
Compaq Fortran
User Manual for
Tru64 UNIX and
Linux Alpha Systems
Order Number: AA–Q66TE–TE

January 2002

This manual provides information about the Compaq Fortran program
development and run-time environment on Compaq Tru64 UNIX and Linux
Alpha systems.

Revision/Update Information: This manual supersedes the previous
version of this manual, order number
AA–Q66TD–TE.

Software Version: Compaq Fortran for Tru64 UNIX Systems:
Version 5.5 or higher
Compaq Fortran for Linux Alpha Systems:
Version 1.2 or higher

Compaq Computer Corporation
Houston, Texas

First Printing, June 1994
Revision, January 2002

© 2002 Compaq Information Technologies Group, L.P.

Compaq and the Compaq logo, OpenVMS, Tru64, and VAX are trademarks of Compaq
Information Technologies Group, L.P. in the U.S. and/or other countries.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the U.S.
and/or other countries.

UNIX is a trademark of The Open Group in the U.S. and/or other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Cover graphic, photographs: Copyright © 1997 PhotoDisc, Inc.

Cover graphic, image: CERN, European Laboratory for Particle Physics: ALICE detector on
CERN’s future accelerator, the LHC, Large Hadron Collider.

Confidential computer software. Valid license from Compaq required for possession, use or
copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information is provided ‘‘as is’’ without warranty of any kind and is subject to change without
notice. The warranties for Compaq products are set forth in the express limited warranty
statements accompanying such products. Nothing herein should be construed as constituting an
additional warranty.

ZK6325

This document is available on CD–ROM.

This document was prepared using DECdocument, Version 3.3-1n.

Contents

Preface . xxv

1 Getting Started

1.1 Compaq Fortran Programming Environment 1–1
1.2 Commands to Create and Run an Executable Program 1–5
1.3 Creating and Running a Program Using a Module and Separate

Function . 1–6
1.3.1 Commands to Create the Executable Program 1–7
1.3.2 Running the Sample Program . 1–8
1.3.3 Debugging the Sample Program . 1–9
1.4 f90 or fort Command and Related Software Components 1–9
1.4.1 f90 or fort Driver Program . 1–10
1.4.2 cpp, fpp, and Other Preprocessors . 1–10
1.4.3 Compaq Fortran Compiler . 1–11
1.4.4 Other Compilers . 1–12
1.4.5 Linker (ld) . 1–12
1.5 Program Development Stages and Tools 1–12
1.6 Compaq Fortran and Standards It Conforms To 1–15

2 Compiling and Linking Compaq Fortran Programs

2.1 f90 Command: Files and Options . 2–2
2.1.1 File Suffixes and Source Forms . 2–2
2.1.2 Format of the f90 and fort Commands 2–4
2.1.3 Creating and Using Module Files . 2–5
2.1.3.1 Creating Module Files . 2–5
2.1.3.2 Using Module Files . 2–5
2.1.4 INCLUDE Statement and Using Include Files 2–6
2.1.5 Output Files: Executable, Object, and Temporary 2–8
2.1.5.1 Naming Output Files . 2–8
2.1.5.2 Temporary Files . 2–9
2.1.6 Using Multiple Input Files: Effect on Output Files 2–9

iii

2.1.7 Examples of the f90 and fort Commands 2–10
2.1.7.1 Compiling and Linking Multiple Files 2–10
2.1.7.2 Retaining an Object File and Preventing Linking 2–11
2.1.7.3 Compiling Fortran 95/90 and C Source Files and Linking

an Object File . 2–11
2.1.7.4 Renaming the Output File . 2–11
2.1.7.5 Specifying an Additional Linker Library 2–12
2.1.7.6 Requesting Additional Optimizations 2–12
2.1.8 Using Listing Files . 2–12
2.2 Driver Programs and Passing Options to cc and ld 2–13
2.2.1 make Facility . 2–16
2.2.2 Options Passed to the cc Driver or ld Linker 2–16
2.3 Compiler Limits, Diagnostic Messages, and Error Conditions . . . 2–17
2.3.1 Compiler Limits . 2–17
2.3.2 Compiler Diagnostic Messages and Error Conditions 2–18
2.3.3 Linker Diagnostic Messages and Error Conditions 2–19
2.4 Compilation Control: Statements and Directives 2–20
2.5 Linking Object Libraries . 2–21
2.5.1 Specifying Additional Object Libraries 2–22
2.5.2 Specifying Types of Object Libraries 2–24
2.5.3 Specifying Shared Object Libraries . 2–25
2.6 Creating Shared Libraries . 2–25
2.6.1 Creating a Shared Library with a Single f90 Command 2–26
2.6.2 Creating a Shared Library with f90 and ld Commands 2–26
2.6.3 Choosing How to Create a Shared Library 2–27
2.6.4 Shared Library Restrictions . 2–27
2.6.5 Installing Shared Libraries (TU*X only) 2–28

3 f90 and fort Command-Line Options

3.1 Overview of Command-Line Options . 3–1
3.2 f90 and fort Command Categories and Options 3–2
3.3 -align keyword — Data Alignment . 3–6
3.4 -annotations keyword — Place Optimization Information in

Source Listing . 3–9
3.5 -arch keyword — Specify Type of Code Instructions Generated

. 3–10
3.6 -assume buffered_io — Buffered Output 3–12
3.7 -assume byterecl — Units for Unformatted File Record

Length . 3–12
3.8 -assume cc_omp — Enable Conditional Compilation for OpenMP

. 3–13
3.9 -assume dummy_aliases — Dummy Variable Aliasing 3–13

iv

3.10 -assume gfullpath — Source File Path for Debugging 3–14
3.11 -assume minus0 — Standard Semantics for Minus Zero 3–14
3.12 -assume noaccuracy_sensitive, -fp_reorder — Reorder

Floating-Point Calculations . 3–14
3.13 -assume noprotect_constants — Remove Protection from

Constants . 3–15
3.14 -assume nosource_include — INCLUDE file search 3–15
3.15 -assume nounderscore — Underscore on External Names 3–15
3.16 -assume no2underscores — Two Underscores on External

Names . 3–16
3.17 -assume pthreads_lock — Thread Lock Selection for Parallel

Execution . 3–16
3.18 -automatic, -static — Local Variable Allocation 3–17
3.19 -c — Inhibit Linking and Retain Object File 3–17
3.20 -call_shared, -non_shared, -shared — Shared Library Use 3–17
3.21 -ccdefault keyword — Carriage Control for Terminals 3–18
3.22 -check arg_temp_created — Check for Copy of Temporary

Arguments . 3–19
3.23 -check bounds, -C, -check_bounds — Boundary Run-Time

Checking . 3–19
3.24 -check format — Format Mismatches at Run Time 3–19
3.25 -check nopower — Allow Special Floating-Point Expressions . . . 3–20
3.26 -check omp_bindings — OpenMP Fortran API Binding Rules

Checking . 3–20
3.27 -check output_conversion — Truncated Format Mismatches at

Run Time . 3–21
3.28 -check overflow — Integer Overflow Run-Time Checking 3–21
3.29 -check underflow — Floating-Point Underflow Run-Time

Checking . 3–22
3.30 -convert keyword — Unformatted Numeric Data Conversion 3–22
3.31 -cpp and Related Options — Run C Preprocessor 3–24
3.31.1 -M — Request cpp Dependency Lists for make 3–25
3.31.2 -P — Retain cpp Intermediate Files . 3–25
3.31.3 -Wp,-xxx — Pass Specified Option to cpp 3–26
3.32 -Dname, -Dname=def, -Dname="string" — Define Symbol

Names . 3–26
3.33 -d_lines — Debugging Statement Indicator, Column 1 3–27
3.34 -double_size 128, -double_size 64 — Double Precision Data Size

. 3–27
3.35 -error_limit num, -noerror_limit — Limit Error Messages 3–27
3.36 -extend_source — Line Length for Fixed-Format Source 3–28
3.37 -f66, -66, -nof77, -onetrip, -1 — Use FORTRAN 66 Semantics . . . 3–28
3.38 -f77, -nof66 — Use FORTRAN 77 Semantics 3–29

v

3.39 -f77rtl — Use Fortran 77 Run-Time Behavior 3–29
3.40 -fast — Set Options to Improve Run-Time Performance 3–29
3.41 -feedback file, -gen_feedback, -cord — Create and Use Feedback

Files . 3–30
3.42 -fixed, -free — Fortran Source Format . 3–31
3.43 -fpconstant — Handling of Floating-Point Constants 3–32
3.44 -fpen — Control Arithmetic Exception Handling and

Reporting . 3–33
3.44.1 Hints on Using These Options . 3–35
3.45 -fpp — Run Fortran Preprocessor . 3–38
3.46 -fprm keyword — Control Floating-Point Rounding Mode 3–38
3.47 -fuse_xref — Cross-Reference Information for Compaq FUSE . . . 3–39
3.48 -g0, -g1, -g2 or -g, -g3, -ladebug — Traceback and Symbol Table

Information . 3–40
3.49 -granularity keyword — Control Shared Memory Access to

Data . 3–41
3.50 -hpf, -hpf num, and Related Options — Compile HPF Programs

for Parallel Execution . 3–42
3.50.1 -assume bigarrays — Run-time Checking for Distributed

Small Array Dimensions . 3–43
3.50.2 -assume nozsize — Omit Zero-Sized Array Checking 3–44
3.50.3 -nearest_neighbor, -nearest_neighbor num, or

-nonearest_neighbor — Nearest Neighbor Optimization 3–44
3.50.4 -show hpf — Show HPF Parallelization Information 3–45
3.50.5 -hpf_target — Message Passing Protocol for Parallel

Programs . 3–46
3.51 -I — Remove Directory from Include Search Path 3–47
3.52 -Idir — Add Directory for Module and Include File Search 3–47
3.53 -i2, -i4, -i8, -integer_size num — Integer and Logical Data

Size . 3–47
3.54 -inline keyword, -noinline — Control Procedure Inlining 3–48
3.55 -intconstant — Handling of Integer Constants 3–49
3.56 -K — Keep Temporary Files . 3–50
3.57 -L — Remove ld Directory Search Path . 3–50
3.58 -Ldir — Add Directory to ld Search Path 3–50
3.59 -lstring — Add Library Name to ld Search 3–51
3.60 -machine_code . 3–51
3.61 -math_library keyword — Fast or Accurate Math Library

Routines . 3–52
3.62 -mixed_str_len_arg — Specify Length of Character Arguments

. 3–53
3.63 -module directory — Specify Directory for Creating Modules

Files . 3–53

vi

3.64 -mp — Enable Parallel Processing Using Directed
Decomposition . 3–54

3.65 -names keyword — Case Control of Source and External
Names . 3–54

3.66 -noaltparam — Alternative PARAMETER Syntax 3–55
3.67 -nofor_main — Allow Non-Fortran Main Program 3–55
3.68 -nohpf_main, -nowsf_main — Compile HPF Global Routine for

Nonparallel Main Program . 3–55
3.69 -noinclude — Omit Standard Directory Search for INCLUDE

Files . 3–56
3.70 -norun — Do Not Run the Compiler . 3–56
3.71 -o output — Name Output File . 3–56
3.72 -O0, -O1, -O2, -O3, -O4 or -O, -O5 — Specify Optimization

Level . 3–56
3.73 -om — Request Nonshared Object Optimizations 3–58
3.74 -omp — Enable OpenMP Parallel Processing Using Directed

Decomposition . 3–59
3.75 -pad_source — Pad Short Source Records with Spaces 3–59
3.76 -pipeline — Activate Software Pipelining Optimization 3–60
3.77 -p0, -p1 or -p, and -pg — Profiling Support 3–60
3.78 -real_size number, -r8, -r16 — Floating-Point Data Size 3–61
3.79 -recursive — Request Recursive Execution 3–62
3.80 -reentrancy keyword — Control Use of Threaded Run-Time

Library . 3–63
3.81 -S — Create Assembler File . 3–64
3.82 -show keyword, -machine_code — Control Listing File

Content . 3–64
3.83 -source_listing — Create a Source Listing File 3–65
3.84 -speculate keyword — Speculative Execution Optimization 3–65
3.85 -std, -std90, -std95 — Perform Fortran Standards Checking 3–66
3.86 -synchronous_exceptions — Report Exceptions More Precisely

. 3–69
3.87 -syntax_only — Do Not Create Object File 3–69
3.88 -threads, -pthread — Link Using Threaded Run-Time

Library . 3–70
3.89 -transform_loops — Activate Loop Transformation

Optimizations . 3–70
3.90 -tune keyword — Specify Alpha Processor Implementation 3–70
3.91 -U — Activates Case Sensitivity . 3–72
3.92 -Uname — Undefine Preprocessor Symbol Name 3–72
3.93 -u . 3–72
3.94 -unroll num — Specify Number for Loop Unroll Optimization . . . 3–72
3.95 -V — Create Listing File . 3–73

vii

3.96 -v — Verbose Command Processing Display 3–74
3.97 -version, -what — Show Compaq Fortran Version Information . . 3–74
3.98 -vms — OpenVMS Fortran Compatibility 3–74
3.99 -Wl,-xxx — Pass Specified Option to ld . 3–76
3.100 -warn keyword, -u, -nowarn, -w, -w1 — Warning Messages and

Compiler Checking . 3–77
3.101 -warning_severity keyword — Elevate Severity of Warning

Messages . 3–79
3.102 -what . 3–80
3.103 -wsf . 3–80

4 Using the Ladebug Debugger

4.1 Overview of Ladebug and dbx Debuggers 4–1
4.2 Compaq Fortran Options for Debugging 4–2
4.3 Running the Debugger . 4–3
4.3.1 Creating the Executable Program and Running the

Debugger . 4–3
4.3.1.1 Invoking Ladebug . 4–4
4.3.1.2 Invoking dbx . 4–4
4.3.2 Debugger Commands and Breakpoints 4–5
4.3.3 Ladebug Limitations . 4–6
4.4 Sample Program and Debugging Session 4–6
4.5 Summary of Debugger Commands . 4–12
4.6 Displaying Variables . 4–16
4.6.1 Compaq Fortran Module Variables . 4–16
4.6.2 Compaq Fortran Common Block Variables 4–16
4.6.3 Compaq Fortran Derived-Type Variables 4–17
4.6.4 Compaq Fortran Record Variables . 4–18
4.6.5 Compaq Fortran Pointer Variables . 4–18
4.6.5.1 Fortran 95/90 Pointers . 4–18
4.6.5.2 CRAY-Style Pointers . 4–19
4.6.6 Compaq Fortran Array Variables . 4–20
4.6.6.1 Array Sections . 4–21
4.6.6.2 Assignment to Arrays . 4–21
4.6.7 Complex Variables . 4–21
4.6.8 Compaq Fortran Data Types . 4–22
4.7 Expressions in Debugger Commands . 4–23
4.7.1 Fortran Operators . 4–23
4.7.2 Procedures . 4–24
4.8 Debugging Mixed-Language Programs with Ladebug 4–24
4.9 Debugging a Program that Generates an Exception 4–25
4.10 Locating Unaligned Data . 4–26

viii

4.10.1 Locating Unaligned Data With Ladebug 4–26
4.10.2 Locating Unaligned Data With dbx . 4–27
4.11 Using Alternate Entry Points . 4–28
4.12 Debugging Optimized Programs . 4–28

5 Performance: Making Programs Run Faster

5.1 Efficient Compilation and the Software Environment 5–2
5.1.1 Install the Latest Version of Compaq Fortran and

Performance Products . 5–2
5.1.2 Compile Using Multiple Source Files and Appropriate f90

Options . 5–4
5.1.3 Process Shell Environment and Related Influences on

Performance . 5–11
5.2 Using the time Command to Measure Performance 5–12
5.3 Using Profiling Tools . 5–14
5.3.1 Program Counter Sampling (prof) . 5–15
5.3.2 Call Graph Sampling (gprof) . 5–16
5.3.3 Basic Block Counting (pixie and prof) 5–17
5.3.4 Source Line CPU Cycle Use (prof and pixie) 5–18
5.3.5 Creating and Using Feedback Files and Optionally cord 5–19
5.3.6 Atom Toolkit . 5–20
5.4 Data Alignment Considerations . 5–21
5.4.1 Causes of Unaligned Data and Ensuring Natural

Alignment . 5–21
5.4.2 Checking for Inefficient Unaligned Data 5–24
5.4.3 Ordering Data Declarations to Avoid Unaligned Data 5–25
5.4.3.1 Arranging Data Items in Common Blocks 5–25
5.4.3.2 Arranging Data Items in Derived-Type Data 5–27
5.4.3.3 Arranging Data Items in Compaq Fortran Record

Structures . 5–28
5.4.4 Options Controlling Alignment . 5–29
5.5 Using Arrays Efficiently . 5–31
5.5.1 Accessing Arrays Efficiently . 5–31
5.5.2 Passing Array Arguments Efficiently 5–34
5.6 Improving Overall I/O Performance . 5–36
5.6.1 Use Unformatted Files Instead of Formatted Files 5–37
5.6.2 Write Whole Arrays or Strings . 5–37
5.6.3 Write Array Data in the Natural Storage Order 5–38
5.6.4 Use Memory for Intermediate Results 5–38
5.6.5 Enable Implied-DO Loop Collapsing 5–38
5.6.6 Use of Variable Format Expressions 5–39
5.6.7 Efficient Use of Record Buffers and Disk I/O 5–39

ix

5.6.8 Specify RECL . 5–41
5.6.9 Use the Optimal Record Type . 5–41
5.6.10 Reading from a Redirected Standard Input File 5–42
5.7 Additional Source Code Guidelines for Run-Time Efficiency 5–42
5.7.1 Avoid Small Integer and Small Logical Data Items 5–43
5.7.2 Avoid Mixed Data Type Arithmetic Expressions 5–43
5.7.3 Use Efficient Data Types . 5–44
5.7.4 Avoid Using Slow Arithmetic Operators 5–44
5.7.5 Avoid Using EQUIVALENCE Statements 5–45
5.7.6 Use Statement Functions and Internal Subprograms 5–45
5.7.7 Code DO Loops for Efficiency . 5–45
5.8 Optimization Levels: the -On Option . 5–45
5.8.1 Optimizations Performed at All Optimization Levels 5–47
5.8.2 Local (Minimal) Optimizations . 5–48
5.8.2.1 Common Subexpression Elimination 5–49
5.8.2.2 Integer Multiplication and Division Expansion 5–49
5.8.2.3 Compile-Time Operations . 5–49
5.8.2.4 Value Propagation . 5–50
5.8.2.5 Dead Store Elimination . 5–51
5.8.2.6 Register Usage . 5–51
5.8.2.7 Mixed Real/Complex Operations 5–53
5.8.3 Global Optimizations . 5–53
5.8.4 Additional Global Optimizations . 5–55
5.8.4.1 Loop Unrolling . 5–55
5.8.4.2 Code Replication to Eliminate Branches 5–56
5.8.5 Automatic Inlining . 5–57
5.8.5.1 Interprocedure Analysis . 5–57
5.8.5.2 Inlining Procedures . 5–58
5.8.6 Software Pipelining . 5–58
5.8.7 Loop Transformation . 5–60
5.9 Other Options Related to Optimization . 5–61
5.9.1 Setting Multiple Options with the -fast Option 5–61
5.9.2 Controlling the Number of Times a Loop Is Unrolled 5–61
5.9.3 Controlling the Inlining of Procedures 5–62
5.9.4 Requesting Optimized Code for a Specific Processor

Generation . 5–62
5.9.5 Requesting the Speculative Execution Optimization 5–63
5.9.6 Request Nonshared Object Optimizations 5–63
5.9.7 Arithmetic Reordering Optimizations 5–64
5.9.8 Dummy Aliasing Assumption . 5–65

x

6 Parallel Compiler Directives and Their Programming
Environment

6.1 OpenMP Fortran API Compiler Directives 6–2
6.1.1 Command-Line Option and Directives Format 6–2
6.1.1.1 Directive Prefixes . 6–3
6.1.1.2 Directive Prefixes for Conditional Compilation 6–4
6.1.2 Summary Descriptions of OpenMP Fortran API Compiler

Directives . 6–5
6.1.3 Parallel Processing Thread Model . 6–9
6.1.4 Privatizing Named Common Blocks: THREADPRIVATE

Directive . 6–10
6.1.5 Controlling Data Scope Attributes . 6–11
6.1.6 Parallel Region: PARALLEL and END PARALLEL

Directives . 6–17
6.1.7 Worksharing Constructs . 6–19
6.1.7.1 DO and END DO directives . 6–19
6.1.7.2 SECTIONS, SECTION, and END SECTIONS

Directives . 6–20
6.1.7.3 SINGLE and END SINGLE Directives 6–21
6.1.8 Combined Parallel/Worksharing Constructs 6–22
6.1.8.1 PARALLEL DO and END PARALLEL DO Directives . . . 6–22
6.1.8.2 PARALLEL SECTIONS and END PARALLEL

SECTIONS Directives . 6–22
6.1.9 Synchronization Constructs . 6–23
6.1.9.1 ATOMIC Directive . 6–23
6.1.9.2 BARRIER Directive . 6–24
6.1.9.3 CRITICAL and END CRITICAL Directives 6–25
6.1.9.4 FLUSH Directive . 6–26
6.1.9.5 MASTER and END MASTER Directives 6–26
6.1.9.6 ORDERED and END ORDERED Directives 6–27
6.1.10 Specifying Schedule Type and Chunk Size 6–27
6.2 Compaq Fortran Parallel Compiler Directives 6–29
6.2.1 Command-Line Option and Directives Format 6–29
6.2.1.1 Directive Prefixes . 6–30
6.2.2 Summary Descriptions of Compaq Fortran Parallel Compiler

Directives . 6–31
6.2.3 Parallel Processing Thread Model . 6–34
6.2.4 Privatizing Named Common Blocks: TASKCOMMON or

INSTANCE Directives . 6–35
6.2.5 Controlling Data Scope Attributes . 6–36
6.2.6 Parallel Region: PARALLEL and END PARALLEL

Directives . 6–38

xi

6.2.7 Worksharing Constructs . 6–38
6.2.7.1 PDO and END PDO Directives . 6–39
6.2.7.2 PSECTIONS, SECTION, and END PSECTIONS

Directives . 6–40
6.2.7.3 SINGLE PROCESS and END SINGLE PROCESS

Directives . 6–40
6.2.8 Combined Parallel/Worksharing Constructs 6–40
6.2.8.1 PARALLEL DO and END PARALLEL DO Directives . . . 6–41
6.2.8.2 PARALLEL SECTIONS and END PARALLEL

SECTIONS Directives . 6–41
6.2.9 Synchronization Constructs . 6–41
6.2.9.1 BARRIER Directive . 6–42
6.2.9.2 CRITICAL SECTION and END CRITICAL SECTION

Directives . 6–42
6.2.10 Specifying a Default Chunk Size . 6–42
6.2.11 Specifying a Default Schedule Type . 6–43
6.2.12 Terminating Loop Execution Early: PDONE Directive 6–44
6.3 Decomposing Loops for Parallel Processing 6–45
6.3.1 Steps in Using Directed Decomposition 6–45
6.3.2 Resolving Dependences Manually . 6–47
6.3.2.1 Resolving Dependences Involving Temporary

Variables . 6–47
6.3.2.2 Resolving Loop-Carried Dependences 6–48
6.3.2.3 Loop Alignment . 6–48
6.3.2.4 Code Replication . 6–49
6.3.2.5 Loop Distribution . 6–50
6.3.2.6 Restructuring a Loop into an Inner and Outer Nest 6–51
6.3.2.7 Dependences Requiring Locks . 6–52
6.3.3 Coding Restrictions . 6–53
6.3.4 Manual Optimization . 6–54
6.3.4.1 Interchanging Loops . 6–54
6.3.4.2 Balancing the Workload . 6–55
6.4 Environment Variables for Adjusting the Run-Time

Environment . 6–56
6.5 Calls to Programs Written in Other Languages 6–58
6.6 Compiling, Linking, and Running Parallelized Programs on SMP

Systems . 6–59
6.7 Debugging Parallelized Programs . 6–59
6.7.1 Debugger Limitations for Parallelized Programs 6–60
6.7.2 Debugging Parallel Regions . 6–60
6.7.3 Debugging Shared Variables . 6–63

xii

7 Compaq Fortran Input/Output (I/O)

7.1 Logical I/O Units . 7–2
7.2 Types of I/O Statements . 7–3
7.3 Forms of I/O Statements . 7–5
7.4 Types of Files and File Characteristics . 7–6
7.4.1 File Organizations . 7–7
7.4.2 Internal Files and Scratch Files . 7–8
7.4.3 Record Types, Record Overhead, and Maximum Record

Length . 7–9
7.4.3.1 Portability Considerations of Record Types 7–11
7.4.3.2 Record Overhead . 7–12
7.4.3.3 Maximum Record Length . 7–12
7.4.4 Other File Characteristics . 7–13
7.5 Opening Files: OPEN Statement . 7–13
7.5.1 Using Preconnected Standard I/O Files 7–14
7.5.2 OPEN Statement Specifiers . 7–15
7.5.3 Methods to Specify the Unit, File Name, and Directory 7–18
7.5.4 Accessing Files: Implied and Explicit File and

Pathnames . 7–18
7.5.5 How Compaq Fortran Applies a Default Pathname and File

Name . 7–19
7.5.6 Coding File Locations in an OPEN Statement 7–22
7.5.7 Using Environment Variables . 7–23
7.6 Obtaining File Information: INQUIRE Statement 7–25
7.6.1 Inquiry by Unit . 7–25
7.6.2 Inquiry by File Name . 7–26
7.6.3 Inquiry by Output Item List . 7–27
7.7 Closing a File: CLOSE Statement . 7–27
7.8 Record Operations . 7–28
7.8.1 Record I/O Statement Specifiers . 7–29
7.8.2 Record Access Modes and File Sharing 7–30
7.8.2.1 Sequential Access . 7–30
7.8.2.2 Direct Access . 7–30
7.8.2.3 Limitations of Record Access by File Organization and

Record Type . 7–31
7.8.2.4 File Sharing . 7–31
7.8.3 Specifying the Initial Record Position 7–32
7.8.4 Advancing and Nonadvancing Record I/O 7–33
7.8.5 Record Transfer . 7–34
7.8.5.1 Input Record Transfer . 7–34
7.8.5.2 Output Record Transfer . 7–35
7.9 User-Supplied OPEN Procedures: USEROPEN Specifier 7–36

xiii

7.9.1 Restrictions of Called USEROPEN Functions 7–38
7.9.2 Example USEROPEN Program and Function 7–38
7.10 Format of Compaq Fortran Record Types 7–42
7.10.1 Fixed-Length Records . 7–42
7.10.2 Variable-Length Records . 7–43
7.10.3 Segmented Records . 7–45
7.10.4 Stream File Data . 7–47
7.10.5 Stream_CR and Stream_LF Records 7–47

8 Run-Time Errors and Signals

8.1 Compaq Fortran Run-Time Library Default Error Processing . . . 8–1
8.1.1 Run-Time Message Format . 8–3
8.1.2 Message Catalog Location . 8–5
8.1.3 Values Returned to the Shell at Program Termination 8–6
8.1.4 Forcing a Core Dump for Severe Errors 8–6
8.2 Handling Run-Time Errors . 8–7
8.2.1 Using the END, EOR, and ERR Branch Specifiers 8–7
8.2.2 Using the IOSTAT Specifier . 8–9
8.2.3 Using the 3f Library Routines to Return Operating System

Errors . 8–10
8.3 Signal Handling . 8–11
8.4 Run-Time Error Messages . 8–12

9 Data Types and Representation

9.1 Summary of Data Types and Characteristics 9–2
9.2 Integer Data Representations . 9–4
9.2.1 Integer Declarations and f90/fort Compiler Options 9–4
9.2.2 INTEGER (KIND=1) or INTEGER*1 Representation 9–5
9.2.3 INTEGER (KIND=2) or INTEGER*2 Representation 9–5
9.2.4 INTEGER (KIND=4) or INTEGER*4 Representation 9–6
9.2.5 INTEGER (KIND=8) or INTEGER*8 Representation 9–6
9.3 Logical Data Representations . 9–7
9.4 Native IEEE Floating-Point Representations and Exceptional

Values . 9–8
9.4.1 REAL and COMPLEX Declarations and f90/fort Compiler

Options . 9–9
9.4.2 REAL (KIND=4) or REAL*4 Representation 9–10
9.4.3 REAL (KIND=8) or REAL*8 Representation 9–10
9.4.4 REAL (KIND=16) or REAL*16 Representation 9–11
9.4.5 COMPLEX (KIND=4) or COMPLEX*8 Representation 9–12
9.4.6 COMPLEX (KIND=8) or COMPLEX*16 Representation 9–12

xiv

9.4.7 COMPLEX (KIND=16) or COMPLEX*32 Representation . . . 9–13
9.4.8 Exceptional Floating-Point Representations 9–14
9.5 Character Representation . 9–18
9.6 Hollerith Representation . 9–19

10 Converting Unformatted Numeric Data

10.1 Endian Order of Numeric Formats . 10–1
10.2 Little Endian Floating-Point Format . 10–2
10.3 Native and Supported Nonnative Numeric Formats 10–3
10.4 Limitations of Numeric Conversion . 10–7
10.5 Methods of Specifying the Unformatted Numeric Format 10–8
10.5.1 Environment Variable FORT_CONVERTn Method 10–9
10.5.2 Environment Variable FORT_CONVERT.ext Method 10–10
10.5.3 OPEN Statement CONVERT=’keyword’ Method 10–11
10.5.4 OPTIONS Statement /CONVERT=keyword Method 10–12
10.5.5 Command-Line -convert keyword Option Method 10–13
10.6 Additional Information on Nonnative Data 10–13

11 Procedure Data Interfaces and Mixed Language
Programming

11.1 Compaq Fortran Procedures and Argument Passing 11–1
11.1.1 Explicit and Implicit Interfaces . 11–3
11.1.2 Types of Compaq Fortran Subprograms 11–3
11.1.3 Using Procedure Interface Blocks . 11–4
11.1.4 Passing Arguments and Function Return Values 11–5
11.1.5 Passing Arrays as Arguments . 11–8
11.1.6 Passing Pointers as Arguments . 11–9
11.1.7 Compaq Fortran Array Descriptor Format 11–10
11.1.8 Argument-Passing Mechanisms and Built-In Functions 11–12
11.1.8.1 Passing Addresses — %LOC Function 11–13
11.1.8.2 Passing Arguments by Immediate Value — %VAL

Function . 11–13
11.1.8.3 Passing Arguments by Reference — %REF Function 11–14
11.1.8.4 Examples of Argument Passing Built-in Functions 11–14
11.2 Using the cDEC$ ALIAS and cDEC$ ATTRIBUTES

Directives . 11–14
11.2.1 cDEC$ ALIAS directive . 11–15

xv

11.2.2 cDEC$ ATTRIBUTES Directive . 11–16
11.2.2.1 C Property . 11–18
11.2.2.2 ALIAS Property . 11–21
11.2.2.3 REFERENCE and VALUE Properties 11–21
11.2.2.4 EXTERN and VARYING Properties 11–22
11.3 Calling Between Compaq Fortran and C 11–23
11.3.1 Compiling and Linking Files . 11–23
11.3.2 Procedures and External Names . 11–24
11.3.3 Invoking a C Function from Compaq Fortran 11–26
11.3.4 Invoking a Compaq Fortran Function or Subroutine from

C . 11–26
11.3.5 Equivalent Data Types for Function Return Values 11–27
11.3.6 Argument Association and Equivalent Data Types 11–28
11.3.6.1 Compaq Fortran Intrinsic Data Types 11–28
11.3.6.2 Equivalent Compaq Fortran and C Data Types 11–29
11.3.7 Example of Passing Integer Data to C Functions 11–31
11.3.8 Example of Passing Character Data Between Compaq

Fortran and C . 11–33
11.3.9 Example of Passing Complex Data to C Functions 11–36
11.3.10 Handling User-Defined Structures . 11–38
11.3.11 Handling Scalar Pointer Data . 11–39
11.3.12 Handling Arrays . 11–41
11.3.13 Handling Common Blocks of Data . 11–43
11.4 Calling Between Parallel HPF and Non-Parallel HPF Code 11–44

12 Compaq Fortran Library Routines

12.1 Overview of Compaq Fortran Library Routines 12–1
12.2 3f Routines . 12–1
12.3 3hpf Routines . 12–15
12.4 Reference Pages for the 3f and 3hpf Routines 12–18
12.5 EXTERNAL or INTRINSIC Declarations 12–19
12.6 Example Using the 3f Library Routine shcom_connect 12–19
12.7 Example of the 3f Library Routines irand and qsort 12–22

13 Using the Compaq Extended Math Library (CXML)

13.1 What Is CXML? . 13–1
13.2 CXML Routine Groups . 13–2
13.3 Using CXML from Fortran . 13–3
13.4 CXML Program Example . 13–3
13.5 CXML Documentation . 13–3

xvi

14 Controlling Floating-Point Exceptions

14.1 Overview of Controlling Floating-Point Exceptions 14–1
14.2 Using the for_fpe_flags.f File . 14–2
14.2.1 Bit Definitions in File for_fpe_flags.f 14–3
14.3 Calling the for_get_fpe and for_set_fpe Functions 14–5
14.3.1 Calling for_get_fpe . 14–5
14.3.2 Calling for_set_fpe . 14–6
14.4 File fordef.f and Its Usage . 14–8

A Compatibility: Compaq Fortran 77 and Compaq Fortran on
Multiple Platforms

A.1 Compaq Fortran and Compaq Fortran 77 Compatibility on
Various Platforms . A–1

A.2 Compatibility with Compaq Fortran 77 for Compaq Tru64 UNIX
Systems . A–5

A.2.1 Major Language Features for Compatibility with Compaq
Fortran 77 for Compaq Tru64 UNIX Systems A–5

A.2.2 Language Features Provided Only by Compaq Fortran 77 for
Compaq Tru64 UNIX Systems . A–7

A.2.3 Improved Compaq Fortran Compiler Diagnostic Detection . . A–11
A.2.4 Compiler Command-Line Differences A–17
A.3 Language Compatibility with Compaq Visual Fortran A–18
A.4 Compatibility with Compaq Fortran 77 and Compaq Fortran for

OpenVMS Systems . A–19
A.4.1 Language Features Specific to Compaq Fortran 77 and

Compaq Fortran for OpenVMS Systems A–20
A.4.2 OpenVMS Data Porting Considerations A–24
A.4.2.1 Matching Record Types . A–25
A.4.2.2 Copying Files . A–26
A.4.3 Nonnative VAX Floating-Point Representations A–28
A.4.3.1 VAX F_float REAL (KIND=4) or REAL*4 A–28
A.4.3.2 VAX G_float REAL (KIND=8) or REAL*8 A–29
A.4.3.3 VAX D_float REAL (KIND=8) or REAL*8 A–30
A.4.3.4 VAX F_float COMPLEX (KIND=4) or COMPLEX*8 A–30
A.4.3.5 VAX G_float and D_float COMPLEX (KIND=8) or

COMPLEX*16 . A–31
A.4.3.6 VAX H_float Representation . A–32
A.5 Calling Between Compaq Fortran 77 and Compaq Fortran A–33
A.5.1 Argument Passing and Function Return Values A–34
A.5.2 Using Data Items in Common Blocks A–37
A.5.3 I/O to the Same Unit Number . A–38

xvii

B Compaq Fortran Environment Variables

B.1 Commands for Setting and Unsetting Environment Variables . . . B–1
B.1.1 Bourne Shell (sh) and Bourne Again Shell (bash) and Korn

Shell (ksh) Commands . B–1
B.1.2 C Shell (csh) Commands . B–2
B.2 Compile-Time Environment Variables . B–2
B.3 Run-Time Environment Variables . B–5

C Compiler Output Listings

C.1 Source-Code Section of the Output Listing C–1
C.2 Machine-Code Section of the Output Listing C–2
C.2.1 How Generated Code and Data are Represented in

Machine-Code Listings . C–4
C.2.2 Assembler Code Represented in Machine-Code Listings C–5
C.3 Compilation Summary of the Output Listing C–5

D Parallel Library Routines

D.1 OpenMP Fortran API Run-Time Library Routines D–1
D.1.1 Library Routines That Control and Query the Parallel

Execution Environment . D–3
D.1.1.1 omp_get_dynamic . D–3
D.1.1.2 omp_get_max_threads . D–3
D.1.1.3 omp_get_nested . D–4
D.1.1.4 omp_get_num_procs . D–4
D.1.1.5 omp_get_num_threads . D–5
D.1.1.6 omp_get_thread_num . D–5
D.1.1.7 omp_in_parallel . D–6
D.1.1.8 omp_set_dynamic . D–6
D.1.1.9 omp_set_nested . D–7
D.1.1.10 omp_set_num_threads . D–8
D.1.2 General-Purpose Lock Routines . D–9
D.1.2.1 omp_destroy_lock . D–10
D.1.2.2 omp_init_lock . D–10
D.1.2.3 omp_set_lock . D–10
D.1.2.4 omp_test_lock . D–11
D.1.2.5 omp_unset_lock . D–11
D.2 Other Parallel Threads Routines . D–12
D.2.1 _OtsGetMaxThreads or mpc_maxnumthreads D–14
D.2.2 _OtsGetNumThreads or mpc_numthreads D–15
D.2.3 _OtsGetThreadNum or mpc_my_threadnum D–16

xviii

D.2.4 _OtsInitParallel . D–16
D.2.5 _OtsInParallel or mpc_in_parallel_region D–17
D.2.6 _OtsSetNumThreads . D–17
D.2.7 _OtsStopWorkers or mpc_destroy . D–17

Index

Examples

1–1 Sample Main Program . 1–5
1–2 Sample Main Program that Uses a Module and Separate

Function . 1–6
1–3 Sample Module . 1–7
1–4 Sample Separate Function Declaration 1–7
4–1 Sample Program SQUARES . 4–7
4–2 Sample Debugging Session Using Program Squares 4–8
5–1 Using the -assume dummy_aliases Option 5–65
6–1 Aligned Loop . 6–49
6–2 Transformed Loop Using Code Replication 6–50
6–3 Distributed Loop . 6–51
6–4 Decomposed Loop Using Locks . 6–53
6–5 Decomposed Loop Using a REDUCTION Clause 6–53
6–6 Code Using Parallel Region . 6–61
6–7 Code Using Multiple Threads . 6–63
6–8 Code Using Multiple Processors . 6–64
6–9 Code Using Shared Variables . 6–65
6–10 Code Looking at a Shared Variable Value 6–68
7–1 C Function Called by USEROPEN Procedure 7–39
7–2 Compaq Fortran USEROPEN Main Calling Program 7–41
8–1 Example of Stack Trace Information 8–4
8–2 Error Handling OPEN Statement File Name 8–9
11–1 Calling C Functions and Passing Integer Arguments 11–20
11–2 Calling C Functions and Passing Integer Arguments 11–20
11–3 C Functions Called by a Compaq Fortran Program 11–32
11–4 Calling C Functions and Passing Integer Arguments 11–32
11–5 Compaq Fortran Program Calling a C Function 11–33
11–6 C Interface Function Called by Compaq Fortran 11–34

xix

11–7 Calling C Functions and Passing Complex Arguments 11–37
11–8 Calling C Functions and Passing Pointer Arguments 11–39
11–9 C Functions Receiving Pointer Arguments 11–40
11–10 C Function That Receives an Explicit-Shape Array 11–42
11–11 Compaq Fortran Program That Passes an Explicit-Shape

Array . 11–42
12–1 Using the 3f Routine shcom_connect 12–20
12–2 Using the 3f Routines irand and qsort 12–22
13–1 Fortran Example Program Using CXML 13–4
A–1 Compaq Fortran Program Calling a Compaq Fortran 77

Subroutine . A–36
A–2 Compaq Fortran 77 Subroutine Called by a Compaq Fortran

Program . A–36
C–1 Sample Source Code Listing . C–2
C–2 Sample Machine-Code Listing . C–3
C–3 Sample Compilation Summary on Tru64 UNIX Systems C–5
C–4 Sample Compilation Summary on Linux Systems C–8

Figures

2–1 Driver Programs and Software Components 2–14
5–1 Common Block with Unaligned Data 5–26
5–2 Common Block with Naturally Aligned Data 5–26
5–3 Common Block with Naturally Aligned Reordered Data 5–27
5–4 Derived-Type Naturally Aligned Data (in

CATALOG_SPRING()) . 5–28
5–5 Memory Diagram of REC for Naturally Aligned Records . . . 5–29
7–1 Fixed-Length Records . 7–43
7–2 Variable-Length Records Less Than 2 Gigabytes 7–44
7–3 Variable-Length Records Greater Than 2 Gigabytes 7–45
7–4 Segmented Records . 7–46
7–5 Stream File Records . 7–47
7–6 Stream_CR and Stream_LF Records 7–48
9–1 INTEGER (KIND=1) or INTEGER*1 Representation 9–5
9–2 INTEGER (KIND=2) or INTEGER*2 Representation 9–5
9–3 INTEGER (KIND=4) or INTEGER*4 Representation 9–6
9–4 INTEGER (KIND=8) or INTEGER*8 Representation 9–6
9–5 LOGICAL Representations . 9–8

xx

9–6 REAL (KIND=4) or REAL*4 Representation 9–10
9–7 REAL (KIND=8) or REAL*8 Representation 9–10
9–8 REAL (KIND=16) or REAL*16 Representation 9–11
9–9 COMPLEX (KIND=4) or COMPLEX*8 Representation 9–12
9–10 COMPLEX (KIND=8) or COMPLEX*16 Representation 9–13
9–11 COMPLEX (KIND=16) or COMPLEX*32 Representation . . . 9–13
9–12 CHARACTER Data Representation . 9–19
10–1 Little Endian and Big Endian Storage of an INTEGER

Value . 10–2
10–2 Sample Unformatted File Conversion 10–10
A–1 VAX F_float REAL (KIND=4) or REAL*4 Representation . . . A–28
A–2 VAX G_float REAL (KIND=8) or REAL*8 Representation . . . A–29
A–3 VAX D_float REAL (KIND=8) or REAL*8 Representation . . . A–30
A–4 VAX F_float COMPLEX (KIND=4) or COMPLEX*8

Representation . A–30
A–5 VAX G_float COMPLEX (KIND=8) or COMPLEX*16

Representation . A–31
A–6 VAX D_float COMPLEX (KIND=8) or COMPLEX*16

Representation . A–32
A–7 VAX H_float REAL*16 Representation (VAX Systems) A–33

Tables

1 Conventions Used in This Document xxx
1–1 Main Tools for Program Development and Testing 1–13
2–1 File Suffixes Recognized as Fortran 95/90 Source Files 2–2
2–2 Other File Name Suffixes . 2–3
2–3 Compiler Limits . 2–17
2–4 Libraries Automatically Searched When Using the f90

Command . 2–22
3–1 f90 and fort Command Categories and Options 3–2
3–2 Interaction of File Suffix and the -free and -fixed Options on

Source Form . 3–32
3–3 Summary of Floating-Point Exception Command-Line

Options . 3–36
4–1 Command-Line Options Affecting Traceback and Symbol

Table Information . 4–2
4–2 Summary of Debugger Commands . 4–12

xxi

4–3 Fortran Data Types and Debugger Equivalents 4–23
5–1 Options That Affect Run-Time Performance 5–6
5–2 Options that Slow Run-Time Performance 5–10
5–3 Output Argument Array Types . 5–36
5–4 Levels of Optimization with Different -On Options 5–46
6–1 OpenMP Fortran API Compiler Directives 6–5
6–2 Operators/Intrinsics and Initialization Values for Reduction

Variables . 6–15
6–3 Compaq Fortran Parallel Compiler Directives 6–31
6–4 OpenMP Fortran API Environment Variables 6–57
6–5 Compaq Fortran Parallel Environment Variables 6–58
7–1 Summary of I/O Statements . 7–3
7–2 Available I/O Statements and Record I/O Forms 7–6
7–3 Compaq Fortran Record Types . 7–10
7–4 Bytes Required for Record Overhead 7–12
7–5 Environment Variables and Preconnected Files 7–14
7–6 OPEN Statement Functions and Specifiers 7–16
7–7 Examples of Applying Default Pathnames and File

Names . 7–21
7–8 Implicit Compaq Fortran Logical Units 7–24
7–9 Allowed Record Access for File Organizations and Record

Types . 7–31
8–1 Severity Levels of Run-Time Messages 8–3
8–2 Signals Caught by the Compaq Fortran Run-Time

Library . 8–12
8–3 Run-Time Error Messages and Explanations 8–14
9–1 Compaq Fortran Intrinsic Data Types, Storage, and Numeric

Ranges . 9–2
9–2 Exceptional Floating-Point Numbers 9–16
10–1 Unformatted Numeric Formats, Keywords, and Supported

Data Types . 10–5
11–1 Calling Conventions for ATTRIBUTES Options 11–17
11–2 C Property and External Names . 11–19
11–3 C Property and Argument Passing . 11–19
11–4 Equivalent Function Declarations in C and Compaq

Fortran . 11–27
11–5 Compaq Fortran and C Data Types . 11–30

xxii

12–1 Summary of Language Interface (‘‘Jacket’’) 3f Library
Routines . 12–2

12–2 Summary of 3f Library Routines Providing Special
Functions . 12–4

12–3 3f Functions and Subroutines . 12–5
12–4 Compaq Fortran 3hpf HPF_LOCAL_LIBRARY Library

Routines . 12–16
13–1 CXML Routine Groups . 13–2
14–1 Bit Definitions in File for_fpe_flags.f 14–3
14–2 Symbols in File fordef.f . 14–9
A–1 Summary of Language Compatibility A–2
A–2 Equivalent Record Types for OpenVMS Fortran and Compaq

Fortran on Compaq Tru64 UNIX or Linux Alpha Systems . . A–25
B–1 Compile-Time Environment Variables B–2
B–2 Run-Time Environment Variables . B–5
D–1 OpenMP Fortran API Run-Time Library Routines D–2
D–2 Other Parallel Threads Routines . D–13

xxiii

Preface

This manual describes the Compaq Fortran compiler command, compiler, and
run-time environment. This includes how to compile, link, execute, and debug
Compaq Fortran programs using the Compaq Tru64™ UNIX operating system
and the Linux operating system on Alpha hardware.

This manual does not cover running, debugging, and profiling programs that
execute in parallel using High Performance Fortran (HPF) features.

Intended Audience
This manual makes the assumptions that:

• You already have a basic understanding of the Fortran 95/90 language.
Tutorial Fortran 95/90 language information is widely available in
commercially published books (see the online release notes or the Preface
of the Compaq Fortran Language Reference Manual).

• You are familiar with the operating system shell commands used during
program development and a text editor, such as emacs or vi. Such
information is available in your operating system documentation set or
commercially published books.

• You have access to the Compaq Fortran Language Reference Manual, which
describes the Compaq Fortran language.

Structure of This Document
This manual consists of the following chapters and appendixes:

• Chapter 1 introduces the programmer to the Compaq Fortran compiler, its
components, and related commands.

• Chapter 2 explains how to compile and link Compaq Fortran source
programs, previously compiled module files, object files, and routines
written in other supported programming languages, such as C.

xxv

• Chapter 3 describes the Compaq Fortran compiler command-line options in
detail.

• Chapter 4 describes using the Compaq Ladebug debugger to debug Compaq
Fortran nonparallel programs.

• Chapter 5 describes ways to improve Compaq Fortran run-time
performance for nonparallel programs, including general software
environment recommendations, appropriate compiler command-line
options, data alignment, efficiently performing I/O and array operations,
other efficient coding techniques, profiling, and optimization.

• Chapter 6 describes how to use parallel compiler directives in Compaq
Fortran programs to generate code that executes in parallel.

• Chapter 7 provides information on Compaq Fortran I/O, including
statement forms, file organizations, I/O record formats, access modes,
logical unit numbers, and efficient use of I/O.

• Chapter 8 lists run-time messages and describes how to control certain
types of I/O errors and signal-handling considerations.

• Chapter 9 describes native Compaq Fortran Alpha data types, including
their numeric ranges, representation, and floating-point exceptional values.
It also discusses the intrinsic data types used with numeric data.

• Chapter 10 describes how to access unformatted files containing numeric
little endian and big endian data different than the format used in memory.

• Chapter 11 describes the Compaq Fortran language interface, passing
arguments, calling between Compaq Fortran and Compaq Fortran 77, and
calling between Compaq Fortran and C.

• Chapter 12 lists and briefly describes the Section 3f interface routines,
which include some routines specifically designed for the Compaq Fortran
environment on Compaq Tru64 UNIX systems.

• Chapter 13 describes the Compaq Extended Math Library (CXML),
including how to call and link CXML routines.

• Chapter 14 explains additional ways to control run-time floating-point
exceptions.

• Appendix A provides compatibility information for those porting Compaq
Fortran 77 (formerly DEC Fortran) applications and Compaq Fortran
OpenVMS™ applications, including an overview of Compaq Fortran 77 and
Compaq Fortran extensions supported on the various platforms.

xxvi

• Appendix B lists the Compaq Fortran environment variables recognized at
compile time and run time.

• Appendix C describes the source listing formats supported by Compaq
Fortran.

• Appendix D summarizes the library routines available for use with directed
parallel decomposition.

The appendix formerly titled ‘‘Parallel Compiler Directives Reference Material’’
is no longer in this manual. The contents of this appendix are in the Compaq
Fortran Language Reference Manual.

Associated Documents
The following documents may also be useful to Compaq Fortran programmers:

• Compaq Fortran Language Reference Manual

Describes the Compaq Fortran 95/90 source language for reference
purposes, including the format and use of statements, intrinsic procedures,
and other language elements. Compaq extensions to the Fortran 95
standard are identified by blue-green color in the printed document and
HTML versions. It also provides an overview of new Fortran 90 features
(not available in FORTRAN-77). Language differences between Compaq
Fortran platforms are identified.

• Compaq Fortran Installation Guide for Tru64 UNIX Systems

Explains how to install Compaq Fortran on the Compaq Tru64 UNIX
operating system, including prerequisites and requirements.

To install Compaq Fortran on Linux Alpha systems, refer to the online
README file supplied with your kit.

• Compaq Fortran online release notes

Provide more information on this version of Compaq Fortran, including
known problems and a summary of the Compaq Fortran run-time error
messages.

The online release notes are located at:
TU*X only /usr/lib/cmplrs/fort90/relnotes
L*X only /usr/doc/cfal-1.2.n/README

where the value of n in this location comes from the list 0, 1, 2, . . .

• Compaq Fortran online reference pages

xxvii

Describe the Compaq Fortran software components, including f90(1) (Tru64
UNIX systems) or fort(1) (Linux systems), fpr(1), fsplit(1), intro(3f),
numerous Fortran library routines listed in intro(3f), and numerous
parallel Fortran library routines listed in intro(3hpf).

• Official specification for OpenMP Fortran 1.1 Application Program
Interface at:

http://www.openmp.org/specs/

• Compaq Tru64 UNIX operating system documentation

The operating system documentation set includes reference pages for
operating system components and a programmer’s subkit, in which certain
documents describe the commands, tools, libraries, and other aspects of the
programming environment:

For programming information, see the Compaq Tru64 UNIX
Programmer’s Guide and the Compaq Tru64 UNIX Using Programming
Support Tools.

For performance information, see the Compaq Tru64 UNIX System
Tuning and Performance.

For an overview of Compaq Tru64 UNIX documentation, see the
Compaq Tru64 UNIX Reader’s Guide.

• Other layered product documentation

If you are using a programming-related layered product package from
Compaq, consult the appropriate documentation for the layered product
package for use of that product.

Platform Labels
A platform is a combination of operating system and central processing unit
(CPU) that provides a distinct environment in which to use a product (in this
case, a language). All the information in this manual applies to both Compaq
Tru64 UNIX on Alpha systems and Linux on Alpha systems unless otherwise
labeled as shown below:

TU*X Applies to Tru64 UNIX on Alpha systems

L*X Applies to Linux on Alpha systems

For example, the shcom_connect library routine in Table 12–2 is labeled
(TU*X only), so this routine is only valid for Tru64 UNIX operating systems on
Alpha processors.

xxviii

Sending Compaq Your Comments on This Manual
Compaq welcomes your comments on this or any other Compaq Fortran
manual. You can send comments by e-mail to:

fortran@compaq.com

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Compaq also
welcomes general comments.

Communicating with Compaq
If you have a customer support contract and have comments or questions
about Compaq Fortran software, you can contact our Customer Support Center
(CSC), preferably using electronic means (such as DSNlink). In the United
States, customers can call the CSC at 1-800-354-9000.

You can also send comments, questions and suggestions about the Compaq
Fortran product to the following e-mail address: fortran@compaq.com. Note
that this address is for informational inquiries only and is not a formal support
channel.

Compaq Fortran Web Site
The Compaq Fortran home page is located at:

http://www.compaq.com/fortran

This site contains information about software patch kits, example programs,
and additional product information.

Conventions Used in This Document
This manual uses the conventions listed in Table 1.

xxix

Table 1 Conventions Used in This Document

Convention Meaning

% The default user prompt is your system name followed by a
right angle bracket. This manual uses a percent sign (%) to
represent this prompt. The actual user prompt varies with
the shell in use.

RETURN This symbol indicates that you must press the named key on
the keyboard.

Ctrl/x This symbol indicates that you must press the Ctrl key while
you simultaneously press the key labeled x.

% pwd
/usr/usrc/jones

This manual displays system prompts and responses using
a monospaced font. User input is displayed in a bold
monospaced font.

monospaced This typeface indicates the name of a command, option,
pathname, file name, directory path, or environment variable.
This typeface is also used in examples of program code,
interactive examples, and other screen displays.

cat(1) A shell command name followed by the number 1 in
parentheses refers to a command reference page. Similarly, a
routine name followed by the number 2 or 3 in parentheses
refers to a system call or library routine reference page.
(The number in parentheses indicates the section containing
the reference page.) To read online reference pages, use the
man command. Your operating system documentation also
contains reference page descriptions.

new term Bold type indicates the introduction of a new term in text.

variable Italic type indicates important information, a complete title
of a manual, or variable information, such as user-supplied
information in command or option syntax.

UPPERCASE
lowercase

The operating system shell differentiates between lowercase
and uppercase characters. Literal strings that appear in text,
examples, syntax descriptions, and function definitions must
be typed exactly as shown.� � Large braces enclose lists from which you must choose one
item. For example:�

STATUS
DISPOSE
DISP

�

(continued on next page)

xxx

Table 1 (Cont.) Conventions Used in This Document

Convention Meaning

[] Square brackets enclose items that are optional. For example:

BLOCK DATA [name]

. . . A horizontal ellipsis means that the item preceding the
ellipsis can be repeated. For example:

s[,s] . . .

.

.

.

A vertical ellipsis in a figure or example means that not all of
the statements are shown.

real This term refers to all floating-point intrinsic data types as a
group.

complex This term refers to all complex floating-point intrinsic data
types as a group.

logical This term refers to logical data types as a group.

integer This term refers to integer data types as a group.

Compaq Fortran The term Compaq Fortran (formerly DIGITAL Fortran 90)
refers to language information that is common to the Fortran
95/90 standards and any Compaq Fortran extensions.

Fortran This term refers to language information that is common to
ANSI FORTRAN 77, ANSI/ISO Fortran 95/90, and Compaq
Fortran.

Fortran 95/90 This term refers to language information that is common to
ANSI/ISO Fortran 95 and ANSI/ISO Fortran 90.

f90 This command invokes the Compaq Fortran compiler on
Tru64 UNIX Alpha systems while the fort command invokes
the Compaq Fortran compiler on Linux Alpha systems.
This manual frequently uses the f90 command to indicate
invoking the Compaq Fortran on both systems, so replace this
command with fort if you are working on a Linux Alpha
system.

fort This command invokes the Compaq Fortran compiler on
Linux Alpha systems. See the previous convention for the
f90 command.

(continued on next page)

xxxi

Table 1 (Cont.) Conventions Used in This Document

Convention Meaning

OpenMP This term refers to OpenMP Fortran as specified in the
OpenMP Fortran 1.1 Application Program Interface.

HPF This term refers to the High Performance Fortran extensions
to the Fortran language.

xxxii

1
Getting Started

This chapter contains the following topics:

• Section 1.1, Compaq Fortran Programming Environment

• Section 1.2, Commands to Create and Run an Executable Program

• Section 1.3, Creating and Running a Program Using a Module and
Separate Function

• Section 1.4, f90 or fort Command and Related Software Components

• Section 1.5, Program Development Stages and Tools

• Section 1.6, Compaq Fortran and Standards It Conforms To

1.1 Compaq Fortran Programming Environment
The following aspects of Compaq Fortran are relevant to the compilation
environment and should be considered before extensive coding begins:

• To install Compaq Fortran on your Compaq Tru64 UNIX Alpha system,
first obtain the UNIX Software Program Library Compact Disc (CD) media.
Then perform the installation as described in Compaq Fortran Installation
Guide for Tru64 UNIX Systems.

• To install Compaq Fortran on your Compaq Linux Alpha system, use the
Compaq Fortran CD–ROM supplied with your kit. Perform the installation
using the installation letter in your kit.

• (TU*X only) Once Compaq Fortran is installed on a Compaq Tru64 UNIX
Alpha system, you can:

Use the f90 command to compile and link programs.

Use the online f90(1) reference page and this manual to provide
information about the f90 command.

Getting Started 1–1

• (L*X only) Once Compaq Fortran is installed on a Compaq Linux Alpha
system, you can:

Use the fort command to compile and link programs.

Use the online fort(1) reference page and this manual to provide
information about the fort command.

• Make sure you have adequate stack size, especially if your programs use
large arrays as data. Users may be able to overcome this problem by
increasing the per-process data limit, using the limit command (C shell)
or ulimit command (Korn and Bourne and bash (L*X only) shells) (see csh(1),
ksh(1), sh(1), or bash(1)).

Determine whether the maximum per-process data size is already allocated
by checking the value of the maxdsiz parameter in the system configuration
file. If necessary, increase its value. Changes to the configuration file do
not take effect until the operating system kernel has been rebuilt and the
system has been rebooted.

For example, the following C shell commands check the current stacksize
limit and then increase the size to a larger value (if this limit can be
increased from your process):

% limit stacksize
stacksize 4096 kbytes
% limit stacksize 32676
% limit stacksize
stacksize 32676 kbytes

You can also remove the limitation on stacksize:

% limit stacksize unlimited

Similarly, with the Korn and Bourne and bash (L*X only) shells, use the
ulimit command with the -s option (see ksh(1) and sh(1) and bash(1)). For
example:

$ ulimit -s
4096
$ ulimit -s 32676
$ ulimit -s
32676

If you are unable to increase your limits to a value needed by your
program, contact your system administrator.

• Make sure you have an adequate process file descriptor limit, especially if
your programs use a large number of module files.

1–2 Getting Started

During compilation, your application may attempt to use more module
files than your descriptor limit allows. In this case, the Compaq Fortran
compiler will close a previously opened module file before it opens another
to stay within your descriptor limit. This results in slower compilation
time. Increasing the descriptor limit may improve compilation time in such
cases.

Users can view and usually increase the per-process limit on the number of
open files by using the limit command (C shell) or ulimit command (Korn
and Bourne and bash (L*X only) shell). (See csh(1), ksh(1), sh(1), or bash(1).)

Determine whether the maximum per-process limit is already allocated
by checking the value of the appropriate descriptor parameter in the
system configuration file. If necessary, increase its value. Changes to the
configuration file do not take effect until the operating system kernel has
been rebuilt and the system has been rebooted.

For example, the following C shell commands check the current limits and
then increase the size to a larger value for cases where this limit can be
increased from your process:

% limit descriptor
descriptors 100 files
% limit descriptor 4096
% limit descriptor
descriptors 4096 files

With the Korn, Bourne, and bash (L*X only) shells, you can use the ulimit
command with the -n option (see ksh(1), sh(1), and bash(1). For example:

$ ulimit -n
2048
$ ulimit -n 4096
$ ulimit -n
4096

• Compaq Fortran supports the use of the environment variable TMPDIR
to specify a working directory (instead of /tmp) to contain temporary files
created during compilation. Several other environment variables can
similarly be used during program execution (see Appendix B).

If you need to set environment variables frequently, consider setting
these in your .login file or appropriate shell initialization file (.cshrc or
.profile).

• Your source files can be in free or fixed form. The f90 and fort commands
recognize certain file suffixes as files containing fixed form or files
containing free form. You can also specify an option on the command

Getting Started 1–3

line to specify the source form. Recognized file suffixes are described in
Section 2.1.1.

A special type of fixed source form is tab form (a Compaq extension).
For details about the source forms, see the Compaq Fortran Language
Reference Manual.

• Each source file to be compiled must contain at least one program unit
(main program, external subroutine, external function, module, block data).
Consider the following aspects of program development:

– Modularity and efficiency

For a large application, using a set of relatively small source files
promotes incremental application development.

When compiling multiple source files into a single object file with a
single f90 (or fort) command, certain interprocedure optimizations will
occur to minimize run-time execution time (unless you specify a lower
level of optimization).

– Code re-use

Modules, external subprograms, and included files allow re-use of
common code. Code used in multiple places in a program should be
placed in a module, external subprogram (function or subroutine), or
included file.

When using modules and external subprograms, there is one copy of
the code for a program. When using INCLUDE statements, the code in
the specified source file is repeated once for each INCLUDE statement.

In most cases, using modules or external subprograms makes programs
easier to maintain and minimizes program size.

For More Information:

• On modules, see Section 2.1.3.

• On the types of subprograms and using an explicit interface to a
subprogram, see Chapter 11.

• On performance considerations, including compiling source programs for
optimal run-time performance, see Chapter 5.

1–4 Getting Started

1.2 Commands to Create and Run an Executable Program
Example 1–1 shows a short Fortran 95/90 main program using free form
source.

Example 1–1 Sample Main Program

! File hello.f90

PROGRAM HELLO_TEST

print *, ’hello world’
print *, ’ ’

END PROGRAM HELLO_TEST

To create and revise your source files, use a text editor, such as vi or emacs.
On Linux systems, the peco editor is available. For instance, to use vi to edit
the file hello.f90, type:

% vi hello.f90

The following command compiles the program named hello.f90 and
automatically uses ld to link the main program into an executable program file
named a.out:

% f90 hello.f90

The f90 command (or on Linux systems, the fort command) automatically
passes a standard default list of Compaq Fortran Run-Time Libraries to the
ld linker. In this example, because all external routines used by this program
reside in these standard libraries, additional libraries or object files are not
specified on the f90 (or fort) command line.

If your path definition includes the directory containing a.out, you can run the
program by simply typing its name:

% a.out

If the executable image is in your current directory, specify:

% ./a.out

If the executable image is not in a directory in your path definition and it is
not in your current directory, then specify its full path. For example:

% /usr/disk5/mcdonald/a.out

Getting Started 1–5

1.3 Creating and Running a Program Using a Module and
Separate Function

Example 1–2 shows a sample Fortran 95/90 main program using free source
form that uses a module and an external subprogram.

The function CALC_AVERAGE is contained in a separately created file and
depends on the module ARRAY_CALCULATOR for its interface block.

Example 1–2 Sample Main Program that Uses a Module and Separate
Function

! File: main.f90
! This program calculates the average of five numbers

PROGRAM MAIN

USE ARRAY_CALCULATOR !
REAL, DIMENSION(5) :: A = 0
REAL :: AVERAGE

PRINT *, ’Type five numbers: ’
READ (*,’(F10.3)’) A
AVERAGE = CALC_AVERAGE(A) "
PRINT *, ’Average of the five numbers is: ’, AVERAGE

END PROGRAM MAIN

! The USE statement accesses the module ARRAY_CALCULATOR. This
module contains the function declaration for CALC_AVERAGE (use
association).

" The 5-element array is passed to the function CALC_AVERAGE, which
returns the value to the variable AVERAGE for printing.

Example 1–3 shows the module referenced by the main program. This example
program shows more Fortran 95/90 features, including an interface block and
an assumed-shape array.

1–6 Getting Started

Example 1–3 Sample Module

! File: array_calc.f90.
! Module containing various calculations on arrays.

MODULE ARRAY_CALCULATOR
INTERFACE
FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)

END FUNCTION CALC_AVERAGE
END INTERFACE

! Other subprogram interfaces...

END MODULE ARRAY_CALCULATOR

Example 1–4 shows the function declaration CALC_AVERAGE referenced by
the main program.

Example 1–4 Sample Separate Function Declaration

! File: calc_aver.f90.
! External function returning average of array.

FUNCTION CALC_AVERAGE(D)
REAL :: CALC_AVERAGE
REAL, INTENT(IN) :: D(:)
CALC_AVERAGE = SUM(D) / UBOUND(D, DIM = 1)

END FUNCTION CALC_AVERAGE

1.3.1 Commands to Create the Executable Program
During the early stages of program development, the sample program files in
Example 1–2, Example 1–3, and Example 1–4 might be compiled separately
and then linked together, using the following commands:

% f90 -c array_calc.f90
% f90 -c calc_aver.f90
% f90 -c main.f90
% f90 -o calc main.o array_calc.o calc_aver.o

In this sequence of f90 (or fort) commands:

• The -c option (used in the first three commands) prevents linking and
retains the .o files.

• The first command creates the files array_calculator.mod and
array_calc.o (the name in the MODULE statement in Example 1–3
determines the name of module file array_calculator.mod). Module files
are written into the current working directory.

Getting Started 1–7

• The second command creates the file calc_aver.o.

• The third command creates the file main.o and uses the module file
array_calculator.mod.

• The last command links all object files into the executable program named
calc. To link files, use the f90 command instead of the ld command.

To allow more optimizations to occur (such as the inline expansion of called
subprograms), the entire set of three source files can be compiled and linked
together with a single f90 command:

% f90 -o calc array_calc.f90 calc_aver.f90 main.f90

The order in which the file names are specified is significant. This f90
command:

• Compiles the file array_calc.f90, which contains the module definition,
and creates its object file and the file array_calculator.mod.

• Compiles the file calc_aver.f90, which contains the external function
CALC_AVERAGE.

• Compiles the file main.f90 (main program). The USE statement references
the module file array_calculator.mod.

• Uses ld to link the main program and all object files into an executable
program file named calc.

1.3.2 Running the Sample Program
If your path definition includes the directory containing calc, you can run the
program by simply typing its name:

% calc

When running the sample program, the PRINT and READ statements in the
main program result in the following dialogue between user and program:

Type five numbers:
55.5
4.5
3.9
9.0
5.6
Average of the five numbers is: 15.70000

1–8 Getting Started

1.3.3 Debugging the Sample Program
To debug a program with the Compaq Ladebug Debugger, compile the
source files with the -g and -ladebug options to request additional symbol
table information for source line debugging in the object and executable
program files. The following f90 command also uses the -o option to name the
executable program file calc_debug:

% f90 -g -ladebug -o calc_debug array_calc.f90 calc_aver.f90 main.f90

The Ladebug debugger has a character-cell interface (ladebug command) and a
windowing interface.

For instance, to use the character-cell interface to debug an executable
program named calc_debug on a system running Compaq Tru64 UNIX, type
the following command:

% ladebug calc_debug

The Compaq Tru64 UNIX operating system provides the Ladebug debugger
and the dbx debugger, both of which can be used to debug Compaq Fortran
programs. On Linux Alpha systems, the Compaq Fortran CD–ROM includes
the Ladebug debugger.

For more information about Ladebug, see the following Web site:

http://www.compaq.com/products/software/ladebug/

For more information on running the program within the debugger, see
Chapter 4, Using the Ladebug Debugger.

1.4 f90 or fort Command and Related Software Components
Compaq Fortran provides the standard features of a compiler and linker.
Compaq Fortran also supports the use of preprocessors and other compilers.

Compiling and linking are usually done by a single f90 or fort command. The
f90 or fort command allows you to use:

• A preprocessor, if needed, such as cpp or fpp.

• The Compaq Fortran compiler.

• The C compiler by means of the cc command. (On Linux systems, the cc
command is a symbolic link to ccc or gcc.)

• The ld linker.

Getting Started 1–9

1.4.1 f90 or fort Driver Program
The f90 or fort command invokes a driver program that is the actual user
interface to the Compaq Fortran compiler. It accepts a list of command-line
options and file names, and causes one or more programs (preprocessor,
compiler, assembler, or linker, executed in a sequential manner) to process each
file.

After the Compaq Fortran compiler processes the appropriate files to create one
or more object files, the driver program passes a list of files, certain options,
and other information to the cc (or, on Linux systems, the ccc) compiler.

The cc compiler processes relevant non-Fortran files and information (including
running the cpp preprocessor) and passes certain information (such as .o object
files) to the ld linker. The cc compiler applies cpp to files that it recognizes,
such as any file with a .c suffic. If cpp is used, it is executed once for each file.

If any program does not return a normal status, further processing is
discontinued and the f90 command displays a message identifying the program
(and its returned status, in hexadecimal) before terminating its own execution.

See Figure 2–1, Driver Programs and Software Components.

1.4.2 cpp, fpp, and Other Preprocessors
When you use a preprocessor for Compaq Fortran source files, the output files
the preprocessor creates are used as input source files by the Compaq Fortran
compiler. Preprocessors include:

• The C preprocessor cpp, which is provided with the C compiler on Tru64
UNIX and Linux operating systems. To run cpp before Fortran 90 source
files are compiled, specify the -cpp option on the f90 or fort command
line. With fixed form source files, you can alternatively name a file using
a file suffix of .F to run cpp. With free form source files, you can use a file
suffix of .F90 to run cpp.

• The Fortran preprocessor fpp, which is provided with Compaq Fortran
on Tru64 UNIX and Linux operating systems. To run fpp before Fortran
90 source files are compiled, specify the -fpp option on the f90 or fort
command line. With fixed form source files, you can alternatively name a
file using a file suffix of .F to run fpp. With free form source files, you can
use a file suffix of .F90 to run fpp.

1–10 Getting Started

• Preprocessors provided with optional products, such as the Compaq KAP
Fortran/OpenMP performance preprocessor (see Section 5.1.1). Such
preprocessors usually need to be run to create the appropriate source file
(or files) before you enter the f90 command line.

1.4.3 Compaq Fortran Compiler
The Compaq Fortran compiler provides the following primary functions:

• Verifying the correctness of Compaq Fortran source statements and
displaying any warnings or error messages.

• Generating machine-level object language instructions from the source
statements.

If the -omp option was specified on Tru64 UNIX systems, the compiler
generates code enabled for parallel execution, based on OpenMP language
constructs in the input source files.

If the -hpf option was specified on Tru64 UNIX systems, the compiler
generates code enabled for parallel execution, based on HPF language
constructs in the input source files.

• Grouping the instructions to generate an object file that can be processed
by the linker.

The object file created by the compiler contains information used by the linker,
including the following:

• The object file name.

This is taken from the name specified in the first PROGRAM,
SUBROUTINE, FUNCTION, MODULE, or BLOCK DATA statement
in the source program. If a program unit does not have any of these
statements, the source file name is used, appended with $MAIN (or $DATA
for block data subprograms).

• A list of global symbols declared in the object file.

The linker uses this information when it binds two or more program units
together and must resolve references to the same names in the program
units. Such global symbols include entry points and common block names.

• A symbol table (if specifically requested by the -g, -g2, or -g3 options on
the f90 command line).

A symbol table lists the names of all external and internal variables within
an object file, with definitions of their locations. The table is of primary use
in program debugging.

Getting Started 1–11

The file name of the Compaq Fortran compiler is decfort90, which may appear
in certain messages.

1.4.4 Other Compilers
You can compile and link multilanguage programs using a single f90 command.

The f90 command recognizes C or Assembler program files by their file suffix
characters and passes them to the cc driver and compiler for compilation.
Before compilation, cc applies the cpp preprocessor to files that it recognizes,
such as any file with a .c suffix, and passes appropriate files to other compilers
or the assembler.

Certain options passed to cc are passed by cc to the ld linker.

1.4.5 Linker (ld)
When you enter an f90 command, the ld linker is invoked automatically
unless a compilation error occurs or you specify the -c option on the command
line. The linker produces an executable program image with a default name of
a.out.

The ld linker provides such primary functions as:

• Adding information for virtual memory allocation in the executable
program

• Resolving symbol references among object files

• Assigning values to relocatable global symbols

• Performing relocation

For more information, see ld(1) and your operating system’s programmer’s
guide.

1.5 Program Development Stages and Tools
This manual primarily addresses the program development activities
associated with implementation and testing phases. For information
about topics usually considered during application design, specification,
and maintenance, see your operating system documentation, appropriate
reference pages, or appropriate commercially published documentation.

Table 1–1 lists and describes some of the software tools you can use when
implementing and testing a program.

1–12 Getting Started

Table 1–1 Main Tools for Program Development and Testing

Task or Activity Tool and Description

Manage source files Use rcs or sccs to manage source files. For more
information, see the Compaq Tru64 UNIX Using
Programming Support Tools or the appropriate reference
page.

Create and modify
source files

Use a text editor, such as vi or emacs. For more
information, see your operating system documentation.

Analyze source code Use searching commands such as grep and diff. For
more information, see the Compaq Tru64 UNIX Using
Programming Support Tools and the appropriate reference
page.

Build program (compile
and link)

You can use the f90 command to create small programs,
perhaps using shell scripts, or use the make command to
build your application in an automated fashion using a
makefile. For more information on f90, see Chapter 2. For
more information on make, see the make(1) reference page
and the Compaq Tru64 UNIX Using Programming Support
Tools.

Debug and Test program Use Ladebug (or dbx) to debug your program or run it for
general testing. For more information on debugging, see
Chapter 4.

Analyze performance To perform profiling of code, use the prof and pixie
(TU*X only) programs. The f90 command option needed to
use prof is -p (same as -p1).

To perform call graph profiling, use the gprof tool. The f90
command option needed to use gprof is -pg.

Related profiling tools (TU*X only) include the use of feedback
files and -cord.

For more information on profiling Fortran 90 code, see
Chapter 5.

Install program
(TU*X only)

Use setld and related commands such as tar. For
more information, see the Compaq Tru64 UNIX Using
Programming Support Tools.

To view information about an object file or an object library, use the following
shell commands:

• The file command shows the type of a file (such as which programming
language, whether it is an object library, ASCII file, and so forth).

• The strings command (TU*X only) shows whether the object (.o) file was
compiled by Compaq Fortran 77 or Compaq Fortran and, if it was, the
version number used.

Getting Started 1–13

• The nm command shows symbol table information, including the
identification field of each object file.

• The size command shows the size of the code and data sections.

For more information on these commands, see the appropriate reference page
or the operating system’s programmer’s guide.

To perform other program development functions at various stages of program
development:

• Use the ar command to:

Create an archive object library.

Maintain the object modules in the library.

List the object modules in the library.

Perform other functions.

Use ranlib to add a table of contents to the object library for linking
purposes. For more information, see ar(1) or the Compaq Tru64 UNIX
Programmer’s Guide.

• Use f90 or ld, not the ar command, to create shared libraries on Tru64
UNIX systems. For more information, see Section 2.6 and the Compaq
Tru64 UNIX Programmer’s Guide.

• Use fort or ld, not the ar command, to create shared libraries on Linux
systems. For more information, see Section 2.6.

• Use the strip command to remove symbolic and other debugging
information to minimize image size. For more information, see strip(1).

• Use the fsplit command to split a multiple routine Fortran file into
multiple, individual files. For more information, see fsplit(1).

For More Information:

• On the Compaq Tru64 UNIX programming environment, see the Compaq
Tru64 UNIX Programmer’s Guide and the Compaq Tru64 UNIX Using
Programming Support Tools.

1–14 Getting Started

1.6 Compaq Fortran and Standards It Conforms To
Compaq Fortran conforms to American National Standard Fortran 95 (ANSI
X3J3/96-007) 1 and American National Standard Fortran 90 (ANSI X3.198-
1992) 2, and includes support for the OpenMP Fortran 1.1 Application Program
Interface 3 and the High Performance Fortran Language Specification 4.

The ANSI committee X3J3 is currently answering questions of interpretation of
Fortran 95 and Fortran 90 language features. Any answers given by the ANSI
committee that are related to features implemented in Compaq Fortran may
result in changes in future releases of the Compaq Fortran compiler, even if
the changes produce incompatibilities with earlier releases of Compaq Fortran.

Compaq Fortran also includes support for programs that conform to the
previous Fortran standards (ANSI X3.9-1978 and ANSI X3.0-1966), the
International Standards Organization standard ISO 1539-1980 (E), the
Federal Information Processing Institute standard FIPS 69-1, and the Military
Standard 1753 Language Specification.

Compaq Fortran provides a number of extensions to the Fortran 95/90
standards. Compaq Fortran extensions to the Fortran 95/90 standards are
generally provided for compatibility with Compaq Fortran extensions to the
ANSI FORTRAN-77 standard and to support the High Performance Fortran
(HPF) Language Specification.

When creating new programs that need to be standard-conforming for
portability reasons, you should avoid or minimize the use of extensions to
the Fortran 95/90 standards. Extensions to the Fortran 95/90 standards are
identified visually in the Compaq Fortran Language Reference Manual, which
defines the Compaq Fortran language.

1 This is the same as International Standards Organization standard ISO/IEC
1539-1:1997 (E).

2 This is the same as International Standards Organization standard ISO/IEC 1539:1991
(E).

3 See the specification at http://www.openmp.org/specs/.
4 See High Performance Fortran Language Specification, Version 1.1, Technical Report

CRPC-TR-92225, Center for Research on Parallel Computation, Rice University, Houston,
Texas, USA.

Getting Started 1–15

2
Compiling and Linking Compaq Fortran

Programs

This chapter contains the following topics:

• Section 2.1, f90 Command: Files and Options

• Section 2.2, Driver Programs and Passing Options to cc and ld

• Section 2.3, Compiler Limits, Diagnostic Messages, and Error Conditions

• Section 2.4, Compilation Control: Statements and Directives

• Section 2.5, Linking Object Libraries

• Section 2.6, Creating Shared Libraries

Note

To invoke the Compaq Fortran compiler, use:

• f90 on Tru64 UNIX Alpha systems

• fort command on Linux Alpha systems

This chapter uses f90 to indicate invoking Compaq Fortran on both
systems, so replace this command with fort if you are working on a
Linux Alpha system.

To invoke the Compaq C compiler, use:

• cc on Tru64 UNIX Alpha systems

• ccc on Linux Alpha systems

This chapter uses cc to indicate invoking Compaq C on both systems,
so replace this command with ccc if you are working on a Linux Alpha
system.

Compiling and Linking Compaq Fortran Programs 2–1

For detailed information on f90 and fort command-line options, see
Chapter 3.

2.1 f90 Command: Files and Options
You should almost always use the f90 command (or fort command on Linux
systems) to invoke both the Compaq Fortran compiler and the ld linker.

To link one or more object files created by the Compaq Fortran compiler, you
should use the f90 command (instead of the ld command), because the f90
command automatically references the appropriate Compaq Fortran Run-Time
Libraries when it invokes ld.

When you create your source files using a text editor, use file name suffix
conventions expected by the f90 command, as described in Section 2.1.1.

2.1.1 File Suffixes and Source Forms
When creating a source file, choose the file name suffix appropriate for the
source form (fixed or free). The f90 command recognizes certain source file
suffixes as Fortran 95/90 source files.

Table 2–1 shows the recognized Fortran 95/90 source file suffixes.

Table 2–1 File Suffixes Recognized as Fortran 95/90 Source Files

Suffix Description

.f90 Identifies Fortran 95/90 files in free source form passed to the Compaq
Fortran compiler.

.F90 Identifies Fortran 95/90 files in free source form passed to the cpp
preprocessor and then compiled by the Compaq Fortran compiler.

.f, .for Identifies Fortran files in fixed (or tab) source form passed to the
Compaq Fortran compiler but not preprocessed by cpp.

.F, .FOR Identifies Fortran files in fixed (or tab) source form passed to the cpp
preprocessor and then compiled by the Compaq Fortran compiler.

Except for .F, .FOR, and .F90 files, preprocessors are not automatically run
before Compaq Fortran compilation. To request that the cpp preprocessor be
run before compilation, specify the -cpp option.

You can specify the source file form for all Fortran files on an f90 command
line by using the -free option or -fixed option.

2–2 Compiling and Linking Compaq Fortran Programs

Table 2–2 shows other file name suffixes.

Table 2–2 Other File Name Suffixes

Suffix Description

Library and Object Files

.a Identifies archive object libraries passed to cc, which are in turn passed
to ld. All routines in the specified object library are searched during
linking to resolve external references.

.o Identifies object files passed to ld.

.so Identifies shared object libraries passed to cc, which are in turn passed
to ld. All routines in the specified object library are searched during
linking to resolve external references.

Compaq Fortran Module Files

.mod Identifies Fortran 95/90 module files created by the Compaq Fortran
compiler. You do not create a .mod file directly and cannot specify a
.mod file on the f90 command line (see Section 2.1.3).

Other Source Files

.c Identifies C language source files passed to the C compiler driver cc or
ccc, which performs additional command-line parsing before invoking
the C preprocessor (via the command cpp) and the C language compiler.

.i, .i90 Identifies intermediate files passed from cpp to the Compaq Fortran
compiler. The .i or .i90 files are usually created by using the f90
options -P or -K (keep intermediate file) and -cpp (invoke cpp). The
.i files are assumed to be in fixed source form. The .i90 file are
assumed to be in free source form.

.s Identifies assembler files passed to cc or to ccc.

To specify libraries (in addition to those automatically searched by the f90
command), you can also use an f90 command-line option, such as -lstring.

Source file suffixes used by other Compaq languages include:

• On Tru64 UNIX and Linux: C++ (.cxx, .cc, .C)

• On Tru64 UNIX only: Ada (.ada), COBOL (.cob), Pascal (.p) and PL/I
(.pli)

For More Information:
On source forms and source coding guidelines that allow the same source file
to be used with multiple source forms, see the Compaq Fortran Language
Reference Manual.

Compiling and Linking Compaq Fortran Programs 2–3

2.1.2 Format of the f90 and fort Commands
The f90 command (on Tru64 UNIX systems) has the following general form:

f90
[--options [args]]...
filename
[filename]...
[--options [args]]...

The fort command (on Linux systems) has the following general form:

fort
[--options [args]]...
filename
[filename]...
[--options [args]]...

–options [args]
Indicates either special actions to be performed by the compiler or linker, or
special properties of input or output files. For details about command-line
options, see Chapter 3.

If you specify the -lstring option (which indicates libraries to be searched by
the linker) or an object library file name, place it after the file names and after
other options.

filename
Specifies the source files containing the program units to be compiled and other
files to be used by the Compaq Fortran compiler. The file name has a suffix
that indicates the type of file used, such as .f90 or .f (see Section 2.1.1).

If you omit the suffix or it is not one of the preceding types recognized by the
f90 command, the file is assumed to be an object file and is passed directly to
the linker.

An example f90 command line follows:

% f90 -v test.f calc.o -lmnd

This command specifies the following:

• The -v option displays the compilation and link passes with their
arguments and files, including the libraries passed to ld.

• The file test.f is passed to the Compaq Fortran compiler for compilation.
The resulting object file is passed to the linker.

• The object file calc.o is passed directly to the linker. The linker links both
object files into an executable program.

2–4 Compiling and Linking Compaq Fortran Programs

• The -lmnd option specifies that the object library libmnd should be searched
for unresolved global references. Note that -lmnd is placed after the file
names and other options.

2.1.3 Creating and Using Module Files
Compaq Fortran creates a module file for each module declaration and
automatically searches for a module file referenced by a USE statement. A
module file contains the equivalent of the module source declaration in a
post-compiled, binary form.

2.1.3.1 Creating Module Files
When you compile a Compaq Fortran source file that contains module
declarations, Compaq Fortran creates a separate file for each module
declaration. The name declared in a MODULE statement becomes the base
prefix of the file name and is followed by the .mod suffix.

For example, consider compiling a file that contains the following statement:

MODULE MOD1

The compiler creates a post-compiled module file mod1.mod in the current
directory. An object file is also created for the module.

Compiling a source file that contains multiple module declarations will create
multiple module files, but only a single object file. If you need a separate object
file for each module, place only one module declaration in each file.

If a source file does not contain the main program and you only need to create
module files, specify the -c option to prevent linking.

An object file is not needed if there are only INTERFACE or constant
(PARAMETER) declarations. It is needed for all other types of declarations
including variables.

2.1.3.2 Using Module Files
Once they are created, you can copy module files into an appropriate shared
or private directory. You reference a module file specifying the name in a USE
statement (use association). For example:

USE MOD1

When selecting a directory location for a set of module files, consider how your
application will be built, including:

• Whether the module files need to be available privately, perhaps for testing
purposes (not shared).

Compiling and Linking Compaq Fortran Programs 2–5

• Whether you want the module files to be available to other users on your
project or available system-wide (shared).

• Whether test builds and final production builds will use the same directory
or different ones.

To locate module files specified in USE statements, the Compaq Fortran
compiler searches the following directories:

• The current working directory

• Each directory specified by one or more -Idir options on the command line.

Suppose you need to compile a main program proj_main that contains one or
more USE statements. To request that the compiler look for module files in the
additional directories /usr/proj_module/f90 and then /usr/common/f90 (after
looking in the current directory), enter the following command line:

% f90 proj_main.f90 -I/usr/proj_module/f90 -I/usr/common/f90

If you specify multiple directories, the order of -Idir options on the f90
command line determines the directory search order.

You cannot specify a .mod file directly on the f90 command line.

Module nesting depth is unlimited. If you will use many modules in a program,
check the process and system descriptor limit (see Section 1.1).

For More Information:

• On specific f90 command-line options, including -Idir, see Chapter 3.

• On an example program that uses a module, see Section 1.3.

2.1.4 INCLUDE Statement and Using Include Files
You can create include files with a text editor. If needed, you can copy include
files to a shared or private directory.

When selecting a directory location for a set of include files or text libraries,
consider how your application is to be built, including:

• Whether the include files need to be available privately, perhaps for testing
purposes (not shared).

• Whether you want the files to be available to other users on your project or
available system-wide (shared).

• Whether test builds and final production builds will use the same directory
or a different one.

2–6 Compiling and Linking Compaq Fortran Programs

Include file names can have any suffix. Use an INCLUDE statement to request
that the specified file containing source lines be included by the compiler in
place of the INCLUDE statement.

The INCLUDE statement has the following form:

INCLUDE ’name’
INCLUDE ’name.typ’

You can also include a file with a pathname specified with the following form:

INCLUDE ’/pathname/name’
INCLUDE ’/pathname/name.typ’

If you specify the -vms option, you can specify /LIST or /NOLIST after the file
name. For example:

INCLUDE ’/pathname/name/LIST’
INCLUDE ’name.f90/NOLIST’

You can also specify the -show include option to request that source lines from
included files appear in the listing file (see Section 3.82).

When the INCLUDE Statement Specifies a Pathname
Specifying pathname limits the directory searching done for the named file.
For example, pathname might specify a directory /usr/users/proj for the file
named common_proj.f90:

INCLUDE ’usr/users/proj/common_proj.f90’

If a directory pathname is specified, only the specified directory is searched.

When the INCLUDE Statement Omits a Pathname
When the INCLUDE statement omits a pathname, one or more directories are
searched for the specified file name.

To locate include files specified in INCLUDE statements without a pathname,
the Compaq Fortran compiler searches directories in the following order:

1. The directory that the source file resides in (-vms option was omitted) or
the current process default directory (-vms option was specified)

2. Each directory specified by one or more -Idir options.

3. The /usr/include directory (unless the -noinclude option was specified)

Compaq Fortran allows you to use multiple methods to specify which
directories are searched for include files:

• You can specify one or more additional directories for the compiler to search
by using one or more -Idir options.

Compiling and Linking Compaq Fortran Programs 2–7

• You can request that the standard directory /usr/include not be searched
by specifying the -noinclude option.

• Depending on whether the -vms option was specified, the Compaq Fortran
compiler searches either in the current process default directory or in the
directory containing the source file that references the include file.

2.1.5 Output Files: Executable, Object, and Temporary
The output produced by the f90 command includes:

• An object file (such as test.o), if you specify the -c option on the command
line

• An executable file (such as a.out), if you omit the -c option

• A listing file (such as test.l), if you specify the -V option

• One or more module files (such as datadef.mod), if the source file contains
one or more MODULE statements

You control the production of these files by specifying the appropriate options
on the f90 command line. Unless you specify the -c option, the compiler
generates a single temporary object file (see Section 2.1.5.2), whether you
specify one source file or multiple source files separated by blanks. The ld
linker is then invoked to link the object file into one executable program file.

If fatal errors are encountered during compilation, or if you specify certain
options such as -c, linking does not occur.

2.1.5.1 Naming Output Files
To specify a file name for the executable program file (other than a.out), use
the -o output option, where output specifies the file name. The following
command requests a file name of prog1.out for the source file test1.f:

% f90 -o prog1.out test1.f

If you specify the -c option with the -o output option, you rename the object
file (not the executable program file). If you specify -c and omit the -o output
option, the compiler names the object file using the first specified file name
(with a .o suffix substituted for the source file suffix).

You can also use the mv command to rename a file.

2–8 Compiling and Linking Compaq Fortran Programs

2.1.5.2 Temporary Files
Temporary files created by the compiler or a preprocessor reside in the /tmp
directory. For example, when an f90 command requests that the compiler
create an object file and pass it to the linker, the file is created in, and later
deleted from, the /tmp directory (unless you specified the -K option).

You can set the environment variable TMPDIR to specify a directory to contain
temporary files if /tmp is not acceptable. For performance reasons, use a local
disk (rather than a NFS mounted disk) to contain the temporary files.

For information about the commands used to set and unset environment
variables, see Appendix B.

To view the file name and directory where each temporary file is created,
use the -v option. To create (and retain) object files in your current working
directory, use the -c option. Any object files (.o files) that you specify on the
f90 command line are retained.

The TMPDIR environment variable is also used during program execution (run-
time) to specify which directory to contain any scratch files your program
creates.

2.1.6 Using Multiple Input Files: Effect on Output Files
When you specify multiple source files, the following options control the
production of output files and also influence whether Compaq Fortran can
apply certain levels of optimizations:

• The -c option prevents linking. This option also creates and retains the
object file in the current working directory.

• The -K option keeps temporary files.

• The -o output option names the output file.

A description of the interaction of these options follows:

• If you omit both the -c and the -K options, the specified Fortran 95/90
source files are compiled together into a single object file and then linked.

Since all the Fortran 95/90 source files are compiled together into a single
object file, full interprocedure optimizations can occur. Any temporary
object files created by the compiler are deleted by the linker after it creates
the executable program. The default optimization level is -O4 (unless you
specify -g2 or -g).

• If you specify the -c option and you want to allow full interprocedure
optimizations to occur, you should also specify the -o output option.

Compiling and Linking Compaq Fortran Programs 2–9

The combination of the -c and -o output options creates a single object
file (output) from multiple Fortran 95/90 source files, allowing full
interprocedure optimizations. The object file can be linked later.

For example, the following command uses both the -c and -o output
options to allow interprocedure optimization (explicitly requested by -O4):

% f90 -c -o out.o -O4 ax.f bx.f cx.f

• If you specify the -c option without specifying the -o output option, or
if you specify the -K option, each source file is compiled into an object
file, creating one object file for each input source file specified. This is
acceptable if you specified no optimization (-O0) or local optimization (-O1).

An information message appears when you specify multiple input files and
specify an option that creates multiple object files (such as -c without -o
output) and specify or imply global optimization (-O2, -O3, -O4, or -O5).

• If you specify the -c option, you must link the object file(s) later by
using a separate f90 command. This allows incremental compilation of a
large application, perhaps by means of a makefile processed by the make
command.

However, keep in mind that either omitting the -c option or using the -c
option in combination with the -o output option provides the benefit of full
interprocedure optimizations for compiling multiple Fortran source files.

When you request a listing file (-V option), a single listing file is created unless
you specify the -c option. If you specify the -c option and the -V option,
separate listing files are created.

2.1.7 Examples of the f90 and fort Commands
The following examples show the use of the f90 command. On Linux systems,
use the fort command instead of the f90 command.

2.1.7.1 Compiling and Linking Multiple Files
The following f90 command compiles the Compaq Fortran free format source
files (aaa.f90, bbb.f90, ccc.f90) into a single temporary object file:

% f90 -V aaa.f90 bbb.f90 ccc.f90

This f90 command invokes the ld linker and passes the temporary object file
to ld, which it uses to produce the executable file a.out. The Compaq Fortran
compiler (-V option) creates the listing file aaa.l.

2–10 Compiling and Linking Compaq Fortran Programs

The following f90 command compiles all Compaq Fortran fixed-format (or tab-
format) source files with file names that end with .f into a temporary object
file:

% f90 -V *.f

The ld linker produces the a.out file. The listing file (produced when the -V
option is specified) assumes the name of the first file, aaa.l.

2.1.7.2 Retaining an Object File and Preventing Linking
The following f90 command compiles, but does not link, the free-format source
file typedefs_1.f90, which contains a MODULE TYPEDEFS_1 statement:

% f90 -c typedefs_1.f90

This command creates files typedefs_1.mod and typedefs_1.o. Specifying the
-c option retains the object file typedefs_1.o and prevents linking.

2.1.7.3 Compiling Fortran 95/90 and C Source Files and Linking an Object File
The following f90 command compiles the free-format Compaq Fortran main
program (myprog.f90). The main program calls a function written in C and
references the module TYPEDEFS_1 with a USE TYPEDEFS_1 statement
(uses the object file created in the previous example). The C routine named
utilityx_ is declared in a file named utilityx.c. All sources files are compiled
and the object files are passed to the linker:

% f90 myprog.f90 typedefs_1.o utilityx.c

This command does the following:

1. Compiles myprog.f90 with the Compaq Fortran compiler. The module file
typedefs_1.mod is read from the current directory.

2. The C compiler compiles utilityx.c.

3. The ld linker links all three object files together into the executable
program named a.out.

2.1.7.4 Renaming the Output File
The following f90 command compiles the free-format Compaq Fortran source
files circle-calc.f90 and sub.f90 together, producing one object file named
circle.o:

% f90 -c -o circle.o circle-calc.f90 sub.f90

The default optimization level (-O4) applies to both source files during
compilation and uses the default loop unrolling. Because the -c option is
specified, the object file is not passed to the ld linker and is not deleted. In
this case, the named output file is the object file.

Compiling and Linking Compaq Fortran Programs 2–11

Like the previous command, the following f90 command compiles multiple
source files:

% f90 -o circle.out circle-calc.f90 sub.f90

Because the -c option was omitted, an executable program named circle.out
is created.

