
Digital DEC/EDI
Application Development
Revised for Software Version: V4.0
Compaq Computer Corporation
Houston, Texas



November 2001

©Compaq Computer Corporation 1990,2001

Compaq, the Compaq logo, and VMS Registered in U.S. Patent and trademark Office.

OpenVMS and Tru64 are trademarks of Compaq Information Technologies Group, L.P. in the United States and
other countries.
UNIX is a trademark of The Open Group in the United States and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this
document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties
for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing
herein should be construed as constituting an additional warranty.

This document is the property of, and is proprietary to Compaq Computer Corporation. It is not to be disclosed in
whole or in part without the express written authorization of Compaq Computer Corporation. No portion of this
[enter document] shall be duplicated in any manner for any purpose other than as specifically permitted herein.

Compaq service tool software, including associated documentation, is the property of and contains confidential
technology of Compaq Computer Corporation. Service customer is hereby licensed to use the software only for
activities directly relating to the delivery of, and only during the term of, the applicable services delivered by Com-
paq or its authorized service provider. Customer may not modify or reverse engineer, remove, or transfer the soft-
ware or make the software or any resultant diagnosis or system management data available to other parties without
Compaq's or its authorized service provider's consent. Upon termination of the services, customer will, at Compaq's
or its service provider's option, destroy or return the software and associated documentation in its possession.
Printed in the U.S.A.

The following are trademarks of Compaq Computer Corporation:
DEC, DEC/EDI, DIGITAL, OpenVMS, and the Compaq logo.
Adobe is a registered trademark of Adobe Systems Incorporated.
BT is a registered trademark of British Telecommunications plc.
InstallShield is a registered trademark of InstallShield Corporation.
MS and Windows are registered trademarks, and Windows 95, Windows 98, Windows NT and Windows 2000 are
trademarks, of Microsoft Corporation.
Oracle is a registered trademark of Oracle Corporation.
SAP is a registered trademark of SAP AG.
UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Com-
pany Ltd.
All other trademarks not listed above are acknowledged as the the property of their respective holders.



Contents

Preface

Purpose of This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Readership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Related Books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Digital DEC/EDI InfoCenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Related Third Party Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Documentation on Tools Supplied with Digital DEC/EDI . . . . . . . . . . . . . . . . xv

Typographical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Part I Getting Started with Digital DEC/EDI: A Tutorial

Chapter 1 Creating an Outgoing Mapping Table

Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
The Map Navigator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Using the Map Navigator During Editing . . . . . . . . . . . . . . . . . . . . . . 1-2
Mapping Table Attributes — Usage Tab . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Mapping Table Attributes — Security Tab . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Mapping Table Attributes — Defaults Tab . . . . . . . . . . . . . . . . . . . . . . . . 1-3
Mapping Table Attributes — Auditing Tab . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Extracting the EDI Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Defining the Record Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

Defining the Record Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7

Creating a Mapping Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8

Creating the Mapping Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Index of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Initializations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

Lookups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Mapping Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10

Compiling the Mapping Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15
i



Chapter 2 Creating an Incoming Mapping Table

Defining the Mapping Table Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Mapping Table Attributes — Usage Tab . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Mapping Table Attributes — Security Tab . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Mapping Table Attributes — Defaults Tab . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Mapping Table Attributes — Auditing Tab . . . . . . . . . . . . . . . . . . . . . . . 2-2

Using the Map Navigator During Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Defining the Record Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

Defining the Record Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

Creating a Mapping Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

Creating the Mapping Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Index of Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Initializations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Lookups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8

Mapping Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

Compiling the Mapping Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

Chapter 3 Command Line Interface

Accessing the Digital DEC/EDI Client Environment . . . . . . . . . . . . . . . . . . . 3-1
Using Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
Commands and Return Status Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

An Example Script File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Commands and Case-sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Commands and Quoted Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7

trade fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Command Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

link_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
test_indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

File Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
business_references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11
comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
ii



debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
error_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
io_debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
local_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
match_flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13
named_application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
object_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14
output_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
partner_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
restart_from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
table_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17

trade post . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19
Command Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20

connection_data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20
link_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21
test_indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22

File Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
business_references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23
comment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
error_log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-24
io_debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
local_test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
named_application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25
object_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
output_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26
partner_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
reprocess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
restart_from . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
table_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28
iii



tracking_reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-29

trade track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37

application_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
before . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-37
business_references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
current_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-38
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39
document_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
link_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
map_id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
partner_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
object_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
output_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
since . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
test_indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-41
tracking_reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-42
version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43

exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45
Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45

Chapter 4 C Language Application Programming Interface (API)

Introducing Digital DEC/EDI API Routines . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Posting Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Fetching Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Tracking Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

DECEDI_ADD_ITEM_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
iv



C Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

DECEDI_FETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
C Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21
Return Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

DECEDI_FREE_ITEM_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
C Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25

DECEDI_FREE_TRACK_LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
C Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26

DECEDI_POST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
C Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-44
Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-45

DECEDI_TRACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48
C Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-48
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-58
Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59

Header Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62
v



Compiling and Linking on UNIX Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 4-62
Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62
Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-62

Compiling and Linking on OpenVMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63
Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63
Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-63

Part II Digital DEC/EDI Reference

Chapter 5 Tracking Facilities

Tracking with the Cockpit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Using the Cockpit Tracking Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

Using the “trade track” Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Business References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
Accessing the Audit Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Audit Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5
Runtime Audit Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6
Audit Database Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

History Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
History Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13
Names of History Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15
Format of History Files for Hook Calls . . . . . . . . . . . . . . . . . . . . . . . . . 5-17

Chapter 6 Debugging Facilities

Mapper Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

Mapping Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

File I/O Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12

Mapper Messages Written to Standard Output . . . . . . . . . . . . . . . . . . . . . . . 6-13

Error Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-13

Debugging Compilation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14

Chapter 7 Problem Solving in the Mapper

Map Failed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1
vi



Obtaining Further Details of a Map Run . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2
Server Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3
Reproducing the Error in Mapper Test Mode . . . . . . . . . . . . . . . . . . . . . . . 7-4

Data Does Not Agree With Specified Source Hierarchy . . . . . . . . . . . . . . . . . 7-6

Mapping Compilation Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

Supplying Further Information on Mapping Errors . . . . . . . . . . . . . . . . . . . . . 7-8
Runtime Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8
Mapping Table Editor Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

Chapter 8 Application Client Error Messages

Chapter 9 Mapper Error Messages

Error Handling in the Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

Error Handling at Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

Mapper Error Codes and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-2

Part III Digital DEC/EDI Mapping Topics

Chapter 10 Mapping Table Attributes

Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

Auditing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-4

Chapter 11 Specifying Application Files

Getting Record Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

Entering or Editing the Record Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2
Parent to Child Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6
Sibling Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7

Variant Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9
Combined Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-11
Entering Record Attributes — Outgoing . . . . . . . . . . . . . . . . . . . . . . . . 11-12
Enter Record Attributes — Incoming . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15
vii



Entering or Editing Record Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-15
Application File Batching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-16

Chapter 12 Importing Digital DEC/EDI Document Data

Document Definitions and Data Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

Import Document Definitions from Digital DEC/EDI . . . . . . . . . . . . . . . . . 12-3

Chapter 13 Mapping in More Detail

The Index of Mapping Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Generic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2
Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Internal Doctype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3
Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
Segment or Rectype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
Segment or Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-4
Map ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Error On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Set Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5
Repeat Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6
Mapping Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7
Record Instance Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-7
Difference Between Relative and Absolute Index . . . . . . . . . . . . . . . . 13-12
Relative Indexes with Negative Values . . . . . . . . . . . . . . . . . . . . . . . . . 13-12
Specification of Off-Path References . . . . . . . . . . . . . . . . . . . . . . . . . . 13-12
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-16
Structure Mapping (Navigation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17
Advanced Error On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20
Advanced Set Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-20
Advanced Repeat Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-22
New Context Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-24
Advanced Data Mapping (Mapping Assignments) . . . . . . . . . . . . . . . . 13-25
viii



Chapter 14 Mapping Expressions

Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

Record Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2

Data Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-7

Data Label Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-10

Numeric Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11

Quoted String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-11

Special Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-12

Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14
Predefined Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-14

$APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16
$AUDIT_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-16
$BUSINESS_REF1...$BUSINESS_REF5 . . . . . . . . . . . . . . . . . . . 14-16
$DOCCOUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-17
$DOCTYPE_SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-17
$ERROR_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-18
$PARTNER_SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-18
$DOCTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-19
$PARTNER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-20
$USERREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21
$PRIORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21
$RUN_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-21
$TESTIND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-22
$FILENAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
$RECOVERY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
$APPLICATION_ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
$DOCTYPE_ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
$PARTNER_ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-24
$USERREF_ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
$TESTIND_ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
$PRIORITY_ARG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25

Document Audit Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-25
$INT_DOCTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$EXT_STANDARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$EXT_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$EXT_DOCTYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
ix



$DOC_CONTROL_NUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$GRP_TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$GRP_CONTROL_NUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$APP_INT_QUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$APP_INT_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$PAR_INT_QUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26
$PAR_INT_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_CONTROL_NUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$FA_APP_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$FA_DIR_IND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$FA_DOCCOUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_DATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_STANDARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_ACK_REQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_SENDER_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_RECEIVER_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-27
$INT_PRIORITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$APP_REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$NUM_AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$GRP_SENDER_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$GRP_RECEIVER_ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$GRP_SENDER_QUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$GRP_RECEIVER_QUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$AGENCY_CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$GRP_VERSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28
$TRACK_DOCCOUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28

Numeric and String Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-28

An Expression Using Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-29
Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-30
String Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-31
Relational Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-31

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-31
Logical Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-32

A Conditional Statement Using the IF Expression . . . . . . . . . . . . . . . . . . . 14-32

Operator Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-34
x



Math Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-35

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-35

Expression Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-43

Mapping Language Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-46

Chapter 15 Lookup Tables

Private and Shared Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

Codes and Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2

Creating and Editing Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2

Creating, Editing, and Storing Shared Lookup Tables . . . . . . . . . . . . . . . . . . 15-4
Mapper Shared Lookups Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

Recaching Shared Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

Sorting and Reversing Lookup Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-6

Chapter 16 Supported Mapping Constructs

Application File, Records, and Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . 16-1

Relationships Between Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

Definition of Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4

Source and Destination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-4

The Mapping Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-5

One-to-One Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6

Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6
Splitting Into Independent Segments/Records . . . . . . . . . . . . . . . . . . . . . 16-7
Splitting into a Parent and Children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-7

Combining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8

Skipping a Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-9

Avoiding Cross-Over Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-10

Set Context Line Must Be Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-11

Use of Explicit Qualification and Explicit Instances . . . . . . . . . . . . . . . . . . 16-11
Mapping Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12

Default Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12
Explicit Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12
Explicit Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12
xi



Children Are Created After Parents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-12

Unused Records/Segments Permitted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-13

Chapter 17 Using Hooks to Customize the Mapper

Customization Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

Creating and Customizing Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3
Function and Argument Field Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-5

Accessing SQL Databases from Hooks on OpenVMS . . . . . . . . . 17-14

Declaring Routines at Predefined Hook Locations . . . . . . . . . . . . . . . . . . . 17-14

Hook Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-21
Excerpts from Compile Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-21
Sample C Customization Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-22
Linking Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-25
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-25
xii



Preface
Product Name: Digital DEC/EDI Version 4.0
Purpose of This Book
This book describes how to solve problems when supporting Digital DEC/
EDI in an OpenVMS environment.

Readership
The book is intended for use by system managers, programmers and other
personnel who need to support the Digital DEC/EDI Server in an OpenVMS
environment. The book is divided into the following parts:

1. Problem Solving

This part is intended for anyone who is responsible for solving problems
reported on a Digital DEC/EDI system.

2. Error Messages

This part contains a list of each of the errors which Digital DEC/EDI can
log. With each message listed, there is a description of why the message
was logged and what recovery action you need to take. The book is
intended to be used as reference material in conjunction with the section
on Problem Solving.

Related Books
This is one of a set of Digital DEC/EDI books. The complete list is as
follows:

• Digital DEC/EDI: Introduction

This book introduces general EDI concepts, and Digital’s EDI system,
Digital DEC/EDI. It describes the main components of the Digital DEC/
EDI system, and how business documents are processed and
communicated to trading partners. The book seeks to establish the
concepts and terms used by Digital DEC/EDI. These are also
summarized in a glossary.
xiii



You are strongly recommended to become familiar with the material in
thisbook before proceeding to install or use Digital DEC/EDI.

• Digital DEC/EDI: Installation

This book describes how to install the Digital DEC/EDI software, how to
perform basic system configuration and how to verify such an
installation. It describes how to install the Application Client, Server,
Cockpit and CommandCenter components.

• Digital DEC/EDI: Application Development

This book describes the Application Client interfaces and the means of
connecting business applications to the Application Client. It also details
the creation and deployment of mapping tables as part of the process of
integrating applications with Digital DEC/EDI.

• Digital DEC/EDI: User’s Guides (Digital UNIX and OpenVMS)

These guides contain information on setting up and operating Digital
DEC/EDI systems. They also contain information covering
configuration, maintainance and problem solving.

• Digital DEC/EDI: Release Notes

Further to the above, each software kit contains a set of release notes
applicable to that software. These release notes contain information
about known product problems (with workarounds where appropriate)
and any operational tips or hints not provided as part of the above
documentation set. You are strongly recommended to review these
release notes before installing the software. Refer to the appropriate
installation guide for information on how to locate the release notes.

Comprehensive on-line documentation is supplied as part of the Digital
DEC/EDI software: for example, on-line help libraries and manpage help
information. In addition the Digital DEC/EDI Cockpit kit contains the
Digital DEC/EDI: Error Messages Help Library. This contains all error
messages the product may log along with a description of why the message
occurred and what to do about it. It is provided in MS-Windows help library
format.
xiv



Digital DEC/EDI InfoCenter
For further information on Digital’s EDI and Electronic Commerce
Solutions and Services, please visit the EDI InfoCenter on the World Wide
Web. The location is:

http://www.decedi.com

Related Third Party Documentation
Refer to the documentation provided with third-party products for
installation and configuration details.

Documentation on Tools Supplied with Digital
DEC/EDI

There are a number of tools provided with the Digital DEC/EDI Server, in
the directory DECEDI$TOOLS. Some of the tools have their documentation
with them in DECEDI$TOOLS (placed there by the Digital DEC/EDI
installation procedure); other tools are documented in the Digital DEC/EDI
books. The tools and their documentation are listed below.

• Data Label Generator

This tool generates data label definitions for Digital DEC/EDI. It can
create data labels for an entire version of a standard, or data labels that
are restricted to a trading partner-specific definition of a document
within the standard and version. This tool reduces the amount of setup
you need to do when installing versions of a standard into Digital DEC/
EDI.

For documentation on how to use this tool, see either of the following
files:

DECEDI$TOOLS:DECEDI$DLG_DOC.TXT (ASCII format)

• Table Extractor and Loader

The Digital DEC/EDI Table Extractor and Loader is a tool that enables
you to extract or load the table definitions used by the Translation
Service. Using this tool, you can extract an existing definition and load it
back into the same system, for example, to use with a different version of
xv



the document standard, or with a different trading partner. Alternatively
you can load the definition into an entirely different Digital DEC/EDI
system, for example when upgrading to a later release of the Digital
DEC/EDI software.

You can also use the Table Extractor and Loader to extract table
definitions from a Digital DEC/EDI system installed on OpenVMS VAX
and load them into one installed on OpenVMS Alpha, and vice versa.

The Table Extractor and Loader can extract and load any of the
following definitions:

– User defined or modified document definitions.

– User defined or modified segment, element, sub-element, and code
definitions, including data labels.

– Trading partner specific document, segment, and element definitions,
including data labels.

– Value validation definitions.

– Code translation definitions.

For documentation on using this tool, see either of the following files:

DECEDI$TOOLS:DECEDI$TEL_DOC.TXT (ASCII format)

• Digital DEC/EDI Tailoring Tool

This tool enables you to do any of the following:

– Move on-line or archive storage directories to a different disk or
directory.

– Add new on-line or archive storage directories.

– Move all or part of the Digital DEC/EDI Archive or Audit Database
to a different disk or directory.

– Change the size of the Digital DEC/EDI Archive or Audit Database.

See Digital DEC/EDI: OpenVMS User Support Manual for more
information about this tool.

• Digital DEC/EDI Database Tuning Tool

This tool automatically tunes your Rdb database. The Database Tuning
Utility (TEDI) permits users to modify and tune key Rdb database
parameters relevant to the performance of Digital DEC/EDI.
xvi



TEDI is the main tuning tool for the Digital DEC/EDI Rdb database. It is
provided as an image called DECEDI$TUNE_DB.EXE in the directory
DECEDI$TOOLS.

TEDI allows you to modify the following Rdb audit database
parameters:

– the number of Rdb users for the database

– whether or not to use snapshots.

– the number of local & global buffers

– whether or not to use global buffers, if so :

1. the number of global buffers

2. the user limit on global buffers

TEDI has two modes of operation: SET and TUNE.

The SET option modifies the Rdb database with the parameters you
specify. No automatic calculations are performed with this option.

The TUNE option calculates the parameters and optionally modifies the
Rdb database to the new calculated parameters. The current machine
environment is examined to determine the optimum parameter settings.

For documentation on how to use this tool, see either of the following
files:

DECEDI$TOOLS:DECEDI$TUNE_DB.TXT (ASCII format)

• Mapping Table Export Tool

This tool enables you to export Mapping Tables that have been
developed using the MAPPING TABLE user interface to the source
format required by the Digital DEC/EDI CommandCenter Mapping
Table Editor.

This enables you to preserve much of your investment in developing
Mapping Tables, when migrating to using the Mapping Table Editor.

For documentation on how to use this tool, see either of the following
files:

DECEDI$TOOLS:DECEDI$FBEXPORT_USER_GUIDE.TXT (ASCII format)

• DEC/EDI Avail_table Recovery tool

This Tool enables you to insert records available for fetching in tlf_table
and not present in avail_table to avail_table.
xvii



Typographical conventions
Digital DEC/EDI
/ Compaq DEC/
EDI

The ownership of DEC/EDI was transferred to Digital GlobalSoft Ltd, a
subsidiary of Compaq Computer Corporation based in India with effect
from May 1, 2001. Consequent to this transfer, the name of the product was
changed to Digital DEC/EDI. There may be references made to the existing
name of the product, Compaq DEC/EDI in various sections of the
documentation and screen display. We are in the process of implementing
the name change across the product code and documentation. This is
expected to be completed within the next couple of months. Pending the
completion of this, all references to Compaq DEC/EDI in the documentation
pertain to the Digital DEC/EDI product. Please refer to the product website
at www.decedi.com for further information on the transfer of ownership.
xviii



Part I Getting Started with Digital
DEC/EDI: A Tutorial
This part of the book presents a detailed step-by-step guide to developing a
Mapping Table: one for an outgoing table, and the other for in incoming
table.

The Mapping Tables are based on the simple Trading Partner scenario
described in the system verification example in Digital DEC/EDI:
Introduction. You must complete the system verification before proceeding
with this tutorial.

It is advisable to be familiar with the information in Digital DEC/EDI:
Introduction and Digital DEC/EDI: Installation.





Chapter 1 Creating an Outgoing
Mapping Table
This chapter guides you through the steps involved in developing the
Mapping Table for an example outgoing invoice message.

Getting Started
You may use either the CommandCenter Mapping Table Editor application,
or the Mapper development user interface (OpenVMS only) to develop a
Mapping Table. The examples referenced in this manual are based on the
use of the Mapping Table Editor. Equivalent functionality is provided on
OpenVMS through the Mapper user interface, except where otherwise
stated.

CommandCenter To start the Mapping Table Editor, click on the Mapping Table Editor icon
in the Digital DEC/EDI CommandCenter program group, or from the start
menu.

On starting up the Mapping Table Editor application, a copyright screen is
displayed for a short period. After reading this you may either wait until it
disappears, or press any key to continue immediately.

The Getting Started dialog is then displayed.

Once you are familiar with using the Mapping Table Editor you may disable
the Getting Started dialog, by clearing the tick box.

Mapping Table To start the Mapper Development User Interface on OpenVMS, use the
Interchange edit mapping_table command, followed by the name
of the Mapping Table you wish to edit or create:

$ INTERCHANGE EDIT MAPPING_TABLE MINVOX_OUT.FBO



1-2 Getting Started
The Map Navigator

CommandCenter The Map Navigator is a dialog screen designed to assist with the steps
involved in creating or editing a Mapping Table. It displays a list of the main
steps, and allows you to select the next step to be executed. It also displays
an overview of purpose of each step

Using the Map Navigator During Editing
If you wish to use the Map Navigator at any stage from within the Mapping
Table Editor, you may select the Map navigator icon on the toolbar. The
Map Navigator Panel then appears.

Select the Map Navigator by clicking on the button containing the Navigator
icon.

A dialog appears which gives you a choice of creating a new Mapping Table
or editing an existing Mapping Table.

Select the option, Defining the Mapping Table Attributes

On creating a new Mapping Table, the Mapping Table Attributes dialog
appears.

This allows you to define global attributes for the Mapping Table, such as
the name, direction and the names of any Applications that may use this
Mapping Table. The dialog contains a series of tabbed sections that you may
define if required.

Mapping Table Attributes — Usage Tab
The Usage tab allows you to define the Table Name, Direction and Table
Notes. Once the Mapping Table Direction has been defined, you may not
subsequently change it, as any Mapping Assignments depend on the
Direction.

The default Mapping Table name is MAP1, change this to TUTOR_O by
typing the new name in the Table Name field. The trailing _O is convention
that is often used to distinguish outgoing and incoming Mapping Tables,
though it is not necessary for you to follow this convention.

Ensure that the Direction indicator is set to Outgoing. This specifies that
mapping assignments will be made from the Application File to the Internal
Format File.
CREATING AN OUTGOING MAPPING TABLE



Getting Started 1-3
You may enter any notes on the usage of the Mapping Table in the Table
Notes section. As a tip, it is often useful to record the history of any major
changes made to the Mapping Table in this section.

Mapping Table Attributes — Security Tab
The Security tab allows you to enter the identifiers of any Applications that
may use this Mapping Table. Any other Applications that specify the use of
this Mapping Table will fail at run time.

Add the following Application ID to the list of Application IDs for this
Mapping Table:

DEC-DIRECT-UK-LTD

You may define up to twenty Application IDs for a Mapping Table. If more
than one Application ID is defined, then a specific one must be given as the
Named Application on the Application Client call.

The Application ID must be defined in a Trading Partner Agreement, using
the Trading Partner Profile editor application.

Mapping Table Attributes — Defaults Tab
The Defaults tab allows you to specify default options to be used by the
Mapper at run time. This means that when this Mapping Table is used, you
do not need to specify all options on the Application Client call.

In this example, the Partner ID is always SHINY-NEW-SYSTEMS so this can
be specified as a default option. Enter this value in the Partner ID field:

SHINY-NEW-SYSTEMS

The remaining options are specified either on the Application Client call, or
selected as part of the mapping process.

Mapping Table Attributes — Auditing Tab
The Auditing tab allows you to specify additional auditing to be applied by
the Mapper when this Mapping Table is used.

No additional auditing is required for the purposes of this tutorial.

On selection OK, both the Mapping Table document window and the Map
Navigator panel appear.
CREATING AN OUTGOING MAPPING TABLE



1-4 Extracting the EDI Document
You may edit the Mapping Table Attributes at any time, either by double
clicking on the entry in the Mapping Table document window, or by
selecting the Details option from the Table menu while the Mapping Table
document window is active.

Extracting the EDI Document
Each Mapping Table must contain definitions of the structure of each EDI
Document Type that can be mapped to or from using this Table. This
includes definitions of the EDI document structure, as well as the structure
of Segments and Data Labels used within the document.

Prior to extracting the EDI Document from the Server system, the EDI
standard, version and documents must be defined. In addition, Data Labels
must be generated for the standard and version. You must perform these
steps as part of the Digital DEC/EDI Server installation and configuration.

For the purposes of this example, a private definition based on the
EDIFACT 90.1 standard is used. Private definitions are created using the
EDI Table Editor application.

The Digital DEC/EDI Internal Document Type used for the MINVOX
document is MINVOICE. Select the MINVOICE definition and wait for the
document extract to complete.

The EDI Document and EDI Document Sequence windows appear, showing
the content and structure of the EDI definition.

Defining the Record Layouts
In this example, the Application File is an ASCII text file in stream format,
where each line represents a single Record.

Each Record is composed of a number of Fields and Structures of known
size and data type. You define the layout of each Record in terms of its
component Fields.

Each Record Layout has a unique name which you assign to it. Each Field
has a Level Number, Field Name, Data Type and Size.
CREATING AN OUTGOING MAPPING TABLE



Defining the Record Layouts 1-5
From analyzing your Application File, you have determined that the records
have the structure shown in Table 1-1 Record Layouts.

Table 1-1 Record Layouts

Level Field Name Data Type Size

Record: INVOIC_HDR

1 RC ALPHABETIC 1

1 DOC_NAME_CODE TEXT 3

1 DOC_REF_NUM TEXT 18

1 DOC_DATE TEXT 6

1 DOC_TIME TEXT 4

1 DOC_FUNC_CODE TEXT 2

Record: NAME_AND_ADDRESS

1 RC ALPHABETIC 1

1 PARTY_QUAL TEXT 2

1 PARTY_NAME TEXT 35

1 STREET_1 TEXT 35

1 STREET_2 TEXT 35

1 STREET_3 TEXT 35

1 CITY TEXT 35

1 COUNTY TEXT 9

1 POST_CODE TEXT 9

1 COUNTRY TEXT 2

Record: DELIVERY_LOC

1 RC ALPHABETIC 1

1 LOC_QUAL TEXT 3

1 LOC_NAME TEXT 17

Record: PAY_TERMS
CREATING AN OUTGOING MAPPING TABLE



1-6 Defining the Record Layouts
To enter the Record Layouts, you may use either the Layouts menu or the
right hand mouse button. The Add option is used to add a new Record
Layout, Field or structured Field.

1 RC ALPHABETIC 1

1 TERMS_TYPE TEXT 2

1 TERMS_DATE TEXT 6

1 DATE_QUAL TEXT 3

1 MIN_DUE UNSIGNED
NUMERIC

15 SCALE -2

1 PERCENT_PAYABLE UNSIGNED
NUMERIC

7

1 PAYMENT_TERMS TEXT 35

Record: LINE_ITEM

1 RC ALPHABETIC 1

1 ITEM_NO UNSIGNED
NUMERIC

6

1 ARTICLE_NO TEXT 35

1 ARTICLE_ID TEXT 3

1 UNIT_PRICE UNSIGNED
NUMERIC

15 SCALE -2

1 PRICE_TYPE TEXT 2

1 NUM_UNITS UNSIGNED
NUMERIC

9

Record: PACKAGE

1 RC ALPHABETIC 1

1 NUM_PACKAGES UNSIGNED
NUMERIC

6

1 PACKAGE_CODE TEXT 7

Table 1-1 Record Layouts (continued)

Level Field Name Data Type Size
CREATING AN OUTGOING MAPPING TABLE



Defining the Record Sequence 1-7
Defining the Record Sequence
You define the Application File as a sequence of Records which may be
simple Records, Structures or Arrays.

For an outgoing Application File, when you specify the Record Sequence,
you must also specify a Recognition Expression, which enables the Mapper
to uniquely identify each Record as it is read from the Application File.

In this example, the first Field of each Record contains a unique character
which identifies the Record Type. However, in general a recognition
expression can be any valid Mapping language expression.

You define the Record Sequence using the Records whose layout you have
already defined. Within the Record Sequence, you can specify how many
times the Record can occur, whether the Record marks the beginning of a
Document or Batch of Documents, or whether it marks the end of a
Document.

You can also specify values for the special Global Variables which
determine the Object Name ($DOCTYPE) and Partner ID ($PARTNER) to
be used once this Record has been encountered.

The Level Number indicates the nesting level of the Record. In this
example, the data for each new document starts with an INVOICE_HDR
Record, and all other Records are subordinate to it. An Application File may
contain data for one or more EDI Documents.

Table 1-2 Record Layouts

Level Record Name Min Max Recog-
nition

Object
Name

Notes

1 INVOICE_HDR 1 1 RC=’B’
MIN-
VOICE

Begins
Doc

2
NAME_AND_AD
DRESS

1 MANY RC=’N’

2 DELIVERY_LOC 1 MANY RC=’D’
CREATING AN OUTGOING MAPPING TABLE



1-8 Creating a Mapping Set
You enter the Record Sequence using the Add option in the Sequences
menu. This presents the Record Sequence dialog.

Creating a Mapping Set
For an outgoing Mapping Table, a Mapping Set contains a set of
assignments to Data Labels in the destination EDI Document. Data Labels
correspond to individual Elements or Sub-elements within a Data Segment.

When you create a Mapping Set, you give an Object Name and optionally a
Partner ID. These are used as selection criteria for the Mapping Set.

You create a Mapping Set using the Create...Set option of the Table menu.
Mapping Set

The Browse button shows the EDI Document definitions that have already
been extracted into this Mapping Table. You may select one of these.

Select the previously extracted EDIFACT 90.1 MINVOX document and
press OK.

This process automatically generates the Mapping Set, Index of Maps and
initial Map Parts containing empty assignment statements.

Creating the Mapping Assignments
The next step is to assign data values to Segments in the destination EDI
Document. Each Segment is comprised of a number of elements or sub-
elements which are identified by Data Labels.

2 PAY_TERMS 1 MANY RC=’P’

2 LINE_ITEM 1 MANY RC=’L’

3 PACKAGE 1 MANY RC=’C’

Table 1-2 Record Layouts (continued)

Level Record Name Min Max Recog-
nition

Object
Name

Notes
CREATING AN OUTGOING MAPPING TABLE



Initializations 1-9
Index of Maps
The Index of Maps shows the structure of the EDI Document to be
generated.

Each node in the Index of Maps is visited in turn, to determine whether data
can be generated for that node.

The Heading, Detail and Summary nodes do not actually generate any
Segment in the destination EDI Document, but may be used to specify initial
values or global variables, which apply to that section of the Document.

Initializations
You define any global variables to be used during the Mapping Assignments
using the Initializations screen.

Use the Map Navigator or Mapping menu to show the Initializations screen.
To add an Initialization, select the Create option from the Initializations
menu, and assign a value to the global variable.

You do not need to specify a data type for the value, as this is implied by the
context or value assigned.

You have determined that the global variables shown in Table 1-3 Global
Variables will be used within the Mapping Table.

Table 1-3 Global Variables

Variable Initial Value

amount_due 0

vat_rate 17.5

message_amount 0

line_total 0

taxable_amount 0

tax_amount 0
CREATING AN OUTGOING MAPPING TABLE



1-10 Lookups
Lookups
The Mapping Table may contain Lookup Tables, as a convenient means of
mapping one data value to another. For example, this is useful if your
Application File contains a brief identifier or part number which is to appear
in some other form in the EDI Document.

The example Application File contains some brief identifiers for the
package type, which need to be mapped as shown in Table 1-4 Lookup
Values for Package Type.

Mapping Assignments
The Mapping Assignments to be made are shown in Table 1-5 Mapping
Assignments.

Table 1-4 Lookup Values for Package Type

From To

WB wickerbottle

CF coffer

BE bundle

Table 1-5 Mapping Assignments

Mapping Assignment Comment

Heading Area

amount_due = 0

message_amount = 0

line_total = 0

taxable_amount = 0

tax_amount = 0

BGM Context: INVOICE_HDR Beginning of Message
CREATING AN OUTGOING MAPPING TABLE



Mapping Assignments 1-11
BGM_C002_1001 = DOC_NAME_CODE Document name, coded

BGM_1004 = DOC_REF_NUM Document number

BGM_C031_2001 = DOC_DATE Date, coded

BGM_C031_2002 = DOC_TIME Time

BGM_1225 = DOC_FUNC_CODE Message function code

NAD Context: NAME_AND_ADDRESS Name And Address

NAD_3035 = PARTY_QUAL Party Qual

NAD_C080_3036_1 = PARTY_NAME Party Name

NAD_C059_3042_1 = STREET_1 Street and Number

NAD_C059_3042_2 = STREET_2 Street and Number

NAD_C059_3042_3 = STREET_3 Street and Number

NAD_3164 = CITY City Name

NAD_3229 = COUNTY Country Sub-entity

NAD_3251 = POST_CODE Post code

NAD_3207 = COUNTRY Country, coded

LOC Context: DELIVERY_LOC Location Identifier

LOC_3227 = LOC_QUAL Place/location qualifier

LOC_C087_3224 = LOC_NAME Place/location name

PAT Context: PAY_TERMS Payment Terms Basis

PAT_4279 = TERMS_TYPE Payment terms type, coded

PAT_C012_2001 = TERMS_DATE Date, coded

PAT_C012_2005 = DATE_QUAL Date/time qualifier

Table 1-5 Mapping Assignments (continued)

Mapping Assignment Comment
CREATING AN OUTGOING MAPPING TABLE



1-12 Mapping Assignments
PAT_5306 = MIN_DUE Minimum amount due

PAT_5484 = PERCENT_PAYABLE Percent of invoice payable

PAT_C104_4276_1 = PAYMENT_TERMS Terms of payment

Table 1-5 Mapping Assignments (continued)

Mapping Assignment Comment
CREATING AN OUTGOING MAPPING TABLE



Mapping Assignments 1-13
Detail Area

LIN Context: LINE_ITEM Line Item

LIN_1082 = ITEM_NO Line item number

LIN_C198_7020_1 = ARTICLE_NO Article number

LIN_C198_7023_1 = ARTICLE_ID Article number identifier

LIN_C118_5110 = UNIT_PRICE Unit price

LIN_C118_5375 = PRICE_TYPE Price type code

LIN_6170 = NUM_UNITS Number of pricing units

amount_due = UNIT_PRICE * NUM_UNITS

message_amount = message_amount + amount_due

line_total = message_amount

LIN_5116 = $ROUND(amount_due,2)

PAC Context: PACKAGE Package

PAC_7224 = NUM_PACKAGES Number of packages

PAC_C202_7065 = PACKAGE_CODE Type of packages, coded

PAC_C202_7064 = $LOOKUP(package_types,
PACKAGE_CODE)

Summary Area

TMA Total Message Amount

tax_amount = (message_amount*vat_rate) * 0.01

message_amount = message_amount + tax_amount

TMA_5356 = $ROUND(message_amount,2)

Table 1-5 Mapping Assignments (continued)

Mapping Assignment Comment
CREATING AN OUTGOING MAPPING TABLE



1-14 Compiling the Mapping Table
To edit an assignment, click on an assignment line within the Mapping
Table document view. This causes the assignment expression to be
displayed in the assignment editor at the top of the screen.

Type in the data required for the assignment, or select it using the
Expression dialog box. Once the assignment is correct, use the tick button to
make the changes.

Compiling the Mapping Table
Once all the changes have been made to the Mapping Table, you may
compile the Mapping Table. This validates the Mapping Table, and
compiles it into binary form for processing by the Mapper on the Server
system.

CommandCenter In File menu, choose the options tab and set the Compiler Target Version,
same as the version of the DEC/EDI server. Select the Compile option from
the Mapping menu, and click on OK to confirm the compilation.

This displays a Compiler Results panel, which gives details of any
compilation errors encountered, as well as information about the
compilation process.

Once the Mapping Table has successfully compiled, a dialog box appears to
ask whether the compiled Mapping Table is to be copied to the Server
system. You may specify the Server to copy the compiled Mapping Table to.

Once the Mapping Table has been copied to the Server System, you may use
the outgoing Mapping Table for any subsequent post requests from the
Application Client.

Mapping Table Either select the Compile option from the Exit menu, or use the
INTERCHANGE EDIT MAPPING_TABLE/COMPILE command:

TMA_5360 = $ROUND(line_total,2)

TMA_5338 = $ROUND(message_amount,2)

TMA_5492 = $ROUND(tax_amount,2)

Table 1-5 Mapping Assignments (continued)

Mapping Assignment Comment
CREATING AN OUTGOING MAPPING TABLE



Compiling the Mapping Table 1-15
$ INTERCHANGE EDIT MAPPING_TABLE/COMPILE

This creates a new version of the Mapping Table file, which contains the
compiled Mapping information. The compiled Mapping Table file must be
copied to the the directory DECEDI$MAPS, in order for the Mapping Service
to use it:

$ COPY MINVOX_OUT.FBO DECEDI$MAPS:

The Mapping Service automatically recaches any Mapping Tables that have
been replaced in this directory, the next time the Mapping Table is used in a
client POST or FETCH request.

Summary
You should now have completed the definition of the outgoing Mapping
Table for the EDIFACT 90.1 MINVOX document.
CREATING AN OUTGOING MAPPING TABLE





Chapter 2 Creating an Incoming
Mapping Table
This chapter describes the steps involved in creating the incoming Mapping
Table. Use the Map Navigator to help you step through the sequence of
tasks.

Defining the Mapping Table Attributes
On creating a new Mapping Table, the Mapping Table Attributes dialog
appears.

This allows you to define global attributes for the Mapping Table, such as
the name, direction and the names of any Applications that may use this
Mapping Table. The dialog contains a series of tabbed sections that you may
define if required.

Mapping Table Attributes — Usage Tab
The Usage tab allows you to define the Table Name, Direction and Table
Notes. Once the Mapping Table Direction has been defined, you may not
subsequently change it, as any Mapping Assignments depend on the
Direction.

Mapping Table Attributes — Security Tab
The Security tab allows you to enter the identifiers of any Applications that
may use this Mapping Table. Any other Applications that specify the use of
this Mapping Table will fail at run time.

Add the Application ID SHINY-NEW-SYSTEMS to the list of Application
IDs for this Mapping Table.



2-2 Using the Map Navigator During Editing
You may define up to twenty Application IDs for a Mapping Table. If more
than one Application ID is defined, then a specific one must be given as the
Named Application on the Application Client call.

The Application ID must be defined in a Trading Partner Agreement, using
the Trading Partner Profile editor application.

Mapping Table Attributes — Defaults Tab
The Defaults tab allows you to specify default options to be used by the
Mapper at run time. This means that when this Mapping Table is used, you
do not need to specify all options on the Application Client call.

In this example, the Partner ID is always DEC-DIRECT-UK-LTD so this can
be specified as a default option. Enter this value in the Partner ID field.

The remaining options are specified either on the Application Client call, or
selected as part of the mapping process.

Mapping Table Attributes — Auditing Tab
The Auditing tab allows you to specify additional auditing to be applied by
the Mapper when this Mapping Table is used.

No additional auditing is required for the purposes of this tutorial.

On selection OK, both the Mapping Table document window and the Map
Navigator panel appear.

You may edit the Mapping Table Attributes at any time, either by double
clicking on the entry in the Mapping Table document window, or by
selecting the Details option from the Table menu while the Mapping Table
document window is active.

Using the Map Navigator During Editing
If you wish to use the Map Navigator at any stage from within the Mapping
Table Editor, you may select the Map navigator icon on the toolbar.
Extracting the EDI Document

Each Mapping Table must contain definitions of the structure of each EDI
Document Type that can be mapped to or from using this Table. This
CREATING AN INCOMING MAPPING TABLE



Defining the Record Layouts 2-3
includes definitions of the EDI document structure, as well as the structure
of Segments and Data Labels used within the document.

Prior to extracting the EDI Document from the Server system, the EDI
standard, version and documents must be defined. In addition, Data Labels
must be generated for the standard and version. You must perform these
steps as part of the Digital DEC/EDI Server installation and configuration.

For the purposes of this example, a private definition based on the
EDIFACT 90.1 standard is used. Private definitions are created using the
EDI Table Editor application.

The Digital DEC/EDI Internal Document Type used for the MINVOX
document is MINVOICE. Select the MINVOICE definition and wait for the
document extract to complete.

The EDI Document and EDI Document Sequence windows appear, showing
the content and structure of the EDI definition.

Defining the Record Layouts
In this example, the Application File is an ASCII text file in stream format,
where each line represents a single Record.

Each Record is composed of a number of Fields and Structures of known
size and data type. You define the layout of each Record in terms of its
component Fields.

Each Record Layout has a unique name which you assign to it. Each Field
has a Level Number, Field Name, Data Type and Size.

From analyzing your Application File, you have determined that the records
have the structure shown in Table 2-1 Record Layouts.

Table 2-1 Record Layouts

Level Field Name Data Type Size

Record: INVOIC_HDR

1 RC ALPHABETIC 1

1 DOC_NAME_CODE TEXT 3
CREATING AN INCOMING MAPPING TABLE



2-4 Defining the Record Layouts
1 DOC_REF_NUM TEXT 18

1 DOC_DATE TEXT 6

1 DOC_TIME TEXT 4

1 DOC_FUNC_CODE TEXT 2

Record: NAME_AND_ADDRESS

1 RC ALPHABETIC 1

1 PARTY_QUAL TEXT 2

1 PARTY_NAME TEXT 35

1 STREET_1 TEXT 35

1 STREET_2 TEXT 35

1 STREET_3 TEXT 35

1 CITY TEXT 35

1 COUNTY TEXT 9

1 POST_CODE TEXT 9

1 COUNTRY TEXT 2

Record: DELIVERY_LOC

1 RC ALPHABETIC 1

1 LOC_QUAL TEXT 3

1 LOC_NAME TEXT 17

Record: PAY_TERMS

1 RC ALPHABETIC 1

1 TERMS_TYPE TEXT 2

1 TERMS_DATE TEXT 6

1 DATE_QUAL TEXT 3

Table 2-1 Record Layouts (continued)

Level Field Name Data Type Size
CREATING AN INCOMING MAPPING TABLE



Defining the Record Layouts 2-5
1 MIN_DUE
UNSIGNED
NUMERIC

15 SCALE -2

1 PERCENT_PAYABLE
UNSIGNED
NUMERIC

7

1 PAYMENT_TERMS TEXT 35

Record: LINE_ITEM

1 RC ALPHABETIC 1

1 ITEM_NO
UNSIGNED
NUMERIC

6

1 ARTICLE_NO TEXT 35

1 ARTICLE_ID TEXT 3

1 UNIT_PRICE
UNSIGNED
NUMERIC

15 SCALE -2

1 PRICE_TYPE TEXT 2

1 NUM_UNITS
UNSIGNED
NUMERIC

9

Record: PACKAGE

1 RC ALPHABETIC 1

1 NUM_PACKAGES
UNSIGNED
NUMERIC

6

1 PACKAGE_CODE TEXT 7

Record: INVOICE_TLR

1 RC ALPHABETIC 1

1 MESSAGE_AMT
UNSIGNED
NUMERIC

15 SCALE -2

Table 2-1 Record Layouts (continued)

Level Field Name Data Type Size
CREATING AN INCOMING MAPPING TABLE



2-6 Defining the Record Sequence
To enter the Record Layouts, you may use either the Layouts menu or the
right hand mouse button. The Add option is used to add a new Record
Layout, Field or structured Field.

Defining the Record Sequence
You define the Application File as a sequence of Records which may be
simple Records, Structures or Arrays.

You define the Record Sequence using the Records whose layout you have
already defined. Within the Record Sequence, you can specify how many
times the Record can occur.

For an incoming Application File, when you specify the Record Sequence,
you specify the minimum and maximum number of times that the record can
occur at that portion in the Application File. There is no need to specify a
Recognition Expression for an Incoming Mapping Table.

The Level Number indicates the nesting level of the Record. In this
example, the data for each new document starts with an INVOICE_HDR
Record, and all other Records are subordinate to it. An Application File may
contain data produced by one or more EDI Documents. The Record

1 LINE_ITEM_TOTAL
UNSIGNED
NUMERIC

15 SCALE -2

1 TAXABLE_AMT
UNSIGNED
NUMERIC

15 SCALE -2

1 TAX_AMT
UNSIGNED
NUMERIC

15 SCALE -2

Table 2-1 Record Layouts (continued)

Level Field Name Data Type Size
CREATING AN INCOMING MAPPING TABLE



Creating a Mapping Set 2-7
Sequence for the Incoming Mapping Table is shown in Table 2-2 Record
Sequence.

You enter the Record Sequence using the Add option in the Sequences
menu.

Creating a Mapping Set
For an incoming Mapping Table, a Mapping Set contains a set of
assignments to fields within the records that comprise the destination
Application File.

When you create a Mapping Set, you give an Object Name and optionally a
Partner ID. These are used as selection criteria for the Mapping Set.

You create a Mapping Set using the Create...Set option of the Table menu.
The Browse button shows the EDI Document definitions that have already
been extracted into this Mapping Table. You may select one of these.

Select the previously extracted EDIFACT 90.1 MINVOX document and
press OK.

This process automatically generates the Mapping Set, Index of Maps and
initial Map Parts containing empty assignment statements.

Table 2-2 Record Sequence

Level Record Name Min Max

1 INVOICE_HDR 1 1

2 NAME_AND_ADDRESS 1 MANY

2 DELIVERY_LOC 1 MANY

2 PAY_TERMS 1 MANY

2 LINE_ITEM 1 MANY

3 PACKAGE 1 MANY

2 INVOICE_TLR 1 MANY
CREATING AN INCOMING MAPPING TABLE



2-8 Creating the Mapping Assignments
Creating the Mapping Assignments
The next step is to assign data values to fields within the destination
Application File.

Index of Maps
The Index of Maps shows the structure of the Application File to be
generated.

Each node in the Index of Maps is visited in turn, to determine whether data
can be generated for that node.

Initializations
You define any global variables to be used during the Mapping Assignments
using the Initializations screen.

Use the Map Navigator or Mapping menu to show the Initializations screen.
To add an Initialization, select the Create option from the Initializations
menu, and assign a value to the global variable.

You do not need to specify a data type for the value, as this is implied by the
context or value assigned.

You have determined that the global variable shown in Table 2-3 Global
Variables will be used within the Mapping Table.

Lookups
The Mapping Table may contain Lookup Tables, as a convenient means of
mapping one data value to another. Although this tutorial does not require a
Lookup Table, it would be useful if your Application File contains a brief
identifier or part number which is to appear in some other form in the
Application File.

Table 2-3 Global Variables

Variable Initial Value

total 0
CREATING AN INCOMING MAPPING TABLE



Mapping Assignments 2-9
Mapping Assignments
The Mapping Assignments to be made are shown in Table 2-4 Mapping
Assignments.

Table 2-4 Mapping Assignments

Mapping Assignment Comment

Heading Area

INVOICE_HDR Context: BGM Beginning of Message

DOC_NAME_CODE = BGM_C002_1001 Document name, coded

DOC_REF_NUM = BGM_1004 Document number

DOC_DATE = BGM_C031_2001 Date, coded

DOC_TIME = BGM_C031_2002 Time

DOC_FUNC_CODE = BGM_1225 Message function code

NAME_AND_ADDRESS Context: NAD Name And Address

PARTY_QUAL = NAD_3035 Party Qual

PARTY_NAME = NAD_C080_3036_1 Party Name

STREET_1 = NAD_C059_3042_1 Street and Number

STREET_2 = NAD_C059_3042_2 Street and Number

STREET_3 = NAD_C059_3042_3 Street and Number

CITY = NAD_3164 City Name

COUNTY = NAD_3229 County Sub-entity

POST_CODE = NAD_3251 Post Code

COUNTRY = NAD_3207 Country, coded

DELIVERY_LOC Context: LOC Location Identification

LOC_QUAL = LOC_3227 Place/location qualifier

LOC_NAME = LOC_C087_3224 Place/location name
CREATING AN INCOMING MAPPING TABLE



2-10 Mapping Assignments
PAY_TERMS Context: PAT Payment Terms Basis

TERMS_TYPE = PAT_4279 Payment terms type, coded

TERMS_DATE = PAT_C012_2001 Date, coded

DATE_QUAL = PAT_C012_2005 Date/time qualifier

MIN_DUE = PAT_5306 Minimum amount due

PERCENT_PAYABLE = PAT_5484 Percent of invoice payable

PAYMENT_TERMS = PAT_C104_4276_1 Terms of payment

Detail Area

LINE_ITEM Context: LIN Line Item

ITEM_NO = LIN_1082 Line item number

ARTICLE_NO = LIN_C198_7020_1 Article number

ARTICLE_ID = LIN_C198_7023_1 Article number identifier

UNIT_PRICE = LIN_C118_5110 Unit Price

PRICE_TYPE = LIN_C118_5375 Price type code

NUM_UNITS = LIN_6170 Number of pricing units

amount_due = LIN_5116 Amount due

PACKAGE Context: PAC Package

NUM_PACKAGES = PAC_7224 Number of packages

PACKAGE_CODE = PAC_C202_7065 Type of packages, coded

PACKAGE_TYPE = PAC_C202_7064_1 Type of package

Summary Area

Table 2-4 Mapping Assignments (continued)

Mapping Assignment Comment
CREATING AN INCOMING MAPPING TABLE



Compiling the Mapping Table 2-11
To edit an assignment, click on an assignment line within the Mapping
Table document view. This causes the assignment expression to be
displayed in the assignment editor at the top of the screen

Type in the data required for the assignment, or select it using the
Expression dialog box. Once the assignment is correct, use the tick button to
make the changes.

Compiling the Mapping Table
Once all the changes have been made to the Mapping Table, you may
compile the Mapping Table. This validates the Mapping Table, and
compiles it into binary form for processing by the Mapper on the Server
system.

In File menu, choose the options tab and set the Compiler Target Version,
same as the version of the DEC/EDI server. Select the Compile option from
the Mapping menu, and click on OK to confirm the compilation.

This displays a Compiler Results panel, which gives details of any
compilation errors encountered, as well as information about the
compilation process.

Once the Mapping Table has successfully compiled, a dialog box appears to
ask whether the compiled Mapping Table is to be copied to the Server
system. You may specify the Server to copy the compiled Mapping Table to.

Once the Mapping Table has been copied to the Server System, you may use
the incoming Mapping Table for any subsequent POST requests from the
Application Client.

INVOICE_TLR Context:TMA Total Message Amounts

MESSAGE_AMT = TMA_5356 Message amount

LINE_ITEM_TOTAL = TMA_5360 Line item total

TAXABLE_AMT = TMA_5338 Taxable amount

TAX_AMT = TMA_5492 Amount of tax

Table 2-4 Mapping Assignments (continued)

Mapping Assignment Comment
CREATING AN INCOMING MAPPING TABLE



2-12 Compiling the Mapping Table
Summary
You have now completed the definition of the incoming Mapping Table for
the EDIFACT 90.1 MINVOX document.
CREATING AN INCOMING MAPPING TABLE



Chapter 3 Command Line Interface
This chapter describes the commands provided by the Digital DEC/EDI
Application Client running on any supported UNIX or OpenVMS platform.

Accessing the Digital DEC/EDI Client
Environment

You use the trade command to access the Application Client environment.

There are three main environment sub-commands that you use in
exchanging, and monitoring the exchange of documents with a trading
partner:

• fetch

Use this command to fetch files from the server to which your trading
partner has previously posted them.

• post

Use this command to post files to the server from where they can be
processed and sent to your trading partner.

• track

Use this command to track the status of files as they progress through the
server.

Using Commands
There are three ways in which you can use Application Client commands:



3-2 Accessing the Digital DEC/EDI Client Environment
• You can enter the trade command to access the Application Client
environment, and then enter multiple sub-commands; for example:

UNIX # trade
Compaq DEC/EDI V4.0
© Compaq Computer Corporation 1990, 2001.
All rights reserved.
CLIENTEDI> fetch application [options] file [site_options]

OpenVMS $ TRADE
DEC/EDI V4.0
© Compaq Computer Corporation 1990, 2000.
All rights reserved.
CLIENTEDI> FETCH APPLICATION [options] file [site_options]

• You can enter a single trade command with the relevant option; for
example:

UNIX # trade fetch application [options] file [site_options]

OpenVMS $ TRADE FETCH APPLICATION [options] file [site_options]

You can write a series of commands into a script file or command file
and then execute the file.

UNIX In the following example, the file, when executed, posts n documents
(in-house files) into Digital DEC/EDI where n is a parameter to the
script:

#!/bin/csh
# P1 = Number of documents
# ++++++++++++++++++++++++
set start_time=‘date‘
set count=1
send_one:
trade post TEST-APPL-A test.document -type=document \

-partner_name=TEST-TP-B -object_name=PURCHASE-ORDER \
-tracking_reference="0000000149"

echo "Sent document" $count
@ count++
if ($count > $1) goto all_sent
goto send_one
all_sent:
set end_time=‘date‘
echo "Finished..."
echo ""
echo "Send Start time = " $start_time
echo "Send End time = " $end_time
COMMAND LINE INTERFACE



Accessing the Digital DEC/EDI Client Environment 3-3
exit 0

OpenVMS In the following example, the file, when executed, posts n documents
(in-house files) into Digital DEC/EDI where n is a parameter to the
command procedure:

$ ! P1 = number of documents
$ ! ++++++++++++++++++++++++
$ !
$ start_time = F$TIME()
$ count = 1
$ send_one:
$ TRADE POST TEST-APPL-A test.document /TYPE=DOCUMENT -

/PARTNER_NAME=TEST-TP-B /OBJECT_NAME=PURCHASE-ORDER -
/TRACKING_REFERENCE="0000000149"

$ WRITE SYS$OUTPUT “Sent document “, count
$ count = count + 1
$ IF (count > p1) THEN GOTO all_sent
$ GOTO send_one
$ all_sent:
$ end_time = F$TIME()
$ WRITE SYS$OUTPUT "Finished..."
$ WRITE SYS$OUTPUT ""
$ WRITE SYS$OUTPUT "Send Start time = ", start_time
$ WRITE SYS$OUTPUT "Send End time = ", end_time
$ EXIT

Note that there is a limit to the number of files that you can send in one
go from the command line, as determined by the size of the command
line buffer used to hold commands as they are being entered. The limit
will depend on the operating system envrionment, the length of the file
names and the number of options used.

UNIX You can find an online example of a script file containing trade
commands in:

/usr/examples/decedi/client/cli_exam.sh

Commands and Return Status Values
All CLI commands return a status value, and one or more lines of text
identifying the final status or any error messages.

On UNIX systems, a success state returns a zero (0). On OpenVMS
systems, a success status returns 1 (SS$_NORMAL).
COMMAND LINE INTERFACE



3-4 Accessing the Digital DEC/EDI Client Environment
An error state returns an integer greater than 5. The error status values are
defined in the include file, decedi_api_msgs.h.

On OpenVMS systems, this file is located in SYS$LIBRARY, on UNIX
systems this file is located in /usr/include.

The following table lists each value’s meaning.

Table 3-1 Commands and Return Status Values

DECEDI message
ID

UNIX
status

OpenVMS
severity

Message Meaning

Success 1 Success Success

INSUFVM 6 Error Insufficient Virtual Memory

INTERROR 7 Error Internal error

NOTFOUND 8 Warning No objects found

PARTIALMAP 9 Error Map partially completed

MAPFAIL 10 Error Map Failed

NOMAPOUTPUT 11 Error Map produced no output

BADPARAM 12 Error Bad parameter

BADITMLST 13 Error Bad item List

ORBSRVNOTFND 16 Error No Server Found

ORBSRVDIED 20 Error Server process died

ORBTIMEOUT 21 Error Server timeout

ORBBADNODE 22 Error Bad server selection node

CLIERROR 23 Error Command Line Interface Error

CLIEXIT 24 Error Command Line Interface Exiting

SRVERROR 25 Error Server Error

NOEDISYS 26 Error EDI Server System not running

NOTAUTH 27 Error
Not authorized to access the EDI
Server System

POSTFAIL 28 Error Failed to post file %s
COMMAND LINE INTERFACE



Accessing the Digital DEC/EDI Client Environment 3-5
An Example Script File
As an example of how this information can be used in a script file, the following is
an extract from the sample script files provided in each UNIX client kit:

UNIX trade post DEC-DIRECT-UK-LTD minvox_o.dat -table_name=minvox_o
STATUS_VALUE=$?
if [ "$STATUS_VALUE" -ne 0 ]
then

case "$STATUS_VALUE" in
10)

echo "Use -error_log option on commandline.(edit
this script file)"

echo ""
break
;;

12)
echo "Check your command line."
echo ""
break
;;

14)
echo "See decedi.err for more information."
echo ""
break

FETCHFAIL 29 Error Failed to fetch file %s

OPENINPERR 30 Error
Could not open one of the input
files

OPENOUTERR 31 Error
Could not open one of the output
files

ZEROMATCH 32 Error
No objects were found that
matched the selection criteria

CLIBADCMD 33 Error Command syntax incorrect

NOCLIENTLIC 34 Error
No active client license was
found

ORBCOMMFAIL 35 Error Communications to server failed

Table 3-1 Commands and Return Status Values

DECEDI message
ID

UNIX
status

OpenVMS
severity

Message Meaning
COMMAND LINE INTERFACE



3-6 Accessing the Digital DEC/EDI Client Environment
;;
18)

echo "Start it using/usr/etc/ObjectBroker/obbstrt"
echo ""
break
;;

25)
echo "Use Cockpit or see the Error Log

(decedi_look) to see what error occurred."
echo ""
break
;;

26)
echo "Issue command 'decedi_start' on the server"
echo ""
break
;;

*)
echo "Error $STATUS_VALUE occurred."
echo ""
break
;;

esac
fi

You can find this, and other example files in:

/usr/examples/decedi/client

Commands and Case-sensitivity

UNIX It is important to note that pre-defined UNIX commands and their
parameters are case-sensitive (though this may not be so for “alias”
commands that you may define).

If you enter a command in the wrong case, it will return a “Bad Parameter”
error.

OpenVMS On OpenVMS systems, commands and their parameters are not case-
sensitive, unless the parameter value is enclosed within a quoted string.
COMMAND LINE INTERFACE



Accessing the Digital DEC/EDI Client Environment 3-7
Commands and Quoted Strings
If you need to pass a value to the CLI that contains embedded spaces, then
the value must appear within a quoted string.

UNIX On UNIX systems, when passing quoted strings as parameters to the CLI
commands, you must use the backslash character “\” to escape the quote
character from its special shell meaning. For example:

trade post AP file.dat -table_name=map \
-tracking_reference=\”My Reference 001\”

For example, to specify -business_references=("A","B") from the Bourne
shell you need to type the following

trade post AP file.dat -table_name=map \
-business_references=\(\"A\",\"B\"\)
COMMAND LINE INTERFACE



3-8 trade fetch
trade fetch
The trade fetch command enables the user to fetch one or more files from
the Digital DEC/EDI Server. These files may have come through the
Translation Service (possibly via the Mapping Service) or directly from the
Communications Service by using the Translation Bypass facility. The type
of file being fetched must be specified and can be one of the following:

• Application_file — files are fetched from the Mapper on the Server.
These files are also known as structured files.

• Transmission_file — files are fetched from the Communications Service
on the Server, bypassing any translation or mapping. These files are also
known as unstructured files.

• Document — files are fetched from the Translation Service on the
Server, bypassing any mapping. These files are also known as ihf (in-
house file) files.

Format
trade fetch application_name[command_options][file[file_options]]

Parameters
Note: Remember that all parameters are case-sensitive. If they are not
specified correctly, the command will return a “Bad Parameter” error.

application_name

The application_name is the name of the client application
submitting the request to the Server. This parameter is used by
Digital DEC/EDI as a means of authenticating the request. The client
application must be registered as an authorized application on the
Server.

This parameter is mandatory.

Tru64 UNIX Applications are registered by using the CommandCenter
Management Services Editor.

OpenVMS Applications are registered by using the INTERCHANGE command
EDIT CONFIGURATION.

For more information, refer to the User’s Guides.
COMMAND LINE INTERFACE



trade fetch 3-9
file

The file specification of one or more files into which files from the
Server are to be placed. If more than one file name is entered, the file
options immmediately following each file refer only to that file. See
File Options on page 3-10 for further information on which File
options can be (or must be) supplied with this parameter.

If the Server is remote from the client, the client application must
make sure that any file specified resides in a directory that allows
write access to the Digital DEC/EDI client information server
process. This process uses the decedi account (DECEDI account on
OpenVMS) by default.

This parameter is mandatory.

Command Options

link_id
The identifier of the connection from which files are directly
received. These files are data files that do not require translation.
This means that they bypass the Translation Services. The files can
be fetched when their status (on the server) reaches
TRANS_AVAILABLE.

Tru64 UNIX The connection must have been defined by using the
CommandCenter Communications Editor.

When the file option is -type=transmission_file, this option is
mandatory and must be specified in UPPER CASE.

OpenVMS The connection must have been defined by using the
INTERCHANGE command EDIT CONFIGURATION.

When the file option is /TYPE=TRANSMISSION_FILE, this option is
mandatory.

Format

UNIX -link_id=<connection_id>

OpenVMS /LINK_ID=<connection_id>
COMMAND LINE INTERFACE



3-10 trade fetch
test_indicator
Indicates whether the files in this request are to be treated as test files
or live files.

Format

UNIX -test_indicator[=option]

OpenVMS /TEST_INDICATOR[=option]

Where option is one of:

File Options
For each file to be fetched, a number of options can be specified. Whether a
particular option is mandatory or not depends upon the file type that is
specified using the -type option or the /TYPE qualifier.:

† Note: This is a Command option, not a File option.

live Live files received from the trading partner or from a
remote application.
By default, both live and partner_test documents can be
fetched.

mapper_test Files tested through the Mapping Service only. This option
is used in conjunction with the local_test option to allow
test data to be received through the Mapping Service.

partner_test Files received from the trading partner or from a remote
application, that are intended to be used for test purposes
only.
By default, both live and partner_test documents can be
fetched.

type= Mandatory Options

application_file table_name

document partner_name, object_name, type

transmission_file link_id†, type
COMMAND LINE INTERFACE



trade fetch 3-11
Most optional file options are associated with the Mapper only and are not
applicable when type=transmission_file or type=document:

The File options are associated with each file to be fetched and must be
entered after the file specification on the command line. For example:

UNIX # trade fetch my-app file.dat -type=application_file \
-table_name=mapping_tbl -output_file=mapper_out.out

OpenVMS # TRADE FETCH my-app file.dat /TYPE=application_file -
/TABLE_NAME=mapping_tbl /OUTPUT_FILE=mapper_out.out

business_references
This associates one or more user supplied business references with
the document audit trail. If more than one is supplied then each must
be separated by a comma.

