementation, incorporating all the GKS
output capabilities (level 2) and all the input capabilities (level c). This manual
uses the term DEC GKS when describing the 2c level DEC GKS product.

Figure 1–2 defines the 12 upwardly compatible levels of GKS. DEC GKS
implements all listed functionality.

Pick input is one of the DEC GKS logical input classes used to specify segments
present on the surface of a device. Request, sample, and event are GKS input
operating modes. DEC GKS supports all three input operating modes. For more
information on pick input or operating modes, see Chapter 9, Input Functions.

Workstation independent segment storage (WISS) provides a way to store
segments so that one segment can be transported to different devices. For more
information, see Chapter 8, Segment Functions.

1.3 Function Presentation Format
The following sections describe the format used to present each of the DEC GKS
function descriptions.

1.3.1 Function Header
Each function header in this manual includes the English version of the function
name at the top of the page. This function name is located at the top of each
subsequent page of the function description.

1–4 Introduction to DEC GKS

Introduction to DEC GKS
1.3 Function Presentation Format

Figure 1–2 Functionality by GKS Levels

ZK−5027−GE

Input Levels

Set viewport input priority. All of level mc, above.

All of level 1b, above.

a b c

m

0

1

No input, minimal control,
individual attributes, one
settable normalization
transformation, subset
of output and attribute
functions.

2

Sample and event input
no pick.

Basic control,
bundled attributes,
multiple normalization
transformations, all output
and attribute functions,
optional metafiles.

Full output including
settable bundles,
multiple workstations,
basic segmentation, no
workstation independent
segment storage,
metafiles.

Workstation independent
segment storage

Request pick, set operating
mode and initialize
functions for pick input.

Sample and event input
for pick.

Output
Levels

Request input, set
operating mode and
initialize functions for input
devices, no pick input.

1.3.2 Function Operating States
The operating states section lists the valid operating states during which a
call to the function is permitted (for more information, see Chapter 4, Control
Functions).

1.3.3 Function Syntax
The syntax section lists the syntax of a call to the DEC GKS function. This
syntax includes the argument list. Each argument is described in the Syntax
section.

The argument descriptions for each of the functions appear as follows:

Gint ws; /* (I) Workstation identifier */

The arguments passed to DEC GKS functions must be of specific data types and
must be passed by specific mechanisms. In the function descriptions, these data
types are described following each of the argument names.

For each argument, the specified values include:

• The data type of the argument.

Introduction to DEC GKS 1–5

Introduction to DEC GKS
1.3 Function Presentation Format

• The type of access made by the argument. The access is marked as either I
(input) or O (output).

• The argument-passing mechanism and form. If the argument is preceeded by
an indirection symbol (*), the argument is passed by reference; otherwise it is
passed by value. All structures and unions are passed by reference.

All the DEC GKS functions always return a longword condition status value.
For a description of the longword status value, see Appendix A. For information
concerning DEC GKS error handling, see Chapter 12.

1.3.4 Data Structures
The data structures section lists the DEC GKS data structures used by the
function, from the top-level data structure down to the lower-level structures.
The top-level structures are listed in order of appearance in the function call.
Any enumerated types included in a data structure are listed in the Constants
section; a marker specifies that the field is a constant.

1.3.5 Constants
The constants section lists the DEC GKS constants that are defined for each
enumerated type and a description of each, in order of appearance in the function
call. For a complete list of the DEC GKS constants, see Appendix B.

1.3.6 Function Description
The description section describes the function in detail. The description contains
pertinent information about the DEC GKS operating state, the GKS description
table and state list, and the workstation description table and state list.

1.3.7 See Also Section
Most of the functions include a See Also section. This section lists related
functions and gives pointers to code examples, located at the end of each chapter,
that include the specified function.

Program Examples Section
Appendix C lists of all the functions called in the code examples. The program
examples are also available on line. They are located in GKS$EXAMPLES on
VMS systems, and in /usr/lib/GKS/examples on ULTRIX systems.

In many of the C examples in this book, the following lines of code cause the
program to pause, so you can view the image on the workstation surface as it is
being created:

.

.

.
/* Release the deferred output and pause the display for "timeout"

seconds. */

gupdatews(ws_id, GPOSTPONE);
gawaitevent(timeout, &event);

.

.

.

Because DEC GKS allows workstations to defer, or buffer, output, you have to
update the screen with a call to UPDATE WORKSTATION to view the picture
created by all previous function calls in the program. The call to the AWAIT
EVENT function causes program execution to pause.

1–6 Introduction to DEC GKS

Introduction to DEC GKS
1.3 Function Presentation Format

Considering that the rate of deferral may differ on various workstations, you may
wish to use the function INQUIRE WORKSTATION DEFERRAL AND UPDATE
STATES to check the current deferral mode. If the deferral mode is anything
other than ASAP, you may wish to update the workstation surface periodically
when you are debugging your program. If you want to change the deferral mode
so the workstation surface is always current, you can call the function SET
DEFERRAL STATE to change the current deferral mode to ASAP.

For detailed information concerning the DEC GKS deferral mode, see Chapter 4,
Control Functions.

Also, most program examples include the following lines of code:

.

.

.
default_conid = GWC_DEF;
default_wstype = GWS_DEF;

gopenws(ws_id, &default_conid, &default_wstype);
.
.
.

This code tells DEC GKS to use the default values for the connection identifier
and the workstation type. The default values are defined by the logical names
GKS$CONID and GKS$WSTYPE on VMS systems, and by the environment
variables GKSconid and GKSwstype on ULTRIX systems. To change the default
values of GKS$CONID and GKS$WSTYPE on a VMS system, enter the following
commands:

$ DEFINE GKS$CONID FOOBAR::0 RETURN

$ DEFINE GKS$WSTYPE 211 RETURN

After entering these commands, the new value for GKS$CONID is the FOOBAR
node, and the new value for GKS$WSTYPE is 211 (DECwindows™ workstation).

To change the values of GKSconid and GKSwstype on an ULTRIX system, enter
the following commands:

setenv GKSconid FOOBAR::0 RETURN

setenv GKSwstype 211 RETURN

After entering these commands, the new value for GKSconid is the FOOBAR
node, and the new value for GKSwstype is 211 (DECwindows workstation).
For more information on specifying environment options on VMS and ULTRIX
operating systems, see Chapter 2 and Chapter 3.

Following many of the program examples, there is an illustration representing the
graphic image generated on the surface of the DECwindows workstation. Because
there are visual differences between the written page and the workstation
surface, the image may appear different on your device surface. Also, different
devices produce different results.

For example, the lines may not be as perfectly smooth as presented in the figure.
The figures in this manual serve the purpose of showing relative positioning and
general shape of the graphic image on the surface of a DECwindows workstation.

Introduction to DEC GKS 1–7

Introduction to DEC GKS
1.4 DEC GKS Compatibility

1.4 DEC GKS Compatibility
The DEC GKS Version 5.0 C binding is source-code compatible with the DEC GKS
Version 4.2 C binding, with two exceptions. These exceptions are as follows:

• DEC GKS Version 5.0 functions return the errors as integers, based on the
ISO standard and DEC (negative) error numbers.

• The DEC GKS Version 5.0 C binding now defines and requires function
prototypes. Because of this change, DEC GKS may generate compilation
warnings or errors if the application passes incorrect data types in the
function calls.

• The DEC GKS Version 5.0 INQUIRE WORKSTATION CONNECTION
IDENTIFIER AND TYPE function (ginqwsconntype) requires the Gwsct
structure element type to be a pointer to an object of type Gwstype. The
function returns the workstation type to this object. This is a change from
earlier versions of DEC GKS that returned the element type erroneously in
the Gwsct structure element type, instead of in the location pointed to by this
element.

The DEC GKS Version 5.0 C binding is fully run-time compatible with the
DEC GKS Version 4.2 C binding. Recompiling and relinking your application
with DEC GKS Version 5.0 is recommended.

The DEC GKS Version 5.0 C binding is not source-code compatible with the
DEC GKS–3D™ Version 1.2 C binding. However, a compatibility mode exists,
which provides full source-code compatibility with DEC GKS–3D Version 1.2.
See Section 1.6.1 for more information on the compatibility mode. The DEC
GKS Version 5.0 C binding is fully run-time compatible with the DEC GKS–3D
Version 1.2 C binding. Recompiling and relinking your application with DEC
GKS Version 5.0 is recommended.

1.5 Porting DEC GKS Version 4.2 Applications
Check your application for DEC GKS Version 4.2 function return messages by
searching for the strings "GKS$_SUCCESS" and "GKS$_ERROR". Replace these
strings with the corresponding error constants defined in the C binding header
file gks.h.

If your application uses the function INQUIRE WORKSTATION CONNECTION
IDENTIFIER AND TYPE (ginqwsconntype), you must change your code to reflect
a bug fix. The Version 5.0 function requires the Gwsct structure element type to
be a pointer to an object of type Gwstype. The function returns the workstation
type to this object. This is a change from earlier versions of DEC GKS that
returned the element type erroneously in the Gwsct structure element type,
instead of in the location pointed to by this element.

Recompile and relink your application with DEC GKS Version 5.0.

1.6 Porting DEC GKS–3D Version 1.2 Applications
The following sections describe the two options for porting DEC GKS–3D Version
1.2 applications:

• Compatibility mode

• Manual porting

1–8 Introduction to DEC GKS

Introduction to DEC GKS
1.6 Porting DEC GKS–3D Version 1.2 Applications

1.6.1 Using Compatibility Mode
You can enable the DEC GKS–3D compatibility mode using one of the following
header files:

• GKS3D$CBND.H (VMS)

• GKS3Dcbnd.h (ULTRIX)

• gks.h header file with the GKS3D compile-time constant

The compile-time constant can be defined as part of the compile command (see
your compiler’s manual), or by adding the statement #define GKS3D before the
#include <gks.h> statement.

Using compatibility mode, no changes are required to the source code if the
following restrictions are true:

• Your DEC GKS application uses only the C binding enumeration constants,
not hardcoded integer values, as defined in the DEC GKS C binding header
file.

• Your DEC GKS application does not call any of the INQUIRE DEFAULT . . .
DEVICE DATA functions.

If you use hardcoded integer values, you must update the values for the following
enumerations accordingly:

typedef enum { /* CLIPPING INDICATOR */
GCLIP,
GNOCLIP

} Gclip;

typedef enum { /* CHOICE STATUS */
GC_OK,
GC_NOCHOICE,
GC_NONE

} Gcstat;

typedef enum { /* ECHO SWITCH */
GECHO,
GNOECHO

} Gesw;

typedef enum { /* REQUEST STATUS */
GOK,
GNONE

} Gistat;

typedef enum { /* PICK STATUS */
GP_OK,
GP_NOPICK,
GP_NONE

} Gpstat;

If your program calls any of the INQUIRE DEFAULT . . . DEVICE DATA
functions, you must update these calls according to the function definitions in this
manual.

Introduction to DEC GKS 1–9

Introduction to DEC GKS
1.6 Porting DEC GKS–3D Version 1.2 Applications

1.6.2 Using Manual Porting
If you do not use compatibility mode, you must make the changes described in the
following sections to port your code to DEC GKS Version 5.0. After you complete
the adjustments, recompile and relink the application with DEC GKS Version 5.0.

1.6.2.1 Changes to Choice Input Devices
You must make the following modifications to the application source code for it to
compile properly:

• Rename Gchoicepetneg0001 to Gchoicepet_0001.

• In the data structures Gchoicepet0001, Gchoicepet0003, Gchoicepet0004,
and Gchoicepet0005, replace the data field with the title_string field. This
field addresses the title string. In the data structures Gchoicepet0003 and
Gchoicepet0004, remove the lengths field. The data structures are as follows:

typedef struct {
Gint number; /* number of choice strings */
Gint *lengths; /* lengths of choice strings */
Gchar **strings; /* array of strings */
Gchar *title_string; /* the title string */

} Gchoicepet0001;

typedef struct {
Gint number; /* number of choice strings */
Gchar **strings; /* array of strings */
Gchar *title_string; /* the title string */

} Gchoicepet0003;

typedef Gchoicepet0003 Gchoicepet0004;

typedef struct {
Gint seg; /* segment name */
Gint number; /* number of alternatives */
Gint *pickids; /* array of pick identifiers */
Gchar *title_string; /* the title string */

} Gchoicepet0005;

• The Gchoicepet0002 data structure is as follows:

typedef struct {
Gint number; /* number of alternatives */
Gprflag *enable; /* array of prompts */
Gchar *title_string; /* title string */

} Gchoicepet0002;

• In the Gchoicerec data structure, replace the field choicepetneg1_datarec of
type Gchoicepetneg0001 with the choicepet_1_datarec field of type Gchoicepet_
0001. The data structure is as follows:

typedef union { /* CHOICE DATA RECORD */
Gchoicepet_0001 choicepet_1_datarec;
Gchoicepet0001 choicepet1_datarec;
Gchoicepet0002 choicepet2_datarec;
Gchoicepet0003 choicepet3_datarec;
Gchoicepet0004 choicepet4_datarec;
Gchoicepet0005 choicepet5_datarec;

} Gchoicerec;

1–10 Introduction to DEC GKS

Introduction to DEC GKS
1.6 Porting DEC GKS–3D Version 1.2 Applications

1.6.2.2 Changes to Locator Input Devices
You must make the following additional modifications to the application source
code for it to compile properly:

• Rename the Glocpetnegnn data structures (where nn represents the numbers
01 to 12) to Glocpet_00nn, respectively.

• In data structure Glocpet0006, replace the data field with the title_string
field.

• In the data structure Glocpetneg0001, replace the size_x and size_y fields with
the box_x and box_y fields, respectively. The data structure is as follows:

typedef struct {
Gfloat box_x; /* size of the box in x */
Gfloat box_y; /* size of the box in y */
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0001;

• In the Glocrec data structure, delete the field locpetneg13_datarec. Replace
each of the twelve fields locpetnegnn_datarec (where nn represents the
numbers 01 to 12) of type Glocpetneg00nn with the corresponding fields
locpet_nn_datarec of type Glocpet_000nn, respectively. The data structure is
as follows:

typedef union { /* LOCATOR DATA RECORD */
Glocpet_0001 locpet_1_datarec;
Glocpet_0002 locpet_2_datarec;
Glocpet_0003 locpet_3_datarec;
Glocpet_0004 locpet_4_datarec;
Glocpet_0005 locpet_5_datarec;
Glocpet_0006 locpet_6_datarec;
Glocpet_0007 locpet_7_datarec;
Glocpet_0008 locpet_8_datarec;
Glocpet_0009 locpet_9_datarec;
Glocpet_0010 locpet_10_datarec;
Glocpet_0011 locpet_11_datarec;
Glocpet_0012 locpet_12_datarec;
Glocpet0001 locpet1_datarec;
Glocpet0002 locpet2_datarec;
Glocpet0003 locpet3_datarec;
Glocpet0004 locpet4_datarec;
Glocpet0005 locpet5_datarec;
Glocpet0006 locpet6_datarec;

} Glocrec;

1.6.2.3 Changes to String Input Devices
You must make the following additional modifications to the application source
code for it to compile properly:

• In the data structure Gstringpet0001, replace the data field with the
title_string field. This field addresses the title string. The data structure
is as follows:

typedef struct {
Gint bufsiz; /* buffer size */
Gint position; /* initial cursor position */
Gchar *title_string; /* the title string */

} Gstringpet0001;

Introduction to DEC GKS 1–11

Introduction to DEC GKS
1.6 Porting DEC GKS–3D Version 1.2 Applications

1.6.2.4 Changes to Valuator Input Devices
You must make the following additional modifications to the application source
code for it to compile properly:

• Rename the Gvalpetneg000n structures (where n is 1, 2, or 3) to
Gvalpet_000n, respectively.

• In Gvalpet0001, replace the data field with the title_string field. This field
addresses the title string. The data structure is as follows:

typedef struct {
Gfloat low; /* low range limit */
Gfloat high; /* high range limit */
Gchar *title_string; /* the title string */

} Gvalpet0001;

• In the Gvalrec data structure, replace each of the three fields
valpetnegn_datarec (where n represents a number between 1 and 3) of
type Gvalpetneg000n with corresponding fields valpet_n_datarec of type
Gvalpet_000n, respectively. The data structure is as follows:

typedef union { /* VALUATOR DATA RECORD */
Gvalpet_0001 valpet_1_datarec;
Gvalpet_0002 valpet_2_datarec;
Gvalpet_0003 valpet_3_datarec;
Gvalpet0001 valpet1_datarec;
Gvalpet0002 valpet2_datarec;
Gvalpet0003 valpet3_datarec;

} Gvalrec;

1.6.2.5 Changes to the Gcobundl Data Structure
Replace the three fields comp1, comp2, and comp3, with red, green, and blue,
respectively. The data structure is as follows:

typedef struct {
Gfloat red; /* red intensity */
Gfloat green; /* green intensity */
Gfloat blue; /* blue intensity */

} Gcobundl;

1.6.2.6 Changes to Enumeration Types
There are several differences between the enumeration types in DEC GKS–3D
Version 1.2 and DEC GKS Version 5.0. These differences are as follows:

Enumeration DEC GKS Version 5.0 DEC GKS–3D Version 1.2

Gclip {GCLIP, GNOCLIP} {GNOCLIP, GCLIP}

Gcstat {GC_OK, GC_NOCHOICE,
GC_NONE}

{GC_NONE, GC_OK, GC_
NOCHOICE}

Gesw {GECHO, GNOECHO} {GNOECHO, GECHO}

Gistat {GOK, GNONE} {GNONE, GOK}

Gpstat {GP_OK, GP_NOPICK,
GP_NONE}

{GP_NONE, GP_OK, GP_NOPICK}

1–12 Introduction to DEC GKS

Introduction to DEC GKS
1.6 Porting DEC GKS–3D Version 1.2 Applications

1.6.2.7 Changes to the Input Inquiry Functions
The DEC GKS Version 5.0 arguments bufsize and data_size are different from
DEC GKS–3D for the following functions:

• INQUIRE DEFAULT CHOICE DEVICE DATA

• INQUIRE DEFAULT CHOICE DEVICE DATA 3

• INQUIRE DEFAULT LOCATOR DEVICE DATA

• INQUIRE DEFAULT LOCATOR DEVICE DATA 3

• INQUIRE DEFAULT PICK DEVICE DATA

• INQUIRE DEFAULT PICK DEVICE DATA 3

• INQUIRE DEFAULT STRING DEVICE DATA

• INQUIRE DEFAULT STRING DEVICE DATA 3

• INQUIRE DEFAULT STROKE DEVICE DATA

• INQUIRE DEFAULT STROKE DEVICE DATA 3

• INQUIRE DEFAULT VALUATOR DEVICE DATA

• INQUIRE DEFAULT VALUATOR DEVICE DATA 3

Check your program for these function calls and update them according to the
definitions in the DEC GKS Version 5.0 C binding manual.

Introduction to DEC GKS 1–13

VMS Programming

Insert tabbed divider here. Then discard this sheet.

2
VMS Programming Considerations

The specific method for using DEC GKS software depends on the features and
conventions of each programming language. This section describes general issues
that must be considered when using any programming language with DEC GKS
on a VMS system.

The information contained in this chapter was correct when the manual went to
press. However, the information may have been changed. For the most up-to-date
information on using DEC GKS on VMS systems, see the following files:

SYS$HELP:DECGKS_CBIND_OP_SPEC.PS
SYS$HELP:DECGKS_CBIND_OP_SPEC.TXT

2.1 Including Definition Files
You use DEC GKS software primarily by placing calls to DEC GKS functions in
your program. However, when using DEC GKS, you need statements in your
program other than calls to GKS functions. The specific statements that are
needed depend on the programming language you use.

DEC GKS constants and their values must be made available to all programs
that call DEC GKS functions, regardless of the programming language you use.
All high-level programming languages that use DEC GKS have a method for
inserting an external file into the program source code stream at compile time.
Incorporating an external file is the method for making DEC GKS constants
available.

Your installation kit includes several files that contain DEC GKS constants,
and separate files that contain DEC GKS completion status code constants. You
incorporate these files into your program with a statement appropriate for the
programming language you are using.

C provides the include statement for inserting an external file into a program.
Therefore, any C program that uses the DEC GKS C binding should contain the
following line:

include <gks.h>

In the previous statement, the angle brackets (< >) show the files containing
DEC GKS constants are contained in the system library.

The language definition file located in SYS$LIBRARY is gks.h.

The file includes comments that describe the exact method for using the definition
file.

VMS Programming Considerations 2–1

VMS Programming Considerations
2.2 Compiling, Linking, and Running Your Programs

2.2 Compiling, Linking, and Running Your Programs
A program that uses DEC GKS function calls should be compiled and executed as
any other program. Use the compile command appropriate for the programming
language you are using, and use the LINK and RUN commands to link the object
file and execute the program image.

DEC GKS functions are supplied as an installed shareable image library,
which makes linking faster and easier, makes the resulting executable image
file smaller, and allows your application to be upgraded with new versions of
DEC GKS without having to be rebuilt.

On VMS systems, a DEC GKS program can be linked with either of the following
DCL commands:

$ LINK program, SYS$LIBRARY:GKSCBND.OLB, - RETURN

SYS$INPUT:/OPTIONS RETURN

SYS$LIBRARY:VAXCRTL/SHARE CTRL/Z

$ LINK program, SYS$LIBRARY:GKS_CBND/LIB - RETURN

SYS$LIBRARY:VAXCRTL/LIB CTRL/Z

2.3 Opening a Workstation
The following sections contain information on specifying the workstation
connection identifier and workstation type.

2.3.1 Specifying the Connection Identifier
An application can specify the connection to a device by passing the connection
identifier (ID) to the OPEN WORKSTATION function in any of the following
ways:

• By logical name: Pass a logical name specifying the connection ID.

• By file or device name: Pass the connection ID as a string.

• By default: Pass either the value 0 or a null string. DEC GKS then attempts
to translate the logical name GKS$CONID. If no translation exists, GKS uses
GKS_DEFAULT.OUTPUT, which specifies a file in the current directory as the
connected device. The user can define the VMS logical name GKS$CONID.

2.3.2 Specifying the Workstation Type
The application can specify the workstation type to the OPEN WORKSTATION
function in either of the following ways:

• Use the DEC GKS workstation types. Pass any of the workstation types
defined in the language file SYS$LIBRARY:GKS.H

• Use the default workstation type by passing a value of 0. DEC GKS attempts
to translate the VMS logical name GKS$WSTYPE. If no translation exists,
DEC GKS uses the workstation type 35 (LA75™ printer). The user can define
the VMS logical name GKS$WSTYPE.

2–2 VMS Programming Considerations

VMS Programming Considerations
2.4 DEC GKS Logical Names

2.4 DEC GKS Logical Names
Within DEC GKS there are a number of logical names that are interpreted at
run time. These logical names allow a specific application (or system) to tailor
DEC GKS to best suit the needs of the application or device. Each of the logical
names controls some aspect of the overall run-time environment of the DEC GKS
session. All the logical names have to be set before starting a GKS session and
remain constant during a session. Altering logical names during a session has no
effect on the logicals.

2.5 Defining Logical Names
On VMS systems, the logical names are defined at DCL level as follows:

$ define GKS$logical value

Logical names and values can be either uppercase or lowercase strings.

DEC GKS searches for VMS logical names in three different locations. Once the
logicals are found, the search stops. The locations are searched in the following
order:

1. The PROCESS logical table.

2. The GROUP logical table.

3. The SYSTEM logical table. This is the default location to define logical
names.

2.6 Types of Logical Names
The DEC GKS logical names can be divided into two groups:

• General DEC GKS logical names

• Graphics-handler logical names

The following section describes the general logical names available with
DEC GKS. For information on the graphics-handler logical names, see the
Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

2.6.1 General Logical Names
Table 2–1 lists the general logical names available with DEC GKS.

Table 2–1 General Logical Names for DEC GKS

Logical Name Value Description

GKS$ASF INDIVIDUAL or
BUNDLED

Specifies the default aspect source flag (ASF) setting
to be either BUNDLED or INDIVIDUAL. The
predefined value is INDIVIDUAL.

GKS$CONID String containing any
valid workstation
connection identifier

Specifies the default workstation connection
identifier to be used in the call to OPEN
WORKSTATION, if the caller passes CONID 0.
The predefined setting is platform-dependent.

(continued on next page)

VMS Programming Considerations 2–3

VMS Programming Considerations
2.6 Types of Logical Names

Table 2–1 (Cont.) General Logical Names for DEC GKS

Logical Name Value Description

GKS$DEF_MODE ASAP, BNIG, BNIL or
ASTI

Specifies the default deferral mode to be ASAP (as
soon as possible), BNIG (before the next interaction
globally), BNIL (before the next interaction locally),
or ASTI (at some time). The predefined value is
defined in the workstation description table.

GKS$ERRFILE String containing
any valid error file
specification

Specifies the default error file to be used in the
OPEN GKS function, if the user passes a NIL (0)
error file descriptor. On VMS systems, this is set to
SYS$ERROR: by default.

GKS$ERROR ON or OFF Specifies whether the default standard error
checking is ON or OFF. The default value is ON.
Note that if you turn error checking OFF, you
may improve overall DEC GKS throughput, but
DEC GKS may terminate in an uncontrolled way.

GKS$IRG SUPPRESSED or
ALLOWED

Specifies the default implicit regeneration mode
(IRG) to be set to either SUPPRESSED or
ALLOWED. The predefined value is defined in
the workstation description table.

GKS$METAFILE_TYPE GKSM or GKS3 Specifies the dimension of the metafile output. The
value GKSM is for two-dimensional metafile output;
GKS3 is for three-dimensional metafile output. The
default value is GKS3.

GKS$NDC_CLIP ON or OFF Specifies the default normalized device coordinate
(NDC) clipping to ON or OFF. The predefined value
is ON.

GKS$STROKE_FONT1 String containing the
file path for stroke font1

Specifies the default stroke font 1 to be used.

GKS$WSTYPE String containing any
valid workstation type
number

Specifies the default workstation type to be used
in the call to OPEN WORKSTATION, if the caller
passes wstype 0. The predefined setting is platform-
dependent.

2.7 Error Handling
The following sections contain information on error codes and error files.

2.7.1 Error Codes
Each DEC GKS function call returns a DEC GKS error value to the calling
routine. All the returned error values are defined in the language file gks.h.

The function call can include a check of the returned status. The value
NO_ERROR (0) is returned if the function has executed successfully. If this value
is not returned, the function has failed to execute successfully. See Appendix A
for more information about DEC GKS errors codes.

2.7.2 Error Files
Error messages are normally written to an error logging file. The application can
specify the error logging file by passing the file name to the OPEN GKS function
in either of the following ways:

• Explicitly, by specifying the predefined file pointer: The file is specified by
a standard C file pointer that is returned by the fopen() system call. The

2–4 VMS Programming Considerations

VMS Programming Considerations
2.7 Error Handling

application must open and close the error file, respectively, before opening
and closing DEC GKS.

• By default, by passing a null file pointer.

DEC GKS opens the default error file. To do this, it first attempts to translate
GKS$ERRFILE. If no translation exists, DEC GKS uses SYS$ERROR as the file
pointer. The user can define the VMS logical name GKS$ERRFILE.

If no messages have been written to the error file, a call to CLOSE GKS deletes
the file.

VMS Programming Considerations 2–5

ULTRIX Programming

Insert tabbed divider here. Then discard this sheet.

3
ULTRIX Programming Considerations

The specific method for using DEC GKS software depends on the features and
conventions of each programming language. This section describes general
issues that must be considered when using the ULTRIX™ C (cc) compiler with
DEC GKS.

The information contained in this chapter was correct when the manual went
to press. However, the information may have been changed. For the most
up-to-date information on using DEC GKS on ULTRIX systems, see the following
files:

/usr/lib/GKS/doc/decgks_cbind_op_spec.ps
/usr/lib/GKS/doc/decgks_cbind_op_spec.txt

3.1 Including Definition Files
You use DEC GKS software primarily by placing calls to DEC GKS functions in
your program. However, when using DEC GKS, you need statements in your
program other than calls to GKS functions. The specific statements that are
needed depend on the programming language you use.

DEC GKS constants and their values must be made available to all programs
that call DEC GKS functions, regardless of the programming language you use.
Incorporating an external file is the method for making DEC GKS constants
available.

Your installation kit includes several files that contain DEC GKS constants and
separate files that contain DEC GKS completion status code constants.

The language definition file for the C binding is /usr/include/GKS/gks.h.

The file includes comments that describe how to use the language definition file.

You incorporate these files into your C program with the statement:

include <GKS/gks.h>

3.2 Compiling, Linking, and Running Your Programs
A program that uses DEC GKS function calls should be compiled and executed
as any other program. Use the compile command appropriate for the processor
you are using. To run an executable program, type the executable file name that
you specified. The following sections describe how to compile, link, and run your
programs on ULTRIX systems with RISC processors.

ULTRIX Programming Considerations 3–1

ULTRIX Programming Considerations
3.2 Compiling, Linking, and Running Your Programs

3.2.1 Linking the Program on ULTRIX Systems with RISC Processors
To compile and link a DEC GKS C program on ULTRIX systems with RISC
processors using all device handlers except the DECwindows device handler, use
the following command:

cc -I/usr/include/GKS -o program program.c [gksconfig.c] \ RETURN

-lGKScbnd -lGKS /usr/lib/DXM/lib/Mrm/libMrm.a \ RETURN

/usr/lib/DXM/lib/Xm/libXm.a /usr/lib/DXM/lib/Xt/libXt.a \ RETURN

-lddif -lcursesX -lc -lX11 -llmf -lm RETURN

To compile and link a DEC GKS C program on ULTRIX systems with RISC
processors using the DECwindows device handler, use the following command:

cc -I/usr/include/GKS -o program program.c gks_decw_config.c \ RETURN

-lGKScbnd -lGKS -lddif -ldwt -lcursesX -lc -lX11 -llmf -lm RETURN

The gksconfig.c file is optional. The file gks_decw_config.c is required by the
DECwindows device handler.

A workstation or device handler can be deliberately excluded from the executable
image to minimize image size and link time. This can be done by customizing the
configuration file and specifying the customized version in the link command.
The installed version of the configuration file is /usr/lib/GKS/gksconfig.c.

There is also an installed version of the configuration file that must be
used when linking with the DECwindows device handler. It is located in
/usr/lib/GKS/gks_decw_config.c. See Section 3.9 for more information on how
to use configuration files.

The options to the link command are required if certain default handlers are
included in the configuration file, as follows:

• The switches [-lc] and [-lx11] are required for the DECwindows XUI and
Motif® device handlers.

• The switch [-ldwt] is required for the DECwindows XUI device handler.

• The switch [-lddif] is required for the DDIF™ device handler.

• The library [-lcursesX] is required for any device handler for workstations
capable of input, output, or both.

• The following libraries are required for the Motif device handler:

/usr/lib/DXM/lib/Mrm/libMrm.a
/usr/lib/DXM/lib/Xm/libXm.a
/usr/lib/DXM/lib/Xt/libXt.a

3.3 Opening a Workstation
The following sections contain information on specifying the workstation
connection identifier and workstation type.

3.3.1 Specifying the Connection Identifier
The application can specify the connection by passing the connection ID to the
OPEN WORKSTATION function in any of the following ways:

• By environment variable: Pass an environment variable specifying the
connection ID.

• By file or device name: Pass the connection ID as a string.

3–2 ULTRIX Programming Considerations

ULTRIX Programming Considerations
3.3 Opening a Workstation

• By default: Pass either the value 0 or a null string. DEC GKS then attempts
to translate the environment variable GKSconid. If no translation exists,
GKS uses gks_default.output, which specifies a file in the current directory
as the connected device. To specify an environment option, the user can do
either of the following:

Define the environment variable GKSconid.

Use the user defaults file ~/.GKSdefaults, or the system defaults file
/usr/lib/GKS/.GKSdefaults.

3.3.2 Specifying the Workstation Type
The application can specify the workstation type to the OPEN WORKSTATION
function in either of the following ways:

• Use the DEC GKS workstation types. Pass any of the workstation types
defined in the language file /usr/include/GKS/GKScbnd.h.

• Use the default workstation type by passing a value of 0. DEC GKS attempts
to translate the environment variable GKSwstype. If no translation exists,
DEC GKS uses the workstation type 35 (LA75 printer). The user can do
either of the following:

Define the environment variable GKSwstype.

Use the user defaults file ~/.GKSdefaults, or the system defaults file
/usr/lib/GKS/.GKSdefaults.

3.4 DEC GKS Environment Variables
Within DEC GKS there are a number of environment variables that are
interpreted at run time. These environment variables allow a specific application
(or system) to tailor DEC GKS to best suit the needs of the application or device.
Each of the environment variables controls some aspect of the overall run-time
environment of the DEC GKS session. All the environment variables have to
be set before starting a GKS session, and remain constant during a session.
Altering environment variables during a session has no effect on the value of the
environment variable.

3.5 Defining Environment Variables
On ULTRIX systems, the environment variables are defined in a file named
.GKSdefaults in the user’s login directory, or in the system file
/usr/lib/GKS/.GKSdefaults.

The following examples show the syntax you use to define environment variables
in the .GKSdefaults file:

GKSconid : gks_default.output # connection id, device, or file name
GKSwstype : 35 # workstation type (LA 75)

The environment variables can also be defined at the csh or sh level. To define an
environment variable at csh level, use the following syntax:

setenv GKSenvironment_variable value

To define an environment variable at sh level, use the following syntax:

GKSenvironment_variable=value

ULTRIX Programming Considerations 3–3

ULTRIX Programming Considerations
3.5 Defining Environment Variables

The values you assign to environment variables can be either uppercase or
lowercase strings. However, the environment variable names are case sensitive.

DEC GKS searches for the environment variables in three different locations.
Once the environment variables are found, the search stops. The locations are
searched in the following order:

1. User-specific ULTRIX environment variables.

2. User-specific environment variables defined in the file ~/.GKSdefaults. Digital
recommends that you define the environment variables in this file.

3. System-wide environment variables defined in the file
/usr/lib/GKS/.GKSdefaults.

3.6 The Default Environment Variable File
The default environment variable file, .GKSdefaults, contains the following:

!
! GKS Default Settings
!
GKSconid : gks_default.output # connection id, device, or file name
GKSwstype : 35 # workstation type (LA 75)
GKSerror : on # on or off
GKSasf : individual # bundled or individual
GKSndc_clip : on # on or off
GKSerrfile : stderr # device or file name
GKSmetafile_type : gks3
GKSstroke_font1 : /usr/lib/GFX/font/gfx_font_neg1 # Stroke font 1
!
! file : /usr/lib/GKS/.GKSdefaults
!
! GKS System-Wide Environment Definitions
! ==
!
! Environment variables allow you to customize the DEC GKS environment
! to suit your needs.
!
! i) Modify the GKS system wide default settings.
!
! Edit this file to change GKS system-wide environment variable
! default settings.
!
! ii) Modify the GKS user-specific environment variable default settings
! using the ~/.GKSdefaults file
!
! Copy this file into your login account i.e. ~/.GKSdefaults and
! modify it to suit your needs.
!
! iii) Modify the GKS user-specific settings using ULTRIX
! environment variables.
!
! For example : setenv GKSwstype 10
!
!
!
! The DEC GKS search order for environment variables translation is :
! ---
!
! 1) User-specific ULTRIX environment variable
!
! 2) User-specific environment variables defined in the file ~/.GKSdefaults
!

3–4 ULTRIX Programming Considerations

ULTRIX Programming Considerations
3.6 The Default Environment Variable File

! 3) System-wide environment variables defined in the file
! /usr/lib/GKS/.GKSdefaults
!
!
! The allowed syntax in this file is :
! ----------------------------------
!
! Comments start with ! or # character
! Space, tabs, and " characters are ignored
! Associations are done by the = (equal) or : (colon) character
!

3.7 Environment Variable Types
The DEC GKS environment variables can be divided into two groups:

• General DEC GKS environment variables

• Graphics-handler environment variables

The following section describes the general DEC GKS environment variables.
For information on the graphics-handler environment variables, see the Device
Specifics Reference Manual for DEC GKS and DEC PHIGS.

3.7.1 General Environment Variables
Table 3–1 lists the general environment variables available with DEC GKS.

Table 3–1 General Environment Variables for DEC GKS

Variable Value Description

GKSasf INDIVIDUAL or
BUNDLED

Specifies the default aspect source flag (ASF) setting
to be either BUNDLED or INDIVIDUAL. The
predefined value is INDIVIDUAL.

GKSconid String containing any
valid workstation
connection identifier

Specifies the default workstation connection
identifier to be used in the call to OPEN
WORKSTATION, if the caller passes conid 0. The
predefined setting is platform-dependent.

GKSdefmode ASAP, BNIG, BNIL or
ASTI

Specifies the default deferral mode to be ASAP (as
soon as possible), BNIG (before the next interaction
globally), BNIL (before the next interaction locally),
or ASTI (at some time). The predefined value is
defined in the workstation description table.

GKSerrfile String containing
any valid error file
specification

Specifies the default error file to be used in the
OPEN GKS function, if the user passes a NIL (0)
error file descriptor. On ULTRIX systems, this is set
to stderr by default.

GKSerror ON or OFF Specifies whether the default standard error
checking is ON or OFF. The predefined value is
ON. Note that if you turn error checking OFF, you
may improve overall DEC GKS throughput, but
DEC GKS may terminate in an uncontrolled way.

GKSirg SUPPRESSED or
ALLOWED

Specifies the default implicit regeneration mode
(IRG) to be set to either SUPPRESSED or
ALLOWED. The predefined value is defined in
the workstation description table.

(continued on next page)

ULTRIX Programming Considerations 3–5

ULTRIX Programming Considerations
3.7 Environment Variable Types

Table 3–1 (Cont.) General Environment Variables for DEC GKS

Variable Value Description

GKSmetafile_type GKSM or GKS3 Specifies the dimension of the metafile output. The
value GKSM is for two-dimensional metafiles; GKS3
is for three-dimensional metafiles. The default value
is GKS3.

GKSndc_clip ON or OFF Specifies the default NDC clipping to ON or OFF.
The predefined value is ON.

GKSstroke_font1 String containing the
file path for stroke font1

Specifies the default stroke font 1 to be used.

GKSwstype String containing any
valid workstation type
number

Specifies the default workstation type to be used
in the call to OPEN WORKSTATION, if the caller
passes wstype 0. The predefined setting is platform-
dependent.

3.8 Error Handling
The following sections contain information on error codes and error files.

3.8.1 Error Codes
Each DEC GKS function call returns a DEC GKS error value to the calling
routine. All the returned error values are defined in the language file
/usr/include/GKS/gks.h.

The function call can include a check of the returned status. If the function has
executed successfully, the value NO_ERROR (0) is returned. If this value is not
returned, the function has failed to execute successfully. See Appendix A for
information about the DEC GKS errors returned.

3.8.2 Error Files
Error messages are normally written to an error logging file. The application can
specify the error logging file by passing the file name to the OPEN GKS function
in either of the following ways:

• Explicitly, by specifying the predefined file pointer: The file is specified by
a standard C file pointer that is returned by the fopen() system call. The
application must open and close the error file, respectively, before opening
and after closing DEC GKS.

• By default, by passing a null file pointer.

DEC GKS opens the default error file. To do this, it first attempts to translate
GKSerrfile. If no translation exists, DEC GKS uses stderr as the file pointer. The
user can do either of the following:

• Define the environment variable GKSerrfile.

• Use the user defaults file ~/.GKSdefaults, or the system defaults file
/usr/lib/GKS/.GKSdefaults.

If no messages have been written to the error file, a call to CLOSE GKS deletes
the file.

3–6 ULTRIX Programming Considerations

ULTRIX Programming Considerations
3.9 Configuration Files

3.9 Configuration Files
A configuration file contains the list of workstations to be linked with a DEC GKS
application. There are two configuration files:

• gksconfig.c—for all device handlers except the DECwindows XUI handler

• gks_decw_config.c—for all device handlers except the Motif handler

You can use either of the two files, but you cannot use both. If you use the
default configuration file (gksconfig.c) included in the DEC GKS libraries, all the
device handlers supplied by Digital (except DECwindows XUI) will be linked into
the program. If you use the gks_decw_config.c configuration file, all the device
handlers supplied by Digital (except Motif) will be linked into the program. These
files allows you to use numerous device handlers without relinking your program.
However, this usually results in longer link times and larger executable images
than are necessary. To reduce link time and image size, you can customize
these files at either the system or user level. In either case, you customize the
configuration file by changing either the INCLUDE macro to EXCLUDE, or vice
versa for each device handler specified in the file. For a list of the workstation
handlers and more information on the INCLUDE and EXCLUDE macros, see the
configuration file gksconfig.c or gks_decw_config.c.

3.9.1 Customizing the Configuration File at System Level
To customize the file at the system level, edit the configuration file and exclude
those handlers you do not wish to have included automatically in any program.
Compile the file to create the new configuration module and use the command
ar(1) to replace the file in the directory /usr/lib/libGKS.a. When you replace
the configuration module, other users must create their own copies of the
configuration file (and link to it) to include handlers not contained in the system
version of the file.

3.9.2 Customizing the Configuration File at User Level
To customize the file at the user level, make a private copy of the configuration
file and edit it to include only the desired handlers. Compile the private copy
of the file to create the new configuration module and link this private module
before linking to the DEC GKS libraries.

ULTRIX Programming Considerations 3–7

Control Functions

Insert tabbed divider here. Then discard this sheet.

4
Control Functions

The control functions establish the DEC GKS and workstation environments, and
control the workstation surface.

In a typical program, you need very few lines of code to tell DEC GKS about
the type of implementation you are using, the type of device you are using for
input or output, and the functionality allowed with that particular type of device.
(Input, output, and other types of devices are called workstations.)

You usually start a GKS application by calling the functions OPEN GKS, OPEN
WORKSTATION, and ACTIVATE WORKSTATION. These functions initiate
actions by the DEC GKS kernel that involve various operating states, tables, and
lists. The tables and lists that are accessible at a given time during program
execution determine what types of tasks you can perform (such as input requests
and output generation). The following sections describe the DEC GKS kernel, the
DEC GKS operating states, and the various tables and lists involved in working
with DEC GKS.

4.1 The Kernel, Graphics Handlers, and Description Tables
The DEC GKS environment consists of the kernel, one or more graphics
handlers, at least two description tables, and a series of state lists. This section
describes all but the state lists, which are described in detail in Section 4.1.2.

The DEC GKS kernel performs basic operations that do not depend on
capabilities specific to input, output, or the use of storage devices. The kernel
gives the DEC GKS functions access to the information and tools necessary to
perform properly. The kernel operations include calling certain inquiry functions,
maintaining certain tables, and issuing calls to graphics handlers.

The DEC GKS handlers consist of functions that the kernel calls to perform
graphics operations on a particular workstation. The functions include obtaining
input, relaying output, and responding to inquiries for workstation-specific
information.

DEC GKS supplies graphics handlers for various devices such as Motif®,
PostScript®, CGM, and DDIF™ (Digital Document Interchange Format). If you
are uncertain which devices your DEC GKS programs will use, you should review
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS. In this
way, you can become familiar with the range of capabilities of a particular device,
and you can gain a sense of how the supported devices vary.

The DEC GKS description table contains constant information about the
GKS implementation you are using. No matter what functions you call in your
program or no matter what application you run, the information in the DEC GKS
description table does not change. The DEC GKS kernel uses this constant
information about DEC GKS to initialize sections of the GKS state list.

Control Functions 4–1

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

The DEC GKS description table contains information such as the level of GKS
you are using (DEC GKS is level 2c), the number of available workstation types,
the list of workstation types, the maximum allowable open workstations, and so
on. The DEC GKS description table is contained in the DEC GKS kernel.

A workstation description table contains constant information about one
particular device. No matter what functions you call in your program or what
application you run, the information in a device’s workstation description
table does not change, as long as you always use the same graphics handler.
Each graphics handler contains a workstation description table describing that
particular device. The workstation description table is used to initialize sections
of the workstation state list.

The workstation description table contains information such as the workstation
type, the workstation category, the device-specific maximum coordinate values,
the default bundled output attribute values, and so on.

4.1.1 Workstations
A workstation provides a common interface through which a DEC GKS
application program controls a graphics device. A workstation is usually a
physical device that has input capabilities, output capabilities, or both. (The
GMO, GMI, GWISS workstations are exceptions and are described in Table 4–1.)

The various capabilities of the workstation determine the workstation
category. Every workstation description table has an entry for the workstation
category of that particular type of workstation. Table 4–1 describes the six
workstation categories.

Table 4–1 Workstation Categories

Category Description

GOUTPUT A workstation of the category GOUTPUT can only display
graphic images on a single display surface. A workstation
of this category can process all output functions. Because
the generalized drawing primitive (GDP) functions are
device-dependent, not all GDPs can be displayed on all
output workstations. For more information concerning
GDPs, see Chapter 5. For a list of the supported GDPs
for a particular output device, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

GINPUT A workstation of the category GINPUT can only accept
input, which must be accepted by at least one type of
logical input device. A workstation of this category cannot
accept the generation of graphic images by DEC GKS
output functions. For more information concerning input
functions, see Chapter 9.

GOUTIN A workstation of the category GOUTIN combines the
capabilities of GOUTPUT and GINPUT workstations. This
type of workstation can display graphic images on the
workstation surface as well as accept input from the logical
input devices. Also, this type of workstation must include
at least one logical input device of each class. For more
information concerning logical input devices, see Chapter 9.

(continued on next page)

4–2 Control Functions

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

Table 4–1 (Cont.) Workstation Categories

Category Description

GMO A workstation of the category GMO (Metafile Output)
stores image-specific data in a file for use in reproducing
the graphic image at a later time, perhaps in another
application program. For more information concerning
metafiles, see Chapter 10.

GMI A workstation of the category GMI (Metafile Input) allows
an application program to read and interpret items in a
file that contains image-specific data used to reproduce
a graphic image. The file containing the data to be
interpreted must be produced by a GMO workstation.
For more information concerning metafiles, see Chapter 10.

GWISS A workstation of the category GWISS (workstation
independent segment storage) can store output primitives
as a single unit during the execution of a single application.
The group of output primitives is called a segment. You
can manipulate the group of output primitives within the
defined segment as a single entity. The only way to transfer
segments from one workstation to another is to store the
segment in workstation independent segment storage
(WISS) and then copy that segment to whichever open
or active workstation you desire. For more information
concerning segments, see Chapter 8.

4.1.2 Operating States and State Lists
The previous sections described the constructs, data structures, and tables needed
to maintain the static attributes of the DEC GKS implementation and each
workstation.

The DEC GKS and workstation states are not static. You can generate many
types of output with many different effects on the surface of the workstation, use
several devices, or create different segments. DEC GKS must keep track of the
current state of both the DEC GKS and the workstation environments.

For example, the DEC GKS kernel must have access to a flag that designates
whether the DEC GKS software has been initialized, allowing access to
description tables and other structures. As another example, if you want to
output to a workstation, DEC GKS must have access to another flag that
designates whether that workstation is active or not.

To keep track of the information that is available to DEC GKS at a given time,
DEC GKS maintains its operating state and several different state lists.

The DEC GKS operating states are as follows:

• GKCL—GKS is closed.

• GKOP—GKS is open.

• WSOP—At least one workstation is open.

• WSAC—At least one workstation is active.

• SGOP—A segment is open.

The following sections describe the DEC GKS operating states at various points
in a program.

Control Functions 4–3

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

Open GKS
Before you invoke DEC GKS, the operating state value is GKCL. When DEC GKS
is closed, you can call INQUIRE OPERATING STATE VALUE, which returns
the current operating state; you can call OPEN GKS; or you can call DEC GKS
functions to log and handle errors. To log and handle errors, DEC GKS maintains
the error state list. The error state list contains entries that specify the error
state and the error log file. If you attempt to call DEC GKS functions while
DEC GKS is closed (other than those highlighted in this paragraph), the call
generates an error message. For more information on inquiry functions, see
Chapter 11; for more information on error codes, see Appendix A.

To perform more tasks using DEC GKS, you must set the operating state to
GKOP. To do this, call to the control function OPEN GKS, and pass to the
function the name of an error log file so DEC GKS knows where to write error
messages. If you specify the default error file (or the value 0), and have not
redefined that environment option, DEC GKS writes error messages to your
terminal.

Once you open DEC GKS, you have enabled access to the DEC GKS description
table and the workstation description tables of the supported graphics handlers.
By calling OPEN GKS, you have also allowed access to the GKS state list. The
GKS state list contains entries that designate changeable information reflecting
the current status of DEC GKS (such as the set of open workstations, the current
normalization number, and the current character height.)

Once DEC GKS is open, you can then specify output attributes (see Chapter 6,
Attribute Functions), set normalization transformations (see Chapter 7,
Transformation Functions), obtain values from the GKS state list, and obtain
values from the DEC GKS and workstation description tables (see Chapter 11). If
you attempt to call other functions, DEC GKS generates an error message.

Open a Workstation
To perform further tasks using DEC GKS (such as requesting input), you
must open at least one workstation. When you open the first workstation,
the DEC GKS operating state changes from GKOP to WSOP (at least one
workstation open). To accomplish this, call OPEN WORKSTATION and pass a
numeric workstation identifier, a physical device name or connection identifier,
and a workstation type. (See OPEN WORKSTATION in this chapter for more
information.) The workstation identifier is an integer value chosen by you for use
in all references in the program to a specific, open or active workstation.

For each workstation you open, there exists a workstation state list. This
list contains entries that specify whether output is deferred (buffered or on
hold), whether you have to update the workstation surface (redraw the picture
to fulfill a request for a picture change), whether the workstation surface is
empty as defined by DEC GKS, whether the picture on the surface represents
all the requests for output made thus far by the application program, and so on.
Many control functions affect the values in this table. See Section 4.2.1 for more
information.

Once at least one workstation is open, you can call all functions except those
functions that open or close DEC GKS, perform output to a workstation, create
or insert segments, or write an item to a metafile output workstation. If you
attempt to call these functions, DEC GKS produces an appropriate error message.

4–4 Control Functions

Control Functions
4.1 The Kernel, Graphics Handlers, and Description Tables

Activate a Workstation
To perform output on a given workstation, you need to activate that workstation.
When you activate the first workstation, the DEC GKS operating state changes
from WSOP to WSAC (at least one workstation active). To activate a workstation,
call the control function ACTIVATE WORKSTATION, and pass a workstation
identifier specifying an open workstation. When DEC GKS is in this operating
state, you can call all DEC GKS functions except OPEN GKS, CLOSE GKS, or
CLOSE SEGMENT. If you attempt to call these functions, DEC GKS produces an
error message.

Create a Segment
When you create a segment using the function CREATE SEGMENT, the
DEC GKS operating state changes from WSAC to SGOP (segment open). You
must pass a segment name to the CREATE SEGMENT function. The segment
name is chosen by you for use in all references in the program to a specific
segment. That segment is stored on all active workstations. To add output
primitives to the segment, you need only call the desired DEC GKS output
functions. Unless workstation independent segment storage (WISS) is open and
active during segment creation, segments stored on workstations cannot be copied
from one workstation to another. You can copy segments only from WISS to an
open or active workstation; you cannot copy a segment from any other type of
workstation.

When you create a segment, DEC GKS creates a segment state list. The
segment state list contains entries that specify information about the current
state of the segment, such as the segment name, the set of associated
workstations, and the detectability of the segment.

In the SGOP operating state, you can call all GKS functions except those
that open or close DEC GKS, associate or copy the open segment to another
workstation, attempt to change the state of the workstation, clear the workstation
(CLEAR WORKSTATION), or create segments (CREATE SEGMENT). If you
attempt to call those functions, DEC GKS generates an error message.

Close a Segment
When you close the open segment using the CLOSE SEGMENT function, the
DEC GKS kernel changes the operating state from SGOP to WSAC.

Deactivate and Close a Workstation
Calling the function DEACTIVATE WORKSTATION deactivates the specified
workstation. If you deactivate the last active workstation, the kernel changes
the DEC GKS operating state from WSAC to WSOP. Similarly, if you close the
last open workstation (using the function CLOSE WORKSTATION), the kernel
changes the DEC GKS operating state to GKOP.

Close GKS
The final call in a single DEC GKS session should be to CLOSE GKS; after the
call, access to the DEC GKS environment is closed and your DEC GKS session
ends.

As you end your DEC GKS session, you must close an open segment (if one
exists), close and deactivate workstations, and close DEC GKS, in the correct
order. If you do not, your DEC GKS session does not end properly.

For example, if you fail to deactivate and to close an active workstation before
ending your program, the workstation may not return control to the user,
depending on the device.

Control Functions 4–5

Control Functions
4.2 Controlling the Workstation Display Surface

4.2 Controlling the Workstation Display Surface
Depending on the type of device with which you are working, and depending on
the values of certain entries in the workstation description tables and state lists,
there may be times during program execution when the picture does not contain
all the changes previously requested by the application program. DEC GKS
allows a workstation to delay the actions requested by a program to utilize most
efficiently the capabilities of a workstation.

Output deferral is one workstation attribute that affects the rate of picture
generation. By setting the deferral mode, you can buffer the generation of
output images before transmission to the surface to improve overall rate of
transmission, if a given workstation supports such buffering. Other times, you
can release buffered output so the display surface reflects the picture defined by
the application.

4.2.1 Output Deferral
DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are as follows:

• ASAP—Generates output as soon as possible.

• BNIG—Generates output before the next interaction globally.

• BNIL—Generates output before the next interaction locally.

• ASTI—Generates output at some time (as defined by workstation).

An interaction is a request for input using the DEC GKS input functions. A
local interaction happens on the workstation specified at the time of the surface
update, and a global interaction happens on any open workstation.

Depending on the capabilities of the workstation, it can defer output at any level
up to the level specified in the call to SET DEFERRAL STATE. If the workstation
can defer output at the requested level, it does. If the workstation cannot defer
output at the requested level, it defers output at the next supported lower level.

For example, if you specify ASAP in a call to SET DEFERRAL STATE, the
workstation must generate output as soon as possible. If you specify BNIG,
the workstation can defer output at either ASAP or BNIG, depending on its
capabilities. If you specify BNIL, the workstation can defer output on any level
up to and including BNIL, depending on its capabilities. If you specify ASTI,
the workstation can defer output at any of the four levels, depending on its
capabilities.

You can specify a suggested level of deferral by calling the function SET
DEFERRAL STATE. To determine the default deferral state of a given
workstation type, you can call INQUIRE DEFAULT DEFERRAL STATE
VALUES. To determine the current state of the deferral mode, you can call
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES.

Writing applications with other graphics programs, you need to ‘‘flush the
output buffer’’ to include all output in your picture. The DEC GKS equivalent
of this action is to ‘‘release deferred output’’ (if there is any). To see if generated
output has been deferred by the workstation, you call the function INQUIRE
WORKSTATION DEFERRAL AND UPDATE STATES. To release deferred
output without updating the screen in any other way, call the function
UPDATE WORKSTATION and pass the argument GPOSTPONE. For example,
DECwindows, Motif, and ReGIS devices such as the VT240™, VT330™, and

4–6 Control Functions

Control Functions
4.2 Controlling the Workstation Display Surface

VT340™ defer output by default. If you are using those devices, you need to
release deferred output if you want to place the current image on the workstation
surface.

4.2.2 Implicit Surface Regenerations
Suppressed implicit regeneration of the currently generated output primitives
is the second workstation attribute that can place the workstation surface out of
date.

If you request a change to an output attribute bundle index, a segment attribute,
or the current workstation window or viewport, the workstation can either make
the change to the surface dynamically (IMM) or can implicitly regenerate the
entire picture to comply with the requested change (IRG).

Whether a workstation makes the change dynamically or requires an implicit
regeneration is a static capability of the particular workstation. You can call
either the function INQUIRE DYNAMIC MODIFICATION OF SEGMENT
ATTRIBUTES or INQUIRE DYNAMIC MODIFICATION OF WORKSTATION
ATTRIBUTES to determine if a workstation can make a certain change
immediately or if the picture must be implicitly regenerated.

If a workstation makes changes dynamically, only the output primitives in the
picture affected by the change are regenerated and the surface does not become
out of date. For example, for many of the supported workstations, a call to the
function SET COLOUR REPRESENTATION (see Chapter 6, Attribute Functions)
changes color table entries dynamically.

When an implicit regeneration occurs, the workstation clears the surface,
implements the change, and then redraws only the segments on the workstation
surface. You lose all output primitives not contained in segments. For example,
for many of the supported workstations, a call to the function SET POLYLINE
REPRESENTATION (see Chapter 6, Attribute Functions) causes an implicit
regeneration on many workstations.

If a workstation makes changes by implicit regeneration, the workstation
may or may not regenerate the workstation surface at that point in the
program to implement the change. The implicit regeneration mode entry in
the workstation state list specifies whether the workstation currently allows
implicit regenerations, or if it suppresses them, leaving the workstation surface
out of date. You can call the function INQUIRE WORKSTATION DEFERRAL
AND UPDATE STATES to determine if the workstation is allowing regenerations
(GALLOWED) or suppressing them (GSUPPRESSED).

Many of the DEC GKS supported devices suppress implicit regenerations because
of the possible loss of output primitives caused by an allowed regeneration. If you
wish to change the implicit regeneration mode entry in the workstation state list,
you can call the control function SET DEFERRAL STATE. Suppressing implicit
regenerations allows you to make many changes to the picture without incurring
the overhead of a regeneration for every change.

When you are ready to update the workstation surface, you can call UPDATE
WORKSTATION, passing GPERFORM, to perform the single implicit
regeneration. Remember that if you call UPDATE WORKSTATION to force
a surface regeneration, you lose all primitives not contained in segments.

Control Functions 4–7

Control Functions
4.2 Controlling the Workstation Display Surface

4.2.3 Workstation Surface State List Entries
When controlling the workstation surface, you should be aware of the display
surface empty and the new frame action necessary at update entries in the
workstation state list.

Several of the control functions clear the workstation surface if the display
surface empty entry is GEMPTY. Under certain conditions, when you are working
with different clipping rectangles and generalized drawing primitives (GDPs),
the entry may contain GNOTEMPTY when the surface is actually empty. In
such situations, when the entry contains GNOTEMPTY, the application program
must decide whether or not there exists any ‘‘invisible’’ output to the workstation
surface.

Also, you may wish to check the new frame action necessary at update entry
to determine if an implicit regeneration will occur if you update the surface by
calling UPDATE WORKSTATION (passing GPERFORM as an argument). If the
new frame entry is GNO, you can update the surface without the fear of losing
primitives not contained in segments. If the new frame entry is GYES, a call to
UPDATE WORKSTATION with the GPERFORM argument will cause an implicit
regeneration, causing all primitives not contained in segments to be lost.

4.3 Control Inquiries
The following list presents the inquiry functions that you should use to obtain
control function information when writing device-independent code:

INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES
INQUIRE LEVEL OF GKS
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES
INQUIRE OPERATING STATE VALUE
INQUIRE SET OF ACTIVE WORKSTATIONS
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES
INQUIRE WORKSTATION MAXIMUM NUMBERS
INQUIRE WORKSTATION STATE
INQUIRE WORKSTATION CONNECTION AND TYPE

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

4.4 Function Descriptions
This section describes the DEC GKS control functions in detail.

4–8 Control Functions

ACTIVATE WORKSTATION

ACTIVATE WORKSTATION

Operating States

WSOP, WSAC

Syntax

gactivatews (

Gint ws /* (I) Workstation identifier */

)

Description

The ACTIVATE WORKSTATION function activates the specified workstation,
allowing all subsequently generated output to be sent to the workstation. You
must open DEC GKS and the workstation you wish to activate before calling
this function. If the newly activated workstation is the only active workstation,
DEC GKS changes the operating state from WSOP (at least one workstation
open) to WSAC (at least one workstation active).

See Also

Example 4–1 for a program example using the ACTIVATE WORKSTATION
function

Control Functions 4–9

CLEAR WORKSTATION

CLEAR WORKSTATION

Operating States

WSOP, WSAC

Syntax

gclearws (

Gint ws, /* (I) Workstation identifier */
Gclrflag clearflag /* (I) Clear screen flag (constant) */

)

Constants

Data Type Constant Description

Gclrflag GCONDITIONALLY Clear if the surface is not empty.
GALWAYS Clear the workstation always.

Description

The CLEAR WORKSTATION function generates all deferred output and clears
the display surface.

This function performs the following tasks:

1. Generates all deferred output (see the SET DEFERRAL STATE function).

2. If the display surface entry in the workstation state list is NOT EMPTY, this
function always clears the surface. If the display surface entry is EMPTY,
this function only clears the surface if you specify CLEAR ALWAYS as an
argument. If no other workstations are associated with the segment, the
segment is deleted.

After executing this function, DEC GKS sets the display surface entry in the
workstation state list to EMPTY, the workstation transformation update entry
to NOT PENDING, and the new frame necessary at update entry to NOT
NECESSARY.

See Also

Example 4–1 for a program example using the CLEAR WORKSTATION function

4–10 Control Functions

CLOSE GKS

CLOSE GKS

Operating States

GKOP

Syntax

gclosegks ()

Description

The CLOSE GKS function releases the DEC GKS buffers, closes the error log
file, and deletes the file if it is empty. The function also releases the DEC GKS
description table, the GKS state list, and the workstation description tables. You
must end each DEC GKS session with a call to this function.

You must call both the DEACTIVATE WORKSTATION function for each active
workstation and the CLOSE WORKSTATION function for each open workstation
before you call CLOSE GKS. If you do not, DEC GKS logs an error message.

A call to this function changes the DEC GKS operating state from GKOP (GKS
open) to GKCL (GKS closed).

See Also

DEACTIVATE WORKSTATION
OPEN GKS
Example 4–1 for a program example using the CLOSE GKS function

Control Functions 4–11

CLOSE WORKSTATION

CLOSE WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gclosews (

Gint ws /* (I) Workstation identifier */

)

Description

The CLOSE WORKSTATION function updates the workstation (equivalent
to a call to the UPDATE WORKSTATION function with the regeneration
mode argument), closes a workstation opened by a previous call to the OPEN
WORKSTATION function, and releases the specified workstation’s state list.

This function deassigns the channel used for both input and output to the device
and removes the workstation from the set of open workstations in the GKS state
list.

If you call this function to close the last open workstation, this function changes
the DEC GKS operating state from WSOP (at least one workstation open) to
GKOP (GKS open).

Be sure to deactivate a workstation with a call to the DEACTIVATE
WORKSTATION function before you attempt to close a workstation with this
function. If you do not, DEC GKS logs an error message.

See Also

DEACTIVATE WORKSTATION
OPEN WORKSTATION
Example 4–1 for a program example using the CLOSE WORKSTATION function

4–12 Control Functions

DEACTIVATE WORKSTATION

DEACTIVATE WORKSTATION

Operating States

WSAC

Syntax

gdeactivatews (

Gint ws /* (I) Workstation identifier */

)

Description

The DEACTIVATE WORKSTATION function deactivates a specific workstation so
subsequent output will not be sent to that workstation. This function removes the
workstation from the set of active workstations in the GKS state list. Segments
stored on the workstation are retained.

If a call to this function deactivates the last active workstation, this function
changes the DEC GKS operating state from WSAC (at least one workstation
active) to WSOP (at least one workstation open).

You must deactivate a workstation before you can close that workstation. Also,
you must deactivate and close all workstations (if applicable) before you can close
DEC GKS. Otherwise, DEC GKS logs an error message.

See Also

ACTIVATE WORKSTATION
Example 4–1 for a program example using the DEACTIVATE WORKSTATION
function

Control Functions 4–13

ESCAPE

ESCAPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gescape (

Gint function, /* (I) Escape function identifier (constant).*/
Gescin *indata, /* (I) Pointer to input data record. */
Gint bufsize, /* (I) Size of input data record (bytes).

Must be the exact size of the input
data record. */

Gescout *outdata, /* (O) Pointer to output data record. */
Gint *escout_size /* (O) Size of output record (bytes). */

)

Data Structures

typedef union { /* ESCAPE INPUT STRUCTURE */
Guesc_idatarec esc_idatarec;

} Gescin;

typedef struct { /* escape-dependent data record */
Gint number_integer; /* number of integers */
Gint number_float; /* number of floats */
Gint number_strings; /* number of strings */
Gint *list_integers; /* list of integers */
Gfloat *list_floats; /* list of floats */
Gint *list_string_lengths; /* list of string lengths */
Gchar **list_strings; /* list of strings */

} Guesc_idatarec;

typedef union { /* ESCAPE OUTPUT STRUCTURE */
Guesc_odatarec esc_odatarec;

} Gescout;

typedef struct { /* escape-dependent data record */
Gint number_integer; /* number of integers */
Gint number_float; /* number of floats */
Gint number_strings; /* number of strings */
Gint *list_integers; /* list of integers */
Gfloat *list_floats; /* list of floats */
Gint *list_string_lengths; /* list of string lengths */
Gchar **list_strings; /* list of strings */

} Guesc_odatarec;

4–14 Control Functions

ESCAPE

Constants

Escape Identifier Description

ESC_ESP Set Display Speed
ESC_EP Generate Hardcopy of Workstation Surface
ESC_EB Beep
ESC_EPOPW Pop Workstation
ESC_EPSHW Push Workstation
ESC_ESEHM Set Error Handling Mode
ESC_ESVE Set Viewport Event
ESC_EAWC Associated Workstation Type and Connection ID
ESC_ESCL Software Clipping
ESC_ESWM Set Writing Mode
ESC_ESLC Set Line Cap Style
ESC_ESLJ Set Line Join Style
ESC_ESEC Set Edge Control Flag
ESC_ESET Set Edge Type
ESC_ESEW Set Edge Width Scale Factor
ESC_ESECI Set Edge Color Index
ESC_ESEI Set Edge Index
ESC_ESEA Set Edge Aspect Source Flag
ESC_EBTB Begin Transformation Block
ESC_EETB End Transformation Block
ESC_ESSHM Set Segment Highlighting Method
ESC_ESHM Set Highlighting Method
ESC_BTB3 Begin Transformation Block 3
ESC_ESER Set Edge Representation
ESC_ESWT Set Window Title
ESC_ESRS Set Reset String
ESC_ESCS Set Cancel String
ESC_ESES Set Enter String
ESC_ESIB Set Icon Bit Maps
ESC_EIWM Inquire Current Writing Mode
ESC_EILC Inquire Current Line Cap Style
ESC_EILJ Inquire Current Line Join Style
ESC_EIEA Inquire Current Edge Attributes
ESC_EIVD Inquire Viewport Data
ESC_EIS Inquire Current Display Speed
ESC_EILEI Inquire List of Edge Indexes
ESC_EISE Inquire Segment Extent
ESC_EIWID Inquire Window Identifiers
ESC_EISHM Inquire Segment Highlighting Method
ESC_EIHM Inquire Highlighting Method
ESC_EIPBI Inquire Pasteboard Identifier
ESC_EIMBI Inquire Menu Bar Identifier
ESC_EISHI Inquire Shell Identifier
ESC_EILE Inquire List of Available Escapes
ESC_EIDS Inquire Default Display Speed
ESC_EILCJ Inquire Line Cap and Join Facilities
ESC_EIEF Inquire Edge Facilities
ESC_EIPER Inquire Predefined Edge Representation
ESC_EIMEB Inquire Maximum Number of Edge Bundles
ESC_EILH Inquire List of Highlighting Methods
ESC_IER Inquire Edge Representation
ESC_EMNW Evaluate NDC Mapping of a WC Point
ESC_EMDN Evaluate DC Mapping of an NDC Point
ESC_EMWN Evaluate WC Mapping of an NDC Point
ESC_EMND Evaluate NDC Mapping of a DC Point
ESC_EIGEX Inquire Extent of a GDP
ESC_ESDB Set Double Buffering
ESC_ESBPM Set Background Pixmap

Control Functions 4–15

ESCAPE

ESC_EIDBM Inquire Double Buffer Pixmap
ESC_EIBGM Inquire Background Pixmap

Description

The ESCAPE function invokes a specified escape function. This function provides
a method for DEC GKS to access capabilities of a specific workstation that are
not fully utilized by other functions.