2.1.7.5 Specifying an Additional Linker Library
The following f90 command compiles a free-format source file myprog.f90
using default optimization, and passes an additional library for the linker to
search:

% f90 typedefs_1.o myprog.f90 -lcxml

The file is processed at optimization level -O4 and then linked with the object
file typedefs_1.o. The -lcxml option instructs the linker to search in the
libcxml library for unresolved references (in addition to the standard list of
libraries the f90 command passes to the linker).

2.1.7.6 Requesting Additional Optimizations
The following f90 command compiles the free-format Compaq Fortran
source files circle-calc.f90 and sub.f90 together using software pipelining
optimizations (-O5):

% f90 -O5 -unroll 3 circle-calc.f90 sub.f90

The loops within the program are unrolled 3 times (-unroll 3). Loop unrolling
occurs at optimization level -O3 or above.

2.1.8 Using Listing Files
If you expect your program to have compilation errors, you should request a
separate listing file (-V option).

For example, the following command compiles Compaq Fortran source files
with file names that end with .f, and ld creates an executable file named
a.out:

% f90 -V *.f

The listing file assumes the name of the first file. If the first file was named
aaa.f, the listing file is named aaa.l.

Using a listing file provides such information as the column pointer (1) that
indicates the exact part of the line that caused the error (see Section 2.3.2).
Especially for large files, consider obtaining a printed copy of the listing file
you can reference while editing the source file.

2–12 Compiling and Linking Compaq Fortran Programs

For More Information:

• On calling programs written in other languages, see Chapter 11.

• On options for the f90 command, see Chapter 3.

• On f90 command-line options and their categories, see Table 3–1.

2.2 Driver Programs and Passing Options to cc and ld
The f90 and fort driver programs control which software components operate
on the files and options specified on the command line and their order of use.
See Figure 2–1.

Compiling and Linking Compaq Fortran Programs 2–13

Figure 2–1 Driver Programs and Software Components

ZK−6657A−GE

cpp preprocessor

% f90 −cpp file.f90 file2.c file3.o

(preprocesses file2.c)

 Compaq Fortran

a.out
(executable program)

f90 or fort Driver

cc or ccc Compiler
(compiles file2.c)

ld Linker
(links all object files)

Object files and relevant
options, including libraries

All object files and relevant
options, including libraries

Compiler
(compiles file.f90)

cpp preprocessor
(only if −cpp

on command line)

Program

% fort −cpp file.f90 file2.c file3.o

 − or −

On Tru64 UNIX Alpha systems, the f90 driver program passes options and
files not intended for the Compaq Fortran compiler to the cc driver program.

On Linux Alpha systems, the fort driver program passes options and files not
intended for the Compaq Fortran compiler to the cc driver program. On Linux
systems, this is a symbolic link to, generally, gcc or ccc.

2–14 Compiling and Linking Compaq Fortran Programs

The f90 (or fort) driver program does the following:

1. Examines file name suffix information and groups files and options
specified on the command line.

2. Runs the requested preprocessors (if any) on any Fortran files.

3. Runs the Compaq Fortran compiler to process Fortran files.

4. Passes grouped input files, processed source files, and grouped options to
the cc driver program in the following order:

a. All options, except for any -lstring options, are passed.

b. All object files are grouped and passed.

c. All non-Fortran source files (such as a C program with a .c suffix) are
grouped and passed.

d. All archive libraries (.a suffix) are grouped in the same order specified
on the f90 command line and passed.

e. All shared libraries (.so suffix) are grouped in the same order specified
on the f90 command line and passed.

f. All user-specified -lstring options are grouped in the same order
specified on the f90 command line and passed.

g. All -lstring options automatically added by the f90 command are
grouped with other information and passed.

The cc driver program then does the following:

1. Runs cpp if necessary.

2. Runs the C compiler cc if necessary.

3. Passes library-related information to and runs the ld linker.

Upon return to the command line, the f90 or fort driver program returns one
of the following status values:

• 0 (zero)—success

• 1—failure

• 2—subprocess failure (preprocessor, the decfort90 compiler, cc, or ld)

• 3—signal

Compiling and Linking Compaq Fortran Programs 2–15

Because the f90 or fort driver program runs other software components such
as the C compiler, error messages may be returned by these other components.
For instance, ld may return a message if it cannot resolve a global reference.
Using the -v option on the f90 command line can help clarify which component
is generating the error.

2.2.1 make Facility
The make facility is often used to automate building large programs. See
make(1).

2.2.2 Options Passed to the cc Driver or ld Linker
Certain options are passed directly from the f90 or fort driver program to the
cc driver program. These options do not generally apply to compiling Compaq
Fortran source files, but might be used to:

• Process C language source files or intermediate files using the f90 or fort
command instead of the cc or ccc command

• Pass information to ld.

With the -Wc[c...],arg1[,arg2]... option, you can pass ld options not otherwise
provided by the f90 command directly to ld.

When compiling a program that contains both Compaq Fortran and C language
source files, you can usually compile with a single f90 command. Any options
that f90 does not recognize are passed to cc, such as the following:

• Compilation environment options, such as -systype name and
-Yenvironment

• Preprocessor (cpp) options, such as -M

• C language compatibility option, such as -migrate

• Memory location (performance) options, such as -D num, -T num, and -taso

• Other options listed in cc(1)

Certain options recognized and used by f90 also apply to cc, such as the -On
option. If needed, you can compile the C files using the cc command (instead
of the f90 command) with the -c option, and then compile the Compaq Fortran
files and the (C language) object files using the f90 command.

For more information on the options processed by cc and ccc, see cc(1) and
ccc(1) (for most options) or ld(1).

2–16 Compiling and Linking Compaq Fortran Programs

2.3 Compiler Limits, Diagnostic Messages, and Error
Conditions

The following sections discuss the compiler limits and error messages from the
compiler and linker. Other components can report messages, as described in
Section 2.2.

2.3.1 Compiler Limits
Table 2–3 lists the limits to the size and complexity of a single Compaq Fortran
program unit and to individual statements contained within it.

Table 2–3 Compiler Limits

Language Element Limit

Actual number of arguments per CALL
or function reference

Limited only by memory
constraints.

Arguments in a function reference
in a specification expression

255

Array dimensions 7

Array construction nesting 20

Array elements per dimension 9,223,372,036,854,775,8071 =
2**63-1

Constants; character and Hollerith 7198 characters

Constants; characters read in list-directed I/O 2048 characters

Continuation lines 511

Data and I/O implied DO nesting 7

DO and block IF statement nesting (combined) 128

DO loop index variable 9,223,372,036,854,775,8071 =
2**63-1

Format group nesting 8

Format statement length 2048 characters

Fortran source line length fixed form: 72 (or 132 if
-extend_source is in effect)
characters
free form: 7200 characters

1Also check available process and system virtual memory; see Section 1.1.

(continued on next page)

Compiling and Linking Compaq Fortran Programs 2–17

Table 2–3 (Cont.) Compiler Limits

Language Element Limit

INCLUDE file nesting 20 levels

Labels in computed or assigned GOTO list Limited only by memory
constraints.

Lexical tokens per statement 20000

Named common blocks Limited only by memory
constraints.

Parentheses nesting in expressions Limited only by memory
constraints.

Structure nesting 30

Symbolic-name length 63 characters

The following are usually limited by the amount of process virtual address
space available, as determined by system parameters:

• Amount of data storage

• Size of arrays

• Total size of executable programs

For information on increasing your limits, see Section 1.1.

2.3.2 Compiler Diagnostic Messages and Error Conditions
The Compaq Fortran compiler identifies syntax errors and violations of
language rules in the source program. If the compiler finds any such errors, it
writes messages to the stderr output file and any listing file. If you enter the
f90 command interactively, the messages are displayed on your terminal.

Compiler messages have the following format:

f90: severity: filename, line n, message-text
[text-in-error]
--------^

The pointer (---^) indicates the exact place on the source program line where
the error was found. For example, the following error message shows the
format and message text in a listing file when an END DO statement was
omitted:

f90: Severe: echar.f, line 7: Unclosed DO loop or IF block
DO I=1,5

--------^

2–18 Compiling and Linking Compaq Fortran Programs

Diagnostic messages usually provide enough information for you to determine
the cause of an error and correct it.

2.3.3 Linker Diagnostic Messages and Error Conditions
If the linker detects any errors while linking object files, it displays messages
about their cause and severity. If any errors occur, the linker does not produce
an executable program file.

Linker messages are descriptive, and you do not normally need additional
information to determine the specific error.

On Tru64 UNIX systems, the general format for ld messages is:

ld:
message-text

On Linux systems, the general format for ld messages is:

message-text

The message-text can be on multiple lines and is sometimes accompanied by an
f90 or fort error.

Some common errors that occur during linking resemble the following:

• ‘‘An object file has compilation errors.’’

This error occurs when you attempt to link a file that had warnings or
errors during compilation. Although you can usually link compiled files for
which the compiler generated messages, you should verify that the files
will actually produce the output you expect.

• ‘‘The files being linked define more than one transfer address.’’

The linker generates a warning if more than one main program has been
defined. For example, this can occur when an extra END statement exists
in the program. The executable program file created by the linker in this
case can be run; the entry point to which control is transferred is the first
one that the linker found.

• ‘‘A reference to a symbol name remains unresolved’’ or ‘‘undefined
reference.’’

This error occurs when you omit required file or library names from the f90
or ld command and the linker cannot locate the definition for a specified
global symbol reference. Use the -y option to the ld command to determine
which files refer to each missing symbol. See ld(1) for more information.

Compiling and Linking Compaq Fortran Programs 2–19

If an error occurs when you link files, you may be able to correct it by retyping
the command string and specifying the correct routines or libraries (-lstring
option, -Ldir option), or by specifying the object library or object files on the
command line.

For More Information:

• On specifying object library or object files on the command line and related
information on linking, see Section 2.5.

• On linker messages, see your operating system documentation.

• On run-time messages, see Chapter 8.

2.4 Compilation Control: Statements and Directives
In addition to options on the command line, several statements used in the
body of a Fortran program and cpp directives also influence the compilation
process.

• The INCLUDE statement incorporates external source code into your
programs during the compilation process.

If you omit the directory path from the file specification in the INCLUDE
statement, the directory searched depends on whether the -vms option was
specified or omitted. For more information, see Section 2.1.4.

• The USE statement incorporates a post-compiled module file into your
programs during the compilation process. For more information, see
Section 2.1.3.

• The OPTIONS statement sets compiler options that would otherwise be
specified on the f90 command. The options specified on an OPTIONS
statement take precedence over options specified on the f90 command line
if a conflict occurs. Each OPTIONS statement applies only to the program
unit in which it appears.

• You can use the general cDEC$ directives to perform tasks during
compilation. You can specify the following, for example:

The identification field in the object file

An alternate name (alias) for external objects, such as subprograms

Alternate ways of passing arguments and naming for external objects

Common block attributes

The -align attributes for record structures and common blocks

The title and subtitle for listings

2–20 Compiling and Linking Compaq Fortran Programs

Properties for data objects and procedures

cDEC$ directives take precedence over the f90 command-line options.

• A # character in column 1 indicates a cpp directive when processing if
the -cpp option is specified. You can specify that only preprocessing (no
compilation) occurs by specifying the -P option, perhaps for debugging
purposes.

For More Information:

• On Compaq Fortran statements, including INCLUDE, OPTIONS, and
USE, see the Compaq Fortran Language Reference Manual.

• On cDEC$ directives related to passing arguments and external names, see
Section 11.2.

• On cpp and its directives, see cpp(1).

2.5 Linking Object Libraries
Within a Fortran 95/90 program, references to procedures defined outside your
program unit need to be declared as external symbols by using the EXTERNAL
statement. (In order for BLOCK DATA statement symbols to be resolved by
the linker, the BLOCK DATA symbol must be declared EXTERNAL and not
have its data type declared in the source program unit.)

During compilation of multiple source files that will be placed into a single
object or executable file, the Compaq Fortran compiler resolves those symbols
referenced in one compilation unit and defined in another before linking occurs.

Upon successful compilation of a Compaq Fortran program, the f90 command
specifies certain libraries for ld to search for unresolved external symbols in
the object file (or files), such as calls to routines in libraries.

Table 2–4 shows the standard f90 library file names that are searched by ld.

Compiling and Linking Compaq Fortran Programs 2–21

Table 2–4 Libraries Automatically Searched When Using the f90 Command

File Name -lstring Option Form

libUfor -lUfor
libfor -lfor
libFutil -lFutil
(TU*X only) libshpf or libphpf (see text) -lshpf, -lphpf, or -lphpfp (see text)

libm -lm
libots -lots
libc -lc

(TU*X only) If you specify -omp or -mp (requests directed parallel processing), the
libots3 library is searched.

Which High Performance Fortran (HPF) library is searched (TU*X only) depends
on which command-line option is specified:

If you specify -hpf, libphpf is searched.

If you omit -hpf, libshpf is searched.

The Compaq Fortran kit provides both shared and archive libraries. For a
complete list of Compaq Fortran Run-Time Library files, see f90(1).

2.5.1 Specifying Additional Object Libraries
You can also specify additional object libraries on the command line by using
certain options or by providing the file name of the library. These object
libraries are also searched by ld for unresolved external references.

When f90 specifies certain libraries to ld, it provides a standard list of f90
library file names to ld. The ld linker tries to locate each of these library file
names in a standard list of library directories; ld attempts to locate each object
library file name first in one directory, then in the second, and then in the third
directory on its search list of directories.

To display a list of the compilers invoked, files processed, and libraries accessed
during linking, specify the -v option on the f90 command line.

In addition to an object file created by the compiler, any linker options and
object files specified on the f90 command are also passed to the ld linker. The
linker loads object files according to the order in which they are specified on
the command line. Because of this, you must specify object libraries after all
source and object files on the f90 command line.

2–22 Compiling and Linking Compaq Fortran Programs

For more details on the interaction of the f90 command with other components,
see Section 2.2.

To help you identify undefined references to routines or other symbols in an
object file, consider using the nm command. For instance, the following nm
command filtered by the grep command lists all undefined (U) symbols:

% nm -o ex.o | grep U

If the symbol is undefined, a ‘‘U’’ appears in the column before the symbol
name. Any symbols with a U in their names are also displayed by this use of
grep.

You can control the libraries to be searched with these methods:

• To specify additional object library file names for ld to search, use the
-lstring option at the end of the f90 command line. Each occurrence of
the -lstring option specifies an additional file name that is added to the
list of object libraries for ld to locate.

• In addition to the standard directories in which ld tries to locate the library
file names, you can use the -Ldir option to specify another directory.

Unlike the -lstring option that adds an object library file name for ld to
search, the -Ldir option adds an additional directory in which ld will look
for library file names.

The standard ld directories are searched after the directories specified by
the -Ldir option.

The following example specifies the additional object library path
/usr/lib/mytest:

% f90 simtest.f -L/usr/lib/mytest

For a list of the standard ld directories searched, see Section 3.58.

• You can specify the pathname and file name of an object library as you
would specify any file. Specifying each object library that resides in special
directories in this manner is an alternative to specifying the library by
using the -lstring or -Ldir option. Specifying the pathname and file
name of an object library can reduce the amount of searching the linker
must do to locate all the needed object files.

For instance, instead of specifying the options -L/usr/jones and -lfft,
this example specifies the directory path and file name of the library file:

% f90 main.o more.o rest.o /usr/jones/libfft.a

Compiling and Linking Compaq Fortran Programs 2–23

In certain cases, you may need to specify the pathname and file name
instead of using the -lstring or -Ldir options for the linker to resolve
global symbols with shared libraries.

• You can indicate that ld should not search its list of standard directories
at all by specifying the -L option. When you do so, you must specify all
libraries on the f90 command line in some form, including the directory for
f90 standard libraries.

To specify all libraries, you might use the -L option in combination with
the -Ldir option on the same f90 command line.

2.5.2 Specifying Types of Object Libraries
External references found in an archive library result in the referenced
routine being included in the resulting executable program file at link time.

External references found in a shared object library result in a special link
to that library being included in the resulting executable program file, instead
of the actual routine itself. When you run the program, this link gets resolved
by either using the shared library in memory (if it already exists) or loading it
into memory from disk.

Certain f90 options influence whether ld searches for an archive (.a) or
shared object (.so) library on the standard list of f90 libraries, as well as any
additional libraries specified by using the -lstring or -Ldir options:

• The -call_shared option is the default. It indicates that .so files are
searched before .a files. As ld attempts to resolve external symbols, it
looks at the shared library before the corresponding archive library. For
instance, /usr/shlib/libc.so is searched before /usr/lib/libc.a.

References to symbols found in .so libraries are dynamically loaded into
memory at run time.

References to symbols found in .a libraries are loaded into the executable
program file at link time.

• The -non_shared option indicates that only .a files are searched, so the
object file created contains static references to external routines. These
static references are loaded into the executable program at link time, not
at run time. Corresponding .so files are not searched.

The following example requests that the standard f90 .a files be searched
instead of the corresponding .so files:

% f90 -non_shared main.f rest.o

• The -shared option requests the creation of an executable program to be
included in a shared library.

2–24 Compiling and Linking Compaq Fortran Programs

If you specify the -c option to inhibit linking, an object file (.o file) is
created that can subsequently be processed by ld to create a shared library.

If you omit the -c option, the f90 command creates a shared library (.so
file).

In either case, use the -o option to name the resulting object file or shared
library with the correct file name and suffix.

For more information about creating a shared library using either the f90
command or the ld command, see Section 2.6, Creating Shared Libraries.

2.5.3 Specifying Shared Object Libraries
When you link your program with a shared library, all symbols must be
referenced before ld searches the shared library. You should always specify
libraries at the end of the f90 command line, after all file names. Unless you
specify the -non_shared option, shared libraries will be searched before the
corresponding archive libraries.

For instance, the following command generates an error if the file rest.o
references routines in the library libX:

% f90 -call_shared test.f -lX rest.o

The correct command specifies the library at the end of the line, as follows:

% f90 -call_shared test.f rest.o -lX

Link errors can occur with symbols that are defined twice, as when both an
archive and a shared object library are specified on the same command line. In
general, specify any archive libraries after the last file name, followed by any
shared libraries at the end of the command line.

Before you reference a shared library at run time, it must be installed. See
Section 2.6, Creating Shared Libraries.

2.6 Creating Shared Libraries
To create a shared library from a Fortran source file, process the files using the
f90 command:

• You must specify the -shared option to create the .so file.

• You can specify the -o output option to name the output file.

• If you omit the -c option, you will create a shared library (.so file) directly
from the f90 command line in a single step.

Compiling and Linking Compaq Fortran Programs 2–25

If you also omit the -o output option, the file name of the first Fortran file
on the command line is used to create the file name of the .so file. You can
specify additional options associated with shared library creation.

• If you specify the -c option, you will create an object file (.o file) that you
can name with the -o option. To create a shared library, process the .o file
with ld, specifying certain options associated with shared library creation.

You can specify multiple source and object files when creating a shared library
by using the f90 command.

2.6.1 Creating a Shared Library with a Single f90 Command
You can create a shared library (.so) file with a single f90 command:

% f90 -shared octagon.f90

The -shared option is required to create a shared library. The name of the
source file is octagon.f90. You can specify multiple source files and object files.

The -o option was omitted, so the name of the shared library file is
octagon.so.

2.6.2 Creating a Shared Library with f90 and ld Commands
You first must create the .o file, such as octagon.o in the following example:

% f90 -O3 -c octagon.f90

The file octagon.o is then used as input to the ld command to create the
shared library named octagon.so:

% ld -shared -no_archive octagon.o \
-lUfor -lfor -lFutil -lm -lots -lc

Note that the -no_archive option is available only on Tru64 UNIX systems.

• The -shared option is required to create a shared library.

• The -no_archive option (TU*X only) indicates that ld should not search
archive libraries to resolve external names (only shared libraries).

• The name of the object file is octagon.o. You can specify multiple object
(.o) files.

• The -lUfor and subsequent options are the standard list of libraries that
the f90 command would have otherwise passed to ld. When you create a
shared library, all symbols must be resolved. For more information about
the standard list of libraries used by Compaq Fortran, see Section 2.5.

2–26 Compiling and Linking Compaq Fortran Programs

2.6.3 Choosing How to Create a Shared Library
Consider the following when deciding whether to use a single f90 command
(-c omitted) or both the f90 (-c present) and ld commands to create a shared
library:

• Certain ld options may not be available from the f90 command line. If
you need to use those options, use the two-command method (specify f90
-c and subsequently use ld). Such options include -check_registry and
-update_registry (see ld(1)) that are available only on Tru64 UNIX
systems.

• If you use a single f90 command with -shared and omit -c, you do not
need to specify the standard list of f90 libraries by using the -lstring
option.

In addition to the options shown in Section 2.6.1 and Section 2.6.2, certain
other ld options may be needed. For instance, to optimize shared library
startup, use the -update_registry and -check_registry options (TU*X only),
which preassign a starting address in virtual memory to a shared library using
the file /usr/shlib/so_locations.

For More Information:

• On the relevant ld options, see the ld(1) reference page.

• On the standard list of libraries used by Compaq Fortran, see Section 2.5.

2.6.4 Shared Library Restrictions
When creating a shared library with ld, be aware of the following restrictions:

• Shared libraries must not be linked with archive libraries.

When creating a shared library, you can only depend on other shared
libraries for resolving external references. If you need to reference a
routine that currently resides in an archive library, either put that routine
in a separate shared library or include it in the shared library being
created. You can specify multiple object (.o) files when creating a shared
library.

To put a routine in a separate shared library, obtain the source or object
file for that routine, recompile if necessary, and create a separate shared
library. You can specify an object file when recompiling with the f90
command or when creating the shared library with the ld command.

To include a routine in the shared library being created, put the routine
(source or object file) with other source files that make up the shared
library and recompile if necessary.

Compiling and Linking Compaq Fortran Programs 2–27

Then create the shared library, making sure that you specify the file
containing that routine either during recompilation or when creating the
shared library. You can specify an object file when recompiling with the
f90 command or when creating the shared library with the ld command.

• When creating shared libraries, all symbols must be defined (resolved).

Because all symbols must be defined to ld when you create a shared
library, you must specify the shared libraries on the ld command line,
including all standard Compaq Fortran libraries. The list of standard
Compaq Fortran libraries might be specified by using the -lstring option,
as in the previous example in this section.

For other restrictions imposed by the operating system, see the Compaq Tru64
UNIX Programmer’s Guide.

2.6.5 Installing Shared Libraries (TU*X only)

Once the shared library is created, it must be installed for private or system-
wide use before you run a program that refers to it:

• To install a private shared library (when you are testing, for example), set
the environment variable LD_LIBRARY_PATH, as described in loader(5).

• To install a system-wide shared library, place the shared library file in one
of the standard directory paths used by ld (see loader(5) or Section 3.58).

For complete information on installing shared libraries, see the Compaq Tru64
UNIX Programmer’s Guide.

2–28 Compiling and Linking Compaq Fortran Programs

3
f90 and fort Command-Line Options

This chapter describes f90 and fort command-line options in detail.

Note

To invoke the Compaq Fortran compiler, use:

• f90 on Tru64 UNIX Alpha systems

• fort command on Linux Alpha systems

This chapter uses f90 to indicate invoking Compaq Fortran on both
systems, so replace this command with fort if you are working on a
Linux Alpha system.

To invoke the Compaq C compiler, use:

• cc on Tru64 UNIX Alpha systems

• ccc on Linux Alpha systems

This chapter uses cc to indicate invoking Compaq C on both systems,
so replace this command with ccc if you are working on a Linux Alpha
system.

3.1 Overview of Command-Line Options
Options to the f90 command affect how the compiler processes a file in
conjunction with the file name suffix information described in Section 2.1.1.
The simplest form of the f90 command is often sufficient.

You can override some options specified on the command line by using the
OPTIONS statement in your Fortran source program. The options specified
by the OPTIONS statement affect only the program unit where the statement
occurs.

f90 and fort Command-Line Options 3–1

If you compile parts of your program by using multiple f90 commands, options
that affect the execution of the program should be used consistently for all
compilations, especially if data is shared or passed between procedures. For
example:

• The same data alignment needs to be used for data passed or shared by
module definition (such as user-defined structures) or common block. Use
the same version of the -align option for all compilations (see Section 3.3).

• The program might contain INTEGER, LOGICAL, REAL, COMPLEX,
or DOUBLE PRECISION declarations without a kind parameter or size
specifier that is passed or shared by module definition or common block.
You must consistently use the options that control the size of such numeric
data declarations. For information about these options, see:

Section 3.53 for INTEGER and LOGICAL declarations

Section 3.78 for REAL and COMPLEX declarations

Section 3.34 for DOUBLE PRECISION declarations

• On Tru64 UNIX systems, you can specify the -hpf num option (to request
code generation for parallel HPF execution) for multiple compilation units.

Some options consist of two words separated by a space, while others may
have words joined by an underscore (_). Most options can be abbreviated. For
example, you can abbreviate -check output_conversion to -check out (usually
four characters or more).

3.2 f90 and fort Command Categories and Options
Table 3–1 lists categories of command-line options, the f90 and fort command-
line options, and the sections in which they are described in detail.

Table 3–1 f90 and fort Command Categories and Options

Category Option Name and Section in this Manual

Assembler File -S (see Section 3.81)

Data Size -i2, -i4, -i8, -integer_size num (see Section 3.53)
-r8, -r16, -real_size num, (see Section 3.78)
-double_size num, (see Section 3.34)
For a summary of available data types, see Chapter 9.

(continued on next page)

3–2 f90 and fort Command-Line Options

Table 3–1 (Cont.) f90 and fort Command Categories and Options

Category Option Name and Section in this Manual

Compaq FUSE Cross-
Reference File

-fuse_xref, (see Section 3.47) (TU*X only)

Debugging and Symbol
Table

-d_lines (see Section 3.33)
-g0, -g1, -g2, -g, -g3, and -ladebug (see Section 3.48)
Also see Chapter 4.

Data Accuracy and
Floating-Point Exceptions

-assume noaccuracy_sensitive (see Section 3.12)
-check nopower (see Section 3.25)
-double_size num (see Section 3.34)
-fast (see Section 3.40)
-fpen (see Section 3.44)
-fpconstant (see Section 3.43)
-fp_reorder (see Section 3.12)
-fprm keyword (see Section 3.46)
-intconstant (see Section 3.55)
-math_library keyword (see Section 3.61)
-r8, -r16, -real_size num (see Section 3.78)
-speculate keyword (TU*X only) (see Section 3.84)
-synchronous_exceptions (see Section 3.86)

Language and Run-Time
Compatibility

-1, -66, -f66, -onetrip (see Section 3.37)
-altparam (see Section 3.66)
-assume dummy_aliases (see Section 3.9)
-assume noprotect_constants (see Section 3.13)
-f77rtl (see Section 3.39)
-mixed_str_len_arg (see Section 3.62)
-std, std95 (see Section 3.85)
-vms (see Section 3.98)

Linking, Loading, and
Output File Naming

-assume nounderscore (see Section 3.15)
-assume no2underscores (see Section 3.16)
-c (see Section 3.19)
-call_shared, -non_shared, -shared (see
Section 3.20)
-L (see Section 3.57)
-Ldir (see Section 3.58)
-lstring (see Section 3.59)
-names keyword (see Section 3.65)
-o output (see Section 3.71)
-U (see Section 3.91)
-v (see Section 3.96)
-Wl,-xxx (see Section 3.99)
Also see Section 2.5.

(continued on next page)

f90 and fort Command-Line Options 3–3

Table 3–1 (Cont.) f90 and fort Command Categories and Options

Category Option Name and Section in this Manual

Listing File -show code, -show include, -machine_code (see
Section 3.82)
-source_listing (see Section 3.83)
-V (see Section 3.95)
-vms (applies to INCLUDE statements with /LIST or
/NOLIST) (see Section 3.98)
Also see Appendix C.

Module and Include File
Directory Searching

-Idir, -noinclude (see Section 3.52)
-module directory (see Section 3.63),
Also see Section 2.1.3 (module files) and Section 2.1.4
(include files).

Miscellaneous -nohpf_main (TU*X only) (see Section 3.68)
-norun (see Section 3.70)
-version (see Section 3.97)
-what (see Section 3.97)

Nonnative Unformatted
Data File Conversion and
Use

-assume byterecl (see Section 3.7)
-convert keyword (see Section 3.30)
Also see Chapter 10.

Parallel HPF Execution
Performance (TU*X only)

-hpf, -hpf n, -assume nozsize, -nearest_neighbor
num, -nonearest_neighbor, -show hpf (see
Section 3.50)

Parallel Directives
Execution (TU*X only)

-mp (see Section 3.64)
-omp (see Section 3.74)
-assume cc_omp (see Section 3.8)

(continued on next page)

3–4 f90 and fort Command-Line Options

Table 3–1 (Cont.) f90 and fort Command Categories and Options

Category Option Name and Section in this Manual

Performance Optimization
(Nonparallel and Parallel)

-align keyword (see Section 3.3)
-annotations keyword (see Section 3.4)
-arch keyword (see Section 3.5)
-assume noaccuracy_sensitive (see Section 3.12)
-assume dummy_aliases (see Section 3.9)
-fast (see Section 3.40)
-fpen (see Section 3.44)
-fp_reorder (-assume noaccuracy_sensitive) (see
Section 3.12)
-fprm keyword (see Section 3.46)
-inline type, -noinline (see Section 3.54)
-math_library keyword (see Section 3.61)
-om (see Section 3.73)
-O0, -O1, -O2, -O3, -O4, -O, -O5 (see Section 3.72)
-pipeline (see Section 3.76)
-speculate keyword (TU*X only) (see Section 3.84)
-synchronous_exceptions (see Section 3.86)
-transform_loops (see Section 3.89)
-tune keyword (see Section 3.90)
-unroll num (see Section 3.94)
Also see Section 5.1.2.

Preprocessor -cpp, -Dname, -fpp (see Section 3.45), -I, -Idir,
-K, -M, -P, -Uname (see Section 3.31), -Wp,-xxx (see
Section 3.31.3)

Profiling, Feedback Files,
and cord

-p0, -p1 or -p, -pg (see Section 3.77)
-gen_feedback, -feedback file, -cord (TU*X only)
(see Section 3.41)

Record Output -assume buffered_io (see Section 3.6)
-ccdefault keyword (see Section 3.21)

Recursion and Data Storage -automatic, -static (see Section 3.18)
-recursive (see Section 3.79)

(continued on next page)

f90 and fort Command-Line Options 3–5

Table 3–1 (Cont.) f90 and fort Command Categories and Options

Category Option Name and Section in this Manual

Run-Time Messages and
Checking

-check arg_temp_created, (see Section 3.22)
-C, -check bounds (see Section 3.23)
-check noformat (see Section 3.24)
-check nooutput_conversion (see Section 3.27)
-check overflow (see Section 3.28)
-check nopower (see Section 3.25)
-check underflow (TU*X only) (see Section 3.29)
-fpen (see Section 3.44)
-synchronous_exceptions (see Section 3.86)
Also see the options related to ‘‘Floating-point exceptions,
rounding, and accuracy’’ in this table.

Shared Access to Data -granularity keyword, (see Section 3.49)

Source Form and Column
Use

-d_lines (see Section 3.33)
-extend_source (see Section 3.36)
-fixed, -free (see Section 3.42)
-pad_source (see Section 3.75)

Threaded Applications -granularity keyword, (see Section 3.49)
-pthread (TU*X only) (see Section 3.88)
-reentrancy keyword (see Section 3.80)
-threads (TU*X only) (see Section 3.88)

VMS Run Time -vms (see Section 3.98)

Warning Messages at
Compile Time

-error_limit num, -noerror_limit (see Section 3.35)
-v (see Section 3.96)
-warn keyword
-w1 (see Section 3.100)
-warning_severity (see Section 3.101)

3.3 -align keyword — Data Alignment
Use the -align keyword options to control the alignment of fields associated
with common blocks, derived-type structures, and record structures.

If you omit the -align keyword, -fast, and -vms options:

• Individual data items (not part of a common block or other structure) are
naturally aligned.

• Fields in derived-type (user-defined) structures (where the SEQUENCE
statement is omitted) are naturally aligned.

• Fields in Compaq Fortran record structures are naturally aligned.

3–6 f90 and fort Command-Line Options

• Data items in common blocks are not naturally aligned, unless data
declaration order has been planned and checked to ensure that all data
items are naturally aligned.

Although Compaq Fortran always aligns local data items on natural
boundaries, certain data declaration statements and unaligned arguments
can force unaligned data.

Note

For optimal performance on Alpha systems, make sure your data is
aligned naturally (see Section 5.4).

The compiler issues messages when it detects unaligned data (unless
you specify -warn noalignments). For information about the causes of
unaligned data and detection at run time, see Section 5.4, Data Alignment
Considerations.

If necessary, you can specify either -align records or -align norecords on
the same command line as one of the following: -align nocommons, -align
commons, or -align dcommons. For example:

% f90 -align dcommons -align norecords main.f90

If you specify -fast and omit the -align keyword options, the compiler uses:
-align dcommons -align records -align sequence

If you specify -vms and omit the -fast and -align keyword options, the
compiler uses:
-align commons -align norecords -align nosequence

If no -align option is specified, the default is -align records, which is the
same as specifying -align rec8byte.

The following options apply:

-align all
Tells the compiler to add padding bytes wherever possible to obtain the natural
alignment of data items in common blocks and structures.

-align all essentially turns on these options: -align nocommons, -align
dcommons, -align records, -align sequence, -align norec1byte, -align
norec2byte, -align norec4byte, and -align norec8byte.

-align commons
Aligns the data items of all common blocks on natural boundaries up to 4 bytes.
The default is -align nocommons.

f90 and fort Command-Line Options 3–7

-align dcommons
Aligns the data items of all common blocks on natural boundaries up to 8 bytes
instead of the default byte boundary.

The default is -align nodcommons.

If your command line includes the -std, -std90, or -std95 options, then the
compiler ignores -align dcommons. See Section 3.85.

-align none
Tells the compiler not to add padding bytes anywhere in common blocks or
structures.

-align none essentially turns on these options: -align nocommons, -align
nodcommons, -align norecords, -align nosequence, -align norec1byte,
-align norec2byte, -align norec4byte, and -align norec8byte.

-align recNbyte
Aligns fields of records and components of derived types on the smaller of
the size boundary specified (N can be 1, 2, 4, or 8) or the boundary that will
naturally align them.

Specifying -align recNbyte does not affect whether common blocks are
naturally aligned or packed.

-align norecords
Aligns fields witin record structures and components of derived types on the
next available byte boundary instead of the default natural boundaries.

The default is -align records, which requests alignment of the fields of all
derived-type data and RECORD data blocks on natural boundaries up to 8
bytes.

-align sequence
Tells the compiler that components of derived types with the SEQUENCE
attribute will obey whatever alignment rules are currently in use. The default
alignment rules align unsequenced components on natural boundaries.

The default value of -align nosequence means that components of derived
types with the SEQUENCE attribute will be packed, regardless of whatever
alignment rules are currently in use.

Specifying -fast sets -align sequence so that components of derived types
with the SEQUENCE attribute will be naturally aligned for improved
performance. Specifying -align all also sets -align sequence. If your
command line includes the -std, -std90, or -std95 options, then the compiler
ignores -align sequence. See Section 3.85.

3–8 f90 and fort Command-Line Options

For More Information:

• On general performance guidelines, see Section 5.7, Additional Source Code
Guidelines for Run-Time Efficiency.

• On alignment, see Section 5.4, Data Alignment Considerations.

• On intrinsic data types, see Chapter 9, Data Types and Representation.

3.4 -annotations keyword — Place Optimization Information
in Source Listing

The -annotations keyword option specifies that annotations will be added
to the source listing file. These annotations indicate which of a set of
optimizations the compiler applied to particular parts of the source file. Note
that some of the values of keyword below may exist for optimizations that
are not supported on your platform. If so, the source listing file contains no
corresponding annotations.

You can view the resulting annotations in the source listing file to see what
optimizations the compiler performed or why the compiler was not able to
optimize a particular code sequence.

The default is -noannotations, which places no annotations in the source
listing file.

The -annotations option requires a keyword.

The following options apply:

-annotations none
Same as -noannotations, which is the default value.

-annotations all
Selects all of the annotations.

-annotations code
Annotates the machine code listing with descriptions of special instructions
used for prefetching, alignment, and so on.

-annotations detail
Provides, where available, an additional level of annotation detail.

-annotations feedback
Annotates the source listing if profile-directed feedback optimizations were
used.

f90 and fort Command-Line Options 3–9

-annotations inlining
Indicates where code for a called procedure was expanded inline.

-annotations loop_transforms
Indicates where advanced loop nest optimizations have been applied to improve
cache performance (unroll and jam, loop fusion, loop interchange, and so on).

-annotations loop_unrolling
Indicates where a loop was unrolled (contents expanded multiple times).

-annotations prefetching
Indicates where special instructions were used to reduce memory latency.

-annotations shrinkwrapping
Annotates the source listing if code establishing routine context was removed.

-annotations software_pipelining
Indicates where instructions have been rearranged to make optimal use of the
processor’s functional units. See Section 5.8.6, Software Pipelining.

-annotations tail_calls
Indicates an optimization where a call from one routine to another can be
replaced with a jump.

-annotations tail_recursion
Indicates an optimization that eliminates unnecessary routine context for a
recursive call.

3.5 -arch keyword — Specify Type of Code Instructions
Generated

Use the -arch keyword option to specify the type of Alpha architecture code
instructions to be generated for the program unit being compiled.

Compaq Tru64 UNIX provides an operating system kernel that includes an
instruction emulator. This emulator allows new instructions, not implemented
on the host processor chip, to execute and produce correct results. Applications
using emulated instructions will run correctly, but may incur significant
software emulation overhead at run time.

All Alpha processors implement a core set of instructions. Certain Alpha
processor versions include additional instruction set extensions, such as:

BWX - Byte/Word manipulation instructions
MAX - Multimedia instructions

3–10 f90 and fort Command-Line Options

FIX - Square root and floating-point conversion
CIX - Count

If you omit the -arch keyword, -arch generic is used.

The following options apply:

-arch generic
Generates instructions that are appropriate for most Alpha processors. This is
the default.

Programs compiled with the generic keyword run on all implementations of
the Alpha architecture without any instruction emulation overhead.

-arch host
Generates instructions for the machine the compiler is running on (for
example, ev56 instructions on an ev56 processor and ev4 instructions on an
ev4 processor).

Programs compiled with the host keyword run on other implementations of
the Alpha architecture might encounter instruction emulation overhead.

-arch ev4
Generates instructions for ev4 processors (for 21064, 20164A, 21066, and 21068
chips).

Applications compiled with this option will not incur any emulation overhead
on any Alpha processor.

-arch ev5
Generates instructions for ev5 processors (some 21164 chips that use only the
base set of Alpha instructions, with no extensions).

Applications compiled with this option will not incur any emulation overhead
on any Alpha processor.

-arch ev56
Generates instructions for ev56 processors (the 21164 chips that use the BWX
extension).

This option permits the compiler to generate any ev4 instruction plus any
instruction contained in the BWX extension.

Applications compiled with this option might incur emulation overhead on ev4
and ev5 processors, but will still run correctly.

-arch pca56
Generates instructions for pca56 processors (21164PC chips).

f90 and fort Command-Line Options 3–11

This option permits the compiler to generate any ev4 instruction plus any
instruction contained in the BWX or MAX extension.

Applications compiled with this option may incur emulation overhead on ev4,
ev5, and ev56 processors, but will still run correctly.

-arch ev6
Generates instructions for ev6 processors (21264 chips).

This option permits the compiler to generate any ev6 instruction, including
instructions contained in the BWX, MAX, and FIX extensions.

Applications compiled with this option may incur emulation overhead on ev4,
ev5, ev56, and pca56 processors, but will still run correctly.

-arch ev67
Generates instructions for ev67 processors (21264A chips).

This option permits the compiler to generate any ev67 instruction, including
instructions contained in the BWX, MAX, FIX, and CIX extensions.
Applications compiled with this option may incur emulation overhead on
ev4, ev5, ev56, ev6, and pca56 processors, but will still run correctly.

3.6 -assume buffered_io — Buffered Output
Use the -assume buffered_io option so that, at run time, the default value
BUFFERED=’YES’ applies to opening sequential output files. As a result,
write statements to these disk files will first fill buffers with data before the
run-time library routines move it to the files and empty the buffers.

The default value is -assume nobuffered_io. Its effect is to have the run-time
library routines move data to sequential disk files immediately.

For More Information:

• See Section 5.6.7, Efficient Use of Record Buffers and Disk I/O.

3.7 -assume byterecl — Units for Unformatted File Record
Length

Specifying the -assume byterecl option:

• Indicates that the OPEN statement RECL value for unformatted files is
in byte units. If you omit -assume byterecl, Compaq Fortran expects
the OPEN statement RECL value for unformatted files to be in longword
(4-byte) units.

3–12 f90 and fort Command-Line Options

• Returns the record length value for an INQUIRE by output item list
(unformatted files) in byte units. If you omit -assume byterecl, Compaq
Fortran returns the record length for an INQUIRE by output item list in
longword (4-byte) units.

• Returns the record length value for an INQUIRE by unit or file name
(unformatted files) in byte units if all of the following occur:

You had specified -assume byterecl for the code being executed

The file was opened with an OPEN statement and a RECL specifier

The file is still open (connected) when the INQUIRE occurs.

If any one of the preceding conditions are not met, Compaq Fortran returns
the RECL value for an INQUIRE in longword (4-byte) units.

The default is -assume nobyterecl.

For More Information:

• On converting and using nonnative unformatted data files, see Chapter 10.

• On the INQUIRE statement, see Section 7.6.

3.8 -assume cc_omp — Enable Conditional Compilation for
OpenMP

(TU*X only) This option enables conditional compilation as defined by the OpenMP
Fortran API. (When !$space appears in free-form source or !$spaces appears
in column 1 of fixed-form source, the rest of the line is accepted as a Fortran
line.)

If -omp is specified, the default is -assume cc_omp; otherwise, the default is
-assume nocc_omp.

3.9 -assume dummy_aliases — Dummy Variable Aliasing
If you specify the -assume dummy_aliases option, the compiler must assume
that dummy (formal) arguments to procedures share memory locations with
other dummy arguments or with variables shared through use association, host
association, or common block use.

These program semantics do not strictly obey the Fortran 95/90 standards and
they slow performance.

f90 and fort Command-Line Options 3–13

If you omit -assume dummy_aliases, the compiler does not need to make these
assumptions, which results in better run-time performance. However, omitting
-assume dummy_aliases can cause some programs that depend on such aliases
to fail or produce wrong answers.

You only need to compile the called subprogram with -assume dummy_aliases.

If you compile a program that uses dummy aliasing with -assume
nodummy_aliases in effect, the run-time behavior of the program becomes
unpredictable. In such programs, the results depend on the exact optimizations
that are performed. In some cases, normal results occur; however, in other
cases, results differ because the values used in computations involving the
offending aliases differ.

The default is -assume nodummy_aliases.

For More Information:

• See Section 5.9.8, Dummy Aliasing Assumption.

3.10 -assume gfullpath — Source File Path for Debugging
The -assume gfullpath option includes the full source file path in debugger
information.

The default is -assume nogfullpath.

3.11 -assume minus0 — Standard Semantics for Minus Zero
The -assume minus0 option tells the compiler to use Fortran 95 standard
semantics for the treatment of IEEE floating value ���� in the SIGN intrinsic.
This applies if the processor is capable of differentiating ���� from ����.

The default is -assume nominus0, which tells the compiler to use Fortran 90/77
standard semantics in the SIGN intrinsic to treat ���� and ���� as ���.

3.12 -assume noaccuracy_sensitive, -fp_reorder — Reorder
Floating-Point Calculations

Specifying -assume noaccuracy_sensitive allows the compiler to reorder
code based on algebraic identities (inverses, associativity, and distribution) to
improve performance. The numeric results can be slightly different from the
default (-assume accuracy_sensitive) because of the way intermediate results
are rounded.

The -assume noaccuracy_sensitive and -fp_reorder options are synonymous.

3–14 f90 and fort Command-Line Options

If you omit -assume noaccuracy_sensitive and omit -fast, the compiler
uses a limited number of rules for calculations, which might prevent some
optimizations.

The default is -assume accuracy_sensitive or -no_fp_reorder (unless -fast
was specified).

For More Information:

• See Section 5.9.7, Arithmetic Reordering Optimizations.

3.13 -assume noprotect_constants — Remove Protection
from Constants

The -assume noprotect_constants option tells the compiler to pass a copy of a
constant actual argument. As a result, the called routine can modify this copy,
even though the Fortran standard prohibits such modification. The calling
routine does not modify the constant.

The default is -assume protect_constants, which results in passing of a
constant actual argument. Any attempt to modify it results in an error.

3.14 -assume nosource_include — INCLUDE file search
This option determines where the compiler searches for INCLUDE files.

If you specify -assume nosource_include, the compiler searches the default
directory for INCLUDE files (the same as if -vms is used).

The default is -assume source_include, which instructs the compiler to search
the directory where the source files are located.

3.15 -assume nounderscore — Underscore on External
Names

Specifying -assume nounderscore prevents the compiler from appending an
underscore (_) to the following external user-defined names:

• The main program name

• Named common blocks

• BLOCK DATA blocks

• Names implicitly or explicitly declared external

The name of a blank (unnamed) common block remains _BLNK_ _ and Compaq
Fortran intrinsic names remain the same.

f90 and fort Command-Line Options 3–15

You can also use the cDEC$ ATTRIBUTES ALIAS directive to change how
individual external names are spelled.

The default is -assume underscore, in which case Compaq Fortran appends an
underscore to calls to most external names.

3.16 -assume no2underscores — Two Underscores on
External Names

(L*X only) Specifying -assume no2underscores prevents the compiler from
appending two underscores (_ _) to the following external user-defined names:

• The main program name

• Named common blocks

• BLOCK DATA blocks

• Names implicitly or explicitly declared external

The name of a blank (unnamed) common block remains _BLNK_ _ and Compaq
Fortran intrinsic names remain the same.

You can also use the cDEC$ ATTRIBUTES ALIAS directive to change how
individual external names are spelled.

The default is -assume 2underscores, in which case Compaq Fortran appends
two underscores to calls to most external names.

If -assume nounderscore is specified, -assume 2underscores and -assume
no2underscores are ignored.

3.17 -assume pthreads_lock — Thread Lock Selection for
Parallel Execution

(TU*X only) The -assume pthreads_lock option lets you select the kind of locking
used for an unnamed critical section (under -mp and -omp). In the rare event
that your program should need more restrictive locking, use this option to set
_OtsPthreadLock, which locks out other pthreads in addition to all critical
sections.

The default is -assume nopthreads_lock, which results in much faster
compile times. Using the default creates a bifcall (enter_critical) to set
_OtsGlobalLock, which does not lock out other pthreads, but does provide a
single lock for all unnamed critical sections.

3–16 f90 and fort Command-Line Options

3.18 -automatic, -static — Local Variable Allocation
The -automatic and -static options control how local variables are allocated.

Specifying -automatic puts local variables on the run-time stack. Specifying
-automatic sets -recursive.

Specifying -static causes all local variables to be statically allocated.

A subprogram declared with the RECURSIVE keyword is always recursive
(whether you specify or omit the -static option).

The default is -static or -noautomatic.

3.19 -c — Inhibit Linking and Retain Object File
Use the -c option to suppress the loading phase of the compilation and force
an object file to be produced even if only one program is compiled. If you omit
-c, the linker creates an executable program and any temporary object files are
deleted.

If you specify the -o output option with the -c option and multiple Fortran
files, a single .o file is created, allowing full interprocedure optimizations.

However, if you specify multiple source files and the -c option without
the -o output option, multiple object files are created and interprocedure
optimizations do not occur.

3.20 -call_shared, -non_shared, -shared — Shared Library
Use

These options relate to shared libraries.

The default is -call_shared.

The following options apply:

-call_shared
Causes the linker to search for unresolved references in shared libraries (.so
files) before archive libraries (.a files).

If the unresolved reference is found in the shared library, the unresolved
reference is resolved when the program is run (during program loading),
reducing executable program size. For more information on related options,
see Section 2.5.2.

f90 and fort Command-Line Options 3–17

-non_shared
Requests that the linker search only in archive libraries (.a files) for
unresolved references; shared library (.so) files are not searched. Object
files (.o suffix) from archives are included in the executable produced.

-shared
Produces a dynamic shareable object that can be included into a shared library.
This includes creating all of the tables for run-time linking and resolving
references to other specified shared objects. The object created can be used by
the linker to produce a shareable object that other dynamic executables can
use at run time. To explicitly name the resulting object file or shared library,
use the -o option.

If you also specify the -c option when you use -shared, a .o file is created;
otherwise, a .so file is created.

For More Information:

• See Section 2.5.2, Specifying Types of Object Libraries.

• See Section 2.6, Creating Shared Libraries.

3.21 -ccdefault keyword — Carriage Control for Terminals
The -ccdefault keyword options specify default carriage control when a
terminal displays a file.

The following options apply:

-ccdefault fortran
Results in normal Fortran interpretation of the first character, such as the
character ‘‘0’’ resulting in a blank line before output.

-ccdefault list
Results in one line feed between records.

-ccdefault none
Results in no carriage-control processing.

-ccdefault default
Specifies that the compiler is to use the default carriage-control setting. This
is the default value of -ccdefault.

3–18 f90 and fort Command-Line Options

This default setting can be affected by the -vms option as follows:

• If -vms -ccdefault default is specified and the file is formatted and the
unit is connected to a terminal, then normal Fortran interpretation of the
first character occurs (same as -ccdefault fortran).

• If -novms -ccdefault default is specified, then LIST carriage control
occurs (same as -ccdefault list).

3.22 -check arg_temp_created — Check for Copy of
Temporary Arguments

Specifying -check arg_temp_created generates code to check if actual
arguments are copied into temporary storage before routine calls. If a copy is
made at run time, an informative message is displayed.

The default is -check noarg_temp_created.

3.23 -check bounds, -C, -check_bounds — Boundary
Run-Time Checking

Specifying -check bounds or -C or -check_bounds (all are synonymous)
generates code to perform run-time checks on array subscript and character
substring expressions. A run-time message is reported if the expression is
outside the addresses of the dimension of the array or outside the length of the
string.

The default (-check nobounds) suppresses range checking.

For array bounds, each individual dimension is checked. Array bounds
checking is not performed for arrays that are dummy arguments in which
the last dimension bound is specified as * or when both upper and lower
dimensions are 1.

Once the program is debugged, omit this option to reduce executable program
size and slightly improve run-time performance.

3.24 -check format — Format Mismatches at Run Time
Specifying -check format issues the run-time FORVARMIS fatal error when
the data type of an item being formatted for output does not match the format
descriptor being used (for example, a REAL*4 item formatted with an I edit
descriptor).

f90 and fort Command-Line Options 3–19

Specifying -check noformat disables the run-time message associated with
format mismatches (number 61). It also requests that the data item be
formatted using the specified descriptor, unless the length of the item cannot
accommodate the descriptor. (For example, it is still an error to pass an
INTEGER*2 item to an E edit descriptor.) Specifying -check noformat allows
such format mismatches as a REAL*4 item formatted with an I edit descriptor.

If you specify the -vms option, the default is -check format. Otherwise, the
default is -check noformat.

3.25 -check nopower — Allow Special Floating-Point
Expressions

Specifying -check nopower allows certain arithmetic expressions containing
floating-point numbers and exponentiation to be evaluated and return a result
rather than causing the compiler to display a run-time message and stop the
program. The specific arithmetic expressions include:

• 0.0 ** 0.0

• negative-value ** integer-value-of-type-real

For example, if you specify -check nopower, the calculation of the expression
0.0 ** 0.0 results in 1. The expression (–3.0) ** 3.0 results in –27.0.

The default is -check power, which means that for such expressions, an
exception occurs, error message number 65 is displayed, and the program
stops.

3.26 -check omp_bindings — OpenMP Fortran API Binding
Rules Checking

(TU*X only) Specifying -check omp_bindings provides run-time checking to
enforce the binding rules for OpenMP Fortran API compiler directives. When
this option is in effect, the Compaq Fortran compiler issues an error message if
your program attempts any of the following actions:

• Enter a DO, SINGLE, or SECTIONS directive if already in a work-sharing
construct, a CRITICAL SECTION, or a MASTER.

• Execute a BARRIER directive if already in a work-sharing construct, a
CRITICAL SECTION, or a MASTER.

• Execute a MASTER directive if already in a work-sharing construct.

• Execute an ORDERED directive if already in a CRITICAL SECTION.

• Execute an ORDERED directive unless already in an ORDERED DO.

3–20 f90 and fort Command-Line Options

Additionally, the following conditions apply:

• -omp implies -check omp_bindings

• -fast -omp implies -check noomp_bindings, regardless of the placement of
-fast

• If you want the checking done on -mp, specify -check omp_bindings
explicitly

The default is -check noomp_bindings.

For More Information:

• On using OpenMP Fortran API compiler directives, see Section 6.1.

• On rules that apply to dynamic binding of these directives, see the Compaq
Fortran Language Reference Manual.

3.27 -check output_conversion — Truncated Format
Mismatches at Run Time

Specifying -check output_conversion issues the run-time OUTCONERR
continuable error message when a data item is too large to fit in a designated
format descriptor field. The field is filled with asterisks (*) and execution
continues.

Specifying -check nooutput_conversion disables the run-time message
(number 63) associated with format truncation. Error number 63 occurs when
a number could not be output in the specified format field length without loss
of significant digits (format truncation).

If you specify the -vms option, the default is -check output_conversion.
Otherwise, the default is -check nooutput_conversion.

3.28 -check overflow — Integer Overflow Run-Time Checking
Specifying -check overflow requests that all integer calculations (INTEGER,
INTEGER with a kind parameter, or INTEGER with a length specifier) be
checked for arithmetic overflow at run time. Real and complex calculations are
always checked for overflow and are not affected by -check overflow.

If the check reveals that the code caused arithmetic overflow, an error message
is displayed at run time, program execution stops, and a core dump occurs.

Once the program is debugged, omit this option to reduce executable program
size and slightly improve run-time performance.

The default is -check nooverflow.

f90 and fort Command-Line Options 3–21

3.29 -check underflow — Floating-Point Underflow Run-Time
Checking

(TU*X only) Specifying -check underflow displays a run-time warning message
(maximum of twice) when a floating-point underflow occurs.

Floating-point underflow is allowed to continue if the -fpe3 or -fpe4 option
was specified; otherwise, the underflow value is replaced by zero. A count
of how many occurrences of each type of exception is displayed on program
completion.

The default is -check nounderflow.

For More Information:

• On underflow ranges for floating-point data types, see Section 9.4, Native
IEEE Floating-Point Representations and Exceptional Values.

• On controlling floating-point exception handling, see Section 3.44.

3.30 -convert keyword — Unformatted Numeric Data
Conversion

The -convert keyword options determine which format is used to read and
write unformatted files.

Numeric data in an unformatted file is expected to be in native little endian
integer and little endian IEEE S_float, T_float, and X_float floating-point
formats, unless handled otherwise by the application.

You can specify the unformatted data format for specific unit numbers by
using the OPEN statement CONVERT specifier or by setting the appropriate
FORT_CONVERTn environment variable.

The default is -convert native.

The following options apply:

-convert big_endian
Specifies that unformatted data will be in big endian format of the appropriate
size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
IEEE floating point format for REAL*4, REAL*8, REAL*16, COMPLEX*8,
COMPLEX*16, or COMPLEX*32

Note that INTEGER*1 data is the same for little endian and big endian.

3–22 f90 and fort Command-Line Options

-convert cray
Specifies that unformatted data will be in big endian format of the appropriate
size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
CRAY floating-point format for REAL*8 or COMPLEX*16

-convert fdx
Specifies that unformatted data will be in little endian format of the
appropriate size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
Compaq VAX™ floating-point format F_floating for REAL*4 or
COMPLEX*8, D_floating for REAL*8 or COMPLEX*16, and X_floating for
REAL*16 or COMPLEX*32

-convert fgx
Specifies that unformatted data will be in little endian format of the
appropriate size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
Compaq VAX floating-point format F_floating for REAL*4 or COMPLEX*8,
G_floating for REAL*8 or COMPLEX*16, and X_floating for REAL*16 or
COMPLEX*32

-convert ibm
Specifies that unformatted data will be in big endian format of the appropriate
size:

INTEGER*1, INTEGER*2, or INTEGER*4
IBM System\370 floating-point format for REAL*4 or COMPLEX*8 (IBM
short 4) and for REAL*8 or COMPLEX*16 (IBM long 8)

-convert little_endian
Specifies that unformatted data will be in native RISC little endian format of
the appropriate size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
IEEE floating-point format for REAL*4, REAL*8, REAL*16, COMPLEX*8,
COMPLEX*16, or COMPLEX*32

Note that INTEGER*1 data is the same for little endian and big endian.

Using -convert little_endian produces the same results as -convert native.

-convert native
Specifies that unformatted data should not be converted.

f90 and fort Command-Line Options 3–23

This is the default.

-convert vaxd
Specifies that unformatted data will be in little endian format of the
appropriate size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
Compaq VAX floating-point format F_floating for REAL*4 or COMPLEX*8,
D_floating for REAL*8 or COMPLEX*16, and H_floating for REAL*16 or
COMPLEX*32

-convert vaxg
Specifies that unformatted data will be in little endian format of the
appropriate size:

INTEGER*1, INTEGER*2, INTEGER*4, or INTEGER*8
Compaq VAX floating-point format F_floating for REAL*4 or COMPLEX*8,
floating-point format G_floating for REAL*8 or COMPLEX*16, and H_
floating for REAL*16 or COMPLEX*32

For More Information:

• On converting unformatted files, including using the OPEN statement
CONVERT specifier and using FORT_CONVERTn environment variables,
see Chapter 10.

• On native data types, see Chapter 9.

• On OpenVMS floating-point data types, see Section A.4.3.

3.31 -cpp and Related Options — Run C Preprocessor
Specifying -cpp runs the C preprocessor cpp on all Fortran source files before
compiling.

The default is -nocpp.

The following cpp macros are defined by the f90 command when any .f90,
.F90, .f, .F, .for, or .FOR file is being compiled:

LANGUAGE_FORTRAN_90 (UN*X only)

_ _LANGUAGE_FORTRAN_90_ _ (UN*X only)

LANGUAGE_FORTRAN (UN*X only)

_ _LANGUAGE_FORTRAN_ _ (UN*X only)

linux (L*X only)

_ _linux_ _ (L*X only)

_ _alpha
_ _osf_ _ (UN*X only)

3–24 f90 and fort Command-Line Options

unix (UN*X only)

_ _unix_ _ (UN*X only)

_ _OPENMP if -omp is specified (UN*X only)

If you omit -cpp and -P, the cpp preprocessor is not run unless the file name
suffix is .F or .FOR (for fixed-form source files) or .F90 (for free-form source
files).

If you specify -cpp or -P, you can also specify these options:

• Section 3.32, -Dname, -Dname=def, -Dname="string" — Define Symbol
Names

• Section 3.51, -I — Remove Directory from Include Search Path

• Section 3.52, -Idir — Add Directory for Module and Include File Search

• Section 3.56, -K — Keep Temporary Files

• Section 3.92, -Uname — Undefine Preprocessor Symbol Name

For More Information:

• On cpp and its options, see cpp(1).

• On the options the f90 command passes to the cc driver program (which
do not usually apply to Compaq Fortran files), see Section 2.2.2.

• On recognized file name suffix characters and their meanings, see
Section 2.1.1, File Suffixes and Source Forms.

3.31.1 -M — Request cpp Dependency Lists for make
Specifying -M requests that cpp generate dependency lists suitable for make,
instead of the normal output.

3.31.2 -P — Retain cpp Intermediate Files
Specifying -P runs only the cpp preprocessor and puts the result for each
source file in an intermediate file, after processing by any appropriate
preprocessors. The intermediate file does not have line numbers (#) in
it.

The following naming convention is used: .f file results are put into .i files.
.f90 file results are put into .i90 files.

This option sets the -cpp option.

f90 and fort Command-Line Options 3–25

3.31.3 -Wp,-xxx — Pass Specified Option to cpp
The -Wp,-xxx option allows you to pass an option (specified by xxx) directly
to the cpp preprocessor. This is useful for options that the driver does not
normally pass to the preprocessor.

For example, to pass -C -M to cpp, use:

-Wp,-C,-M

The -Wp option does not invoke cpp. Use -cpp to invoke cpp.

3.32 -Dname, -Dname=def, -Dname="string" — Define
Symbol Names

Specifying -Dname or -Dname=def or -Dname="string" defines name for use by
either the cpp preprocessor or by Fortran conditional compilation.

When name=def is used for Fortran conditional compilation, def can be an
integer string or a character string delimited by double quotation marks as
in -Dvehicle_type="red convertible". When name=def is used for the cpp
preprocessor, the definition is interpreted as if by #define. Regardless of the
usage, if no definition is given, then name is defined as ‘‘1’’.

For example:

% f90 -Dnum=4 -Dber -Dclock="the time" foo.f90

In this example, num is the integer 4, ber is ‘‘1’’, and clock is the string
‘‘the time’’.

Preprocessor symbols can be used for conditional compilation by using the
cDEC$ IF directive construct (see the Compaq Fortran Language Reference
Manual) or by using cpp. Predefined preprocessor symbols are defined in
Section 3.31.

Specifying -noD prevents the compiler from receiving any -Dname or -Uname
options. (The default is to allow the compiler to receive these options.)
However, the cpp preprocessor always receives these options.

For More Information:
On the C preprocessor, see cpp(1).

3–26 f90 and fort Command-Line Options

3.33 -d_lines — Debugging Statement Indicator, Column 1
Use the -d_lines option to request that lines in fixed-format source files
that have a D or a d character in column 1 be compiled instead of treated as
comment lines. Such lines might print the values of variables or otherwise
provide useful debugging information.

The -d_lines option does not apply to free-format files.

The default (-nod_lines) treats all lines with a D or a d in column 1 as
comment lines.

3.34 -double_size 128, -double_size 64 — Double Precision
Data Size

Use the -double_size 128 option to specify the size of DOUBLE PRECISION
declarations, constants, functions, and intrinsics as REAL*16 and DOUBLE
COMPLEX declarations, constants, functions, and intrinsics as COMPLEX*32.

The default is -double_size 64, where DOUBLE PRECISION declarations,
constants, functions, and intrinsics are specified as REAL*8 and DOUBLE
PRECISION COMPLEX declarations, constants, functions, and intrinsics as
COMPLEX*16.

3.35 -error_limit num, -noerror_limit — Limit Error Messages
Use the -error_limit num and -noerror_limit options to specify the
maximum number of error-level or fatal-level compiler errors allowed for a
given file specified on the command line.

If -c is specified on the command line and the maximum number of errors is
reached, a warning message is issued and the next file (if any) on the command
line is compiled.

If -c is not specified, a warning message is issued and compilation terminates.

If you specify -noerror_limit, there is no limit on the number of errors that
are allowed.

The default is -error_limit 30, or a maximum of 30 error-level and fatal-level
messages.

f90 and fort Command-Line Options 3–27

3.36 -extend_source — Line Length for Fixed-Format Source
Specifying -extend_source treats the statement field of each source line as
ending in column 132 instead of column 72.

The default (-noextend_source or -col72) specifies 72-column lines.

Specifying -extend_source sets the -fixed option.

Specifying -extend_source or -col132 sets the source to fixed format even if
implicit naming rules set it to free format.

For More Information:

• On recognized file name suffix characters and their relationship to fixed
and free source formats, see Section 2.1.1.

• On column positions and more complete information on the fixed and free
source formats, see the Compaq Fortran Language Reference Manual.

3.37 -f66, -66, -nof77, -onetrip, -1 — Use FORTRAN 66
Semantics

Specifying -f66, -66, -nof77, -onetrip, or -1 (all are synonymous) tells the
compiler to select FORTRAN 66 (FORTRAN IV) interpretations in cases of
incompatibility.

This option applies the following FORTRAN 66 semantics:

• DO loops are always executed at least once.

• FORTRAN 66 EXTERNAL statement syntax and semantics are allowed.
See the Compaq Fortran Language Reference Manual.

• In the OPEN statement:

If the BLANK specifier is omitted, the default is BLANK=’ZERO’.

If the STATUS specifier is omitted, the default is STATUS=’NEW’.

The default is -nof66, which specifies that FORTRAN 77 interpretation
rules are used for those statements that have a meaning incompatible with
FORTRAN 66. Thus, DO loops whose lower range exceeds the upper range will
not be executed.

3–28 f90 and fort Command-Line Options

3.38 -f77, -nof66 — Use FORTRAN 77 Semantics
Specifying -f77 or -nof66 (they are synonymous) enforces FORTRAN 77
semantics instead of FORTRAN 66 semantics.

In Fortran F90, the default is to apply Fortran 95/90 semantics.

3.39 -f77rtl — Use Fortran 77 Run-Time Behavior
Specifying -f77rtl tells the compiler to create an executable file whose
run-time behavior is that of Compaq Fortran 77 instead of Compaq Fortran.

Specifying this option controls control the following run-time behavior:

• When the unit is not connected to a file, some INQUIRE specifiers will
return different values:

NUMBER returns 0

ACCESS returns ’UNKNOWN’

BLANK returns ’UNKNOWN’

FORM returns ’UNKNOWN’

• List-directed input for character strings must be delimited by apostrophes
or quotation marks, or an error will result.

• When processing NAMELIST input:

Column 1 of each record is skipped.

The ’$’ or ’&’ that appears prior to the group-name must appear in
column 2 of the input record.

The default is -nof77rtl.

3.40 -fast — Set Options to Improve Run-Time Performance
Specifying -fast sets the following options:

• -align dcommons (see Section 3.3). However, if any of the -std options are
set (see Section 3.85), then the compiler ignores -align dcommons.

• -align sequence (see Section 3.3). However, if any of the -std options are
set (see Section 3.85), then the compiler ignores -align sequence.

• -arch host (see Section 3.5)

• -assume bigarrays (TU*X only) (see Section 3.50.1)

• -assume noaccuracy_sensitive (same as -fp_reorder; see Section 3.12)

f90 and fort Command-Line Options 3–29

• -assume nozsize (TU*X only) (see Section 3.50)

• -math_library fast (see Section 3.61)

• -O4 (reinforced as the default; see Section 3.72)

• -tune host (see Section 3.90)

Avoid using the -fast option unless you understand the options that -fast
sets. For example, the -fast option sets the -assume noaccuracy_sensitive
and -math_library fast options, which can change the calculated results of a
program.

Also, before you use -fast with the -hpf option, first make sure your program
does not use any zero-sized arrays or array sections (see Section 3.50). And,
while the setting of -arch host and -tune host generates optimal code for the
computer architecture on which the compiler is running, this code may run
slowly on another version of the computer architecture.

The default is -nofast.

3.41 -feedback file, -gen_feedback, -cord — Create and Use
Feedback Files

Note

These options apply only to Tru64 UNIX systems.

These options allow the creation and use of a feedback file, which can improve
run-time performance. You can optionally use cord to rearrange procedures.

You create a feedback file by using a series of commands, including f90 with
the -gen_feedback option, pixie (TU*X only), and prof. (See Section 5.3.5.)

The options are:

-cord
Runs the cord procedure-rearranger cord after the linker creates the
executable program. This rearrangement reduces the cache conflicts of
the program’s text. The output of cord is left in the file specified by the -o
output option (or a.out by default). At least one -feedback file must be
specified.

-feedback file
Specifies the file to be used by -cord or the compiler for further optimizations.

3–30 f90 and fort Command-Line Options

This file is produced by the prof command with its -feedback option from an
execution of the program produced by the pixie command (TU*X only).

-gen_feedback
Directs the compiler to generate code that will produce accurate feedback
information when profiled.

For example:

f90 -gen_feedback -o x x.f
pixie x
x.pixie
prof x -pixie -feedback x.fb x.Addrs x.Counts
f90 -feedback x.fb -O5 -fast -o x x.f

Using -gen_feedback changes the default optimization level from -O4 to -O0.
Avoid using -gen_feedback with optimizations higher than -O3.

For More Information:

• On using cord, see Section 5.3.5.

• On profiling options, see Section 3.77.

• On timing program execution, see Section 5.2.

3.42 -fixed, -free — Fortran Source Format
Use the -fixed and -free options to specify the source format:

-fixed
Specifies that the source file is fixed format, regardless of the file name suffix.

Note that source files with a suffix of .f, .for, .F, .FOR, or .i are assumed to
be fixed format.

-free
Specifies that the source file is free format, regardless of the file name suffix.

Note that source files with a suffix of .f90, .F90, or .i90 are assumed to be
free format.

You cannot specify both -free and -fixed on the same command line.

Table 3–2 summarizes how the -free and -fixed options interact with the file
suffix of a source file.

f90 and fort Command-Line Options 3–31

Table 3–2 Interaction of File Suffix and the -free and -fixed Options on Source
Form

Suffix -free Option -fixed Option Expected Source Form

.f90, .F90, .i90 Not specified Not specified Free form

.f90, .F90, .i90 Specified Not specified Free form

.f90, .F90, .i90 Not specified Specified Fixed form

.f, .F, .for, .FOR, .i Not specified Not specified Fixed form

.f, .F, .for, .FOR, .i Specified Not specified Free form

.f, .F, .for, .FOR, .i Not specified Specified Fixed form

For More Information:

• On recognized file name suffix characters and their relationship to fixed
and free source formats, see Section 2.1.1, File Suffixes and Source Forms.

• On column positions and more complete information on the fixed and free
source formats, see the Compaq Fortran Language Reference Manual.

3.43 -fpconstant — Handling of Floating-Point Constants
Specifying -fpconstant requests that a single-precision constant assigned to a
double-precision variable be evaluated in double precision.

If you omit -fpconstant, a single-precision constant assigned to a double-
precision variable is evaluated in single precision. The Fortran standard
requires that the constant be evaluated in single precision.

Certain programs created for FORTRAN-77 compilers (including Compaq
Fortran 77) may show different results, because they rely on single-precision
constants assigned to a double-precision variable to be evaluated in double
precision.

In the following example, if you specify -fpconstant, identical values are
assigned to D1 and D2. If you omit the -fpconstant option, Compaq Fortran
will obey the standard and assign a less precise value to D1.

REAL (KIND=8) D1, D2
DATA D1 /2.71828182846182/ ! REAL (KIND=4) value expanded to double
DATA D2 /2.71828182846182D0/ ! Double value assigned to double

3–32 f90 and fort Command-Line Options

3.44 -fpen — Control Arithmetic Exception Handling and
Reporting

Use the -fpe0, -fpe1 (TU*X only), -fpe2 (TU*X only), -fpe3, or -fpe4 (TU*X only)

options to control floating-point exception handling at run time for the main
program. This includes whether exceptional floating-point values are allowed
and how precisely run-time exceptions are reported.

Using these options, you can do the following:

• For floating-point calculations that result in overflow, division by zero, or
invalid data, you can request that the compiler:

Either stop program execution and perform a core dump (faster
run-time performance) or let the program continue with the
generated Infinity (+ or –) or NaN exceptional value (slower run-time
performance).

(TU*X only) Display or not display a message when the arithmetic
exception occurs.

Report exceptions closer to the instruction that caused the exception.

• For floating-point calculations that result in underflow (a denormalized
number; see Section 9.4), you can request that the compiler:

Either set the calculated underflowed (denormalized) value to zero (0)
or leave the denormalized value as is (slowest run-time performance).

(TU*X only) Display or not display a message when the arithmetic
exception occurs (you can also specify -check underflow).

For information on the underflow ranges for floating-point data types, see
Section 9.4.

• When a denormalized number or other exceptional number (positive
infinity, negative infinity, or a NaN) is present in an arithmetic expression,
you can request that the compiler:

Either stop program execution and perform a core dump (faster run-
time performance) or let the program continue with slower run-time
performance.

(TU*X only) Display or not display a message when the arithmetic
exception occurs.

To associate an exception with the instruction that causes the exception,
specify any value other than -fpe0 (or specify -synchronous_exceptions).

f90 and fort Command-Line Options 3–33

(TU*X only) Specifying -fpe2 or -fpe4 displays error messages indicating the
cause of the exceptions.

To allow source line correlation when using a debugger to locate the exception,
specify the -g option when compiling the program (see Chapter 4).

The default is -fpe0 or -fpe, which are synonymous.

The following options apply:

-fpe0, -fpe
Terminates a program if a floating-point operation results in overflow or
division by zero, or if the operands are exceptional values. Before termination,
a message is issued and a core dump file is created. If an operand is a
denormalized number, it is set to zero.

In the case of floating-point underflow, the program does not terminate, but
continues with the underflow value set to zero. On Tru64 UNIX systems, a
warning message is issued if -check underflow is set.

Examining the core file shows the exception one or more instructions
after the instruction that caused the exception (unless you also specified
-synchronous_exceptions).

To obtain the fastest run-time performance, use -fpe0. This is the default.
Using other -fpen values will slow run-time performance.

-fpe1
(TU*X only) Continues program execution and generates an Infinity or Nan if a
floating-point operation results in overflow, division by zero, or invalid data.

If an operand is a denormalized number, it is set to zero. In the case of
floating-point underflow, the underflow value is set to zero. A warning message
is issued if -check underflow is set.

-fpe2
(TU*X only) Continues program execution if a floating-point operation results in
overflow, division by zero, or invalid data. A warning message is generated for
the first two occurrences. If an operand is a denormalized number, it is set to
zero.

In the case of floating-point underflow, the underflow value is set to zero. On
program completion, a count of how many times each exception occurred is
displayed.

3–34 f90 and fort Command-Line Options

-fpe3
Continues program execution if a floating-point operation results in overflow,
division by zero, invalid data, or underflow. Calculated denormalized numbers
are left as is.

For underflow, the underflow value is not set to zero, and gradual underflow
occurs. On Tru64 UNIX systems, a warning message is issued if -check
underflow is set.

-fpe4
(TU*X only) Continues program execution if a floating-point operation results in
overflow, division by zero, invalid data, or underflow. A warning message is
generated for the first two occurrences. Calculated denormalized numbers are
left as is.

In the case of floating-point underflow, the underflow value is not set to zero
and gradual underflow occurs. On program completion, a count of how many
times each exception occurred is displayed.

3.44.1 Hints on Using These Options
Table 3–3 summarizes the floating-point exception handling options.

f90 and fort Command-Line Options 3–35

Table 3–3 Summary of Floating-Point Exception Command-Line Options

Option Handling of Underflow
Handling of Overflow, Division by
Zero, and Invalid Data

-fpe0,
-fpe

Sets any calculated denormalized value (result)
to zero and lets the program continue. Use of a
denormalized number in an arithmetic expression
uses a value of zero and execution continues.

(TU*X only) A message is displayed only if -check
underflow is also specified.

Exceptional values are not
allowed. The program terminates
after displaying a message and
creating a core dump file.

-fpe1
(TU*X only)

Sets any calculated denormalized value to
zero and lets the program continue. Use of a
denormalized number in an arithmetic expression
uses a value of zero and execution continues. A
message is displayed only if -check underflow
is also specified.

The program continues (no core
dump). No message is displayed.
A NaN or Infinity (+ or –)
exceptional value is generated.

-fpe2
(TU*X only)

Sets any calculated denormalized value to
zero and lets the program continue. Use of a
denormalized number in an arithmetic expression
uses a value of zero and execution continues. A
message is displayed (-check underflow is not
needed).

The program continues (no core
dump). A message is displayed a
maximum of twice for each type of
exception. A NaN or Infinity (+ or
–) is generated.

-fpe3 Leaves any calculated denormalized value as
is. The program continues, allowing gradual
underflow. Use of a denormalized number in
an arithmetic expression results in program
continuation, but with slower performance.

(TU*X only) A message is displayed only if -check
underflow is also specified.

The program continues (no core
dump). No message is displayed.
A NaN or Infinity (+ or –) is
generated.

-fpe4
(TU*X only)

Leaves any calculated denormalized value as
is. The program continues, allowing gradual
underflow. Use of a denormalized number in
an arithmetic expression results in program
continuation, but with slower performance. A
message is displayed (-check underflow is not
needed).

The program continues (no core
dump). A message is displayed a
maximum of twice for each type of
exception. A NaN or Infinity (+ or
–) is generated.

On Tru64 UNIX systems, the exception message reporting specified by the
-fpen options applies only to the main program and cannot be changed during
program execution.

To help you debug a routine, you can associate an exception with the
instruction that causes it by specifying any value other than -fpe0 (such
as -fpe3) or specify -synchronous_exceptions.

3–36 f90 and fort Command-Line Options

When compiling different routines in a program separately, you should use the
same -fpen value. For example, assume:

• Routine A is compiled with -fpe3. Routine A can create and use an
exceptional value.

• Routine B is compiled with -fpe0. Routine B cannot create or use an
exceptional value (program stops).

If routine A passes an exceptional value to routine B and routine B uses that
exceptional value in an arithmetic expression, program execution stops and a
core file is created.

You can call the for_set_fpe routine to set the floating-point exception
handling for subprograms (including C functions) or perhaps to change the
setting for the main program.

To use for_set_fpe in most cases, you should recompile the program with
-fpe1 or higher. You should not change the exception settings to request
program continuation with for_set_fpe if you compiled the program using
-fpe0.

Both the for_set_fpe and for_get_fpe routines can be used by Fortran
programs using the INTEGER parameter values located in
/usr/include/for_fpe_flags.f. Programs written in C can call the
for_rtl_init_ routine prior to calling the for_get_fpe or for_get_fpe rou-
tines, and must include an equivalent header file, /usr/include/for_fpe_flags.h.

For programs that use a number of denormalized values (such as those that
allow gradual underflow with -fpe3, the impact on run-time performance can
be significant.

If you use the -math_library fast (or -fast) option along with an -fpen
option, the -fpen option is ignored when arithmetic values are evaluated by
math library routines.

If you specify the -speculate all or -speculate by_routine options along
with one of the -fpen options that request exception reporting, exceptions are
not reported as expected (see Section 3.84).

For More Information:

• On IEEE floating-point exception handling, see IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985) and ieee(3).

• On Compaq Fortran floating-point exception handling, see Chapter 14.

• On native IEEE floating-point data representation and IEEE exceptional
values, see Section 9.4.

f90 and fort Command-Line Options 3–37

• On the for_set_fpe and for_get_fpe routines, see for_set_fpe(3f) and
Chapter 12 and Section 14.3.

3.45 -fpp — Run Fortran Preprocessor
Use the -fpp option to run the Fortran preprocessor on all Fortran source files
in the command line before the Fortran compiler executes. This option has no
effect on any C source files in the command line. The Fortran preprocessor
has a subset of the functionality of the C preprocessor (which the -cpp option
invokes).

The default is -nofpp, which means that neither the Fortran preprocessor nor
the C preprocessor runs on the Fortran source files in the command line.

3.46 -fprm keyword — Control Floating-Point Rounding
Mode

The -fprm nearest, -fprm dynamic (TU*X only), -fprm chopped, and -fprm
minus_infinity options allow you to control how rounding occurs during
floating-point operations.

The rounding mode applies to each program unit being compiled.

The following options apply:

-fprm nearest
Causes the compiler to round results of floating-point operations toward the
nearest representable value.

If the unrounded value is halfway between two representable values, the even
value is chosen.

This is the default.

-fprm chopped
Causes the compiler to round results of floating-point operations toward zero.

-fprm minus_infinity
Causes the compiler to round results of floating-point operations toward the
next smallest representative value.

-fprm dynamic
(TU*X only) Allows run-time selection of a rounding mode. You can modify your
program to:

3–38 f90 and fort Command-Line Options

• Call the read_rnd Compaq Tru64 UNIX routine to obtain the current
rounding mode. The current mode is stored in the floating-point control
register (fpcr).

• Call the write_rnd Compaq Tru64 UNIX routine to set the rounding mode
and obtain the previous rounding mode.

When you call write_rnd, you can set the rounding mode to one of the
following settings (see write_rnd(3)):

• Round toward zero or truncate (same as -fprm chopped)

• Round toward nearest (same as -fprm nearest)

• Round toward plus infinity

• Round toward minus infinity (same as -fprm minus_infinity)

If you compile with -fprm dynamic and do not call write_rnd, the default
setting (-fprm nearest) is used.

For the fastest run-time performance, avoid using -fprm dynamic.

For More Information:

• On IEEE floating-point rounding modes, see IEEE Standard for Binary
Floating-Point Arithmetic (ANSI/IEEE Std 754-1985), write_rnd(3),
ieee_functions(3), and ieee(3).

• On the floating-point control register and Alpha architecture, see Alpha
Architecture Reference Manual.

3.47 -fuse_xref — Cross-Reference Information for Compaq
FUSE

Use the -fuse_xref option (TU*X only) to request that Compaq Fortran generate
a data file that the Compaq FUSE Database Manager uses to create a cross-
reference database file. This improves the performance of the Compaq FUSE
Call Graph Browser and Cross-Referencer, which use the database file for their
operations.

f90 and fort Command-Line Options 3–39

3.48 -g0, -g1, -g2 or -g, -g3, -ladebug — Traceback and
Symbol Table Information

Use the -g0, -g1, -g2, or -g, -g3, and -ladebug options to control the amount
of symbol table information in the object file.

If you intend to use the Compaq Ladebug debugger, specify the -ladebug
option and one of the following: -g, -g2, or -g3.

The default is -g1.

The following options apply:

-g0
Provides no traceback or symbol table information needed for debugging or
profiling. Only symbol information needed for linking (global symbols) is
produced. The size of the resulting object file is the minimum size.

-g1
Produces traceback information, which allows program counter to source
file line correlation, but not symbol table information needed for debugging.
Specifying -g1 produces the global symbol information needed for linking or
profiling.

The object file size is somewhat larger than if -g0 was specified, but is smaller
than if either -g2 or -g3 was specified.

This is the default.

-g2, -g
Produces the following:

• Traceback information

• Symbol table information needed for full symbolic debugging of
unoptimized code

• Global symbol information needed for linking or profiling

If you use this option and do not specify an -On option, the default optimization
level changes to -O0, which disables nearly all optimizations to make debugging
more accurate (the default optimization level is usually -O4). If you use this
option and specify an -On option other than -O0, a warning message is
displayed.

-g2 and -g are synonymous.

3–40 f90 and fort Command-Line Options

-g3
Produces traceback information, symbol table information needed for symbolic
debugging of optimized code, and global symbol information needed for linking
or profiling. This option can provide additional debugging information to
describe the effects of optimization, but debugging inaccuracies may occur as a
result of optimizations.

-ladebug
Produces additional symbolic debugger information for the Compaq Ladebug
debugger, if you specify -g, -g2, or -g3. This allows use of standard Fortran
syntax when printing dynamic arrays using Compaq Ladebug, including array
sections.

If you specify -g0 or -g1 (the default) with -ladebug, the -ladebug option is
ignored.

For More Information:

• See Section 4.2, Compaq Fortran Options for Debugging.

• See Section 4.12, Debugging Optimized Programs.

• See Section 5.8, Optimization Levels: the -On Option.

3.49 -granularity keyword — Control Shared Memory Access
to Data

The -granularity keyword options allow you to control the size of shared
data in memory that can be safely accessed from different threads. You do
not need to specify this option for local data access by a single process, unless
asynchronous write access from outside the user process might occur.

The default is -granularity quadword.

To be written from multiple threads, data must be naturally aligned and
declared as VOLATILE (so it is not held in registers). To ensure alignment
in common blocks, derived-type structures, and record structures, use the
-align keyword option.

The following options apply:

-granularity byte
Ensures that all data 1 byte or greater can be accessed from different threads
sharing data in memory. This option will slow run-time performance.

f90 and fort Command-Line Options 3–41

-granularity longword
Ensures that naturally aligned data of 4 bytes or greater can be accessed safely
from different threads sharing access to that data in memory.

When this option is in effect, attempts to access smaller size data or misaligned
data can result in data items that are inconsistently updated for multiple
threads.

-granularity quadword
Ensures that naturally aligned data of 8 bytes can be accessed safely from
different threads sharing data in memory.

When this option is in effect, attempts to access smaller size data or misaligned
data can result in data items that are inconsistently updated for multiple
threads.

For More Information:

• On the Alpha architecture, see the Alpha Architecture Reference Manual.

• On allowing multiple processes to access common block data in a shared
library (using memory mapping), see shcom_connect(3f).

• On intrinsic data types, see Chapter 9.

3.50 -hpf, -hpf num, and Related Options — Compile HPF
Programs for Parallel Execution

Note

These options apply only to Tru64 UNIX systems.

-wsf is the nonpreferred synonym for -hpf.

-wsf num is the nonpreferred synonym for -hpf num.

Use the -hpf option to specify that the HPF program will be compiled to run in
parallel on multiple processors using the Message Passing Interface (MPI).

If you omit the -hpf option, the executable program will run in a nonparallel
(serial) run-time environment and HPF directives will only be checked for
correct syntax.

The optional num parameter specifies the number of processors on which the
program is intended to run, for example, -hpf 3. If a number is not specified,
the compiler generates code that can run on any number of processors. More
efficient code is generated when num is specified.

3–42 f90 and fort Command-Line Options

When the HPF parallel programs are compiled with the -c option and linked
separately, specify -hpf both when compiling and linking the program.

The following options are not compatible with the -hpf option: -cord,
-double_size 128, -feedback, -fpe1, -fpe2, -fpe3, -fpe4, -gen_feedback,
-om, -omp, -p1, and -pg.

The -check bounds option is compatible with the -hpf option only when the
optional parameter num is set to 1.

When -hpf is used, the HPF target must be specified either by using the
-hpf_target option or by setting the DECF90_HPF_TARGET environment
variable. If neither is used, the driver will issue an error message and abort
the compilation. See Section 3.50.5.

For More Information:

• On compiling an HPF global routine that will be linked with a main
program that was not compiled with the -hpf option, see Section 3.68.

• On enabling conditional compilation for OpenMP, see Section 3.8.

• On using the -warn hpf option for syntax checking, see Section 3.100.

The following options are relevant to the -hpf option:

3.50.1 -assume bigarrays — Run-time Checking for Distributed Small
Array Dimensions
(UN*X only) Specifying -assume bigarrays suppresses run-time checking for
distributed small array dimensions. This allows for increased run-time
performance and reduced compile time when using the -hpf option.

In programs compiled with both the -hpf and -assume bigarrays options,
nearest-neighbor computations that reference small arrays will fail. An array
is big enough if, for every dimension with BLOCK distribution, the shadow
edge width is no bigger than the block size.

Specifying the -fast option sets the -assume bigarrays option.

The default is -assume nobigarrays.

f90 and fort Command-Line Options 3–43

3.50.2 -assume nozsize — Omit Zero-Sized Array Checking
(UN*X only) Specifying -assume nozsize suppresses run-time checking for zero-
sized array sections. This allows for increased performance when using the
-hpf option.

An array (or array section) is zero-sized when the extent of any of its
dimensions takes the value zero or less than zero. When the -hpf option
is specified, the compiler ordinarily inserts a series of checks to guard against
irregularities (such as division by zero) in its internal computations that zero-
sized arrays can cause. Depending on the particular application, these checks
can cause noticeable (or even major) degradation of performance.

Specifying the -fast option sets the -assume nozsize option.

Avoid using the -assume nozsize option with -hpf when a program references
any zero-sized arrays or array sections, because the resulting executable might
fail to execute or might produce incorrect program results.

You can insert a run-time check into your program to ensure that a given line
is not executed if an array or array section referenced there is zero-sized.

The default is -assume zsize.

3.50.3 -nearest_neighbor, -nearest_neighbor num, or
-nonearest_neighbor — Nearest Neighbor Optimization
Use the -nearest_neighbor option (TU*X only) to enable the nearest neighbor
parallel optimization. The compiler automatically determines the correct
shadow-edge widths on an array-by-array, dimension-by-dimension basis.

This option is valid only if the -hpf option is specified.

Use the optional num field to specify the maximum width of the shadow
edge, which limits how much extra storage the compiler can allocate for
nearest-neighbor arrays.

When num is specified, the compiler will only recognize nearest-neighbor
constructs that need shadow-edge widths less than or equal to the value of num.

If num is not specified, the compiler uses a num value of 10.

You can also set shadow-edge widths manually, using the !HPF$ SHADOW
directive.

The -nonearest_neighbor option turns off the nearest-neighbor optimization.
It is equivalent to specifying -nearest_neighbor with nn set to 0.

3–44 f90 and fort Command-Line Options

3.50.4 -show hpf — Show HPF Parallelization Information
The -show hpf options (TU*X only) show information about HPF parallelization
by displaying the information to standard error and to the listing (if one is
generated using the -V option). These options are valid only if the -hpf option
is specified.

The -show option can take only one argument. However, the -show options can
be combined by specifying -show multiple times. For example:

% f90 -hpf -hpf_target cmpi -show hpf_near -show hpf_punt foo.f90

Specifying -show hpf selects a subset of the messages generated by all of the
following -show hpf_* options. Try using -show hpf first, with the following
variations only when a more detailed listing is needed.

The following options apply:

-show hpf_all, -show hpfinfo, -show wsfinfo
The -show hpf_all option is the same as specifying all the other -show hpf_*
options.

The -show wsfinfo option is the nonpreferred synonym of -show hpfinfo.

-show hpf_comm
This instructs the compiler to display information about statements that cause
interprocessor communication to be generated.

-show hpf_indep
This instructs the compiler to display information about the optimization of
loops marked with the INDEPENDENT directive.

-show hpf_nearest
This instructs the compiler to display information about arrays and statements
involved in optimized nearest-neighbor computations.

-show hpf_punt
This instructs the compiler to display information about distribution directives
that were ignored and statements that were not handled in parallel.

-show hpf_temps
This instructs the compiler to display information about temporaries that were
created at procedure interfaces.

f90 and fort Command-Line Options 3–45

3.50.5 -hpf_target — Message Passing Protocol for Parallel Programs
This option specifies the message passing protocol to use between processors
for programs running in parallel. The format is:

% -hpf_target cmpi | gmpi | smpi

If this option is used, -hpf must also be set.

The following options apply:

-hpf_target cmpi
Causes the compiler to target Compaq MPI, a version of Message Passing
Interface (MPI) specifically tuned for Alpha systems. Compaq MPI is
distributed as a Compaq layered product. Compaq MPI supports only Memory
Channel clusters and shared-memory (SMP) machines.

For more information about Compaq MPI, see:

http://www.compaq.com/hpc/software/dmpi.html

-hpf_target gmpi
Causes the compiler to target generic Message Passing Interface (MPI),
specifically MPICH 1.2.0 or other libraries compatible with that version of
MPICH. MPICH is a public-domain implementation of the MPI specification
that is available for many platforms. It can be obtained from:

http://www-unix.mcs.anl.gov/mpi/mpich/

MPICH supports many interconnection networks, including Ethernet, FDDI,
and other hardware. Note: The use of the gmpi target is officially unsupported.

When you use this option, you should set the DECF90_GMPILIB environment
variable to specify a path to the MPI library to link against. If you don’t set
the DECF90_GMPILIB environment variable, then you must specify the MPI
library to link against on the command line.

-hpf_target smpi
Causes the compiler to target the Message Passing Interface (MPI) that comes
installed on SC-series systems. It is used in conjunction with the SC’s ‘‘RMS’’
software, which provides a set of commands for launching MPI jobs, scheduling
those jobs on SC clusters, and other miscellaneous tasks.

3–46 f90 and fort Command-Line Options

3.51 -I — Remove Directory from Include Search Path
Use the -I option to prevent the search for cpp and fpp #include files or to
prevent Compaq Fortran from searching for files specified in an INCLUDE
statement in the standard directory /usr/include.

This option is not related to the Fortran USE statement.

3.52 -Idir — Add Directory for Module and Include File
Search

Use the -Idir option to direct the search for cpp and fpp #include files, files
specified in an INCLUDE statement, and module files (USE statement). The
file names must not begin with a slash (/).

If you use this option, directories are searched in the following order:

1. The directory preceding the input file name on the command line

2. The directory (dir) specified by the -Idir option (see Section 3.52)

3. The standard directory /usr/include

You can repeat the -Idir option as many times as needed to specify multiple
additional search directories.

To prevent the Compaq Fortran compiler from searching for include files in the
/usr/include directory, use the -noinclude option.

For More Information:

• On creating and using module files, see Section 2.1.3.

• On creating and using include files, see Section 2.1.4.

• On recognized file name suffix characters and their meanings, see
Section 2.1.1.

3.53 -i2, -i4, -i8, -integer_size num — Integer and Logical
Data Size

Use the following options to control the size of INTEGER and LOGICAL
declarations (where no kind parameter or size specifier is indicated).

For optimal performance on Alpha systems, use 4- or 8-byte integer or logical
values instead of 2-byte values.

The default is -i4 or -integer_size 32.

The following options apply:

f90 and fort Command-Line Options 3–47

-i2, -noi4, -integer_size 16
Specifying -i2, -noi4, or -integer_size 16 (all are synonymous) makes the
default integer and logical variables 2 bytes long. That is, INTEGER and
LOGICAL declarations are treated as INTEGER*2 (KIND=2) and LOGICAL*2
(KIND=2).

-i4, -integer_size 32
Specifying -i4 or -integer_size 32 makes default integer and logical variables
4 bytes long. That is, INTEGER and LOGICAL declarations are treated as
INTEGER*4 (KIND=4) and LOGICAL*4 (KIND=4).

-i8, -integer_size 64
Specifying -i8 or -integer_size 64 makes default integer and logical variables
8 bytes long. That is, INTEGER and LOGICAL declarations are treated as
INTEGER*8 (KIND=8) and LOGICAL*8 (KIND=8).

3.54 -inline keyword, -noinline — Control Procedure Inlining
Specifying -inline keyword or -noinline controls the type of procedure calls
that are inlined by the optimizer.

The following options apply:

-inline all
Inlines every call that can be inlined while still generating correct code,
including:

Statement functions

Any procedures that Compaq Fortran expects will improve run-time
performance with a likely significant increase in program size.

Any other procedures that can possibly be inlined and generate correct
code. Certain recursive routines are not inlined to prevent infinite
expansion.

-inline speed
Inlines calls that will likely improve run-time performance, even where it
might significantly increase the size of the program.

This option is meaningful only at optimization levels -O1 and higher.

This is the default for optimization levels -O4 and -O5.

3–48 f90 and fort Command-Line Options

-inline size
Inlines calls where inlining will not significantly increase program size, plus
any additional calls that the compiler determines will improve run-time
performance.

This option was previously called -inline automatic or -inline space.

This option is meaningful only at optimization levels -O1 and higher.

-inline none, -inline manual, -noinline
Suppresses all inlining of routines. However, statement functions are always
inlined.

All three options are synonymous.

This is the default for optimization levels -O0, -O1, -O2, and -O3.

For More Information:

• See Section 5.9.3, Controlling the Inlining of Procedures.