Business references may subsequently be used to track the document
by using the Digital DEC/EDI client track command, the Digital
DEC/EDI client API routine DECEDI_TRACK, or the Digital
DEC/EDI Cockpit.

Leading references may be omitted if a particular business reference
slot is intended for the users reference which may have been
generated either during the mapping process, or by a remote
application.

Up to 5 business references may be specified.

This is applicable only when type=application_file or
type=document.

Format

UNIX -business_references=<business_reference>

type= Applicable Non-Mandatory Items

application_file All except for table_name (which is
mandatory). These file options override any
setup information in the Mapper itself and, if not
specified, the defaults come from the Mapper.

document timeout

transmission_file timeout
COMMAND LINE INTERFACE



3-12 trade fetch
-business_references=(<business_reference>[,

<business_reference>... ])

OpenVMS /BUSINESS_REFERENCES=<business_reference>

/BUSINESS_REFERENCES=(<business_reference>[,

<business_reference>... ])

comment
A comment to add to the mapping audit trail.

This is applicable only when type=application_file.

Format

UNIX -comment=<mapping_comment>

OpenVMS /COMMENT=<mapping_comment>

debug
The file specification of the file on the client to which the Mapper
debug output is to be written.

This is applicable only when type=application_file.

Format

UNIX -debug=<file_specification>

-nodebug

OpenVMS /DEBUG=<file_specification>

/NODEBUG

error_log
The file specification of the file on the client to which the Mapper
error log output is to be written.

This is applicable only when type=application_file.

Format

UNIX -error_log=<file_specification>

-noerror_log

OpenVMS /ERROR_LOG=<file_specification>
COMMAND LINE INTERFACE



trade fetch 3-13
/NOERROR_LOG

io_debug
The file specification of the file on the client to which the Mapper
I/O debug output is to be written.

This is applicable only when type=application_file.

Format

UNIX -io_debug=<file_specification>

-noio_debug

OpenVMS /IO_DEBUG=<file_specification>

/NOIO_DEBUG

local_test
The file specification of the input file on the Server to use when the
Mapper is in local test mode. This is used in conjunction with the
command option test_indicator=mapper_test.

This is applicable only when type=application_file.

Format

UNIX -local_test=<file_specification>

-nolocal_test

OpenVMS /LOCAL_TEST=<file_specification>

/NOLOCAL_TEST

match_flag
Specifies which documents the Mapper is to match.

This is applicable only when type=application_file.

Format

UNIX -match_flag[=option]

OpenVMS /MATCH_FLAG[=option]

Where option is one of:

match_first— match the first available document
COMMAND LINE INTERFACE



3-14 trade fetch
match_all — match all documents.

number=n — match all documents until n documents fetched or no
more documents available for fetching.

named_application
Indicates that the application name specified as a parameter is to be
passed to the Mapper, and is to be used as the Application ID for the
duration of the map fetch request. The application name must match
the Application ID defined within the trading partner profile.

This option is mandatory if you have specified more than one
Application ID, or the special value of ANY, within the security
settings of the mapping table.

If this option is not specified, the Mapper uses the Application ID
specified within the security settings of the mapping table.

This is applicable only when type=application_file.

Format

UNIX -named_application

OpenVMS /named_application

object_name
A name distinguishing this object from other objects handled by the
application.

In the case of application files (type=application_file), it may
be used to specify the name of the mapping set to be used, when the
mapping table contains more than one mapping set.

In the case of in-house-files (type=document), it is used to describe
what the object is, for example, a purchase order or an invoice. This
is the same as the Digital DEC/EDI internal document name.

This is NOT applicable for type=transmission_file and is
mandatory when type=document.

Format

UNIX -object_name=<object_name>

OpenVMS /OBJECT_NAME=<object_name>
COMMAND LINE INTERFACE



trade fetch 3-15
output_file
The file specification of the file on the client to which screen output
from the Mapper is to be written.

This is applicable only when type=application_file.

Format

UNIX -output_file=<file_specification>

OpenVMS /OUTPUT_FILE=<file_specification>

partner_name
The name of the trading partner from whom this file was received.

This is a mandatory option for type=document.

This is NOT applicable when type=transmission_file.

Format

UNIX -partner_name=<partner_name>

OpenVMS /PARTNER_NAME=<partner_name>

restart_from
The number of the document from which mapping is to restart.

This is applicable only when type=application_file.

Format

UNIX -restart_from=<mapping_restart_position>

OpenVMS /RESTART_FROM=<mapping_restart_position>

Where <mapping_restart_position> is an integer.

Where <mapping_restart_position> is an integer.

table_name
The name of the mapping table to use if the services of the Mapper
are required. Mapping tables reside on the Server in the mapping
table directory.

Note: The directory specification and file extension (.fbo) must NOT be
included with the table name.
COMMAND LINE INTERFACE



3-16 trade fetch
This is applicable only when type=application_file and is a
mandatory option.

Format

UNIX -table_name=<mapping_table_name>

OpenVMS /TABLE_NAME=<mapping_table_name>

timeout
The maximum number of seconds that the Application Client should
wait for the file to become available. If not specified, a timeout of
zero seconds is assumed.

Format

UNIX -timeout=<number_of_seconds>

OpenVMS /TIMEOUT=<number_of_seconds>

type
This specifies the type of file being fetched and whether it is to be
fetched using the Mapper or not.

Format

UNIX -type[=option]

OpenVMS /TYPE[=option]

Where option is one of:

type= Applicable Non-Mandatory Items

application_file Fetch structured application files from the Mapper. This
is the default for type.

transmission_file Fetch unstructured transmission files directly from the
Communications Service on the Server.

document Fetch in-house files (Digital DEC/EDI Version 1
internal format documents) from the Translation
Service on the Server.
COMMAND LINE INTERFACE



trade fetch 3-17
Examples
1.

UNIX # trade fetch my-application test_file.dat \
-partner_name=their-application \
-business_references="invoice_1234"\
-table_name=map_test_tbl

OpenVMS $ TRADE FETCH my-application test_file.dat -
/PARTNER_NAME=their-application -
/BUSINESS_REFERENCES="invoice_1234"-
/TABLE_NAME=map_test_tbl

In this example, an application called my-application submits a request
to fetch structured files that have been received from a trading partner called
their-application, convert them into application file format using the
mapping table map_test_tbl, and write them to the file
test_file.dat in the user’s current working directory.

Note that because the default file type is application_file, the type option is
not necessary.

2.

UNIX TRADE
CLIENTEDI> fetch my-app test_file.dat \

-partner_name=acme-orders \
-table_name=map_test_tbl

OpenVMS $ TRADE
CLIENTEDI> FETCH my-app test_file.dat -

/PARTNER_NAME=acme-orders -
/TABLE_NAME=map_test_tbl

IIn this example, an application called my-app submits a request to fetch
structured application files that have been received from a trading partner
called acme-orders, convert them into application file format using the
mapping table map_test_tbl, and write them to the file
test_file.dat in the user’s current working directory.

Note that because the default file type is application_file, the type option is
not necessary.

3.

UNIX TRADE
COMMAND LINE INTERFACE



3-18 trade fetch
CLIENTEDI> fetch my-app -link_id=OFTP_1 new_car_design.dat \
-type=transmission_file

OpenVMS $ TRADE
CLIENTEDI> FETCH my-app /LINK_ID=OFTP_1 new_car_design.dat -

/TYPE=transmission_file

In this example, an application called my-app submits a request to fetch
transmission files coming into the Server via the connection identifier,
OFTP_1. The transmission file is written into the file
new_car_design.dat in the user’s current directory.

4.

UNIX CLIENTEDI> fetch my-app /usr/users/me/test_document.dat \
-type=document -partner_name=acme-invoic \
-object_name=edifact-invoic

OpenVMS CLIENTEDI> FETCH my-app SYS$LOGIN:test_document.dat -
/TYPE=document /PARTNER_NAME=acme-invoic -
/OBJECT_NAME=edifact-invoic

In this example, an application called my-app submits a request to fetch
document files that have been received from a trading partner called acme-
invoic and have an internal document identifier of edifact-invoic.

Note that all of these options are mandatory when type=document.
COMMAND LINE INTERFACE



trade post 3-19
trade post
The trade post command enables the user to submit one or more files into
the Digital DEC/EDI Server. These files may go through the Translation
Service (possibly via the Mapping Service) or directly to the
Communications Service. The type of file posted must be specified, and can
be one of the following:

• Application_file — files are posted to the Mapper on the Server. These
files are also known as structured files.

• Transmission_file — files are posted to the Communications Service on
the Server, bypassing any translation or mapping. These files are also
known as unstructured files.

• Document — files are posted to the Translation Service on the Server
bypassing any mapping. These files are also known as ihf (in-house file)
files.

Several command and file options are associated with the post command:
some are mandatory.

Format
trade post application_name [command_options]
[file [file_options]]...

Parameters
Note: Remember that all parameters are case-sensitive. If they are not
specified correctly, the command will return a “Bad Parameter” error.

application_name

The application_name is the name of the client application
submitting the request to the Server. This parameter is used by
Digital DEC/EDI as a means of authenticating the request. The client
application must be registered as as authorized application on the
Server.

This parameter is mandatory.

Tru64 UNIX Applications are registered by using the CommandCenter
Management Services Editor.
COMMAND LINE INTERFACE



3-20 trade post
OpenVMS Applications are registered by using the INTERCHANGE command
EDIT CONFIGURATION.

For more information, refer to the User’s Guides.

file

The file specification of one or more files to be posted to the Server.
If more than one file name is entered, the file options immediately
following each file refer only to that file. See File Options on page
3-22 for further information on which File options can be (or must
be) supplied with this parameter.

If the Server is remote from the client, the client application must
make sure that any files specified allow read access to the Digital
DEC/EDI client information server process. This process uses the
decedi account by default.

This parameter is mandatory.

Command Options

connection_data
This provides information to the communications connection which
overrides the defaults for that connection. This field is specific to the
type of gateway referenced by the link_id.

Tru64 UNIX Please refer to the CommandCenter Trading Partner Editor’s on-line
help for types that support this feature, and what format the data
should be in.

OpenVMS Please refer to the INTERCHANGE HELP command for types that
support this feature, and what format the data should be in.

This is applicable only when type=transmission_file.

Format

UNIX -connection_data=<connection_specific_string>

OpenVMS /CONNECTION_DATA=<connection_specific_string>

Where <connection_specific_string> is of the format:

<initiator_oftp_id>\<virtual_file_name>\

<fixed_record_length>\<user_data>\
COMMAND LINE INTERFACE



trade post 3-21
<originator_oftp_id>

For example, the following would be valid entries:

id999\my_file_name\80\access\

id999\\\access\

\my_file_name\80\\

Refer to the User’s Guides for more information.

link_id
The connection identifier of the connection to which files are posted
directly.

Tru64 UNIX The connection must have been defined by using the
CommandCenter Communications Editor.

OpenVMS The connection must have been defined by using the
INTERCHANGE command EDIT CONFIGURATION.

Refer to the User’s Guides for more information.

When the file option is type=transmission_file, this option is
mandatory.

Format

UNIX -link_id=<connection_id>

OpenVMS /LINK_ID=<connection_id>

priority
Specifies how the Server is to process the files. The default is
priority=normal. The Translation Service builds high priority
files into a single document interchange immediately. Normal
priority files are built into document interchanges at scheduled
intervals. Similarly, the communications gateway triggers the
sending of a high priority file immediately and normal priority files
are sent at scheduled intervals.

Format

UNIX -priority[=option]

OpenVMS /PRIORITY[=option]
COMMAND LINE INTERFACE



3-22 trade post
Where option is one of:

test_indicator
Indicates whether the files in this request are to be treated as test
submissions or live submissions.

Format

UNIX -test_indicator[=option]

OpenVMS /TEST_INDICATOR[=option]

Where option is one of:

File Options
For each file to be posted, there are a number of options that can be
specified. Whether a particular option is mandatory or not depends upon the
file type that is specified using the type option.:

normal Use scheduled intervals. This is the
default value.

high Documents sent immediately

live Live files sent to the trading partner or to a remote
application.
This is the default option.

mapper_test Files tested through to the Mapping Service only. This
option is used in conjunction with the local_test option to
allow test data to be sent through the mapping service.

translation_test Files tested through to the Translation Service only. The
documents are not transmitted to the trading partner.

partner_test Files tested through all services to the trading partner or
to a remote application.

type= Mandatory Options

application_file table_name

document partner_name, object_name, tracking_reference, type

transmission_file link_id†, type
COMMAND LINE INTERFACE



trade post 3-23
† Note: This is a Command option, not a File option.

Most optional file options are associated with the Mapper only and are not
applicable when type=transmission_file or type=document:

The File options are associated with each file to be posted and must be
entered after the file specification on the command line. For example:

UNIX # trade post my-app file.dat -type=application_file\
-table_name=mapping_tbl \
-output_file=mapper_out.dat

OpenVMS $ TRADE POST my-app file.dat /TYPE=application_file -
/TABLE_NAME=mapping_tbl -
/OUTPUT_FILE=mapper_out.dat

business_references
This associates one or more user supplied business references with
the document audit trail. If more than one is supplied then each must
be separated by a comma.

Business references may subsequently be used to track the document
by using the Digital DEC/EDI client track command, the Digital
DEC/EDI client API routine DECEDI_TRACK, or the Digital
DEC/EDI Cockpit.

Leading references may be omitted if a particular business reference
slot is intended for the users reference which may have been
generated either during the mapping process, or by a remote
application.

Up to 5 business references may be specified.

This is applicable only when type=application_file or
type=document.

type= Applicable Non-Mandatory Options

application_file All except for table_name (which is mandatory).
These file options override any setup information in the
Mapper itself and, if not specified, the defaults come
from the Mapper.

document None

transmission_file tracking_references
COMMAND LINE INTERFACE



3-24 trade post
Format

UNIX -business_references=<business_reference>

-business_references=(<business_reference>[,

<business_reference>... ])

OpenVMS /BUSINESS_REFERENCES=<business_reference>

/BUSINESS_REFERENCES=(<business_reference>[,

<business_reference>... ])

comment
A comment to add to the mapping audit trail.

This is applicable only when type=application_file.

Format

UNIX -comment=<mapping_comment>

OpenVMS /COMMENT=<mapping_comment>

debug
The file specification of the file on the client to which the Mapper
debug output is to be written.

This is applicable only when type=application_file.

Format

UNIX -debug=<file_specification>

-nodebug

OpenVMS /DEBUG=<file_specification>

/NODEBUG

error_log
The file specification of the file on the client to which the Mapper
error log output is to be written.

This is applicable only when type=application_file.

Format

UNIX -error_log=<file_specification>
COMMAND LINE INTERFACE



trade post 3-25
-noerror_log

OpenVMS /ERROR_LOG=<file_specification>

/NOERROR_LOG

io_debug
The file specification of the file on the client to which the Mapper
I/O debug output is to be written.

This is applicable only when type=application_file.

Format

UNIX -io_debug=<file_specification>

-noio_debug

OpenVMS /IO_DEBUG=<file_specification>

/NOIO_DEBUG

local_test
The file specification of the input file on the Server to use when the
Mapper is in local test mode. This is used in conjunction with the
command option test_indicator=mapper_test.

This is applicable only when type=application_file.

Format

UNIX -local_test=<file_specification>

-nolocal_test

OpenVMS /LOCAL_TEST=<file_specification>

/NOLOCAL_TEST

named_application
Indicates that the application name specified as a parameter is to be
passed to the Mapper, and is to be used as the Application ID for the
duration of the map post request. The application name must match
the Application ID defined within the trading partner profile.

This option is mandatory if you have specified more than one
Application ID, or the special value of ANY, within the security
settings of the mapping table.
COMMAND LINE INTERFACE



3-26 trade post
If this option is not specified, the Mapper uses the Application ID
specified within the security settings of the mapping table.

This is applicable only when type=application_file.

Format

UNIX -named_application

OpenVMS /NAMED_APPLICATION

object_name
A name distinguishing this object from other objects handled by the
application.

In the case of application files (type=application_file), it may
be used to specify the name of the mapping set to be used, when the
mapping table contains more than one mapping set.

In the case of in-house-files (type=document), it is used to describe
what the object is, for example, a purchase order or an invoice. This
is the same as the Digital DEC/EDI internal document name.

This is NOT applicable for type=transmission_file and is
mandatory when type=document.

Format

UNIX -object_name=<object_name>

OpenVMS /OBJECT_NAME=<object_name>

output_file
The file specification of the file on the client to which screen output
from the Mapper is to be written.

This is applicable only when type=application_file.

Format

UNIX -output_file=<file_specification>

OpenVMS /OUTPUT_FILE=<file_specification>
COMMAND LINE INTERFACE



trade post 3-27
partner_name
The name of the trading partner for whom this file is destined.

This is a mandatory option for type=document.

This is NOT applicable when type=transmission_file.

Format

UNIX -partner_name=<partner_name>

OpenVMS /PARTNER_NAME=<partner_name>

reprocess
A list of documents within an application file to be reprocessed.This
is normally used after you have corrected the error that has caused a
SOFT ERROR to occur during the processing of a document within an
application file.

To determine which documents have failed during processing, use
the Cockpit to examine the Mapper audit trail, or the output option
to capture the status of each document processed.

If the application file contains documents for trading partners for
which no agreement has yet been defined within Digital DEC/EDI,
you may use the following logical name or environment variable to
cause the mapper to report a SOFT ERROR and continue processing
the application file:

OpenVMS $ DEFINE/TABLE=DECEDI$LOGICAL_NAMES -
DECEDI$$NO_TP_AGREE_CONTINUE “1”

Tru64 UNIX set DECEDI__NO_TP_AGREE_CONTINUE=1
export DECEDI__NO_TP_AGREE_CONTINUE

This is applicable only when type=application_file.

Format

UNIX -reprocess=<document_list_string>

OpenVMS /REPROCESS=<document_list_string>

Where:

document_list_string is one of
COMMAND LINE INTERFACE



3-28 trade post
restart_from
The number of the document from which mapping is to restart.

This is applicable only when type=application_file.

Format

UNIX -restart_from=<mapping_restart_position>

OpenVMS /RESTART_FROM=<mapping_restart_position>

Where <mapping_restart_position> is an integer.

table_name
The name of the mapping table to use if the services of the Mapper
are required. Mapping tables reside on the Server in the mapping
table directory.

Note: The directory specification and file extension (.fbo) must NOT be
included with the table name.

This is applicable only when type=application_file and is a
mandatory option.

Format

UNIX -table_name=<mapping_table_name>

OpenVMS /TABLE_NAME=<mapping_table_name>

description examples (OpenVMS and UNIX)

digit /REPROCESS=1
-reprocess=1,2,8

range /REPROCESS=”1-3”
-reprocess=2-5
-reprocess=1,3,7-10

keyword /REPROCESS=all
-reprocess=last
/REPROCESS=”1,3,5-last”
COMMAND LINE INTERFACE



trade post 3-29
tracking_reference
This is a tracking reference that the user can apply to the file being
posted. The reference can be used with the track command to
track objects in the system.

This is a mandatory option when type=document.

Format

UNIX -tracking_reference=<reference>

OpenVMS /TRACKING_REFERENCE=<reference>

type
This specifies the type of file being posted.

Format

UNIX -type[=option]

OpenVMS /TYPE[=option]

Where option is one of:

Examples
1.

UNIX # trade post my-app -test_indicator=partner_test test_file.dat
\

-partner_name=acme-order -tracking_reference="ORDER_1234"\
-table_name=map_test_tbl

OpenVMS $ TRADE POST my-app /TEST_INDICATOR=partner_test file.dat -
/PARTNER_NAME=acme-order /TRACKING_REFERENCE="ORDER_1234"-
/TABLE_NAME=map_test_tbl

application_file Structured application files that will go to the
Mapper. (This is the default for type).

transmission_file Unstructured transmission files that will be sent
directly to the Communications Service on the
Server.

document In-house files (Digital DEC/EDI Version 1 internal
format documents) that will be processed by the
Translation Service on the Server.
COMMAND LINE INTERFACE



3-30 trade post
In this example, an application called my-app submits a request to post the
application file, file.dat in the user’s current working directory to a
trading partner called acme-orders as a test. The file is to be converted
into internal (in-house) format using the mapping table map_test_tbl.
The file is given the reference ORDER_1234 so that it can be tracked using
the track command.

Because the default file type is application_file, the -type option is
not necessary.

2.

UNIX # trade post my-app -link_id=OFTP_1 \
-connection_data="\new-car-design\80\\" \
new_car_cad_design.dat -type=transmission_file

OpenVMS $ TRADE POST my-app /LINK_ID=OFTP_1 -
/CONNECTION_DATA="\new-car-design\80\\" -
new_car_cad_design.dat /TYPE=transmission_file

In this example, an application called my-app submits a request to post the
transmission file, new_car_cad_design.dat in the user’s current
working directory using the connection OFTP_1 (defined in the Server). The
OFTP virtual file name is to be new-car-design and the transmission file
is to be transmitted using a record size of 80 characters.

Note that this trade post request bypasses any mapping or conversion
because the file type is transmission_file.

3.

UNIX # trade post my-app -priority=high \
/usr/users/me/invoic_document.dat -partner_name=acme-orders \

-object_name=edifact-order -tracking_reference=acme_ref \
-type=document

OpenVMS $ TRADE POST my-app /PRIORITY=HIGH -
SYS$LOGIN:invoic_document.dat /PARTNER_NAME=acme-orders -
/OBJECT_NAME=edifact-order /TRACKING_REFERENCE=acme_ref -
/TYPE=DOCUMENT

In this POST command, an application called my-app submits a request to
post the in-house file formatted document in a file called,
invoic_document.dat to a trading partner called acme-orders at high
COMMAND LINE INTERFACE



trade post 3-31
priority. The name of the internal document is specified as edifact-order
and a tracking reference is given as acme_ref.

4.

UNIX # trade post DEC-DIRECT-UK-LTD minvox_o.dat \
-table_name=minvox_o minvox_5_times_o.dat \
-table_name=minvox_o

OpenVMS $ TRADE POST DEC-DIRECT-UK-LTD minvox_o.dat -
/TABLE_NAME=minvox_o minvox_5_times_o.dat -
/TABLE_NAME=minvox_o

In this example, the POST command is used to send several files at once.
Note how the table_name is treated as a file option. File options must be
specified for each application file in the list.

Important: Wildcarding of application names is disallowed.
COMMAND LINE INTERFACE



3-32 trade track
trade track
The trade track command enables the user to track objects within the
Digital DEC/EDI Server. It can provide lists of objects that match certain
selection criteria and it can return different types of information for the
objects that meet this selection criteria (for example routing information or
status).

The output from the command shows each object’s primary tracking
reference at the start of a new line, with its attributes and values on
subsequent lines (indented).

The track command can track only one kind of object at a time. The type
of object being tracked must be specified and may be one of the following:

• Application_file — files that have been posted or fetched via the Mapper
on the Server. These files are also known as structured files.

• Transmission_file — files that have been sent or received via the
Communications Service on the Server, or are waiting to be sent via the
Communications Service. These files are also known as unstructured
files.

• Document — files that have gone through or are waiting to go through
the Translation Service on the Server. This also includes documents that
are involved in Application-to-application agreements. These files are
also known as (in-house file) ihf files.

Format
trade track application_name [options]
selection_list...

Parameters
Note: Remember that all parameters are case-sensitive. If they are not
specified correctly, the command will return a “Bad Parameter” error.

application_name

The application_name is the name of the client application
submitting the request to the Server. This parameter is used by
Digital DEC/EDI as a means of authenticating the request. The client
application must be registered as as authorized application on the
COMMAND LINE INTERFACE



trade track 3-33
Server.

This parameter is mandatory.

Tru64 UNIX Applications are registered by using the CommandCenter
Management Services Editor.

OpenVMS Applications are registered by using the INTERCHANGE command
EDIT CONFIGURATION.

For more information, refer to the User’s Guides.

selection_list

The selection_list is a space-separated list indicating the values to
obtain for each object found. Note that not all selection values are
applicable to all file types. For example, if type=document is
specified, then the selection_list value, communications_data,
returns no information.

If a selection value is applicable to only one type, then it is not
necessary to explicitly specify that type (type=) on the command
line. For example, if the selector acknowledgement is selected, then
type=document can be omitted, since acknowledgement is
applicable only for that file type.

The options available for the selection_list are shown in Table 3-2
Selection Identifiers:

Table 3-2 Selection Identifiers

Value Description

tracking_references Provides all tracking references associated with the file.
Data displayed for file types is:

application_file Internal user reference

transmission_file Transmission file name

document User reference, document count,
transmission file name
COMMAND LINE INTERFACE



3-34 trade track
envelope_references Provides all EDI envelope control references associated
with the object, where applicable. Data displayed for file
types is:

application_file Not applicable.

transmission_file Not applicable.

document Interchange control number, group
control number, document control
number.

business_references Provides information about business references associated
with the objects. Data displayed for file types is

application_file Not applicable

transmission_file Not applicable

document Business References (up to 5)

routing Provides all data associated with the routing of this object
through the Digital DEC/EDI Server. Data displayed for
file types is:

application_file Application name, partner name,
document type, direction.

transmission_file Connection id, direction.

document Application name, partner name,
document type, direction.

Table 3-2 Selection Identifiers (continued)

Value Description
COMMAND LINE INTERFACE



trade track 3-35
status Returns the current status of the object. It can be one of the
following:

completed The object has completed processing
within the Server. Either it has
successfully reached completion or it
has been cancelled.

available The object is available for fetching by
an application.

in_progress The object is currently being
processed by the Server.

failed The object failed to be processed by
the Server.

interchange Provides specific information about the EDI interchange.
Data displayed for file types is:

application_file Not applicable.

transmission_file Not applicable.

document Application interchange id and
option, partner interchange id and
option, segment terminator, element
separator, subelement separator,
release character, decimal notation
character, etc.

functional_group Provides information about functional groups within the
interchange. Data displayed for file types is:

application_file Not applicable.

transmission_file Not applicable.

document Group type, group control number
and more.

Table 3-2 Selection Identifiers (continued)

Value Description
COMMAND LINE INTERFACE



3-36 trade track
acknowledgement Provides information about functional acknowledgements.
Data displayed for file types is:

application_file Not applicable.

transmission_file Not applicable.

document acknowledgement status, direction,
application id, and document count of
functional acknowledgement.

document Provides information about the document type. Data
displayed for file types is:

application_file Not applicable.

transmission_file Not applicable.

document Standard, version, external document
type, document control number,
common access reference, message
version and release, association
assigned code, controlling agency.

communications_data Provides detailed information about transmission files that
have passed through a communications service. Data
displayed for file types is:

application_file Not applicable.

transmission_file OFTP: EERP ack sent, start position,
dataset name, date, time, record size,
record format.
X.400: message router id.
Pedi: all Pedi header information.

document Not applicable.

history Provides the detailed status history for documents and
transmission files.

Table 3-2 Selection Identifiers (continued)

Value Description
COMMAND LINE INTERFACE



trade track 3-37
Options

application_name
Select objects by the sending or receiving application. This can be
different from the application making the request (the application
name specified as a parameter).

Format

UNIX -application_name=<application_name>

OpenVMS /APPLICATION_NAME=<application_name>

before
Select objects that entered the system before the specified time.

mapper_details Provides information about the map run associated with a
document. Data displayed for file types is:

application_file Not applicable

transmission_file Not applicable

document Mapper Run ID

other_data Provides other miscellaneous data about documents and
transmission files. Data displayed for file types is:

application_file Not applicable.

transmission_file Character count, priority, Digital
DEC/EDI store file location.

document Character count, segment count,
priority, Digital DEC/EDI store file
location, X12 application file
information, batching information,
original document number in the case
of a reset document.

all Provides all available audit information for documents and
transmission files and all the tracking and routing
information for application files.

Table 3-2 Selection Identifiers (continued)

Value Description
COMMAND LINE INTERFACE



3-38 trade track
Format

UNIX -before=<time>

OpenVMS /BEFORE=<time>

Where <time> is of the format: DD-MMM-YYYY:HH:MM:SS.CC.

business_references
Select objects by the business references associated with them.

If a single business reference is supplied, that is, if there are no
brackets and comma-separated values, then each of the five possible
business reference slots in turn is checked for the supplied value.

If brackets are used to introduce a list of values, then the required
position is determined by where it occurs in the comma separated list
of values supplied, and its value will only be tested against that of the
associated business reference slot. For example,

-business_references="ABC"

will cause "ABC" to be checked against each of the 5 business
reference slots, whilst

-business_references=("","ABC")

will cause "ABC" to be checked against only the second business
reference slot.

Format

UNIX -business_references=<business_reference>

-business_references=(<business_reference>

[,<business_reference>... ])

OpenVMS /BUSINESS_REFERENCES=<business_reference>

/BUSINESS_REFERENCES=(<business_reference>

[,<business_reference>... ])

current_status
Select objects by status.

Format

UNIX -current_status[=option]
COMMAND LINE INTERFACE



trade track 3-39
OpenVMS /CURRENT_STATUS[=option]

Where option is one of:

database
Select objects from either the Live database, the Archive database or
both databases.

Format

UNIX -database[=option]

OpenVMS /DATABASE[=option]

Where option is one of:

direction
Select objects by direction.

Format

UNIX -direction[=option]

OpenVMS /DIRECTION[=option]

Where option is one of:

completed

available

failed

in_progress

-live Select objects from the Live Server audit database. This
is the default.

-archive Select objects from the Archive audit database. By
definition these will be of status PURGEABLE or
CANCELLED.

-both Select objects from both the Live and Archive databases.

inbound

outbound
COMMAND LINE INTERFACE



3-40 trade track
document_name
Select object by the external document type name, for example,
INVOIC or 810.

Format

UNIX -document_name=<external_document_id>

OpenVMS /DOCUMENT_NAME=<external_document_id>

link_id
Select object by the sending or receiving connection identifier.

Format

UNIX -link_id=<connection_id>

OpenVMS /LINK_ID=<connection_id>

map_id
Select object by the mapper run ID associated with it.

Format

UNIX -map_id=<mapper_run_id>

OpenVMS /MAP_ID=<mapper_run_id>

partner_name
Select object by the sending or receiving partner.

Format

UNIX -partner_name=<partner_name>

OpenVMS /PARTNER_NAME=<partner_name>

object_name
Select objects by type, as specified when the objects were posted or
fetched, for example PURCHASE-ORDER or INVOICE.

Format

UNIX -object_name=<object_name>

OpenVMS /OBJECT_NAME=<object_name>
COMMAND LINE INTERFACE



trade track 3-41
output_file
The file specification of the file on the client to which output is
written. If you omit this option, then all output goes to standard
output.

Format

UNIX -output_file=<file_specification>

OpenVMS /OUTPUT_FILE=<file_specification>

since
Select objects that entered the system after the specified time.

Format

UNIX -since=<time>

OpenVMS /SINCE=<time>

Where <time> is of the format: DD-MMM-YYYY:HH:MM:SS.CC.

standard
Select objects by the edi standard used.

Format

UNIX -standard[=option]

OpenVMS /STANDARD[=option]

Where option is one of:

test_indicator
Select objects by the test mode used.

Format

edifact

x12

tdcc

odette

tradacoms
COMMAND LINE INTERFACE



3-42 trade track
UNIX -test_indicator[=option]

OpenVMS /TEST_INDICATOR[=option]

Where option is one of:

tracking_reference
Select objects by tracking reference. The reference can be that
returned from the fetch or post command, or it can be a reference
returned from a previous invocation of the track command.

Format

UNIX -tracking_reference=<tracking_reference>

OpenVMS /TRACKING_REFERENCE=<tracking_reference>

type
Indicates which file of files to select.

Format

UNIX -type[=option]

OpenVMS /TYPE[=option]

Where option is one of:

live

mapper_test

translation_test

partner_test

application_file Select structured application files from the mapper.
This is the default for type.

transmission_file Select unstructured transmission files directly from
the Communications Service on the Server.

document Select in-house files (Digital DEC/EDI version 1
internal format documents) from the Translation
Service on the Server.
COMMAND LINE INTERFACE



trade track 3-43
version
Select objects by the version of the standard used to process them.

Format

UNIX -version=<version>

OpenVMS /VERSION=<version>

Examples
1.

UNIX # trade track my-app -direction=inbound \
-current_status=in_progress tracking_references

OpenVMS $ TRADE TRACK my-app /DIRECTION=INBOUND -
/CURRENT_STATUS=IN_PROGRESS TRACKING_REFERENCES

This command gives tracking references for all incoming application files
on the Server whose processing is still in progress. In this example, type
defaults to application_file.

2.

UNIX # trade track my-app -standard=x12 \
-version=002003 status interchange

OpenVMS $ TRADE TRACK my-app /STANDARD=X12 -
/VERSION=002003 STATUS INTERCHANGE

This command reports on all X12 documents of version 002003 and prints
out the current status and some of the ISA interchange fields.

Note that type=document is not necessary in this case because the file
type is implied in the selector, interchange.

3.

UNIX # trade track my-app -type=transmission_file \
-direction=outbound \
-database=both -output_file=track_output.dat other_data

OpenVMS $ TRADE TRACK my-app /TYPE=TRANSMISSION_FILE -
/DIRECTION=OUTBOUND -
/DATABASE=BOTH /OUTPUT_FILE=track_output.dat OTHER_DATA
COMMAND LINE INTERFACE



3-44 trade track
This command reports miscellaneous information (sizes, and so on) on all
live and archived transmission files in the Server that are outbound and puts
the result in a file called track_output.dat in the user’s current working
directory.
COMMAND LINE INTERFACE



exit 3-45
exit
Causes the application client interface to exit.

Format

UNIX exit

OpenVMS EXIT

Example

UNIX CLIENTEDI> exit
#

OpenVMS CLIENTEDI> EXIT
$

COMMAND LINE INTERFACE



3-46 exit
COMMAND LINE INTERFACE



Chapter 4 C Language Application
Programming

Interface (API)
The C Language Application Programming Interface (API) defines the C
language bindings that must be used by client applications to interface to the
Digital DEC/EDI Server. There is a single common interface across all
client platforms which means that applications written to run on one
platform can easily be made to run on another.

Introducing Digital DEC/EDI API Routines
The API provides a number of routines that an application program can use
to post, fetch and track files.

The API routines use item lists to allow the passing of any number of
optional parameters. The item lists are constructed using tag-value pairs.

The three routines are introduced below, and described in detail in the
following sections.

Posting Files
To post files, the application must use the DECEDI_POST routine to submit
one or more files to the Digital DEC/EDI Server. The files go either to the
mapper or directly to the Communications Service.

The application builds up the request in a series of calls to the
DECEDI_ADD_ITEM_LIST routine, and then passes the resultant item lists
into the DECEDI_POST routine. Having completed the call, the application
program can free the item lists using the DECEDI_FREE_ITEM_LIST
routine.



4-2 Introducing Digital DEC/EDI API Routines
Fetching Files
To fetch files, the application must use the DECEDI_FETCH routine to fetch
one or more files from the Digital DEC/EDI Server. These files may have
come from the Translation Service or directly from the Communications
Service.

The application builds up the request in a series of calls to the
DECEDI_ADD_ITEM_LIST routine, and then passes the resultant item lists
into the DECEDI_FETCH routine. Having completed the call, the application
program can free the item lists using the DECEDI_FREE_ITEM_LIST
routine.

Tracking Files
The application can use the DECEDI_TRACK routine to track objects in the
Digital DEC/EDI Server. The Application Client returns a list of objects
which meet the selection criteria specified in the call to the DECEDI_TRACK
routine. The type of information returned about each object is also specified
in the call. The returned data is passed back as a dynamic list structure
which should be deallocated by using the DECEDI_FREE_TRACK_LIST
routine.

The filter criteria and selection of the type of data to return is done by the
application making a series of requests to DECEDI_ADD_ITEM_LIST, and
then passing the resultant filter and selection item lists to DECEDI_TRACK.
Having completed the call, the application can free the item lists by using
the DECEDI_FREE_ITEM_LIST routine.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_ADD_ITEM_LIST 4-3
DECEDI_ADD_ITEM_LIST
Adds an optional item to the item list. This is used to build up a request,
which is then sent by using DECEDI_POST, DECEDI_FETCH, or
DECEDI_TRACK.

C Binding
#include <decedi_api_def.h>

unsigned long int DECEDI_ADD_ITEM_LIST (item_list,
item,
value_type,
value_length,
value,
flags)

decedi_t_item_list *item_list;
unsigned long int item;
unsigned long int value_type;
unsigned long int value_length;
char *value;
unsigned long int flags;

Arguments
item_list

The address of the item list into which the item is to be added. For a
new list, set the item list to NULL before this call.

item

The identifier of the item that is being added. Lists of valid identifier
types are given in the routine definitions that use the constructed item
lists (DECEDI_FETCH, DECEDI_POST, DECEDI_TRACK).

value_type

The type of the value being given. The possible values for this flag
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-4 DECEDI_ADD_ITEM_LIST
shown in are shown in Table 4-1 Values for Value Type Flag.

When using the DECEDI_UINTEGER type, it is important to pass the
actual value using the pre-defined type decedi_t_ulong rather
than use the unsigned long int type. This is so that the
application can remain platform independent.

value_length

The length of the value being given.

value

The address of the value.

flags

Optional flags controlling what is done with the value. The possible
values for this flag are shown in Table 4-2 Values for Add Item Flag.

Description
This routine adds an item to the item list and either copies or references the
data associated with it. If it is a new item list then the item list will be
allocated.

The item list must be disposed of when finished with by calling
DECEDI_FREE_ITEM_LIST.

Table 4-1 Values for Value Type Flag

Value Description

DECEDI_STRING Value is a null terminated string.

DECEDI_UINTEGER Value is an unsigned 32 bit integer.

Table 4-2 Values for Add Item Flag

Value Description

DECEDI_READ_ONLY Data cannot be modified by any subsequent
call. This is the default.

DECEDI_WRITEABLE Data placed on the list can be modified by a
subsequent Digital DEC/EDI call.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_ADD_ITEM_LIST 4-5
Return Values

Examples
#include <decedi_api_def.h>

unsigned int status;
decedi_t_item_list item_list = (decedi_t_item_list) NULL;
decedi_t_ulong priority = DECEDI_HIGH_PRIORITY;

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_PRIORITY,
(unsigned long int) DECEDI_UINTEGER,
(unsigned long int) sizeof (priority),
(char *) &priority,
(unsigned long int) DECEDI_READ_ONLY);

if (status == DECEDI_SUCCESS)
{

....

DECEDI_BADPARAM The request was rejected because
the call had invalid, or missing,
parameters, or the
decedi_t_ulong typewasn’t
being used for values passed as
DECEDI_UINTEGER types.

DECEDI_INSUFVM There was insufficient virtual
memory available to carry out the
request.

DECEDI_SUCCESS The item was successfully added to
the list.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-6 DECEDI_FETCH
DECEDI_FETCH
This enables the caller to fetch one or more files from the Digital DEC/EDI
Server. These files may have come directly from the Communications
Service, through the translator, or from the mapper.

The type of file being fetched must be specified, and can be one of the
following:

• Application_file — files are fetched from the Mapper on the Server.
These files are also known as structured files.

• Transmission_file — files are fetched from the Communications Service
on the Server, bypassing any translation or mapping. These files are also
known as unstructured files.

• Document — files are fetched from the Translation Service on the
Server. These files are also known as ihf files.

C Binding
#include <decedi_api_def.h>

unsigned long int DECEDI_FETCH (application,
overrides,
test_indicator,
relationship_flag,
files)

char *application;
decedi_t_item_list overrides;
unsigned long int *test_indicator;
unsigned long int *relationship_flag;
decedi_t_item_list files;

Arguments
application

The name of the client application submitting the request to the
Server. This is a null-terminated character string. This argument is
used by Digital DEC/EDI as a means of authenticating the request;
the client application must be registered as an authorized application
on the Server.

Applications are registered by using the CommandCenter Services
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-7
Editor. For more information, refer to the Digital DEC/EDI: User’s
Guide.

overrides

An item list specifying the overrides to apply to all files in this
request. Build the item list by using one or more calls to
DECEDI_ADD_ITEM_LIST. Valid item identifier values for the item
list are shown in Table 4-3 DECEDI_FETCH Override Item
Identifiers.

Note that there are ‘File overrides’ in addition to these command
overrides. The File overrides apply to each specific file fetched,
whereas command overrides apply to the entire command. See the
‘files’ argument for further information.

Table 4-3 DECEDI_FETCH Override Item Identifiers

Value Description

DECEDI_ITM_LINK_ID Connection ID if bypassing the
Mapping and Translation
Services. The value associated
with this is a character string.
This item is mandatory when
the file type
(DECEDI_ITM_FILE_TYPE)
is
DECEDI_FILE_TYPE_TRAN
SMISSION_FILE.

DECEDI_ITM_TEST_INDICATOR Specifies whether to select test
submissions or live
submissions. If not specified,
then any test indicator value can
be matched. The value
associated with this item is an
integer containing one of the
allowed values specified in
Table 4-4 Values for Test
Indicator Flag.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-8 DECEDI_FETCH
test_indicator

A returned flag indicating the test indicator of the selected files. The
valid values for this flag are shown in Table 4-4 Values for Test
Indicator Flag.

Note that only one test indicator type can be returned per call.

relationship_flag

Not currently used.

files

An item list specifying the files to be fetched in this request. Build
the item list using one or more calls to DECEDI_ADD_ITEM_LIST.
The valid item identifier values for the item list are shown in
Table 4-5 DECEDI_FETCH File Override Identifiers.

Note that the DECEDI_ITM_FILE_NAMEmust be the first file item
for each file.

Table 4-4 Values for Test Indicator Flag

Value Description

DECEDI_LIVE Files in this request are live
business files.

DECEDI_MAPPER_TEST Files in this request are to be tested
through to the mapper but no
further.

DECEDI_PARTNER_TEST Files in this request are test files
from the sending partner.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-9
Table 4-5 DECEDI_FETCH File Override Identifiers

Value Description

DECEDI_ITM_BUSINESS_REFER
ENCES

User application references to be
added into the document audit
trail for later tracking and
reporting.

This is a string value containing
up to five values, each separated
by a comma. Empty values are
allowed so the user can save
references to one or more
particular slots in the five
available.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies either structured
application files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE) or internal
format files
(DECEDI_FILE_TYPE_DOCU
MENT)

DECEDI_ITM_COMMENT Comment to be added to the
mapping audit trail. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-10 DECEDI_FETCH
DECEDI_ITM_DEBUG Specification of the file on the
client to which the mapper debug
output is to be written. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_NO_DEBUG Specifies that there is to be no
mapper debug output.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-11
DECEDI_ITM_ENTRY_TIME Return the time, as a text string,
that the object first entered the
Digital DEC/EDI Server system.
For example, for an EDIFACT
document, returns the time that
the transmission file containing
the interchange was received by
the Digital DEC/EDI
Communications service.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies internal format files
(DECEDI_FILE_TYPE_DOCU
MENT)

DECEDI_ITM_ERROR_LOG Specification of the file on the
client to which the error log
output is to be written. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-12 DECEDI_FETCH
DECEDI_ITM_NO_ERROR_LOG Specifies that there is to be no
error log file.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_FILE_NAME Specifies the location and name
of the file that the client wishes to
fetch into. The value associated
with this is a string. This must be
the first file item for each file.

This item is mandatory and must
be placed first in the item list.

DECEDI_ITM_FILE_TYPE Indicates the type of the file to be
fetched. The Server handles files
differently, depending on the file
type. The value associated with
this identifier is an unsigned
integer. The valid values for this
flag are given in Table 4-6 Values
for DECEDI_FETCH File Type
Identifier Value. If not specified
then
DECEDI_FILE_TYPE_APPLIC
ATION_FILE is assumed.

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-13
DECEDI_ITM_IO_DEBUG Specification of the file on the
client to which the mapper I/O
debug output is to be written. The
value associated with this is a
character string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_NO_IO_DEBUG Specifies that there is to be no
mapper I/O debug output.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_INTERNAL_REF Return the Server’s internal
reference for this object. The
value associated with this will be
a string that is long enough to
hold the returned string.

The flag attribute
DECEDI_WRITEABLE must be
specified when adding this value
to the item list.

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-14 DECEDI_FETCH
DECEDI_ITM_INT_CTRL_NUM Returns the interchange control
number associated with the
document.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies internal format files
(DECEDI_FILE_TYPE_DOCU
MENT)

DECEDI_ITM_LOCAL_TEST Specification of the input file on
the Server to use when the
mapper is in local test mode. The
value associated with this is a
character string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_NO_LOCAL_TEST Specifies that the mapper is not to
use local test mode.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-15
DECEDI_ITM_MATCH_FLAG Flag indicating how the mapper
should match documents. The
value associated with this
identifier is an unsigned integer.
The valid values for this flag are
given in Table 4-7 Values for
Match Flag Identifier Value. If
not specified then
DECEDI_MATCH_ALL is
assumed.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_OBJECT_NAME Identifies the type of object. It is
used by the mapper and for
internal-format files (in-house
files) to distinguish different
objects destined for the same
application. The value associated
with this identifier is a character
string.

This item is not applicable for
transmission files
(DECEDI_ITM_FILE_TYPE_T
RANSMISSION_FILE) and is
mandatory when the file type is
internal format
(DECEDI_FILE_TYPE_DOCU
MENT).

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-16 DECEDI_FETCH
DECEDI_ITM_OUTPUT_FILE Specification of the file on the
client to which the screen output
from the mapper is to be written.
The value associated with this is
a character string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_PARTNER_NAME Identifies the partner who sent
the file or the objects which are
derived from it. The value
associated with this identifier is a
character string.

This item is not applicable for
transmission files
(DECEDI_ITM_FILE_TYPE_T
RANSMISSION_FILE) and is
mandatory when the file type is
internal format
(DECEDI_FILE_TYPE_DOCU
MENT).

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-17
DECEDI_ITM_RESTART_FROM Document number from which
mapping is to restart. The value
associated with this is an
unsigned integer.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

DECEDI_ITM_RETURN_STATUS Specifies where to place the
result of the request for this
particular file. The value
associated with this will be an
unsigned integer. The possible
values returned in this field are
given in Table 4-8 Return Values
for DECEDI_FETCH File Status.

The flag attribute
DECEDI_WRITEABLE must be
specified when adding this value
to the item list.

DECEDI_ITM_TABLE_NAME Name of the mapping table to use
if the file is going via the mapper.
The value associated with this is
a character string.

This item is applicable only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE) and is
mandatory.

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-18 DECEDI_FETCH
DECEDI_ITM_TIMEOUT Maximum number of seconds to
wait for the file to become
available. If not specified a
timeout of zero seconds is
assumed. The value associated
with this will be an unsigned
integer.

DECEDI_ITM_TRACKING_REF User-defined tracking reference
associated with this file. The
Server will use these values when
auditing information about
objects, and to respond to
requests made by the
DECEDI_TRACK call. The
value associated with this is a
character string.

DECEDI_ITM_NAMED_APPLICA
TION

Indicates that the application
name specified as an argument is
to be passed to the mapper. By
default, the mapper obtains
application names from within
the map.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLI
CATION_FILE).

Table 4-5 DECEDI_FETCH File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-19
The File Type Identifier values for DECEDI_FETCH are shown in
Table 4-6 Values for DECEDI_FETCH File Type Identifier Value.

The Match Flag Identifier values for DECEDI_FETCH are shown in
Table 4-7 Values for Match Flag Identifier Value.

The file status Return values for DECEDI_FETCH are shown in

Table 4-6 Values for DECEDI_FETCH File Type Identifier Value

Value Description

DECEDI_FILE_TYPE_D
OCUMENT

Document files will bypass the mapper and
be sent directly to the application. These
files are also known as In-house files
(DECEDI_FILE_TYPE_IHF).

DECEDI_FILE_TYPE_A
PPLICATION_FILE

Application_file documents will go through
the mapper and their resultant application
files will be placed in the required file.
These files are also known as Structured
files
(DECEDI_FILE_TYPE_STRUCTURED).

DECEDI_FILE_TYPE_T
RANSMISSION_FILE

Transmission_file documents will bypass
the mapper and be placed directly in the
required file. These files are also known as
Unstructured files
(DECEDI_FILE_TYPE_UNSTRUCTURE
D).

Table 4-7 Values for Match Flag Identifier Value

Value Description

DECEDI_MATCH_ALL Match all documents found.

DECEDI_MATCH_FIRST Match first document found.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-20 DECEDI_FETCH
Table 4-8 Return Values for DECEDI_FETCH File Status.

Description
This routine issues a request to the Server to fetch one or more files from the
Server. It then waits for the Server to fulfill the request and return the
results.

Construct the request using one or more calls to DECEDI_ADD_ITEM_LIST.
Once this call has been completed, use DECEDI_FREE_ITEM_LIST to
release the associated item lists.

Table 4-8 Return Values for DECEDI_FETCH File Status

Value Description

DECEDI_RETURN_CREATE_F
AILED

One of the output files specified in
the request could not be created.

DECEDI_RETURN_OPEN_FAIL
ED

One of the input files specified in
the request could not be opened.

DECEDI_RETURN_MAP_FAILE
D

File was not fetched because the
mapping failed.

DECEDI_RETURN_MAP_NOOU
TPUT

The requested file map ran
successfully but produced no
output. Other files in the request
will be processed.

DECEDI_RETURN_NOMORE No files were found matching the
specification.

DECEDI_RETURN_MAP_PARTI
AL

A file in the request was only
partially mapped. Details of what
the mapper found can be obtained
from the mapper output files, if
specified. Other files in the request
will be processed.

DECEDI_RETURN_SUCCESS File was successfully fetched.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-21
Return Value

Examples
#include <decedi_api_def.h>

unsigned long int status;
decedi_t_item_list item_list = (decedi_t_item_list) NULL;
decedi_t_ulong file_status;
unsigned long int test_indicator;

DECEDI_BADITMLST The request was rejected because the call
had invalid, or missing item lists.

DECEDI_BADPARAM The request was rejected because the call
had invalid, or missing parameters.

DECEDI_INSUFVM Insufficient virtual memory available to
complete request.

DECEDI_INTERROR Internal error.

DECEDI_NOCLIENTLIC No active client license present.

DECEDI_NOEDISYS EDI Server not running.

DECEDI_NOTAUTH Not authorized to access the EDI Server.

DECEDI_OPENINPERR Could not open one of the input files.

DECEDI_OPENOUTERR Could not open one of the output files.

DECEDI_ORBBADNODE Bad Server selection node.

DECEDI_ORBCOMMFAIL Communications to Server failed.

DECEDI_ORBSRVDIED Server process died.

DECEDI_ORBSRVNOTFND No Server found.

DECEDI_ORBTIMEOUT Server timeout.

DECEDI_SRVERROR Server error.

DECEDI_SUCCESS The request was successfully processed
by the Server.

DECEDI_WARNING Not all the request was successfully
processed. Check the individual file
statuses.

DECEDI_ZEROMATCH No records matched.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-22 DECEDI_FETCH
unsigned long int relationship;

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_FILE_NAME,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("test_file.dat"),
(char *) "test_file.dat",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_PARTNER_NAME,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("THEIR-APPLICATION"),
(char *) "THEIR-APPLICATION",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_TRACKING_REF,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("INVOICE #1234"),
(char *) "INVOICE #1234",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned int) DECEDI_ITM_TABLE_NAME,
(unsigned int) DECEDI_STRING,
(unsigned int) strlen("MY_MAP"),
(char *) "MY_MAP",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FETCH 4-23
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_RETURN_STATUS,
(unsigned long int) DECEDI_UINTEGER,
(unsigned long int) sizeof(file_status),
(char *) &file_status,
(unsigned long int) DECEDI_WRITEABLE);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_FETCH ("MY-APPLICATION", /* Application name
*/

(decedi_t_item_list) NULL, /* Overrides */
&test_indicator, /* Test Indicator */
&relationship, /* Relationship */
item_list); /* Files to fetch */

status = DECEDI_FREE_ITEM_LIST(&item_list);
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-24 DECEDI_FREE_ITEM_LIST
DECEDI_FREE_ITEM_LIST
DECEDI_FREE_ITEM_LIST enables the caller to free all memory
associated with an item list and its associated values.

C Binding
#include <decedi_api_def.h>

unsigned long int DECEDI_FREE_ITEM_LIST ( item_list )

decedi_t_item_list *item_list;

Arguments
item_list

The item list to remove from memory. You create the item list using
DECEDI_ADD_ITEM_LIST.

Description
This routine deallocates all memory associated with an item list.

Return Values

Examples
#include <decedi_api_def.h>

unsigned long int status;
decedi_t_item_list *item_list;

status = DECEDI_FREE_ITEM_LIST(&item_list);
/* item list to be freed*/

DECEDI_SUCCESS The list was successfully released.

DECEDI_BADPARAM The request was rejected because the call had
invalid, or missing, parameters.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_FREE_TRACK_LIST 4-25
DECEDI_FREE_TRACK_LIST
DECEDI_FREE_TRACK_LIST enables the caller to free all memory
associated with a dynamic list of objects returned from a call to
DECEDI_TRACK.

C Binding
#include <decedi_api_def.h>

unsigned long int DECEDI_FREE_TRACK_LIST ( results )

decedi_t_track_list *results;

Arguments
results

Results structure to be freed.

Description
This routine frees all memory associated with a results list that was
previously returned by DECEDI_TRACK.

Return Values

Examples
#include <decedi_api_def.h>

unsigned long int status;
decedi_t_track_list *results;

status = DECEDI_FREE_TRACK_LIST(&results);
/* results list to be freed*/

DECEDI_SUCCESS The list was successfully released.

DECEDI_BADPARAM The request was rejected because the call had
invalid, or missing, parameters.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-26 DECEDI_POST
DECEDI_POST
DECEDI_POST enables the caller to submit one or more files into the Digital
DEC/EDI Server. These files may be posted directly to the Communications
Service, through the Translator or via the Mapper.

The type of file being posted must be specified, and can be one of the
following:

• Application_file — files are posted to the Mapper on the Server. These
files are also known as structured files.

• Transmission_file — files are posted to the Communications Service on
the Server, bypassing any translation or mapping. These files are also
known as unstructured files.

• Document — files are posted to the Translation Service on the Server.
These files are also known as ihf files.

C Binding
#include <decedi_api_def.h>

unsigned long int DECEDI_POST ( application,
overrides,
files )

char *application;
decedi_t_item_list overrides;
decedi_t_item_list files;

Arguments
application

The name of the client application submitting the request to the
Server. This is a null-terminated character string. This argument is
used by Digital DEC/EDI as a means of authenticating the request;
the client application must be registered as an authorized application
on the Server. Applications are registered by using the
CommandCenter Management Services Editor. For more
information, refer to the Digital DEC/EDI: User’s Guide.

overrides
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-27
An item list specifying the overrides to apply to all files in this
request. Build the item list using one or more calls to
DECEDI_ADD_ITEM_LIST. Table 4-9 Override Identifiers gives the
item identifier values allowed in the item list.

Note that there are file overrides in addition to these command
overrides. The file overrides apply to each specific file posted
whereas command overrides apply to the entire command. See the
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-28 DECEDI_POST
files argument for further information.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-29
Table 4-9 Override Identifiers

Value Description

DECEDI_ITM_CONNECTION_DA
TA

This provides information to the
communications connection
which overrides the defaults for
that connection. This field is
specific to the type of gateway
referenced by the connection id.
Please refer to the
CommandCenter Trading Partner
Editor’s on-line help for types
that support this feature, and what
format the data should be in.

<initiator_oftp_id>\
<virtual_file_name>\
<fixed_record_length>\
<user_data>\
<originator_oftp_id>
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-30 DECEDI_POST
The possible values for the DECEDI_POST Test Indicator flag are

DECEDI_ITM_LINK_ID Connection ID, if bypassing the
mapper and translator. The value
associated with this is a character
string.

This item is mandatory when the
file type
(DECEDI_ITM_FILE_TYPE) is
DECEDI_FILE_TYPE_TRANS
MISSION_FILE.

DECEDI_ITM_PRIORITY Specifies the priority the Server is
to give to these files. The value
associated with this is an
unsigned integer containing one
of the allowed values specified in
Table 4-11 Values for
DECEDI_POST Priority Flag. If
not specified then
DECEDI_NORMAL_PRIORIT
Y is assumed.

DECEDI_ITM_TEST_INDICATOR Specifies whether to treat the files
in this request as test submissions
or live submissions.

The value associated with this is
an unsigned integer containing
one of the allowed values
specified in Table 4-10 Values for
DECEDI_POST Test Indicator
Flag. If not specified then
DECEDI_LIVE is assumed.

Table 4-9 Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-31
given in Table 4-10 Values for DECEDI_POST Test Indicator Flag.

The possible values for the DECEDI_POST Priority flag are given in
Table 4-11 Values for DECEDI_POST Priority Flag.

Table 4-10 Values for DECEDI_POST Test Indicator Flag

Value Description

DECEDI_LIVE Files in this request are live business
files.

DECEDI_MAPPER_TEST Files in this request are to be tested
through to the mapper but no
further.

DECEDI_PARTNER_TEST Files in this request are to be tested
through all services to the
destination partner, and where
possible, marked as being a test by
the relevant services.

DECEDI_TRANSLATION_TEST Files in this request are to be tested
through to the Translation Service
but no further.

Table 4-11 Values for DECEDI_POST Priority Flag

Value Description

DECEDI_HIGH_PRIORITY Files in this request are to be treated
as high priority objects. These
objects are processed by the
translation and Communications
Services immediately, rather than at
scheduled intervals.

DECEDI_NORMAL_PRIORITY Files in this request are to be treated
as for normal processing.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-32 DECEDI_POST
files

Item list specifying the files to be posted in this request. Build the
item list using one or more calls to DECEDI_ADD_ITEM_LIST.

The item identifier values allowed in the item list for this request are
given in Table 4-12 DECEDI_POST File Override Identifiers.

Note that the DECEDI_ITM_FILE_NAMEmust be the first file item
for each file.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-33
Table 4-12 DECEDI_POST File Override Identifiers

Value Description

DECEDI_ITM_BUSINESS_REFE
RENCES

User application references to be
added into the document audit trail
for later tracking and reporting.

This is a string value containing up
to five values, each separated by a
comma. Empty values are allowed
so the user can save references to
one or more particular slots in the
five available.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies either structured
application files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE) or internal format
files
(DECEDI_FILE_TYPE_DOCUM
ENT)

DECEDI_ITM_COMMENT Comment to be added to the
mapping audit trail. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-34 DECEDI_POST
DECEDI_ITM_DEBUG Specification of the file on the
client to which the mapper debug
output is to be written. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

DECEDI_ITM_NO_DEBUG Specifies that there is to be no
mapper debug output.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

DECEDI_ITM_ERROR_LOG Specification of the file on the
client to which the error log output
is to be written. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-35
DECEDI_ITM_NO_ERROR_LOG Specifies that there is to be no error
log file.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

DECEDI_ITM_FILE_NAME Specifies the location and name of
the file to post. The value
associated with this is a string. This
must be the first file item for each
file.

This item is mandatory and must be
placed first in the item list.

DECEDI_ITM_FILE_TYPE Indicates the type of the file that is
being posted. The Server handles
files differently, depending on the
type of the file. The value
associated with this identifier is an
unsigned integer. The valid values
for this flag are given in Table 4-13
Values for File Type Flag. If not
specified then
DECEDI_FILE_TYPE_APPLICA
TION_FILE is assumed.

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-36 DECEDI_POST
DECEDI_ITM_INTERNAL_REF Return the Server’s internal
reference for this object. The value
associated with this will be a string
that is long enough to hold the
returned string.

The flag attribute
DECEDI_WRITEABLE must be
specified when adding this value to
the item list.

DECEDI_ITM_IO_DEBUG Specification of the file on the
client to which the mapper I/O
debug output is to be written. The
value associated with this is a
character string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

DECEDI_ITM_NO_IO_DEBUG Specifies that there is to be no
mapper debug output.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-37
DECEDI_ITM_LOCAL_TEST Specification of the input file on
the Server to use when the mapper
is in local test mode. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

DECEDI_ITM_NO_LOCAL_TEST Specifies that the mapper is not to
use local test mode.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

DECEDI_ITM_NAMED_APPLIC
ATION

Indicates that the application name
specified as an argument is to be
passed to the mapper. By default,
the mapper obtains application
names from within the map.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-38 DECEDI_POST
DECEDI_ITM_OBJECT_NAME Identifies the type of object. It is
used by the mapper to distinguish
different objects sent from the
same application. The value
associated with this identifier is a
character string.

This item is not applicable for
transmission files
(DECEDI_ITM_FILE_TYPE_TR
ANSMISSION_FILE) and is
mandatory when the file type is
internal format
(DECEDI_FILE_TYPE_DOCUM
ENT).

DECEDI_ITM_OUTPUT_FILE Specification of the output file to
use on the Client. The value
associated with this is a character
string.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-39
DECEDI_ITM_PARTNER_NAME Identifies the partner which will
receive the file. The value
associated with this identifier is a
character string.

This item is not applicable for
transmission files
(DECEDI_ITM_FILE_TYPE_TR
ANSMISSION_FILE) and is
mandatory when the file type is
internal format
(DECEDI_FILE_TYPE_DOCUM
ENT).

DECEDI_ITM_RESTART_FROM Document number from which
mapping is to be restarted. The
value associated with this is an
unsigned integer.

This optional item is applicable
only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE).

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-40 DECEDI_POST
DECEDI_ITM_RETURN_STATUS Specifies where to put the result of
the request for this particular file.
The value associated with this will
be an unsigned integer. The
possible values returned in this
field are given in Table 4-14
Return Values for DECEDI_POST
File Status.

The flag attribute
DECEDI_WRITEABLE must be
specified when adding this value to
the item list.

DECEDI_ITM_TABLE_NAME Name of mapping table to use if
using the mapper. The value
associated with this is a character
string.