For example, the DEC GKS implementation uses this function call to produce
a hardcopy dump of a VT125 or VT240 terminal screen, or to set the LVP16™
plotter pen speed.

When calling the control function ESCAPE, you may need to pass a data record.
There are two types of escape data records, input and output. The C escape input
data record is as follows:

typedef struct { /* escape-dependent data record */
Gint number_integer; /* number of integers */
Gint number_float; /* number of floats */
Gint number_strings; /* number of strings */
Gint *list_integers; /* list of integers */
Gfloat *list_floats; /* list of floats */
Gint *list_string_lengths; /* list of string lengths */
Gchar **list_strings; /* list of strings */

} Guesc_idatarec;

The C escape output data record is as follows:

typedef struct { /* escape-dependent data record */
Gint number_integer; /* number of integers */
Gint number_float; /* number of floats */
Gint number_strings; /* number of strings */
Gint *list_integers; /* list of integers */
Gfloat *list_floats; /* list of floats */
Gint *list_string_lengths; /* list of string lengths */
Gchar **list_strings; /* list of strings */

} Guesc_odatarec;

See the Device Specifics Reference Manual for DEC GKS and DEC PHIGS for the
input and output values required by each escape. Both the input and output data
records must be completed as described.

The argument bufsize is the sizeof (Guesc_idatarec). If an output data record is
necessary, you can either use the output data size number (as described in the
Device Specifics Reference Manual for DEC GKS and DEC PHIGS), or you can
determine the size using the ESCAPE function.

To use the ESCAPE function to determine the size of the entire output data
record buffer, pass the value 0 as the argument escout_size (size of the output
data record). DEC GKS checks for errors, returns the size of the output data
record in escout_size, but does not perform the escape. Call the function a second
time with the correct output data record size to have DEC GKS perform the
escape.

See Also

Example 4–2 for a program example using the ESCAPE function

4–16 Control Functions

MESSAGE

MESSAGE

Operating States

WSOP, WSAC, SGOP

Syntax

gmessage (

Gint ws, /* (I) Workstation identifier */
Gchar *message /* (I) Pointer to the message text */

)

Description

The MESSAGE function allows an application program to deliver a message to
the user at an implementation-dependent location on the workstation surface, or
on a separate device associated with the workstation. This function may have a
local effect on the workstation. For example, the message might request that the
operator change the paper in a plotter before a picture is generated.

See the Device Specifics Reference Manual for DEC GKS and DEC PHIGS for
more information on workstation-specific capabilities.

See Also

Example 9–1 for a program example using the MESSAGE function

Control Functions 4–17

OPEN GKS

OPEN GKS

Operating States

GKCL

Syntax

gopengks (

Gfile *error_fp, /* (I) Error file pointer. This is either a
logical name or a physical name of a
device or file that points to the error
log file. The default value is 0. */

Glong memory /* (I) Memory allocation. This is a dummy
argument required by the standard. */

)

Description

The OPEN GKS function permits subsequent access to the GKS state list,
DEC GKS description table, and the workstation description tables.

The function changes the DEC GKS operating state from GKCL (GKS closed) to
GKOP (GKS open). The error file entry in the error state list is set to the value
passed as an argument to this function.

When using DEC GKS, you usually call this function first. All functions except
EMERGENCY CLOSE, ERROR HANDLING, ERROR LOGGING, and INQUIRE
OPERATING STATE VALUE require at least the GKOP operating state.

See Also

CLOSE GKS
Example 4–1 for a program example using the OPEN GKS function

4–18 Control Functions

OPEN WORKSTATION

OPEN WORKSTATION

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gopenws (

Gint ws, /* (I) Workstation identifer. This must be a
positive integer value. */

Gconn *conid, /* (I) Connection identifier. This can be a
logical name, a DEC GKS constant value,
or a file specification. */

Gwstype *wstype /* (I) Workstation type. */

)

Description

The OPEN WORKSTATION function initializes a workstation for use by
DEC GKS, permitting subsequent access to the specified workstation’s state
list.

This function associates the workstation identifier with a particular device of
a specified type, and initializes the workstation. If establishing the first open
workstation, this function changes the DEC GKS operating state from GKOP
(GKS open) to WSOP (at least one workstation open).

This function clears the display surface of previously generated images. You must
call this function, followed by a call to the ACTIVATE WORKSTATION function,
before you attempt to generate output to this workstation.

See Also

ACTIVATE WORKSTATION
Example 4–1 for a program example using the OPEN WORKSTATION function

Control Functions 4–19

REDRAW ALL SEGMENTS ON WORKSTATION

REDRAW ALL SEGMENTS ON WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gredrawsegws (

Gint ws /* (I) Workstation identifier */

)

Description

The REDRAW ALL SEGMENTS ON WORKSTATION function clears the screen
and redraws all defined, visible segments.

This function performs the following tasks:

1. Generates all deferred output (see the SET DEFERRAL STATE function).

2. If the display surface empty entry in the workstation state list is NOT
EMPTY, this function clears the surface.

3. Places into effect pending workstation transformations.

4. Redisplays all visible segments that existed on the workstation surface before
the screen was cleared. All output not contained in segments is lost.

After executing this function, DEC GKS sets the workstation transformation
update state list entry to NOT PENDING, and the new frame necessary at update
state list entry to NOT NECESSARY.

Note

You should use this function if you need to redraw the picture regardless
of the status of the new frame necessary at update entry. Otherwise, use
the UPDATE WORKSTATION function.

See Also

UPDATE WORKSTATION
Example 8–1 for a program example using the REDRAW ALL SEGMENTS ON
WORKSTATION function

4–20 Control Functions

SET DEFERRAL STATE

SET DEFERRAL STATE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetdeferst (

Gint ws, /* (I) Workstation identifier */
Gdefmode defmode, /* (I) Maximum deferral mode allowed (constant) */
Girgmode irgmode /* (I) Implicit regeneration mode (constant) */

)

Constants

Data Type Constant Description

Gdefmode GASAP Generate images as soon as possible.
GBNIG Generate images before the next interaction

globally, or before a sample or event input occurs.
GBNIL Generate images before the next interaction locally,

or before a sample or event input occurs.
GASTI Generate images at some time. The exact time is

determined by the workstation.

Girgmode GSUPPRESSED Image regeneration is suppressed.
GALLOWED Image regeneration is allowed.

Description

The SET DEFERRAL STATE function sets the workstation state list entries
deferral mode and implicit regeneration mode.

The deferral mode specifies the rate of output generation. Depending on the
capabilities of the workstation, it can defer output at any level up to the level
specified in the call to the SET DEFERRAL STATE function. If the workstation
can defer output at the requested level, it does. If the workstation cannot defer
output at the requested level, it defers output at the next supported lower level.
Using this function, you can allow a workstation to defer output, or you can either
suppress or allow implicit regenerations.

For example, if you specify ASAP in a call to this function, the workstation
must generate output as soon as possible. If you specify BNIG, the workstation
can defer output at either ASAP or BNIG, depending on its capabilities. If you
specify BNIL, the workstation can defer output on any level up to and including
BNIL, depending on its capabilities. If you specify ASTI, the workstation
can defer output at any of the four levels, depending on its capabilities. (For
more information concerning the definitions of the constants described in this
paragraph, see the deferral mode argument description.)

The implicit regeneration mode determines whether implicit regenerations
are allowed or suppressed. If you allow implicit regenerations, and the
workstation supports implicit regeneration for the specified change, any pending
or subsequent surface change requiring regeneration (for example, output
bundle index changes, segment attribute changes, or workstation transformation

Control Functions 4–21

SET DEFERRAL STATE

changes) occurs at the time of request. If you suppress regenerations, changes
requiring regenerations place the screen out of date (DEC GKS sets the new
frame necessary at update entry in the workstation state list to NEWFRAME
NECESSARY).

By suppressing implicit regenerations, you can make all necessary changes
without altering the workstation surface. When you have requested all changes,
call the UPDATE WORKSTATION function to perform all the suppressed actions
in a single regeneration of the surface.

Note

When regenerating the surface of the workstation, DEC GKS clears the
surface before redrawing only the visible segments. All output primitives
not contained in segments are lost.

See Also

UPDATE WORKSTATION
Example 5–1 for a program example using the SET DEFERRAL STATE function

4–22 Control Functions

UPDATE WORKSTATION

UPDATE WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gupdatews (

Gint ws, /* (I) Workstation identifier */
Gregen regenflag /* (I) Update regeneration mode (constant) */

)

Constants

Data Type Constant Description

Gregen GPERFORM Perform regeneration of image.
GPOSTPONE Postpone regeneration of image.

Description

The UPDATE WORKSTATION function generates all deferred output for the
specified workstation and can also redisplay all visible segments.

If the new frame necessary at update entry in the workstation state list is
NEWFRAME NECESSARY, and if you specify the value GPERFORM to this
function, it performs the following tasks:

1. Clears the screen if the display surface empty entry in the workstation state
list is NOT EMPTY.

2. Places into effect pending workstation transformations.

3. Redisplays all visible segments that were stored on the workstation. All
output primitives not contained in segments are lost.

After executing these tasks, DEC GKS sets the display surface empty entry in
the workstation state list to EMPTY or to NOT EMPTY according to the current
state of the workstation surface, the workstation transformation update state
entry to NOT PENDING, and the new frame necessary at update entry to NOT
NECESSARY.

However, if at the call to this function the new frame necessary at update entry
in the workstation state list is NOT NECESSARY, or if you specify the value
GPOSTPONE as an argument to this function, it initiates only the transmission
of any deferred output.

See Also

Example 4–1 for a program example using the UPDATE WORKSTATION
function

Control Functions 4–23

Control Functions
4.5 Program Examples

4.5 Program Examples
Example 4–1 illustrates the use of several control functions.

Example 4–1 CLEAR WORKSTATION and the GKS Control Functions

/*
* This program writes a text string to the screen, and then clears the
* screen using the function CLEAR WORKSTATION.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* C binding definitions file */

main ()
{

Gconn default_conid;
Gwstype default_wstype;
Gevent event;
Gfloat larger = 0.03;
Gpoint position;
Gchar *text_name = "CLEAR WORKSTATION should erase this";
Gfloat timeout = 10.0;
Gint ws_id = 1;

/*
* Open the GKS environment. Specifying 0 for the two arguments tells
* DEC GKS to use the default values (output to the terminal surface
* and the default GKS error file).
*/

gopengks (0, 0);

/*
* Open the workstation environment. When you call this function, you
* assign the workstation a numeric identifier (in this example, the
* number 1), a device name (in this example, DEC GKS translates the
* connection identifier environment option to determine the device name),
* and a workstation type (in this example, DEC GKS translates the workstation
* type environment option to determine the workstation type).
*/

default_conid = GWC_DEF;
default_wstype = GWS_DEF;

gopenws (ws_id, &default_conid, &default_wstype);

/*
* When activating a workstation using the function ACTIVATE WORKSTATION,
* use the workstation identifier you specified as the first argument in
* the call to OPEN WORKSTATION (in this example, the number 1).
*/

gactivatews (ws_id);

/*
* Using the default windows and viewports, the TEXT function writes a
* character string to the screen starting at the WC (0.1, 0.5).
*/

position.x = 0.1;
position.y = 0.5;

(continued on next page)

4–24 Control Functions

Control Functions
4.5 Program Examples

Example 4–1 (Cont.) CLEAR WORKSTATION and the GKS Control Functions

gsetcharheight (larger);
gtext (&position , text_name);

/* Release the deferred output. Wait 10 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout, &event);

/*
* The CLEAR WORKSTATION function, when passed the flag GCONDITIONALLY,
* clears the workstation under the condition that the surface contains
* output primitives. Because the previous function call wrote a character
* string to the workstation surface, this call clears the screen.
*/

gclearws (ws_id, GCONDITIONALLY);

/*
* When deactivating and closing the open workstation, pass the numeric
* workstation identifier previously specified in the call to OPEN
* WORKSTATION (in this example, the value 1).
*/

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 4–1 shows the first screen display on a VAXstation™ workstation running
DECwindows software. When the program ends, the screen is cleared.

Control Functions 4–25

Control Functions
4.5 Program Examples

Figure 4–1 CLEAR WORKSTATION and the GKS Control Functions

ZK−4014A−GE

Example 4–2 illustrates the use of the ESCAPE function.

Example 4–2 Supported Escapes Program

/*
* This program opens GKS and the default workstation, inquires the workstation
* type, queries the list of escapes supported by the workstation, tests a few
* of the escapes, and closes the workstation and GKS.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definition file */

define FALSE 0
define MAX_BUFFER 80
define MAX_INTS 100
define TRUE 1

(continued on next page)

4–26 Control Functions

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

/*
* This routine inquires the list of supported escapes for the specified
* workstation type.
*/

void inquire_escapes (wstype, escape_list)

Gwstype wstype;
Gint escape_list[MAX_INTS];

{
Gint in_data_size;
Gescin in_esc_data;
Gint out_data_size;
Gescout out_esc_data;

in_data_size = sizeof(Gescin);
in_esc_data.esc_idatarec.number_integer = 1;
in_esc_data.esc_idatarec.number_float = 0;
in_esc_data.esc_idatarec.number_strings = 0;
in_esc_data.esc_idatarec.list_integers = &wstype;
in_esc_data.esc_idatarec.list_floats = NULL;
in_esc_data.esc_idatarec.list_string_lengths = NULL;
in_esc_data.esc_idatarec.list_strings = NULL;

out_data_size = sizeof(Gescout);
out_esc_data.esc_odatarec.number_integer = MAX_INTS; /* maximum array

dimension */
out_esc_data.esc_odatarec.number_float = 0;
out_esc_data.esc_odatarec.number_strings = 0;
out_esc_data.esc_odatarec.list_integers = escape_list;
out_esc_data.esc_odatarec.list_floats = NULL;
out_esc_data.esc_odatarec.list_string_lengths = NULL;
out_esc_data.esc_odatarec.list_strings = NULL;

gescape (ESC_EILE, &in_esc_data, in_data_size,
&out_esc_data, &out_data_size);

} /* End inquire_escapes */

/*
* This routine determines whether or not the specified escape identifier
* (esc_id) is in the list of supported escapes (escape_list).
* A value of TRUE is returned if the specified escape is supported.
* A value of FALSE is returned if the specified escape is not supported.
*/

int esc_support (esc_id, escape_list)

Gint esc_id;
Gint escape_list[MAX_INTS];

{
int escape_supported;
int n;

escape_supported = FALSE;
for (n = 3; n < 3+escape_list[2]; n++)
if (esc_id == escape_list[n])

{
escape_supported = TRUE;
break;
}

return (escape_supported);

(continued on next page)

Control Functions 4–27

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

} /* End esc_support */

/*
* This routine sets double buffering ON or OFF as requested. Nothing
* will be done if the escape is not supported by the workstation type.
*/

void set_double_buffer (ws_id, escape_list, double_buffer_flag)

Gint double_buffer_flag;
Gint escape_list[MAX_INTS];
Gint ws_id;

{
Gint in_data_size;
Gescin in_esc_data;
Gint int_array[2];
Gint out_data_size;
Gescout out_esc_data;

/* Determine if the escape is supported by workstation. */

if (!esc_support(ESC_ESDB, escape_list))
return;

/* Turn double buffering ON or OFF as requested. */

in_data_size = sizeof(Gescin);
in_esc_data.esc_idatarec.number_integer = 2;
in_esc_data.esc_idatarec.number_float = 0;
in_esc_data.esc_idatarec.number_strings = 0;
in_esc_data.esc_idatarec.list_integers = int_array;
in_esc_data.esc_idatarec.list_floats = NULL;
in_esc_data.esc_idatarec.list_string_lengths = NULL;
in_esc_data.esc_idatarec.list_strings = NULL;
int_array[0] = ws_id;
int_array[1] = double_buffer_flag;

out_data_size = sizeof(Gescout);
out_esc_data.esc_odatarec.number_integer = 0;
out_esc_data.esc_odatarec.number_float = 0;
out_esc_data.esc_odatarec.number_strings = 0;
out_esc_data.esc_odatarec.list_integers = NULL;
out_esc_data.esc_odatarec.list_floats = NULL;
out_esc_data.esc_odatarec.list_string_lengths = NULL;
out_esc_data.esc_odatarec.list_strings = NULL;

gescape (ESC_ESDB, &in_esc_data, in_data_size,
&out_esc_data, &out_data_size);

} /* End set_double_buffer */

/*
* This routine inquires the X window and display identifiers of the GKS
* workstation. Nothing will be done if the escape is not supported by the
* workstation type.
*/

void inq_window_ids (ws_id, escape_list, x_display_id, x_window_id)

Gint escape_list[MAX_INTS];
Gint ws_id;
Gint *x_display_id;
Gint *x_window_id;

(continued on next page)

4–28 Control Functions

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

{
Gint in_data_size;
Gescin in_esc_data;
Gint int_array[2];
Gint out_data_size;
Gescout out_esc_data;

/* Determine if the escape is supported by the workstation. */

if (!esc_support(ESC_EIWID, escape_list))
return;

/* Inquire the X display identifier and the X window identifier. */

in_data_size = sizeof(Gescin);
in_esc_data.esc_idatarec.number_integer = 1;
in_esc_data.esc_idatarec.number_float = 0;
in_esc_data.esc_idatarec.number_strings = 0;
in_esc_data.esc_idatarec.list_integers = &ws_id;
in_esc_data.esc_idatarec.list_floats = NULL;
in_esc_data.esc_idatarec.list_string_lengths = NULL;
in_esc_data.esc_idatarec.list_strings = NULL;

out_data_size = sizeof(Gescout);
out_esc_data.esc_odatarec.number_integer = 2;
out_esc_data.esc_odatarec.number_float = 0;
out_esc_data.esc_odatarec.number_strings = 0;
out_esc_data.esc_odatarec.list_integers = int_array;
out_esc_data.esc_odatarec.list_floats = NULL;
out_esc_data.esc_odatarec.list_string_lengths = NULL;
out_esc_data.esc_odatarec.list_strings = NULL;

gescape (ESC_EIWID, &in_esc_data, in_data_size,
&out_esc_data, &out_data_size);

*x_display_id = int_array[0];
*x_window_id = int_array[1];

printf ("\n Escape: Inquire Window Identifiers\n");
printf (" X Display ID: %x\n", *x_display_id);
printf (" X Window ID: %x\n", *x_window_id);

} /* End inq_window_ids */

/*
* This routine sets the window title to the specified string. Nothing
* will be done if the escape is not supported by the workstation type.
*/

void set_window_title (ws_id, escape_list, new_title)

Gint escape_list[MAX_INTS];
Gchar *new_title;
Gint ws_id;

{
Gint in_data_size;
Gescin in_esc_data;
Gint new_title_size;
Gint out_data_size;
Gescout out_esc_data;

(continued on next page)

Control Functions 4–29

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

/* Determine if the escape is supported by the workstation. */

if (!esc_support(ESC_ESWT, escape_list))
return;

/* Change the window title. */

in_data_size = sizeof(Gescin);
in_esc_data.esc_idatarec.number_integer = 1;
in_esc_data.esc_idatarec.number_float = 0;
in_esc_data.esc_idatarec.number_strings = 1;
in_esc_data.esc_idatarec.list_integers = &ws_id;
in_esc_data.esc_idatarec.list_floats = 0;
in_esc_data.esc_idatarec.list_string_lengths = &new_title_size;
in_esc_data.esc_idatarec.list_strings = &new_title;
new_title_size = strlen(new_title);

out_data_size = sizeof(Gescout);
out_esc_data.esc_odatarec.number_integer = 0;
out_esc_data.esc_odatarec.number_float = 0;
out_esc_data.esc_odatarec.number_strings = 0;
out_esc_data.esc_odatarec.list_integers = NULL;
out_esc_data.esc_odatarec.list_floats = NULL;
out_esc_data.esc_odatarec.list_string_lengths = NULL;
out_esc_data.esc_odatarec.list_strings = NULL;

gescape (ESC_ESWT, &in_esc_data, in_data_size,
&out_esc_data, &out_data_size);

} /* End set_window_title */

main ()
{

Gint double_buffer_flag;
Gint error_ind;
Gint escape_list [MAX_INTS];
Gchar inq_buffer [MAX_BUFFER];
Gint n;
Gwsct ws_con_type;
Gint ws_con_type_size;
Gint ws_id = 1;
Gwstype wstype;
Gint x_display_id;
Gint x_window_id;

/* Open GKS and the default workstation. */

gopengks (stderr, 0);
gopenws (ws_id, 0, 0);

/* Inquire the workstation type. */

ws_con_type.conn = inq_buffer;
ws_con_type.type = &wstype;

ginqwsconntype (ws_id, MAX_BUFFER, &ws_con_type_size,
&ws_con_type, &error_ind);

/* Inquire the list of supported escapes. */

(continued on next page)

4–30 Control Functions

Control Functions
4.5 Program Examples

Example 4–2 (Cont.) Supported Escapes Program

inquire_escapes (wstype, escape_list);
if (escape_list[0] != 0)

{
gemergencyclosegks ();
printf ("Error inquiring list of supported escapes %d\n",

escape_list[0]);
exit ();
}

/* Set the window title. */

set_window_title (ws_id, escape_list, "DEC GKS puts life in perspective");

/* Turn on double buffering. */

double_buffer_flag = 1;

set_double_buffer (ws_id, escape_list, double_buffer_flag);

/* Inquire the X display identifier and X window identifier. */

inq_window_ids (ws_id, escape_list, &x_display_id, &x_window_id);

/* Close the workstation and GKS. */

gclosews (ws_id);
gclosegks ();

/* Print the workstation type and its supported escapes. */

printf ("\n Workstation type %d supports %d escapes (%d returned):\n",
wstype, escape_list[1], escape_list[2]);

for (n = 3; n < escape_list[2] + 3; n++)
printf (" %d\n", escape_list[n]);

} /* End main */

This program performs various escapes, depending on the workstation type.

Control Functions 4–31

Control Functions
4.5 Program Examples

Example 4–3 shows the output from a VAXstation workstation running
DECwindows software.

Example 4–3 VAXstation Output for Escape Program

Escape: Inquire Window Identifiers
X Display ID: 1f8010
X Window ID: 700013

Workstation type 211 supports 35 escapes (35 returned):
-104
-105
-151
-152
-103
-150
-309
-308
-307
-106
-107
-206
-304
-202
-203
-204
-205
-500
-501
-502
-503
-109
-401
-403
-303
-358
-108
-110
-251
-252
-253
-305
-350
-400
-402

4–32 Control Functions

Output Functions

Insert tabbed divider here. Then discard this sheet.

5
Output Functions

The DEC GKS output functions generate the basic components, or primitives, of
all graphic pictures.

When you generate primitives on the workstation surface, you should be aware of
the following:

• DEC GKS operating state

• DEC GKS coordinate systems

• Transformations

• Clipping

• Deferred transformations and output

The following sections describe these issues related to output, and point to the
appropriate chapters in this manual that describe the topics in full detail.

5.1 Output and the DEC GKS Operating State
When you call control functions, DEC GKS allows access to certain tables and
lists. You can never call a DEC GKS function that requires access to a table or
list that has not yet been made available. To determine which tables and lists
are accessible, and which DEC GKS functions you can call at a given point in the
application program, DEC GKS maintains an operating state (see Section 4.1.2).

To call any of the output functions described in this chapter, the DEC GKS
operating state must be WSAC or SGOP. To place DEC GKS into the WSAC
operating state, you need to do the following:

• Open DEC GKS (by calling OPEN GKS).

• Open at least one workstation (by calling OPEN WORKSTATION).

• Activate at least one workstation (by calling ACTIVATE WORKSTATION).

If you call an output function, DEC GKS generates the primitive on all active
workstations. If you call an output function during the SGOP operating state,
the output primitive becomes part of a segment. (For complete information
concerning segments, see Chapter 8, Segment Functions.)

If you wish to output to an active workstation, the workstation must be of type
OUTPUT, OUTIN, or MO (see Table 4–1). Only workstations of those categories
support image generation. OUTPUT and OUTIN workstations generate output
primitives on the workstation surface; MO workstations store information
about the function call in a file. For more information concerning metafiles, see
Chapter 10, Metafile Functions. For more information concerning workstation
categories or the DEC GKS operating states, see Chapter 4, Control Functions.

Output Functions 5–1

Output Functions
5.2 Output Attributes

5.2 Output Attributes
All the output primitives have attributes that are stored in the GKS state list.
Attributes are properties of the primitive, such as line thickness, color, and style.
Each attribute has an initial value, provided as a default setting. When you call
an output function, the current values of its attributes are bound to the function,
so that the output primitive reflects the current attribute values.

Output attribute functions can radically affect how the output primitive appears
on the workstation surface. For example, depending on the current text attribute
values, the positioning point passed to the output function TEXT may be the
center point for the text string, the position of the first character in the text
string, or the position of the last character in the text string. The text output
attributes also determine whether the string runs horizontal to the workstation
X axis, vertical to the workstation X axis, or at a specified angle on the display
surface.

This chapter requires that you be familiar with the following attribute issues:

• The types of attributes available for a primitive.

• The effects of using individual and bundled attributes.

• The use of nominal sizes and scale factors.

• The use of foreground and background color.

For complete information on these and any other output attribute topics, see
Chapter 6, Attribute Functions.

5.3 Transformations and the DEC GKS Coordinate Systems
The DEC GKS transformation functions allow you to compose a picture, control
how much of the picture is displayed on the workstation surface, orient the
picture, and control how much of the workstation surface is used to display the
picture.

When you request input and generate output on the workstation surface, you
actually work with a number of coordinate systems. The image is transformed
from one coordinate system to the next.

Using DEC GKS, you work with a geometric transformation pipeline. The
pipeline consists of a number of transformations that affect various coordinate
systems.

Note if you are working only with two-dimensional primitives, your WC system
is an imaginary Cartesian coordinate system with the origin at (0, 0), and X and
Y axes that extend to infinity in all directions. The two-dimensional WC plane is
positioned at z = 0.

DEC GKS uses two separate transformations to translate your WC points to NDC
points, and to translate your NDC points to device coordinate points. During this
process, portions of your primitives may be removed from the final picture due
to clipping. You need to be aware of the effects of transformations and clipping
on your generated output primitives. For complete information concerning
transformations, see Chapter 7, Transformation Functions.

5–2 Output Functions

Output Functions
5.4 Output Deferral

5.4 Output Deferral
When you output primitives, a workstation may postpone the generation of the
image on the workstation surface depending on the workstation’s capabilities.
This postponement is called output deferral.

DEC GKS supports four deferral modes for its supported workstations. The
deferral modes, in increasing order of deferral, are ASAP (generates output as
soon as possible), BNIG (generates output before the next interaction globally),
BNIL (generates output before the next interaction locally), and ASTI (at some
time).

You can specify a suggested level of deferral by calling the function SET
DEFERRAL STATE. Depending on the capabilities of the workstation, it can
defer output at the highest level up to the level specified in the call to SET
DEFERRAL STATE.

For detailed information concerning SET DEFERRAL STATE and deferral, see
Chapter 4, Control Functions.

5.5 Output Inquiries
The following list presents the inquiry functions that you can use to obtain output
information when writing device-independent code:

INQUIRE GENERALIZED DRAWING PRIMITIVE
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES
INQUIRE OPERATING STATE
INQUIRE PIXEL
INQUIRE PIXEL ARRAY
INQUIRE PIXEL ARRAY DIMENSIONS
INQUIRE SET OF ACTIVE WORKSTATIONS
INQUIRE TEXT EXTENT

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

5.6 Function Descriptions
This section describes the DEC GKS output functions in detail.

Output Functions 5–3

CELL ARRAY

CELL ARRAY

Operating States

WSAC, SGOP

Syntax

gcellarray (

Grect *rectangle, /* (I) Upper left/lower right corners */
Gidim *dimensions, /* (I) Color index array dimensions */
Gint *colour /* (I) Color indexes in row order form */

)

Data Structures

typedef struct { /* COORDINATE RECTANGLE */
Gpoint ul; /* upper left corner */
Gpoint lr; /* lower right corner */

} Grect;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

typedef struct { /* DIMENSION IN INTEGER VALUES */
Gint x_dim; /* X dimension */
Gint y_dim; /* Y dimension */

} Gidim;

Description

The CELL ARRAY function divides a designated rectangular area into cells, and
displays each cell in a specified color or shade.

You pass a two-dimensional array containing color index values as one argument
to this function. DEC GKS maps the color index values to corresponding cells
within a rectangular area of the workstation surface. In addition to the color
index array, you specify the number of array columns and rows to be mapped.

There is a one-to-one correspondence between the number of specified array
columns and rows, and the number of columns and rows by which DEC GKS
divides the cell array rectangle. Each of the columns within the rectangle is
of equal width, and each of the rows within the rectangle is of equal height.
DEC GKS maps the color index values from each specified color index array
element to the corresponding cell, moving from the starting point towards the
diagonal point along the X axis.

For more information on the initial color index values for a given workstation, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

To alter the color associated with a certain index value, you can use the GKS
function SET COLOUR REPRESENTATION.

5–4 Output Functions

CELL ARRAY

The following figure illustrates how the cells are arranged in the cell array
primitive.

X

X

P DX

DY

Q

1

2

3

.

.

CELL ARRAY
DX x DY CELLS

1 2 3

ZK−4581A−GE

. .

See Also

SET COLOUR REPRESENTATION
Example 5–1 for a program example using the CELL ARRAY function

Output Functions 5–5

CELL ARRAY 3

CELL ARRAY 3

Operating States

WSAC, SGOP

Syntax

gcellarray3 (

Grect3 *parallelogram, /* (I) Three vertices of a parallelogram */
Gidim *dimensions, /* (I) Color index array dimensions */
Gint *colour /* (I) Color indexes in row order form */

)

Data Structures

typedef struct { /* WORLD COORDINATE PARALLELOGRAM */
Gpoint3 llf; /* lower left front corner */
Gpoint3 urf; /* upper right front corner */
Gpoint3 urb; /* upper right back corner */

} Grect3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

typedef struct { /* DIMENSION IN INTEGER VALUES */
Gint x_dim; /* X dimension */
Gint y_dim; /* Y dimension */

} Gidim;

Description

The CELL ARRAY 3 function divides a designated parallelogram into cells and
displays each cell in a specified color.

You pass a two-dimensional array containing color index values as one argument
to this function. DEC GKS maps the color index values to corresponding cells
within a parallelogram-shaped area of the workstation surface. In addition to
the color index array, you specify the number of array columns and rows to be
mapped.

There is a one-to-one correspondence between the number of specified
array columns and rows, and the number of columns and rows by which
DEC GKS divides the cell array parallelogram. Each of the columns within the
parallelogram is of equal width, and each of the rows within the parallelogram
is of equal height. DEC GKS maps the color index values from each specified
color index array element to the corresponding cell, moving from the starting
point towards the diagonal point along the X axis. The grid defined by the three
parallelogram vertices and DX and DY is subject to all transformations.

For more information on the initial color index values for a given workstation, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

To alter the color associated with a certain index value, you can use the GKS
function SET COLOUR REPRESENTATION.

5–6 Output Functions

CELL ARRAY 3

The following figure illustrates a transformed cell array 3 primitive.

DY

3D CELL ARRAY

1
2

3

ZK−4582A−GE

.

R

P

DX
Q

1

2

3

.

See Also

SET COLOUR REPRESENTATION
Example 5–1 for a program example using the CELL ARRAY function

Output Functions 5–7

FILL AREA

FILL AREA

Operating States

WSAC, SGOP

Syntax

gfillarea (

Gint npoints, /* (I) Number of vertices in the polygon. */
Gpoint *points /* (I) X and Y world coordinates. The size of

the array is equal to the value of
npoints. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The FILL AREA function draws a polygon and fills it with an interior style that
has already been selected. If you do not specify a closed polygon, DEC GKS
connects the last point specified to the first point.

The fill area interior style can be either hollow, solid, hatched, or patterned. For
example, the default fill area interior style for most supported workstation types
is hollow. In that case, the function draws the outline of the polygon, leaving the
interior hollow.

See Also

SET FILL AREA COLOUR INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN REPRESENTATION
SET PICK IDENTIFIER
Example 6–1 for a program example using the FILL AREA function

5–8 Output Functions

FILL AREA 3

FILL AREA 3

Operating States

WSAC, SGOP

Syntax

gfillarea3 (

Gint npoints, /* (I) Number of points in the polygon. */
Gpoint3 *points /* (I) X, Y, and Z world coordinates. The size

of the array is equal to the value of
npoints. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The FILL AREA 3 function draws a three-dimensional polygon and fills it with
an interior style that has already been selected. If you do not specify a closed
polygon, DEC GKS connects the last point specified to the first point.

The fill area interior style can be either hollow, solid, hatched, or patterned. For
example, the default fill area interior style for most supported workstation types
is hollow. In that case, the function draws the outline of the polygon, leaving the
interior hollow.

See Also

SET FILL AREA COLOUR INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN REPRESENTATION
SET PICK IDENTIFIER
Example 6–1 for a program example using the FILL AREA function

Output Functions 5–9

FILL AREA SET

FILL AREA SET

Operating States

WSAC, SGOP

Syntax

gfillareaset (

Gint num_lists, /* (I) Number of fill areas in the set. */
Gint *size_list, /* (I) Array of integers that specifies the number

of points that bound each fill area. */
Gpoint *points /* (I) Array of WC points that bound each fill

area in the set. The size of the array is
equal to the sum of all values in the
array size_list. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The FILL AREA SET function draws a set of two-dimensional polygons and fills
them with an interior style. The fill area interior style can be either hollow,
solid, hatched, or patterned. For example, the default fill area interior style for
most supported workstation types is hollow. In that case, the function draws the
outline of the polygons, leaving the interiors hollow.

5–10 Output Functions

FILL AREA SET 3

FILL AREA SET 3

Operating States

WSAC, SGOP

Syntax

gfillareaset3 (

Gint num_lists, /* (I) Number of fill areas in the set. */
Gint *size_list, /* (I) Array of integers that specifies

the number of points that bound each fill
area. */

Gpoint3 *points /* (I) Array of WC points that bound each fill
area in the set. The size of the array is
equal to the sum of all values in the
array size_list. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The FILL AREA SET 3 function draws a set of three-dimensional polygons and
fills them with an interior style. The fill area interior style can be either hollow,
solid, hatched, or patterned. For example, the default fill area interior style for
most supported workstation types is hollow. In that case, the function draws the
outline of the polygons, leaving the interiors hollow.

Output Functions 5–11

GENERALIZED DRAWING PRIMITIVE

GENERALIZED DRAWING PRIMITIVE

Operating States

WSAC, SGOP

Syntax

ggdp (

Gint npoints, /* (I) Number of points in the GDP. */
Gpoint *points, /* (I) Array of WC coordinate points. The

size of the array is equal to the
value of npoints. */

Gint function, /* (I) GDP function identifier (constant). */
Ggdprec *data /* (I) GDP data record. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

typedef union { /* GDP DATA RECORD */
Gugdp_datarec gdp_datarec;

} Ggdprec;

typedef struct { /* escape-dependent data record */
Gint number_integer; /* number of integer */
Gint number_float; /* number of float */
Gint number_strings; /* number of string */
Gint *list_integers; /* list of integers */
Gfloat *list_floats; /* list of floats */
Gint *list_string_lengths; /* list of string lengths */
Gchar **list_strings; /* list of strings */

} Gugdp_datarec;

Constants

GDP Identifier Description

GDP_DISP Disjoint Polyline
GDP_CCP Circle: Center and Point on Circumference
GDP_C3P Circle: Three Points on Circumference
GDP_CCR Circle: Center and Radius
GDP_C2PR Circle: Two Points on Circumference, and Radius
GDP_AC2P Arc: Center and Two Points on Arc
GDP_A3P Arc: Three Points on Circumference
GDP_ACVR Arc: Center, Two Vectors, and a Radius
GDP_A2PR Arc: Two Points on Arc and Radius
GDP_ACPA Arc: Center, Starting Point, and Angle
GDP_ECA Ellipse: Center, and Two Axis Vectors
GDP_EFP Ellipse: Focal Points and Point on Circumference
GDP_EACA Elliptic Arc: Center, Two Axis Vectors, and Two Vectors
GDP_EAFP Elliptic Arc: Focal Points and Two Points on Circumference

5–12 Output Functions

GENERALIZED DRAWING PRIMITIVE

GDP_R2P Rectangle: Two Corners
GDP_FAS Fill Area Set
GDP_FCCP Filled Circle: Center and Point on Circumference
GDP_FC3P Filled Circle: Three Points on Circumference
GDP_FCCR Filled Circle: Center and Radius
GDP_FCPR Filled Circle: Two Points on Circumference, and Radius
GDP_FACP Filled Arc: Center and Two Points on Arc
GDP_FA3P Filled Arc: Three Points on Circumference
GDP_FACV Filled Arc: Center, Two Vectors, and a Radius
GDP_FAPR Filled Arc: Two Points on Arc, and Radius
GDP_FACA Filled Arc: Center, Starting Point, and Angle
GDP_FECA Filled Ellipse: Center and Two Axis Vectors
GDP_FEFP Filled Ellipse: Focal Points and Point on Circumference
GDP_FEACA Filled Elliptic Arc: Center, Two Axis Vectors, and Two Vectors
GDP_FEAF Filled Elliptic Arc: Focal Points and Two Points on

Circumference
GDP_FR2P Filled Rectangle: Two Corners
GDP_GIA Packed Cell Array

Description

The GENERALIZED DRAWING PRIMITIVE function generates a generalized
drawing primitive (GDP) of the type you specify, using specified points and any
additional information contained in a data record.

A GDP is a device-specific primitive that is not supported as a primitive by GKS.
For example, using DEC GKS, you can pass a center WC point and a perimeter
point to this function, and the specified workstation that supports such a GDP
draws a circle on the workstation surface.

The definition of the particular GDP primitive specifies which sets of attributes
the workstation uses to generate the primitive. For example, the GDPs that
generate circles use the set of polyline attributes.

Depending on the workstation-dependent requirements of the GDP, DEC GKS
may or may not generate the primitive if certain points fall outside the current
workstation window. If a workstation cannot generate a GDP because points
fall outside of the current workstation window, DEC GKS generates an error
message.

For more information on GDPs, see the Device Specifics Reference Manual for
DEC GKS and DEC PHIGS.

See Also

Example 5–2 for a program example using the GENERALIZED DRAWING
PRIMITIVE function

Output Functions 5–13

GENERALIZED DRAWING PRIMITIVE 3

GENERALIZED DRAWING PRIMITIVE 3

Operating States

WSAC, SGOP

Syntax

ggdp3 (

Gint npoints, /* (I) Number of points in the GDP. */
Gpoint3 *points, /* (I) Array of WC coordinate points. The

size of points. The size of the array
is equal to the value of npoints. */

Gint function, /* (I) GDP function identifier (constant). */
Ggdprec *data /* (I) GDP 3 data record. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

typedef union { /* GDP DATA RECORD */
Gugdp_datarec gdp_datarec;

} Ggdprec;

typedef struct { /* escape-dependent data record */
Gint number_integer; /* number of integers */
Gint number_float; /* number of floats */
Gint number_strings; /* number of strings */
Gint *list_integers; /* list of integers */
Gfloat *list_floats; /* list of floats */
Gint *list_string_lengths; /* list of string lengths */
Gchar **list_strings; /* list of strings */

} Gugdp_datarec;

Description

The GENERALIZED DRAWING PRIMITIVE 3 function generates a generalized
drawing primitive (GDP) of the type you specify, using specified points and any
additional information contained in a data record.

A GDP is a device-specific primitive that is not supported as a primitive by GKS.
For example, using DEC GKS, you can pass a center WC point and a perimeter
point to this function, and the specified workstation that supports such a GDP
draws a circle on the workstation surface.

The definition of the particular GDP primitive specifies which sets of attributes
the workstation uses to generate the primitive. For example, the GDPs that
generate circles use the set of polyline attributes.

Depending on the workstation-dependent requirements of the GDP, DEC GKS
may or may not generate the primitive if certain points fall outside the current
workstation window. If a workstation cannot generate a GDP because points

5–14 Output Functions

GENERALIZED DRAWING PRIMITIVE 3

fall outside of the current workstation window, DEC GKS generates an error
message.

Note

Three-dimensional GDPs are not currently supported. If you call this
function, DEC GKS generates an error message.

See Also

Example 5–2 for a program example using the GENERALIZED DRAWING
PRIMITIVE function

Output Functions 5–15

POLYLINE

POLYLINE

Operating States

WSAC, SGOP

Syntax

gpolyline (

Gint npoints, /* (I) Number of points in polyline. */
Gpoint *points /* (I) X and Y world coordinates of the points.

The size of the array is equal to the
value of npoints. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The POLYLINE function draws one or more straight lines, connecting the WC
points passed to this function in the order specified. By default, this function
draws line segments as solid lines, at the nominal width, in the foreground color.

See Also

SET LINETYPE
SET LINEWIDTH SCALE FACTOR
SET PICK IDENTIFIER
SET POLYLINE COLOUR INDEX
Example 6–3 for a program example using the POLYLINE function

5–16 Output Functions

POLYLINE 3

POLYLINE 3

Operating States

WSAC, SGOP

Syntax

gpolyline3 (

Gint npoints, /* (I) Number of points in the polyline. */
Gpoint3 *points /* (I) X, Y, and Z world coordinates of the points.

The size of the array is equal to the
value of npoints. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The POLYLINE 3 function draws one or more straight lines, connecting the
three-dimensional WC points passed to this function in the order specified. By
default, this function draws line segments as solid lines, at the nominal width, in
the foreground color.

See Also

SET LINETYPE
SET LINEWIDTH SCALE FACTOR
SET PICK IDENTIFIER
SET POLYLINE COLOUR INDEX
Example 6–3 for a program example using the POLYLINE function

Output Functions 5–17

POLYMARKER

POLYMARKER

Operating States

WSAC, SGOP

Syntax

gpolymarker (

Gint npoints, /* (I) Number of polymarker locations. */
Gpoint *points /* (I) X and Y world coordinates of the polymarkers.

The size of the array is equal to the
value of npoints. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The POLYMARKER function places one or more special symbols called
polymarkers at the specified WC points. By default, this function produces
an asterisk polymarker, at the nominal size, in the workstation-specific default
foreground color.

If clipping is enabled, and if the polymarker coordinate point is outside of the
clipping rectangle, DEC GKS clips the entire polymarker. If clipping is enabled, if
the polymarker coordinate point is inside of the clipping rectangle, and if portions
of the polymarker exceed the boundaries of the clipping rectangle, the extent of
the clipping is device dependent.

See Also

SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE
SET PICK IDENTIFIER
SET POLYMARKER COLOUR INDEX
Example 6–4 for a program example using the POLYMARKER function

5–18 Output Functions

POLYMARKER 3

POLYMARKER 3

Operating States

WSAC, SGOP

Syntax

gpolymarker3 (

Gint npoints, /* (I) Number of polymarker locations. */
Gpoint3 *points /* (I) X, Y, and Z world coordinates of the

polymarkers. The size of the array is equal
to the value of npoints. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The POLYMARKER 3 function places one or more special symbols called
polymarkers at the specified three-dimensional WC points. By default, this
function produces an asterisk polymarker, at the the nominal size, in the
workstation-specific default foreground color.

If clipping is enabled, and if the polymarker coordinate point is outside the
clipping rectangle, DEC GKS clips the entire polymarker. If clipping is enabled,
if the polymarker coordinate point is inside the clipping rectangle, and if portions
of the polymarker exceed the boundaries of the clipping rectangle, the extent of
the clipping is device dependent.

See Also

SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE
SET PICK IDENTIFIER
SET POLYMARKER COLOUR INDEX
Example 6–4 for a program example using the POLYMARKER function

Output Functions 5–19

TEXT

TEXT

Operating States

WSAC, SGOP

Syntax

gtext (

Gpoint *position, /* (I) WC position of text string */
Gchar *text /* (I) String to be written */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The TEXT function writes a character string that DEC GKS positions according
to the specified WC point and the current text attributes.

Depending on the current text attributes, DEC GKS positions the first character,
the last character, or the middle of the text string at this WC point. By default,
DEC GKS positions the first character in the string at this point and writes
subsequent characters to the right of the starting point.

The shape of the characters within the text string may vary depending on
the current text attributes, the current normalization transformation, and the
particular workstation capabilities.

There are text attributes that control the nongeometric text properties (text font
and precision, character expansion factor, character spacing, and text color index)
and the geometric text properties (character height, character up vector, character
path, and character alignment).

The portion of the string that DEC GKS clips depends on both the current text
attributes and the workstation capabilities as follows:

• String precision: The string is clipped in a workstation-dependent manner.

• Character precision: The string is clipped character by character.

• Stroke precision: The string is clipped exactly at the normalization viewport.

5–20 Output Functions

TEXT

See Also

SET CHARACTER EXPANSION FACTOR
SET CHARACTER HEIGHT
SET CHARACTER SPACING
SET CHARACTER UP VECTOR
SET PICK IDENTIFIER
SET TEXT ALIGNMENT
SET TEXT COLOUR INDEX
SET TEXT FONT AND PRECISION
SET TEXT PATH
Example 6–4 for a program example using the TEXT function

Output Functions 5–21

TEXT 3

TEXT 3

Operating States

WSAC, SGOP

Syntax

gtext3 (

Gpoint3 *position, /* (I) WC position of text string. */
Gpoint3 *dirn_vec1, /* (I) Vector 1 for the text plane definition. */
Gpoint3 *dirn_vec2, /* (I) Vector 2 for the text plane definition.

The text plane = vector1� vector2 */
Gchar *text /* (I) String to be written. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The TEXT 3 function writes a character string that DEC GKS positions according
to the specified WC point and the current text attributes.

Depending on the current text attributes, DEC GKS positions the first character,
the last character, or the middle of the text string at this WC point. By default,
DEC GKS positions the first character in the string at this point and writes
subsequent characters to the right of the starting point.

The orientation of the characters is given by text direction vectors. The shape of
the characters depends on the current text attributes, the current normalization
transformation, and the workstation capabilities.

The portion of the string that DEC GKS clips depends on both the current text
attributes and the workstation capabilities as follows:

• String precision: The string is clipped in a workstation-dependent manner.

• Character precision: The string is clipped character by character.

• Stroke precision: The string is clipped exactly at the normalization viewport.

5–22 Output Functions

TEXT 3

See Also

SET CHARACTER EXPANSION FACTOR
SET CHARACTER HEIGHT
SET CHARACTER SPACING
SET CHARACTER UP VECTOR
SET PICK IDENTIFIER
SET TEXT ALIGNMENT
SET TEXT COLOUR INDEX
SET TEXT FONT AND PRECISION
SET TEXT PATH
Example 6–4 for a program example using the TEXT function

Output Functions 5–23

Output Functions
5.7 Program Examples

5.7 Program Examples
Example 5–1 illustrates the use of the CELL ARRAY function.

Example 5–1 Cell Array Output

/*
* This code example draws alternating white and black vertical stripes
* using the CELL ARRAY function.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding header file */

define XDIM 10
define YDIM 1

main()
{

Gint color[XDIM][YDIM];
Gconn default_conid;
Gwstype default_wstype;
Gdefmode defer_mode;
Gidim dimensions;
Gevent event;
Gint i;
Grect rectangle;
Girgmode regen_mode;
Gfloat timeout;
Gregen update_flag;
Gint ws_id;

/* Open the GKS and workstation environments. */

default_conid = GWC_DEF;
default_wstype = GWS_DEF;
defer_mode = GASAP;
regen_mode = GALLOWED;
ws_id = 1;

gopengks (0, 0);
gopenws (ws_id, &default_conid, &default_wstype);
gactivatews (ws_id);
gsetdeferst (ws_id, defer_mode, regen_mode);

/* Initialize the color index array. Draw the stripes. Wait 5 seconds. */

for (i = 0; i < 10; i += 2)
{
color[i][0] = 0;
color[i+1][0] = 1;
}

dimensions.x_dim = XDIM;
dimensions.y_dim = YDIM;
rectangle.ul.x = 0.0;
rectangle.ul.y = 1.0;
rectangle.lr.x = 1.0;
rectangle.lr.y = 0.0;
timeout = 5.0;
update_flag = GPOSTPONE;

(continued on next page)

5–24 Output Functions

Output Functions
5.7 Program Examples

Example 5–1 (Cont.) Cell Array Output

gcellarray (&rectangle, &dimensions, color);
gupdatews (ws_id, update_flag);
gawaitevent (timeout, &event);

/* Release the GKS and workstation environments. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 5–1 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Figure 5–1 Cell Array Output

ZK−4015A−GE

Output Functions 5–25

Output Functions
5.7 Program Examples

Example 5–2 illustrates the use of the GENERALIZED DRAWING PRIMITIVE
function.

Example 5–2 Generalized Drawing Primitive Output

/*
* This program creates an unfilled circle using the GDP
* GDP_C3P (-102).
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* C binding definition file */

main ()
{

Ggdprec data;
Gconn default_conid;
Gwstype default_wstype;
Gevent event;
Gint num_points = 3;
Gpoint points[3];
Gfloat timeout = 5.0;
Gint ws_id = 1;

/* Open the GKS and workstation environments. */

default_conid = GWC_DEF;
default_wstype = GWS_DEF;

gopengks (0, 0);
gopenws (ws_id, &default_conid, &default_wstype);
gactivatews (ws_id);

/*
* The constant GDP_C3P specifies the GDP identification number -102.
* This GDP creates a circle using three points on a circle’s
* circumference. This particular GDP does not require a data record
* to perform its task. Notice that DEC GKS uses the current polyline
* attributes to create the circle.
*/

points[0].x = 0.1; points[0].y = 0.5;
points[1].x = 0.5; points[1].y = 0.1;
points[2].x = 0.9; points[2].y = 0.5;

ggdp (num_points, points, GDP_C3P, &data);
gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout, &event);

/* Release the GKS and workstation environments. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

5–26 Output Functions

Output Functions
5.7 Program Examples

Figure 5–2 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Figure 5–2 Generalized Drawing Primitive Output

ZK−4013A−GE

Output Functions 5–27

Attribute Functions

Insert tabbed divider here. Then discard this sheet.

6
Attribute Functions

The DEC GKS attribute functions affect the appearance of generated output
primitives.

The GKS state list stores the current value of the attributes for each output
function. These attributes specify the exact appearance of the object drawn. For
example, when you call POLYLINE, the attributes line type, width scale factor,
and color specify the form, thickness, and color of the line. In the GKS state list,
these current attributes are stored in the entries current line type, current line
width scale factor, and current polyline color index.

When you call a DEC GKS output function, the attributes are bound to the
primitive. If the primitive’s attributes are individual, then you cannot change
these attributes; changes to attributes only affect subsequent output. If the
primitive’s attributes are bundled, then you may be able to change the attributes
of previously generated primitives by calling one of the representation functions,
depending on the capabilities of your device. See Section 6.2 for more information
concerning individual and bundled attributes.

6.1 Types of Attributes
Attributes can affect geometric, nongeometric, viewing, and pick
identification aspects of a graphic image. The geometric, nongeometric,
and viewing aspects of a graphic image directly affect how the primitive appears
on the workstation surface. The viewing attributes are the view index and the
HLHSR identifier. The view index is a pointer to a workstation view table entry.
The HLHSR identifier provides hidden line and hidden surface information
about the primitive. For more information on viewing, see Chapter 7. The pick
identification attribute is used to identify a primitive, or group of primitives, in
a segment when that segment is picked. For complete details concerning pick
input, see Chapter 9.

Most output functions have nongeometric attributes that are changeable.
Nongeometric attributes affect the style and the pattern of the output primitives
(such as polyline color, text spacing, and fill area interior style). Because the
nongeometric attributes are scale factors and nominal sizes, the effects of these
attributes are device dependent.

Nominal sizes are the default sizes of markers and line widths as defined by a
graphics handler. In most cases the nominal size is also the smallest size that a
workstation can produce, but not always. DEC GKS multiplies the scale factor
values by the nominal size to reset a marker size or polyline width. The default
value for a scale factor is 1.0 (the nominal size multiplied by the value 1.0,
producing no change in size).

Attribute Functions 6–1

Attribute Functions
6.1 Types of Attributes

Geometric attributes affect the size or positioning of text, fill area, and fill area
set primitives (such as text height, character path, and pattern size). Text,
fill area, and fill area set are the only output primitives that have changeable
geometric attributes. The geometric attributes are specified in world coordinate
(WC) units. Therefore, because the WC units are device independent, the
geometric attributes are device independent.

Table 6–1 lists the attributes and whether an attribute is geometric or
nongeometric.

Table 6–1 Geometric and Nongeometric Attributes

Function Attribute Type

Polyline Polyline index Nongeometric

Line type Nongeometric

Line width scale factor Nongeometric

Polyline color index Nongeometric

Polymarker Polymarker index Nongeometric

Marker type Nongeometric

Marker size scale factor Nongeometric

Polymarker color index Nongeometric

Text Text index Nongeometric

Text font and precision Nongeometric

Character expansion factor Nongeometric

Character spacing Nongeometric

Text color index Nongeometric

Character height Geometric

Character up vector Geometric

Text path Geometric

Text alignment Geometric

Fill area Fill area index Nongeometric

Fill area interior style Nongeometric

Fill area style index Nongeometric

Fill area color index Nongeometric

Pattern size Geometric

Pattern reference point and vectors Geometric

(continued on next page)

6–2 Attribute Functions

Attribute Functions
6.1 Types of Attributes

Table 6–1 (Cont.) Geometric and Nongeometric Attributes

Function Attribute Type

Fill area set Fill area index Nongeometric

Fill area interior style Nongeometric

Fill area style index Nongeometric

Fill area color index Nongeometric

Edge index Nongeometric

Edge flag Nongeometric

Edge type Nongeometric

Edge width scale factor Nongeometric

Edge color index Nongeometric

Pattern size Geometric

Pattern reference point and vectors Geometric

Notice that there are no geometric or nongeometric attribute functions specifically
designed to alter the cell array or the generalized drawing primitives (GDPs). A
cell array is simply an array of indexes that point to the workstation’s color table.

The GDP has no geometric or nongeometric attributes specifically designed for it.
Depending on the workstation-specific GDP data record, you may need to specify
any number of the polyline, polymarker, text, fill area, or fill area set attribute
values, depending on the nature of the GDP.

6.2 Individual and Bundled Attribute Values
The current values of each attribute are listed individually in the GKS state list.
By default, a call to an output function uses these individual attribute values
to generate the primitive. Because DEC GKS stores these individual attributes
in the GKS state list, they are device independent. If you specify attributes
individually, you cannot change a primitive’s appearance on the workstation
surface once you have generated it.

However, there is a second method used to specify attribute values. Each
workstation can define a number of attribute bundles for an output primitive.
Each bundle is an entry in a table that contains attribute values for each of the
nongeometric values of that particular output primitive. DEC GKS stores bundle
tables in the workstation state lists, thereby making the bundle table entries
device dependent. You specify bundle table entries by specifying a bundle index
value that points into the table. Most workstations provide a fill area bundle
index 1, but the resulting fill area can look different on each workstation.

For example, a polyline bundle contains table entries for polyline index, line
type, line width scale factor, and polyline color index. A workstation can define
a bundle table entry with the index 1 that specifies a solid line type. The same
workstation can define another bundle table entry with the index 2 that specifies
a dashed line type. The attributes associated with a bundle table index constitute
that index’s representation.

When you call an output function, DEC GKS uses the current individual output
values stored in the GKS state list, by default. If you wish to use the device-
dependent bundle table indexes, you must change the attribute’s aspect source
flag (ASF). The ASFs are described in Section 6.2.1.

Attribute Functions 6–3

Attribute Functions
6.2 Individual and Bundled Attribute Values

If you use bundled attributes for primitives, you can change the appearance of
the generated primitive by redefining its bundle index representation. For many
workstations, changing index representations requires an implicit regeneration,
which erases all primitives not contained in segments. For complete information
concerning the representation functions, see Section 6.2.2.

To review the initial individual attributes and the bundle tables available on a
given workstation, see Appendix E.

6.2.1 Aspect Source Flags (ASFs)
When you call an output function, DEC GKS uses the individual output attributes
by default. To use bundle tables of attributes, you must establish a set of aspect
source flags (ASFs).

The set of ASFs is a data structure with 13 fields, one field for each nongeometric
attribute. Each field contains either the value GBUNDLED (0) or the value
GINDIVIDUAL (1). By passing this array to the function SET ASPECT
SOURCE FLAGS, DEC GKS uses either the individual attribute value or the
bundled value in the bundle table specified by the current bundle index.

For a complete description of ASFs, see the SET ASPECT SOURCE FLAGS
function description in this chapter.

Note

If you store primitives in a segment and if you want to be able to change
the primitive’s appearance elsewhere in the program, you must set the
primitive’s ASF to be GBUNDLED before you generate the primitive. In
this way, the primitive’s ASF is stored in the segment with the primitive.
If you want to change the primitive’s appearance, call the appropriate
SET REPRESENTATION function (see Section 6.2.2) for the primitive’s
bundle index. If you store the primitive in a segment using individual
attributes, the appearance of the primitive cannot be changed.

6.2.2 Dynamic Changes and Implicit Regeneration
When working with bundled attributes, you can use any bundle index value
predefined by your workstation. You can even alter the existing bundles
table entries, or create new entries, using the representation functions (SET
POLYLINE REPRESENTATION, SET POLYMARKER REPRESENTATION, and
so on).

If you use the SET . . . REPRESENTATION functions, use caution. Depending
on the capabilities of your workstation, DEC GKS may implement the change
immediately, or the change may require an implicit regeneration of the surface.
An implicit regeneration clears the screen and only redraws the visible segments.
You lose all primitives not contained in segments. Many of the DEC GKS
supported workstations suppress implicit regenerations because of the loss of all
primitives not contained in segments.

For a detailed description of implicit regeneration, see Chapter 4.

6–4 Attribute Functions

Attribute Functions
6.3 Foreground and Background Colors

6.3 Foreground and Background Colors
The default color index value is 1, which corresponds to the workstation’s
foreground color. All the default individual color indexes in the GKS state list are
set to the value 1.

On an OUTIN or OUTPUT workstation, the color of a ‘‘blank’’ surface is called
the background color. The color of characters written to the workstation surface
is called the foreground color.

Unless you change these color index values using the function SET COLOUR
REPRESENTATION, the color index value 0 corresponds to the workstation’s
background color, and the color index value 1 corresponds to the workstation’s
default foreground color. If the workstation supports more than two color indexes,
values greater than 1 correspond to alternative foreground colors.

6.4 Attribute Inquiries
The following list presents the inquiry functions that you can use to obtain
attribute information when writing device-independent code:

INQUIRE COLOUR FACILITIES
INQUIRE COLOUR REPRESENTATION
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES
INQUIRE FILL AREA FACILITIES
INQUIRE FILL AREA REPRESENTATION
INQUIRE LIST OF COLOUR INDICES
INQUIRE LIST OF FILL AREA INDICES
INQUIRE LIST OF PATTERN INDICES
INQUIRE LIST OF POLYLINE INDICES
INQUIRE LIST OF POLYMARKER INDICES
INQUIRE LIST OF TEXT INDICES
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES
INQUIRE PATTERN FACILITIES
INQUIRE PATTERN REPRESENTATION
INQUIRE POLYLINE FACILITIES
INQUIRE POLYLINE REPRESENTATION
INQUIRE POLYMARKER FACILITIES
INQUIRE POLYMARKER REPRESENTATION
INQUIRE PREDEFINED COLOUR REPRESENTATION
INQUIRE PREDEFINED EDGE REPRESENTATION
INQUIRE PREDEFINED FILL AREA REPRESENTATION
INQUIRE PREDEFINED PATTERN REPRESENTATION
INQUIRE PREDEFINED POLYLINE REPRESENTATION
INQUIRE PREDEFINED POLYMARKER REPRESENTATION
INQUIRE PREDEFINED TEXT REPRESENTATION
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE TEXT FACILITIES
INQUIRE TEXT REPRESENTATION

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

Attribute Functions 6–5

Attribute Functions
6.5 Function Descriptions

6.5 Function Descriptions
This section describes the DEC GKS attribute functions in detail.

6–6 Attribute Functions

SET ASPECT SOURCE FLAGS

SET ASPECT SOURCE FLAGS

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetasf (

Gasfs *flags /* (I) Pointer to aspect source flags */

)

Data Structures

typedef struct { /* ASPECT SOURCE FLAGS (constants) */
Gasf ln_type; /* line type */
Gasf ln_width; /* line width */
Gasf ln_colour; /* line color */
Gasf mk_type; /* marker type */
Gasf mk_size; /* marker size */
Gasf mk_colour; /* marker color */
Gasf tx_fp; /* text font and precision */
Gasf tx_exp; /* text expansion */
Gasf tx_space; /* text character spacing */
Gasf tx_colour; /* text color */
Gasf fl_inter; /* fill area interior style */
Gasf fl_style; /* fill area style index */
Gasf fl_colour; /* fill area color */

} Gasfs;

Constants

Data Type Constant Description

Gasf GBUNDLED Bundled attributes
GINDIVIDUAL Individual attributes

Note

You must set all the ASFs before making the call.

Description

The SET ASPECT SOURCE FLAGS function specifies to DEC GKS whether
to use the bundled or the individual method for designating each of the
nongeometric output attributes.

There are 13 nongeometric ASFs. If the value in the corresponding element is
GINDIVIDUAL, DEC GKS uses the individual attribute setting. If the value in
the corresponding element is GBUNDLED, DEC GKS uses the bundle table index
to find the attribute setting.

Attribute Functions 6–7

SET ASPECT SOURCE FLAGS

The initial value for each ASF is GINDIVIDUAL, which causes the output
functions to use the current individual value for each nongeometric attribute.
Remember that when specified individually, attributes are workstation-
independent; when specified as a bundle, the attributes are workstation-
dependent. For example, most workstations provide a fill area bundle index
1, but the resulting fill area can look different on each workstation. For more
information concerning the bundle table indexes available for your workstation,
see the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET FILL AREA INDEX
SET POLYLINE INDEX
SET POLYMARKER INDEX
SET TEXT INDEX
Example 6–2 for a program example using the SET ASPECT SOURCE FLAGS
function

6–8 Attribute Functions

SET ASPECT SOURCE FLAGS 3

SET ASPECT SOURCE FLAGS 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetasf3 (

Gasfs3 *flags /* (I) Aspect source flags */

)

Data Structures

typedef struct { /* ASPECT SOURCE FLAGS 3 (constants) */
Gasf ln_type; /* line type */
Gasf ln_width; /* line width */
Gasf ln_colour; /* line color */
Gasf mk_type; /* marker type */
Gasf mk_size; /* marker size */
Gasf mk_colour; /* marker color */
Gasf tx_fp; /* text font and precision */
Gasf tx_exp; /* text expansion */
Gasf tx_space; /* text character spacing */
Gasf tx_colour; /* text color */
Gasf fl_inter; /* fill area interior style */
Gasf fl_style; /* fill area style index */
Gasf fl_colour; /* fill area color */
Gasf edge_flag; /* edge flag asf */
Gasf edge_type; /* edge type asf */
Gasf edge_width; /* edge width asf */
Gasf edge_colour; /* edge color asf */

} Gasfs3;

Constants

Data Type Constant Description

Gasf GBUNDLED Bundled attributes
GINDIVIDUAL Individual attributes

Note

You must set all the ASFs before making the call.

Description

The SET ASPECT SOURCE FLAGS 3 function specifies to DEC GKS whether
to use the bundled or the individual method for designating each of the
nongeometric output attributes.

Attribute Functions 6–9

SET ASPECT SOURCE FLAGS 3

There are 17 nongeometric ASFs. If the value in the corresponding element is
GINDIVIDUAL, DEC GKS uses the individual attribute setting. If the value in
the corresponding element is GBUNDLED, DEC GKS uses the bundle table index
to find the attribute setting.

The initial value for each ASF is GINDIVIDUAL, which causes the output
functions to use the current individual value for each nongeometric attribute.
Remember that when specified individually, attributes are workstation-
independent; when specified as a bundle, the attributes are workstation-
dependent. For example, most workstations provide a fill area bundle index
1, but the resulting fill area can look different on each workstation. For more
information concerning the bundle table indexes available for your workstation,
see the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET FILL AREA INDEX
SET POLYLINE INDEX
SET POLYMARKER INDEX
SET TEXT INDEX
Example 6–2 for a program example using the SET ASPECT SOURCE FLAGS
function

6–10 Attribute Functions

SET CHARACTER EXPANSION FACTOR

SET CHARACTER EXPANSION FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetcharexpan (

Gfloat exp /* (I) Character width expansion factor */

)

Description

The SET CHARACTER EXPANSION FACTOR function sets the current character
expansion factor entry in the GKS state list to the specified value. This function
alters the width of the generated characters, but not the height. The character
expansion factor is multiplied by the width-to-height ratio specified in the original
font specification to give the new character width.

The default for the current character expansion factor is the value 1.0, which
displays text using the width-to-height ratio specified in the font design.

When DEC GKS calculates the character width using the default character
height, the resulting text string is legible. However, certain normalization
transformations distort the text. You can use either the SET CHARACTER
EXPANSION FACTOR function or the SET CHARACTER HEIGHT function to
reestablish a legible character width.

See Also

SET ASPECT SOURCE FLAGS
SET CHARACTER HEIGHT
SET CHARACTER SPACING
SET TEXT INDEX
SET TEXT REPRESENTATION
TEXT

Attribute Functions 6–11

SET CHARACTER HEIGHT

SET CHARACTER HEIGHT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetcharheight (

Gfloat height /* (I) Character height in WC values. The default
value is 0.01. */

)

Description

The SET CHARACTER HEIGHT function sets the geometric attribute, current
character height entry in the GKS state list to the specified WC unit value.

DEC GKS uses the value specified in the call to SET CHARACTER HEIGHT for
all subsequent calls to TEXT until you specify another value. If you specify a new
height to this function, DEC GKS expands text output to the closest height the
workstation is capable of producing. The default for the current text height is the
WC unit value 0.01. This is 0.01 of the default normalization window height (1.0).
Exercise caution if you change the size of the current normalization window, as
you may also have to readjust the character height.

Also remember that changing the text height automatically changes the character
expansion factor and the character spacing, in proportion to the text height
adjustment.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET WINDOW
Example 6–4 for a program example using the SET CHARACTER HEIGHT
function

6–12 Attribute Functions

SET CHARACTER SPACING

SET CHARACTER SPACING

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetcharspace (

Gfloat spacing /* (I) Spacing as a percentage of height. The default
value is 0.0, which displays text with
adjacent character bodies. */

)

Description

The SET CHARACTER SPACING function sets the current text spacing entry in
the GKS state list to the specified value.