• See Chapter 5, Performance: Making Programs Run Faster.

• See Section 5.8, Optimization Levels: the -On Option.

3.55 -intconstant — Handling of Integer Constants
Specify this option to use Compaq Fortran 77 instead of Fortran 95/90
semantics to determine the kind of integer constants. If you don’t specify
-intconstant, Fortran 95/90 semantics are used.

With Fortran 77 semantics, all constants are kept internally by the compiler in
the highest precision possible. For example, if you specify -intconstant, the
compiler stores an integer constant of 14 internally as INTEGER(KIND=8) and
converts the constant upon reference to the corresponding proper size. Fortran
95/90 specifies that integer constants with no explicit KIND are kept internally
in the default INTEGER kind (KIND=4 by default).

Note that the internal precision for floating-point constants is controlled by the
-fpconstant option, described in Section 3.43.

f90 and fort Command-Line Options 3–49

3.56 -K — Keep Temporary Files
Specifying -K requests that temporary files created by cpp or the Compaq
Fortran compiler not be automatically deleted.

This option does not affect the naming of temporary files. To see the names
and locations of the temporary files, use the -v option.

Specifying -K also creates, in the current working directory, one temporary
file for each input source file specified. This file creation may not be desirable
when compiling multiple source files (see Section 2.1.6).

All other temporary files reside in /tmp, unless the environment variable
TMPDIR is set to indicate an alternate directory.

3.57 -L — Remove ld Directory Search Path
Use the -L option to prevent the linker from searching for libraries in the
standard directories (see Section 3.58).

3.58 -Ldir — Add Directory to ld Search Path
Use the -Ldir option to specify the directory path dir as a search directory for
ld, which is searched before the standard directories.

When you specify the -non_shared option, the following directories are
searched:

• /lib

• /usr/lib

• /usr/local/lib

When searching for shared libraries (-call_shared or -shared), the following
directories are searched:

• /usr/shlib

• /usr/ccs/lib

• /usr/lib/cmplrs/cc

• /usr/lib

• /usr/local/lib

3–50 f90 and fort Command-Line Options

3.59 -lstring — Add Library Name to ld Search
Use the -lstring option to specify additional search libraries for ld, using
string as an abbreviation of the library name.

Using this option causes ld to search for unresolved references to run-time
object files in the specified libraries, in addition to the appropriate Compaq
Fortran libraries and related libraries (see Section 2.5.1).

This option should be placed after the file name(s) at the end of the command
line.

You can use -lstring multiple times to specify multiple search libraries. The
order in which the multiple libraries are specified determines the search order
used by ld.

For example, specifying -lgraph causes ld to search the standard library
directories (and any specified using the -Ldir option) for the library libgraph.

To view libraries accessed during compile and link operation, use the -v option,
described in Section 3.96.

For More Information:

• On the standard directories searched by ld, see Section 3.58.

• On the standard list of library names searched when using the f90
command, see Section 2.5.1.

• On recognized file name suffix characters and their meanings, see
Section 2.1.1.

• On specifying and using archive or shared libraries, see Section 2.5.

• On requirements and other information related to creating a shared library,
see Section 2.6.

3.60 -machine_code
See Section 3.82, -show keyword, -machine_code — Control Listing File
Content.

f90 and fort Command-Line Options 3–51

3.61 -math_library keyword — Fast or Accurate Math Library
Routines

The -math_library keyword option lets you choose which math library routines
to use.

The default is -math_library accurate.

The following options apply:

-math_library accurate
Specifies that the compiler is to select the version of the math library routine
that provides the most accurate result for mathematical intrinsic functions.

For certain ranges of input values, the selected routine may execute more
slowly than if you used -math_library fast.

The standard math library routines are designed to obtain very accurate ‘‘near
correctly rounded’’ results and provide the robustness needed to check for
IEEE exceptional argument values, rather than achieve the fastest possible
run-time execution speed. Using -math_library accurate allows user control
of arithmetic exception handling with the -fpen option and the for_set_fpe
routine.

-math_library fast
Specifies that the compiler is to select the version of the math library routine
that provides the highest execution performance for certain mathematical
intrinsic functions, such as EXP and SQRT.

For certain ranges of input values, the selected routine may not provide a
result that is as accurate as -math_library accurate provides.

This option is set by default if you use the -fast option.

Using -math_library fast allows certain math library functions to get
significant performance improvements when the applicable intrinsic function is
used.

If you specify -math_library fast, the math library routines do not necessarily
check for IEEE exceptional values and the -fpen option and calls to the
for_set_fpe routine are ignored.

When you use -math_library fast, you should carefully check the calculated
output from your program. Check the program’s calculated output to verify
that it is not relying on the full fractional accuracy of the floating-point data

3–52 f90 and fort Command-Line Options

type1 to produce correct results or producing unexpected exceptional values
(exception handling is indeterminate).

Programs that do not produce acceptable results with -math_library fast and
single-precision data might produce acceptable results with -math_library
fast if they are modified (or compiled) to use double-precision data.

The specific intrinsic routines that have special fast math routines depend on
the version of the Compaq Tru64 UNIX operating system in use. Allowed error
bounds vary with each routine.

For More Information:

• On controlling arithmetic exception handling, including using the -fpen
option, see Section 3.44 and Chapter 14.

• On requesting double-precision data during compilation for REAL data
declarations (-real_size option), see Section 3.78.

• On native IEEE floating-point formats, see Section 9.4.

3.62 -mixed_str_len_arg — Specify Length of Character
Arguments

Use the -mixed_str_len_arg option to tell the compiler that the hidden
length passed for a character argument is to be placed immediately after its
corresponding character argument in the argument list.

The default is -nomixed_str_len_arg, which places the hidden lengths in
sequential order at the end of the argument list.

3.63 -module directory — Specify Directory for Creating
Modules Files

The -module directory option tells the compiler to create module files in the
specified directory instead of the current directory.

1 Single-precision S_float, double-precision T_float, and extended precision X_float data
types provide 24, 53, and 113 bits respectively for the normalized fractional part (see
Section 9.4.)

f90 and fort Command-Line Options 3–53

3.64 -mp — Enable Parallel Processing Using Directed
Decomposition

Use the -mp option (TU*X only) to enable parallel processing using directed
decomposition. Parallel processing is directed by inserting parallel directives
using the !$PAR prefix in your source code. The compiler recognizes these
directives only if you specify the -mp option. This kind of parallel processing is
intended for shared-memory multiprocessor systems.

To enable parallel processing with with !$OMP directives, use the -omp
compiler option.

To enable parallel processing across clusters of servers or workstations with
!HPF$ directives, use the -hpf compiler option.

The -mp option sets the -automatic option.

The default is -nomp.

For More Information:

• See Chapter 6, Parallel Compiler Directives and Their Programming
Environment.

• See the Compaq Fortran Language Reference Manual.

• See Section 3.74.

• See Section 3.50.

3.65 -names keyword — Case Control of Source and
External Names

The -names keyword option controls how the case sensitivity of letters in source
code identifiers and external names is handled.

The naming convention applies whether names are being defined or referenced.

The default is -names lowercase.

The following options apply:

-names as_is, -U
Causes the compiler to distinguish case differences in identifiers and to
preserve the case of external names.

The -names as_is and -U options are synonymous.

3–54 f90 and fort Command-Line Options

-names lowercase
Causes the compiler to ignore case differences in identifiers and to convert
external names to lowercase.

-names uppercase
Causes the compiler to ignore case differences in identifiers and to convert
external names to uppercase.

3.66 -noaltparam — Alternative PARAMETER Syntax
Use the -noaltparam option to disallow the alternate nonstandard syntax for
PARAMETER statements.

The nonstandard PARAMETER statement syntax is:

PARAMETER par1=exp1 [, par2=exp2] ...

This form has no parentheses surrounding the list, and the form of the
constant, rather than implicit or explicit typing, determines the data type of
the variable.

The default is -altparam, which allows use of the nonstandard syntax.

3.67 -nofor_main — Allow Non-Fortran Main Program
Use the -nofor_main option when the main program is not written in Fortran.
For example, if the main program is written in C and calls a Compaq Fortran
subprogram, specify -nofor_main when compiling the program with the
f90 command. Specifying -nofor_main prevents linking for_main.o into
applications.

If you omit -nofor_main, the main program must be a Fortran program.

The default is -for_main.

3.68 -nohpf_main, -nowsf_main — Compile HPF Global
Routine for Nonparallel Main Program

(TU*X only) Use the -nohpf_main option (the -nowsf_main option is synonymous)
to specify that the HPF global routine being compiled will be linked with a
main program that was not compiled with the -hpf option. The main program
can be a Fortran program compiled without -hpf, or it can be written in an
entirely different language.

f90 and fort Command-Line Options 3–55

3.69 -noinclude — Omit Standard Directory Search for
INCLUDE Files

Specifying -noinclude prevents the compiler from searching in the
/usr/include directory for files specified in an INCLUDE statement.
This option does not apply to the directories searched for module files or
preprocessor #include files.

To request that the cpp preprocessor not search for #include files in the
/usr/include directory, use the -I option (see Section 3.51).

3.70 -norun — Do Not Run the Compiler
Specifing the -norun option directs the driver not to execute the compiler and
other phases of the process. If you use this option with the -v option, described
in Section 3.96, you can see what would have been executed.

The default is for the driver to execute the compiler and other phases of the
process.

3.71 -o output — Name Output File
When you specify -c with -o output, this names the object file output instead
of source-file-name.o in the current working directory.

If you omit -c and specify -o output, this names the executable program file
output instead of a.out in the current working directory.

An already existing a.out file is unaffected by this command.

For More Information:

• On output files and their names, see Section 2.1.5.

• On using multiple input files, see Section 2.1.6.

3.72 -O0, -O1, -O2, -O3, -O4 or -O, -O5 — Specify
Optimization Level

Use the -O0, -O1, -O2, -O3, -O4 (same as -O), and -O5 options to specify the
level of optimization performed during compilation.

The default level of optimization is -O4 unless you specify the -g2, -g, or
-gen_feedback option (in which case the default is -O0).

At optimization levels lower than -O4, the compiler issues ‘‘uninitialized
variable’’ warnings.

3–56 f90 and fort Command-Line Options

In most cases, the higher the level of optimization you specify, the faster the
program will execute. However, the faster execution speeds that result from
using -O3 or higher usually produce larger object files and longer compile
times.

The following options apply:

-O0
Disables all optimizations. Does not check for unassigned variables.

If you specify -g2 or -g, this is the default.

-O1
Enables local optimizations and recognition of common subexpressions.
Optimizations include integer multiplication and division expansion using
shifts. The call graph determines the order of compilation of procedures.

-O2
Enables global optimization and all -O1 optimizations. This global optimization
includes code motion, strength reduction and test replacement, split-lifetime
analysis, code scheduling, and inlining of arithmetic statement functions.

-O3
Enables global optimizations that improve speed (at the cost of increased code
size) and all -O2 optimizations. Optimizations include:

• Loop unrolling (also set by -unroll, described in Section 3.94)

• Prefetching

• Code replication to eliminate branches

-O4, -O
Enables interprocedure analysis and automatic inlining of small procedures
(with heuristics limiting the amount of extra code), software pipelining (also
set by -pipeline, described in Section 3.76), and all -O3 optimizations.

This is the default. However, if you specify -g2 or -g or -gen_feedback, the
default becomes -O0.

-O5
Enables loop transformation optimizations (also set by -transform_loops,
described in Section 3.89), all -O4 optimizations, and other optimizations,
including byte vectorization and insertion of additional NOPs (No Operations)
for alignment of multi-issue sequences. (See also Section 3.84.)

f90 and fort Command-Line Options 3–57

To determine whether using -O5 benefits your particular program, you should
time program execution for the same program (or subprogram) compiled at
levels -O4 and -O5.

For More Information:

• On the effects of the -O5 option, see Section 3.89 and Section 3.76.

• On limiting loop unrolling with optimization level -O3 or higher (-unroll
num), see Section 3.94.

• On speculative execution optimization, see Section 3.84.

• On timing program execution, see Section 5.2.

• On the related -fp_reorder option, see Section 3.12.

• On the related -fast option, see Section 3.40.

• On improving and measuring run-time performance, see Chapter 5.

• On the optimizations performed at each level, see Section 5.8.

3.73 -om — Request Nonshared Object Optimizations
(TU*X only) Use the -om option with the -non_shared option to request certain
code optimizations after linking, including NOP (No Operation) removal, .lita
removal, and reallocation of common symbols. This option also positions the
global pointer register so the maximum addresses fall in the global-pointer
window.

Pass -om options to the linker using the -WL,arg form:

• -WL,-om_compress_lita

Removes unused .lita entries after optimization, and then compresses the
.lita section.

• -WL,-om_dead_code

Removes dead code (unreachable instructions) generated after applying
optimizations. The .lita section is not compressed.

• -WL,-om_no_inst_sched

Turns off instruction scheduling.

• -WL,-om_no_align_labels

Turns off alignment of labels. Normally, the -om option aligns the targets
of all branches on quadword boundaries to improve loop performance.

• -WL,-om_Gcommon,num

3–58 f90 and fort Command-Line Options

Sets the size threshold of common symbols. Every common symbol whose
size is less than or equal to num will be allocated close to each other.
This option can be used to improve the probability that the symbol can be
accessed directly from the global pointer register. Normally, -om tries to
collect all common symbols together.

For more information, see your operating system documentation.

3.74 -omp — Enable OpenMP Parallel Processing Using
Directed Decomposition

(UN*X only) Use the -omp option to enable parallel processing using directed
decomposition following the OpenMP application program interface (API).
Parallel processing is directed by inserting !$OMP directives in your
source code. This kind of parallel processing is intended for shared-memory
multiprocessor systems.

The !$OMP directives are described in Section 6.1.2, Summary Descriptions of
OpenMP Fortran API Compiler Directives.

The -omp option sets the -automatic option.

The default is -noomp.

For More Information:

• Chapter 6, Parallel Compiler Directives and Their Programming
Environment.

• See the Compaq Fortran Language Reference Manual.

3.75 -pad_source — Pad Short Source Records with Spaces
For fixed-form source files, specify the -pad_source option to request that
source records shorter than the statement field width are to be padded with
spaces on the right, out to the end of the statement field. This affects the
interpretation of character and Hollerith literals that are continued across
source records.

The default is -nopad_source. This causes a warning message to be displayed
if a character or Hollerith literal that ends before the statement field ends
is continued onto the next source record. To suppress this warning message,
specify the -warn nousage option.

Specifying -pad_source can prevent warning messages associated with -warn
usage.

f90 and fort Command-Line Options 3–59

3.76 -pipeline — Activate Software Pipelining Optimization
Specifying -pipeline (or -O4 or -O5) activates the software pipelining
optimization. The software pipelining optimization applies instruction
scheduling to certain innermost loops, allowing instructions within a loop to
‘‘wrap around’’ and execute in a different iteration of the loop. This can reduce
the impact of long-latency operations, resulting in faster loop execution.

Software pipelining is a subset of the optimizations activated by -O4 or -O5.
Instead of specifying both -pipeline and -transform_loops, you can specify
-O5.

This optimization is not performed at optimization levels below -O2.

You must specify -nopipeline if you want this type of optimization disabled
and you are also specifying -O4 or -O5.

For More Information:

• On details about using this option, see Section 5.8.6, Software Pipelining.

• On the -O4 and -O5 options, see Section 3.72.

3.77 -p0, -p1 or -p, and -pg — Profiling Support
Nonparallel programs (with the -hpf option omitted) and (TU*X only) parallel
HPF programs (-hpf option specified) use different profiling tools, which need
different profiling options. Profiling information identifies those parts of your
program where improving source code efficiency would most likely improve
run-time performance.

If you omit the -hpf option, you can use the prof and pixie (TU*X only) tools
if you specify the -p0 and -p1 or -p options to control the level of profiling
support provided during compilation. When you specify -hpf, omit the -p0,
-p1, and -p options.

The default is -p0.

The following options apply:

-p0
Does not permit profiling. If loading occurs, the standard run-time startup
routine (crt0.o) is used, and profiling libraries are not searched.

-p1, -p
Sets up profiling by periodically sampling the value of the program counter for
use with the postprocessor prof(1).

3–60 f90 and fort Command-Line Options

This option only affects loading. When loading occurs, this option replaces the
standard run-time startup routine option with the profiling run-time startup
routine (mcrt0.o) and searches the level 1 profiling library (libprof1).

When profiling occurs, the startup routine calls monstartup(3) and produces
the file mon.out, which contains execution-profiling data for use with the
postprocessor prof(1) command. (See also monitor(3).)

If you specify this option, you should also specify -g1 or higher.

-pg
Sets up profiling for gprof(1), which produces a call graph showing the
execution of the program. With this option, the standard run-time startup
routine is replaced by the gcrt0.o routine, and ld(1) inserts calls to _mcount
at each entry label.

When programs are linked with the -pg option and then run, these files
produced:

gmon.out contains a dynamic call graph and profile.
gmon.sum contains a summarized dynamic call graph and profile.

To display the output, run gprof on the gmon.out file.

For More Information:

• On using profiling tools prof and pixie (TU*X only), see Section 5.3.

• On the -gen_feedback, -feedback file, and -cord options, (TU*X only) see
Section 3.41.

3.78 -real_size number, -r8, -r16 — Floating-Point Data Size
Use these options to control the size of REAL and COMPLEX declarations that
do not have an explicit KIND parameter or size specifier.

The default is -real_size 32.

The following options apply:

-real_size 32
Defines:

• REAL declarations, constants, functions, and intrinsics as REAL*4

• COMPLEX declarations, constants, functions, and intrinsics as
COMPLEX*8

f90 and fort Command-Line Options 3–61

-real_size 64, -r8
Defines:

• REAL declarations, constants, functions, and intrinsics as DOUBLE
PRECISION (REAL*8)

• COMPLEX declarations, constants, functions, and intrinsics as DOUBLE
COMPLEX (COMPLEX*16)

-real_size 128, -r16
defines:

• REAL and DOUBLE PRECISION declarations, constants, functions, and
intrinsics as REAL*16

• COMPLEX and DOUBLE COMPLEX declarations, constants, functions,
and intrinsics as COMPLEX*32

If you omit -real_size_64 and -real_size 128, then:

• REAL declarations, constants, functions, and intrinsics are defined as
REAL*4 (KIND=4).

• DOUBLE PRECISION declarations, constants, functions, and intrinsics
are defined as REAL*8 (KIND=8).

• COMPLEX declarations, constants, functions, and intrinsics are defined as
COMPLEX*8 (KIND=4).

• DOUBLE COMPLEX declarations, constants, functions, and intrinsics are
defined as COMPLEX*16 (KIND=8).

For More Information:

• On data types, see Chapter 9.

• On intrinsic functions, see the Compaq Fortran Language Reference
Manual.

3.79 -recursive — Request Recursive Execution
This option compiles all FUNCTION and SUBROUTINE procedures for
possible recursive execution.

This option:

• Changes the default allocation class for all local variables from STATIC to
AUTOMATIC, except for variables that are data-initialized or named in a
SAVE statement, or for variables declared as STATIC.

3–62 f90 and fort Command-Line Options

• Permits references to a routine name from inside the routine.

A subprogram declared with the RECURSIVE keyword is always recursive
(whether you specify or omit the -static option).

Variables declared with the AUTOMATIC statement or attribute always use
stack-based storage for all local variables (whether you specify or omit the
-recursive or -automatic options).

Specifying -recursive sets -automatic (puts local variables on the run-time
stack).

The default is -norecursive.

3.80 -reentrancy keyword — Control Use of Threaded
Run-Time Library

(UN*X only) The -reentrancy keyword option specifies whether code generated
for the main program and any Fortran procedures it calls will be relying on
threaded or asynchronous reentrancy.

To use the threaded libraries, also specify the -threads option (see
Section 3.88).

The default is -reentrancy none. (The option -noreentrancy is the same as
-reentrancy none.)

The following options apply:

-reentrancy asynch
Tells the Compaq Fortran run-time library (RTL) that the program may
contain asynchronous handlers that could call the RTL. This causes the RTL to
guard against asynchronous interrupts inside its own critical regions.

-reentrancy none
Tells the Compaq Fortran RTL that the program will not be relying on
threaded or asynchronous reentrancy. Therefore, the RTL will not guard
against such interrupts inside its own critical regions.

-reentrancy threaded
Tells the Compaq Fortran RTL that the program is multithreaded, such as
programs using the POSIX threads library. This causes the RTL to use thread
locking to guard its own critical regions.

f90 and fort Command-Line Options 3–63

3.81 -S — Create Assembler File
Specifying -S creates an assembler file from the compiled source. The name
of the assembler file is the base name of the source file with a .s file suffix.
Linking does not occur.

3.82 -show keyword, -machine_code — Control Listing File
Content

Use the -show keyword options in conjunction with the -V option to control the
amount of information in a listing file.

The following options apply:

-show code, -machine_code
Specifying -show code or -machine_code includes a machine-language
representation of the compiled code if a listing file is being generated. This
machine language cannot be assembled.

The default is -show nocode or -nomachine_code.

-show hpf
(TU*X only) When used with the -hpf num option, specifying -show hpf
shows information about HPF parallelization. For more information, see
Section 3.50.4, -show hpf — Show HPF Parallelization Information.

-show include
Specifying -show include lists the contents of any text file specified with
INCLUDE in the source file if a listing is generated.

The default is -show noinclude.

-show nomap
Specifying -show nomap excludes information about the symbols used in the
source program if a listing is generated.

The default is -show map.

If you omit these options, the listing file contains the minimum amount of
information.

For More Information:

• On requesting a listing file, see Section 3.95.

• On examples and explanations of the various listing options, see
Appendix C.

3–64 f90 and fort Command-Line Options

3.83 -source_listing — Create a Source Listing File
Specifying -source_listing tells the compiler to create a listing file of the
source program. The file also contains compiler-generated information such as
that specified by the -V option. The name of the listing file is the base name of
the source file with a .lis suffix.

The default is -nosource_listing.

3.84 -speculate keyword — Speculative Execution
Optimization

Specifying the -speculate all option (TU*X only) or the -speculate by_routine
option (TU*X only) requests the compiler to perform speculative execution
optimization on all routines in the application.

Speculation occurs when a conditionally executed instruction is moved to a
position before a test instruction so that the moved instruction is then executed
unconditionally. This reduces instruction latency stalls to improve run-time
performance for certain applications or routines.

Speculative execution affects code most noticeably at optimization level -O3
and higher.

Performance improvements may be reduced because the run-time system must
dismiss exceptions caused by speculative instructions. For certain applications,
longer execution times may result. To determine whether using -speculate
all or -speculate by_routine benefits your particular program, you should
time program execution for the same program compiled with -speculate
by_routine or -speculate all with -speculate none (default).

Any exception (for example, SIGSEGV, SIGBUS, or SIGFPE), anywhere in
the entire program, is assumed to be speculative. All of these exceptions are
quietly dismissed without calling any user-mode signal handler. If a module is
compiled using -speculate all, it cannot be linked with any other module or
library that does its own exception processing.

Since speculation turns off some run-time error checking, this option should
not be used while debugging or while testing for errors.

The following options apply:

f90 and fort Command-Line Options 3–65

-speculate all
Perform speculative execution optimization on all routines in the program.
All exceptions within the entire program are dismissed without calling any
user-mode signal handler or reporting exceptions.

If a compilation unit is compiled with -speculate all, then it may not be
linked with any other object or library that does its own exception processing.
Do not use -speculate all if your program does any of the following:

• Generates any exceptional values other than underflow values

• Uses a user-supplied signal handler

• Was compiled with any of the -check keyword options

-speculate by_routine
Specifies that speculative execution optimization should be performed on
all routines in the current compilation unit (set of routines being compiled).
However, other compilation units in the application will not be affected.

All exceptions within the routines being compiled with -speculate by_routine
are quietly dismissed without calling any user-mode signal handler, but the
object files created can be linked with other objects or libraries that perform
exception processing. For example, using -speculate by_routine allows the
Compaq Fortran Run-Time Library to report exceptions.

-speculate none, -nospeculate
Suppresses all speculative execution optimization.

The -speculate none and -nospeculate options are synonymous.

This is the default.

3.85 -std, -std90, -std95 — Perform Fortran Standards
Checking

Use these options to request that the compiler produce warnings for syntax
that is not standard in the language.

If your command line includes any of these options, then the compiler ignores
-align dcommons and -align sequence.

The default is -nostd.

The options are:

3–66 f90 and fort Command-Line Options

-std
Produces warnings for things that are not standard.

When -std is specified, the compiler being used determines the standard
checked.

For example, on Tru64 UNIX systems, the Compaq Fortran compiler recognizes
the following equivalencies:

f95 -std is the same as f90 -std95
f90 -std is the same as f90 -std90

On Linux systems, the Compaq Fortran compiler recognizes the following
equivalency:

fort -std is the same as fort -std95

Source statements that do not conform to Fortran 90 or Fortran 95 language
standards are detected by the Compaq Fortran compiler under the following
circumstances:

• The statements contain ordinary syntax and semantic errors.

• A source program containing nonconforming statements is compiled with
the -std option.

Given these circumstances, the compiler is able to detect most instances
of nonconforming usage. It does not detect all instances because the -std
options do not produce checks for all nonconforming usage at compile time. In
general, the unchecked cases of nonconforming usage arise from the following
situations:

• The standard violation results from conditions that cannot be checked at
compile time.

• The compile-time checking is prone to false alarms.

Most of the unchecked cases occur in the interface between calling and called
subprograms. However, other cases are not checked, even within a single
subprogram.

The following items are known to be unchecked:

• Use of a data item prior to defining it

• Use of the SAVE statement to ensure that data items or common blocks
retain their values when reinvoked

• Association of character data items on the right and left sides of character
assignment statements

f90 and fort Command-Line Options 3–67

• Mismatch in order, number, or type in passing actual arguments to
subprograms with implicit interfaces

• Association of one or more actual arguments with a data item in a common
block when calling a subprogram that assigns a new value to one or more
of the arguments

On Tru64 UNIX systems only, the -std options interact with the -hpf option
(requests generation of parallel HPF code) as follows:

• If you omit both -std and -hpf, HPF directives are checked, but not
processed.

• If you omit -std and specify -hpf, HPF directives are checked and
processed.

• If you specify -std and omit -hpf, HPF directives are ignored (treated as
comments and not checked).

You should not specify both -std and -hpf.

-std90
Produces warnings for things that are not standard in the Fortran 90 language.
This includes:

• Fortran 90 standard-conforming statements that become nonstandard due
to the way in which they are used. Data type information and statement
locations are considered when determining semantic extensions.

• For fixed-format source files, lines that use tab formatting.

-std95
Produces warnings for things that are not standard in the Fortran 95 language.
This includes all the checks performed by the -std90 option with the following
exceptions:

• The FORALL statement is part of Fortran 95; thus it is not flagged as an
extension by the -std95 option

• User-defined PURE functions are part of Fortran 95; thus they are also not
flagged as extensions.

• The following features that were obsolescent in F90 are deleted in Fortran
95 (-std95 flags them as deleted) but the Compaq Fortran compiler fully
supports them:

REAL and DOUBLE PRECISION DO variables

Branching to an ENDIF statement from outside the paired IF
statement

3–68 f90 and fort Command-Line Options

PAUSE statement

ASSIGN statement, assigned GOTO, and assigned FORMAT
statements

H edit descriptor

For More Information:
On the Compaq Fortran language, see the Compaq Fortran Language Reference
Manual.

3.86 -synchronous_exceptions — Report Exceptions More
Precisely

This option causes the compiler to generate TRAPB instructions after every
floating-point instruction, resulting in precise exception reporting.

To use this option, you must also enable -fpe0.

This is a very expensive but effective way to synchronize the instruction stream
containing floating-point exceptions so the failing instruction can be accurately
located by the debugger or a handler. You should use this option only when
debugging a specific problem, such as locating the source of an exception.

If you omit the -synchronous_exceptions option and -fpe0 is in effect,
exceptions can be reported one or more instructions after the instruction
that caused the exception. If you specify -fpe1, -fpe2, -fpe3, or -
fpe4, exceptions are reported precisely (this is the same as specifying
-synchronous_exceptions).

The default is -nosynchronous_exceptions.

3.87 -syntax_only — Do Not Create Object File
The -syntax_only option specifies that the source file will be checked only
for correct syntax. No code is generated, no object file is produced, and some
error checking done by the optimizer is bypassed (for example, checking for
uninitialized variables).

This option lets you do a quick syntax check of your source file.

The default is -nosyntax_only.

f90 and fort Command-Line Options 3–69

3.88 -threads, -pthread — Link Using Threaded Run-Time
Library

(UN*X only) Specifying the -threads or -pthread option (they are synonymous)
requests that the linker use threaded libraries. This is usually used with the
-reentrancy threaded option (see Section 3.80).

3.89 -transform_loops — Activate Loop Transformation
Optimizations

Specifying -transform_loops (or -O5) activates a group of loop transformation
optimizations that apply to array references within loops. These optimizations
can improve the performance of the memory system and usually apply to
multiply nested loops.

The loop transformation optimizations are a subset of optimizations activated
by -O5. Instead of specifying both -pipeline and -transform_loops, you can
specify -O5.

To determine whether using -transform_loops benefits your particular
program, you should time program execution for the same program (or
subprogram) compiled with and without loop transformation optimizations
(such as with -transform_loops and -notransform_loops).

For More Information:

• On the -O5 option, see Section 3.72.

• On loop transformations, see Section 5.8.7, Loop Transformation.

3.90 -tune keyword — Specify Alpha Processor
Implementation

Use the -tune keyword option to specify the types of processor-specific
instruction tuning for implementations of the Alpha architecture.

Regardless of the setting of -tune keyword option you use, the generated code
runs correctly on all implementations of the Alpha architecture. Tuning for a
specific implementation can improve run-time performance; it is also possible
that code tuned for a specific Alpha processor may run more slowly on another
Alpha processor.

If you omit -tune keyword, -tune generic is used.

When -arch name is specified and no -tune is specified, the following occurs:
if -fast is specified, then -tune is host and -arch is name; if -fast is not
specified, then both -tune and -arch are name.

3–70 f90 and fort Command-Line Options

If you set -tune to an architecture that has fewer features than what -arch
specifies, the compiler will reset -tune to the same architecture as -arch.

The following options apply:

-tune generic
Generates and schedules code that will execute well for all implementations of
the Alpha architecture. This provides generally efficient code for those cases
where different processor generations are likely to be used.

This is the default.

-tune host
Generates and schedules code optimized for the implementation of the Alpha
architecture in use on the system being used for compilation.

-tune ev4
Generates and schedules code optimized for the 21064, 21064A, 21066, and
21068 implementations of the Alpha architecture.

-tune ev5
Generates and schedules code optimized for the 21164 implementation of the
Alpha chip. This implementation of the Alpha architecture is faster and more
recent than the implementations of the Alpha architecture associated with
-tune ev4 (21064, 21064A, 21066, and 21068).

-tune ev56
Generates and schedules code optimized for some 21164 Alpha architecture
implementations that use the byte and word manipulation instruction
extensions of the Alpha architecture.

-tune pca56
Generates and schedules code optimized for the 21164PC Alpha architecture
implementation that uses the byte and word manipulation instruction
extensions and multimedia instruction extensions.

-tune ev6
Generates and schedules code optimized for the 21264 Alpha architecture
implementations that use the byte and word manipulation instruction
extensions, multimedia instruction extensions, and square root and floating-
point convert extensions.

f90 and fort Command-Line Options 3–71

-tune ev67
Generates and schedules code optimized for the 21264A Alpha architecture
implementations that use the byte and word manipulation instruction
extensions, multimedia instruction extensions, square root and floating-point
convert extensions, and count extensions.

For More Information:

• On improving and measuring run-time performance, see Chapter 5.

3.91 -U — Activates Case Sensitivity
This option causes the compiler to distinguish between uppercase and
lowercase letters in identifiers and external names.

The -U option and -names as_is option are synonymous.

3.92 -Uname — Undefine Preprocessor Symbol Name
Specifying -Uname tells -cpp to remove the definition of name, such as
a predefined symbol. Predefined preprocessor symbols are defined in
Section 3.31.

3.93 -u
This option causes the compiler to produce messages about undeclared symbols.

The -u option is the same as -warn declarations.

3.94 -unroll num — Specify Number for Loop Unroll
Optimization

The -unroll num option sets the depth of loop unrolling done by the optimizer
to num. num must be an integer in the range 0 through 16.

Specify this option only with -O3 or higher optimization levels, at which loop
unrolling occurs.

If you omit -unroll num or specify -unroll 0, the optimizer determines how
many times loops are unrolled. Unless you specify a value, the optimizer will
choose an unroll amount that minimizes the overhead of prefetching while also
limiting code size expansion.

The option -nounroll is not allowed.

3–72 f90 and fort Command-Line Options

For More Information:

• On loop unrolling optimization, see Section 5.8.4.1.

• On software pipelining, which is related to loop unrolling, see Section 3.76.

• On options related to optimization levels, see Section 3.72.

3.95 -V — Create Listing File
Specifying -V creates a listing of the source file with various compile-time
information appended. The name of the listing file is the base name of the file
with the .l suffix.

A file name whose suffix is .l may conflict with lex. If you want the listing
file to have the suffix .lis, then use the option -source_listing.

If you expect your program to get compilation errors, use -V to request a
separate listing file or use the error command to insert the error messages
into the appropriate place in your source program.

Using a listing file provides slightly more information and includes the column
pointer (1) that indicates the exact part of the line that caused the error.
Especially for large files, consider obtaining a printed copy of the listing file
you can reference while editing the source file.

If you use -V without other options (such as -show code), the listing file will
not show the code of included source files or machine code and will not include
a cross-reference table.

If a source line of length 1 contains a form-feed character, the source code
listing begins a new page with the following line; the line containing the
form-feed does not appear.

If a source line of length greater than 1 contains a form-feed character, that
line is printed but the form-feed character is ignored (does not generate a new
page).

Any other nonprinting ASCII characters encountered in source files are
replaced by a space character, and a warning message appears.

If you compile several source files together and specify -V, a single listing file
(using the name of the first input file) is created.

If you compile several source files one at a time and specify -V, multiple listing
files are created.

The default is -noV.

f90 and fort Command-Line Options 3–73

For More Information:

• On the options that control the contents of the listing file, see Section 3.82.

• On sample listing file content, see Appendix C.

3.96 -v — Verbose Command Processing Display
Specifying -v displays the preprocessor (if requested), compiler, and linker
passes as they execute, with their arguments and their input and output files,
as well as final resource usage in the C shell time command format. The
Compaq Fortran compiler is decfort90, the C compiler is cc on Tru64 UNIX
systems but ccc on Linux systems, the linker is ld, and so forth.

The default is -nov, which does not display any command processing
information.

3.97 -version, -what — Show Compaq Fortran Version
Information

Specifying the -version (or -what) option prints the version information of the
Fortran driver and compiler.

If -version appears alone on the command line, the compiler is not executed.

The default is -noversion.

3.98 -vms — OpenVMS Fortran Compatibility
Specifying -vms causes the run-time system to behave like Compaq Fortran on
OpenVMS Alpha systems and VAX systems (VAX FORTRAN) in the following
ways:

• Certain defaults

In the absence of other options, -vms sets the f90 defaults as -check
format and -check output_conversion.

• Alignment

The -vms option does not affect the alignment of fields in records or items
in common blocks. Use -align norecords to pack fields of records on the
next byte boundary for compatibility with Compaq Fortran on OpenVMS
systems.

• Carriage control default

3–74 f90 and fort Command-Line Options

If -vms -ccdefault default is specified, carriage control defaults to
FORTRAN if the file is formatted and the unit is connected to a terminal.
See Section 3.21.

• INCLUDE qualifiers

/LIST and /NOLIST are recognized at the end of the file name in an
INCLUDE statement at compile time (see Section 2.1.4).

If the file name in the INCLUDE statement does not specify the complete
path, the path used is the current directory.

Note that if -vms is not specified, the path used is the directory where the
file that contains the INCLUDE statement resides.

• Quotation mark character

A quotation mark (") character is recognized as starting an octal constant
("0..7) instead of a character literal ("...").

• Deleted records in relative files

When a record in a relative file is deleted, the first byte of that record is set
to a known character (currently ’@’). Attempts to read that record later
result in ATTACCNON errors. The rest of the record (the whole record,
if -vms is not specified) is set to nulls for unformatted files and spaces for
formatted files.

• ENDFILE records

When an ENDFILE is performed on a sequential unit, an actual 1-byte
record containing a Ctrl/Z is written to the file. If -vms is not specified, an
internal ENDFILE flag is set and the file is truncated.

The -vms option does not affect ENDFILE on relative files: these files are
truncated.

• Implied logical unit numbers

The -vms option enables Compaq Fortran to recognize certain environment
variables at run time for ACCEPT, PRINT, and TYPE statements and for
READ and WRITE statements that do not specify a unit number (such as
READ (*,1000)). See Section 7.5.7, Using Environment Variables.

• Treatment of blanks in input

The -vms option causes the defaults for the keyword BLANK in OPEN
statements to become ’NULL’ for an explicit OPEN and ’ZERO’ for an
implicit OPEN of an external or internal file. For more information, see
the description of the OPEN statement in the Compaq Fortran Language
Reference Manual.

f90 and fort Command-Line Options 3–75

• OPEN statement effects

Carriage control defaults to FORTRAN if the file is formatted, and the unit
is connected to a terminal (checked by means of isatty(3)). Otherwise,
carriage control defaults to LIST.

The -vms option affects the record length for direct access and relative
organization files. The buffer size is increased by 1 to accommodate the
deleted record character.

• Reading deleted records and ENDFILE records

The run-time direct access READ routine checks the first byte of the
retrieved record. If this byte is ’@’ or NULL ("\0"), then an ATTACCNON
error is returned.

The run-time sequential access READ routine checks to see if the record it
just read is one byte long and contains a Ctrl/Z. If this is true, it returns
EOF.

The default is -novms.

For More Information:

• On alignment, see Section 3.3 and Section 5.4.

3.99 -Wl,-xxx — Pass Specified Option to ld
The -Wl,-xxx option allows you to pass an option (specified by -xxx) directly to
the ld linker.

For example, to set the linker -taso option (TU*X only) to help port 32-bit
programs that assume addresses can be stored into 32-bit variables, specify:

-Wl,-taso

If the -xxx option takes an argument yyy, include yyy after the option separated
by a comma.

For example:

-Wl,-xxx,yyy

results in the passing of

-xxx yyy

to ld.

3–76 f90 and fort Command-Line Options

For another example, if you want to specify the linker option -VS 3, then a
possible command is:

% f90 -Wl,-VS,3 test123.f90

For More Information:
On linker options, see ld(1).

3.100 -warn keyword, -u, -nowarn, -w, -w1 — Warning
Messages and Compiler Checking
You can prevent the display of some or all warning messages and request that
additional compile-time checking be performed (can issue additional warning
messages):

• The following options prevent the display of warning messages:

-warn noalignments
-warn nogeneral
-warn nouncalled
-warn nouninitialized
-warn nounused
-warn nousage
-nowarn
-w

• The -warn declarations (or -u) and -warn argument_checking options
request that additional checking be performed and can display additional
warning messages.

If you specify -syntax_only, some warning options are ignored (see
Section 3.87).

The following options apply:

-warn noalignments
Disables warning messages about data that is not naturally aligned.

The default is -warn alignments.

To control alignment of common blocks, derived-type structures, and record
structures, specify the -align keyword options.

-warn argument_checking
Enables warnings about mismatched procedure arguments. Specifying -warn
argument_checking applies to calls with an implicit interface (such as routines
declared as EXTERNAL).

f90 and fort Command-Line Options 3–77

The default is -warn noargument_checking.

When an explicit interface is present between calling and called procedures,
warning messages about argument mismatches are reported whether or not
you specify -warn argument_checking.

-warn declarations, -u
Sets the default type of a variable as undefined (IMPLICIT NONE), which
enables warnings about any undeclared symbols. This behavior differs from
default Fortran 95/90 rules.

The default is -warn nodeclarations.

-warn nogranularity
Disables warnings when the compiler cannot generate code for a requested
granularity.

The default is -warn granularity.

-warn hpf
(TU*X only) Tells the compiler to do both syntax and semantics checking on HPF
directives.

The default vis -warn nohpf, unless -hpf is specified, in which case -warn hpf
is assumed.

-warn ignore_loc
Enables warnings when %loc is stripped from an argument.

The default is -warn noignore_loc.

-warn truncated_source
Enables warnings at compile time about source characters to the right of
column 72 (or column 132 if -extend_source is specified) in a non-comment
line.

This option has no effect on truncation; lines that exceed the maximum column
width are always truncated.

This option does not apply to free-format source files.

The default is -warn notruncated_source.

-warn nouninitialized
Disables warning messages for a variable used before a value could be assigned
to it.

The default is -warn uninitialized.

3–78 f90 and fort Command-Line Options

-warn nogeneral, -nowarn, -w
Disables all warning messages.

The default is -warn general, which enables all warning messages.

The options -warn nogeneral, -nowarn, and -w are synonymous.

-warn nouncalled
Disables warning messages about a statement function that is never called.

The default is -warn uncalled.

-warn unused
Requests warning messages for variables that are declared but not used.

The default is -warn nounused or -w1, which are synonymous.

-warn nousage
Disables warning messages about questionable programming practices which,
although allowed, are often the result of programming errors. Examples are
a continued character or Hollerith literal whose first part ends before the
statement field and appears to end with trailing spaces.

The default is -warn usage.

3.101 -warning_severity keyword — Elevate Severity of
Warning Messages
Use this option to elevate warning-level messages to error-level status.

The default is -warning_severity warning, which leaves all compiler warning
messages at warning-level status.

The following options apply:

-warning_severity error
Turns all compiler warning-level messages into error-level messages.

-warning_severity stderror
Turns all standards-checking compiler warning-level messages into error-level
messages.

Standards checking is enabled when the -std option is specified.

f90 and fort Command-Line Options 3–79

3.102 -what
-what is the same as -version. See Section 3.97.

3.103 -wsf
-wsf is the nonpreferred spelling of -hpf. See Section 3.50.

3–80 f90 and fort Command-Line Options

4
Using the Ladebug Debugger

This chapter contains the following topics:

• Section 4.1, Overview of Ladebug and dbx Debuggers

• Section 4.2, Compaq Fortran Options for Debugging

• Section 4.3, Running the Debugger

• Section 4.4, Sample Program and Debugging Session

• Section 4.5, Summary of Debugger Commands

• Section 4.6, Displaying Variables

• Section 4.7, Expressions in Debugger Commands

• Section 4.8, Debugging Mixed-Language Programs with Ladebug

• Section 4.9, Debugging a Program that Generates an Exception

• Section 4.10, Locating Unaligned Data

• Section 4.11, Using Alternate Entry Points

• Section 4.12, Debugging Optimized Programs

4.1 Overview of Ladebug and dbx Debuggers
You can use these debuggers to debug Compaq Fortran programs:

• On Tru64 UNIX: Ladebug and dbx

• On Linux: Ladebug

Ladebug supports Compaq Fortran data types, syntax, and use. Ladebug is a
source-level, symbolic debugger that lets you:

• Control the execution of individual source lines in a program.

• Set stops (breakpoints) at specific source lines or under various conditions.

• Change the value of variables in your program.

Using the Ladebug Debugger 4–1

• Refer to program locations by their symbolic names, using the debugger’s
knowledge of the Compaq Fortran language to determine the proper
scoping rules and how the values should be evaluated and displayed.

• Print the values of variables and set a tracepoint (trace) to notify you
when the value of a variable changes. Another term for a tracepoint is a
watchpoint.

• Perform other functions, such as examining core files, examining the call
stack, or displaying registers.

The command names and command syntax used by Ladebug and dbx are
almost identical. However, Ladebug provides significantly more Compaq
Fortran language support than dbx, especially Fortran 95/90 features not
found in the FORTRAN-77 standard.

This chapter primarily describes the Ladebug debugger.

4.2 Compaq Fortran Options for Debugging
The -gn options control the amount of information placed in the object file for
debugging. To use Ladebug, you should specify the -ladebug option along with
the -g, -g2, or -g3 options.

Table 4–1 summarizes the information provided by the -gn options and their
relationship to the -On options.

Table 4–1 Command-Line Options Affecting Traceback and Symbol Table
Information

Option
Traceback
Information

Debugging Symbol
Table Information

Effect on -On
Options

-g0 No No Default is -O4.

-g1 (default) Yes No Default is -O4.

-g or -g21 Yes Yes, but for unoptimized code. Changes default to
-O0.

-g3 Yes Yes, but for unoptimized code. Default is -O4.

-ladebug Yes Allows access to Fortran 95/90
dynamic arrays using standard
Fortran 95/90 syntax, including
array sections.

No effect.

1The -g and -g2 options are equivalent.

4–2 Using the Ladebug Debugger

Traceback information and symbol table information are both necessary
for debugging. As shown in Table 4–1, if you specify -g, -g2, or -g3, the
compiler provides the symbol table and traceback information needed for
symbolic debugging. Unless you specify -g0, the compiler supplies traceback
information in the object file.

To use the Ladebug debugger, you should specify the f90 (on Tru64 UNIX
systems) or the fort (on Linux systems) command and the command option
-ladebug along with -g, -g2, or -g3.

Likely uses of these options at the various stages of program development are
as follows:

• During early stages of program development, use the -g (-g2) option to
create unoptimized code (optimization level -O0). This option also might be
chosen later to debug reported problems from later stages.

• During the later stages of program development, use -g0 or -g1 to
minimize the object file size and, as a result, the memory needed
for program execution, usually with optimized code. (See Chapter 5,
Performance: Making Programs Run Faster.)

Traceback and symbol table information result in a larger object file. When
you have finished debugging your program, you can recompile and relink to
create an optimized executable program or remove traceback and symbol table
information with the strip command. (See strip(1).)

If your program generates an exception, see Section 4.9, Debugging a Program
that Generates an Exception.

4.3 Running the Debugger
The Ladebug debugger provides the following user interfaces in the Compaq
Tru64 UNIX operating system Programmer’s Development Toolkit:

• A graphical Ladebug windowing interface (TU*X only)

• A character-cell interface

The examples in this chapter show the character-cell interface to the Ladebug
debugger.

4.3.1 Creating the Executable Program and Running the Debugger
Use the f90 command with certain options to create an executable program for
debugging. To invoke the debugger, enter the debugger shell command and the
name of the executable program.

Using the Ladebug Debugger 4–3

4.3.1.1 Invoking Ladebug
The following commands create (compile and link) the executable program and
invoke the character-cell interface to the Ladebug debugger:

% f90 -g -ladebug -o squares squares.f90
% ladebug squares
Welcome to the Ladebug Debugger Version x.x-xx

object file name: squares
reading symbolic information ... done
(ladebug)

In this example, the f90 command:

• Compiles and links the program squares.f90.

• Requests symbol table information needed for symbolic debugging and no
optimization (-g and -ladebug).

• Names the executable file squares instead of a.out (-o squares).

The ladebug shell command runs the debugger, specifying the executable
program squares. The ladebug command accepts various options. (See
ladebug(1).)

At the debugger prompt (ladebug), you can enter a debugger command.

4.3.1.2 Invoking dbx
The following commands create the executable program and invoke the dbx
debugger (TU*X only). Note that the -ladebug option is omitted, which causes
dbx to be used:

% f90 -g -o squares squares.f90
% dbx squares
dbx version x.x.x
Type ’help’ for help.
squares: 1 PROGRAM SQUARES
(dbx)

In this example, the f90 command:

• Compiles and links the program squares.f90.

• Requests symbol table information needed for symbolic debugging and no
optimization (-g).

• Names the executable file squares instead of a.out (-o squares).

The dbx shell command runs the debugger, specifying the executable program
squares. The dbx command accepts various options. (See dbx(1).)

At the debugger prompt (dbx), you can enter a debugger command.

4–4 Using the Ladebug Debugger

4.3.2 Debugger Commands and Breakpoints
To find out what happens at critical points in your program, you need to stop
execution at these points and look at the contents of program variables to see
if they contain the correct values. Points at which the debugger stops program
execution are called breakpoints.

To set a breakpoint, use one of the forms of the stop or stopi commands.

Using the program created in Section 4.3.1, the following debugger commands
set a breakpoint at line 4, run the program, continue the program, delete the
breakpoint, rerun the program, and return to the shell:

(ladebug) stop at 4
[#1: stop at "squares.f90":4]
(ladebug) run
[1] stopped at [squares:4 0x120001880]
> 4 OPEN(UNIT=8, FILE=’datafile.dat’, STATUS=’OLD’)
(ladebug) cont
Process has exited with status 0
(ladebug) delete 1
(ladebug) rerun
Process has exited with status 0
(ladebug) quit
%

1. The stop at 4 command sets a breakpoint at line 4.

To set a breakpoint at the start of a subprogram (such as calc), use the
stop in (such as stop in calc).

2. The run command begins program execution and stops at the first
breakpoint. The program is now active, allowing you to view the values of
variables with print commands and perform related functions.

3. The cont (continue) command resumes program execution.

In addition to the cont command, you can also use the step, next, run, or
rerun commands to resume execution.

4. The delete 1 command shows how to delete a previously set breakpoint
(with event number 1). For instance, you might need to delete a previously
set breakpoint before you use the rerun command.

5. The rerun command runs the program again. Since there are no
breakpoints, the program runs to completion.

6. The quit command exits the debugger and returns to the shell.

Other debugger commands include the following:

• To get help on debugger commands, enter the help command.

Using the Ladebug Debugger 4–5

• To display previously typed debugger commands, type the history
command.

• To look at, or examine, the contents of a location, use the print or dump
commands.

• You can use the debugger sh command (followed by the desired shell
command) to execute a shell command. For instance, if you cannot recall
the name of a FUNCTION statement, the following grep shell command
displays the lines containing the letters FUNCTION, allowing use of the
function name (SUBSORT) in the stop in command:

(ladebug) sh grep FUNCTION data.for
INTEGER*4 FUNCTION SUBSORT (A,B)

(ladebug) stop in subsort
(ladebug)

4.3.3 Ladebug Limitations
For a list of known Ladebug limitations, see the Compaq Tru64 UNIX Ladebug
Debugger Manual.

4.4 Sample Program and Debugging Session
Example 4–1 shows a program called SQUARES that requires debugging. The
program was compiled and linked without diagnostic messages from either
the compiler or the linker. However, this program contains a logic error in an
arithmetic expression.

Compiler-assigned line numbers have been added in the example so that you
can identify the source lines to which the explanatory text refers.

4–6 Using the Ladebug Debugger

Example 4–1 Sample Program SQUARES

1 PROGRAM SQUARES
2 INTEGER INARR(20), OUTARR(20)
3 C ! Read the input array from the data file.
4 OPEN(UNIT=8, FILE=’datafile.dat’, STATUS=’OLD’)
5 READ(8,*,END=5) N, (INARR(I), I=1,N)
6 5 CLOSE (UNIT=8)
7 C ! Square all nonzero elements and store in OUTARR.
8 K = 0
9 DO I = 1, N
10 IF (INARR(I) .NE. 0) THEN
11 OUTARR(K) = INARR(I)**2
12 ENDIF
13 END DO
14
15 C ! Print the squared output values. Then stop.
16 PRINT 20, K
17 20 FORMAT (’ Number of nonzero elements is’,I4)
18 DO I = 1, K
19 PRINT 30, I, OUTARR(I)
20 30 FORMAT(’ Element’,I4,’ has value’,I6)
21 END DO
22 END PROGRAM SQUARES

The program SQUARES performs the following functions:

1. Reads a sequence of integer numbers from a data file and saves these
numbers in the array INARR (lines 4 and 5). The file datafile.dat
contains one record with the integer values 4, 3, 2, 5, and 2. The first
number (4) indicates the number of data items that follow.

2. Enters a loop in which it copies the square of each nonzero integer into
another array OUTARR (lines 8 through 13).

3. Prints the number of nonzero elements in the original sequence and the
square of each such element (lines 16 through 21).

Note: This example assumes that the program was executed without array
bounds checking (set by the Section 3.23 command-line option). When executed
with array bounds checking, a run-time error message appears.

When you run SQUARES, it produces the following output, regardless of the
number of nonzero elements in the data file:

% squares
Number of nonzero elements is 0

Using the Ladebug Debugger 4–7

The logic error occurs because variable K, which keeps track of the current
index into OUTARR, is not incremented in the loop on lines 9 through 13. The
statement K = K + 1 should be inserted just before line 11.

Example 4–2 shows how to start the debugging session and how to use the
character-cell interface to the Ladebug debugger to find the error in the
sample program in Example 4–1. Comments keyed to the callouts follow the
example.

Example 4–2 Sample Debugging Session Using Program Squares

% f90 -g -ladebug -o squares squares.f90 !

% ladebug squares "
Welcome to the Ladebug Debugger Version x.x-xx

object file name: squares
reading symbolic information ... done
(ladebug) list 1,9 #

1 PROGRAM SQUARES
2 INTEGER INARR(20), OUTARR(20)
3 C ! Read the input array from the data file.

> 4 OPEN(UNIT=8, FILE=’datafile.dat’, STATUS=’OLD’)
5 READ(8,*,END=5) N, (INARR(I), I=1,N)
6 5 CLOSE (UNIT=8)
7 C ! Square all nonzero elements and store in OUTARR.
8 K = 0
9 DO 10 I = 1, N

(ladebug) stop at 8 $
[#1: stop at "squares.f90":8]
(ladebug) run %
[1] stopped at ["squares.f90":4 0x120001a88]
> 8 K = 0
(ladebug) step &
stopped at [squares:9 0x120001a90]

9 DO 10 I = 1, N
(ladebug) print n, k ’
4 0
(ladebug) step (
stopped at [squares:10 0x120001ab0]]

10 IF(INARR(I) .NE. 0) THEN

(continued on next page)

4–8 Using the Ladebug Debugger

Example 4–2 (Cont.) Sample Debugging Session Using Program Squares
(ladebug) s
stopped at [squares:11 0x1200011acc]

11 OUTARR(K) = INARR(I)**2
(ladebug) print i, k)
1 0
(ladebug) assign k = 1 +>

(ladebug) watch variable k +?
[#2: watch variable (write) k 0x1400002c0 to 0x1400002c3]
(ladebug) cont +@
Number of nonzero elements is 1
Element 1 has value 4
Process has exited with status 0
(ladebug) quit +A

% vi squares.f90 +B
.
.
.

10: IF(INARR(I) .NE. 0) THEN
11: K = K + 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF

.

.

.
% f90 -g -ladebug -o squares squares.f90 +C
% ladebug squares
Welcome to the Ladebug Debugger Version x.x-xx
Reading symbolic information ...done
(ladebug) when at 12 {print k} +D
[#1: when at "squares.f90":12 { print K}]

(continued on next page)

Using the Ladebug Debugger 4–9

Example 4–2 (Cont.) Sample Debugging Session Using Program Squares

(ladebug) run +E
[1] when [squares:12 0x120001ae0]
1
[1] when [squares:12 0x120001ae0]
2
[1] when [squares:12 0x120001ae0]
3
[1] when [squares:12 0x120001ae0]
4
Number of nonzero elements is 4
Element 1 has value 9
Element 2 has value 4
Element 3 has value 25
Element 4 has value 4
Process has exited with status 0
(ladebug) quit +F
%

! On the f90 command line, the -g and -ladebug options direct the compiler
to write the symbol information associated with SQUARES into the object
file for the debugger. It also disables most optimizations done by the
compiler to ensure that the executable code matches the source code of the
program. On a Linux system, the fort command and the same options
would give the compiler the same directions.

" The shell command ladebug squares runs the debugger, which displays its
banner and the debugger prompt, (ladebug). This command specifies the
executable program as a file named squares. You can now enter debugger
commands.

After the ladebug squares command, execution is initially paused before
the start of the main program unit (before program SQUARES, in this
example).

To use the dbx debugger, enter the following shell command instead of
ladebug squares:

% dbx squares
dbx version x.x
Type ’help’ for help.
squares: 4 OPEN(UNIT=8, FILE=’datafile.dat’, STATUS=’OLD’)
(dbx)

The list 1,9 command prints lines 1 through 9.

$ The command stop at 8 sets a breakpoint (1) at line 8.

4–10 Using the Ladebug Debugger

% The run command begins program execution. The program stops at the
first breakpoint, line 8, allowing you to examine variables N and K before
program completion.

& The step advances the program to line 9.

The step command ignores source lines that do not result in executable
code; also, by default, the debugger identifies the source line at which
execution is paused.

To avoid stepping into a subprogram, use the next command instead of
step

’ The command print n, k displays the current values of variables N and K.
Their values are correct at this point in the execution of the program.

(The two step commands continue executing the program into the loop
(lines 9 to 11) that copies and squares all nonzero elements of INARR into
OUTARR.

Certain commands can be abbreviated. In this example, the s command is
an abbreviation of the step command.

) The command print i, k displays the current values of variables I and K.

Variable I has the expected value, 1. But variable K has the value 0
instead of the expected value, 1. To fix this error, K should be incremented
in the loop just before it is used in line 11.

+> The assign command assigns K the value 1.

+? The watch variable k command sets a watchpoint that is triggered
every time the value of variable K changes. In the original version of the
program, this watchpoint is never triggered, indicating that the value of
variable K never changes (a programming error).

+@ To test the patch, the cont command (an abbreviation of continue) resumes
execution from the current location.

The program output shows that the patched program works properly, but
only for the first array element. Because the watchpoint (watch variable
k command) does not occur, the value of K did not change and there is a
problem. The Ladebug message ‘‘Process has exited with status 0’’ shows
that the program executed to completion.

When using the dbx debugger, the message ‘‘Program terminated normally’’
shows that the program executed to completion.

+A The quit command returns control to the shell so that you can correct the
source file and recompile and relink the program.

Using the Ladebug Debugger 4–11

+B The shell command vi runs a text editor and the source file is edited to
add K = K + 1 after line 10, as shown. (Compiler-assigned line numbers
have been added to clarify the example.)

+C The revised program is compiled and linked.

The shell command ladebug squares (or dbx squares) starts the debugger,
using the revised program so that its correct execution can be verified.

+D The when at 12 {print k} command reports the value of K at each iteration
through the loop.

+E The run command starts execution.

The displayed values of K confirm that the program is running correctly.

+F The quit command ends the debugging session, returning control to the
shell.

4.5 Summary of Debugger Commands
Table 4–2 lists some of the more frequently used debugging commands
available in Ladebug and dbx. Many of these commands can be abbreviated
(for example, you can enter c instead of cont). When using the debugger
with a windowing interface, you can access these commands by using the
windowing interface (command buttons and command menu). For a complete
list of available debugger commands, see the ladebug(1) and dbx(1) reference
pages.

Table 4–2 Summary of Debugger Commands

Command Example Description

catch Displays all signals that the debugger is currently set to
catch (see also ignore).

catch fpe Tells the debugger to catch the fpe signal (or the signal
specified). This prevents the specified signal from reaching
the Compaq Fortran RTL. The signals that the Compaq
Fortran RTL arranges to catch are listed in Section 8.3.

catch unaligned Tells the debugger to catch the unaligned signal, as further
described in Section 4.10. The signals that the Compaq
Fortran RTL arranges to catch are listed in Section 8.3.

(continued on next page)

4–12 Using the Ladebug Debugger

Table 4–2 (Cont.) Summary of Debugger Commands

Command Example Description

cont Resumes execution of the program that is being
debugged. Note that there is no Ladebug command named
continue.

delete 2 Removes the breakpoint or tracepoint identified by event
number 2 (see also status).

delete all Removes all breakpoints and tracepoints.

help Displays debugger help text.

history 5 Displays the last 5 debugger commands.

ignore Displays the signals the debugger is currently set to
ignore. The ignored signals are allowed to pass directly to
the Compaq Fortran RTL. (see also catch).

ignore fpe Tells the debugger to ignore the fpe signal (or the signal
specified). This allows the specified signal to pass directly
to the Compaq Fortran RTL, allowing message display.
The signals that the Compaq Fortran RTL arranges to
catch are listed in Section 8.3.

ignore unaligned Tells the debugger to ignore the unaligned signal (the
default).

kill Terminates the program process, leaving the debugger
running and its breakpoints and tracepoints intact for
when the program is rerun.

list Displays source program lines. To list a range of lines, add
the starting line number, a comma (,), and the ending line
number, such as list 1,9.

print k Displays the value of the specified variable, such as K.

printregs Displays all registers and their contents.

next Steps one source statement but does not step into calls to
subprograms (compare with step).

quit Ends the debugging session.

run Runs the program being debugged. You can specify
program arguments and redirection.

rerun Runs the program being debugged again. You can specify
program arguments and redirection.

(continued on next page)

Using the Ladebug Debugger 4–13

Table 4–2 (Cont.) Summary of Debugger Commands

Command Example Description

return [routine-name] When using the step command, if you step into a
subprogram that does not require further investigation,
use the return command to continue execution of the
current function until it returns to its caller. If you
include the name of a routine with the return command,
execution continues until control is returned to that
routine.

The routine-name is the name of the routine, usually
named by a PROGRAM, SUBROUTINE, or FUNCTION
statement. If there is no PROGRAM statement, the
debugger refers to the main program with a prefix of
main$ followed by the file name.

sh more progout.f90 Executes the shell command more to display file
progout.f90, then returns to the debugger environment.

show thread Lists all threads known to the Ladebug debugger.

status Displays breakpoints and tracepoints with their event
numbers (see also delete).

step Steps one source statement, including stepping into calls
of a subprogram. For Compaq Fortran I/O statements,
intrinsic procedures, 3f library routines, or other
subprograms, use the next command instead of step
to step over the subprogram call. Compare with next;
also see return.

stop in foo Stops execution (breakpoint) at the beginning of routine
foo.

stop at 100 Stops execution at line 100 (breakpoint) of the current
source file.

stopi at xxxxxxx Stops execution at address xxxxxxx of the current
executable program.

thread [n] Identifies or sets the current thread context (ladebug).

watch location Displays a message when the debugger accesses
the specified memory location. For example, watch
0x140000170.

watch variable m Displays a message when the debugger accesses the
variable specified by m.

whatis sym Displays data type of specified symbol.

(continued on next page)

4–14 Using the Ladebug Debugger

Table 4–2 (Cont.) Summary of Debugger Commands

Command Example Description

when at 9 {command} When a specified line (such as 9) is reached, the command
or commands are executed. For example, when at 9
{print k} prints the value of variable K when the
program executes source code line 9.

when in name {command} When a procedure specified by name is reached, the
command or commands are executed. For example, when
in calc_ave {print k} prints the value of variable K
when the program begins executing the procedure named
calc_ave.

where Displays the call stack.

where thread all Displays the stack traces of all threads.

The debuggers support other special-purpose commands. For example:

• You might use the attach and detach commands for programs with very
long execution times.

• The listobj command may be helpful when debugging programs that
depend on shared libraries. The listobj debugger command displays the
names of executables and shared libraries currently known to the debugger.

For More Information:

• On debugger command syntax, use the help command.

• On the debugger windowing interface, use online windowing help or see
Section 4.3.

• On examples of debugger commands, see Section 4.4 and Section 4.5.

• On Ladebug commands, see the Compaq Tru64 UNIX Ladebug Debugger
Manual or ladebug(1) reference page.

• On dbx commands, see Compaq Tru64 UNIX Programmer’s Guide and
dbx(1).

Using the Ladebug Debugger 4–15

4.6 Displaying Variables
To refer to a variable, use either the uppercase or lowercase letters. For
example:

(ladebug) print J
(ladebug) print j

You can enter command names in uppercase:

(ladebug) PRINT J

If you compile the program with the f90 command option -names as_is and
you need to examine case-sensitive names, you can control whether Ladebug
is case sensitive by setting the $lang environment variable to the name of a
case-sensitive language (see Section 4.8).

4.6.1 Compaq Fortran Module Variables
To refer to a variable defined in a module, insert a dollar sign ($), the module
name, and another dollar sign ($) before the variable name. For example, with
a variable named J defined in a module named modfile (statement MODULE
MODFILE), enter the following command to display its value:

(ladebug) list 5,9
5 USE MODFILE
6 INTEGER*4 J
7 CHARACTER*1 CHR
8 J = 2**8

(ladebug) PRINT $MODFILE$J
256

4.6.2 Compaq Fortran Common Block Variables
You can display the values of variables in a Fortran common block by using
debugger commands such as print or whatis.

To display the entire common block, use the common block name.

To display a specific variable in a common block, use the variable name. For
example:

(ladebug) list 1,11

4–16 Using the Ladebug Debugger

1 PROGRAM EXAMPLE
2
3 INTEGER*4 INT4
4 CHARACTER*1 CHR
5 COMMON /COM_STRA/ INT4, CHR
6
7 CHR = ’L’
8
9 END

(ladebug) PRINT COM_STRA
COMMON

INT4 = 0
CHR = "L"

(ladebug)
(ladebug) PRINT CHR
"L"

If the name of a data item in a common block has the same name as the
common block itself, the data item is accessed.

4.6.3 Compaq Fortran Derived-Type Variables
Variables in a Fortran 95/90 derived-type (TYPE statement) are represented in
Ladebug commands such as print or whatis using Fortran 95/90 syntax form.

For derived-type structures, use the derived-type variable name, a percent sign
(%), and the member name. For example:

(ladebug) list 3,11
3 TYPE X
4 INTEGER A(5)
5 END TYPE X
6
7 TYPE (X) Z
8
9 Z%A = 1

10
11 PRINT *,Z%A

(ladebug) PRINT Z%A
(1) 1
(2) 1
(3) 1
(4) 1
(5) 1
(ladebug)

To display the entire object, use the PRINT command with the object name. For
example:

(ladebug) PRINT Z

Using the Ladebug Debugger 4–17

4.6.4 Compaq Fortran Record Variables
To display the value of a field in a record structure, enter the variable name as:
the record name, a delimiter (either a period (.) or a percent sign (%)), and
the field name.

To view all fields in a record structure, enter the name of the record structure,
such as REC (instead of REC.CHR or REC%CHR) in the previous example.

4.6.5 Compaq Fortran Pointer Variables
Compaq Fortran supports two types of pointers:

• Fortran 95/90 pointers (standard-conforming)

• Compaq Fortran CRAY-style pointers (extension to the Fortran 95/90
standards)

4.6.5.1 Fortran 95/90 Pointers
Fortran 95/90 pointers display their corresponding target data with a print
command. You must specify the -ladebug option to provide Ladebug with
information about pointers to arrays.

% f90 -g -ladebug point.f90
% ladebug ./a.out
Welcome to the Ladebug Debugger Version x.x-xx

object file name: ./a.out
Reading symbolic information ...done
(ladebug) stop in ptr
[#1: stop in ptr]
(ladebug) list 1:13

1 program ptr
2
3 integer, target :: x(3)
4 integer, pointer :: xp(:)
5
6 x = (/ 1, 2, 3/)
7 xp => x
8
9 print *, "x = ", x

10 print *, "xp = ", xp
11
12 end

(ladebug) run
[1] stopped at [ptr:6 0x120001838]

6 x = (/ 1, 2, 3/)
(ladebug) whatis x
int x(1:3)
(ladebug) whatis xp !
int xp(:)

4–18 Using the Ladebug Debugger

(ladebug) s
stopped at [ptr:7 0x120001880]

7 xp => x
(ladebug) s
stopped at [ptr:9 0x120001954]

9 print *, "x = ", x
(ladebug) s
x = 1 2 3
stopped at [ptr:10 0x1200019c8]
(ladebug) s
xp = 1 2 3
stopped at [point:12 0x120001ad8]

12 end
(ladebug) S
xp = 1 2 3
(ladebug) whatis xp "
int xp(1:3)
(ladebug) print xp
(1) 1
(2) 2
(3) 3
(ladebug) quit
%

! For the first whatis xp command, xp has not yet been assigned to point to
variable x and is a generic pointer.

" Since xp has been assigned to point to variable x, for the second whatis xp
command, xp takes the same size, shape, and values as x.

4.6.5.2 CRAY-Style Pointers
Like Fortran 95/90 pointers, Compaq Fortran (CRAY-style) pointers (POINTER
statement) display the target data in their corresponding source form with a
print command.

Using the Ladebug Debugger 4–19

(ladebug) stop at 14
[#1: stop at "dfpoint.f90":14]
(ladebug) run
[1] stopped at [dfpoint:14 0x1200017e4]
(ladebug) list 1,14

1 program dfpoint
2
3 real i(5)
4 pointer (p,i)
5
6 n = 5
7
8 p = malloc(sizeof(i(1))*n)
9
10 do j = 1,5
11 i(j) = 10*j
12 end do
13

> 14 end
(ladebug) whatis p
float (1:5) pointer p
(ladebug) print p
0x140003060 = (1) 10
(2) 20
(3) 30
(4) 40
(5) 50
(ladebug) quit
%

4.6.6 Compaq Fortran Array Variables
For array variables, put subscripts within parentheses, as with Fortran 95/90
source statements. For example:

(ladebug) assign arrayc(1)=1

You can print out all elements of an array using its name. For example:

(ladebug) print arrayc
(1) 1
(2) 0
(3) 0
(ladebug)

Avoid displaying all elements of a large array. Instead, display specific array
elements or array sections. For example, to print array element arrayc(2):

(ladebug) print arrayc(2)
(2) 0

4–20 Using the Ladebug Debugger

4.6.6.1 Array Sections
An array section is a portion of an array that is an array itself. An array
section can use subscript triplet notation consisting of a three parts: a starting
element, an ending element, and a stride.

Consider the following array declarations:

INTEGER, DIMENSION(0:99) :: arr
INTEGER, DIMENSION(0:4,0:4) :: FiveByFive

Assume that each array has been initialized to have the value of the index in
each position, for example, FiveByFive(4,4) = 44, arr(43) = 43. The following
examples are array expressions that will be accepted by the debugger:

(ladebug) print arr(2)

2
(ladebug) print arr(0:9:2)

(0) = 0
(2) = 2
(4) = 4
(6) = 6
(8) = 8
(ladebug) print FiveByFive(:,3)

(0,3) = 3
(1,3) = 13
(2,3) = 23
(3,3) = 33
(4,3) = 43
(ladebug)

The only operations permissible on array sections are whatis and print.

4.6.6.2 Assignment to Arrays
Assignment to array elements are supported by Ladebug.

For information about assigning values to whole arrays and array sections, see
the Fortran chapter in the Compaq Tru64 UNIX Ladebug Debugger Manual.

4.6.7 Complex Variables
Ladebug supports COMPLEX or COMPLEX*8, COMPLEX*16, and
COMPLEX*32 variables and constants in expressions.

Consider the following Fortran program:

Using the Ladebug Debugger 4–21

PROGRAM complextest
COMPLEX*8 C8 /(2.0,8.0)/
COMPLEX*16 C16 /(1.23,-4.56)/
REAL*4 R4 /2.0/
REAL*8 R8 /2.0/
REAL*16 R16 /2.0/

TYPE *, "C8=", C8
TYPE *, "C16=", C16

END PROGRAM

Ladebug supports the display and assignment of COMPLEX variables and
constants as well as basic arithmetic operators. For example:

Welcome to the Ladebug Debugger Version x.x-xx

object file name: complex
Reading symbolic information ...done
(ladebug) stop in complextest
[#1: stop in complextest]
(ladebug) run
[1] stopped at [complextest:15 0x1200017b4]

15 TYPE *, "C8=", C8
(ladebug) whatis c8
complex c8
(ladebug) whatis c16
double complex c16
(ladebug) print c8
(2, 8)
(ladebug) print c16
(1.23, -4.56)
(ladebug) assign c16=(-2.3E+10,4.5e-2)
(ladebug) print c16
(-23000000512, 0.04500000178813934)
(ladebug)

4.6.8 Compaq Fortran Data Types
Table 4–3 shows the Compaq Fortran data types and their equivalent built-in
debugger names:

4–22 Using the Ladebug Debugger

Table 4–3 Fortran Data Types and Debugger Equivalents

Fortran 95/90 Data Type Declaration Debugger Equivalent

CHARACTER character

INTEGER, INTEGER(KIND=n) integer, integer*n

LOGICAL, LOGICAL (KIND=n) logical, logical*n

REAL, REAL(KIND=4) real

DOUBLE PRECISION, REAL(KIND=8) real*8

REAL(KIND=16) real*16

COMPLEX, COMPLEX(KIND=4) complex

DOUBLE COMPLEX, COMPLEX(KIND=8) double complex

COMPLEX(KIND=16), COMPLEX*32 long double complex

4.7 Expressions in Debugger Commands
Expressions in debugger commands use Fortran 95/90 source language syntax
for operators and expressions.

Enclose debugger command expressions between curly braces ({ }). For
example, the expression print k in the following statement is enclosed between
curly braces ({ }):

(ladebug) when at 12 {print k}

4.7.1 Fortran Operators
The Compaq Fortran operators include the following:

• Relational operators, such as less than (.LT. or <) and equal to (.EQ. or = =)

• Logical operators, such as logical conjunction (.AND.) and logical
disjunction (.OR.)

• Arithmetic operators, including addition (+), subtraction (–),
multiplication (*), and division (/).

For More Information:

• For a complete list of operators, see the Compaq Fortran Language
Reference Manual.

Using the Ladebug Debugger 4–23

4.7.2 Procedures
The Ladebug debugger supports invocation of user-defined specific procedures
using Fortran 95/90 source language syntax. Ladebug also supports the
invocation of some of the Fortran 95/90 generic and specific procedures,
currently limited to scalar arguments.

For More Information:

• For a complete list of intrinsic procedures, see the Compaq Fortran
Language Reference Manual.

• For a list of supported intrinsic procedures and known limitations of that
support, see the Compaq Tru64 UNIX Ladebug Debugger Manual.

4.8 Debugging Mixed-Language Programs with Ladebug
The Ladebug debugger lets you debug mixed-language programs. Program flow
of control across subprograms written in different languages is transparent.

The debugger automatically identifies the language of the current subprogram
or code segment on the basis of information embedded in the executable file.
For example, if program execution is suspended in a subprogram in Fortran,
the current language is Fortran. If the debugger stops the program in a C
function, the current language becomes C. The debugger uses the current
language to determine the valid expression syntax and the semantics used to
evaluate an expression.

The debugger sets the $lang variable to the language of the current
subprogram or code segment. By manually setting the $lang debugger
variable, you can force the debugger to interpret expressions used in commands
by the rules and semantics of a particular language. For example, you can
check the current setting of $lang and change it as follows:

(ladebug) print $lang
"C++"
(ladebug) set $lang = "Fortran"

When the $lang environment variable is set to ‘‘Fortran’’, names are case
insensitive. To make names case-sensitive when the program was compiled
with the -names as_is option, specify another language for the $lang
environment variable, such as C, view the variable, then set the $lang
environment variable to ‘‘Fortran’’.

4–24 Using the Ladebug Debugger

4.9 Debugging a Program that Generates an Exception
If your program encounters an exception at run time, to make it easier to
debug the program, you should recompile and relink with the following f90
options before debugging the cause of the exception:

• Use the -fpen option to control the handling of exceptions. (See
Section 3.44, -fpen — Control Arithmetic Exception Handling and
Reporting.)

• If you use -fpe0 (default), specify the -synchronous_exceptions option
to ensure that the exception error is reported as close to the cause of the
exception as possible. (See Section 3.86, -synchronous_exceptions — Report
Exceptions More Precisely .)

• Like other debugging tasks, use the -g and -ladebug options to generate
sufficient symbol table information and debug unoptimized code. (See
Section 4.2, Compaq Fortran Options for Debugging.)

If requested, Ladebug will catch and handle exceptions before the Compaq
Fortran run-time library does. You can use the Ladebug commands catch and
ignore to control whether Ladebug catches exceptions or ignores them:

• When Ladebug catches an exception, a Ladebug message is displayed
and execution stops at that statement line. The error-handling routines
provided by the Compaq Fortran run-time library are not called. At this
point, you can examine variables and determine where in the program the
exception has occurred.

• When Ladebug ignores an exception, the exception is passed to the Compaq
Fortran run-time library. This allows the handling and display of Compaq
Fortran run-time exception messages in the manner requested during
compilation.

To obtain the appropriate Compaq Fortran run-time error message when
debugging a program that generates an exception (especially one that allows
program continuation), you might need to use the ignore command before
running the program. For instance, use the following command to tell the
debugger to ignore floating-point exceptions and pass them through to the
Compaq Fortran run-time library:

(ladebug) ignore fpe

In cases where you need to locate the part of the program causing an exception,
consider using the where command.

Using the Ladebug Debugger 4–25

For More Information:

• On run-time errors, see Chapter 8, Run-Time Errors and Signals.

4.10 Locating Unaligned Data
As discussed in Chapter 5, unaligned data can slow program execution. You
should determine the cause of the unaligned data, fix the source code (if
necessary), and recompile and relink the program.

If your program encounters unaligned data at run-time, to make it easier
to debug the program, you should recompile and relink with the following
command-line options before debugging the cause of the exception:

• Use the -fpen option to control the handling of exceptions (see
Section 3.44).

• If you use -fpe0 (the default), specify the -synchronous_exceptions option
to ensure that the exception error is reported as close to the cause of the
exception as possible (see Section 3.86).

4.10.1 Locating Unaligned Data With Ladebug
To determine the cause of the unaligned data when using Ladebug, follow
these steps:

1. Run the Ladebug debugger, specifying the program with the unaligned
data (shown as testprog in the following example):

% ladebug testprog

2. Before you run the program, enter the catch unaligned command:

(ladebug) catch unaligned

3. Run the program:

(ladebug) run
Unaligned access pid=28413 <a.out> va=140000154 pc=3ff80805d60

ra=1200017e8 type=stl
Thread received signal BUS
stopped at [oops:13 0x120001834]

13 end

4. Enter a list command to display the source code at line 12:

(ladebug) list 12
12 i4 = 1

> 13 end

4–26 Using the Ladebug Debugger

5. Enter the where command to find the location of the unaligned access:

(ladebug) where

6. Use any other appropriate debugger commands needed to isolate the cause
of the unaligned data, such as up, list, and down.

7. Repeat these steps for other areas where unaligned data is reported.
Use the rerun command to run the program again instead of exiting the
debugger and running it from the shell prompt.

After fixing the causes of the unaligned data (see Section 5.4), compile and
link the program again.

4.10.2 Locating Unaligned Data With dbx
To determine the cause of the unaligned data when using dbx (TU*X only), follow
these steps:

1. Write down the addresses reported in the run-time message (see
Section 5.4.2). For this example, assume the pc address in the ‘‘Unaligned
access’’ message is 0x1200017f0.

2. Run the debugger, specifying the program with the unaligned data (shown
as testprog in the following example):

% dbx testprog

3. Set a breakpoint at the address reported in the warning message by using
the stopi at command (shown as 0x1200017f0 below):

(dbx) stopi at 0x1200017f0
stopi at 0x1200017f0]

4. Run the program. It will stop at the breakpoint:

(dbx) run
[2] stopi at 0x1200017f0]
[2] stopped at >*[oops:12, 0x1200017f0] stl r3, 0(r1)

5. Enter the where command to find the location of the unaligned access:

(dbx) where

6. Use any other appropriate debugger commands needed to isolate the cause
of the unaligned data, such as list, up, and down.

7. Repeat these steps for other addresses that warning messages report.

8. After fixing the causes of the unaligned data (see Section 5.4), compile and
link the program again.

Using the Ladebug Debugger 4–27

4.11 Using Alternate Entry Points
If a subprogram uses alternate entry points (ENTRY statement within the
subprogram), Ladebug handles alternate entry points as separate subprograms,
including:

• Use of the ENTRY statement name as a breakpoint (stop in command)

• Use of the where command at an alternate entry point breakpoint location

4.12 Debugging Optimized Programs
The Compaq Fortran compiler performs code optimizations (-O4) by default,
unless you specify -g (or -g2).

Debugging optimized code is recommended only under special circumstances,
for example, if a problem disappears when you specify the -O0 option.

One aid to debugging optimized code is to use one of the following command-
line options:

• Use the -show code and -V options to generate a listing file that shows the
compiled code produced for your program.

• Use the -S option to generate an Assembler file (.s).

By referring to a listing of the generated code, you can see how the compiler
optimizations affected your code. This lets you determine the debugging
commands you need in order to isolate the problem.

When you try to perform a debugger operation on a variable or language
construct that has been optimized, the variable or line may not exist in the
debugging environment. For example:

• If the Compaq Fortran compiler can determine that a memory location for
a variable is not needed for the correct operation of a program, no memory
is allocated to it.

• If the Compaq Fortran compiler can determine that an entire Fortran
95/90 statement is not needed for correct operation of the program (for
example, an unnecessary CONTINUE statement), that statement is not
represented in the object code. As a result, the debugger will use the next
available line.

For More Information:

• See Section 5.8, Optimization Levels: the -On Option.

• See Section 5.9, Other Options Related to Optimization.

4–28 Using the Ladebug Debugger

5
Performance: Making Programs Run

Faster

This chapter contains the following topics:

• Section 5.1, Efficient Compilation and the Software Environment

• Section 5.2, Using the time Command to Measure Performance

• Section 5.3, Using Profiling Tools

• Section 5.4, Data Alignment Considerations

• Section 5.5, Using Arrays Efficiently

• Section 5.6, Improving Overall I/O Performance

• Section 5.7, Additional Source Code Guidelines for Run-Time Efficiency

• Section 5.8, Optimization Levels: the -On Option

• Section 5.9, Other Options Related to Optimization

Note

To invoke the Compaq Fortran compiler, use:

• f90 on Tru64 UNIX Alpha systems

• fort command on Linux Alpha systems

This chapter uses f90 to indicate invoking Compaq Fortran on both
systems, so replace this command with fort if you are working on a
Linux Alpha system.

To invoke the Compaq C compiler, use:

• cc on Tru64 UNIX Alpha systems

Performance: Making Programs Run Faster 5–1

• ccc on Linux Alpha systems

This chapter uses cc to indicate invoking Compaq C on both systems,
so replace this command with ccc if you are working on a Linux Alpha
system.

5.1 Efficient Compilation and the Software Environment
Before you attempt to analyze and improve program performance, you should:

• Obtain and install the latest version of Compaq Fortran, along with
performance products that can improve application performance, such as
the Compaq Extended Mathematical Library (CXML).

• Use the f90 command (or, on Linux systems, the fort command) and its
options in a manner that lets the Compaq Fortran compiler perform as
many optimizations as possible to improve run-time performance.

• Use certain performance capabilities provided by the Compaq Tru64 UNIX
operating system.

• Make sure that you correct any errors you might have encountered during
the early stages of program development.

5.1.1 Install the Latest Version of Compaq Fortran and Performance
Products

To ensure that your software development environment can significantly
improve the run-time performance of your applications, obtain and install the
following optional software products:

• The latest version of Compaq Fortran

New releases of the Compaq Fortran compiler and its associated run-time
libraries may provide new features that improve run-time performance.

The Compaq Fortran run-time libraries shipped with Compaq Fortran
are also shipped with the Compaq Tru64 UNIX operating system. Always
install the Compaq Fortran subset with the highest subset number. This
number is always available, for both Tru64 and Linux operating systems,
at the following Web page:

http://www.compaq.com/fortran

If your application will be run on a Compaq Tru64 UNIX system other than
your program development system, be sure to install the same (or later)
version of the Compaq Fortran run-time environment on those systems.

5–2 Performance: Making Programs Run Faster

You can obtain the appropriate Compaq Services software product
maintenance contract to automatically receive new versions of Compaq
Fortran. For information on more recent Compaq Fortran releases, contact
the Compaq Customer Support Center (CSC) if you have the appropriate
support contract, or contact your local Compaq sales representative.

When using a shared memory, multiprocessor system, you can choose
either directed parallel processing or Compaq KAP Fortran/OpenMP for
Tru64 UNIX.

• Compaq KAP Fortran/OpenMP for Tru64 UNIX (TU*X only)

Allows preprocessing of Compaq Fortran source files to improve their
run-time performance. You can purchase this product from Compaq. See
the KAP Optimizers Web site at:

http://www.compaq.com/hpc/software/kap.html

The KAP performance preprocessor also supports parallel processing using
automatic and directed decomposition for a shared memory multiprocessor
Alpha system.

You can do one of the following:

Use the preprocessor-only kapf90 command to produce improved
Fortran 95/90 source files before compiling them with the f90
command.

Use the kf90 command to invoke the preprocessor, compiler, and linker
to create an executable program.

For example, the following kf90 command:

Specifies the KAP preprocessor be run for the free-form file
for_cal.f90

Recognizes the BLAS level 2 and 3 routines

Searches the CXML library for unresolved references

Compiles and links the resulting preprocessed source file:

% kf90 -fkapargs=’-lc=blas’ for_cal.f90 -lcxml

For More Information:
• See Compaq KAP Fortran/OpenMP for Tru64 UNIX User Guide.

• Compaq Extended Mathematical Library (CXML) for Compaq Tru64 UNIX
Systems

See Chapter 13, Using the Compaq Extended Math Library (CXML).

Performance: Making Programs Run Faster 5–3

• Performance profiling and feedback tools provided with Compaq Tru64
UNIX

The standard set of U*X profiling and performance tools include prof,
gprof, pixie (TU*X only), cord, and the use of feedback files.

Compaq Tru64 UNIX Version 4.0 or later also includes:

The Atom tool, which consists of a set of routines for creating custom-
designed program-analysis tools.

Prepackaged Atom-based program-analysis tools, which include the
profiling tools pixie (TU*X only) and hiprof.

For More Information:
• See atom(1).

• See the Compaq Tru64 UNIX Programmer’s Guide.

• System-wide performance products

Other products are not specific to a particular programming language
or application, but can improve system-wide performance, such as
minimizing disk device I/O and handling capacity planning. Such Tru64
UNIX products include DECRaid (shadowing and striping) and such
POLYCENTER products as the Capacity Planner, Performance Solution,
and Performance Advisor.

Adequate process limits and virtual memory space as well as proper
system tuning are especially important when running large programs, such
as those accessing large arrays.

For More Information:

• About system-wide tuning and suggestions for other performance
enhancements on Compaq Tru64 UNIX systems, see Compaq Tru64 UNIX
System Tuning and Performance.

5.1.2 Compile Using Multiple Source Files and Appropriate f90 Options
During the earlier stages of program development, you can use incremental
compilation with minimal optimization. For example:

% f90 -c -O1 sub2.f90
% f90 -c -O1 sub3.f90
% f90 -o main.out -g -O0 main.f90 sub2.o sub3.o

5–4 Performance: Making Programs Run Faster

During the later stages of program development, you should specify multiple
source files together and use an optimization level of at least -O4 on the
f90 command line to allow more interprocedure optimizations to occur. For
instance, the following command compiles all three source files together using
the default level of optimization (-O4):

% f90 -o main.out main.f90 sub2.f90 sub3.f90

Compiling multiple source files lets the compiler examine more code for
possible optimizations, which results in:

• Inlining more procedures

• More complete data flow analysis

• Reducing the number of external references to be resolved during linking

For very large programs, compiling all source files together may not be
practical. In such instances, consider compiling source files containing related
routines together using multiple f90 commands, rather than compiling source
files individually.

Table 5–1 shows f90 options that can improve performance. Most of these
options do not affect the accuracy of the results, while others improve run-time
performance but can change some numeric results.

Compaq Fortran performs certain optimizations unless you specify the
appropriate f90 command options. Additional optimizations can be enabled or
disabled using f90 command options.

Table 5–1 lists the f90 options that can directly improve run-time performance.

Performance: Making Programs Run Faster 5–5

Table 5–1 Options That Affect Run-Time Performance

Option Names Description
For More
Information

-align keyword Controls whether padding bytes are added
between data items within common blocks,
derived-type data, and Compaq Fortran record
structures to make the data items naturally
aligned.

Section 5.4

-architecture
keyword

Determines the type of Alpha architecture code
instructions to be generated for the program
unit being compiled. All Alpha processors
implement a core set of instructions; certain
processor versions include additional instruction
extensions.

Section 3.5

-cord and
-feedback file

Uses a feedback file created during a previous
compilation by specifying the -gen_feedback
option. These options use the feedback file to
improve run-time performance, optionally using
cord to rearrange procedures.

Section 5.3.5

-fast Sets the following performance-related options:

-align dcommons
-align sequence
-arch host
-assume bigarrays (TU*X only)
-assume nozsize (TU*X only)
-assume noaccuracy_sensitive (same
as -fp_reorder)
-math_library fast
-tune host

See description of
each option

-fp_reorder Allows the compiler to reorder code based on
algebraic identities to improve performance,
enabling certain optimizations. The numeric
results can be slightly different from the
default (-no_fp_reorder) because of the way
intermediate results are rounded. This slight
difference in numeric results is acceptable to
most programs.

Section 5.9.7

(continued on next page)

5–6 Performance: Making Programs Run Faster

Table 5–1 (Cont.) Options That Affect Run-Time Performance

Option Names Description
For More
Information

-gen_feedback Requests generated code that allows accurate
feedback information for subsequent use of the
-feedback file option (optionally with cord).
Using -gen_feedback changes the default
optimization level from -O4 to -O0.

Section 5.3.5

-hpf num and related
options (TU*X only)

Specifies that the code generated for this
program will allow parallel execution on
multiple processors

Section 3.50

-inline all Inlines every call that can possibly be inlined
while generating correct code. Certain recursive
routines are not inlined to prevent infinite
loops.

Section 5.9.3

-inline speed Inlines procedures that will improve run-time
performance with a likely significant increase
in program size.

Section 5.9.3

-inline size Inlines procedures that will improve run-time
performance without a significant increase in
program size. This type of inlining occurs at
optimization level -O4 and -O5.

Section 5.9.3

-math_library fast Requests the use of certain math library
routines (used by intrinsic functions) that
provide faster speed. Using this option causes a
slight loss of accuracy and provides less reliable
arithmetic exception checking to get significant
performance improvements in those functions.

Section 3.61

-mp (TU*X only) Enables parallel processing using directed
decomposition (directives inserted in source
code). This can improve the performance of
certain programs running on shared memory
multiprocessor systems

Section 3.64

-On (-O0 to -O5) Controls the optimization level and thus the
types of optimization performed. The default
optimization level is -O4, unless you specify
-g2, -g, or -gen_feedback, which changes the
default to -O0 (no optimizations). Use -O5 to
activate loop transformation optimizations.

Section 5.8

(continued on next page)

Performance: Making Programs Run Faster 5–7

Table 5–1 (Cont.) Options That Affect Run-Time Performance

Option Names Description
For More
Information

-om (TU*X only) Used with the -non_shared option to request
certain code optimizations after linking,
including nop (No Operation) removal, .lita
removal, and reallocation of common symbols.
This option also positions the global pointer
register so the maximum addresses fall in the
global-pointer window.

Section 3.73

-omp (TU*X only) Enables parallel processing using directed
decomposition (directives inserted in source
code). This can improve the performance of
certain programs running on shared memory
multiprocessor systems

Section 3.74

-p, -p1 Requests profiling information, which you can
use to identify those parts of your program
where improving source code efficiency would
most likely improve run-time performance.
After you modify the appropriate source code,
recompile the program and test the run-time
performance.

Section 5.3

-pg Requests profiling information for the gprof
tool, which you can use to identify those parts
of your program where improving source code
efficiency would most likely improve run-time
performance. After you modify the appropriate
source code, recompile the program and test the
run-time performance.

Section 5.3

-pipeline Activates the software pipelining optimization
(a subset of -O4).

Section 3.76

-speculate keyword
(TU*X only)

Enables the speculative execution optimization,
a form of instruction scheduling for conditional
expressions.

Section 3.84

-transform_loops Activates a group of loop transformation
optimizations (a subset of -O5).

Section 3.89

(continued on next page)

5–8 Performance: Making Programs Run Faster

Table 5–1 (Cont.) Options That Affect Run-Time Performance

Option Names Description
For More
Information

-tune keyword Specifies the target processor generation (chip)
architecture on which the program will be
run, allowing the optimizer to make decisions
about instruction tuning optimizations needed
to create the most efficient code. Keywords
allow specifying one particular Alpha processor
generation type, multiple processor generation
types, or the processor generation type
currently in use during compilation. Regardless
of the setting of -tune keyword, the generated
code will run correctly on all implementations
of the Alpha architecture.

Section 5.9.4

-unroll num Specifies the number of times a loop is unrolled
(num) when specified with optimization level
-O3 or higher. If you omit -unroll num, the
optimizer determines how many times loops are
unrolled.

Section 5.8.4.1

Table 5–2 lists options that can slow program performance. Some applications
that require floating-point exception handling or rounding might need to use
the -fpen and -fprm dynamic options. Other applications might need to use
the -assume dummy_aliases or -vms options for compatibility reasons. Other
options listed in Table 5–2 are primarily for troubleshooting or debugging
purposes.

Performance: Making Programs Run Faster 5–9

Table 5–2 Options that Slow Run-Time Performance

Option Names Description
For More
Information

-assume dummy_aliases Forces the compiler to assume that dummy
(formal) arguments to procedures share memory
locations with other dummy arguments or with
variables shared through use association, host
association, or common block use. These program
semantics slow performance, so you should
specify -assume dummy_aliases only for the
called subprograms that depend on such aliases.

The use of dummy aliases violates the
FORTRAN-77 and Fortran 95/90 standards
but occurs in some older programs.

Section 5.9.8

-c If you use -c when compiling multiple source
files, also specify -o output to compile many
source files together into one object file. Separate
compilations prevent certain interprocedure
optimizations, such as when using multiple f90
commands or using -c without the -o output
option.

Section 2.1.6

-check bounds Generates extra code for array bounds checking
at run time.

Section 3.23

-check omp_bindings
(TU*X only)

Provides run-time checking to enforce the
binding rules for OpenMP Fortran API (parallel
processing) compiler directives inserted in source
code.

Section 3.26

-check overflow Generates extra code to check integer calculations
for arithmetic overflow at run time. Once the
program is debugged, omit this option to reduce
executable program size and slightly improve
run-time performance.

Section 3.28

-fpen values greater than
-fpe0

Using -fpe1 (TU*X only), -fpe2 (TU*X only), -fpe3,
or -fpe4 (TU*X only) (or using the for_set_fpe
routine to set equivalent exception handling)
slows program execution. For programs that
specify -fpe3 or -fpe4 (TU*X only), the impact on
run-time performance can be significant.

Section 3.44

-fprm dynamic (TU*X only) Certain rounding modes and changing the
rounding mode can slow program execution
slightly.

Section 3.46

(continued on next page)

5–10 Performance: Making Programs Run Faster

Table 5–2 (Cont.) Options that Slow Run-Time Performance

Option Names Description
For More
Information

-g, -g2, -g3 Generates extra symbol table information in the
object file. Specifying -g or -g2 also reduces the
default level of optimization to -O0.