This item is applicable only when
DECEDI_ITM_FILE_TYPE
specifies structured application
files
(DECEDI_FILE_TYPE_APPLIC
ATION_FILE) and is mandatory.

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-41
DECEDI_ITM_TRACKING_REF User-defined tracking reference to
be associated with this file. The
Server will use these values when
auditing information about objects,
and to respond to requests made by
the DECEDI_TRACK call. The
value associated with this is a
character string.

This item is mandatory when
DECEDI_ITM_FILE_TYPE
specifies internal format
documents
(DECEDI_FILE_TYPE_DOCUM
ENT).

Table 4-12 DECEDI_POST File Override Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-42 DECEDI_POST
The possible values for the File Type flag are given in Table 4-13
Values for File Type Flag.

Table 4-13 Values for File Type Flag

Value Description

DECEDI_FILE_TYPE_DOCUME
NT

Document files will bypass the
mapper and go to the Translation
Service. These files are also known
as In-house files
(DECEDI_FILE_TYPE_IHF).

DECEDI_FILE_TYPE_APPLICA
TION_FILE

Application_file documents go
through the mapper, and their
resultant documents are passed to
the relevant Translation Service.
These files are also known as
Structured files
(DECEDI_FILE_TYPE_STRUCT
URED).

DECEDI_FILE_TYPE_TRANSMI
SSION_FILE

Unstructured documents bypass the
mapper and Translation Service
and go directly to the
Communications Service. These
files are also known as
Unstructured files
(DECEDI_FILE_TYPE_UNSTRU
CTURED).
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-43
The possible Return values for the File Status flag are given in
Table 4-14 Return Values for DECEDI_POST File Status.

Description
This routine issues a request to the Server to post one or more files into the
Server. It then waits for the Server to fulfill the request and return the results
to the caller.

The request will have previously been constructed using one or more calls to
DECEDI_ADD_ITEM_LIST. Once this call has been completed the
associated item lists can be released using DECEDI_FREE_ITEM_LIST.

Table 4-14 Return Values for DECEDI_POST File Status

Value Description

DECEDI_RETURN_OPEN_FAILED One of the files specified in the
request could not be opened.

DECEDI_RETURN_MAP_FAILED File was not posted because the
mapping failed.

DECEDI_RETURN_MAP_OUTPUT The file requests map ran
successfully but produced no
output for this file. Other files in
the request will be processed.

DECEDI_RETURN_MAP_PARTIAL A file request was only partially
mapped. Details of what the
mapper found can be obtained
from the mapper output files if
specified. Other files in the
request will be processed.

DECEDI_RETURN_SUCCESS File was successfully posted.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-44 DECEDI_POST
Return Values

Examples
#include <decedi_api_def.h>

unsigned long int status;

DECEDI_BADITMLST The request was rejected because the
call had invalid, or missing item lists.

DECEDI_BADPARAM The request was rejected because the
call had invalid, or missing
parameters.

DECEDI_INSUFVM Insufficient virtual memory available
to complete request.

DECEDI_INTERROR Internal error.

DECEDI_NOCLIENTLIC No active client license present.

DECEDI_NOEDISYS EDI Server not running.

DECEDI_NOTAUTH Not authorized to access the EDI
Server.

DECEDI_OPENINPERR Could not open one of the input files.

DECEDI_OPENOUTERR Could not open one of the output files.

DECEDI_ORBBADNODE Bad Server selection node.

DECEDI_ORBCOMMFAIL Communications to Server failed.

DECEDI_ORBSRVDIED Server process died.

DECEDI_ORBSRVNOTFND No Server found.

DECEDI_ORBTIMEOUT Server timeout.

DECEDI_SRVERROR Server error.

DECEDI_SUCCESS The request was successfully
processed by the Server.

DECEDI_WARNING Not all the request was successfully
processed. Check the individual file
statuses.

DECEDI_ZEROMATCH No records matched.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_POST 4-45
decedi_t_item_list item_list = (decedi_t_item_list) NULL;
decedi_t_ulong file_status;
unsigned long int test_indicator;
unsigned long int relationship;

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_FILE_NAME,
(unsigned long int) DECEDI_STRING,
(unsigned long int)

strlen("/usr/users/happyjack/test_file.dat"),
(char *) "/usr/users/happyjack/test_file.dat",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_PARTNER_NAME,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("THEIR-APPLICATION"),
(char *) "THEIR-APPLICATION",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_TRACKING_REF,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("INVOICE #1234"),
(char *) "INVOICE #1234",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_TABLE_NAME,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("my_map"),
(char *) "my_map",
(unsigned long int) DECEDI_READ_ONLY);
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-46 DECEDI_POST
if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&item_list,
(unsigned long int) DECEDI_ITM_RETURN_STATUS,
(unsigned long int) DECEDI_UINTEGER,
(unsigned long int) sizeof(file_status),
(char *) &file_status,
(unsigned long int) DECEDI_WRITEABLE);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_POST ("MY-APPLICATION", /* Application name
*/

(decedi_t_item_list) NULL, /* Overrides */
item_list); /* Files to post */

status = DECEDI_FREE_ITEM_LIST(&item_list);
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-47
DECEDI_TRACK
This enables the caller to track objects within the Digital DEC/EDI Server.
It can provide lists of objects that match certain selection criteria, and it can
return different types of information for the objects that meet the selection
criteria, for example routing information or object status. Refer to Chapter 5
Tracking Facilities for information on tracking.

The Track command can track only one kind of object at a time. The type of
object being tracked must be specified and may be one of the following:

• Application_file — files that have been posted or fetched via the Mapper
on the Server. These files are also known as Structured files.

• Transmission_file — files that have been sent or received via the
Communications Service on the Server, or are waiting to be sent via the
Communications Service. These files are also known as Unstructured
files.

• Document — files that have gone through or are waiting to go through
the Translation Service on the Server. This also includes documents that
are involved in Application-to-application agreements. These files are
also known as ihf files.

C Binding
#include <decedi_api_def.h>

unsigned long int DECEDI_TRACK (application,
filters,
match_count,
selections,
results)

char *application;
decedi_t_item_list filters;
unsigned long int *match_count;
decedi_t_item_list selections;
decedi_t_track_list *results;

Arguments
application

The name of the client application submitting the request to the
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-48 DECEDI_TRACK
Server. This is a null-terminated character string. This argument is
used by Digital DEC/EDI as a means of authenticating the request;
the client application must be registered as an authorized application
on the Server. Applications are registered by using the
CommandCenter Management Services editor. For more
information, refer to the Digital DEC/EDI: User’s Guide.

filters

An item list specifying the selection criteria for the objects that are to
be tracked. Build up the item list using one or more calls to
DECEDI_ADD_ITEM_LIST. The valid item identifier values allowed
in the item list for this request are given in Table 4-15
DECEDI_TRACK Object Selection Criteria. If no filters are
specified then all objects are selected.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-49
Table 4-15 DECEDI_TRACK Object Selection Criteria

Value Description

DECEDI_ITM_APPLICATION_N
AME

Select objects by the sending or
receiving application. The value
associated with this is a string.

DECEDI_ITM_BEFORE Select objects that entered the
Digital DEC/EDI system before the
specified time. The value
associated with this is a string of
the format DD-MMM-YYYY
HH:MM:SS.CC. If you do not
supply a value for day, month or
year, the current value will be used
as the default.

DECEDI_ITM_BUSINESS_REFE
RENCES

Select document objects by the
business references that have been
applied to them.

This is a string value containing up
to five values, each separated by a
comma. Empty values are allowed
so that each of the five available
business reference slots can be
tested for a match against specific
values.

To search irrespective of slot
position, use
DECEDI_ITM_SINGLE_BUSINE
SS_REFERENCE instead.

DECEDI_ITM_CURRENT_STAT
US

Select objects by object status. The
value associated with this will be an
unsigned integer that can have any
of the values specified in
Table 4-16 DECEDI_TRACK
Object Status Values.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-50 DECEDI_TRACK
DECEDI_ITM_DATABASE Select objects from either the Live
database, Archive database or both.
The value associated with this will
be an unsigned integer that can
have one of the values specified in
Table 4-18 DECEDI_TRACK
Object Database Values.

DECEDI_ITM_DIRECTION Select objects by direction; that is,
whether they are being sent or
received. The value associated with
this will be an unsigned integer
which can have one of the valid
values specified in Table 4-17
DECEDI_TRACK Object Direction
Values.

DECEDI_ITM_DOCUMENT_NA
ME

Select objects by external
document type. The value
associated with this is a string (for
example, “INVOIC” or “810”).

DECEDI_ITM_FILE_TYPE Select objects by file type. The
valid values for this flag are given
in Table 4-13 Values for File Type
Flag. If not specified then
DECEDI_FILE_TYPE_APPLICA
TION_FILE is assumed.

DECEDI_ITM_LINK_ID Select objects by connection ID, if
bypassing the mapper and
Translation Service. The value
associated with this is a character
string.

DECEDI_ITM_MPR_RUN_ID Select document objects by mapper
run ID. The value associated with
this is a character string.

Table 4-15 DECEDI_TRACK Object Selection Criteria (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-51
DECEDI_ITM_OBJECT_NAME Select objects by object type. The
value associated with this is a
string.

DECEDI_ITM_PARTNER_NAM
E

Select objects by the sending or
receiving partner. The value
associated with this is a string.

DECEDI_ITM_SINCE Select objects that entered the
Digital DEC/EDI system after the
specified time. The value
associated with this is a string of
the format DD-MMM-YYYY
HH:MM:SS.CC. If you do not
supply a value for day, month or
year, the current value will be used
as the default.

DECEDI_ITM_SINGLE_BUSINE
SS_REFERENCE

Select objects by the business
references that have been applied to
them. This searches each of the five
business reference slots for a
match.

To search specific slot positions,
use
DECEDI_ITM_BUSINESS_REFE
RENCES.

DECEDI_ITM_STANDARD Select object by the standard used
to process it. The value associated
with this will be an unsigned
integer that can have one of the
values specified in Table 4-19
DECEDI_TRACK Object Standard
Values.

Table 4-15 DECEDI_TRACK Object Selection Criteria (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-52 DECEDI_TRACK
The possible values for Object Status are given in Table 4-16
DECEDI_TRACK Object Status Values.

DECEDI_ITM_TEST_INDICATO
R

Select object by its test indicator.
The value associated with this will
be an unsigned integer that can
have one of the values specified in
Table 4-20 DECEDI_TRACK
Object Test Indicator Values.

DECEDI_ITM_TRACKING_REF
ERENCE

Select objects by tracking
reference. The value associated
with this is a string.

DECEDI_ITM_VERSION Select object by the version of the
standard used to process it. The
value associated with this is a string
(for example, “003002” or “901”).

Table 4-15 DECEDI_TRACK Object Selection Criteria (continued)

Value Description

Table 4-16 DECEDI_TRACK Object Status Values

Value Description

DECEDI_AVAILABLE The object is available for fetching
by an application.

DECEDI_COMPLETED The object has completed
processing within the Server.
Either it has successfully reached
completion or has been cancelled.

DECEDI_FAILED The object failed to be processed
through the Server.

DECEDI_IN_PROGRESS The object is currently being
processed through the Server.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-53
The possible values for Object Direction are given in Table 4-17
DECEDI_TRACK Object Direction Values.

The possible values for Object Database are given in Table 4-18
DECEDI_TRACK Object Database Values.

The possible values for Object Standard are given in Table 4-19
DECEDI_TRACK Object Standard Values

The possible values for Object Test Indicator are given in Table 4-20

Table 4-17 DECEDI_TRACK Object Direction Values

Value Description

DECEDI_INBOUND The object is being received by the
Server.

DECEDI_OUTBOUND The object is being sent by the
Server.

Table 4-18 DECEDI_TRACK Object Database Values

Value Description

LIVE (D) Select objects from the Live audit database.

ARCHIVE (D) Select objects from the Archive audit database. By
definition these will be of status PURGEABLE or
CANCELLED.

BOTH (D) Select objects from both the Live and Archive
databases.

Table 4-19 DECEDI_TRACK Object Standard Values

Value

EDIFACT

X12

TDCC

ODETTE

TRADACOMS
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-54 DECEDI_TRACK
DECEDI_TRACK Object Test Indicator Values.

match count

This parameter returns the number of matches found.

selections

An item list specifying the type of data to return to the caller. The
item identifier values allowed in the item list for this request are
given in Table 4-21 Selection Identifiers. If not specified then only
the number of objects in the system is returned.

No value is associated with any of the identifiers in Table 4-21
Selection Identifiers.

Table 4-20 DECEDI_TRACK Object Test Indicator Values

Value Description

LIVE Live files. This is the default.

MAPPER_TEST Files tested through to the Mapping Service.

TRANSLATION_TEST Files tested through to the Translation
Service.

PARTNER_TEST Files tested through all services to the trading
partner.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-55
Table 4-21 Selection Identifiers

Value Description

DECEDI_SEL_EDI_CONTROL_
REFS

Provide all EDI envelope control
references associated with the
object.

DECEDI_SEL_MAPPER Provide all data associated with the
mapper when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_DOCUME
NT.

DECEDI_SEL_BUSINESS_REFE
RENCES

Provide all business references
associated with the object when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_DOCUME
NT.

DECEDI_SEL_ROUTING Provide all data associated with the
routing of this object through the
Digital DEC/EDI system such as
application name, partner name,
document type.

DECEDI_SEL_STATUS Provide status information
associated with the object.

DECEDI_SEL_TRACKING_REF
S

Provide all tracking references
associated with the object.

DECEDI_SEL_INTERCHANGE Provide interchange level
information when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_DOCUME
NT.

DECEDI_SEL_FUNCTIONAL_G
ROUP

Provide functional group
information when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_DOCUME
NT.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-56 DECEDI_TRACK
DECEDI_SEL_ACKNOWLEDGE
MENT

Provide functional
acknowledgement information
when DECEDI_ITM_FILE_TYPE
is
DECEDI_FILE_TYPE_DOCUME
NT.

DECEDI_SEL_DOCUMENT Provide document level
information when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_DOCUME
NT.

DECEDI_SEL_COMMS_DATA Provide full communications audit
record information when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_TRANSMI
SSION_FILE.

Table 4-21 Selection Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-57
results

A dynamic list structure that is returned on completion with the
object data requested. Deallocate the list’s memory using
DECEDI_FREE_TRACK_LIST.

Description
This routine issues a request to the Server to fetch details of one or more
objects in the Digital DEC/EDI system. It returns data for only those objects
that match the selection criteria.

DECEDI_SEL_HISTORY Provide full history information
(status transitions) when
DECEDI_ITM_FILE_TYPE is
DECEDI
FILE_TYPE_TRANSMISSION_F
ILE, or
DECEDI_FILE_TYPE_DOCUME
NT.

DECEDI_SEL_OTHER_DATA Provide X12 application file
information, size information, file
location, priority, test indication,
batch file information and original
document count if document is
resent, when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_DOCUME
NT. Also when
DECEDI_ITM_FILE_TYPE is
DECEDI_FILE_TYPE_TRANSMI
SSION_FILE, provide size, priority
and file location information.

DECEDI_SEL_ALL Select all of the above information.

Table 4-21 Selection Identifiers (continued)

Value Description
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-58 DECEDI_TRACK
Build this request using one or more calls to DECEDI_ADD_ITEM_LIST.
Once this call has been completed, you can release the associated item lists
using DECEDI_FREE_ITEM_LIST.

The results, if any have been requested, are placed in a dynamically
allocated list. Once all the results have been processed, free this list using
DECEDI_FREE_TRACK_LIST.

Return Values

Examples
#include <decedi_api_def.h>

unsigned long int status;
decedi_t_item_list filters = (decedi_t_item_list) NULL;
decedi_t_item_list selections = (decedi_t_item_list) NULL;

DECEDI_BADITMLST The request was rejected as the call had
invalid, or missing item lists.

DECEDI_BADPARAM The request was rejected as the call had
invalid, or missing parameters.

DECEDI_INSUFVM Insufficient virtual memory available to
complete request.

DECEDI_INTERROR Internal error.

DECEDI_NOCLIENTLIC No active client license was found.

DECEDI_ORBBADNODE Bad Server selection node.

DECEDI_ORBCOMMFAIL Communications to Server failed.

DECEDI_ORBDOWN ACA Services not running.

DECEDI_ORBERROR ACA Services failure.

DECEDI_ORBSRVDIED Server process died.

DECEDI_ORBSRVNOTFN
D

No Server found.

DECEDI_ORBTIMEOUT Server timeout.

DECEDI_ORBVERMISM ACA Services version mismatch.

DECEDI_SUCCESS The request was successfully processed
by the Server.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



DECEDI_TRACK 4-59
decedi_t_track_list *results;
decedi_t_ulong status_value = DECEDI_AVAILABLE;
decedi_t_ulong *match_count

status = DECEDI_ADD_ITEM_LIST (&filters,
(unsigned long int) DECEDI_ITM_APPLICATION_NAME,
(unsigned long int) DECEDI_STRING,
(unsigned long int) strlen("MY-APPLICATION"),
(char *) "MY-APPLICATION",
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&filters,
(unsigned long int) DECEDI_ITM_CURRENT_STATUS,
(unsigned long int) DECEDI_UINTEGER,
(unsigned long int) sizeof(status_value),
(char *) &status_value,
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_ADD_ITEM_LIST (&selections,
(unsigned long int) DECEDI_SEL_TRACKING_REFERENCE,
(unsigned long int) DECEDI_UINTEGER,
(unsigned long int) DECEDI_READ_ONLY,
(char *) NULL,
(unsigned long int) DECEDI_READ_ONLY);

if (status != DECEDI_SUCCESS)
{
....
}

status = DECEDI_TRACK ("MY-APPLICATION",/* Application name
*/

filters, /* Filters */
&match_count, /* Number of matches */
selections, /* Data required */
&results /* Returned results */
);

status = DECEDI_FREE_ITEM_LIST (&selections);
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-60 DECEDI_TRACK
status = DECEDI_FREE_ITEM_LIST (&filters);

status = DECEDI_FREE_TRACK_LIST (&results);
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



Header Files 4-61
Header Files
The Application Client contains the following header files:

• decedi_api_def.h

This file provides the entry points for the API.

• decedi_api_common.h

This file provides API common values and structures.

• decedi_api_msgs.h

This file provides API return values.

• decedi_platforms.h

This file provides API platform specific declarations.

You only need to include the header file decedi_api_def.h, which
automatically includes the other header files.

Compiling and Linking on UNIX Platforms

Compiling
If you are using the Application Client’s API on a UNIX platform (Tru64
UNIX AXP, Sun Solaris, or HP-UX) use an ANSI C compiler and compile
your application as you would any other application, for example:

# cc -c test-appl-a.c

Linking
The Application Client is supplied with the following shareable API image
on Tru64 UNIX. It is installed into /usr/shlib:

• llibdecediapi.so

You must link against this shareable image, for example:

# cc -o test-appl-a test-appl-a.o -ldecediapi
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



4-62 Compiling and Linking on OpenVMS
Compiling and Linking on OpenVMS

Compiling
If you are using the Application Client’s API on OpenVMS, we recommend
you use the DEC C compiler and compile your application as you would any
other application, for example:

$ CC test-appl-a.c

Linking
The Application Client is supplied with the following shareable API image
on OpenVMS. It is installed into SYS$SHARE:

• SYS$SHARE:DECEDI$APPSHR_V2.EXE

You must link against this shareable image, for example:

$ LINK /EXE=test-appl-a test-appl -
SYS$SHARE:DECEDI$APPSHR_V2.EXE/SHARE

Refer to the Digital DEC/EDI: Installation for corresponding information
on the other supported client platforms.
C LANGUAGE APPLICATION PROGRAMMING INTERFACE (API)



Part II Digital DEC/EDI Reference
This part of the book contains reference information on:

• Digital DEC/EDI Command Line Interface (CLI)

• Digital DEC/EDI Application Programming Interface (API)

• Error messages and how to react to them

• Tracking files through the system

• Debugging Mapping Tables

• How to address any problems you may encounter with application
development and integration.





Chapter 5 Tracking Facilities
This chapter describes how to run the Digital DEC/EDI tracking facilities,
and how the Mapper collects audit and history data.

There are two ways in which you can track document transmissions in
Digital DEC/EDI:

• Use the Cockpit.

• Use the trade track command on the Digital DEC/EDI Client.

Tracking with the Cockpit
The Cockpit allows you to track the progress of documents and transmission
files through the Mapper and a Digital DEC/EDI Server. You can view this
information in either summary or detailed format. The Cockpit also enables
you to view Archived files, and to view and print Error Log files.

When you start the Cockpit for the first time, the Getting Started screen is
displayed. The Cockpit Getting Started screen is shown in Figure 5-1 The
Cockpit Getting Started Screen



5-2 Tracking with the Cockpit
Figure 5-1 The Cockpit Getting Started Screen

The screen presents a selection of the most commonly used functions that
you can access through the Tool Bar and various menus. You can prevent its
display on startup by unchecking the Display this dialog on startup option
or by selecting the Options choice from the File menu.

Using the Cockpit Tracking Options
The Getting Started screen presents the following options:
TRACKING FACILITIES



Using the “trade track” Command 5-3
• Obtain a summary of Documents and Transmission files on your Digital
DEC/EDI server.

Use this option to obtain a summary of either current or archived
Documents and Transmission files logged within a date range that you
can specify, and held on a server that you can select.

• Obtain a list of Mapper Run IDs on your Digital DEC/EDI server.

Use this option to obtain a listing of Mapper Run IDs, either current or
archived, within a date range that you can specify, and on a server that
you can select.

• Obtain a list of Documents on your Digital DEC/EDI server.

Use this option to obtain a listing of either current or archived documents
logged within a date range that you can specify, and held on a server that
you can select. You can further refine your search by specifying the
Document Type, its originating application, and the amount of
information on the documents that you wish to view.

• Obtain a list of Transmission files on your Digital DEC/EDI server.

Use this option to obtain a listing of either current or archived
Transmission files lodged within a date range that you can specify, and
held on a server that you can select.

• View and replace the Error Log on your Digital DEC/EDI server.

Use this option to obtain a view of the Error Log(s) held on a server that
you can select.

Using the “trade track” Command
On the Digital DEC/EDI Client you use the call trade track to monitor
the progress of documents that are being processed through the Digital
DEC/EDI system. This gives you a display of the audit trail information,
passed back from the Digital DEC/EDI Server. The command trade
track, and the types of information you can request, are described in this
book in Chapter 3 Command Line Interface.

Business References
Digital DEC/EDI stores information on objects flowing through the system
in its audit trail. Each object has a unique internal identifier, by which the
user can obtain information about the object.
TRACKING FACILITIES



5-4 Using the “trade track” Command
For example, each trade post or trade fetch request that uses the mapper
(type=application_file) generates a unique mapper run ID for that request.
A single mapper run may create or fetch multiple EDI documents, each of
which has its own internal Digital DEC/EDI document ID. There is no way
of guessing what IDs will be generated, as the Digital DEC/EDI Server may
be handling multiple applications at the same time.

Also, since these identifiers are generated internally within Digital
DEC/EDI, they are not meaningful to users or business applications
interrogating the audit trail.

Business References are the means by which meaningful identifiers, which
the user or business application understands, can be placed in the audit trail
to allow users or business applications to interrogate the audit trail in terms
of information they know about - for example, a purchase order number or a
trading partner name.

The business references are stored in the document audit trail, and the audit
trail can accommodate up to 5 business references associated with each
document. Each of these 5 business slots can be referred to individually, so
the user could use each of the 5 to hold different types of keys, or they can
be referred to en-masse if no particular scheme is in place of where
particular business keys go.

Business References can be assigned by the DECEDI_POST API call or
TRADE POST CLI call as the file is posted into the system or by the
mapper as it converts the application file into documents. In the inbound
direction, business references can be added to the document audit trail as
part of the mapper mapping the document into an application file, by the
DECEDI_FETCH API call, or by the TRADE FETCH CLI call.

In addition, documents that are sent using application to application routing
inherit any business references that are assigned in the outgoing direction.

The contents of the business references is opaque to Digital DEC/EDI, so
the user can hold whatever string values they want or compose them to fit
their particular business keys. For instance, the user can define in their
INVOICE maps to populate the first business reference slot with 'IN # nnnn'
where nnnn is the invoice number obtained from the data being mapped.
Similarly, for ORDERS, they could use 'PO # nnnn'. So, irrespective of
business reference slot you could track purchase orders and invoices
separately using the 'PO #' or 'IN #' prefix. Alternatively you could explicitly
TRACKING FACILITIES



Using the “trade track” Command 5-5
assign all purchase order numbers to business reference slot 1 and all
invoice numbers to business reference slot 2.

Interrogation of the audit trail by business references is supported by the
DECEDI_TRACK API call, the TRADE TRACK CLI call, and by the
Cockpit Graphical User Interface.

Accessing the Audit Database
Audit Database entries may be viewed and accessed using the following
methods:

• The Digital DEC/EDI Application Client using the trade track
command.

• The Digital DEC/EDI Cockpit GUI.

• SQL Interactive commands on the Server.

• An SQL program on the Server.

Audit Log
The Mapper generates events at specific points in the processing. The
following lists these events and the event name assigned to each.

• START PROCESS — Marks when the Mapper process starts.

• START FILE — Marks when a new application file is created, for the
incoming directory, or when a new application file is opened, for the
outgoing direction.

• START DOCUMENT — Marks when the processing on a new
document begins.

• END DOCUMENT — Marks when the processing for a document has
completed. This happens just before the Mapper lets the Translation
Service know that it has finished building/receiving the internal
document file, for the outgoing/incoming direction. If a run terminates
with an END DOCUMENT event, whether the transaction completed or
not is unknown. Check the Digital DEC/EDI tracking to determine its
disposition.

• COMMIT DOCUMENT — Marks when the processing for a
document has been completed. This happens just after the Mapper lets
the Translation Service know that it has finished building/receiving the
TRACKING FACILITIES



5-6 Using the “trade track” Command
internal document file, for the outgoing/incoming direction, and has had
a response. The document transaction has been completed.

• END FILE — Marks when the application file is closed.

• END PROCESS — Marks a normal termination of the program.

• HOOK — Marks when a customization routine was called that recorded
an audit event for each call.

• SOFT ERROR — Marks when an error occurred while the Mapper was
mapping a document. The Mapper has determined that it can terminate
(ABORT) the current document and continue with the next.

• HARD ERROR — Marks when an error occurred from which the
Mapper has determined it cannot continue. The current run is terminated.

• HISTORY FILE — Marks when a history file has been created. This
event can occur at any of the history points within the runtime utility. It
can also occur while a table file is being compiled in the Mapper UI if the
record history option was enabled in the table at the time of the compile.
The purpose of this event is to record the time of the history snapshot and
the name of the file containing the history.

• USER EVENT — Marks when there has been a call to the routine
FBR_user_audit by a customization routine to record a user declared
event, and to record the associated data provided by the user.

• MAPPING TABLE COMPILE — Marks when there has been a
successful compile of a Mapping Table file using the Mapper UI. This
event is not generated by the Mapper runtime utility.

• START RECOVERY — Marks when the recovery process starts up.
This event is not generated by the Mapper runtime utility. The events
generated by the runs restarted will follow this event.

• END RECOVERY — Marks when the recovery process terminates.
This event is not generated by the Mapper runtime utility. All events
generated by the runs restarted will precede this event.

Runtime Audit Levels
The level of auditing performed by the Mapper at Runtime may be
configured by using the environmental variable or logical name:

Tru64 UNIX FBR_RUNTIME_AUDIT_LEVEL.

OpenVMS FBR$RUNTIME_AUDIT_LEVEL.
TRACKING FACILITIES



Using the “trade track” Command 5-7
You need to define this variable in the login file of the account under which
you run the Mapping Service. This is normally the Digital DEC/EDI
account.

The following auditing levels can be set:

Level 0 will prevent the mapper from writing any audit information at
runtime to the audit database. This provides a considerable performance
enhancement at runtime.

Level 1, the default, will provide better performance over maximum
auditing, but not as much as gained at level 0. For standard Mapping Tables
the only runtime audit point written to the audit database at level 1 will be
Commit Document. The information audited for the Commit Document
event provides sufficient information for tracking the document.

Level 1 is the minimum level required by Mapping Tables which utilise
hook routines to access information provided by runtime auditing.

Level 2 enables maximum auditing.

The Runtime Audit Level does not affect auditing done whilst developing
and compiling maps.

Audit Database Fields
The following are the data elements stored in the audit database. They are
all stored in the EVENT relation.

• RUN_ID_NBR [6 bytes] — ALL EVENTS

A system wide unique 6-digit decimal number assigned to a Mapper run.
This tracking run number is printed in the run log for each run. The
names of all history files created during this run will include this number.
The number is a right justified, zero filled, decimal number.

Audit Level Runtime Auditing

0 None

1 (default) COMMIT DOCUMENT, SOFT ERROR, HARD
ERROR, HOOK, USER EVENT, HISTORY
FILE, START RECOVERY, END RECOVERY

2 Maximum. Auditing of any event is enabled.
TRACKING FACILITIES



5-8 Using the “trade track” Command
• ORDINAL_NBR [10 bytes] — ALL EVENTS

The ordinal number of the event. The first event reported will be event 1.
It is used to insure that the events can be retrieved in chronological order.
The number is a left justified, decimal, zero filled number.

• EVENT [20 bytes] — ALL EVENTS

The event name as listed above.

• MPR_TIMESTAMP [DATE] — ALL EVENTS

The date and time corresponding to the event represented by this entry. It
is in binary date format.

• USER_ID [30 bytes] — ALL EVENTS

The user ID of the person running the program that generated the event.

• DCL_USER_COMMENT [80 bytes] — START PROCESS

The value of the DCL runtime qualifier, \COMMENT=, or the
corresponding argument in the callable interface. If the run is restarted by
the recovery process, it will indicate the run ID for the run being
recovered.

• FILE_ORD_NBR [10 bytes] — START FILE, START DOCUMENT,
END DOCUMENT, COMMIT DOCUMENT, END FILE, HOOK,
SOFT ERROR, HARD ERROR, and USER EVENT

The ordinal number of the application file open at the time this event
occurred. The first file opened is file number 1. The number is a left
justified, decimal number.

• DOC_ORD_NBR [10 bytes] — START DOCUMENT, END
DOCUMENT, COMMIT DOCUMENT, HOOK, SOFT ERROR,
HARD ERROR, and USER EVENT

The ordinal number of the current document. The first document is
number 1. The number is a left justified, decimal number.

• RUNTIME_VER [8 bytes] — START PROCESS

The program version number for the Mapper runtime utility.

• UI_VERSION [8 bytes] — START PROCESS and COMMIT
DOCUMENT

The program version number of the Mapper UI that created the Mapping
Table file.
TRACKING FACILITIES



Using the “trade track” Command 5-9
• COMPILE_DATA [80 bytes] — START PROCESS and MAPPING
TABLE COMPILE and COMMIT DOCUMENT

The compile data for the Mapping Table being used. This contains the
date of compile, the name of the user that compiled it, and the terminal
number.

• PID [8 bytes] — ALL EVENTS

The PID of the process that is performing this event. This is a null
terminated, right justified zero filled, hex format number. This is used by
the recovery process to insure that the runtime process that created the
incomplete run is not still running.

• DIRECTION_INDICATOR [1 byte] — START PROCESS and
COMMIT DOCUMENT

Direction of processing, either I (for incoming) or O (for outgoing).

• RESTART [10 bytes] — START PROCESS and COMMIT
DOCUMENT

The restart document number taken from the DCL. This requires the use
of the /RESTART=nnnn qualifier. This is a null terminated, left justified
number. The first character is:

‘ ‘ — /MATCH not given

‘+’ — /MATCH_ALL

‘-’ — /MATCH_FIRST

• APPLICATION_ID [20 bytes] — ALL EVENTS

In the START PROCESS event, this is the name given in the
/NAMED_APPLICATION qualifier in the Application Client call. In the
START DOCUMENT event, this is the name actually used for
processing documents as taken from the $APPLICATION global
variable.

• PARTNER [20 bytes] — ALL EVENTS

In the START PROCESS event, this is the name given in the
/PARTNER_ID= qualifier taken from the DCL command line. In the
START DOCUMENT event, this is the name actually used for
processing documents as taken from the $PARTNER global variable.
TRACKING FACILITIES



5-10 Using the “trade track” Command
• DOCTYPE [20 bytes] — START PROCESS and START
DOCUMENT and COMMIT DOCUMENT

In the START PROCESS event, this is the name given in the
/OBJECT_NAME qualifier in the Application Client call. In the START
DOCUMENT event, this is the name actually used for processing
documents as taken from the $DOCTYPE global variable. This is the
Mapper document type, not the Digital DEC/EDI internal document type
nor the EDI document type.

• INTDOCTYPE [20 bytes] START DOCUMENT and COMMIT
DOCUMENT

The name associated with the Digital DEC/EDI Internal Doctype for this
document. This is the value sent to or received from Digital DEC/EDI
Translation Service along with this document.

• USER_REF [20 bytes] — START PROCESS, START DOCUMENT
(outgoing) and COMMIT DOCUMENT

In the START PROCESS event, this is the name given in the
/USER_REFERENCE= qualifier taken from the DCL command line. In
the START DOCUMENT event, this is the name actually used for
processing documents as taken from the $USERREF global variable.

• TEST_INDICATOR [20 bytes] — START PROCESS, START
DOCUMENT and COMMIT DOCUMENT events.

In the START PROCESS event, this is the name given in the
/TEST_INDICATOR= qualifier taken from the DCL command line. In
the START DOCUMENT event, this is the name actually used for
processing documents as taken from the $TESTIND global variable.
Values are LIVE, PARTNER_TEST, TRANSLATOR_TEST, and
LOCAL_TEST.

• PRIORITY_ARG [20 bytes] — START PROCESS and START
DOCUMENT and COMMIT DOCUMENT

In the START PROCESS event, this is the name given in the
/PRIORITY= qualifier taken from the DCL command line. In the
START DOCUMENT event (outgoing), this is the name actually used
for processing documents as taken from the $PRIORITY global variable.
Values are IMMEDIATE or NORMAL.
TRACKING FACILITIES



Using the “trade track” Command 5-11
• FILENAME [256 bytes] — START PROCESS, START FILE, END
FILE, HISTORY FILE and COMMIT DOCUMENT

For the START PROCESS event, this value is the argument string
provided in the DCL command line to identify the application file(s). For
the START FILE and END FILE events, this is the full file name with
the directory path of the actual application file that was created
(incoming) or opened (outgoing). For the HISTORY FILE event, this is
the full file name of the history file that was created.

• MAPPING_TABLE_ARG [256 bytes] — START PROCESS,
MAPPING TABLE COMPILE and COMMIT DOCUMENT

For the START PROCESS event this is the argument string provided in
the DCL command line to identify the Mapping Table file. This is the
full file name with the directory path. For the MAPPING TABLE
COMPILE event, this is the full file name of the table that was compiled.

• NBR_OF_RECORDS [10 bytes] — START DOCUMENT and
COMMIT DOCUMENT

The number of input/output records read or written for the current
document. For incoming documents, this is on the COMMIT
DOCUMENT event. For outgoing documents, this is on the START
DOCUMENT event.

• DOCUMENT_ID [33 bytes] — COMMIT DOCUMENT

This is the Digital DEC/EDI Document ID for the document just
processed. It is the combination of the application ID, “_O_” for
outgoing or “_I_” for incoming, and the doccount assigned by Digital
DEC/EDI . An example of a document ID for an incoming document is
AP_I_00000234.

• STATUS [10 bytes] — END PROCESS and HOOK

The status of the run or the return status of the customization routine.
Values are “Success”, “Fail”, or “Undefined”. The HOOK event is only
generated if the customization routine was marked for recording an audit
event and hook events were enabled.

• API_END_FLAGS_ARG [10 bytes] — COMMIT DOCUMENT

Value of the indicator flag assigned by the Mapper when it finnishes
building or receiving the document internal file. The value indicates the
treament that the document is to receive, as follows:
TRACKING FACILITIES



5-12 Using the “trade track” Command
– NO_ACTION — The document has been successfully received for
processing (incoming). The document is to passed on for normal
processing (outgoing).

– ABORT — The document is to be put on a FAILED status queue for
manual intervention (incoming or outgoing).

– QUIT — The document is to be back on the AVAILABLE status
queue (applies to incoming only).

• API_RETURN_VALUE [79 bytes] — COMMIT DOCUMENT

Text of the return status message returned from the decedi$end_send
(outgoing) or decedi$end_fetch (incoming) call.

• CUSTOMIZATION_ROUTINE [30 bytes] — HOOK

The name of the customization routine that was called. This event is only
generated if the customization routine was marked for recording an audit
event and hook events were enabled.

• ERROR_MESSAGE [80 bytes] — SOFT ERROR or HARD ERROR

The text of the error message.

• USER_DATA [256 bytes] — START PROCESS, USER EVENT and
COMMIT DOCUMENT

For the START PROCESS event, this data element holds the current
default directory. This is used by the recovery process to restart a run.
For the USER EVENT, this is the data provided with the call to
FBR_USER_AUDIT() function to declare the event.

• HISTORY_POINT [20 bytes] — HISTORY FILE

Indicates the history point being opened for recording. Values are:

– At PROCESS START (Outgoing)

– After PREPROCESS (Outgoing)

– After RECORD HOOK (Outgoing)

– At Digital DEC/EDI API (Outgoing and incoming)

– Before RECORD HOOK (Incoming)

– Before POSTPROCESSING (Incoming)

– At END PROCESS (Incoming)

• HOOK_POINT [20 bytes] — HOOK

The name of the hook point where the call was made. Values are:
TRACKING FACILITIES



History Entries 5-13
– PREPROCESS

– POSTPROCESS

– START DOCUMENT

– END DOCUMENT

– RECORD

– SWITCH

– SOFT ERROR

– HARD ERROR

– MAPPING

History Entries
History, in the Mapper, is a snapshot of the input or output data used during
processing. The actual history data is stored in binary sequential files. The
names of the history files are stored in RDB audit database along with the
events for the run that created them.

You can view the contents of the history files by using the TRADE
TRACKING command at the DCL command line. Then select the menu
option to display the history files.

History Points
The Mapping Table allows you to enable history to be taken at several
points. This is specified in the Audit Controls screen of the Table Attributes
tabbed dialog in the Mapping Table Editor. The Mapper can collect data a
number of different points in the processing. The following list describes
what sort of information can be collected at the various points:

• Start/End of Processing

– At the Start of Processing:

This is for outgoing documents only. This is a complete copy of the
input application file(s) as specified in the application file parameter
of the DCL run command. The snapshot is taken before the
preprocess hook is called. The Mapper opens the file, reads it, then
closes it before calling the preprocess hook.
TRACKING FACILITIES



5-14 History Entries
– At the End of Processing:

This is for incoming documents only. This is a complete copy of the
data written to the application file during this run of the Mapper after
the post-processing hook. The Mapper reopens the application file,
reads and copies the records to the history file, and then closes the
file. This is all extra overhead in order to process this audit. If there is
no post-processing hook or if the post-processing does not modify
the data written to the application file, it is more efficient to use the
“Before POSTPROCESSING” history collection point.

• Before/After Post/Preprocessing

– Before Post-processing:

This is for incoming documents only. This is a complete copy of the
data written to the application file during this run of the Mapper prior
to the post-processing hook. If there are no RECORD or SWITCH
hooks, this is the same as the previous point.

– After Pre-processing:

This is for outgoing documents only. This is a complete copy of the
input application file(s) as modified by the preprocess hook. If there
is no preprocess hook, this point is the same as the PROCESS
START history collection point. The snapshot is taken after the
preprocess hook is called. The Mapper performs its normal file open
and read on the application file, and then copies each record to the
history file as it is being processed (before calling the RECORD
hook) so there is no additional overhead for reading the application
file for the sake of taking the history.

• Before/After Record Hook

– Before Record Hook:

This is for incoming documents only. This is a complete copy of the
data generated from the mappings prior to being processed by the
RECORD/SWITCH hooks.

– After Record Hook:

This is for outgoing documents only. This is a complete copy of the
input application file(s) as modified by the PREPROCESS hook and
the RECORD/SWITCH hook. This history collection point collects
the records as seen in the internal source tree prior to mapping. If
there are no record or switch hooks, this point is the same as the
previous history collection point.
TRACKING FACILITIES



History Entries 5-15
• Digital DEC/EDI Internal File Format

– For Outgoing documents:

This is a copy of the datalabel/datavalue pairs that the Mapper writes
to the temporary internal file that it is building. This file has the same
format as the internal file passed to the Translation Service when the
building process is complete. If there are several documents
generated by the data from the application file, they are all appended,
and separated with an END-OF-FILE line.

– For Incoming documents:

This is a copy of the datalabel/datavalue pairs that the Mapper
receives from the temporary internal file that it is reading. This file
has the same format as the internal file that has been passed from the
Translation Service. If there are several documents in the file, they
are separated with an END-OF-FILE line.

• Custom Routine Arguments

• Mapping Table

Names of History Files
History data will be kept in straight sequential files, in binary format.

Tru64 UNIX Each of these history files will be written to the Digital DEC/EDI store
directory under /var/adm/decedi.

OpenVMS Each of these history files will be written to the Mapper History directory,
under FBR$HISTORY.

History file names are constructed by appending the following data:

FBR_ direction '_' run_id type seqnbr .HIS
TRACKING FACILITIES



5-16 History Entries
• FBR_ — A literal indicating that this is a Mapper file.

• direction — Incoming = I and Outgoing = O

• run_id — The tracking run identifier for the originating Mapper process.
This is a 6 digit number with leading zeros.

• type — The type of data being stored:

– S — PROCESS START history point. A copy of the application file.
One history file for each application file.

– P — PREPROCESS history point (Outgoing) or POSTPROCESS
history point (Incoming). A copy of the record stream from, or to, or
both, all of the application files. One file for each run.

– R — RECORD HOOK history point. A copy of the record stream of
all data placed in the internal tree (Outgoing) or the data generated
from mappings (Incoming). One file for each run. One record is in
the history file for each record processed.

– D — The Mapper history point. This history event is used to record
documents that have either been posted to or received from the
Digital DEC/EDI Translation Services only.

A history file is not generated in MAPPER_TEST mode as a local
internal format file is used. In this case, the file specified by the
LOCAL_TEST option contains the concatenation of all the
documents processed in this map run.

– H — Customization call arguments. There is one file for each run,
and one record for each call. The format is shown later.

– C — Table Compile. This is a copy of the compiled Mapping Table
file.

• seqnbr — A sequence number if there are more than one of these. This
is a numeric value that corresponds to the file ordinal number.

• .HIS — All history files will have the extension, .HIS.

The following is an example:

FBR_O_222222D1.HIS

This is a Mapper (FBR_) history file (.HIS) for an outgoing (O) process with
the run ID of 222222. It contains the data labels (D) generated and is the
first file (and only file in this case).
TRACKING FACILITIES



History Entries 5-17
You will be able to use wildcard characters to work with the history files.
The following example causes listing of all outgoing PREPROCESS history
files:

ls /var/adm/decedi/store_1/FBR_*.HIS

Format of History Files for Hook Calls
When a customization routine is marked for recording history of all calls
and the customization history recording has been enabled, the Mapper
records all of the arguments of each call in a history file of type H. In this
file, each call is recorded in a single variable length record in binary format.

The customization routine call history record has the following format:
TRACKING FACILITIES



5-18 History Entries
• Timestamp — QUADWORD, Binary Date format, the time the call was
completed. Using this to relate it back to the other events in the audit log,
the relative sequence can be determined.

• Hook Point — CHARACTER(32), an identifier for the hook point in
which it was called. In this context the maps are considered a hook point.
It is null terminated.

• Function Name — CHARACTER(32), the name of the function that
was called. It is null terminated.

• Return status — UNSIGNED LONGWORD, A 32 bit integer value
returned by the routine.

• Quantity arguments — UNSIGNED LONGWORD, the number of
arguments in the call including the return value argument.

• Arguments — Array of STRUCTUREs, in argument order, a descriptor
for each argument. The size of the array is determined by the quantity
arguments field. Each descriptor contains the following:

– Argument length — UNSIGNED WORD, 16 bit size of the
argument.

– Argument datatype — UNSIGNED BYTE, 8 bit type code.

– Argument class — UNSIGNED BYTE, 8 bit class code.

– Argument pointer — UNSIGNED LONGWORD, an offset from the
beginning of the 8 bit class code.

– Argument pointer — an offset from the beginning of the record to the
beginning of the data.

• Argument Data — Based on the descriptors the data will be appended
to the record following the descriptor array. They might not be in the
same order as the argument descriptors, and they need not be the same
size or position on the record from one record to another. The data will
be the actual binary value of the data that was passed to the
customization routine in the call or was returned by the customization
routine in its return value argument. Since the values are captured after
the call, those items that are passed by reference or by descriptor might
have been modified during the call.
TRACKING FACILITIES



Chapter 6 Debugging Facilities
The Mapper provides these debug facilities:

1. Mapper Test

2. Mapping Debug

3. File I/O Debug

Mapper Test
When trying out a new set of maps, you will normally want to run test data
through the Mapper to see what the maps generate.

By default the Mapper submits each document for processing by the Digital
DEC/EDI Translation Services. However, for debugging processes, it is
useful to produce just a local copy of the Digital DEC/EDI internal
document so that you can examine the values assigned to individual data
labels within it. In this case, the document is not processed further by the
Translation Services.

To do this, you specify test_indicator=mapper_test in the Application
Client call. For example:

UNIX # trade post my-app -test_indicator=mapper_test test.dat \
-partner_name=acme-orders -tracking_reference="ORDER_1234"
-table_name=map_test_tbl

You may also wish to debug a table, after an error occurs. Again, the
Application Client call needs to specify test_indicator=mapper_test

It is useful to specify the following qualifiers when running a Mapper test:



6-2 Mapper Test
• debug to specify a debug log file.

• output_file to specify an screen output file.

• local_test to specify a local internal file, instead of passing the document
to or from the Translation Service.

For outgoing documents, this is the file to which the Mapper will write
the internal document.

For incoming documents, this is the file from which the Mapper will read
the internal document.

Tru64 UNIX This defaults to the file identified by the environment variable
FBR_LOCAL_TEST_IN if defined; otherwise the file is written to
FBR_LOCAL_TEST_IN.IHF.

OpenVMS This defaults to the file idetified by the logical name
FBR$LOCAL_TEST_IN if defined; otherwise the file is written to
FBR$LOCAL_TEST_IN.IHF.

The format of the Mapper test file is the same as the in-house files in Digital
DEC/EDI. Note that on incoming, the $RECEIVER-ID is assumed to be the
application and is ignored. The $SENDER-ID is the partner. The
$DOCUMENT-TYPE is the Digital DEC/EDI internal document type.
More than one document can be placed in the file if the documents are
terminated with the $END-OF-FILE flag. The document selection criteria is
ignored and you get whatever is in the file.

The following shows a sample in-house file for an incoming table.

$SENDER-ID : DEC-DIRECT-UK-LTD
$RECEIVER-ID : SHINY-NEW-SYSTEMS
$DOCUMENT-TYPE : MINVOICE
$USER-REFERENCE : UNSPECIFIED
$TEST-INDICATOR : 3
$GROUP
BGM_C002_1001 : 380
BGM_1004 : DOC-MINVOX-206523
BGM_C031_2001 : 930401
BGM_C031_2002 : 1501
BGM_1225 : 00
$GROUP
NAD_3035 : II
NAD_C080_3036_1 : Digital Equipment Company Ltd
NAD_C059_3042_1 : Digital Park
NAD_C059_3042_2 : Worton Grange
DEBUGGING FACILITIES



Mapper Test 6-3
NAD_C059_3042_3 : Imperial Way
NAD_3164 : Reading
NAD_3229 : Berks
NAD_3251 : RG2 0TE
NAD_3207 : GB
$GROUP
LOC_3227 : 20
LOC_C087_3224 : Goods Inwards
$END-GROUP
$END-GROUP
$GROUP
NAD_3035 : BY
NAD_C080_3036_1 : Shiny New Systems Ltd
NAD_C059_3042_1 : Unit 1
NAD_C059_3042_2 : Thames Valley Park
NAD_C059_3042_3 :
NAD_3164 : Henley-on-Thames
NAD_3229 : Oxon
NAD_3251 : RG9 1JB
NAD_3207 : GB
$GROUP
LOC_3227 : 20
LOC_C087_3224 : Goods Inwards
$END-GROUP
$END-GROUP
$GROUP
PAT_4279 : 02
PAT_C012_2001 : 930401
PAT_C012_2005 : 003
PAT_5306 : 1000.00
PAT_5484 : 100
PAT_C104_4276_1 : MC/VISA payment
$END-GROUP
$END-GROUP
$GROUP
$GROUP
LIN_1082 : 1
LIN_C198_7020_1 : DSR-01
LIN_C198_7023_1 : MG
LIN_C118_5110 : 50.00
LIN_C118_5375 : RT
LIN_6170 : 2
LIN_5116 : 100.00
$GROUP
PAC_7224 : 2
PAC_C202_7065 : BE
PAC_C202_7064_1 : bundle
$END-GROUP
DEBUGGING FACILITIES



6-4 Mapper Test
$END-GROUP
$GROUP
LIN_1082 : 2
LIN_C198_7020_1 : DSR-02
LIN_C198_7023_1 : MG
LIN_C118_5110 : 250.00
LIN_C118_5375 : RT
LIN_6170 : 2
LIN_5116 : 500.00
$GROUP
PAC_7224 : 2
PAC_C202_7065 : CF
PAC_C202_7064_1 : coffer
$END-GROUP
$END-GROUP
$GROUP
LIN_1082 : 3
LIN_C198_7020_1 : DSR-03
LIN_C198_7023_1 : MG
LIN_C118_5110 : 100.00
LIN_C118_5375 : RT
LIN_6170 : 3
LIN_5116 : 300.00
$GROUP
PAC_7224 : 3
PAC_C202_7065 : WB
PAC_C202_7064_1 : wickerbottle
$END-GROUP
$END-GROUP
$GROUP
LIN_1082 : 4
LIN_C198_7020_1 : DSR-04
LIN_C198_7023_1 : MG
LIN_C118_5110 : 50.00
LIN_C118_5375 : RT
LIN_6170 : 2
LIN_5116 : 100.00
$GROUP
PAC_7224 : 2
PAC_C202_7065 : BE
PAC_C202_7064_1 : bundle
$END-GROUP
$END-GROUP
$END-GROUP
$GROUP
TMA_5356 : 1175.00
TMA_5360 : 1000.00
TMA_5338 : 1175.00
DEBUGGING FACILITIES



Mapping Debug 6-5
TMA_5492 : 175.00
$END-GROUP
$END-OF-FILE

Mapping Debug
Debugging a mapping table can be a tedious operation without some idea

about what is happening during the mapping process. The Mapper provides
assistance by capturing information about the mappings as they occur during
a run of test or live data.

You activate the mapping debug facilities by specifying a debug qualifier
when you send or fetch a document using the Client call trade post or
trade fetch.

When activated, the Mapper writes into the file an entry for each map that is
executed, an entry for each mapping assignment made within the map, and
the generated data-label/data-value pairs.

The following is a sample debug file minvox_o.log generated from the
minvox examples used in the Mapping Tutorial:

MAP EDITOR Version V3.0
MAP LOG 18-AUG-1995

12:48:31.96

Map Editor Table File: /var/adm/decedi/maps/minvox_o.fbo
Application File: /usr/users/test/minvox_o.dat

amount_due = 0;
VALUE SET TO: "0"

vat_rate = 17.5;
VALUE SET TO: "17.5"

message_amount = 0;
VALUE SET TO: "0"

line_total = 0;
VALUE SET TO: "0"

taxable_amount = 0;
VALUE SET TO: "0"

tax_amount = 0;
VALUE SET TO: "0"
$DOCTYPE= "MINVOICE";
VALUE SET TO: "MINVOICE"

SOURCE TREE:
DEBUGGING FACILITIES



6-6 Mapping Debug
INVOICE_HDR{1} B380DOC-MINVOX-206523
930401150100.

NAME_AND_ADDRESS{1} NIIDigital Equipment Company Ltd
Digital
Par

NAME_AND_ADDRESS{2} NBYShiny New Systems Ltd
Unit 1

DELIVERY_LOC{1} D20 Goods Inwards .
PAY_TERMS{1}

P029304010030000000001000000000100MC/VISA
payment

LINE_ITEM{1} L000001DSR-01
MG
0000

PACKAGE{1} C000002BE .
LINE_ITEM{2} L000002DSR-02

MG
0000

PACKAGE{1} C000002CF .
LINE_ITEM{3} L000003DSR-03

MG
0000

PACKAGE{1} C000003WB .
LINE_ITEM{4} L000004DSR-04

MG
0000

PACKAGE{1} C000002BE .

Selecting the Mapping Set Based on:
$DOCTYPE: MINVOICE
$PARTNER: SHINY-NEW-SYSTEMS
Using MAPPING SET #1

Using MAP #1
MAP ID: Unspecified

FB SEGMENT: heading;
DEFAULT SOURCE INSTANCE: (nil)
amount_due = 0;

VALUE SET TO: "0"
message_amount = 0;

VALUE SET TO: "0"
line_total = 0;

VALUE SET TO: "0"
taxable_amount = 0;

VALUE SET TO: "0"
tax_amount = 0;

VALUE SET TO: "0"

Using MAP #2
DEBUGGING FACILITIES



Mapping Debug 6-7
MAP ID: Unspecified
FB SEGMENT: BGM;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}
BGM_C002_1001 = DOC_NAME_CODE;

VALUE SET TO: "380"
BGM_1004 = DOC_REF_NUM;

VALUE SET TO: "DOC-MINVOX-206523 "
BGM_C031_2001 = DOC_DATE;

VALUE SET TO: "930401"
BGM_C031_2002 = DOC_TIME;

VALUE SET TO: "1501"
BGM_1225 = DOC_FUNC_CODE;

VALUE SET TO: "00"
Using MAP #3

MAP ID: Unspecified
FB SEGMENT: NAD;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.NAME_AND_ADDRESS{1}
NAD_3035 = PARTY_QUAL;

VALUE SET TO: "II "
NAD_C080_3036_1 = PARTY_NAME;

VALUE SET TO: "Digital Equipment Company Ltd "
NAD_C059_3042_1 = STREET_1;

VALUE SET TO: "Digital Park "
NAD_C059_3042_2 = STREET_2;

VALUE SET TO: "Worton Grange "
NAD_C059_3042_3 = STREET_3;

VALUE SET TO: "Imperial Way "
NAD_3164 = CITY;

VALUE SET TO: "Reading "
NAD_3229 = COUNTY;

VALUE SET TO: "Berks "
NAD_3251 = POST_CODE;

VALUE SET TO: "RG2 0TE "
NAD_3207 = COUNTRY;

VALUE SET TO: "GB"
Using MAP #4

MAP ID: Unspecified
FB SEGMENT: LOC;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.DELIVERY_LOC{1}
LOC_3227 = LOC_QUAL;

VALUE SET TO: "20 "
LOC_C087_3224 = LOC_NAME;

VALUE SET TO: "Goods Inwards "
Using MAP #3

MAP ID: Unspecified
FB SEGMENT: NAD;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.NAME_AND_ADDRESS{2}
NAD_3035 = PARTY_QUAL;
DEBUGGING FACILITIES



6-8 Mapping Debug
VALUE SET TO: "BY "
NAD_C080_3036_1 = PARTY_NAME;

VALUE SET TO: "Shiny New Systems Ltd "
NAD_C059_3042_1 = STREET_1;

VALUE SET TO: "Unit 1 "
NAD_C059_3042_2 = STREET_2;

VALUE SET TO: "Thames Valley Park "
NAD_C059_3042_3 = STREET_3;

VALUE SET TO: " "
NAD_3164 = CITY;

VALUE SET TO: "Henley-on-Thames "
NAD_3229 = COUNTY;

VALUE SET TO: "Oxon "
NAD_3251 = POST_CODE;

VALUE SET TO: "RG9 1JB "
NAD_3207 = COUNTRY;

VALUE SET TO: "GB"

Using MAP #4
MAP ID: Unspecified

FB SEGMENT: LOC;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.DELIVERY_LOC{1}
LOC_3227 = LOC_QUAL;

VALUE SET TO: "20 "
LOC_C087_3224 = LOC_NAME;

VALUE SET TO: "Goods Inwards "

Using MAP #5
MAP ID: Unspecified

FB SEGMENT: PAT;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.PAY_TERMS{1}
PAT_4279 = TERMS_TYPE;

VALUE SET TO: "02"
PAT_C012_2001 = TERMS_DATE;

VALUE SET TO: "930401"
PAT_C012_2005 = DATE_QUAL;

VALUE SET TO: "003"
PAT_5306 = MIN_DUE;

VALUE SET TO: "1000.00"
PAT_5484 = PERCENT_PAYABLE;

VALUE SET TO: "100"
PAT_C104_4276_1 = PAYMENT_TERMS;

VALUE SET TO: "MC/VISA payment "

Using MAP #6
MAP ID: Unspecified

FB SEGMENT: detail;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.PAY_TERMS{1}
DEBUGGING FACILITIES



Mapping Debug 6-9
<ONLINE_CHUNK>
<ENDCODE_EXAMPLE>
<CODE_EXAMPLE>
Using MAP #7

MAP ID: Unspecified
FB SEGMENT: LIN;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.LINE_ITEM{1}
LIN_1082 = ITEM_NO;

VALUE SET TO: "1"
LIN_C198_7020_1 = ARTICLE_NO;

VALUE SET TO: "DSR-01 "
LIN_C198_7023_1 = ARTICLE_ID;

VALUE SET TO: "MG "
LIN_C118_5110 = UNIT_PRICE;

VALUE SET TO: "50.00"
LIN_C118_5375 = PRICE_TYPE;

VALUE SET TO: "RT"
LIN_6170 = NUM_UNITS;

VALUE SET TO: "2"
amount_due = UNIT_PRICE * NUM_UNITS;

VALUE SET TO: "100"
message_amount = message_amount + amount_due;

VALUE SET TO: "100"
line_total = message_amount;

VALUE SET TO: "100"
LIN_5116 = $ROUND(amount_due,2);

VALUE SET TO: "100.00"

Using MAP #8
MAP ID: Unspecified

FB SEGMENT: PAC;
DEFAULT SOURCE INSTANCE:

INVOICE_HDR{1}.LINE_ITEM{1}.PACKAGE{1}
PAC_7224 = NUM_PACKAGES;

VALUE SET TO: "2"
PAC_C202_7065 = PACKAGE_CODE;

VALUE SET TO: "BE "
PAC_C202_7064_1 = $LOOKUP(package_types,PACKAGE_CODE);

VALUE SET TO: "bundle "

Using MAP #7
MAP ID: Unspecified

FB SEGMENT: LIN;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.LINE_ITEM{2}
LIN_1082 = ITEM_NO;

VALUE SET TO: "2"
LIN_C198_7020_1 = ARTICLE_NO;

VALUE SET TO: "DSR-02 "
DEBUGGING FACILITIES



6-10 Mapping Debug
LIN_C198_7023_1 = ARTICLE_ID;
VALUE SET TO: "MG "

LIN_C118_5110 = UNIT_PRICE;
VALUE SET TO: "250.00"

LIN_C118_5375 = PRICE_TYPE;
VALUE SET TO: "RT"

LIN_6170 = NUM_UNITS;
VALUE SET TO: "2"

amount_due = UNIT_PRICE * NUM_UNITS;
VALUE SET TO: "500"

message_amount = message_amount + amount_due;
VALUE SET TO: "600"

line_total = message_amount;
VALUE SET TO: "600"

LIN_5116 = $ROUND(amount_due,2);
VALUE SET TO: "500.00"

Using MAP #8
MAP ID: Unspecified

FB SEGMENT: PAC;
DEFAULT SOURCE INSTANCE:

INVOICE_HDR{1}.LINE_ITEM{2}.PACKAGE{1}
PAC_7224 = NUM_PACKAGES;

VALUE SET TO: "2"
PAC_C202_7065 = PACKAGE_CODE;

VALUE SET TO: "CF "
PAC_C202_7064_1 = $LOOKUP(package_types,PACKAGE_CODE);

VALUE SET TO: "coffer "

Using MAP #7
MAP ID: Unspecified

FB SEGMENT: LIN;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.LINE_ITEM{3}
LIN_1082 = ITEM_NO;

VALUE SET TO: "3"
LIN_C198_7020_1 = ARTICLE_NO;

VALUE SET TO: "DSR-03 "
LIN_C198_7023_1 = ARTICLE_ID;

VALUE SET TO: "MG "
LIN_C118_5110 = UNIT_PRICE;

VALUE SET TO: "100.00"
LIN_C118_5375 = PRICE_TYPE;

VALUE SET TO: "RT"
LIN_6170 = NUM_UNITS;

VALUE SET TO: "3"
amount_due = UNIT_PRICE * NUM_UNITS;

VALUE SET TO: "300"
message_amount = message_amount + amount_due;

VALUE SET TO: "900"
DEBUGGING FACILITIES



Mapping Debug 6-11
line_total = message_amount;
VALUE SET TO: "900"

LIN_5116 = $ROUND(amount_due,2);
VALUE SET TO: "300.00"

Using MAP #8
MAP ID: Unspecified

FB SEGMENT: PAC;
DEFAULT SOURCE INSTANCE:

INVOICE_HDR{1}.LINE_ITEM{3}.PACKAGE{1}
PAC_7224 = NUM_PACKAGES;

VALUE SET TO: "3"
PAC_C202_7065 = PACKAGE_CODE;

VALUE SET TO: "WB "
PAC_C202_7064_1 = $LOOKUP(package_types,PACKAGE_CODE);

VALUE SET TO: "wickerbottle "

Using MAP #7
MAP ID: Unspecified

FB SEGMENT: LIN;
DEFAULT SOURCE INSTANCE: INVOICE_HDR{1}.LINE_ITEM{4}
LIN_1082 = ITEM_NO;

VALUE SET TO: "4"
LIN_C198_7020_1 = ARTICLE_NO;

VALUE SET TO: "DSR-04 "
LIN_C198_7023_1 = ARTICLE_ID;

VALUE SET TO: "MG "
LIN_C118_5110 = UNIT_PRICE;

VALUE SET TO: "50.00"
LIN_C118_5375 = PRICE_TYPE;

VALUE SET TO: "RT"
LIN_6170 = NUM_UNITS;

VALUE SET TO: "2"
amount_due = UNIT_PRICE * NUM_UNITS;

VALUE SET TO: "100"
message_amount = message_amount + amount_due;

VALUE SET TO: "1000"
line_total = message_amount;

VALUE SET TO: "1000"
LIN_5116 = $ROUND(amount_due,2);

VALUE SET TO: "100.00"

Using MAP #8
MAP ID: Unspecified

FB SEGMENT: PAC;
DEFAULT SOURCE INSTANCE:

INVOICE_HDR{1}.LINE_ITEM{4}.PACKAGE{1}
PAC_7224 = NUM_PACKAGES;
DEBUGGING FACILITIES



6-12 File I/O Debug
VALUE SET TO: "2"
PAC_C202_7065 = PACKAGE_CODE;

VALUE SET TO: "BE "
PAC_C202_7064_1 = $LOOKUP(package_types,PACKAGE_CODE);

VALUE SET TO: "bundle "

Using MAP #9
MAP ID: Unspecified

FB SEGMENT: summary;
DEFAULT SOURCE INSTANCE:

INVOICE_HDR{1}.LINE_ITEM{4}.PACKAGE{1}

Using MAP #10
MAP ID: Unspecified

FB SEGMENT: TMA;
DEFAULT SOURCE INSTANCE:

INVOICE_HDR{1}.LINE_ITEM{4}.PACKAGE{1}
tax_amount = (message_amount*vat_rate) * 0.01;

VALUE SET TO: "175"
message_amount = message_amount + tax_amount;

VALUE SET TO: "1175"
TMA_5356 = $ROUND(message_amount,2);

VALUE SET TO: "1175.00"
TMA_5360 = $ROUND(line_total,2);

VALUE SET TO: "1000.00"
TMA_5338 = $ROUND(message_amount,2);

VALUE SET TO: "1175.00"
TMA_5492 = $ROUND(tax_amount,2);

VALUE SET TO: "175.00"
Document DEC-DIRECT-UK-LTD_O_0000000001

File I/O Debug
Another debug facility provided by the Mapper lets you generate a listing of
all disk I/O performed by the Mapper in reading or writing the application
files.