DEC GKS measures the spacing between characters as a fraction of the character
height; adjusting character height automatically adjusts spacing proportionately.
The character spacing value 0.0 places the character bodies next to each other
without any separating space contained in the font specification for the letter
bodies. Whether the characters actually touch depends on the type of font you are
using. Positive spacing values increase the space between characters; negative
values decrease the space. Using negative spacing values, it is possible to overlap
characters, or to actually reverse the text so that characters are written in the
opposite direction.

See Also

SET ASPECT SOURCE FLAGS
SET TEXT FONT AND PRECISION
SET TEXT INDEX
SET TEXT REPRESENTATION
TEXT

Attribute Functions 6–13

SET CHARACTER UP VECTOR

SET CHARACTER UP VECTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetcharup (

Gpoint *charup /* (I) Pointer to vector X, Y values that
specify the slope of the character up
vector. The default value is (0.0, 1.0). */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The SET CHARACTER UP VECTOR function sets the geometric attribute,
current character up vector entry in the GKS state list to the specified value.

DEC GKS uses the value specified in the call to SET CHARACTER UP VECTOR
for all subsequent calls to TEXT until you specify another value. When you call
TEXT, you specify the starting point for the text. To establish an imaginary
line on which to output text, you must establish an upward direction. Once
an upward direction has been established, DEC GKS draws an imaginary line
perpendicular to this upward direction that runs through the starting point.
This perpendicular line is the imaginary line on which you can output text, by
positioning the text extent rectangle.

You specify the upward direction for character placement as a directional vector.
The vector begins at the starting point and proceeds in the direction of the current
character up vector entry. You establish the character up vector by specifying a
slope for the line.

For example, if you specify the WC unit values (1.0, 1.0) as the character up
vector, the up direction for the display of text follows the line passing from the
starting point to the point one point above and one point to the right of the
starting point. This would correspond to a 45-degree angle of rotation. Specifying
the values (200.0, 200.0), or the values (5.0, 5.0), is equivalent to specifying
(1.0, 1.0).

The initial value for the current character up vector entry is (0.0, 1.0), which
orients text perpendicular to the X axis and parallel to the Y axis, if the current
character path is RIGHT or LEFT.

6–14 Attribute Functions

SET CHARACTER UP VECTOR

See Also

SET CHARACTER HEIGHT
SET TEXT PATH

Attribute Functions 6–15

SET COLOUR MODEL

SET COLOUR MODEL

Operating States

WSOP, WSAC, SGOP

Syntax

gsetcolourmodel (

Gint ws, /* (I) Workstation identifier */
Gcolmodel model /* (I) Color model (constant) */

)

Constants

Data Type Constant Description

Gcolmodel GCM_RGB Red, green, and blue color model
GCM_CIE Commission Internationale de L’Eclairage color model
GCM_HSV Hue, saturation, and value color model
GCM_HLS Hue, lightness, and saturation color model

Description

The SET COLOUR MODEL function sets the color model of the specified
workstation to the specified model value.

This function implicitly regenerates the workstation surface. Implicit
regeneration is described in the DEC GKS User’s Guide.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS. For a
description of the color models, see the DEC GKS User’s Guide.

6–16 Attribute Functions

SET COLOUR REPRESENTATION

SET COLOUR REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetcolourrep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Color index */
Gcobundl *rep /* (I) Pointer to color bundle values. This is a

color triplet that corresponds to the current
color model. */

)

Data Structures

typedef struct { /* COLOR BUNDLE */
Gfloat red; /* red intensity */
Gfloat green; /* green intensity */
Gfloat blue; /* blue intensity */

} Gcobundl;

Description

The SET COLOUR REPRESENTATION function allows the user to redefine
an existing color index representation, or to define a new representation,
by specifying the color triplet associated with a specified bundle index. The
workstation maps the color you specify to the nearest available color the
workstation can produce.

All workstations define default color table entry indexes 0 and 1. By default, the
value 0 corresponds to the default background color (the color of an empty display
surface), and the value 1 corresponds to the default foreground color. Values
greater than 1 correspond to alternative foreground colors.

There are four different color models, and the values you use for the color triplet
vary according to the color model you use. The color models and their required
values are as follows:

Model Description Values

RGB Red intensity, green
intensity, blue
intensity

Each component must be in the range 0.0 to
1.0.

CIE X and Y chromaticity
coefficients,
luminance value
Y

Each component must be in the range 0.0 to
1.0.

Attribute Functions 6–17

SET COLOUR REPRESENTATION

Model Description Values

HSV Hue, saturation, and
value

The hue component must be in the range
0.0 to 360.0, and the saturation and value
components must be in the range 0.0 to 1.0.

HLS Hue, lightness, and
saturation

The hue component must be in the range
0.0 to 360.0, and the saturation and value
components must be in the range 0.0 to 1.0.

Depending on the capabilities of your workstation, a call to this function may
cause DEC GKS to implicitly regenerate the workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

INQUIRE COLOUR FACILITIES
INQUIRE COLOUR REPRESENTATION
Example 6–1 for a program example using the SET COLOUR
REPRESENTATION function

6–18 Attribute Functions

SET EDGE COLOUR INDEX

SET EDGE COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetedgecolourind (

Gint colour /* (I) Edge color index */

)

Description

The SET EDGE COLOUR INDEX function selects the current edge color index
entry in the GKS state list to the specified value. This value controls the display
of subsequent fill area set output primitives when the current edge color index
ASF has been set to INDIVIDUAL by the function SET ASPECT SOURCE
FLAGS 3. If this ASF is set to BUNDLED, the current edge flag has no effect.

The edge color index points into the color tables of the workstation and is a
positive integer. If the specified color index is not present in a workstation color
table, a workstation-dependent color index is used.

See Also

Example 6–4 for a program example using a SET . . . COLOUR INDEX function

Attribute Functions 6–19

SET EDGE FLAG

SET EDGE FLAG

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetedgeflag (

Gedge_f flag /* (I) Edge flag (constant) */

)

Constants

Data Type Constant Description

Gedge_f GEDGE_OFF Edge off. This is the default value.
GEDGE_ON Edge on.

Description

The SET EDGE FLAG function sets or resets the current edge flag entry in the
GKS state list to the specified value.

The current edge flag enables the display of subsequent fill area set output
primitives when the current edge flag ASF has been set to INDIVIDUAL by the
function SET ASPECT SOURCE FLAGS 3. If this ASF is set to BUNDLED, the
current edge flag has no effect.

6–20 Attribute Functions

SET EDGE INDEX

SET EDGE INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetedgeindex (

Gint index /* (I) Edge index. The default value is 1. */

)

Description

The SET EDGE INDEX function sets the current edge index entry in the GKS
state list to the specified index value. The edge bundle table contains entries for
the attribute values, edge flag, edge type, edge width scale factor, and edge color
index.

SET EDGE INDEX controls which edge bundle table entry will be used when
subsequent fill area set primitives are generated. Attribute values are taken
from the edge bundle table only if the edge ASFs were set to BUNDLED by the
function SET ASPECT SOURCE FLAG 3.

See Also

Example 6–2 for a program example using a SET . . . INDEX function

Attribute Functions 6–21

SET EDGE REPRESENTATION

SET EDGE REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetedgerep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Edge index */
Gedgebundl *rep /* (I) Pointer to edge bundle values */

)

Data Structures

typedef struct { /* EDGE BUNDLE */
Gedge_f flag; /* edge flag (constant) */
Gint type; /* edge type (constant) */
Gfloat width; /* edge width scale factor */
Gint colour; /* edge color index */

} Gedgebundl;

Constants

Data Type Constant Description

Gedge_f GEDGE_OFF Edge off. This is the default value.
GEDGE_ON Edge on.

Edge types GED_SOLID Solid edge. This is the default value.
GED_DASHED Dashed edge.
GED_DOTTED Dotted edge.
GED_DASHDOT Dashed-dotted edge.

Note

Other, nonstandard, edge types are available. See Appendix B.

Description

The SET EDGE REPRESENTATION function allows the user to redefine the
representation of an existing edge bundle table index, or to define a new edge
bundle table index value. If fill area sets are displayed with an edge index value
that is not in the edge bundle table, edge index 1 is used.

This function implicitly regenerates the workstation surface if the workstation is
capable of implicit regeneration. Implicit regeneration is described in the DEC
GKS User’s Guide.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

6–22 Attribute Functions

SET EDGE REPRESENTATION

See Also

Example 6–1 for a program example using a SET . . . REPRESENTATION
function

Attribute Functions 6–23

SET EDGETYPE

SET EDGETYPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetedgetype (

Gint type /* (I) Edge type (constant) */

)

Constants

Defined Argument Constant Description

type GED_SOLID Solid edge. This is the default value.
GED_DASHED Dashed edge.
GED_DOTTED Dotted edge.
GED_DASHDOT Dashed-dotted edge.

Note

Other, nonstandard, edge types are available. See Appendix B.

Description

The SET EDGETYPE function sets the current edge type entry in the GKS
state list to the specified value. The value of this entry controls the display of
subsequent fill area set output primitives when the current edge type ASF has
been set to INDIVIDUAL by the function SET ASPECT SOURCE FLAGS 3. If
this ASF is set to BUNDLED, the current edge flag has no effect.

See Also

Example 6–3 for a program example using a SET . . . TYPE function

6–24 Attribute Functions

SET EDGEWIDTH SCALE FACTOR

SET EDGEWIDTH SCALE FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetedgewidthscfac (

Gfloat width /* (I) Edge width scale factor. The default value
is 1.0. */

)

Description

The SET EDGEWIDTH SCALE FACTOR function sets the current edge width
scale factor entry in the GKS state list to the specified value. This value controls
the display of subsequent fill area set output primitives when the current edge
width factor ASF has been set to INDIVIDUAL by the function SET ASPECT
SOURCE FLAGS 3. If this ASF is set to BUNDLED, the current edge flag has no
effect.

The edge width scale factor is supplied to the nominal workstation edge width,
and the result is mapped to the workstation in the nearest available edge width.

Attribute Functions 6–25

SET FILL AREA COLOUR INDEX

SET FILL AREA COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetfillcolourind (

Gint colour /* (I) Fill area color index. The default value
is 1, which designates the default foreground
color. */

)

Description

The SET FILL AREA COLOUR INDEX function sets the current fill area color
index entry in the GKS state list to the specified index value. The specified
index value is used for the display of subsequent FILL AREA and FILL AREA
SET output primitives, created when the current fill area color index ASF is
INDIVIDUAL. This value does not affect the display of subsequent FILL AREA
and FILL AREA SET output primitives, created when the current fill area color
index ASF is BUNDLED.

If the specified color index is not present in a workstation color table, a
workstation-dependent color index is used on that workstation.

See Also

SET ASPECT SOURCE FLAGS
SET COLOUR REPRESENTATION
SET FILL AREA INDEX
SET FILL AREA REPRESENTATION
Example 6–1 for a program example using the SET FILL AREA COLOUR INDEX
function

6–26 Attribute Functions

SET FILL AREA INDEX

SET FILL AREA INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetfillind (

Gint index /* (I) Fill area bundle index. The default value
is 1. */

)

Description

The SET FILL AREA INDEX function establishes the index value pointing into
the fill area bundle table. This table contains entries for the attribute values, fill
area interior style, fill area style index, and fill area color index. When calling
the SET FILL AREA INDEX function, DEC GKS uses the bundle table only if the
corresponding ASF has been set to BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET FILL AREA REPRESENTATION
Example 6–2 for a program example using the SET FILL AREA INDEX function

Attribute Functions 6–27

SET FILL AREA INTERIOR STYLE

SET FILL AREA INTERIOR STYLE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetfillintstyle (

Gflinter style /* (I) Interior style (constant) */

)

Constants

Data Type Constant Description

Gflinter GHOLLOW Hollow interior. This is the default value.
GSOLID Solid interior.
GPATTERN Patterned interior.
GHATCH Hatched interior.

Description

The SET FILL AREA INTERIOR STYLE function sets the current fill area
interior style entry in the GKS state list to be hollow, solid, pattern, or hatched.
If you set the fill area interior style to SOLID, the FILL AREA function fills the
color designated by the current fill area color index.

If you select pattern, the FILL AREA function replicates a pattern (alternating
colors) to fill the interior of the polygon. The fill area attributes, pattern size,
and pattern reference point define the size and position of the start of the pattern
(see the SET PATTERN SIZE and the SET PATTERN REFERENCE POINT
functions). The fill area style index specifies the pattern to replicate (see the SET
FILL AREA STYLE INDEX function). Patterns cover underlying primitives.

If you select hatched, the FILL AREA function fills the interior of the polygon
with a series of parallel or cross-hatch lines in the color specified by the fill area
color index. The fill area style index specifies the chosen hatch style. The space
between the parallel or cross-hatch lines is transparent.

See the Device Specifics Reference Manual for DEC GKS and DEC PHIGS for
information on the hatch patterns available on your device.

See Also

FILL AREA
SET ASPECT SOURCE FLAGS
SET FILL AREA INDEX
SET FILL AREA REPRESENTATION
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN SIZE
Example 6–1 for a program example using the SET FILL AREA INTERIOR
STYLE function

6–28 Attribute Functions

SET FILL AREA REPRESENTATION

SET FILL AREA REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetfillrep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Fill area bundle index */
Gflbundl *rep /* (I) Pointer to bundle table values */

)

Data Structures

typedef struct { /* FILL AREA BUNDLE */
Gflinter inter; /* fill area interior style (constant) */
Gint style; /* fill area style index */
Gint colour; /* fill area color index */

} Gflbundl;

Constants

Data Type Constant Description

Gflinter GHOLLOW Hollow interior. This is the default value.
GSOLID Solid interior.
GPATTERN Patterned interior.
GHATCH Hatched interior.

Note

If GHOLLOW or GSOLID are specified for the interior style field,
DEC GKS ignores the style index field.

Description

The SET FILL AREA REPRESENTATION function allows the user to redefine
an existing fill area bundle table index representation, or to define a new fill area
bundle table index value, by specifying the fill area interior style, fill area style
index value, and fill area color index associated with the specified bundle index.

Depending on the capabilities of your workstation, a call to the SET FILL AREA
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Attribute Functions 6–29

SET FILL AREA REPRESENTATION

See Also

SET ASPECT SOURCE FLAGS
SET FILL AREA INDEX
SET FILL AREA INTERIOR STYLE
Example 6–2 for a program example using the SET FILL AREA
REPRESENTATION function

6–30 Attribute Functions

SET FILL AREA STYLE INDEX

SET FILL AREA STYLE INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetfillstyleind (

Gint index /* (I) Fill area style index. The default
value is 1. */

)

Description

The SET FILL AREA STYLE INDEX function sets the current fill area style index
entry in the GKS state list to the specified index value.

If the interior style is hollow or solid, the current style index is ignored for the
call to FILL AREA. If the interior style is pattern, you must pass a pattern index
value to this function. If the interior style is hatch, you must pass a hatch style
value to this function. For device-dependent hatch styles, the hatch style index is
always a negative number.

If the requested style index is not available on the specified workstation, the
workstation uses the style index 1. If style index 1 is not present on the
workstation, the resulting output is workstation dependent.

See Also

SET ASPECT SOURCE FLAGS
SET FILL AREA INDEX
SET FILL AREA INTERIOR STYLE
SET FILL AREA REPRESENTATION
SET PATTERN REFERENCE POINT
SET PATTERN REPRESENTATION
SET PATTERN SIZE

Attribute Functions 6–31

SET HLHSR IDENTIFIER

SET HLHSR IDENTIFIER

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsethlhsrid (

Gint hlhsrid /* (I) HLHSR identifier (constant) */

)

Constants

Defined Argument Constant Description

hlhsrid GHLHSR_ID_NONE No HLHSR processing. This is the
default value.

GHLHSR_ID_PAINTER Painters algorithm.

Description

The SET HLHSR IDENTIFIER function sets the current hidden line and hidden
surface removal (HLHSR) identifier to the value specified. If the requested
HLHSR identifier cannot be interpreted at the workstation, the workstation uses
another HLHSR identifier.

6–32 Attribute Functions

SET HLHSR MODE

SET HLHSR MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsethlhsrmode (

Gint ws, /* (I) Workstation identifier */
Gint mode /* (I) HLHSR mode (constant) */

)

Constants

Defined Argument Constant Description

mode GHLHSR_MODE_NONE No HLHSR processing. This is
the default value.

GHLHSR_MODE_PAINTER Painters algorithm.

Description

The SET HLHSR MODE function sets the requested HLHSR mode entry in the
workstation state list of the specified workstation to the specified mode value.
The effect of the specified mode value is influenced by the current settings of the
dynamic modification accepted for HLHSR mode (DMA) entry in the workstation
description table and the display surface empty (DSE) entry in the workstation
state list. If the DMA entry is IMM, or if the DSE entry is EMPTY, then the
current HLHSR mode is set to the specified value, and the HLHSR update state
is set to NOTPENDING. Otherwise, the current HLHSR mode is not changed,
and the HLHSR update state is set to PENDING.

Attribute Functions 6–33

SET LINETYPE

SET LINETYPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetlinetype (

Gint type /* (I) Polyline type (constant) */

)

Constants

Defined Argument Constant Description

type GLN_SOLID Solid line. This is the default value.
GLN_DASHED Dashed line.
GLN_DOTTED Dotted line.
GLN_DASHDOT Dashed-dotted line.

Note

Other, nonstandard, polyline types are available. See Appendix B.

Description

The SET LINETYPE function sets the current polyline type entry in the GKS
state list to solid, dashed, dotted, dashed-dotted, or any one of the device-
dependent types.

Every workstation capable of output (DEC GKS workstation category OUTPUT or
OUTIN) defines at least four line types. For more information concerning possible
polyline type values, see the Device Specifics Reference Manual for DEC GKS and
DEC PHIGS.

See Also

SET POLYLINE REPRESENTATION
Example 6–3 for a program example using the SET LINETYPE function

6–34 Attribute Functions

SET LINEWIDTH SCALE FACTOR

SET LINEWIDTH SCALE FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetlinewidth (

Gfloat width /* (I) Line width scale factor. The default
value is 1.0. */

)

Description

The SET LINEWIDTH SCALE FACTOR function sets the current polyline width
scale factor entry in the GKS state list.

DEC GKS calculates line width as the nominal line width, multiplied by the line
width scale factor. The line width scale factor is a real number that you pass to
this function. The graphics handler maps the value to the nearest available line
width defined by the graphics handler.

Attribute Functions 6–35

SET MARKER SIZE SCALE FACTOR

SET MARKER SIZE SCALE FACTOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetmarkersize (

Gfloat width /* (I) Marker size scale factor. The default
value is 1.0. */

)

Description

The SET MARKER SIZE SCALE FACTOR function sets the current marker size
scale factor entry in the GKS state list to the specified value for all polymarker
types.

DEC GKS calculates polymarker size for all types (except the dot polymarker
type) as the nominal polymarker size multiplied by the polymarker size scale
factor. The polymarker size scale factor is a real number that you pass to
this function. The graphics handler maps the value to the nearest available
polymarker size defined by the handler. (The dot polymarker type is always the
smallest dot that the workstation can produce.)

See Also

POLYMARKER
SET ASPECT SOURCE FLAGS
SET POLYMARKER INDEX
SET POLYMARKER REPRESENTATION

6–36 Attribute Functions

SET MARKER TYPE

SET MARKER TYPE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetmarkertype (

Gint type /* (I) Marker type (constant) */

)

Constants

Defined Argument Constant Description

type GMK_POINT Dot.
GMK_PLUS Plus sign.
GMK_STAR Asterisk. This is the default value.
GMK_O Circle.
GMK_X Diagonal cross.

Note

Other, nonstandard, polymarker types are available. See Appendix B.

Description

The SET MARKER TYPE function sets the current marker type entry in the
GKS state list to be dot, plus sign, asterisk, circle, diagonal cross, or any of the
device-dependent types.

Every workstation capable of output (DEC GKS workstation category OUTPUT or
OUTIN) defines at least five polymarker types. For more information concerning
predefined polymarker type values, see the Device Specifics Reference Manual for
DEC GKS and DEC PHIGS.

See Also

POLYMARKER
SET MARKER SIZE SCALE FACTOR
SET POLYMARKER COLOUR INDEX
SET POLYMARKER INDEX
SET POLYMARKER REPRESENTATION
Example 6–4 for a program example using the SET MARKER TYPE function

Attribute Functions 6–37

SET PATTERN REFERENCE POINT

SET PATTERN REFERENCE POINT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetpatrefpt (

Gpoint *patref /* (I) WC pattern start point X and Y */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The SET PATTERN REFERENCE POINT function sets the geometric attribute,
current pattern reference point entry in the GKS state list.

The current pattern reference point attribute represents the starting point for
a pattern used to fill the designated area. DEC GKS uses this value for all
subsequent calls to FILL AREA until you specify another value.

Most of the DEC GKS supported workstations do not fully support this function.
They do accept the function call, but do not make any changes to the pattern. For
more information concerning patterns, see the Device Specifics Reference Manual
for DEC GKS and DEC PHIGS.

See Also

FILL AREA
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN SIZE

6–38 Attribute Functions

SET PATTERN REFERENCE POINT AND VECTORS

SET PATTERN REFERENCE POINT AND VECTORS

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetpatrefptvec (

Gpoint3 *patref, /* (I) 3D reference point */
Gpoint3 *refvec1, /* (I) WC pattern reference vector 1 */
Gpoint3 *refvec2 /* (I) WC pattern reference vector 2 */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The SET PATTERN REFERENCE POINT AND VECTORS function sets the
geometric attributes, current pattern reference points 3 and current pattern
reference vectors entries in the GKS state list.

The current pattern reference point 3 attribute represents the starting point
for a pattern used to fill the designated area. DEC GKS uses this value for all
subsequent calls to the FILL AREA function until another value is specified.
When the currently selected fill area interior style is PATTERN, the current
pattern reference vectors attribute is used in conjunction with the current
pattern width and height vectors to display the fill area and fill area set output
primitives.

Most of the DEC GKS supported workstations do not fully support this function.
They do accept the function call, but do not make any changes to the pattern.

Attribute Functions 6–39

SET PATTERN REPRESENTATION

SET PATTERN REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetpatrep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Pattern index */
Gptbundl *rep /* (I) Pointer to pattern bundle values */

)

Data Structures

typedef struct { /* PATTERN BUNDLE */
Gipoint size; /* pattern array size */
Gint *array; /* pattern array */

} Gptbundl;

typedef struct { /* INTEGER POINT */
Gint x; /* X coordinate */
Gint y; /* Y coordinate */

} Gipoint;

Description

The SET PATTERN REPRESENTATION function allows the user to redefine an
existing pattern bundle table index representation, or to define a new pattern
bundle table index value, by specifying the number of cells high, the number of
cells wide, and an array containing each cell’s color index fill area associated with
the specified bundle index.

Depending on the capabilities of your workstation, a call to the SET PATTERN
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

CELL ARRAY
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX
SET PATTERN REFERENCE POINT
SET PATTERN SIZE

6–40 Attribute Functions

SET PATTERN SIZE

SET PATTERN SIZE

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetpatsize (

Gpoint *patsize /* (I) Pointer to X and Y sizes, in WC values */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The SET PATTERN SIZE function specifies the geometric attribute, current
pattern size entry in the GKS state list, which is the height and width vectors in
WC units.

DEC GKS begins replicating the pattern representation at the pattern reference
point, and continues until the polygonal fill area in WC space is full. DEC GKS
uses this value for all subsequent calls to FILL AREA until you specify another
value.

Most of the DEC GKS supported workstations do not fully support this function.
They do accept the function call, but do not make any changes to the pattern. For
more information concerning patterns, see the Device Specifics Reference Manual
for DEC GKS and DEC PHIGS.

See Also

FILL AREA
SET FILL AREA INTERIOR STYLE
SET FILL AREA STYLE INDEX

Attribute Functions 6–41

SET PICK IDENTIFIER

SET PICK IDENTIFIER

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetpickid (

Gint pickid /* (I) New pick identifier */

)

Description

The SET PICK IDENTIFIER function sets the current pick identifier entry in
the GKS state list to the specified value. All subsequent output primitives stored
in segments are assigned the value specified to the SET PICK IDENTIFIER
function, until you change it.

Setting pick identifiers allows you another level of naming sections within
segments so that a user can pick portions of a segment without having to pick the
whole segment.

Note

DEC GKS continues to recognize the last pick identifier specified, even
after you close a segment. If you open another segment, DEC GKS
continues to associate the current segment identifier with the newly
output images. Consequently, if you specify a pick identifier in one
segment, make sure that you set the pick identifier properly when
opening another segment.

See Also

GET PICK
REQUEST PICK
SAMPLE PICK
Example 9–2 for a program example using the SET PICK IDENTIFIER function

6–42 Attribute Functions

SET POLYLINE COLOUR INDEX

SET POLYLINE COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetlinecolourind (

Gint colour /* (I) Color index. The default value is 1, which
designates the default foreground color. */

)

Description

The SET POLYLINE COLOUR INDEX function sets the current polyline color
index entry in the GKS state list to the specified index value. The specified index
value is used for the display of subsequent polyline output primitives, created
when the current polyline color index ASF is INDIVIDUAL. This value does
not affect the display of subsequent polyline output primitives created when the
current fill area color index ASF is BUNDLED.

If the specified color index is not present in a workstation color table, a
workstation-dependent color index is used on that workstation.

See Also

SET COLOUR REPRESENTATION
Example 6–4 for a program example using a SET . . . COLOUR INDEX function

Attribute Functions 6–43

SET POLYLINE INDEX

SET POLYLINE INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetlineind (

Gint index /* (I) Polyline bundle index. The default value
is 1. */

)

Description

The SET POLYLINE INDEX function establishes the index value pointing into
the polyline bundle table.

The polyline bundle table contains entries for the attribute values, polyline color
index, polyline type, and polyline width scale factor. When calling this function,
DEC GKS uses the bundle table only if the corresponding ASF has been set to
BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET POLYLINE REPRESENTATION
Example 6–2 for a program example using a SET . . . INDEX function

6–44 Attribute Functions

SET POLYLINE REPRESENTATION

SET POLYLINE REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetlinerep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Polyline bundle index */
Glnbundl *rep /* (I) Pointer to bundle table values */

)

Data Structures

typedef struct { /* POLYLINE BUNDLE */
Gint type; /* line type (constant) */
Gfloat width; /* line width scale factor */
Gint colour; /* polyline color index */

} Glnbundl;

Constants

Data Structure Constant Constant Description

Line types GLN_SOLID Solid line. This is the default
value.

GLN_DASHED Dashed line.
GLN_DOTTED Dotted line.
GLN_DASHDOT Dashed-dotted line.

Note

Other, nonstandard, polyline types are available. See Appendix B.

Description

The SET POLYLINE REPRESENTATION function allows the user to redefine an
existing polyline bundle table index representation, or to define a new polyline
bundle table index value, by specifying the line type, the line width, and the line
color index associated with the specified bundle index.

Depending on the capabilities of your workstation, a call to the SET POLYLINE
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Attribute Functions 6–45

SET POLYLINE REPRESENTATION

See Also

SET ASPECT SOURCE FLAGS
SET LINETYPE
SET LINEWIDTH SCALE FACTOR
SET POLYLINE COLOUR INDEX
Example 6–1 for a program example using a SET . . . REPRESENTATION
function

6–46 Attribute Functions

SET POLYMARKER COLOUR INDEX

SET POLYMARKER COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetmarkercolourind (

Gint colour /* (I) Color index. The default value is 1,
which designates the default foreground
color. */

)

Description

The SET POLYMARKER COLOUR INDEX function sets the current polymarker
color index entry in the GKS state list to the specified value. The specified
index value is used for the display of subsequent polymarker output primitives,
created when the current polymarker color index ASF in the GKS state list is
INDIVIDUAL. This value does not affect the display of subsequent polymarker
output primitives created when the current fill area color index ASF in the GKS
state list is BUNDLED.

If the specified color index is not present in a workstation color table, a
workstation-dependent color index is used on that workstation.

See Also

SET ASPECT SOURCE FLAGS
SET POLYMARKER INDEX
SET POLYMARKER REPRESENTATION
Example 6–4 for a program example using the SET POLYMARKER COLOUR
INDEX function

Attribute Functions 6–47

SET POLYMARKER INDEX

SET POLYMARKER INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetmarkerind (

Gint index /* (I) Polymarker bundle index. The default value
is 1. */

)

Description

The SET POLYMARKER INDEX function establishes the index value pointing
into the polymarker bundle table. This table contains entries for the attribute
values, polymarker color index, polymarker type, and polymarker size scale
factor. When calling the SET POLYMARKER INDEX function, DEC GKS uses
the bundle table only if the corresponding ASF has been set to BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET POLYMARKER REPRESENTATION
Example 6–2 for a program example using a SET . . . INDEX function

6–48 Attribute Functions

SET POLYMARKER REPRESENTATION

SET POLYMARKER REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetmarkerrep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Polymarker bundle index */
Gmkbundl *rep /* (I) Pointer to bundle table values */

)

Data Structures

typedef struct { /* POLYMARKER BUNDLE */
Gint type; /* marker type (constant) */
Gfloat size; /* marker size scale factor */
Gint colour; /* polymarker color index */

} Gmkbundl;

Constants

Data Structure Constant Constant Description

Marker types GMK_POINT Dot.
GMK_PLUS Plus sign.
GMK_STAR Asterisk. This is the default value.
GMK_O Circle.
GMK_X Diagonal cross.

Note

Other, nonstandard, polymarker types are available. See Appendix B.

Description

The SET POLYMARKER REPRESENTATION function allows the user to
redefine an existing polymarker bundle table index representation, or to define
a new polymarker bundle table index value, by specifying the polymarker type,
the polymarker size, and the polymarker color index associated with the specified
bundle index.

Depending on the capabilities of your workstation, a call to the SET
POLYMARKER REPRESENTATION function may cause DEC GKS to implicitly
regenerate the workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

Attribute Functions 6–49

SET POLYMARKER REPRESENTATION

See Also

SET ASPECT SOURCE FLAGS
SET MARKER SIZE SCALE FACTOR
SET MARKER TYPE
SET POLYMARKER COLOUR INDEX
SET POLYMARKER INDEX
Example 6–1 for a program example using a SET . . . REPRESENTATION
function

6–50 Attribute Functions

SET TEXT ALIGNMENT

SET TEXT ALIGNMENT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsettextalign (

Gtxalign *txalign /* (I) Pointer to horizontal and vertical
alignments */

)

Data Structures

typedef struct { /* TEXT ALIGNMENT */
Gtxhor hor; /* horizontal component (constant) */
Gtxver ver; /* vertical component (constant) */

} Gtxalign;

Constants

Data Type Constant Description

Gtxhor GAH_NORMAL Normal horizontal alignment. This is the default
value.

GAH_LEFT Left horizontal alignment.
GAH_CENTRE Center horizontal alignment.
GAH_RIGHT Right horizontal alignment.

Gtxver GAV_NORMAL Normal vertical alignment. This is the default
value.

GAV_TOP Top vertical alignment.
GAV_CAP Cap vertical alignment.
GAV_HALF Half vertical alignment.
GAV_BASE Base vertical alignment.
GAV_BOTTOM Bottom vertical alignment.

Description

The SET TEXT ALIGNMENT function sets the current text alignment entry in
the GKS state list to a value that specifies the positioning of the text extent
rectangle.

DEC GKS uses the value specified in a call to SET TEXT ALIGNMENT for
all subsequent calls to TEXT until you specify another value. Once you have
determined the starting point, the text path (see the SET TEXT PATH function),
and the character up vector (see the SET CHARACTER UP VECTOR function),
you have in effect established an imaginary line running through the starting
point, on which to output text. At this point, you can use this function to shift
the text extent rectangle along this established line.

Attribute Functions 6–51

SET TEXT ALIGNMENT

The values passed to this function establish the horizontal and vertical position
of the text extent rectangle on the imaginary text line. For example, you can
position the text extent rectangle horizontally so the starting point is to the left,
in the center, or to the right of the text extent rectangle.

Not only can you position the text extent rectangle horizontally along the
imaginary text line, but you can also position the rectangle vertically along the
same line. For example, you can position the text extent rectangle so the starting
point is aligned with the top of the characters in the string, with the cap of
the characters, with the half line of the characters, with the base line of the
characters, or with the bottom line of the characters.

See Also

SET CHARACTER UP VECTOR
SET TEXT PATH
Example 6–4 for a program example using the SET TEXT ALIGNMENT function

6–52 Attribute Functions

SET TEXT COLOUR INDEX

SET TEXT COLOUR INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsettextcolourind (

Gint colour /* (I) Text color representation index. The
default value is 1, which designates the
default foreground color. */

)

Description

The SET TEXT COLOUR INDEX function sets the current text color index entry
in the GKS state list to the specified value.

If the current text font ASF is set to INDIVIDUAL, the text color index value is
used in subsequent text and text 3 primitives. If the ASF setting is BUNDLED,
the value has no effect. If the specified color is not available, a workstation-
dependent color is used on that workstation.

See Also

SET COLOUR REPRESENTATION
Example 6–4 for a program example using a SET . . . COLOUR INDEX function

Attribute Functions 6–53

SET TEXT FONT AND PRECISION

SET TEXT FONT AND PRECISION

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsettextfontprec (

Gtxfp *txfp /* (I) Pointer to font and precision values */

)

Data Structures

typedef struct { /* TEXT FONT AND PRECISION */
Gint font; /* text font-- default value is 1 */
Gtxprec prec; /* text precision (constant) */

} Gtxfp;

Constants

Data Type Constant Description

Gtxprec GP_STRING String precision. DEC GKS evaluates
character height and width attributes only;
this is the default precision value.

GP_CHAR Character precision. DEC GKS evaluates each
character for compliance with all other
specified text attributes.

GP_STROKE Stroke precision. DEC GKS looks for exact
compliance with all specified text attributes.

Description

The SET TEXT FONT AND PRECISION function sets the current text font
and precision entry in the GKS state list to the specified value. In calls to this
function, the types of fonts available depend on which precision value you pass as
an argument. The values, in order of increasing precision, are as follows:

• String

• Character

• Stroke

As the precision value increases, the precision of clipping, character size,
character spacing, character expansion factor, and the character up vector all
improve.

If you specify string precision and a starting position for the string located outside
of the current normalization viewport, a call to this function causes the entire
text string to be clipped. If the starting point for the string is located inside of the
current normalization viewport, this function may cause the string to be clipped
by character or by stroke depending on the capabilities of the workstation.

6–54 Attribute Functions

SET TEXT FONT AND PRECISION

If you specify character precision, a call to this function causes the text string
to be clipped at the current normalization viewport on a character-by-character
basis.

If you require string or character precision, you cannot use the DEC GKS
software fonts; you can only specify the numbers of the device-dependent fonts
available on your particular workstation. For more information concerning the
fonts available on a workstation, see the Device Specifics Reference Manual for
DEC GKS and DEC PHIGS.

If you specify stroke precision, a call to this function causes the text string
to be clipped exactly at the current normalization viewport. This is the
highest precision. When using this precision, you may make use of the device-
independent fonts that are available on all workstations.

Be aware that all images are clipped at the current workstation window.

Together, text font and precision specify the display quality of text and the speed
at which the text is displayed. Typically, use of a software font in stroke precision
produces higher-quality character symbols than use of a hardware font in either
character or string precision. However, character and string precision use the
workstation character generator (if available) to display text, and thus, produce
the images somewhat faster than stroke precision. Also, since character and
string precision are less precise in the application of the other text attributes
(for example, height and width), they require less calculation to represent each
character in a text string.

The default value for the current text font and precision entry specifies the
hardware font number 1, and string precision.

See Also

SET TEXT REPRESENTATION

Attribute Functions 6–55

SET TEXT INDEX

SET TEXT INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsettextind (

Gint index /* (I) Text bundle index. The default value is 1. */

)

Description

The SET TEXT INDEX function establishes the index value pointing into the
text bundle table. This table contains entries for the attribute values, text font
and precision, character expansion factor, character spacing, and text color
index. When calling this function, DEC GKS uses the bundle table only if the
corresponding ASF has been set to BUNDLED.

See Also

SET ASPECT SOURCE FLAGS
SET TEXT REPRESENTATION
Example 6–2 for a program example using a SET . . . INDEX function

6–56 Attribute Functions

SET TEXT PATH

SET TEXT PATH

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsettextpath (

Gtxpath path /* (I) Text path (constant) */

)

Constants

Data Type Constant Description

Gtxpath GTP_RIGHT Text string reads from left to right. This is the
default value.

GTP_LEFT Text string reads from right to left.
GTP_UP Text string reads from bottom to top.
GTP_DOWN Text string reads from top to bottom.

Description

The SET TEXT PATH function sets the geometric attribute, current text path
entry in the GKS state list to be the writing direction for the display of text.

DEC GKS uses the value specified in a call to SET TEXT PATH for all subsequent
calls to TEXT until you specify another value. Once you have determined the
starting point and the character up vector (see the SET CHARACTER UP
VECTOR function), you have in effect established an imaginary line running
through the starting point to use when generating text primitives. You can
output your text string with your aligned letter at the starting point (see the SET
TEXT ALIGNMENT function). According to the current text path, the string
reads either to the right along the imaginary line (the default), to the left along
the imaginary line, upwards in a perpendicular direction from the imaginary line,
or downwards in a perpendicular direction from the imaginary line.

If using the default text alignment (see the SET TEXT ALIGNMENT function),
DEC GKS places the first letter of this string at the starting point, and
subsequent letters are written along the imaginary line in the direction specified
by a call to this function. The default text path is left to right along the imaginary
line (text path RIGHT).

See Also

SET CHARACTER UP VECTOR
SET TEXT ALIGNMENT
Example 6–4 for a program example using the SET TEXT PATH function

Attribute Functions 6–57

SET TEXT REPRESENTATION

SET TEXT REPRESENTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsettextrep (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) Text bundle index */
Gtxbundl *rep /* (I) Pointer to bundle table values */

)

Data Structures

typedef struct { /* TEXT BUNDLE */
Gtxfp fp; /* font and precision */
Gfloat exp; /* character expansion */
Gfloat space; /* character spacing */
Gint colour; /* text color */

} Gtxbundl;

typedef struct { /* TEXT FONT AND PRECISION */
Gint font; /* text font */
Gtxprec prec; /* text precision (constant) */

} Gtxfp;

Constants

Data Type Constant Description

Gtxprec GP_STRING String precision. DEC GKS evaluates
character height and width attributes only;
this is the default precision value.

GP_CHAR Character precision. DEC GKS evaluates each
character for compliance with all other
specified text attributes.

GP_STROKE Stroke precision. DEC GKS looks for exact
compliance with all specified text attributes.

Description

The SET TEXT REPRESENTATION function allows the user to redefine an
existing text bundle table index representation, or to define a new text bundle
table index value, by specifying the text font and precision, the character
expansion factor, the character spacing, and the text color index associated with
the specified bundle index.

This function allows you to change numerous text attributes, including the
character expansion factor and the character spacing. When you change the
value for the character expansion factor, the new value is multiplied by the
width-to-height ratio specified in the original font specification to determine the
new character width. The character height remains the same.

6–58 Attribute Functions

SET TEXT REPRESENTATION

If you change the character spacing, using a positive number increases the
spacing between letters (for example, the value 0.1 sets spacing to 0.1 times the
character height). Using a negative number decreases the spacing and characters
may overlap. The value 0.0 makes the bodies of the characters adjacent, without
any separating space other than that defined as part of the character body by the
font design.

Depending on the capabilities of your workstation, a call to the SET TEXT
REPRESENTATION function may cause DEC GKS to implicitly regenerate the
workstation surface.

Attribute values passed to this function must be valid for the specified
workstation. For more information concerning device-specific attributes, see
the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

See Also

SET ASPECT SOURCE FLAGS
SET CHARACTER SPACING
SET TEXT FONT AND PRECISION
SET TEXT INDEX
Example 6–1 for a program example using a SET . . . REPRESENTATION
function

Attribute Functions 6–59

Attribute Functions
6.6 Program Examples

6.6 Program Examples
Example 6–1 illustrates the use of the SET COLOUR REPRESENTATION
function.

Example 6–1 SET COLOUR REPRESENTATION Function

/*
* This program calls the SET COLOUR REPRESENTATION function to change
* the color representation of a particular index from color1 to color2.
* This program assumes an RGB color model. To avoid making such an
* assumption, use the SET COLOUR MODEL function to set the color model
* to RGB explicity.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definition file */

main ()
{

Gint color1 = 4;
Gcobundl color2_rep;
Gconn conn_id = GWC_DEF;
Gevent event;
Gint figure = 1;
Gint npoints = 20;
Gpoint points[20];
Gfloat timeout = 5.00;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open the GKS and workstation environments. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/*
* Store the figure in a segment. Set the fill index to color1, set
* the fill interior style to SOLID, initialize the figure, and draw the
* figure.
*/

points[0].x = 0.1; points[0].y = 0.1;
points[1].x = 0.4; points[1].y = 0.1;
points[2].x = 0.4; points[2].y = 0.2;
points[3].x = 0.6; points[3].y = 0.2;
points[4].x = 0.6; points[4].y = 0.1;
points[5].x = 0.9; points[5].y = 0.1;
points[6].x = 0.9; points[6].y = 0.4;
points[7].x = 0.8; points[7].y = 0.4;
points[8].x = 0.8; points[8].y = 0.6;
points[9].x = 0.9; points[9].y = 0.6;

(continued on next page)

6–60 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–1 (Cont.) SET COLOUR REPRESENTATION Function
points[10].x = 0.9; points[10].y = 0.9;
points[11].x = 0.6; points[11].y = 0.9;
points[12].x = 0.6; points[12].y = 0.8;
points[13].x = 0.4; points[13].y = 0.8;
points[14].x = 0.4; points[14].y = 0.9;
points[15].x = 0.1; points[15].y = 0.9;
points[16].x = 0.1; points[16].y = 0.6;
points[17].x = 0.2; points[17].y = 0.6;
points[18].x = 0.2; points[18].y = 0.4;
points[19].x = 0.1; points[19].y = 0.4;

gcreateseg (figure);
gsetfillcolourind (color1);
gsetfillintstyle (GSOLID);
gfillarea (npoints, points);
gcloseseg ();

/* Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout, &event);

/*
* Change the color representation of color1 to color2.
* This will change the fill color of the figure from color1 to
* color2. Wait 5 seconds.
*/

color2_rep.comp1 = 1.0;
color2_rep.comp2 = 0.43;
color2_rep.comp3 = 0.09;

gsetcolourrep (ws_id, color1, &color2_rep);
gupdatews (ws_id, GPERFORM);
gawaitevent (timeout, &event);

/* Close the GKS and workstation environments. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 6–1 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Attribute Functions 6–61

Attribute Functions
6.6 Program Examples

Figure 6–1 SET COLOUR REPRESENTATION Output

ZK−4010A−GE

Example 6–2 illustrates the use of the SET FILL AREA REPRESENTATION
function.

Example 6–2 SET FILL AREA REPRESENTATION Function

/*
* This program sets the attribute source flags (ASFs) to BUNDLED,
* shows the fill area corresponding to the index 6, then
* changes the attributes associated with fill area index 6, using
* the SET FILL AREA REPRESENTATION function.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definitions file */

(continued on next page)

6–62 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–2 (Cont.) SET FILL AREA REPRESENTATION Function

main ()
{

Gconn conn_id = GWC_DEF;
Gevent event;
Gint figure = 1;
Gflbundl fill_rep;
Gasfs flags;
Gint index = 6;
Gint npoints = 20;
Gpoint points[20];
Gfloat timeout = 5.00;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open the GKS and workstation environments. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/* Set the attribute source flags (ASFs) to BUNDLED. */

flags.ln_type = GBUNDLED;
flags.ln_width = GBUNDLED;
flags.ln_colour = GBUNDLED;
flags.mk_type = GBUNDLED;
flags.mk_size = GBUNDLED;
flags.mk_colour = GBUNDLED;
flags.tx_fp = GBUNDLED;
flags.tx_exp = GBUNDLED;
flags.tx_space = GBUNDLED;
flags.tx_colour = GBUNDLED;
flags.fl_inter = GBUNDLED;
flags.fl_style = GBUNDLED;
flags.fl_colour = GBUNDLED;

gsetasf (&flags);

/*
* Put all output in a segment, initialize the figure,
* and draw the figure using the fill area corresponding
* to the index value 6.
*/

(continued on next page)

Attribute Functions 6–63

Attribute Functions
6.6 Program Examples

Example 6–2 (Cont.) SET FILL AREA REPRESENTATION Function

points[0].x = 0.1; points[0].y = 0.1;
points[1].x = 0.4; points[1].y = 0.1;
points[2].x = 0.4; points[2].y = 0.2;
points[3].x = 0.6; points[3].y = 0.2;
points[4].x = 0.6; points[4].y = 0.1;
points[5].x = 0.9; points[5].y = 0.1;
points[6].x = 0.9; points[6].y = 0.4;
points[7].x = 0.8; points[7].y = 0.4;
points[8].x = 0.8; points[8].y = 0.6;
points[9].x = 0.9; points[9].y = 0.6;
points[10].x = 0.9; points[10].y = 0.9;
points[11].x = 0.6; points[11].y = 0.9;
points[12].x = 0.6; points[12].y = 0.8;
points[13].x = 0.4; points[13].y = 0.8;
points[14].x = 0.4; points[14].y = 0.9;
points[15].x = 0.1; points[15].y = 0.9;
points[16].x = 0.1; points[16].y = 0.6;
points[17].x = 0.2; points[17].y = 0.6;
points[18].x = 0.2; points[18].y = 0.4;
points[19].x = 0.1; points[19].y = 0.4;

gcreateseg (figure);
gsetfillind (index);
gfillarea (npoints, points);
gcloseseg ();

/* Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout, &event);

/* Change the attributes associated with fill area index 6. */

fill_rep.colour = 1;
fill_rep.inter = GHATCH;
fill_rep.style = -9;

gsetfillrep (ws_id, index, &fill_rep);

/* Cause a regeneration of the screen to see the change on the workstation. */

gupdatews (ws_id, GPERFORM);
gawaitevent (timeout, &event);

/* Close the GKS and workstation environments. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 6–2 shows the program’s effect on a VAXstation workstation running
DECwindows software.

6–64 Attribute Functions

Attribute Functions
6.6 Program Examples

Figure 6–2 SET FILL AREA REPRESENTATION Output

ZK−4011A−GE

Example 6–3 illustrates the use of the SET LINETYPE function.

Example 6–3 SET LINETYPE Function

/*
* This program calls the SET LINETYPE function to set the
* line type to the dashed and dotted line. The program
* draws a line figure displaying the set line type.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definitions file */

(continued on next page)

Attribute Functions 6–65

Attribute Functions
6.6 Program Examples

Example 6–3 (Cont.) SET LINETYPE Function

main ()
{

Gconn conn_id = GWC_DEF;
Gevent event;
Gint npoints = 29;
Gpoint points[29];
Gfloat timeout = 5.00;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open the GKS and workstation environments. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/*
* Set the linetype to dashed and dotted lines, initialize
* the line figure, and draw it.
*/

points[0].x = 0.4; points[0].y = 0.9;
points[1].x = 0.1; points[1].y = 0.9;
points[2].x = 0.1; points[2].y = 0.6;
points[3].x = 0.2; points[3].y = 0.6;
points[4].x = 0.2; points[4].y = 0.4;
points[5].x = 0.1; points[5].y = 0.4;
points[6].x = 0.1; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.1;
points[8].x = 0.4; points[8].y = 0.2;
points[9].x = 0.6; points[9].y = 0.2;
points[10].x = 0.6; points[10].y = 0.1;
points[11].x = 0.9; points[11].y = 0.1;
points[12].x = 0.9; points[12].y = 0.4;
points[13].x = 0.8; points[13].y = 0.4;
points[14].x = 0.8; points[14].y = 0.6;
points[15].x = 0.9; points[15].y = 0.6;
points[16].x = 0.9; points[16].y = 0.9;
points[17].x = 0.6; points[17].y = 0.9;
points[18].x = 0.6; points[18].y = 0.8;
points[19].x = 0.3; points[19].y = 0.8;
points[20].x = 0.3; points[20].y = 0.3;
points[21].x = 0.7; points[21].y = 0.3;
points[22].x = 0.7; points[22].y = 0.7;
points[23].x = 0.4; points[23].y = 0.7;
points[24].x = 0.4; points[24].y = 0.4;
points[25].x = 0.6; points[25].y = 0.4;
points[26].x = 0.6; points[26].y = 0.6;
points[27].x = 0.5; points[27].y = 0.6;
points[28].x = 0.5; points[28].y = 0.5;

gsetlinetype (GLN_DASHDOT);
gpolyline (npoints, points);

(continued on next page)

6–66 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–3 (Cont.) SET LINETYPE Function

/* Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout, &event);

/* Close the GKS and workstation environments. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 6–3 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Figure 6–3 SET LINETYPE Output

ZK−4012A−GE

Attribute Functions 6–67

Attribute Functions
6.6 Program Examples

Example 6–4 illustrates the use of the SET TEXT ALIGNMENT function.

Example 6–4 SET TEXT ALIGNMENT Function

/*
* This program calls the SET TEXT ALIGNMENT function to write a
* string to the workstation using the normal text alignments for
* each of four text paths.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definitions file */

#define TEXT_STRING1 " TEXT LINE 1"
#define TEXT_STRING2 " TEXT LINE 2"
#define TEXT_STRING3 " TEXT LINE 3"
#define TEXT_STRING4 " TEXT LINE 4"

main ()
{

Gconn conn_id = GWC_DEF;
Gevent event;
Gfloat larger = 0.07;
Gint one_pmark = 1;
Gpoint points[1];
Gint red = 2;
Gfloat timeout1 = 1.00;
Gfloat timeout2 = 5.00;
Gtxalign txalign;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open the GKS and workstation environments. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/* Initialize the starting point for all the lines of text. */

points[0].x = 0.5;
points[0].y = 0.5;

/*
* Set the polymarker color index, and the polymarker type.
* Draw the polymarker to provide a point of reference for
* the lines of text.
*/

gsetmarkercolourind (red);
gsetmarkertype (GMK_PLUS);
gpolymarker (one_pmark, points);
gupdatews (ws_id, GPOSTPONE);

/* Set the text character height and the text alignment. */

txalign.hor = GAH_NORMAL;
txalign.ver = GAV_NORMAL;

gsetcharheight (larger);
gsettextalign (&txalign);

(continued on next page)

6–68 Attribute Functions

Attribute Functions
6.6 Program Examples

Example 6–4 (Cont.) SET TEXT ALIGNMENT Function

/*
* Set a rightward text path and write a character string.
* Wait 1 second.
*/

gsettextpath (GTP_RIGHT);
gtext (points, TEXT_STRING1);
gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout1, &event);

/*
* Set a leftward text path and write a character string.
* Wait 1 second.
*/

gsettextpath (GTP_LEFT);
gtext (points, TEXT_STRING2);
gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout1, &event);

/*
* Set an upward text path and write a character string.
* Wait 1 second.
*/

gsettextpath (GTP_UP);
gtext (points, TEXT_STRING3);
gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout1, &event);

/*
* Set a downward text path and write a character string.
* Wait 5 seconds.
*/

gsettextpath (GTP_DOWN);
gtext (points, TEXT_STRING4);
gupdatews (ws_id, GPOSTPONE);
gawaitevent (timeout2, &event);

/* Close the GKS and workstation environments. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 6–4 shows the program’s effect on a VAXstation workstation running
DECwindows software.

Attribute Functions 6–69

Attribute Functions
6.6 Program Examples

Figure 6–4 SET TEXT ALIGNMENT Output

ZK−4009A−GE

6–70 Attribute Functions

Transformation Functions

Insert tabbed divider here. Then discard this sheet.

7
Transformation Functions

The DEC GKS transformation functions allow you to compose a picture, control
how much of the picture is displayed on the workstation surface, and control how
much of the workstation surface is used to display the picture.

When you request input and generate output on the workstation surface, you
actually work with a number of coordinate systems. The image is transformed
from one coordinate system to the next.

Using DEC GKS, you work with a transformation pipeline. The transformation
pipeline consists of a number of transformations that affect various coordinate
systems. To meet the needs of graphics programming, DEC GKS supports both
the two-dimensional and three-dimensional transformation pipelines. Figure 7–1
illustrates the two-dimensional pipeline.

Figure 7–1 The DEC GKS Two-Dimensional Transformation Pipeline

Segments

Transformation

Normalization
Clip

Normalized Device
Coordinates

Segment
No Segments

Normalization
Transformation

World Coordinates

ZK−4035A−GE

Workstation Clip

Device Coordinates

Workstation
Transformation

Transformation Functions 7–1

Transformation Functions

The three coordinate systems work as a pipeline and ultimately create a
two-dimensional object on your physical display device. You use portions of the
world coordinate (WC) system to plot the output primitives, a portion of the
device-independent normalized device coordinate (NDC) plane to compose a
complete picture, and a portion of the device coordinate plane to present all or
part of your picture on all or part of the surface of the workstation. Figure 7–2
illustrates the three-dimensional pipeline.

Figure 7–2 The DEC GKS Three-Dimensional Transformation Pipeline

Segments

Transformation

Normalization
Clip

View Orientation
Transformation

Transformation

View Clip

HLHSR

View Reference
Coordinates

Normalized Projection
Coordinates

Normalized Device
Coordinates

Segment

View Mapping

No Segments

Normalization
Transformation

World Coordinates

ZK−4036A−GE

Workstation Clip

Device Coordinates

Workstation
Transformation

7–2 Transformation Functions

Transformation Functions

The five transformations illustrated in Figure 7–2 work as a pipeline and
ultimately create a three-dimensional object on your physical display device.
You use portions of the WC system to plot the output primitives, a portion of
the device-independent NDC plane to compose a complete picture, portions of
the view reference coordinate (VRC) system to orient the picture, portions of the
normalized projection coordinate (NPC) system to determine projection volume,
and a portion of the device coordinate plane to present all or part of your picture
on all or part of the surface of the workstation.

For both transformation pipelines, the WC system is an imaginary coordinate
plane used to plot a graphic image. The NDC system is a device-independent,
imaginary coordinate plane on which you compose a picture using designated
portions of the WC plane. Once you compose a two-dimensional picture in the
NDC space, you can display all or part of the picture in NDC space on the
surface of the physical device. If the picture is three-dimensional, you can orient
(translate and rotate) your picture through the VRC system. The VRC image
is then projected to the NPC system. The NPC system lets you determine how
much of the picture plotted in WC points will be mapped to the device coordinate
system. You can display all or part of the picture in NDC space on the surface of
the physical device.

When you call one of the DEC GKS output functions, you specify WC points.
Using a series of default windows and viewports, the output primitive is
transformed from an image on the WC plane to an image on the NDC plane,
oriented and clipped through the VRC and NPC systems if the picture is
three-dimensional, and is finally transformed to the surface of the workstation.

If you do not change the default transformation settings, image shape and
position are consistent, and your ability to compose complex pictures may be
limited to what you can form on one area of the WC system. The DEC GKS
transformation functions allow you to set the windows, viewports, and other
transformation features that control the transformation process, and usually, how
generated output appears on the workstation surface.

7.1 World Coordinates and Normalization Transformations
The WC system is an imaginary, Cartesian coordinate system whose X and Y axes
extend infinitely in all four directions. If you are using the three-dimensional
pipeline, the X, Y, and Z axes extend infinitely in all six directions. The origin
of the two-dimensional system is the point (0.0, 0.0). The origin of the three-
dimensional system is (0.0, 0.0, 0.0). Depending on the type of data needed to
plot your images, you can use any portion of the WC plane. For example, if the
necessary data contains negative numbers, you can use the portions of the WC
system that extend into the negative portions of the axes.

By default, DEC GKS, for two dimensions, transforms images according to a
volumetric WC range whose lower left corner is the point (0.0, 0.0) and whose
sides extend from the point 0.0 to 1.0 on the X and Y axes. For three dimensions,
DEC GKS, transforms images according to a volumetric WC range whose lower
left corner is the point (0.0, 0.0, 0.0) and whose sides extend from the point 0.0
to 1.0 on the X, Y, and Z axes. The range is called the default normalization
window.

DEC GKS transforms the plotted images, according to the current window, to an
area on the NDC plane. You can reset the window many times while generating
output primitives, or you can use only the default window, depending on the
needs of your application. If your image is composed of points that lie outside of

Transformation Functions 7–3

Transformation Functions
7.1 World Coordinates and Normalization Transformations

the window, those points may or may not be part of the image on the NDC plane
depending on the current clipping indicator. Clipping is described in detail in
Section 7.1.1. Example 7–3 illustrates resetting the normalization viewport.

7.1.1 The Normalized Device Coordinate System
As mentioned in the previous section, the normalization transformation is
the transposition of WC points to NDC points. The NDC system is a device-
independent coordinate plane on which you compose graphic pictures. The
two-dimensional NDC system has X and Y axes that, in theory, extend infinitely
in all four directions with an origin at point (0.0, 0.0); but in practice, only images
contained in the range ([0,1] x [0,1]) can ultimately be transformed to the surface
of a physical device. The three-dimensional NDC system has X, Y, and Z axes
that, in theory, extend infinitely in all six directions with an origin at point (0.0,
0.0, 0.0); but in practice, only images contained in the range ([0,1] x [0,1] x [0,1])
can ultimately be transformed to the surface of a physical device.

When DEC GKS transforms an image from the normalization window to the NDC
plane, there must be a corresponding volume on which to map the contents of
the window. This volume portion of the NDC space is called the normalization
viewport. The two-dimensional default viewport has the range ([0,1] x [0,1]),
and the three-dimensional default viewport has the range ([0,1] x [0,1] x [0,1]), in
NDC points.

By default, DEC GKS maps the normalization window ([0,1] x [0,1]) in WC
points to the viewport ([0,1] x [0,1]) in NDC points. This transformation is
called the unity transformation, which has the normalization transformation
number 0. You cannot reset the window and viewport associated with the unity
transformation. DEC GKS for three dimensions maps the normalization window
([0,1] x [0,1] x [0,1]) in WC points to the viewport ([0,1] x [0,1] x [0,1]) in NDC
points.

Think of the normalization process as a way of transposing a number of areas
of the WC plane onto the NDC plane with respect to the current normalization
window and viewport. For example, DEC GKS maps the contents of the current
normalization window onto the current viewport. If clipping is enabled (which is
the default), the effect is like cutting the window from the WC plane, mapping,
and then pasting the window to the viewport on the NDC plane. DEC GKS
maps only images or portions of images plotted within the boundaries of the
normalization window to the area within the viewport on NDC space. If clipping
is disabled, DEC GKS also maps the points that lie outside of the normalization
window boundary to NDC space outside of the normalization viewport, but within
the two-dimensional range ([0,1] x [0,1]), or the three-dimensional range ([0,1] x
[0,1] x [0,1]).

Because DEC GKS clips images at the boundary of the normalization viewport,
this viewport is also called the clipping volume. You can enable and disable
clipping by calling the function SET CLIPPING INDICATOR. Figure 7–3
illustrates the clipping process according to the argument passed to SET
CLIPPING INDICATOR.

7–4 Transformation Functions

Transformation Functions
7.1 World Coordinates and Normalization Transformations

Figure 7–3 The Clipping Rectangle

ZK−5139−GE

CLIP

NOCLIP

Normalization window
(world coordinates)

Possible
normalization

viewports
(NDC coordinates)

When creating a picture, consider that you can select different normalization
transformations with different windows and viewports, thus mapping various
portions of the WC space onto different portions of the NDC space. (In DEC GKS,
valid normalization transformation numbers range from 0 to 255, and can
associate windows and viewports with all but the unity transformation number
0.) You can achieve the same effect by reassigning different windows and
viewports to a single normalization number.

In essence, you use the WC space as a scratch pad and the NDC space as a
pasteboard on which to compose an entire picture. For example, if you want
an output primitive to appear on the right side of a picture displayed on the
workstation surface, you map the primitive to the right side of the NDC space
during the normalization transformation. All picture composition is done using
normalization transformations. Once you compose a picture on the NDC plane,
you can output all or part of the picture to all or part of various workstation
surfaces. By selecting a different normalization transformation with a different
viewport, you can transpose the same window onto another portion of the NDC
space.

Transformation Functions 7–5

Transformation Functions
7.1 World Coordinates and Normalization Transformations

7.1.2 Overlapping Viewports
When you define normalization viewports, it is possible to cause them to overlap
on the NDC plane. You must consider the effects this has during input requests.
Viewport input priority does not affect output; the order of the output function
calls determines which primitive overwrites the other. If you are working
with segments, the segment priorities affect overlapping segments. (For more
information on segments, see Chapter 8.)

To illustrate the need for a viewport priority list during input, consider two
viewports: the viewport of the unity (identity) transformation number 0 having
the two-dimensional range ([0,1] x [0,1]), or the three-dimensional range ([0,1] x
[0,1] x [0,1]), and a viewport, belonging to normalization transformation number
1, having the two-dimensional range ([0.5,1] x [0.5,1]), or the three-dimensional
range ([0.5,1] x [0.5,1] x [0.5,1]), in NDC points. Notice that the viewport of
normalization transformation number 1 overlaps the right side of the unity
viewport.

During stroke and locator input, the user positions the cursor on the device
surface, which returns one point (locator) or a series of points (stroke) in device
coordinates. DEC GKS translates the device coordinate points to NDC points.
(Section 7.3 describes this process in detail.)

Once the device coordiante points are transformed to NDC points, DEC GKS
must transform the NDC points to WC points. To transform the point, DEC GKS
transforms the point from its viewport (NDC) value to the corresponding window
(WC) value. However, if the user chooses a point on the right half of the default
viewport, DEC GKS must calculate whether to use the unity viewport or the
overlapping viewport of transformation number 1 to transform the point to WC
values. DEC GKS needs to know to which normalization window the point is to
be mapped: the window that corresponds to either normalization transformation
number 0 or number 1.

To calculate which viewport has a higher input priority, DEC GKS maintains a
priority list. By default, DEC GKS assigns the highest priority to the unity
transformation (0). So, in the previous example concerning overlapping
viewports, DEC GKS would use the unity viewport to transform the NDC
point. The viewports of all remaining transformations decrease in priority as
their transformation numbers increase (viewport 0 higher than viewport 1, 1
higher than 2, 2 higher than 3, and so on).

To change the order of the viewport input priority list, call the function SET
VIEWPORT INPUT PRIORITY. You specify a normalization transformation
number whose priority is to be changed (for example, 1), a normalization
transformation number as a reference (for example, 0), and a flag that specifies
that the first transformation is to have a lower or higher priority than the
reference transformation.

If you call SET VIEWPORT INPUT PRIORITY to give transformation number 1
a higher transformation (1 higher than 0, 0 higher than 2, 2 higher than 3, and so
on), DEC GKS would use the viewport corresponding to transformation number 1
in all cases when viewports 1 and 0 overlap during locator and stroke input.

For more information concerning locator and stroke input, see Chapter 9.

7–6 Transformation Functions

Transformation Functions
7.2 View Transformations

7.2 View Transformations
View transformations apply only to the three-dimensional transformation
pipeline.

Once your object is defined in NDC space you need to tell DEC GKS from which
direction you are looking at your picture and what direction is up. The viewing
transformation is the mechanism that lets you accomplish this.

The viewing transformation is workstation-dependent because it requires the
use of information stored in the state list or description table of the output
workstations.

Each workstation stores a workstation-specific number of view entries in a view
table, which is part of the workstation state list. The view entries are numbered
consecutively, starting with 0. View 0 is predefined to the identity transformation
and cannot be modified. Other entries can be modified with the function SET
VIEW REPRESENTATION 3. Each view entry contains a view orientation
matrix, a view mapping matrix and clipping information.

You can change the orientation (translate and rotate) your picture by employing
the view orientation matrix to define what direction you are viewing the
picture from, as well as what direction is up. DEC GKS computes the view
orientation matrix using the EVALUATE VIEW ORIENTATION MATRIX 3
function. The view orientation matrix establishes the VRC system (the UVN
axes). The view orientation matrix is used to map each NDC point to an
appropriate point in the VRC system. Although the VRC points are in the same
units as NDC points, the VRC system is effectively a shifted and rotated version
of the NDC system.

Once your picture is oriented in the VRC system, it is mapped to the NPC
system. DEC GKS computes the view mapping matrix using the EVALUATE
VIEW MAPPING MATRIX 3 function. The view transformation employs the view
mapping matrix to map the VRC points to NPC points.

This transformation allows you to select a parallel or perspective projection for
your picture. For more information on viewing, and parallel and perspective
projections, see the DEC GKS User’s Guide.

Each workstation can select, or clip, some part of its NPC space to be displayed
somewhere on the physical display device of the workstation. You can clip your
picture in NPC space according to the defined view clipping limits. The six NPC
points are set by the SET VIEWPORT 3 function. For more information on
clipping, see DEC GKS User’s Guide.

7.3 Device Transformations
DEC GKS must map the picture on the two-dimensional NDC plane, or the three-
dimensional NPC space, to the surface of one or more workstations. To do this,
DEC GKS uses a second window and viewport called the workstation window
and the workstation viewport. The workstation window is the rectangular
portion of the two-dimensional NDC plane, or the rectangular parallelepiped of
the three-dimensional NPC space, that is mapped to the workstation viewport.
The workstation viewport is a portion of the display space. There can be
numerous normalization transformations, but only one current workstation
window and one current workstation viewport.

Transformation Functions 7–7

Transformation Functions
7.3 Device Transformations

DEC GKS uses a default workstation window of the two-dimensional range
([0,1] x [0,1]), or the three-dimensional range ([0,1] x [0,1] x [0,1]). If you
choose, you can change the workstation window, but the new boundaries can
be no larger than the default workstation window boundaries ([0,1] x [0,1])
for two dimensions, or ([0,1] x [0,1] x [0,1]) for three dimensions. DEC GKS
clips all points that exceed the default workstation window boundaries before
it transforms the picture to device coordinate points, regardless of the current
clipping flag setting.

If you are using the two-dimensional pipeline, the normalization transformation
composes the picture in NDC space, and the workstation transformation presents
all or part of the picture on all or part of the device surface. For example,
by setting the workstation window with the SET WORKSTATION WINDOW
function, you can create the illusion of panning across a picture, showing
successive portions of it at a time, or zooming in, showing smaller portions of a
picture at a time. The DEC GKS User’s Guide describes this process in detail.

If you are using the three-dimensional pipeline, the view transformation composes
the picture in NPC space, and the workstation transformation presents all or
part of the picture on all or part of the device surface. For example, by setting
the workstation window with the SET WORKSTATION WINDOW 3 function, you
can create the illusion of panning across a picture, showing successive portions of
it at a time, or zooming in, showing smaller portions of a picture at a time. The
DEC GKS User’s Guide describes this process in detail.

Your application may require that you change the portion of the workstation
surface used to display the picture. However, if your program runs on several
devices, you may not know the proportions of the device coordinate system with
which you are working. The proportions of the device coordinate system are
completely device dependent; each device can have a completely dissimilar device
coordinate plane with dissimilar maximum X and Y coordinate values for two
dimensions, or dissimilar maximum X, Y, and Z coordinate values for three
dimensions.