Section 3.48

-inline none
-inline manual

Prevents the inlining of all procedures (except
statement functions).

Section 5.9.3

-O0, -O1, -O2, or -O3 Minimizes the optimization level (and types of
optimizations). Use during the early stages of
program development or when you will use the
debugger.

Section 3.72
and
Section 5.8

-synchronous_exceptions Generates extra code to associate an arithmetic
exception with the instruction that causes it,
slowing efficient instruction execution. Use this
option only when troubleshooting, such as when
identifying the source of an exception.

Section 3.86

-vms Controls certain VMS-related run-time defaults,
including alignment. If you specify the -vms
option, you may need to also specify the -align
records option to obtain optimal run-time
performance.

Section 3.98

For More Information:

• On compiling multiple files, see Section 2.1.6.

• On minimizing external references, see Section 11.1.1.

5.1.3 Process Shell Environment and Related Influences on
Performance

Certain shell commands and system tuning can improve run-time performance:

• Specify adequate process limits and do system tuning.

Especially when compiling or running large programs, check to make sure
that process limits are adequate.

With the C shell (csh), use the limits command to display the limits
of your process and increase specified limits. For more information, see
csh(1).

With the Bourne, Korn, and bash (L*X only) shells, use the ulimit command
to display the limits of your process and increase specified limits. For more
information, see sh(1) (Bourne shell), ksh(1) (Korn shell), or bash(1) (bash
shell) (L*X only).

Performance: Making Programs Run Faster 5–11

Your system manager can tune the system for efficient use. For example,
to monitor system use during program execution or compilation, a system
manager can use vmstat.

For more information on system tuning, see your operating system
documentation.

• Redirect scrolled text.

For programs that display a lot of text, consider redirecting text that is
usually displayed on stdout to a file. Displaying a lot of text will slow
down execution; scrolling text in a terminal window on a workstation can
cause an I/O bottleneck (increased elapsed time) and use some CPU time.

The following commands show how to run the program more efficiently by
redirecting output to a file and then displaying the program output:

myprog > results.lis
more results.lis

• When compiling a program that contains a substantial amount of C
language code, be aware that you can specify most cc options on the f90
command line, including several that can improve performance. You can
also compile C code using the cc -c option, and then use the f90 command
to compile and link the Compaq Fortran source files with the C language
object files.

Recall from Chapter 2 and Chapter 3 that the f90 and cc commands
invoke the Compaq Fortran compiler and Compaq C compiler, respectively,
on Tru64 UNIX Alpha systems. The corresponding commands on Linux
Alpha systems are fort and ccc.

For More Information:

• On system tuning and cc options related to performance, see your
operating system documentation and the appropriate reference pages.

5.2 Using the time Command to Measure Performance
Use the time command to provide information about program performance.

Run program timings when other users are not active. Your timing results can
be affected by one or more CPU-intensive processes also running while doing
your timings.

Try to run the program under the same conditions each time to provide the
most accurate results, especially when comparing execution times of a previous
version of the same program. Use the same CPU system (model, amount of
memory, version of the operating system, and so on) if possible.

5–12 Performance: Making Programs Run Faster

If you do need to change systems, you should measure the time using the same
version of the program on both systems, so you know each system’s effect on
your timings.

For programs that run for less than a few seconds, run several timings to
ensure that the results are not misleading. Overhead functions like loading
shared libraries might influence short timings considerably.

Using the form of the time command that specifies the name of the executable
program provides the following:

• The elapsed, real, or ‘‘wall clock’’ time, which will be greater than the total
charged actual CPU time.

• Charged actual CPU time, shown for both system and user execution. The
total actual CPU time is the sum of the actual user CPU time and actual
system CPU time.

In the following example timings, the sample program being timed displays the
following line:

Average of all the numbers is: 4368488960.000000

Using the Bourne shell, the following program timing reports that the program
uses 1.19 seconds of total actual CPU time (0.61 seconds in actual CPU time
for user program use and 0.58 seconds of actual CPU time for system use) and
2.46 seconds of elapsed time:

$ time a.out
Average of all the numbers is: 4368488960.000000
real 0m2.46s
user 0m0.61s
sys 0m0.58s

Using the C shell, the following program timing reports 1.19 seconds of total
actual CPU time (0.61 seconds in actual CPU time for user program use and
0.58 seconds of actual CPU time for system use), about 4 seconds (0:04) of
elapsed time, the use of 28% of available CPU time, and other information:

% time a.out
Average of all the numbers is: 4368488960.000000
0.61u 0.58s 0:04 28% 78+424k 9+5io 0pf+0w

Using the bash shell (L*X only), the following program timing reports that the
program uses 1.19 seconds of total actual CPU time (0.61 seconds in actual
CPU time for user program use and 0.58 seconds of actual CPU time for
system use) and 2.46 seconds of elapsed time:

Performance: Making Programs Run Faster 5–13

[user@system user]$ time ./a.out
Average of all the numbers is: 4368488960.000000
elapsed 0m2.46s
user 0m0.61s
sys 0m0.58s

Timings that show a large amount of system time may indicate a lot of time
spent doing I/O, which might be worth investigating.

If your program displays a lot of text, you can redirect the output from the
program on the time command line. (See Section 5.1.3.) Redirecting output
from the program will change the times reported because of reduced screen
I/O.

For more information, see time(1).

In addition to the time command, you might consider modifying the program
to call routines within the program to measure execution time. For example:

• Compaq Fortran intrinsic procedures, such as SYSTEM_CLOCK, DATE_
AND_TIME, and TIME (see the Compaq Fortran Language Reference
Manual)

• Library routines, such as etime or time (see Section 12.2, 3f Routines or
intro(3f)).

5.3 Using Profiling Tools
To generate profiling information, use the f90 compiler and the prof, gprof,
and pixie (TU*X only) tools.

Profiling identifies areas of code where significant program execution time is
spent. Along with the f90 command, use the prof and pixie (TU*X only) tools to
generate the following profile information:

• The CPU time spent in the different routines of the program, or program
counter sampling. This type of profiling uses prof.

• The manner in which routines are called by other routines, or call graph
information. This type of profiling uses gprof.

• The execution of basic blocks, called basic block counting. A basic
block is a sequence of instructions entered only at the beginning and
exited only at the end (no branches). This provides statistics on individual
lines of code and is influenced by such optimizations as loop unrolling. This
type of profiling uses prof and pixie (TU*X only).

5–14 Performance: Making Programs Run Faster

• The estimated number of CPU cycles spent for each source line in one or
more procedures, or source line CPU cycle use. This type of profiling
uses prof and pixie (TU*X only).

Once you have determined those sections of code where most of the program
execution time is spent, examine these sections for coding efficiency. Suggested
guidelines for improving source code efficiency are provided in Section 5.7.

Along with profiling, you can consider generating a listing file with annotations
of optimizations, by specifying the -V and -annotations options.

5.3.1 Program Counter Sampling (prof)
To obtain program counter sampling data, perform the following steps:

1. Use the f90 command option -p to compile and link the program:

% f90 -p -O3 -o profsample profsample.f90

If you specify the -c option to prevent linking, you must specify the -p
option when you link the program:

% f90 -c -O3 profsample.f90
% f90 -p -O3 -o profsample profsample.o

Consider specifying optimization level -O3 or -inline manual to minimize
the inlining of procedures. Once inlined, procedures are not listed as
separate routines but as part of the routine into which they have been
inlined. Allowing full inlining would result in program counter sampling
for a small number of (usually) large routines. This might not help you
locate areas of the program where significant program execution time is
spent.

2. Execute the profiled program:

% profsample

During program execution, profiling data is written to a profile data file,
whose default name is mon.out. You can execute the program multiple
times to generate multiple profile data files, which can be averaged. Use
the PROFDIR environment variable to request a different profile data file
name.

3. Run the prof command, which formats the profiling data and displays it in
a readable format:

% prof profsample mon.out

You can limit the report created by prof by using prof command options, such
as -only, -exclude, or -quit.

Performance: Making Programs Run Faster 5–15

For example, if you only want reports on procedures calc_max and calc_min,
you could use the following command line to read the profile data file named
mon.out:

% prof -only calc_max -only calc_min profsample

The time spent in particular areas of code is reported by prof in the form of a
percentage of the total CPU time spent by the program. To reduce the size of
the report, you can either:

• Request that only certain procedures be included (by using the -only
option).

• Exclude certain procedures (by using the -exclude option).

When you use the -only or -exclude options, the percentages are still based
on all procedures of the application. To obtain percentages calculated by prof
that are based on only those procedures included in the report, use the -Only
and -Exclude options (use an uppercase initial letter in the option name).

You can use the -quit option to reduce the amount of information reported.
For example, the following command prints information on only the five most
time-consuming procedures:

% prof -quit 5 profsample

The following command limits information only to those procedures using 10%
or more of the total execution time:

% prof -quit 10% profsample

For More Information:

• On prof, see prof(1) and the Compaq Tru64 UNIX Programmer’s Guide.

5.3.2 Call Graph Sampling (gprof)
To obtain call graph information, use the gprof tool. Perform the following
steps:

1. Use the command-line option -pg when you compile and link the program:

% f90 -pg -O3 -o profsample profsample.for

If you specify the -c option to prevent linking, you must then specify the
-pg option both when you compile and link the program:

% f90 -pg -c -O3 profsample.f90
% f90 -pg -O3 -o profsample profsample.f90

5–16 Performance: Making Programs Run Faster

2. Execute the profiled program:

% profsample

During execution, profiling data is saved to the file gmon.out, unless the
environment variable PROFDIR is set.

3. Run the formatting program gprof:

% gprof profsample gmon.out

The output produced by gprof includes:

• Call graph profile

• Timing profile (similar to that produced by prof)

• Index

For More Information:

• On using gprof and its output, see the Compaq Tru64 UNIX Programmer’s
Guide.

5.3.3 Basic Block Counting (pixie and prof)
To obtain basic block counting information, perform the following steps:

1. Compile and link the program without the -p option:

% f90 -O3 -o profsample profsample.f90

Consider specifying optimization level -O3 or -inline manual to minimize
the inlining of procedures (once inlined, procedures are not listed as
separate routines but as part of the routine into which they are inlined).

2. Run the profiling command pixie: (TU*X only)

% atom -tools pixie profsample

The pixie command creates: (TU*X only)

• A program named profsample.pixie that is equivalent to profsample
but contains additional code for counting the execution of each basic
block.

• A file named profsample.Addrs, which contains the address of each
basic block.

3. Execute the profiled program profsample.pixie generated by pixie:

% profsample.pixie

Performance: Making Programs Run Faster 5–17

This program creates the file profsample.Counts, which contains the basic
block counts.

4. Run prof with the -pixie option, to extract and display information from
the profsample.Addrs and profsample.Counts files:

% prof -pixie profsample

When you specify the -pixie option (TU*X only), the prof command searches
for files with a suffix of .Addrs and .Counts (in this case profsample.Addrs
and profsample.Counts).

You can reduce the amount of information in the report created by prof by
using the -only, -exclude, -quit, and related options.

To create multiple profile data files, run the program multiple times.

For More Information:

• On prof, gprof, and pixie (TU*X only), see prof(1), gprof(1), pixie(1), and
the Compaq Tru64 UNIX Programmer’s Guide.

5.3.4 Source Line CPU Cycle Use (prof and pixie)
You use the same files created by the pixie command (see Section 5.3.3) for
basic block counting to estimate the number of CPU cycles used to execute
each source file line.

To view a report of the number of CPU cycles estimated for each source file
line, use the following options with the prof command:

• The -pixie (TU*X only) option is required to obtain source line information.

• The -heavy option prints an entry for each source code line, including the
number of CPU cycles used by that line. Entries are sorted in descending
order of CPU cycles and should be limited by using the prof command
options that limit the report size, such as -quit, -only, or -exclude.

• The -lines option requests source line information, but in the order in
which the lines occur in the program (not sorted in descending order of
CPU cycles).

Depending on the level of optimization chosen, certain source lines might be
optimized away.

The CPU cycle use estimates are based primarily on the instruction type
and its operands and do not include memory effects such as cache misses or
translation buffer fills.

5–18 Performance: Making Programs Run Faster

For example, the following command sequence uses:

• The f90 and pixie (TU*X only) commands to create the necessary files.

• The prof command to request source line CPU cycle use information for
the procedure named calc_max (-only option), sorted in descending order
of CPU cycles (-heavy option):

% f90 -o profsample profsample.f90
% atom -tools pixie profsample
% profsample.pixie
% prof -pixie -heavy -only calc_max profsample

5.3.5 Creating and Using Feedback Files and Optionally cord
You can create a feedback file by using a series of commands. Once
created, you can specify a feedback file in a subsequent compilation with
the f90 command option -feedback. You can also request that cord use the
feedback file to rearrange procedures, by specifying the -cord option on the f90
command line.

To create the feedback file, complete these steps:

1. Compile and link the program. Omit the -p option, but specify the
-gen_feedback option:

% f90 -o profsample -gen_feedback profsample.f90

The -gen_feedback option changes the default optimization level to -O0.

To include libraries in the profiling output, specify -non_shared.

2. Execute the profiling command pixie (TU*X only):

% pixie profsample

The pixie command creates:

• A program named profsample.pixie that is equivalent to profsample
but contains additional code for counting the execution of each basic
block.

• A file named profsample.Addrs, which contains the address of each
basic block.

3. Execute the profiled program profsample.pixie generated by pixie:

% profsample.pixie

This program creates the file profsample.Counts, which contains the basic
block counts.

Performance: Making Programs Run Faster 5–19

4. Run prof with the -pixie and -feedback options:

% prof -pixie -feedback profsample.feedback profsample

This prof command creates the feedback file profsample.feedback.

You can use the feedback file as input to the f90 compiler:

% f90 -feedback profsample.feedback -o profsample profsample.f90

The feedback file provides the compiler with actual execution information,
which the compiler can use to improve such optimizations as inlining function
calls.

Specify the desired optimization level (-On option) for the f90 command with
the -feedback name option (in this example the default is -O4).

You can use the feedback file as input to the f90 compiler and cord, as follows:

% f90 -cord -feedback profsample.feedback -o profsample profsample.f90

The -cord option invokes cord, which reorders the procedures in an executable
program to improve program execution, using the information in the specified
feedback file. Specify the desired optimization level (-On option) for the f90
command with the -feedback name option (in this example -O4).

5.3.6 Atom Toolkit
(TU*X only) The Atom toolkit includes a programmable instrumentation tool and
several prepackaged tools. The prepackaged tools include:

• hiprof

Produces a flat profile of an application that shows the execution time
spent in a given procedure, and a hierarchical profile that shows the
execution time spent in a given procedure and all of its descendents.

• pixie

Produces a profile of an application, by procedure, source line, or
instruction. It partitions the application into basic blocks and counts
the number of times each basic block is executed.

• third

Performs memory access checks and detects memory leaks in an
application.

To invoke atom tools, use the following general command syntax:

% atom -tool tool-name ...)

Atom does not work on programs built with the -om option.

5–20 Performance: Making Programs Run Faster

For More Information:

• See the Compaq Tru64 UNIX Programmers Guide.

• See atom(1), hiprof(5), pixie(5), and third(5).

5.4 Data Alignment Considerations
For optimal performance on Alpha systems, make sure your data is aligned
naturally.

A natural boundary is a memory address that is a multiple of the data item’s
size (data type sizes are described in Table 9–1). For example, a REAL
(KIND=8) data item aligned on natural boundaries has an address that is a
multiple of 8. An array is aligned on natural boundaries if all of its elements
are.

All data items whose starting address is on a natural boundary are naturally
aligned. Data not aligned on a natural boundary is called unaligned data.

Although the Compaq Fortran compiler naturally aligns individual data items
when it can, certain Compaq Fortran statements (such as EQUIVALENCE)
can cause data items to become unaligned (see Section 5.4.1).

Although you can use the f90 command -align keyword options to ensure
naturally aligned data, you should check and consider reordering data
declarations of data items within common blocks and structures. Within each
common block, derived type, or record structure, carefully specify the order
and sizes of data declarations to ensure naturally aligned data. Start with the
largest size numeric items first, followed by smaller size numeric items, and
then nonnumeric (character) data.

5.4.1 Causes of Unaligned Data and Ensuring Natural Alignment
Common blocks (COMMON statement), derived-type data, and Compaq
Fortran 77 record structures (RECORD statement) usually contain multiple
items within the context of the larger structure.

The following declaration statements can force data to be unaligned:

• Common blocks (COMMON statement)

The order of variables in the COMMON statement determines their storage
order.

Unless you are sure that the data items in the common block will be
naturally aligned, specify either the -align commons or -align dcommons
option, depending on the largest data size used.

See Section 5.4.3.1, Arranging Data Items in Common Blocks.

Performance: Making Programs Run Faster 5–21

• Derived-type (user-defined) data

Derived-type data members are declared after a TYPE statement.

If your data includes derived-type data structures, you should use the
-align records option, unless you are sure that the data items in derived-
type data structures will be naturally aligned.

If you omit the SEQUENCE statement, the -align records option (default)
ensures all data items are naturally aligned.

If you specify the SEQUENCE statement, the -align record option is
prevented from adding necessary padding to avoid unaligned data (data
items are packed) unless you specify the -align sequence option. When
you use SEQUENCE, you should specify data declaration order such that
all data items are naturally aligned.

See Section 5.4.3.2, Arranging Data Items in Derived-Type Data.

• Compaq Fortran record structures (RECORD and STRUCTURE
statements)

Compaq Fortran record structures usually contain multiple data items.
The order of variables in the STRUCTURE statement determines their
storage order. The RECORD statement names the record structure.

If your data includes Compaq Fortran record structures, you should use
the -align records option, unless you are sure that the data items in
derived-type data and Compaq Fortran record structures will be naturally
aligned.

See Section 5.4.3.3, Arranging Data Items in Compaq Fortran Record
Structures.

• EQUIVALENCE statements

EQUIVALENCE statements can force unaligned data or cause data to
span natural boundaries. For more information, see the Compaq Fortran
Language Reference Manual.

To avoid unaligned data in a common block, derived-type data, or record
structure (extension), use one or both of the following:

• For new programs or for programs where the source code declarations
can be modified easily, plan the order of data declarations with care.
For example, you should order variables in a COMMON statement such
that numeric data is arranged from largest to smallest, followed by any
character data (see the data declaration rules in Section 5.4.3).

5–22 Performance: Making Programs Run Faster

• For existing programs where source code changes are not easily done or for
array elements containing derived-type or record structures, you can use
command line options to request that the compiler align numeric data by
adding padding spaces where needed.

Other possible causes of unaligned data include unaligned actual arguments
and arrays that contain a derived-type structure or Compaq Fortran record
structure.

When actual arguments from outside the program unit are not naturally
aligned, unaligned data access will occur. Compaq Fortran assumes all passed
arguments are naturally aligned and has no information at compile time about
data that will be introduced by actual arguments during program execution.

For arrays where each array element contains a derived-type structure or
Compaq Fortran record structure, the size of the array elements may cause
some elements (but not the first) to start on an unaligned boundary.

Even if the data items are naturally aligned within a derived-type structure
without the SEQUENCE statement or a record structure, the size of an array
element might require use of f90 -align options to supply needed padding to
avoid some array elements being unaligned.

If you specify -align norecords or specify -vms without -align records, no
padding bytes are added between array elements. If array elements each
contain a derived-type structure with the SEQUENCE statement, array
elements are packed without padding bytes regardless of the f90 command
options specified. In this case, some elements will be unaligned.

When -align records option is in effect, the number of padding bytes added
by the compiler for each array element is dependent on the size of the largest
data item within the structure. The compiler determines the size of the array
elements as an exact multiple of the largest data item in the derived-type
structure without the SEQUENCE statement or a record structure. The
compiler then adds the appropriate number of padding bytes.

For instance, if a structure contains an 8-byte floating-point number followed
by a 3-byte character variable, each element contains five bytes of padding
(16 is an exact multiple of 8). However, if the structure contains one 4-byte
floating-point number, one 4-byte integer, followed by a 3-byte character
variable, each element would contain one byte of padding (12 is an exact
multiple of 4).

For More Information:

• On the -align keyword options, see Section 5.4.4.

Performance: Making Programs Run Faster 5–23

5.4.2 Checking for Inefficient Unaligned Data
During compilation, the Compaq Fortran compiler naturally aligns as much
data as possible. Exceptions that can result in unaligned data are described in
Section 5.4.1.

Because unaligned data can slow run-time performance, it is worthwhile to:

• Double-check data declarations within common block, derived-type data,
or record structures to ensure all data items are naturally aligned (see the
data declaration rules in Section 5.4.3). Using modules to contain data
declarations can ensure consistent alignment and use of such data.

• Avoid the EQUIVALENCE statement or use it in a manner that cannot
cause unaligned data or data spanning natural boundaries.

• Ensure that passed arguments from outside the program unit are naturally
aligned.

• Check that the size of array elements containing at least one derived-type
data or record structure (extension) cause array elements to start on
aligned boundaries (see Section 5.4.1).

There are two ways unaligned data might be reported:

• During compilation, warning messages are issued for any data items that
are known to be unaligned (unless you specify the -warn noalignments
option).

• During program execution, warning messages are issued for any data
that is detected as unaligned. The message includes the address of the
unaligned access. You can use the ladebug debugger to locate unaligned
data.

The following run-time message shows that:

The statement accessing the unaligned data (program counter) is
located at 3ff80805d60

The unaligned data is located at address 140000154

Unaligned access pid=24821 <a.out> va=140000154, pc=3ff80805d60, ra=1200017bc

To check where the address is located, use the debugger as described in
Section 4.10.

To suppress unaligned access run-time messages, use the uac command
(see uac(1)).

5–24 Performance: Making Programs Run Faster

5.4.3 Ordering Data Declarations to Avoid Unaligned Data
For new programs or when the source declarations of an existing program can
be easily modified, plan the order of your data declarations carefully to ensure
the data items in a common block, derived-type data, record structure, or data
items made equivalent by an EQUIVALENCE statement will be naturally
aligned.

Use the following rules to prevent unaligned data:

• Always define the largest size numeric data items first.

• If your data includes a mixture of character and numeric data, place the
numeric data first.

• Add small data items of the correct size (or padding) before otherwise
unaligned data to ensure natural alignment for the data that follows.

When declaring data, consider using explicit length declarations, such as
specifying a KIND parameter. For example, specify INTEGER(KIND=4) (or
INTEGER(4)) rather than INTEGER. If you do use a default length (such as
INTEGER, LOGICAL, COMPLEX, and REAL), be aware that the compiler
options -integer_size and -real_size can change the size of an individual
field’s data declaration size and thus can alter the data alignment of a carefully
planned order of data declarations.

Using the suggested data declaration guidelines minimizes the need to use
the -align keyword options to add padding bytes to ensure naturally aligned
data. In cases where the -align keyword options are still needed, using the
suggested data declaration guidelines can minimize the number of padding
bytes added by the compiler.

5.4.3.1 Arranging Data Items in Common Blocks
The order of data items in a COMMON statement determine the order in
which the data items are stored. Consider the following declaration of a
common block named X:

LOGICAL (KIND=2) FLAG
INTEGER IARRY_I(3)
CHARACTER(LEN=5) NAME_CH
COMMON /X/ FLAG, IARRY_I(3), NAME_CH

As shown in Figure 5–1, if you omit the appropriate f90 command options, the
common block will contain unaligned data items beginning at the first array
element of IARRY_I.

Performance: Making Programs Run Faster 5–25

Figure 5–1 Common Block with Unaligned Data

ZK−6659A−GE

19 (byte offset)

1 byte per character

0

FLAG IARRY_I(1) IARRY_I(2) IARRY_I(3)

NAME_CH2 6 10 14

As shown in Figure 5–2, if you compile the program units that use the common
block with the -align commons options, data items will be naturally aligned.

Figure 5–2 Common Block with Naturally Aligned Data

ZK−6660A−GE

21 (byte offset)

1 byte per character

0

FLAG IARRY_I(1) IARRY_I(2) IARRY_I(3)

NAME_CH2 8 12 164

Padding

Because the common block X contains data items whose size is 32 bits or
smaller, specify -align commons. If the common block contains data items
whose size might be larger than 32 bits (such as REAL (KIND=8) data), use
-align dcommons.

If you can easily modify the source files that use the common block data, define
the numeric variables in the COMMON statement in descending order of size
and place the character variable last. This provides more portability, ensures
natural alignment without padding, and does not require the f90 command
options -align commons or -align dcommons:

LOGICAL (KIND=2) FLAG
INTEGER IARRY_I(3)
CHARACTER(LEN=5) NAME_CH
COMMON /X/ IARRY_I(3), FLAG, NAME_CH

As shown in Figure 5–3, if you arrange the order of variables from largest to
smallest size and place character data last, the data items will be naturally
aligned.

5–26 Performance: Making Programs Run Faster

Figure 5–3 Common Block with Naturally Aligned Reordered Data

ZK−7915A−GE

19 (byte offset)

1 byte per character

FLAGIARRY_I(1) IARRY_I(2) IARRY_I(3)

NAME_CH140 4 8 12

When modifying or creating all source files that use common block data,
consider placing the common block data declarations in a module so the
declarations are consistent. If the common block is not needed for compatibility
(such as file storage or Compaq Fortran 77 use), you can place the data
declarations in a module without using a common block.

5.4.3.2 Arranging Data Items in Derived-Type Data
Like common blocks, derived-type data may contain multiple data items
(members).

Data item components within derived-type data will be naturally aligned
on up to 64-bit boundaries, with certain exceptions related to the use of the
SEQUENCE statement and f90 options. See Section 5.4.4 for information
about these exceptions.

Compaq Fortran stores a derived data type as a linear sequence of values, as
follows:

• If you specify the SEQUENCE statement, the first data item is in the first
storage location and the last data item is in the last storage location. The
data items appear in the order in which they are declared. The f90 options
have no effect on unaligned data, so data declarations must be carefully
specified to naturally align data.

The -align sequence option specifically aligns data items in a SEQUENCE
derived-type on natural boundaries.

• If you omit the SEQUENCE statement, Compaq Fortran adds the padding
bytes needed to naturally align data item components, unless you specify
the -align norecords option.

Consider the following declaration of array CATALOG_SPRING of derived-type
PART_DT:

Performance: Making Programs Run Faster 5–27

MODULE DATA_DEFS
TYPE PART_DT
INTEGER IDENTIFIER
REAL WEIGHT
CHARACTER(LEN=15) DESCRIPTION

END TYPE PART_DT
TYPE (PART_DT) CATALOG_SPRING(30)
.
.
.

END MODULE DATA_DEFS

As shown in Figure 5–4, the largest numeric data items are defined first
and the character data type is defined last. There are no padding characters
between data items and all items are naturally aligned. The trailing padding
byte is needed because CATALOG_SPRING is an array; it is inserted by the
compiler when the -align records option is in effect.

Figure 5–4 Derived-Type Naturally Aligned Data (in CATALOG_SPRING())

ZK−6658A−GE

IDENTIFIER WEIGHT

DESCRIPTION 23 (byte offset)

1 byte per character

0 4 8

Padding

5.4.3.3 Arranging Data Items in Compaq Fortran Record Structures
Compaq Fortran supports record structures provided by Compaq Fortran.
Compaq Fortran record structures use the RECORD statement and optionally
the STRUCTURE statement, which are extensions to the FORTRAN-77 and
Fortran 95/90 standards. The order of data items in a STRUCTURE statement
determine the order in which the data items are stored.

Compaq Fortran stores a record in memory as a linear sequence of values, with
the record’s first element in the first storage location and its last element in
the last storage location. Unless you specify -align norecords, padding bytes
are added if needed to ensure data fields are naturally aligned.

The following example contains a structure declaration, a RECORD statement,
and diagrams of the resulting records as they are stored in memory:

5–28 Performance: Making Programs Run Faster

STRUCTURE /STRA/
CHARACTER*1 CHR
INTEGER*4 INT

END STRUCTURE
.
.
.

RECORD /STRA/ REC

Figure 5–5 shows the memory diagram of record REC for naturally aligned
records.

Figure 5–5 Memory Diagram of REC for Naturally Aligned Records

Record REC

0 1

REC.INTREC.CHR

ZK−2244A−GE

2 3 4 8 (byte offset)

Padding

5.4.4 Options Controlling Alignment
The following options control whether the Compaq Fortran compiler adds
padding (when needed) to naturally align multiple data items in common
blocks, derived-type data, and Compaq Fortran record structures:

• The -align commons option requests that data in common blocks be aligned
on up to 4-byte boundaries, by adding padding bytes as needed.

Unless you specify -fast, the default is -align nocommons or arbitrary byte
alignment of common block data. In this case, unaligned data can occur
unless the order of data items specified in the COMMON statement places
the largest numeric data item first, followed by the next largest numeric
data (and so on), followed by any character data.

• The -align dcommons option requests that data in common blocks be
aligned on up to 8-byte boundaries, by adding padding bytes as needed.

Unless you specify -fast, the default is -align nodcommons or arbitrary
byte alignment of data items in a common data.

Performance: Making Programs Run Faster 5–29

Specify the -align dcommons option for applications that use common
blocks, unless your application has no unaligned data or, if the application
might have unaligned data, all data items are four bytes or smaller. For
applications that use common blocks where all data items are four bytes or
smaller, you can specify -align commons instead of -align dcommons.

• The -align norecords option requests that multiple data items in derived-
type data and record structures (a Compaq Fortran extension) be aligned
arbitrarily on byte boundaries instead of being naturally aligned. The
default is -align records.

• The -align records option requests that multiple data items in record
structures (extension) and derived-type data without the SEQUENCE
statement be naturally aligned, by adding padding bytes as needed.

• The -align recNbyte option requests that fields of records and components
of derived types be aligned on either the size byte boundary specified or the
boundary that will naturally align them, whichever is smaller. This option
does not affect whether common blocks are naturally aligned or packed.

• The -align sequence option controls alignment of derived types with the
SEQUENCE attribute.

The default -align nosequence option means that derived types with the
SEQUENCE attribute are packed regardless of any other alignment rules.
Note that -align none implies -align nosequence.

The -align sequence option means that derived types with the
SEQUENCE attribute obey whatever alignment rules are currently in
use. Consequently, since -align records is a default value, then -align
sequence alone on the command line will cause the fields in these derived
types to be naturally aligned. Note that -fast and -align all imply
-align sequence.

The default behavior is that multiple data items in derived-type data and
record structures will be naturally aligned; data items in common blocks will
not (-align records with -align nocommons). In derived-type data, using the
SEQUENCE statement prevents -align records from adding needed padding
bytes to naturally align data items.

If your command line includes the -std, -std90, or -std95 options, then the
compiler ignores -align dcommons and -align sequence. See Section 3.85.

5–30 Performance: Making Programs Run Faster

5.5 Using Arrays Efficiently
The following sections discuss:

• Section 5.5.1, Accessing Arrays Efficiently

• Section 5.5.2, Passing Array Arguments Efficiently

5.5.1 Accessing Arrays Efficiently
On Alpha systems, many of the array access efficiency techniques described
in this section are applied automatically by the Compaq Fortran loop
transformation optimizations (see Section 5.8.7) or by the Compaq KAP
Fortran/OpenMP for Tru64 UNIX Systems performance preprocessor (described
in Section 5.1.1).

Several aspects of array use can improve run-time performance:

• The fastest array access occurs when contiguous access to the whole array
or most of an array occurs. Perform one or a few array operations that
access all of the array or major parts of an array instead of numerous
operations on scattered array elements.

Rather than use explicit loops for array access, use elemental array
operations, such as the following line that increments all elements of array
variable A:

A = A + 1.

When reading or writing an array, use the array name and not a DO loop
or an implied DO-loop that specifies each element number. Fortran 95/90
array syntax allows you to reference a whole array by using its name in an
expression. For example:

REAL :: A(100,100)
A = 0.0
A = A + 1. ! Increment all elements of A by 1
.
.
.

WRITE (8) A ! Fast whole array use

Similarly, you can use derived-type array structure components, such as:

Performance: Making Programs Run Faster 5–31

TYPE X
INTEGER A(5)

END TYPE X
.
.
.
TYPE (X) Z
WRITE (8) Z%A ! Fast array structure component use

• Make sure multidimensional arrays are referenced using proper array
syntax and are traversed in the natural ascending storage order,
which is column-major order for Fortran. With column-major order, the
leftmost subscript varies most rapidly with a stride of one. Whole array
access uses column-major order.

Avoid row-major order, as is done by C, where the rightmost subscript
varies most rapidly.

For example, consider the nested DO loops that access a two-dimension
array with the J loop as the innermost loop:

INTEGER X(3,5), Y(3,5), I, J
Y = 0
DO I=1,3 ! I outer loop varies slowest
DO J=1,5 ! J inner loop varies fastest
X (I,J) = Y(I,J) + 1 ! Inefficient row-major storage order

END DO ! (rightmost subscript varies fastest)
END DO
.
.
.
END PROGRAM

Since J varies the fastest and is the second array subscript in the
expression X (I,J), the array is accessed in row-major order.

To make the array accessed in natural column-major order, examine the
array algorithm and data being modified.

Using arrays X and Y, the array can be accessed in natural column-major
order by changing the nesting order of the DO loops so the innermost loop
variable corresponds to the leftmost array dimension:

INTEGER X(3,5), Y(3,5), I, J
Y = 0

5–32 Performance: Making Programs Run Faster

DO J=1,5 ! J outer loop varies slowest
DO I=1,3 ! I inner loop varies fastest
X (I,J) = Y(I,J) + 1 ! Efficient column-major storage order

END DO ! (leftmost subscript varies fastest)
END DO
.
.
.
END PROGRAM

The Compaq Fortran whole array access (X = Y + 1) uses efficient column
major order. However, if the application requires that J vary the fastest or
if you cannot modify the loop order without changing the results, consider
modifying the application program to use a rearranged order of array
dimensions. Program modifications include rearranging the order of:

Dimensions in the declaration of the arrays X(5,3) and Y(5,3)

The assignment of X(J,I) and Y(J,I) within the DO loops

All other references to arrays X and Y

In this case, the original DO loop nesting is used where J is the innermost
loop:

INTEGER X(5,3), Y(5,3), I, J
Y = 0
DO I=1,3 ! I outer loop varies slowest
DO J=1,5 ! J inner loop varies fastest
X (J,I) = Y(J,I) + 1 ! Efficient column-major storage order

END DO ! (leftmost subscript varies fastest)
END DO
.
.
.
END PROGRAM

Code written to access multidimensional arrays in row-major order (like C)
or random order can often make inefficient use of the CPU memory cache.
For more information on using natural storage order during record I/O
operations, see Section 5.6.3.

• Use the available Fortran 95/90 array intrinsic procedures rather than
create your own.

Whenever possible, use Fortran 95/90 array intrinsic procedures instead
of creating your own routines to accomplish the same task. Fortran 95/90
array intrinsic procedures are designed for efficient use with the various
Compaq Fortran run-time components.

Using the standard-conforming array intrinsics can also make your
program more portable.

Performance: Making Programs Run Faster 5–33

• With multidimensional arrays where access to array elements will be
noncontiguous, avoid leftmost array dimensions that are a power of two
(such as 256, 512).

Since the cache sizes are a power of 2, array dimensions that are
also a power of 2 may make inefficient use of cache when array access
is noncontiguous. If the cache size is an exact multiple of the leftmost
dimension, your program will probably make little use of the cache. This
does not apply to contiguous sequential access or whole array access.

One work-around is to increase the dimension to allow some unused
elements, making the leftmost dimension larger than actually needed. For
example, increasing the leftmost dimension of A from 512 to 520 would
make better use of cache:

REAL A (512,100)
DO I = 2,511
DO J = 2,99
A(I,J)=(A(I+1,J-1) + A(I-1, J+1)) * 0.5

END DO
END DO

In this code, array A has a leftmost dimension of 512, a power of two.
The innermost loop accesses the rightmost dimension (row major), causing
inefficient access. Increasing the leftmost dimension of A to 520 (REAL A
(520,100)) allows the loop to provide better performance, but at the expense
of some unused elements.

Because loop index variables I and J are used in the calculation, changing
the nesting order of the DO loops changes the results.

For More Information:
• On arrays and their data declaration statements, see the Compaq

Fortran Language Reference Manual.

5.5.2 Passing Array Arguments Efficiently
In Fortran 95/90, there are two general types of array arguments:

• Explicit-shape arrays used with FORTRAN 77.

These arrays have a fixed rank and extent that is known at compile time.
Other dummy argument (receiving) arrays that are not deferred-shape
(such as assumed-size arrays) can be grouped with explicit-shape array
arguments.

• Deferred-shape arrays introduced with Fortran 95/90.

5–34 Performance: Making Programs Run Faster

Types of deferred-shape arrays include array pointers and allocatable
arrays. Assumed-shape array arguments generally follow the rules about
passing deferred-shape array arguments.

When passing arrays as arguments, either the starting (base) address of the
array or the address of an array descriptor is passed:

• When using explicit-shape (or assumed-size) arrays to receive an array, the
starting address of the array is passed.

• When using deferred-shape or assumed-shape arrays to receive an array,
the address of the array descriptor is passed (the compiler creates the
array descriptor).

Passing an assumed-shape array or array pointer to an explicit-shape array
can slow run-time performance. This is because the compiler needs to create an
array temporary for the entire array. The array temporary is created because
the passed array may not be contiguous and the receiving (explicit-shape)
array requires a contiguous array. When an array temporary is created, the
size of the passed array determines whether the impact on slowing run-time
performance is slight or severe.

Table 5–3 summarizes what happens with the various combinations of array
types. The amount of run-time performance inefficiency depends on the size of
the array.

Performance: Making Programs Run Faster 5–35

Table 5–3 Output Argument Array Types

Input Arguments
Array Types Explicit-Shape Arrays

Deferred-Shape and
Assumed-Shape Arrays

Explicit-shape arrays Very efficient. Does not
use an array temporary.
Does not pass an array
descriptor. Interface block
optional.

Efficient. Only allowed for
assumed-shape arrays (not
deferred-shape arrays). Does
not use an array temporary.
Passes an array descriptor.
Requires an interface block.

Deferred-shape and
assumed-shape arrays

When passing an
allocatable array, very
efficient. Does not use an
array temporary. Does not
pass an array descriptor.
Interface block optional.

When not passing an
allocatable array, not
efficient. Instead use
allocatable arrays whenever
possible.

Uses an array temporary.
Does not pass an array
descriptor. Interface block
optional.

Efficient. Requires an
assumed-shape or array
pointer as dummy argument.
Does not use an array
temporary. Passes an array
descriptor. Requires an
interface block.

5.6 Improving Overall I/O Performance
Improving overall I/O performance can minimize both device I/O and
actual CPU time. The techniques listed in this section can greatly improve
performance in many applications.

A bottleneck limits the maximum speed of execution by being the slowest
process in an executing program. In some programs, I/O is the bottleneck that
prevents an improvement in run-time performance. The key to relieving I/O
bottlenecks is to reduce the actual amount of CPU and I/O device time involved
in I/O.

Bottlenecks can be caused by one or more of the following:

• A dramatic reduction in CPU time without a corresponding improvement
in I/O time

• Such coding practices as:

Unnecessary formatting of data and other CPU-intensive processing

5–36 Performance: Making Programs Run Faster

Unnecessary transfers of intermediate results

Inefficient transfers of small amounts of data

Application requirements

Improved coding practices can minimize actual device I/O, as well as the actual
CPU time.

Compaq offers software solutions to system-wide problems like minimizing
device I/O delays (see Section 5.1.1).

5.6.1 Use Unformatted Files Instead of Formatted Files
Use unformatted files whenever possible. Unformatted I/O of numeric data is
more efficient and more precise than formatted I/O. Native unformatted data
does not need to be modified when transferred and will take up less space on
an external file.

Conversely, when writing data to formatted files, formatted data must be
converted to character strings for output, less data can transfer in a single
operation, and formatted data may lose precision if read back into binary form.

To write the array A(25,25) in the following statements, S1 is more efficient
than S2:

S1 WRITE (7) A

S2 WRITE (7,100) A
100 FORMAT (25(’ ’,25F5.21))

Although formatted data files are more easily ported to other systems, Compaq
Fortran can convert unformatted data in several formats (see Chapter 10).

5.6.2 Write Whole Arrays or Strings
The general guidelines about array use discussed in Section 5.5 also apply to
reading or writing an array with an I/O statement.

To eliminate unnecessary overhead, write whole arrays or strings at one time
rather than individual elements at multiple times. Each item in an I/O list
generates its own calling sequence. This processing overhead becomes most
significant in implied-DO loops. When accessing whole arrays, use the array
name (Fortran 95/90 array syntax) instead of using implied-DO loops.

Performance: Making Programs Run Faster 5–37

5.6.3 Write Array Data in the Natural Storage Order
Use the natural ascending storage order whenever possible. This is column-
major order, with the leftmost subscript varying fastest and striding by 1. (See
Section 5.5.1, Accessing Arrays Efficiently.) If a program must read or write
data in any other order, efficient block moves are inhibited.

If the whole array is not being written, natural storage order is the best order
possible.

If you must use an unnatural storage order, in certain cases it might be
more efficient to transfer the data to memory and reorder the data before
performing the I/O operation.

5.6.4 Use Memory for Intermediate Results
Performance can improve by storing intermediate results in memory rather
than storing them in a file on a peripheral device. One situation that may not
benefit from using intermediate storage is when there is a disproportionately
large amount of data in relation to physical memory on your system. Excessive
page faults can dramatically impede virtual memory performance.

If you are primarily concerned with the CPU performance of the system,
consider using a memory file system (mfs) virtual disk to hold any files your
code reads or writes (see mfs(1)).

5.6.5 Enable Implied-DO Loop Collapsing
DO loop collapsing reduces a major overhead in I/O processing. Normally, each
element in an I/O list generates a separate call to the Compaq Fortran RTL.
The processing overhead of these calls can be most significant in implied-DO
loops.

Compaq Fortran reduces the number of calls in implied-DO loops by replacing
up to seven nested implied-DO loops with a single call to an optimized run-time
library I/O routine. The routine can transmit many I/O elements at once.

Loop collapsing can occur in formatted and unformatted I/O, but only if certain
conditions are met:

• The control variable must be an integer. The control variable cannot be
a dummy argument or contained in an EQUIVALENCE or VOLATILE
statement. Compaq Fortran must be able to determine that the control
variable does not change unexpectedly at run time.

• The format must not contain a variable format expression.

5–38 Performance: Making Programs Run Faster

For More Information:

• On VOLATILE attribute and statement, see the Compaq Fortran Language
Reference Manual.

• On loop optimizations, see Section 5.8.

5.6.6 Use of Variable Format Expressions
Variable format expressions (a Compaq Fortran extension) are almost as
flexible as run-time formatting, but they are more efficient because the
compiler can eliminate run-time parsing of the I/O format. Only a small
amount of processing and the actual data transfer are required during run
time.

On the other hand, run-time formatting can impair performance significantly.
For example, in the following statements, S1 is more efficient than S2 because
the formatting is done once at compile time, not at run time:

S1 WRITE (6,400) (A(I), I=1,N)
400 FORMAT (1X, <N> F5.2)

.

.

.
S2 WRITE (CHFMT,500) ’(1X,’,N,’F5.2)’

500 FORMAT (A,I3,A)
WRITE (6,FMT=CHFMT) (A(I), I=1,N)

5.6.7 Efficient Use of Record Buffers and Disk I/O
Records being read or written are transferred between the user’s program
buffers and one or more disk block I/O buffers, which are established when the
file is opened by the Compaq Fortran RTL. Unless very large records are being
read or written, multiple logical records can reside in the disk block I/O buffer
when it is written to disk or read from disk, minimizing physical disk I/O.

You can specify the size of the disk block physical I/O buffer by using the
OPEN statement BLOCKSIZE specifier; the default size can be obtained from
fstat(2). If you omit the BLOCKSIZE specifier in the OPEN statement, it
is set for optimal I/O use with the type of device the file resides on (with the
exception of network access).

The OPEN statement BUFFERCOUNT specifier specifies the number of I/O
buffers. The default for BUFFERCOUNT is 1. Any experiments to improve
I/O performance should increase the BUFFERCOUNT value and not the
BLOCKSIZE value, to increase the amount of data read by each disk I/O.

Performance: Making Programs Run Faster 5–39

If the OPEN statement has BLOCKSIZE and BUFFERCOUNT specifiers, then
the internal buffer size in bytes is the product of these specifiers. If the OPEN
statement does not have these specifiers, then the default internal buffer size
is 8192 bytes. This internal buffer will grow to hold the largest single record,
but will never shrink.

The default for the Fortran run-time system is to use unbuffered disk writes.
That is, by default, records are written to disk immediately as each record is
written instead of accumulating in the buffer to be written to disk later.

To enable buffered writes (that is, to allow the disk device to fill the internal
buffer before the buffer is written to disk), use one of the following:

1. The OPEN statement BUFFERED specifier

2. The -assume buffered_io command-line option

3. The FORT_BUFFERED run-time environment variable

The OPEN statement BUFFERED specifier takes precedence over the
-assume buffered_io option. If neither one is set (which is the default),
the FORT_BUFFERED environment variable is tested at run time.

The OPEN statement BUFFERED specifier applies to a specific logical unit.
In contrast, the -assume [no]buffered_io option and the FORT_BUFFERED
environment variable apply to all Fortran units.

Using buffered writes usually makes disk I/O more efficient by writing larger
blocks of data to the disk less often. However, a system failure when using
buffered writes can cause records to be lost, since they might not yet have been
written to disk. (Such records would have been written to disk with the default
unbuffered writes.)

When performing I/O across a network, be aware that the size of the block
of network data sent across the network can impact application efficiency.
When reading network data, follow the same advice for efficient disk reads,
by increasing the BUFFERCOUNT. When writing data through the network,
several items should be considered:

• Unless the application requires that records be written using unbuffered
writes, enable buffered writes by a method described above.

• Especially with large files, increasing the BLOCKSIZE value increases the
size of the block sent on the network and how often network data blocks
get sent.

• Time the application when using different BLOCKSIZE values under
similar conditions to find the optimal network block size.

5–40 Performance: Making Programs Run Faster

When writing records, be aware that I/O records are written to unified buffer
cache (UBC) system buffers. To request that I/O records be written from
program buffers to the UBC system buffers, use the flush library routine
(see flush(3f) and Chapter 12). Be aware that calling flush also discards
read-ahead data in user buffer.

To request that UBC system buffers be written to disk, use the fsync library
routine (see fsync(3f) and Chapter 12).

When UBC buffers are written to disk depends on UBC characteristics on the
system, such as the vm-ubcbuffers attribute (see the Compaq Tru64 UNIX
System Tuning and Performance guide).

For More Information:

• See Section 7.5, Opening Files: OPEN Statement.

• See Section 3.6, -assume buffered_io — Buffered Output.

5.6.8 Specify RECL
The sum of the record length (RECL specifier in an OPEN statement) and its
overhead is a multiple or divisor of the blocksize, which is device specific. For
example, if the BLOCKSIZE is 8192 then RECL might be 24576 (a multiple of
3) or 1024 (a divisor of 8).

The RECL value should fill blocks as close to capacity as possible (but not over
capacity). Such values allow efficient moves, with each operation moving as
much data as possible; the least amount of space in the block is wasted. Avoid
using values larger than the block capacity, because they create very inefficient
moves for the excess data only slightly filling a block (allocating extra memory
for the buffer and writing partial blocks are inefficient).

The RECL value unit for formatted files is always 1-byte units. For
unformatted files, the RECL unit is 4-byte units, unless you specify the
-assume byterecl option to request 1-byte units (see Section 3.7).

When porting unformatted data files from non-Compaq systems, see
Section 10.6.

5.6.9 Use the Optimal Record Type
Unless a certain record type is needed for portability reasons (see
Section 7.4.3), choose the most efficient type, as follows:

• For sequential files of a consistent record size, the fixed-length record type
gives the best performance.

Performance: Making Programs Run Faster 5–41

• For sequential unformatted files when records are not fixed in size, the
variable-length record type gives the best performance—particularly for
BACKSPACE operations.

• For sequential formatted files when records are not fixed in size, the
Stream_LF record type gives the best performance.

5.6.10 Reading from a Redirected Standard Input File
Due to certain precautions that the Fortran run-time system takes to ensure
the integrity of standard input, reads can be very slow when standard input
is redirected from a file. For example, when you use a command such as
myprogram.exe < myinput.data, the data is read using the READ(*) or
READ(5) statement, and performance is degraded. To avoid this problem, do
one of the following:

• Explicitly open the file using the OPEN statement. For example:

OPEN(5, STATUS=’OLD’, FILE=’myinput.dat’)

• Use an environment variable to specify the input file.

For example, if read from unit 5:

setenv FORT5=myinput.dat

or if read from unit *:

setenv FOR_READ=myinput.dat

To take advantage of these methods, be sure your program does not rely on
sharing the standard input file.

For More Information:

• On Compaq Fortran data files and I/O, see Chapter 7.

• On OPEN statement specifiers and defaults, see Section 7.5 and the
Compaq Fortran Language Reference Manual.

5.7 Additional Source Code Guidelines for Run-Time
Efficiency

Other source coding guidelines can be implemented to improve run-time
performance.

5–42 Performance: Making Programs Run Faster

The amount of improvement in run-time performance is related to the number
of times a statement is executed. For example, improving an arithmetic
expression executed within a loop many times has the potential to improve
performance, more than improving a similar expression executed once outside
a loop.

5.7.1 Avoid Small Integer and Small Logical Data Items
Avoid using integer or logical data less than 32 bits, because the smallest unit
of efficient access on Alpha systems is 32 bits.

Accessing a 16-bit (or 8-bit) data type can result in a sequence of machine
instructions to access the data, rather than a single, efficient machine
instruction for a 32-bit data item.

To minimize data storage and memory cache misses with arrays, use 32-bit
data rather than 64-bit data, unless you require the greater numeric range
of 8-byte integers or the greater range and precision of double precision
floating-point numbers.

5.7.2 Avoid Mixed Data Type Arithmetic Expressions
Avoid mixing integer and floating-point (REAL) data in the same computation.
Expressing all numbers in a floating-point arithmetic expression (assignment
statement) as floating-point values eliminates the need to convert data
between fixed and floating-point formats. Expressing all numbers in an integer
arithmetic expression as integer values also achieves this. This improves
run-time performance.

For example, assuming that I and J are both INTEGER variables, expressing a
constant number (2.) as an integer value (2) eliminates the need to convert the
data:

Original Code: INTEGER I, J
I = J / 2.

Efficient Code: INTEGER I, J
I = J / 2

For applications with numerous floating-point operations, consider using the
-fp_reorder option (see Section 5.9.7) if a small difference in the result is
acceptable.

You can use different sizes of the same general data type in an expression
with minimal or no effect on run-time performance. For example, using REAL,
DOUBLE PRECISION, and COMPLEX floating-point numbers in the same
floating-point arithmetic expression has minimal or no effect on run-time
performance.

Performance: Making Programs Run Faster 5–43

5.7.3 Use Efficient Data Types
In cases where more than one data type can be used for a variable, consider
selecting the data types based on the following hierarchy, listed from most to
least efficient:

• Integer (also see Section 5.7.1)

• Single-precision real, expressed explicitly as REAL, REAL (KIND=4), or
REAL*4

• Double-precision real, expressed explicitly as DOUBLE PRECISION, REAL
(KIND=8), or REAL*8

• Extended-precision real, expressed explicitly as REAL (KIND=16) or
REAL*16

However, keep in mind that in an arithmetic expression, you should avoid
mixing integer and floating-point (REAL) data (see Section 5.7.2).

5.7.4 Avoid Using Slow Arithmetic Operators
Before you modify source code to avoid slow arithmetic operators, be aware
that optimizations convert many slow arithmetic operators to faster arithmetic
operators. For example, the compiler optimizes the expression H=J**2 to be
H=J*J.

Consider also whether replacing a slow arithmetic operator with a faster
arithmetic operator will change the accuracy of the results or impact the
maintainability (readability) of the source code.

Replacing slow arithmetic operators with faster ones should be reserved
for critical code areas. The following hierarchy lists the Compaq Fortran
arithmetic operators, from fastest to slowest:

• Addition (+), subtraction (-), and floating-point multiplication (*)

• Integer multiplication (*)

• Division (/)

• Exponentiation (**)

5–44 Performance: Making Programs Run Faster

5.7.5 Avoid Using EQUIVALENCE Statements
Avoid using EQUIVALENCE statements. EQUIVALENCE statements can:

• Force unaligned data or cause data to span natural boundaries.

• Prevent certain optimizations, including:

Global data analysis under certain conditions (see Section 5.8.3)

Implied-DO loop collapsing when the control variable is contained in an
EQUIVALENCE statement

5.7.6 Use Statement Functions and Internal Subprograms
Whenever the Compaq Fortran compiler has access to the use and definition
of a subprogram during compilation, it may choose to inline the subprogram.
Using statement functions and internal subprograms maximizes the number
of subprogram references that will be inlined, especially when multiple source
files are compiled together at optimization level -O4 or higher.

For More Information:

• See Section 5.1.2.

5.7.7 Code DO Loops for Efficiency
Minimize the arithmetic operations and other operations in a DO loop
whenever possible. Moving unnecessary operations outside the loop will
improve performance (for example, when the intermediate nonvarying values
within the loop are not needed).

For More Information:

• On loop optimizations, see Section 5.8.6 and Section 5.9.2.

• On coding Compaq Fortran statements, see the Compaq Fortran Language
Reference Manual.

5.8 Optimization Levels: the -On Option
Compaq Fortran performs many optimizations by default. You do not have to
recode your program to use them. However, understanding how optimizations
work helps you remove any inhibitors to their successful function.

Generally, Compaq Fortran increases compile time in favor of decreasing run
time. If an operation can be performed, eliminated, or simplified at compile
time, Compaq Fortran does so, rather than have it done at run time. The time
required to compile the program usually increases as more optimizations occur.

Performance: Making Programs Run Faster 5–45

The program will likely execute faster when compiled at -O4, but will require
more compilation time than if you compile the program at a lower level of
optimization.

The size of object file varies with the optimizations requested. Factors that
can increase object file size include an increase of loop unrolling or procedure
inlining.

Table 5–4 lists the levels of Compaq Fortran optimization with different
-O options. For example: -O0 specifies no selectable optimizations (some
optimizations always occur); -O5 specifies all levels of optimizations, including
loop transformation.

Table 5–4 Levels of Optimization with Different -On Options

Optimization Type –O0 –O1 –O2 –O3 –O4 –O5

Loop transformation X

Software pipelining X X

Automatic inlining X X

Additional global optimizations X X X

Global optimizations X X X X

Local (minimal) optimizations X X X X X

The default is -O4 (same as -O). However, if -g2, -g, or -gen_feedback is also
specified, the default is -O0 (no optimizations).

In Table 5–4, the following terms are used to describe the levels of
optimization:

• Local (minimal) optimizations (-O1 or higher) occur within the source
program unit and include recognition of common subexpressions and the
expansion of multiplication and division. See Section 5.8.2, Local (Minimal)
Optimizations.

• Global optimizations (-O2 or higher) include such optimizations as data
flow analysis, code motion, strength reduction, split-lifetime analysis, and
instruction scheduling. See Section 5.8.3, Global Optimizations.

• Additional global optimizations (-O3 or higher) improve speed at the cost
of extra code size. These optimizations include loop unrolling, prefetching
of data, and code replication to eliminate branches. See Section 5.8.4,
Additional Global Optimizations.

5–46 Performance: Making Programs Run Faster

• Automatic inlining (-O4 or higher) applies interprocedure analysis and
inline expansion of small procedures, usually by using heuristics that limit
extra code. See Section 5.8.5, Automatic Inlining.

• Software pipelining (-O4 or higher) applies instruction scheduling to
certain innermost loops, allowing instructions within a loop to ‘‘wrap
around’’ and execute in a different iteration of the loop. This can reduce
the impact of long-latency operations, resulting in faster loop execution.
Software pipelining also enables the prefetching of data to reduce the
impact of cache misses.

• Loop transformation (-O5) optimizations apply to array references
within loops and can apply to multiple nested loops. These optimizations
can improve the performance of the memory system. See Section 5.8.7,
Loop Transformation.

5.8.1 Optimizations Performed at All Optimization Levels
The following optimizations occur at any optimization level (-O0 through -O5):

• Space optimizations

Space optimizations decrease the size of the object or executing program
by eliminating unnecessary use of memory, thereby improving speed of
execution and system throughput. Compaq Fortran space optimizations
are:

Constant pooling

Only one copy of a given constant value is ever allocated memory space.
If that constant value is used in several places in the program, all
references point to that value.

Dead code elimination

If operations will never execute or if data items will never be used,
Compaq Fortran eliminates them. Dead code includes unreachable
code and code that becomes unused as a result of other optimizations,
such as value propagation.

• Inlining arithmetic statement functions and intrinsic procedures

Regardless of the optimization level, Compaq Fortran inserts arithmetic
statement functions directly into a program instead of calling them
as functions. This permits other optimizations of the inlined code and
eliminates several operations, such as calls and returns or stores and
fetches of the actual arguments. For example:

Performance: Making Programs Run Faster 5–47

SUM(A,B) = A+B
.
.
.

Y = 3.14
X = SUM(Y,3.0) ! With value propagation, becomes: X = 6.14

Most intrinsic procedures are automatically inlined.

Inlining of other subprograms, such as contained subprograms, occurs at
optimization level -O4.

• Implied-DO loop collapsing

DO loop collapsing reduces a major overhead in I/O processing. Normally,
each element in an I/O list generates a separate call to the Compaq Fortran
RTL. The processing overhead of these calls can be most significant in
implied-DO loops.

If Compaq Fortran can determine that the format will not change during
program execution, it replaces the series of calls in up to seven nested
implied-DO loops with a single call to an optimized RTL routine (see
Section 5.6.5). The optimized RTL routine can transfer many elements in
one operation.

Compaq Fortran collapses implied-DO loops in formatted and unformatted
I/O operations, but it is more important with unformatted I/O, where the
cost of transmitting the elements is a higher fraction of the total cost.

• Array temporary elimination and FORALL statements

Certain array store operations are optimized. For example, to minimize
the creation of array temporaries, Compaq Fortran can detect when
no overlap occurs between the two sides of an array expression. This
type of optimization occurs for some assignment statements in FORALL
constructs.

Certain array operations are also candidates for loop unrolling
optimizations (see Section 5.8.4.1).

5.8.2 Local (Minimal) Optimizations
To enable local optimizations, use -O1 or a higher optimization level (-O2, -O3,
-O4, or -O5).

To prevent local optimizations, specify the -O0 option.

5–48 Performance: Making Programs Run Faster

5.8.2.1 Common Subexpression Elimination
If the same subexpressions appear in more than one computation and the
values do not change between computations, Compaq Fortran computes the
result once and replaces the subexpressions with the result itself:

DIMENSION A(25,25), B(25,25)
A(I,J) = B(I,J)

Without optimization, these statements can be compiled as follows:

t1 = ((J-1)*25+(I-1))*4
t2 = ((J-1)*25+(I-1))*4
A(t1) = B(t2)

Variables t1 and t2 represent equivalent expressions. Compaq Fortran
eliminates this redundancy by producing the following:

t = ((J-1)*25+(I-1))*4
A(t) = B(t)

5.8.2.2 Integer Multiplication and Division Expansion
Expansion of multiplication and division refers to bit shifts that allow faster
multiplication and division while producing the same result. For example,
the integer expression (I*17) can be calculated as I with a 4-bit shift plus the
original value of I. This can be expressed using the Compaq Fortran ISHFT
intrinsic function:

J1 = I*17
J2 = ISHFT(I,4) + I ! equivalent expression for I*17

The optimizer uses machine code that, like the ISHFT intrinsic function, shifts
bits to expand multiplication and division by literals.

5.8.2.3 Compile-Time Operations
Compaq Fortran does as many operations as possible at compile time rather
than at run time.

Constant Operations
Compaq Fortran can perform many operations on constants (including
PARAMETER constants):

• Constants preceded by a unary minus sign are negated.

• Expressions involving +, –, *, or / operators are evaluated; for example:

PARAMETER (NN=27)
I = 2*NN+J ! Becomes: I = 54 + J

Performance: Making Programs Run Faster 5–49

Evaluation of some constant functions and operators is performed at
compile time. This includes certain functions of constants, concatenation of
string constants, and logical and relational operations involving constants.

• Lower-ranked constants are converted to the data type of the higher-ranked
operand:

REAL X, Y
X = 10 * Y ! Becomes: X = 10.0 * Y

• Array address calculations involving constant subscripts are simplified at
compile time whenever possible:

INTEGER I(10,10)
I(1,2) = I(4,5) ! Compiled as a direct load and store

Algebraic Reassociation Optimizations
Compaq Fortran delays operations to see whether they have no effect or can
be transformed to have no effect. If they have no effect, these operations are
removed. A typical example involves unary minus and .NOT. operations:

X = -Y * -Z ! Becomes: Y * Z

5.8.2.4 Value Propagation
Compaq Fortran tracks the values assigned to variables and constants,
including those from DATA statements, and traces them to every place they
are used. Compaq Fortran uses the value itself when it is more efficient to do
so.

When compiling subprograms, Compaq Fortran analyzes the program to ensure
that propagation is safe if the subroutine is called more than once.

Value propagation frequently leads to more value propagation. Compaq
Fortran can eliminate run-time operations, comparisons and branches, and
whole statements.

In the following example, constants are propagated, eliminating multiple
operations from run time:

5–50 Performance: Making Programs Run Faster

Original Code Optimized Code

PI = 3.14
.
.
.

PIOVER2 = PI/2
.
.
.

I = 100
.
.
.

IF (I.GT.1) GOTO 10
10 A(I) = 3.0*Q

.

.

.
PIOVER2 = 1.57

.

.

.
I = 100

.

.

.
10 A(100) = 3.0*Q

5.8.2.5 Dead Store Elimination
If a variable is assigned but never used, Compaq Fortran eliminates the entire
assignment statement:

X = Y*Z
.
.
. ! If X is not used in between, X=Y*Z is eliminated.

X = A(I,J)* PI

Some programs used for performance analysis often contain such unnecessary
operations. When you try to measure the performance of such programs
compiled with Compaq Fortran, these programs may show unrealistically good
performance results. Realistic results are possible only with program units
using their results in output statements.

5.8.2.6 Register Usage
A large program usually has more data that would benefit from being
held in registers than there are registers to hold the data. In such cases,
Compaq Fortran typically tries to use the registers according to the following
descending priority list:

1. For temporary operation results, including array indexes

2. For variables

3. For addresses of arrays (base address)

4. All other usages

Compaq Fortran uses heuristic algorithms and a modest amount of
computation to attempt to determine an effective usage for the registers.

Performance: Making Programs Run Faster 5–51

Holding Variables in Registers
Because operations using registers are much faster than using memory,
Compaq Fortran generates code that uses the Alpha 64-bit integer and floating-
point registers instead of memory locations. Knowing when Compaq Fortran
uses registers may be helpful when doing certain forms of debugging.

Compaq Fortran uses registers to hold the values of variables whenever the
Fortran language does not require them to be held in memory, such as holding
the values of temporary results of subexpressions, even if -O0 (no optimization)
was specified.

Compaq Fortran may hold the same variable in different registers at different
points in the program:

V = 3.0*Q
.
.
.

X = SIN(Y)*V
.
.
.

V = PI*X
.
.
.

Y = COS(Y)*V

Compaq Fortran may choose one register to hold the first use of V and another
register to hold the second. Both registers can be used for other purposes at
points in between. There may be times when the value of the variable does not
exist anywhere in the registers. If the value of V is never needed in memory, it
is never assigned.

Compaq Fortran uses registers to hold the values of I, J, and K (so long as
there are no other optimization effects, such as loops involving the variables):

A(I) = B(J) + C(K)

More typically, an expression uses the same index variable:

A(K) = B(K) + C(K)

In this case, K is loaded into only one register and is used to index all three
arrays at the same time.

5–52 Performance: Making Programs Run Faster

5.8.2.7 Mixed Real/Complex Operations
In mixed REAL/COMPLEX operations, Compaq Fortran avoids the conversion
and performs a simplified operation on:

• Add (+), subtract (–), and multiply (*) operations if either operand is
REAL

• Divide (/) operations if the right operand is REAL

For example, if variable R is REAL and A and B are COMPLEX, no conversion
occurs with the following:

COMPLEX A, B
.
.
.

B = A + R

5.8.3 Global Optimizations
To enable global optimizations, use -O2 or a higher optimization level (-O3, -O4,
or -O5). Using -O2 or higher also enables local optimizations (-O1).

Global optimizations include:

• Data flow analysis

• Split lifetime analysis

• Strength reduction (replaces a CPU-intensive calculation with one that
uses fewer CPU cycles)

• Code motion (also called code hoisting)

• Instruction scheduling

Data flow analysis and split lifetime analysis (global data analysis) traces the
values of variables and whole arrays as they are created and used in different
parts of a program unit. During this analysis, Compaq Fortran assumes that
any pair of array references to a given array might access the same memory
location, unless a constant subscript is used in both cases.

To eliminate unnecessary recomputations of invariant expressions in loops,
Compaq Fortran hoists them out of the loops so they execute only once.

Global data analysis includes which data items are selected for analysis.
Some data items are analyzed as a group and some are analyzed individually.
Compaq Fortran limits or may disqualify data items that participate in the
following constructs, generally because it cannot fully trace their values:

• VOLATILE declarations

Performance: Making Programs Run Faster 5–53

VOLATILE declarations are needed to use certain run-time features of the
operating system. Declare a variable as VOLATILE if the variable can be
accessed using rules in addition to those provided by the Fortran 95/90
language. Examples include:

COMMON data items or entire common blocks that can change value
by means other than direct assignment or during a routine call. For
such applications, you must declare the variable or the COMMON
block to which it belongs as volatile.

An address not saved by the %LOC built-in function.

Variables read or written by a signal handler, including those in a
common block or module.

As requested by the VOLATILE statement, Compaq Fortran disqualifies
any volatile variables from global data analysis.

• Subroutine calls or external function references

Compaq Fortran cannot trace data flow in a called routine that is not
part of the program unit being compiled, unless the same f90 command
compiled multiple program units (see Section 5.1.2). Arguments passed to
a called routine that are used again in a calling program are assumed to be
modified, unless the proper INTENT is specified in an interface block (the
compiler must assume they are referenced by the called routine).

• Common blocks

Compaq Fortran limits optimizations on data items in common blocks. If
common block data items are referenced inside called routines, their values
might be altered. In the following example, variable I might be altered by
FOO, so Compaq Fortran cannot predict its value in subsequent references.

COMMON /X/ I

DO J=1,N
I = J
CALL FOO
A(I) = I

ENDDO

• Variables in Fortran 95/90 modules

Compaq Fortran limits optimizations on variables in Fortran 95/90
modules. Like common blocks, if the variables in Fortran 95/90 modules
are referenced inside called routines, their values might be altered.

• Variables referenced by a %LOC built-in function or variables with the
TARGET attribute

5–54 Performance: Making Programs Run Faster

Compaq Fortran limits optimizations on variables indirectly referenced by
a %LOC function or on variables with the TARGET attribute, because the
called routine may dereference a pointer to such a variable.

• Equivalence groups

An equivalence group is formed explicitly with the EQUIVALENCE
statement or implicitly by the COMMON statement. A program section
is a particular common block or local data area for a particular routine.
Compaq Fortran combines equivalence groups within the same program
section and in the same program unit.

The equivalence groups in separate program sections are analyzed
separately, but the data items within each group are not, so some
optimizations are limited to the data within each group.

5.8.4 Additional Global Optimizations
To enable additional global optimizations, use -O3 or a higher optimization
level (-O4 or -O5). Using -O3 or higher also enables local optimizations (-O1)
and global optimizations (-O2).

Additional global optimizations improve speed at the cost of longer compile
times and possibly extra code size.

5.8.4.1 Loop Unrolling
At optimization level -O3 or above, Compaq Fortran attempts to unroll
certain innermost loops, minimizing the number of branches and grouping
more instructions together to allow efficient overlapped instruction execution
(instruction pipelining). The best candidates for loop unrolling are innermost
loops with limited control flow.

As more loops are unrolled, the average size of basic blocks increases. Loop
unrolling generates multiple copies of the code for the loop body (loop code
iterations) in a manner that allows efficient instruction pipelining.

The loop body is replicated a certain number of times, substituting index
expressions. An initialization loop might be created to align the first reference
with the main series of loops. A remainder loop might be created for leftover
work.

The loop unroller also inserts data prefetches for arrays with affine subscripts.
Prefetches (that is, prefetch instructions) can be inserted even if the unroller
chooses not to unroll. On some architectures (21264 and later), write-hint
instructions are also generated.

Performance: Making Programs Run Faster 5–55

The number of times a loop is unrolled can be determined either by the
optimizer or by using the -unroll num option, which can specify the limit for
loop unrolling. Unless the user specifies a value, the optimizer will choose an
unroll amount that minimizes the overhead of prefetching while also limiting
code size expansion.

Array operations are often represented as a nested series of loops when
expanded into instructions. The innermost loop for the array operation is the
best candidate for loop unrolling (like DO loops). For example, the following
array operation (once optimized) is represented by nested loops, where the
innermost loop is a candidate for loop unrolling:

A(1:100,2:30) = B(1:100,1:29) * 2.0

For More Information:

• See Section 3.94, -unroll num — Specify Number for Loop Unroll
Optimization.

5.8.4.2 Code Replication to Eliminate Branches
In addition to loop unrolling and other optimizations, the number of branches
are reduced by replicating code that will eliminate branches. Code replication
decreases the number of basic blocks and increases instruction-scheduling
opportunities.

Code replication normally occurs when a branch is at the end of a flow of
control, such as a routine with multiple, short exit sequences. The code at the
exit sequence gets replicated at the various places where a branch to it might
occur.

For example, consider the following unoptimized routine and its optimized
equivalent that uses code replication (R0 is register 0):

5–56 Performance: Making Programs Run Faster

Unoptimized Instructions Optimized (Replicated) Instructions

.

.

.
branch to exit1
.
.
.
branch to exit1
.
.
.

exit1: move 1 into R0
return

.

.

.
move 1 into R0
return
.
.
.
move 1 into R0
return
.
.
.
move 1 into R0
return

Similarly, code replication can also occur within a loop that contains a small
amount of shared code at the bottom of a loop and a case-type dispatch within
the loop. The loop-end test-and-branch code might be replicated at the end
of each case to create efficient instruction pipelining within the code for each
case.

5.8.5 Automatic Inlining
To enable optimizations that perform automatic inlining, use -O4 or a higher
optimization level (-O5). Using -O4 also enables local optimizations (-O1),
global optimizations (-O2), and additional global optimizations (-O3).

The default is -O4 (unless -g2, -g, or -gen_feedback is specified).

5.8.5.1 Interprocedure Analysis
Compiling multiple source files at optimization level -O4 or higher lets the
compiler examine more code for possible optimizations, including multiple
program units. This results in:

• Inlining more procedures

• More complete global data analysis

• Reducing the number of external references to be resolved during linking

As more procedures are inlined, the size of the executable program and compile
times may increase, but execution time should decrease.

Performance: Making Programs Run Faster 5–57

5.8.5.2 Inlining Procedures
Inlining refers to replacing a subprogram reference (such as a CALL
statement or function invocation) with the replicated code of the subprogram.
As more procedures are inlined, global optimizations often become more
effective.

The optimizer inlines small procedures, limiting inlining candidates based on
such criteria as:

• Estimated size of code

• Number of call sites

• Use of constant arguments

You can specify:

• One of the -On options to control the optimization level. For example,
specifying -O4 or higher enables interprocedure optimizations.

Different -On options set -inline xxxx options. For example, -O4 sets
-inline speed.

• One of the -inline xxxx options to directly control the inlining of
procedures (see Section 5.9.3). For example, -inline speed inlines more
procedures than -inline size.

5.8.6 Software Pipelining
Software pipelining and additional software dependence analysis are enabled
by using the -pipeline option, the -O4 option, or the -O5 option. Software
pipelining in certain cases improves run-time performance.

Software pipelining applies instruction scheduling to certain innermost loops,
allowing instructions within a loop to ‘‘wrap around’’ and execute in a different
iteration of the loop. This can reduce the impact of long-latency operations,
resulting in faster loop execution.

Software pipelining also includes associated additional software dependence
analysis and enables the prefetching of data to reduce the impact of cache
misses.

Loop unrolling (enabled at -O3 or above) cannot schedule across iterations of
a loop. Because software pipelining can schedule across loop iterations, it can
perform more efficient scheduling to eliminate instruction stalls within loops.

5–58 Performance: Making Programs Run Faster

For instance, if software dependence analysis of data flow reveals that certain
calculations can be done before or after that iteration of the loop, software
pipelining reschedules those instructions ahead of or behind that loop iteration,
at places where their execution can prevent instruction stalls or otherwise
improve performance.

Software pipelining can be more effective when you combine -pipeline (or
-O4 or -O5) with the appropriate -tune keyword for the target Alpha processor
generation (see Section 5.9.4).

To specify software pipelining without loop transformation optimizations, do
one of the following:

• Specify -O5 with -notransform_loops (preferred method)

• Specify -O4

• Specify -pipeline with -O3 or -O2

This optimization is not performed at optimization levels below -O2.

Loops chosen for software pipelining:

• Are always innermost loops (those executed the most).

• Do not contain branches or procedure calls.

• Do not use COMPLEX floating-point data.

By modifying the unrolled loop and inserting instructions as needed before
and/or after the unrolled loop, software pipelining generally improves run-time
performance, except where the loops contain a large number of instructions
with many existing overlapped operations. In this case, software pipelining
may not have enough registers available to effectively improve execution
performance. Run-time performance using -O4 or -O5 (or -pipeline) may not
improve performance, as compared to using -O3.

This option might increase compilation time and/or program size. For
programs that contain loops that exhaust available registers, longer execution
times may occur. In this case, specify options -unroll 1 or -unroll 2 with the
-pipeline option.

To determine whether using -pipeline benefits your particular program,
you should time program execution for the same program (or subprogram)
compiled with and without software pipelining (such as with -pipeline and
-nopipeline).

For programs that contain loops that exhaust available registers, longer
execution times may result with -O4 or -O5, requiring use of -unroll n to limit
loop unrolling (see Section 3.94).

Performance: Making Programs Run Faster 5–59

For More Information:

• On the interaction of command-line options and timing programs compiled
with software pipelining, see Section 3.76.

5.8.7 Loop Transformation
The loop transformation optimizations are enabled by using the
-transform_loops option or the -O5 option. Loop transformation attempts to
improve performance by rewriting loops to make better use of the memory
system. By rewriting loops, the loop transformation optimizations can
increase the number of instructions executed, which can degrade the run-time
performance of some programs.

To request loop transformation optimizations without software pipelining, do
one of the following:

• Specify -O5 with -nopipeline (preferred method)

• Specify -transform_loops with -O4, -O3, or -O2

This optimization is not performed at optimization levels below -O2.

You must specify -notransform_loops if you want this type of optimization
disabled and you are also specifying -O5.

The loop transformation optimizations apply to array references within loops.
These optimizations can improve the performance of the memory system and
usually apply to multiple nested loops.

The loops chosen for loop transformation optimizations are always counted
loops. Counted loops use a variable to count iterations, thereby determining
the number of iterations before entering the loop. For example, DO and IF
loops are normally counted loops, but uncounted DO WHILE loops are not.

Conditions that typically prevent the loop transformation optimizations from
occurring include subprogram references that are not inlined (such as an
external function call), complicated exit conditions, and uncounted loops.

The types of optimizations associated with -transform_loops include the
following:

• Loop blocking—Can minimize memory system use with multidimensional
array elements by completing as many operations as possible on array
elements currently in the cache. Also known as loop tiling.

• Loop distribution—Moves instructions from one loop into separate, new
loops. This can reduce the amount of memory used during one loop so that
the remaining memory may fit in the cache. It can also create improved
opportunities for loop blocking.

5–60 Performance: Making Programs Run Faster

• Loop fusion—Combines instructions from two or more adjacent loops that
use some of the same memory locations into a single loop. This can avoid
the need to load those memory locations into the cache multiple times and
improves opportunities for instruction scheduling.

• Loop interchange—Changes the nesting order of some or all loops. This
can minimize the stride of array element access during loop execution
and reduce the number of memory accesses needed. Also known as loop
permutation.

• Scalar replacement—Replaces the use of an array element with a scalar
variable under certain conditions.

• Outer loop unrolling—Unrolls the outer loop inside the inner loop
under certain conditions to minimize the number of instructions and
memory accesses needed. This also improves opportunities for instruction
scheduling and scalar replacement.

To determine whether using -transform_loops benefits your particular
program, you should time program execution for the same program (or
subprogram) compiled with and without loop transformation optimizations
(such as with -transform_loops and -notransform_loops).

For More Information:

• See Section 3.89, -transform_loops — Activate Loop Transformation
Optimizations.

5.9 Other Options Related to Optimization
In addition to the -On options (discussed in Section 5.8), several other f90
command options can prevent or facilitate improved optimizations.

5.9.1 Setting Multiple Options with the -fast Option
Specifying the -fast option sets many performance options. For details, see
Section 3.40, -fast — Set Options to Improve Run-Time Performance.

5.9.2 Controlling the Number of Times a Loop Is Unrolled
You can specify the number of times a loop is unrolled by using the -unroll
num option (see Section 3.94).

The -unroll num option can also influence the run-time results of software
pipelining optimizations performed when you specify one of the following:

• -O5

• -O4

Performance: Making Programs Run Faster 5–61

• -pipeline with -O3 or -O2

Although unrolling loops usually improves run-time performance, the size of
the executable program may increase.

For More Information:

• See Section 5.8.4.1, Loop Unrolling.

5.9.3 Controlling the Inlining of Procedures
To specify the types of procedures to be inlined, use the -inline keyword
option. Also, compile multiple source files together and specify an adequate
optimization level, such as -O4.

If you omit -noinline and the -inline keyword options, the optimization level
-On option used determines the types of procedures that are inlined.

Maximizing the types of procedures that are inlined usually improves run-time
performance, but compile-time memory usage and the size of the executable
program may increase.

To determine whether using -inline all benefits your particular program,
time program execution for the same program compiled with and without
-inline all.

For More Information:

• See Section 3.54, -inline keyword, -noinline — Control Procedure Inlining.

• See Section 5.8.5.2, Inlining Procedures.

5.9.4 Requesting Optimized Code for a Specific Processor Generation
You can specify the types of optimized code to be generated by using the -tune
keyword and -arch keyword options. Regardless of the specified keyword,
the generated code will run correctly on all implementations of the Alpha
architecture. Tuning for a specific implementation can improve run-time
performance; it is also possible that code tuned for a specific target may run
slower on another target.

Specifying the correct keyword for -tune keyword for the target processor
generation type usually slightly improves run-time performance. Unless you
request software pipelining, the run-time performance difference for using
the wrong keyword for -tune keyword (such as using -tune ev4 for an ev5
processor) is usually less than 5%. When using software pipelining (using -O4
or -O5) with -tune keyword, the difference can be more than 5%.

5–62 Performance: Making Programs Run Faster

The combination of the specified keyword for -tune keyword and the type
of processor generation used has no effect on producing the expected correct
program results.

For More Information:

• See Section 3.90, -tune keyword — Specify Alpha Processor Implementation.

5.9.5 Requesting the Speculative Execution Optimization
(TU*X only) Speculative execution reduces instruction latency stalls to improve
run-time performance for certain programs or routines. Speculative execution
evaluates conditional code (including exceptions) and moves instructions that
would otherwise be executed conditionally to a position before the test, so they
are executed unconditionally.

The default, -speculate none, means that the speculative execution code
scheduling optimization is not used and exceptions are reported as expected.
You can specify -speculate all or -speculate by_routine to request the
speculative execution optimization.

Performance improvements may be reduced because the run-time system must
dismiss exceptions caused by speculative instructions. For certain programs,
longer execution times may result when using the speculative execution
optimization. To determine whether using -speculate all or -speculate
by_routine benefits your particular program, you should time the program
execution with one of these options for the same program compiled with
-speculate none (default).

Speculative execution does not support some run-time error checking, since
exception and signal processing (including SIGSEGV, SIGBUS, and SIGFPE) is
conditional. When the program needs to be debugged or while you are testing
for errors, only use -speculate none.

For More Information:

• On -speculate all or -speculate by_routine and the interaction with
other command-line options, see Section 3.84.

5.9.6 Request Nonshared Object Optimizations
When you specify -non_shared to request a nonshared object file, you can
specify the -om option to request code optimizations after linking, including nop
(No Operation) removal, .lita removal, and reallocation of common symbols.
This option also positions the global pointer register so the maximum addresses
fall in the global-pointer window.

Performance: Making Programs Run Faster 5–63

For More Information:

• On the -WL,arg command-line options that enable nonshared object file
code optimizations, see Section 3.73.

5.9.7 Arithmetic Reordering Optimizations
If you use the -fp_reorder option (or -assume noaccuracy_sensitive, which
are equivalent), Compaq Fortran may reorder code (based on algebraic
identities) to improve performance.

For example, the following expressions are mathematically equivalent but may
not compute the same value using finite precision arithmetic:

X = (A + B) + C

X = A + (B + C)

The results can be slightly different from the default -no_fp_reorder because
of the way intermediate results are rounded. However, the -no_fp_reorder
results are not categorically less accurate than those gained by the default. In
fact, dot product summations using -fp_reorder can produce more accurate
results than those using -no_fp_reorder.

The effect of -fp_reorder is important when Compaq Fortran hoists divide
operations out of a loop. If -fp_reorder is in effect, the unoptimized loop
becomes the optimized loop:

Unoptimized Code Optimized Code

T = 1/V
DO I=1,N DO I=1,N
. .

. .

. .

B(I) = A(I)/V B(I) = A(I)*T
END DO END DO

The transformation in the optimized loop increases performance significantly,
and loses little or no accuracy. However, it does have the potential for raising
overflow or underflow arithmetic exceptions.

The compiler can also reorder code based on algebraic identities to improve
performance if you specify -fast.

5–64 Performance: Making Programs Run Faster

5.9.8 Dummy Aliasing Assumption
Some programs compiled with Compaq Fortran (or Compaq Fortran 77) may
have results that differ from the results of other Fortran compilers. Such
programs may be aliasing dummy arguments to each other or to a variable in
a common block or shared through use association, and at least one variable
access is a store.

This program behavior is prohibited in programs conforming to the Fortran
95/90 standards, but not by Compaq Fortran. Other versions of Fortran allow
dummy aliases and check for them to ensure correct results. However, Compaq
Fortran assumes that no dummy aliasing will occur, and it can ignore potential
data dependencies from this source in favor of faster execution.

The Compaq Fortran default is safe for programs conforming to the Fortran
95/90 standards. It will improve performance of these programs, because the
standard prohibits such programs from passing overlapped variables or arrays
as actual arguments if either is assigned in the execution of the program unit.

The -assume dummy_aliases option allows dummy aliasing. It ensures correct
results by assuming the exact order of the references to dummy and common
variables is required. Program units taking advantage of this behavior can
produce inaccurate results if compiled with -assume nodummy_aliases.

Example 5–1 is taken from the DAXPY routine in the Fortran-77 version of the
Basic Linear Algebra Subroutines (BLAS).

Example 5–1 Using the -assume dummy_aliases Option

SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)

C Constant times a vector plus a vector.
C uses unrolled loops for increments equal to 1.

DOUBLE PRECISION DX(1), DY(1), DA
INTEGER I,INCX,INCY,IX,IY,M,MP1,N

C
IF (N.LE.0) RETURN
IF (DA.EQ.0.0) RETURN
IF (INCX.EQ.1.AND.INCY.EQ.1) GOTO 20

C Code for unequal increments or equal increments
C not equal to 1.

.

.

.
RETURN

(continued on next page)

Performance: Making Programs Run Faster 5–65

Example 5–1 (Cont.) Using the -assume dummy_aliases Option

C Code for both increments equal to 1.
C Clean-up loop

20 M = MOD(N,4)
IF (M.EQ.0) GOTO 40
DO I=1,M

DY(I) = DY(I) + DA*DX(I)
END DO

IF (N.LT.4) RETURN
40 MP1 = M + 1

DO I = MP1, N, 4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3) = DY(I + 3) + DA*DX(I + 3)

END DO

RETURN
END SUBROUTINE

The second DO loop contains assignments to DY. If DY is overlapped with
DA, any of the assignments to DY might give DA a new value, and this
overlap would affect the results. If this overlap is desired, then DA must be
fetched from memory each time it is referenced. The repetitious fetching of DA
degrades performance.

Linking Routines with Opposite Settings
You can link routines compiled with the -assume dummy_aliases option to
routines compiled with -assume nodummy_aliases. For example, if only one
routine is called with dummy aliases, you can use -assume dummy_aliases
when compiling that routine, and compile all the other routines with -assume
nodummy_aliases to gain the performance value of that option.

Programs calling DAXPY with DA overlapping DY do not conform to the
FORTRAN-77 and Fortran 95/90 standards. However, they are supported if
-assume dummy_aliases was used to compile the DAXPY routine.

5–66 Performance: Making Programs Run Faster

6
Parallel Compiler Directives and Their

Programming Environment

Note

The information in this chapter pertains only to Compaq Fortran on
Tru64 UNIX systems.

This chapter describes two sets of parallel compiler directives:

• Section 6.1, OpenMP Fortran API Compiler Directives

• Section 6.2, Compaq Fortran Parallel Compiler Directives

The following topics apply to both the OpenMP Fortran API and the Compaq
Fortran parallel compiler directives:

• Section 6.3, Decomposing Loops for Parallel Processing

• Section 6.4, Environment Variables for Adjusting the Run-Time
Environment

• Section 6.5, Calls to Programs Written in Other Languages

• Section 6.6, Compiling, Linking, and Running Parallelized Programs on
SMP Systems

• Section 6.7, Debugging Parallelized Programs

Note

The compiler can recognize either OpenMP directives or Compaq
Fortran directives in a program, but not members of both sets of
directives in a program.

For reference material on both sets of parallel compiler directives, see the
Compaq Fortran Language Reference Manual.

Parallel Compiler Directives and Their Programming Environment 6–1

6.1 OpenMP Fortran API Compiler Directives
Note

These directives comply with OpenMP Fortran 1.1 Application Program
Interface, as described in the specification at:

http://www.openmp.org/specs/

These topics are described:

• Command-line option and directives format (see Section 6.1.1)

• Directive summary descriptions (see Section 6.1.2)

• Parallel processing thread model (see Section 6.1.3)

• Privatizing named common blocks (see Section 6.1.4)

• Controlling data scope attributes (see Section 6.1.5)

• Parallel region (see Section 6.1.6)

• Worksharing constructs (see Section 6.1.7)

• Combined parallel/worksharing constructs (see Section 6.1.8)

• Synchronization constructs (see Section 6.1.9)

• Specifying schedule type and chunk size (see Section 6.1.10)

6.1.1 Command-Line Option and Directives Format
To use OpenMP Fortran API compiler directives in your program, you must
include the -omp compiler option on your f90 command:

% f90 -omp prog.f -o prog

Directives are structured so that they appear to be Compaq Fortran comments.
The format of an OpenMP Fortran API compiler directive is:

prefix directive_name [clause[[,] clause]...]

All OpenMP Fortran API compiler directives must begin with a directive
prefix. Directives are not case-sensitive. Clauses can appear in any order after
the directive name and can be repeated as needed, subject to the restrictions of
individual clauses.

Directives cannot be embedded within continued statements, and statements
cannot be embedded within directives. Comments can appear on the same line
as a directive.

6–2 Parallel Compiler Directives and Their Programming Environment

6.1.1.1 Directive Prefixes
The directive prefix you use depends on the source form you use in your
program:

• Use the !$OMP prefix when compiling either fixed source form or free
source form programs.

• Use the C$OMP and the *$OMP prefixes only when compiling fixed source
form programs.

Fixed Source Form
For fixed source form programs, the prefix is one of the following:

!$OMP
C$OMP
*$OMP

Prefixes must start in column 1 and appear as a single string with no
intervening white space. Fixed-form source rules apply to the directive line.

Initial directive lines must have a space or zero in column 6, and continuation
directive lines must have a character other than a space or a zero in column 6.
For example, the following formats for specifying directives are equivalent:

c23456789
!$OMP PARALLEL DO SHARED(A,B,C)
!Is the same as...
c$OMP PARALLEL DO
c$OMP+SHARED(A,B,C)
!Which is the same as...
c$OMP PARALLEL DO SHARED(A,B,C)

Free Source Form
For free source form programs, the prefix is !$OMP.

The prefix can appear in any column as long as it is preceded only by white
space. It must appear as a single string with no intervening white space.
Free-form source rules apply to the directive line.

Initial directive lines must have a space after the prefix. Continued directive
lines must have an ampersand as the last nonblank character on the line.
Continuation directive lines can have an ampersand after the directive prefix
with optional white space before and after the ampersand. For example, the
following formats for specifying directives are equivalent:

Parallel Compiler Directives and Their Programming Environment 6–3

!$OMP PARALLEL DO &
!$OMP SHARED(A,B,C)
!The same as...
!$OMP PARALLEL &
!$OMP&DO SHARED(A,B,C)
!Which is the same as...
!$OMP PARALLEL DO SHARED(A,B,C)

6.1.1.2 Directive Prefixes for Conditional Compilation
OpenMP Fortran API allows you to conditionally compile Compaq Fortran
statements. The directive prefix you use for conditional compilation statements
depends on the source form you use in your program:

• Use the !$ prefix when compiling either fixed source form or free source
form programs.

• Use the C$ (or c$) and the *$ prefixes only when compiling fixed source
form programs.

The prefix must be followed by a legal Compaq Fortran statement on the
same line. When you use the -omp compiler option, the prefix is replaced by
two spaces and the rest of the line is treated as a normal Compaq Fortran
statement during compilations. You can also use the C preprocessor macro
_OPENMP for conditional compilation.

Fixed Source Form
For fixed source form programs, the conditional compilation prefix is one of the
following: !$, C$ (or c$), or *$.

The prefix must start in column 1 and appear as a single string with no
intervening white space. Fixed-form source rules apply to the directive line.

Initial lines must have a space or zero in column 6, and continuation lines
must have a character other than a space or zero in column 6. For example,
the following forms for specifying conditional compilation are equivalent:

c23456789
!$ IAM = OMP_GET_THREAD_NUM() +
!$ * INDEX

#IFDEF _OPENMP
IAM = OMP_GET_THREAD_NUM() +
* INDEX

#ENDIF

6–4 Parallel Compiler Directives and Their Programming Environment

Free Source Form
The free source form conditional compilation prefix is !$. This prefix can appear
in any column as long as it is preceded only by white space. It must appear as
a single word with no intervening white space. Free-form source rules apply to
the directive line.

Initial lines must have a space after the prefix. Continued lines must have an
ampersand as the last nonblank character on the line. Continuation lines can
have an ampersand after the prefix with optional white space before and after
the ampersand.

6.1.2 Summary Descriptions of OpenMP Fortran API Compiler
Directives

Table 6–1 provides summary descriptions of the OpenMP Fortran API compiler
directives. For complete information about the OpenMP Fortran API compiler
directives, see the Compaq Fortran Language Reference Manual.

Table 6–1 OpenMP Fortran API Compiler Directives

Directive
Format Description

prefix ATOMIC

This directive defines a synchronization construct that ensures that a
specific memory location is updated atomically.

See Section 6.1.9.1, ATOMIC Directive.

prefix BARRIER

This directive defines a synchronization construct that synchronizes all
the threads in a team.

See Section 6.1.9.2, BARRIER Directive.

prefix CRITICAL [(name)]

block

prefix END CRITICAL [(name)]

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–5

Table 6–1 (Cont.) OpenMP Fortran API Compiler Directives

Directive
Format Description

These directives define a synchronization construct that restricts access
to the contained code to only one thread at a time.

See Section 6.1.9.3, CRITICAL and END CRITICAL Directives.

prefix DO [clause[[,] clause] . . .]

do_loop

[prefix END DO [NOWAIT]]

These directives define a worksharing construct that specifies that the
iterations of the DO loop are executed in parallel.

See Section 6.1.7.1, DO and END DO directives.

prefix FLUSH [(var[,var] . . .)]

This directive defines a synchronization construct that identifies the
precise point at which a consistent view of memory is provided.

See Section 6.1.9.4, FLUSH Directive.

prefix MASTER

block

prefix END MASTER

These directives define a synchronization construct that specifies that the
contained block of code is to be executed only by the master thread of the
team.

See Section 6.1.9.5, MASTER and END MASTER Directives.

prefix ORDERED

block

prefix END ORDERED

(continued on next page)

6–6 Parallel Compiler Directives and Their Programming Environment

Table 6–1 (Cont.) OpenMP Fortran API Compiler Directives

Directive
Format Description

These directives define a synchronization construct that specifies that the
contained block of code is executed in the order in which iterations would
be executed during a sequential execution of the loop.

See Section 6.1.9.6, ORDERED and END ORDERED Directives.

prefix PARALLEL [clause[[,] clause] . . .]

block

prefix END PARALLEL

These directives define a parallel construct that is a region of a program
that must be executed by a team of threads until the END PARALLEL
directive is encountered.

See Section 6.1.6, Parallel Region: PARALLEL and END PARALLEL
Directives.

prefix PARALLEL DO [clause[[,] clause] . . .]

do_loop

prefix END PARALLEL DO

These directives define a combined parallel/worksharing construct that is
an abbreviated form of specifying a parallel region that contains a single
DO directive.

See Section 6.1.8.1, PARALLEL DO and END PARALLEL DO Directives.

prefix PARALLEL SECTIONS [clause[[,] clause] . . .]

block

prefix END PARALLEL SECTIONS

These directives define a combined parallel/worksharing construct that is
an abbreviated form of specifying a parallel region that contains a single
SECTIONS directive.

See Section 6.1.8.2, PARALLEL SECTIONS and END PARALLEL
SECTIONS Directives.

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–7

Table 6–1 (Cont.) OpenMP Fortran API Compiler Directives

Directive
Format Description

prefix SECTIONS [clause[[,] clause] . . .]

[prefix SECTION]

block

[prefix SECTION

block]
.
.
.

prefix END SECTIONS [NOWAIT]

These directives define a worksharing construct that specifies that the
enclosed sections of code are to be divided among threads in the team.
Each section is executed once by some thread in the team.

See Section 6.1.7.2, SECTIONS, SECTION, and END SECTIONS
Directives.

prefix SINGLE [clause[[,] clause] . . .]

block

prefix END SINGLE [NOWAIT]

These directives define a worksharing construct that specifies that the
enclosed code is to be executed by only one thread in the team.

See Section 6.1.7.3, SINGLE and END SINGLE Directives.

prefix THREADPRIVATE(/cb/[,/cb/] . . .)