You activate the I/O debug facilities by specifying an io_debug qualifier
when you send or fetch a document using the Client call TRADE POST or
TRADE FETCH.

This facility is useful in resolving problems where the RMS attributes of the
application file do not match those expected by the Mapper, or the Mapper
creates a file using RMS attributes other than those expected by the
application software.
DEBUGGING FACILITIES



Mapper Messages Written to Standard Output 6-13
The following is a sample I/O debug file minvox_o.io generated from the
minvox examples used in the Mapping Tutorial:

id=4, access = 1,
name=.//minvox_o.dat, buflen=1024

rec# 1; len=35,(first 30 chars)="B380DOC-MINVOX-206523
93040115"
rec# 2; len=199,(first 30 chars)="NIIDigital Equipment Company
L"
rec# 3; len=199,(first 30 chars)="NBYShiny New Systems Ltd
"
rec# 4; len=22,(first 22 chars)="D20 Goods Inwards ."
rec# 5; len=70,(first 30
chars)="P02930401003000000000100000000"
rec# 6; len=72,(first 30 chars)="L000001DSR-01 "
rec# 7; len=15,(first 15 chars)="C000002BE ."
rec# 8; len=72,(first 30 chars)="L000002DSR-02 "
rec# 9; len=15,(first 15 chars)="C000002CF ."
rec# 10; len=72,(first 30 chars)="L000003DSR-03
"
rec# 11; len=15,(first 15 chars)="C000003WB ."
rec# 12; len=72,(first 30 chars)="L000004DSR-04
"
rec# 13; len=15,(first 15 chars)="C000002BE ."

name=

Mapper Messages Written to Standard Output
The following is a small sample file (minvox_o.out) of additional
messages output by the Mapping Service during the mapping run. Note that
these messages include the generated Document ID and the Map Run ID:

Copyright Digital Equipment Corporation 1990,1997. All rights
reserved.
Mapping Table Tracking Run ID: 001942
Document DEC-DIRECT-UK-LTD_O_0000001108 generated

normal completion - SEND

Error Log
An Error Log file collects the output of any severe errors that cause the
Mapper to abort processing. This can be useful if the Application Client call
returns a severe error condition. The following output is an example:

Tru64 UNIX DECEDI__INPUT_OPEN_ERROR (e), unable to open input file
DEBUGGING FACILITIES



6-14 Debugging Compilation Errors
/usr/users/test/minbad_o.dat

OpenVMS DECEDI$_INPUT_OPEN_ERROR (e), unable to open input file
USER:[NAME]MINBAD_O.DAT;

Debugging Compilation Errors
When you compile a Mapping Table, the Mapping Table Editor displays a
Compiler Results screen output of events during the various stages of the
process. The Compiler Results screen is shown in Figure 6-1 The Compiler
Results Screen.

Figure 6-1 The Compiler Results Screen

The screen output is collected in the file mapper.err that can be useful in
debugging.

Information about errors is collected in a .lis file, generated by the
compiler. Within the compiler results screen, and compiler listing file there
may be referenced to particular line numbers that contain errors. To examine
the contents of the line referenced, refer to the .src file, which is the input
file produced by the Mapping Table Editor, prior to the compilation phase.
DEBUGGING FACILITIES



Debugging Compilation Errors 6-15
It is recommended you use a suitable programmer’s editor to examine this
file, to enable you to locate the specific line number referenced within the
mapper.err file.
DEBUGGING FACILITIES



6-16 Debugging Compilation Errors
DEBUGGING FACILITIES



Chapter 7 Problem Solving in the
Mapper
This chapter describes common problems encountered when using the
Mapper, and the steps that should be taken to rectify or avoid them.

Map Failed
When the Mapping Service fails to successfully process an Application File
or set of Documents, the following error message is returned:

UNIX # trade post DEC-DIRECT-UK-LTD minvox_o.dat -table_name=minvox
Failed to post file 1
Map Failed

Take the following steps to determine where the error occurred:

• Application Client Parameters — Check that the parameters have been
specified correctly on the Application Client call.

• Server Configuration — Ensure that the Application Client has been
configured using the Management Services Editor.

• Mapping Table — Ensure that the Mapping Table specified has been
compiled and copied to the Server node.

• Audit Records — Use the Cockpit to view the Current Mapper Audit
Database to see if any new audit records have been generated by the
Mapper.

If one or more HARD ERROR or SOFT ERROR records have been
generated for the specified Map Run ID, then examine the record details
to view the error message text.



7-2 Map Failed
If an error message has been generated, refer to the description of the
error in the appendixes in this book. Take appropriate action to correct
the error.

• Debug Log — If no errors have been logged in the Mapper Audit
Database, then it may be necessary to obtain further debugging
information by running the Map request again.

Obtaining Further Details of a Map Run
To obtain further information about how far the map run progressed before
encountering the error, reissue the map request specifying the -debug
option. This will generate a detailed log of the map run, along with any error
messages.

Under some circumstances, the information provided in the Debug Log file
will be insufficient to determine the cause of the error.

In this case, reissue the map request specifying the -output_file and -
error_log options. This will generate a more detailed output from the
Mapper, along with any error messages logged.

In the following example, the table name is specified incorrectly:

UNIX # trade post DEC-DIRECT-UK-LTD minvox_o.dat \
-table_name=mi -debug=minvox_o.log\
-output_file=minvox_o.out\
-error_log=minvox_o.err

Failed to post file 1
Map Failed

The following is the contents of the Map Debug log:

# more minvox_o.log
FILEBRIDGE Version V3.2

MAP LOG 02-AUG-1995
13:36:14.61

FileBridge Table File:
Application File: /usr/users/edi/test/minvox_o.dat
DECEDI__TABLEFILE_OPEN_ERROR (e), unable to open the
FileBridge table

The following is the contents of the Map Output file:

# more minvox_o.out
PROBLEM SOLVING IN THE MAPPER



Map Failed 7-3
Copyright Digital Equipment Corporation 1990,1994. All rights
reserved.
get_mod_date: cannot access /var/adm/decedi/maps/mi.fbo
DECEDI__TABLEFILE_OPEN_ERROR (e), unable to open the
FileBridge table

processing terminated with error - SEND

The following is the contents of the Error Log file:

# more minvox_o.err
DECEDI__TABLEFILE_OPEN_ERROR (e), unable to open the
FileBridge table

Server Error
Under some circumstances, the Mapper may not be able to access one or
more of the files in the specified directory.

This is becase the Mapper process normally runs under the decedi user id,
which may not have the correct ownership or group privileges to access the
specified files. For example:

UNIX # trade post DEC-DIRECT-UK-LTD minvox_o.dat \
-table_name=minvox_o -debug=minvox_o.log \
-output_file=minvox_o.out -error_log=minvox_o.err

Server Error

In this case, examine the Digital DEC/EDI Error log, using either the
Cockpit or the decedi_look command on the Server:

Tru64 UNIX # decedi_look | tail -20

Wed Aug 2 13:49:42 1995 PID = 8386 NAME = Post/Fetch Server
(CORBA)
DECEDI__OPERATION_ABORTED (e), operation Aborted
DECEDI__LOGERR (e), unable to open log file
/usr/users/edi/test/fred/minvox_o.err

OpenVMS $ trade post DEC-DIRECT-UK-LTD minvox_out.dat /table=minvox_o
%DECEDI-E-OPENFILEERR, Cannot open file. See decedi.err for
more information.
$ TYPE DECEDI.ERR
Fri Nov 21 12:26:33 1997
Function : fopen
Reason : permission denied
Details : Can't open file DECEDI$DATA:DECEDI_SERVERS.DAT.
PROBLEM SOLVING IN THE MAPPER



7-4 Map Failed
Examine the file attributes of the specified file or the parent directory to
ensure that they have the correct protection, and can be written to by the
process user id under which the Mapper process is running.

Reproducing the Error in Mapper Test Mode
To assist with narrowing a problem down to the Mapper, it is useful to rerun
the test specifying the option -test_indicator=mapper_test, along
with the -local_test option to specify the Digital DEC/EDI Internal
format file to be used or generated.

In this case, no matter how far the Mapping progresses, no documents will
be submitted to the Digital DEC/EDI Translation Services for processing.

This is is useful during Mapping Table development, where errors may
occur more frequently, and you do not wish to send test data to your Trading
Partner.

For an Incoming Mapping Table, you also do not need to receive data
through the Digital DEC/EDI translation services, as you may use a local
copy of the Internal Format file as many times as required.

When you think you have discovered a Software Problem, ensure that the
problem is reproducible in Mapper Test mode.

The following example shows the use of Mapper Test mode to generate an
Outgoing Digital DEC/EDI Interal Format file, and the subsequent use of
that file for an Incoming mapping request:

# trade post DEC-DIRECT-UK-LTD -test_indicator=mapper_test \
minvox_o.dat -table_name=minvox_o -local_test=minvox_o.ihf

Returned internal reference : 000563

The following is the contents of the Digital DEC/EDI Internal Format file.
This shows the data generated for the individual data elements within each
EDI segment, and the groupings of EDI segments within the EDI document
definition.

You may examine the contents of this file to determine whether the correct
data has been generated:

# more minvox_o.ihf
$SENDER-ID : DEC-DIRECT-UK-LTD
$RECEIVER-ID : SHINY-NEW-SYSTEMS
$DOCUMENT-TYPE : MINVOICE
PROBLEM SOLVING IN THE MAPPER



Map Failed 7-5
$USER-REFERENCE : UNSPECIFIED
$TEST-INDICATOR : 3
$GROUP
BGM_C002_1001 : 380
BGM_1004 : DOC-MINVOX-206523
BGM_C031_2001 : 930401
BGM_C031_2002 : 1501
BGM_1225 : 00
$GROUP
...
$GROUP
TMA_5356 : 1175.00
TMA_5360 : 1000.00
TMA_5338 : 1175.00
TMA_5492 : 175.00
$END-GROUP
$END-OF-FILE

The following command may be used to fetch the local Digital DEC/EDI
Internal Format file:

# trade fetch SHINY-NEW-SYSTEMS -test_indicator=mapper_test \
minvox_i.dat -table_name=minvox_i -local_test=minvox_o.ihf

Returned internal reference : 000564

The following is the resulting Application File generated during the
Incoming mapping request:

# more minvox_i.dat
B380DOC-MINVOX-206523 930401150100
NIIDigital Equipment Company Ltd Digital Park
\

Worton Grange Imperial Way
\

Reading Berks RG2 0TE GB
NBYShiny New Systems Ltd Unit 1
\

Thames Valley Park Henley-
on-Thames \

Oxon RG9 1JB GB
D20 Goods Inwards
P029304010030000000001000000000100MC/VISA payment
L000001DSR-01 MG
000000000005000RT000000002000000000010000
C000002BE bundle
L000002DSR-02 MG
000000000025000RT000000002000000000050000
C000002CF coffer
PROBLEM SOLVING IN THE MAPPER



7-6 Data Does Not Agree With Specified Source Hierarchy
L000003DSR-03 MG
000000000010000RT000000003000000000030000
C000003WB wickerbottle
L000004DSR-04 MG
000000000005000RT000000002000000000010000
C000002BE bundle
T000000000117500000000000100000000000000117500000000000017500

Data Does Not Agree With Specified Source
Hierarchy

This error is due to the Application File being of a different record structure
or sequence from that defined in the Mapping Table. This may be due to
using an incorrect Mapping Table.

If this error occurs, use the -debug option to determine at what point in the
Application File the incorrect record occurred:

# trade post DEC-DIRECT-UK-LTD minvox_inv_hier_o.dat \
-table_name=minvox_o -debug=minvox_o.log

Failed to post file 1
Map Failed
# more minvox_o.log

FILEBRIDGE Version V2.1
MAP LOG 02-AUG-1995

15:58:02.70

FileBridge Table File: /var/adm/decedi/maps/minvox_o.fbo
Application File: /usr/users/opedi1/test/minvox_inv_hier_o.dat

VALUE SET TO: "0"
VALUE SET TO: "17.5"
VALUE SET TO: "0"
VALUE SET TO: "0"
VALUE SET TO: "0"
VALUE SET TO: "0"
VALUE SET TO: "MINVOICE"

SOURCE TREE:
INVOICE_HDR{1} B380DOC-MINVOX-206523

930401150100.
NAME_AND_ADDRESS{1} NIIDigital Equipment Company Ltd

Digital Par
DECEDI__INVHIERKY (e), data does not agree with specified
source hierarchy
DECEDI__OPERATION_ABORTED (e), operation Aborted
PROBLEM SOLVING IN THE MAPPER



Mapping Compilation Errors 7-7
In this case, the invalid hierarchy error occurs while processing the record
just after the NII record.

Examine the record structure and data, and ensure that it corresponds to the
record definition in the Mapping Table Editor.

Often such errors will be due to an invalid definition of the record sequence,
such as having more than one record at level 1.

Mapping Compilation Errors
Mapping Compilation Errors may occur when the Mapping Table is
compiled from within the Mapping Table Editor.

Mapping Compilation Consists of three phases:

1. Source Generation

A file with the file extension .src is generated. This is an ASCII text
file that is used as input to the Compiler.

2. Parsing

The contents of the source file is parsed, and each section of the file is
logged to the Compilation output screen as it is processed.

This phase detects any syntax errors in the Mapping Statements, or any
necessary parts of the Mapping Table that have not yet been defined.

Syntax Errors are logged to the Compiler Results screen, and written to
the a file with extension .lis.

This is an ASCII text file that contains a copy of the .src input file, with
any error messages embedded.

3. Compilation

The tokens generated during the parse phase are compiled into binary
form, and the semantic content of the Mapping Table is checked.

Any errors encountered during this phase are written to the Compiler
Results screen. This displays the error message and line number within
the .src file associated with the error.

This phase produces a file with the file extension.fbo, which may be
copied to the server if compilation is successful.
PROBLEM SOLVING IN THE MAPPER



7-8 Supplying Further Information on Mapping Errors
Supplying Further Information on Mapping
Errors

Runtime Errors
If you encounter an undocumented problem, please contact your Digital
Support Representative supplying the following details to enable them to
reproduce the problem:

• Command Used — The Client program or shell command used to submit
or receive the Application File, plus any messages or status information
returned.

• The Application File — This is the Application File submitted by the
Application Client in an Outgoing mapping request.

• The Debug File — This is the contents of the file generated by the -
debug option. The convention is to give this a file extension of .log

• The Error Log File — This is the contents of the file generated by the -
error_log option. The convention is to give this a file extension of
.err

• The Output File — This is the contents of the file generated by the -
output_file option. The convention is to give this a file extension of
.out

• The IO Debug File — This is the contents of the file generated by the -
io_debug option. The convention is to give this a file extension of .io

• The Mapping Table source file — This is the uncompiled Mapping
Table, which has a file type of .fbi, which normally resides in the
directory C:\EDICC on the PC where the Command Center is installed.

• The Compiled Mapping Table file — This is the corresponding compiled
Mapping Table, which has a file extension of .fbo and normally resides
on the Server in the directory

/var/adm/decedi/maps

• The Local Inhouse file — If you specified -
test_indicator=mapper_test, then this is the local Digital
DEC/EDI Internal Format file specified in the -local_test option.

• The Incoming Document Inhouse files — This is the collection of
documents that have been processed by the Mapper during an Incoming
PROBLEM SOLVING IN THE MAPPER



Supplying Further Information on Mapping Errors 7-9
mapping fetch request. These files have a file extension of
.in_house_file and reside in the directory

/var/adm/decedi/store_n

where n is the Digital DEC/EDI store directory number.

The documents processed during the fetch request can be determined
from the -output_file output, which specifies the document counts
for those files, up to the point where the error occurs. All files must be
included to assist with reproducing the error.

• Details from the Digital DEC/EDI Error Log — If any relevant errors are
logged in the Digital DEC/EDI Error log, capture the output from
decedi_look to a file, and include that.

Collect the relevant files from the above list, and create a tar archive of the
files. Some files may need to be copied from the PC using FTP or
equivalent. The tar file may then be sent to your Digital Support
Representative.

If using electronic mail to send binary files, you may use the uuencode
utility to encode them into ASCII format.

Mapping Table Editor Errors
If an undocumented problem occurs within the Mapping Table editor, either
during the definition or compilation phase, please contact your Digital
Support Representative supplying the following files to enable them to
reproduce the problem:

• The Mapping Table source file — This is the uncompiled Mapping
Table, which has a file type of .fbi.

• The Mapping Table source listing file — This is the source listing
corresponding to the Mapping Table, which has a file type of .src.

• The Mapping Table Compilation listing file — This is the compilation
listing produced by the Mapping Table Compiler, which has a file type
of .lis.

• The Compilation Output log file — The output from the Compiler
Results screen is written to the file mapper.err, in the
CommandCenter installation directory. This file should also be included.
PROBLEM SOLVING IN THE MAPPER



7-10 Supplying Further Information on Mapping Errors
PROBLEM SOLVING IN THE MAPPER



Chapter 8 Application Client Error
Messages
This chapter shows the error messages generated by the Application Client.
Two versions of each message are shown; the first line is the status returned
by the API to the calling routine, while the second line represents the text
output by the CLI.

DECEDI_BADFILESPEC — Bad file name

Severity: Error.

Explanation: One of the files specified in the request was not valid.
Possible reasons for this are:

• The filename contained invalid characters.

• The file contained a reference to a non-existent directory.

• The filename contained no directory information and the current
directory does not exist.

The request fails.

User Action: Resubmit the request using a valid filename that
references existing directories.



8-2
DECEDI_BADITMLST — Bad item List

DECEDI_BADPARAM — Bad parameter

Severity: Error.

Explanation: An item list passed to the call is invalid. Either the item list
was empty when it should contain values, or some of the items in the item
list are not supported by this request. The request will be ignored.

User Action:

1. Check all parameters used to build up the item list against those
supported by the request.

2. A decedi.err file may have been created. Check the contents this
file to get more details about the error.

3. Resubmit the request.

Severity: Error.

Explanation: A parameter, or a member of an item list passed as a
parameter to the call is not supported. The request will be ignored.

If you are using the TCP/IP Network Interface, check the associated
error message text, for further details as to the original problem.

For example:

Error : DECEDI_POST, DECEDI_BADPARAM (e), Bad parameter
Connection_id <CVP_E> has not been configured
for BYPASS, SPLIT or MIXED

User Action:

1. Check all parameters against those specified in the application
programming manual to ensure they are correct.

2. Resubmit the request.
APPLICATION CLIENT ERROR MESSAGES



8-3
DECEDI_CLIBADCMD — Command syntax incorrect

DECEDI_CLIERROR — Command Line Interface Error

DECEDI_FETCHFAIL — Failed to fetch file <fetch file number>

Severity: Error.

Explanation: The command specified was not of the format defined for
the Digital DEC/EDI Client command line interface. The request will
be ignored.

User Action:

1. Correct the command’s syntax.

2. Enter the correct command.

Severity: Error.

Explanation: The Application Client command line interface failed to
perform the request and has reported the reason. The Application Client
command line interface will exit.

User Action: None.

Severity: Warning.

Explanation: The application client’s command line request to fetch a
file failed on the specified instance in the sequence. The reason for the
failure will be reported along with this message. The other files in the
fetch request will still be processed.

User Action: None.
APPLICATION CLIENT ERROR MESSAGES



8-4
DECEDI_INSUFVM — Insufficient Virtual Memory

DECEDI_INTERROR — Internal Error

Severity: Error.

Explanation: The application client could not fulfil the request because
there is insufficient virtual memory in the caller’s process.

This can be caused by either of the following:

• Bad parameters causing corruption

• Client processes having too little virtual memory

The request will be failed.

User Action: Check that the parameters in the request are correct. A
common cause of this error is passing a string into the request that has
not been null terminated.

Check that the client application has sufficient virtual memory in which
to operate.

Resubmit the request.

Severity: Fatal.

Explanation: An internal error has occurred in the application client.
The request will be failed.

User Action:

1. Check the file decedi.err for error information.

2. Contact your Digital Support Center, giving details of what the
application client was attempting and the information from
decedi.err.
APPLICATION CLIENT ERROR MESSAGES



8-5
DECEDI_MAPFAIL — Map Failed

DECEDI_NOCLIENTLIC — No active client license was found

DECEDI_NOEDISYS — EDI Server System not running

Severity: Error.

Explanation: A file request failed mapping. Details of what the mapper
found can be obtained from the mapper output files, if specified. Other
files in the request will be processed.

User Action:

1. Examine the mapper output files for the cause of the problem.

2. Correct the problem.

3. Resubmit an amended request to obtain the unmapped objects for
that file.

Severity: Error.

Explanation: The Digital DEC/EDI application license was not found
or had expired. The request will be ignored.

User Action:

1. Obtain a valid Digital DEC/EDI application license.

2. Install it as specified in the installation manual.

3. Resubmit the request.

Severity: Error.

Explanation: The Digital DEC/EDI system is not running on the
Server. The request will be ignored.

User Action:

1. Contact the Digital DEC/EDI System administrator to get Digital
DEC/EDI started.

2. Resubmit the request.
APPLICATION CLIENT ERROR MESSAGES



8-6
DECEDI_NOMAPOUTPUT — Map produced no output

DECEDI_NOTAUTH — Not authorized to access the EDI Server System

DECEDI_NOTFOUND — No objects found

Severity: Warning.

Explanation: The file requests map ran successfully but produced no
output. Other files in the request will be processed.

User Action: None.

Severity: Error.

Explanation: The client application making the request has not been
registered with the Digital DEC/EDI Server as a valid user on this node.
The request has been ignored.

User Action:

1. Get the Digital DEC/EDI System Administrator to register the
application and node in Digital DEC/EDI.

2. Resubmit the request.

Severity: Warning.

Explanation: A file request could not be satisfied because no objects
matched.

This can occur if specific criteria are either used in the call to Fetch, or
embedded in the map table which the call may reference.

The file request has been ignored. Other file requests in the request will
be processed.

User Action:

1. Check that there are files to be fetched.

2. If there are files to be fetched, check that they match the selection
criteria given.

3. Resubmit the request.
APPLICATION CLIENT ERROR MESSAGES



8-7
DECEDI_OPENINPERR — Could not open one of the input files

DECEDI_OPENOUTERR — Could not open one of the output files

Severity: Error.

Explanation: One of the input files specified in the request could not be
opened. The request has failed.

User Action:

1. Check that the file exists.

2. If a remote node then check that the application client information
Server can access the file.

3. If a local node then check that the caller’s process can access the file.

4. Resubmit the request.

Severity: Error.

Explanation: One of the output files specified in the request could not
be opened or created. The request fails.

User Action:

1. Make sure each file name specified in the request belongs in an
existing directory.

2. If a remote node then check that the application client information
Server can create files in that directory.

3. If a local node then check that the callers process can create files in
that directory.

4. Resubmit the request.
APPLICATION CLIENT ERROR MESSAGES



8-8
DECEDI_PARTIALMAP — Map partially completed

DECEDI_POSTFAIL — Failed to post file <post file number>

DECEDI_SRVERROR — Server Error

Severity: Warning.

Explanation: A file request was only partially mapped. Details of what
the mapper found can be obtained from the mapper output files, if
specified. Other files in the request will be processed.

User Action:

1. Examine the mapper output files for the cause of the problem.

2. Correct the problem.

3. Resubmit an amended request to obtain the unmapped objects for
that file.

Severity: Warning.

Explanation: The application client’s command line request to post a
file failed on the specified instance in the sequence. The reason for the
failure will be reported along with this message. The other files in the
post request will still be processed.

User Action: None.

Severity: Error.

Explanation: The Digital DEC/EDI Server could not perform the
requested operation because of problems on the Server. The problems
are reported on the Server node in the Digital DEC/EDI error log. The
request will be failed.

User Action:

1. Contact the Digital DEC/EDI System administrator to correct the
Server problem.

2. Resubmit the request.
APPLICATION CLIENT ERROR MESSAGES



8-9
DECEDI_WARNING — Partial completion, check individual returns

DECEDI_ZEROMATCH — No objects were found that matched the
selection criteria

Severity: Warning.

Explanation: The application client request was completed, but some
parts of it were not totally successful.

If individual file return status variables have been placed in the request
to the application programming interface (this is done automatically
with the command line interface) then the individual status returns
indicate which file requests failed and the cause of that failure.

User Action: None.

Severity: Warning.

Explanation: There were no objects that matched the selection criteria
in the track request.

User Action: If the result is not as expected:

1. Change the selection criteria.

2. Submit the new request.
APPLICATION CLIENT ERROR MESSAGES



8-10
APPLICATION CLIENT ERROR MESSAGES



Chapter 9 Mapper Error Messages
Mapper error messages are syntax errors reported during the parsing phase
at compilation. These are annotated in the compilation listing file which has
a file extension of .lis.

The error messages that follow are in alphabetical order. Each has a
description of what caused the error and a corrective action you can take, if
applicable.

Error Handling in the Compiler
When the Mapping Table Compiler detects an error it will display as many
lines of the mapping table listing as are needed to establish some context
and then issue an error message.

You can store the source file any time, even if it contains errors. However, a
mapping table cannot be used at runtime until it has a clean compile.

Error Handling at Runtime
Runtime errors can occur due to errors in the table, errors in the data, or an
incompatibility between the two. The Mapper runtime routines separate the
errors into two types.

1. Soft Errors — Those that are isolated to a single document.

2. Hard Errors — Those that indicate that the file is corrupted or that the
Mapper cannot detect the beginning of the next document boundary.

For Soft Errors, the Mapper aborts the current document and continues with
the next. For incoming documents, the data is held back in Digital DEC/EDI



9-2 Mapper Error Codes and Messages
as an aborted document and requires manual intervention to reprocess. For
outgoing documents, the document is skipped in the application file and the
next document is processed.

For hard errors, the Mapper terminates and does not try to continue.

When the Mapper detects an error at runtime, and a SOFT ERROR or
HARD ERROR is generated, the error message text is stored in the audit
field ERROR_MESSAGE. If specified as a default runtime qualifier in the
Mapping Table, a mail message is sent.

In addition, the Application Client call may specify the OUTPUT_FILE
qualifier to specify an output file to which errors are logged. The DEBUG
qualifier may also be used to specify a file to contain a log of the entire
mapping process for this POST or FETCH request.

If a fatal error occurs in the Mapping process, the errors may be captured
using the ERROR_LOG qualifier. This specifies a file to which information
about the internal Mapping error is written.

If the error was something related to mapping, a few lines of the source table
giving the assignment statement are printed to provide some hint of the
context in which the error occurred.

There is a hook point that will be called when a soft error occurs. The hook
has the option of continuing with the processing or converting the error to a
hard error. A hook point is also called on a hard error. This is primarily for
custom error reporting purposes.

Mapper Error Codes and Messages
DECEDI__ERROR

Explanation: An error occurred during processing. See the Digital
Digital DEC/EDI error log file for more details.

DECEDI__INVPARAMS

Explanation: Invalid parameters were specified. Correct the parameters
and re-execute FBR$DECEDI_EXTRACT from the Mapping Table
Editor on the PC.

DECEDI__NOTAUTHORIZED



Mapper Error Codes and Messages 9-3
Explanation: A request has been received by the server for which it
cannot find a matching entry in its authorization database for the
application node from which the application is sending the request.

DECEDI__SUCCESS

Explanation: Normal, successful completion. Be sure to examine the
log file to see if the document definitions themselves had any errors or
inconsistencies.

DECEDI__UNKNDOC

Explanation: A document type was specified that is not known to the
current Digital DEC/EDI installation.

DECEDI__UNKNELE

Explanation: This is a likely indication of a problem in Digital
DEC/EDI’s copy of the document definition.

DECEDI__UNKNSEG

Explanation: This is a likely indication of a problem in Digital
DEC/EDI’s copy of the document definition.

DECEDI__UNKNSTDVER

Explanation: An EDI standard and/or version unknown to Digital
DEC/EDI was specified.

DECEDI__UNKNSUBELE

Explanation: This is a likely indication of a problem in Digital
DEC/EDI’s copy of the document definition.

DECEDI__TERMINATED_NODIR — Processing Terminated With Error

Explanation: This error message usually indicates an error on the
command line. The error message specifies that the operation was unable
to process the POST or FETCH command.

DECEDI__TERMINATED_RECEIVE — Processing Terminated With
Error — RECEIVE



9-4 Mapper Error Codes and Messages
Explanation: The Mapper FETCH operation did not run to completion
and terminated with an error.

DECEDI__TERMINATED_SEND — Processing Terminated With Error —
SEND

Explanation: The Mapper POST operation did not run to completion
and terminated with an error.

DECEDI__ABORT — Operation Aborted

Explanation: The Mapper runtime has detected a hard error and is
aborting the current run. The error messages prior to this indicate what
the problem is.

DECEDI__ALLOC_ERROR — Unable to Allocate Memory

Explanation: The Mapper runtime was attempting to allocate additional
dynamic memory and the allocation failed. It is most likely that your
working set size is set too low. See your system manager.

DECEDI__ALREADY_OPEN — Record Level Already Open

Explanation: The Mapper runtime is calling the record level
initialization a second time in the same run. This is a Mapper program
error. Submit a Software Problem Report (SPR) to Digital.

DECEDI__API_ERROR — Error Received from Application Interface

Explanation: There was an error reported by Mapping Service as it
sends or fetches a document. The previous message indicates the
specifics of the error.

DECEDI__APPLID_ABSENT — No application specified

Explanation: The Mapper runtime is setting up for a POST or FETCH
operation and found that the application ID was not specified. You can
specify it by assigning a value to the global variable $APPLICATION in
the initialization section of the Mapping Table. This can be overridden by
using the Mapping Table Editor to specify an application ID. The
application ID given must be one of those listed in the application ID
section of the Mapping Table.



Mapper Error Codes and Messages 9-5
DECEDI__APPLID_MISMATCH — Mapping Table does not support
specified application

Explanation: The Mapper runtime is setting up for the POST or FETCH
operation and found an application ID that did not match one of those
given in the application ID section of the Mapping Table.

DECEDI__AUD_BAD_RUN_ID — Invalid Run-id number in
/var/adm/decedi/data/mapper_run_id.dat

Explanation: The Mapper is attempting to obtain a run ID number from
the file /var/adm/decedi/data/mapper_run_id.dat and has found that the
run number has been corrupted. Edit the file with a text editor and set the
first 6 bytes to “000000” or to any number that is larger than any run ID
number already in the audit database. This file should contain nothing
other than this six digit number with the leading zeros.

DECEDI__AUD_CANNOT_RESTART — Cannot Restart this Mapper
Run

Explanation: The Mapper recovery process is attempting to restart a run
that was not complete, but is having some problem. A previous message
will indicate what the problem is.

DECEDI__AUD_DBERROR — Error while updating the tracking database

Explanation: The Mapper audit facilities could not insert an event
record in the audit database. A previous RDB message should indicate
the problem.

DECEDI__AUD_MISSING_DB_FILE — An Audit Rdb Database file is
missing in decedi_db

Explanation: The Mapper audit facilities could not locate the audit
database. It should be located in the directory identified by the system
logical decedi_db. See your system manager.

DECEDI__BADPARAM — Invalid Argument Value on Argument

Explanation: The Mapper runtime is just starting up and is evaluating
the command line qualifiers or the arguments from the callable interface.
It has found a qualifier with an invalid value.

DECEDI__BAD_HOOK_STAT — Abnormal Return from Hook



9-6 Mapper Error Codes and Messages
Explanation: The Mapper runtime has just called a customization
routine and is evaluating the return value and status. If the return status is
anything other than the values defined for SUCCESS and UNDEFINED,
it is considered an error.

DECEDI__BLD_CANNOT_CLOSE_FILE — Cannot close the file

Explanation: The Mapper could not close one of the temporary work
files during Digital DEC/EDI extract process. Retry the extract.

DECEDI__BLD_CANNOT_OPEN_EDI_INPUT — Cannot open the
specified EDI input file

Explanation: An error occurred opening a previously generated extract
listing file. Either the filename specification is in error, the specified file
does not exist or a privilege violation has occurred.

DECEDI__BLD_CANNOT_OPEN_OUTPUT — Cannot create the parse
output file

Explanation: An error occurred creating or opening either the output
listing file or the log file. Either the filename specification is in error or a
privilege violation has occurred.

DECEDI__BLD_INCOMPATIBLE_FILES — Standard or Version of
Digital DEC/EDI files differs

Explanation: The Mapper found an inconsistent set of reports in
appended extract files during processing. Retry the extract.

DECEDI__BLD_NO_DOC_DEFN — Digital DEC/EDI didn’t find the
requested document definition

Explanation: The Mapper received a blank report from Digital
DEC/EDI. This indicates that the requested document was not in Digital
DEC/EDI. Check that you have the correct document name and version
number.

DECEDI__CANNOT_OPEN_SOURCE — Cannot open the Mapping table
source file

Explanation: The Mapper compiler needs to read the listing file
generated by the report writer. Be sure you have write permission into
your local directory for the report writer.



Mapper Error Codes and Messages 9-7
DECEDI__CVT_ERROR — Data Conversion Error

Explanation: The Mapper runtime is evaluating a field reference in an
expression and the value in that field does not match the format for the
data type of the field. This is usually an indication of bad data.

DECEDI__DEC_OVF — Decimal value overflows specified data size

Explanation: The Mapper runtime is assigning a numeric string value to
a data label or field on a record and the size of the data exceeds the size
of the space defined for the field or data label. This is usually an
indication of bad data.

DECEDI__DIVBY_ZER — Division by zero

Explanation: The Mapper runtime is evaluating a division operator in an
expression and found that it would be dividing by zero. This is usually an
indication of bad data.

DECEDI__DOCTYPE_MISSING — The FBdoctype for this document
was not specified in $DOCTYPE

Explanation: The Mapper runtime is attempting to send a document,
and it found that the $DOCTYPE global variable was not assigned a
value indicating the FBdoctype to use for the document. In addition, the
Mapping Table Editor was not used to specify any overrides.

DECEDI__DOCUMENT_ERROR — Hook Requests Abort of the Current
Document

Explanation: The Mapper runtime has just called the customization
routine at the END DOCUMENT hook point. The return status was
UNDEFINED, indicating that the document is to be aborted.

DECEDI__DOC_DEF_MISSING — No Mapping set matching specified
Doc. Type and Partner ID

Explanation: The Mapper runtime is processing a document and is
attempting to identify which mapping set to use. However, the doctype
and partner for the document do not match any of the mapping sets.
Enable the mapping log listing, and it will show you the values that it
was trying to use. You might be using the wrong table.



9-8 Mapper Error Codes and Messages
DECEDI__DOC_NO_OUTPUT — Document generated nothing in Output
File

Explanation: The Mapper runtime has processed all of the mappings for
a document, but no records or segments were produced as a result. This
is an indication that something might be wrong with the maps or that the
data is bad.

DECEDI__EOF — No more records in the stream

Explanation: This is an internal flag, not an error condition.

DECEDI__ERRORS — Completed but One or more errors detected (SOFT
ERRORS)

Explanation: The Mapper runtime has completed a run, but during the
run documents were aborted because of soft errors. The preceding error
messages should indicate the cause of the soft errors.

DECEDI__ERROR_IN_FILE_SECTION — Error in the File Section

Explanation: The parser was unable to find a keyword to identify where
the file section of the table begins. This is a Mapper internal error.
Submit a Software Problem Report (SPR) to Digital.

DECEDI__EXP_ERROR — Error in Expression

Explanation: The Mapper runtime cannot process an expression in a
map. Check the syntax of the expression.

DECEDI__FOR_PARM_ERROR — Error in FOR parameter

Explanation: The Mapper runtime is executing a FOR loop in a
mapping expression, and found that one of the parameters (starting
value, ending value, or increment) in the FOR is invalid.

DECEDI__GROUP_IMBAL — Probable bad data from DECEDI — excess
$ENDGROUPs

Explanation: The Mapper runtime is accepting data labels for a
document from Digital DEC/EDI and found that the number of
$GROUPS did not match the number of $END-GROUPS. This is an
indication of bad data.

DECEDI__ILL_INST — Illegal Instance specification



Mapper Error Codes and Messages 9-9
Explanation: The Mapper runtime is evaluating a record or segment
qualification and found an instance specification that was invalid. The
instance number must be greater than 0.

DECEDI__ILL_NDX — Illegal Subscrip

Explanation: The Mapper runtime routine is evaluating a field
reference, and found a subscript with an illegal value. The value must be
greater than 0 and less than or equal to the size of the array.

DECEDI__ILL_RANGE — Lower bound in NEXT LIST Range greater
than upper bound

Explanation: The Mapper runtime is evaluating the NEXTLIST
specification in the repeat pattern field of a map. It has found that an
element in the list contains a range and that the first element of the range
is larger than the second element of the range.

DECEDI__ILL_$NEXT — Functions $NEXT, $FIRST, $TESTNEXT can
appear only in a Map

Explanation: The Mapper runtime is evaluating an expression that is
someplace other than a map, and it found one of the NEXTLIST related
functions. These are allowed only in maps where the NEXTLIST has
been declared.

DECEDI__INCOMING_REC_MISSING — Required record not generated
in Application File

Explanation: The Mapper runtime is processing an incoming document.
The mappings did not generate a required record. This is a record that is
defined in the record sequence section of the table with a MIN greater
than 0.

DECEDI__INPUT_CLOSE_ERROR — Error on Close of Input File

Explanation: The Mapper runtime has completed the read of an
application file and is attempting to close the file. The file might have
been corrupted.

DECEDI__INPUT_OPEN_ERROR — Unable to Open Input File



9-10 Mapper Error Codes and Messages
Explanation: The Mapper runtime is setting up to send documents, but
cannot open an application file. Check that the file name is correct and
that the file is accessible.

DECEDI__INPUT_READ_ERROR — Error on Read of Input File

Explanation: The Mapper runtime is reading in records from an
application file, and encountered a read error. This is usually a disk I/O
error. See your system manager.

DECEDI__INPUT_RMSERR — Error Received While Evaluating Input
File Specification

Explanation: The Mapper runtime is checking for wildcard characters in
the application file specification. This is an indication that the file
specification (value in $FILENAME) is bad or contained illegal
characters.

DECEDI__INTERNAL_ERROR — Mapping Table Internal Error

Explanation: The Mapper runtime has encountered a problem or
situation that should not have happened. This is usually a Mapper
programming error, although it could be caused by bad data. Submit a
Software Problem Report (SPR) to Digital.

DECEDI__INVHIERKY — Data does not agree with Specified Source
Hierarchy

Explanation: The Mapper runtime is reading data into the source tree
and has found a record or segment (depending on direction) that does not
fit correctly in the source tree. This can be caused by records being out of
order or too many records or segments (MAX is exceeded). This is
normally an indication of bad data. In the incoming direction, it can be
caused by misplaced $GROUP/$END-GROUP labels or a mismatch
between Digital DEC/EDI tables and the extracted document definitions.

DECEDI__INVRECTYP — Application Record has Invalid Record Type

Explanation: The Mapper runtime is reading application file records
and it cannot determine the record type of a record it just read. None of
the recognition expressions (from the record sequence attributes sections
of the table) found a match. That is, they all evaluated to FALSE. This is



Mapper Error Codes and Messages 9-11
an indication of bad data, the wrong table file, or a record type that was
not specified in the table.

DECEDI__INV_LABEL — Invalid or undefined Label

Explanation: The Mapper runtime is reading in data labels and data
value pairs from Digital DEC/EDI (incoming document). It has found a
data label it does not recognize. This most likely occurs when Digital
DEC/EDI has changed its document definitions since the last extract.
Perform another extract and adjust the mappings to deal with the new
data labels.

DECEDI__INV_LOCAL — Invalid format of data in
FBR$LOCAL_TEST_IN file

Explanation: The format of the internal-format file provided as input in
local test mode does not have the correct format.

DECEDI__INV_TBL — Mapping Table is invalid or not compiled

Explanation: The Mapper runtime is starting up and the table that was
specified did not have the compiled data in it. If you modified (or even
looked at) the table using the Mapping Table Editor since the last
compile, it must be compiled again before it can be used by the runtime.

DECEDI__LOGERR — Unable to Open Log File

Explanation: The Mapper runtime opens a temporary log file to capture
error messages during a run. This error occurs if the Mapper cannot
create the temporary log file. Make sure you have write access to the
default directory.

DECEDI__MAP_EXCD_LIMIT — Exceeded limit on output of particular
record or segment

Explanation: The Mapper runtime is processing maps and tried to
generate more records or segments than specified as the MAX or LIMIT
number. This error only occurs if the ERROR ON MAX EXCEEDED
flag is set in the map. Otherwise, the map iteration loop terminates when
the MAX or LIMIT is reached and no error is generated. Normally, the
map loop terminates when it runs out of source data.

DECEDI__MAP_OUT_OF_DATA — Ran out of source data of a required
type during mapping



9-12 Mapper Error Codes and Messages
Explanation: The Mapper runtime is processing maps and ran out of
source data. This error only occurs if the ERROR ON OUT-OF-DATA
flag is set in the map. Otherwise, the map iteration loop terminates and
no error is generated. This is the normal situation, but there can be cases
where running out of data before all of the maps have been generated is
an indication of an error. This is where the ERROR ON OUT-OF-DATA
flag is useful.

DECEDI__MISSING_APPLICATION — APPLICATION name invalid or
missing

Explanation: The Mapper compiler is attempting to compile a table with
a missing application in the table attributes section. Edit the table and
enter at least one application ID.

DECEDI__MISSING_BOUND — INCOMING or OUTGOING direction
is not specified

Explanation: The Mapper compiler is attempting to compile a table with
a direction not specified. Edit the table and enter the direction.

DECEDI__MISSING_ENDVARIANTS — Missing the END VARIANT
keywords

Explanation: The Mapper compiler is attempting to compile a table with
a missing END VARIANT for a VARIANT keyword. This could be
either in the record sequence or record layout section of the table. Edit
the table and add the missing keyword.

DECEDI__MISSING_FIELDS — No fields defined for this record

Explanation: The Mapper compiler is attempting to compile a record
layout without field definitions. Edit the files section, record layout of
the table and add the missing field definitions.

DECEDI__MISSING_FIELD_SCALE — Missing field scale factor

Explanation: The Mapper compiler is evaluating the field attributes and
found a keyword SCALE without a factor. Edit the files section, record
layout of the table and add the missing scale factor.

DECEDI__MISSING_FIELD_SIZE — The Field size is missing



Mapper Error Codes and Messages 9-13
Explanation: The Mapper compiler is evaluating the field attributes and
found a keyword SIZE without a size specified. Edit the files section,
record layout of the table and add the missing size specification.

DECEDI__MISSING_MODE — Test Mode Must be specified

Explanation: The Mapper compiler is attempting to compile a table
without a test mode specification. Edit the table attributes section and
enter the test mode.

DECEDI__MISSING_RECTYPE — Missing record type name

Explanation: The Mapper compiler has found the keyword, RECORD,
but without a name following it. This is a Mapper internal error. Submit a
Software Problem Report (SPR) to Digital.

DECEDI__MISSING_SEGMENTS — No Segments defined for this
document definition

Explanation: The Mapper compiler is evaluating a document definition
and did not find any segments associated with it. Since these are
extracted from Digital DEC/EDI, this is a program error in the Digital
DEC/EDI extract part of the UI. Submit a Software Problem Report
(SPR) to Digital.

DECEDI__MISSING_SEMI — Semicolon missing from end of previous
line

Explanation: The Mapper compiler could not find the end of the
statement. It is most likely a missing semicolon (;). Edit the table and add
the semicolon or look for invalid syntax.

DECEDI__MISSING_SUBSCRIPT — Array subscript missing or invalid

Explanation: The Mapper compiler found the ARRAY or OCCURS
keyword but did not find a numeric value for the size of the subscripts.
The Mapper will accept up to three subscripts separated by a space. The
array subscript specification might also be given as lower bound and
upper bound separated with a colon (:).

DECEDI__MPFL_OPEN_ERROR — Unable to open Map Debug File



9-14 Mapper Error Codes and Messages
Explanation: The Mapper runtime is starting up and is creating the
map_debug.log file. Make sure that you have write access to the default
directory.

DECEDI__NEXT_LIST_ERR — $NEXT, $FIRST, or $TESTNEXT found
in Map with no NEXT LIST

Explanation: When evaluating the functions $NEXT(), $FIRST(), or
$TESTNEXT() it was found that there was not NEXT LIST specified in
the repeat pattern. The NEXT LIST is required when using these
functions.

DECEDI__$NEXT_IN_LIST — $NEXT, $FIRST, $TESTNEXT not
allowed in NEXT LIST element

Explanation: The Mapper runtime is evaluating the NEXTLIST
elements in a repeat pattern part of the map, and has found an element
that contains a $NEXT(), $FIRST(), or $TESTNEXT() function call.
This recursive use of the NEXTLIST is not allowed.

DECEDI__NONALPHA — Non-Alphabetic Character assigned to
ALPHABETIC field

Explanation: The Mapper runtime is making an assignment to a record
field that has been declared as an ALPHABETIC data type. In this case,
the data being assigned contains a non-alphabetic character.

DECEDI__NO_LOCAL_TEST — Could not create the inhouse file for
LOCAL TEST

Explanation: Could not create the inhouse file for outgoing LOCAL
TEST mode. It is most likely that the file is not valid, or references a
directory for which the user does not have write permissions.

DECEDI__NO_OUTPUT — Mapper session generated no output

Explanation: The Mapper runtime has completed all of the maps with
no errors and has processed all of the records in the application file
(outgoing) or has processed all data labels available from the Digital
DEC/EDI Application Server (incoming), and yet has not been able to
generate a single document. This is usually an indication of bad data, the
wrong table, or incorrect maps.

DECEDI__NOT_OPEN — Record Interface not Properly Opened



Mapper Error Codes and Messages 9-15
Explanation: The Mapper runtime is trying to continue processing of a
document when the record interface encountered an error. This is a
Mapper programming error. Submit a Software Problem Report (SPR) to
Digital.

DECEDI__OUTGOING_SEG_MISSING — Required segment not
generated in Document

Explanation: The Mapper runtime is processing maps and found that a
required segment was not generated. The maps must generate the
minimum number of segments specified in the segment sequence section
of the document.

DECEDI__OUTPUT_CLOSE_ERROR — Error on Close of Output File

Explanation: The Mapper runtime has finished writing to the
application file (incoming direction) and is attempting to close the file.
This is an indication that there might have been an I/O error. The
map_debug.log file will contain more information about the attempted
file close.

DECEDI__OUTPUT_OPEN_ERROR — Error on Open of Output File

Explanation: The Mapper runtime is attempting to create the application
(incoming direction) and has received an error. Make sure that the
specified directory has write permission. The map_debug.log file will
contain more information about the attempted file open.

DECEDI__OUTPUT_WRITE_ERROR — Error on Write of Output File

Explanation: The Mapper runtime is writing to the application file
(incoming direction) and encountered a write error. Make sure the device
has enough space and try again. The map_debug file will contain more
information about the attempted file write.

DECEDI__PARSE_ERROR — Error During parse of Extract

Explanation: Means the parse got lost. look for a syntax error in the
general area.

DECEDI__PARTNER_MISSING — The Partner for this document was not
specified in $PARTNER



9-16 Mapper Error Codes and Messages
Explanation: The Mapper runtime is attempting to send a document but
the $PARTNER global variable was not given a value, and the * partner
id has not been specified using the Mapping Table Editor. The Mapper
does not know what partner to send it to.

DECEDI__POLL_EMPTY — No mapping sets in Mapping Table match
specified Partner+DocType

Explanation: The Mapper runtime is setting up to receive documents,
and is trying to find the partner and Digital DEC/EDI internal doctype to
use as document selection criteria. To do this, it finds all of the mapping
sets that match the Mapper doctype and partner given in the global
variables $DOCTYPE_SELECT and $PARTNER_SELECT or
overridden with * DOCUMENT TYPE of PARTNER ID qualifiers
specified either with the Mapping Table Editor or their default values in
the table. In this case, the Mapper found no mapping sets that matched
the selection criteria. See the map_debug log file for more information.

DECEDI__P_BAD_ALIGN — Invalid Alignment Keyword

Explanation: The Mapper compiler found the keyword, ALIGN, but the
alignment qualifier keyword is wrong. Edit the files section, record
layout of the table.

DECEDI__P_BAD_JUST — Invalid justification Keyword

Explanation: The Mapper compiler found the keyword, JUSTIFIED,
but the qualifier keyword is wrong. Edit the files section, record layout of
the table.

DECEDI__P_BAD_OCCURS — Invalid OCCURS specification

Explanation: The Mapper compiler found the OCCURS keyword but
did not find a numeric value for the size of the subscripts. It only accepts
one numeric value. Edit the files section, record layout of the table.

DECEDI__P_INV_DATATYPE — Invalid Data Type

Explanation: The Mapper compiler is evaluating the field attributes and
found a keyword that does not match any of the data types. Edit the files
section, record layout.

DECEDI__P_INV_EXP — Invalid expression operand



Mapper Error Codes and Messages 9-17
Explanation: The Mapper compiler is evaluating an expression and
found an illegal operator or illegal mathematical construction. Edit the
map section or the initialization of the table.

DECEDI__P_INV_INST — Invalid Instance Specification

Explanation: The Mapper compiler is evaluating a field reference and
found the brace indicating an instance qualifier but the syntax inside the
braces is wrong. Edit the map section of the table.

DECEDI__P_INV_LEVEL — Invalid Level Number

Explanation: The Mapper compiler is evaluating either the record
sequence section or the record layout section and found a level number
out of place. Level numbers must be either the same as, one greater than,
or one less than the one above. You cannot skip numbers.

DECEDI__P_INV_NAME — Invalid Name Syntax

Explanation: The Mapper compiler is evaluating a record name or a
field name, and found an illegal character. Edit the files section, record
layout of the table.

DECEDI__P_INV_NBR — Invalid Syntax for a Numeric Constant

Explanation: The Mapper compiler is evaluating a numeric constant and
found an illegal character.

DECEDI__P_INV_PATT — Invalid Repeat Pattern Specification

Explanation: The Mapper compiler is evaluating a map and found an
unrecognized keyword in the repeat pattern specification. Edit the map
section of the table.

DECEDI__P_SIZE_REQ — Field SIZE is required

Explanation: The Mapper compiler is evaluating the field attributes and
found a data type which required a size without a size specified. Edit the
files section, record layout of the table and add the missing size
specification.

DECEDI__QUALIFIER — Invalid or Missing Qualifier Value or Keyword



9-18 Mapper Error Codes and Messages
Explanation: The Mapper runtime is starting up and is evaluating the
command line qualifiers. It has found one that has an invalid or missing
value.

DECEDI__RECORD_SHORT — Attempt to access data beyond end of
application file record

Explanation: The Mapper runtime is evaluating a field reference in a
mapping expression and found that the position of the field is beyond the
current length of the record. This is likely to be an indication that the data
has been corrupted. If you are using the RECORD or SWITCH hooks, be
sure to use VARYING_STRING data type of the argument passing the
$RECORD global variable, or make sure all records have the same size
and pass as a TEXT data type.

DECEDI__RECOVERY_AMBIGUOUS — Last Document May Not Be
Processed

Explanation: The Mapper recovery process has found that the
incomplete run terminated between the END DOCUMENT and
COMMIT DOCUMENT events. This means that the Mapper does not
know if the Digital DEC/EDI end-send call for this document was
complete. Check the Digital DEC/EDI tracking log and see what
documents were sent, and then manually restart the run.

DECEDI__RECOVERY_NO_ACTION — No recovery processing
necessary

Explanation: The Mapper recovery process did not find any incomplete
runs in the audit database.

DECEDI__RT_HOOK_NOLINK — Could not link Custom Function

Explanation: The Mapper runtime program is starting up and is trying to
dynamically link to all of the images holding the customization routines.
It has some problem finding the shared image file or in finding the entry
points in the shared image file. Be sure the entry points are linked with
the UNIVERSAL keyword. Check the customization routine declaration
to make sure the file name for the shared image file is correct and that
you have read access to the files.

DECEDI__RT_INVALID_ARG — Invalid Function argument



Mapper Error Codes and Messages 9-19
Explanation: The Mapper runtime is evaluating a built-in function and
found that one of its arguments was not valid.

DECEDI__RT_INVALID_DATE — Invalid Date format for data in
$DATE() conversion

Explanation: The Mapper runtime is evaluating the $DATE function
and the date conversion encountered a conversion error.

DECEDI__STACK_ERROR — Mapping Table Internal Error — Stack not
empty after expression

Explanation: This indicates that the run-time interpreter stack was
corrupted. Submit an SPR.

DECEDI__STACK_OVERFLOW — Mapping Table Internal Error —
Stack overflow

Explanation: This indicates that the run-time interpreter stack was
corrupted. Submit an SPR.

DECEDI__STACK_UNDERFLOW — Mapping Table Internal Error —
Stack underflow

Explanation: This indicates that the run-time interpreter stack was
corrupted. Submit an SPR.

DECEDI__SYNTAX_ERROR — Parser Syntax Error

Explanation: The Mapper compiler cannot evaluate the table. This error
is usually due to a misplaced or misspelled keyword or illegal syntax.

DECEDI__TABLEFILE_CLOSE_ERROR — Error on Close of the
Mapping Table File

Explanation: The Mapper has completed processing and has
encountered an error while closing the table file. This is an indication of
a disk I/O error condition. See the system manager.

DECEDI__TABLEFILE_OPEN_ERROR — Unable to Open the Mapping
Table File

Explanation: The Mapper is starting up and has encountered an error
while attempting to open the Mapping Table file specified in the
command line. Make sure the table filename is correct and that you have



9-20 Mapper Error Codes and Messages
read access to the file. You will also get this error if you cannot create the
new version of the file. Be sure that you have write access in the
directory in which the file resides.

DECEDI__TABLEFILE_READ_ERROR — Error on Read of the Mapping
Table File

Explanation: The Mapper is starting up and has encountered a read I/O
error while reading in data from the Mapping Table file. This is an
indication that the table file was corrupted (or not a table file). Try
recompiling the table.

DECEDI__TABLEFILE_WRITE_ERROR — Error on Write of the
Mapping Table File

Explanation: The mapper is creating a new version of the table file and
encountered an I/O error writing to the file. This is most likely a disk I/O
error problem. See your system manger.

DECEDI__TBL_IN — Cannot Send using an INCOMING Mapping Table

Explanation: The Mapper runtime is starting up a POST run and found
that you have specified a Mapping Table file setup for the INCOMING
direction. Make sure you have the correct table.

DECEDI__TBL_OUT — Cannot Receive using an OUTGOING Mapping
Table

Explanation: The Mapper runtime is starting up a FETCH run and
found that you have specified a Mapping Table file setup for the
OUTGOING direction. Make sure you have the correct table.

DECEDI__TERMINATED — Processing Terminated With Error

Explanation: The Mapper runtime has encountered a hard error and is
terminating (or returning from the callable interface). The previous error
message indicates what the problem is.

DECEDI__TG_AMBIG_VAR_REF — Field referenced via Variant name
different in two or more alternatives

Explanation: References to a field with the same name on two variant
records is not the same in size, type, and position. Qualify the field name



Mapper Error Codes and Messages 9-21
with the variant record name so it is obvious as to which field is being
referenced.

DECEDI__TG_BAD_FLD_REF — Unknown name referenced

Explanation: The Mapper compiler is evaluating an expression and
found a name it did not recognize. This name could be a field on a
record, global variable, or a data label. Look for a misspelling or an
global variable that should have been defined in the initialization section
of the table.

DECEDI__TG_BAD_FOR_EACH_REF\FOR EACH record or segment
not in line of ascent

Explanation: The Mapper compiler is evaluating a repeat pattern in a
map and has found the FOR EACH keywords with a reference to a
record or segment that is not the parent or in the current path of the
record or segment specified in the SET CONTEXT field.

DECEDI__TG_BAD_GLOBAL_ASST — Global Variable must not be
subscripted or qualified

Explanation: The Mapper compiler is evaluating an expression and has
found a reference to a global variable with an array subscript or a record
or segment qualifier attached.

DECEDI__TG_BAD_GV — Assignment to unknown Global Variable

Explanation: The Mapper compiler is evaluating an assignment
statement in a map and has found a reference to a name on the left side of
the assignment, which it does not recognize. This could be a misspelling
or an uninitialized global variable.

DECEDI__TG_BAD_LKUP_REF — Unknown Lookup Table referenced

Explanation: The Mapper compiler is evaluating an expression and
found a $LOOKUP function. The first argument is not the name of one
of the lookup tables. You might have forgotten to define a lookup table.

DECEDI__TG_BAD_MANY — MANY may be specified for the last
subscript only



9-22 Mapper Error Codes and Messages
Explanation: The Mapper compiler is evaluating an array specification
in the record layout section and found the keyword MANY as the size of
the array. This is only permissible on a field at the end of a record.

DECEDI__TG_BAD_REF — Unknown record or segment referenced

Explanation: The Mapper compiler is evaluating an expression and
found a qualifier on a field reference for a record or segment that is
unknown. It could be a misspelling, or it could be a missing record
definition in the record sequence.

DECEDI__TG_BAD_SIZE — Size must be positive number

Explanation: The Mapper compiler is evaluating a field attribute in the
record layout section and found a size that is zero or a negative number.

DECEDI__TG_BHDR_BEGTRM_CNFL — BATCH HEADER and
BEGINS or TERMINATES on same record

Explanation: The keywords BATCH HEADER and BEGINS or
TERMINATES are mutually exclusive. Edit the record sequence
attributes of the table.

DECEDI__TG_BKDOC_FLD_UNRECOG — BREAK field not
recognized

Explanation: The Mapper compiler is evaluating the record sequence
attributes and found a BREAK field that is not defined in the record
layout section associated with this record sequence entry.

DECEDI__TG_BKON_NODEF — UNTIL with no default record or
segment specified

Explanation: The Mapper compiler is evaluating a map repeat pattern
specification and found the keyword UNTIL, but no record or segment
specified in the SET CONTEXT field.

DECEDI__TG_BKON_NOSRC — UNTIL with Set Context not specified

Explanation: An “UNTIL field CHANGES” clause was specified in the
repeat pattern but no context was specified in the set context.

DECEDI__TG_CUST_ARG_ARY — Argument of Custom Function
cannot be array



Mapper Error Codes and Messages 9-23
Explanation: The Mapper compiler is evaluating an expression and
found a customization function with an argument passed to the function
that is the name of an array. You must qualify the name with the subscript
indicating which element you are passing.

DECEDI__TG_CUST_OPT_RET — Return-value argument cannot be
optional

Explanation: The Mapper compiler is evaluating an expression for a
function called at one of the hook points where the Mapper expects a
return value. The customization function did not have one of its
arguments defined as a return value.

DECEDI__TG_CUST_RET_GT_NARGS — Return-value index greater
than number of arguments

Explanation: The Mapper compiler is evaluating a declaration of a
customization function. The index for the return value does not identify
one of the defined arguments. The first argument is index number 1.

DECEDI__TG_CUST_VAL_RET — Return-value argument cannot be
designated By-Value

Explanation: The Mapper compiler is evaluating a declaration of a
customization function. The argument identified as the return value is
passed by value, which does not return anything. Change it to passed by
reference or by descriptor.

DECEDI__TG_CUST_VAL_SIZE — By-Value argument size must not
exceed 4 bytes

Explanation: The Mapper compiler is evaluating a declaration of a
customization function. The size of the argument being passed by value
is larger than the DEC calling standards allow.

DECEDI__TG_DEF_UNRECOG — Unknown default specified

Explanation: The Mapper compiler is evaluating the run time defaults
section of the table. It found an unknown qualifier. This is a Mapper
programming error. Submit a Software Problem Report (SPR) to Digital.