To determine the maximum boundary of the workstation viewport, you should
use the function, INQUIRE DISPLAY SPACE SIZE (3), which returns the
maximum X and Y values (X, Y, and Z values for three dimensions) of the
workstation display surface. (For more information, see Chapter 11, and SET
WORKSTATION VIEWPORT (3) in this chapter.)

When you set the workstation window (by calling SET WORKSTATION
WINDOW (3)) or the workstation viewport (by calling SET WORKSTATION
VIEWPORT (3)), the new window or viewport may not come into effect
immediately, depending on the capabilities of your device. Depending on your
device, the new workstation window or workstation viewport may become current
immediately, or the workstation surface may need to be implicitly regenerated
before the new window or viewport becomes current. If the workstation needs
to regenerate its surface to make a workstation transformation current, the
screen is cleared and only the primitives stored in segments are redrawn. You
lose all primitives not contained in segments. Example 7–4 illustrates how to
change the workstation window and viewport on a device that suppresses implicit
regenerations. The DEC GKS User’s Guide contains examples of working with
the proportions of workstation windows and viewports.

7–8 Transformation Functions

Transformation Functions
7.4 Transformation Inquiries

7.4 Transformation Inquiries
You can use the following inquiry functions to obtain transformation information
when writing device-independent code:

INQUIRE CLIPPING
INQUIRE CLIPPING 3
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER
INQUIRE DISPLAY SPACE SIZE
INQUIRE DISPLAY SPACE SIZE 3
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION
INQUIRE NORMALIZATION TRANSFORMATION
INQUIRE NORMALIZATION TRANSFORMATION 3
INQUIRE WORKSTATION TRANSFORMATION
INQUIRE WORKSTATION TRANSFORMATION 3

For more information concerning device-independent programming, see the DEC
GKS User’s Guide. For more information on the inquiry functions, see Chapter
11.

7.5 Function Descriptions
This section describes the DEC GKS transformation functions in detail.

Transformation Functions 7–9

ACCUMULATE TRANSFORMATION MATRIX

ACCUMULATE TRANSFORMATION MATRIX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gaccumtran (

Gfloat segtran[2][3], /* (I) Input segment transformation matrix,
created previously by a call to
either EVALUATE TRANSFORMATION
MATRIX or ACCUMULATE TRANSFORMATION
MATRIX. */

Gpoint *point, /* (I) Fixed point for rotation. */
Gpoint *shift, /* (I) Shift vector. Pass the value 0.0 to

avoid translating the segment. */
Gfloat angle, /* (I) Angle of rotation, in radians

(360 degrees = 2*pi radians). Pass
the value 0.0 to avoid rotating the
segment. */

Gscale *scale, /* (I) X and Y scale factors. Pass the
value 1.0 to avoid scaling the
segment. */

Gcsw coord, /* (I) WC or NDC units switch (constant). */
Gfloat result[2][3] /* (O) Output segment transform matrix that

results from the concatenation of
the new scaling, rotation, and
translation component values with
the argument segtran. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

typedef struct { /* SCALE VECTOR */
Gfloat x_scale;
Gfloat y_scale;

} Gscale;

Constants

Data Type Constant Description

Gcsw GWC The fixed point and shift vectors are WC values.
GNDC The fixed point and shift vectors are NDC values.

7–10 Transformation Functions

ACCUMULATE TRANSFORMATION MATRIX

Description

The ACCUMULATE TRANSFORMATION MATRIX function accepts a specified
transformation matrix, concatenates new segment transformation component
values, and then writes the accumulated transformation to the last argument of
the function.

The order of transformation is:

1. Specified input matrix

2. Scale (relative to the specified fixed point)

3. Rotate (relative to the specified fixed point)

4. Shift

See the DEC GKS User’s Guide for a description of segment transformation and
transformation matrixes.

See Also

EVALUATE TRANSFORMATION MATRIX
INSERT SEGMENT
SET SEGMENT TRANSFORMATION
Example 7–1 for a program example using the ACCUMULATE
TRANSFORMATION MATRIX function

Transformation Functions 7–11

ACCUMULATE TRANSFORMATION MATRIX 3

ACCUMULATE TRANSFORMATION MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gaccumtran3 (

Gfloat segtran[3][4], /* (I) Input segment transformation matrix,
created previously by a call to
either EVALUATE TRANSFORMATION
MATRIX 3 or ACCUMULATE TRANSFORMATION
MATRIX 3. */

Gpoint3 *point, /* (I) Fixed point for rotation. */
Gpoint3 *shift, /* (I) Shift vector. Pass the value 0.0 to

avoid translating the segment. */
Gangle3 *angle, /* (I) Angle of rotation, in radians

(360 degrees = 2*pi radians). Pass
the value 0.0 to avoid rotating the
segment. */

Gscale3 *scale, /* (I) X, Y, and Z scale factors. Pass the
value 1.0 to avoid scaling the
segment. */

Gcsw coord, /* (I) WC or NDC units switch (constant). */
Gfloat result[3][4] /* (O) Output segment transformation matrix

that results from the concatenation
of the new scaling, rotation, and
translation component values with
the argument segtran. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

typedef struct { /* 3D ROTATION ANGLE STRUCTURE */
Gfloat x_angle; /* rotation angle about x axis, in radians */
Gfloat y_angle; /* rotation angle about y axis, in radians */
Gfloat z_angle; /* rotation angle about z axis, in radians */

} Gangle3;

typedef struct { /* 3D SCALING FACTORS */
Gfloat x_scale; /* scaling factor about X axis */
Gfloat y_scale; /* scaling factor about Y axis */
Gfloat z_scale; /* scaling factor about Z axis */

} Gscale3;

Constants

Data Type Constant Description

Gcsw GWC The fixed point and shift vectors are WC values.
GNDC The fixed point and shift vectors are NDC values.

7–12 Transformation Functions

ACCUMULATE TRANSFORMATION MATRIX 3

Description

The ACCUMULATE TRANSFORMATION MATRIX 3 function accepts a specified
transformation matrix, concatenates new segment transformation component
values, and then writes the accumulated transformation to the last argument of
the function.

The order of transformation is:

1. Specified input matrix

2. Scale (relative to the specified fixed point)

3. Rotate (relative to the specified fixed point)

4. Shift

See the DEC GKS User’s Guide for a description of segment transformation and
transformation matrixes.

See Also

EVALUATE TRANSFORMATION MATRIX 3
INSERT SEGMENT 3
SET SEGMENT TRANSFORMATION 3
Example 7–1 for a program example using the ACCUMULATE
TRANSFORMATION MATRIX function

Transformation Functions 7–13

EVALUATE TRANSFORMATION MATRIX

EVALUATE TRANSFORMATION MATRIX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gevaltran (

Gpoint *point, /* (I) Fixed point for rotation, used as the
only constant coordinate point during
scaling and as the axis point during
segment rotation. */

Gpoint *shift, /* (I) Shift vector. Pass the value 0.0 to
avoid translating the segment. */

Gfloat angle, /* (I) Angle of rotation, in radians
(360 degrees = 2*pi radians). Pass
the value 0.0 to avoid rotating the
segment. */

Gscale *scale, /* (I) X and Y scale factors. Pass the value
1.0 to avoid scaling the segment. */

Gcsw coord, /* (I) WC or NDC unit switch. */
Gfloat result[2][3] /* (O) Output segment transformation matrix that

results from the concatenation of the
new scaling, rotation, and translation
component values. You can use this value
as an argument to SET SEGMENT
TRANSFORMATION to establish a segment
transformation. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

typedef struct { /* SCALE VECTOR */
Gfloat x_scale;
Gfloat y_scale;

} Gscale;

Constants

Data Type Constant Description

Gcsw GWC The fixed point and shift vectors are WC values.
GNDC The fixed point and shift vectors are NDC values.

7–14 Transformation Functions

EVALUATE TRANSFORMATION MATRIX

Description

The EVALUATE TRANSFORMATION MATRIX function accepts scaling, rotation,
and translation component values, and then writes a transformation matrix
to the last argument of the function. This function can be used to construct
the transformation that can be used as an argument to SET SEGMENT
TRANSFORMATION to establish a segment transformation.

The order of transformation is:

1. Scale (relative to the specified fixed point)

2. Rotate (relative to the specified fixed point)

3. Shift

Segment transformation and transformation matrixes are described in the DEC
GKS User’s Guide.

See Also

ACCUMULATE TRANSFORMATION MATRIX
INSERT SEGMENT
SET SEGMENT TRANSFORMATION
Example 7–2 for a program example using the EVALUATE TRANSFORMATION
MATRIX function

Transformation Functions 7–15

EVALUATE TRANSFORMATION MATRIX 3

EVALUATE TRANSFORMATION MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gevaltran3 (

Gpoint3 *point, /* (I) Fixed point for rotation, used as the
only constant coordinate point during
scaling and as the axis point during
segment rotation. */

Gpoint3 *shift, /* (I) Shift vector. Pass the value 0 to
avoid translating the segment. */

Gangle3 *angle, /* (I) Angle of rotation, in radians
(360 degrees = 2*pi radians). Pass
the value 0 to avoid rotating the
segment. */

Gscale3 *scale, /* (I) X, Y, and Z scale factors. Pass the
value 1.0 to avoid scaling the segment. */

Gcsw coord, /* (I) WC or NDC unit switch (constant). */
Gfloat result[3][4] /* (O) Output segment transformation matrix

that results from the concatenation
of the new scaling, rotation, and
translation component values. You can
use this value as an argument to SET
SEGMENT TRANSFORMATION 3 to establish
a segment transformation. */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

typedef struct { /* 3D ROTATION ANGLE STRUCTURE */
Gfloat x_angle; /* rotation angle about X axis, in radians */
Gfloat y_angle; /* rotation angle about Y axis, in radians */
Gfloat z_angle; /* rotation angle about Z axis, in radians */

} Gangle3;

typedef struct { /* 3D SCALING FACTORS */
Gfloat x_scale; /* scaling factor about X axis */
Gfloat y_scale; /* scaling factor about Y axis */
Gfloat z_scale; /* scaling factor about Z axis */

} Gscale3;

Constants

Data Type Constant Description

Gcsw GWC The fixed point and shift vectors are WC values.
GNDC The fixed point and shift vectors are NDC values.

7–16 Transformation Functions

EVALUATE TRANSFORMATION MATRIX 3

Description

The EVALUATE TRANSFORMATION MATRIX 3 function accepts scaling,
rotation, and translation component values, and then writes a transformation
matrix to the last argument of the function. This function can be used to
construct the transformation that can be used as an argument to SET SEGMENT
TRANSFORMATION 3 to establish a segment transformation.

The order of transformation is:

1. Scale (relative to the specified fixed point)

2. Rotate (relative to the specified fixed point)

3. Shift

Segment transformation and transformation matrixes are described in the DEC
GKS User’s Guide.

See Also

ACCUMULATE TRANSFORMATION MATRIX 3
INSERT SEGMENT 3
SET SEGMENT TRANSFORMATION 3
Example 7–2 for a program example using the EVALUATE TRANSFORMATION
MATRIX function

Transformation Functions 7–17

EVALUATE VIEW MAPPING MATRIX 3

EVALUATE VIEW MAPPING MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gevalviewmaptran3 (

Glimit *window, /* (I) VRC window limits */
Glimit3 *viewport, /* (I) NPC viewport limits */
Gproj proj_type, /* (I) Projection type (constant) */
Gpoint3 *prp, /* (I) VRC projection reference point */
Gfloat vpd, /* (I) VRC view plane distance */
Gfloat fpd, /* (I) VRC front plane distance */
Gfloat bpd, /* (I) VRC back plane distance */
Gfloat matrix[4] [4], /* (O) Returned orientation matrix */
Gint *error /* (O) Error indicator */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Constants

Data Type Constant Description

Gproj GPARALLEL Parallel projection
GPERSPECTIVE Perspective projection

7–18 Transformation Functions

EVALUATE VIEW MAPPING MATRIX 3

Description

The EVALUATE VIEW MAPPING MATRIX 3 function returns the view mapping
matrix for a specified set of input view parameters, which can be passed as input
to the SET VIEW REPRESENTATION 3 function. The view mapping matrix in
the view representation transforms the GKS coordinate system from VRC points
to NPC points.

To create the view mapping matrix, use the following procedure:

• Specify window limits (view window) within VRC space in the order UMIN,
UMAX, VMIN, VMAX.

These restrictions apply:

UMIN < UMAX
VMIN < VMAX

The resulting view window is a rectangular region on the view plane with
sides parallel to the U- and V-axes.

• Specify projection viewport limits (view clipping limits) within NPC space in
the order XMIN, XMAX, YMIN, YMAX, ZMIN, ZMAX.

These restrictions apply:

XMIN < XMAX
YMIN < YMAX
ZMIN � ZMAX
XMIN, XMAX, YMIN, YMAX, ZMIN, and ZMAX must be in the range
[0,1], inclusive.

The view clipping limits form a rectangular parallelepiped in NPC space with its
edges parallel to the NPC axes. Although the NPC system conceptually extends
beyond [0,1] � [0,1] �[0,1], the view clipping limits are located in the closed unit
cube [0,1] � [0,1] � [0,1] in NPC space.

The view, back, and front planes are parallel to the UV plane of the VRC system.
They are specified as N coordinate values in the three plane arguments to this
function.

The front and back plane values specify the front and back of the view volume.
Conceptually, the VRC system is oriented, because the VRC points result from
the view orientation transformation. (See the EVALUATE VIEW ORIENTATION
MATRIX 3 function.) Therefore, the front plane should not be positioned behind
the back plane.

The following restrictions apply to the view, front, and back planes:

• Back plane distance < front plane distance

• Back plane distance = front plane distance, if ZMIN = ZMAX

• The N coordinate of the PRP �� view plane distance

• For projection type = PERSPECTIVE, the N coordinate > front plane distance
and < back plane distance

If the view mapping parameters are consistent and well defined (that is, if they
conform to the specified rules and restrictions), a call to this function returns the
4 � 4 view mapping matrix. Otherwise, a nonzero error indicator is returned.

Transformation Functions 7–19

EVALUATE VIEW MAPPING MATRIX 3

See Also

EVALUATE VIEW ORIENTATION MATRIX 3
SET VIEW REPRESENTATION 3

7–20 Transformation Functions

EVALUATE VIEW ORIENTATION MATRIX 3

EVALUATE VIEW ORIENTATION MATRIX 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gevalvieworienttran3 (

Gpoint3 *vrp, /* (I) View reference point */
Gpoint3 *vpn, /* (I) View plane normal */
Gpoint3 *vuv, /* (I) View up vector */
Gcsw coord, /* (I) WC or NDC switch (constant) */
Gfloat matrix[4] [4], /* (O) View orientation matrix */
Gint *error /* (O) Error indicator */

)

Data Structures

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Constants

Data Type Constant Description

Gcsw GWC The view reference point, view plane normal, and view
up vector are WC values.

GNDC The view reference point, view plane normal, and view
up vector are NDC values.

Description

The EVALUATE VIEW ORIENTATION MATRIX 3 function provides for
three-dimensional translation and rotation of axes. This function returns
a view orientation matrix, which can be passed as input to the SET VIEW
REPRESENTATION 3 function. The view orientation matrix in the view
representation transforms the GKS coordinate system from WC points to VRC
points.

The specified view reference point is a three-dimensional point that defines the
origin of the VRC system.

The specified view plane normal is a three-dimensional vector relative to the
view reference point. It defines the N-axis of the VRC system, which is the third
axis of the system. The view reference plane is the plane in WC points that
contains the view reference point and is perpendicular to the view plane normal.

The specified view up vector is a three-dimensional vector relative to the view
reference point. It is projected onto the view reference plane through a projection
parallel to the view plane normal. The projection of the view up vector onto the
view reference plane determines the V-axis of the VRC system.

Transformation Functions 7–21

EVALUATE VIEW ORIENTATION MATRIX 3

These restrictions apply to the specified values:

• View up vector and view plane normal are not parallel; therefore, the view
coordinates can be established.

• The length of view up vector is greater than 0.

• The length of view plane normal is greater than 0.

If the view orientation parameters are consistent and well defined (that is, if they
conform to the specified rules and restrictions), a call to this function returns the
three-dimensional (4 � 4) view orientation matrix. Otherwise, a nonzero error
indicator is returned.

See Also

SET VIEW REPRESENTATION 3

7–22 Transformation Functions

SELECT NORMALIZATION TRANSFORMATION

SELECT NORMALIZATION TRANSFORMATION

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gselntran (

Gint transform /* (I) Transformation number. */

)

Description

The SELECT NORMALIZATION TRANSFORMATION function sets the
normalization transformation number entry in the GKS state list as the current
transformation, and uses the associated window and viewport to transform points
from the WC system to the NDC system for subsequent output generation.

To set or reset windows and viewports associated with a transformation number,
pass the normalization transformation number to SET WINDOW and SET
VIEWPORT. After selecting this number, any subsequent calls to output functions
use the window and viewport associated with this number.

By default, DEC GKS uses the unity normalization transformation number 0.
Use the default when you want to map the default normalization window to the
default NDC viewport.

See Also

SET VIEWPORT
SET VIEWPORT 3
SET WINDOW
SET WINDOW 3
Example 7–3 for a program example using the SELECT NORMALIZATION
TRANSFORMATION function

Transformation Functions 7–23

SET CLIPPING INDICATOR

SET CLIPPING INDICATOR

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetclip (

Gclip indicator /* (I) Clipping flag (constant) */

)

Constants

Data Type Constant Description

Gclip GCLIP Clipping enabled
GNOCLIP Clipping disabled

Description

The SET CLIPPING INDICATOR function enables or disables clipping of the
image at the normalization viewport boundary by setting the clipping flag in the
GKS state list.

If clipping is enabled, DEC GKS clips all generated output primitives at the
normalization viewport boundary. If clipping is disabled, primitives may exceed
the normalization viewport boundaries. By default, DEC GKS clips primitives.

Note

This function works only for the normalization viewport. Pictures are
always clipped at the workstation window, despite the current status of
the clipping flag.

See Also

INSERT SEGMENT
Example 7–3 for a program example using the SET CLIPPING INDICATOR
function

7–24 Transformation Functions

SET VIEW INDEX

SET VIEW INDEX

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetviewindex (

Gint index /* Selected view index number. The default value
is 0. */

)

Description

The SET VIEW INDEX function sets the value of the current view index in
the GKS state list. This index is bound to all output primitives. This function
associates the view representation of the specified view bundle table entry with
all subsequently defined output primitives. The entry contains the following:

• View orientation matrix

• View mapping matrix

• View clipping limits

• XY clipping indicator

• Back clipping indicator

• Front clipping indicator

You can create and change view table indexes and associated table entries with
the SET VIEW REPRESENTATION 3 function.

See Also

SET VIEW REPRESENTATION 3

Transformation Functions 7–25

SET VIEW REPRESENTATION 3

SET VIEW REPRESENTATION 3

Operating States

WSOP, WSAC, SGOP

Syntax

gsetviewrep3 (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) View index number */
Gfloat orientation[4] [4], /* (I) Orientation matrix */
Gfloat mapping[4] [4], /* (I) Mapping matrix */
Glimit3 *clipping, /* (I) Clipping limits in NPC points */
Gclip xy_clip, /* (I) X-Y clipping indicator (constant) */
Gclip back_clip, /* (I) Back clipping indicator (constant) */
Gclip front_clip /* (I) Front clipping indicator (constant) */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

Constants

Data Type Constant Description

Gclip GCLIP Clipping enabled
GNOCLIP Clipping disabled

Description

The SET VIEW REPRESENTATION 3 function modifies the specified view table
entries. View changes are applied when the display is updated.

The clipping indicators control whether the planes defined by the clipping limits
are active or inactive. If a clipping indicator is turned on, NPC data is clipped at
the corresponding plane defined by the clip limits. If a clipping indicator is off,
the NPC data is not clipped at the plane. Instead it is allowed to extend through
the clip plane until it is conceptually clipped at the NPC system boundary.

7–26 Transformation Functions

SET VIEW TRANSFORMATION INPUT PRIORITY

SET VIEW TRANSFORMATION INPUT PRIORITY

Operating States

WSOP, WSAC, SGOP

Syntax

gsetviewxformpr (

Gint ws, /* (I) Workstation identifier */
Gint index, /* (I) View index */
Gint reference, /* (I) Reference for changing the view

transformation input priority */
Gvpri priority /* (I) Priority flag (constant) */

)

Constants

Data Type Constant Description

Gvpri GHIGHER Next higher priority
GLOWER Next lower priority

Description

The SET VIEW TRANSFORMATION INPUT PRIORITY function sets the view
transformation input priority of the specified views.

View transformation input priority determines which view transformation
is selected to map locator and stroke points from NPC to NDC points. You
specify whether the first number is of the next higher or lower priority than
the reference number. If you specify lower, the first number is placed directly
behind the reference number in the sequential priority list. If you specify higher,
DEC GKS places the first number directly in front of the reference number in the
sequential priority list. By default, the view representation for view index 0 has
the highest view transformation input priority.

If the view index and the reference view index are the same, this function has no
effect.

Transformation Functions 7–27

SET VIEWPORT

SET VIEWPORT

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetviewport (

Gint transform, /* (I) Transformation number. Any subsequent calls to
output functions use the window and viewport
associated with this number. */

Glimit *viewport /* (I) 2D viewport limits in NDC points. Make
sure the X and Y values are located
within the default normalization viewport
boundaries. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

Description

The SET VIEWPORT function specifies the viewport limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangle in WC points (the normalization window) that is to be mapped to
a specified rectangle in NDC points (the normalization viewport). If the two
rectangles do not have the same aspect ratios, mapping is not uniform.

SET VIEWPORT modifies the X and Y components of the specified normalization
viewport. By default, all normalization transformations have their windows set
to [0,1] in X and Y, and their viewports set to [0,1] in X and Y.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT INPUT PRIORITY
SET WINDOW
Example 7–3 for a program example using the SET VIEWPORT function

7–28 Transformation Functions

SET VIEWPORT 3

SET VIEWPORT 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetviewport3 (

Gint transform, /* (I) Transformation number. Any subsequent calls to
output functions use the window and viewport
associated with this number. */

Glimit3 *viewport /* (I) 3D viewport limits in NDC points. Make
sure the X, Y, and Z values are located
within the default normalization
viewport boundaries. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

Description

The SET VIEWPORT 3 function specifies the viewport limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangular parallelepiped in WC points (the normalization window) that
is to be mapped to a specified rectangular parallelepiped in NDC points (the
normalization viewport). If the two parallelepipeds do not have the same aspect
ratios, mapping is not uniform.

SET VIEWPORT 3 modifies the X, Y, and Z components of the specified
normalization viewport. By default, all normalization transformations have
their windows set to [0,1] in X, Y, and Z; and their viewports set to [0,1] in X, Y,
and Z.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT INPUT PRIORITY
SET WINDOW 3
Example 7–3 for a program example using the SET VIEWPORT function

Transformation Functions 7–29

SET VIEWPORT INPUT PRIORITY

SET VIEWPORT INPUT PRIORITY

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetviewportinputpri (

Gint transform, /* (I) Transformation whose priority is to
be set */

Gint reference, /* (I) Reference for changing priority */
Gvpri priority /* (I) Priority flag (constant) */

)

Constants

Data Type Constant Description

Gvpri GHIGHER Higher priority
GLOWER Lower priority

Description

The SET VIEWPORT INPUT PRIORITY function sets the viewport input priority
of the specified normalization transformation.

Viewport input priority determines which normalization transformation is
selected to map locator and stroke points from NDC points to WC points. By
default, the normalization transformations are ordered in a sequential list so
that transformation number 0 has the highest viewport input priority and
transformation number 255 has the lowest. If you specify HIGHER priority,
DEC GKS places the first number directly in front of this reference number in the
sequential priority list. If you specify LOWER priority, the first number is placed
directly behind this reference number in the sequential priority list.

If the normalization transformation number and the reference normalization
transformation numbers are the same, this function has no effect.

See Also

GET LOCATOR
GET STROKE
REQUEST LOCATOR
REQUEST STROKE
SAMPLE LOCATOR
SAMPLE STROKE
SELECT NORMALIZATION TRANSFORMATION
SET WINDOW

7–30 Transformation Functions

SET WINDOW

SET WINDOW

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetwindow (

Gint transform, /* (I) Transformation number. Any subsequent calls
to output functions use the window and viewport
associated with this number. */

Glimit *window /* (I) 2D window limits in WC points. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

Description

The SET WINDOW function specifies the window limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangle in WC points (the normalization window) that is to be mapped to
a specified rectangle in NDC points (the normalization viewport). If the two
rectangles do not have the same aspect ratios, mapping is not uniform.

SET WINDOW modifies the X and Y components of the specified normalization
window. By default, all normalization transformations have their windows set to
[0,1] in X and Y; and their viewports set to [0,1] in X and Y.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT
SET VIEWPORT INPUT PRIORITY
Example 7–3 for a program example using the SET WINDOW function

Transformation Functions 7–31

SET WINDOW 3

SET WINDOW 3

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

gsetwindow3 (

Gint transform, /* (I) Transformation number. Any subsequent calls
to output functions use the window and
viewport associated with this number. */

Glimit3 *window /* (I) 3D window limits in WC points. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

Description

The SET WINDOW 3 function specifies the window limits for the specified
normalization transformation.

The normalization transformation maps output primitives and geometric
attributes from WC units to NDC units. This mapping is defined by specifying
a rectangular parallelepiped in WC points (the normalization window) that
is to be mapped to a specified rectangular parallelepiped in NDC points (the
normalization viewport). If the two parallelepipeds do not have the same aspect
ratios, mapping is not uniform.

SET WINDOW 3 modifies the X, Y, and Z components of the specified
normalization window. By default, all normalization transformations have
their windows set to [0,1] in X, Y, and Z; and their viewports set to [0,1] in X, Y,
and Z.

See Also

SELECT NORMALIZATION TRANSFORMATION
SET VIEWPORT 3
SET VIEWPORT INPUT PRIORITY
Example 7–3 for a program example using the SET WINDOW function

7–32 Transformation Functions

SET WORKSTATION VIEWPORT

SET WORKSTATION VIEWPORT

Operating States

WSOP, WSAC, SGOP

Syntax

gsetwsviewport (

Gint ws, /* (I) Workstation identifier */
Glimit *viewport /* (I) Viewport limits in DC points */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

Description

The SET WORKSTATION VIEWPORT function establishes the portion of the
workstation surface on which DEC GKS maps the workstation window. Make
sure the X and Y values are located within the display surface limits of the
specified workstation. Use the function INQUIRE DISPLAY SPACE SIZE to
determine the maximum X and Y values of the workstation display surface.

The default workstation viewport is the largest square on the workstation surface,
beginning with the lower left corner. If you define a new workstation viewport
or window such that the two are not proportionally equivalent, DEC GKS may
not use the entire viewport. DEC GKS only uses the portion of the viewport that
maintains the shape of the picture in the workstation window.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the requested settings. If the surface is regenerated, the surface
is cleared and only output primitives stored in segments are redrawn.
You lose any primitives not contained in segments.

See Also

INQUIRE DISPLAY SPACE SIZE
SET WORKSTATION WINDOW
Example 7–4 for a program example using the SET WORKSTATION VIEWPORT
function

Transformation Functions 7–33

SET WORKSTATION VIEWPORT 3

SET WORKSTATION VIEWPORT 3

Operating States

WSOP, WSAC, SGOP

Syntax

gsetwsviewport3 (

Gint ws, /* (I) Workstation identifier */
Glimit3 *viewport /* (I) Viewport limits in DC points */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

Description

The SET WORKSTATION VIEWPORT 3 function establishes the portion of the
workstation surface on which DEC GKS maps the workstation window. Make
sure the X, Y, and Z values are located within the display surface limits of the
specified workstation. Use the function INQUIRE DISPLAY SPACE SIZE 3 to
determine the maximum X, Y, and Z values of the workstation display surface.

The default workstation viewport is the largest cube on the workstation surface,
with the origin at the lower left corner furthest from the observer of the display
space. If you define a new workstation viewport or window such that the two are
not proportionally equivalent, DEC GKS may not use the entire viewport. DEC
GKS only uses the portion of the viewport that maintains the shape of the picture
in the workstation window.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the requested settings. If the surface is regenerated, the surface
is cleared and only output primitives stored in segments are redrawn.
You lose any primitives not contained in segments.

See Also

INQUIRE DISPLAY SPACE SIZE 3
SET WORKSTATION WINDOW 3
Example 7–4 for a program example using the SET WORKSTATION VIEWPORT
function

7–34 Transformation Functions

SET WORKSTATION WINDOW

SET WORKSTATION WINDOW

Operating States

WSOP, WSAC, SGOP

Syntax

gsetwswindow (

Gint ws, /* (I) Workstation identifier. */
Glimit *window /* (I) Window limits in NDC points. Make sure

these points are located within the
default workstation window boundary. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

Description

The SET WORKSTATION WINDOW function establishes the portion of the
composed picture, on the NDC plane, that DEC GKS maps to the current
workstation viewport.

Despite the current value of the clipping flag, DEC GKS clips all pictures at the
workstation window boundary. By default, DEC GKS uses the entire picture,
mapping the default workstation window range ([0,1] � [0,1]) onto the largest
square that the workstation can produce.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the current settings. If the surface is regenerated, the surface is
cleared and only output primitives stored in segments are redrawn. You
lose any primitives not contained in segments.

See Also

SET WORKSTATION VIEWPORT

Transformation Functions 7–35

SET WORKSTATION WINDOW 3

SET WORKSTATION WINDOW 3

Operating States

WSOP, WSAC, SGOP

Syntax

gsetwswindow3 (

Gint ws, /* (I) Workstation identifier. */
Glimit3 *window /* (I) Window limits in NDC points. Make sure

these points are located within the
default workstation window boundary. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

Description

The SET WORKSTATION WINDOW 3 function establishes the portion of the
composed picture, in NDC space, that DEC GKS maps to the current workstation
viewport.

Despite the current value of the clipping flag, DEC GKS clips all pictures at the
workstation window boundary. By default, DEC GKS uses the entire picture,
mapping the default workstation window range ([0,1] � [0,1] � [0,1]) onto the
largest cube that the workstation can produce.

Note

If your workstation cannot implement an immediate change to the
workstation window or viewport, the surface needs to be regenerated to
establish the current settings. If the surface is regenerated, the surface is
cleared and only output primitives stored in segments are redrawn. You
lose any primitives not contained in segments.

See Also

SET WORKSTATION VIEWPORT 3

7–36 Transformation Functions

Transformation Functions
7.6 Program Examples

7.6 Program Examples
Example 7–1 illustrates the use of the ACCUMULATE TRANSFORMATION
MATRIX function.

Example 7–1 Showing the Cumulative Effect of ACCUMULATE
TRANSFORMATION MATRIX

/*
* This program shows how using the ACCUMULATE TRANSFORMATION MATRIX
* function lets you add transformation components to a previously
* set transformation.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h>

main ()
{

Gconn conn_id = GWC_DEF;
Gcsw coord_switch = GWC;
Gevent event;
Gpoint fixed_point;
Gint house = 1;
Gint lower_left_corner = 1;
Gint num_pts = 9;
Gpoint points[9];
Gfloat rotation = 0;
Gscale scale;
Gpoint shift;
Gfloat time_out = 5.00;
Glimit viewport;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;
Gfloat xform_matrix[2][3];

/* Open and activate GKS and the workstation environment. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/*
* Set the viewport limits for the specified normalization
* transformation.
*/

viewport.xmin = viewport.ymin = 0.0;
viewport.xmax = viewport.ymax = 0.5;

gsetviewport (lower_left_corner, &viewport);

/*
* This call selects a normalization transformation with the
* new viewport.
*/

gselntran (lower_left_corner);
gsetclip (GNOCLIP);

(continued on next page)

Transformation Functions 7–37

Transformation Functions
7.6 Program Examples

Example 7–1 (Cont.) Showing the Cumulative Effect of ACCUMULATE
TRANSFORMATION MATRIX

/* Create the segment. */

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

gcreateseg (house);
gpolyline (num_pts, points);
gcloseseg ();

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (time_out, &event);

/* Shift the house upwards and sidewards by 0.2 world coordinates. */

shift.x = 0.2; shift.y = 0.2;
scale.x_scale = 1.0; scale.y_scale = 1.0;
fixed_point.x = 0.25; fixed_point.y = 0.9;

gevaltran (&fixed_point, &shift, rotation, &scale, coord_switch,
xform_matrix);

/*
* Transform the segment and update the screen. Calling SET SEGMENT
* TRANSFORMATION changes the segment transformation in the segment list,
* and sets flags in the workstation state list, telling GKS that the
* display surface is out of date and that an update is necessary.
*/

gsetsegtran (house, xform_matrix);

/*
* Calling UPDATE WORKSTATION updates the position of the image on the
* workstation surface. Wait 5 seconds.
*/

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/*
* Using ACCUMULATE TRANSFORMATION MATRIX, you can add transformation
* components to a previously set transformation. The house gradually
* moves upward, one Y world coordinate point at a time.
*/

gaccumtran (xform_matrix, &fixed_point, &shift, rotation, &scale,
coord_switch, xform_matrix);

/* Transform the segment and update the screen. */

gsetsegtran (house, xform_matrix);

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

(continued on next page)

7–38 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–1 (Cont.) Showing the Cumulative Effect of ACCUMULATE
TRANSFORMATION MATRIX

/* Again, shift the house upwards by 1 more world coordinate. */

gaccumtran (xform_matrix, &fixed_point, &shift, rotation, &scale,
coord_switch, xform_matrix);

/* Transform the segment. */

gsetsegtran (house, xform_matrix);

/* Update the surface to initiate the change. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/* Deactivate and close the workstation environment and GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 7–4 and Figure 7–5 show the first and last positions of the house. Each
of the four house positions illustrates an added transformation component in the
ACCUMULATE TRANSFORMATION MATRIX function.

Transformation Functions 7–39

Transformation Functions
7.6 Program Examples

Figure 7–4 First Transformation Component of ACCUMULATE
TRANSFORMATION MATRIX

ZK−4019A−GE

7–40 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–5 Fourth Transformation Component of ACCUMULATE
TRANSFORMATION MATRIX

ZK−4022A−GE

Example 7–2 illustrates the use of the EVALUATE TRANSFORMATION MATRIX
function.

Transformation Functions 7–41

Transformation Functions
7.6 Program Examples

Example 7–2 The Effects of a Segment Transformation

/*
* This program transforms the house contained in a segment. The
* program shows the effects of segment transformation through the
* use of the EVALUATE TRANSFORMATION MATRIX function.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* C binding definition file */

main ()
{

Gconn conn_id = GWC_DEF;
Gcsw coord_switch = GWC;
Gevent event;
Gpoint fixed_point;
Gint house = 1;
Gint lower_left_corner = 1;
Gint num_pts = 9;
Gpoint points[9];
Gfloat rotation;
Gscale scale;
Gpoint shift;
Gfloat time_out = 5.00;
Glimit viewport;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;
Gfloat xform_matrix[2][3];

/* Open and activate GKS and the workstation environment. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/* Set the viewport limits for the specified normalization transformation. */

viewport.xmin = viewport.ymin = 0.0;
viewport.xmax = viewport.ymax = 0.5;

gsetviewport (lower_left_corner, &viewport);

/*
* This call selects a normalization transformation with the
* new viewport.
*/

gselntran (lower_left_corner);
gsetclip (GNOCLIP);

/* Create the segment. */

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

(continued on next page)

7–42 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–2 (Cont.) The Effects of a Segment Transformation

gcreateseg (house);
gpolyline (num_pts, points);
gcloseseg ();

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (time_out, &event);

/* Rotation equals pi divided by 6 (30 degrees). */

rotation = 3.14/6.0;

/*
* You can change the segment transformation that affects the
* rotation, scaling, and translation components of segment
* appearance. The EVALUATE TRANSFORMATION MATRIX call assists in the
* creation of a new transformation matrix, that will permit you to
* specify rotation, scaling, and translation values.
*/

shift.x = 0.0; shift.y = 0.2;
scale.x_scale = 0.5; scale.y_scale = 0.5;
fixed_point.x = 0.25; fixed_point.y = 0.9;

gevaltran (&fixed_point, &shift, rotation, &scale, coord_switch,
xform_matrix);

/* Transform the segment. */

gsetsegtran (house, xform_matrix);

/*
* The UPDATE WORKSTATION function updates the position of the image on
* the workstation surface. All output not contained in segments is lost.
* Wait 5 seconds.
*/

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/* Deactivate and close the workstation environment and GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Transformation Functions 7–43

Transformation Functions
7.6 Program Examples

Figure 7–6 shows the house before the segment transformation.

Figure 7–6 Output Prior to Segment Transformation

ZK−4019A−GE

7–44 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–7 shows the house after the effects of the segment transformation.

Figure 7–7 Effect of Segment Transformation

ZK−4020A−GE

Example 7–3 illustrates the use of the SET CLIPPING INDICATOR function.

Transformation Functions 7–45

Transformation Functions
7.6 Program Examples

Example 7–3 Controlling Clipping at the World Viewport

/*
* This program illustrates the SET CLIPPING INDICATOR function. It
* generates a "tall, thin house" that overlaps the normalization window
* and viewport. You can see the overlapping portion if clipping is
* disabled.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h>

main ()
{

Gconn conn_id = GWC_DEF;
Gevent event;
Gint half = 1;
Gint low_left_corner = 1;
Gint num_pts = 9;
Gpoint points[9];
Gpoint points_2[5];
Gfloat time_out = 5.00;
Glimit viewport;
Glimit window;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open and activate GKS and the workstation environment. */

gopengks (0, 0);
gopenws (ws_id, 0, &ws_type);
gactivatews (ws_id);

/*
* Outlining the default world window results in the outlining of
* the NDC plane, the workstation window, and the workstation
* viewport, by default.
*/

points[0].x = 0.0; points[0].y = 0.0;
points[1].x = 0.5; points[1].y = 0.5;
points[2].x = 0.0; points[2].y = 0.5;
points[3].x = 0.0; points[3].y = 0.0;

gpolyline (5, points_2);

/*
* Set the normalization window to be half of the default
* plane and assign the normalization transformation low_left_corner.
* The house is cut in half by the window boundary. Set the viewport to be
* the lower left corner of the NDC space and assign this normalization
* transformation the value 1.
*/

viewport.xmin = viewport.ymin = 0.0;
viewport.xmax = viewport.ymax = 0.5;
window.xmin = window.ymin = 0.0;
window.xmax = 0.9;
window.ymax = 0.5;

gsetwindow (half, &window);
gsetviewport (low_left_corner, &viewport);

(continued on next page)

7–46 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–3 (Cont.) Controlling Clipping at the World Viewport
/*
* Select the normalization transformation number 1 which has a
* smaller window by half and a viewport that is the lower left
* corner of the NDC space. By default, clipping is enabled; you
* only see half the house.
*/

gselntran (low_left_corner);

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

gpolyline (num_pts, points);

/* Release deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/*
* Once you disable clipping and redraw the picture, GKS maps the
* entire house to NDC space and eventually the workstation surface.
*/

gsetclip (GNOCLIP);

/*
* Draw the same house, using the same windows and viewports, but
* with clipping disabled. Now you can see the portion of the house
* that overlaps the window and viewport.
*/

gpolyline (num_pts, points);

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/* Deactivate and close the workstation environment and GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Transformation Functions 7–47

Transformation Functions
7.6 Program Examples

Figure 7–8 illustrates the house while clipping is enabled.

Figure 7–8 SET CLIPPING INDICATOR with Clipping Enabled

ZK−4027A−GE

Figure 7–9 illustrates the house while clipping is disabled. The house overlaps
the normalization window and viewport.

7–48 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–9 SET CLIPPING INDICATOR with Clipping Disabled

ZK−4028A−GE

Example 7–4 illustrates the use of the SET WORKSTATION VIEWPORT
function.

Transformation Functions 7–49

Transformation Functions
7.6 Program Examples

Example 7–4 Establishing a Workstation Viewport

/*
* This program illustrates the SET WORKSTATION VIEWPORT function.
* This program uses the default normalization transformations,
* generates a "tall, thin house," updates the screen,
* changes the workstation viewport to the lower left
* corner of the display surface, and generates the output again.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* C binding definition file */

main ()
{

Gdspsize dspsz;
Gmodws dyn;
Gint error_status;
Gevent event;
Gint house = 1;
Gfloat max_x;
Gfloat max_y;
Gint num_pts = 9;
Gpoint points[9];
Gpoint outline[5];
Gfloat time_out = 5.00;
Glimit viewport ;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open GKS and the workstation environment. */

gopengks (0, 0);
gopenws (ws_id, 0, &ws_type);
gactivatews (ws_id);

/*
* Outlining the default window results in outlining
* the NDC plane, the workstation window, and the workstation
* viewport, by default.
*/

outline[0].x = 0.0; outline[0].y = 0.0;
outline[1].x = 1.0; outline[1].y = 0.0;
outline[2].x = 1.0; outline[2].y = 1.0;
outline[3].x = 0.0; outline[3].y = 1.0;
outline[4].x = 0.0; outline[4].y = 0.0;

gpolyline (5, outline);

(continued on next page)

7–50 Transformation Functions

Transformation Functions
7.6 Program Examples

Example 7–4 (Cont.) Establishing a Workstation Viewport

/*
* This code assumes the default normalization transformation.
* GKS maps the default window to the default viewport, then
* maps the default workstation window to the default viewport.
*/

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

gcreateseg (house);
gpolyline (num_pts, points);
gcloseseg ();

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/*
* The function INQUIRE DISPLAY SPACE SIZE returns the maximum X
* and Y display surface coordinates in the arguments device_max_x
* and device_max_y.
*/

ginqdisplaysize (&ws_type, &dspsz, &error_status);

/*
* The function SET WORKSTATION VIEWPORT changes the workstation
* viewport to the lower left corner of the screen. The picture
* being displayed is still the same (the default workstation
* window), but the space on the workstation surface used to
* display the same picture has changed.
*/

viewport.xmin = 0.0;
viewport.xmax = dspsz.device.x/2.0;
viewport.ymin = 0.0;
viewport.ymax = dspsz.device.y/2.0;

gsetwsviewport (ws_id, &viewport);

/*
* Update the screen so the workstation can use the new workstation viewport
* (as noted in the function description section).
*/

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

(continued on next page)

Transformation Functions 7–51

Transformation Functions
7.6 Program Examples

Example 7–4 (Cont.) Establishing a Workstation Viewport

/*
* Check whether the workstation viewport change required an implicit
* regeneration (IRG), thereby deleting all information not retained
* in a segment.
*/

ginqmodwsattr (&ws_type, &dyn, &error_status);
if (dyn.wstran == GIRG)

{
outline[0].x = 0.0; outline[0].y = 0.0;
outline[1].x = 1.0; outline[1].y = 0.0;
outline[2].x = 1.0; outline[2].y = 1.0;
outline[3].x = 0.0; outline[3].y = 1.0;
outline[4].x = 0.0; outline[4].y = 0.0;

gpolyline (5, outline);
}

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/* Close the workstation environment and GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 7–10 illustrates how the house is displayed using the default
normalization transformation.

7–52 Transformation Functions

Transformation Functions
7.6 Program Examples

Figure 7–10 Output Using the Default Normalization Transformation

GKS

ZK−4029A−GE

Figure 7–11 illustrates how the house is displayed with changes to the
workstation viewport.

Transformation Functions 7–53

Transformation Functions
7.6 Program Examples

Figure 7–11 Output After Changes to the Workstation Viewport

Help

ZK−4030A−GE

GKS

File Edit Commands Options Print

7–54 Transformation Functions

Segment Functions

Insert tabbed divider here. Then discard this sheet.

8
Segment Functions

The DEC GKS segment functions create, manipulate, and delete stored groups of
output primitives called segments.

When producing output, you may wish to reproduce a graphic image at different
positions within a single picture, possibly across different devices, and possibly
at different points during program execution. It is inefficient to call all the
DEC GKS output and attribute functions every time you want to reproduce such
an image. DEC GKS provides a method of storing groups of output primitives,
output attributes, and clipping information in a segment.

8.1 Creating, Using, and Deleting Segments
To use segments, your workstation should be one of the categories OUTPUT,
OUTIN, MO, or WISS (described in Section 8.2). When you create a segment, the
segment is stored on all active workstations.

To create a segment, DEC GKS must be in the operating state WSAC (at
least one workstation active). When DEC GKS is in this state, you can call
CREATE SEGMENT, which creates a segment on all active workstations. The
only argument passed to CREATE SEGMENT is the segment name. You use a
segment name to identify a particular segment.

After you call CREATE SEGMENT, the DEC GKS operating state changes to
SGOP (segment open). Subsequent calls to the DEC GKS output and attribute
functions produce primitives stored in the segment on all active workstations.
When you have created the desired image, call CLOSE SEGMENT. This call
closes the segment, causing the DEC GKS operating state to change back to
WSAC.

When you call CREATE SEGMENT, the DEC GKS operating state changes from
WSAC to SGOP. SGOP signifies that a segment is open, or being created. Also,
calling CREATE SEGMENT establishes the segment state list associated with
the segment name, and DEC GKS records the segment name (in the GKS state
list) as the name of the currently open segment.

Segments cannot contain other segments; in other words, segments cannot
be nested. Therefore, if you call CREATE SEGMENT, you must call CLOSE
SEGMENT before you attempt to call CREATE SEGMENT again. Until you call
CLOSE SEGMENT, DEC GKS associates all generated output primitives with
the name of the open segment. When you call CLOSE SEGMENT, the DEC GKS
operating state changes from SGOP back to WSAC. After you close a segment,
you cannot reopen the segment to add more output primitives.

If you need to, you can rename the segment using the function RENAME
SEGMENT. If you are keeping an ordered list of segments, calls to this function
may be useful.

Segment Functions 8–1

Segment Functions
8.1 Creating, Using, and Deleting Segments

There are three ways to delete segments. If you use the function DELETE
SEGMENT FROM WORKSTATION, DEC GKS deletes the segment from the
specified workstation. If you use DELETE SEGMENT, DEC GKS deletes the
specified segment from all workstations storing the segment. If you call CLEAR
WORKSTATION, and if the surface is cleared, you delete all segments stored on
that workstation.

For more information concerning the DEC GKS operating states or the segment
state list, see Chapter 4.

Note

If you store primitives in a segment, and want to be able to change
the primitive’s appearance elsewhere in the program, you must set the
primitive’s ASF to be GBUNDLED before you generate the primitive. In
this way, the primitive’s ASF is stored in the segment with the primitive.
If you want to change the primitive’s appearance, call the appropriate
SET . . . REPRESENTATION function for the primitive’s bundle index.
If you store the primitive in a segment using individual attributes, the
appearance of the primitive cannot be changed after primitive generation.
For more information on aspect source flags, see Chapter 6.

8.1.1 Pick Identification
One of the DEC GKS logical input classes is the pick input class. Using the
function REQUEST PICK, the user can choose a segment, and possibly a portion
of the segment, as displayed on the surface of the workstation.

REQUEST PICK returns the segment name and the pick identifier of the
segment or segment portion chosen by the user. The pick identifier is a numeric
output attribute. Like other output attribute values (line type, line width, color,
text alignment, and so on), the pick identifier is bound to an output primitive
at the time of generation, and you cannot change its value. However, you can
change the current pick identifier value before generating each output primitive.
In doing so, DEC GKS associates a different numeric pick identifier value with
each generated primitive.

During segment creation, you can use pick identifiers to establish a hierarchy
within the segment. During pick input, DEC GKS returns the same segment
name if the pick prompt touches the same segment, but may return different
pick identifiers depending on which primitive within the segment the pick prompt
touches.

To see how to use pick identifiers, see Example 9–2 for a program example that
calls SET PICK IDENTIFIER.

8.2 Workstations and Segment Storage
When DEC GKS stores a segment on an active OUTPUT, OUTIN, or MO
workstation, the method of storage is called workstation dependent segment
storage (WDSS). On these workstations, you can control the segment attributes
(see Section 8.4), move or alter the shape of the segment using the segment
transformation functions (see Section 8.4.4.1), or delete the segment (either from
a single workstation or from all workstations storing the segment).

8–2 Segment Functions

Segment Functions
8.2 Workstations and Segment Storage

If you are creating segments using the WDSS method of storage, you cannot copy
a segment from one workstation to another. Also, you cannot recall a segment
once it has been deleted from a workstation. You can only alter the segment’s
position within the picture by changing the segment transformation.

To copy a segment, or to reassociate a segment with a workstation after deletion
from that particular workstation, you need to store the segment in workstation
independent segment storage (WISS). Once a segment is stored in WISS, the
segment is independent of any workstation and can be copied from WISS to other
workstations.

By storing a segment on a WISS workstation, you can delete a segment from
a non-WISS workstation and recall it again. Then, when you need to use the
deleted segment later in the program, you can associate the segment stored on
WISS with the other workstation, copy the segment to the other workstation, or
insert the segment’s primitives into the output stream of the other workstation.

If you associate a segment stored on a WISS workstation with another
workstation, the other workstation stores an identical segment. If you copy
a segment from a WISS workstation to another workstation, the segment’s
primitives are copied to the surface of the second workstation, but the second
workstation does not store them in a segment. If you insert a segment into the
output stream of another workstation, DEC GKS applies an INSERT SEGMENT
transformation and then copies all the segment’s primitives onto the surface
of the other workstation, but the second workstation does not store them in
a segment. If you are creating a segment, you can insert another segment’s
primitives into the newly created segment, but those primitives become part of
the new segment and are no longer bound by the old segment name (see INSERT
SEGMENT in this chapter for more information).

DEC GKS implements the WISS data structure as a workstation. To store a
segment using WISS, open and then activate WISS specifying GWS_WISS (value
5) as the workstation type. When you open WISS, you can specify GWC_DEF as
the connection identifier argument. (If you specify GWS_WISS, DEC GKS ignores
the connection identifier argument.)

Once you activate the WISS workstation and create segments, you can use the
DEC GKS functions ASSOCIATE SEGMENT WITH WORKSTATION, COPY
SEGMENT TO WORKSTATION, and INSERT SEGMENT. Example 8–1 shows
the difference between ASSOCIATE SEGMENT WITH WORKSTATION and
COPY SEGMENT TO WORKSTATION. See Example 8–2 for a program example
using INSERT SEGMENT.

8.3 Segments and Surface Update
When you request changes to segment attributes (described in Section 8.4),
the change may take place immediately (dynamically) or DEC GKS may need
to update the surface to implement the change (an implicit regeneration),
depending on the capabilities of your device. An implicit regeneration clears
the screen and only redraws the primitives stored in segments. All primitives
not stored in segments are lost. You can use the function INQUIRE DYNAMIC
MODIFICATION OF SEGMENT ATTRIBUTES to determine if a request for a
segment attribute change requires an implicit regeneration on your device.

Segment Functions 8–3

Segment Functions
8.3 Segments and Surface Update

There are two ways to determine whether your device requires an implicit
regeneration to implement a change. If you are making only a few changes,
you can call INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES to
determine if the new frame necessary at update entry is YES. If you are making
many different changes, calling this function each time is inefficient.

You can call INQUIRE DYNAMIC MODIFICATION OF SEGMENT
ATTRIBUTES once to determine for which changes your workstation requires
an implicit regeneration. Then, you can set flags to force regenerations only
when you make changes that require them. If you need to regenerate the picture
on the workstation surface when changing segment attributes, call UPDATE
WORKSTATION and pass GPERFORM as an argument.

Note

If you want to redraw all the segments on the workstation surface
regardless of the current status of the new frame flag, you can call
REDRAW ALL SEGMENTS ON WORKSTATION. A call to this function
is equivalent to a call to UPDATE WORKSTATION while the new frame
flag is set to YES, and while passing the argument GPERFORM.

Requests for changes to segments may require an implicit regeneration of the
screen depending on the capabilities of your device (see Section 8.4 for a complete
descriptions of the segment attributes). Table 8–1 describes surface regeneration
resulting from changes to segments.

Table 8–1 Surface Regeneration from Changes to Segments

Change Possible Effect

Segment priority Calls to the following functions may create a situation
in which two segments of different priorities overlap,
or in which an overlapped segment must now be made
completely visible, or in which visibility changes.

• ASSOCIATE SEGMENT WITH WORKSTATION

• DELETE SEGMENT

• DELETE SEGMENT FROM WORKSTATION

• SET SEGMENT PRIORITY

• SET SEGMENT TRANSFORMATION

• SET VISIBILITY

In all cases, DEC GKS must take the segments’ priorities
into consideration before determining if the picture is out
of date.

Segment transformation Many workstations are unable to reposition segments
dynamically, thus requiring an implicit regeneration.

(continued on next page)

8–4 Segment Functions

Segment Functions
8.3 Segments and Surface Update

Table 8–1 (Cont.) Surface Regeneration from Changes to Segments

Change Possible Effect

Segment visibility Some workstations may be able to make an invisible
segment visible dynamically, but may need an implicit
regeneration to make visible segments invisible, as
visible-to-invisible changes require that the segments
‘‘beneath’’ the segment be redrawn. Some workstations
may need an implicit regeneration to perform both, and
some workstations may be able to make both changes
dynamically.

Segment highlighting Some workstations may need to implicitly regenerate the
surface before they can highlight a segment.

Segment deletion Segment deletion may require reproducing the
segments ‘‘beneath’’ the deleted segment. Calling either
DELETE SEGMENT or DELETE SEGMENT FROM
WORKSTATION can require an implicit regeneration
of the screen, depending on the capabilities of your
workstation.

There are other conditions under which DEC GKS may require a surface
regeneration, depending on the capabilities of your device. For example, if you
attempt to alter the polyline representation (see Chapter 6), the workstation
requires an implicit regeneration to affect this change.

If you are going to make certain output attribute changes or workstation
transformation changes, you need to put all important output primitives into
segments so they are not lost when you update the surface. For complete
information as to changes that may require implicit regeneration on UPDATE
WORKSTATION, or on REDRAW ALL SEGMENTS ON WORKSTATION, see
Chapter 4.

8.4 Segment Attributes
As a workstation stores the output attributes of a primitive when it is a part of a
segment, a workstation stores segment attributes that affect all the primitives
stored within a segment. The segment attributes are as follows:

• Detectability

• Highlighting

• Priority

• Transformation

• Visibility

The following sections describe the segment attributes in detail.

8.4.1 Detectability
The detectability segment attribute determines whether or not the segment can
be chosen during pick input. Pick input is only available on OUTIN workstations.
By default, DEC GKS segments are undetectable (GUNDETECTABLE).

To pick a segment, it must be both detectable and visible (GVISIBLE). In many
applications, if you do not want the user to be able to pick a segment, you should
make the segment invisible as well as undetectable. Remember that making

Segment Functions 8–5

Segment Functions
8.4 Segment Attributes

a segment undetectable does not make the segment invisible; these are two
separate segment attributes.

For more information concerning detectability, see SET DETECTABILITY in this
chapter. For more information concerning pick input, see Chapter 9.

8.4.2 Highlighting
The highlighting segment attribute determines whether or not a workstation
presents a highlighted segment on the workstation surface to draw the attention
of the user to that segment. By default, DEC GKS segments are not highlighted
(GNORMAL).

Highlighting is device dependent and can be implemented in any of the following
ways:

• Blinking all primitives in a segment

• Outlining the segment extent rectangle

• Reversing the foreground and background colors within the segment extent
rectangle

• Outlining of all output primitives stored within the segment

The segment extent rectangle is the rectangle that outlines all the NDC points
of the primitives stored in the segment. For more information concerning
highlighting, see SET HIGHLIGHTING in this chapter.

8.4.3 Priority
The priority segment attribute determines which segment’s primitives take
priority when two segments overlap on the workstation surface. To assign a
priority to a segment, you assign to the segment a real number greater than or
equal to the value 0.0, and less than or equal to the value 1.0. Segments with the
priority 0.0 have the lowest priority, and segments with the priority 1.0 have the
highest priority. By default, DEC GKS segments have a priority value of 0.0.

Different devices implement segment priority differently. A device supports either
an infinite number of priorities (theoretically), or a specific number of priorities.
If the device supports an infinite number of priorities, the maximum number
of segment priorities supported entry in the workstation description table is the
value 0. Otherwise, the entry contains the number of priorities supported. (To
access this table entry, call the function INQUIRE NUMBER OF SEGMENT
PRIORITIES SUPPORTED.)

If the number of priorities supported is not 0, DEC GKS divides the 0.0 to 1.0
priority range into subranges according to the number of supported priorities.
If you specify for two different segments, two different priority values that fall
within the same subrange, those segments have the same priority. For example,
if a workstation supports two segment priorities, all segments with the specified
values between 0.0 and 0.5 inclusive have the same priority, and values between
0.51 and 1.0 have the same priority.

8–6 Segment Functions

Segment Functions
8.4 Segment Attributes

8.4.4 Transformation
When DEC GKS creates a picture containing segments, it places into effect
the current normalization transformation, applies the current segment
transformation to each segment, and if you have enabled clipping, clips the
picture at the current normalization viewport. By default, DEC GKS applies the
identity segment transformation to all segments. The identity transformation
makes no changes to the size or position of the segment.

If you desire, you can change the segment transformation that affects the
following components of segment appearance:

Component Description

Scaling The first step in the segment transformation process is to scale the
segment. Scaling determines the size of the segment extent rectangle,
either enlarging or decreasing the total size of the segment.

Rotation The second step in the segment transformation process is to rotate
the segment. Rotation determines the positioning of the segment by
establishing a fixed coordinate point in the segment, and then rotating
the remaining segment points around the fixed point axis by a specified
number of radians.

Translation The last step in the segment transformation process is to translate the
segment’s coordinate points to new points according to vector coordinate
values. Simply, it shifts the segment position in NDC space.

The first decision you must make when working with segment transformations
is whether to specify your fixed point as a WC or NDC point. If you want
to transform portions of the segment according to the current normalization
transformation mapping, specify WC points. DEC GKS maps the specified WC
point to the NDC plane and then performs the rotation or scaling.

If you want to transform the segment as stored on the NDC space (regardless of
the current normalization transformation), specify an NDC point as your fixed
point.

Next, if you want to scale or to rotate the segment, you must decide which point
in the segment to use as a fixed point. When DEC GKS scales the segment, the
fixed point is the only point that maintains its position as the segment decreases
or increases in size, either towards or away from the fixed point. When DEC GKS
rotates the segment, it uses the fixed point as the point around which the other
points in the segment rotate. If the rotation is three-dimensional, the fixed point
is the origin for the X, Y, and Z axes of rotation.

If you decide to shift the segment, you need to establish a translation vector.
The translation vector is expressed by real number values that specify by how
much the X and Y segment coordinate values change. When DEC GKS translates
the segment, it adds the values specified in the translation vector to the segment’s
X and Y values, moving the segment within the specified coordinate system. If
you do not wish to translate the segment’s position, you can specify the value
0.0 for all components of the translation vector. The two-dimensional translation
vector has X and Y components only. The three-dimensional translation vector
has X, Y, and Z components, and its use is analogous to the two-dimensional
translation vector.

Segment Functions 8–7

Segment Functions
8.4 Segment Attributes

If you decide to rotate the segment, you must decide on an angle of rotation in
radians. A radian is a measure of an angle. A full circle, 360 degrees, equals 2*pi
radians, one radian equaling 180/pi degrees. The value pi equals approximately
3.14. DEC GKS rotates the segment on the axis of the fixed point by the
radian specified as the angle of rotation. Positive rotation values rotate counter
clockwise; negative rotation values rotate clockwise. If you do not wish to rotate
the segment, you can specify 0.0 for the angle of rotation.

Finally, if you decide to scale the segment, you need to establish the scale
factors. You express a scale factor as two real number values; DEC GKS
multiplies the X and Y segment coordinate values by the scale factor components
to determine the new size of the segment. If you do not want to scale the segment
(keeping the segment the same size), specify the value 1.0 for all components
of the scale factor. Values less than 1.0 decrease the segment size, and values
greater than 1.0 increase the segment size. The two-dimensional scale factor has
X and Y components only. The three-dimensional scale factor has X, Y, and Z
components, and its use is analogous to the two-dimensional scale factor.

Once you have decided how to scale, rotate, and translate a segment, you must
construct a transformation matrix. A transformation matrix is an array
of real values. The two-dimensional transformation matrix has six elements;
the three-dimensional transformation matrix has twelve elements. To assist
you in the creation of a transformation matrix, DEC GKS provides the utility
functions EVALUATE TRANSFORMATION MATRIX and ACCUMULATE
TRANSFORMATION MATRIX. The function EVALUATE TRANSFORMATION
MATRIX has the following function syntax:

gevaltran (point, shift, angle, scale, coord, result) ;

After evaluating the first five arguments, EVALUATE TRANSFORMATION
MATRIX establishes the appropriate transformation matrix and writes the
6-element array of real numbers to the last argument result. For detailed
information concerning this function, see the function description in Chapter 7.

The function ACCUMULATE TRANSFORMATION MATRIX is identical to
EVALUATE TRANSFORMATION MATRIX, except that its first read-only
argument is another 6-element transformation matrix, as follows:

gaccumtran (segtran, point, shift, angle, scale, coord, result) ;

If you have a previously constructed transformation matrix to which you
want to add translation, shifting, and scaling values, you call ACCUMULATE
TRANSFORMATION MATRIX. DEC GKS creates a new transformation matrix
using the first matrix and the specified scaling, rotation, and translation
information, and then returns the resulting transformation matrix to the last
argument. For detailed information concerning this function, see the function
description in Chapter 7.

Once you have established the desired transformation matrix, either by
accumulating matrixes or by evaluating a single matrix, you can set the segment
transformation using SET SEGMENT TRANSFORMATION, which takes the
name of a segment and the transformation matrix identifier as its arguments.
DEC GKS applies the specified transformation to the stored segment on the NDC
system. This current transformation remains in effect until you change it. Before
copying a segment, or inserting a segment on a workstation, DEC GKS first
checks the current segment transformation in the segment state list, and applies
that transformation to the stored segment.

8–8 Segment Functions

Segment Functions
8.4 Segment Attributes

You may have to update the workstation surface to see the change in the segment
transformation. See Section 8.3 for more information concerning surface update.

See Example 7–2 for a program example on the effects of a segment
transformation.

In some applications, you may want to have more control over the order in which
DEC GKS transforms segments. Simply, you may want to transform the segment
in some order other than scaling, then rotating, and finally translation. You can
accomplish this task by calling ACCUMULATE TRANSFORMATION MATRIX
several times, performing one transformation at a time.

See Example 7–1 for a program example showing the cumulative effect of
ACCUMULATE TRANSFORMATION MATRIX.

8.4.4.1 Normalization and Segment Transformations, and Clipping
When you generate an output primitive during segment creation, DEC GKS
stores the primitive, the currently associated output attributes, the current
clipping rectangle or volume (the current normalization viewport), and the pick
identifier value (see Section 8.1.1).

When DEC GKS generates one of the primitives in a given segment, the primitive
is transformed by the current normalization transformation; then the primitive
is transformed by the specified segment transformation; and finally, if clipping
was enabled before you generated the segment primitive (the default clipping
status), the primitive is clipped at the stored normalization viewport boundary,
not necessarily the current normalization viewport boundary.

If clipping is not enabled at the time you generate an output primitive during
segment creation, DEC GKS stores the default normalization viewport ([0,1] x
[0,1]) as the clipping rectangle, or ([0,1] x [0,1] x [0,1]) as the clipping volume, for
the generated primitive.

Consequently, when you translate a segment’s position, and if the segment crosses
the viewport boundary, whether DEC GKS clips the primitives depends on the
status of the clipping flag at the time of primitive generation.

During transformation, a segment’s primitives may exceed the default
normalization viewport, defined as ([0,1] x [0,1]) for two-dimensional
transformations, and ([0,1] x [0,1] x [0,1]) for three-dimensional transformations.
DEC GKS can store segments that exceed the default normalization viewport in
NDC space.

However, even though DEC GKS can store segments that exceed the default
normalization viewport boundary, those portions cannot be displayed on
the surface of the workstation. DEC GKS clips all pictures at least at
that workstation window boundary during the workstation transformation.
The maximum workstation window is ([0,1] x [0,1]) for two-dimensional
transformations on the NDC plane and ([0,1] x [0,1] x [0,1]) for three-dimensional
transformations in NPC space.

See Example 7–3 for a program example on controlling clipping at the world
viewport.

Segment Functions 8–9

Segment Functions
8.4 Segment Attributes

8.4.5 Visibility
The visibility segment attribute determines if the segment is visible on the
workstation surface. By default, DEC GKS segments are visible (GVISIBLE).

Visibility can be used to hide a segment from a user until the segment is needed.
For example, segment visibility is a useful way to control the displaying of
messages and menus, although MESSAGE and REQUEST CHOICE can perform
the same task.

By default, the visibility segment attribute is set to (GVISIBLE). Keep in mind
that a segment must be both visible and detectable to pick that segment during
pick input (see Chapter 9).

8.5 Segment Inquiries
The following list presents the inquiry functions that you can use to obtain
segment information when writing device-independent code:

INQUIRE CLIPPING
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES
INQUIRE LEVEL OF GKS
INQUIRE NAME OF OPEN SEGMENT
INQUIRE OPERATING STATE VALUE
INQUIRE PICK DEVICE STATE
INQUIRE SEGMENT ATTRIBUTES
INQUIRE SET OF ACTIVE WORKSTATION
INQUIRE SET OF ASSOCIATED WORKSTATIONS
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE SET OF SEGMENT NAMES IN USE
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION CONNECTION AND TYPE
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES
INQUIRE WORKSTATION MAXIMUM NUMBERS
INQUIRE WORKSTATION STATE

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

8.6 Function Descriptions
This section describes the DEC GKS segment functions in detail.

8–10 Segment Functions

ASSOCIATE SEGMENT WITH WORKSTATION

ASSOCIATE SEGMENT WITH WORKSTATION

Operating States

WSOP, WSAC

Syntax

gassocsegws (

Gint ws, /* (I) Workstation identifier. */
Gint seg /* (I) Segment name that identifies a segment

that is stored on a WISS workstation. */

)

Description

The ASSOCIATE SEGMENT WITH WORKSTATION function takes a segment
stored in workstation-independent segment storage (WISS), and stores the
segment on the specified workstation. If the segment is not stored in WISS,
DEC GKS generates an error.

Clipping volumes, clipping indicators, and view indexes are stored unchanged.
This function cannot be invoked when a segment is open.

If the segment is already associated with the specified workstation, this function
has no effect.

See Also

COPY SEGMENT TO WORKSTATION
INSERT SEGMENT
Example 8–1 for a program example using the ASSOCIATE SEGMENT WITH
WORKSTATION function

Segment Functions 8–11

CLOSE SEGMENT

CLOSE SEGMENT

Operating States

SGOP

Syntax

gcloseseg ()

Description

The CLOSE SEGMENT function closes a segment.

After you call this function, you can no longer add output primitives to that
segment. You cannot reopen a segment.

Calling this function changes the DEC GKS operating state from SGOP (segment
open) to WSAC (at least one workstation active).

See Also

CREATE SEGMENT
Example 8–1 for a program example using the CLOSE SEGMENT function

8–12 Segment Functions

COPY SEGMENT TO WORKSTATION

COPY SEGMENT TO WORKSTATION

Operating States

WSOP, WSAC

Syntax

gcopysegws (

Gint ws, /* (I) Workstation identifier. The workstation
cannot be of type GWISS. */

Gint seg /* (I) Segment name. This segment must be stored
on a WISS workstation. */

)

Description

The COPY SEGMENT TO WORKSTATION function copies the output primitives
from a segment stored on the WISS workstation to the specified workstation.