This data environment directive makes named common blocks private to
a thread, but global within the thread.

See Section 6.1.4, Privatizing Named Common Blocks: THREADPRIVATE
Directive.

6–8 Parallel Compiler Directives and Their Programming Environment

6.1.3 Parallel Processing Thread Model
A program containing OpenMP Fortran API compiler directives begins
execution as a single process, called the master thread of execution. The
master thread executes sequentially until the first parallel construct is
encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives
define the parallel construct. When the master thread encounters a parallel
construct, it creates a team of threads, with the master thread becoming the
master of the team. The program statements enclosed by the parallel construct
are executed in parallel by each thread in the team. These statements include
routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent
of the construct. The dynamic extent includes the static extent as well as the
routines called from within the construct. When the END PARALLEL directive
is encountered, the threads in the team synchronize at that point, the team is
dissolved, and only the master thread continues execution. The other threads
in the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a
result, thread teams can be created and dissolved many times during program
execution.

In routines called from within parallel constructs, you can also use directives.
Directives that are not in the lexical extent of the parallel construct, but
are in the dynamic extent, are called orphaned directives. Orphaned
directives allow you to execute major portions of your program in parallel with
only minimal changes to the sequential version of the program. Using this
functionality, you can code parallel constructs at the top levels of your program
call tree and use directives to control execution in any of the called routines.

For example:

subroutine F
...
!$OMP parallel...
...

call G
...
subroutine G
...
!$OMP DO...
...

The !$OMP DO is an orphaned directive because the parallel region it will
execute in is not lexically present in G.

Parallel Compiler Directives and Their Programming Environment 6–9

A parallel region is a block of code that must be executed by a team of
threads in parallel.

A worksharing construct is the heart of parallel processing. A worksharing
construct divides the execution of the enclosed code region among the members
of the team created on entering the enclosing parallel region.

A combined parallel/worksharing construct denotes a parallel region that
contains only one worksharing construct.

Synchronization is the interthread communication that ensures the
consistency of shared data and coordinates parallel execution among threads.
Shared data is consistent within a team of threads when all threads obtain the
identical value when the data is accessed. A synchronization construct is
used to assure this consistency of shared data.

A data environment directive controls the data environment during the
execution of parallel constructs.

You can control the data environment within parallel and worksharing
constructs. Using directives and data environment clauses on directives, you
can:

• Privatize named common blocks (see Section 6.1.4)

• Control data scope attributes (see Section 6.1.5)

6.1.4 Privatizing Named Common Blocks: THREADPRIVATE Directive
You can make named common blocks private to a thread, but global within the
thread, by using the THREADPRIVATE directive.

Each thread gets its own copy of the common block with the result that data
written to the common block by one thread is not directly visible to other
threads. During serial portions and MASTER sections of the program, accesses
are to the master thread copy of the common block.

You cannot use a thread private common block or its constituent variables in
any clause other than the COPYIN clause.

In the following example, common blocks BLK1 and FIELDS are specified as
thread private:

COMMON /BLK1/ SCRATCH
COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/,/FIELDS/)

6–10 Parallel Compiler Directives and Their Programming Environment

6.1.5 Controlling Data Scope Attributes
You can use several directive clauses to control the data scope attributes of
variables for the duration of the construct in which you specify them. If you do
not specify a data scope attribute clause on a directive, the default is SHARED
for those variables affected by the directive.

Each of the data scope attribute clauses accepts a list, which is a comma-
separated list of named variables or named common blocks that are accessible
in the scoping unit. When you specify named common blocks, they must
appear between slashes (/name/).

Not all of the clauses are allowed on all directives, but the directives to which
each clause applies are listed in the clause descriptions.

The data scope attribute clauses are:

• COPYIN

• DEFAULT

• PRIVATE

• FIRSTPRIVATE

• LASTPRIVATE

• REDUCTION

• SHARED

COPYIN Clause
Use the COPYIN clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to copy the data in the master thread common block
to the thread private copies of the common block. The copy occurs at the
beginning of the parallel region. The COPYIN clause applies only to common
blocks that have been declared THREADPRIVATE (see Section 6.1.4).

You do not have to specify a whole common block to be copied in; you can
specify named variables that appear in the THREADPRIVATE common block.
In the following example, the common blocks BLK1 and FIELDS are specified
as thread private, but only one of the variables in common block FIELDS is
specified to be copied in:

COMMON /BLK1/ SCRATCH
COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)
!$OMP PARALLEL DEFAULT(PRIVATE),COPYIN(/BLK1/,ZFIELD)

Parallel Compiler Directives and Their Programming Environment 6–11

DEFAULT Clause
Use the DEFAULT clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to specify a default data scope attribute for all variables
within the lexical extent of a parallel region. Variables in THREADPRIVATE
common blocks are not affected by this clause. You can specify only one
DEFAULT clause on a directive. The default data scope attribute can be one of
the following:

• PRIVATE

Makes all named objects in the lexical extent of the parallel region private
to a thread. The objects include common block variables, but exclude
THREADPRIVATE variables.

• SHARED

Makes all named objects in the lexical extent of the parallel region shared
among all the threads in the team.

• NONE

Declares that there is no implicit default as to whether variables are
PRIVATE or SHARED. You must explicitly specify the scope attribute for
each variable in the lexical extent of the parallel region.

If you do not specify the DEFAULT clause, the default is DEFAULT(SHARED).
However, loop control variables are always PRIVATE by default.

You can exempt variables from the default data scope attribute by using
other scope attribute clauses on the parallel region as shown in the following
example:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),
!$OMP& SHARED(R) LASTPRIVATE(I)

PRIVATE Clause
Use the PRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to declare variables to
be private to each thread in the team.

The behavior of variables declared PRIVATE is as follows:

• A new object of the same type and size is declared once for each thread
in the team, and the new object is no longer storage associated with the
original object.

• All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

6–12 Parallel Compiler Directives and Their Programming Environment

• Variables defined as PRIVATE are undefined for each thread on entering
the construct, and the corresponding shared variable is undefined on exit
from a parallel construct.

• Contents, allocation state, and association status of variables defined
as PRIVATE are undefined when they are referenced outside the lexical
extent, but inside the dynamic extent, of the construct unless they are
passed as actual arguments to called routines.

In the following example, the values of I and J are undefined on exit from the
parallel region:

INTEGER I,J
I =1
J =2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
I =3
J =J+ 2

!$OMP END PARALLEL
PRINT *, I, J

FIRSTPRIVATE Clause
Use the FIRSTPRIVATE clause on the PARALLEL, DO, SECTIONS, SINGLE,
PARALLEL DO, and PARALLEL SECTIONS directives to provide a superset
of the PRIVATE clause functionality.

In addition to the PRIVATE clause functionality, private copies of the variables
are initialized from the original object existing before the parallel construct.

LASTPRIVATE Clause
Use the LASTPRIVATE clause on the DO, SECTIONS, PARALLEL DO, and
PARALLEL SECTIONS directives to provide a superset of the PRIVATE clause
functionality.

When the LASTPRIVATE clause appears on a DO or PARALLEL DO directive,
the thread that executes the sequentially last iteration updates the version of
the object it had before the construct.

When the LASTPRIVATE clause appears on a SECTIONS or PARALLEL
SECTIONS directive, the thread that executes the lexically last section updates
the version of the object it had before the construct.

Subobjects that are not assigned a value by the last iteration of the DO loop or
the lexically last SECTION directive are undefined after the construct.

Parallel Compiler Directives and Their Programming Environment 6–13

Correct execution sometimes depends on the value that the last iteration of a
loop assigns to a variable. You must list all such variables as arguments to
a LASTPRIVATE clause so that the values of the variables are the same as
when the loop is executed sequentially. As shown in the following example, the
value of I at the end of the parallel region is equal to N+1, as it would be with
sequential execution.

!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

DO I=1,N
A(I) = B(I) + C(I)

END DO
!$OMP END PARALLEL

CALL REVERSE(I)

REDUCTION Clause
Use the REDUCTION clause on the PARALLEL, DO, SECTIONS, PARALLEL
DO, and PARALLEL SECTIONS directives to perform a reduction on the
specified variables by using an operator or intrinsic as shown:

REDUCTION (
� operator

intrinsic

�
:list)

Operator can be one of the following: +, *, -, .AND., .OR., .EQV., or .NEQV..

Intrinsic can be one of the following: MAX, MIN, IAND, IOR, or IEOR.

The specified variables must be named scalar variables of intrinsic type and
must be SHARED in the enclosing context. A private copy of each specified
variable is created for each thread as if you had used the PRIVATE clause. The
private copy is initialized to a value that depends on the operator or intrinsic
as shown in Table 6–2. The actual initialization value will be consistent with
the data type of the reduction variable.

6–14 Parallel Compiler Directives and Their Programming Environment

Table 6–2 Operators/Intrinsics and Initialization Values for Reduction
Variables

Operator/Intrinsic Initialization Value

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

At the end of the construct to which the reduction applies, the shared variable
is updated to reflect the result of combining the original value of the SHARED
reduction variable with the final value of each of the private copies using the
specified operator.

Except for subtraction, all of the reduction operators are associative and the
compiler can freely reassociate the computation of the final value. The partial
results of a subtraction reduction are added to form the final value.

The value of the shared variable becomes undefined when the first thread
reaches the clause containing the reduction, and it remains undefined until the
reduction computation is complete. Normally, the computation is complete at
the end of the REDUCTION construct. However, if you use the REDUCTION
clause on a construct to which NOWAIT is also applied, the shared variable
remains undefined until a barrier synchronization has been performed. This
ensures that all of the threads have completed the REDUCTION clause.

The REDUCTION clause is intended to be used on a region or worksharing
construct in which the reduction variable is used only in reduction statements
having one of the following forms:

Parallel Compiler Directives and Their Programming Environment 6–15

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic (x,expr)

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAX
reduction might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. Be
careful that the operator specified in the REDUCTION clause matches the
reduction operation.

Any number of reduction clauses can be specified on the directive, but a
variable can appear only once in a REDUCTION clause for that directive as
shown in the following example:

!$OMP DO REDUCTION(+: A, Y),REDUCTION(.OR.: AM)

The following example shows how to use the REDUCTION clause:

!$OMP PARALLEL DO DEFAULT(PRIVATE),SHARED(A,B),REDUCTION(+: A,B)
DO I=1,N

CALL WORK(ALOCAL,BLOCAL)
A = A + ALOCAL
B = B + BLOCAL

END DO
!$OMP END PARALLEL DO

SHARED Clause
Use the SHARED clause on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to make variables shared among all the threads in a
team.

In the following example, the variables X and NPOINTS are shared among all
the threads in the team:

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()
NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP
CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

6–16 Parallel Compiler Directives and Their Programming Environment

6.1.6 Parallel Region: PARALLEL and END PARALLEL Directives
Note

For overview information, see Section 6.1.3, Parallel Processing Thread
Model.

The PARALLEL and END PARALLEL directives define a parallel region as
follows:

!$OMP PARALLEL

!parallel region

!$OMP END PARALLEL

When a thread encounters a parallel region, it creates a team of threads and
becomes the master of the team. You can control the number of threads in a
team by the use of an environment variable or a run-time library call, or both.

For More Information:

• See Section 6.4, Environment Variables for Adjusting the Run-Time
Environment.

• See Appendix D, Parallel Library Routines.

The PARALLEL directive takes an optional comma-separated list of clauses
that specifies:

• Whether the statements in the parallel region are executed in parallel by a
team of threads or serially by a single thread (IF clause)

• Whether variables are PRIVATE, FIRSTPRIVATE, SHARED, or
REDUCTION

• Whether variables have a DEFAULT data scope attribute

• Whether master thread common block values are copied to THREADPRIVATE
copies of the common block (COPYIN clause)

Once created, the number of threads in the team remains constant for
the duration of that parallel region. However, you can explicitly change
the number of threads used in the next parallel region by calling the
OMP_SET_NUM_THREADS run-time library routine from a serial portion of the
program. This routine overrides any value you may have set using the
OMP_NUM_THREADS environment variable.

Parallel Compiler Directives and Their Programming Environment 6–17

Assuming you have used the OMP_NUM_THREADS environment variable to set the
number of threads to 6, you can change the number of threads between parallel
regions as follows:

CALL OMP_SET_NUM_THREADS(3)
!$OMP PARALLEL

.

.

.
!$OMP END PARALLEL

CALL OMP_SET_NUM_THREADS(4)
!$OMP PARALLEL DO

.

.

.
!$OMP END PARALLEL DO

Use the worksharing directives such as DO, SECTIONS, and SINGLE to divide
the statements in the parallel region into units of work and to distribute those
units so that each unit is executed by one thread.

In the following example, the !$OMP DO and !$OMP END DO directives and
all the statements enclosed by them comprise the static extent of the parallel
region:

!$OMP PARALLEL
!$OMP DO

DO I=1,N
B(I) = (A(I) + A(I-1)) / 2.0

END DO
!$OMP END DO
!$OMP END PARALLEL

In the following example, the !$OMP DO and !$OMP END DO directives and
all the statements enclosed by them, including all statements contained in the
WORK subroutine, comprise the dynamic extent of the parallel region:

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL WORK(I,N)

END DO
!$OMP END DO
!$OMP END PARALLEL

When an IF clause is present on the PARALLEL directive, the enclosed code
region is executed in parallel only if the scalar logical expression evaluates to
TRUE. Otherwise, the parallel region is serialized. When there is no IF clause,
the region is executed in parallel by default.

6–18 Parallel Compiler Directives and Their Programming Environment

In the following example, the statements enclosed within the !$OMP DO and
!$OMP END DO directives are executed in parallel only if there are more than
three processors available. Otherwise the statements are executed serially:

!$OMP PARALLEL IF (OMP_GET_NUM_PROCS() .GT. 3)
!$OMP DO

DO I=1,N
Y(I) = SQRT(Z(I))

END DO
!$OMP END DO
!$OMP END PARALLEL

If a thread executing a parallel region encounters another parallel region, it
creates a new team and becomes the master of that new team. By default,
nested parallel regions are always executed by a team of one thread.

To achieve better performance than sequential execution, a parallel region
must contain one or more worksharing constructs so that the team of threads
can execute work in parallel. It is the contained worksharing constructs that
lead to the performance enhancements offered by parallel processing.

6.1.7 Worksharing Constructs
A worksharing construct must be enclosed dynamically within a parallel region
if the worksharing directive is to execute in parallel. No new threads are
launched and there is no implied barrier on entry to a worksharing construct.

The worksharing constructs are:

• DO and END DO directives (see Section 6.1.7.1)

• SECTIONS, SECTION, and END SECTIONS directives (see Section 6.1.7.2)

• SINGLE and END SINGLE directives (see Section 6.1.7.3)

6.1.7.1 DO and END DO directives
The DO directive specifies that the iterations of the immediately following DO
loop must be dispatched across the team of threads so that each iteration is
executed by a single thread. The loop that follows a DO directive cannot be a
DO WHILE or a DO loop that does not have loop control. The iterations of the
DO loop are dispatched among the existing team of threads.

You cannot use a GOTO statement, or any other statement, to transfer control
into or out of the DO construct.

If you specify the optional END DO directive, it must appear immediately after
the end of the DO loop. If you do not specify the END DO directive, an END
DO directive is assumed at the end of the DO loop, and threads synchronize at
that point.

Parallel Compiler Directives and Their Programming Environment 6–19

The loop iteration variable is private by default, so it is not necessary to declare
it explicitly.

The clauses for the DO directive specify:

• Whether variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION

• How loop iterations are SCHEDULEd onto threads

In addition, the ORDERED clause must be specified if the ORDERED directive
appears in the dynamic extent of the DO directive.

If you do not specify the optional NOWAIT clause on the END DO directive,
threads synchronize at the END DO directive. If you specify NOWAIT, threads
do not synchronize, and threads that finish early proceed directly to the
instructions following the END DO directive.

The DO directive optionally lets you:

• Control data scope attributes (see Section 6.1.5, Controlling Data Scope
Attributes).

• Use the SCHEDULE clause to specify schedule type and chunk size (see
Section 6.1.10, Specifying Schedule Type and Chunk Size).

6.1.7.2 SECTIONS, SECTION, and END SECTIONS Directives
Use the noniterative worksharing SECTIONS directive to divide the enclosed
sections of code among the team. Each section is executed just one time by one
thread.

Each section should be preceded with a SECTION directive, except for the first
section, in which the SECTION directive is optional. The SECTION directive
must appear within the lexical extent of the SECTIONS and END SECTIONS
directives.

The last section ends at the END SECTIONS directive. When a thread
completes its section and there are no undispatched sections, it waits at
the END SECTION directive unless you specify NOWAIT.

The SECTIONS directive takes an optional comma-separated list of clauses
that specifies which variables are PRIVATE, FIRSTPRIVATE, LASTPRIVATE,
or REDUCTION.

The following example shows how to use the SECTIONS and SECTION
directives to execute subroutines XAXIS, YAXIS, and ZAXIS in parallel. The
first SECTION directive is optional:

6–20 Parallel Compiler Directives and Their Programming Environment

!$OMP PARALLEL
!$OMP SECTIONS
!$OMP SECTION

CALL XAXIS
!$OMP SECTION

CALL YAXIS
!$OMP SECTION

CALL ZAXIS
!$OMP END SECTIONS
!$OMP END PARALLEL

For More Information:

• See Section 6.1.5, Controlling Data Scope Attributes.

6.1.7.3 SINGLE and END SINGLE Directives
Use the SINGLE directive when you want just one thread of the team to
execute the enclosed block of code.

Threads that are not executing the SINGLE directive wait at the END SINGLE
directive unless you specify NOWAIT.

The SINGLE directive takes an optional comma-separated list of clauses that
specifies which variables are PRIVATE or FIRSTPRIVATE. that specifies which
variables are PRIVATE or FIRSTPRIVATE.

When the END SINGLE directive is encountered, an implicit barrier is erected
and threads wait until all threads have finished. This can be overridden by
using the NOWAIT option.

In the following example, the first thread that encounters the SINGLE
directive executes subroutines OUTPUT and INPUT:

!$OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)

!$OMP BARRIER
!$OMP SINGLE

CALL OUTPUT(X)
CALL INPUT(Y)

!$OMP END SINGLE
CALL WORK(Y)

!$OMP END PARALLEL

For More Information:

• See Section 6.1.5, Controlling Data Scope Attributes.

Parallel Compiler Directives and Their Programming Environment 6–21

6.1.8 Combined Parallel/Worksharing Constructs
The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

• PARALLEL DO (see Section 6.1.8.1)

• PARALLEL SECTIONS (see Section 6.1.8.2)

6.1.8.1 PARALLEL DO and END PARALLEL DO Directives
Use the PARALLEL DO directive to specify a parallel region that implicitly
contains a single DO directive.

You can specify one or more of the clauses for the PARALLEL and the DO
directives.

The following example shows how to parallelize a simple loop. The loop
iteration variable is private by default, so it is not necessary to declare it
explicitly. The END PARALLEL DO directive is optional:

!$OMP PARALLEL DO
DO I=1,N
B(I) = (A(I) + A(I-1)) / 2.0

END DO
!$OMP END PARALLEL DO

For More Information:

• See Section 6.1.6, Parallel Region: PARALLEL and END PARALLEL
Directives.

• See Section 6.1.7.1, DO and END DO directives.

6.1.8.2 PARALLEL SECTIONS and END PARALLEL SECTIONS Directives
Use the PARALLEL SECTIONS directive to specify a parallel region that
implicitly contains a single SECTIONS directive.

You can specify one or more of the clauses for the PARALLEL and the
SECTIONS directives.

The last section ends at the END PARALLEL SECTIONS directive.

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be
executed concurrently. The first SECTION directive is optional. Note that
all SECTION directives must appear in the lexical extent of the PARALLEL
SECTIONS/END PARALLEL SECTIONS construct:

6–22 Parallel Compiler Directives and Their Programming Environment

!$OMP PARALLEL SECTIONS
!$OMP SECTION

CALL XAXIS
!$OMP SECTION

CALL YAXIS
!$OMP SECTION

CALL ZAXIS
!$OMP END PARALLEL SECTIONS

For More Information:

• See Section 6.1.6, Parallel Region: PARALLEL and END PARALLEL
Directives.

• See Section 6.1.7.2, SECTIONS, SECTION, and END SECTIONS
Directives.

6.1.9 Synchronization Constructs
Synchronization constructs are used to assure the consistency of shared data
and to coordinate parallel execution among threads.

The synchronization constructs are:

• ATOMIC directive (see Section 6.1.9.1)

• BARRIER directive (see Section 6.1.9.2)

• CRITICAL directive (see Section 6.1.9.3)

• FLUSH directive (see Section 6.1.9.4)

• MASTER directive (see Section 6.1.9.5)

• ORDERED directive (see Section 6.1.9.6)

6.1.9.1 ATOMIC Directive
Use the ATOMIC directive to ensure that a specific memory location is updated
atomically instead of exposing the location to the possibility of multiple,
simultaneously writing threads.

This directive applies only to the immediately following statement, which must
have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

Parallel Compiler Directives and Their Programming Environment 6–23

In the preceding statements:

• x is a scalar variable of intrinsic type

• expr is a scalar expression that does not reference x

• intrinsic is either MAX, MIN, IAND, IOR, or IEOR

• operator is either +, *, -, /, .AND., .OR., .EQV., or .NEQV.

This directive permits optimization beyond that of a critical section around
the assignment. An implementation can replace all ATOMIC directives by
enclosing the statement in a critical section. All of these critical sections must
use the same unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected
by using the ATOMIC directive, except those that are known to be free of race
conditions. The function intrinsic, the operator operator, and the assignment
must be the intrinsic function, operator, and assignment.

This restriction applies to the ATOMIC directive: All references to storage
location x must have the same type and type parameters.

In the following example, the collection of Y locations is updated atomically:

!$OMP ATOMIC
Y = Y + B(I)

6.1.9.2 BARRIER Directive
To synchronize all threads within a parallel region, use the BARRIER directive.
You can use this directive only within a parallel region defined by using the
PARALLEL directive. You cannot use the BARRIER directive within the DO,
PARALLEL DO, SECTIONS, PARALLEL SECTIONS, and SINGLE directives.

When encountered, each thread waits at the BARRIER directive until all
threads have reached the directive.

In the following example, the BARRIER directive ensures that all threads have
executed the first loop and that it is safe to execute the second loop:

6–24 Parallel Compiler Directives and Their Programming Environment

c$OMP PARALLEL
c$OMP DO PRIVATE(i)

DO i = 1, 100
b(i) = i

END DO
c$OMP BARRIER
c$OMP DO PRIVATE(i)

DO i = 1, 100
a(i) = b(101-i)

END DO
c$OMP END PARALLEL

6.1.9.3 CRITICAL and END CRITICAL Directives
Use the CRITICAL and END CRITICAL directives to restrict access to a block
of code, referred to as a critical section, to one thread at a time.

A thread waits at the beginning of a critical section until no other thread in
the team is executing a critical section having the same name.

When a thread enters the critical section, a latch variable is set to closed
and all other threads are locked out. When the thread exits the critical section
at the END CRITICAL directive, the latch variable is set to open, allowing
another thread access to the critical section.

If you specify a critical section name in the CRITICAL directive, you must
specify the same name in the END CRITICAL directive. If you do not specify
a name for the CRITICAL directive, you cannot specify a name for the END
CRITICAL directive.

All unnamed CRITICAL directives map to the same name. Critical section
names are global to the program.

The following example includes several CRITICAL directives, and illustrates a
queuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation must
be in a critical section. Because there are two independent queues in this
example, each queue is protected by CRITICAL directives having different
names, XAXIS and YAXIS, respectively:

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(X,Y)
!$OMP CRITICAL(XAXIS)

CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(XAXIS)

CALL WORK(IX_NEXT, X)
!$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(YAXIS)

CALL WORK(IY_NEXT, Y)
!$OMP END PARALLEL

Parallel Compiler Directives and Their Programming Environment 6–25

Unnamed critical sections use the global lock from the Pthread package. This
allows you to synchronize with other code by using the same lock. Named
locks are created and maintained by the compiler and can be significantly more
efficient.

6.1.9.4 FLUSH Directive
Use the FLUSH directive to identify a synchronization point at which a
consistent view of memory is provided. Thread-visible variables are written
back to memory at this point.

To avoid flushing all thread-visible variables at this point, include a list of
comma-separated named variables to be flushed.

The following example uses the FLUSH directive for point-to-point synchro-
nization between thread 0 and thread 1 for the variable ISYNC:

!$OMP PARALLEL DEFAULT(PRIVATE),SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

!$OMP BARRIER
CALL WORK()

! I Am Done With My Work, Synchronize With My Neighbor
ISYNC(IAM) = 1

!$OMP FLUSH(ISYNC)
! Wait Till Neighbor Is Done

DO WHILE (ISYNC(NEIGH) .EQ. 0)
!$OMP FLUSH(ISYNC)

END DO
!$OMP END PARALLEL

6.1.9.5 MASTER and END MASTER Directives
Use the MASTER and END MASTER directives to identify a block of code that
is executed only by the master thread.

The other threads of the team skip the code and continue execution. There is
no implied barrier at the END MASTER directive.

In the following example, only the master thread executes the routines
OUTPUT and INPUT:

!$OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)

!$OMP MASTER
CALL OUTPUT(X)
CALL INPUT(Y)

!$OMP END MASTER
CALL WORK(Y)

!$OMP END PARALLEL

6–26 Parallel Compiler Directives and Their Programming Environment

6.1.9.6 ORDERED and END ORDERED Directives
Use the ORDERED and END ORDERED directives within a DO construct to
allow work within an ordered section to execute sequentially while allowing
work outside the section to execute in parallel.

When you use the ORDERED directive, you must also specify the ORDERED
clause on the DO directive.

Only one thread at a time is allowed to enter the ordered section, and then
only in the order of loop iterations.

In the following example, the code prints out the indexes in sequential order:

!$OMP DO ORDERED,SCHEDULE(DYNAMIC)
DO I=LB,UB,ST

CALL WORK(I)
END DO
SUBROUTINE WORK(K)

!$OMP ORDERED
WRITE(*,*) K

!$OMP END ORDERED

6.1.10 Specifying Schedule Type and Chunk Size
The SCHEDULE clause of the DO or PARALLEL DO directive specifies a
scheduling algorithm that determines how iterations of the DO loop are
divided among and dispatched to the threads of the team. The SCHEDULE
clause applies only to the current DO or PARALLEL DO directive.

Within the SCHEDULE clause, you must specify a schedule type and,
optionally, a chunk size. A chunk is a contiguous group of iterations
dispatched to a thread. Chunk size must be a scalar integer expression.

The following list describes the schedule types and how the chunk size affects
scheduling:

• STATIC

The iterations are divided into pieces having a size specified by chunk. The
pieces are statically dispatched to threads in the team in a round-robin
manner in the order of thread number.

When chunk is not specified, the iterations are first divided into contiguous
pieces by dividing the number of iterations by the number of threads in
the team. Each piece is then dispatched to a thread before loop execution
begins.

• DYNAMIC

Parallel Compiler Directives and Their Programming Environment 6–27

The iterations are divided into pieces having a size specified by chunk. As
each thread finishes its currently dispatched piece of the iteration space,
the next piece is dynamically dispatched to the thread.

When no chunk is specified, the default is 1.

• GUIDED

The chunk size is decreased exponentially with each succeeding dispatch.
Chunk specifies the minimum number of iterations to dispatch each time.
If there are less than chunk number of iterations remaining, the rest are
dispatched.

When no chunk is specified, the default is 1.

• RUNTIME

The decision regarding scheduling is deferred until run time. The schedule
type and chunk size can be chosen at run time by using the OMP_SCHEDULE
environment variable (see Table 6–4).

When you specify RUNTIME, you cannot specify a chunk size.

The following list shows which schedule type is used, in priority order:

1. The schedule type specified in the SCHEDULE clause of the current DO or
PARALLEL DO directive

2. If the schedule type for the current DO or PARALLEL DO directive is
RUNTIME, the default value specified in the OMP_SCHEDULE environment
variable

3. The compiler default schedule type of STATIC

The following list shows which chunk size is used, in priority order:

1. The chunk size specified in the SCHEDULE clause of the current DO or
PARALLEL DO directive

2. For RUNTIME schedule type, the value specified in the OMP_SCHEDULE
environment variable

3. For DYNAMIC and GUIDED schedule types, the default value 1

4. If the schedule type for the current DO or PARALLEL DO directive is
STATIC, the loop iteration space divided by the number of threads in the
team

6–28 Parallel Compiler Directives and Their Programming Environment

6.2 Compaq Fortran Parallel Compiler Directives
These directives are provided for compatibility with older programs that were
written for parallel execution.

These topics are described:

• Command-line option and directives format (see Section 6.2.1)

• Directive summary descriptions (see Section 6.2.2)

• Parallel processing thread model (see Section 6.2.3)

• Privatizing named common blocks (see Section 6.2.4)

• Controlling data scope attributes (see Section 6.2.5)

• Parallel region (see Section 6.2.6)

• Worksharing constructs (see Section 6.2.7)

• Combined parallel/worksharing constructs (see Section 6.2.8)

• Synchronization constructs (see Section 6.2.9)

• Specifying a default chunk size (see Section 6.2.10)

• Specifying a default schedule type (see Section 6.2.11)

• Terminating loop execution early (see Section 6.2.12)

6.2.1 Command-Line Option and Directives Format
To use Compaq Fortran parallel compiler directives in your program, you must
include the -mp compiler option on your f90 command:

% f90 -mp prog.f -o prog

The format of a Compaq Fortran parallel compiler directive is:

prefix directive_name [option[[,] option]...]

All Compaq Fortran parallel compiler directives must begin with a directive
prefix. Directives are not case-sensitive. Options can appear in any order after
the directive name and can be repeated as needed, subject to the restrictions of
individual options.

Directives cannot be embedded within continued statements, and statements
cannot be embedded within directives. Trailing comments are allowed.

Parallel Compiler Directives and Their Programming Environment 6–29

6.2.1.1 Directive Prefixes
The directive prefix you use depends on the source form you use in your
program:

• Use the !$PAR prefix when compiling either fixed source form or free source
form programs.

• Use the C$PAR (or c$PAR) and the *$PAR prefixes only when compiling
fixed source form programs.

Fixed Source Form
For fixed source form programs, the prefix is one of the following:

!$PAR
C$PAR (or c$PAR)
*$PAR

For four directives, there is another form for fixed source form programs. This
nonpreferred form is accepted by the compiler for compatibility reasons. The
four directives are: CHUNK, COPYIN, DOACROSS, and MP_SCHEDULE.
The prefix is c$. Thus, these four directives are acceptable:

Preferred Directive
Name Acceptable Directive Name

!$PAR CHUNK c$CHUNK

!$PAR COPYIN c$COPYIN

!$PAR DOACROSS c$DOACROSS

!$PAR MP_SCHEDULE c$MP_SCHEDULE

For More Information:

• See Section 6.1.1.1, Directive Prefixes.

Free Source Form
For free source form programs, the prefix is !$PAR.

For More Information:

• See Section 6.1.1.1, Directive Prefixes.

6–30 Parallel Compiler Directives and Their Programming Environment

6.2.2 Summary Descriptions of Compaq Fortran Parallel Compiler
Directives

Table 6–3 provides summary descriptions of the Compaq Fortran parallel
compiler directives. For complete information about the Compaq Fortran
parallel compiler directives, see the Compaq Fortran Language Reference
Manual.

Table 6–3 Compaq Fortran Parallel Compiler Directives

Directive
Format Description

prefix BARRIER

This directive defines a synchronization construct that synchronizes all
the threads in a team.

See Section 6.2.9.1, BARRIER Directive.

prefix CHUNK = chunksize

This directive sets a default chunk size used to divide iterations among
the threads of the team.

See Section 6.2.10, Specifying a Default Chunk Size.

prefix COPYIN object[, object] . . .

This data environment directive specifies that the listed variables, single
array elements, and common blocks be copied from the master thread to
the PRIVATE data objects having the same name.

Single array elements can be copied, but array sections cannot be copied.

Shared variables cannot be copied.

When an allocatable array is to be copied, it must be allocated when the
COPYIN directive is encountered.

This directive is allowed only within PARALLEL and PARALLEL DO
directives.

prefix CRITICAL SECTION [(latch-var)]

code

prefix END CRITICAL SECTION

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–31

Table 6–3 (Cont.) Compaq Fortran Parallel Compiler Directives

Directive
Format Description

These directives define a synchronization construct that specifies a block
of code that is executed by one thread at a time.

See Section 6.2.9.2, CRITICAL SECTION and END CRITICAL SECTION
Directives.

prefix INSTANCE
�

SINGLE
PARALLEL

�
/com-blk-name/[[,]/com-blk-name/] . . .

This data environment directive makes named common blocks available
to threads.

See Section 6.2.4, Privatizing Named Common Blocks: TASKCOMMON
or INSTANCE Directives.

prefix MP_SCHEDTYPE = mode

This directive sets a default run-time schedule type.

See Section 6.2.11, Specifying a Default Schedule Type.

prefix PARALLEL [region-option[[,]region-option] . . .]

code

prefix END PARALLEL

These directives define a parallel construct that is a region of a program
that must be executed by a team of threads in parallel until the END
PARALLEL directive is encountered.

See Section 6.2.6, Parallel Region: PARALLEL and END PARALLEL
Directives .

prefix
�

PARALLEL DO
DOACROSS

�
[par-do-option[[,]par-do-option] . . .]

do_loop

[prefix END PARALLEL DO]

(continued on next page)

6–32 Parallel Compiler Directives and Their Programming Environment

Table 6–3 (Cont.) Compaq Fortran Parallel Compiler Directives

Directive
Format Description

These directives define a combined parallel/worksharing construct that
specifies an abbreviated form of specifying a parallel region that contains
a single PDO directive.

See Section 6.2.8.1, PARALLEL DO and END PARALLEL DO Directives.

prefix PARALLEL SECTIONS [par-sect-option[[,]par-sect-option] . . .]

code

prefix END PARALLEL SECTIONS

These directives define a combined parallel/worksharing construct
that specifies an abbreviated form of specifying a parallel region that
contains a single SECTION directive. The semantics are identical to
explicitly specifying the PARALLEL directive immediately followed by a
PSECTIONS directive.

See Section 6.2.8.2, PARALLEL SECTIONS and END PARALLEL
SECTIONS Directives.

prefix PDO [pdo-option[[,]pdo-option] . . .]

do_loop

[prefix END PDO [NOWAIT]]

These directives define a worksharing construct that specifies that each
set of iterations of the contained DO LOOP is a unit of work that can be
scheduled on a single thread.

See Section 6.2.7.1, PDO and END PDO Directives.

prefix PDONE

This directive specifies that the DO loop in which the PDONE directive is
contained should be terminated early.

See Section 6.2.12, Terminating Loop Execution Early: PDONE Directive.

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–33

Table 6–3 (Cont.) Compaq Fortran Parallel Compiler Directives

Directive
Format Description

prefix PSECTION[S] [sect-option[[,]sect-option] . . .]

[prefix SECTION]

code

[prefix SECTION

code]

prefix END PSECTION[S] [NOWAIT]

These directives define a worksharing construct that specifies that the
enclosed sections of code are to be divided among threads in the team.

See Section 6.2.7.2, PSECTIONS, SECTION, and END PSECTIONS
Directives.

prefix SINGLE PROCESS [proc-option[[,]proc-option] . . .]

code

prefix END SINGLE PROCESS [NOWAIT]

These directives define a worksharing construct that specifies a block of
code that is executed by only one thread.

See Section 6.2.7.3, SINGLE PROCESS and END SINGLE PROCESS
Directives.

prefix TASKCOMMON com-blk-name[,com-blk-name] . . .

This data environment directive makes named common blocks private to
a thread, but global within the thread.

See Section 6.2.4, Privatizing Named Common Blocks: TASKCOMMON
or INSTANCE Directives.

6.2.3 Parallel Processing Thread Model
The concepts of the parallel processing thread model are the same as those for
OpenMP Fortran API with one exception: orphaned directives are not possible
with Compaq Fortran parallel compiler directives.

6–34 Parallel Compiler Directives and Their Programming Environment

For More Information:

• See Section 6.1.3, Parallel Processing Thread Model.

You can control the data environment within parallel and worksharing
constructs. Using directives and data environment options on directives,
you can:

• Privatize named common blocks (see Section 6.2.4)

• Control data scope attributes (see Section 6.2.5)

6.2.4 Privatizing Named Common Blocks: TASKCOMMON or
INSTANCE Directives

You can make named common blocks private to a thread, but global within the
thread by using the TASKCOMMON or the INSTANCE PARALLEL directive:

• For TASKCOMMON, specify a comma-separated list of common block
names

• For INSTANCE PARALLEL, specify a comma-separated list of common
block names, each enclosed by slashes (/name/)

The TASKCOMMON and INSTANCE PARALLEL directives are semantically
equivalent and differ only in form.

Only named common blocks can be made thread private.

Each thread gets its own copy of the common block, with the result that data
written to the common block by one thread is not directly visible to other
threads. During serial portions of the program, accesses are to the master
thread copy of the common block.

You should assume that the data in thread private common blocks is undefined
on entry into the first parallel region unless you specified the COPYIN option
in the PARALLEL directive (see COPYIN Option in Section 6.2.5).

When you make thread private a common block that is initialized using DATA
statements, the copy of the common block for each thread has that initial
value. If no initial value is provided, the variables in the common block are
assigned the value of zero.

You can also specify INSTANCE SINGLE, which is the default in the absence
of any attribute for the directive. In this case, all threads share the same copy
of the common block in the master thread. Assignments made by one thread
affect the copy in all other threads.

When you specify INSTANCE PARALLEL, the named common blocks are
made private to a thread, but global within the thread.

Parallel Compiler Directives and Their Programming Environment 6–35

The TASKCOMMON directive is the same as the OpenMP Fortran API
THREADPRIVATE directive except that slashes (//) do not have to be used to
delimit named common blocks.

For More Information:

• See Section 6.1.4, Privatizing Named Common Blocks: THREADPRIVATE
Directive.

6.2.5 Controlling Data Scope Attributes
You can use several options to control the data scope attributes of variables for
the duration of the construct in which you specify them. If you do not specify
a data scope attribute option on a directive, the default is SHARED for those
variables affected by the directive.

Each of the data scope attribute options accepts a list, which is a comma-
separated list of named variables or named common blocks that are accessible
in the scoping unit. When you specify named common blocks, they must
appear between slashes (/name/).

Not all of the options are allowed on all directives, but the directives to which
each option applies are listed in the clause descriptions.

The data scope attribute options are:

• COPYIN

• DEFAULT

• FIRSTPRIVATE

• LASTLOCAL or LAST LOCAL

• PRIVATE or LOCAL

• REDUCTION

• SHARED or SHARE

COPYIN Option
Use the COPYIN option on the PARALLEL, PARALLEL DO, and PARALLEL
SECTIONS directives to copy named common block values from the master
thread copy to threads at the beginning of a parallel region, use the COPYIN
option on the PARALLEL directive. The COPYIN option applies only to named
common blocks that have been previously declared thread private using the
TASKCOMMON or the INSTANCE PARALLEL directive (see Section 6.2.4).

Use a comma-separated list to name the common blocks and variables in
common blocks you want to copy.

6–36 Parallel Compiler Directives and Their Programming Environment

DEFAULT Option
This option is the same as the OpenMP Fortran API DEFAULT clause (see
Section 6.1.5).

FIRSTPRIVATE Option
This option is the same as the OpenMP Fortran API FIRSTPRIVATE clause
(see Section 6.1.5).

LASTLOCAL or LAST LOCAL Option
Except for differences in directive name spelling, the LASTLOCAL or LAST
LOCAL option is the same as the OpenMP Fortran API LASTPRIVATE clause
(see Section 6.1.5).

PRIVATE or LOCAL Option
Except for the alternate directive spelling of LOCAL, the PRIVATE or
LOCAL option is the same as the OpenMP Fortran API PRIVATE clause
(see Section 6.1.5).

REDUCTION Option
Use the REDUCTION option on the PDO directive to declare variables that are
to be the object of a reduction operation. Use a comma-separated list to name
the variables you want to declare as objects of a reduction.

The REDUCTION option in the Compaq Fortran parallel compiler directive set
is different from the REDUCTION clause in the OpenMP Fortran API directive
set. In the OpenMP Fortran API directive set, both a variable and an operator
type are given. In the Compaq Fortran parallel compiler directive set, the
operator is not given. The compiler must be able to determine the reduction
operation from the source code. The REDUCTION option can be applied to a
variable in a DO loop only if the variable meets the following criteria:

• It must be scalar.

• It must be assigned to exactly once in the DO loop.

• It must be read from exactly once in the DO loop and only in the right side
of the assignment.

• The assignment must be one of the following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = operator(x, expr)

x = operator(expr, x)

Parallel Compiler Directives and Their Programming Environment 6–37

where operator is one of the following supported reduction operations: +, -,
*, .AND., .OR., .EQV., .NEQV., MAX, MIN, IAND, or IOR.

The compiler rewrites the reduction operation by computing partial results into
local variables and then combining the results into the reduction variable. The
reduction variable must be SHARED in the enclosing context.

SHARED or SHARE Option
Except for the alternate directive spelling of SHARE, the SHARED or
SHARE option is the same as the OpenMP Fortran API SHARED clause
(see Section 6.1.5).

6.2.6 Parallel Region: PARALLEL and END PARALLEL Directives
The concepts of using a parallel region are the same as those for OpenMP
Fortran API (see Section 6.1.6), with these differences:

• Use the worksharing directives such as DO, SECTIONS, and SINGLE
to divide the statements in the parallel region into units of work and to
distribute those units so that each unit is executed by one thread.

• The environment variable you use to set the default number of threads is
MP_THREAD_COUNT and the run-time library routine is OtsSetNumThreads.

For More Information:

• See Section 6.4, Environment Variables for Adjusting the Run-Time
Environment.

• See Appendix D, Parallel Library Routines.

6.2.7 Worksharing Constructs
A worksharing construct must be enclosed lexically (not dynamically, as with
OpenMP Fortran API directives) within a parallel region if the worksharing
directive is to execute in parallel. No new threads are launched and there is no
implied barrier on entry to a worksharing construct.

The worksharing constructs are:

• PDO and END PDO directives (see Section 6.2.7.1)

• PSECTIONS, SECTION, and END PSECTIONS directives (see
Section 6.2.7.2)

• SINGLE PROCESS and END SINGLE PROCESS directives (see
Section 6.2.7.3)

6–38 Parallel Compiler Directives and Their Programming Environment

6.2.7.1 PDO and END PDO Directives
The PDO directive specifies that the iterations of the immediately following
DO loop must be dispatched across the team of threads so that each iteration
is executed in parallel by a single thread.

The loop that follows a PDO directive cannot be a DO WHILE or a DO loop
that does not have loop control. The iterations of the DO loop are divided
among and dispatched to the existing threads in the team.

You cannot use a GOTO statement, or any other statement, to transfer control
into or out of the PDO construct.

This directive must be nested within the lexical extent of a PARALLEL
directive. The PARALLEL directive takes an optional comma-separated list of
options that specifies:

• Whether variables are PRIVATE, FIRSTPRIVATE, LASTLOCAL, or
REDUCTION

• How iterations are scheduled onto threads and whether this is deferred
until run time (MP_SCHEDTYPE option)

• How many iterations each thread is assigned (CHUNK or BLOCKED
option)

• Whether iterations are in an ordered sequence (ORDERED option)

If you specify the optional END PDO directive, it must appear immediately
after the end of the DO loop. If you do not specify the END PDO directive, an
END PDO directive is assumed at the end of the DO loop.

If you do not specify the optional NOWAIT clause on the END PDO directive,
threads synchronize at the END PDO directive. If you specify NOWAIT,
threads do not synchronize at the END PDO directive. Threads that finish
early proceed directly to the instructions following the END PDO directive.

You can use the ORDERED option to affect the way threads are dispatched.
When you specify this option, iterations are dispatched to threads in the same
order they would be for sequential execution.

The PDO directive optionally lets you:

• Control data scope attributes (see Section 6.1.5)

• Specify chunk size (see Section 6.2.10)

• Specify schedule type (see Section 6.2.11)

• Terminate loop execution early (see Section 6.2.12)

Parallel Compiler Directives and Their Programming Environment 6–39

• Override implicit synchronization

Overriding Implicit Synchronization
Whether or not you include the END PDO directive at the end of the DO
loop, by default an implicit synchronization point exists immediately after the
last statement in the loop. Threads reaching this point wait until all threads
complete their work and reach this synchronization point.

If there are no data dependences between the variables inside the loop and
those outside the loop, there may be no reason to make threads wait. In
this case, use the NOWAIT clause on the END PDO directive to override
synchronization and allow threads to continue.

6.2.7.2 PSECTIONS, SECTION, and END PSECTIONS Directives
This directive is the same as the OpenMP Fortran API SECTIONS directive
with the following exceptions:

• The names are PSECTIONS and END PSECTIONS.

• No REDUCTION clause or LASTPRIVATE clause is permitted.

• LOCAL is permitted as an alternative spelling for the PRIVATE clause.

For More Information:

• See Section 6.1.7.2, SECTIONS, SECTION, and END SECTIONS
Directives.

6.2.7.3 SINGLE PROCESS and END SINGLE PROCESS Directives
This directive is the same as the OpenMP Fortran API SINGLE directive with
the following exceptions:

• The names are SINGLE PROCESS and END SINGLE PROCESS.

• LOCAL is permitted as an alternative spelling for the PRIVATE clause.

For More Information:

• See Section 6.1.7.3, SINGLE and END SINGLE Directives.

6.2.8 Combined Parallel/Worksharing Constructs
The combined parallel/worksharing constructs provide an abbreviated way to
specify a parallel region that contains a single worksharing construct. The
combined parallel/worksharing constructs are:

• PARALLEL DO (see Section 6.2.8.1)

• PARALLEL SECTIONS (see Section 6.2.8.2)

6–40 Parallel Compiler Directives and Their Programming Environment

6.2.8.1 PARALLEL DO and END PARALLEL DO Directives
This directive is the same as the OpenMP Fortran API PARALLEL DO
directive with the following exceptions:

• You can use the alternate DOACROSS directive name instead of
PARALLEL DO. For compatibility, the following form is also allowed
(for fixed source form only): c$DOACROSS.

• The options can be one or more of the options for the PARALLEL and PDO
directives.

The PARALLEL DO directive optionally lets you:

• Control data scope attributes (see Section 6.1.5)

• Specify chunk size (see Section 6.2.10)

• Specify schedule type (see Section 6.2.11)

• Terminate loop execution early (see Section 6.2.12)

For More Information:

• See Section 6.1.8.1, PARALLEL DO and END PARALLEL DO Directives.

6.2.8.2 PARALLEL SECTIONS and END PARALLEL SECTIONS Directives
This directive is the same as the OpenMP Fortran API PARALLEL SECTIONS
directive with the following exception: The options can be one or more of
the options for the PARALLEL and PSECTIONS directives, instead of the
PARALLEL and SECTIONS directives.

The semantics are identical to explicitly specifying the PARALLEL directive
immediately followed by a SECTIONS directive.

For More Information:

• See Section 6.1.8.2, PARALLEL SECTIONS and END PARALLEL
SECTIONS Directives.

6.2.9 Synchronization Constructs
Synchronization constructs are used to assure the consistency of shared data
and to coordinate parallel execution among threads.

The synchronization constructs are:

• BARRIER directive (see Section 6.2.9.1)

• CRITICAL SECTION directive (see Section 6.2.9.2)

Parallel Compiler Directives and Their Programming Environment 6–41

6.2.9.1 BARRIER Directive
The BARRIER directive is the same as the OpenMP Fortran API BARRIER
directive (see Section 6.1.9.2).

6.2.9.2 CRITICAL SECTION and END CRITICAL SECTION Directives
The CRITICAL SECTION and END CRITICAL SECTION directives are the
same as the OpenMP Fortran API CRITICAL and END CRITICAL directives
with the following exceptions:

• The directive names are CRITICAL SECTION and END CRITICAL
SECTION.

• You can specify an optional latch variable name.

• If you do not specify a latch variable name, the compiler assigns a unique
name.

• The END CRITICAL SECTION directive does not take a latch variable
name.

• You must explicitly initialize a latch variable to zero before any critical
section using that latch variable is executed.

• You must not reuse that latch variable in anything other than a critical
section until all uses as a latch variable are complete.

For More Information:

• See Section 6.1.9.3, CRITICAL and END CRITICAL Directives.

6.2.10 Specifying a Default Chunk Size
A chunk is a contiguous group of iterations dispatched to a thread. You
can explicitly define a chunk size for a PDO or PARALLEL DO directive by
using the CHUNK or BLOCKED option. Chunk size must be a scalar integer
expression. The specified chunk size applies only to the current PDO or
PARALLEL DO directive.

The following list shows which chunk size is used, in priority order:

1. The chunk size specified in the CHUNK or BLOCKED option of the current
PDO or PARALLEL DO directive.

2. The value specified in the most recent CHUNK directive. (The CHUNK
directive is provided for compatibility reasons.)

3. If the schedule type for the current PDO or PARALLEL DO directive is
either INTERLEAVED, DYNAMIC, GUIDED, or RUNTIME, the chunk
size default value specified in the MP_CHUNK_SIZE environment variable.

6–42 Parallel Compiler Directives and Their Programming Environment

4. The compiler default chunk size value of 1.

The interaction between the chunk size and the schedule type are:

• For the DYNAMIC and INTERLEAVED schedule types, iterations are
always dispatched to threads in chunk size groups. If the total number of
iterations is not evenly divisible by chunk size, the last group dispatched
has fewer iterations.

• For the GUIDED schedule type, chunk size is the minimum number of
iterations that can be dispatched to a thread. If less than chunk size
iterations remain, the remaining iterations are dispatched to the next
available thread.

• For the STATIC schedule type, chunk size is ignored.

6.2.11 Specifying a Default Schedule Type
The schedule type specifies a scheduling algorithm that determines how chunks
of loop iterations are dispatched to the threads of a team. The schedule type
does not affect the semantics of the program, but might affect performance.
You can explicitly define a run-time schedule type for the current PDO or
PARALLEL DO directive by using the MP_SCHEDTYPE option. The specified
schedule type applies to the current PDO or PARALLEL DO directive only.

The following list shows which schedule type is used, in priority order:

1. The schedule type specified in the MP_SCHEDTYPE option of the current
PDO or PARALLEL DO directive.

2. The schedule type specified in the most recent MP_SCHEDTYPE directive.
(The MP_SCHEDTYPE directive is provided for compatibility reasons.)

3. If the schedule type for the current PDO or PARALLEL DO directive is
RUNTIME, the default value specified in the MP_SCHEDTYPE environment
variable.

4. The compiler default schedule type of STATIC.

The following list describes the schedule types and how the chunk size affects
scheduling:

• For the STATIC or SIMPLE schedule types, one contiguous group
of iterations is dispatched to each thread, with each group having
approximately the same number of iterations.

• For the INTERLEAVED or INTERLEAVE schedule types, a chunk-sized
group of iterations is dispatched to each thread in a round-robin manner.

Parallel Compiler Directives and Their Programming Environment 6–43

• For the DYNAMIC schedule type, a chunk-sized group of the remaining
iterations is dispatched to the next available thread. If less than one chunk
size of iterations remain, all the remaining iterations are dispatched.

• For the GUIDED or GSS schedule types (similar to the DYNAMIC
schedule type), the number of iterations dispatched is relatively large
at the beginning of the loop and decreases exponentially. The number of
iterations dispatched is not necessarily evenly divisible by chunk size.

The specified chunk size is the minimum number of iterations that can
be dispatched when a thread becomes available. When the number
of remaining iterations is less than or equal to chunk size, all of the
remaining iterations are dispatched to the next available thread.

In some cases, setting a chunk size greater than 1 improves execution
efficiency as the loop nears termination. This is because contention
between threads for the small number of remaining iterations is reduced.

• For the RUNTIME schedule type, the schedule type and the chunk size are
those specified in the MP_SCHEDTYPE environment variable.

The DYNAMIC and GUIDED schedule types introduce some amount of
overhead required to manage the continuing dispatching of iterations to
threads. However, this overhead is sometimes offset by better load balancing
when the average execution time of iterations is not uniform throughout the
loop.

The STATIC and INTERLEAVED schedule types dispatch all of the iterations
to the threads in advance, with each thread receiving approximately equal
numbers of iterations. One of these types is usually the most efficient schedule
type when the average execution time of iterations is uniform throughout the
loop.

6.2.12 Terminating Loop Execution Early: PDONE Directive
If you want to terminate loop execution early because a specified condition
has been satisfied, use the PDONE directive. This is an executable directive
and any undispatched iterations are not executed. However, all previously
dispatched iterations are completed.

This directive must be nested within the lexical extent of a PDO or PARALLEL
DO directive.

When the schedule type is STATIC or INTERLEAVED, this directive has no
effect because all loop iterations are dispatched before the DO loop executes.

6–44 Parallel Compiler Directives and Their Programming Environment

6.3 Decomposing Loops for Parallel Processing
Note

This section contains information that applies to both the OpenMP
Fortran API and the Compaq Fortran parallel compiler directives. The
code examples use the OpenMP API directive format.

To run in parallel, the source code in iterated DO loops must be decomposed
by the user, and adequate system resources must be made available.
Decomposition is the process of analyzing code for data dependences,
dividing up the workload, and ensuring correct results when iterations run
concurrently.

The term loop decomposition is used to specify the process of dividing the
iterations of an iterated DO loop and running them on two or more threads of
a shared-memory multi-processor computer system.

The only type of decomposition available with Compaq Fortran is directed
decomposition using a set of parallel compiler directives.

The following sections describe how to decompose loops and how to use the
OpenMP Fortran API and the Compaq Fortran parallel compiler directives to
achieve parallel processing.

6.3.1 Steps in Using Directed Decomposition
When a program is compiled using the -omp or the -mp option, the compiler
parses the parallel compiler directives. However, you must transform the
source code to resolve any loop-carried dependences and improve run-time
performance. (Another method of supporting parallel processing does not
involve iterated DO loops. Instead, it allows large amounts of independent
code to be run in parallel using the SECTIONS and SECTION directives.)

To use directed decomposition effectively, take the following steps:

1. Identify the loops that benefit most from parallel processing:

• Consider whether another algorithm might achieve more parallelism in
general.

• Evaluate any caller or called loops and decompose the most CPU-
intensive loops in the application (as long as there are no interfering
dependences).

Parallel Compiler Directives and Their Programming Environment 6–45

If a parallel DO loop invokes a subprogram containing another parallel
DO loop, only the parallel DO loop of the calling program will be run in
parallel. Each of the threads executing the outermost parallel DO loop
will execute all of the iterations in the innermost parallel DO loop in a
serial, nonparallel fashion.

• Make sure the loop contains enough CPU work to outweigh the
parallel-processing startup overhead.

2. Analyze the loop and resolve dependences as needed. (See Section 6.3.2,
Resolving Dependences Manually.) If you cannot resolve loop-carried
dependences, you cannot safely decompose the loop.

3. Make sure the shared or private attributes inside the loop are consistent
with corresponding use outside the loop. By default, common blocks and
individual variables are shared, except for the loop control variable and
variables referenced in a subprogram called from within a parallel loop (in
which case they are private by default).

4. Precede the loop with the PARALLEL directive followed by the DO
directive. You can combine the two directives by using the PARALLEL DO
directive.

5. As needed, manually optimize the loop.

6. Make sure the loop complies with restrictions of the parallel-processing
environment.

7. Without using the -omp option or the -mp option, compile, test, and debug
the program.

8. Using -omp (or -mp), repeat the previous step.

9. Evaluate the parallel run:

• If you reach an acceptable level of performance and if the results are
correct, stop.

• If the results are inaccurate, analyze the manually decomposed loops
for dependences, apply a method to resolve them, and retest the
parallel run.

• If performance is inadequate, consider adjusting the run-time
environment (see Section 6.4) or performing other manual
optimizations, or consider other alternatives discussed in this manual.
Then reenter the cycle by retesting the parallel program.

6–46 Parallel Compiler Directives and Their Programming Environment

6.3.2 Resolving Dependences Manually
In directed decomposition, you must resolve loop-carried dependences and
dependences involving temporary variables to ensure safe parallel execution.
Only cycles of dependences are nearly impossible to resolve.

Do one of the following:

• Let the loop execute serially (possibly decompose an outer loop level)

• Use a lock (CRITICAL) to force the critical section to execute serially

• Recode or restructure the loop

• Find another algorithm that does not have cycles of dependences

There are several methods for resolving dependences manually:

• For dependences on variables used as temporaries, declare them PRIVATE;
this effectively makes separate copies of temporary values for each thread.

• Recode the loop so that the loop-carried dependence becomes loop
independent, with each thread having the involved store and fetch
operation contained in a single iteration.

• Insert locks (CRITICAL) around the critical section containing the
dependence.

Use this technique only for very CPU-intensive loops, when no other
method is possible, and for the smallest amount of code possible. The locks
extend processing time by making individual threads wait while only one
executes the critical region at a time.

• Recode loops with cycles of dependences (these are typically linear
recurrences).

6.3.2.1 Resolving Dependences Involving Temporary Variables
Declare temporary variables PRIVATE to resolve dependences involving them.
Temporary variables are used in intermediate calculations. If they are used in
more than one iteration of a parallel loop, the program can produce incorrect
results.

One thread might define a value and another thread use that value instead of
the one it defined for a particular iteration. Loop control variables are prime
examples of temporary variables that are declared PRIVATE by default within
a parallel region. For example:

Parallel Compiler Directives and Their Programming Environment 6–47

DO I = 1,100
TVAR = A(I) + 2
D(I) = TVAR + Y(I-1)

END DO

As long as certain criteria are met, you can resolve this kind of dependence by
declaring the temporary variable (TVAR, in the example) PRIVATE. That way,
each thread keeps its own copy of the variable.

For the criteria to be met, the values of the temporary variable must be all of
the following:

• Defined in each iteration, inside the loop

• Meant to be used inside the same iteration that established it

• Used nowhere outside the loop unless it is redefined outside the loop before
subsequent use

The default for variables in a parallel loop is SHARED, so you must explicitly
declare these variables PRIVATE to resolve this kind of dependence.

6.3.2.2 Resolving Loop-Carried Dependences
You can often resolve loop-carried dependences using one or more of the
following loop transformations:

• Loop alignment

• Code replication

• Loop distribution

• Restructure the loop into an inner and outer loop

These techniques also resolve dependences that inhibit autodecomposition.

6.3.2.3 Loop Alignment
Loop alignment offsets memory references in the loop so that the dependence
is no longer loop carried. The following example shows a loop that is aligned to
resolve the dependence in array A:

Loop with Dependence Aligned Statements

DO I = 2,N
A(I) = B(I)
C(I) = A(I+1)

END DO

C(I-1) = A(I)
A(I) = B(I)

To compensate for the alignment and achieve the same calculations as the
original loop, you probably have to perform one or more of the following:

6–48 Parallel Compiler Directives and Their Programming Environment

• Change the loop control variable.

• Add IF constructs.

• Switch the order of the statements (this preserves the relative store-fetch
order of the original loop).

Example 6–1 shows two possible forms of the final loop.

Example 6–1 Aligned Loop

! First possible form:
!$OMP PARALLEL PRIVATE (I)
!$OMP DO

DO I = 2,N+1
IF (I .GT. 2) C(I-1) = A(I)
IF (I .LE. N) A(I) = B(I)

END DO
!$OMP END DO
!$OMP END PARALLEL
!
! Second possible form; more efficient because the tests are
! performed outside the loop:
!
!$OMP PARALLEL
!$OMP DO

DO I = 3,N
C(I-1) = A(I)
A(I) = B(I)

END DO
!$OMP END DO
!$OMP END PARALLEL

IF (N .GE. 2)
A(2) = B(2)
C(N) = A(N+1)

END IF

6.3.2.4 Code Replication
When a loop contains a loop-independent dependence as well as a loop-carried
dependence, loop alignment alone is usually not adequate. By resolving
the loop-carried dependence, you often misalign another dependence. Code
replication creates temporary variables that duplicate operations and keep
the loop-independent dependences inside each iteration.

In S2 of the following loop, aligning the A(I-1) reference without code
replication would misalign the A(I) reference:

Parallel Compiler Directives and Their Programming Environment 6–49

Loop with Multiple Dependences Misaligned Dependence

DO I = 2,100
S1 A(I) = B(I) + C(I)
S2 D(I) = A(I) + A(I-1)

END DO

D(I-1) = A(I-1) + A(I)
A(I) = B(I) + C(I)

Example 6–2 uses code replication to keep the loop-independent dependence
inside each iteration. The temporary variable, TA, must be declared
PRIVATE.

Example 6–2 Transformed Loop Using Code Replication

!$OMP PARALLEL PRIVATE (I,TA)
A(2) = B(2) + C(2)
D(2) = A(2) + A(1)

!$OMP DO
DO I = 3,100

A(I) = B(I) + C(I)
TA = B(I-1) + C(I-1)
D(I) = A(I) + TA

END DO
!$OMP END DO
!$OMP END PARALLEL

6.3.2.5 Loop Distribution
Loop distribution allows more parallelism when neither loop alignment nor
code replication can resolve the dependences. Loop distribution divides the
contents of loops into multiple loops so that dependences cross between two
separate loops. The loops run serially in relation to each other, even if they
both run in parallel.

The following loop contains multiple dependences that cannot be resolved by
either loop alignment or code replication:

DO I = 1,100
S1 A(I) = A(I-1) + B(I)
S2 C(I) = B(I) - A(I)

END DO

Example 6–3 resolves the dependences by distributing the loop. S2 can run in
parallel despite the data recurrence in S1.

6–50 Parallel Compiler Directives and Their Programming Environment

Example 6–3 Distributed Loop

DO I 1,100
S1 A(I) = A(I-1) + B(I)

END DO

DO I 1,100
S2 C(I) = B(I) - A(I)

END DO

6.3.2.6 Restructuring a Loop into an Inner and Outer Nest
Restructuring a loop into an inner and outer loop nest can resolve some
recurrences that are used as rapid approximations of a function of the loop
control variable. For example, the following loop uses sines and cosines:

THETA = 2.*PI/N
DO I=0,N-1
S = SIN(I*THETA)
C = COS(I*THETA)
.
. ! use S and C
.

END DO

Using a recurrence to approximate the sines and cosines can make the serial
loop run faster (with some loss of accuracy), but it prevents the loop from
running in parallel:

THETA = 2.*PI/N
STH = SIN(THETA)
CTH = COS(THETA)
S = 0.0
C = 1.0
DO I=0,N-1
.
. ! use S and C
.
S = S*CTH + C*STH
C = C*CTH - S*STH

END DO

To resolve the dependences, substitute the SIN and COS calls. (However, this
loses the performance improvement gained from using the recurrence.) You can
also restructure the loop into an outer parallel loop and an inner serial loop.
Each iteration of the outer loop reinitializes the recurrence, and the inner loop
uses the value:

Parallel Compiler Directives and Their Programming Environment 6–51

!$OMP PARALLEL SHARED (THETA,STH,CTH,LCHUNK) PRIVATE (ISTART,I,S,C)
THETA = 2.*PI/N
STH = SIN(THETA)
CTH = COS(THETA)
LCHUNK = (N + NWORKERS()-1) / NWORKERS

!$OMP DO
DO ISTART = 0,N-1,LCHUNK
S = SIN(ISTART*THETA)
C = COS(ISTART*THETA)
DO I = ISTART, MIN(N,ISTART+LCHUNK-1)
.
. ! use S and C
.
S = S*CTH + C*STH
C = C*CTH - S*STH

END DO
END DO

!$OMP END DO
!$OMP END PARALLEL

6.3.2.7 Dependences Requiring Locks
When no other method can resolve a dependence, you can put locks around the
critical section that contains them. Locks force threads to execute the critical
section serially, while allowing the rest of the loop to run in parallel.

However, locks degrade performance because they force the critical section to
run serially and increase the overhead. They are best used only when no other
technique resolves the dependence, and only in CPU-intensive loops.

To create locks in a loop, enclose the critical section between the CRITICAL
and END CRITICAL directives. When a thread executes the CRITICAL
directive and the latch variable is open, it takes possession of the latch
variable, and other threads must wait to execute the section. The latch
variable becomes open when the thread executing the section executes the
END CRITICAL directive.

The latch variable is closed when a thread has possession of it and open when
the latch variable is free.

In Example 6–4, the statement updating the sum is locked for safe parallel
execution of the loop.

6–52 Parallel Compiler Directives and Their Programming Environment

Example 6–4 Decomposed Loop Using Locks

INTEGER(4) LCK
!$OMP PARALLEL PRIVATE (I,Y) SHARED (LCK,SUM)

LCK = 0
.
.
.

!$OMP DO
DO I = 1,1000

Y = some_calculation
!$OMP CRITICAL (LCK)

SUM = SUM + Y
!$OMP END CRITICAL (LCK)

END DO
!$OMP END DO
!$OMP END PARALLEL

This particular example is better solved using a REDUCTION clause as shown
in Example 6–5.

Example 6–5 Decomposed Loop Using a REDUCTION Clause

INTEGER(4) LCK
!$OMP PARALLEL PRIVATE (I,Y) SHARED (LCK,SUM)

LCK = 0
.
.
.

!$OMP DO REDUCTION (SUM)
DO I = 1,1000

Y = some_calculation
SUM = SUM + Y

END DO
!$OMP END DO
!$OMP END PARALLEL

6.3.3 Coding Restrictions
Because iterations in a parallel DO loop execute in an indeterminate order and
in different threads, certain constructs in these loops can cause unpredictable
run-time behavior.

The following restrictions are flagged:

• The loop control variable for a parallel loop must be declared an integer.

• Only comment lines and blank lines can exist between a DO directive and
the DO loop statement.

Parallel Compiler Directives and Their Programming Environment 6–53

• The loop body must not contain any RETURN statements.

• A loop with a branch (GOTO) into or out of its body, or having an EXIT
statement cannot be run in parallel.

The following restrictions are not flagged:

• Loop-carried dependences involving shared variables must not exist
between iterations of a parallel loop.

• Dependences involving private variables must not exist between code
within a parallel loop and code executed before entry into or after the
completion of the loop.

• System services or run-time library routines that change the context
of a thread (such as a change in privileges, priority, access mode, or
environment variables) must not be called from within a parallel loop.

• I/O statements and the control statements PAUSE and STOP must not be
used in a routine called at any call level from within a parallel loop.

• Private symbols must not be referenced in a SAVE statement in a routine
called at any call level from within a parallel loop.

• If a dummy argument is referenced within a parallel DO loop, the
corresponding actual argument must reside in shared memory.

• Random number generators must be used carefully inside parallel loops,
because parallel processing affects how numbers are generated.

6.3.4 Manual Optimization
To manually optimize structures containing parallel loops:

• Interchange loops so that the parallel loop has the most CPU work and the
caches can perform efficiently.

• Balance the parallel work among threads when it is unusually unbalanced.

6.3.4.1 Interchanging Loops
The following example shows a case in which an inner loop can run in parallel
and an outer loop cannot, because of a loop-carried dependence. The inner loop
also has a more effective memory-referencing pattern for parallel processing
than the outer loop. By interchanging the loops, more work executes in parallel
and the cache can perform more efficiently.

6–54 Parallel Compiler Directives and Their Programming Environment

Original Structure Interchanged Structure

!$OMP PARALLEL PRIVATE (J,I) SHARED (A)
!$OMP DO

DO I = 1,100 DO J = 1,300
DO J = 1,300 DO I = 1,100

A(I,J) = A(I+1,J) + 1 A(I,J) = A(I+1,J) + 1
END DO END DO

END DO END DO
!$OMP END DO
!$OMP END PARALLEL

6.3.4.2 Balancing the Workload
On the DO directive, you can specify the SCHEDULE(GUIDED) clause to use
guided self-scheduling in manually decomposed loops, which is effective for
most loops. However, when the iterations contain a predictably unbalanced
workload, you can obtain better performance by manually balancing the
workload. To do this, specify the chunk size in the SCHEDULE clause of the
DO directive.

In the following loop, it might be very inefficient to divide the iterations into
chunks of 50. A chunk size of 25 would probably be much more efficient on a
system with two processors, depending on the amount of work being done by
the routine SUB.

DO I = 1,100
.
.
.
IF (I .LT. 50) THEN

CALL SUB(I)
END IF
.
.
.

END DO

Parallel Compiler Directives and Their Programming Environment 6–55

6.4 Environment Variables for Adjusting the Run-Time
Environment

Note

This section contains information that applies to both the OpenMP
Fortran API and the Compaq Fortran parallel compiler directives.

The OpenMP Fortran API and the Compaq Fortran parallel compiler directive
sets also provide environment variables that adjust the run-time environment
in unusual situations.

Regardless of whether you used the -omp or the -mp compiler option, when the
compiler needs information supplied by an environment variable, the compiler
first looks for an OpenMP Fortran API environment variable and then for
a Compaq Fortran parallel compiler environment variable. If neither one is
found, the compiler uses a default.

The compiler looks for environment variable information in the following
situations:

• When entering a parallel region, it looks for the number of threads
(OMP_NUM_THREADS or MP_THREAD_COUNT), the spin count (MP_SPIN_COUNT),
the yield count (MP_YIELD_COUNT), and the stack size (MP_STACK_SIZE).

• When entering a DO or PARALLEL DO directive that has RUNTIME
specified, it looks at schedule type (OMP_SCHEDULE).

• When entering a worksharing directive, it looks at chunk size
(MP_CHUNK_SIZE).

The OpenMP Fortran API environment variables are listed in Table 6–4.

6–56 Parallel Compiler Directives and Their Programming Environment

Table 6–4 OpenMP Fortran API Environment Variables

Environment Variable1 Interpretation

OMP_SCHEDULE This variable applies only to DO and PARALLEL DO
directives that have the schedule type of RUNTIME. You
can set the schedule type and an optional chunk size for
these loops at run time. The schedule types are STATIC,
DYNAMIC, and GUIDED.

For directives that have a schedule type other than
RUNTIME, this variable is ignored. The compiler default
schedule type is STATIC. If the optional chunk size is not
set, a chunk size of one is assumed, except for the STATIC
schedule type. For this schedule type, the default chunk
size is set to the loop iteration space divided by the number
of threads applied to the loop.

OMP_NUM_THREADS Use this environment variable to set the number of threads
to use during execution. This number applies unless you
explicitly change it by calling the OMP_SET_NUM_THREADS
run-time library routine.

When you have enabled dynamic thread adjustment, the
value assigned to this environment variable represents the
maximum number of threads that can be used. The default
value is the number of processors in the current system.

OMP_DYNAMIC Use this environment variable to enable or disable dynamic
thread adjustment for the execution of parallel regions.
When set to TRUE, the number of threads used can be
adjusted by the run-time environment to best utilize system
resources. When set to FALSE, dynamic adjustment is
disabled. The default is FALSE.

OMP_NESTED Use this environment variable to enable or disable nested
parallelism. When set to TRUE, nested parallelism is
enabled. When set to FALSE, it is disabled. The default is
FALSE.

1Environment variable names must be in uppercase; the assigned values are not case-sensitive.

The Compaq Fortran parallel compiler environment variables are listed in
Table 6–5.

Parallel Compiler Directives and Their Programming Environment 6–57

Table 6–5 Compaq Fortran Parallel Environment Variables

Environment Variable1 Interpretation

MP_THREAD_COUNT Specifies the number of threads the run-time system is to
create. The default is the number of processors available to
your process.

MP_CHUNK_SIZE Specifies the chunk size the run-time system uses when
dispatching loop iterations to threads if the program
specified the RUNTIME schedule type or specified another
schedule type requiring a chunk size, but omitted the chunk
size. The default chunk size is 1.

MP_STACK_SIZE Specifies how many bytes of stack space the run-time
system allocates for each thread when creating it. If you
specify zero, the run-time system uses the default, which
is very small. Therefore, if a program declares any large
arrays to be PRIVATE, specify a value large enough to
allocate them. If you do not use this environment variable
at all, the run-time system allocates 5 MB.

MP_SPIN_COUNT Specifies how many times the run-time system spins while
waiting for a condition to become true. The default is
16,000,000, which is approximately one second of CPU time.

MP_YIELD_COUNT Specifies how many times the run-time system alternates
between calling sched_yield and testing the condition before
going to sleep by waiting for a thread condition variable.
The default is 10.

1Environment variable names must be in uppercase; the assigned values are not case-sensitive.

6.5 Calls to Programs Written in Other Languages
Note

This section contains information that applies to both the OpenMP
Fortran API and the Compaq Fortran parallel compiler directives.

Only programs written in Compaq Fortran support parallel directives. Any
procedures or routines called from within a parallel region in a Compaq
Fortran program must consider the following:

• Compile any Compaq Fortran programs containing parallel directives using
the -mp or the -omp option.

• Called procedures or routines must be thread safe.

6–58 Parallel Compiler Directives and Their Programming Environment

• It is the programmer’s responsibility to ensure that all data objects in
the called procedures or routines are shared or allocated on each thread’s
private stack.

6.6 Compiling, Linking, and Running Parallelized Programs
on SMP Systems

Note

This section contains information that applies to both the OpenMP
Fortran API and the Compaq Fortran parallel compiler directives.

Whether you compile and link your program in one step or in separate steps,
you must include the name of the f90 Compaq Fortran driver (and the -omp or
-mp option if you want to use parallel compiler directives) on each command
line. For example, to compile and link the program prog.f with its OpenMP
Fortran API directives in one step, use the command:

% f90 -omp prog.f -o prog

To separately compile and link the program prog.f, use these commands:

% f90 -c -omp prog.f

% f90 -omp prog.o -o prog

To run your program, use the command:

% prog

When you use the -omp (or -mp) option, the driver sets the -reentrancy
threaded and the -automatic options for the compiler if you did not specify
them on the command line. The options are not set if you used the negated
forms of the options on the command line. The driver also sets the -pthread
and library options for the linker.

6.7 Debugging Parallelized Programs
Note

This section contains information that applies to both the OpenMP
Fortran API and the Compaq Fortran parallel compiler directives.

When a Compaq Fortran program uses parallel decomposition directives, there
are some special considerations concerning how that program can be debugged.

Parallel Compiler Directives and Their Programming Environment 6–59

When a bug occurs in a Compaq Fortran program that uses parallel
decomposition directives, the bug might be caused by incorrect Compaq
Fortran statements, or it might be caused by incorrect parallel decomposition
directives. In either case, the program to be debugged can be executed by
multiple threads simultaneously.

6.7.1 Debugger Limitations for Parallelized Programs
Debuggers such as the Compaq Ladebug debugger provide features that
support the debugging of programs that are executed by multiple threads.
However, the currently available versions of Ladebug do not directly support
the debugging of parallel decomposition directives, and therefore, there are
limitations on the debugging features.

Other debuggers are available for use on UNIX. Before attempting to debug
programs containing parallel decomposition directives, determine what
level of support the debugger provides for these directives by reading the
documentation or by contacting the supplier of the debugger.

Some of the new features used in OpenMP are not yet fully supported by
the debuggers, so it is important to understand how these features work to
understand how to debug them. The two problem areas are:

• Outlining of parallel regions (see Section 6.7.2)

• Shared variables (see Section 6.7.3)

6.7.2 Debugging Parallel Regions
The compiler implements a parallel region by taking the code in the region and
putting it into a separate, compiler-created subroutine. This process is called
outlining because it is the inverse of inlining a subroutine into its call site.

In place of the parallel region, the compiler inserts a call to a run-time library
routine, which starts up threads and causes them to call the outlined routine.
As threads return from the outlined routine, they return to the run-time
library, which waits for all threads to finish before returning to the master
thread in the original program.

Example 6–6 contains a section of the source listing with machine code
(produced using f90 -omp -V -machine_code). Note that the original program
unit was named outline_example and the parallel region was at line 2. The
compiler created an outlined routine called _2_outline_example_. In general,
the outlined routine is named _line-number_original-routine-name.

6–60 Parallel Compiler Directives and Their Programming Environment

Example 6–6 Code Using Parallel Region

OUTLINE_EXAMPLE Source Listing

1 program outline_example
2 !$omp parallel
3 print *, ’hello world’
4 !$omp end parallel
5 print *, ’done’
6 end

OUTLINE_EXAMPLE Machine Code Listing

.text

.ent _2_outline_example_

.eflag 16
0000 _2_outline_example_:

27BB0001 0000 ldah gp, _2_outline_example_
23BD8180 0004 lda gp, _2_outline_example_
23DEFFA0 0008 lda sp, -96(sp)
B75E0000 000C stq r26, (sp)

.mask 0x04000000,-96

.fmask 0x00000000,0

.frame $sp, 96, $26

.prologue 1
A45D8040 0010 ldq r2, 48(gp)
A77D8020 0014 ldq r27, for_write_seq_lis
63FF0000 0018 trapb
47E17400 001C mov 11, r0
265F0385 0020 ldah r18, 901(r31)
A67D8018 0024 ldq r19, 8(gp)
B3FE0008 0028 stl r31, var$0001
221E0008 002C lda r16, var$0001
B41E0048 0030 stq r0, 72(sp)
47E0D411 0034 mov 6, r17
B45E0050 0038 stq r2, 80(sp)
2252FF00 003C lda r18, -256(r18)
229E0048 0040 lda r20, 72(sp)
6B5B4000 0044 jsr r26, for_write_seq_lis
27BA0001 0048 ldah gp, _2_outline_example_
23BD8180 004C lda gp, _2_outline_example_
A75E0000 0050 ldq
63FF0000 0054 trapb
23DE0060 0058 lda sp, 96(sp)
6BFA8001 005C ret (r26)

.end _2_outline_example_

Routine Size: 96 bytes, Routine Base: $CODE$ + 0000

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–61

Example 6–6 (Cont.) Code Using Parallel Region

.globl outline_example_

.ent outline_example_

.eflag 16
0060 outline_example_:

27BB0001 0060 ldah gp, outline_example_
23BD8180 0064 lda gp, outline_example_
A77D8038 0068 ldq r27, for_set_reentrancy
23DEFFA0 006C lda sp, -96(sp)
A61D8010 0070 ldq r16, (gp)
B75E0000 0074 stq r26, (sp)

.mask 0x04000000,-96

.fmask 0x00000000,0

.frame $sp, 96, $26

.prologue 1
6B5B4000 0078 jsr r26, for_set_reentrancy
27BA0001 007C ldah gp, outline_example_
23BD8180 0080 lda gp, outline_example_
47FE0411 0084 mov sp, r17
A77D8028 0088 ldq r27, _OtsEnterParallelOpenMP
A61D8030 008C ldq r16, _2_outline_example_
47FF0412 0090 clr r18
6B5B4000 0094 jsr r26, _OtsEnterParallelOpenMP
27BA0001 0098 ldah gp, outline_example_
47E09401 009C mov 4, r1
23BD8180 00A0 lda gp, outline_example_
265F0385 00A4 ldah r18, 901(r31)
A47D8018 00A8 ldq r3, 8(gp)
A77D8020 00AC ldq r27, for_write_seq_lis
A67D8018 00B0 ldq r19, 8(gp)
221E0008 00B4 lda r16, var$0001
20630008 00B8 lda r3, 8(r3)
B3FE0008 00BC stl r31, var$0001
B43E0048 00C0 stq r1, 72(sp)
47E0D411 00C4 mov 6, r17
B47E0050 00C8 stq r3, 80(sp)
2252FF00 00CC lda r18, -256(r18)
229E0048 00D0 lda r20, 72(sp)
6B5B4000 00D4 jsr r26, for_write_seq_lis
27BA0001 00D8 ldah gp, outline_example_
A75E0000 00DC ldq r26, (sp)
23BD8180 00E0 lda gp, outline_example_
47E03400 00E4 mov 1, r0
23DE0060 00E8 lda sp, 96(sp)
6BFA8001 00EC ret (r26)

.end outline_example_

(continued on next page)

6–62 Parallel Compiler Directives and Their Programming Environment

Example 6–6 (Cont.) Code Using Parallel Region

In the preceding example, the run-time library routine _OtsEnterParallelOpenMP
is responsible for creating threads (if they have not already been created) and
causing them to call the outlined routine. The outlined routine is called once
by each thread.

Debugging the program at this level is just like debugging a program that uses
POSIX threads directly. Breakpoints can be set in the outlined routine just
like any other routine (leave off the trailing underscore. However, all Compaq
Fortran routines are appended with a trailing underscore, so the debugger
automatically inserts it.

6.7.3 Debugging Shared Variables
When a variable appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTION clause on some block, the variable is made private to the parallel
region by redeclaring it in the block. SHARED data, however, is not declared
in the outlined routine. Instead, it gets its declaration from the parent routine.

When in a debugger, you can switch from one thread to another. Each thread
has its own program counter so each thread can be in a different place in the
code. Example 6–7 shows a Ladebug session.

Example 6–7 Code Using Multiple Threads

% ladebug a.out
Welcome to the Ladebug Debugger Version 4.0-xx

object file name: a.out
Reading symbolic information ...done
(ladebug) stop in _2_outline_example
[#1: stop in subroutine _2_outline_example()]
(ladebug) run
[1] stopped at [_2_outline_example:2 0x120002d14]

2 !$omp parallel

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–63

Example 6–7 (Cont.) Code Using Multiple Threads

(ladebug) show thread

Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------
>* 1 running throughput 11 default thread

-1 blocked kernel fifo 32 manager thread
-2 ready idle 0 null thread for VP 0x0
2 ready not started throughput 11 <anonymous>
3 ready not started throughput 11 <anonymous>
4 ready not started throughput 11 <anonymous>
5 ready not started throughput 11 <anonymous>
6 ready not started throughput 11 <anonymous>

(ladebug)

Thread 1 is the master thread. Do not confuse debugger thread numbers with
OpenMP thread numbers. The compiler numbers threads beginning at zero,
but the debugger numbers threads beginning at 1. There are also two extra
threads in the debugging process, numbered -1 and -2, for use by the kernel.

Thread 1 has started running and is currently stopped just inside the outlined
routine. The other threads have not started running because the example
session was run on a uniprocessor workstation. On a multiprocessor, the other
threads can run on different processors, so switch processors and examine the
stack as shown in Example 6–8.

Example 6–8 Code Using Multiple Processors

(ladebug) thread 2

Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------
> 2 ready not started throughput 11 <anonymous>

(ladebug) where
>0 0x3ff805739e0 in thdBase(0x14005d7d0, 0x0, 0x0, 0x120003c20, 0x4, 0x0)
(ladebug) thread 1
Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------
>* 1 running throughput 11 default thread

(continued on next page)

6–64 Parallel Compiler Directives and Their Programming Environment

Example 6–8 (Cont.) Code Using Multiple Processors

(ladebug) where
>0 0x120002d14 in _2_outline_example() omp_hello.f:2
#1 0x12000495c in _OtsEnterParallelOpenMP()
#2 0x120002d98 in outline_example() omp_hello.f:1
#3 0x120002ccc in main() for_main.c:203
(ladebug)

Thread 2 has not yet started and is reported as being in thdBase, a POSIX
run-time support routine that threads run when they are created. Thread 1 is
the master thread and is currently executing the outlined routine, called from
the run-time library, which was called from the original program.

Note that only the master thread (thread 1) has a full call tree. The other
threads have thdBase(), from which they call the outlined routine. If you want
to look at variables higher on the call stack than the parallel region, you must
first tell the debugger to switch to thread 1, and then use the up command to
climb the call stack.

If SHARED data is in common blocks, the outlined routine accesses it the
same way any other routine would. If the SHARED data is automatic storage
associated with the routine where the parallel region appears, however, each
thread has a pointer to the master thread stack when the parallel region is
reached.

Variables on the master stack can be accessed through the pointer. The
compiler handles this automatically and does describe the access in the symbol
table, but Ladebug and TotalView currently do not support this uplevel access
mechanism.

Example 6–9 makes this clearer.

Example 6–9 Code Using Shared Variables

UPLEVEL Source Listing

1 program uplevel
2 implicit none
3 integer i

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–65

Example 6–9 (Cont.) Code Using Shared Variables
4
5 !$omp parallel
6 !$omp atomic
7 i = i + 1
8 !$omp end parallel
9
10 print *, i
11 end

UPLEVEL Machine Code Listing

.text

.ent _5_uplevel_

.eflag 16
0000 _5_uplevel_:

23DEFFC0 0000 lda sp, -64(sp)
.frame $sp, 64, $26
.prologue 0

47E10402 0004 mov r1, __StaticLink.1 # r1, r2
63FF0000 0008 trapb
20620010 000C lda r3, 16(r2)

0010 L$3:
A8230000 0010 ldl_l r1, (r3)
40203000 0014 addl r1, 1, r0
B8030000 0018 stl_c r0, (r3)
E4000003 001C beq r0, L$4
63FF0000 0020 trapb
23DE0040 0024 lda sp, 64(sp)
6BFA8001 0028 ret (r26)

002C L$4:
C3FFFFF8 002C br L$3

.end _5_uplevel_

Routine Size: 48 bytes, Routine Base: $CODE$ + 0000

.globl uplevel_

.ent uplevel_

.eflag 16
0030 uplevel_:

27BB0001 0030 ldah gp, uplevel_ # gp, (r27)
23BD8130 0034 lda gp, uplevel_ # gp, (gp)
23DEFFA0 0038 lda sp, -96(sp)
B75E0000 003C stq r26, (sp)

.mask 0x04000000,-96

.fmask 0x00000000,0

.frame $sp, 96, $26

.prologue 1

(continued on next page)

6–66 Parallel Compiler Directives and Their Programming Environment

Example 6–9 (Cont.) Code Using Shared Variables
A61D8010 0040 ldq r16, (gp)
A77D8038 0044 ldq r27, for_set_reentrancy # r27, 40(gp)
6B5B4000 0048 jsr r26, for_set_reentrancy # r26, (r27)
27BA0001 004C ldah gp, uplevel_ # gp, (r26)
23BD8130 0050 lda gp, uplevel_ # gp, (gp)
A61D8030 0054 ldq r16, _5_uplevel_ # r16, 32(gp)
47FE0411 0058 mov sp, r17
47FF0412 005C clr r18
A77D8028 0060 ldq r27, _OtsEnterParallelOpenMP # r27, 24(gp)
6B5B4000 0064 jsr r26, _OtsEnterParallelOpenMP # r26, (r27)
27BA0001 0068 ldah gp, uplevel_ # gp, (r26)
23BD8130 006C lda gp, uplevel_ # gp, (gp)
B3FE0018 0070 stl r31, var$0001 # r31, 24(sp)
A67D8018 0074 ldq r19, 8(gp)
203E0010 0078 lda r1, I # r1, 16(sp)
B43E0058 007C stq r1, 88(sp)
221E0018 0080 lda r16, var$0001 # r16, 24(sp)
47E0D411 0084 mov 6, r17
265F0385 0088 ldah r18, 901(r31)
2252FF00 008C lda r18, -256(r18)
229E0058 0090 lda r20, 88(sp)
A77D8020 0094 ldq r27, for_write_seq_lis # r27, 16(gp)
6B5B4000 0098 jsr r26, for_write_seq_lis # r26, (r27)
27BA0001 009C ldah gp, uplevel_ # gp, (r26)
23BD8130 00A0 lda gp, uplevel_ # gp, (gp)
47E03400 00A4 mov 1, r0
A75E0000 00A8 ldq r26, (sp)
23DE0060 00AC lda sp, 96(sp)
6BFA8001 00B0 ret (r26)

.end uplevel_

Routine Size: 132 bytes, Routine Base: $CODE$ + 0030

Note that in this example in the main routine, the variable i is kept
at offset 16 from the stack pointer. The stack pointer is passed into
_OtsEnterParallelOpenMP, which puts it into register r1 before calling
_5_uplevel_. Each thread uses indirect address through this address to get to
the shared i.

Because the debuggers have not yet been adjusted to understand uplevel
addressing, the variable i does not appear to be declared in the outlined region,
only in the original routine. To look at the value of the shared variable, we
have to switch threads to the master thread and then get into the appropriate
context. This is shown in Example 6–10.

Parallel Compiler Directives and Their Programming Environment 6–67

Example 6–10 Code Looking at a Shared Variable Value

% ladebug a.out
Welcome to the Ladebug Debugger Version 4.0-xx

object file name: a.out
Reading symbolic information ...done
(ladebug) stop in _5_uplevel
[#1: stop in subroutine _5_uplevel()]
(ladebug) run
[1] stopped at [_5_uplevel:5 0x120002cd8]

5 !$omp parallel
(ladebug) where
>0 0x120002cd8 in _5_uplevel() omp_uplevel.f:5
#1 0x1200048ec in _OtsEnterParallelOpenMP
#2 0x120002d34 in uplevel() omp_uplevel.f:1
#3 0x120002c9c in main() for_main.c:203
(ladebug) p i
0
(ladebug) c
[1] stopped at [_5_uplevel:5 0x120002cd8]

5 !$omp parallel
(ladebug) show thread

Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------

1 ready throughput 11 default thread
-1 blocked kernel fifo 32 manager thread
-2 ready idle 0 null thread for VP 0x0

>* 2 running throughput 11 <anonymous>
3 ready not started throughput 11 <anonymous>
4 ready not started throughput 11 <anonymous>
5 ready not started throughput 11 <anonymous>
6 ready not started throughput 11 <anonymous>

(ladebug) p i
Error: no value for symbol I
Error: no value for i

(continued on next page)

6–68 Parallel Compiler Directives and Their Programming Environment

Example 6–10 (Cont.) Code Looking at a Shared Variable Value

(ladebug) thread 1
Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------
> 1 ready throughput 11 default thread

(ladebug) where
>0 0x12000493c in _OtsEnterParallelOpenMP
#1 0x120002d34 in uplevel() omp_uplevel.f:1
#2 0x120002c9c in main() for_main.c:203
(ladebug) p i
1
(ladebug) c
[1] stopped at [_5_uplevel:5 0x120002cd8]

5 !$omp parallel
(ladebug) show thread

Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------

1 ready throughput 11 default thread
-1 blocked kernel fifo 32 manager thread
-2 ready idle 0 null thread for VP 0x0
2 ready throughput 11 <anonymous>

>* 3 running throughput 11 <anonymous>
4 ready not started throughput 11 <anonymous>
5 ready not started throughput 11 <anonymous>
6 ready not started throughput 11 <anonymous>

(ladebug) where
>0 0x120002cd8 in _5_uplevel() omp_uplevel.f:5
#1 0x120003d90 in slave_main(arg=2) ots_parallel.bli:859
#2 0x3ff80573ea4 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3)

DebugInformationStrippedFromFile101
(ladebug) p i
Error: no value for symbol I
Error: no value for i
(ladebug) thread 1
Thread State Substate Policy Priority Name
------ ---------- --------------- ---------- -------- -------------
> 1 ready throughput 11 default thread

(continued on next page)

Parallel Compiler Directives and Their Programming Environment 6–69

Example 6–10 (Cont.) Code Looking at a Shared Variable Value

(ladebug) up
>1 0x120002d34 in uplevel() omp_uplevel.f:1

1 program uplevel
(ladebug) p i
2
(ladebug) q
%

6–70 Parallel Compiler Directives and Their Programming Environment

7
Compaq Fortran Input/Output (I/O)

This chapter describes input/output (I/O) as implemented for Compaq Fortran
and discusses the following topics:

• Section 7.1, Logical I/O Units

• Section 7.2, Types of I/O Statements

• Section 7.3, Forms of I/O Statements

• Section 7.4, Types of Files and File Characteristics

• Section 7.5, Opening Files: OPEN Statement

• Section 7.6, Obtaining File Information: INQUIRE Statement

• Section 7.7, Closing a File: CLOSE Statement

• Section 7.8, Record Operations

• Section 7.9, User-Supplied OPEN Procedures: USEROPEN Specifier

• Section 7.10, Format of Compaq Fortran Record Types

For More Information:

• On native data types, see Chapter 9.

• On reading and writing nonnative unformatted numeric data (originally
written to the file using unformatted I/O statements), see Chapter 10.

• On porting Compaq OpenVMS Fortran data, see Section A.4.

• On performing I/O to the same unit with Compaq Fortran and Compaq
Fortran 77 object files, see Section A.5.3.

Compaq Fortran Input/Output (I/O) 7–1

7.1 Logical I/O Units
In Compaq Fortran, a logical unit is a channel through which data transfer
occurs between the program and a device or file. You identify each logical unit
with a logical unit number, which can be any nonnegative integer from 0 to a
maximum value of 2,147,483,647 (2**31–1). For example:

READ (2,100) I,X,Y

This READ statement specifies that data is to be entered from the device or
file corresponding to logical unit 2, in the format specified by the FORMAT
statement labeled 100. When opening a file, use the UNIT specifier to indicate
the unit number.

Fortran 95/90 (Fortran) programs are inherently device-independent. The
association between the logical unit number and the physical file can occur at
run-time. Instead of changing the logical unit numbers specified in the source
program, you can change this association at run time to match the needs of
the program and the available resources. For example, before running the
program, a script file can set the appropriate environment variable or allow the
terminal user to type a directory path, file name, or both.

Use the same logical unit number specified in the OPEN statement for other
I/O statements to be applied to the opened file, such as READ and WRITE.

The OPEN statement connects a unit number with an external file and
allows you to explicitly specify file attributes and run-time options using OPEN
statement specifiers (all files except internal files are called external files).

Certain unit numbers are preconnected to standard devices. Unit number 5
is associated with stdin, unit 6 with stdout, and unit 0 with stderr. At run
time, if units 5 and 6 are specified by a record I/O statement (such as READ
or WRITE) without having been explicitly opened by an OPEN statement,
Compaq Fortran implicitly opens units 5, 6, and 0 and associates them with
their respective operating system standard I/O files (if the corresponding
FORTn environment variable is not set).

For More Information:
On the OPEN statement and preconnected files, see Section 7.5.

7–2 Compaq Fortran Input/Output (I/O)

7.2 Types of I/O Statements
Table 7–1 lists the Compaq Fortran I/O statements.

Table 7–1 Summary of I/O Statements

Category and
Statement Name Description

File Connection

OPEN Connects a unit number with an external file and specifies file
connection characteristics.

CLOSE Disconnects a unit number from an external file.

File Inquiry

INQUIRE Returns information about a named file, a connection to a unit,
or the length of an output item list.

Record Position

BACKSPACE Moves the record position to the beginning of the previous
record (sequential access only).

ENDFILE Writes an end-of-file marker after the current record (sequential
access only).

REWIND Sets the record position to the beginning of the file (sequential
access only).

Record Input

READ Transfers data from an external file record or an internal file to
internal storage.

Record Output

WRITE Transfers data from internal storage to an external file record
or to an internal file.