DECEDI__TG_DMY_ATTRIB — No attributes permitted if no record
associated



9-24 Mapper Error Codes and Messages
Explanation: The Mapper compiler is evaluating the record sequence
section of the table. It found a sequence entry with attributes specified
indicating MIN, MAX, and so forth. However, no corresponding record
was found in the record layout section.

DECEDI__TG_DST_UNRECOG — Unknown destination specified

Explanation: The Mapper compiler is evaluating a map and found the
destination record or segment that does not match with the destination
hierarchy. This is a Mapper programming error. Submit a Software
Problem Report (SPR) to Digital.

DECEDI__TG_DUP_ALIGN — Alignment specified more than once for
structure

Explanation: The Mapper compiler is evaluating record layout
attributes. It found more than one attribute for alignment.

DECEDI__TG_DUP_ARRAY — More than one array specified for same
data item

Explanation: The Mapper compiler is evaluating record layout
attributes. It found more than one array declaration for the field.

DECEDI__TG_DUP_ASN — Assignments specified twice

Explanation: There were more than one set of assignments for
$DOCTYPE and $PARTNER in the record attribute section. This is an
indication of a programming bug, submit an SPR.

DECEDI__TG_DUP_BEG_DOC — BEGINS DOCUMENT specified
twice for record

Explanation: The Mapper compiler is evaluating record sequence
attributes. It found two BEGINS DOCUMENT keywords. This is a
Mapper programming error. Submit a Software Problem Report (SPR) to
Digital.

DECEDI__TG_DUP_BHDR — BATCH HEADER specified twice for
record

Explanation: The Mapper compiler is evaluating record sequence
attributes. It found two BATCH HEADER keywords. This is a Mapper
programming error. Submit a Software Problem Report (SPR) to Digital.



Mapper Error Codes and Messages 9-25
DECEDI__TG_DUP_BKDOC — BREAKON specified twice for record

Explanation: The Mapper compiler is evaluating record sequence
attributes. It found two BREAKON keywords. This is a Mapper
programming error. Submit a Software Problem Report (SPR) to Digital.

DECEDI__TG_DUP_DOCDEF — Two mapping sets have same INT.
DOCTYPE and PARTNER ID

Explanation: The Mapper compiler is evaluating the mapping set
definitions for an incoming table and found two mappings for the same
Digital DEC/EDI internal doctype and partner. It is ambiguous as to
which mapping set to use. Delete one of them.

DECEDI__TG_DUP_FLDTYPE — Type specified more than once for field

Explanation: The Mapper compiler is evaluating record layout
attributes. It found the data type specified more than once for the same
field.

DECEDI__TG_DUP_FLD_NAME — Field or structure has same name as
preceding entity in group

Explanation: The Mapper compiler is evaluating the record layout and
found the field name has already been used.

DECEDI__TG_DUP_FLOATING — FLOATING specified twice for
segment

Explanation: The Mapper compiler is evaluating the document
definition. It found the keyword, FLOATING, twice for the same
segment. This is a Mapper programming error. Submit a Software
Problem Report (SPR) to Digital.

DECEDI__TG_DUP_JUST — Justification specified more than once for
field

Explanation: The Mapper compiler is evaluating record layout
attributes. It found a justification attribute specified more than once for
the same field.

DECEDI__TG_DUP_LBLTYPE — Type specified more than once for label



9-26 Mapper Error Codes and Messages
Explanation: The Mapper compiler is evaluating the document
definitions and found a data type specified twice for this data label. This
is a Mapper programming error. Submit a Software Problem Report
(SPR) to Digital.

DECEDI__TG_DUP_LBL_IN_DOC — Label has same name as a
preceding label in this Document

Explanation: The Mapper compiler is evaluating the document
definitions and found a data label defined more than once for the same
name.

DECEDI__TG_DUP_LKUP_DEF — Lookup Table has same name as
previously specified table

Explanation: The Mapper compiler is evaluating the lookup table
section. It found a table with the same name as the previous table. This is
a Mapper programming error. Submit a Software Problem Report (SPR)
to Digital.

DECEDI__TG_DUP_OCC — OCCURS specified more than once for
record or segment

Explanation: The Mapper compiler is evaluating record layout
attributes. It found an OCCURS specification or an array attribute
specified more than once for the same field.

DECEDI__TG_DUP_REC_NAME — Record/segment has same name as
another in File or Document

Explanation: The Mapper compiler is evaluating record sequence or
document definition and found that the record name or the segment name
is not unique. Record names cannot be the same as segment names.

DECEDI__TG_DUP_SEG_IN_DOC — Segment type has same name as a
preceding Segment type

Explanation: The Mapper compiler is evaluating the document
definition and found that the segment name is not unique. This is a
Mapper programming error. Submit a Software Problem Report (SPR) to
Digital.

DECEDI__TG_DUP_SRC — Same record or segment designated twice in
Context



Mapper Error Codes and Messages 9-27
Explanation: The Mapper compiler is evaluating the SET CONTEXT
field of a map and found the same record or segment specified twice. If
more than one record or segment is specified in the SET CONTEXT
field, they cannot be subordinate to each other.

DECEDI__TG_DUP_SRC_VAR — Records or segments in same variant
designated in Context

Explanation: The Mapper compiler is evaluating the SET CONTEXT
field of the map and found two records that are part of the same variant.
Only one record of a variant can be mentioned in a SET CONTEXT
field.

DECEDI__TG_DUP_TRM_DOC — TERMINATES DOCUMENT
specified twice for record

Explanation: The Mapper compiler is evaluating the record sequence
attributes and found more than one TERMINATES DOCUMENT
keyword. This is a Mapper error. Submit a Software Problem Report
(SPR) to Digital.

DECEDI__TG_EMPTY_REC — Record type specified with zero length

Explanation: The Mapper compiler is evaluating record layout section
and found a record with no fields with a SIZE attribute specified.

DECEDI__TG_EMPTY_VARIANT — No records/segments specified for
VARIANT

Explanation: The Mapper compiler is evaluating the record sequence
fields and found a VARIANT and END VARIANT keywords, but no
records were enclosed.

DECEDI__TG_FLTNG_IN_Application — Record may not have
FLOATING attribute

Explanation: The Mapper compiler is evaluating the record sequence
attributes and found the keyword FLOATING. The keyword FLOATING
is designed only for segments.

DECEDI__TG_FLTNG_SUBORD — Floating segment may not have
subordinates



9-28 Mapper Error Codes and Messages
Explanation: The Mapper compiler is evaluating a document definition
and found the keyword FLOATING on a segment that had subordinate
segments. This is an illegal structure.

DECEDI__TG_FOR_IN_INITS — FOR clause not allowed in
Initializations

Explanation: The Mapper compiler is evaluating the initialization
section and found the FOR keyword. The FOR clause is reserved for
mapping expressions.

DECEDI__TG_ILL_BEG_DOC — BEGINS DOCUMENT specified twice
in line of descent

Explanation: The Mapper compiler is evaluating the record sequence
attributes and found a BEGINS DOCUMENT keyword on a record that
is subordinate to another record that was also marked with the keyword
BEGINS DOCUMENT. You cannot put a document inside of another
document.

DECEDI__TG_ILL_BHDR — BATCH HEADER precedes BEGINS
DOCUMENT in line of descent

Explanation: The Mapper compiler is evaluating the record sequence
attributes and found the keyword BATCH HEADER marking a record
inside of a document. The keyword BATCH HEADER means that it is a
record outside of a document.

DECEDI__TG_ILL_FLTNG — Floating segment has prohibited attribute

Explanation: The Mapper compiler is evaluating a document definition
and found attributes associated with records. This is a Mapper error.
Submit a Software Problem Report (SPR) to Digital.

DECEDI__TG_ILL_FN_REF — Improper function reference

Explanation: The Mapper compiler is evaluating an expression and
found a name followed by open and close parentheses, indicating that it
is a function, but it is not one of the built in functions and it is not one of
the customization functions that have been declared.

DECEDI__TG_ILL_INC — Data in same line of descent specified for
incrementing



Mapper Error Codes and Messages 9-29
Explanation: The Mapper compiler is evaluating the SET CONTEXT
field of a map and found two fields or segments specified where one is
subordinate to the other.

DECEDI__TG_ILL_INSTANCE — Only 1 instance allowed here

Explanation: The instance specifier was not valid or missing in a field
reference that used { }’s.

DECEDI__TG_ILL_JUST — Justification may not be specified with
present type

Explanation: The Mapper compiler is evaluating the record layout
attributes and the data type is not compatible with justification.

DECEDI__TG_ILL_QUAL — Qualification not allowed on present item

Explanation: The Mapper compiler is evaluating an expression and
found a record or segment with an illegal qualification.

DECEDI__TG_ILL_RANGE — RANGE allowed only in NEXTLIST

Explanation: The Mapper compiler is evaluating an expression and
found a an array index specifying a range but is not in the list associated
with a NEXTLIST repeat pattern specification.

DECEDI__TG_ILL_TIMES — TIMES value must be positive number

Explanation: The Mapper compiler is evaluating the repeat pattern field
of a map. It has found a REPEAT n TIMES specification, but the value is
not greater than 0.

DECEDI__TG_IMBEDDED_MANY — Variable-length field must be last
field in record

Explanation: The Mapper compiler is evaluating the record layout
section of the table. It has found a field with an array specification and an
array size of MANY, indicating that it is variable length. However, to be
variable length the field must be the last of a record and in this case, it is
not.

DECEDI__TG_INC_DOC_PARMS — Illegal parameter for INCOMING
table



9-30 Mapper Error Codes and Messages
Explanation: The Mapper compiler is evaluating the record sequence
attributes and has found attributes associated with an OUTGOING
direction.

DECEDI__TG_INC_UNRECOG — Unknown source specified

Explanation: The Mapper compiler is evaluating the SET CONTEXT
field of a map and found an unrecognized record or segment name.

DECEDI__TG_INST_ON_FLD — Instances not allowed on fields, only on
records/segments

Explanation: The Mapper compiler is evaluating an expression in a map
and has found braces {} indicating an instance specification as a qualifier
on a field. See the manual for complete field reference syntax.

DECEDI__TG_MAP_DOC_NOMATCH — Map Set does not match any
Document specified for Table

Explanation: The Mapper compiler is evaluating a mapping set
specification, but cannot find a document specification that matches.
Maybe you deleted the document definition after you created the
mapping set.

DECEDI__TG_MAP_UNDER_DUMMY — Map defined with no parent
map

Explanation: The Mapper compiler is evaluating a mapping set. It found
that a map was defined in the index of maps, but its parent does not have
a map. This map could never be executed.

DECEDI__TG_MISMATCH_FOR_EACH — Context items relate
differently to FOR EACH item

Explanation: The Mapper compiler is evaluating a repeat pattern
specification of a map. It found a FOR EACH pattern, but more than one
record or segment is specified in the SET CONTEXT field. The FOR
EACH pattern only works with one record or segment in the SET
CONTEXT specification.

DECEDI__TG_NO_REC_DEFS — No Record types defined

Explanation: The Mapper compiler is evaluating the record sequence
section of the table, but found no record types.



Mapper Error Codes and Messages 9-31
DECEDI__TG_NO_SIZE — No size specified for decimal number

Explanation: The Mapper compiler is evaluating the field attributes in
the record layout section of the table. It did not find a size for a data type
that required a size.

DECEDI__TG_NO_TYPE_FLD — No type specified for field

Explanation: The Mapper compiler is evaluating the field attributes in
the record layout section of the table, but did not find a data type. It was
not a structure name.

DECEDI__TG_OCC_MIN_GT_MAX — Lower limit for OCCURS greater
than upper limit

Explanation: The Mapper compiler is evaluating the record sequence
attributes for a record and found the MIN specification was larger than
the MAX specification.

DECEDI__TG_REC_MISMATCH — Specified name has no
corresponding record or segment

Explanation: The Mapper compiler is evaluating the record sequence or
the document sequence section and found a record or sequence that had
no layout specification.

DECEDI__TG_REP_BKON — UNTIL appears twice in MAP

Explanation: The Mapper compiler is evaluating the repeat pattern
specification of a map and found the UNTIL keyword twice.

DECEDI__TG_REP_FOREACH — FOR EACH appears twice in MAP

Explanation: The Mapper compiler is evaluating the repeat pattern
specification of a map and found the FOR EACH keyword twice.

DECEDI__TG_REP_NEXTLIST — NEXT LIST appears twice in MAP

Explanation: The Mapper compiler is evaluating the repeat pattern
specification of a map and found the NEXT LIST keyword twice.

DECEDI__TG_REP_NOCH — NO CHANGE appears twice in MAP

Explanation: The Mapper compiler is evaluating the repeat pattern
specification of a map and found the NO CHANGE keyword twice.



9-32 Mapper Error Codes and Messages
DECEDI__TG_REP_TIMES — TIMES appears twice in MAP

Explanation: The Mapper compiler is evaluating the repeat pattern
specification of a map and found the REPEAT n TIMES keywords twice.

DECEDI__TG_SRC_VAR_NAME — Cannot use VARIANT name in
Context specification

Explanation: The Mapper compiler is evaluating the SET CONTEXT
clause of a map and found the name given to the VARIANT. Specify one
of the records within the variant.

DECEDI__TG_SUBSCR_MISMATCH — Number of subscripts disagrees
with number declared

Explanation: The Mapper compiler is evaluating an expression and
found a field reference containing the wrong number of subscripts. The
number of subscripts must match the declaration.

DECEDI__TG_SUBSCR_ON_REC — Subscripts not allowed here (only
on fields)

Explanation: The Mapper compiler is evaluating an expression and
found a global variable or record name qualified with subscripts. Only
fields on records and data labels in segments can be arrays.

DECEDI__TG_TOO_MANY_POINT_AT — Too many Context items.
Max. is 25

Explanation: The Mapper compiler is evaluating the SET CONTEXT
clause of a map and found more than 25 items listed.

DECEDI__TG_TRM_DOC_SUBORD — TERMINATES DOCUMENT
cannot have subordinates

Explanation: The Mapper compiler is evaluating the record sequence
attributes and found that a record marked with TERMINATES
DOCUMENT has subordinate records. The keyword TERMINATES
DOCUMENT means that this is the last record of a document and cannot
have a subordinate.

DECEDI__TG_UNK_FUNC — Unknown function called



Mapper Error Codes and Messages 9-33
Explanation: The Mapper compiler is evaluating an expression and has
found a function, but the function name is not a built-in function nor is it
one of the user-defined customization routines.

DECEDI__TG_VACANT_FLD — No data or space specified for field

Explanation: The Mapper compiler is evaluating the record layout and
has found a field that does not have a size that is explicitly specified by
the SIZE attribute or implied by the data type.

DECEDI__TG_VACANT_STRUCTURE — No data or space specified for
structure

Explanation: The Mapper compiler is evaluating the record layout and
has found a field defined as a structure (or implied as being one because
it has no attributes). However, no fields are subordinate to the structure.

DECEDI__TG_VACANT_VARIANT — No data or space specified for any
field under VARIANT

Explanation: The Mapper compiler is evaluating the record layout and
has found VARIANT and END VARIANT keywords. It contains fields,
but none of the fields have a size. Most likely, something is wrong with
the field layout specification.

DECEDI__TI_BAD_VALUE — TEST_INDICATOR value, as specified in
the Mapping Table, illegal

Explanation: This error message usually indicates an error in the
command line. The TEST INDICATOR value submitted is not allowed.

DECEDI__TI_MISMATCH — TEST_INDICATOR value incompatible
with the Mapping Table

Explanation: The Mapper runtime is starting up and found that the test
indicator specified using the Mapping Table Editor (or its default in the
table) is not compatible with the test mode (TEST or LIVE) set in the
application ID of the table attributes section.

DECEDI__TI_MISMATCH_DOC — Document’s TEST_INDICATOR
incompatible with Mapping Table

Explanation: The Mapper runtime has just received a document from
the Digital DEC/EDI Translation Service and has found that the test



9-34 Mapper Error Codes and Messages
indicator value on the document does not match the specified value of
the test indicator as defined in the Mapping Table Editor (or the default
in the table).

DECEDI__TRUNCATED — Record Returned was Truncated

Explanation: Incoming data label is too big for space provided. User
should not get this error, submit an SPR.

DECEDI__UI_NO_DIRECTION — The Mapping table does not have the
direction set

Explanation: The Mapper compiler is evaluating the table attributes
section of the Mapping Table, and found that the direction was not set to
INCOMING or OUTGOING.

DECEDI__UNKNOWN_ATTRIBUTE — Unknown Attribute

Explanation: The Mapper compiler is parsing the field attributes in the
record layout section of the table, and found an unknown keyword.
Check for a missing or misplaced semicolon (;).

DECEDI__USER_PGM_ERROR — User-specified error ($ERROR)

Explanation: The Mapper runtime is processing a mapping assignment
and has found the value $ERROR. This means that the user is declaring a
Soft Error.

DECEDI__WRONG_NO_ARGS — Incorrect number of function
arguments

Explanation: The Mapper runtime is evaluating a mapping expression
and has found a function call. The number of arguments being passed do
not match with those in the declaration.

DECEDI__NO_OUTPUT_RECEIVE — Normal completion — no
documents generated — RECEIVE

Explanation: Informational message stating that the FETCH operation
completed successfully and did not generate any documents.

DECEDI__NO_OUTPUT_SEND — Normal completion — no documents
generated — SEND



Mapper Error Codes and Messages 9-35
Explanation: Informational message stating that the POST operation
completed successfully and did not generate any documents.

DECEDI__NO_OUTPUT_TM_RECEIVE — Normal completion — timed
out, no documents generated — RECEIVE

Explanation: Informational message stating that FETCH operation
timed out because it could not generate any documents from Digital
DEC/EDI. This error message may occur because Digital DEC/EDI can
not find any of the data, or if Digital DEC/EDI is not running.

%NONAME_I_MSG %X00DA2C3 followed by a Bugcheck

Explanation: This is an Rdb message. It may mean that your account
does not have a high enough Enqueue quota. Ask your system manager
to check that you have enough quotas on your account to run Rdb.

DECEDI__SUCCESS_RECEIVE — Normal completion — RECEIVE

Explanation: Mapper FETCH operation completed successfully.

DECEDI__SUCCESS_SEND — Normal completion — SEND

Explanation: Mapper POST operation completed successfully.

DECEDI__ONESOFT — SOFT ERROR: Document Aborted

Explanation: This is the same as %DECEDI__SOFTERROR except
there are no more documents that follow. This would be used in a single
document run or on the last document of a run if it should have an error.

DECEDI__PART_RECEIVE — One or more documents generated — one
or more aborted — RECEIVE

Explanation: The Mapper FETCH operation completed successfully
with one or more documents generated and one or more documents
aborted.

DECEDI__PART_SEND — One or more documents generated — one or
more aborted — SEND

Explanation: The Mapper POST operation completed successfully with
one or more documents generated and one or more documents aborted.



9-36 Mapper Error Codes and Messages
DECEDI__SOFTERROR — SOFT ERROR: Document Aborted,
Continuing with the next document

Explanation: Indicates that the preceding error messages have been
overridden and the Mapper has aborted the current document. It will
attempt to continue processing with the next document. On incoming
documents, this means that the current document has been aborted and
will require manual intervention in Digital DEC/EDI to reprocess the
document. For an outgoing document, the document in the application
file has been skipped. Use the RESTART and MATCH=FIRST options
in the Mapping Table Editor.

DECEDI__ZERO_RECEIVE — No documents generated — one or more
documents aborted — RECEIVE

Explanation: The Mapper FETCH operation completed successfully
with no documents generated and one or more documents aborted.

DECEDI__ZERO_SEND — No documents generated — one or more
documents aborted — SEND

Explanation: The Mapper POST operation completed successfully with
no documents generated and one or more documents aborted.

COSI__DECOVF

Explanation: Packed decimal overflow error. Severe error. Number to
big too fit.

COSI__FLTOVF

Explanation: Floating overflow error. Severe error. Number too big to
fit.

COSI__FLTUND

Explanation: Floating underflow error. Severe error.

COSI__INTOVF

Explanation: Integer overflow error. Severe error. Number too big to fit.

COSI__INVCLADSC



Mapper Error Codes and Messages 9-37
Explanation: Invalid class in descriptor. This class of descriptor is not
supported. Severe error. Users should never see this error. Please submit
an Software Problem Report (SPR) to Digital.

COSI__INVCLADTY

Explanation: Invalid class and data type in descriptor. This class and
data type combination is not supported. Severe error. Users should never
see this error. Please submit an Software Problem Report (SPR) to
Digital.

COSI__INVCVT

Explanation: If the source value is negative and the destination data
type is unsigned, this error is returned.

COSI__INVDTYDSC

Explanation: Invalid data type in descriptor. This data type is not
supported. Severe error. Users should never see this error. Please submit
an Software Problem Report (SPR) to Digital.

COSI__INVNBDS

Explanation: Invalid number. There is an invalid character in the input,
or the value is outside the range that can be represented, or there is a
programming error.

COSI__OUTSTRTRU

Explanation: Output string truncated. This is returned only when NBDS
is both source and destination and no scaling is requested. The result is
truncated.

COSI__ROPRAND

Explanation: Reserved operand error. Severe error. Users should never
see this error. Please submit an Software Problem Report (SPR) to
Digital.



9-38 Mapper Error Codes and Messages



Part III Digital DEC/EDI Mapping
Topics
This part of the book contains detailed information on the following
mapping topics:

• Attributes

• Files

• Importing Digital DEC/EDI Data

• Detail

• Expressions

• Lookups

• Constructs

• Hooks

The final chapter is a glossary of general Digital DEC/EDI terms.





Chapter 10 Mapping Table Attributes
This chapter describes how to specify table attributes when defining a
Mapping Table. You can do this either when you first create a Mapping
Table, or (for most of the possible attributes) at a later date.

The following illustration shows the Mapping Table Attributes screen.

Figure 10-1 The Mapping Table Attributes Screen



10-2 Usage
When you define a new Mapping Table, the screen is displayed
automatically. In editing the attributes of an existing table, you can display
the screen by double-clicking on the Mapping Table header.

The screen has the following four tabbed parts:

• Usage

Use this to supply mandatory details such as, the name of the table and
the transmission direction to which it applies. You may also include a
brief description of the table, purely for personal notes.

• Security

Use this to specify which applications can use the Mapping Table.

• Defaults

Use this to define the default values for the Mapping Table.

• Auditing

Use this only if you want to select points on the transmission route where
you may collect auditing and debugging information.

The following sections discuss each part in more detail. Note that the online
help contains information about entries for all the fields in each part.

Usage
In Usage, you may specify the following:

Table Name Give the table a name of the form, NAME.FBI. You can not
change the name of an existing Mapping Table.

Direction This indicator determines whether the Mapping Table is
defined for Incoming or Outgoing files. You can not change
the direction of an existing Mapping Table.

Table Notes Enter any notes you wish to make about the table. These are
for documentation purposes only.
MAPPING TABLE ATTRIBUTES



Security 10-3
Security
You use the Security tab dialog to define the applications that may use a
particular mapping table.

The following rules apply:

• The screen allows you to assign a maximum of twenty application IDs to
a table. You must assign at least one application ID before you compile
the Mapping Table.

• The application IDs you list here must correspond exactly with
application IDs defined in the Digital DEC/EDI trading partner profile.

• At runtime, when the application sends or fetches a file of document
data, the Application Client call specifies the required Mapping Table
and the application ID; the application ID can alternatively be specified
as a default runtime qualifer. The application ID specified in the call, or
as a default, must match one of the list of application IDs assigned to the
mapping table.

• You may specify the special value of “ANY” to allow any registered
application to use this mapping table. In this case, you need to give the
named_application option in the Application Client call.

Defaults
You assign default qualifiers to a Mapping Table by selecting the Defaults
option. These apply at runtime, however, if required, you can override the
defaults in the Application Client call.

For example, you can assign a default application, document type and
trading partner to an incoming table, to specify that the table will be used for
mapping documents of a particular type, received from a particular trading
partner, and destined for a particular receiving application.

In general, it is recommended that you use qualifiers in the Application
Client call to specify how a file of document data is to be mapped, rather
than relying on runtime default qualifiers. In this way the control of
document data rests at the Client end, where it properly belongs; also there
is less likelihood of a file receiving unexpected treatment because of
defaults that had been set up and then overlooked.
MAPPING TABLE ATTRIBUTES



10-4 Auditing
On the Defaults part of the screen, you enter any default values you require
in the fields described below.

Auditing

You may use Audit Controls to specify the level of audit and debugging
information — if any — that is to be recorded when the Mapping Table is
used. On the Auditing part of Mapping Table screen, you select various
points at which auditing and debugging information is to be gathered. The
use of the Audit Controls is optional.

Application ID Enter a default value for the Application ID to be used in
the processing of the documents.

Object Name Enter a default value for the Object Name to be processed
by the Mapper.

Partner ID Enter a default value for the name of the Trading Partner
with whom you want to exchange documents mapped with
this table. The Trading Partner Profile must be defined in
the Digital DEC/EDI Server.

Timeout In the incoming direction only, enter the number of
seconds after which the mapper should time out when
fetching documents.

Mail Enter the E-mail address of an account to be notified of any
SOFT ERROR or HARD ERROR failures.

User Reference Enter a default override for the global variable $USERREF
in the Mapping Table.

Test Indicator Select a default value for the test indicator, or leave the
field blank. You can choose from Live, Partner Test,
Translator Test or Local Test.

Priority Select Normal, Immediate or leave the field blank to
signify Unspecified. This qualifier applies in the outgoing
direction only.

Match Select First, All or leave the field blank to signify
Unspecified.
MAPPING TABLE ATTRIBUTES



Auditing 10-5
Note that as you increase the number of points where you require auditing
information, the time taken to transmit a given document also increases. In
order to acheive optimum transmission time, it is recommended that you
refine the amount of auditing information you require in relation to the
volume of traffic on the links to your various trading partners.

Some of the following controls can be applied to only one direction of
transmission: the remainder can be applied to either direction.

Start of
Processing

For outgoing Mapping Tables only.

When you set the Process Start indicator, the Mapper
keeps a copy of the Outgoing Application File submitted
by the Application Client at the start of processing. The
Mapper does not try to interpret the data.

After
Preprocessing

For outgoing Mapping Tables only.

When you set the Preprocess indicator, the Mapper keeps
a copy of the Outgoing Application File after it has been
processed by the User Defined Custom Routine, defined at
the Preprocess hook point. The Mapper does not try to
interpret the data.

After Record
Hook

For outgoing Mapping Tables only.

When you set the Record Hook indicator, the Mapper
keeps a copy of the Outgoing Application File records after
each record has been modified by the User Defined
Custom Routine, defined at the Record hook point. The
Mapper does not try to interpret the data.

Digital
DEC/EDI
Internal
Format File

For outgoing and incoming Mapping Tables.

When the direction is outgoing, the Mapper keeps a copy
of the Digital DEC/EDI Internal Format File generated by
the Mapper for processing by the Digital DEC/EDI
Translation Service.

When the direction is incoming, the Mapper keeps a copy
of the Digital DEC/EDI Internal Format File received from
the Digital DEC/EDI Translation Service for processing by
the Mapper. The Mapper does not try to interpret the data.
MAPPING TABLE ATTRIBUTES



10-6 Auditing
Custom
Routine
Arguments

For outgoing and incoming Mapping Tables.

When you set the Custom Routine Arguments indicator,
the Mapper creates a file detailing each call to a User
Defined Custom Routine for which auditing is enabled.
The Mapper does not try to interpret the data.

Mapping Table For outgoing and incoming Mapping Tables.

When you set the Mapping Table indicator, the Mapper
keeps a copy of this Mapping Table in compiled form, for
every mapping request it is used in. The Mapper does not
try to interpret the data.

Before
Postprocessing

For incoming Mapping Tables only.

When you set the Before Postprocessing indicator, the
Mapper keeps a copy of the incoming Application File
before it has been processed by the user-defined custom
routine defined at the Postprocess hook. The Mapper does
not try to interpret the data.

End of
Processing

For incoming Mapping Tables only.

When you set the End of Processing indicator, the Mapper
keeps a copy of the incoming Application File at the end of
processing, as fetched by the Application Client. The
Mapper does not try to interpret the data.
MAPPING TABLE ATTRIBUTES



Chapter 11 Specifying Application
Files
This chapter describes how to specify application files when defining a
Mapping Table using the Mapping Table Editor.

An application file is the file containing document data, sent or received by
the user application. For outgoing documents, the file is created by the
application and passed to the Mapper. For incoming documents, the file is
created by the Mapper and passed to the application.

For each type of file, in each direction, you need to specify the the sequence
of records in the file and the layout of the fields in each record.

Digital DEC/EDI provides predefined templates to help you do this. You
may also develop your own templates.

Getting Record Layouts
In specifying the Record Layouts in a Mapping Table, you can import a
named Record Layout template file that is either predefined and supplied
with Digital DEC/EDI or one that you have generated yourself. Record
Layout files that you generate are based on the Record Layouts of existing
Mapping Tables.

You access these options from the Layout menu which is included on the
menu bar when the Records window is active in the Mapping Table Editor.

To get a Record Layout, select the Add option, the Layout option, and then
enter the name of the layout in the dialog that is displayed.



11-2 Entering or Editing the Record Sequence
To get a predefined Record Layout template, select the Pilot... option, and
then select the Template button, displayed on the Application File Pilot
dialog.

Note that you also use this dialog to generate layout.

Refer to the online help for details on your options.

Entering or Editing the Record Sequence
You define (or edit) a record sequence for the application file, and define the
nested relationships between records by using the options on the Sequence
menu. The menu is added to the menu bar when the Sequence window in the
Mapping Table Editor is active. The Mapper uses the information you enter
to determine the order in which it can expect to encounter records in the
data.

Refer to the online help for detailed information.
SPECIFYING APPLICATION FILES



Entering or Editing the Record Sequence 11-3
The fields on the entry screen are as follows:
SPECIFYING APPLICATION FILES



11-4 Entering or Editing the Record Sequence
LEVEL This is the level number of the record. The level number
indicates the record’s nested position in relation to other
records in the file. The first record will be a level 1 record.
Those records that are siblings of the first record type will
also be level 1.Records subordinate to the first will be level 2.
Those records subordinate to it will be level 3 and so forth,
defining the nesting of the hierarchy. Level 0 is not used.
SPECIFYING APPLICATION FILES



Entering or Editing the Record Sequence 11-5
The Mapper assumes that any given Application File might contain more
than one record type. It also assumes that the data in the Application File is a

Record Type This is the name of the record type as defined in the
Enter/Edit Record Layouts screen. This record type name is
used during the mapping process to identify a record in the
source.

Although not very common, the same record layout can
appear in the source as subordinate to different parent record
types, the Mapper has to know which place in the source tree
the record refers to. In such cases, the name has to be unique.
To make it unique, the Mapper requires the suffix, hash sign
and a number (#n). If the Mapper discovers an Record Type
name that is duplicated, it displays an error message, which
recommends adding the suffix.

You can also use the keywords VARIANT and END
VARIANT in this field to indicate a variant record. The rules
governing VARIANT and END VARIANT keywords are:

• The level number of the VARIANT and END VARIANT
must be the same.

• The keywords VARIANT and END VARIANT bracket
and apply to records with the same level number and
indicate that the records can appear in any order
subordinate to a parent record. The level number of the
VARIANT and END VARIANT keywords must be the
same as records they bracket.

• The keyword VARIANT can have a name associated with
it. The name then becomes a synonym for the list of record
names that the keywords VARIANT and END VARIANT
bracket and apply to. The syntax is:

2 VARIANT name
2 record

.

.

.
2 END VARIANT
SPECIFYING APPLICATION FILES



11-6 Entering or Editing the Record Sequence
tree structured sequence and that the highest level record appears in the
record stream before a record that is subordinate to it.

You must specify to the Mapper the order, or sequence, in which it can
expect to find the records in an Application File. You have to specify the
kinds of records that can follow in a subordinate relationship any other kind
of record. You do this using level numbers to show subordination.
Generally, there are three basic types of subordinate relationships between
records in tree structures:

• Parent to child relationships

• Sibling relationships

• Variant relationships

The following subsections describe how to specify these types of
relationship.

Parent to Child Relationships
A parent is a record type that has zero or more subordinate (child) record
types. Each child record type in turn is a parent to zero or more child record
types.

Suppose, for example, an application file contains data for invoices from an
accounts receivable program. For each invoice record type there is at least
one and possibly many line-item record types. Figure 11-1 Invoices
illustrates such an application.
SPECIFYING APPLICATION FILES



Entering or Editing the Record Sequence 11-7
Figure 11-1 Invoices

This invoice application would be expressed in the tree structure shown in
Figure 11-2 Invoice Tree Structure. Below is a description on how
Figure 11-2 Invoice Tree Structure is set up.

Figure 11-2 Invoice Tree Structure

Sibling Relationships
In a sibling relationship, a record can have more than one type of record
subordinate to it. In such a relationship, child records have the same parent,
but are of different record types.

Suppose an Application File contains data for invoices from an accounts
receivable program, and that each invoice has, in addition to line-item
records, a reference information record that provides data relevant to the

invoice

line
line item
line item
.
.

item

invoice

line
line item
line item
.
.

iteminvoice

line
line item
line item
.
.

item

invoice

line
line item
line item
.
.

iteminvoice

line
line item
line item
.
.

item

invoice

line
line item
line item
.
.

item

Sample Sequence Mapper Syntax
Level Record

invoice

line-Item invoice... invoice 01 invoice
line-Item 02 line-item

. line-item line-item... line-item line-item

.
invoice

line-item
line-item
SPECIFYING APPLICATION FILES



11-8 Entering or Editing the Record Sequence
invoice as a whole. Figure 11-3 Invoices With Sibling Records illustrates
such an application.

Figure 11-3 Invoices With Sibling Records

As you can see, records of type reference and records of type line-item are
both subordinate to a record of type invoice.

Figure 11-4 Sibling Construct shows how a tree for a set of sibling records is
expressed. The B’s and C’s are subordinate to A, but the C’s are not
subordinate to the B’s as in the parent to child relationship described earlier.
In the record stream for records in a sibling relationship, all of the B records
subordinate to an A record come before all of the C records subordinate to
that same A record.

invoice

line
line item
line item
.
.

item

invoice

line
line item
line item
.
.

iteminvoice

line
line item
line item
.
.

item

invoice

line
line item
line item
.
.

iteminvoice

line
line item
line item
.
.

item

invoice

line item
line item
.
.

reference
SPECIFYING APPLICATION FILES



Entering or Editing the Record Sequence 11-9
Figure 11-4 Sibling Construct

Below is a description of how Figure 11-4 Sibling Construct is set up.

Notice that the reference record types always appear in the file before the
line-item record types for each invoice record. Siblings are ordered so that
all records of one type appear in the record stream before all records of the
next type for the same parent record. This is demonstrated in the example.
The 2 records are ordered so that the reference record type comes before the
line-item record types for each invoice record.

Variant Relationships
Variant structures are similar to Sibling structures, except that their records
are mingled together. Records from a set of variant record types subordinate

Sample Sequence Mapper Syntax

Level Record Name
invoice

line-Item 02 reference
line-Item reference line-item... 02 line-item
.
.

invoice

line-item
line-item

.

reference invoice ...invoice 01 invoice

reference

Sample Sequence Shows the sequence of records as it would occur in the
application file.

Tree Shows how the Mapper would organize the sample
sequence into a tree.

Mapper Syntax Shows the Mapper notation as you would enter it.

The 2 level number indicates there can be reference
record types and line-item record types subordinate to
each 1 invoice record type.
SPECIFYING APPLICATION FILES



11-10 Entering or Editing the Record Sequence
to the same parent can appear in the file in any order. This is demonstrated in
Figure 11-5 Variant Construct.

Figure 11-5 Variant Construct

The invoice record is parent to both reference and line-item records. These
reference and line-item records can appear in any order subordinate to the
invoice record. It is still true that the reference record contains information
that applies to the invoice record as a whole and not to a specific line-item or
group of line-item records. The difference between the Variant structure and
the Sibling structure is that you cannot be sure where in the record stream the
reference record will appear. All you know for sure is that it will be
subordinate to the invoice record.

Below is a description on how Figure 11-5 Variant Construct is set up.

This type of structure is not very common, but it could occur in both the
Application Data File and in the Digital DEC/EDI document type structure.

Sample Sequence Mapper Syntax

Level Record Name

invoice

reference 02 VARIANT

line-item line-item reference... 02 line-item
. 02 reference
. 02 END VARIANT

invoice

line-item
reference

.

.

line-item invoice ...invoice 01 invoice

line-item

Mapper Syntax Shows how you would describe this Variant relationship to
the Mapper. The keywords VARIANT and END
VARIANT tell the Mapper to expect the reference and
line-item records in any order and to deal with them
accordingly.
SPECIFYING APPLICATION FILES



Entering or Editing the Record Sequence 11-11
Use Variant structures when you cannot rely on having an ordered Sibling
relationship.

Combined Relationships
By combining these constructs, you can describe any tree structure.
Figure 11-6 Combinations of Constructs shows how parent to child, sibling
and variant relationships can be combined in one description.

Figure 11-6 Combinations of Constructs

In Figure 11-6 Combinations of Constructs you can see a combination of the
parent to child, sibling, and variant constructs. The A record has a parent to
child relationship with 2 level B, C and D records. The B, C and D records
have a sibling relationship. The 3 level E and F records have a variant
relationship, and E is the parent record to the 4 level record G.

Sample Sequence Mapper Syntax

Level Record NameA
B
E
G
G
:

F
F
E
G
G
:

:
:
C
G
G

D
:

01
02
03
03
04

03
03

02

03

02

B

F

A

VARIANT
E
G

END VARIANT
C
G#1
D

SPECIFYING APPLICATION FILES



11-12 Entering or Editing the Record Sequence
Notice that there can also be child G records to parent record C as well as to
parent record E. The syntax, G#1, refers to the G records that are
subordinate to C records and points out that they are the same record types
but in a different position in the tree.

Entering Record Attributes — Outgoing
The Record Attributes — Outgoing screen screen allows you to enter
attribute information about each record in the application file.

The fields for the Enter Record Attributes — Outgoing screen are:

MIN This is the minimum number of instances of this type
that can appear at this point under a parent instance in
the record sequence. Enter 0 if the instance is optional.
If you enter 1 or more, and the Mapper finds less than
that number of child instances under this parent, it
generates a Mapper error at runtime. This is how you
can specify mandatory records.

MAX This is the maximum number of instances of this type
that can appear at this point under a parent instance in
the record sequence.

If the Mapper finds more than the specified maximum
number, it generates an error at runtime. If you want to
allow some unknown large number of instances, enter
the keyword MANY. This will prevent validation on
occurs limits at runtime.

BATCH HEADER Mark this box if this record applies to more than one
document. All records that are not at or subordinate to a
level marked with BEGINS DOC should be marked as
a batch header.
SPECIFYING APPLICATION FILES



Entering or Editing the Record Sequence 11-13
RECOGNITION
EXPRESSION

This field is for a conditional expression that the
Mapper uses to recognize a record type in the record
stream. This field is necessary only when the Mapper is
reading records from your Application Data File that
contains data for an outgoing EDI document.

It is not needed to describe records in a Mapping Table
for an Incoming document direction. Normally, the
recognition expression is the record code, which is one
of the fields on the record, but it can be any expression
that evaluates to TRUE.

BEGINS DOC This field specifies that each instance of this level is the
start of a set of data for a new document. This
information is used by the Mapper to identify the batch
header records and the beginning of a new document
when processing a file containing data for an outgoing
document.

When the Mapper encounters a record that matches the
type of the record type on a level marked as the
beginning of a document, it knows that this record and
all records subordinate to this level in the tree (or
terminated with an end-of-file record) are part of one
document. The Mapper stops reading the record stream
and processes the data for the document before
continuing to read records.

Several different levels can be marked as the beginning
of a document if different types of records indicate the
beginning of different types of documents. The rule is
that a record or segment cannot be marked as the
beginning of a document if it is subordinate to any other
record or segment that is marked as the beginning of a
document.
SPECIFYING APPLICATION FILES



11-14 Entering or Editing the Record Sequence
ENDS DOC This field specifies a level with a record type that will
always be the last record in a document. This field is
optional. It is only needed when the input is not an
actual application file but rather a record stream from a
mailbox where there might be delays between
documents.

In such cases, it would be useful to insert a record in the
record stream to indicate that the previous document is
complete so that the Mapper can proceed with
processing the document without having to wait until it
encounters the beginning of the next document.

Always make certain that the record identified with the
ENDS DOC specifier is subordinate to the record that
has the BEGINS DOC specification.

For example, if the BEGINS DOC was at the 2 level,
the ENDS DOC record must be at level 3.

$DOCTYPE This is a value the Mapper can use to obtain the value
for the global variable, $DOCTYPE, for the document
being processed. The Mapper uses this value, along
with the value of the global variable, $PARTNER, to
identify the mapping set to be used. The Mapper
evaluates this expression each time a record is placed at
this level in the source. The expression can contain
constants, global variables, and fields from the record
that was just placed at this level, or from the record’s
parent.

$PARTNER This is a value the Mapper can use to obtain the value
for the global variable, $PARTNER.

The Mapper uses this value, along with the value of the
global variable, $DOCTYPE, to identify the set of
mappings to be used. As the Mapper is filling the
source tree using the data in the application file, it
evaluates this expression each time a record is placed at
this level. The expression can contain constants, global
variables, and fields from the record that was just
placed at this level, or the record’s parent.
SPECIFYING APPLICATION FILES



Entering or Editing Record Layouts 11-15
Enter Record Attributes — Incoming
The Enter Record Attributes — Incoming screen allows you to enter
attribute information about each record in the application file.

The fields for the Enter Record Attributes — Incoming screen are:

Entering or Editing Record Layouts
You use the Layout menu to insert, modify or delete Record Layouts. The
Layout menu is included on the menu bar when the Layout screen is active.

Refer to the online help for detailed information. The fields on the entry
screen are as follows:

When you reference indexes, note that the first element is numbered 1, not
0.

A record type is a specific layout of fields on a record. Record type layouts
describe the order in which the fields appear for each record type that might
be included in an application file. If you were writing a COBOL program,
for example, these record type definitions would be in the FD section.

The fields must be described on this screen in the order that they appear on
the record. The sequence of fields is notated in the same manner as COBOL
records — with level numbers — except that the numbers must be

MIN This is the minimum number of instances of this type that can
appear under a parent instance in the record sequence.

Enter 0 if the instance is optional. If you enter 1 or more, and the
Mapper finds less than that number of child records under this
parent, it generates a Mapper error at runtime. This is how you
can specify mandatory records.

MAX This is the maximum number of instances of this type that can
appear under a parent instance in the record sequence. If the
Mapper finds more than the specified maximum number, it
generates a Mapper error at runtime.

If you want to allow some unknown large number of instances,
enter the keyword MANY. This will prevent validation on occurs
limits at runtime.
SPECIFYING APPLICATION FILES



11-16 Entering or Editing Record Layouts
consecutive (levels cannot be skipped). Level numbers specify the nesting
of fields on the record. The format of the level numbers is 1 for the highest,
2 for the next and so forth.

You can define fields that overlay or redefine the same space within a
record. Similar flexibility is found in variant structures unions (in C and
Pascal), and the REDEFINES clause (in COBOL). Such fields are
implemented in the Mapper using the special keywords VARIANT and
END VARIANT for the field name within the record layout. Those fields
between the VARIANT and the END VARIANT keywords overlay or
redefine the same space within the record.

Field names must be unique within the same structure (at the same level
number) on the record. This is true in most programming languages. The
special keyword FILLER can be used as a field name without regard to
uniqueness.

Many languages insert default alignments for these fields. The Mapper
assumes no implied alignment. Therefore, if a record has fields that have
been aligned, it may be necessary to explicitly insert filler fields.

These data types are in two categories, those that are OpenVMS primitive
data types and those that are not. In addition, the Mapper supports several of
the more common IBM data types.

Tru64 UNIX Note: If a binary field must be defined as the first field of a record then the
application file must have at least a carriage return character at the end of
each record.

Application File Batching
An Application File may contain data for several EDI documents, to be sent
to the same Trading Partner. In some cases, documents must be batched
together in the same EDI Transmission File, as the documents contain
related information.

For example, in the UK, the EDIFACT TAXCON message must be sent in
the same transmission file as all the INVOIC messages which it
summarizes.

It is not always convenient to rely on the Transmission File Builder’s build
schedule to place these in the same Transmission File.
SPECIFYING APPLICATION FILES



Entering or Editing Record Layouts 11-17
To guarantee that documents are batched in the same transmission file,
Application File Batching must be enabled by setting this field to “X” by
selecting the Application File Batching box in the Usage tab of the Mapping
Table Details screen.

At Runtime, if Application File Batching is enabled, then for each
Application File submitted, the Mapper begins a new batch.

While processing the Application File, for each document in the Application
file, the Mapper determines the Application ID, Trading Partner and Test
Indicator. Each time one of these changes, it marks the the current batch as
complete, and starts a new batch.

If these parameters remain unchanged for a given Application File, the
Mapper marks all the documents from that Application File as belonging to
the same batch.

If the parameters change, for example by having a Batch Header record that
specifies a new Trading Partner, you may have an Application File contains
batches of documents for several Trading Partners.
SPECIFYING APPLICATION FILES



11-18 Entering or Editing Record Layouts
SPECIFYING APPLICATION FILES



Chapter 12 Importing Digital DEC/EDI
Document Data
This chapter describes how to import document definitions from the
Translation Service into the Mapping Service.

A document definition consists of a document structure and a set of data
labels representing an EDI document format. The Mapping Service needs
this information, so that it can convert document data between the
application file format passed between the user application and the Mapping
Service, and the internal file format passed between the Mapping Service
and the Translation Service.

Before you can import the data labels into the Mapping Service, they must
already have been set up on the Translation Service. You need to understand
how the data labels represent the EDI document format. These topics are
covered in Document Definitions and Data Labels on page 12-1.

The subsequent sections of this chapter then describe how to import the
definitions into the Mapping Table Editor. You need to do this for each
document that is going to be handled by the Mapping Table Editor, in either
direction.

It is important to make sure that Mapping Tables stay synchronized with the
definitions of internal documents. Should any document definition or data
labels change on the Translation Service, you must re-import the document
definition into the Mapping Table, edit the mapping itself to take account of
the new format or labels, and recompile the table.

Document Definitions and Data Labels
A document definition consists of a set of data labels representing an EDI
document format. The Mapping Service needs this information, so that it



12-2 Document Definitions and Data Labels
can convert document data between the application file format passed
between the user application and the Mapping Service, and the internal file
format passed between the Mapping Service and the Translation Service.

Each data label is a symbol representing a document (sub)element: that is, a
subelement in the case of an EDIFACT/ODETTE document.

The internal file format consists essentially of a sequence of data labels and
assigned data values. It also contains special data labels with no assigned
value, to represent structures such as hierarchic groupings and repetitions.

Before you import a document definition into the Mapping Service, the
required data labels must already be set up on the Translation Service. This
can be done automatically, by using the Data Label Generator. Examples
of the set-up procedure are described in the Digital DEC/EDI: User’s
Guide, and the Digital DEC/EDI commands are fully defined in this book.

Setting up data label tables on the Translation Service may or may not be
done by the same person who sets up Mapping Tables on the Mapping
Service. In either case, when you come to import a document definition
from the Translation Service into the Mapping Service, it is helpful to
understand the following points:

1. Each data label represents a (sub)element path within a segment. Taking
each segment in turn, you need to devise a data label for every
(sub)element.

The purpose of a data label is to tell the Translation Service whereabouts
within the segment a particular data value belongs.

2. Every label must represent a unique (sub)element portion.

3. If an entire segment appears more than once in a document type (and in
other document types) then the same data labels can and must be used in
each case, since they represent the same paths within the segment.

For example, a purchase-order might have a header segment specifying
the default delivery address, and then a number of detail segments
specifying different delivery addresses for particular items on the order.
In this structure you would use the same data labels for each occurrence
of the segment.

When you import a document definition from the Digital DEC/EDI Server
into the Mapping Table Editor, you provide the Mapping Table with all the
information it needs about the document format:
IMPORTING DIGITAL DEC/EDI DOCUMENT DATA



Import Document Definitions from Digital DEC/EDI 12-3
• The sequence of segments in the document. This includes repeating
segments and repeating groups of segments (loops); loops can be nested.

• The data labels that represent each (sub)element path in a segment, for
each segment in the document. These also represent nested groups,
qualified segments, qualified (sub)elements, and repeating
(sub)elements.

Import Document Definitions from Digital
DEC/EDI

The Select Document screen enables you to extract a document definition
directly from the Digital DEC/EDI Server. The EDI Document Extract
screen is shown in Figure 12-1 EDI Document Extract.

Figure 12-1 EDI Document Extract

First, select the EDI Documents option from either the Map Navigator or
the Mapping menu. Then, select the Extract Document... option from the
Server menu to display the screen. Use the filters to narrow the scope of
your search.
IMPORTING DIGITAL DEC/EDI DOCUMENT DATA



12-4 Import Document Definitions from Digital DEC/EDI
If you need any further information about the options on the screen, refer to
the online help.
IMPORTING DIGITAL DEC/EDI DOCUMENT DATA



Chapter 13 Mapping in More Detail
This chapter describes mapping table parts and concepts with regard to the
mapping between an application file format and an internal document
format.

You need to specify a mapping for every combination of application file and
internal document that the Mapper is going to process. Chapter 16
Supported Mapping Constructs gives further information about the mapping
structures you can use.

Mapping is the process of rearranging and manipulating data as it is moved
from a source tree to a destination tree into the correct format and order. In
other words, mapping is the process which the Mapper goes through to
move data from the document side to the file side, or the reverse.

During the mapping process, the Mapper uses a pull strategy to pull data
elements from the source tree to data elements in the destination. The
movement of data elements is done by assignment statements.

To keep track of all these assignments, you group them for the Mapper into
those that are necessary to build one destination record or segment.

One map is a group of assignment statements that together build one record
or segment. Whether it is a record or segment you generate depends upon
the direction. A group of maps that together generate one document is a
mapping set.

Many different kinds of documents can be generated from one Application
File, each of which uses a different mapping set. If, for example, the same
file contained data for invoice documents and data for payment advice, each
document would be processed with a different mapping set.



13-2 The Index of Mapping Sets
You can also have variations on the same Digital DEC/EDI document
definition type. For example, you could use the same document type for two
different trading partners, even if each partner wanted to see the same data
organized differently. To do this you would have a different mapping set for
each trading partner.

The Index of Mapping Sets
The Mapping Table screen shows the hierarchy of all mapping sets, their
component parts, and assignemnts. This is known as the Index of Mapping
Sets.

The following pages provide more detail on general mapping terminology
and concepts.

Partner
This is the name of a trading partner as defined in Digital DEC/EDI. It
allows you to create trading-partner specific mapping sets using generic
Digital DEC/EDI document definitions so that you can format documents
according to trading partner specifications.

If the document definition for a mapping set was trading-partner specific,
the PARTNER field is the partner for the document definition. If the
document definition was not trading-partner specific, the GENERIC field
will be automatically marked with an X and you can specify a trading
partner or you can leave it blank to match all trading partners for this Object
Name.

If you specify a trading partner, the mapping set applies only to that trading
partner.

Generic
Mark this field with an X if the document definition from Digital DEC/EDI
is not trading-partner specific. In other words, when the document definition
was extracted from Digital DEC/EDI, the partner field was left blank.

Standard
This is the EDI standard that will be used to format the document.
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-3
Version
This is the version of the EDI standard that will be used to format the
document.

Internal Doctype
This is the Digital DEC/EDI internal document type that will be used to
format the document.

The following table describes the meaning of the possible combinations of
partner and generic field.

Each line on the Index of Mapping Sets represents a mapping set. Only one
mapping set can be used on any one document that is processed by the
Mapper.

At runtime, in the Outgoing direction the Mapper chooses which mapping
set to use by looking up the $DOCTYPE and $PARTNER combination.

In the Incoming direction, the Mapper does two look-ups on this table. One
to find the criteria to use in polling Digital DEC/EDI, and one to find the
mapping set to use when it processes each document it returns.

The fields that specify a document definition (internal doctype, standard,
version, generic, and partner (if not generic)) must match one of the valid

Table 13-1 Combinations

Partner Generic Meaning

[x] Generic Digital DEC/EDI document
definition used with all partners unless
a partner later on list has the same
name.

partner [x] Partner-specific map set with a generic
Digital DEC/EDI document definition.

partner [ ] Partner-specific map set with a
trading-partner specific Digital
DEC/EDI document definition.

[ ] Not allowed. Partner and generic
cannot both blank.
MAPPING IN MORE DETAIL



13-4 The Index of Mapping Sets
document definitions. It is best to use the Find option on the Search menu
to be sure of a match.

You can change the document definition that will be used with a mapping
set any time.

In the Outgoing direction, the Mapper attempts to match the segments in the
new definition with those that have maps withthe same segment name from
the previous definition. Any segments that are left over and have maps go to
the bottom of the index of maps and are marked with a hash sign (#).

In the Incoming direction, any record sequence changes will cause the The
Mapper to attempt to match up the record sequences in all the maps with the
new record sequence. Left overs go to the bottom of the index and are
marked with a hash sign (#).

If you change a document definition or your segment sequence, make sure
that the mapping assignments are still viable.

Level
This is the level number of the record sequence or the segment sequence,
depending on whether it is Outgoing or Incoming.

Segment or Rectype
This is the name for each level in the sequence.

For the Incoming direction, the column’s title is Rectype. When this screen
is first displayed, the Mapper fills in all the record sequence information that
was entered in the Record Sequence Definition.

For the Outgoing direction, the title is Segment. When first displayed, the
screen will be filled in from the segment sequence information extracted
from the Digital DEC/EDI document definition. This is the same document
definition that you associated with the Object Name in the Index of
Mapping Sets.

Segment or Record
The minimum and maximum number records or segments that can be
created by this map.
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-5
Map ID
This is the name you give to a map. The default is “Unspecified”. Its
purpose is to identify the map on the Index of Maps screen and to indicate
that a map has been created.

Error On
On any of the maps that specify a repeat, there is the possibility that the map
will run out of data in the source or will exceed the maximum number of
records or segments (depending on direction) for the destination.

In the simple case, this is the normal situation and you can leave the MAX
Exceeded box blank. For more advanced usage, refer to the Description
Section.

Navigation
Navigation is the instructions to the Mapper specifying how to find a
starting place in the source tree for data mapping, and how to move that
starting place as the map is processed. These instructions are found in the
Set Context, Repeat Pattern and Condition entries.

Set Context
The information in this field tells the Mapper where to start in the source
tree. The entry in the Set Context field specifies the record or segment in the
source tree that is to be the source for the assignment statements on this
map.

For most situations, you simply specify the Rectype (Outgoing) or Segment
(Incoming) name as defined in the Record Sequence Definition or the
Segment Sequence section of the document definition.

Not all of the information in the mapping needs to come from the place to
which you set context. In most simple cases, it should be the Rectype or
Segment that contains the most information for the record or segment you
are generating.

For example, in the Outgoing direction if you are building an IT1 segment
of an 810 invoice document from a line-item record (assuming the Rectype
is LINE_ITEM) the context you would set on the IT1 map is LINE_ITEM).
MAPPING IN MORE DETAIL



13-6 The Index of Mapping Sets
If this specification does not cause the result you expect, that is, the data
seems to be coming from the wrong places or you are not getting all of the
records or segments you should be, then this simple specification might not
be sufficient. For more advanced usage, refer to the Description Section.

If you do not specify a context, the context from the last map executed is
still in force. As a general rule, always specify a context unless you are
getting data only from global variables.

Repeat Pattern
This field specifies whether a map will be repeated or not, how many times,
and how the repeat loop will be terminated. If you leave this field blank, the
Mapper uses the auto-repeat mechanism. This will be sufficient for most
simple cases. For example, given a map for the IT1 segment, it will be
automatically repeated once for each line-item record for an invoice.

If this specification does not cause the result you expect, that is, the data
seems to be coming from the wrong places or you are not getting all of the
records or segments you should be, then this simple specification might not
be sufficient. For more advanced usage, refer to the Description Section.

For the FOR EACH entry, you can enter a parent record or segment name.

Condition
This field is used to determine whether or not to execute the assignment
statements in this part of the map. This does not effect other parts of the
same map. The Condition field is for an expression.

After the context has been set and a map is being executed, this condition
expression is evaluated. If the condition is true, non-zero, or not specified,
all of the map assignments for this part are executed. If the condition is false
or zero, none of the mapping assignments are carried out.

If no assignments are made to fields in the destination instance (record or
segment being generated) then the instance is not generated. If nothing gets
generated, none of the subordinate maps will be executed, but the Mapper
will continue with the next iteration of the source according to the Repeat
Pattern specified for this map. This pattern is useful where the map applies
only to a subset of the source records being iterated.
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-7
Condition specifications can also be useful if there are mapping assignments
that you want to conditionally execute. Using additional New Context Parts,
one map can have several blocks of conditionally executed mapping
expressions.

Mapping Assignments
This is where you describe to the Mapper how data is to be moved from the
source to the destination. This field is for assignment statements. The syntax
is:

destination = source-expression;

The left side of the statement is the destination (field or data label). The right
side is source (data label or field) but can also be an expression. The equal
sign (=) is required for each assignment statement. An assignment can
extend over several lines, if necessary.

When the screen is first displayed, the left half of the assignment statement
(field or data label depending upon direction) is filled in for you for all of
the fields or data labels being generated by this map. Do not assign to this
list values to fields or data labels not on the record or segment being
generated by this map.

You can delete those that you do not plan to use. You can insert new
assignment statements, but only to assign values to global variables. You
can rearrange the list, if necessary.

This section presents more advanced topics about the Map screen. It
includes a discussion of:

• Record Instance Numbering.

• Structure Mapping (Navigation).

• Data Mapping (Mapping Assignments).

If the automatic repeat pattern does not seem to be working for your
application, you might need to use other repeat patterns. To do so, you will
need to know about some advanced concepts.

Record Instance Numbering
An instance of a record is an individual record (or segment) in a file. For the
Mapper to be able to set context to any record or segment, navigate through
MAPPING IN MORE DETAIL



13-8 The Index of Mapping Sets
a tree of records or segments, and assign data to fields or data labels, it must
be able to pick up any record or segment in a tree of records or segments.

Every record or segment must have a “handle”; a way for the Mapper to
identify that record or segment. The handle is the instance number.

All records or segments in the tree derive their position from the records or
segments above them. You describe a record’s or segment’s position to the
Mapper by identifying where it is in the tree. In a set of records or segments
that are children of one parent, an instance of a record or segment is the
ordinal number associated with that child record or segment.

The way you identify the record’s or segment’s location is by a path, which
includes the instance number of each of its parents down to the record or
segment from the top of the tree. The path uniquely identifies the record or
segment in the tree.jb

Figure 13-1 Current Instance Path

Consider Figure 13-1 Current Instance Path. The path to the record
reference, pointed out in both the sequence and the conceptual tree, is:

Sequences of Records
in an Outgoing File

invoice
line-item
line-item
reference

line-item
.
.

invoice
line-item
reference

.

.
invoice
.

Document Structure

line-item1 line-item2... line-item1 line-item2

invoice invoice invoice

ref ref

this record

this record
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-9
1. Second invoice record.

2. First line-item record under the second invoice record.

3. First reference record under the first line-item record under the second
invoice record.

Using the instance numbering to assign numbers to each of these records,
the path is:

1. Invoice instance 2.

2. Line-item instance 1.

3. Reference instance 1.

This path to the record uniquely identifies the record. There is no other
record in the tree of records with the same path.

Notating an Instance.When the Mapper loads the source data into the
source tree, it links each of the records in order at each level of the tree and it
links each record to the record above it (its parent record). Note that an
instance cannot cross document boundaries.

Figure 13-2 Linked Records in a Tree shows the horizontal and vertical
linking of records.

Figure 13-2 Linked Records in a Tree

As an aid in referencing specific records, the Mapper numbers them. All
child records for a single parent record are part of a separate numbering
sequence as shown in Figure 13-2 Linked Records in a Tree. The left-most
child of any given parent is always number 1. These numbers are used to
navigate to a record relative to a previous record.

When you identify a particular record in the tree of records in the mapping
table, you use a special syntax shown in the following example.

record{number}

invoice invoice1 invoice2
(parent)

line-item line-item1 line-item2 line-item3 line-item1 line-item2...
(children)
MAPPING IN MORE DETAIL



13-10 The Index of Mapping Sets
The record is the Rectype (or Segment for incoming) name. In the previous
example, it would be invoice, line-item, or reference. The number is the
record’s or segment’s position relative to other records under its parent. The
braces ({}) are required to enclose the number. For example, a record with
the following instance identifier is the first invoice record:

invoice{1}

Instance identifiers for parent records can be put together to define a path
within the tree to a specific record. For example, in the tree shown in
Figure 13-3 Notating Linked Records, the following instance notation
defines the first reference record, which is under to the first line-item record,
which is under the first invoice record.

invoice{1}.line-item{1}.reference{1}

Figure 13-3 Notating Linked Records

In the simple parent-child data structure in Figure 13-4 Parent to Child
Instance, the column on the right is the syntax that you would use to specify
an instance of a record in the structure.

invoice invoice1, . . . . . invoice2, . . . . .
(parent)

line-item line-item1 line-item2 line-item3 line-item1 line-item2 line-item3
(children
of invoice)

reference ref1 ref2 ref3

(children of
line-item,
children of invoice)
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-11
Figure 13-4 Parent to Child Instance

Specifying the entire instance path for each record that you want to get data
from could be a tedious task. Fortunately, the notation can be shortened to
the current instance.

Current Instance

As mentioned, there is a path to every instance of a record in the tree. At any
point in the processing of the source table, there will be one record that is
singled out for processing. The path to that record is the current path.
Every instance of a record along the path is the current instance for that
record or segment.