As part of the copy operation, the output primitives are transformed by the
segment transformation stored with the segment, clipped by the clipping volume
stored with the primitive, sent through the viewing pipeline, and are finally
transformed by the workstation transformation and output.

Primitives are clipped by the clipping volume only when the clipping indicator
stored with the primitive is set to CLIP.

See Also

ASSOCIATE SEGMENT WITH WORKSTATION
INSERT SEGMENT
Example 8–1 for a program example using the COPY SEGMENT TO
WORKSTATION function

Segment Functions 8–13

CREATE SEGMENT

CREATE SEGMENT

Operating States

WSAC

Syntax

gcreateseg (

Gint seg /* (I) Segment name. You cannot use the same
identifier to name two different segments.
You must use positive integers as segment
names. */

)

Description

The CREATE SEGMENT function opens a segment on all active workstations.

When you call CREATE SEGMENT, the DEC GKS operating state is changed
from at least one workstation active (WSAC) to segment open (SGOP).

For every active workstation, the name of the segment is added to the list of
segments stored on that workstation.

The segment state list is set to the initial state of segment visible, undetectable,
and not highlighted. The segment priority is set to 0, and the segment
transformation is set to the identity transformation.

All subsequent output primitives will be added to the segment until the next
CLOSE SEGMENT function is performed.

Only one segment can be open at a time.

See Also

CLOSE SEGMENT
DELETE SEGMENT
RENAME SEGMENT
Example 8–1 for a program example using the CREATE SEGMENT function

8–14 Segment Functions

DELETE SEGMENT

DELETE SEGMENT

Operating States

WSOP, WSAC, SGOP

Syntax

gdelseg (

Gint seg /* (I) Segment name */

)

Description

The DELETE SEGMENT function deletes the specified segment from all
workstations storing that segment. Using this function, you can delete any
defined segment, but you cannot delete an open segment.

Calling this function deletes the specified segment’s state list.

See Also

DELETE SEGMENT FROM WORKSTATION

Segment Functions 8–15

DELETE SEGMENT FROM WORKSTATION

DELETE SEGMENT FROM WORKSTATION

Operating States

WSOP, WSAC, SGOP

Syntax

gdelsegws (

Gint ws, /* (I) Workstation identifier */
Gint seg /* (I) Segment name */

)

Description

The DELETE SEGMENT FROM WORKSTATION function deletes the segment
from the specified workstation. Using this function, you can delete any defined
segment, but you cannot delete an open segment.

If you delete the segment from the last workstation supporting a given segment,
calling this function deletes the specified segment’s state list, which has the same
effect as calling the function DELETE SEGMENT.

See Also

DELETE SEGMENT

8–16 Segment Functions

INSERT SEGMENT

INSERT SEGMENT

Operating States

WSAC, SGOP

Syntax

ginsertseg (

Gint seg, /* (I) Segment name */
Gfloat insert_xform[2][3] /* (I) 2D transformation matrix */

)

Description

The INSERT SEGMENT function takes the specified segment stored in a
WISS workstation and, for each active workstation, copies the primitives in the
specified segment to either the open segment or into the stream of primitives
outside segments. The primitives in the segment are transformed twice: once
according to the segment’s current transformation, and once according to the
transformation matrix specified in the call to this function (the effect of the two
transformations is cumulative).

For each active workstation, the primitives contained in the specified segment are
copied to the workstation. The primitives are added to the open segment if the
GKS state is SGOP (segment open). They are added to the stream of primitives
outside of segments if the GKS state is WSAC (at least one workstation active).

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created.

Output primitives stored in segments have a clipping volume and clipping
indicator stored with the primitive when the primitive is created. The stored
clipping rectangle and clipping indicator are taken from the GKS state list.
The primitives contained in the specified segment are transformed first by the
segment transformation of the specified segment. Then they are transformed by
the specified insertion transformation matrix.

If a transformation has been specified for the segment to be inserted, DEC GKS
calculates the accumulated effect of the segment transformation and then
the insertion calculation, in that order. You can formulate an insertion
transformation using either EVALUATE TRANSFORMATION MATRIX or
ACCUMULATE TRANSFORMATION MATRIX.

The following equation shows the specified insertion transformation matrix. It
also shows the effect of applying the specified insertion transformation matrix to
a coordinate that already has been transformed by the segment transformation.
The insert transformation and the segment transformation (conceptually) take
place in NDC space.

�
��

��

�
�

�
�11 �12 �13
�21 �22 �23

�
�

�
� ��
�

�
�

The original coordinates are (x, y) and the transformed coordinates are
(x’, y’). Both of these coordinates are NDC points. The values M13 and M23 of
the insertion transformation matrix are also specified in NDC units. All other
matrix elements are unitless.

Segment Functions 8–17

INSERT SEGMENT

As part of the copy operation, all segment attributes (except the segment
transformation attribute) are ignored. The ignored attributes are segment
visibility, highlighting, detectability, and priority.

Also as part of the copy operation, the current settings of the attributes in the
GKS state list replace the following attributes in the specified segment:

• All clipping indicators and clipping volumes

• All view indexes

• All hidden line and hidden surface removal (HLHSR) identifiers

During the copy operation, all primitives in the specified segment retain the
values of their corresponding primitive attributes that were assigned to them
when they were created.

INSERT SEGMENT does not affect the current settings of the primitive
attributes in the GKS state list.

See Also

ACCUMULATE TRANSFORMATION MATRIX
ASSOCIATE SEGMENT WITH WORKSTATION
COPY SEGMENT TO WORKSTATION
EVALUATE TRANSFORMATION MATRIX
SET SEGMENT TRANSFORMATION
Example 8–2 for a program example using the INSERT SEGMENT function

8–18 Segment Functions

INSERT SEGMENT 3

INSERT SEGMENT 3

Operating States

WSAC, SGOP

Syntax

ginsertseg3 (

Gint seg, /* (I) Segment name */
Gfloat insert_xform[3] [4] /* (I) 3D transformation matrix */

)

Description

The INSERT SEGMENT 3 function takes the specified segment stored in a
WISS workstation and, for each active workstation, copies the primitives in the
specified segment to either the open segment or into the stream of primitives
outside segments. The primitives in the segment are transformed twice: once
according to the segment’s current transformation, and once according to the
transformation matrix specified in the call to this function (the effect of the two
transformations is cumulative).

For each active workstation, the primitives contained in the specified segment are
copied to the workstation. The primitives are added to the open segment if the
GKS state is SGOP (segment open). They are added to the stream of primitives
outside of segments if the GKS state is WSAC (at least one workstation active).

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created.

Output primitives stored in segments have a clipping volume and clipping
indicator stored with the primitive when the primitive is created. The stored
clipping volume and clipping indicator are taken from the GKS state list. The
primitives contained in the specified segment are transformed first by the
segment transformation of the specified segment. Then they are transformed by
the specified insertion transformation matrix.

If a transformation has been specified for the segment to be inserted, DEC GKS
calculates the accumulated effect of the segment transformation and then
the insertion calculation, in that order. You can formulate an insertion
transformation using either EVALUATE TRANSFORMATION MATRIX 3 or
ACCUMULATE TRANSFORMATION MATRIX 3.

The following equation shows the specified insertion transformation matrix. It
also shows the effect of applying the specified insertion transformation matrix to
a coordinate that already has been transformed by the segment transformation.
The insert transformation and the segment transformation (conceptually) take
place in NDC space.

�
� �

�

��

��

�
� �

�
��11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34

�
��

�
��
�

�

�

�

�
��

The original coordinates are (x, y, z) and the transformed coordinates are (x’, y’,
z’). Both of these coordinates are NDC points. The values M14, M24, and M34

Segment Functions 8–19

INSERT SEGMENT 3

of the insertion transformation matrix are also specified in NDC units. All other
matrix elements are unitless.
As part of the copy operation, all segment attributes (except the segment
transformation attribute) are ignored. The ignored attributes are segment
visibility, highlighting, detectability, and priority.

Also as part of the copy operation, the current settings of the attributes in the
GKS state list replace the following attributes in the specified segment:

• All clipping indicators and clipping volumes

• All view indexes

• All hidden line and hidden surface removal (HLHSR) identifiers

During the copy operation, all primitives in the specified segment retain the
values of their corresponding primitive attributes that were assigned to them
when they were created.

INSERT SEGMENT 3 does not affect the current settings of the primitive
attributes in the GKS state list.

See Also

ACCUMULATE TRANSFORMATION MATRIX 3
ASSOCIATE SEGMENT WITH WORKSTATION
COPY SEGMENT TO WORKSTATION
EVALUATE TRANSFORMATION MATRIX 3
SET SEGMENT TRANSFORMATION 3
Example 8–2 for a program example using the INSERT SEGMENT function

8–20 Segment Functions

RENAME SEGMENT

RENAME SEGMENT

Operating States

WSOP, WSAC, SGOP

Syntax

grenameseg (

Gint old, /* (I) Old segment name */
Gint new /* (I) New segment name */

)

Description

The RENAME SEGMENT function changes the segment name from its current
name to a new name. After you have renamed a segment using this function, you
can reuse the old segment name.

Segment Functions 8–21

SET DETECTABILITY

SET DETECTABILITY

Operating States

WSOP, WSAC, SGOP

Syntax

gsetdet (

Gint seg, /* (I) Segment name */
Gsegdet detectability /* (I) Detectability flag */

)

Constants

Data Type Constant Description

Gsegdet GUNDETECTABLE Segment cannot be picked. This is the
default value.

GDETECTABLE Segment, if visible, can be picked.

Description

The SET DETECTABILITY function controls the segment attribute that
determines whether the specified segment can be chosen during pick input.
A segment must be both detectable and visible to be picked. The detectability
segment attribute is described in more detail in Section 8.4.1.

See Also

SET VISIBILITY
Example 9–2 for a program example using the SET DETECTABILITY function

8–22 Segment Functions

SET HIGHLIGHTING

SET HIGHLIGHTING

Operating States

WSOP, WSAC, SGOP

Syntax

gsethighlight (

Gint seg, /* (I) Segment name */
Gseghi highlighting /* (I) Highlighting flag (constant) */

)

Constants

Data Type Constant Description

Gseghi GNORMAL DEC GKS does not highlight the segment. This is
the default value.

GHIGHLIGHTED DEC GKS highlights the segment, if visible.

Description

The SET HIGHLIGHTING function controls the segment attribute that
determines whether the specified segment is highlighted.

If you use this function to highlight a segment on a VT241™ terminal, DEC GKS
places the segment extent rectangle into an alternative foreground color to draw
attention to the specified segment.

If you attempt to highlight an invisible segment, the highlighting does not
take effect until you make the segment visible again. For more information on
segment highlighting, see Section 8.4.2.

See Also

Example 8–3 for a program example using the SET HIGHLIGHTING function

Segment Functions 8–23

SET SEGMENT PRIORITY

SET SEGMENT PRIORITY

Operating States

WSOP, WSAC, SGOP

Syntax

gsetsegpri (

Gint seg, /* (I) Segment name. */
Gfloat priority /* (I) Priority 0.0 -> 1.0. The default

value is 0.0. */

)

Description

The SET SEGMENT PRIORITY function sets the segment attribute that
determines which segment takes precedence on the workstation surface, and
which segment is chosen if the user chooses the overlapping area during pick
input.

DEC GKS implements segment priority on a scale of real numbers from 0.0 to
1.0. Segments with the priority 0.0 have the lowest priority, and segments with
the priority 1.0 have the highest priority.

Different devices implement segment priority differently. A device supports either
an infinite number of priorities (theoretically) or a specific number of priorities.
For more information on segment priority, see Section 8.4.3.

See Also

GET PICK
REQUEST PICK
SAMPLE PICK

8–24 Segment Functions

SET SEGMENT TRANSFORMATION

SET SEGMENT TRANSFORMATION

Operating States

WSOP, WSAC, SGOP

Syntax

gsetsegtran (

Gint seg, /* (I) Segment name. */
Gfloat transform[2][3] /* (I) 2D transformation matrix created

previously by a call to either
EVALUATE TRANSFORMATION MATRIX or
ACCUMULATE TRANSFORMATION MATRIX. */

)

Description

The SET SEGMENT TRANSFORMATION function specifies the segment
transformation that is stored with a specified segment.

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created. At
the time a segment is created, its segment transformation is set to the identity
transformation.

SET SEGMENT TRANSFORMATION changes the segment transformation of the
specified segment. When a segment is displayed, its primitives are transformed
by the specified transformation matrix according to the following equation:

�
��

��

�
�

�
�11 �12 �13
�21 �22 �23

�
�

�
� ��
�

�
�

The original coordinates are (x, y); the transformed coordinates are (x’, y’). Both
of these coordinates are NDC points. The values M13 and M23 of the segment
transformation matrix are also specified in NDC units. All other matrix elements
are unitless.

The functions EVALUATE TRANSFORMATION MATRIX and ACCUMULATE
TRANSFORMATION MATRIX facilitate the construction of matrixes that can be
specified as segment transformation matrixes.

The segment transformation can be reset by calling this function with the
identity matrix. Segment transformations do not affect locator and stroke input
coordinates. Segment transformation is described in more detail in Section 8.4.4.

See Also

ACCUMULATE TRANSFORMATION MATRIX
EVALUATE TRANSFORMATION MATRIX
Example 7–1 for a program example using the SET SEGMENT
TRANSFORMATION function

Segment Functions 8–25

SET SEGMENT TRANSFORMATION 3

SET SEGMENT TRANSFORMATION 3

Operating States

WSOP, WSAC, SGOP

Syntax

gsetsegtran3 (

Gint seg, /* (I) Segment name. */
Gfloat transform[3] [4] /* (I) 3D transformation matrix created

previously by a call to either
EVALUATE TRANSFORMATION MATRIX 3
or ACCUMULATE TRANSFORMATION
MATRIX 3. */

)

Description

The SET SEGMENT TRANSFORMATION 3 function specifies the segment
transformation that is stored in a specified segment.

All segments have a segment transformation attribute. The segment
transformation is stored with the segment when the segment is created. At
the time a segment is created, its segment transformation is set to the identity
transformation.

SET SEGMENT TRANSFORMATION 3 changes the segment transformation
of the specified segment. When a segment is displayed, its primitives are
transformed by the specified transformation matrix according to the following
equation: �

� �
�

��

��

�
� �

�
��11 �12 �13 �14
�21 �22 �23 �24
�31 �32 �33 �34

�
��

�
��
�

�

�

�

�
��

The original coordinates are (x, y, z); the transformed coordinates are (x’, y’, z’).
Both of these coordinates are NDC points. The values M14, M24, and M34 of the
segment transformation matrix are also specified in NDC units. All other matrix
elements are unitless.

The functions EVALUATE TRANSFORMATION MATRIX 3 and ACCUMULATE
TRANSFORMATION MATRIX 3 facilitate the construction of matrixes that can
be specified as segment transformation matrixes.

The segment transformation can be reset by calling this function with the
identity matrix. Segment transformations do not affect locator and stroke input
coordinates. Segment transformation is described in more detail in Section 8.4.4.

See Also

ACCUMULATE TRANSFORMATION MATRIX 3
EVALUATE TRANSFORMATION MATRIX 3
Example 7–1 for a program example using the SET SEGMENT
TRANSFORMATION function

8–26 Segment Functions

SET VISIBILITY

SET VISIBILITY

Operating States

WSOP, WSAC, SGOP

Syntax

gsetvis (

Gint seg, /* (I) Segment name */
Gsegvis visibility /* (I) Visibility flag */

)

Constants

Data Type Constant Description

Gsegvis GVISIBLE DEC GKS shows the segment on the workstation
surface. This is the default value.

GINVISIBLE DEC GKS does not show the segment on the workstation
surface.

Description

The SET VISIBILITY function sets the segment attribute that determines
whether the specified segment is visible on the workstation surface. A segment
must be both visible and detectable to be picked.

Depending on the capabilities of the device, and whether or not the specified
segment overlaps other segments, you may need to call either UPDATE
WORKSTATION or REDRAW ALL SEGMENTS ON WORKSTATION to update
the picture on the surface of the workstation. For more information, see the
Device Specifics Reference Manual for DEC GKS and DEC PHIGS. The visibility
segment attribute is described in more detail in Section 8.4.5.

See Also

REDRAW ALL SEGMENTS ON WORKSTATION
SET DETECTABILITY
UPDATE WORKSTATION

Segment Functions 8–27

Segment Functions
8.7 Program Examples

8.7 Program Examples
Example 8–1 illustrates the use of the ASSOCIATE SEGMENT WITH
WORKSTATION function.

Example 8–1 Comparing ASSOCIATE SEGMENT WITH WORKSTATION and
COPY SEGMENT TO WORKSTATION

/*
* This program draws a house in the lower left corner of the
* screen and a line of text in the upper left corner. The program
* redraws the segments to show the ASSOCIATE SEGMENT WITH
* WORKSTATION and COPY SEGMENT TO WORKSTATION functions.
*
* NOTE: To keep the example concise. no error checking is performed.
*/

include <stdio.h>
include <gks.h>

#define NUM_PTS 9

main ()
{

Gevent event;
Gint house = 1;
Gfloat larger = .03;
Gint lower_left_corner = 1;
Gint num_pts = NUM_PTS;
Gpoint points[NUM_PTS];
Gchar *text = "Associated segment.";
Gfloat time_out = 5.00;
Gint title = 2;
Gint upper_left_corner = 2;
Glimit viewport;
Glimit viewport2;
Gint wiss = 2;
Gpoint world_pt;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;
Gwstype ws_type_wiss = GWS_WISS;

/* Open GKS and the workstation environments. */

gopengks (0, 0);
gopenws (ws_id, 0, &ws_type);
gopenws (wiss, 0, &ws_type_wiss);

/*
* By activating only the WISS workstation, GKS stores created
* segments only on the WISS workstation. The screen remains clear.
*/

gactivatews (wiss);

(continued on next page)

8–28 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–1 (Cont.) Comparing ASSOCIATE SEGMENT WITH WORKSTATION
and COPY SEGMENT TO WORKSTATION

/*
* Set the viewport limits for the specified normalization
* transformations.
*/

viewport.xmin = viewport.ymin= 0.0;
viewport.xmax = viewport.ymax= 0.5;

gsetviewport (lower_left_corner, &viewport);

viewport2.xmin = 0.0;
viewport2.xmax = 0.5;
viewport2.ymin = 0.5;
viewport2.ymax = 1.0;

gsetviewport (upper_left_corner, &viewport2);

/* Create two segments and store them on the WISS workstation. */

gcreateseg (house);
gselntran (lower_left_corner);

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

gpolyline (num_pts, points);
gcloseseg ();

gcreateseg (title);
gselntran (upper_left_corner);
gsetcharheight (larger);

world_pt.x = 0.1; world_pt.y = 0.5;

gtext (&world_pt, text);
gcloseseg ();

/* Activate the ws_id workstation. */

gactivatews (ws_id);

/*
* By associating the segment containing text, the workstation stores
* the segment. By copying the segment containing the house, GKS draws
* the primitives to the display screen, but the workstation does not
* store the segment.
*/

gassocsegws (ws_id, title);
gcopysegws (ws_id, house);

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (time_out, &event);

(continued on next page)

Segment Functions 8–29

Segment Functions
8.7 Program Examples

Example 8–1 (Cont.) Comparing ASSOCIATE SEGMENT WITH WORKSTATION
and COPY SEGMENT TO WORKSTATION

/*
* When you redraw the segments, you force an update to the screen
* and eliminate primitives not contained in segments. The house
* disappears and the text remains on the display screen because it
* was stored as a segment.
*/

gredrawsegws (ws_id);

/* Only the text is displayed. Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (time_out, &event);

/* Deactivate and close the workstation environments and GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gdeactivatews (wiss);
gclosews (wiss);
gclosegks ();

}

Figure 8–1 shows the two segments (the house and the line of text) on the display
surface.

8–30 Segment Functions

Segment Functions
8.7 Program Examples

Figure 8–1 Output with Two Segments

ZK−4017A−GE

Segment Functions 8–31

Segment Functions
8.7 Program Examples

Figure 8–2 shows only the text, which was stored as a segment.

Figure 8–2 Output with Associated Segment

ZK−4018A−GE

Example 8–2 illustrates the use of the INSERT SEGMENT function.

8–32 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–2 Inserting a Segment’s Primitives into Another Segment

/*
* This program illustrates the use of the function INSERT SEGMENT.
* It draws a house in the lower left corner of the screen and then
* inserts that house into other segments.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* C binding definition file */

main ()
{

Gconn conn_id = GWC_DEF;
Gcsw coord_switch = GNDC;
Gevent event;
Gpoint fixed_point;
Gint house_1 = 1;
Gint house_2 = 2;
Gint lower_left_corner = 1;
Gint num_pts = 9;
Gpoint points[9];
Gfloat rotation = 0;
Gscale scale;
Gpoint shift;
Gfloat time_out = 5.00;
Glimit viewport;
Gint wiss = 2;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;
Gwstype ws_type_wiss = GWS_WISS;
Gfloat xform_matrix[2][3];

/* Open and activate GKS and the workstation environments. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gopenws (wiss, &conn_id, &ws_type_wiss);
gactivatews (ws_id);
gactivatews (wiss);

/*
* Set the viewport limits for the normalization transformation.
* The normalization window is established to be the lower left
* corner of NDC space.
*/

viewport.xmin = viewport.ymin = 0.0;
viewport.xmax = viewport.ymax = 0.5;

gsetviewport (lower_left_corner, &viewport);

(continued on next page)

Segment Functions 8–33

Segment Functions
8.7 Program Examples

Example 8–2 (Cont.) Inserting a Segment’s Primitives into Another Segment

/* Create a segment in the lower left corner of the surface. */

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

gcreateseg (house_1);
gselntran (lower_left_corner);
gpolyline (num_pts, points);
gcloseseg ();

/* Deactivate WISS so no other segments are stored there. */

gdeactivatews (wiss);

/* Turn off the clipping so the transformed houses are visible. */

gsetclip (GNOCLIP);

/* Change the matrix value. */

fixed_point.x = 0.0; fixed_point.y = 0.0;
scale.x_scale = 1.0; scale.y_scale = 1.0;
shift.x = 0.5; shift.y = 0.0;

gevaltran (&fixed_point, &shift, rotation, &scale, coord_switch,
xform_matrix);

/*
* Create a segment in the lower right corner by inserting the primitives
* for house_1 into house_2.
*/

gcreateseg (house_2);
ginsertseg (house_1, xform_matrix);
gcloseseg ();

/*
* Using EVALUATE TRANSFORMATION MATRIX, you can create the transformation
* matrix that you need to pass to INSERT SEGMENT as an argument. This
* matrix specifies a position translation of 0.5 NDC points to the right.
* When this matrix is passed to INSERT SEGMENT while a segment is open,
* the house’s primitives are transformed and made a part of the open
* segment.
*/

/* Change the matrix value. */

shift.x = 0.0; shift.y = 0.5;

gevaltran (&fixed_point, &shift, rotation, &scale, coord_switch,
xform_matrix);

(continued on next page)

8–34 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–2 (Cont.) Inserting a Segment’s Primitives into Another Segment

/*
* Insert the primitives in the upper left corner using INSERT SEGMENT.
* Inserting segments when the GKS operating state is GWSAC causes
* the output primitives to be written to the workstation surface, but
* the primitives are not stored in a segment. These segment primitives
* are translated 0.5 NDC points in an upwards direction.
*/

ginsertseg (house_1, xform_matrix);

/* Change the matrix value. */

shift.x = 0.5; shift.y = 0.5;

gevaltran (&fixed_point, &shift, rotation, &scale, coord_switch,
xform_matrix);

/* Insert the primitives in the upper right corner using INSERT SEGMENT. */

ginsertseg (house_1, xform_matrix);

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPOSTPONE);
gawaitevent (time_out, &event);

/*
* The call to REDRAW ALL SEGMENTS ON WORKSTATION redraws all segments
* and deletes all primitives outside of segments. Wait 5 seconds.
*/

gredrawsegws (ws_id);
gawaitevent (time_out, &event);

/* Deactivate and close the workstation environments and GKS. */

gdeactivatews (ws_id);
gclosews (wiss);
gclosews (ws_id);
gclosegks ();

}

Figure 8–3 shows the original segment, drawn in the lower left corner, inserted
into the upper right and left corners of the display surface.

Segment Functions 8–35

Segment Functions
8.7 Program Examples

Figure 8–3 Output of Original and Inserted Segments

ZK−4023A−GE

Figure 8–4 shows the redrawn segments. The houses not stored in segments have
been deleted.

8–36 Segment Functions

Segment Functions
8.7 Program Examples

Figure 8–4 Output of Redrawn Segments

ZK−4024A−GE

Segment Functions 8–37

Segment Functions
8.7 Program Examples

Example 8–3 illustrates the use of the SET HIGHLIGHTING function.

Example 8–3 Highlighting a Segment

/*
* This program illustrates the SET HIGHLIGHTING function.
* It draws a house in the lower left corner of the screen and a
* highlighted house in the upper right corner.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* C binding definitions file */

main ()
{

Gconn conn_id = GWC_DEF;
Gevent event;
Gint house_1 = 1;
Gint house_2 = 2;
Gint lower_left_corner = 1;
Gint num_pts = 9;
Gpoint points[9];
Gfloat time_out = 5.00;
Gint upper_right_corner = 2;
Glimit viewport_1;
Glimit viewport_2;
Gint ws_id = 1;
Gwstype ws_type = GWS_DEF;

/* Open and activate GKS and the workstation environment. */

gopengks (0, 0);
gopenws (ws_id, &conn_id, &ws_type);
gactivatews (ws_id);

/* Set the viewport limits for the normalization transformations. */

viewport_1.xmin = viewport_1.ymin = 0.0;
viewport_1.xmax = viewport_1.ymax = 0.5;

gsetviewport (lower_left_corner, &viewport_1);

viewport_2.xmin = viewport_2.ymin = 0.5;
viewport_2.xmax = viewport_2.ymax = 1.0;

gsetviewport (upper_right_corner, &viewport_2);

/* Create a segment in the lower left corner of the surface. */

points[0].x = 0.4; points[0].y = 0.1;
points[1].x = 0.1; points[1].y = 0.1;
points[2].x = 0.1; points[2].y = 0.7;
points[3].x = 0.4; points[3].y = 0.7;
points[4].x = 0.25; points[4].y = 0.9;
points[5].x = 0.1; points[5].y = 0.7;
points[6].x = 0.4; points[6].y = 0.1;
points[7].x = 0.4; points[7].y = 0.7;
points[8].x = 0.1; points[8].y = 0.1;

gcreateseg (house_1);
gselntran (lower_left_corner);
gpolyline (num_pts, points);
gcloseseg ();

(continued on next page)

8–38 Segment Functions

Segment Functions
8.7 Program Examples

Example 8–3 (Cont.) Highlighting a Segment

/* Create a second segment in the upper right corner of the surface. */

gcreateseg (house_2);
gselntran (upper_right_corner);
gpolyline (num_pts, points);
gcloseseg ();

/* Release the deferred output. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/* Highlight house_2. */

gsethighlight (house_2, GHIGHLIGHTED);

/* Update the surface to initiate the change. Wait 5 seconds. */

gupdatews (ws_id, GPERFORM);
gawaitevent (time_out, &event);

/* Deactivate and close the workstation environment and GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 8–5 illustrates the houses before highlighting occurs.

Segment Functions 8–39

Segment Functions
8.7 Program Examples

Figure 8–5 Output Prior to Highlighting

ZK−4025A−GE

8–40 Segment Functions

Segment Functions
8.7 Program Examples

Figure 8–6 shows the house in the upper right corner being highlighted.

Figure 8–6 Effects of SET HIGHLIGHTING

ZK−4026A−GE

Segment Functions 8–41

Input Functions

Insert tabbed divider here. Then discard this sheet.

9
Input Functions

The DEC GKS input functions let an application accept input from a user. This
chapter provides information about physical and logical input devices, prompt
and echo types, and general information about input functions. Then it describes
each DEC GKS input function.

9.1 Physical Input Devices
A physical input device provides input to an application. A keyboard, tablet,
and mouse are examples of physical devices. A single application can use input
from many physical input devices.

9.2 Logical Input Devices
Because many kinds of physical input devices exist, DEC GKS maintains device
independence by using logical input devices. A logical input device acts as an
intermediary between a physical input device and the application. That is, the
user inputs data from the physical input device to the application via the logical
input device. GKS lets a single open workstation have zero or more logical input
devices active at the same time.

9.2.1 Identifying a Logical Input Device
A logical input device is identified by a workstation identifier, an input class, and
a device number. The workstation identifier identifies an open workstation
that belongs to the category INPUT or OUTIN. The logical input device is part of
the workstation. How DEC GKS implements the logical input device depends on
what physical input devices the workstation is using.

The input class determines the type of logical input value the logical input
device returns to the application. A logical input device belongs to one of six
input classes. For example, a locator-class logical input device returns cursor
location values. You determine the input class when you activate the logical input
device. (See Section 9.2.3 for information about activating a logical input device
and Section 9.2.6 for a detailed description of input classes.)

The device number distinguishes one logical input device from another of the
same input class on the same workstation. It lets you use more than one logical
input device of the same class on a single workstation. For example, you can use
a display menu as one choice-class logical input device and a keyboard as another
choice-class logical input device.

The device number determines what mechanism triggers the logical input
device. (See Section 9.2.5 for information about triggering a logical input device.)
DEC GKS defines at least four device numbers for each input class. For example,
a choice 1 device number requires the user to press mouse button 1 to trigger the
logical input device. (Without a mouse, the user must press Return.) A choice

Input Functions 9–1

Input Functions
9.2 Logical Input Devices

2 device number requires the user to press the arrow keys or the keys on the
numeric keypad.

The device number also determines the format in which DEC GKS returns data.
For example, a string 1 device number returns a Digital multinational text string,
while a string 3 device number returns an ASCII value.

9.2.2 Controlling the Appearance of the Logical Input Device
The prompt and echo type controls what the logical input device looks like
on the screen. Each input class has its own set of prompt and echo types. For
example, locator-class prompt and echo type 2 marks the current location with
cross hairs, while locator-class prompt and echo type 3 marks it with a tracking
cross. But valuator-class prompt and echo type 2 displays the current value
with a dial or a pointer, while valuator-class prompt and echo type 3 displays
a digital representation of the value. (See Section 9.3 for detailed information
about prompts and echo types.)

DEC GKS displays the prompt and echo type in the echo area. The echo area
cannot be larger than the workstation, but can be smaller than the workstation.
The prompt and echo type cursor is active only within the input echo area.

The echo flag controls the visibility of an active logical input device.

9.2.3 Activating and Deactivating a Logical Input Device
You must activate a logical input device before you use it. To activate the logical
input device, you must place it in one of three operating modes:

• Request

• Sample

• Event

Request mode is the default operating mode. DEC GKS places the logical input
device in request mode when a workstation opens. To activate a logical input
device in request mode, call a REQUEST function. DEC GKS activates the logical
input device and displays the input prompt (if echoing is enabled) when you
call a REQUEST function. For example, to activate a locator-class logical input
device in request mode, you would call REQUEST LOCATOR and supply the
appropriate values to the arguments. DEC GKS deactivates the logical input
device when the REQUEST function completes.

To place a logical input device in request mode, sample mode, or event mode,
you must call a SET MODE function and supply the values for the following
arguments:

• Workstation identifier

• Device number

• Operating mode (request, sample, or event)

• Echo flag (GECHO or GNOECHO)

For example, to place a locator-class logical input device in sample mode, you
must call SET LOCATOR MODE and specify SAMPLE as the operating mode.

When DEC GKS places a logical input device in sample mode, it activates the
logical input device and displays the input prompt (if echoing is enabled). To
have the logical input device return a value to the application, you must call a
SAMPLE function. For example, to have a locator-class logical input device in

9–2 Input Functions

Input Functions
9.2 Logical Input Devices

sample mode return a value, you would call SAMPLE LOCATOR and specify the
workstation identifier and the device number.

When DEC GKS places a logical input device in event mode, it activates the
logical input device and displays the input prompt (if echoing is enabled). To
have the logical input device return a value to the application, you must call
the AWAIT EVENT and the GET functions. For example, to have a locator-class
logical input device in event mode return a value, you would call AWAIT EVENT.
Check the event input class to make sure it is locator, then call GET LOCATOR.

To deactivate a logical input device in sample or event mode, you must place the
device back into request mode by calling a SET MODE function and specifying
REQUEST as the value for the mode argument. For example, to deactivate a
locator-class logical input device in sample mode, you would call SET LOCATOR
MODE and specify REQUEST as the operating mode.

9.2.4 Initializing a Logical Input Device
Each workstation has its own default values that a logical input device can
use. However, you also can set your own values for the logical input device.
To set your own values, you must initialize the logical input device using the
INITIALIZE function. The logical input device must be in request mode to be
initialized. For example, to initialize a locator-class logical input device, you
would put it in request mode by calling SET LOCATOR MODE. Then you would
call INITIALIZE LOCATOR and supply the values you want. (See Section 9.4 for
detailed information about initializing a logical input device.)

If you do not initialize the logical input device, it uses the default values.

9.2.5 Obtaining Measures from a Logical Input Device
A logical input device returns a value to the application. The value it returns
is called the measure of the device. Two operating classes, request and event,
require the user to perform an action on a physical input device to return the
measure. The action is called the input trigger. When the user performs the
action, the user triggers the logical input device, which then returns its measure.
The input class and device number determine what kind of action the user must
perform to trigger the logical input device. For example, when using a keyboard,
the user triggers the logical input device by pressing a key on the keyboard.
When using a mouse, the user triggers the logical input device by clicking a
mouse button.

Sample mode does not require the user to trigger a logical input device. For
example, SAMPLE LOCATOR gets the current value of a locator-class logical
input device without any input from the user.

9.2.6 The Input Class
The input class determines the type of input the logical input device returns to
the application. You determine the input class when you activate the logical input
device. DEC GKS uses six input classes:

• Locator

• Stroke

• Valuator

Input Functions 9–3

Input Functions
9.2 Logical Input Devices

• Choice

• String

• Pick

A locator-class logical input device first displays a prompt on the workstation
surface. The user can then move the prompt and, if the application is using an
appropriate input mode, trigger the input device. The locator input class returns
two real numbers that represent world coordinate (WC) values. DEC GKS
transforms the input point from a device coordinate point to a normalized device
coordinate (NDC) point. Then it transforms the NDC point to a corresponding
WC point.

A stroke-class logical input device also displays a prompt on the workstation
surface. The user can then move the prompt, which causes device coordinate
points to be input until the user presses Return. The stroke input class returns
a sequence of real numbers that are the corresponding WC values of the stroke.
DEC GKS transforms the input points from device coordinate points to NDC
points. Then it transforms the NDC points to corresponding WC points.

For more information about the DEC GKS coordinate systems, see Chapter 7,
Transformation Functions.

A valuator-class logical input device displays a picture on the workstation surface
that represents a series of real numbers. You specify the lowest and highest
values in the application. For several workstations, the picture may look like a
slide bar with a pointer to a current value. The user moves the cursor up and
down the scale to the desired position. The valuator input class returns the real
number representing the position of the pointer on the scale.

A choice-class logical input device creates a picture on the workstation surface
that lists a series of choices. The choices are represented internally by integer
values. You can label the choices with text in your application. For several
workstations, the choices can look like a menu, with the currently selected
choice highlighted. The user moves the choice input prompt through the choices,
highlights a choice, and then triggers the device. When the user triggers the
choice logical input device, the choice input class returns the integer representing
the choice the user selected.

A string-class logical input device displays a prompt on the workstation surface
where the user can enter a character string. In the application, you can provide
an initial string for the prompt. DEC GKS appends the input string to the initial
string. The user can enter a string as large as the defined input buffer. On many
workstations, pressing Return triggers the string-class logical input device. The
string input class returns a character string.

A pick-class logical input device positions a prompt on the workstation surface.
The user moves the prompt among the segments on the workstation surface.
If the application is using an appropriate input mode, the user can trigger the
pick device. The pick input class returns integers that represent the name of the
picked segment and the pick identifier associated with parts of a segment. (For
detailed information about pick identifiers, see Chapter 8, Segment Functions.)

Figure 9–1 shows possible visual interfaces for the logical input classes.

9–4 Input Functions

Input Functions
9.2 Logical Input Devices

Figure 9–1 Visual Interfaces for Logical Input Classes

ZK−3061−GE

prompt Yes
Up

Down

Exit

Locator Stroke Valuator Choice String Pick

Significant differences may exist in how workstations implement input classes.
For example, using a stroke-class logical input device on a DECwindows
workstation, you can specify X and Y device coordinate change vectors to tell
the input device when to add another device coordinate point to the stroke. When
the user moves the cursor to a point whose distance from the last entered point
exceeds both the specified X and Y vectors, the input device accepts the point as
the next point in the stroke. This affects the smoothness of the line, allowing
you to create relatively curved shapes instead of jagged lines. If you specify a
relatively short X and Y difference, DEC GKS accepts many of the input points
as you move the cursor.

In contrast, on the VT340™ terminal, you must move the arrow keys and signal
each time you have reached a point you want to be a part of the stroke. For
information on input classes for specific devices, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

9.3 Prompt and Echo Types
A single workstation can prompt the user and echo the input in different ways
when using the same logical input device. Some differences may be subtle. For
example, a workstation may use either a plus sign or a set of cross hairs as a
prompt for a single locator device, both triggered by pressing MB1. One logical
input device can have a number of prompt and echo types. The prompt and echo
types provide different visual interfaces for the logical input device. The GKS
standard defines some prompt and echo types, while others are implementation
dependent.

For example, DEC GKS supports the following prompt types for its locator-class
logical input devices:

• A tracking plus sign (+)

• A cross hair

• A tracking cross (X)

• A line from the initial locator position to the current locator position
(rubber-band line)

• A rectangle whose diagonal connects the initial and current positions
(rubber-band box)

• A numeric representation of the current locator position

The first prompt is implementation dependent. The last five are defined by the
GKS standard.

Input Functions 9–5

Input Functions
9.3 Prompt and Echo Types

The input devices use DEC GKS primitives such as lines, markers, and fill areas
to construct input prompts. However, the input devices may also use additional
information that determines the physical appearance of the prompt and input
echoed on the surface. For example, an input device may use a polyline output
attribute that affects the physical appearance of cross hairs displayed on the
surface. The information depends on the needs of the different prompt and echo
types on different physical devices. It is provided to the input device through
input data records.

9.3.1 DEC GKS Prompt and Echo Types
The following sections describe the prompt and echo types supported by DEC GKS
for each class of logical input devices.

Not all prompt and echo types are available for every logical input device
with every workstation type. To see which ones are available for a particular
workstation type, see the Device Specifics Reference Manual for DEC GKS and
DEC PHIGS.

9.3.1.1 Choice-Class Prompt and Echo Types
DEC GKS supports the following choice-class prompt and echo types:

Prompt and
Echo Type Description

–1 Highlights the current choice using a hollow rectangle.

1 Displays the list of choice strings within the echo area.

2 Displays the list of choice strings within the echo area.

3 Displays the list of choice strings within the echo area.

9.3.1.2 Locator-Class Prompt and Echo Types
DEC GKS supports the following locator-class prompt and echo types:

Prompt and
Echo Type Description

–13 Marks the current location using a segment. The segment is drawn
relative to the current location. The current location is also marked by a
tracking plus sign.

–12 Marks the current location using a rubber-band ellipse centered at the
initial point and the current location at the corner of the bounding
rectangle.

–11 Marks the current location with the world coordinate translation of the
device coordinate position.

–10 Marks the current location using a circle centered at the midpoint of the
initial location and the current location.

–9 Marks the current location using a circle centered at the initial position,
with the current location on the circumference.

–8 Marks the current location using an open-type arc defined by the current
location and two points supplied in the data record.

–7 Marks the current location using a pie-type arc defined by the current
location and two points supplied in the data record.

9–6 Input Functions

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Description

–6 Marks the current location using a chord-type arc defined by the current
location and two points supplied in the data record.

–5 Marks the current location using a horizontal line drawn from the initial
position to the current location.

–4 Marks the current location using a vertical line drawn from the initial
position to the current location.

–3 Marks the current location using two lines connected to two fixed points
supplied by the data record.

–2 Marks the current location using a rectangle that is centered at the initial
points and has a corner at the current location.

–1 Marks the current location with a rectangular box.

1 Marks the current location with a tracking plus sign.

2 Marks the current location by using a vertical and a horizontal line as
cross hairs.

3 Marks the current location using a tracking cross.

4 Marks the current location using a line connecting the current location to
the initial location (rubber band line).

5 Marks the current location using a rectangle whose diagonal is the line
between the current location and the initial location (rubber band box).

6 Marks the current location by displaying a digital representation of the
location.

9.3.1.3 Pick-Class Prompt and Echo Types
DEC GKS supports the following pick-class prompt and echo types:

Prompt and
Echo Type Description

1 Highlights the extent rectangle of the picked output primitive.

2 Highlights the extent rectangle of all the output primitives that share the
pick identifier of the picked primitive.

3 Highlights the extent rectangle of the picked segment.

9.3.1.4 String-Class Prompt and Echo Type
DEC GKS supports the following string-class prompt and echo types:

Prompt and
Echo Type Description

1 Displays the current string value in the echo area.

9.3.1.5 Stroke-Class Prompt and Echo Types
DEC GKS supports the following stroke-class prompt and echo types:

Prompt and
Echo Type Description

1 Displays a line joining successive points of the current stroke.

Input Functions 9–7

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Description

3 Displays a polymarker at each successive point of the current stroke.

4 Displays a line joining successive points of the current stroke.

9.3.1.6 Valuator-Class Prompt and Echo Types
DEC GKS supports the following valuator-class prompt and echo types:

Prompt and
Echo Type Description

–4 Displays the range as floating values (for use only with the hardware
dials).

–3 Displays the range of values in a circular dial (for use only with the VWS
workstations).

–2 Displays the range of values on a horizontal sliding scale.

–1 Displays the range of values on a vertical sliding scale.

1 Displays a graphical representation of the current value (such as a dial or
a pointer).

2 Displays a graphical representation of the current value (such as a dial or
a pointer).

3 Displays a digital representation of the current value.

9.3.2 Input Data Records
If you call one of the INITIALIZE input functions, you must use an input data
record to pass information about a specific prompt and echo type on a given
logical input device. The input data record contains information about the input
prompt interface. For example, the input data record for a locator-class logical
input device may specify output attributes that affect the thickness or color
of cross hairs on the workstation surface. You can use the default input data
record or an application-specified input data record. The application-specified
input data record is an argument to the INITIALIZE input functions. DEC GKS
also uses an input data record to return information to the application with the
INQUIRE . . . DEVICE STATE and INQUIRE DEFAULT . . . DEVICE DATA
functions. (See the GKS International Standard (ISO 8805(E) 1988) for a detailed
description of input data records.)

The GKS standard describes input data records as having required components
and optional components. If a component is required, all input devices use that
component of the data record. If a component is optional, the input device must
be able to accept that component, but may or may not use it when generating
the input prompt and echo. For example, suppose a polyline color is an optional
part of the data record. The GKS implementation cannot generate an error if it
encounters the component and does not have to change the color of the prompt on
the workstation surface.

The following sections list all the prompt and echo data record information for
the C binding. The tables within these sections include the prompt and echo
type, the input data record information, and whether the workstation uses (U) or
ignores (I) the input data record. NA in the column means the information is not
applicable.

9–8 Input Functions

Input Functions
9.3 Prompt and Echo Types

Use the tables to select the prompt and echo type for an input class and to
determine which data record information to supply to the workstation. Then
use the C binding data structures described with the appropriate input class
INITIALIZE function to pass the data record information to the workstation.
The synchronous and asynchronous examples in the DEC GKS User’s Guide
demonstrate the initialization of several different logical input devices.

9.3.2.1 Choice Class
This section lists the input data record information required for choice-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

–1, 1 Number of choice alternatives U

Address of array of choice string lengths U

Address of array of choice string addresses U

Title string U

2 Number of choice alternatives U

Address of array of prompts turned off
(GPROFF) or on (GPRON)

U

3 Number of choice alternatives U

Address of array of choice string addresses U

Title string U

9.3.2.2 Locator Class
This section lists the input data record information required for locator-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

–1 X dimension of the box in WC coordinates. U

Y dimension of the box in WC coordinates. U

–11, 1, 2, 3 These prompt and echo types require no input
data record information. Use a null pointer for
the input data record pointer.

NA

6 Title string U

–12, –10, –9,
–5, –4, 4

Attribute control flag tells the workstation to use
either the current output attribute (GCURRENT)
or the newly specified attributes provided in the
data record (GSPECIFIED).

U

Input Functions 9–9

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

Line type ASF (GBUNDLED or GINDIVIDUAL). I

Line width scale factor ASF (GBUNDLED or
GINDIVIDUAL).

I

Polyline color index ASF (GBUNDLED or
GINDIVIDUAL).

I

Polyline index. I

Line type index. U1

Line width scale factor. U1

Polyline color index. I

–2, 5 Polyline-fill-area control flag tells the workstation
to use either a polyline (GPF_POLYLINE)
or a fill area (GPF_FILLAREA) to draw the
rectangle. Use GPF_POLYLINE because the fill
area rectangle is not currently available.

I2

Attribute control flag tells the workstation to use
either the current output attribute (GCURRENT)
or the newly specified attributes provided in the
data record (GSPECIFIED).

U

Line type ASF (GBUNDLED or GINDIVIDUAL). I

Line width scale factor ASF (GBUNDLED or
GINDIVIDUAL).

I

Polyline color index ASF (GBUNDLED or
GINDIVIDUAL).

I

Polyline index. I

Line type index. U1

Line width scale factor. U1

Polyline color index. I

Fill area interior style ASF (GBUNDLED or
GINDIVIDUAL).

I

Fill area style index ASF (GBUNDLED or
GINDIVIDUAL).

I

Fill area color index ASF (GBUNDLED or
GINDIVIDUAL).

I

Fill area index ASF (GBUNDLED or
GINDIVIDUAL).

I

Fill area interior style (GHOLLOW, GSOLID,
GPATTERN, or GHATCH).

I

Fill area style index. I

Fill area color index. I

1If the attribute control flag is GSPECIFIED, the workstation uses the information. If the attribute
control flag is GCURRENT, the workstation ignores the information.
2The workstation ignores this information because DEC GKS supports only the polyline rectangle.
The workstation expects the flag to be GPF_POLYLINE.

9–10 Input Functions

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

–8, –7, –6, –3 Attribute control flag tells the workstation to use
either the current output attribute (GCURRENT)
or the newly specified attributes provided in the
data record (GSPECIFIED).

U

X component of the first WC point. U

Y component of the first WC point. U

X component of the second WC point. U

Y component of the second WC point. U

Line type ASF (GBUNDLED or GINDIVIDUAL). I

Line width scale factor ASF (GBUNDLED or
GINDIVIDUAL).

I

Polyline color ASF (GBUNDLED or
GINDIVIDUAL).

I

Line type index. U1

Line width scale factor. U1

Polyline color index. I

13 Segment identifier of the segment used for the
cursor segment.

U

1If the attribute control flag is GSPECIFIED, the workstation uses the information. If the attribute
control flag is GCURRENT, the workstation ignores the information.

9.3.2.3 Pick Class
This section lists the input data record information required for pick-class prompt
and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

1, 2, 3 Size of the pick aperture (prompt) in device
coordinates

U

9.3.2.4 String Class
This section lists the input data record information required for string-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

1 Number of characters in the input buffer U

Initial cursor position within the string,
1 <= position <= string_length

I

Title string U

Input Functions 9–11

Input Functions
9.3 Prompt and Echo Types

9.3.2.5 Stroke Class
This section lists the input data record information required for stroke-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

1 Number of stroke points in the input buffer U

Editing position expressed as a stroke point I

X component of the WC change vector U

Y component of the WC change vector U

Time interval, in seconds I

3 Number of stroke points in the input buffer U

Editing position expressed as a stroke point I

X component of the WC change vector U

Y component of the WC change vector U

Time interval, in seconds I

Attribute control flag tells the workstation to use
either the current output attribute (GCURRENT)
or the newly specified attributes provided in the
data record (GSPECIFIED)

U

Polymarker type ASF (GBUNDLED or
GINDIVIDUAL)

I

Polymarker size factor ASF (GBUNDLED or
GINDIVIDUAL)

I

Polymarker color ASF (GBUNDLED or
GINDIVIDUAL)

I

Polymarker bundle index I

Polymarker type index U1

Polymarker scale factor U1

Polymarker color index I

4 Number of stroke points in the input buffer U

Editing position expressed as a stroke point I

X component of the WC change vector U

Y component of the WC change vector U

Time interval, in seconds I

Attribute control flag tells the workstation to use
either the current output attribute (GCURRENT)
or the newly specified attributes provided in the
data record (GSPECIFIED)

U

Line type ASF (GBUNDLED or GINDIVIDUAL) I

Line width scale factor ASF (GBUNDLED or
GINDIVIDUAL)

I

1If the attribute control flag is GSPECIFIED, the workstation uses the information. If the attribute
control flag is GCURRENT, the workstation ignores the information.

9–12 Input Functions

Input Functions
9.3 Prompt and Echo Types

Prompt and
Echo Type Input Data Record Information Used or Ignored

Polyline color index ASF (GBUNDLED or
GINDIVIDUAL)

I

Polyline index I

Line type index U1

Line width scale factor U1

Polyline color index I

1If the attribute control flag is GSPECIFIED, the workstation uses the information. If the attribute
control flag is GCURRENT, the workstation ignores the information.

9.3.2.6 Valuator Class
This section lists the input data record information required for valuator-class
prompt and echo types.

Prompt and
Echo Type Input Data Record Information Used or Ignored

–3, –2, –1, 1, 2,
3

Low value of the numeric range U

High value of the numeric range U

Title string U

9.4 Initializing Input
INITIALIZE functions let you specify attributes of the logical input devices.
To initialize a logical input device, you must place the device in request mode.
Request mode is the DEC GKS default input mode.

After you put the logical input device into request mode, you can either use its
default attributes or specify your own. To use the default attributes, activate a
logical input device without first calling one of the INITIALIZE functions. To
specify your own attributes, call one of the INITIALIZE functions before you
activate the logical input device.

INITIALIZE functions include:

• INITIALIZE CHOICE (3)

• INITIALIZE LOCATOR (3)

• INITIALIZE PICK (3)

• INITIALIZE STRING (3)

• INITIALIZE STROKE (3)

• INITIALIZE VALUATOR (3)

Input Functions 9–13

Input Functions
9.5 Input Operating Modes

9.5 Input Operating Modes
DEC GKS supports three input operating modes: request, sample, and event.
You can use any of the six types of logical input devices in any of the three input
operating modes.

Some applications must work synchronously with the input process. That is, the
application must pause to wait for the user to complete the input action. You can
use the request mode to have an application work synchronously.

Some applications must work asynchronously with the input process. That is,
the application must run while the user enters input. You can use sample mode
or event mode to have an application work asynchronously. In sample mode, the
application takes the current measure of an input device without the user having
to trigger it. In event mode, the device handler places triggered input values in a
time-ordered queue that the application accesses when it needs to process input.

To change the input operating mode for a given device, you call one of the SET
MODE functions. Besides changing operating modes, these functions also enable
and disable echoing of the input prompt and the input values. Disabling echoing
is useful when the DEC GKS echo types are inadequate and you must echo the
input in an application-specific manner.

By default, all input prompts are active at once. For example, if you press the
arrow keys, you change all input prompts on the workstation surface whose
devices use the arrow keys. Device handlers can provide ways for the user to
deactivate all but one input prompt, for each logical input device. In this way,
the user can cycle through the devices, changing only one measure at a time,
in some device-specific order. ReGIS™ and some Tektronix® workstations let
you cycle through logical input devices. For more information, see the section on
cycling logical input devices in the Device Specifics Reference Manual for DEC
GKS and DEC PHIGS.

Note

You cannot cycle past a device whose echoing is disabled. (Normally,
DEC GKS notifies you of the logical input device’s turn in the cycle by
displaying the logical input device’s prompt.) Using the corresponding
physical device will always change the measure of a nonechoing device.
For example, if you use pick-class logical input device 1 on the VT340
terminal while disabling its echoing, pressing the arrow keys always
changes the measure of this logical input device no matter how you cycle
through the remaining prompting devices.

The following sections describe each of the input operating modes.

9.5.1 Request Mode
In request mode, the application program pauses and DEC GKS waits for the
user either to trigger the end of input or to cancel input. You can use a logical
input device in request mode without calling the SET MODE functions if you
have not previously set the logical input device to another mode. Request mode is
the DEC GKS default input operating mode.

To initialize a logical input device, you must make sure the logical input device’s
input prompt does not currently appear on the workstation surface. The logical
input device must be in request mode to be initialized.

9–14 Input Functions

Input Functions
9.5 Input Operating Modes

Although you can place any or all the supported logical input devices in request
mode at any one time, you can only request input from one logical input device
at a time. To request input, you must specify a logical input device number and
a workstation identifier and call one of the REQUEST functions. REQUEST
functions include the following:

• REQUEST CHOICE

• REQUEST LOCATOR

• REQUEST PICK

• REQUEST STRING

• REQUEST STROKE

• REQUEST VALUATOR

After the application requests input by calling one of the REQUEST functions,
DEC GKS displays the input prompt (if echoing is enabled).

In request mode, the user can trigger or break a request for input in several ways.
If the user triggers the logical input device, DEC GKS writes the value GC_OK to
the request function response argument. (See Section 9.2.5 for information about
triggering a logical input device.) If the user performs a break requesting input,
DEC GKS writes the value GNONE to the request function response argument.
(Different workstations may require different actions for the user to perform a
break.)

Choice-class and pick-class logical input devices allow the user another option
besides returning data or breaking input. They let the user end the input process
without choosing or picking. If the user triggers the logical input device without
moving the input prompt, DEC GKS returns one of the appropriate values, GC_
NOCHOICE or GP_NOPICK, to the response argument. (DEC GKS also returns
GP_NOPICK if the user is not currently positioning the aperture on a segment.)

9.5.2 Sample Mode
In sample mode, the application and the input process operate asynchronously.
The user changes the input measure of a given logical input device by changing
the position of the input prompt, but cannot trigger the logical input device.
The application determines when to sample (take) the current measure of the
logical input device. The user specifies input values, but the application controls
when it actually accepts the values. The application ends the input session when
conditions within the program are met.

To place a logical input device in sample mode, you must specify sample mode to
one of the SET MODE functions. As soon as you do, DEC GKS displays the input
prompt (if echoing is enabled). At this point, the user can enter input, but cannot
trigger the logical input device or cancel input.

To sample input, you must specify a logical input device number and a
workstation identifier and call one of the SAMPLE functions. SAMPLE functions
include:

• SAMPLE CHOICE

• SAMPLE LOCATOR

• SAMPLE PICK

• SAMPLE STRING

Input Functions 9–15

Input Functions
9.5 Input Operating Modes

• SAMPLE STROKE

• SAMPLE VALUATOR

After you place the device in sample mode, you cannot reinitialize the device (by
calling one of the INITIALIZE functions). If you want to reinitialize the device,
you must remove the input prompt from the workstation surface. To remove it,
place the device in request mode, reinitialize the device, and then place the device
back into sample mode.

You can place any or all the supported logical input devices in sample mode at one
time. However, you can sample from only one device at a time. The program can
call a SAMPLE function from any point in the application. The device handler
returns the current measure from the specified workstation and the specified
logical input device. When the program reaches some application-defined
condition, the application can remove the input prompt from the workstation
surface by changing the input mode from sample mode to request mode.

When sampling choice and pick logical input devices, you can obtain an additional
input status. The additional input status can have one of two values: GP_
NOCHOICE or GP_NOPICK. You can obtain the value GP_NOCHOICE if the
user did not alter the device’s measure since it was activated. You can obtain
the value GP_NOPICK if the user did not move the aperture or is not currently
positioning the aperture on a segment. Under the specified conditions, DEC GKS
writes one of these values to the response argument.

9.5.3 Event Mode
EVENT functions remove, read, and flush input reports from the event queue.
In event mode, the application and the input process operate asynchronously.
Event mode differs from sample mode because the user must trigger input values
that DEC GKS then places in a time-ordered queue. Each set of input values is
a report. The application chooses when to remove the reports from the queue,
beginning with the first input value the user entered.

To place a logical input device in event mode, you must specify event mode to one
of the SET functions. As soon as you do, DEC GKS displays the input prompt (if
echoing is enabled). At this point, the user can generate events that the device
handler places in the event input queue.

EVENT functions include:

• AWAIT EVENT

• FLUSH DEVICE EVENTS

• GET CHOICE

• GET LOCATOR

• GET PICK

• GET STRING

• GET STROKE

• GET VALUATOR

After you place the device in event mode, you cannot reinitialize the device (by
calling one of the INITIALIZE functions) until you remove the input prompt
from the workstation surface. To remove it, place the device in request mode,
reinitialize the device, and then place the device back into event mode.

9–16 Input Functions

Input Functions
9.5 Input Operating Modes

You can process reports the user generates. To remove a report from the event
input queue, call the AWAIT EVENT function. AWAIT EVENT checks the event
queue for a length of time up to the amount specified in the timeout argument. If
the event queue contains at least one report, AWAIT EVENT removes the oldest
report, places it in the current event report entry in the GKS state list, and lets
the application resume. If the queue remains empty for the entire timeout period,
AWAIT EVENT writes GNCLASS to its event argument and lets the application
resume.

Each input report contains the following information that corresponds to the
generated event:

• The workstation identifier

• The input class of the device

• The device number

• The input value or values

To process the information in the current event report, you must check the value
written to the event argument of AWAIT EVENT. Once you determine the class of
the device that generated the event, you call one of the GET functions.

The GET functions obtain information from the current event report. Therefore,
repeated calls to one of the GET functions will write the same values to the
output arguments. The current event report does not change unless you call
AWAIT EVENT to fetch another report from the queue. After you fetch another
report, a subsequent call to one of the GET functions obtains new input values.

If you decide you have enough information from a particular logical input device,
you can stop generating events by placing the logical input device back in request
mode. Then you can flush all the events the logical input device generated that
remain in the event input queue by calling FLUSH DEVICE EVENTS.

Example 9–1 shows a sample program using a locator-class logical input device in
event mode.

9.5.3.1 Event Input Queue Overflow
Because the user can generate events as soon as you call a GET function, the
user may fill the event input queue before the application can remove any of the
event reports. The input event queue could overflow.

If you try to call either AWAIT EVENT or FLUSH DEVICE EVENTS, DEC GKS
logs an initial event input queue overflow error (ERROR_147—Input queue has
overflowed). If you continue calling either AWAIT EVENT or FLUSH DEVICE
EVENTS, the functions still perform their task. However, the logical input
devices cannot accept additional input until you clear the input queue. You can
generate ERROR_147 many times while trying to clear the queue. DEC GKS,
however, logs the error only once, the first time it occurs.

To test for input queue overflow, you can call INQUIRE INPUT QUEUE
OVERFLOW immediately after calling AWAIT EVENT. If the error argument
to INQUIRE INPUT QUEUE OVERFLOW equals 0, the following is true:

• The event input queue has overflowed.

• Information about the overflow is available.

Input Functions 9–17

Input Functions
9.5 Input Operating Modes

• INQUIRE INPUT QUEUE OVERFLOW writes to its output arguments the
workstation identifier, the input class, and the device number of the logical
input device that last accepted input.

If error does not equal 0, the information needed to write to the output arguments
is not available. In this case, error can equal one of the following values:

• ERROR_7—GKS not in proper state.

• ERROR_148—Input queue has not overflowed since GKS was opened or since
the last invocation of INQUIRE INPUT QUEUE OVERFLOW.

• ERROR_149—Input queue has overflowed, but the associated workstation has
been closed.

If the event input queue overflows, you can call FLUSH DEVICE EVENTS to
clear the events from the queue. FLUSH DEVICE EVENTS clears the buffer
and lets the user enter input again. Because FLUSH DEVICE EVENTS clears
individual logical input devices, you must call it for each logical input device the
application is using. If you know the input class that caused the overflow, you
can call FLUSH DEVICE EVENTS for only that input class. If you do not know
which input class caused the overflow, you must call FLUSH DEVICE EVENTS
for all the logical input devices and for all the input classes the application was
using.

A second way to clear the events from the overflowed queue is to continue calling
AWAIT EVENT, removing the reports one by one until a call returns GNCLASS.

Using FLUSH DEVICE EVENTS is the preferred way to clear events from an
overflowed queue. If you use AWAIT EVENT, the user may continue generating
input faster than AWAIT EVENT can remove events from the queue.

9.6 Overlapping Viewports
This section assumes you know something about the DEC GKS coordinate
systems. You may want to review Chapter 7, Transformation Functions, before
reading further.

When defining normalization viewports, you may cause them to overlap on the
NDC plane. The overlap can affect the application during input requests. To
prevent overlap, the application should use a viewport priority list during input.

To illustrate using a viewport priority list, consider two normalization viewports.
The first is the default viewport ([0,1] x [0,1]) of the unity transformation. The
second belongs to normalization transformation number 1 and has the range
([0.5, 1] x [0.5, 1]) in NDC values. The viewport of normalization transformation
number 1 overlaps the right half of the default viewport.

During stroke and locator input, the user positions the cursor on the device
surface and returns one point or a series of points in device coordinates.
DEC GKS translates the device coordinates to NDC points. Then it uses the
viewport input priority to determine which normalization transformation to use
when translating the points to WC points.

DEC GKS maintains a priority list that it uses to decide which normalization
viewport has a higher input priority. By default, DEC GKS assigns the highest
priority to the unity transformation (0). The viewports of all remaining
transformations decrease in priority as their transformation numbers increase.
For example, viewport 0 is higher than viewport 1; 1 is higher than 2; 2 is higher
than 3, and so on.

9–18 Input Functions

Input Functions
9.6 Overlapping Viewports

When using a locator-class input device, DEC GKS uses the normalization
transformation of the highest input priority that contains the input point. When
using stroke input, DEC GKS uses the normalization transformation of the
highest priority that contains all the points in the stroke. A locator or stroke
input device cannot return device coordinate points that can fall outside the
default normalization viewport ([0,1] x [0,1]). Therefore, you can always use the
unity transformation to transform stroke input data.

For more information about transformations and viewport priority, see Chapter 7,
Transformation Functions.

9.7 Input Inquiries
When using the DEC GKS input functions, you may need to inquire from the
workstation description table or from the workstation state list. If you need
default values, you inquire from the description table. If you need the currently
set values, you inquire from the state list.

The following sections describe programming techniques for inquiry functions.

9.7.1 Default and Current Input Values
Your application can set all the input values individually before it calls one of
the INITIALIZE functions. If you do not want the application to set all the input
values, you can have it pass the input variables to one of two sets of inquiry
functions. The first set obtains default input values. The second set obtains
current input values.

The following inquiry functions obtain default input values:

• INQUIRE DEFAULT CHOICE DEVICE DATA (3)

• INQUIRE DEFAULT LOCATOR DEVICE DATA (3)

• INQUIRE DEFAULT PICK DEVICE DATA (3)

• INQUIRE DEFAULT STRING DEVICE DATA (3)

• INQUIRE DEFAULT STROKE DEVICE DATA (3)

• INQUIRE DEFAULT VALUATOR DEVICE DATA (3)

The following inquiry functions obtain current input values:

• INQUIRE CHOICE DEVICE STATE (3)

• INQUIRE LOCATOR DEVICE STATE (3)

• INQUIRE PICK DEVICE STATE (3)

• INQUIRE STRING DEVICE STATE (3)

• INQUIRE STROKE DEVICE STATE (3)

• INQUIRE VALUATOR DEVICE STATE (3)

Be careful when passing the argument containing the data record buffer size to
the inquiry functions. The buffer size is a modifiable variable (read/write). When
passed to the inquiry function, the argument must contain the size of the buffer.
If it does not, the inquiry function will not return the contents of the data record
properly.

Input Functions 9–19

Input Functions
9.7 Input Inquiries

After the function call, DEC GKS writes the amount of the buffer actually used.
You can compare this value to the data record buffer size to see if DEC GKS had
to truncate the data record when writing it to the buffer. If DEC GKS truncated
the data record, you must decide whether to continue execution or change the
buffer size so the entire data record fits.

9.7.2 Device-Independent Programming
You can use the INQUIRE functions when writing device-independent
applications. Depending on the type of input you use, you may need to call
many INQUIRE functions. For example, your application may need to check the
following information:

• The level of GKS, which determines the supported input operating modes.
This information is important for applications that need to be transported to
other systems. (DEC GKS is a level 2c implementation.)

• The category of the workstation.

• The number of input devices of a given class the workstation supports.

• The prompt and echo types a given workstation supports.

• The maximum possible echo area available on a given workstation.

• The data record information for a given workstation using a specified prompt
and echo type (see Section 9.7.1).

Use the following INQUIRE functions to obtain input information when writing a
device-independent application:

INQUIRE CHOICE DEVICE STATE (3)
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER
INQUIRE DEFAULT CHOICE DEVICE DATA (3)
INQUIRE DEFAULT LOCATOR DEVICE DATA (3)
INQUIRE DEFAULT PICK DEVICE DATA (3)
INQUIRE DEFAULT STRING DEVICE DATA (3)
INQUIRE DEFAULT STROKE DEVICE DATA (3)
INQUIRE DEFAULT VALUATOR DEVICE DATA (3)
INQUIRE DISPLAY SPACE SIZE (3)
INQUIRE INPUT QUEUE OVERFLOW
INQUIRE LEVEL OF GKS
INQUIRE LOCATOR DEVICE STATE (3)
INQUIRE NORMALIZATION TRANSFORMATION (3)
INQUIRE PICK DEVICE STATE (3)
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE STRING DEVICE STATE (3)
INQUIRE STROKE DEVICE STATE (3)
INQUIRE VALUATOR DEVICE STATE (3)
INQUIRE WORKSTATION CATEGORY
INQUIRE WORKSTATION TRANSFORMATION (3)

For information about device-independent programming, see the DEC GKS User’s
Guide.

9–20 Input Functions

Input Functions
9.8 Function Descriptions

9.8 Function Descriptions
This section describes the DEC GKS input functions in detail.

Input Functions 9–21

AWAIT EVENT

AWAIT EVENT

Operating States

WSOP, WSAC, SGOP

Syntax

gawaitevent (

Gfloat timeout, /* (I) Maximum wait period (seconds) */
Gevent *event /* (O) Event workstation, class, and device

number */

)

Data Structures

typedef struct { /* EVENT */
Gint ws; /* workstation */
Gint dev; /* device number */
Giclass class; /* input class (constant) */

} Gevent;

Constants

Data Type Constant Description

Giclass GNCLASS Input queue is empty
GLOCATOR Event from a locator device
GSTROKE Event from a stroke device
GVALUATOR Event from a valuator device
GCHOICE Event from a choice device
GPICK Event from a pick device
GSTRING Event from a string device
GVIEWPORT Event from a viewport device

Description

The AWAIT EVENT function examines the input queue for all input devices.