PRINT Transfers data from internal storage to stdout (standard
output device). Unlike WRITE, PRINT only provides formatted
sequential output and does not specify a unit number.

Compaq Fortran
Extensions

ACCEPT Reads input from stdin. Unlike READ, ACCEPT only
provides formatted sequential output and does not specify a
unit number.

(continued on next page)

Compaq Fortran Input/Output (I/O) 7–3

Table 7–1 (Cont.) Summary of I/O Statements

Category and
Statement Name Description

DELETE Marks a record at the current record position in a relative file
as deleted (direct access only).

REWRITE Transfers data from internal storage to an external file record
at the current record position (direct access relative files only).

UNLOCK Releases a lock held on the current record when file sharing
was requested when the file was opened. Ignored in the current
version of Compaq Fortran for Tru64 UNIX and Linux Systems
(see Section 7.8.2).

TYPE Writes record output to stdout (same as PRINT).

DEFINE FILE Specifies file characteristics for a direct access relative file
and connects the unit number to the file, similar to an OPEN
statement. Provided for compatibility with compilers before
FORTRAN-77.

FIND Changes the record position in a direct access file. Provided for
compatibility with compilers older than FORTRAN-77.

In addition to the READ, WRITE, REWRITE, TYPE, and PRINT statements,
other I/O record-related statements are limited to a specific file organization.
For instance:

• The DELETE statement only applies to relative files.1

• The BACKSPACE statement only applies to sequential files open for
sequential access.

• The REWIND statement only applies to sequential files open for sequential
access and to direct access files.

• The ENDFILE statement only applies to certain types of sequential files
open for sequential access and to direct access files.

The file-related statements (OPEN, INQUIRE, and CLOSE) apply to any
relative or sequential file.

1 Detecting deleted records is only available if the -vms option was specified when the
program was compiled. For more information on the -vms option, see Section 3.98.

7–4 Compaq Fortran Input/Output (I/O)

7.3 Forms of I/O Statements
Each type of record I/O statement can be coded in a variety of forms. The form
you select depends on the nature of your data and how you want it treated.
When opening a file, specify the form using the FORM specifier. The following
are the forms of I/O statements:

• Formatted I/O statements contain explicit format specifiers that are
used to control the translation of data from internal (binary) form within a
program to external (readable character) form in the records, or vice versa.

• List-directed and namelist I/O statements are similar to formatted
statements in function. However, they use different mechanisms to control
the translation of data: formatted I/O statements use explicit format
specifiers, and list-directed and namelist I/O statements use data types.

• Unformatted I/O statements do not contain format specifiers and
therefore do not translate the data being transferred (important when
writing data that will be read later).

Formatted, list-directed, and namelist I/O forms require translation of data
from internal (binary) form within a program to external (readable character)
form in the records. Consider using unformatted I/O for the following reasons:

• Unformatted data avoids the translation process, so I/O tends to be faster.

• Unformatted data avoids the loss of precision in floating-point numbers
when the output data will subsequently be used as input data.

• Unformatted data conserves file storage space (stored in binary form).

To write data to a file using formatted, list-directed, or namelist I/O statements,
specify FORM=’FORMATTED’ when opening the file. To write data to a file
using unformatted I/O statements, specify FORM=’UNFORMATTED’ when
opening the file.

Data written using formatted, list-directed, or namelist I/O statements is
referred to as formatted data; data written using unformatted I/O statements
is referred to as unformatted data.

When reading data from a file, you should use the same I/O statement form
that was used to write the data to the file. For instance, if data was written to
a file with a formatted I/O statement, you should read data from that file with
a formatted I/O statement.

Compaq Fortran Input/Output (I/O) 7–5

Although I/O statement form is usually the same for reading and writing
data in a file, a program can read a file containing unformatted data (using
unformatted input) and write it to a separate file containing formatted data
(using formatted output). Similarly, a program can read a file containing
formatted data and write it to a different file containing unformatted data.

As described in Section 7.8.2, you can access records in any sequential or
relative file using sequential access. For relative files and certain (fixed-length)
sequential files, you can also access records using direct access.

Table 7–2 shows the main record I/O statements, by category, that can be used
in Compaq Fortran programs.

Table 7–2 Available I/O Statements and Record I/O Forms

File Type, Access,
and I/O Form Available Statements

External file, sequential access

Formatted
List-Directed
Namelist
Unformatted

READ, WRITE, PRINT, ACCEPT1, TYPE1, REWRITE1�2

READ, WRITE, PRINT, ACCEPT1, TYPE1, REWRITE1�2

READ, WRITE, PRINT, ACCEPT1, TYPE1, REWRITE1�2

READ, WRITE, REWRITE1�2

External file, direct access

Formatted
Unformatted

READ, WRITE, and REWRITE1�2

READ, WRITE, and REWRITE1�2

Internal file3

Formatted
List-Directed
Unformatted

READ, WRITE
READ, WRITE
None

1This statement is a Compaq extension to the Fortran 95/90 standard.
2You can use the REWRITE statement only for relative files, using direct access.
3An internal file is a way to reference character data in a buffer using sequential access (see
Section 7.4.2).

7.4 Types of Files and File Characteristics
This section discusses file organization, internal and scratch files, record type,
record length, and other file characteristics.

7–6 Compaq Fortran Input/Output (I/O)

7.4.1 File Organizations
File organization refers to the way records are physically arranged on a
storage device.

Compaq Fortran supports two kinds of file organizations:

• Sequential organization

• Relative organization

The default file organization is always ORGANIZATION=’SEQUENTIAL’ for
an OPEN statement. The organization of a file is specified by means of the
ORGANIZATION specifier in the OPEN statement, as described in the Compaq
Fortran Language Reference Manual.

You must store relative files on a disk device. You can store sequential files on
magnetic tape or disk devices, and can use other peripheral devices, such as
terminals, pipes, and line printers as sequential files.

Sequential Organization
A sequentially organized file consists of records arranged in the sequence in
which they are written to the file (the first record written is the first record in
the file, the second record written is the second record in the file, and so on).
As a result, records can be added only at the end of the file.

Sequential files are usually read sequentially, starting with the first record in
the file. Sequential files with a fixed-length record type that are stored on disk
can also be accessed by relative record number (direct access).

Relative Organization
Within a relative file are numbered positions, called cells. These cells are of
fixed equal length and are consecutively numbered from 1 to n, where 1 is the
first cell, and n is the last available cell in the file. Each cell either contains a
single record or is empty.

Records in a relative file are accessed according to cell number. A cell number
is a record’s relative record number (its location relative to the beginning of the
file). By specifying relative record numbers, you can directly retrieve, add, or
delete records regardless of their locations (direct access). (Detecting deleted
records is only available if you specified the -vms option when the program was
compiled. For information on the -vms option, see Section 3.98.)

When creating a relative file, specify the RECL value to determine the size of
the fixed-length cells. Within the cells, you can store records of varying length,
as long as their size does not exceed the cell size.

Compaq Fortran Input/Output (I/O) 7–7

7.4.2 Internal Files and Scratch Files
Compaq Fortran also supports two other types of files that are not file
organizations:

• Internal files

• Scratch files

Internal Files
When you use sequential access, you can use an internal file to reference
character data in a buffer. The transfer occurs between internal storage and
internal storage (unlike external files), such as between character variables
and a character array.

An internal file consists of any of the following:

• Character variable

• Character-array element

• Character array

• Character substring

• Character array section without a vector subscript

Instead of specifying a unit number for the READ or WRITE statement, use an
internal file specifier in the form of a character scalar memory reference or a
character-array name reference.

An internal file is a designated internal storage space (variable buffer) of
characters that is treated as a sequential file of fixed-length records. To
perform internal I/O, use formatted and list-directed sequential READ and
WRITE statements. You cannot use file-related statements such as OPEN and
INQUIRE on an internal file (no unit number is used).

If an internal file is made up of a single character variable, array element, or
substring, that file comprises a single record whose length is the same as the
length of the character variable, array element, or substring it contains. If an
internal file is made up of a character array, that file comprises a sequence of
records, with each record consisting of a single array element. The sequence of
records in an internal file is determined by the order of subscript progression.

A record in an internal file can be read only if the character variable, array
element, or substring comprising the record has been defined (a value has been
assigned to the record).

Prior to each READ and WRITE statement, an internal file is always
positioned at the beginning of the first record.

7–8 Compaq Fortran Input/Output (I/O)

Scratch Files
Scratch files are created by specifying STATUS=’SCRATCH’ in an OPEN
statement. By default, these temporary files are created in (and later deleted
from) the directory specified in the OPEN statement DEFAULTFILE (if
specified). To request a different directory to contain the scratch (temporary)
files, set the TMPDIR environment variable.

7.4.3 Record Types, Record Overhead, and Maximum Record Length
Record type refers to whether records in a file are all the same length, are of
varying length, or use other conventions to define where one record ends and
another begins.

You can use fixed-length and variable-length record types with sequential
or relative files. You can use any of the record types with sequential files.
Relative files require the fixed-length record type.

Records are stored in one of the types described in Table 7–3. When creating a
new file or opening an existing file, specify one of the record types listed in this
table.

Compaq Fortran Input/Output (I/O) 7–9

Table 7–3 Compaq Fortran Record Types

Record Type Description

Fixed-length Records in a file must contain the same length.

You must specify the record length (RECL) when the file is opened
and can obtain it before opening the file with unformatted data
using a form of the INQUIRE statement (see Section 7.6.3).

See Section 7.10.1, Fixed-Length Records.

Variable-length Records in a file can vary in length.

This is the most portable record type across multivendor U*X
platforms (such as Compaq Tru64 UNIX). Record length information
is stored as control bytes at the beginning and end of each record.

See Section 7.10.2, Variable-Length Records.

Segmented This pertains to a single logical record containing one or more
unformatted records of varying length, which can only be used for
unformatted sequential access.

The segmented record type is unique to Compaq Fortran products.
Avoid the segmented record type when the application requires
that the same file be used for programs written in languages other
than Fortran and for non-Compaq platforms. However, because
the segmented record type is unique to Compaq Fortran products,
segmented files can be ported across Compaq Fortran platforms.

See Section 7.10.3, Segmented Records.

Stream A stream file is not grouped into records and uses no record
delimiters.

Stream files contain character or binary data that is read
or written to the extent of the variables specified. Specify
CARRIAGECONTROL=’NONE’ for stream files.

See Section 7.10.4, Stream File Data.

Stream_LF and
Stream_CR

Records are of varying length where the line feed (LF) or the
carriage return (CR) character serve as record delimiters (LF for
Stream_LF files and CR for Stream_CR files).

Stream_LF files must not contain embedded LF characters or use
CARRIAGECONTROL=’LIST’. Instead, specify
CARRIAGECONTROL=’NONE’. Stream_CR files must not contain
embedded CR characters. The Stream_LF record type is the usual
record type for text files.

See Section 7.10.5, Stream_CR and Stream_LF Records.

Before you choose a record type, consider whether your application will use
formatted or unformatted data. If you are using formatted data, you can
choose any record type except segmented. If you are using unformatted data,
avoid the stream, stream_CR, and stream_LF record types.

7–10 Compaq Fortran Input/Output (I/O)

The segmented record type can only be used for unformatted sequential access
with sequential files. You should not use segmented records for files that are
read by programs written in languages other than Compaq Fortran products.

The stream, stream_CR, stream_LF, and segmented record types can be used
only with sequential files.

7.4.3.1 Portability Considerations of Record Types
Consider the following portability needs when choosing a record type:

• Data files from Compaq Fortran on Compaq Tru64 UNIX and Linux Alpha
systems, and Compaq Fortran 77 on Compaq Tru64 UNIX systems, are
interchangeable.

• Data files from Compaq Fortran on Tru64 UNIX Alpha systems and
Compaq Fortran on Linux Alpha systems are interchangeable.

• When using files with Compaq Fortran and Compaq Fortran 77 on Tru64
UNIX, Linux, and OpenVMS systems, use:

The segmented record type for unformatted data. However, be aware
that the segmented record type is used only by Compaq Fortran and
Compaq Fortran 77 but not by other Compaq languages.

The stream_LF format for formatted data.

• The stream_LF record type is usually the most portable on U*X systems.

• Any record type except segmented with other non-Fortran Compaq
languages.

For more information on porting Compaq OpenVMS Fortran data, see
Section A.4.

The default record type (RECORDTYPE) depends on the values for the
ACCESS and FORM specifiers for the OPEN statement, as described in the
Compaq Fortran Language Reference Manual.

The record type of the file is not maintained as an attribute of the file. The
results of using a record type other than the one used to create the file are
indeterminate.

For information on choosing the most efficient record type, see Section 5.6.9.

An I/O record is a collection of fields (data items) that are logically related and
are usually processed as a unit.

Unless you specify nonadvancing I/O (ADVANCE specifier), each Compaq
Fortran I/O statement transfers one record. The exceptions are described in
Section 7.8.5.

Compaq Fortran Input/Output (I/O) 7–11

7.4.3.2 Record Overhead
Record overhead refers to bytes associated with each record that are used
internally by the file system and are not available when a record is read or
written. Knowing the record overhead helps when estimating the storage
requirements for an application. Although the overhead bytes exist on the
storage media, do not include them when specifying the record length with the
RECL specifier in an OPEN statement.

The various record types each require a different number of bytes for record
overhead, as described in Table 7–4.

Table 7–4 Bytes Required for Record Overhead

Record Type Organization Record Overhead

Fixed-length Sequential files None.

Fixed-length Relative files None if the -vms option was omitted (the
default). One byte if the -vms option was
specified.

Variable-length Sequential files Eight bytes per record for overhead.

Segmented Sequential files Four bytes per record for overhead. One
additional padding byte (space) is added if
the specified record size is an odd number.

Stream Sequential files None required.

Stream_CR Sequential files One byte per record for overhead.

Stream_LF Sequential files One byte per record for overhead.

7.4.3.3 Maximum Record Length
For all but variable-length sequential records on 64-bit addressable systems,
the maximum record length is 2.147 billion bytes (2,147,483,647 minus the
bytes for record overhead). For variable-length sequential records on 64-bit
addressable systems, the theoretical maximum record length is about 17,000
gigabytes. When considering very large record sizes, also consider limiting
factors such as system virtual memory.

For More Information:

• On the detailed format of each record type, see Section 7.10.

• On converting nonnative numeric unformatted data, see Chapter 10.

• On I/O performance considerations, see Section 5.6.

7–12 Compaq Fortran Input/Output (I/O)

• On porting data files from other vendors that can use different units for
the record length, see Section 7.4.4.

7.4.4 Other File Characteristics
Other file characteristics include:

• Carriage control attributes of each record (CARRIAGECONTROL specifier)

• Whether formatted or unformatted data is contained in the records (FORM
specifier)

• The record length (RECL specifier)

When you need to display or print formatted data that uses Fortran carriage
control, consider using the fpr command as a filter through a pipe to reformat
the records into operating system line printer format.

The units used for specifying record length depend on the form of the data:

• For formatted files (FORM=’FORMATTED’), specify the record length in
bytes.

• For unformatted files (FORM=’UNFORMATTED’), specify the record
length in 4-byte units, unless you specify the -assume byterecl option to
request 1-byte units (see Section 3.7).

For More Information:

• On statement syntax and specifier values (including defaults), see the
Compaq Fortran Language Reference Manual.

• On file characteristics, see Section 7.5.2 and the OPEN statement in the
Compaq Fortran Language Reference Manual.

• On the fpr command and carriage control characters, see fpr(1).

• On I/O performance considerations, see Section 5.6.

7.5 Opening Files: OPEN Statement
To open a file, you should use a preconnected file (such as for terminal output)
or explicitly OPEN files. Although you can also implicitly open a file, this
prevents you from using the OPEN statement to specify the file connection
characteristics and other information.

Compaq Fortran Input/Output (I/O) 7–13

7.5.1 Using Preconnected Standard I/O Files
If you do not use an OPEN statement to open logical unit 5, 6, or 0 and do not
set the appropriate environment variable (FORTn), unit number 5 is associated
with stdin, unit 6 with stdout, and unit 0 with stderr. At run time, Compaq
Fortran implicitly opens (preconnects) units 5, 6, and 0 and associates them
with their respective operating system standard I/O files if the corresponding
FORTn environment variable is not set.

You can change these preconnected files by using one of the following:

• An OPEN statement to open unit 5, 6, or 0.

When you explicitly OPEN a file for unit 5, 6, or 0, the OPEN statement
keywords specify the file-related information to be used instead of the
preconnected standard I/O file.

• Set the appropriate environment variable (FORTn) to redirect I/O to an
external disk file.

If you set the corresponding Compaq Fortran FORTn environment variable,
the file specified by that Compaq Fortran environment variable is used.

Table 7–5 lists the Compaq Fortran environment variables and the standard
I/O file associations for the preconnected files.

Table 7–5 Environment Variables and Preconnected Files

Unit
Compaq Fortran
Environment Variable Equivalent Tru64 UNIX Standard I/O File

5 FORT5 Standard input, stdin
6 FORT6 Standard output, stdout
0 FORT0 Standard error, stderr

To change the characteristics of the connection to a preconnected unit, explicitly
open the preconnected unit number.

To redirect input or output from the standard preconnected files at run-time,
you can set the appropriate Compaq Fortran I/O environment variable (see
Section 7.5.7) or use the appropriate shell redirection character in a pipe (such
as > or <).

7–14 Compaq Fortran Input/Output (I/O)

For More Information:

• On the shell commands you can use to set or unset environment variables,
see Appendix B.

• Other I/O environment variables recognized by Compaq Fortran, see
Section 7.5.7.

7.5.2 OPEN Statement Specifiers
The OPEN statement connects a unit number with an external file and allows
you to explicitly specify file attributes and run-time options using OPEN
statement specifiers. Once you open a file, you should close it before opening it
again unless it is a preconnected file.

If you open a unit number that was opened previously (without being closed),
one of the following occurs:

• If you specify a file specification that does not match the one specified for
the original open, the Compaq Fortran run-time system closes the file and
then reopens it.

This resets the current record position for the second file.

• If you specify a file specification that does match the one specified for the
original open, the file is reconnected without the internal equivalent of the
CLOSE and OPEN.

This lets you change one or more OPEN statement run-time specifiers
while maintaining the record position context.

You can use the INQUIRE statement (see Section 7.6) to obtain information
about a whether or not a file is opened by your program.

Especially when creating a new file using the OPEN statement, examine the
defaults (see the description of the OPEN statement in the Compaq Fortran
Language Reference Manual) or explicitly specify file attributes with the
appropriate OPEN statement specifiers.

Table 7–6 lists the OPEN statement functions and their specifiers.

Compaq Fortran Input/Output (I/O) 7–15

Table 7–6 OPEN Statement Functions and Specifiers

Category, Functions, and OPEN Statement Specifiers

Identify File and Unit

UNIT specifies the logical unit number.

FILE (or NAME1) and DEFAULTFILE1 specify the directory and/or file name of
an external file.

STATUS or TYPE1 indicates whether to create a new file, overwrite an existing
file, open an existing file, or use a scratch file.

STATUS or DISPOSE1 specifies the file existence status after CLOSE.

File and Record Characteristics

ORGANIZATION1 indicates the file organization (sequential or relative).

RECORDTYPE1 indicates which record type to use.

FORM indicates whether records are formatted or unformatted.

CARRIAGECONTROL1 indicates the terminal control type.

RECL or RECORDSIZE1 specifies the record size (see Section 7.4.4).

Special File Open Routine

USEROPEN1 names the routine that will open the file to establish special
context that changes the effect of subsequent Compaq Fortran I/O statements
(see Section 7.9).

File Access, Processing, and Position

ACCESS indicates the access mode (direct or sequential).

SHARED1 indicates that other users can access the same file and activates record
locking. Ignored in the current version of Compaq Fortran for Tru64 UNIX and
Linux Systems (see Section 7.8.2).

POSITION indicates whether to position the file at the beginning of file, before
the end-of-file record, or leave it as is (unchanged).

ACTION or READONLY1 indicates whether statements will be used to only read
records, only write records, or both read and write records.

MAXREC1 specifies the maximum record number for direct access.

ASSOCIATEVARIABLE1 specifies the variable containing next record number for
direct access.

Record Transfer Characteristics

BLANK indicates whether to ignore blanks in numeric fields.

1This specifier is a Compaq Fortran extension.

(continued on next page)

7–16 Compaq Fortran Input/Output (I/O)

Table 7–6 (Cont.) OPEN Statement Functions and Specifiers

Category, Functions, and OPEN Statement Specifiers

DELIM specifies the delimiter character for character constants in list-directed or
namelist output.

PAD, when reading formatted records, indicates whether padding characters
should be added if the item list and format specification require more data than
the record contains.

BLOCKSIZE1 specifies the block physical I/O buffer size.

BUFFERCOUNT1 specifies the number of physical I/O buffers.

CONVERT1 specifies the format of unformatted numeric data (see Chapter 10).

Error Handling Capabilities

ERR specifies a label to branch to if an error occurs.

IOSTAT specifies the integer variable to receive the error (IOSTAT) number if an
error occurs.

File Close Action

DISPOSE identifies the action to take when the file is closed.

1This specifier is a Compaq Fortran extension.

For More Information:

• On specifier syntax and complete information, see the Compaq Fortran
Language Reference Manual.

• On the UNIT, FILE, and DEFAULTFILE specifiers, see Section 7.5.3 to
Section 7.5.7.

• On the FORM specifier, see Section 7.3.

• On file organizations, see Section 7.4.1.

• On available record types, see Section 7.4.3 and Section 7.10.

• On the CARRIAGECONTROL specifier, see Section 7.4.4 and fpr(1).

• On the RECL (record length) specifier, see Section 7.4.4.

• On the ERR and IOSTAT specifiers, see Chapter 8.

• On obtaining file information using the INQUIRE statement, see
Section 7.6.

• On closing files, see Section 7.7.

• Record I/O transfer, see Section 7.8.5.

Compaq Fortran Input/Output (I/O) 7–17

• Record advancement, see Section 7.8.4.

• Record positioning, see Section 7.8.3.

• On I/O performance considerations, see Section 5.6.

7.5.3 Methods to Specify the Unit, File Name, and Directory
You can choose to assign files to logical units by using one of the following
methods:

• By using default values, such as a preconnected unit. In the following
example, the PRINT statement is associated with a preconnected unit
(stdout) by default.

PRINT *,100

The READ statement associates the logical unit 7 with the file fort.7
(because the FILE specifier was omitted) by default:

OPEN (UNIT=7,STATUS=’NEW’)
READ (7,100)

• By supplying a file name (and possibly a directory) in an OPEN statement.
For example:

OPEN (UNIT=7, FILE=’FILNAM.DAT’, STATUS=’OLD’)

• By using environment variables. You can also use shell commands to set
the appropriate environment variable to a value that indicates a directory
(if needed) and a file name to associate a unit with an external file.

The following sections discuss these methods.

7.5.4 Accessing Files: Implied and Explicit File and Pathnames
Most I/O operations involve a disk file, keyboard, or screen display. Other
devices can also be used:

• Sockets can be read from or written to if a USEROPEN routine (usually
written in C) is used to open the socket.

• Pipes opened for read and write access block (wait until data is available)
if you issue a READ to an empty pipe.

• Pipes opened for read-only access return EOF if you issue a READ to an
empty pipe.

For information on USEROPEN routines, see Section 7.9.

You can access the terminal screen or keyboard by using preconnected files, as
described in Section 7.5. Otherwise, this chapter discusses disk files.

7–18 Compaq Fortran Input/Output (I/O)

A complete file specification consists of a file name usually preceded by a
pathname that specifies a directory. The pathname can be in one of two forms:

• An absolute pathname, where the directory is specified relative to
the root directory. The first character is a slash (/). For example, the
following directory and file name refers to the file named testdata in the
/usr/users/gdata directory:

/usr/users/gdata/testdata

• A relative pathname, where the specified directory is relative to the
current directory. Relative pathnames do not begin with a slash (/). The
following example uses a relative pathname from the current directory
/usr/users to refer to the same file testdata in the gdata/ subdirectory:

gdata/testdata

Directory names and file names should not contain any operating system
wildcard characters (such as *, ?, and the [] construct). You can use the
tilde (~) character as the first character in a pathname to refer to a top-level
directory as in the C shell.

When specifying files, keep in mind that trailing and leading blanks are
removed from character expression names, but not from Hollerith (numeric
array) names.

File names are case sensitive and can consist of uppercase and lowercase
letters. For example, the following file names represent three different files:

myfile.for
MYfile.for
MYFILE.for

You can associate a logical unit with a directory (if needed) and file name by
using an environment variable assignment (see Section 7.5.7) or by using the
OPEN statement (see Section 7.5.6). When an OPEN statement provides a
pathname that contains only a directory (no file name) and an environment
variable provides the file name, the OPEN statement and environment variable
can work together to provide the complete directory and file name.

7.5.5 How Compaq Fortran Applies a Default Pathname and File Name
Compaq Fortran provides the following possible ways of specifying all or part
of a file specification (directory and file name), such as /usr/proj/testdata:

• The FILE specifier in an OPEN statement typically specifies only a file
name (such as testdata) or contains both a directory and file name (such
as /usr/proj/testdata).

Compaq Fortran Input/Output (I/O) 7–19

• The DEFAULTFILE specifier (a Compaq extension) in an OPEN
statement typically specifies a pathname that contains only a directory
(such as /usr/proj/) or both a directory and file name (such as
/usr/proj/testdata).

• If you used an implied OPEN or if the FILE specifier in an OPEN
statement did not specify a file name, you can use an environment variable
to specify a file name or a pathname that contains both a directory and file
name (see Section 7.5.7).

Compaq Fortran recognizes environment variables for each logical I/O unit
number in the form of FORTn, where n is the logical I/O unit number. If
a file name is not specified in the OPEN statement and the corresponding
FORTn environment variable is not set for that unit number, Compaq Fortran
generates a file name in the form fort.n, where n is the logical unit number.

Certain Compaq Fortran environment variables are recognized and
preconnected files exist for certain unit numbers, as described in Section 7.5.7.

When using scratch files, you can use the TMPDIR environment variable to
specify where the scratch file gets created (see Section 7.4.2).

Performing an implied OPEN means that the FILE and DEFAULTFILE
specifier values are not specified and an environment variable is used, if
present.

Examples of Applying Default Pathnames and File Names
For example, for an implied OPEN of unit number 3, Compaq Fortran would
check the environment variable FORT3. If the environment variable FORT3
was set, its value is used. If it is not set, the system supplies the file name
fort.3.

In Table 7–7, assume the current directory is /usr/smith and the I/O uses unit
1, as in the statement READ (1,100).

7–20 Compaq Fortran Input/Output (I/O)

Table 7–7 Examples of Applying Default Pathnames and File Names

OPEN FILE
Value

OPEN DEFAULTFILE
Value

FORT1 Environment
Variable Value Resulting Pathname

not specified not specified not specified /usr/smith/fort.1 !
not specified not specified test.dat /usr/smith/test.dat "
not specified not checked /usr/tmp/t.dat /usr/tmp/t.dat #
not specified /tmp not specified /tmp/fort.1 $
not specified /tmp testdata /tmp/testdata %
not specified /usr lib/testdata /usr/lib/testdata &
file.dat /usr/group not checked /usr/group/file.dat ’
/tmp/file.dat not checked not checked /tmp/file.dat(
file.dat not specified not specified /usr/smith/file.dat)

! The current directory is used and the unit number determines the file
name.

" The current directory is used and the environment variable provides the
file name.

The environment variable provides both the directory and file name.

$ The directory is provided by the OPEN DEFAULTFILE specifier value, and
the unit number determines the file name.

% The directory is provided by the OPEN DEFAULTFILE specifier value, and
the environment variable provides the file name.

& The directory is provided by the OPEN DEFAULTFILE specifier value, and
the environment variable provides a subdirectory and file name.

’ The directory is provided by the OPEN DEFAULTFILE specifier value, and
the file name is provided by the OPEN FILE specifier value.

(The directory and file name are provided by the OPEN FILE specifier
value.

) The current directory is used and the OPEN FILE specifier value provides
the file name.

When the resulting file pathname begins with a tilde character (~), C shell
style pathname substitution is used (regardless of what shell is being used),
such as a top-level directory (below the root). For additional information on
tilde pathname substitution, see csh(1).

Compaq Fortran Input/Output (I/O) 7–21

Rules for Applying Default Pathnames and File Names
Compaq Fortran determines file name and the directory path based on certain
rules. It determines a file name string as follows:

• If the FILE specifier is present, its value is used.

• If the FILE specifier is not present, Compaq Fortran examines the
corresponding environment variable.

If the corresponding environment variable is set, that value is used.

If the corresponding environment variable is not set, a file name in the
form fort.n is used.

Once Compaq Fortran determines the resulting file name string, it determines
the directory (which optionally precedes the file name) as follows:

• If the resulting file name string contains an absolute pathname, it is
used and the DEFAULTFILE specifier, environment variable, and current
directory values are ignored.

• If the resulting file name string does not contain an absolute pathname,
Compaq Fortran examines the DEFAULTFILE specifier and current
directory value:

If the corresponding environment variable is set and specifies an
absolute pathname, Compaq Fortran uses that value.

The DEFAULTFILE specifier value is examined and, if present,
Compaq Fortran uses its value.

If the DEFAULTFILE specifier is not present, Compaq Fortran uses
the current directory as an absolute pathname.

7.5.6 Coding File Locations in an OPEN Statement
You can use the FILE and DEFAULTFILE specifiers of the OPEN statement
to specify the complete definition of a particular file to be opened on a logical
unit. (The Compaq Fortran Language Reference Manual describes the OPEN
statement in greater detail.) For example:

OPEN (UNIT=4, FILE=’/usr/users/smith/test.dat’, STATUS=’OLD’)

The file test.dat in directory /usr/users/smith is opened on logical unit 4.
No defaults are applied since both the directory and file name were specified.
The value of the FILE specifier can be a character constant, variable, or
expression.

7–22 Compaq Fortran Input/Output (I/O)

In the following interactive example, the user supplies the file name and the
DEFAULTFILE specifier supplies the default values for the full pathname
string. The file to be opened is in /usr/users/smith and is concatenated with
the file name typed by the user into the variable DOC:

CHARACTER(LEN=9) DOC
WRITE (6,*) ’Type file name ’
READ (5,*) DOC
OPEN (UNIT=2, FILE=DOC, DEFAULTFILE=’/usr/users/smith’,STATUS=’OLD’)

A slash is appended to the end of the default file string if it does not have one.

For an example program that reads a typed file name, uses the typed name
to open a file, and handles such errors as the ‘‘file not found’’ error, see
Example 8–2.

7.5.7 Using Environment Variables
You can use the environment variable mechanism of the operating system and
shells to associate logical units with external files. For example, setting the
environment variable FORT6 to a file lets you redirect stdout to the specified
file (see Table 7–5).

Compaq Fortran attempts to use certain environment variables in the absence
of a file name.

When using scratch files, you can use the TMPDIR environment variable to
specify where the scratch file gets created (see Section 7.4.2).

Setting and Unsetting Environment Variables
Before program execution, you can use shell commands to specify a value for
an environment variable. This specified value might be a directory and/or file
name of an external file you want to associate with a preconnected unit or a
specific unit number.

With the C Shell, use the setenv command to set an environment variable:

% setenv FORT8 /usr/users/smith/test.dat

To remove the association of an environment variable and an external file with
the C shell, use the unsetenv command.

% unsetenv FORT8

With the Bourne shell (sh) and Korn shell (ksh) and bash shell (L*X only), use the
export command and assignment command to set the environment variable:

$ export FORT8
$ FORT8=/usr/users/smith/test.dat

Compaq Fortran Input/Output (I/O) 7–23

To remove the association of an environment variable and an external file with
the Bourne shell or Korn shell or bash shell (L*X only), use the unset command:

$ unset FORT8

Implied Compaq Fortran Logical Unit Numbers
The ACCEPT, PRINT, and TYPE statements, and the use of an asterisk (*)
in place of a unit number in READ and WRITE statements, do not include
an explicit logical unit number. Each of these Fortran 95/90 statements uses
an implicit internal logical unit number and environment variable. Each
environment variable is in turn associated by default with one of the Fortran
95/90 file names that are associated with standard I/O files. Table 7–8 shows
these relationships.

Table 7–8 Implicit Compaq Fortran Logical Units

Compaq Fortran
Statement

Environment Variable
When -vms Specified

Environment Variable
When -vms Omitted

Standard I/O
File Name

READ (*,f) iolist FOR_READ FORT5 stdin
READ f,iolist FOR_READ FORT5 stdin
ACCEPT f,iolist FOR_ACCEPT FORT5 stdin
WRITE (*,f) iolist FOR_PRINT FORT6 stdout
PRINT f,iolist FOR_PRINT FORT6 stdout
TYPE f,iolist FOR_TYPE FORT6 stdout

You can change the file associated with these Compaq Fortran environment
variables, as you would any other environment variable, by means of the
environment variable assignment command. For example, with the C shell:

% setenv FOR_READ /usr/users/smith/test.dat

After executing the preceding command, the environment variable for the
READ statement using an asterisk refers to file test.dat in directory
/usr/users/smith.

For More Information:

• On a list of Compaq Fortran I/O statements, see Table 7–1.

• On the shell commands you can use to set or unset environment variables,
see Appendix B.

• On record I/O, see Section 7.8.

7–24 Compaq Fortran Input/Output (I/O)

• On Compaq Fortran I/O statements and specifier values, including defaults,
see Table 7–1.

• On statement syntax, see the Compaq Fortran Language Reference Manual.

• On the ERR and IOSTAT specifiers, see Chapter 8.

• On closing files, see Section 7.7.

7.6 Obtaining File Information: INQUIRE Statement
The INQUIRE statement returns information about a file and has three forms:

• Inquiry by unit

• Inquiry by file name

• Inquiry by output item list

7.6.1 Inquiry by Unit
An inquiry by unit is usually done for an opened (connected) file. An inquiry
by unit causes the Compaq Fortran RTL to check whether the specified unit is
connected or not. One of the following occurs:

• If the unit is connected:

The EXIST and OPENED specifier variables indicate a true value

The pathname and file name are returned in the NAME specifier
variable (if the file is named)

Other information requested on the previously connected file is
returned

Default values are usually returned for the INQUIRE specifiers also
associated with the OPEN statement (see Table 7–6)

The RECL value unit for connected formatted files is always 1-byte
units. For unformatted files, the RECL unit is 4-byte units, unless
you specify the -assume byterecl option to request 1-byte units (see
Section 3.7).

• If the unit is not connected:

The OPENED specifier indicates a false value

The unit NUMBER specifier variable is returned as a value of –1

Any other information returned will be undefined or default values for
the various specifiers

Compaq Fortran Input/Output (I/O) 7–25

For example, the following INQUIRE statement shows whether unit 3 has a
file connected (OPENED specifier) in logical variable I_OPENED, the name
(case sensitive) in character variable I_NAME, and whether the file is opened
for READ, WRITE, or READWRITE access in character variable I_ACTION:

INQUIRE (3, OPENED=I_OPENED, NAME=I_NAME, ACTION=I_ACTION)

7.6.2 Inquiry by File Name
An inquiry by name causes the Compaq Fortran RTL to scan its list of open
files for a matching file name. One of the following occurs:

• If a match occurs:

The EXIST and OPENED specifier variables indicate a true value.

The pathname and file name are returned in the NAME specifier
variable.

The UNIT number is returned in the NUMBER specifier variable.

Other information requested on the previously connected file is
returned.

Default values are usually returned for the INQUIRE specifiers also
associated with the OPEN statement (see Table 7–6).

The RECL value unit for connected formatted files is always 1-byte
units. For unformatted files, the RECL unit is 4-byte units, unless
you specify the -assume byterecl option to request 1-byte units (see
Section 3.7).

• If no match occurs:

The OPENED specifier variable indicates a false value.

The unit NUMBER specifier variable is returned as a value of –1.

The EXIST specifier variable indicates (true or false) whether the
named file exists on the device or not.

If the file does exist, the NAME specifier variable contains the
pathname and file name.

Any other information returned will be default values for the various
specifiers, based on any information specified when calling INQUIRE.

7–26 Compaq Fortran Input/Output (I/O)

The following INQUIRE statement returns whether the file named log_file
is a file connected in logical variable I_OPEN, whether the file exists in logical
variable I_EXIST, and the unit number in integer variable I_NUMBER:

INQUIRE (FILE=’log_file’, OPENED=I_OPEN, EXIST=I_EXIST, NUMBER=I_NUMBER)

7.6.3 Inquiry by Output Item List
Unlike inquiry by unit or inquiry by name, inquiry by output item list does not
attempt to access any external file. It returns the length of a record for a list of
variables that would be used for unformatted WRITE, READ, and REWRITE
statements (REWRITE is a Compaq Fortran extension).

The following INQUIRE statement returns the maximum record length of the
variable list in variable I_RECLENGTH. This variable is then used to specify
the RECL value in the OPEN statement:

INQUIRE (IOLENGTH=I_RECLENGTH) A, B, H
OPEN (FILE=’test.dat’, FORM=’UNFORMATTED’, RECL=I_RECLENGTH, UNIT=9)

For an unformatted file, the RECL value is returned using 4-byte units, unless
you specify the -assume byterecl option to request 1-byte units.

For More Information:

• On the INQUIRE statement and its specifiers, see the Compaq Fortran
Language Reference Manual.

• On record I/O, see Section 7.8.

• On OPEN statement specifiers, see Table 7–6.

• On the -assume byterecl option, see Section 3.7.

7.7 Closing a File: CLOSE Statement
Usually, any external file opened should be closed by the same program before
it completes. The CLOSE statement disconnects the unit and its external file.
You must specify the unit number (UNIT specifier) to be closed.

You can also specify:

• Whether the file should be deleted or kept (STATUS specifier)

• Error handling information (ERR and IOSTAT specifiers)

Compaq Fortran Input/Output (I/O) 7–27

To delete a file when closing it:

• In the OPEN statement, specify the ACTION keyword (such as
ACTION=’READ’). Avoid using the READONLY keyword, because a
file opened using the READONLY keyword cannot be deleted when it is
closed.

• In the CLOSE statement, specify the keyword STATUS=’DELETE’.

If you opened an external file and did an inquire by unit, but do not like the
default value for the ACCESS specifier, you can close the file and then reopen
it, explicitly specifying the ACCESS desired.

There usually is no need to close preconnected units. Internal files are neither
opened nor closed.

For More Information:

• On a list of Compaq Fortran I/O statements, see Table 7–1.

• On opening files using a C routine (USEROPEN) and then using Compaq
Fortran I/O statements, see Section 7.9.

• On OPEN statement specifiers, see Section 7.5.2.

• On statement syntax and specifier values, see the Compaq Fortran
Language Reference Manual.

7.8 Record Operations
After you open a file or use a preconnected file, you can use the following
statements:

• READ, WRITE and PRINT to perform record I/O.

• BACKSPACE, ENDFILE, REWIND to set record position within the file.

• ACCEPT, DELETE, REWRITE, TYPE, DEFINE FILE, and FIND to
perform various operations. These statements are Compaq extensions.

These statements are described in Section 7.2 and in the Compaq Fortran
Language Reference Manual.

The record I/O statement must use the appropriate record I/O form (formatted,
list-directed, namelist, or unformatted), as described in Section 7.3.

7–28 Compaq Fortran Input/Output (I/O)

7.8.1 Record I/O Statement Specifiers
You can use the following specifiers with the READ and WRITE record I/O
statements:

• UNIT specifies the unit number to or from which input or output will occur.

• END specifies a label to branch to if an error occurs; only applies to input
statements like READ.

• ERR specifies a label to branch to if an error occurs.

• IOSTAT specifies an integer variable to contain the IOSTAT number if an
error occurs.

• FMT specifies a label of a FORMAT statement.

• NML specifies a label of a NAMELIST statement.

• REC specifies a record number for direct access.

When using nonadvancing I/O, use the ADVANCE, EOR, and SIZE specifiers,
as described in Section 7.8.4.

When using the REWRITE statement (a Compaq Fortran extension), you can
use the UNIT, FMT, ERR, and IOSTAT specifiers.

For More Information:

• On specifier syntax and complete information, see the Compaq Fortran
Language Reference Manual.

• On available record types, see Section 7.4.3 and Section 7.10.

• On the error-related record I/O specifiers ERR, END, and IOSTAT, see
Chapter 8.

• On the ADVANCE, EOR, and SIZE specifiers, see Section 7.8.4.

• Record positioning, see Section 7.8.3.

• Record I/O transfer, see Section 7.8.5.

• Record advancement, see Section 7.8.4.

Compaq Fortran Input/Output (I/O) 7–29

7.8.2 Record Access Modes and File Sharing
Record access refers to how records will be read from or written to a file,
regardless of its organization. Record access is specified each time you open
a file; it can be different each time. The type of record access permitted is
determined by the combination of file organization and record type.

For instance, you can:

• Add records to a sequential file with ORGANIZATION=’SEQUENTIAL’
and POSITION=’APPEND’ (or use the Compaq extension
ACCESS=’APPEND’).

• Add records sequentially by using multiple WRITE statements, close the
file, and then open it again with ORGANIZATION=’SEQUENTIAL’ and
ACCESS=’SEQUENTIAL’ (or ACCESS=’DIRECT’ if the sequential file
has fixed-length records).

7.8.2.1 Sequential Access
Sequential access transfers records sequentially to or from files or I/O devices
such as terminals. You can use sequential I/O with any type of supported file
organization and record type.

If you select sequential access mode for files with sequential or relative
organization, records are written to or read from the file starting at the
beginning of the file and continuing through it, one record after another. A
particular record can be retrieved only after all of the records preceding it have
been read; new records can be written only at the end of the file.

7.8.2.2 Direct Access
Direct access transfers records selected by record number to and from either
sequential files stored on disk with a fixed-length record type or relative
organization files.

If you select direct access mode, you can determine the order in which records
are read or written. Each READ or WRITE statement must include the
relative record number, indicating the record to be read or written.

You can directly access a sequential disk file only if it contains fixed-length
records. Because direct access uses cell numbers to find records, you can enter
successive READ or WRITE statements requesting records that either precede
or follow previously requested records. For example, the first of the following
statements reads record 24; the second reads record 10:

READ (12,REC=24) I
READ (12,REC=10) J

7–30 Compaq Fortran Input/Output (I/O)

7.8.2.3 Limitations of Record Access by File Organization and Record Type
You can use both access modes on sequential and relative files. However, direct
access to a sequential organization file can only be done if the file resides on
disk and contains fixed-length records.

Table 7–9 summarizes the types of access permitted for the various
combinations of file organizations and record types.

Table 7–9 Allowed Record Access for File Organizations and Record Types

Organization Record Type Sequential Access Direct Access

Sequential file Fixed
Variable
Segmented
Stream
Stream_CR
Stream_LF

Yes
Yes
Yes
Yes
Yes
Yes

Yes1

No
No
No
No
No

Relative file1 Fixed Yes Yes

1Direct access and relative files require that the file resides on a disk device.

7.8.2.4 File Sharing
Depending on the value specified by the ACTION (or READONLY) specifier
in the OPEN statement, the file will be opened by your program for reading,
writing, or both reading and writing records. This simply checks that the
program itself executes the type of statements intended.

For performance reasons, record-locking and shared-file checking are not
supported by the current version of Compaq Fortran on Compaq Tru64
UNIX and Linux systems. When you open the file, access is always granted,
regardless of whether:

• The OPEN statement SHARED specifier was specified

• Other processes have already opened the file

Similarly, the UNLOCK statement is ignored using the current version of
Compaq Fortran.

You might open a file for writing records (or reading and writing records)
and know another process might simultaneously have the file open and be
writing records. In this case, you need to coordinate access times among those
processes to handle the possibility of simultaneous WRITE and REWRITE
statements on the same record positions.

Compaq Fortran Input/Output (I/O) 7–31

7.8.3 Specifying the Initial Record Position
When you open a disk file, you can use the OPEN statement’s POSITION
specifier to request one of the following initial record positions within the file:

• The initial position before the first record (POSITION=’REWIND’). A
sequential access READ or WRITE statement will read or write the first
record in the file.

• A point beyond the last record in the file (POSITION=’APPEND’), just
before the end-of-file record, if one exists. For a new file, this is the initial
position before the first record (same as ’REWIND’). You might specify
’APPEND’ before you write records to an existing sequential file using
sequential access.

• The current position (ASIS). This is usually used only to maintain the
current record position when reconnecting a file. The second OPEN
specifies the same unit number and specifies the same file name (or omits
it), which leaves the file open, retaining the current record position.

However, if the second OPEN specifies a different file name for the same
unit number, the file will be closed and then opened, causing a loss of
current record position.

The following I/O statements allow you to change the current record position:

• REWIND sets the record position to the initial position before the first
record. A sequential access READ or WRITE statement would read or
write the first record in the file.

• BACKSPACE sets the record position to the previous record in a file. Using
sequential access, if you wrote record 5, issued a BACKSPACE to that unit,
and then read from that unit, you would read record 5.

• ENDFILE writes an end-of-file marker. This is typically done after writing
records using sequential access just before you close the file.

Unless you use nonadvancing I/O (see Section 7.8.4), reading and writing
records usually advances the current record position by one record. As
discussed in Section 7.8.5, more than one record might be transferred using a
single record I/O statement.

7–32 Compaq Fortran Input/Output (I/O)

7.8.4 Advancing and Nonadvancing Record I/O
After you open a file, if you omit the ADVANCE specifier (or specify
ADVANCE=’YES’) in READ and WRITE statements, advancing I/O (normal
FORTRAN-77 I/O) will be used for record access. When using advancing I/O:

• Record I/O statements transfer one entire record (or multiple records).

• Record I/O statements advance the current record position to a position
before the next record.

You can request nonadvancing I/O for the file by specifying the ADVANCE=’NO’
specifier in a READ and WRITE statement. You can use nonadvancing I/O
only for sequential access to external files using formatted I/O (not list-directed
or namelist).

When you use nonadvancing I/O, the current record position does not change,
and part of the record might be transferred, unlike advancing I/O where one
entire record or records are always transferred.

You can alternate between advancing and nonadvancing I/O by specifying
different values for the ADVANCE specifier (’YES’ and ’NO’) in the READ
and WRITE record I/O statements.

When reading records with either advancing or nonadvancing I/O, you can use
the END branch specifier to branch to a specified label when the end of the file
is read.

Because nonadvancing I/O might not read an entire record, it also supports
an EOR branch specifier to branch to a specified label when the end of the
record is read. If you omit the EOR and the IOSTAT specifiers when using
nonadvancing I/O, an error results when the end-of-record is read.

When using nonadvancing input, you can use the SIZE specifier to return the
number of characters read. For example, in the following READ statement,
SIZE=X (where variable X is an integer) returns the number of characters read
in X and an end-of-record condition causes a branch to label 700:

150 FORMAT (F10.2, F10.2, I6)
READ (UNIT=20, FMT=150, SIZE=X, ADVANCE=’NO’, EOR=700) A, F, I

Compaq Fortran Input/Output (I/O) 7–33

7.8.5 Record Transfer
I/O statements transfer all data as records. The amount of data that a record
can contain depends on the following circumstances:

• With formatted I/O (except for fixed-length records), the number of items in
the I/O statement and its associated format specifier jointly determine the
amount of data to be transferred.

• With namelist and list-directed output, the items listed in the NAMELIST
statement or I/O statement list (in conjunction with the NAMELIST
or list-directed formatting rules) determine the amount of data to be
transferred.

• With unformatted I/O (except for fixed-length records), the I/O statement
alone specifies the amount of data to be transferred.

• When you specify fixed-length records (RECORDTYPE=’FIXED’), all
records are the same size. If the size of an I/O record being written is less
than the record length (RECL), extra bytes are added (padding).

Typically, the data transferred by an I/O statement is read from or written to
a single record. It is possible, however, for a single I/O statement to transfer
data from or to more than one record, depending on the form of I/O used.

7.8.5.1 Input Record Transfer
When using advancing I/O, if an input statement specifies fewer data fields
(less data) than the record contains, the remaining fields are ignored.

If an input statement specifies more data fields than the record contains, one
of the following occurs:

• For formatted input using advancing I/O, if the file was opened with
PAD=’YES’, additional fields are read as spaces. If the file is opened with
PAD=’NO’, an error occurs (the input statement should not specify more
data fields than the record contains).

For formatted input using nonadvancing I/O (ADVANCE=’NO’), an
end-of-record (EOR) condition is returned. If the file was opened with
PAD=’YES’, additional fields are read as spaces.

• For list-directed input, another record is read.

• For namelist input, another record is read.

• For unformatted input, an error occurs.

7–34 Compaq Fortran Input/Output (I/O)

7.8.5.2 Output Record Transfer
If an output statement specifies fewer data fields than the record contains (less
data than required to fill a record), the following occurs:

• With fixed-length records (RECORDTYPE=’FIXED’), all records are the
same size. If the size of an I/O record being written is less than the record
length (RECL), extra bytes are added (padding) in the form of spaces (for a
formatted record) or zeros (for an unformatted record).

• With other record types, the fields present are written and those omitted
are not written (might result in a short record).

If the output statement specifies more data than the record can contain, an
error occurs, as follows:

• With formatted or unformatted output using fixed-length records.

If the items in the output statement and its associated format specifier
result in a number of bytes that exceed the maximum record length
(RECL), an error occurs.

• With formatted or unformatted output not using fixed-length records.

If the items in the output statement and its associated format specifier
result in a number of bytes that exceed the maximum record length
(RECL), the Compaq Fortran RTL attempts to increase the RECL value
and write the longer record. To obtain the RECL value, use an INQUIRE
statement.

• For list-directed output and namelist output, if the data specified exceeds
the maximum record length (RECL), another record is written.

For More Information:

• On Compaq Fortran I/O statements, see Table 7–1.

• On record I/O specifiers, see Section 7.8.1.

• On statement syntax and specifier values, see the Compaq Fortran
Language Reference Manual.

• On improving Compaq Fortran I/O performance, see Section 5.6.

Compaq Fortran Input/Output (I/O) 7–35

7.9 User-Supplied OPEN Procedures: USEROPEN Specifier
You can use the USEROPEN specifier in a Compaq Fortran OPEN statement
to pass control to a routine that directly opens a file. The called routine can
use system calls or library routines to open the file and establish special
context that changes the effect of subsequent Compaq Fortran I/O statements.

The Compaq Fortran Run-Time Library (RTL) I/O support routines call the
USEROPEN function in place of the system calls usually used when the file is
first opened for I/O. The USEROPEN specifier in an OPEN statement specifies
the name of a function to receive control. The called function must open the
file (or pipe) and return the file descriptor of the file when it returns control to
the calling Compaq Fortran program.

When opening the file, the called function usually specifies options different
from those provided by a normal OPEN statement.

You can obtain the file descriptor from the Compaq Fortran Run-Time Library
(RTL) for a specific unit number with the getfd routine, described in getfd(3f).

Although the called function can be written in other languages (such as
Fortran), C is usually the best choice for making system calls, such as open or
create.

The USEROPEN specifier for the OPEN statement has the form:

USEROPEN = function-name

The function-name value represents the name of an external open function.
In the calling Compaq Fortran program, the function must be declared in
an EXTERNAL statement. For example, the following Compaq Fortran code
might be used to call the USEROPEN procedure UOPEN (known to the linker
as uopen_):

EXTERNAL UOPEN
INTEGER UOPEN
.
.
.
OPEN (UNIT=10, FILE=’/usr/test/data’, STATUS=’NEW’, USEROPEN=UOPEN)

After the OPEN statement, the uopen_ function receives control. The function
opens the file, may perform other operations, and subsequently returns control
(with the file descriptor) to the calling Compaq Fortran program.

7–36 Compaq Fortran Input/Output (I/O)

If the USEROPEN function is written in C, declare it as a C function that
returns a 4-byte integer (int) result to contain the file descriptor. For example:

int uopen_ (!

char *file_name, "

int *open_flags, #

int *create_mode, $

int *lun, %
int file_length); &

The function definition and the arguments passed from the Compaq Fortran
RTL are as follows:

! The function must be declared as a 4-byte integer (int).

" The first argument is the pathname (includes the file name) to be opened.

The open flags are described in the header file /usr/include/sys/file.h
or open(2).

$ The create mode (protection needed when creating a file), is described in
open(2).

% The logical unit number.

& The fifth (last) argument is the pathname length (hidden length argument
of the pathname).

Of the arguments, the open system call (see open(2)) requires the passed
pathname, the open flags (that define the type access needed, whether the file
exists, and so on), and the create mode. The logical unit number specified in
the Compaq Fortran OPEN statement is passed in case the called function
needs it. The hidden length of the pathname is also passed.

When creating a new file, the create system call might be used in place of open
(see create(2)). You can usually use other appropriate system calls or library
routines within the called function; restrictions are listed in Section 7.9.1.

In most cases, the called function modifies the open flags argument passed
by the Compaq Fortran RTL or uses a new value before the open (or create)
system call. After the called function opens the file, it must return control
to the main Compaq Fortran program, which can do I/O with Fortran 95/90
statements to the file.

The open system call returns the file descriptor, which must be returned as a
4-byte integer to the Compaq Fortran program (and Compaq Fortran RTL).
After control (and the file descriptor) is returned from the called function,
the main Compaq Fortran program can perform I/O to that logical unit with
Fortran 95/90 statements and eventually close it.

Compaq Fortran Input/Output (I/O) 7–37

If the USEROPEN function is written in Fortran, declare it as a FUNCTION
with an INTEGER (KIND=4) result, perhaps with an interface block. In any
case, the called function must return the file descriptor as a 4-byte integer to
the calling Compaq Fortran program.

If your application requires that you use C to perform the file open and close,
as well as all record operations, call the appropriate C procedure from the
Compaq Fortran program without using the Fortran OPEN statement. For
more information on calling between Fortran and C, see Section 11.3.

7.9.1 Restrictions of Called USEROPEN Functions
The Compaq Fortran RTL uses exactly one file descriptor per logical unit,
which must be returned by the called function. Because of this, only certain
Compaq Tru64 UNIX system calls or library routines can be used to open the
file.

System calls and library routines that do not return a file descriptor include
mknod (see mknod(2)) and fopen (see fopen(3)). For example, the fopen routine
returns a file pointer instead of a file descriptor.

7.9.2 Example USEROPEN Program and Function
The following Compaq Fortran code calls the USEROPEN function named
UOPEN:

EXTERNAL UOPEN
INTEGER UOPEN
.
.
.

OPEN (UNIT=1,FILE=’ex1.dat’,STATUS=’NEW’,USEROPEN=UOPEN, ERR=9,IOSTAT=errnum)

If the default f90 options are used, the external name is passed using
lowercase letters with an appended trailing underscore (_). In the preceding
example, the external function UOPEN would be known as uopen_ to the
linker and must be declared in C as uopen_. The function might be given the
file name uopen_.c.

Compiling and Linking the C and Compaq Fortran Programs
Use a single f90 command to compile the called uopen_ C function uopen_.c
and the Compaq Fortran calling program ex1.f. The same command also links
both object files by using the appropriate libraries to create the file a.out file,
as follows:

% f90 ex1.f uopen_.c

7–38 Compaq Fortran Input/Output (I/O)

If appropriate for large applications, you can specify object modules (.o files)
on the f90 command line. For more information on retaining object files, see
Section 2.1.5.

Source Code for the C Function and Header File
Example 7–1 shows the C language function called uopen_ and its associated
header file.

Example 7–1 C Function Called by USEROPEN Procedure

/*
** File: uopen.h -- header file for uopen_.c
*/

#ifndef UOPEN
#define UOPEN 1

/*
**
** Function Prototypes
**
*/
int uopen_ (

char *file_name, /* access read: name of the file to open. */
int *open_flags, /* access read: READ/WRITE, see file.h or open(2)*/
int *create_mode, /* access read: set if new file (to be created).*/
int *lun, /* access read: logical unit file opened on.*/
int file_length); /* access read: number of characters in file_name*/

#endif

/* End of file uopen.h */

/*
** File: uopen_.c
*/

/*
** This routine opens a file using data passed by Compaq Fortran RTL.
**
** INCLUDE FILES
*/

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/file.h>
#include "uopen.h"/* Include file for this module */

int uopen_ (file_name, open_flags, create_mode, lun, file_length)

(continued on next page)

Compaq Fortran Input/Output (I/O) 7–39

Example 7–1 (Cont.) C Function Called by USEROPEN Procedure

/*
** Open a file using the parameters passed by the calling Compaq
** Fortran 95/90 program.
**
** Formal Parameters:
*/

char *file_name; /* access read: name of the file to open. */
int *open_flags; /* access read: READ/WRITE, see file.h */
int *create_mode; /* access read: set if new file (to be created). */
int *lun; /* access read: logical unit number file opened on. */
int file_length; /* access read: number of characters in file_name. */

/*
** Function Value/Completion Code
**
** Whatever is returned by open, is immediately returned to the
** Fortran OPEN. the returned value is the following :
** value >= 0 is a valid fd.
** value < 0 is an error.
**
** Modify open flags (logical OR) to specify the file be opened for
** write access only, with records appended at the end (such as
** writing to a shared log file).
*/

{
int result ; /* Function result value */

*open_flags =
O_CREAT |
O_WRONLY |
O_APPEND;

result = open (file_name, *open_flags, *create_mode) ;

return (result) ; /* return file descriptor or error */

}/* End of routine uopen_ */

/* End of file uopen_.c */

Source Code for the Calling Compaq Fortran Program
Example 7–2 shows the Fortran 95/90 program that calls the uopen_ C function
and then performs I/O.

7–40 Compaq Fortran Input/Output (I/O)

Example 7–2 Compaq Fortran USEROPEN Main Calling Program

C
C Program EX1 opens a file using USEROPEN and writes records to it.
C It closes and re-opens the file (without USEROPEN) and reads 10 records.

PROGRAM EX1

EXTERNAL UOPEN ! The USEROPEN function.
INTEGER ERRNUM, CTR, I

1 FORMAT (I)

ERRNUM = 0

WRITE (6,*) ’EX1. Access data using formatted I/O.’
WRITE (6,*) ’EX1. Open file with USEROPEN and put some data in it.’
OPEN (UNIT=1, FILE=’ex1.dat’, STATUS=’NEW’, USEROPEN=UOPEN, ERR=9, &

IOSTAT=errnum)

DO CTR=1,10
WRITE (1,1) CTR

END DO

WRITE (6,*) ’EX1. Close and re-open without USEROPEN.’

CLOSE (UNIT=1)

OPEN (UNIT=1, FILE=’ex1.dat’, STATUS=’OLD’, FORM=’FORMATTED’, ERR=99, &
IOSTAT=errnum)

WRITE (6,*) ’EX1. Read and display what is in file.’

DO CTR=1,10
READ (1,1) i
WRITE (6,*) i

END DO

WRITE (6,*) ’EX1. Successful if 10 records shown.’

CLOSE (UNIT=1,STATUS=’DELETE’)
STOP

9 WRITE (6,*) ’EX1. Error on USEROPEN is ’, errnum
STOP

99 WRITE (6,*) ’EX1. Error on 2nd open is ’, errnum

END PROGRAM EX1

Compaq Fortran Input/Output (I/O) 7–41

7.10 Format of Compaq Fortran Record Types
For general information, see Section 7.4.3, Record Types, Record Overhead,
and Maximum Record Length and Table 7–3, Compaq Fortran Record Types.

7.10.1 Fixed-Length Records
When you specify fixed-length records, all records in the file contain the same
number of bytes. When you open a file that is to contain fixed-length records,
you must specify the record size by using the RECL specifier. A sequentially
organized file opened for direct access must contain fixed-length records, to
allow the record position in the file to be computed correctly.

For relative files, the layout and overhead of fixed-length records depends on
whether the program accessing the file was compiled with the -vms option or
whether the -vms option was omitted:

• For relative files where the -vms option was omitted (the default), each
record has no control information.

• For relative files where the -vms option was specified, each record has one
byte of control information at the beginning of the record.

Figure 7–1 shows the record layout of fixed-length records.

7–42 Compaq Fortran Input/Output (I/O)

Figure 7–1 Fixed-Length Records

ZK−9819−GE

For all sequential files and for relative files where the −vms option was omitted:

For relative files where the −vms option was specified:

User Data

Record length (RECL=value)

User Data

Record length (RECL=value)1

For More Information:

• On the default value and size limit for fixed-length records, see the RECL
specifier for the OPEN statement in the Compaq Fortran Language
Reference Manual.

7.10.2 Variable-Length Records
Variable-length records can contain any number of bytes up to a specified
maximum record length, and apply only to sequential files.

Variable-length records are prefixed and suffixed by four bytes of control
information containing length fields. The trailing length field allows a
BACKSPACE request to skip back over records efficiently. The 4-byte integer
value stored in each length field indicates the number of data bytes (excluding
overhead bytes) in that particular variable-length record.

The character count field of a variable-length record is available when you read
the record by issuing a READ statement with a Q format descriptor. You can
then use the count field information to determine how many bytes should be in
an I/O list.

The record layout of variable-length records that are less than two gigabytes
appears in Figure 7–2.

Compaq Fortran Input/Output (I/O) 7–43

Figure 7–2 Variable-Length Records Less Than 2 Gigabytes

ZK-9820-GE

Trailing
Length
Field

Leading
Length
Field

User Data

Record length (RECL=value)4 4

For a record length greater than 2,147,483,639 bytes, the record is divided
into subrecords. The subrecord can be of any length from 1 to 2,147,483,639,
inclusive.

The sign bit of the leading length field indicates whether the record is
continued or not. The sign bit of the trailing length field indicates the presence
of a preceding subrecord. The position of the sign bit is determined by the
endian format of the file.

A subrecord that is continued has a leading length field with a sign bit value of
1. The last subrecord that makes up a record has a leading length field with a
sign bit value of 0. A subrecord that has a preceding subrecord has a trailing
length field with a sign bit value of 1. The first subrecord that makes up a
record has a trailing length field with a sign bit value of 0.

The record layout of variable-length records that are greater than two
gigabytes appears in Figure 7–3.

7–44 Compaq Fortran Input/Output (I/O)

Figure 7–3 Variable-Length Records Greater Than 2 Gigabytes

Trailing
Length
Field

Sign bit=0

Leading
Length
Field

Sign bit=1

Subrecord 1 User Data

Subrecord length (from length field)4 4

Trailing
Length
Field

Sign bit=1

Leading
Length
Field

Sign bit=1

Subrecords 2 to N-1 User Data

Subrecord length (from length field)4 4

Trailing
Length
Field

Sign bit=1

Leading
Length
Field

Sign bit=0

Subrecord N User Data

Subrecord length (from length field)4 4

Files written with variable-length records by Compaq Fortran programs
usually cannot be accessed as text files. Instead, use the Stream_LF record
format for text files with records of varying length.

7.10.3 Segmented Records
A segmented record is a single logical record consisting of one or more
variable-length, unformatted records in a sequentially organized disk file.
Unformatted data written to sequentially organized files using sequential
access is stored as segmented records by default.

Segmented records are useful when you want to write exceptionally long
records but cannot or do not wish to define one long variable-length record,
perhaps because virtual memory limitations can prevent program execution.
By using smaller, segmented records, you reduce the chance of problems caused
by virtual memory limitations on systems on which the program may execute.

Compaq Fortran Input/Output (I/O) 7–45

For disk files, the segmented record is a single logical record that consists of
one or more segments. Each segment is a physical record. A segmented
(logical) record can exceed the absolute maximum record length (2.14 billion
bytes), but each segment (physical record) individually cannot exceed the
maximum record length.

To access an unformatted sequential file that contains segmented records,
specify FORM=’UNFORMATTED’ and RECORDTYPE=’SEGMENTED’
when you open the file. Otherwise, the file may be processed erroneously.

As shown in Figure 7–4, the layout of segmented records consists of four bytes
of control information followed by the user data.

Figure 7–4 Segmented Records

ZK−9821−GE

Record length (RECL=value)2 2

Record size count (integer)

User Data

The control information consists of a 2-byte integer record size count (includes
the two bytes used by the segment identifier), followed by a 2-byte integer
segment identifier that identifies this segment as one of the following:

Identifier Value Segment Identified

0 One of the segments between the first and last segments.

1 First segment.

2 Last segment.

3 Only segment.

If the specified record length is an odd number, the user data will be padded
with a single blank (one byte), but this extra byte is not added to the 2-byte
integer record size count.

7–46 Compaq Fortran Input/Output (I/O)

7.10.4 Stream File Data
A Stream file is not grouped into records and contains no control information.
Stream files are used with CARRIAGECONTROL=’NONE’ and contain
character or binary data that is read or written only to the extent of the
variables specified on the input or output statement.

The layout of a Stream file appears in Figure 7–5.

Figure 7–5 Stream File Records

ZK−9822−GE

User Data
E
O
F

7.10.5 Stream_CR and Stream_LF Records
A Stream_CR or Stream_LF record is a variable-length record whose length
is indicated by explicit record terminators embedded in the data, not by a
count. These terminators are automatically added when you write records to a
stream-type file and are removed when you read records.

Each variety uses a different 1-byte record terminator:

• Stream_CR files use only a carriage-return as the terminator, so Stream_
CR files must not contain embedded carriage-return characters.

• Stream_LF files use only a line-feed (new line) as the terminator, so
Stream_LF files must not contain embedded line-feed (new line) characters.
This is the usual operating system text file record type.

The layout of Stream_CR and Stream_LF records appears in Figure 7–6.

Compaq Fortran Input/Output (I/O) 7–47

Figure 7–6 Stream_CR and Stream_LF Records

ZK−9823−GE

User Data

Record length (RECL=value) 1

7–48 Compaq Fortran Input/Output (I/O)

8
Run-Time Errors and Signals

This chapter contains the following topics:

• Section 8.1, Compaq Fortran Run-Time Library Default Error Processing

• Section 8.2, Handling Run-Time Errors

• Section 8.3, Signal Handling

• Section 8.4, Run-Time Error Messages

8.1 Compaq Fortran Run-Time Library Default Error
Processing

During execution, your program may encounter errors or exception conditions.
These conditions can result from any of the following:

• Errors that occur during I/O operations

• Invalid input data

• Argument errors in calls to the mathematical library

• Arithmetic errors

• Other system-detected errors

The Compaq Fortran Run-Time Library (RTL) generates appropriate messages
and takes action to recover from errors whenever possible.

A default action is defined for each error recognized by the Compaq Fortran
RTL. The default actions described throughout this chapter occur unless
overridden by explicit error-processing methods.

The way in which the Compaq Fortran RTL actually processes errors depends
upon the following factors:

• The severity of the error. For instance, the program usually continues
executing when an error message with a severity level of warning or info
(informational) is detected.

Run-Time Errors and Signals 8–1

• For certain errors associated with I/O statements, whether or not an I/O
error-handling specifier was specified.

• For certain errors, whether or not the default action of an associated signal
was changed.

• For certain errors related to arithmetic operations (including floating-
point exceptions), compilation options can determine whether the error is
reported and the severity of the reported error.

How arithmetic exception conditions are reported and handled depends on the
cause of the exception and how the program was compiled. Unless the program
was compiled to handle exceptions, the exception might not be reported until
after the instruction that caused the exception condition. The following f90
command-line options are related to handling errors and exceptions:

• The -check bounds, -check overflow, and -check underflow options
generate extra code to catch certain conditions. For example, the -check
overflow option generates extra code to catch integer overflow conditions.

• The -check noformat, -check nooutput_conversion, and -check nopower
options reduce the severity level of the associated run-time error to allow
program continuation.

• The -fpen options and the -check underflow option control the handling
and reporting of floating-point arithmetic exceptions at run time.

• The -synchronous_exceptions option (and certain -fpen option) influence
the reporting of floating-point arithmetic exceptions at run time.

• The -warn xxxx, -u, -nowarn -w, and -w1 options control compile-time
warning messages, which in some circumstances can help determine the
cause of a run-time error.

For More Information:

• On the f90 command -fpen options and the for_set_fpe routine that
control how floating-point exceptional conditions are handled at run time,
see Section 3.44 and Chapter 14.

• On the -check bounds option, see Section 3.23.

• On the -check noformat option, see Section 3.24.

• On the -check nooutput_conversion option, see Section 3.27.

• On the -check overflow option, see Section 3.28.

• On the -check nopower option, see Section 3.25.

• On the -check underflow option, see Section 3.29.

8–2 Run-Time Errors and Signals

• On the f90 options that control warning messages, see Section 3.99.

• On IEEE floating-point data types and exceptional values, see Section 9.4.

• On f90 and fort command-line options and their categories, see Table 3–1.

• On Compaq Fortran intrinsic data types and their ranges, see Chapter 9.

8.1.1 Run-Time Message Format
When errors occur during program execution (run time) of a scalar
(nonparallel) program, the Compaq Fortran RTL issues diagnostic messages.
These run-time messages have the following format:

forrtl: severity (nnn): message-text

Run-time messages provide the following information:

Contents Information Given

forrtl Identifies the source as the Compaq Fortran RTL.

severity The severity levels are: severe, error, warning, or info. (See
Table 8–1, Severity Levels of Run-Time Messages.)

nnn This is the message number, also the IOSTAT value for I/O
statements.

message_text Explains the event that caused the message.

Table 8–1 explains the severity levels of run-time messages, in the order of
greatest to least severity.

Table 8–1 Severity Levels of Run-Time Messages

Severity Description

severe Must be corrected. The program’s execution is terminated when the error
is encountered, unless the program’s I/O statements use the END, EOR,
or ERR branch specifiers to transfer control, perhaps to a routine that
uses the IOSTAT specifier (see Section 8.2.1 and Section 8.2.2).

error Should be corrected. The program might continue execution, but the
output from this execution may be incorrect.

warning Should be investigated. The program continues execution, but output
from this execution may be incorrect.

info For informational purposes only. The program continues.

On Tru64 UNIX systems, for severe errors stack trace information is produced
by default, unless the environment variable FOR_DISABLE_STACK_TRACE is set.

Run-Time Errors and Signals 8–3

If symbols are in the image (that is, if the command-line option -g1 or higher
is set and the image is not stripped), the stack trace information contains
program counters set to symbolic information. Otherwise, the information
contains merely hexadecimal program counter information.

In some cases, stack trace information is also produced by the compiled code at
run time to provide details about the creation of array temporaries.

If FOR_DISABLE_STACK_TRACE is set, no stack trace information is produced.

Stack trace information is not produced on Linux Alpha systems.

See Example 8–1.

Example 8–1 Example of Stack Trace Information

program ovf !
real*4 x(5),y(5)
integer*4 i

x(1) = -1e32
x(2) = 1e38
x(3) = 1e38
x(4) = 1e38
x(5) = -36.0

do i=1,5
y(i) = 100.0*(x(i))
print *, ’x = ’, x(i), ’ x*100.0 = ’,y(i)

end do

end

> f90 -O0 ovf.for -o ovf.exe
> ovf.exe
x = -1.0000000E+32 x*100.0 = -1.0000000E+34 "
forrtl: error (72): floating overflow

0: _call_remove_gp_range [0x3ff81a6c374]
1: _call_remove_gp_range [0x3ff81a74464]
2: _call_remove_gp_range [0x3ff800d8c60]
3: ovf_ [ovf.for: 12, 0x1200019c4]
4: main [for_main.c: 203, 0x1200018dc]
5: __start [0x120001858]

Abort process

(continued on next page)

8–4 Run-Time Errors and Signals

Example 8–1 (Cont.) Example of Stack Trace Information

> strip ovf.exe
> ovf.exe
x = -1.0000000E+32 x*100.0 = -1.0000000E+34 #
forrtl: error (72): floating overflow
Symbol table not present, doing non-symbolic traceback

0: [0x3ff81a6c374]
1: [0x3ff81a74464]
2: [0x3ff800d8c60]
3: [0x1200019c4]
4: [0x1200018dc]
5: [0x120001858]

Abort process

> setenv FOR_DISABLE_STACK_TRACE "TRUE"
> ovf.exe
x = -1.0000000E+32 x*100.0 = -1.0000000E+34 $
forrtl: error (72): floating overflow
Abort process

! Sample program that generates an error (at line 12).

" Stack trace information when the symbol table is present.

Stack trace information when the image is stripped.

$ No stack trace information, because the FOR_DISABLE_STACK_TRACE
environment variable is set.

8.1.2 Message Catalog Location
The Compaq Fortran RTL uses a message catalog file to store the text
associated with each run-time message. When a run-time error occurs, the
Compaq Fortran RTL uses the environment variable NLSPATH to locate the
message catalog file, from which it obtains the text of the appropriate message.
If the file is not found at the position indicated by NLSPATH, the RTL searches
for the message catalog at the following location:

/usr/lib/nls/msg/en_US.ISO8859-1/for_msg.cat (TU*X only)

/usr/lib/for_msg.cat (L*X only)

Before executing a Compaq Fortran program on a system where Compaq
Fortran is not installed, you need to install the appropriate Compaq Fortran
run-time subset. For instructions on installing Compaq Fortran run-time
support, see the Compaq Fortran Installation Guide for Tru64 UNIX Systems.

Run-Time Errors and Signals 8–5

When a run-time error occurs on a system where the message file is not found,
the following messages may appear on a Tru64 UNIX system:

forrtl: info: Fortran error message number is nnn.

forrtl: warning: Could not open message catalog: for_msg.cat.

forrtl: info: Check environment variable NLSPATH and protection of
usr/lib/nls/msg/en_US.ISO8859-1/for_msg.cat

The Compaq Fortran RTL returns an error number (displayed after the
severity level) that the calling program can use with an IOSTAT variable to
handle various I/O conditions, as described in Section 8.2.2.

For More Information:

• On NLSPATH, see the reference page environ(5).

8.1.3 Values Returned to the Shell at Program Termination
A Compaq Fortran program can terminate in one of several ways:

• The program runs to normal completion. A value of zero is returned to the
shell.

• The program stops with a STOP or a PAUSE statement. A value of zero is
returned to the shell.

• The program stops because of a signal that is caught but does not allow the
program to continue. A value of 1 is returned to the shell.

• The program stops because of a severe run-time error. The error number
for that run-time error is returned to the shell. Error numbers are listed in
Table 8–3.

• The program stops with a CALL EXIT statement. The value passed to
EXIT is returned to the shell.

8.1.4 Forcing a Core Dump for Severe Errors
You can force a core dump for severe errors that do not usually cause a core
file to be created. Before running the program, set the decfort_dump_flag
environment variable to any of the common TRUE values (Y, y, Yes, yEs, True,
and so forth) to cause severe errors to create a core file. For instance, the
following C shell command sets the decfort_dump_flag environment variable:

% setenv decfort_dump_flag y

The core file is written to the current directory and can be examined using a
debugger.

8–6 Run-Time Errors and Signals

For More Information:

• On the shell commands you can use to set or unset environment variables,
see Appendix B.

• On core files (TU*X only), see core(4).

• On language syntax, see the Compaq Fortran Language Reference Manual.

• On file operations, see Section 7.5, Section 7.6, and Section 7.7.

• On record operations, see Section 7.8.

8.2 Handling Run-Time Errors
Whenever possible, the Compaq Fortran RTL does certain error handling, such
as generating appropriate messages and taking necessary action to recover
from errors. You can explicitly supplement or override default actions by using
the following methods:

• To transfer control to error-handling code within the program, use the
ERR, EOR, and END branch specifiers in I/O statements (Section 8.2.1)

• To identify Fortran-specific I/O errors based on the value of Compaq
Fortran RTL error codes, use the I/O status specifier (IOSTAT) in I/O
statements (or call the ERRSNS subroutine) (Section 8.2.2)

• Obtain system-level error codes by using the appropriate 3f library routines
(Section 8.2.3)

• For certain error conditions, use the signal handling facility to change the
default action to be taken (Section 8.3)

These error-processing methods are complementary; you can use any or all
of them within the same program to obtain Compaq Fortran run-time and
Compaq Tru64 UNIX system error codes.

If your program generates an exception, use the -synchronous_exceptions
option and recompile and relink your application (see Section 4.9).

8.2.1 Using the END, EOR, and ERR Branch Specifiers
When a severe error occurs during Compaq Fortran program execution, the
default action is to display an error message and terminate the program. To
override this default action, there are three branch specifiers you can use in
I/O statements to transfer control to a specified point in the program:

• The END branch specifier handles an end-of-file condition.

Run-Time Errors and Signals 8–7

• The EOR branch specifier handles an end-of-record condition for
nonadvancing reads.

• The ERR branch specifier handles all error conditions.

If you use the END, EOR, or ERR branch specifiers, no error message is
displayed and execution continues at the designated statement, usually an
error-handling routine.

You might encounter an unexpected error that the error-handling routine
cannot handle. In this case, do one of the following:

• Modify the error-handling routine to display the error message number

• Remove the END, EOR, or ERR branch specifiers from the I/O statement
that causes the error

After you modify the source code, compile, link, and run the program to display
the error message. For example:

READ (8,50,ERR=400)

If any severe error occurs during execution of this statement, the Compaq
Fortran RTL transfers control to the statement at label 400. Similarly, you can
use the END specifier to handle an end-of-file condition that might otherwise
be treated as an error. For example:

READ (12,70,END=550)

When using nonadvancing I/O, use the EOR specifier to handle the end-of-
record condition. For example:

150 FORMAT (F10.2, F10.2, I6)
READ (UNIT=20, FMT=150, SIZE=X, ADVANCE=’NO’, EOR=700) A, F, I

You can also use ERR as a specifier in an OPEN, CLOSE, or INQUIRE
statement. For example:

OPEN (UNIT=10, FILE=’FILNAM’, STATUS=’OLD’, ERR=999)

If an error is detected during execution of this OPEN statement, control
transfers to the statement at label 999.

For More Information:

• On advancing and nonadvancing record I/O, see Section 7.8.4.

• On language syntax, see the Compaq Fortran Language Reference Manual.

• On file operations, see Section 7.5, Section 7.6, and Section 7.7.

• On record operations, see Section 7.8.

8–8 Run-Time Errors and Signals

8.2.2 Using the IOSTAT Specifier
You can use the IOSTAT specifier to continue program execution after an I/O
error and to return information about I/O operations, whether the program is
executing as a scalar or parallel program (I/O is done in a scalar fashion). As
described in Table 8–3, certain errors are not returned in IOSTAT.

Although the IOSTAT specifier transfers control, it can only return information
returned by the Compaq Fortran RTL.

The IOSTAT specifier can supplement or replace the END, EOR, and ERR
branch transfers. Execution of an I/O statement containing the IOSTAT
specifier suppresses the display of an error message and defines the specified
integer variable, array element, or scalar field reference as one of the following:

• A value of –2 if an end-of-record condition occurs with nonadvancing reads.

• A value of –1 if an end-of-file condition occurs.

• A value of 0 for normal completion (not an error condition, end-of-file, or
end-of-record condition).

• A positive integer value if an error condition occurs. (This value is one of
the Fortran-specific IOSTAT numbers listed in Table 8–3.)

Following the execution of the I/O statement and assignment of an IOSTAT
value, control transfers to the END, EOR, or ERR statement label, if any. If
there is no control transfer, normal execution continues.

You can include /usr/include/foriosdef.f in your program to obtain symbolic
definitions for the values of IOSTAT.

Example 8–2 uses the IOSTAT specifier and the foriosdef.f file to handle an
OPEN statement error (in the FILE specifier).

Example 8–2 Error Handling OPEN Statement File Name

CHARACTER(LEN=40) :: FILNM
INCLUDE ’/usr/include/foriosdef.f’

(continued on next page)

Run-Time Errors and Signals 8–9

Example 8–2 (Cont.) Error Handling OPEN Statement File Name

DO I=1,4
FILNM = ’’
WRITE (6,*) ’Type file name ’
READ (5,*) FILNM
OPEN (UNIT=1, FILE=FILNM, STATUS=’OLD’, IOSTAT=IERR, ERR=100)
WRITE (6,*) ’Opening file: ’, FILNM

! (process the input file)
CLOSE (UNIT=1)
STOP

100 IF (IERR .EQ. FOR$IOS_FILNOTFOU) THEN
WRITE (6,*) ’File: ’, FILNM, ’ does not exist ’

ELSE IF (IERR .EQ. FOR$IOS_FILNAMSPE) THEN
WRITE (6,*) ’File: ’, FILNM, ’ was bad, enter new file name’

ELSE
PRINT *, ’Unrecoverable error, code =’, IERR
STOP

END IF
END DO
WRITE (6,*) ’File not found. Type ls to find file and run again’

END PROGRAM

Another way to obtain information about an error is the ERRSNS subroutine
(a Compaq extension), which allows you to obtain the last I/O system error
code associated with a Compaq Fortran RTL error (see the Compaq Fortran
Language Reference Manual).

8.2.3 Using the 3f Library Routines to Return Operating System Errors
You can obtain the most recent operating system error codes or display
associated error messages by using the following 3f library routines:

• The ierrno routine returns the most recent error code, as described in
ierrno(3f). For a list of operating system error codes, see errno(2).

• The gerror and perror routines display a system error message, as
described in gerror(3f) and perror(3f).

For More Information:

• On using the 3f routines, see Chapter 12 and intro(3f).

• On language syntax, see the Compaq Fortran Language Reference Manual.

• On file operations, see Section 7.5, Section 7.6, and Section 7.7.

• On record operations, see Section 7.8.

8–10 Run-Time Errors and Signals

• On 3f library routines, see Chapter 12.

8.3 Signal Handling
A signal is an abnormal event generated by one of various sources, such as:

• A user of a terminal

• Program or hardware error

• Request of another program

• When a process is stopped to allow access to the control terminal

You can optionally set certain events to issue signals, for example:

• When a process resumes after being stopped

• When the status of a child process changes

• When input is ready at the terminal

Some signals terminate the receiving process if no action is taken (optionally
creating a core file), while others are simply ignored unless the process has
requested otherwise.

Except for certain signals, calling the signal or sigaction routine (see
signal(3f)) allows specified signals to be ignored or causes an interrupt
(transfer of control) to the location of a user-written signal handler.

You can establish one of the following actions for a signal with a call to signal:

• Ignore the specified signal (identified by number).

• Use the default action for the specified signal, which can reset a previously
established action.

• Transfer control from the specified signal to a procedure to receive the
signal, specified by name.

Calling the signal routine lets you change the action for a signal, such as
intercepting an operating system signal and preventing the process from being
stopped.

Table 8–2 shows the signals that the Compaq Fortran RTL arranges to catch
when a program is started.

Run-Time Errors and Signals 8–11

Table 8–2 Signals Caught by the Compaq Fortran Run-Time Library

Signal Compaq Fortran RTL Message

SIGFPE Floating-point exception (number 75)

SIGILL
(L*X only)

Illegal instruction (SIGILL) and related SIGILL messages indicate
various breakpoint exceptions (numbers 130-139)

SIGINT Process interrupted (number 69)

SIGIOT IOT trap signal (number 76)

SIGQUIT Process quit (number 79)

SIGSEGV Segmentation fault (number 174)

SIGTERM Process killed (number 78)

SIGTRAP
(TU*X only)

Array index out of bounds (SIGTRAP) and related SIGTRAP
messages indicate various breakpoint exceptions (numbers 130-139)

Calling the signal routine (specifying the numbers for these signals) results
in overwriting the signal-handling facility set up by the Compaq Fortran RTL.
The only way to restore the default action is to save the returned value from
the first call to signal.

When using a debugger, it may be necessary to enter a command to allow
the Compaq Fortran RTL to receive and handle the appropriate signals, as
described in Section 4.5.

For More Information:

• On the calling syntax of the signal jacket routine, see signal(3f).

• On using the 3f routines, such as signal, see Chapter 12 and intro(3f).

• On all signal names, their respective numbers, and a brief description of
each signal, see signal(3) reference page or /usr/include/signal.h.

8.4 Run-Time Error Messages
Table 8–3 lists the errors processed by the Compaq Fortran RTL. For each
error, the table provides the error number, the severity code, error message
text, condition symbol name, and a detailed description of the errors.

To define the condition symbol values (PARAMETER statements) in your
program, include the following file:

/usr/include/foriosdef.f

8–12 Run-Time Errors and Signals

As described in Table 8–1, the severity of the message determines whether
program execution continues (info and warning), the results may be incorrect
(error), or program execution stops unless a recovery method is specified
(severe).

When a severe error occurs for which no recovery method is specified, an error
message is displayed and execution stops. To prevent program termination,
you must include either an appropriate I/O error-handling specifier (see
Section 8.2.1 and Section 8.2.2) and recompile or, for certain errors, change the
default action of a signal (see Section 8.3) before you run the program again.

In Table 8–3, the first column lists error numbers returned to IOSTAT
variables when an I/O error is detected. The Compaq Fortran error numbers
are compatible with Compaq Fortran 77. Certain messages are specific to
Compaq Fortran on Compaq Tru64 UNIX systems, including most signal-
related errors (such as error number 79, Process quit (SIGQUIT) and errors
130-139) listed in Table 8–3.

The first line of the second column provides the message as it is displayed
(following forrtl:), including the severity level, message number, and the
message text. The following lines of the second column contain the status
condition symbol (such as FOR$IOS_INCRECTYP) and an explanation of the
message.

This table is also provided in the online release notes file in text format. To
view the explanation of a message, use the more command to display the file
and enter a slash (/) followed by the number or part of the message text (to
initiate a search). For example, the following more command searches for
number 68 (Variable format expression value error):

% more /68

Run-Time Errors and Signals 8–13

Table 8–3 Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

None1 info: Fortran error message number is nnn
The Compaq Fortran message catalog file was not found on this system. For
information about the message file location, see Section 8.1.2 or the Compaq Fortran
Installation Guide for Tru64 UNIX Systems. This error has no condition symbol.

None1 warning: Could not open message catalog: for_msg.cat
The Compaq Fortran message catalog file was not found on this system. See
Section 8.1.2 or the Compaq Fortran Installation Guide for Tru64 UNIX Systems
for more information. This error has no condition symbol.

None1 info: Check environment variable NLSPATH and protection of path-
name/for_msg.dat
The Compaq Fortran message catalog file was not found. See Section 8.1.2 or the
Compaq Fortran Installation Guide for Tru64 UNIX Systems for more information.
This error has no condition symbol.

None1 Insufficient memory to open Fortran RTL catalog: message 41
The Compaq Fortran message catalog file could not be opened because of insufficient
virtual memory. To overcome this problem, increase the per-process data limit by using
the limit (C shell) or ulimit (Bourne and Korn and bash (L*X only) shells) commands
(see Section 1.1) before running the program again.

For more information, see error 41. This error has no condition symbol.

11 severe (1): Not a Fortran-specific error
FOR$IOS_NOTFORSPE. An error in the user program or in the RTL was not a
Compaq Fortran-specific error and was not reportable through any other Compaq
Fortran run-time messages. If you call ERRSNS, an error of this kind returns a
value of 1 (for more information on the ERRSNS subroutine, see the Compaq Fortran
Language Reference Manual).

8 severe (8): Internal consistency check failure
FOR$IOS_BUG_CHECK. Internal error. Please check that the program is correct.
Recompile if an error existed in the program. If this error persists, submit a problem
report.

9 severe (9): Permission to access file denied
FOR$IOS_PERACCFIL. Check the mode (protection) of the specified file. Make sure
the correct file was being accessed. Change the protection, specified file, or process
used before rerunning program.

1Identifies errors not returned by IOSTAT.

(continued on next page)

8–14 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

10 severe (10): Cannot overwrite existing file
FOR$IOS_CAOVEEXI. Specified file xxx already exists when OPEN statement
specified STATUS=’NEW’ (create new file) using I/O unit x. Make sure correct
file name, directory path, unit, and so forth were specified in the source program.
Decide whether to:

• Rename or remove the existing file before rerunning the program.

• Modify the source file to specify different file specification, I/O unit, or OPEN
statement STATUS.

11 info (11)1: Unit not connected
FOR$IOS_UNINOTCON. The specified unit was not open at the time of the attempted
I/O operation. Check if correct unit number was specified. If appropriate, use an
OPEN statement to explicitly open the file (connect the file to the unit number).

17 severe (17): Syntax error in NAMELIST input
FOR$IOS_SYNERRNAM. The syntax of input to a namelist-directed READ statement
was incorrect.

18 severe (18): Too many values for NAMELIST variable
FOR$IOS_TOOMANVAL. An attempt was made to assign too many values to a
variable during a namelist READ statement.

1Identifies errors not returned by IOSTAT.

(continued on next page)

Run-Time Errors and Signals 8–15

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

19 severe (19): Invalid reference to variable in NAMELIST input
FOR$IOS_INVREFVAR. One of the following conditions occurred:

• The variable was not a member of the namelist group.

• An attempt was made to subscript a scalar variable.

• A subscript of the array variable was out-of-bounds.

• An array variable was specified with too many or too few subscripts for the
variable.

• An attempt was made to specify a substring of a noncharacter variable or array
name.

• A substring specifier of the character variable was out-of-bounds.

• A subscript or substring specifier of the variable was not an integer constant.

• An attempt was made to specify a substring by using an unsubscripted array
variable.

20 severe (20): REWIND error
FOR$IOS_REWERR. One of the following conditions occurred:

• The file was not a sequential file.

• The file was not opened for sequential or append access.

• The Compaq Fortran RTL I/O system detected an error condition during execution
of a REWIND statement.

21 severe (21): Duplicate file specifications
FOR$IOS_DUPFILSPE. Multiple attempts were made to specify file attributes without
an intervening close operation. A DEFINE FILE statement was followed by another
DEFINE FILE statement or an OPEN statement

22 severe (22): Input record too long
FOR$IOS_INPRECTOO. A record was read that exceeded the explicit or default record
length specified when the file was opened. To read the file, use an OPEN statement
with a RECL= value (record length) of the appropriate size.

(continued on next page)

8–16 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

23 severe (23): BACKSPACE error
FOR$IOS_BACERR. The Compaq Fortran RTL I/O system detected an error condition
during execution of a BACKSPACE statement.

241 severe (24): End-of-file during read
FOR$IOS_ENDDURREA. One of the following conditions occurred:

• A Compaq Fortran RTL I/O system end-of-file condition was encountered during
execution of a READ statement that did not contain an END, ERR, or IOSTAT
specification.

• An end-of-file record written by the ENDFILE statement was encountered during
execution of a READ statement that did not contain an END, ERR, or IOSTAT
specification.

• An attempt was made to read past the end of an internal file character string or
array during execution of a READ statement that did not contain an END, ERR,
or IOSTAT specification.

This error is returned by END and ERRSNS.

25 severe (25): Record number outside range
FOR$IOS_RECNUMOUT. A direct access READ, WRITE, or FIND statement specified
a record number outside the range specified when the file was opened.

26 severe (26): OPEN or DEFINE FILE required
FOR$IOS_OPEDEFREQ. A direct access READ, WRITE, or FIND statement
was attempted for a file when no prior DEFINE FILE or OPEN statement with
ACCESS=’DIRECT’ was performed for that file.

27 severe (27): Too many records in I/O statement
FOR$IOS_TOOMANREC. An attempt was made to do one of the following:

• Read or write more than one record with an ENCODE or DECODE statement.

• Write more records than existed.

28 severe (28): CLOSE error
FOR$IOS_CLOERR. An error condition was detected by the Compaq Fortran RTL I/O
system during execution of a CLOSE statement.

1Identifies errors not returned by IOSTAT.

(continued on next page)

Run-Time Errors and Signals 8–17

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

29 severe (29): File not found
FOR$IOS_FILNOTFOU. A file with the specified name could not be found during an
open operation.

30 severe (30): Open failure
FOR$IOS_OPEFAI. An error was detected by the Compaq Fortran RTL I/O system
while attempting to open a file in an OPEN, INQUIRE, or other I/O statement. This
message is issued when the error condition is not one of the more common conditions
for which specific error messages are provided. It can occur when an OPEN operation
was attempted for one of the following:

• Segmented file that was not on a disk or a raw magnetic tape

• Standard I/O file that had been closed

31 severe (31): Mixed file access modes
FOR$IOS_MIXFILACC. An attempt was made to use any of the following combina-
tions:

• Formatted and unformatted operations on the same unit

• An invalid combination of access modes on a unit, such as direct and sequential

• A Compaq Fortran RTL I/O statement on a logical unit that was opened by a
program coded in another language

32 severe (32): Invalid logical unit number
FOR$IOS_INVLOGUNI. A logical unit number greater than 2,147,483,647 or less than
zero was used in an I/O statement.

33 severe (33): ENDFILE error
FOR$IOS_ENDFILERR. One of the following conditions occurred:

• The file was not a sequential organization file with variable-length records.

• The file was not opened for sequential or append access.

• An unformatted file did not contain segmented records.

• The Compaq Fortran RTL I/O system detected an error during execution of an
ENDFILE statement.

(continued on next page)

8–18 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

34 severe (34): Unit already open
FOR$IOS_UNIALROPE. A DEFINE FILE statement specified a logical unit that was
already opened.

35 severe (35): Segmented record format error
FOR$IOS_SEGRECFOR. An invalid segmented record control data word was
detected in an unformatted sequential file. The file was probably either created
with RECORDTYPE=’FIXED’ or ’VARIABLE’ in effect, or was created by a program
written in a language other than Fortran.

36 severe (36): Attempt to access non-existent record
FOR$IOS_ATTACCNON. A direct-access READ or FIND statement attempted to
access beyond the end of a relative file (or a sequential file on disk with fixed-length
records) or access a record that was previously deleted in a relative file.

37 severe (37): Inconsistent record length
FOR$IOS_INCRECLEN. An attempt was made to open a direct access file without
specifying a record length.

38 severe (38): Error during write
FOR$IOS_ERRDURWRI. The Compaq Fortran RTL I/O system detected an error
condition during execution of a WRITE statement.

39 severe (39): Error during read
FOR$IOS_ERRDURREA. The Compaq Fortran RTL I/O system detected an error
condition during execution of a READ statement.

40 severe (40): Recursive I/O operation
FOR$IOS_RECIO_OPE. While processing an I/O statement for a logical unit, another
I/O operation on the same logical unit was attempted, such as a function subprogram
that performs I/O to the same logical unit that was referenced in an expression in an
I/O list or variable format expression.

(continued on next page)

Run-Time Errors and Signals 8–19

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

41 severe (41): Insufficient virtual memory
FOR$IOS_INSVIRMEM. The Compaq Fortran RTL attempted to exceed its available
virtual memory while dynamically allocating space. To overcome this problem, increase
the per-process data limit by using the limit (C shell) or ulimit (Bourne and
Korn and bash (L*X only) shell) commands before you run this program again (see
Section 1.1).

To determine whether the maximum per-process data size is already allocated, check
the value of the maxdsiz parameter in the sysconfigtab or system configuration file. If
necessary, increase its value. Changes to do not take effect until the system has been
rebooted (you do not need to rebuild the kernel if you modify sysconfigtab).

For more information about system configuration parameters on Tru64 UNIX systems,
see the Compaq Tru64 UNIX System Tuning and Performance Management guide.