References to any other record can be described by a path relative to the
current path.

The use of relative indexing is not recommended. The functions
$INSTANCE and $EXIST are provided to accomplish forwards and
backwards references.

A relative index can not be used when specifying the context.

A relative index can be used when specifying an instance in a map
assignment. If an index begins with a sign followed by a digit, a symbol, or
a parenthesized expression, the index is assumed to be a relative index.
Otherwise, the index is assumed to specify an absolute instance.

For the following examples, assume that the current instance is A{2} and
that the value of the global J is 2.

Sample Sequence Instance Path

invoice invoice{1}
line-item invoice{1}.line-item{1}
line-item invoice{1}.line-item{2}
reference invoice{1}.line-item{2}.reference

line-item invoice{1}.line-item{3}
reference invoice{1}.line-item{3}.reference
MAPPING IN MORE DETAIL



13-12 The Index of Mapping Sets
The assignments in the following example are then interpreted as follows:

Difference Between Relative and Absolute Index
A reference with a relative index that is not valid, produces the value
$UNDEFINED, whereas a reference with an absolute index that is not valid
produces a hard error.

An index is invalid if it is less than 1 or greater than the number of instances
available. The function $EXIST should be used to determine whether or not
the instance exists before using an absolute index if there is any question
about the index validity.

Relative Indexes with Negative Values
If the value of the symbol in a relative index is negative, the index is rejected
before being interpreted as a relative index. For example, assuming the
value of J is -2:

Specification of Off-Path References
A reference can be made to an instance other than the current instance by
specifying the path to the instance. As soon as an instance is specified, the
reference becomes an off-path reference and all other instances must be
specified.

Reference Interpretation Value

A{+1}:Af1; Relative A{3}:Af1

A{-1}:Af1; Relative A{1}:Af1

A{+J}:Af1 Relative A{4}:Af1

A{-J}:Af1 Relative A{0}:Af1 (Undefined)

A{+J-1}:Af1 Absolute A{1}:Af1

A{+(J-1)}:Af1 Relative A{3}:Af1

A{-J+4}:Af1 Absolute A{2}:Af1

A{-(J-4)}:Af1 Relative A{0}:Af1 (Undefined)

Reference Result

A{-J}:Af1; Invalid instance
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-13
For example, assuming that the current instance is A{2}.B{1}.C{3},
references are interpreted as follows:

In the above invalid instance specifications, the instance of C was not
explicitly designated for an off-path reference.

At any juncture, references to records that share parents along a current path
can be dropped off the syntax. For example, assume a current path of:

invoice{3}.line-item{5}.reference{1}

Each of these records have been established as the current instance of a
record along the path. You can refer to the record simply as reference
because the Mapper processing has already established the current path to
this record.

Assume another record at the following location:

invoice{3}.line-item{5}.reference{2},

The shortened notation can be simply reference{2} because the record
shares the current path references to invoice and line-item. Figure 13-5 Full
and Shortened References shows full and shortened references to other
records, when the current path is invoice{3}.line-
item{5}.reference{1}.

Reference Interpretation

Cf1 A{2}.B{1}.C{3}:Cf1

B{2}.C{1}:Cf1 A{2}.B{2}.C{1}:Cf1

B{2}.C:Cf1 Invalid instance specification

B{+2}.C{1}:Cf1 A{2}.B{3}.C{1}:Cf1

B{+2}.C{+1}:Cf1 Invalid instance specification
MAPPING IN MORE DETAIL



13-14 The Index of Mapping Sets
Figure 13-5 Full and Shortened References

Each record in the source tree has a current instance pointer. This pointer
identifies an instance of this record in relationship to the current instance of
its parent record.

Each time a current path changes, the current instance pointers of all records
under it are set to the first instance under the new current instance. This is
true regardless of how the current path might have been changed.

The entry in the Set Context field of a map sets one of these records as the
current record for the map. Being the current record means the following:

• The current instance of this current record is the starting point for any
Repeat Pattern specifications that might be applied to the map. Each time
the map is executed, the next instance of that current record will become
the new current instance of that record.

• The path for the current instance of the current record becomes the
default path for all references. Fields on the current instance of the
current record do not have to be qualified with a path name. Further,
where paths are needed to refer to fields on other records, the path names
are relative to the path from the root to the current instance on the current
record.

If a reference is made to any record that is not on the current path, it is
necessary to specify the entire path. Failure to do so may result in
unpredictable results.

To reference the current instance of a child for another parent, the
$INSTANCE function can be used to determine the instance number of the
child and then an absolute index can be used.

Full Instance Reference Shortened Instance Reference

invoice{3}.line-item{5}.reference{1} reference
invoice{3}.line-item{5}.reference{2} reference{2}
invoice{3}.line-item{1}.reference{2} line-item{1}.reference{2}
invoice{1}.line-item{1} invoice{1}.line-item{1}

.reference{1} .reference{1}
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-15
For example, assume that the current instance is A{2}.B{2}.C{3}. To look
at the current instance of C for the previous instance and following instance
of B, use the following assignments:

K = $INSTANCE(C);
x = Cf1; the current value A{2}.B{2}.C{3}
y = B{+1}.C{K}:Cf1; the next B A{2}.B{3}.C{3}
z = B{-1}.C{K}:Cf1; the previous B A{2}.B{1}.C{3}

The following example is similar to the one shown in Figure 13-1 Current
Instance Path. Add a shipping schedule record under the invoice record, and
assume the record sequence shown in Figure 13-6 Explicit Instance Path.

Figure 13-6 Explicit Instance Path

Assuming a current path of invoice{1}.line-
item{2}.reference{1} and that you would like to reference the first
sched record under the invoice record, you must specify the path as:
invoice.sched{1} or invoice.sched

The first of these is reliable throughout the entire map. The second of these
could reference other sched records in some cases, which could be useful in
in some circumstances.

While your mapping table will compile and run if you simply specify sched
(without invoice), which sched data will be returned is undefined and may
therefore cause unpredictable results.

Sequence of Records
in an Outgoing File

invoice
sched
sched

line-item
reference

line-item

Document Structure

sched sched line-item line-item line-item

invoice

line-item

reference
MAPPING IN MORE DETAIL



13-16 The Index of Mapping Sets
We recommend that you specify fully all references within mapping
assignments and map conditions. To do this, include the name of the path
from the record referenced to its 01 level parent. For segments, include the
names of all segments on the path between the segment referenced and the
its 02 level parent.

Examples
In any mapping assignment or map condition where the map’s SET
CONTEXT reference is to any segment other than PER#1, if you wish to
reference the PER#1 segment (part of the N1 loop in the header of the 810),
use the following:

BIG.N1.PER#1

To reliably reference the first PER#1 under the first N1, use the following:

BIG.N1{1}.PER#1{1}

Do not use PER#1 or PER#1{1} by itself.

In any mapping assignment or map condition where the map’s SET
CONTEXT reference is to any segment other than CTA#1, if you wish to
reference the CTA#1 segment (part of the NAD group that is in the header
of the EDIFACT INVOICE message), use the following:

NAD.CTA#1

To reliably reference the second CTA#1 under the third NAD, use the
following:

NAD{3}.CTA#1{2}

Do not use CTA#1 or CTA#1{2} by itself.

If you know that you always want a particular occurrence, then the best
method is to explicitly specify the instance that is wanted. For example, if
you know that you always want to get the first CTA segment under the
second NAD, specify the reference like this:

NAD{2}.CTA#1{1}

It is more common and normally more reliable to select an instance based on
the value of a qualifier or other fields nearby. The method above is
illustrated for those cases where you want to get a fixed instance.
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-17
An example showing how to reference application file data has been
provided above.

The rules are the same for all standards even thought only X12 and
EDIFACT examples are given.

We recommend that references to segments and records within the SET
CONTEXT clause and the FOR EACH option of the REPEAT PATTERN
clause be specified as single unqualified references. For example:

SET CONTEXT LINE-ITEM

and

Set Context: SDQ
Repeat Pattern: FOR EACH PO1

See the section Supported Mapping Combinations for more information.

Structure Mapping (Navigation)
Structure mapping is the process of moving the current path around in the
source tree in response to the instructions in the maps that the Mapper is
executing. Structure mapping specifications go into the Navigation section
of the Map screen. Structure mapping has two parts:

• Setting the context for the map

• Determining the pattern for moving the context

The source record or segment from which data will come for a particular
destination map is the context for that map. Setting context is the process of
establishing the current path to the source record or segment. A map
contains two specifications for setting context. One is the specification for
the starting location (the Set Context field on the Map screen and the other
is the repeated pattern for moving the context (the Repeat Pattern field on
the same screen).

For example, two trees are shown in Figure 13-7 Mapping Two Simple
Trees: one a simple source tree, and the other is a simple destination tree.
The object is to map the data on record A into record I and the data on
record B into record J. Assume that the specifications (the Record Sequence
Definition) states that A and B and I and J can all have more than one
record.
MAPPING IN MORE DETAIL



13-18 The Index of Mapping Sets
Figure 13-7 Mapping Two Simple Trees

To accomplish this mapping, the Mapper has to follow the instructions in
two maps, the I map and the J map. The I map sets the context to record A,
as shown in Figure 13-8 Setting Context.

Figure 13-8 Setting Context

At the beginning of processing, the Mapper sets up an initial current path,
which is always instance 1 of the top record in the tree. In the example, Map
I shows setting context for the first instance at record A. The full path
reference would be A{1}, but the shortened instance reference can be used
because it shares the current path set up by the Mapper when it initialized.

The second part of navigation is determining the pattern for moving the
context. In the example, the map for I uses the default iteration pattern,
which is the auto repeat pattern. That is, it executes Map I for every instance
of a record that it finds in A.

Source Tree Destination Tree

01 A 01 I
02 B 02 J

Map I

Navigation:
Set Context: _A

Repeat Pattern:

Map J

Navigation:
Set Context: _B

Repeat Pattern:
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-19
The general rule that applies to the auto repeat pattern is that the Mapper
iterates through all of the records that have the same parent. Because Map I
sets the context to the top record, however, everything at A is considered to
be a child of an implied root, as shown in Figure 13-9 Simple Repeat
Pattern.

Figure 13-9 Simple Repeat Pattern

The repeat pattern tells the Mapper to execute Map I once for each instance
of A.

A second general rule states that every time the Mapper executes a map that
builds a segment or a record, it has to process all of the maps that are
subordinate in the destination tree before processing the next iteration of the
same map. In the example shown in Figure 13-10 Source Tree With Several
Records, every time the Mapper executes Map I using a record from A, it
has to execute Map J.

Figure 13-10 Source Tree With Several Records

A third general rule of mapping is that each time a current instance changes
(A in this case), the current instances of all subordinate records are set to the
first instance subordinate to this new instance of the parent.

Notice that in Figure 13-8 Setting Context, Map J’s Set Context specification
was B. This is the shortened instance reference for A{current}.B{1}. It is
instance 1 because of the third general rule. During the mapping, the Mapper
sets Map J’s starting context to a path that is the current instance of A and
the first instance of B. It must then iterate through all of the children of the
current instance of A that are in B because the repeat pattern for Map J was
left blank, meaning that the Mapper will use the auto repeat pattern.

Rec1 Rec2 Rec3 Rec4 Rec5

Map 1Record A

Map I

Map J

Record A

Record B

RecA1 RecA2 RecA3

RecB1 RecB2
MAPPING IN MORE DETAIL



13-20 The Index of Mapping Sets
When the Mapper finishes iterating through all of the child records for Map
J, it returns to Map I and continues where it left off. The Mapper builds a
segment or a record from Map I using the next instance of Record A (A{2}),
which in turn causes it to execute Map J again, iterating through all of the
children of A{2}.

This pattern repeats until the source tree is out of data on records A and B.

Advanced Error On
On any of the maps that specify a repeat, it is possible that the map will
exceed the maximum number of records or segments (depending on
direction) for the destination. Normally, this is the way to terminate the
iteration. However, in some applications, these could be indications that the
data has been corrupted or that the description of the data is incorrect.

The map has a flag indicator that allows you to specify an error condition
rather than just terminating the loop. It is the MAX Exceeded condition.
Mark the box with an X. If the condition occurs, the Mapper aborts the
document, enters an error message in the audit log, and calls the SOFT
ERROR hook point. It then continues with the next document.

In the Incoming direction, this means that the Mapper aborts the document
as a FAILED document. This requires manual intervention in Digital
DEC/EDI to restart the document.

In the Outgoing direction, the offending document is aborted and records for
that document in the application file are skipped. Processing continues with
the records for the next document. You can direct the SOFT ERROR to be
converted to a HARD ERROR by use of a small hook routine. The HARD
ERROR will cause the records remaining in the application file to be left
unprocessed. The Mapper processing terminates.

Advanced Set Context
The Set Context field on the Map screen identifies one or more records
from the source tree that are to form the initial context for the mapping
assignments on this map. Setting context has two functions:
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-21
• Specifies the default path to use when referring to data in the source tree.

• Determines the starting point for the repeat pattern used in this map.

The syntax for this entry is:

path [, path] ...

Where path is:

[record '{' instance'}' '.']... record ['{' instance '}']

The last instance of a record specified in the path is the default record (or
segment) in the source tree. In the map assignment statements, references to
fields on this record do not have to be qualified with a record name.
References to fields on other records must be qualified with a the other
record name, and must use the fully qualified path name.

The Set Context specification also sets the starting point for the repeat
pattern used in the map. The Mapper performs the mapping assignment part
of the map starting with the context at a point in the source tree and then
repeats for each subsequent instance according to the repeat pattern
specification.

There are several variations on the syntax used to set the context for a map:

• The field can be left blank

If no context is set, there is no source context for repeat patterns so there
will be no repeating. The default qualifier for field references will remain
set to the context established in the previous map. Maps that reference
only global variables do not need a context in the source tree and
therefore do not need a context specification.

• Specify one record or segment

This must be a single, unqualified record or segment name.

• Variants

An entry in the Set Context field that refers to a variant in the record
sequence must specify the name given to the variant as a whole or to a
list of all the record types within the variant from which data is to be
obtained. The Mapper filters out only those record types that are listed.

For Example, suppose a variant contains records A,B, and C. Setting the
context to A retrieves only the A record instances from the variant; the
type B and C records are skipped. If you do not want to filter the records,
MAPPING IN MORE DETAIL



13-22 The Index of Mapping Sets
either the variant name or record A, B and C must be entered in the Set
Context field.

Note that the variant as a whole becomes the default qualifier for the
mapping assignments in this case. Unqualified fields will be mapped to
the record type of the current instance. For example, suppose A, B, and C
all have a field X. Even if this field is not in the same place on each of the
record types, the appropriate X value will be retrieved regardless of the
type of the current instance. However, if the field is qualified (A:X), then
it will be UNDEFINED if the current instance is not of the type specified
in the qualification. If a field Y is defined on A, but is not defined on B or
C, the unqualified field Y will be UNDEFINED when the current record
type of the variant is a B or a C.

• Floating Segments

A floating segment (such as the X12 NTE segment) need only be defined
in one place in the source tree and identified as FLOATING.

When Incoming floating segments are received, they are inserted as if
they were subordinate to the non-floating segment just preceding it. To
get the data from these floating segments, you must create maps that
reference every place in the source tree where floating segments are
expected. If a segment is not there, then the reference fails and the
mapping assignments on the map are not executed.

A reference to the floating segment is made by specifying its path as with
any other record as if the segment had actually been defined there. For
example, if you want to set the context for a map at a note (NTE)
segment subordinate to the current instance of the N1 segment, specify a
Set Context as N1.NTE.

Advanced Repeat Pattern
A Repeat Pattern is how the map will be repeated. A repeat pattern starts
with the record established by the Set Context field. The Mapper then
proceeds to visit subsequent instances of the records in the source tree each
time the map is executed.

There are various qualifiers that control how many times it will repeat if
any.
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-23
• Auto-Repeat Pattern:

This is the default pattern. If you leave the Repeat Pattern field blank, the
Mapper uses this pattern. The Auto-Repeat Pattern repeats the mapping
for each instance of the source (specified in the Set Context) until it runs
out of data or exceeds the destination limit set by the Limit field or the
maximum repeat specification for the record.

If the maximum is set to 1 on either the source or the destination record,
the map is not repeated. Also, if the same source record is specified on
more than one map, only the highest one in the destination tree (the top-
most) will actually do the incrementing. This way, all of the maps that
refer to the same record see the same data.

Specifying any other Repeat Pattern cancels the Auto-Repeat feature.

• For-Each Pattern:

This pattern directs the Mapper to repeat the map not only for all children
of the current parent, but for all children of all siblings of the parent. By
extension, it can also can be used to iterate through as many levels as you
want to specify, which in effect combines these levels. This pattern can
be specified by supplying the following entry in the Repeat Pattern field:

FOR EACH parent

The parent is the highest parent that is to be incremented. The Mapper
iterates through all instances of records (or segments) of the type
specified in the Set Context entry, which are subordinate to all instances
of this parent. For example, see the tree and map fragment in
Figure 13-11 Tree and Map Fragment.
MAPPING IN MORE DETAIL



13-24 The Index of Mapping Sets
Figure 13-11 Tree and Map Fragment

• No Change:

There are times when you will not want a map to be repeated or the
source to be incremented. This can be done by overriding the Auto-
Repeat pattern with the entry, NO CHANGE, in the Repeat Pattern field.

• $THROWAWAY Special Value:

The $THROWAWAY is a special value that causes the Mapper to
discard the current instance of the destination record or segment being
generated as if the condition failed and to go on to the next map.

• $ENDMAP Special Value:

The $ENDMAP is a special value that causes the Mapper to skip the
remaining assignments in the map being processed, but use the
destination instance.

New Context Parts
New context is a continuation of a map. You use it to specify a different set
of assignment statements, grouped under a different condition, for the same
record or segment as the first part of the map. Use a new context
specification if you want to get data from one set of the records if one set of
conditions is true, and a different set of records if a different set of
conditions is true.

A map form contains a header, specifications for Set Context, Repeat
Pattern, and Condition, and a list of mapping assignments. In the upper right
corner of the map form are the NEXT PART and PREV PART fields. These
allow you to step through each of the parts that can be attached to a map.

A{n}

B{1} B{2} B{3} ..B{n}

C{1} C{2} C{1} C{2} C{n}

Set Context: C;

Repeat Pattern: FOR EACH B;
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-25
The Map Part contains a Set Default field, a Condition field, and a place for
another set of mapping expressions. The Set Default specification is similar
to the Set Context, except that it specifies a different default path to be used
with the mapping assignments in the map part.

It does not affect the initial value for the repeat pattern. This can be useful if
a lot of data is coming from more than one record or segment and you do not
want to put long qualifications on fields on all records or segments except
the one specified in the Set Context field.

The Condition specification on a new context part determines if the mapping
expressions are to be executed. See the discussion about the Condition
specification.

Advanced Data Mapping (Mapping Assignments)
Data mapping is the assignment of field data to data labels within the

destination segment (in the Outgoing direction) or assignment of the data
label values to fields within the destination record (in the Incoming
direction).

The Mapper evaluates the mapping expressions on the right sides of each
assignment. If there are no references to nonexistent records and the right
side does not evaluate to one of the special constants $UNDEFINED,
$ERROR, $ENDMAP, or $THROWAWAY, the assignment will be made.
If this is the first assignment to the destination record (or segment depending
on direction) then a destination instance is created. If there is more than one
assignment to the same left side field (or data label depending on direction),
within the same set of mappings for the destination record or segment, its
value is overlaid.

The left side of the assignment is a field on the destination record, a data
label on a destination segment, or a global variable. The right side can be an
expression of just about anything: an equation using the math operators, data
manipulation functions, global variables, field or data label names,
constants, or any combination of these. The only thing that it cannot have on
the right side is a reference to a record or segment on the destination tree
other than the one being created.

Frequently, there is a one to one assignment of source to destination. That is,
for an Outgoing document the left side would be a data label on the segment
MAPPING IN MORE DETAIL



13-26 The Index of Mapping Sets
associated with the destination segment and the right side would be a field
on the source record.

However, in some cases the data must be manipulated in some way before
being assigned. Normal type conversions are handled automatically, but if
two or more fields must be combined, a field must be scaled, or some other
modification, then the right side of the assignment must be an expression.

The left side of the assignment is the destination and the right side is the
source of the assignment. Data type conversions from any type to any type
are handled automatically.

The syntax of a mapping assignment is shown below. The square brackets
([]) mean that the enclosed parts are optional. A set of three dots means the
clause can be repeated. Upper case words are keywords. Each of the
parameters is explained in detail following the example.

Mapping Expression Diagram:
fieldname = [ for-clause]... expression ;

For-Clause Diagram:
FOR ( for-variable [= [min TO ] max [ , incr]] )

Parameters

fieldname — The fieldname is the left side of the assignment. For a
mapping for an Incoming document where records are being generated, the
left side can only be a reference to a global variable or to fields on the record
associated with the destination record. If it is a field, it can be qualified with
structure names and array subscripts as necessary to identify its position on
the record.

An array subscript can be a for-variable if the right side has a FOR clause.

For a mapping for an Outgoing document, where data labels and data values
are being generated for Digital DEC/EDI, the variables are reversed. The
left side can only be a reference to a global variable or to data labels on the
segment associated with the destination segment. This array subscript can be
a for-variable if the right side has a FOR clause. If the data label is a
subelement, it should not be qualified with the element name. It is not the
same as a record field qualified with a structure name.

for-clause — A for-clause is used to indicate that the assignment is to be
repeated during each execution of the map for the number of times indicated
MAPPING IN MORE DETAIL



The Index of Mapping Sets 13-27
in the range of the FOR statement. A for-clause is useful for filling arrays in
a destination segment or record.

The for-variable, which is defined by the use of the FOR statement on the
right side, can be used as an index on both sides, but its extent only ranges
over the one assignment statement. If more than one index is needed,
additional FOR statements can be given following the first. This makes the
FOR statements nested such that the index from the FOR on the most right
increments the fastest. Note that all array subscripts start with 1. A
multidimensional array can be row-major or column-major depending on its
definition.

for-variable — The for-variable is the name of the index variable
associated with the FOR clause. Its name must be declared as a global
variable, and must be unique from field names, and data label names. As a
convention, these should be single letters.

min — The min is any expression made up of any component allowable in a
right side expression. If not given it defaults to 1. If given, the expression
must evaluate to a positive number.

max — The max argument is any expression made up of any component
allowable in a right side expression. The expression must evaluate to a
positive number.

incr — The incr component is an expression that indicates the size of the
increment that is used to increment the for-variable. If not given, it defaults
to 1. This expression must evaluate to a positive number greater than 0.

An example of the use of a FOR statement is as follows:

field-name[J] = for (J=1 to 6) ab{J}:label;

In the previous example, for each instance of the data label, make an
assignment to the Jth element of the array. The FOR clause defines a single
letter variable, J, which ranges from 1 to 6. The J is only defined within one
assignment statement. The value inside the square brackets and braces might
be expressions. The ‘ab{J}:label’ portion specifies the data label on a
specific instance of record or segment ab.

expression — The expression is a combination of values that make up the
right side of the assignment. For a mapping in the Incoming direction,
(records are being generated) the right side can be an expression made up of
MAPPING IN MORE DETAIL



13-28 The Index of Mapping Sets
field names from the record associated with the destination record, data
labels, global variables, for-variables, operators, functions, if-statements, or
constants. The data labels must be qualified with a segment qualifier if they
are not in the current instance of the segment associated with the source.

For a mapping in the outgoing direction, (so data labels and data values are
being generated for a document passing through Digital DEC/EDI), it is also
reversed. The right side can be an expression made up of data labels from
the segment associated with the destination record, record fields, global
variables, for-variables, or constants. The record fields must be qualified
with a record qualifier if they are not in the current instance of the record
associated with the source record.
MAPPING IN MORE DETAIL



Chapter 14 Mapping Expressions
This chapter describes the types of expressions you can define, and how to
use them in mappings.

Expressions
An expression can be made from a combination of any of the following:

• Field

• Data Label

• Numeric Constant

• Quoted String

• Special Constant

• Global Variable

• An Equation Using Operators

• IF clause

• Function

These terms are explained in the following sections. The explanations
observe the following conventions:

• A name used in the Mapper can be the name of a record type, segment
type, a field on a record or any of its structure names, a data label in a
segment, a for-variable, or a global variable. For-variables and global
variables cannot be qualified. A name in the Mapper can be constructed
from the following characters: A-Z, a-z, 0-9, $,-,_

The name must contain at least one alphabetic letter. It must not begin or
end with the hyphen (-).



14-2 Record Fields
• A node as used in this section is the name associated with a point in the
source tree. It can refer to either a record or a segment. Node names can
be qualified with an instance specification. Node names can be appended
with a period between them to build a path name that can be used to
uniquely identify an instance in a source tree.

• An instance as used in the Mapper is the occurrence of a record or
segment at a node in the tree. An instance qualifier on a node specifies an
instance of the node relative to the current instance of that node’s parent.

Record Fields
A field is a component of a record in the application file. In the Incoming
direction, field values come from the data labels by way of mapping
expressions. Before assignments are made, however, the Mapper clears a
new record and fills it with null characters. This means that binary integers
default to a zero value, while ASCII strings have null characters, and
numeric strings will contain an illegal value. If the application needs a
particular value in a field as an initial value, be sure you initialize it in the
mapping assignment before assigning values from data labels.

Structure Name Arrays

The field name must be qualified by structure names if the field is a part of a
structure in the record definition.

If the field is an element of an array, a subscript must be specified. The
subscript can be any expression that evaluates to a number. The first element
is element 1 (not 0).

Incoming Mapping Tables

When a field name appears on the left hand side of an equals sign in an
assignment statement the field name cannot be qualified. This is because the
Mapper creates each record in order and cannot revisit them.

Outgoing Mapping Tables

For outgoing table mappings, the field name reference can be qualified by a
record and instance. The record qualification is used to specify that the
record being referenced is different than the default source record. To
MAPPING EXPRESSIONS



Record Fields 14-3
specify a particular instance of a record, use an instance qualifier. If not
given, the current instance of the specified source record is assumed.

The full syntax for a field name is defined as follows:

[[record ['{' instance '}']]'.']... [record
['{'instance'}']':'

[struct '.']... fieldname ['['subscript']']...

For example, if a fragment of the record layout looks like:

01 address structure;
02 city text size 20;
02 state text size 2;

to reference city and state in a mapping assignment say:

address.city
address.state

Frequently, during mapping assignments, data label values will be filled in
with data obtained from the fields in the record of the current instance of the
source record. In other words, very often one will say something like:

Map ID: Line Item Map
FB Record: IT1
SET CONTEXT: LINE_ITEM
.
.
.
Mapping Assignments:

IT1_QUANTITY_INVOICED = quantity;
IT1_UNIT_PRICE = price;
.
.
.

In this case, it is not necessary or desirable to further qualify the field
references (quantity, price, and so on.)

The DEFAULT Record Qualifier

The Mapper implements the concept of a default record qualifier. The
default record qualifier is set in the SET CONTEXT clause of the map for
the mapping assignments that appear in part 1, and in the SET DEFAULT
clause of the map for mapping assignments appearing in map parts 2 and
higher.
MAPPING EXPRESSIONS



14-4 Record Fields
Example:

Map ID: Line Item Map
Part 1 of 3

FB Segment IT1
SET CONTEXT: Line_Item_Rec

...
Map part 2
Part 2 of 3
SET DEFAULT: Line_Item_Adj_Rec

...
Map part 3
Part 3 of 3
SET DEFAULT: Line_Item_Ship_Rec

The default record qualifier for the first map part is Line_Item_Rec. For
part 2 it is Line_Item_Adj_Rec. For part 3 it is Line_Item_Ship_Rec.

This means that any field in the first map part which does not have a record
name specified will reference a field on the current instance of the
Line_Item_Rec. Any field in the second map part which does not have a
record name specified will reference a field on the current instance of the
Line_Item_Adj_Rec, and so on.

Explicit Record References

While most data labels will typically get their values from the fields in
current instance of the default record, there are times when information must
be obtained from a different record in the application file. References to data
in records other than the default are always relative to the current instance of
the default source record and the current instance of each of its parents.

For example, if the map has SET CONTEXT to RECORD D and you want
to refer to a field on the current instance of record C, qualify the reference
with the record name path between record C and its 01 level parent. Separate
the last record from the field name by a colon (:). If the record sequence
definition for the application file is:

01 A
02 B
03 C

02 D
MAPPING EXPRESSIONS



Record Fields 14-5
specify the current instance of record C as

A.B.C:field

In cases where something other than the current instance is to be referenced,
the record name can be suffixed with the instance number (shown in braces).

In the following example, the field referenced is from the first instance of
record C. This is the first instance of record C under the current instance of
the parent of C. In other words, C has a parent B. If the current instance of B
is instance 8, (perhaps because the Mapper is currently processing the eighth
B record), then the field referenced will be the field from B{8}.C{1}.

data label = A.B.C{1}:field;

Absolute Instance References

An absolute reference to a specific instance of a field must be qualified by
all parent records with the instances specified for each. For examle, assume
the application file has the following structure:

A

B

D

C

File Structure:
MAPPING EXPRESSIONS



14-6 Record Fields
A sample record sequence for the file structure would be: A field on the

instance pointed out in the example above is referenced as follows:

A{1}.B{4}.C{3}:field

While the Mapper will let you specify a reference to a field using a partial
path, for example C:field, which instance you will get is undefined and
may therefore lead to unpredictable results. Therefore, when specifying a
record name explicitly, always include all of the record names between the
01 level record name and the record on which the field occurs. Use care
when specifying paths that use explicit record names without explicit
instances since these use the current path, which may sometimes be hard to
predict.

Relative Instance References

A ‘+’ or ‘-’ unary operator on the instance number refers to the instance
offset relative to the current instance. For example, C{-1} refers to the
previous instance and C{+1} refers to the next instance. But C{1}, an
absolute reference, refers to the first instance, regardless of what the current
instance of the record is.

this instance on source record C is: A{1}.B{4}.C{3}
because it is the third C (“C{3}”)
under the second B (“B{4}”)
under the first A (“A{1}”)

A
B
C
C
B
B
B
C
C
C

D
D

MAPPING EXPRESSIONS



Data Labels 14-7
The only case where it is desirable or necessary to qualify a field that is in
the default record is when one wishes to refer to a instance other than the
current record.

One might want to see if the part number on the next line item is the same as
the part number on the current line item. A fragment from a map to do this
might look like:

Map ID: Line Item
FB Segment: IT1
SET CONTEXT: LINE_ITEM
...
Mapping Assignments:
IT1_PRODUCT_SERVICE_ID = partnum;
nextpartnum = if ( $EXIST(LINE_ITEM(+1))

then LINE_ITEM(+1):partnum
else 0;

...

Data Labels
A data label is the name given to an element of data in a document’s internal
file. A data label corresponds to a data (sub)element in the EDI standard. All
data labels used must be defined in Digital DEC/EDI. The data labels are
grouped by segments as defined in Digital DEC/EDI. The order in which
data labels are assigned to within a map does not matter.

If the data label is a subelement for an EDIFACT segment, then the data
label can be qualified with its element name in the same way that a field on
a record is qualified with its structure name.

Outgoing mapping tables

When a data label appears on the left hand side of a mapping assignment the
data label may not be qualified by a segment reference. Each map generates
the data to create one output segment. The data labels associated with the
output segment being created and global variables may appear on the left
hand side of the mapping assignments. The data labels may not be qualified.
This is because the Mapper creates one segment at a time.

Incoming mapping tables

The DEFAULT Segment Qualifier
MAPPING EXPRESSIONS



14-8 Data Labels
In incoming mapping tables, the Mapper implements the concept of a
default segment qualifier.

The default segment qualifier is precisely analogous to the default record
qualifier described in the previous section.

In incoming tables, data labels may be qualified with a segment name of
when the segment to be referenced is not the default segment. As with the
record references, the segment references may include an instance qualifier.

Please read the guidelines for using instance qualifiers found in the previous
section. The guidelines for data labels are the same. They are summarized
here.

1. When the data label specified is part of the current instance of the default
segment, it is not necessary (or desirable) to explicitly specify the
segment name.

2. When referencing an instance of the default segment which is different
from the current instance, specify the path between the 02 level segment
and the segment being referenced and use an explicit instance number.

3. When referencing a segment that is not the default segment, fully qualify
the reference with all segment names between the segment in which the
data label occurs and the 02 level segment. (It is not necessary to include
the 01 levels ‘heading’, ‘detail’, ‘summary’).

As in the case of fields, please use care when using explicit segment
references. Especially be sure to understand whether the current instance is
what is wanted.

$UNDEFINED Special Constant

When an optional data label is referenced and the data label does not exist in
the input data, the value evaluates to the special constant $UNDEFINED. A
value of $UNDEFINED is never assigned to the left hand side of an
expression. In a simple assignment statement $UNDEFINED has the same
effect as if the assignment were skipped.

Example:

In ANSI X12, the N1 segment identifies an organization. It has a qualifier
that specifies the type of organization, N101, and then two different ways
the organization may be identified. An organizational id qualifier and coded
MAPPING EXPRESSIONS



Data Labels 14-9
organization id may be used (N103 and N104) or an alphanumeric string
may be used (N102), or the sender may specify both. For example, N102
might have a value of “International Shipping Inc”. N103 might have the
X12 code for Dun’s Number (a set of published codes for identifying
companies) and N104 might have the Dun’s number for “International
Shipping Inc.”. However, the sender might elect to use only N103 and N104
and not send N102.

In this case a fragment from a Mapper map might look like:

companyname = N102;
companyid = if ( N103 EQ $STR(7) )

then $LOOKUP(DUNSLOOKUP,N104);

If the N1 segment does not contain a value for N102, then N102 will
evaluate to the special constant $UNDEFINED. When the assignment:

companyname = $UNDEFINED;

is processed, the value of the field companyname does not change. It
keeps whatever value it had before. Note that since it often happens that
optional data is not sent, it is often a good idea to initialize fields to an
appropriate value in case they are not found in the input. For example:

companyname = " no name rec'd from partner";
/*initialize in case missing*/

companyname = N102;

Qualifiers

Note that a qualified data label (in the sense of EDI Standard qualifiers, for
example Product_id_code_qualifier) is just another data label.

The full definition of a data label reference is as follows:

[[segment ['{' instance '}']]'.']... [segment ['{'instance'}'] ':'
[struct '.'] data label ['['subscript']']...

The following example shows the data label N3_ADDRESS from the first
instance of a segment N3 and the data label N3_ADDRESS from the second
instance of segment N3 are assigned to two fields on a record.

ADDRESS1 = N3{1}:N3_ADDRESS;
ADDRESS2 = N3{2}:N3_ADDRESS;
MAPPING EXPRESSIONS



14-10 Data Label Attributes
Data Label Attributes
The data label attributes found in these extractions define the data type of
the data label.

Data label type R — The ‘Rn’ indicates that the data element is numeric
type with scaling and the ‘n’ indicates the number of decimal places to the
right of a fixed, implied decimal point. The element value does not have a
decimal point. For example, ‘R2’ would indicate two decimal places. If the
value were 125 in a data element with a type of ‘R2’, this would represent
the number 1.25. The value must be left justified, but leading zeros are
acceptable. Note that this corresponds to ‘N’ in the X12 data types.

Data label type N — The ‘N’ data type indicates an unscaled decimal type
of data element. A decimal point is included for fractional values, but is
optional for integers. The number of this type might have a leading + or -
(the + is optional). The value must be left justified, but leading zeros are
acceptable. Note that this corresponds to ‘R’ in the X12 data types.

Data label type ID — The ‘ID’ data type indicates a value from a
predefined list of values as defined in the Digital DEC/EDI tables. The
Mapper treats these the same as an ‘AN’ type. It does not verify that it is one
of the predefined values. The validation will be performed by Digital
DEC/EDI. The value must be left justified.

Data label type AN — The ‘AN’ data type indicates an alphanumeric string
type of data element. The value must be left justified.

Data label type CH — The ‘CH’ data type is the same as AN.

Data label type DT — The ‘DT’ data type indicates a date type element
with the format of ‘YYMMDD’. The size of a DT type is always 6. The
value must be left justified.

Data label type TM — The ‘TM’ data type indicates a type with the format
of ‘HHMM’. The size of a TM type can be 4 or 6. The value must be left
justified.

SIZE — This is a required key word that introduces the size specification.
The size specification is an integer indicating the maximum number of
characters an element of this type can hold. This number should come from
the Digital DEC/EDI tables indicating the maximum length of the data label
MAPPING EXPRESSIONS



Numeric Constant 14-11
value. Digital DEC/EDI processing will pad to take care of the minimum
field length.

Numeric Constant
A numeric constant is a decimal number such as 123. A numeric constant
can be prefixed with a minus sign (-) to indicate that it is negative.
Fractional numeric constants, those that contain decimal points, will be
treated as signed numeric strings that are scaled as indicated by the decimal
point position.

Quoted String
A quoted string can be enclosed in double or single quotes. The following
table shows some examples of this.

Single quotation marks appear as 'nn': a double quotation mark is indicated
as “nn”.

Table 14-1 Quotation Marks in Character String Literals

Character String Value
Expression

Value

“JONES” JONES

'JONES' JONES

'JONES''S' JONES'S

'JONES” [invalid]

“''''” ''''

“'''' [invalid]

'My name is “Lefty”.' My name is “Lefty”.

'My ''handle'' is “Lefty”.' My 'handle' is “Lefty”.
MAPPING EXPRESSIONS



14-12 Special Constant
Special Constant
The Mapper supports some special constants. They have special meaning in
handling mapping assignments.

• TRUE

Same as a 1.

• FALSE

Same as a 0.

• $BLANK

$BLANK is a constant that can be used to clear the contents of a segment
or record, or to test if a segment or record contains nothing.

• $ERROR

Often returned as the value of a function or as the ELSE clause in an IF
statement. If there is an attempt to assign this value as part of a mapping
assignment, it indicates that there was an error and the processing of this
document aborts. This constant can be used to force a soft error
condition.

• $UNDEFINED

Often returned as the value of a function or as the ELSE clause in an IF
statement. If there is an attempt to assign this value as part of a mapping
assignment, it indicates that no assignment is to be made. This is not an
error, it only indicates that the assignment is to be ignored.

• $THROWAWAY

Discard the current instance of the destination record or segment being
generated as if the condition failed. Does not terminate the iteration of
the next map.

• $ENDMAP

Skip the remaining assignments in the map being processed, but use the
destination instance.
MAPPING EXPRESSIONS



Special Constant 14-13
– If no output is generated before the $ENDMAP occurs, no
segment/record is generated. In this case, no output will be generated
for children.

However, if some output is generated before the $ENDMAP, the
segment/record is generated and the Mapper proceeds to check the
children.

– If the $ENDMAP occurs in a part of a multi-part map, it terminates
the entire map. Successive map parts are not generated.

With the exception of special constants TRUE and FALSE, whenever one of
these constants appears with an operator, the result of the operation is
always that constant. In other words, the result of the following expression is
always $UNDEFINED:

ABC = 1 + $UNDEFINED;

The exception to this rule are the operators equal (=) and not equal (<>). In
these cases, you can compare for $UNDEFINED. Such a comparison results
in either a TRUE or FALSE. The comparison does not work for the other
special constants, $ENDMAP, $THROWAWAY, or $ERROR.

If any one of these special constants is passed as an argument to either a
built-in function or a customization routine, the function or routine is not
even called. The result is the special constant. The result of the following
expression is $THROWAWAY:

ABC = $SUBSTR(1,1,$THROWAWAY);

If an expression contains more than one special constant, the one with the
highest precedence is returned. The order of the precedence, from highest to
lowest is as follows:

1. $ERROR

2. $THROWAWAY

3. $ENDMAP

4. $UNDEFINED

In the following example, the result would be $ERROR:

ABC = $ENDMAP + $ERROR;
MAPPING EXPRESSIONS



14-14 Global Variables
Global Variables
A global variable is a name given to a variable that exists throughout the life
of a Mapper process.

Global variables are defined on the Initializations screen. This screen is
reached by selecting Table Attributes, and then Initializations. All global
variables must be defined and initialized before they are used.

Since global variables exist through the life of a Mapper process they can be
used as accumulators. They can also be used to hold values temporarily so
expressions can be simplified.

Global variables are single-valued; they cannot be arrays.

Global variables are sometimes referred to as temporary variables since they
do not exist in the input or output of the Mapper; they only exist during the
processing.

Global variables can be used in expressions in the same way that Data
Labels and Fields are used.

Predefined Global Variables
The Mapper provides a set of predefined global variables. The Mapper
assigns values to these global variables: it is not necessary to initialize them.

You can create temporary global variables that you will be using throughout
the mappings, and assign initial values to them. These are variables you will
be using in addition to the predefined variables provided by the Mapper.

You create these variables by first selecting the the Initializations option on
The Map Navigator when you are creating or editing a Mapping Table.
The Initializations screen is then displayed, and the Initializations menu is
included on the Menu Bar. Note that you can also select the
Initializations...option from the Mapping menu. The option becomes
available only when you are creating or editing a Mapping Table.

The Initializations menu enables you to create or delete an Initialization.
When you create an Initialization, it is undefined. You then enter an
assignment statement to declare and initialize a global variable by first
selecting the undefined entry on the Initializations screen. For example,
you might enter the following assignment statements:
MAPPING EXPRESSIONS



Global Variables 14-15
TOTAL=0;
VAT_RATE=17.5;

The following rules apply to variables and the expressions you assign to
them:

• Variable: — This is the name of a global variable. The name must be
unique and not be confused with any field names in the records or any
data label names in segments. To distinguish this variable from Digital-
defined global variables, do not start this name with a dollar sign ($).

• Expression: — This is the value with which to initialize the variable.
The value can be a number or it can be an expression. The expressions
you use here will be mapping expressions and will follow the same rules
and format requirements. You cannot refer to records or data labels here
because they will not yet have been defined. You can refer to other
global variables, functions, constants, and so forth.

Temporary variables are temporary space in which the Mapper can place
data while it is performing the data mappings. They can also serve as
processing flags, names for constants, and in any other way you would
ordinarily use global variables. The data type that the variable takes on is
determined by the data type of the value assigned in an assignment
statement.

Before you can use a global variable in a mapping assignment, you must
declare and initialize it on the Initializations screen. To declare and
initialize it, you assign it an initial value. If you use a variable without
declaring it here, the compiler issues an “undefined variable” error message.

• Once you have assigned an initial value, that value remains in effect until
changed with another assignment or until the Mapper run ends. It is not
cleared by the Mapper between documents.

• It is possible for the global variable to change data type during the
mappings if a value of a different data type is assigned.

The Mapper has several predefined global variables that it uses for
processing, or to which it assigns values as a way of accessing internal data.
You do not have to declare or initialize these variables before using them,
although you might want to assign an initial value, depending upon usage.
The Mapper’s predefined variables are listed below.
MAPPING EXPRESSIONS



14-16 Global Variables
$APPLICATION
The application name. The value is assigned by the Mapper in the following
precedence order:

1. From the first application specified in the Application IDs screen.

2. Overridden when you assign a value to the $APPLICATION variable in
the Initializations screen.

3. Overridden when you assign a value to the /APPLICATION qualifier on
the Defaults screen.

4. Overridden at run-time when you specify a /NAMED_APPLICATION
qualifier in the Application Client call.

This value is used by the Mapper in the Incoming direction as one of the
document selection criteria along with the $PARTNER_SELECT and the
Digital DEC/EDI document type derived from the $DOCTYPE_SELECT
variable.

This value is used by the Mapper in the Outgoing direction as one of the
identifiers passed with a document to the Digital DEC/EDI Translation
Service.

The value is made available to the mappings as the value of the application
qualifier for this run.

$AUDIT_ID
This is the identifier for posting messages to audit. Within a customization
routine, you can call this function for posting audit messages. One of the
arguments that is needed is the identifier for this process. This is available in
the $AUDIT_ID variable and can be passed to any customization routine at
a Hook point or in a Mapping Expression.

$BUSINESS_REF1...$BUSINESS_REF5
One of up to five business references that may be assigned or evaluated
during the mapping process. These may be used to associate user defined
values with a document, for subsequent tracking, or for making decisions
during the mapping process.

These business references are then populated in the document audit trail,
and may subsequently be accessed using the trade track command,
DECEDI_TRACK API routine, or by using the Cockpit.
MAPPING EXPRESSIONS



Global Variables 14-17
With application to application routing, business references that are
assigned in the outgoing direction are available in the incoming direction.

Business references might typically be used to record an invoice number,
purchase order number or trading partner name associated with a document.

Business References are not available through the Mapper development
interface.

$DOCCOUNT
This is a document count number that Digital DEC/EDI assigns to an
incoming document. It is part of the unique document identifier by which
Digital DEC/EDI knows the document, made up as follows:
applid_direction_doccount

applid is the application name you use to request the document from
Digital DEC/EDI; it is the value for the $APPLICATION variable.
direction is either I for incoming, or O for outgoing. doccount is the
value of $DOCCOUNT.

The $DOCCOUNT applies only to the Incoming direction. When the
Mapper receives a document, it places the document count value, which is
provided with the document, in the $DOCCOUNT variable. This makes the
value available for use during mappings. Digital DEC/EDI uses the
document count as part of the identifier for a document in the audit trail.

$DOCTYPE_SELECT
This is one of the Mapper document selection criteria. The value is the
Mapper document type (Object Name) as defined in the Index of Mapping
Sets screen (under Mapping). Case is not significant.

This is not the Digital DEC/EDI document type, nor is it the document type
of any of the standards. The value is filled in by the Mapper in the following
precedence order:
MAPPING EXPRESSIONS



14-18 Global Variables
1. First from the value you assign to the $DOCTYPE_SELECT variable in
the Initializations screen.

2. Overridden when you assign a value to the Object Name field on the
Defaults screen for the Mapping Table attributes.

3. Overridden at run-time when you specify an /OBJECT_NAME qualifier
in the Application Client call.

This value is used by the Mapper only in the Incoming direction. The
Mapper uses the $DOCTYPE_SELECT and $PARTNER_SELECT
variables as look-up criteria in the Index of Mapping Sets screen to get the
Digital DEC/EDI internal document type, when for polling for documents.

You can leave the $DOCTYPE_SELECT variable blank to indicate a
wildcard. This causes the Mapper to accept any document for the
application that matches the $PARTNER_SELECT criterion. If the
selection criteria matches several mapping sets, the Mapper polls for
documents matching each set.

$ERROR_CODE
This is the Digital DEC/EDI Server System error code. When the Mapper
detects an error, it fills in the variable with the binary value of the error
code. The error code can be passed into a customization routine at the Soft
Error Hook point or the Hard Error Hook point.

$PARTNER_SELECT
This is the partner selection criterion. The value is the partner-id defined in a
trading partner profile. The case is not significant. The value is filled in by
the Mapper in the following precedence order:

1. First from the value you assign to the $PARTNER_SELECT variable in
the Initializations screen.

2. Overridden when you assign a value to the Partner ID field on the
Defaults screen for the Mapping Table attributes.

3. Overridden at run-time when you specify a -partner_namequalifier in
the Application Client call.

This value is used by the Mapper only in the Incoming direction. The
Mapper uses the $PARTNER_SELECT variable and the
$DOCTYPE_SELECT variable as look-up criteria in the Mapping Table to
get the Digital DEC/EDI internal document type to use for polling for
MAPPING EXPRESSIONS



Global Variables 14-19
documents. The $PARTNER_SELECT variable can be left blank to indicate
that only the Partner ID is valid. This causes the Mapper to accept all
documents for the application that also match the criteria defined by the
$DOCTYPE_SELECT variable.

If the selection criteria match several mapping sets, the Mapper polls for
documents matching each set.

$DOCTYPE
This is the Mapper document type for the current document. The value is the
Mapper document type (Object Name) as defined in the Mapping Table. It is
not a Digital DEC/EDI document type or the document type of the standard.
Usage depends on direction.

In the Incoming direction, the Mapper fills in the value from the Object
Name variable relating to the document it has received. It gets this value by
using the Digital DEC/EDI internal document type and the partner
identification for the document as look-up criteria into the Mapping Table to
choose the mappings for processing the document. The value for the
$DOCTYPE variable is obtained from the chosen mapping set. The value
becomes available as information for the mapping expressions.

In the Outgoing direction, the Mapper fills in this variable in the following
order of precedence:

1. First from the value you assign to the $DOCTYPE variable in the
Initializations screen.

2. Overridden when you assign a value to the $DOCTYPE variable in the
Record Sequence popup screen. (The screen is displayed when you
double-click on any line in the Record Sequence.) The value you assign
is used to get the document type from information in the data as it is
loaded into the source tree. With this mechanism, each document in the
application file can be of a different document type.

3. Overridden when you assign a value to the Object Name on the Defaults
screen for the Mapping Table attributes.

4. Overridden at run-time when you specify an -object -name in the
Application Client call.

In the Outgoing direction, the Mapper uses the $DOCTYPE and
$PARTNER variables as look-up criteria into the Mapping Table to
determine which mapping set to use for processing the document. Both the
MAPPING EXPRESSIONS



14-20 Global Variables
$DOCTYPE and $PARTNER variables must be defined by the time the
Mapper is ready to select the mapping set. From the mapping set that is
selected, the Mapper obtains the Digital DEC/EDI internal document type to
use with the document and the instructions for mapping the document.

During the mappings, the $DOCTYPE variable is available to the mapping
expressions.

$PARTNER
This is the partner identification for the document being processed. The
usage depends on the direction.

In the Incoming direction, the value is obtained from the incoming
document data. It is available for use in the mapping expressions.

In the Outgoing direction, the value is used to select the mapping set as well
as to identify the partner for a document. The value is obtained in the
following precedence order:

1. First from the value you assign to the $PARTNER variable in the
Initializations screen. If not overridden, this value determines the
partner to whom all documents processed by this map will be sent.

2. Overridden when you assign a value to the $PARTNER variable in the
Record Sequence screen. This value is used to obtain the partner
identification from the document data as it is being loaded into the source
tree. With this mechanism, each document in the application file can be
directed to a different partner.

3. Overridden when you assign a value to the Partner ID field on the
Defaults screen for the Mapping Table attributes.

4. Overridden at run-time when you specify a -partner -name qualifier
in the Application Client call.

In the outgoing direction, the Mapper uses the $PARTNER and
$DOCTYPE variables as look-up criteria into the Mapping Table to
determine which mapping set to use for processing the document. Both the
$PARTNER and $DOCTYPE variables must be defined by the time the
Mapper is ready to select the mapping set. The value in the $PARTNER
variable will be passed through Digital DEC/EDI along with the document.
During the mappings, the $PARTNER variable is available to the mapping
expressions.
MAPPING EXPRESSIONS



Global Variables 14-21
$USERREF
This is the user reference value for the current document. The value can be
anything you want to assign, to identify the document. Usage is in the
Outgoing direction only.

The value is obtained in the following order of precedence:

1. First from the value you assign to the $USERREF variable on the
Initializations screen.

2. Overridden when you assign a value to the User Reference field on the
Defaults screen for the Mapping Table attributes.

3. Overridden at run-time when you specify a -user -reference
qualifier in the Application Client call.

The value is passed through Digital DEC/EDI along with the document.

$PRIORITY
This is the priority for the current document. Its value can be “NORMAL”,
or it can be “IMMEDIATE”. The value is used only in the Outgoing
direction.

The value of this qualifier decides the priority that will be requested when
the document is passed through Digital DEC/EDI. The value is obtained in
the following order of precedence:

1. First from the value you assign to the $PRIORITY variable on the
Initializations screen.

2. Overridden when you assign a value to the /PRIORITY= qualifier on the
Defaults screen for the Mapping Table attributes.

3. Overridden at run-time when you specify a /PRIORITY qualifier in the
Application Client call.

$RUN_ID
The unique mapper Run ID associated with the current run. This is a string
containing a six digit number.

The Run ID value is stored in the document audit trail to enable a document
to be reconciled with a particular mapper run that either created or fetched
the document.

This variable is not available through the Mapper development interface.
MAPPING EXPRESSIONS



14-22 Global Variables
$TESTIND
This is the value of Test Indicator flag. Usage depends on direction.

In the Incoming direction, the Mapper fills in the $TESTIND variable from
the value of the Test Indicator received with with the document. At this
point, the Mapper verifies that this is one of the values it is expecting.

In the Outgoing direction, the Test Indicator flag can take on one of the
following four values:

• Mapper_test

• Translation_test

• Partner_test

• Live

The Test Indicator flag, when applied to a particular document, is defined or
defaulted as a parameter to the post command, or overridden during the
mapping phase. When this indicator is applied to an Outgoing document, its
value is determined in the following order of precedence:

1. The default is Live.

2. Any value specified as a Mapping Table Attribute overrides the default.

3. Any value specified to the post command overrides any value applied.

4. Any explicit value applied during the mapping process overrides all
other values.

For more detailed information about both Incoming and Outgoing data, refer
to the Digital DEC/EDI: User’s Guide — Testing the Configuration.

After mapping for the document is complete, the value of the $TESTIND
variable is checked against the test mode of the Mapping Table. The value is
then passed through Digital DEC/EDI along with the document. The value
must be consistent with the test indicator setting of the Digital DEC/EDI
tables, or the document will be rejected.

This is the value of the current application file record. This variable is used
for passing the record value to customization routines at hook points. In the
Incoming direction, the $RECORD variable is filled by the Mapper, just
before it calls the record hook, with the contents of the next record to be
written to the application file. A customization routine associated with the
record hook point can be passed the $RECORD value. It can process it in
MAPPING EXPRESSIONS



Global Variables 14-23
any way it wants and then return the modified record as the value of the
function. This modified record is then written to the application file. If there
is no customization routine associated with the record hook point, the value
of the $RECORD variable is written to the applications file.

In the Outgoing direction, the $RECORD variable is filled in by the Mapper
just before it calls the customization routine at the RECORD hook point.
The variable contains the next record read from the application file. It can be
used as an argument to pass to the customization routine. The routine can
modify the record and return it as the value of the function.

$FILENAME
This is the file name for the current application file. In the Incoming
direction, the Mapper fills in the value of $FILENAME from the application
file parameter in the command line at runtime. It then makes the
$FILENAME variable available to the Preprocess Hook. A customization
routine called at the preprocess hook can modify it and return it as the
function value. This will be the name of the file created as the application
file for subsequent processing, where all records for the Mapper run will be
written. When the file is opened, its value will be replaced with the full file
name, including the version number, and will become available for the
mapping expressions. It can also be passed to a customization routine at the
post processing hook point.

In the Incoming direction, the Mapper fills in the value of the $FILENAME
variable from the application file name in the command line at runtime. It is
then made available as a value that can be passed to the customization
routine of the preprocess hook. The routine can modify it and return it as the
value of the function. the Mapper will then use the modified value of the
$FILENAME variable to open the application file. The file name can
contain wildcards, which specify a set of files. When each file is opened, its
full name, including extension, is placed in the $FILENAME variable and is
available for mapping expressions and other hook points.

This is the error code. When the Mapper detects an error, it fills in the
variable with the binary value of the error code. The error code can be
passed into a customization routine at the soft error hook point or the hard
error hook point.

This is the identifier for posting messages to audit. Within a customization
routine, you can call this function for posting audit messages. One of the
MAPPING EXPRESSIONS



14-24 Global Variables
arguments that will be needed is the identifier for this process. This is
available in the $AUDIT_ID variable and can be passed to any
customization routine at a hook point or in a mapping expression.

$RECOVERY
This is the recovery mode flag; it specifies the number of documents to skip
in the application file. The Mapper does this by completely processing all
documents starting with the first, but not sending them on through Digital
DEC/EDI. When the Mapper is in this mode, the $RECOVERY variable has
a value of 1. Otherwise, its value is 0. You can pass this variable to
customization routines that have side effects to inform the routines that the
current document is not really going to be sent.

$APPLICATION_ARG
This is the application type that comes from the command line. This value is
filled in by the Mapper from values entered at runtime in the command line.
If the value was not entered at runtime, the value of this variable will be
$UNDEFINED and the Mapper uses the value in the $APPLICATION
variable instead. The $APPLICATION_ARG variable can be referenced in
any of the expressions.

$DOCTYPE_ARG
This is the document type that comes from the command line.

This value is filled in by the Mapper from values entered at runtime in the
command line. If the value was not entered at runtime, the value of this
variable will be $UNDEFINED and the Mapper uses the value in the
$DOCTYPE variable instead. The $DOCTYPE_ARG variable can be
referenced in any of the expressions.

$PARTNER_ARG
This is the partner identification that comes from the command line.

This value is filled in by the Mapper from values entered at runtime in the
command line. If the value was not entered at runtime, the value of this
variable will be $UNDEFINED and the Mapper uses the value in the
$PARTNER variable instead. The $PARTNER_ARG variable can be
referenced in any of the expressions.
MAPPING EXPRESSIONS



Global Variables 14-25
$USERREF_ARG
This is the user reference that comes from the command line.

This value is filled in by the Mapper from values entered at runtime in the
command line. If the value was not entered at runtime, the value of this
variable will be $UNDEFINED and the Mapper uses the value in the
$USERREF variable instead. The $USERREF_ARG variable can be
referenced in any of the expressions.

$TESTIND_ARG
This is the test indicator that comes from the command line.

This value is filled in by the Mapper from values entered at runtime in the
command line. If the value was not entered at runtime, the value of this
variable will be $UNDEFINED and the Mapper uses the value in the
$TESTIND variable instead. The $TESTIND_ARG variable can be
referenced in any of the expressions.

$PRIORITY_ARG
This is the priority that comes from the command line.

This value is filled in by the Mapper from values entered at runtime in the
command line. If the value was not entered at runtime, the value of this
variable will be $UNDEFINED and the Mapper uses the value in the
$PRIORITY variable instead. The $PRIORITY_ARG variable can be
referenced in any of the expressions.

The variables you create and initialize here are executed once by the Mapper
just before execution of the routine you might have assigned at the
preprocess hook point at runtime.

The initial value assigned to a global variable can be any expression, just as
in the mapping itself. The exception is that the expression cannot refer to
fields on records or data labels on segments because at the time the
initializations are performed, there is no data loaded into the source tree.

Document Audit Global Variables
The following global variables are available in the incoming direction only,
and are populated with the values retrieved from the document audit trail for
the document currently being processed.
MAPPING EXPRESSIONS



14-26 Global Variables
These variables are blank, if test_indicator=mapper_test. These variables
are not available through the Mapper development interface.

$INT_DOCTYPE
The internal document name as defined in the Trading Partner Agreement
which uniquely identifies the type of document being processed.

$EXT_STANDARD
The external standard used when translating the document.

$EXT_VERSION
The external version of the external standard

$EXT_DOCTYPE
The external document type synonym defined by the external standard to
describe the type of document (for example, INVOIC).

$DOC_CONTROL_NUM
The document's external control number.

$GRP_TYPE
The type of functionality group to which this document belongs.

$GRP_CONTROL_NUM
The control number for the functional group that this document belongs to
in the transmission file.

$APP_INT_QUAL
The Application's qualifier in the Interchange header to which this
document belongs.

$APP_INT_ID
The Application's identifier in the Interchange header to which this
document belongs.

$PAR_INT_QUAL
The Partner's qualifier in the Interchange header to which this document
belongs.
MAPPING EXPRESSIONS



Global Variables 14-27
$PAR_INT_ID
The Partner's identifier in the Interchange header to which this document
belongs.

$INT_CONTROL_NUM
The control number of the interchange to which this document belongs.

$FA_APP_ID
The Application ID used for the functional acknowledgement associated
with the document.

$FA_DIR_IND
The direction indicator used for the functional acknowledgement associated
with the document.

$FA_DOCCOUNT
The Internal Document Count used for the functional acknowledgement
associated with the document.

$INT_DATE
The Interchange Date of Preparation.

$INT_TIME
The Interchange Time of Preparation

$INT_STANDARD
The Interchange Standards ID

$INT_VERSION
The Interchange Version ID

$INT_ACK_REQ
A flag indicating whether an Interchange Acknowledgement was requested.

$INT_SENDER_ID
Interchange sender address for reverse routing

$INT_RECEIVER_ID
Interchange recipient routing address
MAPPING EXPRESSIONS



14-28 Numeric and String Values
$INT_PRIORITY
Processing Priority Code

$APP_REFERENCE
Application Reference

$NUM_AREAS
Number of Areas/Message

$GRP_SENDER_ID
Group Sender ID

$GRP_RECEIVER_ID
Group Receiver ID

$GRP_SENDER_QUAL
Group Sender Qualifier

$GRP_RECEIVER_QUAL
Group Receiver Qualifier

$AGENCY_CODE
Responsible Agency code, used by GS07

$GRP_VERSION
Group Version/Release ID code, used by GS08

$TRACK_DOCCOUNT
Related Document ID for site-to-site (application to application) documents

Numeric and String Values
A numeric value is a value that represents a valid numeric quantity. It may
be an optionally signed integer or decimal value. For example, the following
are all numeric values:

1 +5 -9
22. +22. -22.
3.456 +3.456 -3.456
0.45 +0.45 -0.45
MAPPING EXPRESSIONS



An Expression Using Operators 14-29
.678 +.678 -.678

A string value can consist of any sequence of characters. For example, the
following are all string values:

"ABC" " abc " "Abc"
"******" "12.34 " "!@&(*$)$)"

A string the can be converted to a numeric value can be used in any context
where a numeric value is required.

An Expression Using Operators
Two types of operators can be used in an equation: unary and binary. The
unary operators are listed in the following table:.

Table 14-2 Unary Operators

Operator Type Description

+ Arithmetic Positive. In an expression it is ignored. In an
instance qualifier, it indicates a relative offset
from the current instance.

- Arithmetic Negative. Negates the value of the expression
that follows. In an instance qualifier, it
indicates a relative offset from the current
instance.

NOT Logical Inverts the boolean logic. If the following
expression is non-zero, it returns 0. If the
expression is zero, it returns 1.
MAPPING EXPRESSIONS



14-30 An Expression Using Operators
Binary operators operate on specific data types. Before an operation is
performed, the value of the operands will be converted to an appropriate
type. The binary operators are listed in the following table.