DEC GKS searches the input queue for an event and, if the input queue is empty,
suspends the application program until either of the following happens:

• An event appears on the input queue.

• The timeout period specified in the timeout argument expires.

The timeout argument is specified in the format ss.hh, where ss is seconds and
hh is hundredths of a second. This argument cannot be negative and cannot be
larger than 356,400 seconds (99 hours).

If this argument is 0.0, this function allows application execution to continue. It
either removes the oldest event or, if there are no events in the queue, returns
the value GNCLASS to the input class argument.

9–22 Input Functions

AWAIT EVENT

When AWAIT EVENT checks the event input queue, its subsequent action
depends on the state of the queue. If the queue contains reports, this function
performs the following tasks:

• Removes the oldest event report from the queue

• Writes information to the current event report entry in the GKS state list

• Writes the event’s workstation identifier, input class, and logical device
number to its corresponding output arguments

If the timeout period has expired, and if this function finds the queue to be empty,
this function writes input class value GNCLASS to its output argument.

If you generate the queue overflow error, this function still performs its task.

See Also

Example 9–1 for a program example using the AWAIT EVENT function

Input Functions 9–23

FLUSH DEVICE EVENTS

FLUSH DEVICE EVENTS

Operating States

WSOP, WSAC, SGOP

Syntax

gflushevents (

Gint ws, /* (I) Workstation identifier */
Giclass class, /* (I) Input device class (constant) */
Gint dev /* (I) Logical input device number */

)

Constants

Data Type Constant Description

Giclass GNCLASS Input queue is empty
GLOCATOR Event from a locator device
GSTROKE Event from a stroke device
GVALUATOR Event from a valuator device
GCHOICE Event from a choice device
GPICK Event from a pick device
GSTRING Event from a string device
GVIEWPORT Event from a viewport device

Description

The FLUSH DEVICE EVENTS function removes all events generated by the
specified logical input device from the input queue. This function performs its
task even if it generates the queue overflow error message.

For information about the viewport input class, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS, under the escapes Set Viewport Event
and Inquire Viewport Data.

9–24 Input Functions

GET CHOICE

GET CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

ggetchoice (

Gchoice *response /* (O) Status and choice number */

)

Data Structures

typedef struct { /* CHOICE DATA */
Gcstat status; /* choice status (constant) */
Gint choice; /* choice number */

} Gchoice;

Constants

Data Type Constant Description

Gcstat GC_OK Input obtained
GC_NOCHOICE Triggered without choosing

Description

The GET CHOICE function obtains information from the current event report
entry in the GKS state list and writes the choice status and choice value to the
output arguments.

If the report contains input generated by anything other than a choice-class
logical input device, a call to this function generates an error. (See the AWAIT
EVENT function in this chapter for more information concerning device class and
the current event report entry.)

After a successful call to GET CHOICE, the input status parameter contains
either the value GC_OK or GC_NOCHOICE.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET CHOICE MODE

Input Functions 9–25

GET LOCATOR

GET LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

ggetloc (

Gloc *response /* (O) Normalization transformation and location */

)

Data Structures

typedef struct { /* LOCATOR DATA */
Gint transform; /* normalization transformation number */
Gpoint position; /* locator position */

} Gloc;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The GET LOCATOR function obtains information from the current event report
entry in the GKS state list, and writes the normalization transformation number,
and the X and Y WC point values to the output arguments.

If the current event report contains input generated by anything other than a
locator-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET LOCATOR MODE
Example 9–1 for a program example using the GET LOCATOR function

9–26 Input Functions

GET LOCATOR 3

GET LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

ggetloc3 (

Gloc3 *response /* (O) Status, transformation, index, and
location */

)

Data Structures

typedef struct { /* LOCATOR 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index */
Gpoint3 position; /* locator position */

} Gloc3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The GET LOCATOR 3 function obtains information from the current event report
entry in the GKS state list, and writes the normalization transformation number;
the view index; and X, Y, and Z WC point values to the output arguments.

If the current event report contains input generated by anything other than a
locator-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

The GET LOCATOR 3 function returns the view index of the viewport mapping
transformation last used to translate the NPC points to the NDC points. See the
DEC GKS User’s Guide for more information on view indexes.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET LOCATOR MODE
Example 9–1 for a program example using the GET LOCATOR function

Input Functions 9–27

GET PICK

GET PICK

Operating States

WSOP, WSAC, SGOP

Syntax

ggetpick (

Gpick *response /* (O) Status, segment identifier, and
pick identifier */

)

Data Structures

typedef struct { /* PICK DATA */
Gpstat status; /* pick status (constant) */
Gint seg; /* pick segment */
Gint pickid; /* pick identifier */

} Gpick;

Constants

Data Type Constant Description

Gpstat GP_OK Input obtained
GP_NOPICK Triggered without picking

Description

The GET PICK function obtains information from the current event report entry
in the GKS state list and writes the input status, segment name, and pick
identifier to the output arguments.

If the current event report contains input generated by anything other than a
pick-class logical input device, a call to this function generates an error. (See the
AWAIT EVENT function in this chapter for more information concerning device
class and the current event report entry.)

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET PICK MODE

9–28 Input Functions

GET STRING

GET STRING

Operating States

WSOP, WSAC, SGOP

Syntax

ggetstring (

Gchar *response /* (O) Returned character string. Initialize
this argument with a string, before the
call. The string buffer you give to this
call should be at least one more than the
maximum possible string size. It is best
to specify the string buffer size as 256
characters. */

)

Description

The GET STRING function obtains information from the current event report
entry in the GKS state list and writes the string to the string output argument.

When activating string input, the following two buffers exist:

• The application’s string buffer, which you allocate before the call. You must
specify the size to be at least 1 byte larger than the maximum possible string
size.

• The logical input device’s string buffer, whose size you can specify in the call
to the INITIALIZE STRING function.

When reading a string from the current event report using the GET STRING
function, DEC GKS removes characters up to the number that fits into the
application’s buffer. If the size of the string in the current event report is larger
than the application’s buffer, you need to call GET STRING again, using a larger
application buffer, to obtain the entire string contained in the report. (Remember
that the string contained in the current report does not change until you call the
AWAIT EVENT function to replace the current report.)

If the current event report contains input generated by anything other than a
string-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

Note

The initial string appears only in the first generated string event report.
Subsequent string reports do not contain the initial string.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET STRING MODE

Input Functions 9–29

GET STROKE

GET STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

ggetstroke (

Gstroke *response /* (O) Status, transformation, and stroke */

)

Data Structures

typedef struct { /* STROKE DATA */
Gint transform; /* normalization transformation number */
Gint n_points; /* number of points in stroke */
Gpoint *points; /* points in stroke */

} Gstroke;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Note

The field n_points should be initialized with the number representing the
maximum number of points that will fit in the points buffer. It will be
updated to indicate the actual number of points returned in the buffer.

Description

The GET STROKE function obtains information from the current event report
entry in the GKS state list and writes the normalization transformation number,
the number of entered points, the stroke point values, and the number of accepted
stroke point values to the output arguments.

When activating stroke input, the following two buffers exist:

• The application’s stroke buffer, which you allocate before the call. You must
specify the size in the n_points field.

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE function.

When reading stroke points from the current event report using the GET
STROKE function, DEC GKS removes points up to the number that fits into the
application’s buffer. If the size of the stroke in the current event report is larger
than the application’s buffer, you need to call GET STROKE again, using a larger
application buffer, to obtain the entire stroke contained in the report. (Remember
that the stroke contained in the current report does not change until you call the
AWAIT EVENT function to replace the current report.)

9–30 Input Functions

GET STROKE

If the current event report contains input generated by anything other than a
stroke-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

Note

The initial stroke appears only in the first generated stroke event report.
Subsequent stroke reports do not contain the initial stroke.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET STROKE MODE

Input Functions 9–31

GET STROKE 3

GET STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

ggetstroke3 (

Gstroke3 *response /* (O) Status, transformation, view,
and stroke */

)

Data Structures

typedef struct { /* STROKE 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index used in transformation */
Gint n_points; /* number of points in stroke */
Gpoint3 *points; /* points in stroke */

} Gstroke3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Note

The field n_points should be initialized with the number representing the
maximum number of points that will fit in the points buffer. It will be
updated to indicate the actual number of points returned in the buffer.

Description

The GET STROKE 3 function obtains information from the current event report
entry in the GKS state list and writes the normalization transformation number,
the number of entered points, the stroke point values, the number of accepted
stroke point values, and the view index used to convert NPC points to NDC
points to the output arguments.

When activating stroke input, the following two buffers exist:

• The application’s stroke buffer, which you allocate before the call. You must
specify the size in the n_points field.

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE 3 function.

When reading stroke points from the current event report using the GET
STROKE 3 function, DEC GKS removes points up to the number that fits into
the application’s buffer. If the size of the stroke in the current event report is
larger than the application’s buffer, you need to call GET STROKE 3 again, using
a larger application buffer, to obtain the entire stroke contained in the report.

9–32 Input Functions

GET STROKE 3

(Remember that the stroke contained in the current report does not change until
you call the AWAIT EVENT function to replace the current report.)

If the current event report contains input generated by anything other than a
stroke-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

Note

The initial stroke appears only in the first generated stroke event report.
Subsequent stroke reports do not contain the initial stroke.

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET STROKE MODE

Input Functions 9–33

GET VALUATOR

GET VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

ggetval (

Gfloat *response /* (O) Returned value */

)

Description

The GET VALUATOR function obtains the valuator input value from the current
event report entry in the GKS state list and writes the real value to the output
argument.

If the current event report contains input generated by anything other than a
valuator-class logical input device, a call to this function generates an error. (See
the AWAIT EVENT function in this chapter for more information concerning
device class and the current event report entry.)

See Also

AWAIT EVENT
FLUSH DEVICE EVENTS
SET VALUATOR MODE

9–34 Input Functions

INITIALIZE CHOICE

INITIALIZE CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

ginitchoice (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Choice device number */
Gchoice *init, /* (I) Initial status and choice */
Gint pet, /* (I) Prompt and echo type */
Glimit *area, /* (I) Echo area */
Gchoicerec *data /* (I) Choice data record */

)

Data Structures

typedef struct { /* CHOICE DATA */
Gcstat status; /* choice status (constant) */
Gint choice; /* choice number */

} Gchoice;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef union { /* CHOICE DATA RECORD */
Gchoicepet_0001 choicepet_1_datarec;
Gchoicepet0001 choicepet1_datarec;
Gchoicepet0002 choicepet2_datarec;
Gchoicepet0003 choicepet3_datarec;
Gchoicepet0004 choicepet4_datarec;
Gchoicepet0005 choicepet5_datarec;

} Gchoicerec;

typedef Gchoicepetneg0001 Gchoicepet_0001;

typedef Gchoicepet0001 Gchoicepetneg0001;

typedef struct {
Gint number; /* number of choice strings */
Gint *lengths; /* lengths of choice strings */
Gchar **strings; /* array of strings */
Gchar *title_string; /* the title string */

} Gchoicepet0001;

typedef struct {
Gint number; /* number of alternatives */
Gprflag *enable; /* array of prompts */
Gchar *title_string; /* title string */

} Gchoicepet0002;

typedef struct {
Gint number; /* number of choice strings */
Gchar **strings; /* array of strings */
Gchar *title_string; /* the title string */

} Gchoicepet0003;

Input Functions 9–35

INITIALIZE CHOICE

typedef Gchoicepet0003 Gchoicepet0004;

typedef struct {
Gint seg; /* segment name */
Gint number; /* number of alternatives */
Gint *pickids; /* array of pick identifiers */
Gchar *title_string; /* the title string */

} Gchoicepet0005;

Constants

Data Type Constant Description

Gcstat GC_OK Input obtained
GC_NOCHOICE Triggered without choosing

Gprflag GPROFF Choice input prompt flag off.
GPRON Choice input prompt flag on.

Description

The INITIALIZE CHOICE function establishes the initial values of a choice-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the initial choice value, the prompt and echo type, the
echo area, and the data record. Subsequent requests for choice input use the
values you specify.

If you do not call INITIALIZE CHOICE before you request input from a choice-
class logical input device, DEC GKS uses the default input values.

See Also

SET CHOICE MODE
Example 9–3 for a program example using an INITIALIZE . . . function

9–36 Input Functions

INITIALIZE CHOICE 3

INITIALIZE CHOICE 3

Operating States

WSOP, WSAC, SGOP

Syntax

ginitchoice3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Choice device number */
Gchoice *init, /* (I) Initial status and choice */
Gint pet, /* (I) Prompt and echo type */
Glimit3 *volume, /* (I) Echo volume */
Gchoicerec *data /* (I) Choice data record */

)

Data Structures

typedef struct { /* CHOICE DATA */
Gcstat status; /* choice status (constant) */
Gint choice; /* choice number */

} Gchoice;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef union { /* CHOICE DATA RECORD */
Gchoicepet_0001 choicepet_1_datarec;
Gchoicepet0001 choicepet1_datarec;
Gchoicepet0002 choicepet2_datarec;
Gchoicepet0003 choicepet3_datarec;
Gchoicepet0004 choicepet4_datarec;
Gchoicepet0005 choicepet5_datarec;

} Gchoicerec;

typedef Gchoicepetneg0001 Gchoicepet_0001;

typedef Gchoicepet0001 Gchoicepetneg0001;

typedef struct {
Gint number; /* number of choice strings */
Gint *lengths; /* lengths of choice strings */
Gchar **strings; /* array of strings */
Gchar *title_string; /* the title string */

} Gchoicepet0001;

typedef struct {
Gint number; /* number of alternatives */
Gprflag *enable; /* array of prompts */
Gchar *title_string; /* title string */

} Gchoicepet0002;

Input Functions 9–37

INITIALIZE CHOICE 3

typedef struct {
Gint number; /* number of choice strings */
Gchar **strings; /* array of strings */
Gchar *title_string; /* the title string */

} Gchoicepet0003;

typedef Gchoicepet0003 Gchoicepet0004;

typedef struct {
Gint seg; /* segment name */
Gint number; /* number of alternatives */
Gint *pickids; /* array of pick identifiers */
Gchar *title_string; /* the title string */

} Gchoicepet0005;

Constants

Data Type Constant Description

Gcstat GC_OK Input obtained
GC_NOCHOICE Triggered without choosing

Gprflag GPROFF Choice input prompt flag off.
GPRON Choice input prompt flag on.

Description

The INITIALIZE CHOICE 3 function establishes the initial values of a choice-
class logical input device only if the device’s prompt is not currently on the
workstation surface. (The device must be in request mode.)

The initial values include the initial choice value, the prompt and echo type, the
echo volume, and the data record. Subsequent requests for choice input use the
values you specify.

If you do not call INITIALIZE CHOICE 3 before you request input from a
choice-class logical input device, DEC GKS uses the default input values.

See Also

SET CHOICE MODE
Example 9–3 for a program example using an INITIALIZE . . . function

9–38 Input Functions

INITIALIZE LOCATOR

INITIALIZE LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

ginitloc (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Locator device number */
Gloc *init, /* (I) Initial transformation, view, and location */
Gint pet, /* (I) Prompt and echo type */
Glimit *area, /* (I) Echo area */
Glocrec *data /* (I) Locator data record */

)

Data Structures

typedef struct { /* LOCATOR DATA */
Gint transform; /* normalization transformation number */
Gpoint position; /* locator position */

} Gloc;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef union { /* LOCATOR DATA RECORD */
Glocpet_0001 locpet_1_datarec;
Glocpet_0002 locpet_2_datarec;
Glocpet_0003 locpet_3_datarec;
Glocpet_0004 locpet_4_datarec;
Glocpet_0005 locpet_5_datarec;
Glocpet_0006 locpet_6_datarec;
Glocpet_0007 locpet_7_datarec;
Glocpet_0008 locpet_8_datarec;
Glocpet_0009 locpet_9_datarec;
Glocpet_0010 locpet_10_datarec;
Glocpet_0011 locpet_11_datarec;
Glocpet_0012 locpet_12_datarec;
Glocpet0001 locpet1_datarec;
Glocpet0002 locpet2_datarec;
Glocpet0003 locpet3_datarec;
Glocpet0004 locpet4_datarec;
Glocpet0005 locpet5_datarec;
Glocpet0006 locpet6_datarec;

} Glocrec;

typedef Glocpetneg0001 Glocpet_0001;

Input Functions 9–39

INITIALIZE LOCATOR

typedef struct {
Gfloat box_x; /* size of the box in x */
Gfloat box_y; /* size of the box in y */
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0001;

typedef Glocpetneg0002 Glocpet_0002;

typedef Glocpet0005 Glocpetneg0002;

typedef struct {
Gpfcf pfcf; /* polyline/fill area control flag

(constant) */
Gacf acf; /* attribute control flag */
union {

Glnattr ln; /* polyline attributes */
Gflattr fl; /* fill area attributes */

} attr;
Gchar *data; /* device/implementation dependent

data */
} Glocpet0005;

typedef Glocpetneg0003 Glocpet_0003;

typedef struct {
Gacf acf; /* attribute control flag (constant) */
union {

struct {
Gpoint point1; /* point 1 for echo */
Gpoint point2; /* point 2 for echo */

} echo;
struct

Glnattr ln; /* polyline attributes */
Gpoint point1; /* point 1 for echo */
Gpoint point2; /* point 2 for echo */

} lnecho;
} attr;
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0003;

typedef struct { /* POLYLINE ATTRIBUTES */
Gasf type; /* line type ASF (constant) */
Gasf width; /* line width ASF */
Gasf colour; /* line color ASF */
Gint line; /* line index */
Glnbundl bundl; /* line bundle */

} Glnattr;

typedef struct { /* POLYLINE BUNDLE */
Gint type; /* line type (constant) */
Gfloat width; /* linewidth scale factor */
Gint colour; /* polyline colour index */

} Glnbundl;

typedef Glocpetneg0004 Glocpet_0004;

typedef struct {
Gacf acf; /* attribute control flag */
Glnattr ln; /* polyline attributes */
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0004;

typedef Glocpetneg0005 Glocpet_0005;

typedef Glocpetneg0004 Glocpetneg0005;

typedef Glocpetneg0006 Glocpet_0006;

typedef Glocpetneg0003 Glocpetneg0006;

typedef Glocpetneg0007 Glocpet_0007;

9–40 Input Functions

INITIALIZE LOCATOR

typedef Glocpetneg0003 Glocpetneg0007;

typedef Glocpetneg0008 Glocpet_0008;

typedef Glocpetneg0003 Glocpetneg0008;

typedef Glocpetneg0009 Glocpet_0009;

typedef Glocpetneg0004 Glocpetneg0009;

typedef Glocpetneg0010 Glocpet_0010;

typedef Glocpetneg0004 Glocpetneg0010;

typedef Glocpetneg0011 Glocpet_0011;

typedef Glocpet0001 Glocpetneg0011;

typedef struct { /* LOCATOR prompt and echo types */
Gchar *data; /* device/implementation dependent data */

} Glocpet0001;

typedef Glocpetneg0012 Glocpet_0012;

typedef Glocpetneg0004 Glocpetneg0012;

typedef Glocpet0001 Glocpet0002;

typedef Glocpet0001 Glocpet0003;

typedef struct {
Gacf acf; /* attribute control flag */
Glnattr ln; /* polyline attributes */
Gchar *data; /* device/implementation dependent data */

} Glocpet0004;

typedef struct {
Gchar *title_string; /* the title string */

} Glocpet0006;

Constants

Data Type Constant Description

Gacf GCURRENT Input data record current values
GSPECIFIED Input data record specified values

Gasf GBUNDLED Bundled attributes
GINDIVIDUAL Individual attributes

Line types GLN_SOLID Solid line
GLN_DASHED Dashed line
GLN_DOTTED Dotted line
GLN_DASHDOT Dashed-dotted line

Gpfcf GPF_POLYLINE Data record polyline control flag
GPF_FILLAREA Data record fill area control flag

Gflinter GHOLLOW Hollow interior
GSOLID Solid interior
GPATTERN Patterned interior
GHATCH Hatched interior

Input Functions 9–41

INITIALIZE LOCATOR

Description

The INITIALIZE LOCATOR function establishes the initial values of a locator-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the WC position of the initial locator, the normalization
transformation used to transform the initial locator point, the prompt and echo
type, the echo area, and the data record. Subsequent requests for locator input
use the values you specify.

For more information about the locator position and echo types, see the Device
Specifics Reference Manual for DEC GKS and DEC PHIGS.

If you do not call INITIALIZE LOCATOR before you request input from a
locator-class logical input device, DEC GKS uses the default input values.

See Also

SET LOCATOR MODE
SET VIEWPORT INPUT PRIORITY
Example 9–1 for a program example using the INITIALIZE LOCATOR function

9–42 Input Functions

INITIALIZE LOCATOR 3

INITIALIZE LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

ginitloc3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Locator device number */
Gloc3 *init, /* (I) Initial transformation, view, and location */
Gint pet, /* (I) Prompt and echo type */
Glimit3 *volume, /* (I) Echo volume */
Glocrec *data /* (I) Locator data record */

)

Data Structures

typedef struct { /* LOCATOR 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index */
Gpoint3 position; /* locator position */

} Gloc3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef union { /* LOCATOR DATA RECORD */
Glocpet_0001 locpet_1_datarec;
Glocpet_0002 locpet_2_datarec;
Glocpet_0003 locpet_3_datarec;
Glocpet_0004 locpet_4_datarec;
Glocpet_0005 locpet_5_datarec;
Glocpet_0006 locpet_6_datarec;
Glocpet_0007 locpet_7_datarec;
Glocpet_0008 locpet_8_datarec;
Glocpet_0009 locpet_9_datarec;
Glocpet_0010 locpet_10_datarec;
Glocpet_0011 locpet_11_datarec;
Glocpet_0012 locpet_12_datarec;
Glocpet0001 locpet1_datarec;
Glocpet0002 locpet2_datarec;
Glocpet0003 locpet3_datarec;
Glocpet0004 locpet4_datarec;
Glocpet0005 locpet5_datarec;
Glocpet0006 locpet6_datarec;

} Glocrec;

Input Functions 9–43

INITIALIZE LOCATOR 3

typedef Glocpetneg0001 Glocpet_0001;

typedef struct {
Gfloat box_x; /* size of the box in x */
Gfloat box_y; /* size of the box in y */
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0001;

typedef Glocpetneg0002 Glocpet_0002;

typedef Glocpet0005 Glocpetneg0002;

typedef struct {
Gpfcf pfcf; /* polyline/fill area control flag

(constant) */
Gacf acf; /* attribute control flag */
union {

Glnattr ln; /* polyline attributes */
Gflattr fl; /* fill area attributes */

} attr;
Gchar *data; /* device/implementation dependent

data */
} Glocpet0005;

typedef Glocpetneg0003 Glocpet_0003;

typedef struct {
Gacf acf; /* attribute control flag (constant) */
union {

struct {
Gpoint point1; /* point 1 for echo */
Gpoint point2; /* point 2 for echo */

} echo;
struct

Glnattr ln; /* polyline attributes */
Gpoint point1; /* point 1 for echo */
Gpoint point2; /* point 2 for echo */

} lnecho;
} attr;
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0003;

typedef struct { /* POLYLINE ATTRIBUTES */
Gasf type; /* line type ASF (constant) */
Gasf width; /* line width ASF */
Gasf colour; /* line color ASF */
Gint line; /* line index */
Glnbundl bundl; /* line bundle */

} Glnattr;

typedef struct { /* POLYLINE BUNDLE */
Gint type; /* line type (constant) */
Gfloat width; /* linewidth scale factor */
Gint colour; /* polyline colour index */

} Glnbundl;

typedef Glocpetneg0004 Glocpet_0004;

typedef struct {
Gacf acf; /* attribute control flag */
Glnattr ln; /* polyline attributes */
Gchar *data; /* device/implementation dependent data */

} Glocpetneg0004;

typedef Glocpetneg0005 Glocpet_0005;

typedef Glocpetneg0004 Glocpetneg0005;

typedef Glocpetneg0006 Glocpet_0006;

typedef Glocpetneg0003 Glocpetneg0006;

9–44 Input Functions

INITIALIZE LOCATOR 3

typedef Glocpetneg0003 Glocpetneg0006;

typedef Glocpetneg0007 Glocpet_0007;

typedef Glocpetneg0003 Glocpetneg0007;

typedef Glocpetneg0008 Glocpet_0008;

typedef Glocpetneg0003 Glocpetneg0008;

typedef Glocpetneg0009 Glocpet_0009;

typedef Glocpetneg0004 Glocpetneg0009;

typedef Glocpetneg0010 Glocpet_0010;

typedef Glocpetneg0004 Glocpetneg0010;

typedef Glocpetneg0011 Glocpet_0011;

typedef Glocpet0001 Glocpetneg0011;

typedef struct { /* LOCATOR prompt and echo types */
Gchar *data; /* device/implementation dependent data */

} Glocpet0001;

typedef Glocpetneg0012 Glocpet_0012;

typedef Glocpetneg0004 Glocpetneg0012;

typedef Glocpet0001 Glocpet0002;

typedef Glocpet0001 Glocpet0003;

typedef struct {
Gacf acf; /* attribute control flag */
Glnattr ln; /* polyline attributes */
Gchar *data; /* device/implementation dependent data */

} Glocpet0004;

typedef struct {
Gchar *title_string; /* the title string */

} Glocpet0006;

Constants

Data Type Constant Description

Gacf GCURRENT Input data record current values
GSPECIFIED Input data record specified values

Gasf GBUNDLED Bundled attributes
GINDIVIDUAL Individual attributes

Line types GLN_SOLID Solid line
GLN_DASHED Dashed line
GLN_DOTTED Dotted line
GLN_DASHDOT Dashed-dotted line

Gpfcf GPF_POLYLINE Data record polyline control flag
GPF_FILLAREA Data record fill area control flag

Gflinter GHOLLOW Hollow interior
GSOLID Solid interior
GPATTERN Patterned interior
GHATCH Hatched interior

Input Functions 9–45

INITIALIZE LOCATOR 3

Description

The INITIALIZE LOCATOR 3 function establishes the initial values of a locator-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the WC position of the initial locator, the normalization
transformation used to transform the initial locator point, the initial view index,
the prompt and echo type, the echo volume, and the data record. Subsequent
requests for locator input use the values you specify.

For more information about the locator position and echo types, see the Device
Specifics Reference Manual for DEC GKS and DEC PHIGS.

If you do not call INITIALIZE LOCATOR 3 before you request input from a
locator-class logical input device, DEC GKS uses the default input values.

See Also

SET LOCATOR MODE
SET VIEWPORT INPUT PRIORITY
Example 9–1 for a program example using the INITIALIZE LOCATOR function

9–46 Input Functions

INITIALIZE PICK

INITIALIZE PICK

Operating States

WSOP, WSAC, SGOP

Syntax

ginitpick (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Pick device number */
Gpick *init, /* (I) Initial status, segment identifier, and

pick identifier */
Gint pet, /* (I) Pick prompt and echo type */
Glimit *area, /* (I) Echo area */
Gpickrec *data /* (I) Pick data record */

)

Data Structures

typedef struct { /* PICK DATA */
Gpstat status; /* pick status (constant) */
Gint seg; /* pick segment */
Gint pickid; /* pick identifier */

} Gpick;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef union { /* PICK DATA RECORD */
Gpickpet0001 pickpet1_datarec;
Gpickpet0002 pickpet2_datarec;
Gpickpet0003 pickpet3_datarec;

} Gpickrec;

typedef struct {
Gfloat aperture; /* pick aperture in DC */
Gchar *data; /* device/implementation dependent data */

} Gpickpet0001;

typedef Gpickpet0001 Gpickpet0002;

typedef Gpickpet0001 Gpickpet0003;

Constants

Data Type Constant Description

Gpstat GP_OK The initial segment and pick identifier
are chosen.

GP_NOPICK No segment or pick identifier is returned.

Input Functions 9–47

INITIALIZE PICK

Description

The INITIALIZE PICK function establishes the initial values of a pick-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the initial status value, the initial segment, the prompt
and echo type, the echo area, the data record, and the initial pick identifier. A
pick identifier is an integer that represents a portion of a segment, allowing you
to pick subsets of a segment instead of picking the entire segment. Subsequent
requests for pick input use the values you specify.

If you do not call INITIALIZE PICK before you request input from a pick-
class logical input device, DEC GKS uses the default input values. For more
information concerning the default input values, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

See Also

SET PICK MODE
Example 9–2 for a program example using the INITIALIZE PICK function

9–48 Input Functions

INITIALIZE PICK 3

INITIALIZE PICK 3

Operating States

WSOP, WSAC, SGOP

Syntax

ginitpick3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Pick device number */
Gpick *init, /* (I) Initial status, segment identifier, and

pick identifier */
Gint pet, /* (I) Pick prompt and echo type */
Glimit3 *volume, /* (I) Echo volume */
Gpickrec *data /* (I) Pick data record */

)

Data Structures

typedef struct { /* PICK DATA */
Gpstat status; /* pick status (constant) */
Gint seg; /* pick segment */
Gint pickid; /* pick identifier */

} Gpick;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef union { /* PICK DATA RECORD */
Gpickpet0001 pickpet1_datarec;
Gpickpet0002 pickpet2_datarec;
Gpickpet0003 pickpet3_datarec;

} Gpickrec;

typedef struct {
Gfloat aperture; /* pick aperture in DC */
Gchar *data; /* device/implementation dependent data */

} Gpickpet0001;

typedef Gpickpet0001 Gpickpet0002;

typedef Gpickpet0001 Gpickpet0003;

Constants

Data Type Constant Description

Gpstat GP_OK The initial segment and pick identifier are
chosen.

GP_NOPICK No segment or pick identifier is returned.

Input Functions 9–49

INITIALIZE PICK 3

Description

The INITIALIZE PICK 3 function establishes the initial values of a pick-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the initial status value, the initial segment, the prompt
and echo type, the echo volume, the data record, and the initial pick identifier. A
pick identifier is an integer that represents a portion of a segment, allowing you
to pick subsets of a segment instead of picking the entire segment. Subsequent
requests for pick input use the values you specify.

If you do not call INITIALIZE PICK 3 before you request input from a pick-
class logical input device, DEC GKS uses the default input values. For more
information concerning the default input values, see the Device Specifics Reference
Manual for DEC GKS and DEC PHIGS.

See Also

SET PICK MODE
Example 9–2 for a program example using the INITIALIZE PICK function

9–50 Input Functions

INITIALIZE STRING

INITIALIZE STRING

Operating States

WSOP, WSAC, SGOP

Syntax

ginitstring (

Gint ws, /* (I) Workstation identifier. */
Gint dev, /* (I) String device number. */
Gchar *init, /* (I) Initial string. Once you request input,

the user can delete or edit the initial
string; otherwise, the newly input
string is appended to the initial
string. */

Gint pet, /* (I) String prompt and echo type. */
Glimit *area, /* (I) Echo area. */
Gstringrec *data /* (I) String data record. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef union { /* STRING DATA RECORD */
Gstringpet0001 stringpet1_datarec;

} Gstringrec;

typedef struct {
Gint bufsiz; /* buffer size */
Gint position; /* initial cursor position */
Gchar *title_string; /* the title string */

} Gstringpet0001;

Description

The INITIALIZE STRING function establishes the initial values of a string-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the initial string value, the prompt and echo type, the
echo area, and the data record. Subsequent requests for string input use the
values you specify.

If you do not call INITIALIZE STRING before you request input from the
string-class logical input device, DEC GKS uses the default input values.

Input Functions 9–51

INITIALIZE STRING

See Also

SET STRING MODE
Example 9–3 for a program example using the INITIALIZE STRING function

9–52 Input Functions

INITIALIZE STRING 3

INITIALIZE STRING 3

Operating States

WSOP, WSAC, SGOP

Syntax

ginitstring3 (

Gint ws, /* (I) Workstation identifier. */
Gint dev, /* (I) String device number. */
Gchar *init, /* (I) Initial string. Once you request input,

the user can delete or edit the initial
string; otherwise, the newly input
string is appended to the initial
string. */

Gint pet, /* (I) String prompt and echo type. */
Glimit3 *volume, /* (I) Echo volume. */
Gstringrec *data /* (I) String data record. */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef union { /* STRING DATA RECORD */
Gstringpet0001 stringpet1_datarec;

} Gstringrec;

typedef struct {
Gint bufsiz; /* buffer size */
Gint position; /* initial cursor position */
Gchar *title_string; /* the title string */

} Gstringpet0001;

Description

The INITIALIZE STRING 3 function establishes the initial values of a string-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the initial string value, the prompt and echo type, the
echo volume, and the data record. Subsequent requests for string input use the
values you specify.

If you do not call INITIALIZE STRING 3 before you request input from the
string-class logical input device, DEC GKS uses the default input values.

Input Functions 9–53

INITIALIZE STRING 3

See Also

SET STRING MODE
Example 9–3 for a program example using the INITIALIZE STRING function

9–54 Input Functions

INITIALIZE STROKE

INITIALIZE STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

ginitstroke (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gstroke *init, /* (I) Transformation, number of points, and

points */
Gint pet, /* (I) Prompt and echo type */
Glimit *area, /* (I) Echo area */
Gstrokerec *data /* (I) Stroke data record */

)

Data Structures

typedef struct { /* STROKE DATA */
Gint transform; /* normalization transformation number */
Gint n_points; /* number of points in stroke */
Gpoint *points; /* points in stroke */

} Gstroke;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef union { /* STROKE DATA RECORD */
Gstrokepet0001 strokepet1_datarec;
Gstrokepet0002 strokepet2_datarec;
Gstrokepet0003 strokepet3_datarec;
Gstrokepet0004 strokepet4_datarec;

} Gstrokerec;

typedef struct {
Gint bufsiz; /* input buffer size */
Gint editpos; /* editing position */
Gpoint interval; /* X, Y interval */
Gfloat time; /* time interval */
Gchar *data; /* device/implementation dependent data */

} Gstrokepet0001;

typedef Gstrokepet0001 Gstrokepet0002;

Input Functions 9–55

INITIALIZE STROKE

typedef struct {
Gint bufsiz; /* input buffer size */
Gint editpos; /* editing position */
Gpoint interval; /* X, Y interval */
Gfloat time; /* time interval */
Gacf acf; /* attribute control flag (constant) */
Gmkattr mk; /* marker attributes */
Gchar *data; /* device/implementation dependent data */

} Gstrokepet0003;

typedef struct { /* POLYMARKER ATTRIBUTES */
Gasf type; /* marker type ASF (constant) */
Gasf size; /* marker width ASF */
Gasf colour; /* marker color ASF */
Gint mark; /* marker index */
Gmkbundl bundl; /* marker bundle */

} Gmkattr;

typedef struct { /* POLYMARKER BUNDLE */
Gint type; /* marker type (constant) */
Gfloat size; /* marker size scale factor */
Gint colour; /* polymarker color index */

} Gmkbundl;

typedef struct {
Gint bufsiz; /* input buffer size */
Gint editpos; /* editing position */
Gpoint interval; /* X, Y interval */
Gfloat time; /* time interval */
Gacf acf; /* attribute control flag */
Glnattr ln; /* line attributes */
Gchar *data; /* device/implementation dependent data */

} Gstrokepet0004;

typedef struct { /* POLYLINE ATTRIBUTES */
Gasf type; /* line type ASF */
Gasf width; /* line width ASF */
Gasf colour; /* line color ASF */
Gint line; /* line index */
Glnbundl bundl; /* line bundle */

} Glnattr;

typedef struct { /* POLYLINE BUNDLE */
Gint type; /* line type (constant) */
Gfloat width; /* line width scale factor */
Gint colour; /* polyline color index */

} Glnbundl;

Constants

Data Type Constant Description

Gacf GCURRENT Input data record current values
GSPECIFIED Input data record specified values

Gasf GBUNDLED Bundled attributes
GINDIVIDUAL Individual attributes

Marker types GMK_POINT Dot
GMK_PLUS Plus sign
GMK_STAR Asterisk
GMK_O Circle
GMK_X Diagonal cross

9–56 Input Functions

INITIALIZE STROKE

Line types GLN_SOLID Solid line
GLN_DASHED Dashed line
GLN_DOTTED Dotted line
GLN_DASHDOT Dashed-dotted line

Description

The INITIALIZE STROKE function establishes the initial values of a stroke-class
logical input device only if the device’s prompt is not currently present on the
workstation surface. (The device must be in request mode.)

The initial values include the number of points in the initial stroke, the WC
points in the initial stroke, the normalization transformation number used to
translate WC points of the initial stroke to NDC points, the prompt and echo
type, the echo area, and the data record. Subsequent requests for stroke input
use the values you specify.

If you do not call INITIALIZE STROKE before you request input from a stroke-
class logical input device, DEC GKS uses the default input values.

See Also

SET STROKE MODE
SET VIEWPORT INPUT PRIORITY
Example 9–3 for a program example using an INITIALIZE . . . function

Input Functions 9–57

INITIALIZE STROKE 3

INITIALIZE STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

ginitstroke3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gstroke3 *init, /* (I) Transformation, number of points, and

points */
Gint pet, /* (I) Prompt and echo type */
Glimit3 *volume, /* (I) Echo volume */
Gstrokerec *data /* (I) Stroke data record */

)

Data Structures

typedef struct { /* STROKE 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index used in transformation */
Gint n_points; /* number of points in stroke */
Gpoint3 *points; /* points in stroke */

} Gstroke3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef union { /* STROKE DATA RECORD */
Gstrokepet0001 strokepet1_datarec;
Gstrokepet0002 strokepet2_datarec;
Gstrokepet0003 strokepet3_datarec;
Gstrokepet0004 strokepet4_datarec;

} Gstrokerec;

typedef struct {
Gint bufsiz; /* input buffer size */
Gint editpos; /* editing position */
Gpoint interval; /* X, Y interval */
Gfloat time; /* time interval */
Gchar *data; /* device/implementation dependent data */

} Gstrokepet0001;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

9–58 Input Functions

INITIALIZE STROKE 3

typedef Gstrokepet0001 Gstrokepet0002;

typedef struct {
Gint bufsiz; /* input buffer size */
Gint editpos; /* editing position */
Gpoint interval; /* X, Y interval */
Gfloat time; /* time interval */
Gacf acf; /* attribute control flag (constant) */
Gmkattr mk; /* marker attributes */
Gchar *data; /* device/implementation dependent data */

} Gstrokepet0003;

typedef struct { /* POLYMARKER ATTRIBUTES */
Gasf type; /* marker type ASF */
Gasf size; /* marker width ASF */
Gasf colour; /* marker color ASF */
Gint mark; /* marker index */
Gmkbundl bundl; /* marker bundle */

} Gmkattr;

typedef struct { /* POLYMARKER BUNDLE */
Gint type; /* marker type (constant) */
Gfloat size; /* marker size scale factor */
Gint colour; /* polymarker color index */

} Gmkbundl;

typedef struct {
Gint bufsiz; /* input buffer size */
Gint editpos; /* editing position */
Gpoint interval; /* X, Y interval */
Gfloat time; /* time interval */
Gacf acf; /* attribute control flag */
Glnattr ln; /* line attributes */
Gchar *data; /* device/implementation dependent data */

} Gstrokepet0004;

typedef struct { /* POLYLINE ATTRIBUTES */
Gasf type; /* line type ASF */
Gasf width; /* line width ASF */
Gasf colour; /* line color ASF */
Gint line; /* line index */
Glnbundl bundl; /* line bundle */

} Glnattr;

typedef struct { /* POLYLINE BUNDLE */
Gint type; /* line type (constant) */
Gfloat width; /* line width scale factor */
Gint colour; /* polyline color index */

} Glnbundl;

Constants

Data Type Constant Description

Gacf GCURRENT Input data record current values
GSPECIFIED Input data record specified values

Gasf GBUNDLED Bundled attributes
GINDIVIDUAL Individual attributes

Marker types GMK_POINT Dot
GMK_PLUS Plus sign
GMK_STAR Asterisk
GMK_O Circle
GMK_X Diagonal cross

Input Functions 9–59

INITIALIZE STROKE 3

Line types GLN_SOLID Solid line
GLN_DASHED Dashed line
GLN_DOTTED Dotted line
GLN_DASHDOT Dashed-dotted line

Description

The INITIALIZE STROKE 3 function establishes the initial values of a stroke-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the number of points in the initial stroke, the WC
values in the initial stroke, the normalization transformation number used to
translate WC points of the initial stroke to NDC points, the initial view index,
the prompt and echo type, the echo volume, and the data record. Subsequent
requests for stroke input use the values you specify.

If you do not call INITIALIZE STROKE 3 before you request input from a
stroke-class logical input device, DEC GKS uses the default input values.

See Also

SET STROKE MODE
SET VIEWPORT INPUT PRIORITY
Example 9–3 for a program example using an INITIALIZE . . . function

9–60 Input Functions

INITIALIZE VALUATOR

INITIALIZE VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

ginitval (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Valuator device number */
Gfloat init, /* (I) Initial value */
Gint pet, /* (I) Prompt and echo type */
Glimit *area, /* (I) Echo area */
Gvalrec *data /* (I) Valuator data record */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */

} Glimit;

typedef union { /* VALUATOR DATA RECORD */
Gvalpet_0001 valpet_1_datarec;
Gvalpet_0002 valpet_2_datarec;
Gvalpet_0003 valpet_3_datarec;
Gvalpet0001 valpet1_datarec;
Gvalpet0002 valpet2_datarec;
Gvalpet0003 valpet3_datarec;

} Gvalrec;

typedef Gvalpetneg0001 Gvalpet_0001;

typedef Gvalpet0001 Gvalpetneg0001;

typedef struct {
Gfloat low; /* low range limit */
Gfloat high; /* high range limit */
Gchar *title_string; /* the title string */

} Gvalpet0001;

typedef Gvalpetneg0002 Gvalpet_0002;

typedef Gvalpetneg0001 Gvalpetneg0002;

typedef Gvalpetneg0003 Gvalpet_0003;

typedef Gvalpetneg0001 Gvalpetneg0003;

typedef Gvalpet0001 Gvalpet0002;

typedef Gvalpet0001 Gvalpet0003;

Input Functions 9–61

INITIALIZE VALUATOR

Description

The INITIALIZE VALUATOR function establishes the initial values of a valuator-
class logical input device only if the device’s prompt is not currently present on
the workstation surface. (The device must be in request mode.)

The initial values include the initial valuator value, the prompt and echo type,
the echo area, and the data record. Subsequent requests for valuator input use
the values you specify.

If you do not call INITIALIZE VALUATOR before you request input from a
valuator-class logical input device, DEC GKS uses the default input values.

See Also

SET VALUATOR MODE
Example 9–4 for a program example using the INITIALIZE VALUATOR function

9–62 Input Functions

INITIALIZE VALUATOR 3

INITIALIZE VALUATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

ginitval3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Valuator device number */
Gfloat init, /* (I) Initial value */
Gint pet, /* (I) Prompt and echo type */
Glimit3 *volume, /* (I) Echo volume */
Gvalrec *data /* (I) Valuator data record */

)

Data Structures

typedef struct { /* COORDINATE LIMITS */
Gfloat xmin; /* X minimum limit */
Gfloat xmax; /* X maximum limit */
Gfloat ymin; /* Y minimum limit */
Gfloat ymax; /* Y maximum limit */
Gfloat zmin; /* Z minimum limit */
Gfloat zmax; /* Z maximum limit */

} Glimit3;

typedef union { /* VALUATOR DATA RECORD */
Gvalpet_0001 valpet_1_datarec;
Gvalpet_0002 valpet_2_datarec;
Gvalpet_0003 valpet_3_datarec;
Gvalpet0001 valpet1_datarec;
Gvalpet0002 valpet2_datarec;
Gvalpet0003 valpet3_datarec;

} Gvalrec;

typedef Gvalpetneg0001 Gvalpet_0001;

typedef Gvalpet0001 Gvalpetneg0001;

typedef struct {
Gfloat low; /* low range limit */
Gfloat high; /* high range limit */
Gchar *title_string; /* the title string */

} Gvalpet0001;

typedef Gvalpetneg0002 Gvalpet_0002;

typedef Gvalpetneg0001 Gvalpetneg0002;

typedef Gvalpetneg0003 Gvalpet_0003;

typedef Gvalpetneg0001 Gvalpetneg0003;

typedef Gvalpet0001 Gvalpet0002;

typedef Gvalpet0001 Gvalpet0003;

Input Functions 9–63

INITIALIZE VALUATOR 3

Description

The INITIALIZE VALUATOR 3 function establishes the initial values of a
valuator-class logical input device only if the device’s prompt is not currently
present on the workstation surface. (The device must be in request mode.)

The initial values include the initial valuator value, the prompt and echo type,
the echo volume, and the data record. Subsequent requests for valuator input use
the values you specify.

If you do not call INITIALIZE VALUATOR 3 before you request input from a
valuator-class logical input device, DEC GKS uses the default input values.

See Also

SET VALUATOR MODE
Example 9–4 for a program example using the INITIALIZE VALUATOR function

9–64 Input Functions

REQUEST CHOICE

REQUEST CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

greqchoice (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gqchoice *response /* (O) Status and choice number */

)

Data Structures

typedef struct { /* REQUEST CHOICE */
Gcstat status; /* request status (constant) */
Gint choice; /* choice data */

} Gqchoice;

Constants

Data Type Constant Description

Gcstat GC_OK Input obtained
GC_NOCHOICE Triggered without choosing
GC_NONE No input obtained

Description

The REQUEST CHOICE function prompts the user for input according to the
specifications passed to the INITIALIZE CHOICE and SET CHOICE MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument, and the
positive integer representing the user’s choice to the input argument.

If the user invokes a break action, the function returns NONE to the status
argument, and the value 0 to the input argument. For choice-class logical input
devices, the value 0 indicates a break; the status OK indicates input; and the
status NOCHOICE indicates that the user did not make a choice (input was
triggered without the cursor being moved).

See Also

INITIALIZE CHOICE
SET CHOICE MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–65

REQUEST LOCATOR

REQUEST LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

greqloc (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Locator device number */
Gqloc *response /* (O) Status, transformation, and

location */

)

Data Structures

typedef struct { /* REQUEST LOCATOR */
Gistat status; /* request status (constant) */
Gloc loc; /* locator data */

} Gqloc;

typedef struct { /* LOCATOR DATA */
Gint transform; /* normalization transformation number */
Gpoint position; /* locator position */

} Gloc;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Constants

Data Type Constant Description

Gistat GOK Input obtained
GNONE No input obtained

Description

The REQUEST LOCATOR function prompts the user for input according to the
specifications passed to the INITIALIZE LOCATOR and SET LOCATOR MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument and writes
the locator information to the output arguments. This information includes the
transformation number used to transform the device coordinate to a WC point,
and the corresponding WC point.

If the user invokes a break action, the function writes NONE to the status
argument and the input values are not valid.

For more information about the locator position and PETs, see the Device Specifics
Reference Manual for DEC GKS and DEC PHIGS.

9–66 Input Functions

REQUEST LOCATOR

See Also

INITIALIZE LOCATOR
SET LOCATOR MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–67

REQUEST LOCATOR 3

REQUEST LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

greqloc3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Locator device number */
Gqloc3 *response /* (O) Status, transformation, index, and

location */

)

Data Structures

typedef struct { /* REQUEST LOCATOR 3 DATA */
Gistat status; /* request status (constant) */
Gloc3 loc; /* request locator data */

} Gqloc3;

typedef struct { /* LOCATOR 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index */
Gpoint3 position; /* locator position */

} Gloc3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Constants

Data Type Constant Description

Gistat GOK Input obtained
GNONE No input obtained

Description

The REQUEST LOCATOR 3 function prompts the user for input according to the
specifications passed to the INITIALIZE LOCATOR 3 and SET LOCATOR MODE
functions, and returns the status and measure of the response.

If the user invokes a break action, the function writes NONE to the status
argument, and the input values are not valid.

If the user enters input, the function writes OK to the status argument and writes
the locator information to the output arguments. The information returned by
the REQUEST LOCATOR 3 function includes the locator position expressed as a
in WC point, the normalization transformation number used in the conversion to
a WC point, and the view index used in the conversion from an NPC point to an
NDC point.

9–68 Input Functions

REQUEST LOCATOR 3

See Also

INITIALIZE LOCATOR 3
SET LOCATOR MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–69

REQUEST PICK

REQUEST PICK

Operating States

WSOP, WSAC, SGOP

Syntax

greqpick (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gqpick *response /* (O) Status, segment identifier, and

pick identifier */

)

Data Structures

typedef struct { /* REQUEST PICK */
Gpstat status; /* request status (constant) */
Gint seg; /* segment */
Gint pickid; /* pick identifier */

} Gqpick;

Constants

Data Type Constant Description

Gpstat GP_OK Input obtained
GP_NOPICK Triggered without picking
GP_NONE Break during input

Description

The REQUEST PICK function prompts the user for input according to the
specifications passed to the INITIALIZE PICK and SET PICK MODE functions,
and returns the status and measure of the response.

If the user enters the input, the function writes OK to the status argument,
and writes the integers representing the name of the chosen segment and the
chosen pick identifier (see the SET PICK IDENTIFIER function) to the output
arguments.

If the user invokes a break action, the function returns NONE to the status
argument, and the input values are not valid. If the user triggered the input
measure before moving the prompt, or if the user triggers input while the cursor
is not positioned on a segment, this function writes NOPICK to the status
argument.

See Also

INITIALIZE PICK
SET PICK IDENTIFIER
SET PICK MODE
Example 9–3 for a program example using a REQUEST . . . function

9–70 Input Functions

REQUEST STRING

REQUEST STRING

Operating States

WSOP, WSAC, SGOP

Syntax

greqstring (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gqstring *response /* (O) Status and character string */

)

Data Structures

typedef struct { /* REQUEST STRING */
Gistat status; /* request status (constant) */
Gchar *string; /* string data */

} Gqstring;

Constants

Data Type Constant Description

Gistat GOK Input obtained
GNONE No input obtained

Note

Initialize the string field with a string, before the call. The string buffer
should be at least one more than the maximum possible string size. It is
best to specify the string buffer size as 256 characters.

Description

The REQUEST STRING function prompts the user for input according to the
specifications passed to the INITIALIZE STRING and SET STRING MODE
functions, and returns the status and measure of the response.

When you call this function, the following two buffers exist:

• The application’s string buffer, which you allocate before the call. You must
specify the size to be at least 1 byte larger than the maximum possible string
size.

• The logical input device’s string buffer, whose size you can specify in the call
to the INITIALIZE STRING function.

If the user enters input, the function writes OK to the status argument, and
writes the character string to the application’s buffer. If the entered string is
larger than the application’s buffer, then you lose all additional data. You must
make sure that your application’s buffer is as large as the device’s string buffer.

Input Functions 9–71

REQUEST STRING

If the user invokes a break action, the function returns NONE to the status
argument, and the input arguments are not valid.

See Also

INITIALIZE STRING
SET STRING MODE
Example 9–3 for a program example using the REQUEST STRING function

9–72 Input Functions

REQUEST STROKE

REQUEST STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

greqstroke (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gqstroke *response /* (O) Status, transformation, and stroke */

)

Data Structures

typedef struct { /* REQUEST STROKE */
Gistat status; /* request status (constant) */
Gstroke stroke; /* stroke data */

} Gqstroke;

typedef struct { /* STROKE DATA */
Gint transform; /* normalization transformation number */
Gint n_points; /* number of points in stroke */
Gpoint *points; /* points in stroke */

} Gstroke;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Constants

Data Type Constant Description

Gistat GOK Input obtained
GNONE No input obtained

Note

The field n_points should be initialized with the number representing the
maximum number of points that will fit in the points buffer. It will be
updated to indicate the total number of points in the stroke.

Description

The REQUEST STROKE function prompts the user for input according to the
specifications passed to the INITIALIZE STROKE and SET STROKE MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument, and
writes the normalization transformation number used to translate the device
coordinate points to WC points, the total number of points in the stroke, and as
many of the stroke points as will fit in the buffer.

Input Functions 9–73

REQUEST STROKE

When you call this function, the following two buffers exist:

• The application’s stroke buffer, which you allocate before the call. You must
specify the buffer size in the n_points field.

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE function.

DEC GKS can return points up to the size of the allocated application buffer. If
the size of the entered stroke is larger than the number of points placed in the
application’s buffer, you lose all additional data. You must make sure that your
application’s buffer is as large as the device’s stroke buffer.

If the user invokes a break action, the function returns NONE to the status
argument, and the input values are not valid.

See Also

INITIALIZE STROKE
SET STROKE MODE
Example 9–3 for a program example using a REQUEST . . . function

9–74 Input Functions

REQUEST STROKE 3

REQUEST STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

greqstroke3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gqstroke3 *response, /* (O) Status, transformation, view, and

stroke */

)

Data Structures

typedef struct { /* REQUEST STROKE 3 DATA */
Gistat status; /* request stroke status (constant) */
Gstroke3 stroke; /* request stroke data */

} Gqstroke3;

typedef struct { /* STROKE 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index used in transformation */
Gint n_points; /* number of points in stroke */
Gpoint3 *points; /* points in stroke */

} Gstroke3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Constants

Data Type Constant Description

Gistat GOK Input obtained
GNONE No input obtained

Note

The field n_points should be initialized with the number representing the
maximum number of points that will fit in the points buffer. It will be
updated to indicate the total number of points in the stroke.

Input Functions 9–75

REQUEST STROKE 3

Description

The REQUEST STROKE 3 function prompts the user for input according to the
specifications passed to the INITIALIZE STROKE 3 and SET STROKE MODE
functions, and returns the status and measure of the response.

If the user enters input, the function writes OK to the status argument and
writes the normalization transformation number used to translate the device
coordinates to WC points. It also writes the view index, the total number of
points in the stroke, and as many of the stroke points as will fit in the buffer.

When you call this function, two buffers exist:

• The application’s STROKE buffer, which you allocate before the call. You
must specify the buffer size in the n_points field.

• The logical input device’s STROKE buffer, whose size is specified in the call to
the INITIALIZE STROKE 3 function.

DEC GKS can return a number of points up to the size of the application’s buffer.
If the size of the entered stroke is larger than the number of points placed in the
application’s buffer, all additional data is lost.

If the user invokes a break action, the function returns NONE to the status
argument and the input values are not valid.

See Also

INITIALIZE STROKE 3
SET STROKE MODE
Example 9–3 for a program example using a REQUEST . . . function

9–76 Input Functions

REQUEST VALUATOR

REQUEST VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

greqval (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gqval *response /* (O) Status, transformation, and stroke */

)

Data Structures

typedef struct { /* REQUEST VALUATOR */
Gistat status; /* request status (constant) */
Gfloat val; /* valuator data */

} Gqval;

Constants

Data Type Constant Description

Gistat GOK Input obtained
GNONE No input obtained

Description

The REQUEST VALUATOR function prompts the user for input according to
the specifications passed to the INITIALIZE VALUATOR and SET VALUATOR
MODE functions, and returns the status and measure of the response.

If the user accepts the input, the function writes OK to the status argument, and
the selected real number to the valuator data.

If the user invokes a break action, the function returns NONE to the status
argument, and the input value is not valid.

See Also

INITIALIZE VALUATOR
SET VALUATOR MODE
Example 9–3 for a program example using a REQUEST . . . function

Input Functions 9–77

SAMPLE CHOICE

SAMPLE CHOICE

Operating States

WSOP, WSAC, SGOP

Syntax

gsamplechoice (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gchoice *response /* (O) Status and choice number */

)

Data Structures

typedef struct { /* CHOICE DATA */
Gcstat status; /* choice status (constant) */
Gint choice; /* choice number */

} Gchoice;

Constants

Data Type Constant Description

Gcstat GC_OK Input obtained
GC_NOCHOICE Sampled without choosing

Description

The SAMPLE CHOICE function writes the current measure of the specified
choice-class logical input device to the corresponding output argument.

If the input is valid, the function writes OK to the status argument and writes
the positive integer representing the user’s choice to the input argument.

If the initial choice status is NOCHOICE, and if the user did not move the prompt
from its initial position, this function writes NOCHOICE to the status argument.
This indicates that the user has not yet made a choice.

See Also

SET CHOICE MODE

9–78 Input Functions

SAMPLE LOCATOR

SAMPLE LOCATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gsampleloc (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Locator device number */
Gloc *response /* (O) Normalization transformation and

location */

)

Data Structures

typedef struct { /* LOCATOR DATA */
Gint transform; /* normalization transformation number */
Gpoint position; /* locator position */

} Gloc;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Description

The SAMPLE LOCATOR function writes the current measure of the specified
locator-class logical input device and the corresponding normalization
transformation number to the appropriate output arguments.

See Also

SET LOCATOR MODE

Input Functions 9–79

SAMPLE LOCATOR 3

SAMPLE LOCATOR 3

Operating States

WSOP, WSAC, SGOP

Syntax

gsampleloc3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Locator device number */
Gloc3 *response /* (O) Transformation, view index, and location */

)

Data Structures

typedef struct { /* LOCATOR 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index */
Gpoint3 position; /* locator position */

} Gloc3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Description

The SAMPLE LOCATOR 3 function writes the current measure of the
specified locator-class logical input device and the corresponding normalization
transformation number to the appropriate output arguments.

The SAMPLE LOCATOR 3 function returns the view index of the view mapping
transformation last used to translate the NPC points to NDC points. See the
DEC GKS User’s Guide for more information on view indexes.

See Also

SET LOCATOR MODE

9–80 Input Functions

SAMPLE PICK

SAMPLE PICK

Operating States

WSOP, WSAC, SGOP

Syntax

gsamplepick (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gpick *response /* (O) Status, segment identifier, and

pick identifiers */

)

Data Structures

typedef struct { /* PICK DATA */
Gpstat status; /* pick status (constant) */
Gint seg; /* pick segment */
Gint pickid; /* pick identifier */

} Gpick;

Constants

Data Type Constant Description

Gpstat GP_OK Input obtained
GP_NOPICK Sampled without picking

Description

The SAMPLE PICK function writes the current measure of the specified pick-
class logical input device to the corresponding output argument. This function
writes OK to the status argument and writes the positive integers representing
the picked segment and the pick identifier to the output arguments if the input is
valid.

If the initial choice status is NOPICK, and if the user did not move the prompt,
this function writes NOPICK to the status argument. This indicates that the user
did not pick a segment yet. The logical input device also returns NOPICK if the
user moved the prompt but the aperture is not touching a segment at the time of
the sample.

See Also

SET PICK MODE
Example 9–2 for a program example using the SAMPLE PICK function

Input Functions 9–81

SAMPLE STRING

SAMPLE STRING

Operating States

WSOP, WSAC, SGOP

Syntax

gsamplestring (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gchar *response /* (O) Returned character string */

)

Note

Initialize the response argument with a string, before the call. The string
buffer you give to this call should be at least one more than the maximum
possible string size. It is best to specify the string buffer size as 256
characters.

Description

The SAMPLE STRING function writes the current measure of the specified
string-class logical input device to the appropriate output arguments.

When you call this function, the following two buffers exist:

• The application’s string buffer, which you allocate before the call. You must
specify the size to be at least 1 byte larger than the maximum possible string
size.

• The logical input device’s string buffer, whose size you can specify in the call
to the INITIALIZE STRING function.

When sampling a string, DEC GKS takes the first characters in the entered text
string, including any initial prompt, up to the number of characters specified by
the size of the application’s buffer. If the size of the entered string is larger than
the number of characters placed in the application’s buffer, DEC GKS performs
the following tasks:

• Removes the sampled string (the size of the application’s buffer) from the
device’s buffer.

• Places the sampled string in the application’s buffer.

• Leaves any remaining characters in the device’s buffer. You need to call this
function again to access the remaining characters.

See Also

INITIALIZE STRING
SET STRING MODE

9–82 Input Functions

SAMPLE STROKE

SAMPLE STROKE

Operating States

WSOP, WSAC, SGOP

Syntax

gsamplestroke (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gstroke *response /* (O) Status, transformation, and stroke */

)

Data Structures

typedef struct { /* STROKE DATA */
Gint transform; /* normalization transformation number */
Gint n_points; /* number of points in stroke */
Gpoint *points; /* points in stroke */

} Gstroke;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */

} Gpoint;

Note

The field n_points should be initialized with the number representing the
maximum number of points that will fit in the points buffer. It will be
updated to indicate the total number of points in the stroke.

Description

The SAMPLE STROKE function writes the current measure of the specified
stroke-class logical input device to the corresponding output arguments.

When you call this function, the following two buffers exist:

• The application’s stroke buffer, which you must allocate before the call. You
must specify the buffer size in the n_points field.

• The logical input device’s stroke buffer, whose size you can specify in the call
to the INITIALIZE STROKE function.

When sampling stroke input, DEC GKS accepts any initial stroke points
and translates them according to the current normalization transformation.
DEC GKS can accept points up to the number specified by the size of the
application’s buffer. If the size of the entered stroke is larger than the number of
stroke points placed in the application’s buffer, DEC GKS performs the following
tasks:

• Removes the sampled stroke (the size of the application’s buffer) from the
device’s buffer.

Input Functions 9–83

SAMPLE STROKE

• Places the sampled stroke in the application’s buffer.

• Leaves any remaining points in the device’s buffer. You need to call this
function again to access the remaining stroke points.

See Also

INITIALIZE STROKE
SET STROKE MODE

9–84 Input Functions

SAMPLE STROKE 3

SAMPLE STROKE 3

Operating States

WSOP, WSAC, SGOP

Syntax

gsamplestroke3 (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gstroke3 *response /* (O) Transformation, view index, and

stroke */

)

Data Structures

typedef struct { /* STROKE 3 DATA */
Gint transform; /* normalization transformation number */
Gint view; /* view index used in transformation */
Gint n_points; /* number of points in stroke */
Gpoint3 *points; /* points in stroke */

} Gstroke3;

typedef struct { /* COORDINATE POINT */
Gfloat x; /* X coordinate */
Gfloat y; /* Y coordinate */
Gfloat z; /* Z coordinate */

} Gpoint3;

Note

The field n_points should be initialized with the number representing the
maximum number of points that will fit in the points buffer. It will be
updated to indicate the total number of points returned in the stroke.

Description

The SAMPLE STROKE 3 function writes the current measure of the specified
stroke-class logical input device to the corresponding output arguments. The
measure consists of a sequence of WC points, the normalization transformation
number used in the conversion to WC points, and the view index used to convert
the NPC points to NDC points.

When you call this function, the following two buffers exist:

• The application’s stroke buffer, which you allocate before the call. You must
specify the buffer size in the n_points field.

• The logical input device’s stroke buffer, whose size is specified in the call to
the INITIALIZE STROKE 3 function.

Input Functions 9–85

SAMPLE STROKE 3

When sampling stroke input, DEC GKS accepts any initial stroke points
and translates them according to the current normalization transformation.
DEC GKS can accept points up to the number specified by the size of the
application’s buffer. If the size of the entered stroke is larger than the number of
stroke points placed in the application’s buffer, DEC GKS performs the following
tasks:

• Removes the sampled stroke (the size of the application’s buffer) from the
device’s buffer.

• Places the sampled stroke in the application’s buffer.

• Leaves any remaining points in the device’s buffer. This function must be
called again to access the remaining stroke points.

See Also

INITIALIZE STROKE 3
SET STROKE MODE

9–86 Input Functions

SAMPLE VALUATOR

SAMPLE VALUATOR

Operating States

WSOP, WSAC, SGOP

Syntax

gsampleval (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Stroke device number */
Gfloat *response /* (O) Returned value */

)

Description

The SAMPLE VALUATOR function writes the current measure of the specified
valuator-class logical input device to the corresponding output argument.

See Also

SET VALUATOR MODE
Example 9–4 for a program example using the SAMPLE VALUATOR function

Input Functions 9–87

SET CHOICE MODE

SET CHOICE MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetchoicemode (

Gint ws, /* (I) Workstation identifer */
Gint dev, /* (I) Input device number */
Gimode mode, /* (I) Operating mode (constant) */
Gesw echo /* (I) Echo flag (constant) */

)

Constants

Data Type Constant Description

Gimode GREQUEST Request mode. This is the default value.
GSAMPLE Sample mode.
GEVENT Event mode.

Gesw GECHO Echo enabled. This is the default value.
GNOECHO Echo disabled.

Description

The SET CHOICE MODE function sets the specified choice device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified choice device.

See Also

INITIALIZE CHOICE
Example 9–1 for a program example using a SET . . . MODE function

9–88 Input Functions

SET LOCATOR MODE

SET LOCATOR MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetlocmode (

Gint ws, /* (I) Workstation identifer */
Gint dev, /* (I) Input device number */
Gimode mode, /* (I) Operating mode (constant) */
Gesw echo /* (I) Echo flag (constant) */

)

Constants

Data Type Constant Description

Gimode GREQUEST Request mode. This is the default value.
GSAMPLE Sample mode.
GEVENT Event mode.

Gesw GECHO Echo enabled. This is the default value.
GNOECHO Echo disabled.

Description

The SET LOCATOR MODE function sets the specified locator device to the
specified operating mode and sets the echo state of the device as specified.
Depending on the input operating mode, an interaction with the device may begin
or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified locator device.

See Also

INITIALIZE LOCATOR
Example 9–1 for a program example using the SET LOCATOR MODE function

Input Functions 9–89

SET PICK MODE

SET PICK MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetpickmode (

Gint ws, /* (I) Workstation identifer */
Gint dev, /* (I) Input device number */
Gimode mode, /* (I) Operating mode (constant) */
Gesw echo /* (I) Echo flag (constant) */

)

Constants

Data Type Constant Description

Gimode GREQUEST Request mode. This is the default value.
GSAMPLE Sample mode.
GEVENT Event mode.

Gesw GECHO Echo enabled. This is the default value.
GNOECHO Echo disabled.

Description

The SET PICK MODE function sets the specified pick device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified pick device.

See Also

INITIALIZE PICK
Example 9–2 for a program example using the SET PICK MODE function

9–90 Input Functions

SET STRING MODE

SET STRING MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetstringmode (

Gint ws, /* (I) Workstation identifer */
Gint dev, /* (I) Input device number */
Gimode mode, /* (I) Operating mode (constant) */
Gesw echo /* (I) Echo flag (constant) */

)

Constants

Data Type Constant Description

Gimode GREQUEST Request mode. This is the default value.
GSAMPLE Sample mode.
GEVENT Event mode.

Gesw GECHO Echo enabled. This is the default value.
GNOECHO Echo disabled.

Description

The SET STRING MODE function sets the specified string device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified string device.

See Also

INITIALIZE STRING
Example 9–1 for a program example using a SET . . . MODE function

Input Functions 9–91

SET STROKE MODE

SET STROKE MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetstrokemode (

Gint ws, /* (I) Workstation identifer */
Gint dev, /* (I) Input device number */
Gimode mode, /* (I) Operating mode (constant) */
Gesw echo /* (I) Echo flag (constant) */

)

Constants

Data Type Constant Description

Gimode GREQUEST Request mode. This is the default value.
GSAMPLE Sample mode.
GEVENT Event mode.

Gesw GECHO Echo enabled. This is the default value.
GNOECHO Echo disabled.

Description

The SET STROKE MODE function sets the specified stroke device to the specified
operating mode and sets the echo state of the device as specified. Depending on
the input operating mode, an interaction with the device may begin or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified stroke device.