Before you try to run this program again, wait until the new system resources take
effect.

42 severe (42): No such device
FOR$IOS_NO_SUCDEV. A pathname included an invalid or unknown device name
when an OPEN operation was attempted.

43 severe (43): File name specification error
FOR$IOS_FILNAMSPE. A pathname or file name given to an OPEN or INQUIRE
statement was not acceptable to the Compaq Fortran RTL I/O system.

44 severe (44): Inconsistent record type
FOR$IOS_INCRECTYP. The RECORDTYPE value in an OPEN statement did not
match the record type attribute of the existing file that was opened.

45 severe (45): Keyword value error in OPEN statement
FOR$IOS_KEYVALERR. An improper value was specified for an OPEN or CLOSE
statement specifier requiring a value.

(continued on next page)

8–20 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

46 severe (46): Inconsistent OPEN/CLOSE parameters
FOR$IOS_INCOPECLO. Specifications in an OPEN or CLOSE statement were
inconsistent. Some invalid combinations follow:

• READONLY or ACTION=’READ’ with STATUS=’NEW’ or
STATUS=’SCRATCH’

• READONLY with STATUS=’REPLACE’, ACTION=’WRITE’,
or ACTION=’READWRITE’

• ACCESS=’APPEND’ with READONLY, ACTION=’READ’, STATUS=’NEW’, or
STATUS=’SCRATCH’

• DISPOSE=’SAVE’, ’PRINT’, or ’SUBMIT’ with STATUS=’SCRATCH’

• DISPOSE=’DELETE’ with READONLY

• CLOSE statement STATUS=’DELETE’ with OPEN statement READONLY

• ACCESS=’APPEND’ with STATUS=’REPLACE’

• ACCESS=’DIRECT’ or ’KEYED’ with POSITION=’APPEND’, ’ASIS’, or
’REWIND’

47 severe (47): Write to READONLY file
FOR$IOS_WRIREAFIL. A write operation was attempted to a file that was declared
ACTION=’READ’ or READONLY in the OPEN statement that is currently in effect.

48 severe (48): Invalid argument to Fortran Run-Time Library
FOR$IOS_INVARGFOR. The compiler passed an invalid or improperly coded argument
to the Compaq Fortran RTL. This can occur if the compiler is newer than the RTL in
use.

51 severe (51): Inconsistent file organization
FOR$IOS_INCFILORG. The file organization specified in an OPEN statement did not
match the organization of the existing file.

53 severe (53): No current record
FOR$IOS_NO_CURREC. Attempted to execute a REWRITE statement to rewrite a
record when the current record was undefined. To define the current record, execute
a successful READ statement. You can optionally perform an INQUIRE statement
on the logical unit after the READ statement and before the REWRITE statement.
No other operations on the logical unit may be performed between the READ and
REWRITE statements.

(continued on next page)

Run-Time Errors and Signals 8–21

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

55 severe (55): DELETE error
FOR$IOS_DELERR. An error condition was detected by the Compaq Fortran RTL I/O
system during execution of a DELETE statement.

57 severe (57): FIND error
FOR$IOS_FINERR. The Compaq Fortran RTL I/O system detected an error condition
during execution of a FIND statement.

581 info (58): Format syntax error at or near xx
FOR$IOS_FMTSYN. Check the statement containing xx, a character substring
from the format string, for a format syntax error. For information about FORMAT
statements, refer to the Compaq Fortran Language Reference Manual.

59 severe (59): List-directed I/O syntax error
FOR$IOS_LISIO_SYN2. The data in a list-directed input record had an invalid format,
or the type of the constant was incompatible with the corresponding variable. The
value of the variable was unchanged.

60 severe (60): Infinite format loop
FOR$IOS_INFFORLOO. The format associated with an I/O statement that included
an I/O list had no field descriptors to use in transferring those values.

61 severe or info3 (61): Format/variable-type mismatch
FOR$IOS_FORVARMIS2. An attempt was made either to read or write a real variable
with an integer field descriptor (I, L, O, Z, B), or to read or write an integer or logical
variable with a real field descriptor (D, E, or F). To suppress this error message, see
Section 3.24.

62 severe (62): Syntax error in format
FOR$IOS_SYNERRFOR. A syntax error was encountered while the RTL was
processing a format stored in an array or character variable.

1Identifies errors not returned by IOSTAT.
2The ERR transfer is taken after completion of the I/O statement for error numbers 59, 61, 63, 64, and 68.
The resulting file status and record position are the same as if no error had occurred. However, other I/O
errors take the ERR transfer as soon as the error is detected, so file status and record position are undefined.
3For errors 61 and 63, the severity depends on the -check keywords used during compilation (f90
command).

(continued on next page)

8–22 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

63 error or info3 (63): Output conversion error
FOR$IOS_OUTCONERR2. During a formatted output operation, the value of a
particular number could not be output in the specified field length without loss of
significant digits. When this situation is encountered, the overflowed field is filled
with asterisks to indicate the error in the output record. If no ERR address has been
defined for this error, the program continues after the error message is displayed.

To suppress this error message, see Section 3.27.

64 severe (64): Input conversion error
FOR$IOS_INPCONERR2. During a formatted input operation, an invalid character
was detected in an input field, or the input value overflowed the range representable
in the input variable. The value of the variable was set to zero.

65 error (65): Floating invalid
FOR$IOS_FLTINV. During an arithmetic operation, the floating-point values used in
a calculation were invalid for the type of operation requested or invalid exceptional
values. For example, when requesting a log of the floating-point values 0.0 or a
negative number. For certain arithmetic expressions, specifying the -check nopower
option can suppress this message (see Section 3.25). For information on allowing
exceptional IEEE values, see Section 3.44.

66 severe (66): Output statement overflows record
FOR$IOS_OUTSTAOVE. An output statement attempted to transfer more data than
would fit in the maximum record size.

67 severe (67): Input statement requires too much data
FOR$IOS_INPSTAREQ. Attempted to read more data than exists in a record with an
unformatted READ statement or with a formatted sequential READ statement from a
file opened with a PAD specifier value of ’NO’.

68 severe (68): Variable format expression value error
FOR$IOS_VFEVALERR2. The value of a variable format expression was not within
the range acceptable for its intended use; for example, a field width was less than or
equal to zero. A value of 1 was assumed, except for a P edit descriptor, for which a
value of zero was assumed.

2The ERR transfer is taken after completion of the I/O statement for error numbers 59, 61, 63, 64, and 68.
The resulting file status and record position are the same as if no error had occurred. However, other I/O
errors take the ERR transfer as soon as the error is detected, so file status and record position are undefined.
3For errors 61 and 63, the severity depends on the -check keywords used during compilation (f90
command).

(continued on next page)

Run-Time Errors and Signals 8–23

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

691 error (69): Process interrupted (SIGINT)
FOR$IOS_SIGINT. The process received the signal SIGINT. Determine source of this
interrupt signal (described in signal(3)).

701 severe (70): Integer overflow
FOR$IOS_INTOVF. During an arithmetic operation, an integer value exceeded byte,
word, or longword range. The result of the operation was the correct low-order part.
See Chapter 9 for ranges of the various integer data types. Consider specifying a
larger integer data size (modify source program or, for an INTEGER declaration,
possibly use the f90 option -integer_size nn).

711 severe (71): Integer divide by zero
FOR$IOS_INTDIV. During an integer arithmetic operation, an attempt was made to
divide by zero. The result of the operation was set to the dividend, which is equivalent
to division by 1.

721 error (72): Floating overflow
FOR$IOS_FLTOVF. During an arithmetic operation, a floating-point value exceeded
the largest representable value for that data type. See Chapter 9 for ranges of the
various data types.

731 error (73): Floating divide by zero
FOR$IOS_FLTDIV. During a floating-point arithmetic operation, an attempt was made
to divide by zero.

741 error (74): Floating underflow
FOR$IOS_FLTUND. During an arithmetic operation, a floating-point value became
less than the smallest finite value for that data type. Depending on the values of
the -fpen option (see Section 3.44), the underflowed result was either set to zero or
allowed to gradually underflow. See Chapter 9 for ranges of the various data types.

1Identifies errors not returned by IOSTAT.

(continued on next page)

8–24 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

751 error (75): Floating point exception
FOR$IOS_SIGFPE. A floating-point exception occurred. Core dump file created.
Possible causes include:

• Division by zero

• Overflow

• Invalid operation, such as subtraction of infinite values, multiplication of zero by
infinity (without signs), division of zero by zero or infinity by infinity

• Conversion of floating-point to fixed-point format when an overflow prevents
conversion

761 error (76): IOT trap signal
FOR$IOS_SIGIOT. Core dump file created. Examine core dump for possible cause of
this IOT signal. For more information about signals, see Section 8.3.

771 severe (77): Subscript out of range
FOR$IOS_SUBRNG. An array reference was detected outside the declared array
bounds.

781 error (78): Process killed (SIGTERM)
FOR$IOS_SIGTERM. The process received the signal SIGTERM. Determine source of
this software termination signal (described in signal(3)).

791 error (79): Process quit (SIGQUIT)
FOR$IOS_SIGQUIT. The process received the signal SIGQUIT. Core dump file created.
Determine source of this quit signal (described in signal(3)).

1Identifies errors not returned by IOSTAT.

(continued on next page)

Run-Time Errors and Signals 8–25

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

951 info (95): Floating-point conversion failed
FOR$IOS_FLOCONFAI. The attempted unformatted read or write of nonnative
floating-point data failed because the floating-point value:

• Exceeded the allowable maximum value for the equivalent native format and was
set equal to infinity (plus or minus)

• Was infinity (plus or minus) and was set to infinity (plus or minus)

• Was invalid and was set to not a number (NaN)

Very small numbers are set to zero (0). This error could be caused by the specified
nonnative floating-point format not matching the floating-point format found in the
specified file.

Check the following:

• The correct file was specified.

• The record layout matches the format Compaq Fortran is expecting.

• The ranges for the data being used (Chapter 9)

• The correct nonnative floating-point data format was specified (Chapter 10).

108 severe (108): Cannot stat file
FOR$IOS_CANSTAFIL. Attempted stat operation on the indicated file failed. Make
sure correct file and unit were specified.

120 severe (120): Operation requires seek ability
FOR$IOS_OPEREQSEE. Attempted an operation on a file that requires the ability to
perform seek operations on that file. Make sure the correct unit, directory path, and
file were specified.

1301

(TU*X only)
severe (130): User breakpoint (SIGTRAP)
FOR$IOS_BRK_USERBP. Break exception generated a SIGTRAP signal (described in
signal(3)). Core dump file created.

Examine core dump for possible cause.

1311

(TU*X only)
severe (131): Kernel breakpoint (SIGTRAP)
FOR$IOS_BRK_KERNELBP. Break exception generated a SIGTRAP signal (described
in signal(3)). Core dump file created.

Examine core dump for possible cause.

1Identifies errors not returned by IOSTAT.

(continued on next page)

8–26 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

1351

(TU*X only)
severe (135): User single step (SIGTRAP)
FOR$IOS_BRK_SSTEPBP. Break exception generated a SIGTRAP signal (described in
signal(3)). Core dump file created.

Examine core dump for possible cause.

1361

(TU*X only)
severe (136): Overflow check (SIGTRAP)
FOR$IOS_BRK_OVERFLOW. Break exception generated a SIGTRAP signal (described
in signal(3)). Core dump file created.

The cause is an integer overflow. Try recompiling with the -check overflow option
(perhaps with the decfort_dump_flag environment variable set) or examine the core
dump file to determine the source code in error.

1371

(TU*X only)
severe (137): Divide by zero check (SIGTRAP)
FOR$IOS_BRK_DIVZERO. Break exception generated a SIGTRAP signal (described in
signal(3)). Core dump file created.

Examine core dump file for possible cause.

1381 severe (138): Array index out of bounds (SIGTRAP on TU*X, SIGILL on L*UX)
FOR$IOS_BRK_RANGE. Break exception generated a SIGTRAP signal (described in
signal(3)). Core dump file created.

The cause is an array subscript that is outside the dimensioned boundaries of that
array.

Either recompile with the -check bounds option (perhaps with the decfort_dump_flag
environment variable set) or examine the core dump file to determine the source code
in error.

1391 severe (139): Array index out of bounds for index nn (SIGTRAP on TU*X,
SIGILL on L*UX)
FOR$IOS_BRK_RANGE2. Break exception generated a SIGTRAP signal (described in
signal(3)). Core dump file created.

The cause is an array subscript that is outside the dimensioned boundaries of the
array index n.

Either recompile with the -check bounds option (perhaps with the decfort_dump_flag
environment variable set) or examine the core dump file to determine the source code
in error.

1Identifies errors not returned by IOSTAT.

(continued on next page)

Run-Time Errors and Signals 8–27

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

1401 severe (140): Floating inexact
FOR$IOS_FLTINE. A floating-point arithmetic or conversion operation gave a result
that differs from the mathematically exact result. This trap is reported if the rounded
result of an IEEE operation is not exact.

1441 severe (144): reserved operand
FOR$IOS_ROPRAND. The Compaq Fortran RTL encountered a reserved operand.
Please report the problem to Compaq.

1451 severe (145): Assertion error
FOR$IOS_ASSERTERR. The Compaq Fortran RTL encountered an assertion error.
Please report the problem to Compaq.

1461 severe (146): Null pointer error
FOR$IOS_NULPTRERR. Attempted to use a pointer that does not contain an address.
Modify the source program, recompile, and relink.

1471 severe (147): stack overflow
FOR$IOS_STKOVF. The Compaq Fortran RTL encountered a stack overflow while
executing your program.

1481 severe (148): String length error
FOR$IOS_STRLENERR. During a string operation, an integer value appears in a
context where the value of the integer is outside the permissible string length range.

Either recompile with the -check bounds option (perhaps with the decfort_dump_flag
environment variable set) or examine the core file to determine the source code
causing the error.

1491 severe (149): Substring error
FOR$IOS_SUBSTRERR. An array subscript is outside the dimensioned boundaries of
an array.

Either recompile with the -check bounds option (perhaps with the decfort_dump_flag
environment variable set) or examine the core file to determine the source code
causing the error.

1501 severe (150): Range error
FOR$IOS_RANGEERR. An integer value appears in a context where the value of the
integer is outside the permissible range.

1Identifies errors not returned by IOSTAT.

(continued on next page)

8–28 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

1511 severe (151): Allocatable array is already allocated
FOR$IOS_INVREALLOC. An allocatable array must not already be allocated when
you attempt to allocate it. You must deallocate the array before it can again be
allocated.

1521 severe (152): Unresolved contention for Compaq Fortran RTL global
resource
FOR$IOS_RESACQFAI. Failed to acquire a Compaq Fortran RTL global resource for a
reentrant routine.

For a multithreaded program, the requested global resource is held by a different
thread in your program.

For a program using asynchronous handlers, the requested global resource is held
by the calling part of the program (such as main program) and your asynchronous
handler attempted to acquire the same global resource.

1531 severe (153): Allocatable array or pointer is not allocated
FOR$IOS_INVDEALLOC. A Fortran-90 allocatable array or pointer must already be
allocated when you attempt to deallocate it. You must allocate the array or pointer
before it can again be deallocated.

1731 severe (173): A pointer passed to DEALLOCATE points to an array that
cannot be deallocated
FOR$IOS_INVDEALLOC2. A pointer that was passed to DEALLOCATE pointed
to an explicit array, an array slice, or some other type of memory that could not be
deallocated in a DEALLOCATE statement. Only whole arrays previous allocated with
an ALLOCATE statement can be validly passed to DEALLOCATE.

1Identifies errors not returned by IOSTAT.

(continued on next page)

Run-Time Errors and Signals 8–29

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

1741 severe (174): SIGSEGV, message-text
FOR$IOS_SIGSEGV. One of two possible messages occurs for this error number:

• severe (174): SIGSEGV, segmentation fault occurred
For both Compaq Tru64 UNIX and Linux systems, this message indicates that the
program attempted an invalid memory reference. Check the program for possible
errors.

• severe (174): SIGSEGV, possible program stack overflow occurred
On Compaq Tru64 UNIX systems, the following explanatory text also appears:

Program requirements exceed the maximum available stacksize
resource limit. Contact your system administrator for help.

On Linux systems, the following explanatory text also appears:

Program requirements exceed current stacksize resource limit.
Superusers may try increasing this resource by using the
limit stacksize xxx command, where xxx
is unlimited or something larger than your current limit.
Other users should contact your system administrator for help.

1751 severe (175): DATE argument to DATE_AND_TIME is too short (LEN=n),
required LEN=8
FOR$IOS_SHORTDATEARG. The number of characters associated with the DATE
argument to the DATE_AND_TIME intrinsic was shorter than the required length.
You must increase the number of characters passed in for this argument to be at least
8 characters in length. Verify that the TIME and ZONE arguments also meet their
minimum lengths.

1761 severe (176): TIME argument to DATE_AND_TIME is too short (LEN=n),
required LEN=10
FOR$IOS_SHORTTIMEARG. The number of characters associated with the TIME
argument to the DATE_AND_TIME intrinsic was shorter than the required length.
You must increase the number of characters passed in for this argument to be at least
10 characters in length. Verify that the DATE and ZONE arguments also meet their
minimum lengths.

1Identifies errors not returned by IOSTAT.

(continued on next page)

8–30 Run-Time Errors and Signals

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

1771 severe(177): ZONE argument to DATE_AND_TIME is too short (LEN=n),
required LEN=5
FOR$IOS_SHORTZONEARG. The number of characters associated with the ZONE
argument to the DATE_AND_TIME intrinsic was shorter than the required length.
You must increase the number of characters passed in for this argument to be at least
5 characters in length. Verify that the DATE and TIME arguments also meet their
minimum lengths.

1781 severe(178): Divide by zero
FOR$IOS_DIV. A floating-point or integer divide-by-zero exception occurred.

1791�4 severe(179): Cannot allocate array---overflow on array size calculation
FOR$IOS_ARRSIZEOVF. An attempt to dynamically allocate storage for an array
failed because the required storage size exceeds addressable memory.

256 severe (256): Unformatted I/O to unit open for formatted transfers
FOR$IOS_UNFIO_FMT. Attempted unformatted I/O to a unit where the OPEN
statement (FORM specifier) indicated the file was formatted. Check that the correct
unit (file) was specified.

If the FORM specifier was not present in the OPEN statement and the file contains
unformatted data, specify FORM=’UNFORMATTED’ in the OPEN statement.
Otherwise, if appropriate, use formatted I/O (such as list-directed or namelist I/O).

257 severe (257): Formatted I/O to unit open for unformatted transfers
FOR$IOS_FMTIO_UNF. Attempted formatted I/O (such as list-directed or namelist
I/O) to a unit where the OPEN statement indicated the file was unformatted (FORM
specifier). Check that the correct unit (file) was specified.

If the FORM specifier was not present in the OPEN statement and the file contains
formatted data, specify FORM=’FORMATTED’ in the OPEN statement. Otherwise,
if appropriate, use unformatted I/O.

264 severe (264): operation requires file to be on disk or tape
FOR$IOS_OPERREQDIS. Attempted to use a BACKSPACE statement on such devices
as a terminal or pipe.

265 severe (265): operation requires sequential file organization and
access
FOR$IOS_OPEREQSEQ. Attempted to use a BACKSPACE statement on a file whose
organization was not sequential or whose access was not sequential. A BACKSPACE
statement can only be used for sequential files opened for sequential access.

1Identifies errors not returned by IOSTAT.
4Identifies errors that can be returned by STAT in an ALLOCATE statement.

(continued on next page)

Run-Time Errors and Signals 8–31

Table 8–3 (Cont.) Run-Time Error Messages and Explanations

Number Severity Level, Number, and Message Text; Condition Symbol and Explanation

2661 error (266): Fortran abort routine called
FOR$IOS_PROABOUSE. The program called abort to terminate the program. For
more information on signals, see Section 8.3.

2681 severe (268): End of record during read
FOR$IOS_ENDRECDUR. An end-of-record condition was encountered during
execution of a nonadvancing I/O READ statement that did not specify the EOR branch
specifier.

2971 info (297): nn floating invalid traps
FOR$IOS_FLOINVEXC. The total number of floating-point invalid data traps
encountered during program execution was nn. This message appears at program
completion.

2981 info (298): nn floating overflow traps
FOR$IOS_FLOOVFEXC. The total number of floating-point overflow traps encountered
during program execution was nn. This message appears at program completion.

2991 info (299): nn floating divide-by-zero traps
FOR$IOS_FLODIV0EXC. The total number of floating-point divide-by-zero traps
encountered during program execution was nn. This message appears at program
completion.

3001 info (300): nn floating underflow traps
FOR$IOS_FLOUNDEXC. The total number of floating-point underflow traps
encountered during program execution was nn. This message appears at program
completion.

1Identifies errors not returned by IOSTAT.

For More Information:

• On locating exceptions within the debugger, see Section 4.9.

• On file operations, see Section 7.5, Section 7.6, and Section 7.7.

• On record operations, see Section 7.8.

• On f90 and fort command-line options, see Chapter 3.

• On data types, see Chapter 9.

8–32 Run-Time Errors and Signals

9
Data Types and Representation

This chapter contains the following topics:

• Section 9.1, Summary of Data Types and Characteristics

• Section 9.2, Integer Data Representations

• Section 9.3, Logical Data Representations

• Section 9.4, Native IEEE Floating-Point Representations and Exceptional
Values

• Section 9.5, Character Representation

• Section 9.6, Hollerith Representation

Note

In figures in this chapter, the symbol :A specifies the address of the
byte containing bit 0, which is the starting address of the represented
data element.

Compaq Fortran expects numeric data to be in native little endian
order, in which the least-significant, rightmost bit (bit 0) or byte has a
lower address than the most-significant, leftmost bit (or byte).

For More Information:

• On using nonnative big endian and VAX floating-point formats, see
Chapter 10.

• On using Compaq Fortran I/O, see Chapter 7.

Data Types and Representation 9–1

9.1 Summary of Data Types and Characteristics
Table 9–1 lists the intrinsic data types provided by Compaq Fortran, the
storage required, and valid numeric ranges.

Table 9–1 Compaq Fortran Intrinsic Data Types, Storage, and Numeric Ranges

Data Type Bytes Description

BYTE
(INTEGER*1)

1 (8 bits) A BYTE declaration is a signed integer data type
equivalent to INTEGER*1 or INTEGER (KIND=1).

INTEGER 1, 2, 4, or
8

Signed integer whose size is controlled by a kind type
parameter or, if a kind type parameter (or size specifier)
is omitted, certain f90 or fort command options (see
Section 9.2.1).

INTEGER (KIND=1)
INTEGER*1

1 (8 bits) Signed integer value from –128 to 127 (–2**7 to 2**7–1).
Unsigned values from 0 to 255 (2**8-1)1.

INTEGER (KIND=2)
INTEGER*2

2 (16
bits)

Signed integer value from –32,768 to 32,767 (–2**15 to
2**15–1). Unsigned values from 0 to 65535 (2**16-1)1.

INTEGER (KIND=4)
INTEGER*4

4 (32
bits)

Signed integer value from –2,147,483,648 to
2,147,483,647 (–2**31 to 2**31–1). Unsigned values from
0 to 4,294,967,295 (2**32-1)1.

INTEGER (KIND=8)
INTEGER*8

8 (64
bits)

Signed integer value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (–2**63 to 2**63–1).

LOGICAL 1, 2, 4, or
8

Logical value whose size is controlled by a kind type
parameter or, if a kind type parameter (or size specifier) is
omitted, certain f90 command options (see Section 9.3).

LOGICAL (KIND=1)
LOGICAL*1

1 (8 bits) Logical values .TRUE. or .FALSE.2

LOGICAL (KIND=2)
LOGICAL*2

2 (16
bits)

Logical values .TRUE. or .FALSE.2

LOGICAL (KIND=4)
LOGICAL*4

4 (32
bits)

Logical values .TRUE. or .FALSE.2

LOGICAL (KIND=8)
LOGICAL*8

8 (64
bits)

Logical values .TRUE. or .FALSE.2

1This range is allowed for assignment to variables of this type, but the data type is treated as signed in
arithmetic operations.
2Logical data type ranges correspond to their comparable integer data type ranges. For example, in
LOGICAL(KIND=2) L, the range for L is the same as the range for INTEGER(KIND=2) integers.

(continued on next page)

9–2 Data Types and Representation

Table 9–1 (Cont.) Compaq Fortran Intrinsic Data Types, Storage, and Numeric Ranges

Data Type Bytes Description

REAL 4, 8, or
16

Real floating-point numbers whose size is controlled by a
kind type parameter or, if a kind type parameter (or size
specifier) is omitted, certain f90 command options (see
Section 9.4.1).

REAL (KIND=4)
REAL*4

4 (32
bits)

Single-precision real floating-point values in IEEE S_float
format ranging from 1.17549435E–38 to 3.40282347E38.
Values between 1.17549429E–38 and 1.40129846E–45
are denormalized3. You cannot write a constant for a
denormalized number.

DOUBLE PRECISION
REAL (KIND=8)
REAL*8

8 (64
bits)

Double-precision real floating-point values in IEEE T_
float format ranging from 2.2250738585072013D-308 to
1.7976931348623158D308. Values between
2.2250738585072008D–308 and
4.94065645841246544D–324 are denormalized3. You
cannot write a constant for a denormalized number.

REAL (KIND=16)
REAL*16

16 (128
bits)

Extended-precision real floating-point values in Compaq
IEEE style X_float format ranging from
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932.

COMPLEX 8, 16, or
32

Complex floating-point numbers whose size is controlled by
a kind type parameter or, if a kind type parameter (or size
specifier) is omitted, the f90 command options described
in Section 9.4.1.

COMPLEX (KIND=4)
COMPLEX*8

8 (64
bits)

Single-precision complex floating-point values in a pair
of IEEE S_float format parts: real and imaginary. The
real and imaginary parts range from 1.17549435E–38
to 3.40282347E38. Values between 1.17549429E–38 and
1.40129846E–45 are denormalized3. You cannot write a
constant for a denormalized number.

DOUBLE COMPLEX
COMPLEX (KIND=8)
COMPLEX*16

16 (128
bits)

Double-precision complex floating-point values in a
pair of IEEE T_float format parts: real and imagi-
nary. The real and imaginary parts each range from
2.2250738585072013D-308 to 1.7976931348623158D308.
Values between 2.2250738585072008D–308 and
4.94065645841246544D–324 are denormalized3. You
cannot write a constant for a denormalized number.

3For more information on floating-point underflow, see Section 3.44.

(continued on next page)

Data Types and Representation 9–3

Table 9–1 (Cont.) Compaq Fortran Intrinsic Data Types, Storage, and Numeric Ranges

Data Type Bytes Description

COMPLEX (KIND=16)
COMPLEX*32

32 (256
bits)

Extended-precision complex floating-point values in a pair
of Compaq IEEE style X_float format parts: real and
imaginary. The real and imaginary parts each range from
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932.

CHARACTER 1 byte (8
bits) per
character

Character data represented by character code con-
vention. Character declarations can be in the form
CHARACTER(LEN=n), CHARACTER(n), or CHARAC-
TER*n, where n is the number of bytes or n can be (*) to
indicate passed-length format.

HOLLERITH 1 byte (8
bits) per
Hollerith
character

Hollerith constants.

In addition to the intrinsic numeric data types, you can also define nondecimal
(binary, octal, or hexadecimal) constants as explained in the Compaq Fortran
Language Reference Manual.

9.2 Integer Data Representations
Integer data lengths can be one, two, four, or eight bytes in length.

Integer data is signed with the sign bit being 0 (zero) for positive numbers and
1 for negative numbers.

To improve performance, avoid using 2-byte or 1-byte integer declarations (see
Chapter 5).

9.2.1 Integer Declarations and f90/fort Compiler Options
The default size used for an INTEGER data declaration without a kind
parameter is INTEGER (KIND=4) (same as INTEGER*4), unless you do one of
the following:

• Explicitly declare the length of an INTEGER by using a kind parameter,
such as INTEGER (KIND=8). Compaq Fortran provides intrinsic
INTEGER kinds of 1, 2, 4, and 8. Each INTEGER kind number
corresponds to number of bytes used by that intrinsic representation.

To obtain the kind of a variable, use the KIND intrinsic function. You
can also use a size specifier, such as INTEGER*4, but be aware this is an
extension to the Fortran 95/90 standards.

9–4 Data Types and Representation

• Use the f90 command -i2, -integer_size nn, or -i8 options to control
the size of all INTEGER declarations without a kind parameter (see
Section 3.53).

9.2.2 INTEGER (KIND=1) or INTEGER*1 Representation
Intrinsic INTEGER (KIND=1) or INTEGER*1 signed values range from –128
to 127 and are stored in a two’s complement representation. For example:

+22 = 16(hex)
-7 = F9(hex)

INTEGER (KIND=1) or INTEGER*1 values are stored in one byte, as shown
in Figure 9–1.

Figure 9–1 INTEGER (KIND=1) or INTEGER*1 Representation

7

N
G
I
S

06

:ABINARY NUMBER

ZK−9814−GE

9.2.3 INTEGER (KIND=2) or INTEGER*2 Representation
Intrinsic INTEGER (KIND=2) or INTEGER*2 signed values range from
–32,768 to 32,767 and are stored in a two’s complement representation. For
example:

+22 = 0016(hex)
-7 = FFF9(hex)

INTEGER (KIND=2) or INTEGER*2 values are stored in two contiguous bytes,
as shown in Figure 9–2.

Figure 9–2 INTEGER (KIND=2) or INTEGER*2 Representation

15

N
G
I
S

014

:ABINARY NUMBER

ZK−0798−GE

Data Types and Representation 9–5

9.2.4 INTEGER (KIND=4) or INTEGER*4 Representation
Intrinsic INTEGER (KIND=4) or INTEGER*4 signed values range from
–2,147,483,648 to 2,147,483,647 and are stored in a two’s complement
representation. INTEGER (KIND=4) or INTEGER*4 values are stored in
four contiguous bytes, as shown in Figure 9–3.

Figure 9–3 INTEGER (KIND=4) or INTEGER*4 Representation

BINARY NUMBER :A

0

N
G
I
S
31 30

ZK−0799−GE

9.2.5 INTEGER (KIND=8) or INTEGER*8 Representation
Intrinsic INTEGER (KIND=8) or INTEGER*8 signed values range from
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 and are stored in a
two’s complement representation. INTEGER*8 or INTEGER (KIND=8) values
are stored in eight contiguous bytes, as shown in Figure 9–4.

Figure 9–4 INTEGER (KIND=8) or INTEGER*8 Representation

:A

0

N
G
I
S
63 62

ZK−5299A−GE

For More Information:

• On defining constants and assigning values to variables, see the Compaq
Fortran Language Reference Manual.

• On intrinsic functions related to the various data types, such as
SELECTED_INT_KIND, see the Compaq Fortran Language Reference
Manual.

• On the f90 command options that control the size of default INTEGER
declarations, see Section 3.53.

9–6 Data Types and Representation

9.3 Logical Data Representations
Logical data can be one, two, four, or eight bytes in length.

The default size used for a LOGICAL data declaration without a kind
parameter (or size specifier) is LOGICAL (KIND=4) (same as LOGICAL*4),
unless you do one of the following:

• Explicitly declare the length of a LOGICAL declaration by using a kind
parameter, such as LOGICAL (KIND=4). Compaq Fortran provides
intrinsic LOGICAL kinds of 1, 2, 4, and 8. Each LOGICAL kind number
corresponds to number of bytes used by that intrinsic representation.

To obtain the kind of a variable, use the KIND intrinsic function. You
can also use a size specifier, such as LOGICAL*4, but be aware this is an
extension to the Fortran 95/90 standards.

• Use the f90 command -i2, -integer_size nn, or -i8 options to control the
size of LOGICAL declarations without a kind parameter or size specifier
(see Section 3.53).

To improve default performance, avoid using 2-byte or 1-byte logical
declarations (see Chapter 5).

Intrinsic LOGICAL*1 or LOGICAL (KIND=1) values are stored in a single
byte.

Logical (intrinsic) values can also be stored in the following sizes of contiguous
bytes starting on an arbitrary byte boundary:

• Two bytes (LOGICAL (KIND=2) or LOGICAL*2)

• Four bytes (LOGICAL (KIND=4) or LOGICAL*4)

• Eight bytes (LOGICAL (KIND=8) or LOGICAL*8)

The low-order bit determines whether the logical value is true or false. Logical
variables can also be interpreted as integer data (an extension to the Fortran
95/90 standards). For example, in addition to having logical values .TRUE.
and .FALSE., LOGICAL*1 data can also have values in the range –128 to 127.

LOGICAL*1, LOGICAL*2, LOGICAL*4, and LOGICAL*8 data representations
appear in Figure 9–5.

Data Types and Representation 9–7

Figure 9–5 LOGICAL Representations

TRUE: :A1UNDEFINED BITS

n 1 0

:A0UNDEFINED BITS

n 1 0

FALSE:

ZK−5300A−GE

Key: n = 7, 15, 31, or 63 depending on LOGICAL declaration size

For More Information:

• On defining constants and assigning values to variables, see the Compaq
Fortran Language Reference Manual.

• On intrinsic functions related to the various data types, see the Compaq
Fortran Language Reference Manual.

• On the f90 command options that control the size of default LOGICAL
declarations, see Section 3.53.

9.4 Native IEEE Floating-Point Representations and
Exceptional Values

Floating-point numbers are stored on Compaq Tru64 UNIX systems in
standard IEEE little endian floating-point notation, as follows:

• REAL (KIND=4) or REAL*4 declarations are stored in standard IEEE
S_float little endian format.

• REAL (KIND=8) or REAL*8 declarations are stored in standard IEEE
T_float little endian format.

• REAL (KIND=16) declarations are stored in Compaq IEEE style X_float
binary little endian format.

COMPLEX numbers use a pair of little endian REAL values to denote the real
and imaginary parts of the data, as follows:

• COMPLEX (KIND=4) or COMPLEX*8 declarations are stored in IEEE
S_float format using two REAL (KIND=4) or REAL*4 values.

9–8 Data Types and Representation

• COMPLEX (KIND=8) or COMPLEX*16 declarations are stored in IEEE
T_float format using two REAL (KIND=8) or REAL*8 values.

• COMPLEX (KIND=16) or COMPLEX*32 declarations are stored in Compaq
IEEE X_float format using two REAL (KIND=16) or REAL*16 values.

All floating-point formats represent fractions in sign-magnitude notation, with
the binary radix point to the right of the most-significant bit. Fractions are
assumed to be normalized, and therefore the most-significant bit is not stored.
This is called hidden bit normalization. The hidden bit is assumed to be 1
unless the exponent is 0. If the exponent equals 0, then the value represented
is denormalized (subnormal) or plus or minus 0 (zero).

For an explanation of the representation of NaN, Infinity, and related IEEE
exceptional values on Alpha systems, see Section 9.4.8.

9.4.1 REAL and COMPLEX Declarations and f90/fort Compiler Options
The default sizes for REAL and COMPLEX data declarations are as follows:

• For REAL data declarations without a kind parameter (or size specifier),
the default size is REAL (KIND=4) (same as REAL*4).

• For COMPLEX data declarations without a kind parameter (or size
specifier), the default data size is COMPLEX (KIND=4) (same as
COMPLEX*8).

To control the size of all REAL or COMPLEX declarations without a
kind parameter, use the f90 command -real_size nn, -r8, or -r16 (see
Section 3.78).

You can explicitly declare the length of a REAL or a COMPLEX declaration
using a kind parameter or specify DOUBLE PRECISION or DOUBLE
COMPLEX. To control the size of all DOUBLE PRECISION and DOUBLE
COMPLEX declarations, use the f90 command -double_size nn (see
Section 3.78).

Intrinsic REAL kinds are 4 (single precision), 8 (double precision), and 16
(extended precision). Intrinsic COMPLEX kinds are also 4 (single precision),
8 (double precision), and 16 (extended precision), such as REAL (KIND=4) for
single-precision floating-point data. To obtain the kind of a variable, use the
KIND intrinsic function. You can also use a size specifier, such as REAL*4, but
be aware this is an extension to the Fortran 95/90 standards.

Data Types and Representation 9–9

9.4.2 REAL (KIND=4) or REAL*4 Representation
Intrinsic REAL (KIND=4) or REAL*4 (single precision REAL) data occupies
four contiguous bytes stored in IEEE S_float format. Bits are labeled from the
right, 0 through 31, as shown in Figure 9–6.

Figure 9–6 REAL (KIND=4) or REAL*4 Representation

EXPONENT :A

0

N
G
I
S
31 30

ZK−9815−GE

FRACTION

23 22

The form of REAL (KIND=4) or REAL*4 data is sign magnitude, with:

• Bit 31 the sign bit (0 for positive numbers, 1 for negative numbers)

• Bits 30:23 a binary exponent in excess 127 notation

• Bits 22:0 a normalized 24-bit fraction including the redundant most-
significant fraction bit not represented

The value of data is in the approximate range: 1.17549435E–38 (normalized)
to 3.40282347E38. The IEEE denormalized limit is 1.40129846E–45.

The precision is approximately one part in 2**23, typically seven decimal
digits.

9.4.3 REAL (KIND=8) or REAL*8 Representation
Intrinsic REAL (KIND=8) or REAL*8 (same as DOUBLE PRECISION) data
occupies eight contiguous bytes stored in IEEE T_float format. Bits are labeled
from the right, 0 through 63, as shown in Figure 9–7.

Figure 9–7 REAL (KIND=8) or REAL*8 Representation

EXPONENT :A

0

N
G
I
S
63 62

ZK−9816−GE

FRACTION

52 51

The form of REAL (KIND=8) or REAL*8 data is sign magnitude, with:

• Bit 63 the sign bit (0 for positive numbers, 1 for negative numbers)

9–10 Data Types and Representation

• Bits 62:52 a binary exponent in excess 1023 notation

• Bits 51:0 a normalized 53-bit fraction including the redundant most-
significant fraction bit not represented

The value of data is in the approximate range: 2.2250738585072013D-308
(normalized) to 1.7976931348623158D308. The IEEE denormalized limit is
4.94065645841246544D-324.

The precision is approximately one part in 2**52, typically 15 decimal digits.

9.4.4 REAL (KIND=16) or REAL*16 Representation
Intrinsic REAL (KIND=16) or REAL*16 (extended precision) data occupies 16
contiguous bytes stored in Compaq IEEE style X_float format. Bits are labeled
from the right, 0 through 127, as shown in Figure 9–8.

Figure 9–8 REAL (KIND=16) or REAL*16 Representation

EXPONENT :A

0

N
G
I
S

127 126

ZK−7420A−GE

FRACTION

112 111

The form of REAL*16 data is sign magnitude, with:

• Bit 127 the sign bit (0 for positive numbers, 1 for negative numbers)

• Bits 126:112 a binary exponent in excess 16383 notation

• Bits 111:0 a normalized 113-bit fraction including the redundant most-
significant fraction bit not represented

The value of data is in the approximate range:
6.4751751194380251109244389582276465524996Q-4966 to
1.189731495357231765085759326628007016196477Q4932.

Unlike other floating-point formats, there is little if any performance penalty
from using denormalized extended-precision numbers. This is because access-
ing denormalized REAL (KIND=16) numbers does not result in an arithmetic
trap (the extended-precision format is emulated in software). The smallest
normalized number is 3.362103143112093506262677817321753Q-4932.

The precision is approximately one part in 2**112 or typically 33 decimal
digits.

Data Types and Representation 9–11

9.4.5 COMPLEX (KIND=4) or COMPLEX*8 Representation
Intrinsic COMPLEX (KIND=4) or COMPLEX*8 (single-precision COMPLEX)
data is eight contiguous bytes containing a pair of REAL (KIND=4) or REAL*4
values stored in IEEE S_float format.

The low-order four bytes contain REAL (KIND=4) data that represents the
real part of the complex number. The high-order four bytes contain REAL
(KIND=4) data that represents the imaginary part of the complex number, as
shown in Figure 9–9.

Figure 9–9 COMPLEX (KIND=4) or COMPLEX*8 Representation

031 30

ZK−9817−GE

23 22

EXPONENT :A
N
G
I
S

FRACTION

EXPONENT :A+4
N
G
I
S

FRACTION

REAL
PART

IMAGINARY
PART

The limits and underflow characteristics for REAL (KIND=4) or REAL*4 apply
to the two separate real and imaginary parts of a COMPLEX (KIND=4)
or COMPLEX*8 number. Like REAL (KIND=4) numbers, the sign bit
representation is 0 (zero) for positive numbers and 1 for negative numbers.

9.4.6 COMPLEX (KIND=8) or COMPLEX*16 Representation
Intrinsic COMPLEX (KIND=8) or COMPLEX*16 (same as DOUBLE
COMPLEX) data is 16 contiguous bytes containing a pair of REAL*8 values
stored in IEEE T_float format.

The low-order eight bytes contain REAL (KIND=8) data that represents the
real part of the complex data. The high-order eight bytes contain REAL
(KIND=8) data that represents the imaginary part of the complex data, as
shown in Figure 9–10.

9–12 Data Types and Representation

Figure 9–10 COMPLEX (KIND=8) or COMPLEX*16 Representation

063 62

ZK−9818−GE

52 51

EXPONENT :A
N
G
I
S

FRACTION

EXPONENT :A+8
N
G
I
S

FRACTION

REAL
PART

IMAGINARY
PART

The limits and underflow characteristics for REAL (KIND=8) apply to the two
separate real and imaginary parts of a COMPLEX (KIND=8) or COMPLEX*16
number. Like REAL (KIND=8) numbers, the sign bit representation is 0 (zero)
for positive numbers and 1 for negative numbers.

9.4.7 COMPLEX (KIND=16) or COMPLEX*32 Representation
Intrinsic COMPLEX (KIND=16) or COMPLEX*32 (extended precision) data
is 32 contiguous bytes containing a pair of REAL*16 values stored in Compaq
IEEE style X_float.

The low-order 16 bytes contain REAL (KIND=16) data that represents the real
part of the complex data. The high-order 16 bytes contain REAL (KIND=16)
data that represents the imaginary part of the complex data, as shown in
Figure 9–11.

Figure 9–11 COMPLEX (KIND=16) or COMPLEX*32 Representation

0127 126 112 111

EXPONENT :A
N
G
I
S

FRACTION

EXPONENT :A+16
N
G
I
S

FRACTION

REAL
PART

IMAGINARY
PART

LJ−06690

The limits and underflow characteristics for REAL (KIND=16) apply to
the two separate real and imaginary parts of a COMPLEX (KIND=16)
or COMPLEX*32 number. Like REAL (KIND=16) numbers, the sign bit
representation is 0 (zero) for positive numbers and 1 for negative numbers.

Data Types and Representation 9–13

For More Information:

• On converting unformatted data, see Chapter 10.

• On defining constants and assigning values to variables, see the Compaq
Fortran Language Reference Manual.

• On intrinsic functions related to the various data types, such as
SELECTED_REAL_KIND, see the Compaq Fortran Language Reference
Manual.

• On VAX (OpenVMS) floating-point data types (provided for those converting
OpenVMS data), see Section A.4.3.

• On the f90 command options that control the size of REAL and COMPLEX
declarations (without a kind parameter or size specifier), see Section 3.78.

• On the f90 command options that control the size of DOUBLE PRECISION
declarations, see Section 3.34.

• On IEEE binary floating-point, see ANSI/IEEE Standard 754-1985.

9.4.8 Exceptional Floating-Point Representations
Exceptional values usually result from a computation and include plus
infinity, minus infinity, NaN, and denormalized numbers.

Floating-point numbers can be one of the following:

• Finite number—A floating-point number that represents a valid number
(bit pattern) within the normalized ranges of a particular data type,
including –max to –min, –zero, +zero, +min to +max.

For any native IEEE floating-point data type, the values of min or max are
listed in Section 9.4.2 (single precision), Section 9.4.3 (double precision),
and Section 9.4.4 (extended precision).

Special bit patterns that are not finite numbers represent exceptional
values.

• Infinity—An IEEE floating-point bit pattern that represents plus or
minus infinity. Compaq Fortran identifies infinity values with the letters
‘‘Infinity’’ or asterisks (******) in output statements (depends on field
width) or certain hexadecimal values (fraction of 0 and exponent of all 1
values).

• Not-a-Number (NaN)—An IEEE floating-point bit pattern that represents
something other than a number. Compaq Fortran identifies NaN values

9–14 Data Types and Representation

with the letters ‘‘NaN’’ in output statements. A NaN can be a signaling
NaN or a quiet NaN:

A quiet NaN might occur as a result of a calculation, such as 0./0. and
has an exponent of all 1 values and initial fraction bit of 1.

A signaling NaN must be set intentionally (does not result from
calculations) and has an exponent of all 1 values and initial fraction bit
of 0 (with one or more other fraction bits of 1).

• Denormal—Identifies an IEEE floating-point bit pattern that represents a
number whose value falls between zero and the smallest finite (normalized)
number for that data type. The exponent field contains all zeros.

For negative numbers, denormalized numbers range from the next
representable value larger than minus zero to the representable value
that is one bit less than the smallest finite (normalized) negative
number. For positive numbers, denormalized numbers range from the
next representable value larger than positive zero to the representable
value that is one bit less than the smallest finite (normalized) positive
number.

• Zero—Can be the value +0 (all zero bits, also called true zero) or -0 (all
zero bits except the sign bit, such as Z’8000000000000000’).

A NaN or infinity value might result from a calculation that contains a divide
by zero, overflow, or invalid data.

A denormalized number occurs when the result of a calculation falls within the
denormalized range for that data type (subnormal value).

To control floating-point exception handling at run time for the main program,
use the appropriate -fpen option. The callable for_set_fpe routine allows
further control for subprogram use or conditional use during program
execution.

If an exceptional value is used in a calculation, an unrecoverable exception can
occur unless you specify the appropriate -fpen option or use the for_set_fpe
routine. Denormalized numbers can be processed as is, set equal to zero with
program continuation or a program stop, and generate warning messages (see
Section 3.44).

Table 9–2 lists the hexadecimal (hex) values of the IEEE exceptional floating-
point numbers for S_float (single precision), T_float (double precision), and
X_float (extended precision) formats.

Data Types and Representation 9–15

Table 9–2 Exceptional Floating-Point Numbers

Exceptional Number Hex Value

S_float Representation

Infinity (+) Z’7F800000’
Infinity (–) Z’FF800000’
Zero (+0) Z’00000000’
Zero (–0) Z’80000000’
Quiet NaN (+) From Z’7FC00000’ to Z’7FFFFFFF’
Quiet NaN (–) From Z’FFC00000’ to Z’FFFFFFFF’
Signaling NaN (+) From Z’7F800001’ to Z’7FBFFFFF’
Signaling NaN (–) From Z’FF800001’ to Z’FFBFFFFF’

T_float Representation

Infinity (+) Z’7FF0000000000000’
Infinity (–) Z’FFF0000000000000’
Zero (+0) Z’0000000000000000’
Zero (-0) Z’8000000000000000’
Quiet NaN (+) From Z’7FF8000000000000’ to Z’7FFFFFFFFFFFFFFF’
Quiet NaN (–) From Z’FFF8000000000000’ to Z’FFFFFFFFFFFFFFFF’
Signaling NaN (+) From Z’7FF0000000000001’ to Z’7FF7FFFFFFFFFFFF’
Signaling NaN (–) From Z’FFF0000000000001’ to Z’FFF7FFFFFFFFFFFF’

(continued on next page)

9–16 Data Types and Representation

Table 9–2 (Cont.) Exceptional Floating-Point Numbers

Exceptional Number Hex Value

X_float Representation

Infinity (+) Z’7FFF0000000000000000000000000000’
Infinity (–) Z’FFFF0000000000000000000000000000’
Zero (+0) Z’000000000000000000000000000000000’
Zero (–0) Z’800000000000000000000000000000000’
Quiet NaN (+) From Z’7FFF80000000000000000000000000000’

to Z’7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF’
Quiet NaN (–) From Z’FFFF80000000000000000000000000000’

to Z’FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF’
Signaling NaN (+) From Z’7FFF00000000000000000000000000001’

to Z’7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFFF’
Signaling NaN (–) From Z’FFFF00000000000000000000000000001’

to Z’FFFF7FFFFFFFFFFFFFFFFFFFFFFFFFFFF’

Compaq Fortran supports IEEE exception handling, allowing you to test
for infinity by using a comparison of floating-point data (such as generating
positive infinity by using a calculation like x=1.0/0 and comparing x to the
calculated number).

The appropriate f90 command -fpen options or calling the for_set_fpe
routine with appropriate arguments allows program continuation when a
calculation results in a divide by zero, overflow, or invalid data arithmetic
exception, generating an exceptional value (a NaN or Infinity (+ or –)).

To test for a NaN when Compaq Fortran allows continuation for arithmetic
exceptions, you can use the ISNAN intrinsic function.

For example, you might use the following code to test a DOUBLE PRECISION
(REAL (KIND=8)) value:

DOUBLE PRECISION A, B, F
A = 0.
B = 0.

! Perform calculations with variables A and B
.
.
.

! f contains the value to check against a particular NaN

F = A / B

Data Types and Representation 9–17

IF (ISNAN(F)) THEN
WRITE (6,*) ’--> Variable F contains a NaN value <--’

ENDIF

! Inform user that f has the hardware quiet NaN value

! Perform calculations with variable F (or stop program early)

END PROGRAM

This program might be compiled with -fpe2 or -fpe4 to allow:

• Continuation when a NaN (or other exceptional value) is encountered in a
calculation

• A summary message explaining the number and types of arithmetic
exceptions encountered:

% f90 -fpe2 isnan.for
% a.out
forrtl: error: floating invalid
--> Variable F contains a NaN value <--
forrtl: info: 1 floating invalid traps

The FP_CLASS intrinsic function is also available to check for exceptional
values (see the Compaq Fortran Language Reference Manual and the file
/usr/include/fordef.f).

For More Information:

• On using the f90 command -fpen options and the for_set_fpe routine to
control arithmetic exception handling, see Section 3.44 and Section 14.3.2
respectively.

• On exceptional values, see the Alpha Architecture Reference Manual.

• On IEEE binary floating-point exception handling, see the IEEE Standard
for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-1985) and
ieee(3).

• On Compaq Fortran floating-point exception handling, see Chapter 14.

9.5 Character Representation
A character string is a contiguous sequence of bytes in memory, as shown in
Figure 9–12.

9–18 Data Types and Representation

Figure 9–12 CHARACTER Data Representation

:ACHAR 1

CHAR L :A+L−1

ZK−0809−GE

A character string is specified by two attributes: the address A of the first byte
of the string, and the length L of the string in bytes. The length L of a string
is in the range 1 through 65,535.

For More Information:

• On defining constants, assigning values to variables, using substring
expressions, and concatenation, see the Compaq Fortran Language
Reference Manual.

• On intrinsic functions related to the various data types, see the Compaq
Fortran Language Reference Manual.

9.6 Hollerith Representation
Hollerith constants are stored internally, one character per byte. When
Hollerith constants contain the ASCII representation of characters, they
resemble the storage of character data (see Figure 9–12).

When Hollerith constants store numeric data, they usually have a length of
one, two, four, or eight bytes and resemble the corresponding numeric data
type.

For More Information:

• On defining constants and assigning values to variables, see the Compaq
Fortran Language Reference Manual.

• On intrinsic functions related to the various data types, see the Compaq
Fortran Language Reference Manual.

Data Types and Representation 9–19

10
Converting Unformatted Numeric Data

This chapter contains the following topics:

• Section 10.1, Endian Order of Numeric Formats

• Section 10.2, Little Endian Floating-Point Format

• Section 10.3, Native and Supported Nonnative Numeric Formats

• Section 10.4, Limitations of Numeric Conversion

• Section 10.5, Methods of Specifying the Unformatted Numeric Format

• Section 10.6, Additional Information on Nonnative Data

10.1 Endian Order of Numeric Formats
Data storage uses a convention of either little endian or big endian storage,
depending on the computer. The storage convention generally applies to
numeric values that span multiple bytes.

Little endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the lowest address.

• The most significant bit (MSB) value is in the byte with the highest
address.

• The address of the numeric value is the byte containing the LSB.
Subsequent bytes with higher addresses contain more significant bits.

Big endian storage occurs when:

• The least significant bit (LSB) value is in the byte with the highest address.

• The most significant bit (MSB) value is in the byte with the lowest address.

• The address of the numeric value is the byte containing the MSB.
Subsequent bytes with higher addresses contain less significant bits.

Converting Unformatted Numeric Data 10–1

Figure 10–1 shows the difference between the two byte-ordering schemes.

Figure 10–1 Little Endian and Big Endian Storage of an INTEGER Value

ZK−6654A−GE

M
S
B

L
S
B

Little Endian
Byte Order

Big Endian
Byte Order

1003

1000 1002

1002 1001 1000

1001 1003

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1

M
S
B

L
S
B

0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1

Moving data files between little endian and big endian computers requires that
the data be converted.

10.2 Little Endian Floating-Point Format
On Compaq Tru64 UNIX and Linux systems, Compaq Fortran supports the
following little endian floating-point formats in memory:

Floating-Point Size Format in Memory

KIND=4 IEEE S_float

KIND=8 IEEE T_float

KIND=16 Compaq IEEE style X_float

If your program needs to read or write unformatted data files containing a
floating-point format that differs from the format in memory for that data size,
you can request that the unformatted data be converted.

Converting unformatted data is generally faster than converting formatted
data and is less likely to lose precision for floating-point numbers.

10–2 Converting Unformatted Numeric Data

10.3 Native and Supported Nonnative Numeric Formats
Compaq Fortran provides the capability for programs to read and write
unformatted data (originally written using unformatted I/O statements) in
several nonnative floating-point formats and in big endian INTEGER or
floating-point format.

When reading a nonnative unformatted format, the nonnative format on
disk must be converted to native format in memory. Similarly, native data
in memory can be written to a nonnative unformatted format. If a converted
nonnative value is outside the range of the native data type, a run-time
message appears (listed in Table 8–3).

Supported native and nonnative floating-point formats include:

• Standard IEEE little endian floating-point formats1 and little endian
integers. These formats are found on Compaq Tru64 UNIX Alpha systems,
Compaq OpenVMS Alpha systems, Microsoft Windows NT systems,
IBM-compatible PC systems, and Linux Alpha systems.

On Tru64 UNIX and Linux systems, these are the native (in memory)
floating-point and integer formats.

• Standard IEEE big endian floating-point formats1 and big endian integers
found on most Sun systems, most Hewlett-Packard systems (such as
HP-UX systems), and IBM’s RISC System/6000 systems.

• Compaq VAX little endian floating-point formats and little endian integers
supported by Compaq Fortran for OpenVMS VAX systems and Compaq
Fortran for OpenVMS Alpha systems.

• Big endian proprietary floating-point formats and big endian integers
associated with CRAY (CRAY systems).

• Big endian proprietary floating-point formats and big endian integers
associated with IBM (the IBM’s System\370 and similar systems).

The native memory format uses little endian integers and little endian IEEE
floating-point formats, as follows:

• INTEGER and LOGICAL declarations of one, two, four, or eight bytes
(intrinsic kinds 1, 2, 4, and 8). You can specify the integer data length
by using an explicit data declaration (kind parameter or size specifier).
All INTEGER and LOGICAL declarations without a kind parameter or
size specifier will be four bytes in length. To request an 8-byte size for all

1 IEEE floating-point formats are defined in the IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, Institute of Electrical and
Electronics Engineers, August 1985.

Converting Unformatted Numeric Data 10–3

INTEGER and LOGICAL declarations without a kind parameter or size
specifier, use an f90 command-line option on Tru64 UNIX systems or and
fort command-line option on Linux systems (see Section 9.2.1).

• IEEE S_float format for single-precision 4-byte REAL and 8-byte
COMPLEX declarations (KIND=4). You can specify the real or complex
data length by using an explicit data declaration (kind parameter or
size specifier). For all REAL or COMPLEX declarations without a kind
parameter or size specifier, this is the default size unless you use an f90
command-line option to request double-precision sizes (see Section 9.4.1).

• IEEE T_float format for double-precision 8-byte REAL and 16-byte
COMPLEX declarations (KIND=8). You can specify the real or complex
data length by using an explicit data declaration (kind parameter or size
specifier). To request double-precision sizes for all REAL or COMPLEX
declarations without a kind parameter or size specifier, you can use an f90
command-line option (see Section 9.4.1).

• Compaq IEEE style X_float format for extended-precision 16-byte REAL
and 32-byte COMPLEX declarations (KIND=16). You can specify the real
data length by using an explicit data declaration (kind parameter or size
specifier). To request extended-precision sizes for all DOUBLE PRECISION
or DOUBLE COMPLEX declarations, you can use an f90 command-line
option (see Section 9.4.1).

Table 10–1 lists the keywords for the supported unformatted file data formats.
Use the appropriate keyword after the -convert option (such as -convert cray)
or as an environment variable value (see Section 10.5.1 and Section 10.5.2).

10–4 Converting Unformatted Numeric Data

Table 10–1 Unformatted Numeric Formats, Keywords, and Supported Data
Types

Recognized Keyword1 Description

BIG_ENDIAN Big endian integer data of the appropriate INTEGER size
(one, two, four, or eight bytes) and big endian IEEE floating-
point formats for REAL and COMPLEX single- and double-
and extended-precision numbers. INTEGER (KIND=1) or
INTEGER*1 data is the same for little endian and big endian.

CRAY Big endian integer data of the appropriate INTEGER
size (one, two, four, or eight bytes) and big endian CRAY
proprietary floating-point format for REAL and COMPLEX
single- and double-precision numbers.

FDX Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian Compaq proprietary floating-point formats:

• VAX F_float for REAL (KIND=4) and COMPLEX
(KIND=4)

• VAX D_float for REAL (KIND=8) and COMPLEX
(KIND=8)

• IEEE style X_float for REAL (KIND=16) and COMPLEX
(KIND=16)

FGX Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian Compaq proprietary floating-point formats:

• VAX F_float for REAL (KIND=4) and COMPLEX
(KIND=4)

• VAX G_float for REAL (KIND=8) and COMPLEX
(KIND=8)

• IEEE style X_float for REAL (KIND=16) and COMPLEX
(KIND=16)

IBM Big endian integer data of the appropriate INTEGER size
(one, two, or four bytes) and big endian IBM proprietary
(System\370 and similar) floating-point format for REAL and
COMPLEX single- and double-precision numbers.

1When using the data type as a -convert keyword option on the f90 command line, the data
type keyword must be in lowercase, such as -convert big_endian.

(continued on next page)

Converting Unformatted Numeric Data 10–5

Table 10–1 (Cont.) Unformatted Numeric Formats, Keywords, and Supported
Data Types

Recognized Keyword1 Description

LITTLE_ENDIAN Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following native
little endian IEEE floating-point formats:

• S_float for REAL (KIND=4) and COMPLEX (KIND=4)

• T_float for REAL (KIND=8) and COMPLEX (KIND=8)

• IEEE style X_float for REAL (KIND=16) and COMPLEX
(KIND=16)

NATIVE No conversion occurs between memory and disk. This is the
default for unformatted files.

VAXD Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian VAX Compaq proprietary floating-point formats:

• VAX F_float for REAL (KIND=4) and COMPLEX
(KIND=4)

• VAX D_float for REAL (KIND=8) and COMPLEX
(KIND=8)

• VAX H_float for REAL (KIND=16) and COMPLEX
(KIND=16)

VAXG Native little endian integers of the appropriate INTEGER
size (one, two, four, or eight bytes) and the following little
endian VAX Compaq proprietary floating-point formats:

• VAX F_float for REAL (KIND=4) and COMPLEX
(KIND=4)

• VAX G_float for REAL (KIND=8) and COMPLEX
(KIND=8)

• VAX H_float for REAL (KIND=16) and COMPLEX
(KIND=16)

1When using the data type as a -convert keyword option on the f90 command line, the data
type keyword must be in lowercase, such as -convert big_endian.

While this solution is not expected to fulfill all floating-point conversion needs,
it provides the capability to read and write various types of unformatted
nonnative floating-point data.

10–6 Converting Unformatted Numeric Data

For More Information:

• On porting OpenVMS Fortran data files to a Tru64 UNIX Alpha or a Linux
Alpha system for use by Compaq Fortran, see Section A.4.

• On ranges and the format of native IEEE floating-point data types, see
Table 9–1 and Section 9.4.

• On ranges and the format of VAX floating-point data types, see
Section A.4.3.

• On specifying the size of INTEGER declarations (without a kind) using an
f90 command-line option, see Section 9.2.1.

• On specifying the size of LOGICAL declarations (without a kind) using an
f90 command-line option, see Section 9.3.

• On specifying the size of REAL or COMPLEX declarations (without a kind)
using an f90 command-line option, see Section 9.4.1.

• On data declarations and other Compaq Fortran language information, see
the Compaq Fortran Language Reference Manual.

10.4 Limitations of Numeric Conversion
The Compaq Fortran floating-point conversion solution is not expected to fulfill
all floating-point conversion needs.

Data (variables) contained in derived types and record structures (specified in
a STRUCTURE statement) are not converted. When the variables are later
examined as separate fields by the program, they will remain in the binary
format they were stored in on disk, unless the program is modified.

If a program reads an I/O record containing multiple floating-point fields into
an integer array (instead of their respective variables), the fields will not
be converted. When the fields are later examined as separate fields by the
program, they will remain in the binary format they were stored in on disk,
unless the program is modified.

With EQUIVALENCE statements, the data type of the variable named in the
I/O statement is used.

Converting Unformatted Numeric Data 10–7

10.5 Methods of Specifying the Unformatted Numeric Format
The five methods you can use to specify the type of nonnative (or native)
format are as follows:

• Set an environment variable for a specific unit number before the file is
opened. The environment variable is named FORT_CONVERTn, where n is the
unit number.

• Set an environment variable for a specific file name extension before the
file is opened. The environment variable is named FORT_CONVERT.ext,
where ext is the file name extension (suffix).

• Add the CONVERT specifier to the OPEN statement for a specific unit
number.

• Compile the program with an OPTIONS statement that specifies the
/CONVERT=keyword qualifier. This method affects all unit numbers using
unformatted data specified by the program.

• Compile the program with the appropriate command-line option -convert
keyword. This method affects all unit numbers using unformatted data
specified by the program.

If you specify more than one method, the order of precedence when you open a
file with unformatted data is:

1. Check for a FORT_CONVERTn environment variable

2. Check for a FORT_CONVERT.ext environment variable

3. Check the OPEN statement CONVERT specifier

4. Check whether an OPTIONS statement with a /CONVERT=keyword
qualifier was present when the program was compiled

5. Check whether the f90 -convert keyword option was used when the
program was compiled

If none of these methods are specified, no conversion occurs between disk
and memory. Data should therefore be in the native memory format (little
endian integer and little endian IEEE format) or otherwise translated by the
application program.

Any keyword listed in Table 10–1 can be used with any of these methods.

If you are uncertain about the format, you can do the following:

• Open the file (OPEN statement)

10–8 Converting Unformatted Numeric Data

• Use an INQUIRE statement (by unit) that specifies the CONVERT specifier
equated to a character variable

• Close the file (CLOSE statement)

• Open the file using the CONVERT variable value obtained from the
INQUIRE statement

10.5.1 Environment Variable FORT_CONVERTn Method
You can use the environment variable method to specify multiple formats in
a single program, usually one format for each unit number. You specify the
numeric format at run time by setting the appropriate environment variable
before you open that unit number. For example, to specify the numeric format
for unit 9, set environment variable FORT_CONVERT9 to the appropriate value
(such as BIG_ENDIAN) before you run the program.

When you open the file, the environment variable is always used, since this
method takes precedence over the f90 command-line option methods. For
instance, you might use this method to specify that different unformatted
numeric formats for different unit numbers (perhaps in a script file that sets
the environment variable before running the program).

For example, assume you have a previously compiled program that reads
numeric data from unit 28 and writes it to unit 29 using unformatted I/O
statements. You want the program to read nonnative big endian (IEEE
floating-point) format from unit 28 and write that data in native little endian
format to unit 29.

In this case, the data is converted from big endian IEEE format to native little
endian IEEE memory format (S_float, T_float, X_float) when read from unit
28, and then written without conversion in native little endian IEEE format to
unit 29.

Without requiring source code modification or recompilation of this program,
the following C shell command sequence sets the appropriate environment
variables before running the program (/usr/userc/conv_ieee.out):

% setenv FORT_CONVERT28 BIG_ENDIAN
% setenv FORT_CONVERT29 NATIVE
% /usr/userc/conv_ieee.out

Figure 10–2 shows the data formats used on disk and in memory when the
example file /usr/userc/conv_ieee.out is run after the environment variables
are set with shell commands.

Converting Unformatted Numeric Data 10–9

Figure 10–2 Sample Unformatted File Conversion

ZK−6655A−GE

Unit 28: Read
Big Endian IEEE
and Convert to
Native Formats

Unit 29: Do Not Convert;
Write Native Memory Formats

(Little Endian IEEE)

Unformatted Data Files on Disk

Native Memory Formats

Little Endian Integers and
Little Endian IEEE S_float,

T_float, and X_float Formats

For More Information:

• On the shell commands you can use to set or unset environment variables,
see Appendix B, Compaq Fortran Environment Variables.

10.5.2 Environment Variable FORT_CONVERT.ext Method
You can use this method to specify formats in a single program, usually one
format for each specified file name extension (suffix). You specify the numeric
format at run time by setting the appropriate environment variable before an
implicit or explicit OPEN statement to one or more unformatted files.

For example, assume you have a previously compiled program that reads
floating-point numeric data from one file and writes to another file using
unformatted I/O statements. You want the program to read nonnative big
endian (IEEE floating-point) format from a file with a .dat file extension suffix
and write that data in native little endian format to a file with a suffix of
.data. In this case, the data is converted from big endian IEEE format to
native little endian IEEE memory format when read from file.dat, and then
written without conversion in native little endian IEEE format to the file with
a suffix of .data, assuming that environment variables FORT_CONVERT.DATA
and FORT_CONVERTn (for that unit number) are not defined.

10–10 Converting Unformatted Numeric Data

Without requiring source code modification or recompilation of this program,
the following command sequence sets the appropriate environment variables
before running the program (/usr/userc/proj2/cvbigend.exe):

% setenv FORT_CONVERT.DAT BIG_ENDIAN
% /usr/userc/proj2/cvbigend.exe

The FORT_CONVERTn method takes precedence over this method. When
the appropriate environment variable is set when you open the file,
the FORT_CONVERT.ext environment variable is used if a FORT_CONVERTn
environment variable is not set for the unit number.

The FORT_CONVERTn and FORT_CONVERT.ext environment variable methods take
precedence over the other methods. For instance, you might use this method
to specify that a unit number will use a particular format instead of the format
specified in the program (perhaps for a one-time file conversion).

The file name extension (suffix) is case-sensitive. The extension must be part
of the file name (not the directory path).

10.5.3 OPEN Statement CONVERT=’keyword’ Method
You can use the OPEN statement method to specify multiple formats in a
single program, usually one format for each specified unit number. This
method requires an explicit file OPEN statement to specify the numeric format
of the file for that unit number.

This method takes precedence over the OPTIONS statement or the -convert
keyword method, but has a lower precedence than the environment variable
methods.

The following source code shows an OPEN statement coded for unformatted
VAXD numeric data (read from unit 15), and an OPEN statement coded for
unformatted native little endian format (written to unit 20). The absence of the
CONVERT specifier (in the second OPEN statement) or environment variable
FORT_CONVERT20 indicates native little endian data for unit 20:

OPEN (CONVERT=’VAXD’, FILE=’graph3.dat’, FORM=’UNFORMATTED’, UNIT=15)
.
.
.
OPEN (FILE=’graph3_ieee.dat’, FORM=’UNFORMATTED’, UNIT=20)

A hard-coded OPEN statement CONVERT specifier keyword value cannot be
changed after compile time. However, to allow selection of a particular format
at run time, you can equate the CONVERT specifier to a variable and provide
the user with a menu that allows selection of the appropriate format (menu
choice sets the variable) before the OPEN occurs.

Converting Unformatted Numeric Data 10–11

You can also select a particular format for a unit number at run time by using
the environment variable method (see Section 10.5.1), which takes precedence
over the OPEN statement CONVERT specifier method.

You can issue an INQUIRE statement (by unit number) to an opened file to
obtain the current CONVERT option in use.

10.5.4 OPTIONS Statement /CONVERT=keyword Method
You can only specify one numeric file format for all unit numbers using this
method, unless you also use one of the FORT_CONVERT environment variable
methods or the OPEN statement CONVERT specifier method.

You specify the numeric format at compile time and must compile all routines
under the same OPTIONS statement CONVERT=keyword qualifier. You can
use one source program and compile it using different f90 commands to create
multiple executable programs that each read a certain format.

The environment variables and OPEN CONVERT specifier methods take
precedence over this method. For instance, you might use the environment
variables or OPEN CONVERT specifier method to specify each unit number
that will use a format other than that specified using the f90 command-line
option method. This method takes precedence over the f90 command -convert
keyword option method.

You can use OPTIONS statements to specify the appropriate floating-
point formats (in memory and in unformatted files) instead of using the
corresponding f90 command-line options. For example, to use VAX G_float
(along with VAX F_float and VAX H_float) as the unformatted file format,
specify the following OPTIONS statement:

OPTIONS /CONVERT=VAXG

Because this method affects all unit numbers, you cannot read data in one
format and write it in another format using the OPTIONS statement method,
unless you use it in combination with one of the environment variable methods
or the OPEN statement CONVERT keyword method to specify a different
format for a particular unit number.

For More Information:

• On the OPTIONS statement, see the Compaq Fortran Language Reference
Manual.

10–12 Converting Unformatted Numeric Data

10.5.5 Command-Line -convert keyword Option Method
You can specify only one numeric format for all unit numbers by using the
command-line option method, unless you also use the environment variable
method or CONVERT specifier method.

You specify the numeric format at compile time and must compile all routines
under the same -convert keyword option. You can use one source program
and compile it using different f90 commands to create multiple executable
programs that each read a certain format.

The other methods take precedence over this method. For instance, you might
use the environment variables or OPEN CONVERT specifier method to specify
each unit number that will use a format other than that specified using the
f90 command-line option method.

For example, the following shell commands compile program file.f90 to
use VAX D_float and F_float data. Data is converted between the file format
and the little endian memory format (little endian integers and S_float, T_
float, and X_float little endian IEEE floating-point format). The created file,
vaxd_convert.out, is then run:

% f90 -convert vaxd -o vaxd_convert.out file.f90
% vaxd_convert.out

Because this method affects all unit numbers, you cannot read or write data in
different formats if you only use the f90 -convert keyword method. To specify
a different format for a particular unit number, use the f90 -convert keyword
method in combination with an environment variable method or the OPEN
statement CONVERT specifier method.

10.6 Additional Information on Nonnative Data
The following information applies to porting nonnative data:

• When porting source code along with the unformatted data, vendors might
use different units for specifying the record length (RECL specifier, see
Section 7.4.4) of unformatted files. While formatted files are specified in
units of characters (bytes), unformatted files are specified in longword units
for Compaq Fortran and some other vendors. The Fortran 90 standard,
in Section 9.3.4.5, states: ‘‘If the file is being connected for unformatted
input/output, the length is measured in processor-dependent units.’’1

1 American National Standard Fortran 90, ANSI X3.198-1991, and International
Standards Organization standard ISO/IEC 1539:1991

Converting Unformatted Numeric Data 10–13

• Certain vendors apply different OPEN statement defaults to determine
the record type. The default record type (RECORDTYPE) with Compaq
Fortran depends on the values for the ACCESS and FORM specifiers
for the OPEN statement, as described in the Compaq Fortran Language
Reference Manual.

• Certain vendors use a different identifier for the logical data types, such as
hex FF instead of 01 to denote true.

• Source code being ported might be coded specifically for big endian use.

For More Information:

• On OPEN statement specifiers, see the Compaq Fortran Language
Reference Manual.

• On Compaq Fortran file characteristics, see Section 7.4, Types of Files and
File Characteristics.

• On Compaq Fortran record types, see Section 7.4.3, Record Types, Record
Overhead, and Maximum Record Length and Section 7.10, Format of
Compaq Fortran Record Types.

10–14 Converting Unformatted Numeric Data

11
Procedure Data Interfaces and Mixed

Language Programming

This chapter contains the following topics:

• Section 11.1, Compaq Fortran Procedures and Argument Passing

• Section 11.2, Using the cDEC$ ALIAS and cDEC$ ATTRIBUTES Directives

• Section 11.3, Calling Between Compaq Fortran and C

Note

For information about calling between Compaq Fortran 77 and Compaq
Fortran, see Section A.5.

11.1 Compaq Fortran Procedures and Argument Passing
The bounds of the main program are usually defined by using PROGRAM
and END or END PROGRAM statements. Within the main program, you can
define entities related to calling a function or subroutine, including modules
and interface blocks.

A function or subroutine is considered a subprogram. A subprogram can
accept one or more data values passed from the calling routine; the values are
called arguments.

There are two types of arguments:

• Actual arguments are specified in the subprogram call.

• Dummy arguments are variables within the function or subroutine that
receive the values (from the actual arguments).

Procedure Data Interfaces and Mixed Language Programming 11–1

The following methods define the interface between procedures:

• Declare and name a function with a FUNCTION statement and terminate
the function definition with an END FUNCTION statement. Set the value
of the data to be returned to the calling routine by using the function name
as a variable in an assignment statement (or by specifying RESULT in a
FUNCTION statement).

Reference a function by using its name in an expression.

• Declare and name a subroutine with a SUBROUTINE statement
and terminate the subroutine definition with an END SUBROUTINE
statement. No value is returned by a subroutine.

Reference a subroutine by using its name in a CALL statement (or use a
defined assignment statement).

• For an external subprogram, depending on the type of arguments or
function return values, you may need to declare an explicit interface to the
arguments and function return value by using an interface block.

Declare and name an interface block with an INTERFACE statement and
terminate the interface block definition with an END INTERFACE
statement. The interface body that appears between these two
statements consists of function or subroutine specification statements.

• You can make data, specifications, definitions, procedure interfaces, or
procedures globally available to the appropriate parts of your program by
using a module (use association).

Declare a module with a MODULE statement and terminate the module
definition with an END MODULE statement. Include the definitions and
other information contained within the module in appropriate parts of
your program with a USE statement. A module can contain interface
blocks, function and subroutine declarations, data declarations, and other
information.

For More Information:

• On the Compaq Fortran language, including statement functions and
defined assignment statements not described in this manual, see the
Compaq Fortran Language Reference Manual.

11–2 Procedure Data Interfaces and Mixed Language Programming

11.1.1 Explicit and Implicit Interfaces
An explicit interface occurs when the properties of the subprogram interface
are known within the scope of the function or subroutine reference. For
example, the function reference or CALL statement occurs at a point where
the function or subroutine definition is known through host or use association.
Intrinsic procedures also have an explicit interface.

An implicit interface occurs when the properties of the subprogram interface
are not known within the scope of the function or subroutine reference. In this
case, the procedure data interface is unknown to the compiler. For example,
external routines (EXTERNAL statement) that have not been defined in an
interface block have an implicit interface.

In most cases, you can use a procedure interface block to make an implicit
interface an explicit one. An explicit interface provides the following
advantages over an implicit interface:

• It provides better compile-time argument checking and fewer run-time
errors.

• In some cases, it provides faster run-time performance.

• It provides ease of locating problems in source files since the features help
to make the interface self-documenting.

• It allows use of some language features that require an explicit interface,
such as array function return values.

• When passing certain types of arguments between Compaq Fortran and
non-Fortran languages, an explicit interface may be needed. For example,
detailed information about an assumed-shape array argument can be
obtained from a Compaq Fortran array descriptor. An array descriptor is
generated when an appropriate explicit interface is used for certain types
of array arguments.

For More Information:

• See Section 11.1.7, Compaq Fortran Array Descriptor Format.

11.1.2 Types of Compaq Fortran Subprograms
There are three major types of subprograms:

• A subprogram might be local to a single program unit (known only
within its host). Since the subprogram definition and all its references
are contained within the same program unit, it is called an internal
subprogram.

An internal subprogram has an explicit interface.

Procedure Data Interfaces and Mixed Language Programming 11–3

• A subprogram needed in multiple program units should be placed within
a module. To create a module subprogram within a module, add
a CONTAINS statement followed by the subprogram code. A module
subprogram can also contain internal subprograms.

A module subprogram has an explicit interface in those program units
that reference the module with a USE statement (unless it is declared
PRIVATE).

• External subprograms are needed in multiple program units but cannot
be placed in a module. This makes their procedure interface unknown
in the program unit in which the reference occurs. Examples of external
subprograms include general-purpose library routines in standard libraries
and subprograms written in other languages, like C or Ada.

Unless an external subprogram has an associated interface block, it has
an implicit interface. To provide an explicit interface for an external
subprogram, create a procedure interface block (see Section 11.1.3).

For subprograms with no explicit interface, declare the subprogram name
as external. You can do this by using the EXTERNAL statement within
the program unit where the external subprogram reference occurs. This
allows the linker to resolve the reference.

An external subprogram must not contain PUBLIC or PRIVATE
statements.

11.1.3 Using Procedure Interface Blocks
Procedure interface blocks allow you to specify an explicit interface for a
subprogram as well as define generic procedure names. This section limits
discussion to those interface blocks used to provide an explicit subprogram
interface. For complete information on interface blocks, see the Compaq
Fortran Language Reference Manual.

The components of a procedure interface block follow:

• Begin a procedure interface block with an INTERFACE statement. Unless
you are defining a generic procedure name, user-defined operator, or
user-defined assignment, only the word INTERFACE is needed.

• To provide the interface body, copy the procedure specification statements
from the actual subprogram, including:

The FUNCTION or SUBROUTINE statements.

11–4 Procedure Data Interfaces and Mixed Language Programming

The interface body. For a procedure interface block, this includes
specification (declaration) statements for the dummy arguments and a
function return value (omit data assignment, FORMAT, ENTRY, DATA,
and related statements).

The interface body can include USE statements to obtain definitions.

In parallel HPF programs (TU*X only), any DISTRIBUTE, ALIGN, and
INHERIT (!HPF) directives for the dummy arguments must also be
included.

The END FUNCTION or END SUBROUTINE statements.

• Terminate the interface block with an END INTERFACE statement.

• To make the procedure interface block available to multiple program units,
you can do one of the following:

Place the procedure interface block in a module. Reference the module
with a USE statement in each program unit that references the
subprogram (use association).

Place the procedure interface block in each program unit that
references the subprogram.

For an example of a module that contains a procedure interface block, see
Section 1.3.

11.1.4 Passing Arguments and Function Return Values
Compaq Fortran on Tru64 UNIX and Linux systems uses the same argument-
passing conventions as Compaq Fortran 77 on Compaq Tru64 UNIX systems
for non-pointer scalar variables and explicit-shape and assumed-size arrays.

When calling Compaq Fortran subprograms, be aware that Compaq Fortran
expects to receive arguments the same way it passes them.

The main points about argument passing and function return values are as
follows:

• Arguments are generally passed by reference: the address of the argument
is passed.

Unless explicitly specified otherwise (such as with the cDEC$
ATTRIBUTES directive or the %VAL built-in function), an argument
contains the address of the data being passed, not the data itself.

Assumed-shape arrays and deferred-shape arrays are passed by array
descriptor.

Procedure Data Interfaces and Mixed Language Programming 11–5

Arguments omitted by adding an extra comma (,) are passed as a zero
by immediate value. OPTIONAL arguments that are not passed are also
handled this way.

• Function return data is usually passed by immediate value (function return
contains a value). Certain types of data (such as array-valued functions)
are passed by other means.

The value being returned from a function call usually contains the actual
data, not the address of the data.

• Character variables, explicit-shape character arrays, and assumed-size
character arrays are passed as arguments by reference along with an extra
argument, called a ‘‘hidden length’’ argument, that gets passed by value
after all actual arguments.

The hidden length is an integer value. If two character scalar variables are
passed, the argument list contains two extra hidden length arguments that
respectively contain the length of the passed character arguments. Dummy
arguments for character data can use an assumed length. You can use the
-mixed_str_len_arg option to place the hidden length directly after its
corresponding character argument instead of sequentially at the end of the
argument list. See Section 3.62.

When passing character arguments to a C routine as strings, the character
argument is not automatically null-terminated by the compiler. To null-
terminate a string from Compaq Fortran, use the CHAR intrinsic function
or the null character escape sequence (described in the Compaq Fortran
Language Reference Manual).

• External names have a trailing underscore (_) appended to their name and
are in lowercase. On Linux systems, if an external name has an underscore
in it, then two underscores are appended. For example, EXTERNAL foo_bar
becomes EXTERNAL foo_bar_ _.

The Compaq Fortran compiler appends the underscore to any reference
to an external procedure name, as well as Compaq Fortran procedure
declarations in the object file. This is mostly a concern when the program
uses routines in Compaq Fortran and C, as described in Section 11.3.2.

The arguments passed from a calling routine must match the dummy
arguments declared in the called function or subroutine (or other procedure),
as follows:

• Arguments are kept in the same position as they are specified by the user.

The exception to same position placement is the use of argument keywords
to associate dummy and actual arguments.

11–6 Procedure Data Interfaces and Mixed Language Programming

• Each corresponding argument or function return value must at least match
in data type, kind, and rank, as follows:

The primary Compaq Fortran intrinsic data types are character,
integer, logical, real, and complex.

To convert data from one data type to another, use the appropriate
intrinsic procedures described in the Compaq Fortran Language
Reference Manual.

Also, certain attributes of a data item may have to match. For
example, if a dummy argument has the POINTER attribute, its
corresponding actual argument must also have the POINTER attribute
Section 11.1.6).

You can use the kind parameter to specify the length of each numeric
intrinsic type, such as INTEGER (KIND=8). For character lengths,
use the LEN specifier, perhaps with an assumed length for dummy
character arguments (LEN=*).

The rank (as number of dimensions) of the actual argument is usually
the same (or less than) the rank of the dummy argument, unless an
assumed-size dummy array is used.

When using an explicit interface, the rank of the actual argument must
be the same as the rank of the dummy argument.

For example, when passing a scalar actual argument to a scalar
dummy argument (no more than one array element or a nonarray
variable), the rank of both is 0.

You can pass an actual array to a dummy array of the same rank or
you can pass an array section. If you use an assumed-shape array, the
extents of the dummy array argument are taken from the actual array
argument.

Other rules which apply to passing arrays and pointers are described
in Section 11.1.5, Section 11.1.6, and the Compaq Fortran Language
Reference Manual.

• The means by which the argument is passed and received (passing
mechanism) must match.

By default, Compaq Fortran arguments are passed by reference. (See
Table 11–3 for information about passing arguments with the C property.)

When calling functions or other routines that are intended to be called
from another language (such as C), be aware that these languages may
require data to be passed by other means, such as by value.

Procedure Data Interfaces and Mixed Language Programming 11–7

Most Compaq Fortran function return values are passed by value. Certain
types of data (such as array-valued functions) are passed by other means.

In most cases, you can change the passing mechanism of actual arguments
by using the following Compaq extensions:

cDEC$ ATTRIBUTES directive (see Section 11.2.2)

Built-in functions (see Section 11.1.8)

• To explicitly specify the procedure (argument or function return) interface,
provide an explicit interface.

You can use interface blocks and modules to specify INTENT and other
attributes of arguments.

For More Information:

• On passing arguments, function return values, and the contents of registers
on Compaq Tru64 UNIX systems, see the Compaq Tru64 UNIX Calling
Standard for Alpha Systems.

• On intrinsic data types, see Chapter 9 and the Compaq Fortran Language
Reference Manual.

• On intrinsic procedures and attributes available for array use, see the
Compaq Fortran Language Reference Manual.

• On explicit interfaces and when they are required, see the Compaq Fortran
Language Reference Manual.

• On a Compaq Fortran example program that uses an external subprogram
and a module that contains a procedure interface block, see Example 1–3.

11.1.5 Passing Arrays as Arguments
Certain arguments or function return values require the use of an explicit
interface, including assumed-shape dummy arguments, pointer dummy
arguments, and function return values that are arrays. This is discussed in
the Compaq Fortran Language Reference Manual.

When passing arrays as arguments, the rank and the extents (number of
elements in a dimension) should agree, so the arrays have the same shape and
are conformable. If you use an assumed-shape array, the rank is specified
and extents of the dummy array argument are taken from the actual array
argument.

11–8 Procedure Data Interfaces and Mixed Language Programming

If the rank and extent (shape) do not agree, the arrays are not conformable.
The assignment of elements from the actual array to the noncomformable
(assumed-size or explicit-shape) dummy array is done by using array element
sequence association. Using array element sequence associations is discussed
in the Compaq Fortran Language Reference Manual.

Certain combinations of actual and dummy array arguments are disallowed.

For More Information:

• On the types of arrays and passing array arguments, see the Compaq
Fortran Language Reference Manual.

• On explicit interfaces and when they are required, see the Compaq Fortran
Language Reference Manual.

• On array descriptors, see Section 11.1.7.

11.1.6 Passing Pointers as Arguments
Previous sections have discussed the case where the actual and dummy
arguments have neither the POINTER attribute nor the TARGET attribute.

The argument passing rules of like type, kind, and rank (for conformable
arrays) or array element sequence association (for noncomformable arrays)
apply when:

• Both actual and dummy arguments have the POINTER attribute.

• Dummy arguments have the TARGET attribute.

• Both actual and dummy arguments have neither attribute.

You can specify an actual argument of type POINTER and a dummy argument
of type POINTER. You must use an explicit interface that defines the dummy
argument with the POINTER attribute in the code containing the actual
argument. This ensures that the pointer is passed, rather than the array data
itself.

However, if you specify an actual argument of type POINTER and do not
specify an appropriate explicit interface (such as an interface block), it is
passed as actual (target) data.

For More Information:

• On using pointers and pointer arguments, see the Compaq Fortran
Language Reference Manual.

Procedure Data Interfaces and Mixed Language Programming 11–9

11.1.7 Compaq Fortran Array Descriptor Format
When using an explicit interface (by association or procedure interface block),
Compaq Fortran will generate a descriptor for the following types of dummy
argument data structures:

• Pointers to arrays (array pointers)

• Allocatable arrays

• Assumed-shape arrays

To allow calling between Compaq Fortran 77 and Compaq Fortran, certain
data structure arguments also supported by Compaq Fortran 77 do not use
a descriptor, even when an appropriate explicit interface is provided. For
example, since explicit-shape and assumed-size arrays are supported by both
Compaq Fortran 77 and Compaq Fortran, a descriptor is not used.

However, for cases where the called routine needs the information in the
Compaq Fortran descriptor, declare the routine with an assumed-shape or
pointer argument and an explicit interface.

The byte components of the Compaq Fortran descriptor follow:

• Byte 0 contains a count of the number of dimensions (rank).

• Byte 1 should always contain a 1.

• Byte 2 contains the data type of the result, as follows:

1 for INTEGER (KIND=1)

2 for INTEGER (KIND=2)

3 for INTEGER (KIND=4)

4 for INTEGER (KIND=8)

5 for LOGICAL (KIND=1)

6 for LOGICAL (KIND=2)

7 for LOGICAL (KIND=4)

8 for LOGICAL (KIND=8)

9 for REAL (KIND=4)

10 for REAL (KIND=8)

11 for REAL (KIND=16)

12 for COMPLEX (KIND=4) or COMPLEX*8

11–10 Procedure Data Interfaces and Mixed Language Programming

13 for COMPLEX (KIND=8) or COMPLEX*16

14 for CHARACTER

15 for RECORD

17 for COMPLEX (KIND=16) or COMPLEX*32

• Bytes 3 to 7 (inclusive) are reserved.

• Bytes 8 to 15 contain the element length for character data, in bytes.

• Bytes 16 to 23 contain the address of the first element of an array.

• Bytes 24 to 39 are reserved.

• The remaining bytes (40 to 207) contain information about each array
dimension, as follows:

Bytes 40 to 63 contain dimension information for rank 1

Bytes 64 to 87 contain dimension information for rank 2

Bytes 88 to 111 contain dimension information for rank 3

Bytes 112 to 135 contain dimension information for rank 4

Bytes 136 to 159 contain dimension information for rank 5

Bytes 160 to 183 contain dimension information for rank 6

Bytes 184 to 207 contain dimension information for rank 7

Within the dimension information (24 bytes) for each rank:

• Bytes 0 to 7 contain the number of bytes between two successive elements
in this dimension.

• Bytes 8 to 15 contain the upper bound.

• Bytes 16 to 23 contain the lower bound.

For example, consider the following declaration:

integer,target :: a(10,10)
integer,pointer :: p(:,:)
p => a(9:1:-2,1:9:3)
call f(p)
.
.
.

The descriptor for actual argument p would contain the following values:

• Byte 0 contains 2 (number of dimensions).

Procedure Data Interfaces and Mixed Language Programming 11–11

• Byte 1 contains 1 (always).

• Byte 2 contains 3 (data type of the result is the default INTEGER size,
usually INTEGER (KIND=4)).

• Bytes 3 to 15 are reserved.

• Bytes 16 to 23 contain the address of the first element.

• Bytes 24 to 39 are reserved.

• Bytes 40 to 63 contain dimension information for rank 1, as follows:

Bytes 40 to 47 contain –8 (distance between elements)

Bytes 48 to 55 contain 5 (upper bound)

Bytes 56 to 63 contain 1 (lower bound)

• Bytes 64 to 87 contain dimension information for rank 2, as follows:

Bytes 64 to 71 contain 120 (distance between elements)

Bytes 72 to 80 contain 3 (upper bound)

Bytes 81 to 87 contain 1 (lower bound)

• Byte 87 is the last byte.

11.1.8 Argument-Passing Mechanisms and Built-In Functions
When a Compaq Fortran program needs to call a routine written in a different
language (or in some cases a Fortran subprogram), there may be a need to use
a form other the Compaq Fortran default passing mechanisms. For example,
numeric arguments may need to be passed by immediate value instead of by
reference.

To change the Compaq Fortran default mechanisms with the Compaq Fortran
built-in functions, use the following functions:

• To change how an argument is passed (default passing mechanism), use
the %VAL or %REF built-in functions for specific arguments.

• To compute the address of a storage element as an integer value, use the
%LOC built-in function in any arithmetic expression.

The %VAL or %REF functions can only be used as unparenthesized arguments
in actual argument lists.

Instead of the Compaq Fortran built-in functions, you can use the cDEC$
ATTRIBUTES directive to change the Compaq Fortran default passing
mechanisms for either an entire call or for individual arguments. (See
Section 11.2.2).

11–12 Procedure Data Interfaces and Mixed Language Programming

11.1.8.1 Passing Addresses — %LOC Function
The %LOC built-in function computes the address of a storage element as an
INTEGER*8 (Alpha UNIX systems) value. You can then use this value in an
arithmetic expression. It has the following form:

%LOC(arg)

The %LOC function is particularly useful for non-Fortran procedures that may
require argument data structures containing the addresses of storage elements.
In such cases, the data structures should be declared volatile to protect them
from possible optimizations.

For More Information:

• On optimization and declaring volatile data, see Section 5.8.3.

• On the VOLATILE attribute, see the Compaq Fortran Language Reference
Manual.

11.1.8.2 Passing Arguments by Immediate Value — %VAL Function
The %VAL function passes the argument list entry as a 64-bit immediate value
on Compaq Tru64 UNIX and Linux systems. It has the following form:

%VAL(arg)

The argument-list entry generated by the compiler is the value of the argument
(arg). Because argument-list entries are eight bytes long, the argument
value must be an INTEGER (including INTEGER*8), LOGICAL (including
LOGICAL*8), or REAL (REAL*4 and REAL*8) constant, variable, array
element, or expression.

If a COMPLEX (KIND=4) or COMPLEX (KIND=8) argument is passed
by value, two REAL arguments (one contains the real part; the other the
imaginary part) are passed by immediate value. If a COMPLEX parameter to
a routine is specified as received by value (or given the C attribute), two REAL
parameters are received and stored in the real and imaginary parts of the
COMPLEX parameter specified. COMPLEX*32 arguments cannot be passed
by value.

If the value is a byte, word, or longword, it is sign-extended to eight bytes.

To produce a zero-extended value rather than a sign-extended value, use the
ZEXT intrinsic function (see the Compaq Fortran Language Reference Manual).

Procedure Data Interfaces and Mixed Language Programming 11–13

11.1.8.3 Passing Arguments by Reference — %REF Function
The %REF function passes the argument by reference. It has the following
form:

%REF(arg)

The argument-list entry the compiler generates will contain the address of the
argument, (arg). The argument value can be a record name, a procedure name,
or a numeric or character expression, array, character array section, or array
element. In Compaq Fortran, passing by reference is the default mechanism
for numeric values, so the %REF call is usually not needed. Passing character
arrays with %REF caused the hidden length to be omitted.

11.1.8.4 Examples of Argument Passing Built-in Functions
The following examples show the use of the argument list built-in functions:

• The first constant is passed by reference. The second constant is passed by
immediate value:

CALL SUB(2,%VAL(2))

• The first character variable is passed by address and hidden length. The
second character variable is passed by reference (no hidden length):

CHARACTER(LEN=10) A,B
CALL SUB(A,%REF(B))

• Both arrays are passed by reference:

INTEGER IARY(20), JARY(20)
CALL SUB(IARY,JARY)

For an example of passing integer data by value (using %VAL) and by reference
(default) to a C function, see Section 11.3.7.

11.2 Using the cDEC$ ALIAS and cDEC$ ATTRIBUTES
Directives

This section provides reference information about the following directives:

• The cDEC$ ALIAS (or !DEC$ ALIAS or *DEC$ ALIAS) directive lets you
specify a name for an external subprogram that differs from the name used
by the calling subprogram.

• The cDEC$ ATTRIBUTES (or !DEC$ ATTRIBUTES or *DEC$
ATTRIBUTES) directive lets you specify the properties for external
data objects and procedures. This includes using C language rules,
specifying how an argument is passed (passing mechanism), and specifying
an alias for an external routine.

11–14 Procedure Data Interfaces and Mixed Language Programming

11.2.1 cDEC$ ALIAS directive
Use the cDEC$ ALIAS directive to specify that the external name of an
external subprogram is different from the name by which the calling procedure
references it.

The syntax is:

cDEC$ ALIAS internal-name, external-name

The internal-name is the name of the subprogram as used in the current
program unit.

The external-name is either a quoted character constant (delimited by single
quotation marks) or a symbolic name.

If external-name is a quoted character constant, the value of that constant
is used as the external name for the specified internal name. The character
constant is used as it appears, with no modifications for case or addition
or removal of punctuation characters. The default for the Compaq Fortran
compiler is to force the name into lowercase and append an underscore unless
directed otherwise.