Note: At least one space is required between a subtraction operator (-) and
variables used as operands so that the operator can be distinguished from a
hyphen in a variable name.

Arithmetic Operators
Arithmetic operators require numeric valued operands. If an operand is a
string but contains a numeric value, the value is converted to numeric form.

If an operand is a string that cannot be converted to a numeric value, a
runtime error occurs.

Table 14-3 Binary Operators

Operator Type Description

+ Arithmetic Addition of two numbers.

- Arithmetic Subtraction of two numbers.

* Arithmetic Multiplication of two numbers.

/ Arithmetic Division of two numbers.

| String Concatenation of two strings.

AND Logical Both non-zero, return 1, else 0.

OR Logical Boolean OR. Either non-zero, return 1, else 0.

> or GT Relational Greater Than compare, Number or string.

< or LT Relational Less Than compare, Number or string.

>= Relational Greater or Equal compare, Number or string.

<= or LE Relational Less than or Equal compare, Number or string.

= or EQ Relational Equal to compare, Number or string.

<> or NE Relational Not Equal compare, Number or string.
MAPPING EXPRESSIONS



An Expression Using Operators 14-31
String Operators
String operators can have numeric or string operands. Numeric operands are
converted to string values.

Relational Operators
Relational operators can have numeric or string operands. In addition, the
equality operators ( EQ and NE ) can have the special value $UNDEFINED
as an operand.

Depending on the operands, a numeric comparison or a string comparison is
performed, according to the following rules:

1. If both operands are numeric, a numeric comparison is performed.

2. If one operand is numeric and the other is string, the string operand is
converted to a numeric value. If it can not be converted, a runtime error
occurs and the document is aborted.

3. If both operands are strings, a string comparison is performed.

Since some constants can become strings and since global variables change
type according to the value assigned, the type of an operand is sometimes
difficult to predict.

Recommendation: It is recommended that comparisons using constants and
global variables be written using the $ROUND function or the $STR
function. If a numeric comparison is intended, use the $ROUND function. If
a string comparison is intended, use the $STR function.

Example
Consider the following sequence of assignments:

b = 123.4;
VALUE SET TO: "123.4"

c= "34.56";
VALUE SET TO: "34.56"

e = $ROUND(c,2);
VALUE SET TO: "34.56"

f = if e > b then 1 else 2;
VALUE SET TO: "2"

g = if c > b then 1 else 2;
VALUE SET TO: "1"
MAPPING EXPRESSIONS



14-32 A Conditional Statement Using the IF Expression
The global variables b and c contain string values. The global variable e
contains a numeric value because the $ROUND function was used to force it
to that type.

In the assignment to the global variable f, the numeric operand e forces a
numeric comparison. The string operand b is forced to a number and the
result of the comparison is false because e (34.56) is not greater than b
(123.4).

In the assignment to the global variable g, both c and b are strings. A
warning message is issued and a string comparison occurs. The result of that
comparison is TRUE. A string comparison looks at the operands on a
character by character basis and finds that the character 3 is greater than the
character 1.

To ensure a numeric comparison, the assignment to g could be written as
follows:

g = if $ROUND(c,2) > $ROUND(b,2) then 1 else 2;

Logical Operators
Logical operators require numeric-valued operands. A numeric value of
zero is considered FALSE All other numeric values are considered TRUE.

A Conditional Statement Using the IF
Expression

The IF expression provides a way to perform a conditional assignment. The
IF expression in the Mapper is NOT the same as a conditional statement
found in almost all programming languages. In most programming
languages, the IF statement causes branching. In the Mapper, the IF
expression simply determines a single value to be returned as the value of
the expression.

The syntax is:

IF conditional-expression THEN value-if-true
[ELSE value-if-false][ENDIF]
MAPPING EXPRESSIONS



A Conditional Statement Using the IF Expression 14-33
The conditional-expression is evaluated. If the result is TRUE or a non-zero
numeric value, the value assigned to the IF expression is the value of the
THEN clause.

If the conditional-expression evaluates to FALSE or zero, the value assigned
to the IF expression is the value of the ELSE clause. If no ELSE clause is
present, the value assigned to the IF expression is $UNDEFINED.

If the relational value evaluates to $ENDMAP, $THROWAWAY, or
$ERROR, it is an illegal value.

If the IF expressions are nested, the ENDIF keyword is required at the end.

The following examples show possible syntactic combinations for the IF
expression:

ABC = IF A THEN B;
ABC = IF A > 1 THEN B ELSE C;
ABC = IF $EXIST(record1) THEN "We have it";
ABC = IF record1{1}:field = "A" THEN 26 ELSE $UNDEFINED;

The following examples show possible syntactic combinations of nested IF
expressions. When expressions are nested, each must be terminated with the
ENDIF keyword.

ABC = IF A=1 THEN 25
ELSE IF A=2 THEN 28

ELSE IF A=3 THEN 32
ELSE 0
ENDIF

ENDIF
ENDIF;

ABC = IF A=1 THEN
IF B = 1 THEN C ELSE D ENDIF

ELSE
IF B = 1 THEN D ELSE C ENDIF

ENDIF

All the parts of a conditional expression are evaluated even though the result
of the first part determines the result of the expression. If a dependency
exists among the logical expressions that make up the conditional
expression, the dependency must be made explicit by the use of the IF
expression.

As an example of an incorrect statement, consider the following:
MAPPING EXPRESSIONS



14-34 Operator Precedence
a = IF ( n <> 0 AND $SUBSTR( 1, n, PRICE ) <> "" ) THEN PRICE;

The $SUBSTR function causes a runtime error if a negative length is
specified. The above statement tests for a negative length. However, the
second operand of the AND is evaluated even though the first operand is
FALSE and thus a runtime error occurs.

In the Mapper, the correct way to perform this test is to write it as follows:

a = IF ( n <> 0 ) THEN
IF ( $SUBSTR( 1, n, PRICE ) <> "" THEN PRICE;

In this case, the subordinate IF statement is executed only if the first IF
statement is TRUE.

Operator Precedence
The precedence of operators in an expression is as follows from the weakest
(meaning last operated upon) to the strongest (first to be operated on).
Within each precedence level the operators are applied left to right in a
statement.

7) +, - (unary)
6) *, /, |
5) +, -
4) <, >, <>, =, >=, <=
3) NOT
2) AND OR
1) IF THEN ELSE

Assume the following example:

1 + 2 * 3

The answer is 7, not 9, because the multiplication has a higher precedence
level. Multiplication operation occurs before addition. Therefore, it would
be the same if written as follows:

1 + (2*3)

You can change the order of precedence by putting in parenthesis to force
the software to evaluate the operations within the parenthesis before other
operations. In the previous example, to cause the addition operation to occur
before the multiplication, you would have to write it as follows:

(1+2) * 3
MAPPING EXPRESSIONS



Math Precision 14-35
The operators AND and OR are at the same precedence level. Therefore,
when using combinations of AND and OR in IF statements or expressions,
be sure to use parenthesis to explicitly identify the precedence.

Math Precision
The Mapper maintains up to 31 digits of precision with a scale factor
between -127 and +127 in most cases.

In rare circumstances, the Mapper shows more precision than this in the map
log. These large values are not normally encountered in business processing.

When fields, data labels, globals, and literals are combined in an expression
using one of the math operators, the math is done using the scaled decimal
string math.

The numeric data types and strings are converted to a Left Separate Numeric
String. Precision is 31 significant digits and an exponent ranges from -127 to
+127. In all math operations, the result is rounded to 31 significant digits.

In some cases, the result of the math operation will have more digits to the
right of the decimal point than can be used by in record field or data label,
depending on the field or data label size and scale factor. The assignment
will round the fractional part without giving an error.

Functions
The Mapper provides a comprehensive set of data manipulation routines for
modifying data in cases where standard data type conversions are not
sufficient. The routines are listed in the following table. If this set of
functions is not sufficient, you can implement your own manipulation
routines using the customization functions. See Chapter 17 Using Hooks to
Customize the Mapper
MAPPING EXPRESSIONS



14-36 Functions
.

MAPPING EXPRESSIONS



Functions 14-37
Table 14-4 Functions

Operator Description

$BEGINDOC()
Returns a string containing the name of the node
that contains the BEGIN DOCUMENT clause for
the current document data set.

$DATE(format,date)

Date and Time Conversion. The following formats
may be used:

1. OpenVMS binary to MM/DD/YY.

2. OpenVMS binary to DD-MMM-YYYY
HH:MM:SS.

3. OpenVMS binary to MM-DD-YYYY
HH:MM:SS.

4. OpenVMS binary to UNIX binary date format.

5. OpenVMS delta binary to HHMM (DT format).

6. OpenVMS binary to YYMMDD HHMM.

7. MM/DD/YY [,HHMM] to OpenVMS binary.

8. DD-MMM-YYYY HH:MM:SS to OpenVMS.

9. MM-DD-YYYY [,HHMM] to OpenVMS
binary.

10.UNIX binary date to OpenVMS binary.

11.YYMMDD [,HHMM(DT format)] to OpenVMS
binary.

12.HHMM to OpenVMS delta binary.
MAPPING EXPRESSIONS



14-38 Functions
$DATE_CONVERT
(input_format,
output_format, date)

This function converts date into the format specifiedby
output_format. The format of date must be specified in
input_format. date must be of date type TEXT.
input_format and output_format can include any
combination of the following format specifiers:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c (see note below)) local date

and time representation
%d day of the month (01-31)
%H hour (24-hour clock) (00-23)
%I hour (12-hour clock) (01-12)
%j day of the year (001-360)
%m month (01-12)
%M minute (00-59)
%p local equivalent of AM or PM
%S second (00-59)
%U week number of the year (Sunday

as 1st day of week) (00-53)
%w weekday (0-6, Sunday is 0)
%W week number of the year (Monday

as 1st day of week) (00-53)
%x (see note below) local date

representation
%X (see note below) local time

representation
%y year without century
%Y year with century
%Z time zone name, if any
%% %

Use %c, %x and %X only in output format string.

This function is not available through the Mapper
development interface.

Table 14-4 Functions (continued)

Operator Description
MAPPING EXPRESSIONS



Functions 14-39
$EXIST(node)
Returns TRUE if specified node’s instance exists.
Returns FALSE if it does not.

$INSTANCE(node) Returns the current instance number for node. If
there are no elements, return $UNDEFINED. The
node argument can be qualified with an instance
number.

$INT(expr)
Converts expr to an integer by truncating any
fractional part. The argument must be a numeric
value.

$LEN(expr) Returns the current length of the string.

$LOOKUP_SHARED(
expr1, expr2)

Look in shared lookup table named expr1 using the
value of expr2 as the key, and return its correspond-
ing value.
Note that expr1 is a string expression, and must be
enclosed within quotes. You may create the table
name dynamically by concatenating several strings
together within expr1.
In the following example, a partner specific lookup
table is used.
SEG03 = $LOOKUP_SHARED(“LOOKUPS_” |

$PARTNER | “_TBL”, FIELNAME);

If no value is found, then return $UNDEFINED.
This function is not available through the Mapper
development interface.

$LOOKUP(tablename,
expr)

Look in lookup table using the value of expr as the
key and return its corresponding value. If no value
is found, return $UNDEFINED.

$PAD(str,len,char)

Pad string str to length of len with the value of char
as the pad character. A negative length specifies
right justification. The argument len must be a
numeric value.

Table 14-4 Functions (continued)

Operator Description
MAPPING EXPRESSIONS



14-40 Functions
$ROUND(expr,
fractional_digits)

Limit the precision of a fractional numeric string (a
string containing a decimal point) by rounding. The
argument fraction_digits must be a numeric value. It
specifies the maximum number of digits to carry on
right of decimal point.)

$STR(expr) Explicit convert expr to a string.

$STRCHR(str,charset)
Position in str of first character that matches any
character in the string charset. Returns 0 if none are
found. (First character position is 1).

$STRNCHR(str,
charset)

Position in str of first character that DOES NOT
match any character in the string charset. Returns 0
if none are found. (First character position is 1).

$STRPOSITION(str,
substr,start)

Returns position of substring in str. Returns 0 if sub-
string not in str.

$SUBSTR(start,
len,expr)

Returns a substring value. Starting with position
‘start’ in the string ‘expr’ and taking ‘len’ charac-
ters. First character position is 1. The arguments len
and start must be numeric values. If len is 0, returns
the null string. If len < 0, produces an error. If start
specified a position beyond the end of the string, the
null string is returned. If the sum of start and len
exceeds the length of the string, the string starting at
start and continuing to the end of the string is
returned.

Table 14-4 Functions (continued)

Operator Description
MAPPING EXPRESSIONS



Functions 14-41
$TIMESTAMP(
numeric_format)

Returns the current date/time in specified format.
The format may either be one of the following
numeric values, or a string specifying formatting
characters.

The following numeric formats may be used:

1. OpenVMS binary to MM/DD/YY.

2. OpenVMS binary to DD-MMM-YYYY
HH:MM:SS.

3. OpenVMS binary to MM-DD-YYYY
HH:MM:SS.

4. OpenVMS binary to UNIX binary date format.

5. OpenVMS delta binary to HHMM (DT format).

6. OpenVMS binary to YYMMDD HHMM.

7. MM/DD/YY [,HHMM] to OpenVMS binary.

8. DD-MMM-YYYY HH:MM:SS to OpenVMS.

9. MM-DD-YYYY [,HHMM] to OpenVMS
binary.

10.UNIX binary date to OpenVMS binary.

11.YYMMDD [,HHMM(DT format)] to OpenVMS
binary.

12.HHMM to OpenVMS delta binary.

Table 14-4 Functions (continued)

Operator Description
MAPPING EXPRESSIONS



14-42 Functions
$TIMESTAMP(
string_format)

Returns the current date/time in specified format.
The format is a string specifying formatting
characters:

%a abbreviated weekday name
%A full weekday name
%b abbreviated month name
%B full month name
%c local date and time

representation
%d day of the month (01-31)
%H hour (24-hour clock) (00-23)
%I hour (12-hour clock) (01-12)
%j day of the year (001-360)
%m month (01-12)
%M minute (00-59)
%p local equivalent of AM or PM
%S second (00-59)
%U week number of the year (Sunday

as 1st day of week) (00-53)
%w weekday (0-6, Sunday is 0)
%W week number of the year (Monday

as 1st day of week) (00-53)
%x local date representation
%X local time representation
%y year without century
%Y year with century
%Z time zone name, if any
%% %
This format of the function is not available
through the Mapper development interface.

$TRIM(str) Trim trailing spaces and tabs from string str.

$LOGICAL(expr)

UNIX environment variable from any table and
return its value. Returns $UNDEFINED if there is
no translation. The logical name parameter should
be placed in quotation marks.

Table 14-4 Functions (continued)

Operator Description
MAPPING EXPRESSIONS



Expression Examples 14-43
Expression Examples
The following are examples of math operations and conversions:

A = 1/2;
VALUE SET TO: "0.5"

A = 4/2;
VALUE SET TO: "2"

A = 1/3;
VALUE SET TO: "0.3333333333333333333333333333333"

A = 1000000/10;
VALUE SET TO: "100000"

A = 10000000000/0.00000000001;
VALUE SET TO: "1000000000000000000000"

A = 1/0.000000000000000000001;
VALUE SET TO: "1000000000000000000000"

A = (3+4)/2;
VALUE SET TO: "3.5"

A = 3+4/2;
VALUE SET TO: "5"

A = (3+4)*4/2; /* 14 */
VALUE SET TO: "14"

A = 0;
VALUE SET TO: "0"

A = A+1;
VALUE SET TO: "1"

A = "1234" + 1;
VALUE SET TO: "1235"

A = " 1234 " + 1;
VALUE SET TO: "1235"

A = " 1234.5 " + 1;
VALUE SET TO: "1235.5"

A = "1234.5" / 3;
VALUE SET TO: "411.5"

A = "-1234.5" + 1;
VALUE SET TO: "-1233.5"

A = 1234.5678000000 * 1.5;
VALUE SET TO: "1851.8517"

A = 1234.5 + 1;
VALUE SET TO: "1235.5"

A = 1234.5 - 1;
VALUE SET TO: "1233.5"

A = 1234.5 / 3;
VALUE SET TO: "411.5"

A = 1234.5 * 3;
VALUE SET TO: "3703.5"
MAPPING EXPRESSIONS



14-44 Expression Examples
The following are examples of IF expressions:

A = IF (B<>$UNDEFINED) THEN B;
VALUE SET TO: $UNDEFINED

B = 3;
A = IF (B=1) THEN "first"

ELSE IF (B=2) THEN "second"
ELSE IF (B=3) THEN "third"
ENDIF

ENDIF
ENDIF;
VALUE SET TO: "third"

The following are examples of Built-in functions:

A = 1234;
VALUE SET TO: "1234"

A = $ROUND(A,2);
VALUE SET TO: "1234.00" <== Note precision is extended

A = A + 1;
VALUE SET TO: "1235" <== Note addition removed

unused 0’s
A = $ROUND(123.456,6);

VALUE SET TO: "123.456000"
A = $ROUND(123.456,6) + 1;

VALUE SET TO: "124.456"
A = $ROUND(A,0);

VALUE SET TO: "124" <== Fractional value removed.
A = $ROUND("",4);

VALUE SET TO: "0.0000" <== Null or blank string is 0

The following are examples of built-in String Manipulation Functions:

A = $SUBSTR(5,15,"XXXXshould get thisXXXXX");
VALUE SET TO: "should get this"

A = $SUBSTR(1,20,A);
VALUE SET TO: "should get this"

A = $STRCHR("String","i");
VALUE SET TO: "4"

A = $STRNCHR("String","tSr");
VALUE SET TO: "4"

A = $STRPOSITION("String","ring",1);
VALUE SET TO: "3"

A = $TRIM("String ");
VALUE SET TO: "String"

A = $PAD("String",20,"*");
VALUE SET TO: "String**************"
MAPPING EXPRESSIONS



Expression Examples 14-45
A = $PAD("String",3," ");
VALUE SET TO: "String"

A = $LEN("String");
VALUE SET TO: "6"

A = $INT(1234.5);
VALUE SET TO: "1235"

A = $STR(1234.5) | "ABC"; <== $STR function is redundant
in this case because of

VALUE SET TO: "1234.5ABC" automatic conversions.
A = $TOLOWER("String");

VALUE SET TO: "string"
A = $TOUPPER("String");

VALUE SET TO: "STRING"
A = $TIMESTAMP(1);

VALUE SET TO: "02/08/91"
A = $TIMESTAMP(2);

VALUE SET TO: " 8-FEB-1991 17:39:02.35"
A = $TIMESTAMP(3);

VALUE SET TO: "02-08-1991 17:39:02"
A = $TIMESTAMP(4);

VALUE SET TO: "666034742"
A = $TIMESTAMP(5);

VALUE SET TO: "1739"
A = $TIMESTAMP(6);

VALUE SET TO: "910208"
A = $TIMESTAMP(7);

VALUE SET TO: " 8-FEB-1991 17:39:02.00"
B = $DATE(1,A);

VALUE SET TO: "02/08/91"
B = $DATE(2,A);

VALUE SET TO: " 8-FEB-1991 17:39:02"
B = $DATE(3,A);

VALUE SET TO: "02-08-1991 17:39:02"
B = $DATE(4,A);

VALUE SET TO: "666034742"
B = $DATE(5,A);

VALUE SET TO: "1739"
B = $DATE(6,A);

VALUE SET TO: "910208"
B = $DATE(7,"02/08/91");

VALUE SET TO: " 8-FEB-1991 00:00:00.00"
B = $DATE(7,"02/08/91,09:56");

VALUE SET TO: " 8-FEB-1991 09:56:00.00"
B = $DATE(8,"08-FEB-1991 09:56:00");

VALUE SET TO: " 8-FEB-1991 09:56:00.00"
B = $DATE(9,"02-08-1991,0956");

VALUE SET TO: " 8-FEB-1991 09:56:00.00"
B = $DATE(10,1234);
MAPPING EXPRESSIONS



14-46 Mapping Language Keywords
VALUE SET TO: " 1-JAN-1970 03:30:42.12"
B = $DATE(11,"9102080956");

VALUE SET TO: " 8-FEB-1991 09:56:00.00"
B = $DATE(12,"0956");

VALUE SET TO: " 0 09:56:00.00"

Mapping Language Keywords
The following table defines the keywords used in the Mapping Language,
which have special meaning to the Mapping Table Compiler.

These keywords should not be used as identifiers within a Mapping Table
because the Mapping Table Compiler will reject them. For example, do not
use them as record or field names, or as global variable names.

Table 14-5 Keywords

Keyword Useage

ALPHABETIC data type

AND operator

AN document data type

ARRAY array data type

BEGINS record begins document

BYTE data type

BY expression

CHANGES navigation option

CHARACTERS data type

CH document data type

COLUMN_MAJOR array order

DATATYPE data type

DATE data type

DECIMAL data type

DESCRIPTOR argument passing mechanism

DIGITS data type
MAPPING EXPRESSIONS



Mapping Language Keywords 14-47
DT document data type

EBCDIC data type

ELSE conditional expression

ENDIF conditional expression

ENDVARIANT data structure

EQ operator

FILLER filler field

FLOATING data type

FOREACH navigation option

FOR expression

GE operator

GT operator

HOOK customization function

ID document data type

IF conditional expression

INTEGER data type

IS data type

JUSTIFIED data type justification

LEFT left justified

LE operator

LIMIT error condition

LONGWORD data type

LT operator

MANDATORY requirement

MANY occurrences

Table 14-5 Keywords (continued)

Keyword Useage
MAPPING EXPRESSIONS



14-48 Mapping Language Keywords
MAX occurrences

MAX_EXCEEDED error condition

MIN occurrences

NAVIGATION navigation

NE operator

NOCHANGE navigation option

NOT operator

NUMERIC data type

N document data type

OCCURS array specifier

OPTIONAL requirement

OR operator

OUT_OF_DATA error condition

OVERPUNCHED sign is overpunched

PACKED data type

QUADWORD data type

REAL data type

RECOGNITION recognition expression

REFERENCE argument passing mechanism

REPEAT repeat pattern

RIGHT right justified

ROW_MAJOR array order

SCALE data type

SEPARATE sign is separate

SIGNED signed

Table 14-5 Keywords (continued)

Keyword Useage
MAPPING EXPRESSIONS



Mapping Language Keywords 14-49
SIGN data type

SIZE data type size specifier

STRUCTURE record structure

TERMINATES record terminates document

TEXT data type

THEN conditional expression

TM document data type

TO expression

TYPE data type

UNSIGNED unsigned

VALUE argument passing mechanism

VARIANT data structure

VARYING_STRING data type

WORD data type

ZONED data type

Table 14-5 Keywords (continued)

Keyword Useage
MAPPING EXPRESSIONS



14-50 Mapping Language Keywords
MAPPING EXPRESSIONS



Chapter 15 Lookup Tables
This chapter describes how to define a Lookup Table.

A Lookup Table is a list of codes and corresponding values that you can
define. The Mapper refers to a Lookup Table to substitute particular code
for its corresponding value.

For example, your company may have a set of codes that correspond to the
sizes and types of packages that you use in selling a particular line of
products. In this case, 1KB might correspond to a One-Kilo Box: 1_5LB
might correspond to a 1.5 Litre Bottle.

Lookup Tables can be stored in two ways:

• Privately within a Mapping Table

• As a Shared Lookup Table in the Digital DEC/EDI server

In creating a Lookup Table, you can create its “mirror image” quickly by
copying it, and selecting a menu option to reverse its codes and
corresponding values.

Private and Shared Lookup Tables
Private Lookup Tables are stored within a Mapping Table. All translations
are private to the Mapping Table; they can be used by any of the mappings
in the Mapping Table.

Shared Lookup Tables are stored in the Digital DEC/EDI database on the
server. There are advantages in using Shared Lookup Tables over Private
Lookup Tables.



15-2 Codes and Values
The advantages are:

• One Shared Lookup Table can be referenced from all Mapping Tables on
the server. This reduces the development effort required per Mapping
Table.

• When Lookup values need to be updated, only the Lookup Table on the
server database will need to be updated, instead of individual Mapping
Tables.

• A Shared Lookup Table is loaded automatically into a memory cache
when first used, so successive calls to translations within that table will
be very fast.

The name of a Private Lookup Table can be used in the mappings as the first
argument of a $LOOKUP function. The name of a Shared Lookup Table can
be used in the mappings as the first argument of a $LOOKUP_SHARED
function

You can define any number of tables, privately and shared.

Shared lookups are not available through the Mapper development interface.

Codes and Values
Lookup Table translations are global; they can be used by any of the
mappings in a Mapping Table.

You can define any number of tables. The values of the table are used in a
mapping definition to specify a type of data manipulation.

Creating and Editing Lookup Tables
To begin, select the Lookup Tables option from the Map Navigator.
Alternatively, you can select the Lookups... option from the Mapping menu
in the Mapping Table Editor. When you use either alternative, the Lookups
menu option is displayed on the Mapping Table Editor's Menu Bar. The
Lookup Table Window is also displayed.
LOOKUP TABLES



Creating and Editing Lookup Tables 15-3
The Lookups menu has the following options:

• Create

• Modify

• Delete

• Sort

• Reverse

• Load

• Store

• Recache

Before you can define any Lookups, you need to create a Lookup Table and
give it a name. You can then populate this with lookup codes and their
corresponding values.

You can edit an existing Lookup Table (or populate a new one) either by
double-clicking on it, or by selecting the table you want to edit. You then
select the Modify option and the Edit Lookup dialog is displayed.

The fields for the Edit Lookup dialog are:

From: This is the search value for the lookup. During a mapping,
the second argument of the $LOOKUP function is
compared with each of the values in this column using a
string compare. When a match is found, the function
returns the corresponding value in the “to value” column.

If a value of spaces is desired, it must be enclosed in
double quotes. Shared Lookup Tables do not support a
value of spaces.

To: This is the value returned by a $LOOKUP function when a
match is made. If a value of spaces is desired, it must be
enclosed in double quotes. Shared Lookup Tables do not
support a value of spaces.
LOOKUP TABLES



15-4 Creating, Editing, and Storing Shared Lookup Tables
Creating, Editing, and Storing Shared Lookup
Tables

Before you can create a Shared Lookup Table, you need to Load the Server
Lookups. This must be done regardless of the existence of any Lookup
Tables on the Server.

After editing Shared Lookup Tables, they must be stored on the Server. This
is done by selecting the Store option on the Lookups menu.

It is recommended you use the Mapping Table Editor to create, modify and
update the Mapper Shared Lookups table. However, you may also update
the Shared Lookups Table directly on the Server node.

Tru64 UNIX It is possible to update the Shared Lookup Tables by writing a script and
executing it on the server. An example of such a script can be found in:

/usr/examples/decedi/mapper/decedi_msl_insert_ora.sql

OpenVMS It is possible to update the Shared Lookup Tables by creating or editing a
file that conforms to the RMS FDL defintion found in:

DECEDI$DATA:DECEDI$MAPPER_SHARED_LOOKUPS.FDL

Once you have updated the file, use the CONVERT/FDL command to ensure
that the file structure conforms to the above RMS FDL definition. You need
to shut down the Digital DEC/EDI Server and copy the updated file to:

DECEDI$DATA:DECEDI$MAPPER_SHARED_LOOKUPS.DAT

After copying the updated file, restart the Digital DEC/EDI Server.

Mapper Shared Lookups Table

Tru64 UNIX The Digital DEC/EDI Database Name is decedi_db. The Shared Lookups
Table is used by the Mapper, and defines a set of simple one-to-one
mappings for the specified name.

Physical Implementation SQL table MSL

Structure Name msl
LOOKUP TABLES



Creating, Editing, and Storing Shared Lookup Tables 15-5
OpenVMS The Shared Lookups Table is implemented as an RMS file, whos eattributes
are defined by the FDL definition:

DECEDI$DATA:DECEDI$MAPPER_SHARED_LOOKUPS.FDL

The Shared Lookups table defines a set of simple one-to-one mappings for
the specified name.

File Name DECEDI$DATA:
DECEDI$MAPPER_SHARED_LOOKUPS.DAT

FDL DECEDI$DATA:
DECEDI$MAPPER_SHARED_LOOKUPS.FDL

Table 15-1 Mapper Shared Lookups Table

Field Tag Type Description

Lookup Table Name looktab_s CHAR*62 The Lookup Table name.

From Value from_s CHAR*255

The From value within
the Lookup Table which
is used to obtain the value
to be returned

To Value to_s CHAR*255

The value corresponding
to the specified From
value

Keys

Primary (Unique) = looktab_s + from_s

Secondary = looktab_s
LOOKUP TABLES



15-6 Recaching Shared Lookup Tables
Recaching Shared Lookup Tables
Once the Shared Lookup table has been modified, it must be recached by the
Mapper in order for the lookups to become effective. This may be done,
either by using the Recache option from the Lookups menu in the Mapping
Table Editor.

Tru64 UNIX You may also recache the Shared Lookups by using the following command
on the Server:

# /usr/sbin/decedi_recache_lookups

Sorting and Reversing Lookup Tables
It is possible to sort translations with a Lookup table. The sort order can be
either ascending or descending alphabetical order.

To sort the translations in a Lookup table, select the Sort option on the
Lookups menu.

You can reverse the codes and values of all translations in a Lookup table.
By doing this, you can create a Lookup table that can be used by a Mapping
table for documents sent in the opposite direction. This can be particularly
useful with File to File processing.

To reverse the codes and values in a Lookup table:

1. First create a Shared Lookup Table for one direction; outgoing for
example.

2. Create a copy of that table, and rename it.

3. Select the Reverse option on the Lookups menu to reverse the values.
The From Value becomes the To Value and vice versa.

Once stored, this new Shared Lookup Table can be used for a corresponding
incoming map.
LOOKUP TABLES



Chapter 16 Supported Mapping
Constructs
You can use the Mapper for specifying many possible mapping
combinations. This chapter describes the Mapper language constructs which
are supported, and the rules for combining constructs.

Make sure that any mapping table you develop conforms to the rules listed
in this chapter, and uses only the constructs given here.

Application File, Records, and Tree Structure
In the Mapping Table Editor, the application file is defined as a hierarchy or
tree structure. Each of the record types is assigned to a place on the tree.
Similarly, the EDI Document is defined as a hierarchy or tree structure, and
each of the segment types is assigned to a place on the tree.

The Mapping Table Editor processes one document at a time so the file is
defined in terms of the records that make up a document. The following
diagram shows the representation of the source tree for a purchase order:

ORDER_HEADER

TERMS ORDER_TRAILERLINE-ITEM

ADDL_INFO



16-2 Relationships Between Records
Suppose you had an application file of purchase orders with such a tree
structure. You would describe it to the Mapping Table Editor as follows:

In an application file description, you would normally have only one
record at Level 1 which defines the start of a document or batch of
documents. All other records are subordinate to that, and would there-
fore have higher level numbers.

Relationships Between Records
Normally, when a record type is shown as a child of another record type,
you can think of the child record type as being owned by its parent.

For example, the line items make up the purchase order, and all of the
information in the purchase order header, such as order date and purchase
order number, apply to all of the line items.

Level Number Record Name

01 ORDER_HEADER
02 TERMS

02 LINE_ITEM

02 ORDER_TRAILER
SUPPORTED MAPPING CONSTRUCTS



Relationships Between Records 16-3
The following terminology is useful when discussing the tree structure, an
example of which is repeated here:

• ORDER_HEADER is the parent of LINE_ITEM.

• LINE_ITEM is the child of ORDER_HEADER and ADDL_INFO is the child
of LINE_ITEM.

• TERMS and LINE_ITEM and ORDER_TRAILER are siblings.

• The ancestors of ADDL_INFO are:

LINE_ITEM

ORDER_HEADER

• The ancestor of TERMS is:

ORDER_HEADER

• The descendants of ORDER_HEADER are:

TERMS

LINE_ITEM

ADDL_INFO

ORDER_TRAILER

• A line of descent starts with the top record and follows a path to one of
the bottom records. This example has three lines of descent:

ORDER_HEADER * TERMS

ORDER_HEADER * LINE_ITEM * ADDL_INFO

ORDER_HEADER * ORDER_TRAILER

ORDER_HEADER

TERMS ORDER_TRAILERLINE-ITEM

ADDL_INFO
SUPPORTED MAPPING CONSTRUCTS



16-4 Definition of Mapping
• TERMS is on the ORDER_HEADER * TERMS line of descent.

• LINE_ITEM is not on the ORDER_HEADER * TERMS line of descent.

Definition of Mapping
Mapping is the process of taking data from the source and constructing the
output. The output is called the destination.

A mapping creates one destination record or segment at a time. (In an
outgoing table segments are created; in an incoming table, records are
created.) The unit that is used to create a segment or record is called a map.
A set of maps that is used to create a complete document is called a mapping
set.

Each mapping set is associated with one application file format and one EDI
document definition; that is, a particular standard, version and message.

Source and Destination
The information in the source and destination trees depends on the whether
the document direction is outgoing or incoming:

• In an outgoing direction, documents are read from the application file
one at a time and used to produce the information that Digital DEC/EDI
uses to create EDI standard messages. The source tree is a representation
of the document in the application file. The destination tree is a
representation of the information in the EDI Standard Message.

The source tree therefore consists of records from the Application File,
and the destination tree consists of segments destined for the EDI
standard message.

• In the incoming direction, the source tree is a representation of the EDI
standard message, while the destination tree is a representation of the
document in the application file.

The source tree therefore consists of segments from the EDI standard
message, and the destination tree is made up of records destined for the
Application File.
SUPPORTED MAPPING CONSTRUCTS



The Mapping Table 16-5
This is illustrated in the following diagram.

As you read this chapter, bear in mind that the content of source and
destination trees can be records or segments, according to the direction.
Sometimes the term record/segment or segment/record is used, where the
direction is not important.

The Mapping Table
A mapping table is used to define how to process one application file
format. Each mapping table is either an INCOMING table or an
OUTGOING table.

ORDER_HEADER

TERMS ORDER_TRAILERLINE-ITEM

ADDL_INFO

ORDER_HEADER

TERMS ORDER_TRAILERLINE-ITEM

ADDL_INFO

BEG

ITD PO1 CTT

P03

BEG

ITD PO1 CTT

P03

OUTGOING
Application File Document EDI Standard Message

INCOMING
EDI Standard Message Application File Document
SUPPORTED MAPPING CONSTRUCTS



16-6 One-to-One Mapping
One-to-One Mapping
This is the simplest case where:

• For an outgoing document, all of the data used to create a destination
segment comes from one single source record, and the source record is
not used in another Set Context line or FOR EACH Repeat Pattern,
anywhere else in the mapping set.

• For an incoming document, all of the data used to create a destination
record comes from one single source segment, and the source segment is
not used in another Set Context line or FOR EACH Repeat Pattern,
anywhere else in the mapping set.

An instance of one-to-one mapping is where all of the data for a destination
segment/record comes from a single source record/segment. For example, in
the diagram in Source and Destination on page 16-4, the P01 segment data
maps entirely onto the LINE_ITEM record.

The following syntax is needed for the one-to-one case:

If a particular source record/segment will be referenced on multiple Set
Context lines, see: Splitting on page 16-6.

Splitting
A source record may be split into multiple destination segments, or a source
segment may be split into multiple records, in the following ways:

• Splitting Into Independent Segments/Records on page 16-7 describes the
case where the source record/segment is split into two or more

Set Context Source record/segment

Repeat pattern Blank

Map part set default May be used
SUPPORTED MAPPING CONSTRUCTS



Splitting 16-7
destination segments/records, and the destination segments/records are
on different lines of descent.

• Splitting into a Parent and Children on page 16-7 describes the case
where the first destination segment/record is the parent of all the other
destination segments/records that share the same context.

Splitting Into Independent Segments/Records
In the outgoing direction, a source record may be split into multiple
destination segments, where the destination segments are on different lines
of descent. This includes the case where the destination segments are
siblings.

Likewise, in the incoming direction, a source segment may be split into
multiple destination records, where the destination records are on different
lines of descent. This includes the case where the destination records are
siblings.

An instance of this is where the data for two or more destination
segments/records comes from a single source record/segment. For example
each ADDL_INFO record might provide the data for both the LIN segment
and the PAC segment. LIN and PAC are siblings under the PO1 segment in
an EDIFACT INVOICE. Because all LIN segments are generated before the
first PAC segment, it is necessary to begin again with the first ADDL_INFO
record in order to generate the PAC segments.

The second and succeeding Set Context lines which reference the same
source record/segment must use the explicit instance 1 notation,
record/segment B{1}, to cause the pointers to be reset to the first instance.
This makes the Mapping Table Editor examine all the records/segments.

Splitting into a Parent and Children
In the outgoing direction, a source record may be split into multiple
contiguous destination segments, where the first destination segment is the
parent of the other destination segments.

Set Context Source record/segment B{1}

Repeat pattern Blank

Map part set default May be used
SUPPORTED MAPPING CONSTRUCTS



16-8 Combining
Likewise, in the incoming direction, a source segment may be split into
multiple contiguous destination records, where the first destination record is
the parent of the other destination records.

An instance of this is where the data for a several adjacent destination
segments/records (for example the N1, N3 and N4 segments) comes from a
single source record/segment (for example an ADDRESS record). The
syntax that may be used for this is:

Combining
In the outgoing direction, multiple source records may be combined to form
one destination segment.

Likewise, in the incoming direction, multiple source segments may be
combined to form one destination record.

An instance of this is where the data for a destination segment/record must
be gathered from several source records/segments. For example the ITD

First Map

Set Context Source record/segment B. In the case where
record/segment B is referenced in the Set Context
of another map (as in Splitting Into Independent
Segments/Records on page 16-7, record/segment
B{1} must be used in the Set Context line.

Repeat pattern Blank

Map part set default May be used

Additional Maps

Set Context Source krs B

Repeat pattern No change
SUPPORTED MAPPING CONSTRUCTS



Skipping a Level 16-9
segment might be constructed from data from both the ORDER_HEADER
record and the TERMS record.

Skipping a Level
Sometimes there is a situation where a source record/segment B is not
needed, but there is a requirement to generate a destination segment/record,
for each of the children C of each instance of segment/record B.

An example of this case is where there is a record between the
ORDER_HEADER and LINE_ITEM records. This could be a PLANT
record for the PLANT that wants the part, and where the PLANT record is
not used in the output, but each LINE_ITEM record under each PLANT
record is used to form a PO1 segment.

The syntax for this is:

The FOR EACH clause may only be used within the following restrictions.
Only one FOR EACH clause may be used in the creation of any destination
line of descent.

Set Context Source record/segment B

Repeat pattern Blank

Map part set default Source record/segment C

Additional parts, if needed

Map part set default Source record/segment D

Set Context Source record/segment C. If segment/record C
is referenced in the Set Context line for any
map on a different line of descent which
precedes the map with the FOR EACH, the
record/segment C{1} notation must be used.

Repeat pattern FOR EACH source record/segment B.

Map part set default May be used.
SUPPORTED MAPPING CONSTRUCTS



16-10 Avoiding Cross-Over Patterns
The record/segment referenced in the FOR EACH clause (that is, B) may
not be referenced in the Set Context line for any other map on the
destination line of descent.

Avoiding Cross-Over Patterns
In the outgoing direction, if a map for a destination segment S_SEG
references a source record Y_REC, none of the maps of the descendants of
S_SEG may reference source record Y_REC or any of its ancestors, unless
the NO CHANGE Repeat Pattern is used by the descendant’s maps.

In other words, within a destination line of descent, the references to a line
of descent in the source tree can not cross. Likewise for the incoming
direction.

The Mapping Table Editor maintains a single set of pointers defining the
current instance for each record/segment in the source tree. When maps are
executed these pointers are changed when the Repeat Pattern line is left
blank or when the FOR EACH Repeat Pattern is used. The NO CHANGE
Repeat Pattern causes the pointers to be left unchanged.
SUPPORTED MAPPING CONSTRUCTS



Set Context Line Must Be Used 16-11
Cross-overs without NO CHANGE are restricted because they cause the
child’s map to change the pointers that its parent map is also changing. This
may cause unpredictable results or infinite loops.

Set Context Line Must Be Used
The Set Context line may not be left blank.

Use of Explicit Qualification and Explicit
Instances

When specifying record names on the Set Context line and the Repeat
Pattern FOR EACH line, the record name may be specified as record or
record{1}. Likewise for segments.

In other words, on a Set Context line only the name of the segment or record
should appear, possibly with {1} after it. Constructs such as S_SEG.M_SEG
are not supported. Similarly, on a FOR EACH Repeat Pattern, only the
name of the segment or record should appear.

ORDER_HEADER

Example of a Crossover - Not Supported

X_RECY Y_REC Z_REC

Q_REC

S_SEG

P_SEG M_SEG

P_SEG

T_SEG

SOURCE TREE DESTINATION TREE

Map for M_SEG
Set Context: Q_REC
Repeat Pattern:

Map for M_SEG
Set Context: Y_REC
Repeat Pattern:
SUPPORTED MAPPING CONSTRUCTS



16-12 Children Are Created After Parents
Mapping Assignments
In mapping assignments, explicit qualification and explicit instances should
only be used where necessary.

Default Qualification
The Set Context and Set Default lines set the default qualification. As long
as the default record/segment and current instance are to be used, no
qualification (segment or record names) or instances is needed or desirable.

Explicit Qualification
If it is necessary to reference a different record/segment than the default, all
names up to level 01 must be specified in the case of record names, or all
names up to level 02 in the case of segment names.

For example if the current default is the PO1 segment, and it is necessary to
reference the ITD segment, the reference would be specified as
BEG.ITD:data_label.

If the current default record/segment is the LINE_ITEM record and it is
necessary to reference the TERMS record, the reference would be specified
as ORDER_HEADER.TERMS:field_name.

Explicit Instance
If it is necessary to specify an instance number, include the instance number
in curly brackets and include the full qualification. For example to refer to
the jth ADDL_INFO record under the kth LINE_ITEM under the current
ORDER_HEADER, specify
ORDER_HEADER.LINE_ITEM{k}.ADDL_INFO{j}:field_name. Where
an instance number is not given the current instance number will be used.

Children Are Created After Parents
When the Mapping Table Editor creates destination segments/records, maps
for children are only executed when the parent map has succeeded in
producing a destination segment/record. In other words, it is not possible to
create a child segment/record if the parent has not been created.

For example, if there were no PO1 segments created, the Mapping Table
Editor would never try to create a PO3 segment.
SUPPORTED MAPPING CONSTRUCTS



Unused Records/Segments Permitted 16-13
Unused Records/Segments Permitted
It is not required to use all source records/segments or all destination
segments/records.

For example, it is often the case that only a small subset of the possible
destination segments are used. Also, there will sometimes be source records
that are not needed for the document sent to a particular trading partner.
SUPPORTED MAPPING CONSTRUCTS



16-14 Unused Records/Segments Permitted
SUPPORTED MAPPING CONSTRUCTS



Chapter17 UsingHooks toCustomize
the Mapper
This chapter describes how customize the Mapper by attaching user-written
routines to either the predefined hooks provided in the Mapper, or hooks
that you may define.

Customization Routines
When you customize the Mapper, you are extending it to include additional
features not provided in the basic software. To customize the Mapper, you
code a routine in the computer language of your choice that accepts data
from the Mapper and returns a status and a value. A customization routine
can be called at any point where a mapping expression can be evaluated.
You declare the routine to the Mapper so that it knows what to look for.
Then, at specific hook points in its processing, the Mapper calls the routine.

The values passed to the customization routine are determined by the values
passed in a mapping expression or as part of one of the hook points. The
customization routine cannot call back into the Mapper or see any of its
global symbols.

Of the arguments passed to the customization routine, only one can be the
output. All others are for input only. The output value is returned as the
value of the function in the mapping expression. The return status of the
customization routine determines whether or not to use the returned value. If
you have more than one value to return, and these values can be computed
before the mappings are executed, use the RECORD and SWITCH hook
points, described in a later section of this chapter, to get the data into the
input stream. This puts the data into the source tree where it can be
accessible by the mappings.



17-2 Customization Routines
The routine’s return status must be one of the following:

• SUCCESS

Use the return value.

• UNDEFINED

Ignore, do not use the return value. This returns the special value
$UNDEFINED.

• Anything else

A Tru64 UNIX or OpenVMS error condition indicating a termination.

You declare a customization routine by specifying to the Mapper the
characteristics of the routine and its calling arguments. You must specify:

• Function name.

• Shared image name or logical giving the name of the file containing the
function.

• Return code for SUCCESS.

• Return code for UNDEFINED.

• Index of return value argument.

• Flag specifying Declare-Audit-Event-When-Called.

• Flag specifying Record-History-of-all-calls.

• Data type of each argument.

• Flag indicating whether the argument is optional.

• Type of argument passing mechanism for each argument, that is, pass-
by-value, pass-by-reference, pass-by-descriptor.

To be called by the Mapper, your routine must be compiled and installed as
a shareable object library. The Mapper performs a dynamic link at runtime.

The Mapper runs as a server process, so any shareable object libraries that
are referenced within Mapping Tables must be accessible from the Mapper
process.

To ensure this, it is advisable to place all hook shareable images in
/usr/bin.

For a local Application Client, the Mapper runs under the account that
issued the POST or FETCH request.
USING HOOKS TO CUSTOMIZE THE MAPPER



Creating and Customizing Hooks 17-3
For a remote Application Client, the Mapper runs under the Digital
DEC/EDI account.

Note that a customization routine runs in the Digital DEC/EDI Server
environment, not in the user’s process environment.

Creating and Customizing Hooks
You use the Mapping Table Editor to create, edit and delete hooks. It allows
you to declare a custom subroutine to the Mapper. It also allows you to
declare a subroutine for any (or all) of the predefined hook points.

To begin, select the Hooks option from either the Map Navigator or the
Mapping menu, when you are editing a Mapping Table. The Hooks screen
is then displayed, and the Hooks menu is added to the Menu Bar.

In creating a customized hook point, you have to declare a function and one
or more arguments for that function. You have to create the function before
you can create its arguments. The order in which you attach arguments to a
function dictates their order of precedence.

Function and Argument are the two options on the Hooks | Create sub-
menu. Each option provides a pop-up screen dialog.

The Hooks Function screen is shown in Figure 17-1 The Hooks Function
Screen.
USING HOOKS TO CUSTOMIZE THE MAPPER



17-4 Creating and Customizing Hooks
Figure 17-1 The Hooks Function Screen

For detailed information about what you need to enter in each field on the
screen, refer to the following table or read the online help. The online help
displays a copy of the original dialog screen. You obtain help by pointing
the mouse arrow at the field about which you want the information, and
clicking once.

The Hooks Function Argument screen is shown in Figure 17-2 The Hooks
Function Argument Screen.

Figure 17-2 The Hooks Function Argument Screen

For detailed information about what you need to enter in each field, refer to
the following table or read the online help.
USING HOOKS TO CUSTOMIZE THE MAPPER



Creating and Customizing Hooks 17-5
Function and Argument Field Entries
The possible field entries and choices on the Function and Function
Argument dialog screens are described in the following table.
USING HOOKS TO CUSTOMIZE THE MAPPER



17-6 Creating and Customizing Hooks

t

Table 17-1 Function and Argument Field Entries

Field Type Description

Name Function This is the name of the customization routine,
as it will be called within the Mapper and of the
function that will be used in mapping
expressions. This name must also correspond to
the symbol defined for the routine’s entry poin
within the shared image file. After you enter the
name, any other details, and select OK, you are
returned to the Function screen.

Image Function This is the file name of the shared image that
contains the routine. A shared image can
contain more than one customization routine.

If you omit the device and directory
specification from the location of the shareable
object library, it is assumed to reside in
/usr/bin, and have file extension of .so.

On OpenVMS, This is the file name of the
shareable image that contains the routine. A
shareable image can contain more than one
customization routine.

If you omit the device and directory
specification from the location of the shareable
image, then it is assumed to reside in
SYS$SHARE, and have file extension of .EXE

If you update a hook shareable image file, you
must use the INSTALL command REPLACE
to ensure that the Mapper uses the new version
of the image.
USING HOOKS TO CUSTOMIZE THE MAPPER



Creating and Customizing Hooks 17-7

.

.

Success Function This is the longword value that will be returned
by the routine to indicate successful execution
A value of 1 is suggested. Successful execution
means that the returned value is to be used. Any
return value besides SUCCESS or
UNDEFINED will be an error code indicating a
termination.

Undefined Function This is the longword value that will be returned
by the routine to indicate the result of execution
is undefined. A value of 0 is suggested. An
undefined result means that the returned value
is to be ignored. This returns the special value
$UNDEFINED. Any return value besides
SUCCESS or UNDEFINED will be an error
code indicating a termination.

Index of return
value

Function This is the number for the argument to be used
as the return value. The first argument is
number 1. Using the first argument is
suggested.

When using the function in a mapping
expression or at a hook point, this argument
will not be included. For example, if the
customization routine ABC contains four
arguments and argument 1 is identified as the
return value, then when using the function in a
mapping expression or a hook point, give only
three values:

ABC(1,2,3)

The value 1 is passed in argument 2, the value 2
is passed in argument 3, and the value 3 is
passed in argument 4. The value of the function
is taken from the value returned in argument 1

Table 17-1 Function and Argument Field Entries

Field Type Description
USING HOOKS TO CUSTOMIZE THE MAPPER



17-8 Creating and Customizing Hooks

l

Audit when
called

Function Enter an X in the box to set this flag. If this flag
is set, each time the function is called the
Mapper makes an entry in the Mapper audit
log.

Audit history
event when
called

Function Enter an X in the box to set this flag. If set, the
Mapper records in a history file the values of al
calling arguments and the return value and
status each time the function is called. The
enable history flag must also be set before any
recording can take place.

Name Argument Refer to the online help for examples.

Requirement Argument Use this flag to indicate whether this argument
is mandatory or optional. Optional arguments
do not have to be provided with values when
used — mandatory arguments do. The Mapper
passes a zero by value for all unused optional
arguments. Any argument following an
optional argument must also be optional.

Table 17-1 Function and Argument Field Entries

Field Type Description
USING HOOKS TO CUSTOMIZE THE MAPPER



Creating and Customizing Hooks 17-9

.

Mechanism Argument Use this flag to indicate whether the argument
is to be passed by value, or by reference.

By value, the entire value is copied into the
argument list prior to the call (data type must be
4 bytes or less). The pass-by-value method
cannot be used to return a value from the
function. This item is mutually exclusive with
pass-by-reference and pass-by-descriptor flags

By reference, the argument is passed by putting
a pointer to the value (actually, a copy of it) in
the argument list. The called function will get a
pointer to the value.

For input arguments — those passed to the
customization routine, the Mapper passes a
pointer to a copy of the value specified in the
mapping or hook expression. The value has
been converted to match the data type.

If the argument is a return value, the Mapper
passes a pointer to a buffer of the type
specified. The function fills in the buffer and
the Mapper uses it as the return value of the
function. This is mutually exclusive with pass-
by-value and pass-by-descriptor flags.

Type Argument This is the data type of the value to be passed
on each argument. The acceptable types are the
same as the data type attributes used to define
fields on records. Refer to the online help for
more information.

Size Argument Enter the size of the argument field.

Scale Argument Enter the size of the scaling factor to use with a
numeric field. Note: This field is disabled for
textual types.

Table 17-1 Function and Argument Field Entries

Field Type Description
USING HOOKS TO CUSTOMIZE THE MAPPER



17-10 Creating and Customizing Hooks
The customization routines must conform to the Tru64 UNIX calling
standards. For more information regarding data types, descriptors, and
calling standards, refer to your Tru64 UNIX documentation.

To use the customization facilities, you write a custom coded subroutine.
You can write it in any programming language that accepts data from the
Mapper and returns a status and a value. The language must use the Tru64
UNIX or OpenVMS calling standard, as defined by the Digital DEC/EDI
Server platform. The values passed to the custom coded subroutine are
determined by the values passed in a mapping expression or else are passed
as part of one of the predefined hook points.

For example, suppose you have defined a function name ABC in the
Function screen. Also, suppose that the function ABC is used in the
following mapping expression or maybe at a hook point:

Q=ABC(A,B,C);

When the Mapper encounters this assignment, it checks the declaration,
converts the parameters to the appropriate data type, and then passes them
using the appropriate “pass-by” mechanism to the customization routine.
The customization routine processes them. If it is successful,
(status=SUCCESS) then the value of the argument specified as the return
value argument is returned in place of the function in the expression. If it is
unsuccessful, (status=UNDEFINED) then the $UNDEFINED special
constant is returned in place of the function in the expression. The following
diagram illustrates this concept.
USING HOOKS TO CUSTOMIZE THE MAPPER



Creating and Customizing Hooks 17-11
Figure 17-3

The following procedures describe how to compile and link your
customization routine so that the Mapper can find it.

1. Write the customization function as you would any other subroutine
using any language. The function name must be global so that the linker
can find it. You can have several functions in the Module.

The function name you specify in the hook declaration must be identical
to the function name declared in the hook shareable image. This includes
case sensitivity.

The hook may be written in any conventional programming language.
However, some languages may modify the names of externally visible
functions, so you must refer to the hook routine by its external name.

The following can be used as a sample C customization routine:

/* HELLO.C - Example Customization Routine in C */

#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include "ssdef.h"

#define OUTPUT_FILE_SPEC "/var/adm/decedi/temp/hello.txt"
#define ARG_SIZE 80

Q=ABC (A,B,C); mapping function

status = ABC(arg1, arg2, arg3, arg4) customisation routine

If status=SUCCESS then arg1 is returned as the value of the mapping function.

If status=UNDEFINED then the $UNDEFINED special constant is returned as
the value of the mapping function.
USING HOOKS TO CUSTOMIZE THE MAPPER



17-12 Creating and Customizing Hooks
/**********************************************
* Announce that the hook was called, pass the value back.
* HELLO(text)
* 1 return_val Pass by reference TEXT 80;
* 2 text Pass by reference TEXT 80;
*********************************************/

int hello(char *return_val, char *text)
{

int stat;
int len;
char *ptr;
FILE *fout;

/* trim trailing spaces off text and print it */
len = ARG_SIZE-1;
ptr = text;
while (len>=0 && isspace(ptr[len])) len--;
len++;
/*
** Determine if file spec was given, if so then this is
** a new preprocess event, so open a new output file.
*/
if ((strchr (ptr, '.') != (char *)NULL) &&

(strchr (ptr, '/') != (char *)NULL))
{

fout = fopen(OUTPUT_FILE_SPEC, "w");
}
else
{

fout = fopen(OUTPUT_FILE_SPEC, "a");
}

if (fout != (FILE *)NULL)
{

fprintf(fout,"hello: \"%.*s\"\n",len,ptr);
}
else
{

printf ("hello: \"%.*s\"\n",len,ptr);
}
/* Send back what we got */
sprintf (return_val, "%.*s",len,ptr);

if (fout != (FILE *)NULL)
{

fclose (fout);
}

USING HOOKS TO CUSTOMIZE THE MAPPER



Creating and Customizing Hooks 17-13
stat = 1; /* success */
return(stat);

}

2. On OpenVMS, Global variables are shared between functions called by a
single invocation of the Mapper, but must not be shared between other
Mapper processes.To make sure that global variables are not shared, be
sure to declare your variables as non-shareable (NOSHARE in C) in your
customization routine. If your language has no facilities for doing this,
you can force it in the linker with options that can be added to the option
file as follows:

PSECT_ATTR=<psect_name>,NOSHR,LCL

3. Compile the module containing the customization routines.

4. Link the module as a shared image as follows:

Tru64 UNIX Enter the following UNIX commands to create shared object library of
the above routine and copy the output “.so” file to where the Mapper
expects to find it in /usr/bin:

prompt> cc -c -o hello.o hello.c # Compilation
prompt> ar -r hello.a hello.o # Create library
prompt> ld -shared -o hello.so \

-all hello.a -none -lc # link object (shared)
prompt> cp hello.so /usr/bin # copy to where mapper

# expects to find it.

OpenVMS Link the module as a shared image and specify the function names that
are to be accessed by the Mapper as UNIVERSAL. The UNIVERSAL
option is specified in a separate options file. For example, suppose the
module ABC.C has two functions, ABC1 and ABC2. The LINK
command would be as follows:

$ LINK/SHARE ABC,ABC.OPT/OPTION

The contents of the ABC.OPT file would be as follows, in an OpenVMS
Alpha environment:

SYMBOL_VECTOR=(ABC1=PROCEDURE,ABC2=PROCEDURE)

In the Customization Routine Declaration, specify the full file
specification; if you do not then the Mapper will look for the hook
shareable image in SYS$SHARE.

Enter the following OpenVMS commands to create a shareable image of
the above routine and copy the output “.EXE” file to where the Mapper
expects to find it in SYS$SHARE:
USING HOOKS TO CUSTOMIZE THE MAPPER



17-14 Declaring Routines at Predefined Hook Locations
The shareable image may be installed to improve activation
performance, however this is not a requirement. If the image is to be
installed, you should LINK it specifying /NOTRACEBACK, and
INSTALL it as a privileged image by specifying /PRIVILEGED. The
image file must be accessible to the Digital DEC/EDI Server in order to
dynamically link the image at run-time.

Accessing SQL Databases from Hooks on OpenVMS
When compiling hook routines that access SQL databases, you must use the
/NOCONNECT option on the compilation command.

You also need to specify the following PSECTs in the link options file, as
well as PSECTs for any SQL aliases that are declared in the SQL program.

PSECT_ATTR=RDB$DBHANDLE,NOSHR,LCL
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR,LCL
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR,LCL
PSECT_ATTR=SQLCA,NOSHR,LCL
PSECT_ATTR=SQLDA,NOSHR,LCL

Declaring Routines at Predefined Hook
Locations

A customization routine can be called at any point where a mapping
expression can be evaluated. In addition, a customization routine can be
called at any of the predefined hook locations within Mapper processing.

The following is a list of the predefined hook locations:
USING HOOKS TO CUSTOMIZE THE MAPPER



Declaring Routines at Predefined Hook Locations 17-15
• Preprocess

• Start Document

• Record Hook

• Switch Hook

• End Document

• Post Process

• Soft Error

• Hard Error

• Commit Document

These hook points are described in detail later in this section.

You declare a hook subroutine at any (or several) of the predefined hook
points by using the Predefined Hooks dialog screen.

The Predefined Hooks screen is shown in Figure 17-4 The Predefined
Hooks Screen.

Figure 17-4 The Predefined Hooks Screen
USING HOOKS TO CUSTOMIZE THE MAPPER



17-16 Declaring Routines at Predefined Hook Locations
You access the screen by selecting the Predefined... option on the Hooks
menu. The menu is added to the Mapping Table Editor Menu Bar when you
select the Hooks option from either the Map Navigator or the Mapping
menu.

• Preprocess

The customization routine associated with this hook point is called just
before the Mapper opens the application data file for an Outgoing
document or creates the output application file for an Incoming
document.

Just prior to this call, the Mapper places the application file name given
in the command, into the global variable $FILENAME. You can pass
this global variable to the customization routine at this hook point.

This feature allows you to screen the file names and make substitutions.
In the Outgoing direction, it allows the custom coded subroutine
assigned to this hook to open the file, preprocess it, close it, and then
allow the Mapper to process it.

In the Incoming direction, the file name can be converted into a unique
file name that matches the conventions of the application by the
customization routine.

The returned value is used by the Mapper to open or create application
files. In the Outgoing direction, the returned file name can contain
wildcards, which tells the Mapper to open and read all of them. After a
file is opened or created, its full name with extension is placed in the
global variable $FILENAME.

If the return status is $UNDEFINED, or there is no customization routine
specified, the Mapper uses the value currently in $FILENAME.

• Start Document

For an Incoming document, the customization routine is called just after
the start of a document, just before the first output record is generated.

For an Outgoing document, the routine is called as soon as the Mapper
detects the beginning of a new document in the record stream. This
happens after the first record of the document has been read and
processed, but before the rest of the document has been read.

The return status is ignored unless it is an error. There is no return value.

The START_DOCUMENT HOOK is only called if the BEGINS DOC
indicator is set.
USING HOOKS TO CUSTOMIZE THE MAPPER



Declaring Routines at Predefined Hook Locations 17-17
• Record

At this hook point, the customization routine is called whenever the
Mapper has read a logical record from the input stream (Outgoing
direction), or is about to write one (Incoming direction).

Custom coded routines assigned to this hook can be used to reformat or
preprocess a record before it is passed to the Mapper for processing. If
the pre-processing results in the record being broken into several records,
the routine can assign the new records to a queue maintained by a
customization routine assigned to the SWITCH hook and then return the
first new record.

Just before calling the customization routine at this hook point, the
Mapper fills in the global variable $RECORD with the record just read
from the Application File (Outgoing direction) or the record just
obtained from the mappings (Incoming direction).

If the return status is SUCCESS, it means the Mapper can use the
returned value for the record. If the return status is UNDEFINED, it
means that the Mapper should not process the record passed in. That is,
in the Outgoing direction it should ignore the record and read another
one; in the Incoming direction it should discard this record and not write
it to the output file.

A data type of VARYING_STRING is recommended for passing
$RECORD, because the original record length is maintained. Define the
VARYING_STRING to be a size long enough to hold the largest
possible record that might be returned from the function.

• Switch

The customization routine at this hook point is called by the Mapper after
it has processed a record and before getting another one to process.

The routine assigned to the SWITCH hook can return a record to be
inserted in the record stream at this point by returning a value and a
status of SUCCESS. One implementation of such a routine would be to
operate a record queue that is used by other customization routines to
provide records for processing.

If processing is for the Outgoing direction, the Mapper continues calling
this hook to get new records, rather than reading the Application Data
File. As long as the routine assigned to the SWITCH hook has records to
process, it should return a status of SUCCESS. When it has no more
USING HOOKS TO CUSTOMIZE THE MAPPER



17-18 Declaring Routines at Predefined Hook Locations
records, it should return a status of UNDEFINED. The Mapper would
then resume reading from the input file to get the next record.