See Also

INITIALIZE STROKE
Example 9–1 for a program example using a SET . . . MODE function

9–92 Input Functions

SET VALUATOR MODE

SET VALUATOR MODE

Operating States

WSOP, WSAC, SGOP

Syntax

gsetvalmode (

Gint ws, /* (I) Workstation identifier */
Gint dev, /* (I) Input device number */
Gimode mode, /* (I) Operating mode (constant) */
Gesw echo /* (I) Echo flag */

)

Constants

Data Type Constant Description

Gimode GREQUEST Request mode. This is the default value.
GSAMPLE Sample mode.
GEVENT Event mode.

Gesw GECHO Echo enabled. This is the default value.
GNOECHO Echo disabled.

Description

The SET VALUATOR MODE function sets the specified valuator device to the
specified operating mode and sets the echo state of the device as specified.
Depending on the input operating mode, an interaction with the device may begin
or end.

The input device state defined by the operating mode and the echo switch are
stored in the workstation state list for the specified valuator device.

See Also

INITIALIZE VALUATOR
Example 9–4 for a program example using the SET VALUATOR MODE function

Input Functions 9–93

Input Functions
9.9 Program Examples

9.9 Program Examples
Example 9–1 illustrates the use of a locator-class logical input device in event
mode. The program places a tracking plus sign (+) on the screen.

Example 9–1 Using a Locator-Class Logical Input Device in Event Mode

/*
* This program initializes and samples locator events. Some of
* the calls it uses include: INQUIRE LOCATOR STATE,
* SET LOCATOR MODE, and INITIALIZE LOCATOR.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding header file */

define DEV_NUM_1 1
define LOC_PET 1

main ()
{

Glimit area; /* echo area */
Gint bufsize; /* allocated record buffer size */
Gconn conid = GWC_DEF;
Glocrec data; /* locator data record */
Gint dev; /* device number */
Gint error; /* error indicator */
Gevent event; /* event, workstation class, and device number */
Gloc init; /* initial transformation, view, and location */
Gint pet; /* prompt and echo type */
Gpoint position1; /* WC position of the text string */
Gpoint position2; /* WC position of the text string */
Gpoint position3; /* WC position of the text string */
Gpoint position4; /* WC position of the text string */
Gpoint position5; /* WC position of the text string */
Gpoint position6; /* WC position of the text string */
Gloc response; /* normalization, transformation, and location */
Glocst state; /* returned data structure */
Gint state_size; /* required record buffer size */
Gfloat timeout; /* maximum wait period (in seconds) */
Gint ws = 1;
Gwstype wstype = GWS_DEF;

/*
* Open the graphics environment: open GKS, open the workstation,
* activate the workstation, and set the deferral state.
*/

gopengks (0, 0);
gopenws (ws, &conid, &wstype);
gactivatews (ws);
gsetdeferst (ws, GASAP, GALLOWED);

(continued on next page)

9–94 Input Functions

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

/*
* Use INQUIRE LOCATOR DEVICE STATE to initialize the variables
* you need to pass to the input functions.
*
* GREALIZED tells the graphics handler to return the input values
* as they are implemented. (Use GSET to return the values the way
* the application set them.)
*
* After the function call, bufsize contains the amount of the
* buffer filled with the written data record. If state_size is
* larger than bufsize, GKS truncated the data record to fit into
* the declared buffer.
*
* state.record is a dummy argument. The device handler ignores the
* data record for all supported locator prompt and echo types.
*
* state.e_area is a structure of real numbers that represent the
* rectangular echo area in device coordinates. The echo area defines
* a part of the workstation surface from which GKS accepts input
* from the input prompt.
*/

dev = DEV_NUM_1;
bufsize = sizeof (Glocrec);

ginqlocst (ws, dev, GREALIZED, bufsize, &state_size,
&state, &error);

/* Check to see if the error status is NO_ERROR */

if (error != 0)
{
gmessage (ws, "The error status is not 0");
goto PROGRAM_END;
}

/* Set the initial position of the input prompt. */

state.loc.position.x = 0.9;
state.loc.position.y = 0.0;

/* Initialize the logical input device. */

area = state.e_area;
data = state.record;
init.transform = state.loc.transform;
init.position = state.loc.position;
pet = LOC_PET;

ginitloc (ws, dev, &init, pet, &area, &data);

/* Activate the logical input device by placing it in event mode. */

gsetlocmode (ws, dev, GEVENT, GECHO);

(continued on next page)

Input Functions 9–95

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

/* Instruct the user. */

position1.x = 0.05;
position1.y = 0.95;

position2.x = 0.05;
position2.y = 0.90;

gsetcharheight (0.03);
gtext (&position1, "Move the input prompt upwards.");
gtext (&position2, "Trigger until I say when to stop.");

/*
* Do until the user moves the input prompt closest to the top
* of the workstation surface.
*/

position3.x = 0.05;
position3.y = 0.85;

position4.x = 0.05;
position4.y = 0.80;

position5.x = 0.05;
position5.y = 0.75;

position6.x = 0.05;
position6.y = 0.70;

/*
* In the while loop, the call to AWAIT EVENT immediately checks
* the input queue (as specified by the timeout argument of 0.0).
* If the user has not yet entered an event or if the application
* has removed all reports generated so far, AWAIT EVENT returns
* GNCLASS to its event.class argument.
*
* This program uses only the locator input class to generate
* events. The if statement keeps calling GET LOCATOR as long as
* the event.class argument is GLOCATOR. The program stops calling
* GET LOCATOR when the event.class argument becomes GNCLASS.
*/

timeout = 0.0;

while (response.position.y < 0.9)
{
gawaitevent (timeout, &event);

if (event.class != GNCLASS)
ggetloc (&response);

/* Tease the user as the input prompt gets closer. */

if ((response.position.y > 0.1) && (response.position.y < 0.5))
gtext (&position3, "You are still far away.");

if ((response.position.y > 0.5) && (response.position.y < 0.7))
gtext (&position4, "You are getting closer.");

if ((response.position.y > 0.7) && (response.position.y < 0.9))
gtext (&position5, "You are REALLY close.");

}

(continued on next page)

9–96 Input Functions

Input Functions
9.9 Program Examples

Example 9–1 (Cont.) Using a Locator-Class Logical Input Device in Event
Mode

gtext (&position6, "YOU MADE IT!!!");

/*
* Deactivate the logical input device by placing it in request mode.
* (You only have to deactivate the device, though, if you are going
* to use a different type of input operating mode besides event later
* in the program.)
*/

gsetlocmode (ws, dev, GREQUEST, GECHO);

PROGRAM_END:

/*
* Deactivate the workstation, close the workstation, and
* close GKS.
*/

gdeactivatews (ws);
gclosews (ws);
gclosegks ();

}

Figure 9–2 shows a workstation screen after the user has moved the input
prompt near the top of the screen.

Input Functions 9–97

Input Functions
9.9 Program Examples

Figure 9–2 Input Prompt Near the Top of the Screen

ZK−4076A−GE

Example 9–2 illustrates the use of the SAMPLE PICK function.

Example 9–2 Using a Pick-Class Logical Input Device in Sample Mode

/*
* This program initializes and samples pick input. Some of the
* calls include: SET FILL INTERIOR STYLE, SET PICK ID,
* SET FILL COLOUR INDEX, FILL AREA, CREATE SEGMENT, CLOSE SEGMENT,
* SET TEXT HEIGHT, TEXT, INQUIRE PICK DEVICE STATE, INITIALIZE PICK,
* SET PICK MODE, and SAMPLE PICK.
*/

include <stdio.h>
include <gks.h> /* GKS C binding header file */

(continued on next page)

9–98 Input Functions

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode

define DEV_NUM_1 1
define LOC_PET 1

main ()
{

/*
* state.e_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*/

Glimit area;
Gint box_1;
Gint box_2;
Gint bufsize;
Gint color_index;
Gpickrec data;
Gconn default_conid;
Gwstype default_wstype;
Gint dev;
Gint error;
Gpick init;
Gint npoints;
Gint pet;
Gpoint points[4];
Gpoint position1;
Gpoint position2;
Gpoint position3;
Gpoint position4;
Gpoint position5;
Gpoint position6;
Gpoint position7;
Gpoint position8;
Gpoint position9;
Gpoint position10;
Gpick response;
Gpickst state;
Gint state_size;
Gint triangle_1;
Gint triangle_2;
Gint ws_id;

/*
* Open the graphics environment: open GKS, open the workstation,
* activate the workstation, and set the deferral state.
*/

ws_id = 1;
default_conid = GWC_DEF;
default_wstype = GWS_DEF;

gopengks (0, 0);
gopenws (ws_id, &default_conid, &default_wstype);
gactivatews (ws_id);
gsetdeferst (ws_id, GASAP, GALLOWED);

(continued on next page)

Input Functions 9–99

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode
/* Create the divided boxes. */

gsetfillintstyle (GSOLID);

/* Establish the position of the first box.
*
* Create the box on the left side of the workstation surface
* and place it in a segment. Divide the box diagonally and
* set pick identifiers for each of the created triangles.
*/

box_1 = 1;
color_index = 2;
npoints = 4;
points[0].x = 0.1;
points[0].y = 0.3;
points[1].x = 0.4;
points[1].y = 0.6;
points[2].x = 0.1;
points[2].y = 0.6;
points[3].x = 0.1;
points[3].y = 0.3;
triangle_1 = 1;
triangle_2 = 2;

gcreateseg (box_1);
gsetpickid (triangle_1);
gsetfillcolourind (color_index);
gfillarea (npoints, points);

color_index = 3;
points[2].x = 0.4;
points[2].y = 0.3;

gsetpickid (triangle_2);
gsetfillcolourind (color_index);
gfillarea (npoints, points);
gcloseseg ();

/* Establish the position of the second box. */

points[0].x = 0.6;
points[1].x = 0.9;
points[2].x = 0.6;
points[2].y = 0.6;
points[3].x = 0.6;

/*
* Create the box on the right side of the workstation surface
* and place it in a segment. Divide the box diagonally and
* set pick identifiers for each of the created triangles.
*/

gsetpickid (triangle_1);

box_2 = 2;
color_index = 2;

gcreateseg (box_2);
gsetfillcolourind (color_index);
gfillarea (npoints, points);

color_index = 3;
points[2].x = 0.9;
points[2].y = 0.3;

(continued on next page)

9–100 Input Functions

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode

gsetpickid (triangle_2);
gsetfillcolourind (color_index);
gfillarea (npoints, points);
gcloseseg ();

gsetdet (box_1, GDETECTABLE);
gsetdet (box_2, GDETECTABLE);

/* Label the triangles by their pick identifiers. */

position1.x = 0.20;
position1.y = 0.45;

position2.x = 0.30;
position2.y = 0.45;

position3.x = 0.70;
position3.y = 0.45;

position4.x = 0.80;
position4.y = 0.45;

gsetcharheight (0.03);
gtext (&position1, "1");
gtext (&position2, "2");
gtext (&position3, "1");
gtext (&position4, "2");

/*
* Use INQUIRE PICK DEVICE STATE to initialize the variables for
* passing the input function.
*
* GREALIZED tells the graphics handler to return the input values
* as they are implemented. (Use GSET to return the values the
* way the application set them.)
*/

dev = DEV_NUM_1;
bufsize = sizeof (Gpickst);

ginqpickst (ws_id, dev, GREALIZED, bufsize, &state_size, &state,
&error);

/* Check to see if the error status is NO_ERROR. */

if (error != 0)
{
gmessage (ws_id, "The error status is not 0.");
goto PROGRAM_END;

}

/*
* Use INITIALIZE PICK to initialize the logical input device.
* Assign new values to the input variables.
*/

area = state.e_area;
data = state.record;
init.pickid = state.pick.pickid;
init.seg = state.pick.seg;
init.status = state.pick.status;

(continued on next page)

Input Functions 9–101

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode
pet = LOC_PET;
state.pick.pickid = triangle_1;
state.pick.seg = box_1;
state.pick.status = GP_NOPICK;

ginitpick (ws_id, dev, &init, pet, &area, &data);

/*
* Activate the logical input device by placing it in sample mode.
* The input prompt now appears on the workstation surface and the
* user can change the measure of the device.
*/

gsetpickmode (ws_id, dev, GSAMPLE, GECHO);

/* Tell the user the task. */

position5.x = 0.05;
position5.y = 0.95;

position6.x = 0.05;
position6.y = 0.90;

gsetcharheight (0.03);
gtext (&position5, "Move the cursor to a triangle.");
gtext (&position6, "I will say if it is correct.");

/*
* Retrieve the current input value without the user having to
* trigger the device by using SAMPLE PICK. The while loop ends
* when the user picks the second triangle in the second box.
*/

position7.x = 0.05;
position7.y = 0.85;

position8.x = 0.05;
position8.y = 0.80;

position9.x = 0.05;
position9.y = 0.75;

position10.x = 0.05;
position10.y = 0.70;

while ((response.seg != 2) || (response.pickid != 2))
{
gsamplepick (ws_id, dev, &response);

/* Tease the user. */

if ((response.seg == 1) && (response.pickid == 1))
gtext (&position7, "You are pretty far away.");

if ((response.seg == 1) && (response.pickid == 2))
gtext (&position8, "You are getting closer.");

(continued on next page)

9–102 Input Functions

Input Functions
9.9 Program Examples

Example 9–2 (Cont.) Using a Pick-Class Logical Input Device in Sample Mode

if ((response.seg == 2) && (response.pickid == 1))
gtext (&position9, "You are REALLY close.");
}

gtext (&position10, "YOU MADE IT!!!");

/*
* Deactivate the logical input device by placing it in request mode.
* The device handler removes the input prompt from the workstation
* surface and the user can no longer enter input.
*/

gsetpickmode (ws_id, dev, GREQUEST, GECHO);

PROGRAM_END:

/*
* Deactivate the workstation, close the workstation, and
* close GKS.
*/

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

}

Figure 9–3 shows the workstation surface when the user picks the correct
triangle.

Input Functions 9–103

Input Functions
9.9 Program Examples

Figure 9–3 Picking the Correct Triangle

ZK−4077A−GE

1 1 22

Example 9–3 illustrates the use of the INITIALIZE STRING function.

Example 9–3 Using a String-Class Logical Input Device in Request Mode

/*
* This program initializes and requests string input. Some of the
* calls it uses include: INQUIRE STRING STATE, INITIALIZE STRING,
* SET STRING MODE, and REQUEST STRING.
*
* NOTE: To keep the example concise, no error checking is performed.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definition file */

(continued on next page)

9–104 Input Functions

Input Functions
9.9 Program Examples

Example 9–3 (Cont.) Using a String-Class Logical Input Device in Request
Mode

define DEV_NUM_1 1
define LOC_PET 1
define STRING_SIZE 80

main ()
{

/*
* state.record contains the buffer length and the initial
* editing position for all logical input prompt and echo types.
* The buffer can be only as long as the maximum size the workstation
* supports. To obtain the maximum buffer size, call
* INQUIRE DEFAULT STRING DEVICE DATA.
*
* state.e_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*
* The defined string variables contain a string that is the length of
* the terminal screen. You can change the maximum size of the input
* string every time you initialize the string logical input device by
* changing the value associated with the buffer length.
*/

Glimit area;
Gint bufsize;
Gconn default_conid;
Gwstype default_wstype;
Gint dev;
Gint error;
Gchar *init = "GKS>";
Gint pet;
Gqstring response;
Gstringst state;
Gint state_size;
Gchar string[256];
Gstringrec stringrec;
Gwstype type;
Gint ws_id;

/*
* Open the graphics environment: open GKS, open the workstation,
* activate the workstation, and set the deferral state.
*/

ws_id = 1;
default_conid = GWC_DEF;
default_wstype = GWS_DEF;

gopengks (0, 0);
gopenws (ws_id, &default_conid, &default_wstype);
gactivatews (ws_id);
gsetdeferst (ws_id, GASAP, GALLOWED);

/*
* Use INQUIRE STRING DEVICE STATE to initialize the variables
* you need to pass to the input functions.
*/

(continued on next page)

Input Functions 9–105

Input Functions
9.9 Program Examples

Example 9–3 (Cont.) Using a String-Class Logical Input Device in Request
Mode

bufsize = sizeof (Gstringst);
dev = DEV_NUM_1;
state.string = string;

ginqstringst (ws_id, dev, bufsize, &state_size, &state, &error);

/* Check to see if the error status is NO_ERROR. */

if (error != 0)
{
gmessage (ws_id, "The error status is not 0.");
goto PROGRAM_END;
}

/* Assign new values to the input variables. */

area = state.e_area;
pet = LOC_PET;
stringrec.stringpet1_datarec.position = 1;
stringrec.stringpet1_datarec.bufsiz = STRING_SIZE;
stringrec.stringpet1_datarec.data = state.record.stringpet1_datarec.data;

/* Initialize the logical input device. */

ginitstring (ws_id, dev, init, pet, &area, &stringrec);

/* Activate the logical input device by calling REQUEST STRING. */

response.string = string;

greqstring (ws_id, dev, &response);

PROGRAM_END:

/*
* Deactivate the workstation, close the workstation, and
* close GKS.
*/

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

/* Output the input string and its size. */

printf ("%s \n",response.string);
}

9–106 Input Functions

Input Functions
9.9 Program Examples

Figure 9–4 shows a workstation screen at the request for input.

Figure 9–4 Requesting Input from a String-Class Logical Input Device in
Request Mode

ZK−4078A−GE

Example 9–4 illustrates the use of the SAMPLE VALUATOR function.

Example 9–4 Using a Valuator-Class Logical Input Device in Sample Mode

/*
* This program initializes and samples valuator input. Some of
* the calls include: INQUIRE VALUATOR STATE, INITIALIZE VALUATOR,
* SET VALUATOR MODE, and SAMPLE VALUATOR, EVALUATE TRANSFORMATION
* MATRIX, and SET SEGMENT TRANSFORMATION.
*/

include <stdio.h>
include <gks.h> /* GKS C binding definition file */

define DEV_NUM_1 1
define LOC_PET 1

(continued on next page)

Input Functions 9–107

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

main ()
{
/*
* state.e_area is an array of real numbers that represent the
* rectangular echo area, in device coordinates. The echo area
* defines the workstation surface from which GKS accepts input
* from the input prompt.
*
* The graphics handler uses two parts of the valuator input data
* record for prompt and echo type 1: the real value representing
* an upper limit and another real value representing a lower limit.
*
* Your terminal might support one of three valuator prompt and echo
* types represented by the integers 1, 2, and 3. Types 1 and 2
* prompt the user with a rectangle and a horizontal scale. To use
* the first two types, the user uses the arrow keys or the mouse to
* move an arrow along the scale between the upper and lower limits.
* With type 3, GKS changes a single digital representation of the real
* values between the upper and lower limits. The user controls the change
* of numbers with the arrow keys or the mouse.
*/

Gfloat angle;
Glimit area;
Gint box;
Gpoint box_points[5];
Gchar buffer[12];
Gint bufsize;
Gconn default_conid;
Gwstype default_wstype;
Gint dev;
Gint error;
Gpoint fixed_point;
Gfloat init;
Gint pet;
Gint points; /* number of points in the box */
Gpoint position1; /* position of text */
Gpoint position2;
Gfloat sampled_value;
Gscale scale;
Gvalst state;
Gint state_size;
Gvalrec valrec;
Gpoint vectors;
Gint ws_id;
Gint ws_flag;
Gfloat xform_matrix[2][3];

(continued on next page)

9–108 Input Functions

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

/*
* Open the graphics environment: open GKS, open the workstation,
* activate the workstation, and set the deferral state.
*/

ws_id = 1;
default_conid = GWC_DEF;
default_wstype = GWS_DEF;

gopengks (0, 0);
gopenws (ws_id, &default_conid, &default_wstype);
gactivatews (ws_id);
gsetdeferst (ws_id, GASAP, GALLOWED);

/*
* Call INQUIRE VALUATOR DEVICE STATE to initialize the variables you
* need to pass to the input functions.
*/

bufsize = sizeof (Gvalst);
dev = DEV_NUM_1;

ginqvalst (ws_id, dev, bufsize, &state_size, &state, &error);

/* Check to see if the error status is NO_ERROR. */

if (error != 0)
{

gmessage (ws_id, "The error status is not 0.");
goto PROGRAM_END;

}

/* Assign new values to the input variables. */

area = state.e_area;
init = 1.0;
pet = LOC_PET;
valrec.valpet1_datarec.low = 0.001;
valrec.valpet1_datarec.high = 2.0;
valrec.valpet1_datarec.data = state.record.valpet1_datarec.data;

/* Initialize the logical input device. */

ginitval (ws_id, dev, init, pet, &area, &valrec);

/*
* Activate the logical input device by placing it in sample mode.
* The input prompt now appears on the workstation surface and
* the user can change the measure of the device.
*/

gsetvalmode (ws_id, dev, GSAMPLE, GECHO);

/*
* Create a box. (The program will scale the box according to
* the sample values of the valuator device.)
*/

box = 1;
points = 5;

gsetfillintstyle (GSOLID);
gsetcharheight(0.03);

box_points[0].x = 0.4;
box_points[0].y = 0.4;

(continued on next page)

Input Functions 9–109

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

box_points[1].x = 0.6;
box_points[1].y = 0.4;

box_points[2].x = 0.6;
box_points[2].y = 0.6;

box_points[3].x = 0.4;
box_points[3].y = 0.6;

box_points[4].x = 0.4;
box_points[4].y = 0.4;

gcreateseg (box);
gfillarea (points, box_points);
gcloseseg ();

/* Display instructions to the user. */

position1.x = 0.05;
position1.y = 0.95;

position2.x = 0.05;
position2.y = 0.90;

gtext (&position1, "Change the size of the box.");
gtext (&position2, "To stop, set the value to 2.0.");

/* Sample the user input by using SAMPLE VALUATOR */
*
* The call to SAMPLE VALUATOR retrieves the current input value
* (without the user having to trigger the logical input device).
* The while loop ends when the user moves the prompt to 2.0.
*/

sampled_value = 1.0;

while (sampled_value != 2.0)
{
gsampleval (ws_id, dev, &sampled_value);

/*
* Scale the segment according to the init_value argument
* using EVALUATE TRANSFORMATION MATRIX.
*/

angle = 0.0;
fixed_point.x = 0.5;
fixed_point.y = 0.5;
scale.x_scale = sampled_value;
scale.y_scale = sampled_value;
vectors.x = 0.0;
vectors.y = 0.0;

(continued on next page)

9–110 Input Functions

Input Functions
9.9 Program Examples

Example 9–4 (Cont.) Using a Valuator-Class Logical Input Device in Sample
Mode

gevaltran (&fixed_point, &vectors, angle, &scale, GWC, xform_matrix);

if (sampled_value != 1.0)
{
gsetsegtran (box, xform_matrix);
gupdatews (ws_id, GPERFORM);
}

}

/* Deactivate the logical input device by placing it in request mode. */

gsetvalmode (ws_id, dev, GREQUEST, GECHO);

PROGRAM_END:

/* Deactivate the workstation, close the workstation, and close GKS. */

gdeactivatews (ws_id);
gclosews (ws_id);
gclosegks ();

printf ("%f\n",sampled_value);
}

Figure 9–5 shows the workstation surface after DEC GKS activates the valuator-
class logical input device in sample mode.

Input Functions 9–111

Input Functions
9.9 Program Examples

Figure 9–5 Workstation Surface after Activating a Valuator-Class Logical Input
Device in Sample Mode

ZK−4079A−GE

9–112 Input Functions

Metafile Functions

Insert tabbed divider here. Then discard this sheet.

10
Metafile Functions

The DEC GKS metafile functions provide a mechanism for long-term storage,
communication, and reproduction of a graphic image. Metafiles created by an
application can be used by other applications on other computer systems to
reproduce a picture. When you store picture information in a metafile, you store
specific information concerning the output primitives contained in the picture,
the corresponding output attributes, and other information that may be needed to
reproduce the picture.

When DEC GKS creates a metafile, it uses one of two formats to store
the information about the generated picture. DEC GKS can create either
GKS Metafiles (GKSM or GKS3) or Computer Graphics Metafiles (CGM).
GKSM metafiles are two-dimensional metafiles and GKS3 metafiles are
three-dimensional metafiles.

The GKSM format is defined by the GKS standard; the GKS3 format is defined
by the GKS–3D standard. When using the GKSM or GKS3 format, DEC GKS
stores an audit of the generation of DEC GKS primitives. For more information
concerning GKSM and GKS3 format, see Section 10.1 and the metafile appendix
in the DEC GKS User’s Guide.

The CGM format is defined by the CGM ANSI X3.122-1986 standard. This
metafile format consists of a set of elements that can be used to describe a single
graphic picture. CGM format is designed for use with many types of graphics
applications, including DEC GKS applications. If you need to create a CGM
for use with other applications, possibly on other systems, you can use DEC
GKS to create the file. However, DEC GKS cannot read CGM format. For more
information concerning CGM, see Section 10.2.

A short-term method of storing output primitives is to store them in segments.
For more information concerning segments, see Chapter 8, Segment Functions.

10.1 Creating a GKSM or GKS3 Metafile
To create a GKSM or GKS3, you open and then activate a metafile workstation
using the constant GWS_MO (numeric value 2) as a workstation type for category
GMO workstations. As the device connection, name the file that is to contain
the metafile information. DEC GKS uses the file name exactly as specified,
without using a default file extension. You can open and activate as many
GWS_MO workstations as determined by the maximum allowable open and
active workstations, sending output to the active GWS_MO workstation. Specify
the file type values, GKSM or GKS3, with the appropriate environment option
to indicate a two- or three-dimensional GKS metafile. For more information on
these environment options, see Chapter 2 and Chapter 3.

Metafile Functions 10–1

Metafile Functions
10.1 Creating a GKSM or GKS3 Metafile

Once the GWS_MO type workstation is active, DEC GKS records information
about the current state of the picture, such as output attribute information.
Then, as you call DEC GKS functions, pertinent information about the function
call is recorded in a metafile record. Category metafile output workstations record
the following information:

• The control functions that affect the appearance of the picture on the
workstation surface.

• Output primitives, if the GWS_MO workstation is active at the time of the
function call. The primitives are stored in a form equivalent to NDC points.

• Output attribute settings that are current at the time of primitive generation.

• Segments, if the GWS_MO workstation is active at the time of the call to
CREATE SEGMENT.

• Geometric attribute data (such as character height, character-up vector, and
so on) affecting stored text primitives, in a form equivalent to NDC points.

• Normalization transformation information such as the clipping rectangle.
DEC GKS does not record workstation transformations.

• Data specific to the application, or information that DEC GKS metafiles
cannot store through standard calls to DEC GKS functions (stored using the
function WRITE ITEM TO GKSM).

If a call to a DEC GKS function is not applicable to the graphical picture, such as
calls to certain control or inquiry functions, DEC GKS does not store the function
call information in the metafile. Because metafiles record information pertinent
to output only, DEC GKS metafiles do not record information about input function
calls.

When you create a GKSM or GKS3 metafile, DEC GKS produces a metafile
header, and for each function call necessary to reproduce the current
environment, DEC GKS writes a series of items to the metafile. The metafile
header contains information such as the author of the metafile, the date, the
version number, and the length of the different fields in the data record. The
items generated by a function call roughly correspond to the actual function call
or to the state of the picture when the call was made.

For each item, DEC GKS produces an item header and an item data record.
The DEC GKS standard specifies this general format for data storage within
a GKSM or GKS3 (metafile header followed by an item header followed by
an item data record, and so on), but the individual item data record format is
implementation specific. For example, some implementations may store all item
data as a string of characters, whereas other implementations may store some
information as binary-encoded integer values and some information in character
strings.

An item type is an integer value that corresponds to a DEC GKS function. For
example, an item of type 3 corresponds to a call to UPDATE WORKSTATION.
The item type is contained in the item header. For a list of the integer values,
see the appendix on metafiles in DEC GKS User’s Guide.

When creating a GKSM or GKS3 metafile, you do not need to know the
information contained in the item header or the item data record. Once you
activate a type GWS_MO workstation and call output functions, DEC GKS
formats the graphic output information within the metafile for you.

10–2 Metafile Functions

Metafile Functions
10.1 Creating a GKSM or GKS3 Metafile

When you close the GWS_MO workstation, DEC GKS writes an item of type 0 to
the metafile to specify that it is the last item in the metafile.

10.2 Creating a CGM
To create a CGM, you open and then activate a workstation using the constant
GWS_CGMO (numeric value 7) as a workstation type for category GMO
workstations. As the device connection, name the file that is to contain the
metafile information. DEC GKS uses the file name exactly as specified, without
using a default file extension. You can open and activate as many type GWS_
CGMO workstations as determined by the maximum allowable open and active
workstations, sending appropriate output to the appropriate active type GWS_
CGMO workstation.

Once the GWS_CGMO workstation is active, DEC GKS places the graphic
information into elements, by category. The element categories are as follows:

Category Description

Delimiter elements Separate structures within the metafile.

Metafile descriptor elements Describe the functional content and unique
characteristics of the CGM.

Picture descriptor elements Define the limits of the virtual device
coordinates (VDC) and the parameter modes
for the attribute elements.

Control elements Specify size and precision of VDC points, and
format descriptions of the CGM elements.

Graphic primitive elements Describe the geometric objects in the picture.

Attribute elements Describe the various appearances of the
graphic elements.

Escape elements Describe device- and system-specific
functionality.

External elements Pass information not needed for the creation
of a picture (for example, a message sent to
the user of the metafile).

The elements may have associated data. For example, the graphic primitive
elements may specify VDC points. (The DEC GKS NDC points correspond to the
CGM VDC points.) DEC GKS determines the element data from your DEC GKS
function calls.

All the CGM elements are grouped into structures similar in appearance to an
application program. DEC GKS creates a metafile description at the top of the
file. Other structures include the metafile default structure and the metafile
picture structure. Each structure begins and ends with the appropriate delimiter
elements.

Unlike GKSM or GKS3 items, CGM elements have a certain format, or
encoding. DEC GKS can create CGM elements in one of the following encodings:

Metafile Functions 10–3

Metafile Functions
10.2 Creating a CGM

Encoding Description

Character This encoding requires that the CGM elements and their parameters be
stored in a character-coded format as specified by the CGM standard. With
this encoding, your metafiles use a minimum amount of physical storage.

Binary This encoding requires that the CGM elements and their parameters be
stored in binary code. Using this encoding, many of the applications and
machines can store and read a CGM with greater ease.

Clear text This encoding requires that the CGM elements and their parameters be
stored in text. Using this encoding, you can type, print, or edit the CGM
so you can review its contents before reading the file.

You can use bit mask constant values within your program to specify an encoding.
An example of such a C binding call is as follows:

wstype = GWS_CGMO | ECD_MCHAR;

gopenws(wsid, "CGM_METAFILE.TXT", &wstype);

All the available constant values are listed in the language-dependent header
files. The Device Specifics Reference Manual for DEC GKS and DEC PHIGS
contains extended information concerning bitmasks.

When you create a CGM, you do not need to know the information contained in
the individual elements. Once you activate a type GWS_CGMO workstation and
call output functions, DEC GKS formats the graphic output information within
the metafile for you.

For detailed information concerning the CGM format for the supported encodings,
see the Device Specifics Reference Manual for DEC GKS and DEC PHIGS.

10.3 Reading a GKSM or GKS3 Metafile
To reproduce a graphic image from a GKSM or GKS3, you must open a metafile
input (GMI) workstation. DEC GKS defines the constant GWS_MI (numeric
value 3) as the workstation type for category GMI workstations. Also, when
you open the type GWS_MI workstation, specify the name of the file containing
the recorded data items as the connection identifier argument. DEC GKS uses
the file name exactly as specified, without using a default file extension. You
can open only one type GWS_MI workstation for every corresponding physical
file. DEC GKS distinguishes between GKSM and GKS3 files directly from the
contents of the files.

When you open a type GWS_MI workstation, the first item written to the metafile
becomes the current item. The current item is the item processed when you
call the function GET ITEM TYPE FROM GKSM. You can open as many type
GWS_MI workstations as DEC GKS permits in total workstations, interpreting
items from the appropriate metafile on the appropriate active workstations.

To reproduce the graphic image stored in the metafile, you must call the following
functions for all the applicable items in the metafile, until you reach the item
type 0 (signifying the last item):

• GET ITEM TYPE FROM GKSM—Returns the item type and the length of
the data record of the current item.

• READ ITEM FROM GKSM—Returns the item data record and causes the
next item in the metafile to become the current item.

10–4 Metafile Functions

Metafile Functions
10.3 Reading a GKSM or GKS3 Metafile

• INTERPRET ITEM—Reads information about an item and reproduces
the desired action on all active workstations of categories GOUTPUT and
GOUTIN.

In most applications, you call INTERPRET ITEM for all items in a metafile.
However, there are cases when you may not wish to do this.

For example, if the creator of the metafile called the function WRITE ITEM
TO GKSM to pass user-defined data to the metafile, you need to handle this
information in a special manner. For example, if the user-defined data is a text
string containing information for the application programmer, then instead of
passing the record to INTERPRET ITEM, you should store or write the text
string as desired. You can identify user-defined data by checking the item type;
all item types greater than 100 are GKSM user-defined items. Item types less
than 0 are GKS3 user-defined items. DEC GKS metafiles reserve item data
numbers 0 to 100. If you are not using a DEC GKS GKSM or GKS3, the reserved
item numbers may differ.

As another example, if you checked the item type and found it to be 3 (which
is a call to the function UPDATE WORKSTATION), you may not want to
interpret that item if it would delete important output primitives already on
the workstation surface. For more information concerning the effects of a call to
UPDATE WORKSTATION, see Chapter 4, Control Functions.

If after calling GET ITEM TYPE FROM GKSM, you decide that you do not want
to interpret the item, pass the value 0 as the data length argument to READ
ITEM FROM GKSM. This skips the current item, causing the next item in the
file to become the current item.

10.4 Metafile Inquiries
The following list presents the inquiry functions that you can use to obtain
information when writing device-independent code:

INQUIRE LEVEL OF GKS
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES
INQUIRE OPERATING STATE VALUE
INQUIRE SET OF OPEN WORKSTATIONS
INQUIRE WORKSTATION STATE

For more information concerning device-independent programming, see the DEC
GKS User’s Guide.

10.5 Function Descriptions
This section describes the DEC GKS metafile functions in detail.

Metafile Functions 10–5

GET ITEM TYPE FROM GKSM

GET ITEM TYPE FROM GKSM

Operating States

WSOP, WSAC, SGOP

Syntax

ggettypegksm (

Gint ws, /* (I) Workstation identifier that represents
an open metafile input (GWS_MI) workstation. */

Ggksmit *result /* (O) Item type and record length (in bytes).
This may be passed to the function READ
ITEM FROM GKSM. */

)

Data Structures

typedef struct { /* GKS METAFILE ITEM */
Gint type; /* item type */
Gint length; /* item length */

} Ggksmit;

Description

The GET ITEM TYPE FROM GKSM function returns the item type and the
length of the item data record from the current item in a metafile to the last
argument.

See Also

OPEN WORKSTATION
READ ITEM FROM GKSM
WRITE ITEM TO GKSM

10–6 Metafile Functions

INTERPRET ITEM

INTERPRET ITEM

Operating States

GKOP, WSOP, WSAC, SGOP

Syntax

ginterpret (

Ggksmit *typeandlength, /* (I) Item type and record length,
in bytes. You can obtain this
information by calling the function
GET ITEM TYPE FROM GKSM. */

Ggksmrec *data /* (I) Item’s data record. */

)

Data Structures

typedef struct { /* GKS METAFILE ITEM */
Gint type; /* item type */
Gint length; /* item length */

} Ggksmit;

typedef struct { /* GKS METAFILE DATA RECORD */
Gchar *gksmrec; /* metafile data record */

} Ggksmrec;

Description

The INTERPRET ITEM function interprets an item data record obtained by a
call to READ ITEM FROM GKSM.

If the item type corresponds to a call to a function that affects graphic
representation, this function makes appropriate changes to the GKS state
list, and generates the specified graphic output on all active workstations of
categories OUTPUT and OUTIN.

If the item type identifies user-defined data, this function generates an error
indicating that it cannot interpret the item.

See Also

GET ITEM TYPE FROM GKSM
READ ITEM FROM GKSM

Metafile Functions 10–7

READ ITEM FROM GKSM

READ ITEM FROM GKSM

Operating States

WSOP, WSAC, SGOP

Syntax

greadgksm (

Gint ws, /* (I) Integer value that represents an open
metafile input (GWS_MI) workstation. */

Gint length, /* (I) Maximum length of data record buffer,
in bytes. If length = 0,
DEC GKS ignores the record. If the
actual data record is larger than this
maximum value, DEC GKS truncates the
item’s data record. */

Ggksmrec *record /* (O) Data record */

)

Data Structures

typedef struct { /* GKS METAFILE DATA RECORD */
Gchar *gksmrec; /* metafile data record */

} Ggksmrec;

Description

The READ ITEM FROM GKSM function reads the data record of the current
metafile item and then writes the record to its last argument.

You should compare the maximum length for the data record (as passed to this
function) with the actual length of the data record (as GET ITEM TYPE FROM
GKSM writes to one of its arguments). If the actual size of the record is larger
than the maximum allocated space, DEC GKS truncates the record, causing
loss of information. To skip an item, specify the value 0 as the maximum record
length.

After returning the data record to the application program, this function makes
the next item in the metafile the current item.

See Also

GET ITEM TYPE FROM GKSM
INTERPRET ITEM

10–8 Metafile Functions

WRITE ITEM TO GKSM

WRITE ITEM TO GKSM

Operating States

WSAC, SGOP

Syntax

gwritegksm (

Gint ws, /* (I) Integer value that represents an active
metafile output (GWS_MO) workstation */

Gint type, /* (I) Item type, in the range
type < 0 or type > 100 */

Gint length, /* (I) Length of item’s data record,
in bytes */

Ggksmrec *data /* (I) Item’s data record */

)

Data Structures

typedef struct { /* GKS METAFILE DATA RECORD */
Gchar *gksmrec; /* metafile data record */

} Ggksmrec;

Description

The WRITE ITEM TO GKSM function writes a user-defined data item record to a
metafile.

You can precede each call to an output function by writing a character string to
the metafile, describing the component of the picture generated by the subsequent
function call. You can establish a specific item type value greater than 100 to
specify such a description for a GKSM file. The application program can treat any
item type value greater than 100 as such a description. In a GKS3 file, values
less than 0 indicate a user-defined item.

If you use a metafile structure that is different from the structure of a GKSM or
GKS3, you may have to specify different item data record values to this function.

See Also

ACTIVATE WORKSTATION
OPEN WORKSTATION

Metafile Functions 10–9

Index

A
ACCUMULATE TRANSFORMATION MATRIX 3

function, Part 1, 7–12
ACCUMULATE TRANSFORMATION MATRIX

function, Part 1, 7–10
example, Part 1, 7–37

Accumulating
segment transformations, Part 1, 8–9

ACTIVATE WORKSTATION function, Part 1, 4–9
example, Part 1, 4–24

Activating workstations, Part 1, 4–5
Alignment

text, Part 1, 6–51
Angles

See also Segments
rotation, Part 1, 8–8

ANSI
CGM standard, Part 1, 10–1
GKS standard, Part 1, 1–1

Appearance
attributes, Part 1, 6–1

Arguments
characteristics of, Part 1, 1–5
descriptions, Part 1, 1–5
inquiry error status, Part 2, 11–3
inquiry value type argument, Part 2, 11–4

Arrays
color index, Part 1, 5–4, 5–6

ASAP, Part 1, 1–7
ASFs, Part 1, 6–4
Aspect ratio

See also Transformations
ASSOCIATE SEGMENT WITH WORKSTATION

function, Part 1, 8–11
example, Part 1, 8–28

Association
See also Segments
segments, Part 1, 8–3
windows and viewports, Part 1, 7–5

Asynchronous input, Part 1, 9–14
See also Input

Attribute functions, Part 1, 6–1 to 6–70
introduction to, Part 1, 6–1 to 6–5

Attributes, Part 1, 1–3
attribute source flags, Part 1, 6–4
bound to primitives, Part 1, 6–1

Attributes (cont’d)
bundled, Part 1, 6–3
fill area, Part 1, 6–2
fill area set, Part 1, 6–3
GDPs, Part 1, 6–3
geometric and nongeometric, Part 1, 6–1
implicit regenerations, Part 1, 6–4

segments, Part 1, 8–3
individual, Part 1, 6–3
initial values, Part 2, E–1 to E–4
input prompt and echo types, Part 1, 9–5
list of errors, Part 2, A–6 to A–10
metafiles, Part 1, 10–2
pick identification, Part 1, 8–2
polyline, Part 1, 6–2
polymarker, Part 1, 6–2
segments, Part 1, 8–5
text, Part 1, 6–2

Attribute source flags, Part 1, 6–4
Audit metafiles, Part 1, 10–1
AWAIT EVENT function, Part 1, 9–17, 9–22

example, Part 1, 9–94
Axes, Part 1, 7–1

See also Coordinates
See also Segments
segment fixed point, Part 1, 8–7

B
Background

color, Part 1, 6–5
Binding

attributes to primitives, Part 1, 6–1
Boundaries, Part 1, 7–8

See Windows or Viewports
Break input, Part 1, 9–15
Buffers

See also Data records
See also Input
input data record, Part 1, 9–8
string input, Part 1, 9–4
stroke input, Part 1, 9–4

Bundles, Part 1, 6–3
See also Attributes
edge, Part 1, 6–22
fill area, Part 1, 6–27, 6–29
pattern styles, Part 1, 6–40
polyline, Part 1, 6–44, 6–45

Index–1

Bundles (cont’d)
polymarker, Part 1, 6–48, 6–49
text, Part 1, 6–56, 6–58

C
Calls

error handler, Part 2, 12–1
function

reproducing, Part 1, 10–2
Categories

See also Workstations
of functions, Part 1, 1–1
workstations, Part 1, 4–2

list of, Part 1, 4–2
C binding

list of constants, Part 2, B–1 to B–39
C binding errors, Part 2, A–19
C binding files

VMS, Part 1, 2–1, 3–1
CELL ARRAY 3 function, Part 1, 5–6
CELL ARRAY function, Part 1, 5–4

example, Part 1, 5–24
Cell arrays, Part 1, 5–6
CGM metafiles

ANSI standard, Part 1, 10–1
creating, Part 1, 10–3 to 10–4

Change vectors
input, Part 1, 9–5
segment translation, Part 1, 8–7

Characters
height, Part 1, 6–12
strings, Part 1, 5–20, 5–22

Choice
See also Input
input class, Part 1, 9–4
specifying NOCHOICE input, Part 1, 9–15,

9–16
Classes

See also Input
See also Logical input devices
choice, Part 1, 9–4
locator, Part 1, 9–4
pick, Part 1, 9–4
string, Part 1, 9–4
stroke, Part 1, 9–4
valuator, Part 1, 9–4

Cleanup
error handling, Part 2, 12–1

Clearing
See also Workstations
workstation surface, Part 1, 4–10

implicit regeneration, Part 1, 4–7
CLEAR WORKSTATION function, Part 1, 4–10

example, Part 1, 4–24

Clipping, Part 1, 7–4, 7–7
See also Transformations
disable, Part 1, 7–4
enable, Part 1, 7–4
segments, Part 1, 8–9
text precision, Part 1, 6–54

Clipping flag
initial value, Part 2, E–4

CLOSE GKS function, Part 1, 4–11
example, Part 1, 4–24

CLOSE SEGMENT function, Part 1, 8–12
example, Part 1, 8–28

CLOSE WORKSTATION function, Part 1, 4–12
example, Part 1, 4–24

Closing
See also GKS
See also Workstations
GKS, Part 1, 4–5

error handling, Part 2, 12–1
segments, Part 1, 4–5
workstations, Part 1, 4–5

Color
See also Attributes
background, Part 1, 6–5
fill area, Part 1, 6–26
foreground, Part 1, 6–5
indexes

arrays, Part 1, 5–4
3D arrays, Part 1, 5–6

markers, Part 1, 6–47
model, Part 1, 6–16
polyline, Part 1, 6–43
representation, Part 1, 6–17
text, Part 1, 6–53

Compiling
ULTRIX programs, Part 1, 3–1
VMS programs, Part 1, 2–2

Completion states, Part 2, A–1
Components

See also Rotation
See also Scale
See also Translation
segment transformations, Part 1, 8–7

Composition
See also Transformations
picture, Part 1, 1–3, 7–1

Conditions
error, Part 2, 12–1, A–1 to A–37

Configuration files, Part 1, 3–7
customizing

system level, Part 1, 3–7
user level, Part 1, 3–7

Connection identifiers
metafiles, Part 1, 10–1, 10–4
specifying on ULTRIX, Part 1, 3–2
specifying on VMS, Part 1, 2–2

Index–2

Constants, Part 2, B–1
action pending states, Part 2, B–12
aspect source flags, Part 2, B–1
attribute control flags, Part 2, B–1
choice input prompt flags, Part 2, B–1
choice status types, Part 2, B–1
clear screen states, Part 2, B–1
clipping flags, Part 2, B–2
color availability flags, Part 2, B–2
color models, Part 2, B–2
coordinate switch, Part 2, B–2
default connection identifier, Part 2, B–2
deferral modes, Part 2, B–2
detectability flags, Part 2, B–2
device coordinate units, Part 2, B–2
display surface states, Part 2, B–3
dynamic modification states, Part 2, B–3
echo states, Part 2, B–3
edge flags, Part 2, B–3
edge types, Part 2, B–3
error

attribute function, Part 2, B–27 to B–29
C language-dependent, Part 2, B–32
3D, Part 2, B–31 to B–32
escape function, Part 2, B–31
fatal, Part 2, B–39
implementation-specific, Part 2, B–32 to

B–38
input function, Part 2, B–30
metafile function, Part 2, B–30
miscellaneous, Part 2, B–31
operating state, Part 2, B–26
output function, Part 2, B–29
segment function, Part 2, B–29
system, Part 2, B–31
transformation function, Part 2, B–27
workstation, Part 2, B–26

error handling modes, Part 2, B–3
escape function identifiers, Part 2, B–4
fill area control flags, Part 2, B–5
fill area interior styles, Part 2, B–5
GDP bundle types, Part 2, B–6
GDP graphics primitives, Part 2, B–6
GKS level types, Part 2, B–7
GKS operating states, Part 2, B–7
highlighting flags, Part 2, B–8
highlighting methods, Part 2, B–8
HLHSR identifiers, Part 2, B–8
HLHSR modes, Part 2, B–8
horizontal alignment types, Part 2, B–11
implicit regeneration states, Part 2, B–8
input classes, Part 2, B–8
input mode types, Part 2, B–9
input priority states, Part 2, B–9
invalid index flags, Part 2, B–9
last event flag, Part 2, B–9
line cap styles, Part 2, B–9
line join styles, Part 2, B–9

Constants (cont’d)
line types (implementation-specific), Part 2,

B–10
line types (standard), Part 2, B–9
list of, Part 2, B–1 to B–39
marker types (implementation-specific), Part 2,

B–10
marker types (standard), Part 2, B–10
memory size, Part 2, B–10
new frame action necessary states, Part 2,

B–10
pick status types, Part 2, B–11
projection types, Part 2, B–11
prompt flags, Part 2, B–1
regeneration flag states, Part 2, B–11
request status types, Part 2, B–11
requirements, Part 1, 2–1, 3–1
returned type values, Part 2, B–11
simultaneous events flags, Part 2, B–11
text horizontal alignment types, Part 2, B–11
text path types, Part 2, B–11
text precision types, Part 2, B–12
text vertical alignment types, Part 2, B–12
update states, Part 2, B–12
vertical alignment types, Part 2, B–12
viewport priority states, Part 2, B–12
visibility flags, Part 2, B–12
workstation category types, Part 2, B–12
workstation class types, Part 2, B–13
workstation color availability states, Part 2,

B–13
workstation states, Part 2, B–13
workstation types, Part 2, B–13
writing modes, Part 2, B–16

Control
error handling, Part 2, 12–1
workstation surface, Part 1, 4–6

Control functions, Part 1, 4–1 to 4–32
introduction to, Part 1, 4–1 to 4–8
metafiles, Part 1, 10–2

Coordinates
See also Transformations
input change vectors, Part 1, 9–5
locator and stroke input, Part 1, 9–4
maximum device, Part 1, 7–8
systems, Part 1, 7–1

used for output, Part 1, 5–2
viewport input priority, Part 1, 7–6, 9–18

Copying segments, Part 1, 8–3
COPY SEGMENT TO WORKSTATION function,

Part 1, 8–13
example, Part 1, 8–28

CREATE SEGMENT function, Part 1, 8–14
example, Part 1, 8–28

Creating
metafiles, Part 1, 10–1
segments, Part 1, 4–5, 8–1

Index–3

Current
See also Transformations
metafile item, Part 1, 10–4
windows and viewports, Part 1, 7–8

Current event report entry, Part 1, 9–17
See also Event mode
See also Input

Cycling
disabled input echo, Part 1, 9–14
logical input device control, Part 1, 9–14

D
Data

user defined
metafiles, Part 1, 10–2

Data records
See also Escapes
See also Input
input, Part 1, 9–8

prompt and echo types, Part 1, 9–5 to 9–13
sizes, Part 1, 9–19
standard, Part 1, 9–8
using inquiry functions, Part 1, 9–19

metafile
item, Part 1, 10–2

Data structures
See also GKS

DEACTIVATE WORKSTATION function, Part 1,
4–13

example, Part 1, 4–24
Deactivating

See also Workstations
workstations, Part 1, 4–5

Defaults
See also Attributes
See also Transformations
colors, Part 1, 6–5
GKS–3D error handler, Part 2, 12–4
identity segment transformation, Part 1, 8–7
normalization window, Part 1, 7–3
unity transformation, Part 1, 7–4

Deferral
See also Implicit regenerations
DECwindows, Part 1, 1–6
output, Part 1, 4–6, 5–3

Definition file, Part 1, 2–1
Definition files

including, Part 1, 2–1, 3–1
Degrees

See also GDPs
See also Segments
translating to radians, Part 1, 8–8

DELETE SEGMENT FROM WORKSTATION
function, Part 1, 8–16

DELETE SEGMENT function, Part 1, 8–15
Deleting segments, Part 1, 8–2
Descriptions

functions, Part 1, 1–4
Description tables, Part 1, 4–1

GKS, Part 2, 11–1
workstation, Part 2, 11–1

Detecting
errors, Part 2, 12–1
segments, Part 1, 8–5

Device
transformations, Part 1, 7–7 to 7–8

Device coordinates, Part 1, 7–1
See also Transformations
See also Workstations

Device dependent
bundled attributes, Part 1, 6–3

Device independent
attributes, Part 1, 6–1

Device-independent programming
input, Part 1, 9–20

Device number, Part 1, 9–1
Devices

See also Workstations
logical input, Part 1, 9–1 to 9–3
manipulation

ESCAPE, Part 1, 4–14
maximum coordinate values, Part 1, 7–8
physical input, Part 1, 9–1

Display
See also Workstations
surface, Part 1, 7–1
surface control, Part 1, 7–1

CLEAR WORKSTATION, Part 1, 4–10
REDRAW ALL SEGMENTS ON

WORKSTATION, Part 1, 4–20
SET DEFERRAL STATE, Part 1, 4–21
UPDATE WORKSTATION, Part 1, 4–23

Dynamic modification
See also Implicit regenerations
attributes, Part 1, 4–7
workstation transformations, Part 1, 4–7

E
Echo

See also Input
cycling and disabled echo, Part 1, 9–14
input values, Part 1, 9–2, 9–3, 9–14
prompt and echo types, Part 1, 9–5 to 9–13

Echo area, Part 1, 9–2
Edge

index, Part 1, 6–21
representation, Part 1, 6–22
type, Part 1, 6–24
width scale factor, Part 1, 6–25

Index–4

Emergency
closure of GKS, Part 2, 12–1

EMERGENCY CLOSE GKS function, Part 2,
12–3

example, Part 2, 12–6
Ending

GKS program, Part 1, 4–11
Entries

See also GKS
bundle table, Part 1, 6–3

Environment
GKS, Part 1, 4–1
workstation, Part 1, 4–1

Environment variables, Part 1, 3–3
default file, Part 1, 3–4
defining

at csh, Part 1, 3–3
at sh, Part 1, 3–3
in file, Part 1, 3–3

GKSasf, Part 1, 3–5
GKSconid, Part 1, 3–2, 3–5
.GKSdefaults, Part 1, 3–4
GKSdefmode, Part 1, 3–5
GKSerrfile, Part 1, 3–5, 3–6
GKSerror, Part 1, 3–5
GKSirg, Part 1, 3–5
GKSmetafile_type, Part 1, 3–5
GKSndc_clip, Part 1, 3–6
GKSstroke_font1, Part 1, 3–6
GKSwstype, Part 1, 3–6
search order, Part 1, 3–4
stderr, Part 1, 3–6
system defaults file, Part 1, 3–2
types, Part 1, 3–5

general, Part 1, 3–5
user defaults file, Part 1, 3–2

Error codes
defined, Part 1, 2–4, 3–6
ULTRIX, Part 1, 3–6
VMS, Part 1, 2–4

Error files
default, Part 1, 2–4
defined, Part 1, 3–6
ULTRIX, Part 1, 3–6
VMS, Part 1, 2–4

Error handling, Part 1, 2–4 to 2–5, 3–6
GKS, Part 1, 1–4

ERROR HANDLING function, Part 2, 12–4
Error-handling functions

gemergencyclosegks, Part 2, 12–3
gerrorhand, Part 2, 12–4
gerrorlog, Part 2, 12–5
introduction to, Part 2, 12–1 to 12–2

ERROR LOGGING function, Part 2, 12–5
example, Part 2, 12–6

Errors
constants

attribute function, Part 2, B–27 to B–29

Errors
constants (cont’d)

C language-dependent, Part 2, B–32
3D, Part 2, B–31 to B–32
escape function, Part 2, B–31
fatal, Part 2, B–39
implementation-specific, Part 2, B–32 to

B–38
input function, Part 2, B–30
metafile function, Part 2, B–30
miscellaneous, Part 2, B–31
operating state, Part 2, B–26
output function, Part 2, B–29
segment function, Part 2, B–29
system, Part 2, B–31
transformation function, Part 2, B–27
workstation, Part 2, B–26 to B–27

file, Part 2, 12–2
inquiry error status argument, Part 2, 11–3
logging, Part 1, 4–4; Part 2, 12–5
messages, Part 2, A–1 to A–37

attributes, Part 2, A–6 to A–10
C binding, Part 2, A–19
escapes, Part 2, A–15
fatal, Part 2, A–36 to A–37
implementation-specific, Part 2, A–19 to

A–35
input, Part 2, A–12 to A–14
metafiles, Part 2, A–14 to A–15
miscellaneous, Part 2, A–15 to A–16
operating state, Part 2, A–1 to A–2
output, Part 2, A–10 to A–11
segments, Part 2, A–11 to A–12
system, Part 2, A–16 to A–19
transformations, Part 2, A–5 to A–6
workstation, Part 2, A–3 to A–5

states, Part 2, 12–1
Error status files

list of, Part 1, 2–1, 3–1
ESCAPE function, Part 1, 4–14

example, Part 1, 4–26
Escapes

list of errors, Part 2, A–15
EVALUATE TRANSFORMATION MATRIX 3

function, Part 1, 7–16
EVALUATE TRANSFORMATION MATRIX

function, Part 1, 7–14
example, Part 1, 7–41

EVALUATE VIEW MAPPING MATRIX 3 function,
Part 1, 7–18

EVALUATE VIEW ORIENTATION MATRIX 3
function, Part 1, 7–21

Event functions, Part 1, 9–16
Event input queue, Part 1, 9–16

overflow, Part 1, 9–17
Event mode, Part 1, 9–16 to 9–18

See also Input
cycling devices, Part 1, 9–14

Index–5

Examples
list of functions, Part 2, C–1
table of, Part 2, C–1

Executing
ULTRIX programs, Part 1, 3–1
VMS programs, Part 1, 2–2

Expansion
See also Scale
See also Segments
segments, Part 1, 8–7
text, Part 1, 6–11

Extent rectangle
See also Attributes
See also Segments
See also Text
segments

highlighting, Part 1, 8–6

F
Fatal errors, Part 2, 12–1

list of, Part 2, A–36 to A–37
File

definition, Part 1, 2–1
Files

error, Part 2, 12–2
error status

list of, Part 1, 2–1, 3–1
File specifications

metafiles, Part 1, 10–1
FILL AREA 3 function, Part 1, 5–9
FILL AREA function, Part 1, 5–8

example, Part 1, 6–60
Fill areas

See also Attributes
attributes

SET FILL AREA COLOUR INDEX, Part
1, 6–26, 6–28

SET FILL AREA INDEX, Part 1, 6–27
SET FILL AREA STYLE INDEX, Part 1,

6–31
SET PATTERN REFERENCE POINT,

Part 1, 6–38
SET PATTERN SIZE, Part 1, 6–41

bundles, Part 1, 6–27
2D, Part 1, 5–8
3D, Part 1, 5–9
initial attributes, Part 2, E–3
interior styles, Part 1, 6–28
representation, Part 1, 6–29
style indexes, Part 1, 6–31

Fill area set, Part 1, 5–10, 5–11
FILL AREA SET 3 function, Part 1, 5–11
FILL AREA SET function, Part 1, 5–10
Fill area sets

initial attributes, Part 2, E–3 to E–4

Fixed points
See also Rotation
See also Scale
See also Segments
segment transformations, Part 1, 8–7

Flags
See also Attributes
ASF, Part 1, 6–7, 6–9
aspect source, Part 1, 6–4
edge flag, Part 1, 6–20

Flush
event queue, Part 1, 9–17

FLUSH DEVICE EVENTS, Part 1, 9–17, 9–18
FLUSH DEVICE EVENTS function, Part 1, 9–24
Fonts

establishing, Part 1, 6–54
Foreground color, Part 1, 6–5
Format

function descriptions, Part 1, 1–4
metafiles, Part 1, 10–2

Function
constants, Part 1, 1–6
data structures, Part 1, 1–6
description, Part 1, 1–6
header, Part 1, 1–4
identifiers, Part 2, B–16 to B–25

attribute, Part 2, B–17
control, Part 2, B–16
error handling, Part 2, B–25
input, Part 2, B–19
inquiry, Part 2, B–21 to B–25
metafile, Part 2, B–21
output, Part 2, B–17
segment, Part 2, B–19
transformation, Part 2, B–18

operating states, Part 1, 1–5
presentation, Part 1, 1–4 to 1–7
Program Examples sections, Part 1, 1–6
See Also sections, Part 1, 1–6
syntax, Part 1, 1–5

Functional standards
See also GKS

Functions
See also GKS
attribute, Part 1, 6–6
control, Part 1, 4–8
DEC GKS categories, Part 1, 1–1
error-handling, Part 2, 12–1 to 12–2
input, Part 1, 9–21
inquiry, Part 2, 11–5 to 11–203
metafile, Part 1, 10–5
output, Part 1, 5–3
segment, Part 1, 8–10
transformation, Part 1, 7–9

Index–6

G
gaccumtran, Part 1, 7–10
gaccumtran3, Part 1, 7–12
gactivatews, Part 1, 4–9
gassocsegws, Part 1, 8–11
gawaitevent, Part 1, 9–22
gcellarray, Part 1, 5–4
gcellarray3, Part 1, 5–6
gclearws, Part 1, 4–10
gclosegks, Part 1, 4–11
gcloseseg, Part 1, 8–12
gclosews, Part 1, 4–12
gcopysegws, Part 1, 8–13
gcreateseg, Part 1, 8–14
gdeactivatews, Part 1, 4–13
gdelseg, Part 1, 8–15
gdelsegws, Part 1, 8–16
GDPs, Part 1, 5–12, 5–14

attributes, Part 1, 6–3
gemergencyclosegks, Part 2, 12–3
GENERALIZED DRAWING PRIMITIVE 3

function, Part 1, 5–14
GENERALIZED DRAWING PRIMITIVE function,

Part 1, 5–12
example, Part 1, 5–26

Generalized drawing primitives
See GDPs

Generation
See also Output
output, Part 1, 5–1

attributes, Part 1, 6–1
pictures, Part 1, 7–1

Geometric attributes, Part 1, 6–1
gerrorhand, Part 2, 12–4
gerrorlog, Part 2, 12–5
gescape, Part 1, 4–14
GET CHOICE function, Part 1, 9–25
GET functions, Part 1, 9–16
GET ITEM TYPE FROM GKSM function, Part 1,

10–6
GET ITEM TYPE FROM METAFILE

See GET ITEM TYPE FROM GKSM function
GET LOCATOR 3 function, Part 1, 9–27
GET LOCATOR function, Part 1, 9–26

example, Part 1, 9–94
GET PICK function, Part 1, 9–28
GET STRING function, Part 1, 9–29
GET STROKE 3 function, Part 1, 9–32
GET STROKE function, Part 1, 9–30
GET VALUATOR function, Part 1, 9–34
gevaltran, Part 1, 7–14
gevaltran3, Part 1, 7–16
gevalviewmaptran3, Part 1, 7–18

gevalvieworienttran3, Part 1, 7–21
gfillarea, Part 1, 5–8
gfillarea3, Part 1, 5–9
gfillareaset, Part 1, 5–10
gfillareaset3, Part 1, 5–11
gflushevents, Part 1, 9–24
ggdp, Part 1, 5–12
ggdp3, Part 1, 5–14
ggetchoice, Part 1, 9–25
ggetloc, Part 1, 9–26
ggetloc3, Part 1, 9–27
ggetpick, Part 1, 9–28
ggetstring, Part 1, 9–29
ggetstroke, Part 1, 9–30
ggetstroke3, Part 1, 9–32
ggettypegksm, Part 1, 10–6
ggetval, Part 1, 9–34
ginitchoice, Part 1, 9–35
ginitchoice3, Part 1, 9–37
ginitloc, Part 1, 9–39
ginitloc3, Part 1, 9–43
ginitpick, Part 1, 9–47
ginitpick3, Part 1, 9–49
ginitstring, Part 1, 9–51
ginitstring3, Part 1, 9–53
ginitstroke, Part 1, 9–55
ginitstroke3, Part 1, 9–58
ginitval, Part 1, 9–61
ginitval3, Part 1, 9–63
ginqactivews, Part 2, 11–159
ginqasf, Part 2, 11–6
ginqasf3, Part 2, 11–7
ginqassocws, Part 2, 11–160
ginqavailgdp, Part 2, 11–91
ginqavailgdp3, Part 2, 11–92
ginqavailwstypes, Part 2, 11–93
ginqcharbase, Part 2, 11–8
ginqcharexpan, Part 2, 11–9
ginqcharheight, Part 2, 11–10
ginqcharspace, Part 2, 11–11
ginqcharup, Part 2, 11–12
ginqcharwidth, Part 2, 11–13
ginqchoicest, Part 2, 11–14
ginqchoicest3, Part 2, 11–17
ginqclip, Part 2, 11–20
ginqclip3, Part 2, 11–21
ginqcolourfacil, Part 2, 11–22
ginqcolourindices, Part 2, 11–94
ginqcolourmodel, Part 2, 11–23
ginqcolourmodelfacil, Part 2, 11–24
ginqcolourrep, Part 2, 11–25
ginqcurntrannum, Part 2, 11–32
ginqcurpickid, Part 2, 11–33
ginqdefchoice, Part 2, 11–38
ginqdefchoice3, Part 2, 11–40
ginqdefdeferst, Part 2, 11–42

Index–7

ginqdefloc, Part 2, 11–43
ginqdefloc3, Part 2, 11–45
ginqdefpick, Part 2, 11–47
ginqdefpick3, Part 2, 11–49
ginqdefstring, Part 2, 11–51
ginqdefstring3, Part 2, 11–53
ginqdefstroke, Part 2, 11–55
ginqdefstroke3, Part 2, 11–57
ginqdefval, Part 2, 11–59
ginqdefval3, Part 2, 11–61
ginqdisplaysize, Part 2, 11–63
ginqdisplaysize3, Part 2, 11–64
ginqedgecolourind, Part 2, 11–71
ginqedgefacil, Part 2, 11–72
ginqedgeflag, Part 2, 11–73
ginqedgeindices, Part 2, 11–95
ginqedgerep, Part 2, 11–74
ginqedgetype, Part 2, 11–75
ginqedgewidth, Part 2, 11–76
ginqfillcolourind, Part 2, 11–77
ginqfillfacil, Part 2, 11–78
ginqfillind, Part 2, 11–79
ginqfillindices, Part 2, 11–96
ginqfillintstyle, Part 2, 11–80
ginqfillrep, Part 2, 11–81
ginqfillstyleind, Part 2, 11–82
ginqgdp, Part 2, 11–83
ginqgdp3, Part 2, 11–84
ginqhlhsrfac, Part 2, 11–85
ginqhlhsrid, Part 2, 11–26
ginqhlhsrmode, Part 2, 11–86
ginqindivattr, Part 2, 11–27
ginqindivattr3, Part 2, 11–29
ginqinputoverflow, Part 2, 11–87
ginqlevelgks, Part 2, 11–88
ginqlinecolourind, Part 2, 11–139
ginqlinefacil, Part 2, 11–140
ginqlineind, Part 2, 11–141
ginqlineindices, Part 2, 11–99
ginqlinerep, Part 2, 11–142
ginqlinetype, Part 2, 11–89
ginqlinewidth, Part 2, 11–90
ginqlocst, Part 2, 11–103
ginqlocst3, Part 2, 11–108
ginqmarkercolourind, Part 2, 11–143
ginqmarkerfacil, Part 2, 11–144
ginqmarkerind, Part 2, 11–145
ginqmarkerindices, Part 2, 11–100
ginqmarkerrep, Part 2, 11–146
ginqmarkersize, Part 2, 11–113
ginqmarkertype, Part 2, 11–114
ginqmaxntrannum, Part 2, 11–117
ginqmaxwssttables, Part 2, 11–115
ginqmaxwssttables3, Part 2, 11–116
ginqmodsegattr, Part 2, 11–66
ginqmodwsattr, Part 2, 11–67

ginqmodwsattr3, Part 2, 11–69
ginqmoreevents, Part 2, 11–118
ginqnameopenseg, Part 2, 11–119
ginqntran, Part 2, 11–120
ginqntran3, Part 2, 11–121
ginqntrannum, Part 2, 11–97
ginqnumavailinput, Part 2, 11–122
ginqnumsegpri, Part 2, 11–123
ginqopenws, Part 2, 11–161
ginqopst, Part 2, 11–124
ginqpatfacil, Part 2, 11–125
ginqpatheight, Part 2, 11–126
ginqpatindices, Part 2, 11–98
ginqpatrefpt, Part 2, 11–127
ginqpatrefptvector, Part 2, 11–128
ginqpatrep, Part 2, 11–129
ginqpatwidth, Part 2, 11–130
ginqpickst, Part 2, 11–131
ginqpickst3, Part 2, 11–133
ginqpixel, Part 2, 11–135
ginqpixelarray, Part 2, 11–136
ginqpixelarraydim, Part 2, 11–138
ginqpredcolourrep, Part 2, 11–147
ginqprededgerep, Part 2, 11–148
ginqpredfillrep, Part 2, 11–149
ginqpredlinerep, Part 2, 11–151
ginqpredmarkerrep, Part 2, 11–152
ginqpredpatrep, Part 2, 11–150
ginqpredtextrep, Part 2, 11–153
ginqpredviewrep, Part 2, 11–154
ginqprimattr, Part 2, 11–34
ginqprimattr3, Part 2, 11–36
ginqsegattr, Part 2, 11–155
ginqsegattr3, Part 2, 11–157
ginqsegnames, Part 2, 11–162
ginqsegnamesws, Part 2, 11–163
ginqstringst, Part 2, 11–164
ginqstringst3, Part 2, 11–166
ginqstrokest, Part 2, 11–168
ginqstrokest3, Part 2, 11–171
ginqtextalign, Part 2, 11–175
ginqtextcolourind, Part 2, 11–176
ginqtextextent, Part 2, 11–177
ginqtextextent3, Part 2, 11–178
ginqtextfacil, Part 2, 11–179
ginqtextfontprec, Part 2, 11–181
ginqtextind, Part 2, 11–182
ginqtextindices, Part 2, 11–101
ginqtextpath, Part 2, 11–183
ginqtextrep, Part 2, 11–184
ginqvalst, Part 2, 11–186
ginqvalst3, Part 2, 11–188
ginqviewfac, Part 2, 11–190
ginqviewindices, Part 2, 11–102
ginqviewrep3, Part 2, 11–191
ginqwscategory, Part 2, 11–193