If the processing is for Incoming direction, the Mapper calls the
customization routine on the SWITCH hook point just prior to obtaining
the next record from the mapping. If it gets a record from this hook point,
it writes this record to the application file instead of obtaining one from
the mappings.

The Mapper calls the SWITCH hook to get records to write to the output
Application File that might have been queued to it by other
customization routines.

The Mapper should continue getting records from this routine and
writing them to the application file as long as the routine returns
SUCCESS. If it returns UNDEFINED, then the Mapper resumes getting
the next record from the mapping.

The SWITCH hook can be used by RECORD hook to break up a record
into a series of smaller records.

The Mapper assumes the return value is a record to be processed if the
status is SUCCESS.

A data type of VARYING_STRING is recommended for passing
$RECORD, because the original record length is maintained.

• End Document

This hook is called when the Mapper detects the end of a document.
Customization routines assigned to this hook can perform document
level processing. The entire document data cannot be accessed at this
point, unless it was captured by the RECORD hook.

Among the predefined global variables are the following that can be used
as values passed into the routine:
USING HOOKS TO CUSTOMIZE THE MAPPER



Declaring Routines at Predefined Hook Locations 17-19
– $APPLICATION

– $DOCTYPE

– $PARTNER

– $USERREF

– $TESTIND

– $FILENAME

The return status is ignored unless it is an error. Success means a Digital
DEC/EDI End_Send or End_Fetch is to be performed. Undefined means
abandon the document with an ABORT status to Digital DEC/EDI.

• Post Process

At this hook point, the customization routine is called just after the
Mapper closes the application data file and just before it terminates.

In the Incoming direction, the routine assigned to this hook can open the
application file just created and perform any post processing that might
be needed. Remember that if mapping statements do not generate any
Incoming documents, the file will not be created.

In the Outgoing direction, the routine can signal the application that the
contents of the file have been processed.

The return status is ignored unless it is an error. No return value is
expected.

• Soft Error

At this hook point, the customization routine is called by the Mapper
when it wants to abandon a single document (with an ABORT status to
Digital DEC/EDI) and issue a warning message, but can continue
processing the remaining documents. Using the return status values, this
routine can turn the soft error into a termination or direct the Mapper to
ignore the error.

Prior to calling the customization routine at the SOFT ERROR hook
point, the Mapper fills in the global variable $ERROR_CODE with the
Tru64 UNIX error code. This can be passed to the customization routine
to identify the type of error.

If the return status is SUCCESS the processing continues with the next
document. If the return status is UNDEFINED or an error, the processing
stops and it is converted to a hard error.
USING HOOKS TO CUSTOMIZE THE MAPPER



17-20 Declaring Routines at Predefined Hook Locations
• Hard Error

At this hook point, the customization routine is called just prior to
termination. It passes the error code in its first input argument.

Prior to calling the customization routine at the HARD_ERROR hook
point, the Mapper fills in the global variable, $ERROR_CODE, with the
Tru64 UNIX error code. This can be passed to the customization routine
to identify the type of error.

The return status is ignored. Any outstanding documents are abandoned
with a QUIT status to Digital DEC/EDI so that the outstanding
documents can be retrieved in the next session.

• Commit Document

At this hook point, the customization routine is called just after the
Mapper has performed the END SEND and Digital DEC/EDI has
returned the document identifier, called the DOCCOUNT. For example,
if the application id is ORDERS, the unique document id assigned by
Digital DEC/EDI will have the form ORDERS_O_xxxxx where xxxxx is
the DOCCOUNT.

The Mapper processing with Digital DEC/EDI proceeds as follows.

– The Mapper performs a START SEND. An audit event is recorded in
the audit database.

– The Mapper then performs a series of START GROUP, END
GROUP and PUT DATA calls.

– The Mapper then performs an END SEND. An audit event is
recorded in the audit database.

When Digital DEC/EDI returns, it returns the unique identifying status
code DOCCOUNT. The Mapper assigns the value to the global variable
$DOCCOUNT.

The Mapper records the ‘commit document’ event in the audit database,
including the DOCCOUNT.

If the COMMIT DOCUMENT hook is defined, the hook routine defined
at the commit document point is called.

Using a hook routine at this point, the unique document id that has been
returned by Digital DEC/EDI can be written out by using $DOCCOUNT as
one of the calling arguments. This information may then be used by the
caller if the Mapper was invoked through the callable interface or for user-
written reporting.
USING HOOKS TO CUSTOMIZE THE MAPPER



Hook Example 17-21
Hook Example
The following is an example of how a customization routine can be called at
a hook point. This example contains the following:

• Parts of a Mapper compilation listing showing the customization routine
declaration and its use in mappings and hook points.

• Sample C customization routine for the hello function.

• Instructions on how to compile and link for this example.

• Comments.

Excerpts from Compile Listing
... declarations ...

--------------------------------------------------------------
INITIALIZATION:

Variable Expression
dummy = hello("initialization"); <=== Used the same way in
a map.
--------------------------------------------------------------

... other declarations ...
--------------------------------------------------------------
CUSTOMIZATION ROUTINE DECLARATION:

Function Name: hello
Image Filename: hello.so
Return Status Value for SUCCESS: 1 <=== This is where we

define SUCCESS
Return Status Value for UNDEFINED: 0
Index of Return Value Argument: 1 <=== first argument

is return value
Declare Audit Event When Called: [ ]
Record History of all Calls: [ ]
Arguments:

name Data Type
1 return_val BY REFERENCE TEXT; <=== Out
2 text BY REFERENCE TEXT; <=== In

--------------------------------------------------------------

HOOK ASSIGNMENTS:

Built-in Hook Location Function
PREPROCESS $FILENAME = hello($FILENAME);
USING HOOKS TO CUSTOMIZE THE MAPPER



17-22 Hook Example
START DOCUMENT = hello("start document
hook");

RECORD $RECORD =

SWITCH $RECORD =

END DOCUMENT = hello("End Document
Hook");

POST PROCESS = hello("Post Process
hook");

SOFT ERROR = hello("Soft Error hook");

HARD ERROR = hello("Hard Error hook");

Sample C Customization Routine

Tru64 UNIX The following is the ‘C’ source code for the above example, for the Tru64
UNIX environment:

/* HELLO.C - Example Customization Routine in C */

#include <ctype.h>
#include <stdio.h>
#include <string.h>
#include "ssdef.h"

#define OUTPUT_FILE_SPEC "/var/adm/decedi/temp/hello.txt"
#define ARG_SIZE 80

/**********************************************
* Announce that the hook was called, pass the value back.
* HELLO(text)
* 1 return_val Pass by reference TEXT 80;
* 2 text Pass by reference TEXT 80;
*********************************************/

int hello(char *return_val, char *text)
{

int stat;
int len;
char *ptr;
FILE *fout;
USING HOOKS TO CUSTOMIZE THE MAPPER



Hook Example 17-23
/* trim trailing spaces off text and print it */
len = ARG_SIZE-1;
ptr = text;
while (len>=0 && isspace(ptr[len])) len--;
len++;

/*
** Determine if file spec was given, if so then this is
** a new preprocess event, so open a new output file.
*/
if ((strchr (ptr, '.') != (char *)NULL) &&

(strchr (ptr, '/') != (char *)NULL))
{

fout = fopen(OUTPUT_FILE_SPEC, "w");
}
else
{

fout = fopen(OUTPUT_FILE_SPEC, "a");
}

if (fout != (FILE *)NULL)
{

fprintf(fout,"hello: \"%.*s\"\n",len,ptr);
}
else
{

printf ("hello: \"%.*s\"\n",len,ptr);
}

/* Send back what we got */
sprintf (return_val, "%.*s",len,ptr);

if (fout != (FILE *)NULL)
{

fclose (fout);
}

stat = 1; /* success */
return(stat);

}

OpenVMS The following is the ‘C’ source code for the above example, for the
OpenVMS environment:

/* HELLO.C - Example Customization Routine in ’C’ */
#include <ctype.h>
#include <descrip.h>
#include <stdio.h>
USING HOOKS TO CUSTOMIZE THE MAPPER



17-24 Hook Example
#include <ssdef.h>
#include <string.h>
#define OUTPUT_FILE_SPEC "decedi$temp:hello.txt"
typedef struct dsc$descriptor desc; /* short typedef for
descriptor */
/**********************************************
* Say that the hook was called, pass the value back
* HELLO(text)
* 1 return_val Pass by descriptor TEXT 80;
* 2 my_text Pass by descriptor TEXT 80;
*********************************************/
int hello(desc *return_val, desc *my_text)
{

int stat;
int len;
char *ptr;
FILE *fout;
/*
** Trim trailing spaces off text and print it
*/
len = my_text->dsc$w_length-1;
ptr = my_text->dsc$a_pointer;
while (len>=0 && isspace(ptr[len])) len--;
len++;
/*
** Determine if file spec was given, if so then this is
** a new preprocess event, so open a new output file.
*/
if ((strchr (ptr, ’.’) != (char *)NULL) &&

(strchr (ptr, ’[’) != (char *)NULL) &&
(strchr (ptr, ’]’) != (char *)NULL))

{
fout = fopen(OUTPUT_FILE_SPEC, "w");

}
else
{

fout = fopen(OUTPUT_FILE_SPEC, "a");
}
if (fout != NULL)
{

fprintf(fout,"hello: \"%.*s\"\n",len,ptr);
/*
** Send back what we sent it
*/
stat = lib$scopy_dxdx (my_text, return_val);
if (stat != SS$_NORMAL)
{
fprintf (fout, "status from lib$scopy_dxdx = %d\n",
USING HOOKS TO CUSTOMIZE THE MAPPER



Hook Example 17-25
stat);
stat = 0; /* undefined */

}
else
{
stat = 1; /* success */

}
fclose (fout);

}
else
{

stat = 0; /* undefined */
}
return(stat);

}

Linking Instructions

Tru64 UNIX The following commands were used to link the above example, in a Tru64
UNIX environment:

prompt> cc -c -o hello.o hello.c # Compilation
prompt> ar -r hello.a hello.o # Create library
prompt> ld -shared -o hello.so \
prompt> -all hello.a -none -lc # link object (shared)
prompt> cp hello.so /usr/bin # copy to where mapper
prompt> # expects to find it.

OpenVMS The following commands are used to link the above example, in an
OpenVMS Alpha environment:

$ CC hello.c
$ LINK/SHARE HELLO,SYS$INPUT/OPT
SYMBOL_VECTOR=(HELLO=PROCEDURE)

Comments
1. The $FILENAME global will be loaded up by the Mapper just before the

PREPROCESS Hookpoint. It will have the name provided in the
MAPPER command line.

2. The $RECORD will also be loaded up by the Mapper just prior to the
RECORD hook call if you gave a routine to call at that point. It is best to
define the argument type VARYING_STRING so that the record length
will be maintained. If you defined it as TEXT, the record will be space
padded to the maximum length.
USING HOOKS TO CUSTOMIZE THE MAPPER





Index
Symbols $SUBSTR(start, len,expr) 14-40
- 14-29
$APPLICATION 14-16
$APPLICATION_ARG 14-24
$AUDIT_ID 14-24
$BEGINDOC() 14-37
$BLANK 14-12
$DATE(format,date) 14-37
$DOCCOUNT 17-20
$DOCTYPE 11-14, 14-19
$DOCTYPE_ARG 14-24
$DOCTYPE_SELECT 14-18
$ENDMAP 14-12
$ENDMAP Special Value 13-24
$ERROR 14-12
$EXIST(node) 14-39
$FILENAME 14-23
$INSTANCE(node) 14-39
$INT(expr) 14-39
$LEN(expr) 14-39
$LOGICAL(expr) 14-42
$LOOKUP function 15-3
$LOOKUP(tablename,expr) 14-39
$PAD(str,len,char) 14-39
$PARTNER 11-14, 14-20
$PARTNER_ARG 14-24
$PARTNER_SELECT 14-18
$PRIORITY 14-21
$PRIORITY_ARG 14-25
$RECOVERY 14-24
$ROUND(expr, fractional_digits) 14-40
$STR(expr) 14-40
$STRCHR(str,charset) 14-40
$STRNCHR(str, 14-40
$STRNCHR(str, charset) 14-40
$STRPOSITION(str, substr,start) 14-40
$SUBSTR function 14-34
$TESTIND 14-22
$TESTIND variable 14-22
$TESTIND_ARG 14-25
$THROWAWAY 14-12
$THROWAWAY Special Value 13-24
$TIMESTAMP 14-41
$TIMESTAMP(format) 14-41
$TRIM(str) 14-42
$UNDEFINED 14-12
$UNDEFINED Special Constant 14-8
$USERREF 14-21
$USERREF_ARG 14-25
%NONAME_I_MSG %X00DA2C3

followed by a Bugcheck 9-35
(Mapping Assignment 13-25
+ 14-29

A

Absolute Instance References 14-5
Advanced Data Mapping 13-25
Advanced Error On 13-20
Advanced Set Context 13-20
After Preprocessing 10-5
After Record Hook 10-5
Application Data File 11-13
Application File Batching 11-16
Application ID 10-4
Arithmetic Operators 14-30
Audit Controls 10-4
Audit history event when called 17-8
Audit when called 17-8
Auditing 10-4
Auto-Repeat Pattern 13-23

B



Index-28
BATCH HEADER 11-12
Before Postprocessing 10-6
Binary operators 14-30
Boolean OR 14-30
Built-in functions 14-44

C

Combined Relationships 11-11
Commit Document 17-20
Condition 13-6
Condition entries 13-5
Conditional Statement 14-32
Creating Lookup Tables 15-2
Creating and Customizing Hooks 17-3
Current Instance 13-11
Custom Routine Arguments 10-6
Customization Routines 17-1

D

DEC/EDI 12-1, 15-1
DEC/EDI Internal Format Fil 10-5
DECEDI__$NEXT_IN_LIST 9-14
DECEDI__ABORT 9-4
DECEDI__ALLOC_ERROR 9-4
DECEDI__ALREADY_OPEN 9-4
DECEDI__AMBIGSTD 9-2
DECEDI__API_ERROR 9-4
DECEDI__APPLID_ABSENT 9-4
DECEDI__APPLID_MISMATCH 9-5
DECEDI__AUD_ALREADY_COMP 9-5
DECEDI__AUD_BAD_RUN_ID 9-5
DECEDI__AUD_CANNOT_RESTART

9-5
DECEDI__AUD_DBERROR 9-5
DECEDI__AUD_MISSING_DB_FILE 9-5
DECEDI__BAD_HOOK_STAT 9-5
DECEDI__BADPARAM 9-5
DECEDI__BLD_CANNOT_CLOSE_FILE
9-6
DECEDI__BLD_CANNOT_OPEN_EDI_I

NPUT 9-6
DECEDI__BLD_CANNOT_OPEN_OUTP

UT 9-6
DECEDI__BLD_INCOMPATIBLE_FILES

9-6
DECEDI__BLD_NO_DOC_DEFN 9-6
DECEDI__CANNOT_OPEN_SOURCE

9-6
DECEDI__CVT_ERROR 9-7
DECEDI__DEC_OVF 9-7
DECEDI__DIVBY_ZER 9-7
DECEDI__DOC_DEF_MISSING 9-7
DECEDI__DOC_NO_OUTPUT 9-8
DECEDI__DOCTYPE_MISSING 9-7
DECEDI__DOCUMENT_ERROR 9-7
DECEDI__EOF 9-8
DECEDI__ERROR 9-2
DECEDI__ERROR_IN_FILE_SECTION

9-8
DECEDI__ERRORS 9-8
DECEDI__EXP_ERROR 9-8
DECEDI__FOR_PARM_ERROR 9-8
DECEDI__GROUP_IMBAL 9-8
DECEDI__ILL_$NEXT 9-9
DECEDI__ILL_INST 9-8
DECEDI__ILL_NDX 9-9
DECEDI__ILL_RANGE 9-9
DECEDI__INCOMING_REC_MISSING

9-9
DECEDI__INPUT_CLOSE_ERROR 9-9
DECEDI__INPUT_OPEN_ERROR 9-9
DECEDI__INPUT_READ_ERROR 9-10
DECEDI__INPUT_RMSERR 9-10
DECEDI__INTERNAL_ERROR 9-10
DECEDI__INV_LABEL 9-11
DECEDI__INV_LOCAL 9-11
DECEDI__INV_TBL 9-11
DECEDI__INVHIERKY 9-10



Index-29
DECEDI__INVPARAMS 9-2
DECEDI__INVRECTYP 9-10
DECEDI__LOGERR 9-11
DECEDI__MAP_EXCD_LIMIT 9-11
DECEDI__MAP_OUT_OF_DATA 9-11
DECEDI__MISSING_APPLICATION

9-12
DECEDI__MISSING_BOUND 9-12
DECEDI__MISSING_ENDVARIANTS

9-12
DECEDI__MISSING_FIELD_SCALE

9-12
DECEDI__MISSING_FIELD_SIZE 9-12
DECEDI__MISSING_FIELDS 9-12
DECEDI__MISSING_MODE 9-13
DECEDI__MISSING_RECTYPE 9-13
DECEDI__MISSING_SEGMENTS 9-13
DECEDI__MISSING_SEM 9-13
DECEDI__MISSING_SUBSCRIPT 9-13
DECEDI__MPFL_OPEN_ERROR 9-13
DECEDI__NEXT_LIST_ERR 9-14
DECEDI__NO_LOCAL_TEST 9-14
DECEDI__NO_OUTPUT 9-14
DECEDI__NODATASERVER 9-2
DECEDI__NONALPHA 9-14
DECEDI__NOT_INSTL 9-14
DECEDI__NOT_OPEN 9-14
DECEDI__NOTAUTHORIZED 9-2
DECEDI__NOTTRANS 9-3
DECEDI__OUTGOING_SEG_MISSING

9-15
DECEDI__OUTPUT_CLOSE_ERROR

9-15
DECEDI__OUTPUT_OPEN_ERROR 9-15
DECEDI__OUTPUT_WRITE_ERROR

9-15
DECEDI__P_BAD_ALIGN 9-16
DECEDI__P_BAD_JUST 9-16
DECEDI__P_BAD_OCCURS 9-16
DECEDI__P_INV_DATATYPE 9-16
DECEDI__P_INV_EXP 9-16
DECEDI__P_INV_FILENAME 9-17
DECEDI__P_INV_INST 9-17
DECEDI__P_INV_LEVEL 9-17
DECEDI__P_INV_NAME 9-17
DECEDI__P_INV_NBR 9-17
DECEDI__P_INV_PATT 9-17
DECEDI__P_SIZE_REQ 9-17
DECEDI__PARSE_ERROR 9-15
DECEDI__PARTNER_MISSING 9-15
DECEDI__POLL_EMPTY 9-16
DECEDI__QUALIFIER 9-17
DECEDI__RECORD_SHORT 9-18
DECEDI__RECOVERY_AMBIGUOUS

9-18
DECEDI__RECOVERY_NO_ACTION

9-18
DECEDI__RT_HOOK_NOLINK 9-18
DECEDI__RT_INVALID_ARG 9-18
DECEDI__RT_INVALID_DATE 9-19
DECEDI__STACK_ERROR 9-19
DECEDI__STACK_OVERFLOW 9-19
DECEDI__STACK_UNDERFLOW 9-19
DECEDI__SUCCESS 9-3
DECEDI__SYNTAX_ERROR 9-19
DECEDI__TABLEFILE_CLOSE_ERROR

9-19
DECEDI__TABLEFILE_OPEN_ERROR

9-19
DECEDI__TABLEFILE_READ_ERROR

9-20
DECEDI__TABLEFILE_WRITE_ERROR

9-20
DECEDI__TBL_IN 9-20
DECEDI__TBL_OUT 9-20
DECEDI__TERMINATED_NODIR 9-3
DECEDI__TERMINATED_RECEIVE 9-3
DECEDI__TERMINATED_SEND 9-4
DECEDI__TG_AMBIG_VAR_REF 9-20
DECEDI__TG_BAD_FLD_REF 9-21



Index-30
DECEDI__TG_BAD_FOR_EACH_REF
9-21

DECEDI__TG_BAD_GLOBAL_ASST
9-21

DECEDI__TG_BAD_GV 9-21
DECEDI__TG_BAD_LKUP_REF 9-21
DECEDI__TG_BAD_MANY 9-21
DECEDI__TG_BAD_REF 9-22
DECEDI__TG_BAD_SIZE 9-22
DECEDI__TG_BHDR_BEGTRM_CNFL

9-22
DECEDI__TG_BKDOC_FLD_UNRECOG

9-22
DECEDI__TG_BKON_NODEF 9-22
DECEDI__TG_BKON_NOSRC 9-22
DECEDI__TG_CUST_ARG_ARY 9-22
DECEDI__TG_CUST_OPT_RET 9-23
DECEDI__TG_CUST_RET_GT_NARGS

9-23
DECEDI__TG_CUST_VAL_RET 9-23
DECEDI__TG_CUST_VAL_SIZE 9-23
DECEDI__TG_DEF_UNRECOG 9-23
DECEDI__TG_DMY_ATTRIB 9-23
DECEDI__TG_DST_UNRECOG 9-24
DECEDI__TG_DUP_ALIGN 9-24
DECEDI__TG_DUP_ARRAY 9-24
DECEDI__TG_DUP_ASN 9-24
DECEDI__TG_DUP_BEG_DOC 9-24
DECEDI__TG_DUP_BHDR 9-24
DECEDI__TG_DUP_BKDOC 9-25
DECEDI__TG_DUP_DOCDEF 9-25
DECEDI__TG_DUP_FLD_NAME 9-25
DECEDI__TG_DUP_FLDTYPE 9-25
DECEDI__TG_DUP_FLOATING 9-25
DECEDI__TG_DUP_JUST 9-25
DECEDI__TG_DUP_LBL_IN_DOC 9-26
DECEDI__TG_DUP_LBLTYPE 9-25
DECEDI__TG_DUP_LKUP_DEF 9-26
DECEDI__TG_DUP_OCC 9-26
DECEDI__TG_DUP_REC_NAME 9-26
DECEDI__TG_DUP_SEG_IN_DOC 9-26
DECEDI__TG_DUP_SRC 9-26
DECEDI__TG_DUP_SRC_VAR 9-27
DECEDI__TG_DUP_TRM_DOC 9-27
DECEDI__TG_EMPTY_REC 9-27
DECEDI__TG_EMPTY_VARIANT 9-27
DECEDI__TG_FLTNG_IN_Application

9-27
DECEDI__TG_FLTNG_SUBORD 9-27
DECEDI__TG_FOR_IN_INITS 9-28
DECEDI__TG_ILL_BEG_DOC 9-28
DECEDI__TG_ILL_BHDR 9-28
DECEDI__TG_ILL_FLTNG 9-28
DECEDI__TG_ILL_FN_REF 9-28
DECEDI__TG_ILL_INC 9-28
DECEDI__TG_ILL_INSTANCE 9-29
DECEDI__TG_ILL_JUST 9-29
DECEDI__TG_ILL_QUAL 9-29
DECEDI__TG_ILL_RANGE 9-29
DECEDI__TG_ILL_TIMES 9-29
DECEDI__TG_IMBEDDED_MANY 9-29
DECEDI__TG_INC_DOC_PARMS 9-29
DECEDI__TG_INC_UNRECOG 9-30
DECEDI__TG_INST_ON_FLD 9-30
DECEDI__TG_MAP_DOC_NOMATCH

9-30
DECEDI__TG_MAP_UNDER_DUMMY

9-30
DECEDI__TG_MISMATCH_FOR_EACH

9-30
DECEDI__TG_NO_REC_DEFS 9-30
DECEDI__TG_NO_SIZE 9-31
DECEDI__TG_NO_TYPE_FLD 9-31
DECEDI__TG_OCC_MIN_GT_MAX 9-31
DECEDI__TG_REC_MISMATCH 9-31
DECEDI__TG_REP_BKON 9-31
DECEDI__TG_REP_FOREACH 9-31
DECEDI__TG_REP_NEXTLIST 9-31
DECEDI__TG_REP_NOCH 9-31
DECEDI__TG_REP_TIMES 9-32



Index-31
DECEDI__TG_SRC_VAR_NAME 9-32
DECEDI__TG_SUBSCR_MISMATCH

9-32
DECEDI__TG_SUBSCR_ON_REC 9-32
DECEDI__TG_TOO_MANY_POINT_AT

9-32
DECEDI__TG_TRM_DOC_SUBORD

9-32
DECEDI__TG_UNK_FUNC 9-32
DECEDI__TG_VACANT_FLD 9-33
DECEDI__TG_VACANT_STRUCTURE

9-33
DECEDI__TG_VACANT_VARIANT 9-33
DECEDI__TI_BAD_VALUE 9-33
DECEDI__TI_MISMATCH 9-33
DECEDI__TI_MISMATCH_DOC 9-33
DECEDI__TRUNCATED 9-34
DECEDI__UI_NO_DIRECTION 9-34
DECEDI__UI_NO_FBO 9-34
DECEDI__UNKNDOC 9-3
DECEDI__UNKNELE 9-3
DECEDI__UNKNOWN_ATTRIBUTE

9-34
DECEDI__UNKNSEG 9-3
DECEDI__UNKNSTDVER 9-3
DECEDI__UNKNSUBELE 9-3
DECEDI__USER_PGM_ERROR 9-34
DECEDI__WRONG_NO_ARGS 9-34
DEFAULT Segment Qualifier 14-7
Data Label Attributes 14-10
Data Label Generator 12-2
Data Labels 14-7
Data label type AN 14-10
Data label type CH 14-10
Data label type DT 14-10
Data label type ID 14-10
Data label type N 14-10
Data label type R 14-10
Data label type TM 14-10
Data mapping 13-25
Debugging a mapping table 6-5
Declaring Routines at Predefined Hook

Locations 17-14
Defaults 10-3
Document Definition 12-3

E

EDIFACT segment 14-7
END VARIANT 11-5, 11-10
ENDS DOC 11-14
Edit Lookup dialog 15-3
Editing Record Layouts 11-15
Editing the Record Sequence 11-2
End Document 17-18
End of Processing 10-6
Environment variable 6-2
Error On 13-5
Explanation 9-5
Explicit Record References 14-4
Expression Examples 14-43
Expression Using Operators 14-29

F

FALSE 14-12
FBR$-I-NO_OUTPUT_RECEIVE 9-34
FBR$-I-NO_OUTPUT_SEND 9-34
FBR$-I-NO_OUTPUT_TM_RECEIVE

9-35
FBR$-S-SUCCESS_RECEIVE 9-35
FBR$-S-SUCCESS_SEND 9-35
FBR$-W-ONESOFT 9-35
FBR$-W-PART_RECEIVE 9-35
FBR$-W-PART_SEND 9-35
FBR$-W-SOFTERROR 9-36
FBR$-W-ZERO_SEND 9-36
FBR_LOCAL_TEST_IN 6-2
FBR-E-$TERMINATED 9-20
File I/O Debug 6-1, 6-12



Index-32
Floating Segments 13-22
For-Each Pattern 13-23
Function and Argument Field Entries 17-5

G

Global Variables 14-14

H

HARD ERROR 13-20
Hard Error 17-20
Hook Example 17-21

I

Import 12-3
Incoming mapping tables 14-7
Index of Mapping Sets 13-2, 13-3, 14-17
Index of return value 17-7
Initializations 14-14
Instance identifiers 13-10
Internal Doctype 13-3
Invoice instance 13-9

L

LEVEL 11-4
LIB$_DECOVF 9-36
LIB$_FLTOVF 9-36
LIB$_FLTUND 9-36
LIB$_INTOVF 9-36
LIB$_INVCLADSC 9-36
LIB$_INVCLADTY 9-37
LIB$_INVCVT 9-37
LIB$_INVDTYDSC 9-37
LIB$_INVNBDS 9-37
LIB$_OUTSTRTRU 9-37
LIB$_ROPRAND 9-37
Level 13-4
Line-item instance 13-9
Logical Operator 14-32
Logical Operators 14-32
Lookup Table 15-1

M

MAX Exceeded 13-5
Map ID 13-5
Mapper Syntax 11-9, 11-10
Mapper Test

Test Mapper 6-1
Mapping Assignments 13-7
Mapping Debug 6-1
Mapping Expressions 14-1
Mapping Language Keywords 14-46
Mapping Table 10-6
Mapping Table Editor 12-2
Math Precision 14-35

N

NOT 14-29
New Context Parts 13-24
New context 13-24
No Change 13-24
Notating an Instance 13-9
Numeric Constant 14-11
Numeric and String Values 14-28

O

Object Name 10-4
Operator Precedence 14-34
Outgoing mapping tables 14-7

P

POST command
Examples 3-31

Parent to Child Relationships 11-6
Parent to child relationships 11-6



Index-33
Partner 13-2
Partner ID 10-4
Post Process 17-19
Predefined Global Variables 14-14
Predefined Hooks

Hooks predefined 17-1
Predefined variables 14-15
Preprocess 17-16
Private Lookup Table 15-2

Q

Quoted String 14-11

R

RECOGNITION EXPRESSION 11-13
Record 17-17
Record Attributes — Incoming 11-15
Record Attributes — Outgoing 11-12
Record Instance Numbering 13-7
Record Layouts 11-1
Record Sequence Definition 13-4, 13-17
Record Type 11-5
Record Types 11-12
Record type layouts 11-15
Reference instance 13-9
Relational Operators 14-31
Relative Indexes 13-12
Relative Instance References 14-6
Repeat Patter 13-5
Repeat Pattern 13-6

S

SOFT ERROR hook point 13-20
Sample Sequence 11-9
Security 10-3
Security tab dialog 10-3
Segment or Record 13-4
Segment or Rectype 13-4
Select Document screen 12-3
Set Context 13-5
Set Context field 13-5
Shared Lookup Table 15-2
Sibling Relationships 11-7
Sibling relationship 11-6
Soft Error 17-19
Special Constant 14-12
Start Document 17-16
Start of Processing 10-5
String Manipulation Functions 14-44
String Operators 14-31
Structure Mapping 13-17
Structure Name Arrays 14-2
Supported Mapping Constructs 16-1
Switch 17-17

T

TRUE 14-12
Temporary variables 14-15
Test Indicator 10-4
The DEFAULT Record Qualifier 14-3
Trading Partner 10-4
Transmission File Builder 11-16
Tree 11-9
Tree Structure 16-1

U

Unary Operators 14-29
Usage 10-2
User Reference 10-4
Using the IF Expression 14-32

V

VARIANT 11-5, 11-10
Variant Relationships 11-9
Variant relationships 11-6
Variant structures 11-9



Index-34
Z

ancestors 16-3
array subscript 13-26
assignment statements 13-1
audit trail 14-17
child 16-3
current path 13-11
data labels 12-1
data types 11-16
default qualifiers 10-3
define fields 11-16
document definition 12-1, 12-2
expression 13-27
for-clause 13-26
for-variable 13-27
incr 13-27
instance numbering 13-9
lookup table 14-39
map 13-1
mapping assignment 13-26
mapping set 13-1
max 13-27
min 13-27
numeric string 14-11
parent 13-23, 16-3
partner and generic fields 13-3
path within a segment 12-2
predefined hooks 17-1
pull strategy 13-1
record type 11-15
sequence of records 11-1
siblings 16-3
source tree 13-1
subordinate relationships 11-6
trading partner 13-2
tree structure 11-11


	Preface
	Purpose of This Book
	Readership
	Related Books
	Digital DEC/EDI InfoCenter
	Related Third Party Documentation
	Documentation on Tools Supplied with Digital DEC/EDI
	Typographical conventions

	Part I Getting Started with Digital DEC/EDI: A Tutorial
	Chapter 1 Creating an Outgoing Mapping Table
	Getting Started
	The Map Navigator
	Using the Map Navigator During Editing

	Mapping Table Attributes — Usage Tab
	Mapping Table Attributes — Security Tab
	Mapping Table Attributes — Defaults Tab
	Mapping Table Attributes — Auditing Tab

	Extracting the EDI Document
	Defining the Record Layouts
	Defining the Record Sequence
	Creating a Mapping Set
	Creating the Mapping Assignments
	Index of Maps

	Initializations
	Lookups
	Mapping Assignments
	Compiling the Mapping Table
	Summary


	Chapter 2 Creating an Incoming Mapping Table
	Defining the Mapping Table Attributes
	Mapping Table Attributes — Usage Tab
	Mapping Table Attributes — Security Tab
	Mapping Table Attributes — Defaults Tab
	Mapping Table Attributes — Auditing Tab

	Using the Map Navigator During Editing
	Defining the Record Layouts
	Defining the Record Sequence
	Creating a Mapping Set
	Creating the Mapping Assignments
	Index of Maps

	Initializations
	Lookups
	Mapping Assignments
	Compiling the Mapping Table
	Summary


	Chapter 3 Command Line Interface
	Accessing the Digital DEC/EDI Client Environment
	Using Commands
	Commands and Return Status Values
	An Example Script File

	Commands and Case-sensitivity
	Commands and Quoted Strings

	trade fetch
	Format
	Parameters
	Command Options
	link_id
	test_indicator

	File Options
	business_references
	comment
	debug
	error_log
	io_debug
	local_test
	match_flag
	named_application
	object_name
	output_file
	partner_name
	restart_from
	table_name
	timeout
	type

	Examples

	trade post
	Format
	Parameters
	Command Options
	connection_data
	link_id
	priority
	test_indicator

	File Options
	business_references
	comment
	debug
	error_log
	io_debug
	local_test
	named_application
	object_name
	output_file
	partner_name
	reprocess
	restart_from
	table_name
	tracking_reference
	type

	Examples

	trade track
	Format
	Parameters
	Options
	application_name
	before
	business_references
	current_status
	database
	direction
	document_name
	link_id
	map_id
	partner_name
	object_name
	output_file
	since
	standard
	test_indicator
	tracking_reference
	type
	version

	Examples

	exit
	Format
	Example


	Chapter 4 C Language Application Programming Interface (API)
	Introducing Digital DEC/EDI API Routines
	Posting Files
	Fetching Files
	Tracking Files

	DECEDI_ADD_ITEM_LIST
	C Binding
	Arguments
	Description
	Return Values
	Examples

	DECEDI_FETCH
	C Binding
	Arguments
	Description
	Return Value
	Examples

	DECEDI_FREE_ITEM_LIST
	C Binding
	Arguments
	Description
	Return Values
	Examples

	DECEDI_FREE_TRACK_LIST
	C Binding
	Arguments
	Description
	Return Values
	Examples

	DECEDI_POST
	C Binding
	Arguments
	Description
	Return Values
	Examples

	DECEDI_TRACK
	C Binding
	Arguments
	Description
	Return Values
	Examples

	Header Files
	Compiling and Linking on UNIX Platforms
	Compiling
	Linking

	Compiling and Linking on OpenVMS
	Compiling
	Linking


	Part II Digital DEC/EDI Reference
	Chapter 5 Tracking Facilities
	Tracking with the Cockpit
	Using the Cockpit Tracking Options

	Using the “trade track” Command
	Business References
	Accessing the Audit Database
	Audit Log
	Runtime Audit Levels
	Audit Database Fields

	History Entries
	History Points
	Names of History Files
	Format of History Files for Hook Calls


	Chapter 6 Debugging Facilities
	Mapper Test
	Mapping Debug
	File I/O Debug
	Mapper Messages Written to Standard Output
	Error Log
	Debugging Compilation Errors

	Chapter 7 Problem Solving in the Mapper
	Map Failed
	Obtaining Further Details of a Map Run
	Server Error
	Reproducing the Error in Mapper Test Mode

	Data Does Not Agree With Specified Source Hierarchy
	Mapping Compilation Errors
	Supplying Further Information on Mapping Errors
	Runtime Errors
	Mapping Table Editor Errors


	Chapter 8 Application Client Error Messages
	Chapter 9 Mapper Error Messages
	Error Handling in the Compiler
	Error Handling at Runtime
	Mapper Error Codes and Messages

	Part III Digital DEC/EDI Mapping Topics
	Chapter 10 Mapping Table Attributes
	Usage
	Security
	Defaults
	Auditing

	Chapter 11 Specifying Application Files
	Getting Record Layouts
	Entering or Editing the Record Sequence
	Parent to Child Relationships
	Sibling Relationships
	Variant Relationships
	Combined Relationships
	Entering Record Attributes — Outgoing
	Enter Record Attributes — Incoming

	Entering or Editing Record Layouts
	Application File Batching


	Chapter 12 Importing Digital DEC/EDI Document Data
	Document Definitions and Data Labels
	Import Document Definitions from Digital DEC/EDI

	Chapter 13 Mapping in More Detail
	The Index of Mapping Sets
	Partner
	Generic
	Standard
	Version
	Internal Doctype
	Level
	Segment or Rectype
	Segment or Record
	Map ID
	Error On
	Navigation
	Set Context
	Repeat Pattern
	Condition
	Mapping Assignments
	Record Instance Numbering
	Difference Between Relative and Absolute Index
	Relative Indexes with Negative Values
	Specification of Off-Path References
	Examples
	Structure Mapping (Navigation)
	Advanced Error On
	Advanced Set Context
	Advanced Repeat Pattern
	New Context Parts
	Advanced Data Mapping (Mapping Assignments)


	Chapter 14 Mapping Expressions
	Expressions
	Record Fields
	Data Labels
	Data Label Attributes
	Numeric Constant
	Quoted String
	Special Constant
	Global Variables
	Predefined Global Variables
	$APPLICATION
	$AUDIT_ID
	$BUSINESS_REF1...$BUSINESS_REF5
	$DOCCOUNT
	$DOCTYPE_SELECT
	$ERROR_CODE
	$PARTNER_SELECT
	$DOCTYPE
	$PARTNER
	$USERREF
	$PRIORITY
	$RUN_ID
	$TESTIND
	$FILENAME
	$RECOVERY
	$APPLICATION_ARG
	$DOCTYPE_ARG
	$PARTNER_ARG
	$USERREF_ARG
	$TESTIND_ARG
	$PRIORITY_ARG

	Document Audit Global Variables
	$INT_DOCTYPE
	$EXT_STANDARD
	$EXT_VERSION
	$EXT_DOCTYPE
	$DOC_CONTROL_NUM
	$GRP_TYPE
	$GRP_CONTROL_NUM
	$APP_INT_QUAL
	$APP_INT_ID
	$PAR_INT_QUAL
	$PAR_INT_ID
	$INT_CONTROL_NUM
	$FA_APP_ID
	$FA_DIR_IND
	$FA_DOCCOUNT
	$INT_DATE
	$INT_TIME
	$INT_STANDARD
	$INT_VERSION
	$INT_ACK_REQ
	$INT_SENDER_ID
	$INT_RECEIVER_ID
	$INT_PRIORITY
	$APP_REFERENCE
	$NUM_AREAS
	$GRP_SENDER_ID
	$GRP_RECEIVER_ID
	$GRP_SENDER_QUAL
	$GRP_RECEIVER_QUAL
	$AGENCY_CODE
	$GRP_VERSION
	$TRACK_DOCCOUNT


	Numeric and String Values
	An Expression Using Operators
	Arithmetic Operators
	String Operators
	Relational Operators
	Example

	Logical Operators

	A Conditional Statement Using the IF Expression
	Operator Precedence
	Math Precision
	Functions
	Expression Examples
	Mapping Language Keywords

	Chapter 15 Lookup Tables
	Private and Shared Lookup Tables
	Codes and Values
	Creating and Editing Lookup Tables
	Creating, Editing, and Storing Shared Lookup Tables
	Mapper Shared Lookups Table

	Recaching Shared Lookup Tables
	Sorting and Reversing Lookup Tables

	Chapter 16 Supported Mapping Constructs
	Application File, Records, and Tree Structure
	Relationships Between Records
	Definition of Mapping
	Source and Destination
	The Mapping Table
	One-to-One Mapping
	Splitting
	Splitting Into Independent Segments/Records
	Splitting into a Parent and Children

	Combining
	Skipping a Level
	Avoiding Cross-Over Patterns
	Set Context Line Must Be Used
	Use of Explicit Qualification and Explicit Instances
	Mapping Assignments
	Default Qualification
	Explicit Qualification
	Explicit Instance


	Children Are Created After Parents
	Unused Records/Segments Permitted

	Chapter 17 Using Hooks to Customize the Mapper
	Customization Routines
	Creating and Customizing Hooks
	Function and Argument Field Entries
	Accessing SQL Databases from Hooks on OpenVMS


	Declaring Routines at Predefined Hook Locations
	Hook Example
	Excerpts from Compile Listing
	Sample C Customization Routine
	Linking Instructions
	Comments


	Index
	Symbols
	- �14�29
	$APPLICATION �14�16
	$APPLICATION_ARG �14�24
	$AUDIT_ID �14�24
	$BEGINDOC() �14�37
	$BLANK �14�12
	$DATE(format,date) �14�37
	$DOCCOUNT �17�20
	$DOCTYPE �11�14, �14�19
	$DOCTYPE_ARG �14�24
	$DOCTYPE_SELECT �14�18
	$ENDMAP �14�12
	$ENDMAP Special Value �13�24
	$ERROR �14�12
	$EXIST(node) �14�39
	$FILENAME �14�23
	$INSTANCE(node) �14�39
	$INT(expr) �14�39
	$LEN(expr) �14�39
	$LOGICAL(expr) �14�42
	$LOOKUP function �15�3
	$LOOKUP(tablename,expr) �14�39
	$PAD(str,len,char) �14�39
	$PARTNER �11�14, �14�20
	$PARTNER_ARG �14�24
	$PARTNER_SELECT �14�18
	$PRIORITY �14�21
	$PRIORITY_ARG �14�25
	$RECOVERY �14�24
	$ROUND(expr, fractional_digits) �14�40
	$STR(expr) �14�40
	$STRCHR(str,charset) �14�40
	$STRNCHR(str, �14�40
	$STRNCHR(str, charset) �14�40
	$STRPOSITION(str, substr,start) �14�40
	$SUBSTR function �14�34
	$SUBSTR(start, len,expr) �14�40
	$TESTIND �14�22
	$TESTIND variable �14�22
	$TESTIND_ARG �14�25
	$THROWAWAY �14�12
	$THROWAWAY Special Value �13�24
	$TIMESTAMP �14�41
	$TIMESTAMP(format) �14�41
	$TRIM(str) �14�42
	$UNDEFINED �14�12
	$UNDEFINED Special Constant �14�8
	$USERREF �14�21
	$USERREF_ARG �14�25
	%NONAME_I_MSG %X00DA2C3 followed by a Bugcheck �9�35
	(Mapping Assignment �13�25
	+ �14�29

	A
	Absolute Instance References �14�5
	Advanced Data Mapping �13�25
	Advanced Error On �13�20
	Advanced Set Context �13�20
	After Preprocessing �10�5
	After Record Hook �10�5
	Application Data File �11�13
	Application File Batching �11�16
	Application ID �10�4
	Arithmetic Operators �14�30
	Audit Controls �10�4
	Audit history event when called �17�8
	Audit when called �17�8
	Auditing �10�4
	Auto-Repeat Pattern �13�23

	B
	BATCH HEADER �11�12
	Before Postprocessing �10�6
	Binary operators �14�30
	Boolean OR �14�30
	Built-in functions �14�44

	C
	Combined Relationships �11�11
	Commit Document �17�20
	Condition �13�6
	Condition entries �13�5
	Conditional Statement �14�32
	Creating Lookup Tables �15�2
	Creating and Customizing Hooks �17�3
	Current Instance �13�11
	Custom Routine Arguments �10�6
	Customization Routines �17�1

	D
	DEC/EDI �12�1, �15�1
	DEC/EDI Internal Format Fil �10�5
	DECEDI__$NEXT_IN_LIST �9�14
	DECEDI__ABORT �9�4
	DECEDI__ALLOC_ERROR �9�4
	DECEDI__ALREADY_OPEN �9�4
	DECEDI__AMBIGSTD �9�2
	DECEDI__API_ERROR �9�4
	DECEDI__APPLID_ABSENT �9�4
	DECEDI__APPLID_MISMATCH �9�5
	DECEDI__AUD_ALREADY_COMP �9�5
	DECEDI__AUD_BAD_RUN_ID �9�5
	DECEDI__AUD_CANNOT_RESTART �9�5
	DECEDI__AUD_DBERROR �9�5
	DECEDI__AUD_MISSING_DB_FILE �9�5
	DECEDI__BAD_HOOK_STAT �9�5
	DECEDI__BADPARAM �9�5
	DECEDI__BLD_CANNOT_CLOSE_FILE �9�6
	DECEDI__BLD_CANNOT_OPEN_EDI_I NPUT �9�6
	DECEDI__BLD_CANNOT_OPEN_OUTP UT �9�6
	DECEDI__BLD_INCOMPATIBLE_FILES �9�6
	DECEDI__BLD_NO_DOC_DEFN �9�6
	DECEDI__CANNOT_OPEN_SOURCE �9�6
	DECEDI__CVT_ERROR �9�7
	DECEDI__DEC_OVF �9�7
	DECEDI__DIVBY_ZER �9�7
	DECEDI__DOC_DEF_MISSING �9�7
	DECEDI__DOC_NO_OUTPUT �9�8
	DECEDI__DOCTYPE_MISSING �9�7
	DECEDI__DOCUMENT_ERROR �9�7
	DECEDI__EOF �9�8
	DECEDI__ERROR �9�2
	DECEDI__ERROR_IN_FILE_SECTION �9�8
	DECEDI__ERRORS �9�8
	DECEDI__EXP_ERROR �9�8
	DECEDI__FOR_PARM_ERROR �9�8
	DECEDI__GROUP_IMBAL �9�8
	DECEDI__ILL_$NEXT �9�9
	DECEDI__ILL_INST �9�8
	DECEDI__ILL_NDX �9�9
	DECEDI__ILL_RANGE �9�9
	DECEDI__INCOMING_REC_MISSING �9�9
	DECEDI__INPUT_CLOSE_ERROR �9�9
	DECEDI__INPUT_OPEN_ERROR �9�9
	DECEDI__INPUT_READ_ERROR �9�10
	DECEDI__INPUT_RMSERR �9�10
	DECEDI__INTERNAL_ERROR �9�10
	DECEDI__INV_LABEL �9�11
	DECEDI__INV_LOCAL �9�11
	DECEDI__INV_TBL �9�11
	DECEDI__INVHIERKY �9�10
	DECEDI__INVPARAMS �9�2
	DECEDI__INVRECTYP �9�10
	DECEDI__LOGERR �9�11
	DECEDI__MAP_EXCD_LIMIT �9�11
	DECEDI__MAP_OUT_OF_DATA �9�11
	DECEDI__MISSING_APPLICATION �9�12
	DECEDI__MISSING_BOUND �9�12
	DECEDI__MISSING_ENDVARIANTS �9�12
	DECEDI__MISSING_FIELD_SCALE �9�12
	DECEDI__MISSING_FIELD_SIZE �9�12
	DECEDI__MISSING_FIELDS �9�12
	DECEDI__MISSING_MODE �9�13
	DECEDI__MISSING_RECTYPE �9�13
	DECEDI__MISSING_SEGMENTS �9�13
	DECEDI__MISSING_SEM �9�13
	DECEDI__MISSING_SUBSCRIPT �9�13
	DECEDI__MPFL_OPEN_ERROR �9�13
	DECEDI__NEXT_LIST_ERR �9�14
	DECEDI__NO_LOCAL_TEST �9�14
	DECEDI__NO_OUTPUT �9�14
	DECEDI__NODATASERVER �9�2
	DECEDI__NONALPHA �9�14
	DECEDI__NOT_INSTL �9�14
	DECEDI__NOT_OPEN �9�14
	DECEDI__NOTAUTHORIZED �9�2
	DECEDI__NOTTRANS �9�3
	DECEDI__OUTGOING_SEG_MISSING �9�15
	DECEDI__OUTPUT_CLOSE_ERROR �9�15
	DECEDI__OUTPUT_OPEN_ERROR �9�15
	DECEDI__OUTPUT_WRITE_ERROR �9�15
	DECEDI__P_BAD_ALIGN �9�16
	DECEDI__P_BAD_JUST �9�16
	DECEDI__P_BAD_OCCURS �9�16
	DECEDI__P_INV_DATATYPE �9�16
	DECEDI__P_INV_EXP �9�16
	DECEDI__P_INV_FILENAME �9�17
	DECEDI__P_INV_INST �9�17
	DECEDI__P_INV_LEVEL �9�17
	DECEDI__P_INV_NAME �9�17
	DECEDI__P_INV_NBR �9�17
	DECEDI__P_INV_PATT �9�17
	DECEDI__P_SIZE_REQ �9�17
	DECEDI__PARSE_ERROR �9�15
	DECEDI__PARTNER_MISSING �9�15
	DECEDI__POLL_EMPTY �9�16
	DECEDI__QUALIFIER �9�17
	DECEDI__RECORD_SHORT �9�18
	DECEDI__RECOVERY_AMBIGUOUS �9�18
	DECEDI__RECOVERY_NO_ACTION �9�18
	DECEDI__RT_HOOK_NOLINK �9�18
	DECEDI__RT_INVALID_ARG �9�18
	DECEDI__RT_INVALID_DATE �9�19
	DECEDI__STACK_ERROR �9�19
	DECEDI__STACK_OVERFLOW �9�19
	DECEDI__STACK_UNDERFLOW �9�19
	DECEDI__SUCCESS �9�3
	DECEDI__SYNTAX_ERROR �9�19
	DECEDI__TABLEFILE_CLOSE_ERROR �9�19
	DECEDI__TABLEFILE_OPEN_ERROR �9�19
	DECEDI__TABLEFILE_READ_ERROR �9�20
	DECEDI__TABLEFILE_WRITE_ERROR �9�20
	DECEDI__TBL_IN �9�20
	DECEDI__TBL_OUT �9�20
	DECEDI__TERMINATED_NODIR �9�3
	DECEDI__TERMINATED_RECEIVE �9�3
	DECEDI__TERMINATED_SEND �9�4
	DECEDI__TG_AMBIG_VAR_REF �9�20
	DECEDI__TG_BAD_FLD_REF �9�21
	DECEDI__TG_BAD_FOR_EACH_REF �9�21
	DECEDI__TG_BAD_GLOBAL_ASST �9�21
	DECEDI__TG_BAD_GV �9�21
	DECEDI__TG_BAD_LKUP_REF �9�21
	DECEDI__TG_BAD_MANY �9�21
	DECEDI__TG_BAD_REF �9�22
	DECEDI__TG_BAD_SIZE �9�22
	DECEDI__TG_BHDR_BEGTRM_CNFL �9�22
	DECEDI__TG_BKDOC_FLD_UNRECOG �9�22
	DECEDI__TG_BKON_NODEF �9�22
	DECEDI__TG_BKON_NOSRC �9�22
	DECEDI__TG_CUST_ARG_ARY �9�22
	DECEDI__TG_CUST_OPT_RET �9�23
	DECEDI__TG_CUST_RET_GT_NARGS �9�23
	DECEDI__TG_CUST_VAL_RET �9�23
	DECEDI__TG_CUST_VAL_SIZE �9�23
	DECEDI__TG_DEF_UNRECOG �9�23
	DECEDI__TG_DMY_ATTRIB �9�23
	DECEDI__TG_DST_UNRECOG �9�24
	DECEDI__TG_DUP_ALIGN �9�24
	DECEDI__TG_DUP_ARRAY �9�24
	DECEDI__TG_DUP_ASN �9�24
	DECEDI__TG_DUP_BEG_DOC �9�24
	DECEDI__TG_DUP_BHDR �9�24
	DECEDI__TG_DUP_BKDOC �9�25
	DECEDI__TG_DUP_DOCDEF �9�25
	DECEDI__TG_DUP_FLD_NAME �9�25
	DECEDI__TG_DUP_FLDTYPE �9�25
	DECEDI__TG_DUP_FLOATING �9�25
	DECEDI__TG_DUP_JUST �9�25
	DECEDI__TG_DUP_LBL_IN_DOC �9�26
	DECEDI__TG_DUP_LBLTYPE �9�25
	DECEDI__TG_DUP_LKUP_DEF �9�26
	DECEDI__TG_DUP_OCC �9�26
	DECEDI__TG_DUP_REC_NAME �9�26
	DECEDI__TG_DUP_SEG_IN_DOC �9�26
	DECEDI__TG_DUP_SRC �9�26
	DECEDI__TG_DUP_SRC_VAR �9�27
	DECEDI__TG_DUP_TRM_DOC �9�27
	DECEDI__TG_EMPTY_REC �9�27
	DECEDI__TG_EMPTY_VARIANT �9�27
	DECEDI__TG_FLTNG_IN_Application �9�27
	DECEDI__TG_FLTNG_SUBORD �9�27
	DECEDI__TG_FOR_IN_INITS �9�28
	DECEDI__TG_ILL_BEG_DOC �9�28
	DECEDI__TG_ILL_BHDR �9�28
	DECEDI__TG_ILL_FLTNG �9�28
	DECEDI__TG_ILL_FN_REF �9�28
	DECEDI__TG_ILL_INC �9�28
	DECEDI__TG_ILL_INSTANCE �9�29
	DECEDI__TG_ILL_JUST �9�29
	DECEDI__TG_ILL_QUAL �9�29
	DECEDI__TG_ILL_RANGE �9�29
	DECEDI__TG_ILL_TIMES �9�29
	DECEDI__TG_IMBEDDED_MANY �9�29
	DECEDI__TG_INC_DOC_PARMS �9�29
	DECEDI__TG_INC_UNRECOG �9�30
	DECEDI__TG_INST_ON_FLD �9�30
	DECEDI__TG_MAP_DOC_NOMATCH �9�30
	DECEDI__TG_MAP_UNDER_DUMMY �9�30
	DECEDI__TG_MISMATCH_FOR_EACH �9�30
	DECEDI__TG_NO_REC_DEFS �9�30
	DECEDI__TG_NO_SIZE �9�31
	DECEDI__TG_NO_TYPE_FLD �9�31
	DECEDI__TG_OCC_MIN_GT_MAX �9�31
	DECEDI__TG_REC_MISMATCH �9�31
	DECEDI__TG_REP_BKON �9�31
	DECEDI__TG_REP_FOREACH �9�31
	DECEDI__TG_REP_NEXTLIST �9�31
	DECEDI__TG_REP_NOCH �9�31
	DECEDI__TG_REP_TIMES �9�32
	DECEDI__TG_SRC_VAR_NAME �9�32
	DECEDI__TG_SUBSCR_MISMATCH �9�32
	DECEDI__TG_SUBSCR_ON_REC �9�32
	DECEDI__TG_TOO_MANY_POINT_AT �9�32
	DECEDI__TG_TRM_DOC_SUBORD �9�32
	DECEDI__TG_UNK_FUNC �9�32
	DECEDI__TG_VACANT_FLD �9�33
	DECEDI__TG_VACANT_STRUCTURE �9�33
	DECEDI__TG_VACANT_VARIANT �9�33
	DECEDI__TI_BAD_VALUE �9�33
	DECEDI__TI_MISMATCH �9�33
	DECEDI__TI_MISMATCH_DOC �9�33
	DECEDI__TRUNCATED �9�34
	DECEDI__UI_NO_DIRECTION �9�34
	DECEDI__UI_NO_FBO �9�34
	DECEDI__UNKNDOC �9�3
	DECEDI__UNKNELE �9�3
	DECEDI__UNKNOWN_ATTRIBUTE �9�34
	DECEDI__UNKNSEG �9�3
	DECEDI__UNKNSTDVER �9�3
	DECEDI__UNKNSUBELE �9�3
	DECEDI__USER_PGM_ERROR �9�34
	DECEDI__WRONG_NO_ARGS �9�34
	DEFAULT Segment Qualifier �14�7
	Data Label Attributes �14�10
	Data Label Generator �12�2
	Data Labels �14�7
	Data label type AN �14�10
	Data label type CH �14�10
	Data label type DT �14�10
	Data label type ID �14�10
	Data label type N �14�10
	Data label type R �14�10
	Data label type TM �14�10
	Data mapping �13�25
	Debugging a mapping table �6�5
	Declaring Routines at Predefined Hook Locations �17�14
	Defaults �10�3
	Document Definition �12�3

	E
	EDIFACT segment �14�7
	END VARIANT �11�5, �11�10
	ENDS DOC �11�14
	Edit Lookup dialog �15�3
	Editing Record Layouts �11�15
	Editing the Record Sequence �11�2
	End Document �17�18
	End of Processing �10�6
	Environment variable �6�2
	Error On �13�5
	Explanation �9�5
	Explicit Record References �14�4
	Expression Examples �14�43
	Expression Using Operators �14�29

	F
	FALSE �14�12
	FBR$-I-NO_OUTPUT_RECEIVE �9�34
	FBR$-I-NO_OUTPUT_SEND �9�34
	FBR$-I-NO_OUTPUT_TM_RECEIVE �9�35
	FBR$-S-SUCCESS_RECEIVE �9�35
	FBR$-S-SUCCESS_SEND �9�35
	FBR$-W-ONESOFT �9�35
	FBR$-W-PART_RECEIVE �9�35
	FBR$-W-PART_SEND �9�35
	FBR$-W-SOFTERROR �9�36
	FBR$-W-ZERO_SEND �9�36
	FBR_LOCAL_TEST_IN �6�2
	FBR-E-$TERMINATED �9�20
	File I/O Debug �6�1, �6�12
	Floating Segments �13�22
	For-Each Pattern �13�23
	Function and Argument Field Entries �17�5

	G
	Global Variables �14�14

	H
	HARD ERROR �13�20
	Hard Error �17�20
	Hook Example �17�21

	I
	Import �12�3
	Incoming mapping tables �14�7
	Index of Mapping Sets �13�2, �13�3, �14�17
	Index of return value �17�7
	Initializations �14�14
	Instance identifiers �13�10
	Internal Doctype �13�3
	Invoice instance �13�9

	L
	LEVEL �11�4
	LIB$_DECOVF �9�36
	LIB$_FLTOVF �9�36
	LIB$_FLTUND �9�36
	LIB$_INTOVF �9�36
	LIB$_INVCLADSC �9�36
	LIB$_INVCLADTY �9�37
	LIB$_INVCVT �9�37
	LIB$_INVDTYDSC �9�37
	LIB$_INVNBDS �9�37
	LIB$_OUTSTRTRU �9�37
	LIB$_ROPRAND �9�37
	Level �13�4
	Line-item instance �13�9
	Logical Operator �14�32
	Logical Operators �14�32
	Lookup Table �15�1

	M
	MAX Exceeded �13�5
	Map ID �13�5
	Mapper Syntax �11�9, �11�10
	Mapper Test
	Test Mapper �6�1

	Mapping Assignments �13�7
	Mapping Debug �6�1
	Mapping Expressions �14�1
	Mapping Language Keywords �14�46
	Mapping Table �10�6
	Mapping Table Editor �12�2
	Math Precision �14�35

	N
	NOT �14�29
	New Context Parts �13�24
	New context �13�24
	No Change �13�24
	Notating an Instance �13�9
	Numeric Constant �14�11
	Numeric and String Values �14�28

	O
	Object Name �10�4
	Operator Precedence �14�34
	Outgoing mapping tables �14�7

	P
	POST command
	Examples �3�31

	Parent to Child Relationships �11�6
	Parent to child relationships �11�6
	Partner �13�2
	Partner ID �10�4
	Post Process �17�19
	Predefined Global Variables �14�14
	Predefined Hooks
	Hooks predefined �17�1

	Predefined variables �14�15
	Preprocess �17�16
	Private Lookup Table �15�2

	Q
	Quoted String �14�11

	R
	RECOGNITION EXPRESSION �11�13
	Record �17�17
	Record Attributes — Incoming �11�15
	Record Attributes — Outgoing �11�12
	Record Instance Numbering �13�7
	Record Layouts �11�1
	Record Sequence Definition �13�4, �13�17
	Record Type �11�5
	Record Types �11�12
	Record type layouts �11�15
	Reference instance �13�9
	Relational Operators �14�31
	Relative Indexes �13�12
	Relative Instance References �14�6
	Repeat Patter �13�5
	Repeat Pattern �13�6

	S
	SOFT ERROR hook point �13�20
	Sample Sequence �11�9
	Security �10�3
	Security tab dialog �10�3
	Segment or Record �13�4
	Segment or Rectype �13�4
	Select Document screen �12�3
	Set Context �13�5
	Set Context field �13�5
	Shared Lookup Table �15�2
	Sibling Relationships �11�7
	Sibling relationship �11�6
	Soft Error �17�19
	Special Constant �14�12
	Start Document �17�16
	Start of Processing �10�5
	String Manipulation Functions �14�44
	String Operators �14�31
	Structure Mapping �13�17
	Structure Name Arrays �14�2
	Supported Mapping Constructs �16�1
	Switch �17�17

	T
	TRUE �14�12
	Temporary variables �14�15
	Test Indicator �10�4
	The DEFAULT Record Qualifier �14�3
	Trading Partner �10�4
	Transmission File Builder �11�16
	Tree �11�9
	Tree Structure �16�1

	U
	Unary Operators �14�29
	Usage �10�2
	User Reference �10�4
	Using the IF Expression �14�32

	V
	VARIANT �11�5, �11�10
	Variant Relationships �11�9
	Variant relationships �11�6
	Variant structures �11�9

	Z
	ancestors �16�3
	array subscript �13�26
	assignment statements �13�1
	audit trail �14�17
	child �16�3
	current path �13�11
	data labels �12�1
	data types �11�16
	default qualifiers �10�3
	define fields �11�16
	document definition �12�1, �12�2
	expression �13�27
	for-clause �13�26
	for-variable �13�27
	incr �13�27
	instance numbering �13�9
	lookup table �14�39
	map �13�1
	mapping assignment �13�26
	mapping set �13�1
	max �13�27
	min �13�27
	numeric string �14�11
	parent �13�23, �16�3
	partner and generic fields �13�3
	path within a segment �12�2
	predefined hooks �17�1
	pull strategy �13�1
	record type �11�15
	sequence of records �11�1
	siblings �16�3
	source tree �13�1
	subordinate relationships �11�6
	trading partner �13�2
	tree structure �11�11