Index–8

ginqwsclass, Part 2, 11–194
ginqwsconntype, Part 2, 11–195
ginqwsdeferupdatest, Part 2, 11–196
ginqwsmaxnum, Part 2, 11–198
ginqwsst, Part 2, 11–199
ginqwstran, Part 2, 11–200
ginqwstran3, Part 2, 11–202
ginsertseg, Part 1, 8–17
ginsertseg3, Part 1, 8–19
ginterpret, Part 1, 10–7
GKS

ANSI and ISO standards, Part 1, 1–1
categories of functions, Part 1, 1–1
closing, Part 1, 4–5
description table, Part 1, 4–1
environment, Part 1, 4–1
error handling, Part 1, 1–4; Part 2, 12–1
input

levels of, Part 1, 1–4
introduction to, Part 1, 1–1 to 1–4
kernel, Part 1, 4–1
levels, Part 1, 1–4
metafile standard, Part 1, 10–1
opening, Part 1, 4–4
operating state

errors, Part 2, A–1 to A–2
output

levels of, Part 1, 1–4
GKS$ASF, Part 1, 2–3
GKS$CONID, Part 1, 2–3
GKS$DEF_MODE, Part 1, 2–3
GKS$ERRFILE, Part 1, 2–4
GKS$ERROR, Part 1, 2–4
GKS$IRG, Part 1, 2–4
GKS$METAFILE_TYPE, Part 1, 2–4
GKS$NDC_CLIP, Part 1, 2–4
GKS$STROKE_FONT1, Part 1, 2–4
GKS$WSTYPE, Part 1, 2–4
GKS3 metafiles

creating, Part 1, 10–1 to 10–3
GKSasf, Part 1, 3–5
gksconfig.c, Part 1, 3–7
GKSconid, Part 1, 3–5
GKSdefmode, Part 1, 3–5
GKS environment functions, Part 1, 4–11, 4–18
GKSerrfile, Part 1, 3–5
GKSerror, Part 1, 3–5
GKSirg, Part 1, 3–5
GKSmetafile_type, Part 1, 3–5
GKSM metafiles, Part 1, 10–1

creating, Part 1, 10–1 to 10–3
GKSndc_clip, Part 1, 3–6
GKSstroke_font1, Part 1, 3–6
GKSwstype, Part 1, 3–6
gks_decw_config.c, Part 1, 3–7
gmessage, Part 1, 4–17

gopengks, Part 1, 4–18
gopenws, Part 1, 4–19
gpolyline, Part 1, 5–16
gpolyline3, Part 1, 5–17
gpolymarker, Part 1, 5–18
gpolymarker3, Part 1, 5–19
Graphics handlers, Part 1, 4–1

See also Devices
See also Workstations
input, Part 1, 9–5
nominal sizes, Part 1, 6–1

greadgksm, Part 1, 10–8
gredrawsegws, Part 1, 4–20
grenameseg, Part 1, 8–21
greqchoice, Part 1, 9–65
greqloc, Part 1, 9–66
greqloc3, Part 1, 9–68
greqpick, Part 1, 9–70
greqstring, Part 1, 9–71
greqstroke, Part 1, 9–73
greqstroke3, Part 1, 9–75
greqval, Part 1, 9–77
gsamplechoice, Part 1, 9–78
gsampleloc, Part 1, 9–79
gsampleloc3, Part 1, 9–80
gsamplepick, Part 1, 9–81
gsamplestring, Part 1, 9–82
gsamplestroke, Part 1, 9–83
gsamplestroke3, Part 1, 9–85
gsampleval, Part 1, 9–87
gselntran, Part 1, 7–23
gsetasf, Part 1, 6–7
gsetasf3, Part 1, 6–9
gsetcharexpan, Part 1, 6–11
gsetcharheight, Part 1, 6–12
gsetcharspace, Part 1, 6–13
gsetcharup, Part 1, 6–14
gsetchoicemode, Part 1, 9–88
gsetclip, Part 1, 7–24
gsetcolourmodel, Part 1, 6–16
gsetcolourrep, Part 1, 6–17
gsetdeferst, Part 1, 4–21
gsetdet, Part 1, 8–22
gsetedgecolourind, Part 1, 6–19
gsetedgeflag, Part 1, 6–20
gsetedgeindex, Part 1, 6–21
gsetedgerep, Part 1, 6–22
gsetedgetype, Part 1, 6–24
gsetedgewidthscfac, Part 1, 6–25
gsetfillcolourind, Part 1, 6–26
gsetfillind, Part 1, 6–27
gsetfillintstyle, Part 1, 6–28
gsetfillrep, Part 1, 6–29
gsetfillstyleind, Part 1, 6–31
gsethighlight, Part 1, 8–23

Index–9

gsethlhsrid, Part 1, 6–32
gsethlhsrmode, Part 1, 6–33
gsetlinecolourind, Part 1, 6–43
gsetlineind, Part 1, 6–44
gsetlinerep, Part 1, 6–45
gsetlinetype, Part 1, 6–34
gsetlinewidth, Part 1, 6–35
gsetlocmode, Part 1, 9–89
gsetmarkercolourind, Part 1, 6–47
gsetmarkerind, Part 1, 6–48
gsetmarkerrep, Part 1, 6–49
gsetmarkersize, Part 1, 6–36
gsetmarkertype, Part 1, 6–37
gsetpatrefpt, Part 1, 6–38
gsetpatrefptvec, Part 1, 6–39
gsetpatrep, Part 1, 6–40
gsetpatsize, Part 1, 6–41
gsetpickid, Part 1, 6–42
gsetpickmode, Part 1, 9–90
gsetsegpri, Part 1, 8–24
gsetsegtran, Part 1, 8–25
gsetsegtran3, Part 1, 8–26
gsetstringmode, Part 1, 9–91
gsetstrokemode, Part 1, 9–92
gsettextalign, Part 1, 6–51
gsettextcolourind, Part 1, 6–53
gsettextfontprec, Part 1, 6–54
gsettextind, Part 1, 6–56
gsettextpath, Part 1, 6–57
gsettextrep, Part 1, 6–58
gsetvalmode, Part 1, 9–93
gsetviewindex, Part 1, 7–25
gsetviewport, Part 1, 7–28
gsetviewport3, Part 1, 7–29
gsetviewportinputpri, Part 1, 7–30
gsetviewrep3, Part 1, 7–26
gsetviewxformpr, Part 1, 7–27
gsetvis, Part 1, 8–27
gsetwindow, Part 1, 7–31
gsetwindow3, Part 1, 7–32
gsetwsviewport, Part 1, 7–33
gsetwsviewport3, Part 1, 7–34
gsetwswindow, Part 1, 7–35
gsetwswindow3, Part 1, 7–36
gtext, Part 1, 5–20
gtext3, Part 1, 5–22
gupdatews, Part 1, 4–23
gwritegksm, Part 1, 10–9

H
Handlers

See also Devices
See also Workstations
See Graphics handlers
errors, Part 2, 12–1
set and realized values, Part 2, 11–4

Hardware fonts, Part 1, 6–54
See also Fonts

Hatches, Part 1, 6–28
See also Fill areas
fill areas, Part 1, 5–8, 5–9
style index values, Part 1, 6–31

Height
See also Attributes
See also Transformations
of text, Part 1, 6–12

Highlighting
segments, Part 1, 8–6

Hollow
fill area interior style, Part 1, 6–28
fill areas, Part 1, 5–8, 5–9

I
Identifiers

function, Part 2, B–16
attribute, Part 2, B–17
control, Part 2, B–16
error handling, Part 2, B–25
input, Part 2, B–19
inquiry, Part 2, B–21 to B–25
metafile, Part 2, B–21
output, Part 2, B–17
segment, Part 2, B–19
transformation, Part 2, B–18

pick, Part 1, 8–2, 9–4
Identity

segment transformation, Part 1, 8–8
transformation, Part 1, 7–7

Implementation-specific errors
list of, Part 2, A–19 to A–35

Implicit regenerations, Part 1, 4–7
See also Deferral
attribute changes, Part 1, 6–4
segments, Part 1, 8–3
workstation transformations, Part 1, 7–8

Include
definition files, Part 1, 2–1, 3–1

INCLUDE statement
all languages, Part 1, 2–1, 3–1

Index
See also Attributes
See also Bundles
color, Part 1, 6–16

arrays, Part 1, 5–4
3D arrays, Part 1, 5–6

edge, Part 1, 6–22
edge color index, Part 1, 6–19
fill area, Part 1, 6–27, 6–29

styles, Part 1, 6–31
into bundle tables, Part 1, 6–3
pattern styles, Part 1, 6–40
polyline, Part 1, 6–45

Index–10

Index (cont’d)
polymarker, Part 1, 6–49
text, Part 1, 6–56, 6–58

Individual attributes, Part 1, 6–3
Initialize

See also GKS
See also Workstations
GKS environment, Part 1, 4–18
input functions

INITIALIZE CHOICE, Part 1, 9–35
INITIALIZE CHOICE 3, Part 1, 9–37
INITIALIZE LOCATOR, Part 1, 9–39
INITIALIZE LOCATOR 3, Part 1, 9–43
INITIALIZE PICK, Part 1, 9–47
INITIALIZE PICK 3, Part 1, 9–49
INITIALIZE STRING, Part 1, 9–51
INITIALIZE STRING 3, Part 1, 9–53
INITIALIZE STROKE 3, Part 1, 9–55,

9–58
INITIALIZE VALUATOR, Part 1, 9–61
INITIALIZE VALUATOR 3, Part 1, 9–63

workstation environment, Part 1, 4–19
INITIALIZE CHOICE 3 function, Part 1, 9–37
INITIALIZE CHOICE function, Part 1, 9–35
INITIALIZE functions, Part 1, 9–3
INITIALIZE LOCATOR 3 function, Part 1, 9–43
INITIALIZE LOCATOR function, Part 1, 9–39

example, Part 1, 9–94
INITIALIZE PICK 3 function, Part 1, 9–49
INITIALIZE PICK function, Part 1, 9–47

example, Part 1, 9–98
INITIALIZE STRING 3 function, Part 1, 9–53
INITIALIZE STRING function, Part 1, 9–51

example, Part 1, 9–104
INITIALIZE STROKE 3 function, Part 1, 9–58
INITIALIZE STROKE function, Part 1, 9–55
INITIALIZE VALUATOR 3 function, Part 1, 9–63
INITIALIZE VALUATOR function, Part 1, 9–61

example, Part 1, 9–107
Initializing a logical input device, Part 1, 9–3
Initializing input, Part 1, 9–13
Initial string

input, Part 1, 9–4
Input

asynchronous, Part 1, 9–14
breaking, Part 1, 9–15
classes, Part 1, 9–1, 9–4
current values, Part 1, 9–19
cycling device control, Part 1, 9–14
data record

sizes, Part 1, 9–19
standard, Part 1, 9–8
using inquiry functions, Part 1, 9–19

default values, Part 1, 9–19
device-independent programming, Part 1, 9–20
event mode, Part 1, 9–16 to 9–18

flushing the queue, Part 1, 9–17
event queue, Part 1, 9–16

Input (cont’d)
event queue overflow, Part 1, 9–17
initializing, Part 1, 9–13
inquiry function use, Part 1, 9–19
list of errors, Part 2, A–12 to A–14
menus, Part 1, 9–4
metafiles, Part 1, 10–1, 10–2
operating modes, Part 1, 9–2, 9–3, 9–14 to

9–18
pick

visibility, Part 1, 8–10
pick identification, Part 1, 8–2
request mode, Part 1, 9–14 to 9–15
sample mode, Part 1, 9–15 to 9–16
segment detectability, Part 1, 8–5
segments, Part 1, 8–2
specifying no input, Part 1, 9–15
synchronous, Part 1, 9–14
text, Part 1, 9–4
triggers, Part 1, 9–3, 9–15
viewport priority, Part 1, 7–6, 9–18
workstation categories, Part 1, 4–2

Input data records
sizes, Part 1, 9–19

Input functions, Part 1, 9–1 to 9–112
introduction to, Part 1, 9–1 to 9–18

Input operating modes, Part 1, 9–14
Input priority

initial value, Part 2, E–4
INQUIRE ASPECT SOURCE FLAGS 3 function,

Part 2, 11–7
INQUIRE ASPECT SOURCE FLAGS function,

Part 2, 11–6
INQUIRE CHARACTER BASE VECTOR function,

Part 2, 11–8
INQUIRE CHARACTER EXPANSION FACTOR

function, Part 2, 11–9
INQUIRE CHARACTER HEIGHT function, Part

2, 11–10
INQUIRE CHARACTER SPACING function, Part

2, 11–11
INQUIRE CHARACTER UP VECTOR function,

Part 2, 11–12
INQUIRE CHARACTER WIDTH function, Part 2,

11–13
INQUIRE CHOICE DEVICE STATE 3 function,

Part 2, 11–17
INQUIRE CHOICE DEVICE STATE function,

Part 2, 11–14
INQUIRE CLIPPING 3 function, Part 2, 11–21
INQUIRE CLIPPING function, Part 2, 11–20
INQUIRE COLOUR FACILITIES function, Part

2, 11–22
INQUIRE COLOUR MODEL FACILITIES

function, Part 2, 11–24

Index–11

INQUIRE COLOUR MODEL function, Part 2,
11–23

INQUIRE COLOUR REPRESENTATION function,
Part 2, 11–25

INQUIRE CURRENT HLHSR IDENTIFIER
VALUE function, Part 2, 11–26

INQUIRE CURRENT INDIVIDUAL ATTRIBUTE
VALUES 3 function, Part 2, 11–29

INQUIRE CURRENT INDIVIDUAL ATTRIBUTE
VALUES function, Part 2, 11–27

INQUIRE CURRENT NORMALIZATION
TRANSFORMATION NUMBER function,
Part 2, 11–32

INQUIRE CURRENT PICK IDENTIFIER VALUE
function, Part 2, 11–33

INQUIRE CURRENT PRIMITIVE ATTRIBUTE
VALUES 3 function, Part 2, 11–36

INQUIRE CURRENT PRIMITIVE ATTRIBUTE
VALUES function, Part 2, 11–34

INQUIRE DEFAULT CHOICE DEVICE DATA 3
function, Part 2, 11–40

INQUIRE DEFAULT CHOICE DEVICE DATA
function, Part 2, 11–38

INQUIRE DEFAULT DEFERRAL STATE
VALUES function, Part 2, 11–42

INQUIRE DEFAULT LOCATOR DEVICE DATA 3
function, Part 2, 11–45

INQUIRE DEFAULT LOCATOR DEVICE DATA
function, Part 2, 11–43

INQUIRE DEFAULT PICK DEVICE DATA 3
function, Part 2, 11–49

INQUIRE DEFAULT PICK DEVICE DATA
function, Part 2, 11–47

INQUIRE DEFAULT STRING DEVICE DATA 3
function, Part 2, 11–53

INQUIRE DEFAULT STRING DEVICE DATA
function, Part 2, 11–51

INQUIRE DEFAULT STROKE DEVICE DATA 3
function, Part 2, 11–57

INQUIRE DEFAULT STROKE DEVICE DATA
function, Part 2, 11–55

INQUIRE DEFAULT VALUATOR DEVICE DATA
3 function, Part 2, 11–61

INQUIRE DEFAULT VALUATOR DEVICE DATA
function, Part 2, 11–59

INQUIRE DISPLAY SPACE SIZE 3 function, Part
2, 11–64

INQUIRE DISPLAY SPACE SIZE function, Part
2, 11–63

example, Part 1, 7–50
INQUIRE DYNAMIC MODIFICATION OF

SEGMENT ATTRIBUTES function, Part 2,
11–66

INQUIRE DYNAMIC MODIFICATION OF
WORKSTATION ATTRIBUTES 3 function,
Part 2, 11–69

INQUIRE DYNAMIC MODIFICATION OF
WORKSTATION ATTRIBUTES function,
Part 2, 11–67

example, Part 1, 7–50
INQUIRE EDGE COLOUR INDEX function, Part

2, 11–71
INQUIRE EDGE FACILITIES function, Part 2,

11–72
INQUIRE EDGE FLAG function, Part 2, 11–73
INQUIRE EDGE REPRESENTATION function,

Part 2, 11–74
INQUIRE EDGETYPE function, Part 2, 11–75
INQUIRE EDGEWIDTH SCALE FACTOR

function, Part 2, 11–76
INQUIRE FILL AREA COLOUR INDEX function,

Part 2, 11–77
INQUIRE FILL AREA FACILITIES function,

Part 2, 11–78
INQUIRE FILL AREA INDEX function, Part 2,

11–79
INQUIRE FILL AREA INTERIOR STYLE

function, Part 2, 11–80
INQUIRE FILL AREA REPRESENTATION

function, Part 2, 11–81
INQUIRE FILL AREA STYLE INDEX function,

Part 2, 11–82
INQUIRE GENERALIZED DRAWING

PRIMITIVE 3 function, Part 2, 11–84
INQUIRE GENERALIZED DRAWING

PRIMITIVE function, Part 2, 11–83
INQUIRE HLHSR FACILITIES function, Part 2,

11–85
INQUIRE HLHSR MODE function, Part 2, 11–86
INQUIRE INPUT QUEUE OVERFLOW function,

Part 1, 9–17; Part 2, 11–87
INQUIRE LEVEL OF GKS function, Part 2,

11–88
INQUIRE LINETYPE function, Part 2, 11–89
INQUIRE LINEWIDTH SCALE FACTOR function,

Part 2, 11–90
INQUIRE LIST OF ASPECT SOURCE FLAGS

See INQUIRE ASPECT SOURCE FLAGS
function

INQUIRE LIST OF ASPECT SOURCE FLAGS 3
See INQUIRE ASPECT SOURCE FLAGS 3

function
INQUIRE LIST OF AVAILABLE GENERALIZED

DRAWING PRIMITIVES 3 function, Part 2,
11–92

INQUIRE LIST OF AVAILABLE GENERALIZED
DRAWING PRIMITIVES function, Part 2,
11–91

INQUIRE LIST OF AVAILABLE WORKSTATION
TYPES function, Part 2, 11–93

Index–12

INQUIRE LIST OF COLOUR INDICES function,
Part 2, 11–94

INQUIRE LIST OF EDGE INDICES function,
Part 2, 11–95

INQUIRE LIST OF FILL AREA INDICES
function, Part 2, 11–96

INQUIRE LIST OF NORMALIZATION
TRANSFORMATION NUMBERS function,
Part 2, 11–97

INQUIRE LIST OF PATTERN INDICES function,
Part 2, 11–98

INQUIRE LIST OF POLYLINE INDICES function,
Part 2, 11–99

INQUIRE LIST OF POLYMARKER INDICES
function, Part 2, 11–100

INQUIRE LIST OF TEXT INDICES function,
Part 2, 11–101

INQUIRE LIST OF VIEW INDICES function,
Part 2, 11–102

INQUIRE LOCATOR DEVICE STATE 3 function,
Part 2, 11–108

INQUIRE LOCATOR DEVICE STATE function,
Part 2, 11–103

example, Part 1, 9–94
INQUIRE MARKER SIZE SCALE FACTOR

function, Part 2, 11–113
INQUIRE MARKER TYPE function, Part 2,

11–114
INQUIRE MAXIMUM LENGTH OF

WORKSTATION STATE TABLES 3
function, Part 2, 11–116

INQUIRE MAXIMUM LENGTH OF
WORKSTATION STATE TABLES
function, Part 2, 11–115

INQUIRE MAXIMUM NORMALIZATION
TRANSFORMATION NUMBER function,
Part 2, 11–117

INQUIRE MORE SIMULTANEOUS EVENTS
function, Part 2, 11–118

INQUIRE NAME OF OPEN SEGMENT function,
Part 2, 11–119

INQUIRE NORMALIZATION
TRANSFORMATION 3 function, Part
2, 11–121

INQUIRE NORMALIZATION
TRANSFORMATION function, Part 2,
11–120

INQUIRE NUMBER OF AVAILABLE LOGICAL
INPUT DEVICES function, Part 2, 11–122

INQUIRE NUMBER OF SEGMENT PRIORITIES
SUPPORTED function, Part 2, 11–123

INQUIRE OPERATING STATE VALUE function,
Part 2, 11–124

INQUIRE PATTERN FACILITIES function, Part
2, 11–125

INQUIRE PATTERN HEIGHT VECTOR function,
Part 2, 11–126

INQUIRE PATTERN REFERENCE POINT AND
VECTORS function, Part 2, 11–128

INQUIRE PATTERN REFERENCE POINT
function, Part 2, 11–127

INQUIRE PATTERN REPRESENTATION
function, Part 2, 11–129

INQUIRE PATTERN WIDTH VECTOR function,
Part 2, 11–130

INQUIRE PICK DEVICE STATE 3 function, Part
2, 11–133

INQUIRE PICK DEVICE STATE function, Part 2,
11–131

example, Part 1, 9–98
INQUIRE PIXEL ARRAY DIMENSIONS function,

Part 2, 11–138
INQUIRE PIXEL ARRAY function, Part 2, 11–136
INQUIRE PIXEL function, Part 2, 11–135
INQUIRE POLYLINE COLOUR INDEX function,

Part 2, 11–139
INQUIRE POLYLINE FACILITIES function, Part

2, 11–140
INQUIRE POLYLINE INDEX function, Part 2,

11–141
INQUIRE POLYLINE REPRESENTATION

function, Part 2, 11–142
INQUIRE POLYMARKER COLOUR INDEX

function, Part 2, 11–143
INQUIRE POLYMARKER FACILITIES function,

Part 2, 11–144
INQUIRE POLYMARKER INDEX function, Part

2, 11–145
INQUIRE POLYMARKER REPRESENTATION

function, Part 2, 11–146
INQUIRE PREDEFINED COLOUR

REPRESENTATION function, Part 2,
11–147

INQUIRE PREDEFINED EDGE
REPRESENTATION function, Part 2,
11–148

INQUIRE PREDEFINED FILL AREA
REPRESENTATION function, Part 2, 11–149

INQUIRE PREDEFINED PATTERN
REPRESENTATION function, Part 2,
11–150

INQUIRE PREDEFINED POLYLINE
REPRESENTATION function, Part 2, 11–151

INQUIRE PREDEFINED POLYMARKER
REPRESENTATION function, Part 2, 11–152

INQUIRE PREDEFINED TEXT
REPRESENTATION function, Part 2,
11–153

INQUIRE PREDEFINED VIEW
REPRESENTATION function, Part 2,
11–154

Index–13

INQUIRE SEGMENT ATTRIBUTES 3 function,
Part 2, 11–157

INQUIRE SEGMENT ATTRIBUTES function,
Part 2, 11–155

INQUIRE SET OF ACTIVE WORKSTATIONS
function, Part 2, 11–159

INQUIRE SET OF ASSOCIATED
WORKSTATIONS function, Part 2,
11–160

INQUIRE SET OF OPEN WORKSTATIONS
function, Part 2, 11–161

INQUIRE SET OF SEGMENT NAMES IN USE
function, Part 2, 11–162

INQUIRE SET OF SEGMENT NAMES ON
WORKSTATION function, Part 2, 11–163

INQUIRE STRING DEVICE STATE 3 function,
Part 2, 11–166

INQUIRE STRING DEVICE STATE function,
Part 2, 11–164

example, Part 1, 9–104
INQUIRE STROKE DEVICE STATE 3 function,

Part 2, 11–171
INQUIRE STROKE DEVICE STATE function,

Part 2, 11–168
INQUIRE TEXT ALIGNMENT function, Part 2,

11–175
INQUIRE TEXT COLOUR INDEX function, Part

2, 11–176
INQUIRE TEXT EXTENT 3 function, Part 2,

11–178
INQUIRE TEXT EXTENT function, Part 2,

11–177
INQUIRE TEXT FACILITIES function, Part 2,

11–179
INQUIRE TEXT FONT AND PRECISION

function, Part 2, 11–181
INQUIRE TEXT INDEX function, Part 2, 11–182
INQUIRE TEXT PATH function, Part 2, 11–183
INQUIRE TEXT REPRESENTATION function,

Part 2, 11–184
INQUIRE VALUATOR DEVICE STATE 3 function,

Part 2, 11–188
INQUIRE VALUATOR DEVICE STATE function,

Part 2, 11–186
example, Part 1, 9–107

INQUIRE VIEW FACILITIES function, Part 2,
11–190

INQUIRE VIEW REPRESENTATION 3 function,
Part 2, 11–191

INQUIRE WORKSTATION CATEGORY function,
Part 2, 11–193

INQUIRE WORKSTATION CLASSIFICATION
function, Part 2, 11–194

INQUIRE WORKSTATION CONNECTION AND
TYPE function, Part 2, 11–195

example, Part 1, 4–26

INQUIRE WORKSTATION DEFERRAL AND
UPDATE STATES function, Part 2, 11–196

INQUIRE WORKSTATION MAXIMUM
NUMBERS function, Part 2, 11–198

INQUIRE WORKSTATION STATE function, Part
2, 11–199

INQUIRE WORKSTATION TRANSFORMATION
3 function, Part 2, 11–202

INQUIRE WORKSTATION TRANSFORMATION
function, Part 2, 11–200

Inquiry functions, Part 2, 11–5 to 11–203
input use, Part 1, 9–19
introduction to, Part 2, 11–1 to 11–4

Inserting segments, Part 1, 8–3
INSERT SEGMENT 3 function, Part 1, 8–19
INSERT SEGMENT function, Part 1, 8–17

example, Part 1, 8–32
Integer lists

allocation for, Part 2, 11–4
Interface

prompt and echo types, Part 1, 9–5 to 9–13
Interior styles

See also Attributes
See also Hatches
See also Patterns
of fill areas, Part 1, 6–28

Interpret
metafiles, Part 1, 10–1

INTERPRET ITEM function, Part 1, 10–7
Items

metafile header, Part 1, 10–2

K
Kernel

GKS, Part 1, 4–1

L
Lengths

See also Data records
See also Input
input data record, Part 1, 9–8
metafile data record, Part 1, 10–4

Levels
of GKS, Part 1, 1–4

Lines
See also Attributes
See also Output
generating, Part 1, 5–16, 5–17
types, Part 1, 1–3, 6–34
width, Part 1, 6–35

Linking, Part 1, 2–2, 3–1
reducing time, Part 1, 3–7
RISC processors, Part 1, 3–2

Lists
See also GKS
See also Input

Index–14

Lists (cont’d)
See also Workstations
GKS state, Part 2, 11–1
segment state, Part 2, 11–1
viewport input priority, Part 1, 7–6, 9–18
workstation state, Part 2, 11–1

Locator
input class, Part 1, 9–4
viewport input priority, Part 1, 7–6, 9–18

Logging
errors, Part 2, 12–5

Logical device number
See Device number

Logical input devices, Part 1, 9–1 to 9–3
See also Input
activating, Part 1, 9–2, 9–3
classes, Part 1, 9–1
controlling the appearance of, Part 1, 9–2
deactivating, Part 1, 9–2, 9–3
device number, Part 1, 9–1
initializing, Part 1, 9–3
triggering, Part 1, 9–3
workstation identifier, Part 1, 9–1

Logical names, Part 1, 2–3
defining

at DCL level, Part 1, 2–3
general, Part 1, 2–3
GKS$ASF, Part 1, 2–3
GKS$CONID, Part 1, 2–3
GKS$DEF_MODE, Part 1, 2–3
GKS$ERRFILE, Part 1, 2–4
GKS$ERROR, Part 1, 2–4
GKS$IRG, Part 1, 2–4
GKS$METAFILE_TYPE, Part 1, 2–4
GKS$NDC_CLIP, Part 1, 2–4
GKS$STROKE_FONT1, Part 1, 2–4
GKS$WSTYPE, Part 1, 2–4
search order, Part 1, 2–3
types, Part 1, 2–3
VMS

default, Part 1, 2–2
GKS$CONID, Part 1, 2–2
GKS$ERRFILE, Part 1, 2–4
GKS$WSTYPE, Part 1, 2–2

M
Mapping

See also Transformations
cell array color indexes, Part 1, 5–6
color indexes, Part 1, 5–4
device transformations, Part 1, 7–7

Marker, Part 1, 5–18, 5–19
Markers

See also Attributes
See also Output
size, Part 1, 6–36

Markers (cont’d)
types, Part 1, 6–37

Matrix
See also Rotation
See also Scale
See also Translation
segment transformation, Part 1, 8–8

Matrixes
view mapping, Part 1, 7–7
view orientation, Part 1, 7–7

Measure
See also Logical input devices
cycling input device control, Part 1, 9–14

Menus
See also Choice
input, Part 1, 9–4

MESSAGE function, Part 1, 4–17
example, Part 1, 9–94

Messages
See also Errors
error, Part 2, A–1 to A–37
sent to workstations, Part 1, 4–17

Metafile functions, Part 1, 1–4, 10–5 to 10–9
introduction to, Part 1, 10–1 to 10–5

Metafiles, Part 1, 10–1
creating, Part 1, 10–1
creating CGM metafiles, Part 1, 10–3
current item, Part 1, 10–4
item header, Part 1, 10–2
list of errors, Part 2, A–14 to A–15
reading, Part 1, 10–4 to 10–5
reproducing pictures, Part 1, 10–1
reserved data numbers, Part 1, 10–5
structure, Part 1, 10–2
user-defined data, Part 1, 10–5
workstation categories, Part 1, 4–2

Mirror images
cell arrays, Part 1, 5–4
3D cell arrays, Part 1, 5–6

Mode
See also Input
control

SET CHOICE MODE function, Part 1,
9–88

SET LOCATOR MODE function, Part 1,
9–89

SET PICK MODE function, Part 1, 9–90
SET STRING MODE function, Part 1,

9–91
SET STROKE MODE function, Part 1,

9–92
SET VALUATOR MODE function, Part 1,

9–93
event, Part 1, 9–2, 9–3, 9–16

AWAIT EVENT function, Part 1, 9–22
FLUSH DEVICE EVENTS function, Part

1, 9–24
GET CHOICE function, Part 1, 9–25

Index–15

Mode
event (cont’d)

GET LOCATOR 3 function, Part 1, 9–27
GET LOCATOR function, Part 1, 9–26
GET PICK function, Part 1, 9–28
GET STRING function, Part 1, 9–29
GET STROKE 3 function, Part 1, 9–32
GET STROKE function, Part 1, 9–30
GET VALUATOR function, Part 1, 9–34

input operating, Part 1, 9–2, 9–3, 9–14
request, Part 1, 9–2, 9–3, 9–14

REQUEST CHOICE function, Part 1, 9–65
REQUEST LOCATOR 3 function, Part 1,

9–68
REQUEST LOCATOR function, Part 1,

9–66
REQUEST PICK function, Part 1, 9–70
REQUEST STRING function, Part 1, 9–71
REQUEST STROKE 3 function, Part 1,

9–75
REQUEST STROKE function, Part 1, 9–73
REQUEST VALUATOR function, Part 1,

9–77
sample, Part 1, 9–2, 9–3, 9–15

SAMPLE CHOICE function, Part 1, 9–78
SAMPLE LOCATOR 3 function, Part 1,

9–80
SAMPLE LOCATOR function, Part 1, 9–79
SAMPLE PICK function, Part 1, 9–81
SAMPLE STRING function, Part 1, 9–82
SAMPLE STROKE 3 function, Part 1,

9–85
SAMPLE STROKE function, Part 1, 9–83
SAMPLE VALUATOR function, Part 1,

9–87
Models

color, Part 1, 6–16
Multiple tranformations

See also Segments
See also Transformations

N
Names

segment, Part 1, 8–1
NDC

See also Transformations
See Normalized device coordinates
fixed points, Part 1, 8–7

New frame necessary at update entry, Part 1, 8–4
Nominal sizes, Part 1, 6–1
Nongeometric attributes, Part 1, 6–1

See also Attributes
Normalization

clipping, Part 1, 7–4
overlapping viewports, Part 1, 7–6
transformations, Part 1, 1–3

Normalization
transformations (cont’d)

maximum number, Part 1, 7–5
viewports, Part 1, 7–4
windows, Part 1, 7–3

Normalization transformations
See also Transformations
See Transformations

Normalized device coordinates, Part 1, 7–1
Normalized projection coordinates, Part 1, 7–1,

7–7
NPC

See Normalized projection coordinates
Numbers

See also Errors
See also Input
error, Part 2, A–1

O
OFF

error state, Part 2, 12–1
ON

error state, Part 2, 12–1
One-to-one

See also Mapping
OPEN GKS function, Part 1, 4–18

example, Part 1, 4–24
Opening

GKS, Part 1, 4–4
GKSM metafile workstations, Part 1, 10–1
segments, Part 1, 4–5, 8–1
workstations, Part 1, 4–4

Opening a workstation, Part 1, 2–2, 3–2 to 3–3
OPEN WORKSTATION function, Part 1, 4–19

example, Part 1, 4–24
Operating modes

input, Part 1, 9–2, 9–3, 9–14 to 9–18
Operating states, Part 1, 4–3

list of errors, Part 2, A–1 to A–2
using output, Part 1, 5–1

Operating system
ULTRIX, Part 1, 3–1

Order
See also Transformations
viewport input priority, Part 1, 7–6

Origin
See also Transformations
world coordinate system, Part 1, 7–3

Output
See also Attributes
altering the primitive, Part 1, 5–2
attribute functions

See Attribute functions, Part 1, 6–1
attributes, Part 1, 1–3, 5–2
bound attributes, Part 1, 6–1
default windows and viewports, Part 1, 5–2

Index–16

Output (cont’d)
deferral, Part 1, 4–6, 5–3

DECwindows, Part 1, 1–6
list of errors, Part 2, A–10 to A–11
list of primitives, Part 1, 1–2
lost during transformations, Part 1, 7–8
metafiles, Part 1, 10–1, 10–2
pick identification, Part 1, 8–2
pictures, Part 1, 7–1
segments, Part 1, 8–1
valid operating states, Part 1, 5–1
workstation categories, Part 1, 4–2, 5–1

Output attributes
See Attributes

Output functions, Part 1, 5–1 to 5–27
introduction to, Part 1, 5–1 to 5–3

Overflow
event input queue, Part 1, 9–17

Overlapping
See also Transformations
segments, Part 1, 8–6
viewports, Part 1, 7–6, 9–18

P
Parallel projection, Part 1, 7–7
Pasteboard

See also Transformations
normalization viewport, Part 1, 7–5

Path
See also Text
text, Part 1, 6–57

Patterns, Part 1, 6–28
See also Attributes
fill areas, Part 1, 5–8, 5–9
reference points, Part 1, 6–38
reference point vector, Part 1, 6–39
representation, Part 1, 6–40
specifying size, Part 1, 6–41
style index values, Part 1, 6–31

Pending
See also Implicit regenerations
bundle changes, Part 1, 4–7
output generation, Part 1, 4–6
segment attribute changes, Part 1, 4–7
workstation transformations, Part 1, 4–7

Perspective projection, Part 1, 7–7
Physical input devices, Part 1, 9–1
pi, Part 1, 8–8
Pick

See also Input
See also Segments
identifier, Part 1, 8–2, 9–4
input class, Part 1, 9–4
segment detectability, Part 1, 8–5
specifying NOPICK input, Part 1, 9–15, 9–16
visibility, Part 1, 8–10

Pictures
See also Output
See also Transformations
composition, Part 1, 1–3, 7–1
reproducing

metafiles, Part 1, 10–1
Pipeline

See also Segments
Plotting

See also Transformations
pictures, Part 1, 7–1

Pointers
See also Bundles
into bundle tables, Part 1, 6–3

Points
See also Transformations
coordinate, Part 1, 7–1
pattern reference, Part 1, 6–38, 6–39
segments

fixed points, Part 1, 8–7
viewport input priority, Part 1, 7–6

Polygons
See also Attributes
See also Output
fill areas, Part 1, 5–8, 5–9

Polyline
See also Attributes
See also Output
attributes

SET LINETYPE, Part 1, 6–34
SET LINEWIDTH SCALE FACTOR, Part

1, 6–35
SET POLYLINE COLOUR INDEX, Part 1,

6–43, 6–44
bundles, Part 1, 6–44
line type, Part 1, 1–3
representation, Part 1, 6–45
type, Part 1, 6–34

POLYLINE 3 function, Part 1, 5–17
POLYLINE function, Part 1, 5–16

example, Part 1, 6–65
Polylines

initial attributes, Part 2, E–1
Polymarker

See also Output
See also Transformations
attributes

SET MARKER SIZE SCALE FACTOR,
Part 1, 6–36

SET MARKER TYPE, Part 1, 6–37
SET POLYMARKER COLOUR INDEX,

Part 1, 6–47
SET POLYMARKER INDEX, Part 1, 6–48

bundle table, Part 1, 6–48
representation, Part 1, 6–49

Index–17

POLYMARKER 3 function, Part 1, 5–19
POLYMARKER function, Part 1, 5–18

example, Part 1, 6–68
Polymarkers

initial attributes, Part 2, E–2
Positioning

primitives, Part 1, 7–5
Precision

text
establishing, Part 1, 6–54

Presentation
See also Transformations
pictures, Part 1, 7–7

Primitives
See also Attributes
See also Output
attributes, Part 1, 6–1
bound attributes, Part 1, 6–1
clipping segments, Part 1, 8–9
highlighting, Part 1, 8–6
input prompt and echo types, Part 1, 9–5
list, Part 1, 1–2
lost during regeneration, Part 1, 4–7
lost during transformations, Part 1, 7–8
output, Part 1, 5–1 to 5–3
pick identification, Part 1, 8–2
reproducing

metafiles, Part 1, 10–1
segment detectability, Part 1, 8–5
segments, Part 1, 8–1
transformation, Part 1, 7–3

Priority
See also Input
segments, Part 1, 8–6
viewport input, Part 1, 7–6, 9–18

Programming
See also GKS
device-independent input, Part 1, 9–20
error handling, Part 2, 12–1

Programs
execution of, Part 1, 2–2, 3–1
pausing, Part 1, 1–6

Projections
parallel, Part 1, 7–7
perspective, Part 1, 7–7

Prompt and echo types, Part 1, 9–2, 9–5 to 9–13
See also Input
standard data records, Part 1, 9–8

Proportionate
See also Transformations

Q
Queue

event input, Part 1, 9–16

R
Radians

translating to degrees, Part 1, 8–8
Ranges

See also Transformations
windows and viewports, Part 1, 7–3

Ratio
See also Transformations

Reading a metafile, Part 1, 10–4
READ ITEM FROM GKSM function, Part 1, 10–8
READ ITEM FROM METAFILE

See READ ITEM FROM GKSM function
Realized values, Part 2, 11–4
Real numbers

input, Part 1, 9–4
Records

See also Escapes
See also GDPs
See also Input
input, Part 1, 9–8

prompt and echo types, Part 1, 9–5 to 9–13
standard, Part 1, 9–8

Rectangles
See also Attributes
See also Tranformations
clipping, Part 1, 7–4

segments, Part 1, 8–9
REDRAW ALL SEGMENTS ON WORKSTATION

function, Part 1, 4–20
example, Part 1, 8–28

Regenerations
segments, Part 1, 8–3
workstation surface, Part 1, 4–7
workstation transformations, Part 1, 7–8

Releasing
DEC GKS buffers, Part 1, 4–11

RENAME SEGMENT function, Part 1, 8–21
Renaming

segments, Part 1, 8–1
Reports

current event on input queue, Part 1, 9–16
Representation

See also Attributes
bundle table entries, Part 1, 6–3
color, Part 1, 6–17
edge, Part 1, 6–22
fill area, Part 1, 6–29
functions, Part 1, 6–4
implicit regenerations, Part 1, 6–4
pattern, Part 1, 6–40

Index–18

Representation (cont’d)
polyline, Part 1, 6–45
polymarker, Part 1, 6–49
text, Part 1, 6–58

Reproducing
metafiles, Part 1, 10–1

REQUEST CHOICE function, Part 1, 9–65
REQUEST functions, Part 1, 9–2, 9–3, 9–15
REQUEST LOCATOR 3 function, Part 1, 9–68
REQUEST LOCATOR function, Part 1, 9–66
Request mode, Part 1, 9–14 to 9–15

See also Input
breaking, Part 1, 9–15

REQUEST PICK function, Part 1, 9–70
REQUEST STRING function, Part 1, 9–71

example, Part 1, 9–104
REQUEST STROKE 3 function, Part 1, 9–75
REQUEST STROKE function, Part 1, 9–73
REQUEST VALUATOR function, Part 1, 9–77
Reverse video

highlighting segments, Part 1, 8–6
Rotation

fixed points, Part 1, 8–7
segments, Part 1, 8–7

RUN DCL command, Part 1, 2–2

S
SAMPLE CHOICE function, Part 1, 9–78
SAMPLE functions, Part 1, 9–15
SAMPLE LOCATOR 3 function, Part 1, 9–80
SAMPLE LOCATOR function, Part 1, 9–79
Sample mode, Part 1, 9–15 to 9–16
SAMPLE PICK function, Part 1, 9–81

example, Part 1, 9–98
SAMPLE STRING function, Part 1, 9–82
SAMPLE STROKE 3 function, Part 1, 9–85
SAMPLE STROKE function, Part 1, 9–83
SAMPLE VALUATOR function, Part 1, 9–87

example, Part 1, 9–107
Scale

See also Segments
edge width factor, Part 1, 6–25
fixed points, Part 1, 8–7
segments, Part 1, 8–7
valuator input, Part 1, 9–4

Scale factors, Part 1, 6–1
Scratch pad

See also Transformations
normalization window, Part 1, 7–5

Segment functions, Part 1, 8–1 to 8–41
introduction to, Part 1, 8–1 to 8–10

Segments
accumulated transformations, Part 1, 8–9
associating, Part 1, 8–3
attributes, Part 1, 8–5

SET DETECTABILITY function, Part 1,
8–22

Segments
attributes (cont’d)

SET HIGHLIGHTING function, Part 1,
8–23

SET SEGMENT PRIORITY function, Part
1, 8–24

SET VISIBILITY function, Part 1, 8–27
clipping, Part 1, 8–9
closing, Part 1, 4–5
copying, Part 1, 8–3
creating, Part 1, 4–5, 8–1
deleting, Part 1, 8–2
detectability, Part 1, 8–5
highlighting, Part 1, 8–6
initial attributes, Part 2, E–4
input, Part 1, 8–2
inserting, Part 1, 8–3
list of errors, Part 2, A–11 to A–12
metafiles, Part 1, 10–2
names, Part 1, 8–1
opening, Part 1, 4–5, 8–1
order of transformation, Part 1, 8–9
overlapping, Part 1, 8–6
priority, Part 1, 8–6
redrawn, Part 1, 4–7
renaming, Part 1, 8–1
rotating, Part 1, 8–7
scaling, Part 1, 8–7
selecting a transformation, Part 1, 8–8
state list, Part 1, 8–1
storage, Part 1, 8–2
surface update, Part 1, 8–3
transformation, Part 1, 8–7 to 8–9

ACCUMULATE TRANSFORMATION
MATRIX 3 function, Part 1, 7–12

ACCUMULATE TRANSFORMATION
MATRIX function, Part 1, 7–10

EVALUATE TRANSFORMATION MATRIX
3 function, Part 1, 7–16

EVALUATE TRANSFORMATION MATRIX
function, Part 1, 7–14

EVALUATE VIEW MAPPING MATRIX 3
function, Part 1, 7–18

EVALUATE VIEW ORIENTATION
MATRIX 3 function, Part 1, 7–21

SET SEGMENT TRANSFORMATION 3
function, Part 1, 8–26

SET SEGMENT TRANSFORMATION
function, Part 1, 8–25

transformation matrix, Part 1, 8–8
translating, Part 1, 8–7
using

ASSOCIATE SEGMENT WITH
WORKSTATION function, Part 1,
8–11

CLOSE SEGMENT function, Part 1, 8–12
COPY SEGMENT TO WORKSTATION,

Part 1, 8–13

Index–19

Segments
using (cont’d)

CREATE SEGMENT function, Part 1,
8–14

DELETE SEGMENT FROM
WORKSTATION function, Part
1, 8–16

DELETE SEGMENT function, Part 1,
8–15

INSERT SEGMENT function, Part 1,
8–17, 8–19

RENAME SEGMENT function, Part 1,
8–21

visibility, Part 1, 8–10
WDSS, Part 1, 8–2
WISS, Part 1, 8–3

SELECT NORMALIZATION TRANSFORMATION
function, Part 1, 7–23

example, Part 1, 7–46
SET ASPECT SOURCE FLAGS 3 function, Part

1, 6–9
SET ASPECT SOURCE FLAGS function, Part 1,

6–7
example, Part 1, 6–62

SET CHARACTER EXPANSION FACTOR
function, Part 1, 6–11

SET CHARACTER HEIGHT function, Part 1,
6–12

example, Part 1, 6–68
SET CHARACTER SPACING function, Part 1,

6–13
SET CHARACTER UP VECTOR function, Part 1,

6–14
SET CHOICE MODE function, Part 1, 9–88
SET CLIPPING INDICATOR function, Part 1,

7–24
example, Part 1, 7–46

SET COLOUR MODEL function, Part 1, 6–16
SET COLOUR REPRESENTATION function,

Part 1, 6–17
example, Part 1, 6–60

SET DEFERRAL STATE function, Part 1, 4–21
example, Part 1, 5–24

SET DETECTABILITY function, Part 1, 8–22
example, Part 1, 9–98

SET EDGE COLOUR INDEX function, Part 1,
6–19

SET EDGE FLAG function, Part 1, 6–20
SET EDGE INDEX function, Part 1, 6–21
SET EDGE REPRESENTATION function, Part 1,

6–22
SET EDGETYPE function, Part 1, 6–24
SET EDGEWIDTH SCALE FACTOR function,

Part 1, 6–25
SET FILL AREA COLOUR INDEX function, Part

1, 6–26
example, Part 1, 6–60

SET FILL AREA INDEX function, Part 1, 6–27
example, Part 1, 6–62

SET FILL AREA INTERIOR STYLE function,
Part 1, 6–28

example, Part 1, 6–60
SET FILL AREA REPRESENTATION function,

Part 1, 6–29
example, Part 1, 6–62

SET FILL AREA STYLE INDEX function, Part 1,
6–31

SET HIGHLIGHTING function, Part 1, 8–23
example, Part 1, 8–38

SET HLHSR IDENTIFIER function, Part 1, 6–32
SET HLHSR MODE function, Part 1, 6–33
SET LINE COLOUR INDEX

See SET POLYLINE COLOUR INDEX function
SET LINE INDEX

See SET POLYLINE INDEX function
SET LINE REPRESENTATION

See SET POLYLINE REPRESENTATION
function

SET LINETYPE function, Part 1, 6–34
example, Part 1, 6–65

SET LINEWIDTH SCALE FACTOR function,
Part 1, 6–35

SET LOCATOR MODE function, Part 1, 9–89
example, Part 1, 9–94

SET MARKER COLOUR INDEX
See SET POLYMARKER COLOUR INDEX

function
SET MARKER INDEX

See SET POLYMARKER INDEX function
SET MARKER REPRESENTATION

See SET POLYMARKER REPRESENTATION
function

SET MARKER SIZE SCALE FACTOR function,
Part 1, 6–36

SET MARKER TYPE function, Part 1, 6–37
example, Part 1, 6–68

SET MODE functions, Part 1, 9–2, 9–3, 9–14,
9–15

SET PATTERN REFERENCE POINT AND
VECTORS function, Part 1, 6–39

SET PATTERN REFERENCE POINT function,
Part 1, 6–38

SET PATTERN REPRESENTATION function,
Part 1, 6–40

SET PATTERN SIZE function, Part 1, 6–41
SET PICK IDENTIFIER function, Part 1, 6–42

example, Part 1, 9–98
SET PICK MODE function, Part 1, 9–90

example, Part 1, 9–98
SET POLYLINE COLOUR INDEX function, Part

1, 6–43
SET POLYLINE INDEX function, Part 1, 6–44

Index–20

SET POLYLINE REPRESENTATION function,
Part 1, 6–45

SET POLYLINE TYPE
See SET LINETYPE function

SET POLYLINE WIDTH SCALE FACTOR
See SET LINEWIDTH SCALE FACTOR

function
SET POLYMARKER COLOUR INDEX function,

Part 1, 6–47
example, Part 1, 6–68

SET POLYMARKER INDEX function, Part 1,
6–48

SET POLYMARKER REPRESENTATION
function, Part 1, 6–49

SET POLYMARKER SIZE SCALE FACTOR
See SET MARKER SIZE SCALE FACTOR

function
SET POLYMARKER TYPE

See SET MARKER TYPE function
SET SEGMENT PRIORITY function, Part 1, 8–24
SET SEGMENT TRANSFORMATION 3 function,

Part 1, 8–26
SET SEGMENT TRANSFORMATION function,

Part 1, 8–25
example, Part 1, 7–37

SET STRING MODE function, Part 1, 9–91
SET STROKE MODE function, Part 1, 9–92
SET TEXT ALIGNMENT function, Part 1, 6–51

example, Part 1, 6–68
SET TEXT COLOUR INDEX function, Part 1,

6–53
SET TEXT EXPANSION FACTOR

See SET CHARACTER EXPANSION FACTOR
function

SET TEXT FONT AND PRECISION function,
Part 1, 6–54

SET TEXT HEIGHT
See SET CHARACTER HEIGHT function

SET TEXT INDEX function, Part 1, 6–56
SET TEXT PATH function, Part 1, 6–57

example, Part 1, 6–68
SET TEXT REPRESENTATION function, Part 1,

6–58
SET TEXT SPACING

See SET CHARACTER SPACING function
SET TEXT UP VECTOR

See SET CHARACTER UP VECTOR function
Settings

See also Attributes
See also Transformations
attribute values, Part 1, 6–1
pattern sizes, Part 1, 6–41
segment transformations, Part 1, 8–8

SET VALUATOR MODE function, Part 1, 9–93
example, Part 1, 9–107

Set values, Part 2, 11–4
SET VIEW INDEX function, Part 1, 7–25
SET VIEWPORT 3 function, Part 1, 7–29
SET VIEWPORT function, Part 1, 7–28

example, Part 1, 7–46
SET VIEWPORT INPUT PRIORITY function,

Part 1, 7–30
SET VIEW REPRESENTATION 3 function, Part

1, 7–19, 7–26
SET VIEW TRANSFORMATION INPUT

PRIORITY function, Part 1, 7–27
SET VISIBILITY function, Part 1, 8–27
SET WINDOW 3 function, Part 1, 7–32
SET WINDOW function, Part 1, 7–31

example, Part 1, 7–46
SET WORKSTATION VIEWPORT 3 function,

Part 1, 7–34
SET WORKSTATION VIEWPORT function, Part

1, 7–33
example, Part 1, 7–50

SET WORKSTATION WINDOW 3 function, Part
1, 7–36

SET WORKSTATION WINDOW function, Part 1,
7–35

Shift segments, Part 1, 8–7
Shrink segments, Part 1, 8–7
Sizes

input data record, Part 1, 9–19
markers, Part 1, 6–36
patterns, Part 1, 6–41
segments, Part 1, 8–8

Software fonts, Part 1, 6–54
Solid

See also Attributes
fill area interior style, Part 1, 6–28
fill areas, Part 1, 5–8, 5–9

Spacing
text, Part 1, 6–13

Standards
See also ANSI
See also GKS
metafiles, Part 1, 10–1

State lists
GKS, Part 1, 4–3, 4–18, 8–1; Part 2, 11–1

attributes, Part 1, 6–1
segment, Part 1, 4–3, 8–1
segments, Part 2, 11–1
surface control entries, Part 1, 4–8
workstation, Part 1, 4–3, 4–19; Part 2, 11–1

attributes, Part 1, 6–3
Statements

include, Part 1, 2–1, 3–1
States

error, Part 2, 12–1
operating, Part 1, 4–3

Status
inquiry error status argument, Part 2, 11–3

Index–21

Storage
metafiles, Part 1, 1–4, 10–1
segments, Part 1, 8–2

Strings
See also Text
input class, Part 1, 9–4

Stroke
input class, Part 1, 9–4
viewport input priority, Part 1, 9–18
viewport priority, Part 1, 7–6

Structure
metafiles, Part 1, 10–2

Styles
See also Attributes
fill areas, Part 1, 6–31

Surface
See also Implicit regenerations
control, Part 1, 4–6
foreground and background colors, Part 1, 6–5
implicit regenerations

attribute changes, Part 1, 6–4
regeneration, Part 1, 4–7
state list entries, Part 1, 4–8
update

segments, Part 1, 8–3
Symbols

polymarkers, Part 1, 5–18, 5–19
Synchronous input, Part 1, 9–14

See also Input
Syntax

format, Part 1, 1–5
System defaults file, Part 1, 3–6
System errors

list of, Part 2, A–16 to A–19

T
Tables

See also Attributes
See also Bundles
attribute bundle, Part 1, 6–3
color index, Part 1, 6–16, 6–17
edge bundle index, Part 1, 6–22
fill area bundle index, Part 1, 6–29
GKS description, Part 2, 11–1
pattern style bundle index, Part 1, 6–40
polyline bundle index, Part 1, 6–45
polymarker bundle index, Part 1, 6–49
text bundle index, Part 1, 6–58
workstation description, Part 2, 11–1

Terminate
workstation environment, Part 1, 4–12

Terminating
error handling, Part 2, 12–1
request input, Part 1, 9–14

Text
See also Attributes
alignment, Part 1, 6–51
attributes

SET CHARACTER EXPANSION FACTOR,
Part 1, 6–11

SET CHARACTER HEIGHT, Part 1, 6–12
SET CHARACTER SPACING, Part 1, 6–13
SET CHARACTER UP VECTOR, Part 1,

6–14
SET TEXT ALIGNMENT, Part 1, 6–51
SET TEXT COLOUR INDEX, Part 1, 6–53
SET TEXT FONT AND PRECISION, Part

1, 6–54
SET TEXT INDEX, Part 1, 6–56
SET TEXT PATH, Part 1, 6–57

bundles, Part 1, 6–56
character width, Part 1, 6–11
expansion factor, Part 1, 6–11
fonts, Part 1, 6–54
height, Part 1, 6–12
initial attributes, Part 2, E–2
input, Part 1, 9–4
path, Part 1, 6–57
precision, Part 1, 6–54
representation, Part 1, 6–58
spacing, Part 1, 6–13
up-vector, Part 1, 6–14

TEXT 3 function, Part 1, 5–22
TEXT function, Part 1, 5–20

example, Part 1, 6–68
Toggling

logical input device control, Part 1, 9–14
Transformation functions, Part 1, 7–1 to 7–54

introduction to, Part 1, 7–1 to 7–8
Transformations

device, Part 1, 7–7
identity, Part 1, 7–7
identity (segment), Part 1, 8–8
implicit regenerations, Part 1, 7–8
input change vectors, Part 1, 9–5
list of errors, Part 2, A–5 to A–6
metafiles, Part 1, 10–2
normalization, Part 1, 1–3, 7–3 to 7–6

clipping, Part 1, 7–4
initial attributes, Part 2, E–4
maximum number, Part 1, 7–5
overlapping viewports, Part 1, 7–6
SELECT NORMALIZATION

TRANSFORMATION function,
Part 1, 7–23

SET CLIPPING INDICATOR function,
Part 1, 7–24

SET VIEWPORT 3 function, Part 1, 7–29
SET VIEWPORT function, Part 1, 7–28
SET VIEWPORT INPUT PRIORITY

function, Part 1, 7–30
SET WINDOW 3 function, Part 1, 7–32

Index–22

Transformations
normalization (cont’d)

SET WINDOW function, Part 1, 7–31
text height, Part 1, 6–12

normalization viewports, Part 1, 7–4
normalization windows, Part 1, 7–3
overlapping viewports, Part 1, 9–18
segments, Part 1, 8–7 to 8–9

accumulating, Part 1, 8–9
fixed points, Part 1, 8–7
matrix, Part 1, 8–8

unity, Part 1, 7–4
used for output, Part 1, 5–2
view, Part 1, 7–7
viewport input priority, Part 1, 9–18
workstation, Part 1, 1–3

SET WORKSTATION VIEWPORT 3
function, Part 1, 7–34

SET WORKSTATION VIEWPORT function,
Part 1, 7–33

SET WORKSTATION WINDOW 3 function,
Part 1, 7–36

SET WORKSTATION WINDOW function,
Part 1, 7–35

Translations
segments, Part 1, 8–7
viewport input priority, Part 1, 7–6

Transporting
metafiles, Part 1, 10–1

Transposing
pictures, Part 1, 7–4

Triggers
input, Part 1, 9–3, 9–15

Types
edge, Part 1, 6–24
inquiry value type argument, Part 2, 11–4
line, Part 1, 6–34
marker, Part 1, 6–37
prompt and echo, Part 1, 9–5 to 9–13
workstation

metafile, Part 1, 10–1
workstations, Part 1, 4–2

U
ULTRIX linking

RISC, Part 1, 3–2
ULTRIX operating system, Part 1, 3–1 to 3–7
Unity transformation, Part 1, 7–4
Update

See also Implicit regenerations
attribute changes, Part 1, 6–4
regenerating the surface, Part 1, 4–7
releasing deferred output, Part 1, 4–6
surface

segments, Part 1, 8–3
the workstation surface, Part 1, 4–6

UPDATE WORKSTATION function, Part 1, 4–23
example, Part 1, 4–24

Up-vector
text, Part 1, 6–14

User defaults file, Part 1, 3–6
User defined

error handler, Part 2, 12–1

V
Valuator

input class, Part 1, 9–4
Values

attribute, Part 1, 6–1
initial attribute, Part 2, E–1 to E–4
maximum device coordinates, Part 1, 7–8
of constants, Part 2, B–1 to B–39

Vectors
See also GDPs
See also Segments
pattern reference point, Part 1, 6–39
text up-vector, Part 1, 6–14
translation point, Part 1, 8–7

View
reference plane, Part 1, 7–21
transformations, Part 1, 7–7
volume, Part 1, 7–19

View mapping matrix, Part 1, 7–7
View orientation matrix, Part 1, 7–7
View plane, Part 1, 7–7
Viewports, Part 1, 7–28, 7–29, 7–30

See also Transformations
input priority, Part 1, 7–6, 9–18
normalization, Part 1, 7–4

initial value, Part 2, E–4
overlapping, Part 1, 7–6, 9–18
workstation, Part 1, 7–7

View reference coordinates, Part 1, 7–1
VRC, Part 1, 7–7

View table, Part 1, 7–7
Visibility segments, Part 1, 8–10
Visual interface

See also Input
input prompt and echo types, Part 1, 9–5 to

9–13
VMS logical names

GKS$CONID, Part 1, 2–2
GKS$ERRFILE, Part 1, 2–4
GKS$WSTYPE, Part 1, 2–2

VRC
See View reference coordinates

Index–23

W
WDSS, Part 1, 8–2

See also Segments
Width

See also Attributes
See also Transformations
character, Part 1, 6–11
line, Part 1, 6–35

Windows, Part 1, 7–31, 7–32
See also Transformations
normalization

initial value, Part 2, E–4
workstation, Part 1, 7–7

WISS, Part 1, 4–2, 8–3
Workstation attributes, Part 1, 6–16, 6–17, 6–22,

6–29, 6–40, 6–45, 6–49, 6–58
Workstation identifier, Part 1, 9–1
Workstation-independent primitive attributes,

Part 1, 6–7, 6–9, 6–11, 6–12, 6–13, 6–14, 6–19,
6–20, 6–21, 6–24, 6–25, 6–26, 6–27, 6–28,
6–31, 6–34, 6–35, 6–36, 6–37, 6–38, 6–39,
6–41, 6–42, 6–43, 6–44, 6–47, 6–48, 6–51,
6–53, 6–54, 6–56, 6–57

Workstations
activating, Part 1, 4–5, 4–9
attributes, Part 1, 6–1
clearing the surface, Part 1, 4–10
closing, Part 1, 4–5
deactivating, Part 1, 4–5, 4–13
deferral state, Part 1, 4–21
definition of, Part 1, 4–2
description tables, Part 1, 4–1
device coordinates, Part 1, 7–1
device manipulation

ESCAPE, Part 1, 4–14
device number, Part 1, 9–1
environment, Part 1, 4–1
environment functions

ACTIVATE WORKSTATION, Part 1, 4–9
CLOSE WORKSTATION, Part 1, 4–12
DEACTIVATE WORKSTATION, Part 1,

4–13
OPEN WORKSTATION, Part 1, 4–19

foreground and background colors, Part 1, 6–5
identifiers

input, Part 1, 9–1
implicit regeneration, Part 1, 4–21
implicit regenerations

transformations, Part 1, 7–8
list of errors, Part 2, A–3 to A–5
maximum device coordinates, Part 1, 7–8
nominal sizes, Part 1, 6–1
opening, Part 1, 4–4
segments, Part 1, 4–20
state list

attributes, Part 1, 6–3

Workstations
state list (cont’d)

color model, Part 1, 6–16
edge bundle table, Part 1, 6–22
fill area bundle table, Part 1, 6–29
pattern style bundle table, Part 1, 6–40
polyline bundle table, Part 1, 6–45
polymarker bundle table, Part 1, 6–49
text bundle table, Part 1, 6–58

stored segments, Part 1, 8–1
surface, Part 1, 7–1
surface control, Part 1, 4–6
surface regeneration, Part 1, 4–7
transformations, Part 1, 1–3, 7–7 to 7–8
types, Part 1, 4–2

metafile, Part 1, 10–1
update

segments, Part 1, 8–3
updating, Part 1, 4–23

Workstation type
default, Part 1, 2–2, 3–3
defined, Part 1, 2–2, 3–3
specifying on ULTRIX, Part 1, 3–3
specifying on VMS, Part 1, 2–2

World coordinates, Part 1, 7–1
See also Transformations
fixed points, Part 1, 8–7
origin, Part 1, 7–3

WRITE ITEM TO GKSM function, Part 1, 10–9
Writing to metafiles, Part 1, 10–2

Index–24

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /JPXEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /JPXEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 100
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f0062006500200050004400460020658768637b2654080020005000440046002f0058002d00310061003a0032003000300031002089c4830330028fd9662f4e004e2a4e1395e84e3a56fe5f6251855bb94ea46362800c52365b9a7684002000490053004f0020680751c6300251734e8e521b5efa7b2654080020005000440046002f0058002d00310061002089c483037684002000500044004600206587686376848be67ec64fe1606fff0c8bf753c29605300a004100630072006f00620061007400207528623763075357300b300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef67b2654080020005000440046002f0058002d00310061003a00320030003000310020898f7bc430025f8c8005662f70ba57165f6251675bb94ea463db800c5c08958052365b9a76846a196e96300295dc65bc5efa7acb7b2654080020005000440046002f0058002d003100610020898f7bc476840020005000440046002065874ef676848a737d308cc78a0aff0c8acb53c395b1201c004100630072006f00620061007400204f7f7528800563075357201d300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200034002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061003a0032003000300031002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d003100610020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200034002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f00620065002000710075006500200073006500200064006500620065006e00200063006f006d00700072006f0062006100720020006f002000710075006500200064006500620065006e002000630075006d0070006c006900720020006c00610020006e006f0072006d0061002000490053004f0020005000440046002f0058002d00310061003a00320030003000310020007000610072006100200069006e00740065007200630061006d00620069006f00200064006500200063006f006e00740065006e00690064006f00200067007200e1006600690063006f002e002000500061007200610020006f006200740065006e006500720020006d00e1007300200069006e0066006f0072006d00610063006900f3006e00200073006f0062007200650020006c0061002000630072006500610063006900f3006e00200064006500200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400690062006c0065007300200063006f006e0020006c00610020006e006f0072006d00610020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006c006100200047007500ed0061002000640065006c0020007500730075006100720069006f0020006400650020004100630072006f006200610074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200034002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
 /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020c791c131d558b294002000410064006f0062006500200050004400460020bb38c11cb2940020d655c778c7740020d544c694d558ba700020adf8b798d53d0020cee8d150d2b8b97c0020ad50d658d558b2940020bc29bc95c5d00020b300d55c002000490053004f0020d45cc900c7780020005000440046002f0058002d00310061003a0032003000300031c7580020addcaca9c5d00020b9dec544c57c0020d569b2c8b2e4002e0020005000440046002f0058002d003100610020d638d65800200050004400460020bb38c11c0020c791c131c5d00020b300d55c0020c790c138d55c0020c815bcf4b2940020004100630072006f0062006100740020c0acc6a90020c124ba85c11cb97c0020cc38c870d558c2edc2dcc624002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200034002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200063006100700061007a0065007300200064006500200073006500720065006d0020007600650072006900660069006300610064006f00730020006f0075002000710075006500200064006500760065006d00200065007300740061007200200065006d00200063006f006e0066006f0072006d0069006400610064006500200063006f006d0020006f0020005000440046002f0058002d00310061003a0032003000300031002c00200075006d0020007000610064007200e3006f002000640061002000490053004f002000700061007200610020006f00200069006e007400650072006300e2006d00620069006f00200064006500200063006f006e0074006500fa0064006f00200067007200e1006600690063006f002e002000500061007200610020006f00620074006500720020006d00610069007300200069006e0066006f0072006d006100e700f50065007300200073006f00620072006500200063006f006d006f00200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00700061007400ed007600650069007300200063006f006d0020006f0020005000440046002f0058002d00310061002c00200063006f006e00730075006c007400650020006f0020004700750069006100200064006f002000750073007500e100720069006f00200064006f0020004100630072006f006200610074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200034002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200073006b00610020006b006f006e00740072006f006c006c006500720061007300200065006c006c0065007200200073006f006d0020006d00e50073007400650020006d006f0074007300760061007200610020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e00640061007200640020006600f6007200200075007400620079007400650020006100760020006700720061006600690073006b007400200069006e006e0065006800e5006c006c002e00200020004d0065007200200069006e0066006f0072006d006100740069006f006e0020006f006d00200068007500720020006d0061006e00200073006b00610070006100720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00610020005000440046002d0064006f006b0075006d0065006e0074002000660069006e006e00730020006900200061006e007600e4006e00640061007200680061006e00640062006f006b0065006e002000740069006c006c0020004100630072006f006200610074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200034002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings when submitting to HP. These settings require font embedding.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /HighResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