If external-name is a symbolic name, the symbolic name (in lowercase) is used
as the external name for the specified internal name and an underscore is
appended. Any other declaration of the specified symbolic name is ignored for
the purposes of the ALIAS directive.

The Compaq Tru64 UNIX and Linux linker may have restrictions on what
appears in an external name and whether external names are case-sensitive.

For example, assume the following program (free source form):

PROGRAM ALIAS_EXAMPLE
!DEC$ ALIAS ROUT1, ’ROUT1A’
!DEC$ ALIAS ROUT2, ’routine2_’
!DEC$ ALIAS ROUT3, rout3A

CALL ROUT1
CALL ROUT2
CALL ROUT3

END PROGRAM ALIAS_EXAMPLE

The three calls are to external routines named ROUT1A, routine2_, and
rout3A. Because rout3A is not in quotation marks (character constant), a
trailing underscore is added (Compaq Fortran adds a trailing underscore to
external names on UNIX systems unless directed otherwise) and the letter
A becomes a lowercase a. For details about adding underscores on Linux
systems, see Section 11.3.2.

Procedure Data Interfaces and Mixed Language Programming 11–15

This feature can be useful when porting code in which different routine naming
conventions are in use. By adding or removing the cDEC$ ALIAS directive,
you can specify an alternate routine name without recoding the application.

You can also use the DECORATE option with the ALIAS option so the external
name specified in ALIAS has prefix and postfix decorations performed on it
that are associated with the calling mechanism that is in effect.

The cDEC$ ALIAS and cDEC$ ATTRIBUTES ALIAS directives are
synonymous.

11.2.2 cDEC$ ATTRIBUTES Directive
Use the cDEC$ ATTRIBUTES directive to specify properties for data objects
and procedures. These properties let you specify how data is passed and the
rules for invoking procedures. The cDEC$ ATTRIBUTES directive is intended
to simplify mixed-language calls with Compaq Fortran routines written in C
or Assembler. The STDCALL keyword is synonymous with the C keyword on
Compaq Tru64 UNIX and Linux systems.

The cDEC$ ATTRIBUTES directive takes the following form:

cDEC$ ATTRIBUTES att [,att]... :: object [,object]...

In this form:

c
Is the letter or character (c, C, *, !) that introduces the directive (see the
Compaq Fortran Language Reference Manual).

att
Is one of the keywords listed in the Compaq Fortran Language Reference
Manual. For example, C, ALIAS, REFERENCE, or VALUE.

object
Is the name of a data object used as an argument or procedure. Only one object
is allowed when using the C, STDCALL, or ALIAS properties.

The Compaq Fortran Language Reference Manual shows valid combinations of
properties with the various types of objects.

The ATTRIBUTES options C, STDCALL, REFERENCE, VALUE, and
VARYING all affect the calling convention of routines.

By default, Fortran passes all data by reference (except the hidden length
argument of strings, which is a special case). If the C or STDCALL option is
used, the default changes to passing almost all data by value except arrays.

11–16 Procedure Data Interfaces and Mixed Language Programming

In addition to the calling-convention options C and STDCALL, you can also
specify argument options, VALUE and REFERENCE, to pass arguments by
value or by reference, regardless of the calling convention option. Arrays can
only be passed by reference.

Table 11–1 summarizes the effect of the most common Fortran calling-
convention directives.

Table 11–1 Calling Conventions for ATTRIBUTES Options

Arguments Default C or STDCALL
C or STDCALL with
REFERENCE

Scalar Reference Value Reference

Scalar [value] Value Value Value

Scalar [reference] Reference Reference Reference

String Reference, Len:
End

String (1:1) Reference, Len:
End

String [value] Error String(1:1) String(1:1)

String [reference] Reference, No Len Reference: No Len Reference: No Len

Array Reference Reference Reference

Array [value] Error Error Error

Array [reference] Reference Reference Reference

Derived type Reference Value, size
dependent

Reference

Derived type
[value]

Value, size
dependent

Value, size
dependent

Value, size
dependent

Derived type
[reference]

Reference Reference Reference

F90 Pointer Descriptor Descriptor Descriptor

F90 Pointer [value] Error Error Error

F90 Pointer
[reference]

Descriptor Descriptor Descriptor

The terms used in Table 11–1 mean the following:

Procedure Data Interfaces and Mixed Language Programming 11–17

Term Description

[value] Assigned to the VALUE property

[reference] Assigned to the REFERENCE property

Value The argument value is pushed on the stack. All values are padded
to the next 8-byte boundary.

Reference The 8-byte argument address is pushed on the stack.

Len: End The length of the string is pushed (by value) on the stack after all of
the other arguments.

No Len The length of the string is not available to the called procedure.

String(1:1) For string arguments, the first character is converted to
INTEGER(KIND=8) as in ICHAR(string(1:1)) and pushed onto the
stack by value.

Error Produces a compiler error.

Descriptor 8-byte address of the array descriptor.

Size dependent Derived-type arguments specified by value are passed as follows:

• Arguments of 1 to 4 bytes are passed by value

• Arguments of 5 to 8 bytes are passed by value in two registers

• Arguments of more than 8 bytes provide value semantics by
passing a temporary storage address by reference.

The properties are described in the following sections.

11.2.2.1 C Property
The C property provides a convenient way for code written in Compaq Fortran
to interact with routines written in C.

When applied to a subprogram, the C property defines the subprogram as
having a specific set of calling conventions.

Table 11–2 summarizes the differences between the calling conventions:

11–18 Procedure Data Interfaces and Mixed Language Programming

Table 11–2 C Property and External Names

Item Fortran Default C Property Specified

Trailing underscore added
to procedure names

Yes No

Case of external
subprogram names

Lowercase, unless the ALIAS
property is specified

Lowercase, unless the
ALIAS property is
specified

Argument passing See Table 11–3 See Table 11–3

In addition to the case of external names and the trailing underscore, the C
property affects how arguments are passed, as described in Table 11–3.

Table 11–3 C Property and Argument Passing

Argument Variable Type Fortran Default
C Property Specified
for Routine

Scalar (includes derived types) Passed by reference Passed by value

Scalar, with VALUE specified Passed by value Passed by value

Scalar, with REFERENCE
specified

Passed by reference Passed by reference

String Passed by reference with
hidden length

String (1:1) padded to
integer length

String, with VALUE specified Error String (1:1) padded to
integer length

String, with REFERENCE
specified

Passed by reference with
no hidden length

Passed by reference
with no hidden length

Arrays, including pointers to
arrays

Always passed by
reference or descriptor

Always passed by
reference or descriptor

If C is specified for a subprogram, arguments (except for arrays and characters)
are passed by value. Subprograms using standard Fortran 95/90 conventions
pass arguments by reference.

Character arguments are passed as follows:

• By Fortran default, hidden lengths are put at the end of the argument list.

• If C is specified without REFERENCE for the arguments, the first
character of the string is passed by value (padded with zeros out to
INTEGER*8 length).

Procedure Data Interfaces and Mixed Language Programming 11–19

• If C is specified with REFERENCE for the argument (or if only
REFERENCE is specified), the string is passed with no length.

When the C property is specified, the case of the external name (EXTERNAL
statement) is forced to lowercase, even if -names as_is or -names uppercase
was specified during compilation. To allow a mixed case or uppercase name
when the C property is specified, specify the ALIAS property for the same
subprogram or external name.

Example 11–1 shows the Compaq Fortran code that calls the C function pnst
(no underscore) by using the cDEC$ ATTRIBUTES C directive and C language
passing conventions.

Example 11–1 Calling C Functions and Passing Integer Arguments

! Using !DEC$ ATTRIBUTES to pass argument to C. File: pass_int_cdec.f90

interface
subroutine pnst(i)
!DEC$ ATTRIBUTES C :: pnst
integer i

end subroutine
end interface

integer :: i
i = 99
call pnst(i) ! pass by value
print *,"99==",i

end

Example 11–2 shows the C function called pnst (no underscore) that is called
by the example program shown in Example 11–1.

Example 11–2 Calling C Functions and Passing Integer Arguments

/* get integer by value from Fortran. File: pass_int_cdec_c.c */

void pnst(int i) {
printf("99==%d\n",i);

i = 100;
}

The files (shown in Example 11–1 and Example 11–2) might be compiled,
linked, and run as follows:

11–20 Procedure Data Interfaces and Mixed Language Programming

% cc -c pass_int_cdec_c.c
% f90 -o pass_cdec pass_int_cdec.f90 pass_int_cdec_c.o
% pass_cdec
99==99
99== 99

11.2.2.2 ALIAS Property
You can specify the ALIAS property as cDEC$ ALIAS or as cDEC$
ATTRIBUTES ALIAS; they are equivalent. The ALIAS property allows you to
specify that the external name of an external subprogram is different from the
name by which the calling procedure references it (see Section 11.2.1).

When both ALIAS and C properties are used for a subprogram or external
(EXTERNAL statement) name, the ALIAS property takes precedence over the
C property. This allows you to specify case-sensitive names (the C attribute
sets them to lowercase).

11.2.2.3 REFERENCE and VALUE Properties
The following cDEC$ ATTRIBUTES properties specify how a dummy argument
is to be passed:

• REFERENCE specifies a dummy argument’s memory location is to be
passed, not the argument’s value.

• VALUE specifies a dummy argument’s value is to be passed, not the
argument’s memory location.

When a complex (KIND=4 or KIND=8) argument is passed by value, two
floating-point arguments (one containing the real part, the other containing the
imaginary part) are passed by immediate value. Conversely, if a COMPLEX
parameter to a routine is specified as received by value (or given the C
attribute), two REAL parameters are received and stored in the real and
imaginary parts of the COMPLEX parameter specified.

Character values, substrings, assumed-size arrays, and adjustable arrays
cannot be passed by value; neither can REAL*16 and COMPLEX*32 data.
When REFERENCE is specified for a character argument, the string is passed
with no length.

VALUE is the default if the C property is specified in the subprogram
definition.

Consider the following free-form example, which passes an integer by value:

Procedure Data Interfaces and Mixed Language Programming 11–21

interface
subroutine foo (a)
!DEC$ ATTRIBUTES C :: foo

integer a
end subroutine foo

end interface

This subroutine can be invoked from Compaq Fortran using the name foo (no
underscore):

integer i
i = 1
call foo(i)

end program

This is the actual subroutine code:

subroutine foo (i)
!DEC$ ATTRIBUTES C :: foo

integer i
i = i + 1
.
.

end subroutine foo

For More Information:

• On Compaq Fortran intrinsic data types, see Chapter 9.

• On the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

• On the C language, see your operating system documentation.

• On passing arguments, function return values, and the contents of registers
on Compaq Tru64 UNIX systems, see the Compaq Tru64 UNIX Calling
Standard for Alpha Systems.

11.2.2.4 EXTERN and VARYING Properties
The EXTERN property specifies that a variable is allocated in another source
file. EXTERN can be used in global variable declarations, but it must not be
applied to dummy arguments.

You must use EXTERN when accessing variables declared in other languages.

The VARYING directive allows a variable number of calling arguments. If
VARYING is specified, the C property must also be specified.

11–22 Procedure Data Interfaces and Mixed Language Programming

When using the VARYING directive, either the first argument must be a
number indicating how many arguments to process, or the last argument
must be a special marker (such as ��) indicating it is the final argument. The
sequence of the arguments, and types and kinds, must be compatible with the
called procedure.

For More Information:

• See the Compaq Fortran Language Reference Manual.

11.3 Calling Between Compaq Fortran and C
Before creating a mixed-language program that contains procedures written in
Compaq Fortran and C, you need to know how to:

• Compile and link the program

• Use the platform-specific conventions for procedure names on Compaq
Tru64 UNIX systems

• Use equivalent data arguments passed between the two languages

On Linux Alpha systems, this section assumes the usage of the Compaq C
compiler (ccc command).

11.3.1 Compiling and Linking Files
Use the f90 or fort command (and not the cc or ccc command) to:

• Compile and link Compaq Fortran source files

• Link Compaq Fortran object files

• Link C object files with Compaq Fortran source or object files

The f90 and fort commands pass the appropriate libraries to ld, including the
Compaq Fortran libraries and libc.

You can use the cc and ccc commands with the -c option to compile C source
files into object files.

For example, the following f90 command compiles and links the Compaq
Fortran calling main program ex1.f90 and the called C function uopen_.c:

% f90 ex1.f90 uopen_.c

You can use the cc or, on Linux systems, the ccc command to compile the C
program into an object file before the f90 command:

% cc -c uopen_.c
% f90 ex1.f90 uopen_.o

Procedure Data Interfaces and Mixed Language Programming 11–23

The cc (ccc) and f90 (fort) commands:

1. Apply cpp to the uopen_.c file (done by cc and ccc)

2. Compile uopen_.c into the object file uopen_.o (done by cc and ccc)

3. Compile ex1.f90 into an object file (done by f90 and fort)

4. Link both resulting object files to create the file a.out file (done by ld)

When a C program calls a Compaq Fortran subprogram, specify the -
nofor_main option on the f90 command line:

% cc -c cmain.c
% f90 -nofor_main cmain.o fsub.f90

To view the preprocessor and compilers used and the libraries passed to ld, use
the f90 command -v option.

For More Information:

• On the interaction of the f90 command with other components, including
options passed to cc, see Section 2.2.

• On the commands used to compile a Compaq Fortran and C example
program, see Section 11.3.8.

11.3.2 Procedures and External Names
When designing a program that will use Compaq Fortran and C, be aware of
the following general rules and available Compaq Fortran capabilities:

• The ld linker only allows one main program. Declare either the Compaq
Fortran or the C program, but not both, as the main program. When the
C program is the main program, use the -nofor_main option on the f90
command line (see Section 11.3.1).

In Compaq Fortran, you can declare a main program:

With the PROGRAM and END PROGRAM statements

With an END statement

To create a Compaq Fortran subprogram, declare the subprogram with
such statements as FUNCTION and END FUNCTION or SUBROUTINE
and END SUBROUTINE.

In C, you need to use a main() declaration for a main program. To create
a C function (subprogram), declare the appropriate function name and omit
the main() declaration.

• When declaring external names in C that will be called by Compaq Fortran,
use lowercase.

11–24 Procedure Data Interfaces and Mixed Language Programming

Compaq Fortran makes external names lowercase by default, so you need
to make the C function name definition and declarations with lowercase
letters. Although Compaq Fortran is case-insensitive, the C compiler and
ld linker both treat external names as case-sensitive.

• In Compaq Fortran, external names and corresponding declarations have a
trailing underscore (_) appended to their name.

Due to differences in the argument-passing mechanisms and the data
types between C and Compaq Fortran, convention requires that a trailing
underscore be appended to external names (including function declarations)
in the C program. This avoids accidental calls across the two languages.

The Compaq Fortran compiler, by default, appends the underscore to
references to external procedure names as well as Compaq Fortran
procedure declarations. Any problems with the naming convention are
reported by the linker when it searches for external names in an object file.

For a C program to call a Compaq Fortran subprogram, the calling C
program routine must append an underscore (_) to the name of the
Compaq Fortran function (or subroutine) (if using the Compaq Fortran
defaults). For example, if a C program wants to call a Compaq Fortran
function named exponent, the C source code must refer to it as exponent_.

Similarly, for a Compaq Fortran program to call a C function, the C
function must use lowercase letters and have a trailing underscore. By
default, the Compaq Fortran compiler converts external names to lowercase
and appends a trailing underscore character when calling C language
routines from Compaq Fortran. For example, if a Compaq Fortran program
calls a C function using the name conarray in the function reference, the C
function needs to be declared as conarray_.

• You can consider using some of the Compaq Fortran facilities provided to
simplify the Compaq Fortran and C language interface:

You can use the cDEC$ ALIAS and cDEC$ ATTRIBUTES directives
to specify alternative names for routines and change default passing
mechanisms (see Section 11.2).

You can consider using the f90 option -assume nounderscore to prevent
Compaq Fortran from appending an underscore to most external names
(see Section 3.15).

Instead of directly calling Compaq Tru64 UNIX and Linux system and
library routines, consider using the language interface ‘‘jacket’’ routines
provided by Compaq Fortran (see Chapter 12).

Procedure Data Interfaces and Mixed Language Programming 11–25

To perform I/O not supported by the Compaq Fortran run-time system,
you can open a file with a C function and then use Compaq Fortran I/O
statements to perform I/O (see Section 7.9). Indicate the name of the C
function with the OPEN statement USEROPEN specifier, which causes
the OPEN statement to call the C function to open the file.

A C main program can obtain more control by calling the Compaq
Fortran run-time initialization routine for_rtl_init_ and related
Compaq Fortran library routines. (See Section 12.2, 3f Routines.)

11.3.3 Invoking a C Function from Compaq Fortran
You can use a function reference or a CALL statement to invoke a C function
from a Compaq Fortran main or subprogram.

If a value will be returned, use a function reference:

C Function Declaration Compaq Fortran Function Invocation

data-type calc_(argument-list)
{
...
} ;

EXTERNAL CALC
data-type :: CALC, variable-name
...
variable-name=CALC(argument-list)
...

If no value is returned, use a void return value and a CALL statement:

C Function Declaration Compaq Fortran Subroutine Invocation

void calc_(argument-list)
{
...
} ;

EXTERNAL CALC
...
CALL CALC(argument-list)

11.3.4 Invoking a Compaq Fortran Function or Subroutine from C
A C main program or function can invoke a Compaq Fortran function or
subroutine by using a function prototype declaration and invocation.

If a value is returned, use a FUNCTION declaration:

Compaq Fortran Declaration C Invocation

FUNCTION CALC(argument-list)
data-type :: CALC
...
END FUNCTION CALC

extern data-type calc_(argument-list)
data-type variable-name;
variable-name=calc_(argument-list);
...

11–26 Procedure Data Interfaces and Mixed Language Programming

If no value is returned, use a SUBROUTINE declaration and a void return
value:

Compaq Fortran Declaration C Invocation

SUBROUTINE CALC(argument-list)
...
END SUBROUTINE CALC

extern void calc_(argument-list)

calc_(argument-list);
...

11.3.5 Equivalent Data Types for Function Return Values
Both C and Compaq Fortran pass most function return data by value, but
equivalent data types must be used. Table 11–4 lists equivalent function
declarations in Compaq Fortran and C. See Table 11–5 for a complete list of
data declarations.

Table 11–4 Equivalent Function Declarations in C and Compaq Fortran

C Function Declaration Compaq Fortran Function Declaration

float rfort_() function rfort()
real (kind=4) :: rfort

double dfort_() function dfort()
real (kind=8) :: dfort

int ifort_() function ifort()
integer (kind=4) :: ifort

Because there are no corresponding data types in C, you should avoid
calling Compaq Fortran functions of type REAL (KIND=16), COMPLEX,
and DOUBLE COMPLEX, unless for complex data you pass a struct of two
float (or double) C values (see Section 11.3.10).

The Compaq Fortran LOGICAL data types contain a zero if the value is false
and a –1 if the value is true, which works with C conditional and if statements.

A character-valued Compaq Fortran function is equivalent to a C language
routine with two extra initial arguments added by the Compaq Fortran
compiler:

• Address of the result

• Length of the result

Procedure Data Interfaces and Mixed Language Programming 11–27

For More Information:

• On the language interface ‘‘jacket’’ routines provided by Compaq Fortran,
see Chapter 12.

• On opening a file using a C USEROPEN function, see Section 7.9.

• On passing character arguments, see Section 11.3.8.

• On Compaq Fortran intrinsic data types, see Chapter 9.

• On the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

11.3.6 Argument Association and Equivalent Data Types
Compaq Fortran follows the argument-passing rules described in
Section 11.1.4. These rules include:

• Passing arguments by reference (address).

• Receiving arguments by reference (address).

• Compaq Tru64 UNIX convention of appending a trailing underscore to
external names and passing character data by using an extra argument for
the character length.

• Compaq Linux convention of appending two trailing underscores to
external names.

11.3.6.1 Compaq Fortran Intrinsic Data Types
Compaq Fortran lets you specify the lengths of its intrinsic numeric data types
with the following:

• The kind parameter, such as REAL (KIND=4). Intrinsic integer and
logical kinds are 1, 2, 4, and 8. Intrinsic real and complex kinds are 4
(single-precision), 8 (double-precision), and 16.

• A default-length name without a kind parameter, such as REAL or
INTEGER. Certain f90 command options can change the default kind,
as described in Section 3.53 (for INTEGER and LOGICAL declarations),
Section 3.78 (for REAL and COMPLEX declarations), and Section 3.34 (for
DOUBLE PRECISION declarations).

• The Compaq Fortran extension of appending a *n size specifier to the
default-length name, such as INTEGER*8.

• For double-precision real or complex data, the word DOUBLE followed by
the default-length name without a kind parameter (specifically DOUBLE
PRECISION and DOUBLE COMPLEX).

11–28 Procedure Data Interfaces and Mixed Language Programming

The following declarations of the integer An are equivalent (unless you
specified the appropriate f90 command option to override the default integer
size):

INTEGER (KIND=4) :: A1
INTEGER (4) :: A2
INTEGER :: A3
INTEGER*4 :: A4

Character data in Compaq Fortran is passed and received by address, using an
extra hidden-length argument to contain the string length. Dummy character
arguments can use assumed-length syntax for accepting character data of
varying length.

Consider the following Compaq Fortran subroutine declaration:

SUBROUTINE H (C)
CHARACTER(LEN=*) C

The equivalent C function declaration is:

void h_(char *c, int len);

The Fortran subroutine can be called from C as follows:

.

.

.
char *chars[15];
h_(chars, 15);

For More Information:

• On Compaq Fortran intrinsic data types, see Chapter 9.

• On passing character data (example program), see Section 11.3.8.

11.3.6.2 Equivalent Compaq Fortran and C Data Types
The calling routine must pass the same number of arguments expected by the
called routine. For each argument passed, the manner (mechanism) of passing
the argument and the expected data type must match what is expected by
the called routine. For instance, C usually passes data by value and Compaq
Fortran typically passes argument data by reference (address and, when
appropriate, length).

You must determine the appropriate data types in each language that
are compatible. When you call a C routine from a Compaq Fortran main
program, certain built-in functions may be useful to change the default passing
mechanism, as discussed in Section 11.1.8.

Procedure Data Interfaces and Mixed Language Programming 11–29

If the calling routine cannot pass an argument to the called routine because of
a language difference, you may need to rewrite the called routine. Another
option is to create an interface jacket routine that handles the passing
differences.

When a C program calls a Compaq Fortran subprogram, all arguments must be
passed by reference because this is what the Compaq Fortran routine expects.
To pass arguments by reference, the arguments must specify addresses rather
than values. To pass constants or expressions, their contents must first be
placed in variables; then the addresses of the variables are passed.

When you pass the address of the variable, the data types must correspond as
shown in Table 11–5 for Compaq Tru64 UNIX systems.

Table 11–5 Compaq Fortran and C Data Types

Compaq Fortran Data
Declaration C Data Declaration

integer (kind=2) x short int x;

integer (kind=4) x int x;

integer (kind=8) x long int x; _ _int64 x;

logical x unsigned x;

real x float x;

double precision x double x;

real (kind=16) x None1

complex (kind=4) x struct { float real; float imag } x;

complex (kind=8) x struct { double dreal; double dimag } x;

complex (kind=16) x struct { long double dreal; long double dimag } x;1

character (len=5) x char x[5]

1The equivalent C declaration is long double (may not support X_floating).

Be aware of the various sizes supported by Compaq Fortran for integer, logical,
and real variables (see Chapter 9), and use the size consistent with that used
in the C routine.

Compaq Fortran LOGICAL data types contain a zero if the value is false
and a –1 if the value is true, which works with C language conditional and if
statements.

11–30 Procedure Data Interfaces and Mixed Language Programming

When one of the arguments is character data, the Compaq Fortran compiler
passes the address of the character data as an argument and adds the length
of the character string to the end of the argument list (see Section 11.1.4).

When a C program calls a Compaq Fortran subprogram, the C program must
explicitly specify these items in an argument list in the following order:

1. For a character function, the address of the character function result and
the length of the character function result

2. For normal arguments, the addresses of arguments or functions

3. The lengths of any character string arguments, specified as integer
variables (passed in the same order as the arguments)

For example, consider the following Compaq Fortran function declaration that
returns character data:

character(len=8) function ch()
ch = ’ABCDEFG’ //CHAR(0)
return

end

The following C code invokes the Compaq Fortran function as ch_, explicitly
passing the address and length of the character data arguments, as follows:

char s[8]
ch_(&s[0],8);

Any character string passed by Compaq Fortran is not automatically null-
terminated. To null-terminate a string from Compaq Fortran, use the CHAR
intrinsic function (as shown in the previous example and described in the
Compaq Fortran Language Reference Manual).

11.3.7 Example of Passing Integer Data to C Functions
Example 11–3 shows C code that declares the two functions hln_ and mgn_.
These functions display the arguments received. The C language function
hln_ expects the argument by value, whereas mgn_ expects the argument by
reference (address).

Procedure Data Interfaces and Mixed Language Programming 11–31

Example 11–3 C Functions Called by a Compaq Fortran Program

/* get integer by value from Fortran. File: pass_int_to_c.c */

void hln_(int i) {
printf("99==%d\n",i);

i = 100;
}

/* get integer by reference from Fortran */

void mgn_(int *i) {
printf("99==%d\n",*i);

*i = 101;
}

Example 11–4 shows the Compaq Fortran (main program) code that calls the
two C functions mgn_ and hln_.

Example 11–4 Calling C Functions and Passing Integer Arguments

! Using %REF and %VAL to pass argument to C. File: pass_int_to_cfuncs.f90
integer :: i
i = 99
call hln(%VAL(i)) ! pass by value
print *,"99==",i

call mgn(%REF(i)) ! pass by reference - %REF is optional in this case
print *,"101==",i
i = 99
call mgn(i) ! pass by reference
print *,"101==",i

The files (shown in Example 11–3 and Example 11–4) might be compiled,
linked, and run as follows:

% cc -c pass_int_to_c.c
% f90 -o pass_int_to_c pass_int_to_cfuncs.f90
pass_int_to_c.o
% pass_int_to_c
99==99
99== 99
99==99
101== 101
99==99
101== 101

11–32 Procedure Data Interfaces and Mixed Language Programming

11.3.8 Example of Passing Character Data Between Compaq Fortran
and C
The following examples show a Compaq Fortran program that calls a C
function that serves as an interface (jacket) routine to the setenv library
routine (described in setenv(3)).

The Compaq Fortran program is named test_setenv.f.

The C program that contains the setenv_ interface function is named
fort_setenv.c.

The Compaq Fortran program performs the following tasks:

1. Calls the getenv function (a Section 3f library routine) and displays
the current value of the environment variable PRINTER (described in
getenv(3f))

2. Calls the setenv_ interface function to set the new value for the
environment variable PRINTER

3. Calls the getenv function again and displays the new value of the
environment variable PRINTER

Example 11–5 shows the Compaq Fortran program test_setenv.f.

Example 11–5 Compaq Fortran Program Calling a C Function

! test_setenv.f

character(len=50) :: ename, evalue
integer :: overwrite, setenv, ret

! Use 3f routine getenv to return PRINTER environment variable value

call getenv(’PRINTER’,evalue)

! Now look at current value

write(6,*) ’Previous env. variable value of PRINTER is: ’, evalue

! Use setenv C function. Overwrite flag = non-zero means
! overwrite any existing environment variable.
!
! Returns -1 if there was an error in setting the environment variable

ename = ’PRINTER’
evalue = ’lps40’
overwrite = 1
ret = setenv(ename,evalue,overwrite)

(continued on next page)

Procedure Data Interfaces and Mixed Language Programming 11–33

Example 11–5 (Cont.) Compaq Fortran Program Calling a C Function

if (ret < 0) write (6,*) ’Error setting env. variable’

! Now look at current value
evalue = ’ ’
call getenv(’PRINTER’,evalue)
write(6,*) ’New env. variable value of PRINTER is: ’, evalue

end

Example 11–6 shows the C program fort_setenv.c.

Example 11–6 C Interface Function Called by Compaq Fortran

/* fort_setenv.c */
#include <stdlib.h>

int setenv_(char *ename,char *evalue,int *overwrite,int ilen1,int ilen2)
{

int setenv(), lnblnk_(), i1, i2, ow, rc;
char *p1, *p2;

/* Get string length of each input parameter */
i1 = lnblnk_(ename,ilen1);
i2 = lnblnk_(evalue,ilen2);

/* Allocate temporary storage */
p1 = malloc((unsigned) i1+1);
if(p1 == NULL) return(-1);
p2 = malloc((unsigned) i2+1);
if(p2 == NULL) {

free(p1);
return(-1);

}

/* Copy strings, and NUL terminate */
strncpy(p1,ename,i1);
p1[i1] = ’\0’;
strncpy(p2,evalue,i2);
p2[i2] = ’\0’;

ow = *overwrite;

/* Call the setenv library routine to set the environment variable */

(continued on next page)

11–34 Procedure Data Interfaces and Mixed Language Programming

Example 11–6 (Cont.) C Interface Function Called by Compaq Fortran

rc = setenv(p1, p2, ow);
free(p1);
free(p2);
return(rc);

}

The setenv_ function (shown in Example 11–6) sets the environment variable
PRINTER to the value lps40 (passed as arguments from the Compaq Fortran
calling program) by calling the setenv library routine with the overwrite flag
set to 1.

The C function (shown in Example 11–6) uses the passed length to find the last
nonblank character and uses the string up to that character. The C variables
ilen1 and ilen2 receive the hidden length of the character strings ename and
evalue respectively. The C function allocates storage, including an extra byte
for the null-terminator to each string. The extra byte is used as part of an
argument when calling the setenv library routine.

The following Compaq Fortran code in Example 11–5 calls the setenv_ C
function:

ret=setenv(ename,evalue,overwrite)

This function invocation passes the following arguments to the C function
setenv_:

Compaq
Fortran
Variable Purpose Data Type How Passed

ename Environment variable name character by reference, not
null-terminated

evalue Environment variable string character by reference, not
null-terminated

overwrite Overwrite flag for setenv integer by reference

not declared Hidden length of ename integer by value

not declared Hidden length of evalue integer by value

Data passed from Compaq Fortran to C is passed by reference. When passing
character data from Compaq Fortran to C, the following rules apply:

Procedure Data Interfaces and Mixed Language Programming 11–35

• The Compaq Fortran character argument is not automatically terminated
by a null string. To null-terminate a string, use the CHAR intrinsic
function (described in the Compaq Fortran Language Reference Manual).

• An additional (hidden) argument that contains the string length is passed
by value.

The C function (in Example 11–6) is declared as setenv_ and accepts the
Compaq Fortran arguments with the following function declaration:

int setenv_(ename,evalue,overwrite,ilen1,ilen2)
char *ename, *evalue;
int *overwrite;
int ilen1, ilen2;

The status returned from the C function to the calling Compaq Fortran
program is an integer passed by value. (The C function obtains this value from
setenv library routine.)

To create the executable program, the files might be compiled with the
following commands:

% cc -c fort_setenv.c
% f90 test_setenv.f fort_setenv.o

When executed, a.out displays:

% a.out
Previous env. variable value of PRINTER is:
lpr
New env. variable value of PRINTER is:
lps40

11.3.9 Example of Passing Complex Data to C Functions
Example 11–7 shows Compaq Fortran code that passes a COMPLEX (KIND=4)
value (1.0,0.0) by immediate value to subroutine foo. To pass COMPLEX
arguments by value, the compiler passes the real and imaginary parts of the
argument as two REAL arguments by immediate value.

11–36 Procedure Data Interfaces and Mixed Language Programming

Example 11–7 Calling C Functions and Passing Complex Arguments

! Using !DEC$ATTRIBUTES to pass COMPLEX argument by value to F90 or C.
! File: cv_main.f90

interface
subroutine foo(cplx)
!DEC$ATTRIBUTES C :: foo

complex cplx
end subroutine

end interface

complex(kind=4) c
c = (1.0,0.0)
call foo(c) ! pass by value

end

If subroutine foo were written in Compaq Fortran, it might look similar to the
following example. In this version of subroutine foo, the COMPLEX parameter
is received by immediate value. To accomplish this, the compiler accepts two
REAL parameters by immediate value and stores them into the real and
imaginary parts, respectively, of the COMPLEX parameter cplx.

! File: cv_sub.f90

subroutine foo(cplx)
!DEC$ATTRIBUTES C :: foo
complex cplx

print *, ’The value of the complex number is ’, cplx

end subroutine

If subroutine foo were written in C, it might look similar to the following
example in which the complex number is explicitly specified as two arguments
of type float:

/* File: cv_sub.c */

#include <stdio.h>

typedef struct {float c1; float c2;} complex;

void foo(complex c)
{

printf("The value of the complex number is (%f,%f)\n", c.c1, c.c2);
}

Procedure Data Interfaces and Mixed Language Programming 11–37

The main routine (shown in Example 11–7) might be compiled and linked to
the object file created by the compilation of the Compaq Fortran subroutine
and then run as follows:

% f90 -o cv cv_main.f90, cv_sub.f90
% cv
The value of the complex number is (1.000000,0.0000000E+00)

The main routine might also be compiled and linked to the object file created
by the compilation of the C subroutine and then run as follows:

% cc -c cv_sub.c
% f90 -o cv2 cv_main.f90 cv_sub.f90
% cv2
The value of the complex number is (1.000000,0.000000)

11.3.10 Handling User-Defined Structures
User-defined derived types in Compaq Fortran and user-defined C structures
can be passed as arguments if the following conditions are met:

• The elements of the structures use the same alignment conventions (same
amount of padding bytes, if any). The default alignment for C structure
members is natural alignment. You can use the cc -member_alignment
option or pragma to alter that alignment.

Derived-type data in Compaq Fortran is naturally aligned (the compiler
adds needed padding bytes) unless you specify the -align norecords option
(see Section 3.3).

• All elements of the structures are in the same order.

Compaq Fortran orders elements of derived types sequentially. However,
those writing standard-conforming programs should not rely on this
sequential order because the standard allows elements to be in any order
unless the SEQUENCE statement is specified.

• The respective elements of the structures have the same data type and
length (kind), as described in Section 11.3.6.

• The structure must be passed by reference (address).

11–38 Procedure Data Interfaces and Mixed Language Programming

11.3.11 Handling Scalar Pointer Data
When Compaq Fortran passes scalar numeric data with the pointer attribute,
how the scalar numeric data gets passed depends on whether or not an
interface block is provided:

• If you do not provide an interface block to pass the actual pointer, Compaq
Fortran dereferences the Compaq Fortran pointer and passes the actual
data (the target of the pointer) by reference.

• If you do provide an interface block to pass the actual pointer, Compaq
Fortran passes the Compaq Fortran pointer by reference.

When passing scalar numeric data without the pointer attribute, Compaq
Fortran passes the actual data by reference. If the called C function declares
the dummy argument for the passed data to be passed by a pointer, it accepts
the actual data passed by reference (address) and handles it correctly.

Similarly, when passing scalar data from a C program to a Compaq Fortran
subprogram, the C program can use pointers to pass numeric data by reference.

Example 11–8 shows a Compaq Fortran program that passes a scalar
(nonarray) pointer to a C function. Variable x is a pointer to variable y.

The function call to ifunc1_ uses a procedure interface block, whereas the
function call to ifunc2_ does not. Because ifunc1_ uses a procedure interface
block (explicit interface) and the argument is given the pointer attribute, the
pointer is passed. Without an explicit interface (ifunc2_), the target data is
passed.

Example 11–8 Calling C Functions and Passing Pointer Arguments

! Pass scalar pointer argument to C. File: scalar_pointer.f90

interface
function ifunc1(a)
integer, pointer :: a
integer ifunc1
end function

end interface

integer, pointer :: x
integer, target :: y

(continued on next page)

Procedure Data Interfaces and Mixed Language Programming 11–39

Example 11–8 (Cont.) Calling C Functions and Passing Pointer Arguments

y = 88
x => y
print *,ifunc1(x) ! interface block visible, so pass

! pointer by reference. C expects "int **"

print *,ifunc2(x) ! no interface block visible, so pass
! value of "x" by reference. C expects "int *"

print *,y
end

Example 11–9 shows the C function declarations that receive the Compaq
Fortran pointer or target arguments from the example in Example 11–8.

Example 11–9 C Functions Receiving Pointer Arguments

/* C functions Fortran pointers. File: scalar_pointer.c */

int ifunc1_(int **a) {
printf("a=%d\n",**a);
**a = 99;
return 100;
}

int ifunc2_(int *a) {
printf("a=%d\n",*a);
*a = 77;
return 101;

}

The files (shown in Example 11–8 and Example 11–9) might be compiled,
linked, and run as follows:

% cc -c scalar_pointer.c
% f90 -o scalar_pointer scalar_pointer.f90 scalar_pointer.o
% scalar_pointer
a=88

100
a=99

101
77

11–40 Procedure Data Interfaces and Mixed Language Programming

11.3.12 Handling Arrays
There are two major differences between the way the C and Compaq Fortran
languages handle arrays:

• Compaq Fortran stores arrays with the leftmost subscript varying the
fastest (column-major order). With C, the rightmost subscript varies the
fastest (row-major order).

• Although the default for the lower bound of an array in Compaq Fortran
is 1, you can specify an explicit lower bound of 0 (zero) or another value.
With C the lower bound is 0.

Because of these two factors:

• When a C routine uses an array passed by a Compaq Fortran subprogram,
the dimensions of the array and the subscripts must be interchanged and
also adjusted for the lower bound of 0 instead of 1 (or a different value).

• When a Compaq Fortran program uses an array passed by a C routine, the
dimensions of the array and the subscripts must be interchanged. You also
need to adjust for the lower bound being 0 instead of 1, by specifying the
lower bound for the Compaq Fortran array as 0.

Compaq Fortran orders arrays in column-major order. The following Compaq
Fortran array declaration for a 2 by 3 array creates elements ordered as y(1,1),
y(2,1), y(1,2), y(2,2), y(1,3), y(2,3):

integer y(2,3)

The Compaq Fortran declaration for a 2 by 3 array can be modified as follows
to have the lowest bound 0 and not 1, resulting in elements ordered as y(0,0),
y(1,0), y(0,1), y(1,1), y(0,2), y(1,2):

integer y(0:1,0:2)

The following C array declaration for a 3 by 2 array has elements in row-major
order as z[0,0], z[0,1], z[1,0], z[1,1], z[2,0], z[2,1]:

int z[3][2]

To use C and Compaq Fortran array data:

• Consider using a 0 (zero) as the lower bounds in the Compaq Fortran array
declaration.

You may need to have the Compaq Fortran declaration with a lower
bound 0 (not 1) for maintenance with C arrays or because of algorithm
requirements.

Procedure Data Interfaces and Mixed Language Programming 11–41

• Reverse the dimensions in one of the array declaration statements. For
example, declare a Compaq Fortran array as 2 by 3 and the C array as 3
by 2. Similarly, when passing array row and column locations between C
and Compaq Fortran reverse the dimension numbers (interchange the row
and column numbers in a two-dimensional array).

When passing certain array arguments, if you use an explicit interface that
specifies the dummy argument as an array with the POINTER attribute or
an assumed-shape array, the argument is passed by array descriptor (see
Section 11.1.7).

For information about performance when using multidimensional arrays, see
Section 5.5.

Example 11–10 shows a C function declaration for function expshape_, which
prints the passed explicit-shape array.

Example 11–10 C Function That Receives an Explicit-Shape Array

/* Get explicit-shape arrays from Fortran */

void expshape_(int x[3][2]) {
int i,j;

for (i=0;i<3;i++)
for (j=0;j<2;j++) printf("x[%d][%d]=%d\n",i,j,x[i][j]);

}

Example 11–11 shows a Compaq Fortran program that calls the C function
expshape_ (shown in Example 11–10).

Example 11–11 Compaq Fortran Program That Passes an Explicit-Shape
Array

! Pass an explicit-shape array from Fortran to C.

integer :: x(2,3)
x = reshape((/(i,i=1,6)/), (/2,3/))

call expshape(x)
end

The files (shown in Example 11–10 and Example 11–11) might be compiled,
linked, and run as follows:

11–42 Procedure Data Interfaces and Mixed Language Programming

% cc -c exparray.c
% f90 -o exparray exparray.f90 exparray.o
% exparray
x[0][0]=1
x[0][1]=2
x[1][0]=3
x[1][1]=4
x[2][0]=5
x[2][1]=6

For information on the use of array arguments with Compaq Fortran, see
Section 11.1.5.

11.3.13 Handling Common Blocks of Data
The following notes apply to handling common blocks of data between Compaq
Fortran and C:

• In Compaq Fortran, you declare each common block with the COMMON
statement. In C, you can use any global variable defined as a struct, but
that global variable (an external name) must end with an underscore.

• Data types must match unless you desire implicit equivalencing. If so, you
must adhere to the alignment restrictions for Compaq Fortran data types.

• If there are multiple routines that declare data with multiple COMMON
statements and the common blocks are of unequal length, the largest of the
sizes is used to allocate space.

• A blank common block has a name of _BLNK_ _.

• You should specify the same alignment characteristics in C and Compaq
Fortran. The default alignment for C structure members is natural
alignment. You can use the cc -member_alignment option or pragma to
alter that alignment.

To specify the alignment of common block data items, specify the
-align dcommons or -align commons option when compiling Compaq
Fortran procedures using the f90 command or specify data declarations
carefully (see Section 5.4).

The following examples show how C and Compaq Fortran code can access
common blocks of data. The C code declares a global structure, calls the
f_calc_ Compaq Fortran function to set the values, and prints the values:

struct S {int j; float k;}r_;
main() {
f_calc_();
printf("%d %f\n", r_.j, r_.k);
}

Procedure Data Interfaces and Mixed Language Programming 11–43

The Compaq Fortran function then sets the data values:

subroutine f_calc()
common /r/j,k
real k
integer j
j = 356
k = 5.9
return
end

The C program then prints the structure member values 356 and 5.9 set by the
Compaq Fortran function.

The previous example applies to Compaq Tru64 UNIX systems. On Compaq
Linux systems, the external names with one underscore would have two
trailing underscores.

11.4 Calling Between Parallel HPF and Non-Parallel HPF
Code

When calling between parallel HPF and non-parallel HPF code (TU*X only), the
-hpf and -nohpf_main compile-time options are required in certain cases and
prohibited in other cases.

11–44 Procedure Data Interfaces and Mixed Language Programming

12
Compaq Fortran Library Routines

This chapter contains the following topics:

• Section 12.1, Overview of Compaq Fortran Library Routines

• Section 12.2, 3f Routines

• Section 12.3, 3hpf Routines

• Section 12.4, Reference Pages for the 3f and 3hpf Routines

• Section 12.5, EXTERNAL or INTRINSIC Declarations

• Section 12.6, Example Using the 3f Library Routine shcom_connect

• Section 12.7, Example of the 3f Library Routines irand and qsort

12.1 Overview of Compaq Fortran Library Routines
Compaq Fortran library routines consist of two groups of routines, commonly
referred to by their Tru64 UNIX or Linux reference page section:

• 3f routines (see Section 12.2, 3f Routines)

• 3hpf routines (see Section 12.3, 3hpf Routines)

12.2 3f Routines
The 3f routines consist of two groups:

• Routines that serve as an interface or ‘‘jacket’’ to Tru64 UNIX or Linux
operating system calls and library routines

System calls (section 2 in reference pages) and library routines (section 3 in
reference pages) provided with the operating system are typically written
for use by the C language. The language interface 3f routines handle the
various argument passing and function invocation differences between
Compaq Fortran and C. This simplifies the programming effort needed to
call a system call or C language library routine directly.

Compaq Fortran Library Routines 12–1

• Routines that perform special functions related to the Compaq Fortran
run-time library (RTL) or calling between Compaq Fortran and C

Table 12–1 lists the groups of language interface (‘‘jacket’’) 3f library routines.

Table 12–1 Summary of Language Interface (‘‘Jacket’’) 3f Library Routines

Category Routine Names
Standard-Conforming
Alternatives

Bessel mathematical
operations

besj0, besj1, besjn, bessel,
besy0, besy1, besyn, dbesj0,
dbesj1, dbesjn, dbesy0,
dbesy1, dbesyn

None.

Bit manipulation and, bit, lshift, not, or,
rshift, xor

Consider using the Compaq
Fortran intrinsics with the same
name instead.

Directories and files access, chdir, chmod, fstat,
flush, fsync, isatty, link,
lstat, rename, stat, symlnk,
ttynam, umask, unlink

None.

Error handling gerror, ierrno, perror Use error-handling specifiers to
handle Compaq Fortran errors,
such as ERR and IOSTAT. Use
these routines to handle Tru64
UNIX and Linux errors.

I/O fgetc, fputc, fseek, ftell,
getc, putc

Consider using Compaq Fortran
nonadvancing I/O instead of
fgetc, fputc, getc, putc.

Miscellaneous index, len, lnblnk, loc, long,
qsort, short, system

Instead of index and len, use
the Compaq Fortran intrinsic
functions INDEX and LEN.

Random numbers drandm, irand, irandm, rand,
random, srand

Consider using the Compaq
Fortran intrinsic subroutines
RANDOM_NUMBER and
RANDOM_SEED.

(continued on next page)

12–2 Compaq Fortran Library Routines

Table 12–1 (Cont.) Summary of Language Interface (‘‘Jacket’’) 3f Library Routines

Category Routine Names
Standard-Conforming
Alternatives

Return date and time ctime, dtime, etime, fdate,
gmtime, idate, itime, ltime,
time

Consider using the Compaq
Fortran intrinsic subroutine
DATE_AND_TIME or, if you
need a subset of the information
returned by DATE_AND_
TIME, the intrinsic subroutines
(Compaq extensions) DATE,
IDATE, and TIME.

Return error function erf, derf, erfc, derfc None.

Return process, system,
or command-line
information

getarg, getcwd, getenv,
getgid, getlog, getpid,
getuid, iargc

None.

Signals and processes abort, alarm, fork, kill,
signal, sleep, wait

Instead of abort, consider using
the STOP statement.

Virtual memory
allocation

falloc, free, malloc For arrays and pointers,
consider using the standard
Fortran 95/90 ALLOCATABLE
attribute or the ALLOCATE and
DEALLOCATE statements.

Table 12–2 describes the 3f routines that provide special functions allowing
Compaq Fortran and C language programs to work together.

Compaq Fortran Library Routines 12–3

Table 12–2 Summary of 3f Library Routines Providing Special Functions

Routine Name Function and Comments

for_rtl_init_ Allows a C main language program to use the Compaq Fortran run-time
library (RTL) environment by initializing the environment, including
associated signal handlers; see for_rtl_init_ in Table 12–3.

for_rtl_finish_ Allows a C main language program to terminate use of the Compaq
Fortran run-time library (RTL) environment; see for_rtl_finish_ in
Table 12–3.

for_get_fpe Returns information on the floating-point exception handling
established for the current program unit; see for_get_fpe in
Table 12–3.

for_set_fpe Sets the floating-point exception handling established for the current
program unit; see for_set_fpe in Table 12–3.

for_set_reentrancy Sets reentrancy protection for the Fortran RTL.

getfd Returns the file descriptor associated with a unit number, after the
Compaq Fortran run-time library (RTL) environment has opened the
file; see getfd in Table 12–3.

omp_* (TU*X only) Various OpenMP Fortran API run-time routines related to parallel
processing. See omp_* in Table 12–3 and Section D.1, OpenMP Fortran
API Run-Time Library Routines.

ots* (TU*X only) Various Compaq Fortran run-time routines related to parallel
processing. See ots* in Table 12–3 and Section D.2, Other Parallel
Threads Routines.

shcom_connect
(TU*X only)

Allows multiple processes to access common block data in a shared
library (uses memory mapping). See Section 12.6, Example Using the
3f Library Routine shcom_connect.

Table 12–3 describes each Compaq Fortran 3f library routine and lists the
appropriate reference page.

For those 3f library routines that serve as interface routines to a system call or
a different library routine, the required related routine is listed. Most routines
are invoked as functions, with the exception of those noted in the table as
subroutines.

12–4 Compaq Fortran Library Routines

Table 12–3 3f Functions and Subroutines

Name Reference Page Description

abort abort(3f) Terminates the program abnormally
and may cause a core dump. Use as a
subroutine.

access access(3f) Determines the accessibility of a file.

alarm alarm(3f) Executes a subroutine after a specified
time.

and bit(3f) Returns the bitwise AND of two
operands. Use as an intrinsic function.

besj0 bessel(3f) Returns single-precision (REAL*4)
bessel function value (first kind, zero
order).

besj1 bessel(3f) Returns single-precision (REAL*4)
bessel function value (first kind, first
order).

besjn bessel(3f) Returns single-precision (REAL*4)
bessel function value (first kind, nth
order).

bessel bessel(3f) Returns bessel functions.

besy0 bessel(3f) Returns single-precision (REAL*4)
bessel function value (second kind,
zero order).

besy1 bessel(3f) Returns single-precision (REAL*4)
bessel function value (second kind, first
order).

besyn bessel(3f) Returns single-precision (REAL*4)
bessel function value (second kind, nth
order).

bit bit(3f) Returns bitwise functions.

chdir chdir(3f) Changes the default directory.

chmod chmod(3f) Changes the mode of a file.

ctime time(3f) Returns the system time as a 24-
character ASCII string.

dbesj0 bessel(3f) Returns a double-precision (REAL*8)
bessel function value (first kind, zero
order).

(continued on next page)

Compaq Fortran Library Routines 12–5

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

dbesj1 bessel(3f) Returns a double-precision (REAL*8)
bessel function value (first kind, first
order).

dbesjn bessel(3f) Returns a double-precision (REAL*8)
bessel function value (first kind, nth
order).

dbesy0 bessel(3f) Returns a double-precision (REAL*8)
bessel function value (second kind, zero
order).

dbesy1 bessel(3f) Returns a double-precision (REAL*8)
bessel function value (second kind, first
order).

dbesyn bessel(3f) Returns a double-precision (REAL*8)
bessel function value (second kind, nth
order).

derf erf(3f) Returns a double-precision error
function.

derfc erf(3f) Returns a double-precision error
function (complementary form).

dffrac flmin(3f) Returns the fractional accuracy of
a double-precision floating-point
(REAL*8) number.

dflmax flmin(3f) Returns maximum positive double-
precision floating-point (REAL*8)
value.

dflmin flmin(3f) Returns minimum positive double-
precision floating-point (REAL*8)
value.

dlgamma lgamma(3f) Returns the REAL*8 log of the gamma
function.

drand rand(3f) Generates a random number. Use
drandm instead.

drandm random(3f) Generates a double-precision (REAL*8)
random number.

dtime etime(3f) Returns the elapsed (delta) execution
time.

(continued on next page)

12–6 Compaq Fortran Library Routines

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

erf erf(3f) Returns a single-precision error
function.

erfc erf(3f) Returns a single-precision error
function (complementary form).

etime etime(3f) Returns the actual execution time of a
process.

falloc malloc(3f) Allocates space for an array in virtual
memory. Use with malloc and free.
Consider using the ALLOCATABLE
attribute or the ALLOCATE and
DEALLOCATE statements.

fdate fdate(3f) Returns the date and time in ASCII
string. Use as a subroutine.

ffrac flmin(3f) Returns the fractional accuracy
of single-precision floating-point
(REAL*4) numbers.

fgetc fgetc(3f) Returns a character from a specified
logical unit.

flmax flmin(3f) Returns the maximum positive single-
precision floating-point (REAL*4)
value.

flmin flmin(3f) Returns the minimum positive single-
precision floating-point (REAL*4)
value.

flush flush(3f) Writes (flushes) the output in a user
buffer to system buffer. Discards
read-ahead data in user buffer.

(continued on next page)

Compaq Fortran Library Routines 12–7

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

for_get_fpe for_get_fpe(3f) Returns the status of the floating-point
exception (fpe) handling currently set
for the program. Usually used with
for_set_fpe. To use for_get_fpe
from a C program, you must first call
for_rtl_init_, described in this
table.

For more information, see Section 3.44,
-fpen — Control Arithmetic Exception
Handling and Reporting and
Chapter 14.

for_rtl_init_ for_rtl_init_(3f) Initializes the Compaq Fortran run-
time library (RTL) environment for a
C program. Use this subroutine from
a main program written in C that calls
Compaq Fortran subprograms.

Calling this subroutine from the main
C program initializes Compaq Fortran
RTL data. It also establishes Compaq
Fortran RTL signal handlers and
floating-point exception handling so
that the Compaq Fortran subprograms
behave as if they were the main
program. The trailing underscore
(_) is required, and this routine must
be called from a C program.

for_rtl_finish_ for_rtl_init_(3f) Cleans up the Compaq Fortran run-
time library (RTL) environment for
a C main program that previously
called for_rtl_init_. A status
value is returned by this function. The
trailing underscore (_) is required, and
this routine must be called from a C
program. Also see for_rtl_init_.

(continued on next page)

12–8 Compaq Fortran Library Routines

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

for_set_fpe for_get_fpe(3f) Changes the floating-point exception
(fpe) handling currently set for
the program and also returns the
status of the previous floating-point
exception (fpe) handling setting. Can
be used with for_get_fpe. To use
for_set_fpe from a C program,
you must first call for_rtl_init_,
described in this table. For more
information, see Section 3.44 and
Chapter 14.

for_set_reentrancy for_set_reentrancy(3f) Sets reentrancy protection for the
Fortran RTL.

fork fork(3f) Creates a copy of the calling process.

fortran intro(3f) Lists Fortran library routines.

fputc putc(3f) Writes a character to a specified logical
unit.

free malloc(3f) Frees the memory allocated by
falloc or malloc. Consider using
the ALLOCATABLE attribute or
the ALLOCATE and DEALLOCATE
statements.

fseek fseek(3f) Repositions a file on a logical unit.

fstat stat(3f) Returns information about file status.
The file is specified as a Fortran 95/90
logical unit number.

fsync fsync(3f) Writes the output in buffer to
permanent storage.

ftell fseek(3f) Repositions a file on a logical unit.

gerror perror(3f) Writes system error messages.

getarg getarg(3f) Returns the command line arguments.

getc getc(3f) Returns a character from a logical
unit.

getcwd getcwd(3f) Returns the directory path of the
current directory.

(continued on next page)

Compaq Fortran Library Routines 12–9

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

getenv getenv(3f) Returns the value of environment
variables.

getfd getfd(3f) For a file already opened by the
Compaq Fortran run-time library
(RTL), returns the file descriptor
associated with a particular unit
number.

getgid getuid(3f) Returns the group’s id of the caller.

getlog getlog(3f) Returns the user’s login name.

getpid getuid(3f) Returns the process id.

getuid getuid(3f) Returns the user’s or group’s id of the
caller.

gmtime time(3f) Returns the system time in month,
day, and so forth in G.M.T. (Greenwich
Mean Time).

iargc getarg(3f) Returns the command-line arguments.

idate idate(3f) Returns the date or time in numeric
form. Also available as an intrinsic
subroutine (Compaq extension)
described in the Compaq Fortran
Language Reference Manual.

ierrno perror(3f) Returns a system error message
number.

index index(3f) Returns the index of a substring within
the string. Consider using INDEX
intrinsic function described in the
Compaq Fortran Language Reference
Manual.

inmax flmin(3f) Returns the maximum positive integer
value.

irand rand(3f) Generates random values. For an
example program that uses irand, see
Section 12.7.

irandm random(3f) Generates a positive integer random
number.

(continued on next page)

12–10 Compaq Fortran Library Routines

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

isatty ttynam(3f) Returns whether the specified unit is a
terminal port. Use as a subroutine.

itime idate(3f) Returns the date or time in numeric
form.

kill kill(3f) Sends a signal to a process.

len index(3f) Returns the length of a string. Use the
LEN intrinsic function described in the
Compaq Fortran Language Reference
Manual.

lgamma lgamma(3f) Returns the REAL*4 log of the gamma
function.

link link(3f) Makes a directory link to an existing
file.

lnblnk index(3f) Returns the index of the last nonblank
character in a string.

loc loc(3f) Returns the address of an object.
Similar to the %LOC built-in function
described in the Compaq Fortran
Language Reference Manual.

long long(3f) Converts INTEGER*2 to INTEGER*4.

lshift bit(3f) Shifts a word left by n bits. Use as an
intrinsic function.

lstat stat(3f) Returns information about a file or a
symbolic link.

ltime time(3f) Returns the system time in month,
day, hour, minute, and seconds for the
time zone.

malloc malloc(3f) Returns the address of a block of
virtual memory. See also free.
Consider using the ALLOCATABLE
attribute or the ALLOCATE and
DEALLOCATE statements.

not bit(3f) Returns the bitwise NOT (complement)
of the operand. Use as an intrinsic
function.

(continued on next page)

Compaq Fortran Library Routines 12–11

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

omp_destroy_lock omp_destroy_lock(3f) (TU*X only) Disassociates a lock variable
from any locks. See Section D.1.2.1,
omp_destroy_lock.

omp_get_dynamic omp_get_dynamic(3f) (TU*X only) Informs if dynamic
thread adjustment is enabled. See
Section D.1.1.1, omp_get_dynamic.

omp_get_max_threads omp_get_max_threads(3f) (TU*X only) Gets the maximum value
that can be returned by calls to the
omp_get_num_threads() function. See
Section D.1.1.2, omp_get_max_threads.

omp_get_nested omp_get_nested(3f) (TU*X only) Informs if nested parallelism
is enabled. See Section D.1.1.3, omp_
get_nested.

omp_get_num_procs omp_get_num_procs(3f) (TU*X only) Gets the number of
processors that are available to the
program. See Section D.1.1.4, omp_
get_num_procs.

omp_get_num_threads omp_get_num_threads(3f) (TU*X only) Gets the number of threads
currently in the team executing the
parallel region from which the routine
is called. See Section D.1.1.5, omp_
get_num_threads.

omp_get_thread_num omp_get_thread_num(3f) (TU*X only) Gets the thread number,
within the team, in the range from
zero
to omp_get_num_threads() minus 1.
See Section D.1.1.6, omp_get_thread_
num.

omp_in_parallel omp_in_parallel(3f) (TU*X only) Informs whether or not a
region is executing in parallel. See
Section D.1.1.7, omp_in_parallel.

omp_init_lock omp_init_lock(3f) (TU*X only) Initializes a lock to be
used in subsequent calls. See
Section D.1.2.2, omp_init_lock.

(continued on next page)

12–12 Compaq Fortran Library Routines

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

omp_set_dynamic omp_set_dynamic(3f) (TU*X only) Enables or disables dynamic
adjustment of the number of threads
available for execution of parallel
regions. See Section D.1.1.8, omp_set_
dynamic.

omp_set_lock omp_set_lock(3f) (TU*X only) Makes the executing
thread wait until the specified lock
is available. See Section D.1.2.3, omp_
set_lock.

omp_set_nested omp_set_nested(3f) (TU*X only) Enables or disables nested
parallelism. See Section D.1.1.9, omp_
set_nested.

omp_set_num_threads omp_set_num_threads(3f) (TU*X only) Sets the number of threads
to use for the next parallel region.
See Section D.1.1.10, omp_set_num_
threads.

omp_test_lock omp_test_lock(3f) (TU*X only) Try to set the lock
associated with a lock variable. See
Section D.1.2.4, omp_test_lock.

omp_unset_lock omp_unset_lock(3f) (TU*X only) Releases the executing
thread from ownership of the lock. See
Section D.1.2.5, omp_unset_lock.

or bit(3f) Returns the bitwise OR of two
operands. Use as an intrinsic function.

_OtsGetMaxThreads otsgetmaxthreads(3f) (TU*X only) Returns the number of
threads that are normally used for
parallel processing in the current
environment. See Section D.2.1,
OtsGetMaxThreads or mpc
maxnumthreads.

_OtsGetNumThreads otsgetnumthreads(3f) (TU*X only) Returns the number of
threads being used or the number of
created threads. See Section D.2.2,
OtsGetNumThreads or mpc
numthreads.

(continued on next page)

Compaq Fortran Library Routines 12–13

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

_OtsGetThreadNum otsgetthreadnum(3f) (TU*X only) Returns a number that
identifies the current thread. See
Section D.2.3, _OtsGetThreadNum or
mpc_my_threadnum.

_OtsInitParallel otsinitparallel(3f) (TU*X only) Starts slave threads for
parallel processing. See Section D.2.4,
_OtsInitParallel.

_OtsInParallel otsinparallel(3f) (TU*X only) Informs whether you are
currently within a parallel region. See
Section D.2.5, _OtsInParallel or mpc_
in_parallel_region.

_OtsSetNumThreads otssetnumthreads(3f) (TU*X only) Sets the number of threads
to use for the next parallel region. See
Section D.2.6, _OtsSetNumThreads .

_OtsStopWorkers otsstopworkers(3f) (TU*X only) Stops any slave threads
created by parallel library support.
See Section D.2.7, _OtsStopWorkers or
mpc_destroy.

perror perror(3f) Writes system error messages.

putc putc(3f) Writes a character to a Fortran 95/90
logical unit.

qsort qsort(3f) Performs a quick sort of array
elements. For an example program
that uses qsort, see Section 12.7.

rand rand(3f) Generates random values.

random random(3f) Generates a single-precision (REAL)
random number.

rename rename(3f) Renames a file.

rshift bit(3f) Shifts a word right by n bits. Use as
an intrinsic function.

shcom_connect shcom_connect(3f) (TU*X only) Allows multiple processes to
access common block data in a shared
library (uses memory mapping).

short long(3f) Converts INTEGER*4 to INTEGER*2.

signal signal(3f) Changes the action of a signal.

(continued on next page)

12–14 Compaq Fortran Library Routines

Table 12–3 (Cont.) 3f Functions and Subroutines

Name Reference Page Description

sleep sleep(3f) Suspends execution for an interval.

srand rand(3f) Initializes the seed for subsequent use
of rand and irand.

stat stat(3f) Returns information about the status
of specified file.

symlnk link(3f) Makes a symbolic directory link to an
existing file.

system system(3f) Executes a shell command.

time time(3f) Returns the system time in number
of seconds from 00:00:00 G.M.T.
January 1, 1970. Also available as
an intrinsic subroutine (Compaq
extension) described in the Compaq
Fortran Language Reference Manual.

ttynam ttynam(3f) Returns the name of a terminal port or
returns blanks if specified unit is not a
terminal port.

umask umask(3f) Sets the file mode creation mask
(protection).

unlink unlink(3f) Removes a directory entry. See also
link.

wait wait(3f) Waits for the process to terminate.

xor bit(3f) Returns the bitwise exclusive OR of
two operands. Use as an intrinsic
function.

For More Information:

• On an example program that uses the qsort and irand routines, see
Section 12.7.

12.3 3hpf Routines
The 3hpf routines (TU*X only) provide functions for using High Performance
Fortran (HPF) constructs to control parallel execution characteristics.
Although usually used in programs that will execute in parallel, you can also
use these routines for nonparallel programs.

Compaq Fortran Library Routines 12–15

The 3hpf routines are contained in the HPF_LOCAL_LIBRARY library
(described in this chapter) and in the HPF_LIBRARY library (described in the
Compaq Fortran Language Reference Manual).

HPF programs execute with the support of Compaq MPI (Message Passing
Interface).

For more information about Compaq MPI, see:

http://www.compaq.com/hpc/software/dmpi.html

Table 12–4 describes each of the Compaq Fortran 3hpf routines contained in
the HPF_LOCAL_LIBRARY library.

Table 12–4 Compaq Fortran 3hpf HPF_LOCAL_LIBRARY Library Routines

Name Reference Page Description

abstract_to_physical abstract_to_physical(3hpf) Returns processor identification
for the physical processor
associated with a specified
abstract processor relative to a
global actual argument array.

get_hpf_my_node get_hpf_my_node(3hpf) Returns an integer value in the
range 0 to number of processors
- 1. This is the unique process
number on which an instance
of an extrinsic(hpf_local) is
executing; on a scalar computer
system the value is the constant
0.

get_hpf_numnodes get_hpf_numnodes(3hpf) Returns the number of peers on
which the program is executing.

global_alignment global_alignment(3hpf) Returns information about
the global HPF array actual
argument associated with an
array local dummy argument;
has the same behavior and
interface as the subroutine
HPF_ALIGNMENT.

global_bounds global_bounds(3hpf) Returns the upper and lower
bounds of the actual argument
associated with an assumed
shape local dummy array.

(continued on next page)

12–16 Compaq Fortran Library Routines

Table 12–4 (Cont.) Compaq Fortran 3hpf HPF_LOCAL_LIBRARY Library Routines

Name Reference Page Description

global_distribution global_distribution (3hpf) Returns information about
the global HPF array actual
argument associated with an
array local dummy argument;
has the same behavior and
interface as the subroutine
HPF_DISTRIBUTION.

global_template global_template(3hpf) Returns information about
the global HPF array actual
argument associated with an
array local dummy argument;
has the same behavior and
interface as the subroutine
HPF_TEMPLATE.

global_to_local global_to_local(3hpf) Converts a set of global
coordinates within a global
HPF actual argument array
to an equivalent set of
local coordinates within the
associated local dummy array.

global_to_physical global_to_physical (3hpf) Converts a global reference
to an array element in the
HPF global actual array
argument. The argument must
be associated with an assumed-
shape local dummy array into
the number of the process to
which the element is mapped
and the subscripts to access that
element using the associated
assumed shape array dummy
argument on that process.

hpf_synch hpf_synch(3hpf) Synchronizes execution of all
peers.

local_to_global local_to_global(3hpf) Converts a set of local
coordinates within a local
dummy array to an equivalent
set of global coordinates within
the associated global HPF actual
argument array.

(continued on next page)

Compaq Fortran Library Routines 12–17

Table 12–4 (Cont.) Compaq Fortran 3hpf HPF_LOCAL_LIBRARY Library Routines

Name Reference Page Description

physical_to_abstract physical_to_abstract(3hpf) Returns coordinates for an
abstract processor, relative to a
global actual argument array,
corresponding to a specified
physical processor.

For More Information:

• On the 3hpf routines in the HPF_LIBRARY library, see the Compaq
Fortran Language Reference Manual and intro(3hpf).

12.4 Reference Pages for the 3f and 3hpf Routines
The reference page intro(3f) describes the 3f routines. Individual 3f functions
also have their own reference pages, as shown in Table 12–3.

The reference page intro(3hpf) describes the 3hpf routines. Individual 3hpf
functions also have their own reference pages, as shown in Table 12–4. And
each routine is summarized in the Compaq Fortran Language Reference
Manual.

You can use the man command to view online reference page information in the
following ways:

• When the topic exists for multiple section numbers, specify the desired
section number before the topic to view a specific reference page. For
example, the following command returns the reference page for the 3f
access routine, not its section 2 (system call) counterpart:

% man 3f access

The following man command returns the 3hpf intro reference page on Tru64
UNIX systems:

% man 3hpf intro

• Use the -f option to view a one-line summary of the specified topic. This
is useful to determine whether the same topic is associated with multiple
section numbers, such as most 3f routines. The following man command
lists all occurrences of the access topic:

% man -f access

12–18 Compaq Fortran Library Routines

12.5 EXTERNAL or INTRINSIC Declarations
Certain Compaq Fortran library routines have the same names as intrinsic
functions or subroutines (subprograms). You need to make sure that the
correct routine or intrinsic subprogram is used, as follows:

• To use an intrinsic subprogram rather than a 3f library routine, you should
not declare the function or subroutine as external in an EXTERNAL
statement.

• To use a 3f library routine rather than an intrinsic subprogram, you should
specify the subprogram as external in an EXTERNAL statement.

The following 3f routines have names that match similar intrinsic
subprograms:

and
idate
index
len
lshift
not
or
rshift
time
xor

For portability reasons, you should consider using the intrinsic routines instead
of the equivalent 3f external routine.

For More Information:

• On the EXTERNAL and INTRINSIC statements, see Compaq Fortran
Language Reference Manual.

12.6 Example Using the 3f Library Routine shcom_connect
Example 12–1 shows the use of the 3f routine shcom_connect (UN*X only)).

Compaq Fortran Library Routines 12–19

Example 12–1 Using the 3f Routine shcom_connect

C
C FILE: shared_data.f - Example of initialized common data.
C

BLOCK DATA shared_block_data

INTEGER*8 init_data
REAL operand, result
COMMON /shared_data/ init_data, operand, result

DATA init_data/42/, operand/0.0/, result/0.0/

END

C
C FILE: compute_agent.f - Example Fortran program
C

PROGRAM compute_agent
INCLUDE ’../include/shcom.f’

INTEGER*8 init_data
REAL operand, result
COMMON /shared_data/ init_data, operand, result

INTEGER shcom_connenct, stat
EXTERNAL shcom_connenct

stat = shcom_connect(init_data, ’/tmp/shcom_demo’)

IF (stat .EQ. SHCOM_SUCCESS) THEN
result = SQRT(operand)

ELSE
TYPE *, ’shcom_connect() failed, error = ’, stat

ENDIF

STOP
END

/*
* FILE ui_agent.c - Example of initialized common data written in C.
*/

#include "shcom.h"

typedef struct {
long init_data;
float operand;
float result;
} demo_t;

extern demo_t shared_data_;

main() {
int stat;

(continued on next page)

12–20 Compaq Fortran Library Routines

Example 12–1 (Cont.) Using the 3f Routine shcom_connect

printf("shared_data_.init_data = %d\n", shared_data_.init_data);

stat = shcom_connect(&shared_data_, "/tmp/shcom_demo");

if (stat == SHCOM_SUCCESS) {
shared_data_.operand = 2.0;
shared_data_.result = 0.0;
system("compute_agent");
printf("shared_data_.result = %f\n", shared_data_.result);

} else {
printf("shcom_connect() failed, error = %d\n", stat);

}
}

#
FILE: Makefile - Builds shared common example.
#
FC = f90
CFLAGS = -g -I../include
FFLAGS = -g
LDFLAGS = -g
LIBS = ../lib/libshcom.a

all: ui_agent compute_agent

ui_agent: ui_agent.o shared_data.so
cc ${CFLAGS} -o ui_agent ui_agent.o shared_data.so ${LIBS}

compute_agent: compute_agent.o shared_data.so
f90 ${FFLAGS} -o compute_agent compute_agent.o shared_data.so
${LIBS}

shared_data.so: shared_data.o
ld ${LDFLAGS} -shared -o shared_data.so shared_data.o -lc

test: shared_data.so ui_agent compute_agent
LD_LIBRARY_PATH=.; export LD_LIBRARY_PATH; ui_agent

clean:
-rm -f ui_agent compute_agent
-rm -f *.o shared_data.so
-rm -f /tmp/shcom_demo so_locations

To compile and link this program, enter:

% make all

To run this program, enter:

% make test

Compaq Fortran Library Routines 12–21

The output from the program is as follows:

shared_data_.init_data = 42
shared_data_.result = 1.414214

12.7 Example of the 3f Library Routines irand and qsort
Example 12–2 shows the use of the 3f routines irand and qsort.

Example 12–2 Using the 3f Routines irand and qsort

PROGRAM EXAMPLE
!
! This is an example of calling the IRAND(3F) and QSORT(3F) entries.
!

EXTERNAL IRAND, QSORT, SUBSORT
INTEGER (KIND=4) :: IRAND, SUBSORT
INTEGER (KIND=4) :: IARRAY(10), I

WRITE(6,100)
!
! Initialize the array using the IRAND(3F) routine.
!

DO I=1,10
IARRAY(I) = IRAND(0)

END DO
WRITE(6,120) ’IRAND(3F)’, IARRAY

!
! Now to sort the array using QSORT(3F)
!

CALL QSORT(IARRAY, 10, 4, SUBSORT)
WRITE(6,120) ’QSORT(3F)’, IARRAY

!
! Define FORMAT statements
!
100 FORMAT (’0Start of EXAMPLE’//)
120 FORMAT (’0Array contents after ’,A,’ call:’/, 10(/T20,I) //)

STOP
END PROGRAM EXAMPLE

!
! Subroutine called by QSORT(3F)
!

INTEGER (KIND=4) FUNCTION SUBSORT (A,B)
INTEGER (KIND=4) :: A,B
SUBSORT = 1
IF (A == B) SUBSORT = 0
IF (A < B) SUBSORT = -1
RETURN

(continued on next page)

12–22 Compaq Fortran Library Routines

Example 12–2 (Cont.) Using the 3f Routines irand and qsort

END FUNCTION SUBSORT

To compile and link this program (named example), enter:

% f90 -o example example.for

To run this program and redirect its output from stdout to example.out, enter:

% example > example.out

The output from the program example contains the contents of the array before
and after sorting, as follows:

0Start of EXAMPLE

0Array contents after IRAND(3F) call:

16838
5758
10113
17515
31051
5627
23010
7419
16212
4086

0Array contents after QSORT(3F) call:

4086
5627
5758
7419
10113
16212
16838
17515
23010
31051

Compaq Fortran Library Routines 12–23

13
Using the Compaq Extended Math Library

(CXML)

This chapter contains the following topics:

• Section 13.1, What Is CXML?

• Section 13.2, CXML Routine Groups

• Section 13.3, Using CXML from Fortran

• Section 13.4, CXML Program Example

• Section 13.5, CXML Documentation

13.1 What Is CXML?
The Compaq Extended Math Library (CXML) provides a comprehensive
set of mathematical library routines callable from Fortran and other
languages. CXML contains a set of over 1500 high-performance mathematical
subprograms designed for use in many different types of scientific and
engineering applications.

CXML is included with Compaq Fortran for Tru64 UNIX Systems and can be
installed using the instructions in the Compaq Fortran Installation Guide for
Tru64 UNIX Systems.

CXML kits for Tru64 UNIX are also available from the Compaq Math Libraries
Web site, which always has the latest version:

http://www.compaq.com/math

Since CXML might have been updated since the Compaq Fortran kit was
released, you should check the Web site to make sure you have the latest
version.

CXML is available as a separate download item for Linux Alpha systems. For
more information, see the Compaq Math Libraries Web site.

Using the Compaq Extended Math Library (CXML) 13–1

CXML documentation is also available at the Web site. See Section 13.5,
CXML Documentation.

13.2 CXML Routine Groups
CXML routines include those for basic linear algebra (BLAS), signal processing,
sparse linear system solution, linear algebra (LAPACK), and utilities related
to random numbers, vector math, and sorting. The routines are described in
Table 13–1.

Table 13–1 CXML Routine Groups

Name Description

Basic Linear Algebra The Basic Linear Algebra Subprograms (BLAS) library
includes the industry-standard Basic Linear Algebra
Subprograms for Level 1 (vector-vector, BLAS1), Level
2 (matrix-vector, BLAS2), and Level 3 (matrix-matrix,
BLAS3). Also included are subprograms for BLAS Level 1
Extensions, and Sparse BLAS Level 1.

Signal Processing The Signal Processing library provides a basic set of
signal processing functions. Included are one-, two-, and
three-dimensional Fast Fourier Transforms (FFT), group
FFTs, Cosine/Sine Transforms (FCT/FST), Convolution,
Correlation, and Digital Filters.

Sparse Linear System The Sparse Linear System library provides both direct and
iterative sparse linear system solvers. The direct solver
package supports both symmetric and nonsymmetric sparse
matrices stored using the skyline storage scheme. The
iterative solver package contains a basic set of storage
schemes, preconditioners, and iterative solvers.

LAPACK LAPACK is an industry-standard subprogram package
offering an extensive set of linear system and eigenproblem
solvers. LAPACK uses blocked algorithms that are better
suited to most modern architectures, particularly ones with
memory hierarchies.

Utility subprograms Utility subprograms include random number generation,
vector math functions, and sorting subprograms.

Where appropriate, each subprogram has a version to support each
combination of real or complex and single or double precision arithmetic.
In addition, selected key CXML routines are available in parallel form as well
as serial form on Compaq Tru64 UNIX systems.

13–2 Using the Compaq Extended Math Library (CXML)

13.3 Using CXML from Fortran
To use CXML, you need to make the CXML routines and their interfaces
available to your program and specify the appropriate libraries when linking.
To specify the CXML routines library when linking, use the -lcxml option. To
compile and link a Fortran program that contains calls to CXML routines on
Tru64 UNIX or Linux Alpha systems, use one of the following commands:

Operating System Command

Tru64 UNIX f90 my_prog.f90 -lcxml
Linux fort my_prog.f -lcxml

For example, to link a Fortran 90 program with the serial CXML library on a
Tru64 UNIX system, you would give this command:

% f90 my_prog.f90 -lcxml

On Tru64 UNIX systems, selected key CXML routines have been parallelized
using OpenMP. To link with the parallel version of the CXML library, use
-lcxmlp instead of -lcxml.

13.4 CXML Program Example
Example 13–1, Fortran Example Program Using CXML invokes the function
SAXPY from the BLAS portion of the CXML Libraries. The SAXPY function
computes a*x+y.

13.5 CXML Documentation
For more information, see the following CXML documentation, available at the
Math Libraries Web site described in Section 13.1, What Is CXML?:

• README file and Release Notes

• Reference Manual in HTML, PDF, and PS format

When CXML is installed on Tru64 UNIX systems, subsets containing reference
pages in both traditional (‘‘man page’’) and HTML format can be installed.

When CXML is installed on Linux systems, the reference pages are available
in HTML format and are placed in a /usr/doc subdirectory.

Using the Compaq Extended Math Library (CXML) 13–3

Example 13–1 Fortran Example Program Using CXML

PROGRAM example
!
! This free-form example demonstrates how to call
! CXML routines from Fortran.
!

REAL(KIND=4) :: a(10)
REAL(KIND=4) :: x(10)
REAL(KIND=4) :: alpha
INTEGER(KIND=4) :: n
INTEGER(KIND=4) :: incx
INTEGER(KIND=4) :: incy
n = 5 ; incx = 1 ; incy = 1 ; alpha = 3.0
DO i = 1,n
a(i) = FLOAT(i)
x(i) = FLOAT(2*i)

ENDDO
PRINT 98, (a(i),i=1,n)
PRINT 98, (x(i),i=1,n)

98 FORMAT(’ Input = ’,10F7.3)
CALL saxpy(n, alpha, a, incx, x, incy)
PRINT 99, (x(i),I=1,n)

99 FORMAT(/,’ Result = ’,10F7.3)
STOP
END PROGRAM example

13–4 Using the Compaq Extended Math Library (CXML)

14
Controlling Floating-Point Exceptions

Note

This chapter applies only to Compaq Fortran Tru64 UNIX systems.

This chapter contains the following topics:

• Section 14.1, Overview of Controlling Floating-Point Exceptions

• Section 14.2, Using the for_fpe_flags.f File

• Section 14.3, Calling the for_get_fpe and for_set_fpe Functions

• Section 14.4, File fordef.f and Its Usage

14.1 Overview of Controlling Floating-Point Exceptions
This chapter contains information about controlling exceptions that can occur
during the run-time processing of floating-point numbers. These exceptions are
underflow, division by zero, overflow, and invalid operation (such as the
square root of a negative number).

See Section 9.4, Native IEEE Floating-Point Representations and Exceptional
Values for information about the internal representation of floating-point
numbers including exceptional values (such as plus infinity).

You can use these command-line options to direct the processing of Compaq
Fortran floating-point numbers at run time:

• -fpen option to control exception handling and reporting (see Section 3.44)

• -check underflow option to control checking for floating-point underflow at
run time (see Section 3.29)

• -synchronous_exceptions option to control reporting of exceptions at run
time (see Section 3.86)

Controlling Floating-Point Exceptions 14–1

• -fprm keyword option to control rounding of floating-point operations (see
Section 3.46)

14.2 Using the for_fpe_flags.f File
The -fpen option, as explained in Section 3.44, lets you control floating-point
exceptions according to the value of n. Table 3–3 contains the values of n
and the corresponding results at run time when floating-point exceptions
occur. These exceptions are underflow, division by zero, overflow, and invalid
operation (such as the square root of a negative number).

Normally the -fpen option, along with the -check underflow and
-synchronous_exceptions options, gives you adequate control over floating-
point exception handling and reporting.

However, if any combination of these three options does not give you adequate
control, then you can use the following:

• File /usr/include/for_fpe_flags.f, which contains definitions of the bits
in an INTEGER*4 variable. (See Section 14.2.1, Bit Definitions in File
for_fpe_flags.f.) This file is a file of Fortran statements with flags that
relate to floating-point exceptions.

• Functions for_get_fpe and for_set_fpe. (See Section 14.3, Calling the
for_get_fpe and for_set_fpe Functions.)

• Option -fpe3.

For example, suppose you want to read a denormalized number from an
unformatted file and perform calculations on it without generating an
exception about an invalid operation. Suppose you also want to have divide-
by-zero exceptions trapped and reported. While the -fpe3 option meets the
first requirement, it also results in no trapping and reporting of divide-by-zero
exceptions.

The general steps of the solution to this example are:

1. Include, in your source program, file /usr/include/for_fpe_flags.f.

2. Include statements that select, from the included file, bits corresponding
to the phrases ‘‘trap divide-by-zero exceptions’’ and ‘‘report divide-by-zero
exceptions.’’ Include them in the INTEGER*4 argument to function
for_set_fpe.

14–2 Controlling Floating-Point Exceptions

3. Compile the program with the -fpe3 option. As long as the reference to
function for_set_fpe occurs at the beginning of the program, division-by-
zero exceptions will be trapped and reported. (When function for_set_fpe
executes, it overrides the initial effect of the -fpe3 option: to disable
trapping and reporting of divide-by-zero exceptions.)

This example reappears later, in program fpe_div0_msg.f90 in Section 14.3.2.

Note

Normally the -fpen, -check underflow, -synchronous_exceptions, and
-fprm keyword options give you sufficient control over the processing of
floating-point exceptions. Using file /usr/include/for_fpe_flags.f
and function for_set_fpe can yield unanticipated results.

14.2.1 Bit Definitions in File for_fpe_flags.f
Table 14–1 explains the bit definitions in file /usr/include/for_fpe_flags.f.
The compiler automatically generates a call to for_set_fpe(), which is
expected when the program begins execution. The argument to for_set_fpe()
has the appropriate bits set (as defined in for_fpe_flags.f) to achieve the
documented behavior for the -fpen option specified at compile time. You have
the option of changing this bit setting according to the individual bit definitions
and their corresponding effects in Table 14–1. The function for_set_fpe works
with the bit definitions to make the change.

Note

For the default -fpe0 option, the compiler does not generate the call
to for_set_fpe(). The run-time library automatically initializes
floating-point exception behavior in this case at run-time initialization.

Table 14–1 Bit Definitions in File for_fpe_flags.f

Bit Name Effect When Set

FPE_M_TRAP_UND Requests delivery of underflow traps to the current signal handler.

FPE_M_TRAP_OVF Requests delivery of overflow traps to the current signal handler.

(continued on next page)

Controlling Floating-Point Exceptions 14–3

Table 14–1 (Cont.) Bit Definitions in File for_fpe_flags.f

Bit Name Effect When Set

FPE_M_TRAP_DIV0 Requests delivery of division-by-zero traps to the current signal
handler.

FPE_M_TRAP_INV Requests delivery of invalid operation traps to the current signal
handler.

FPE_M_MSG_UND If the current signal handler is the default handler provided with
the Fortran run-time library and bit FPE_M_TRAP_UND is also set,
then the default handler sends a message to stderr for each of the
first two occurrences of underflow traps. The default handler also
sends a total count of underflow traps to stderr when the program
terminates. If the current signal handler is not the default handler,
then bit FPE_M_MSG_UND has no effect.

FPE_M_MSG_OVF If the current signal handler is the default handler provided with the
Fortran run-time library and bit FPE_M_TRAP_OVF is also set, then
the default handler sends a message to stderr for each of the first
two occurrences of overflow traps. The default handler also sends a
total count of overflow traps to stderr when the program terminates.
If the current signal handler is not the default handler, then bit
FPE_M_MSG_OVF has no effect.

FPE_M_MSG_DIV0 If the current signal handler is the default handler provided with
the Fortran run-time library and bit FPE_M_TRAP_DIV0 is also set,
then the default handler sends a message to stderr for each of the
first two occurrences of divide-by-zero traps. The default handler
also sends a total count of divide-by-zero traps to stderr when the
program terminates. If the current signal handler is not the default
handler, then bit FPE_M_MSG_DIV0 has no effect.

FPE_M_MSG_INV If the current signal handler is the default handler provided with the
Fortran run-time library and bit FPE_M_TRAP_INV is also set, then
the default handler sends a message to stderr for each of the first
two occurrences of invalid operation traps. The default handler also
sends a total count of invalid operation traps to stderr when the
program terminates. If the current signal handler is not the default
handler, then bit FPE_M_MSG_INV has no effect.

FPE_M_ABRUPT_UND Replaces denormalized numbers obtained as results of calculations
with zeroes.

FPE_M_ABRUPT_OVF Reserved.

FPE_M_ABRUPT_DIV0 Reserved.

FPE_M_ABRUPT_INV Reserved.

(continued on next page)

14–4 Controlling Floating-Point Exceptions

Table 14–1 (Cont.) Bit Definitions in File for_fpe_flags.f

Bit Name Effect When Set

FPE_M_ABRUPT_DMZ Replaces denormalized numbers used as input operands to floating-
point instructions with zeroes. This does not have anything to do with
reading data from unformatted files.

14.3 Calling the for_get_fpe and for_set_fpe Functions
Table 14–1 contains a list of bit definitions (in an INTEGER*4 variable)
and their run-time effects when floating-point exceptions occur. Functions
for_get_fpe and for_set_fpe read and set the bits, respectively, after a
program begins execution. (The -fpen option also sets these bits when a
program begins execution.)

14.3.1 Calling for_get_fpe
Function for_get_fpe has no argument. It returns an INTEGER*4 variable
whose bits specify how the run-time library currently handles floating-point
exceptions. The bits of the variable are defined in Table 14–1. for_get_fpe
must be declared INTEGER(4).

For example, consider the following program. When compiled with the default
-fpe0 option, this program displays the default settings of the bits in the
INTEGER*4 variable:

PROGRAM TESTFGPE_FPE0
!
! This program returns floating-point exception flags
! using function for_get_fpe().
!

integer*4 fpe_flags
integer*4 for_get_fpe
external for_get_fpe

!
PRINT *, ’’
PRINT *, ’Start of program’
fpe_flags = for_get_fpe()
PRINT *, ’’
PRINT *, ’for_get_fpe() has returned, with option fpe0:’
WRITE (*, 200) fpe_flags

200 FORMAT (’ ’, ’In B32 format: ’, B32)
PRINT *, ’’
PRINT *, ’End of program’

END PROGRAM TESTFGPE_FPE0

Controlling Floating-Point Exceptions 14–5

The compilation and execution commands are:

% f90 -fpe0 testfgpe_fpe0.f90
% a.out

The output from this program, with spaces added to the 32-character
representation of variable fpe_flags, is:

Start of program

for_get_fpe() has returned, with option fpe0:
In B32 format: 1 0000 0000 0000 1110

End of program

Compiling this program with a different value of the -fpen option gives
different output. For example, if you compile with -fpe3, variable fpe_flags
contains zero.

For More Information:

• On the for_get_fpe function, see for_set_fpe(3f).

14.3.2 Calling for_set_fpe
Function for_set_fpe has a single argument: a floating-point exception
behavior mask. This is an INTEGER*4 variable whose bits specify how the
run-time library will handle floating-point exceptions. Function for_set_fpe
must be declared INTEGER(4).

The bits of the mask variable are defined in Table 14–1. When the function
executes, it both returns the previous value of the mask and changes the mask
to the value of the argument. Recall that the -fpen option determines the
value of the mask when the program begins to execute. Function for_set_fpe
allows you to change the mask, and the handling of floating-point exceptions,
after the program begins to execute.

Recall in Section 14.2 the example where the requirements are to read a
denormalized number from an unformatted file and perform calculations on
it without generating an invalid operation exception. Also, divide-by-zero
exceptions must be trapped and reported. The -fpe3 option meets the first
requirement. File /usr/include/for_fpe_flags.f and function for_set_fpe
work together to meet the second requirement.

Consider program fpe_div0_msg.f90:

14–6 Controlling Floating-Point Exceptions

program fpe_div0_msg
! Trap when division by zero occurs and display a message.
! Compile with the command f90 -fpe3 fpe_div0_msg.f90

external for_set_fpe ! External function

integer*4 for_set_fpe

! Include the file with the definitions of the
! floating-point exceptions.

include ’/usr/include/for_fpe_flags.f’
real*4 a,b,c
integer*4 old_fpe_flags, new_fpe_flags

! Set the bits, of the argument to for_set_fpe(), to trap
! when division by zero occurs and to display a message.

new_fpe_flags = FPE_M_TRAP_DIV0 + FPE_M_MSG_DIV0
old_fpe_flags = for_set_fpe(new_fpe_flags)
a = 5.0
print *, ’’
print *, ’Give me 0.0’
read *, b
print *, ’Division by zero is next’
c = a / b
print *, ’The result of division by zero is’, c
print *, ’’
end

In this program, at run time, division by zero occurs. This floating-point
exception results in:

1. A trap and its delivery to the current signal handler

2. Reporting by the default signal handler provided with the Compaq Fortran
run-time library

3. Continuation of the program

The compilation and execution commands are:

% f90 -fpe3 fpe_div0_msg.f90
% a.out

The output from this program and user input (0.0) are:

Give me 0.0
0.0
Division by zero is next

forrtl: error (73): floating divide by zero
The result of division by zero is Infinity

forrtl: info (299): 1 floating divide-by-zero traps

Controlling Floating-Point Exceptions 14–7

Setting bit FPE_M_TRAP_DIV0 causes a trap when division by zero occurs and
delivery of a signal to the current signal handler. Setting bit FPE_M_MSG_DIV0
causes the Compaq Fortran run-time routines (the current and default signal
handler) to display a message about the trapped division-by-zero floating-point
exception. Because of compilation with -fpe3, function for_set_fpe returns
zero to variable old_fpe_flags.

For More Information:

• On the for_set_fpe function, see for_set_fpe(3f).

14.4 File fordef.f and Its Usage
The parameter file /usr/include/fordef.f contains symbols and INTEGER*4
values corresponding to the classes of floating-point representations. Some
of these classes are exceptional ones such as bit patterns that represent
positive denormalized numbers. See Section 9.4.8, Exceptional Floating-Point
Representations.

With this file of symbols and with the FP_CLASS intrinsic function, you have
the flexibility of identifying exceptional numbers so that, for example, you can
replace positive and negative denormalized numbers with true zero.

The following is a simple example of identifying floating-point bit
representations:

include ’/usr/include/fordef.f’
real*4 a
integer*4 class_of_bits
a = 57.0 ! Bit pattern is an Alpha finite number
class_of_bits = fp_class(a)
if (class_of_bits .eq. for_k_fp_pos_norm .or. &

class_of_bits .eq. for_k_fp_neg_norm) then
print *, a, ’ is a non-zero and non-exceptional value’

else
print *, a, ’ is zero or an exceptional value’

end if
end

In this example, the symbol for_k_fp_pos_norm in file /usr/include/fordef.f
plus the REAL*4 value 57.0 to the FP_CLASS intrinsic function results in the
execution of the first print statement.

Table 14–2 explains the symbols in file /usr/include/fordef.f and their
corresponding floating-point representations. Section 9.4.8, Exceptional
Floating-Point Representations explains each representation.

14–8 Controlling Floating-Point Exceptions

Table 14–2 Symbols in File fordef.f

Symbol Name Class of Floating-Point Bit Representation

FOR_K_FP_SNAN Signaling NaN

FOR_K_FP_QNAN Quiet NaN

FOR_K_FP_POS_INF Positive infinity

FOR_K_FP_NEG_INF Negative infinity

FOR_K_FP_POS_NORM Positive normalized finite number

FOR_K_FP_NEG_NORM Negative normalized finite number

FOR_K_FP_POS_DENORM Positive denormalized number

FOR_K_FP_NEG_DENORM Negative denormalized number

FOR_K_FP_POS_ZERO Positive zero

FOR_K_FP_NEG_ZERO Negative zero

Another example of using file fordef.f and intrinsic function FP_CLASS
follows. The goals of this program are to quickly read any 32-bit pattern into a
REAL*4 number from an unformatted file with no exception reporting and to
replace denormalized numbers with true zero:

include ’/usr/include/fordef.f’
real*4 a(100)
integer*4 class_of_bits

! open an unformatted file as unit 1
! ...

read (1) a
do i = 1, 100

class_of_bits = fp_class(a(i))
if (class_of_bits .eq. for_k_fp_pos_denorm .or. &

class_of_bits .eq. for_k_fp_neg_denorm) then
a(i) = 0.0

end if
end do
close (1)
end

You can compile this program with any value of -fpen. Intrinsic function FP_
CLASS helps to find and replace denormalized numbers with zeroes before the
program can attempt to perform calculations on the denormalized numbers.
On the other hand, if this program did not replace denormalized numbers
read from unit 1 with zeroes and the program was compiled with -fpe0, then
the first attempted calculation on a denormalized number would result in a
floating-point exception.

Controlling Floating-Point Exceptions 14–9

File fordef.f and intrinsic function FP_CLASS can work together to identify
NaNs. A variation of the previous example would contain the symbols
for_k_fp_snan and for_k_fp_qnan in the IF statement. A faster way to do
this is based on the intrinsic ISNAN function. One modification of the previous
example, using ISNAN, follows:

! The ISNAN function does not need file /usr/include/fordef.f
real*4 a(100)

! open an unformatted file as unit 1
! ...

read (1) a
do i = 1, 100

if (isnan (a(i))) then
print *, ’Element ’, i, ’ contains a NaN’

end if
end do
close (1)
end

You can compile this program with any value of -fpen.

14–10 Controlling Floating-Point Exceptions

A
Compatibility: Compaq Fortran 77 and
Compaq Fortran on Multiple Platforms

This appendix provides compatibility information for those porting Compaq
Fortran 77 and Compaq Fortran applications from other Compaq systems and
for those designing applications for portability to multiple platforms.

This appendix contains the following topics:

• Section A.1, Compaq Fortran and Compaq Fortran 77 Compatibility on
Various Platforms

• Section A.2, Compatibility with Compaq Fortran 77 for Compaq Tru64
UNIX Systems

• Section A.3, Language Compatibility with Compaq Visual Fortran

• Section A.4, Compatibility with Compaq Fortran 77 and Compaq Fortran
for OpenVMS Systems

• Section A.5, Calling Between Compaq Fortran 77 and Compaq Fortran

A.1 Compaq Fortran and Compaq Fortran 77 Compatibility
on Various Platforms

Table A–1 summarizes the compatibility of Compaq Fortran for Compaq Tru64
UNIX and Linux Alpha systems with Compaq Fortran on OpenVMS Alpha
Systems, Compaq Fortran 77 on other platforms (architecture/operating system
pairs), and Compaq Visual Fortran for Windows systems.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–1

Table A–1 Summary of Language Compatibility

Compaq Fortran 77 (CF77) or Compaq
Fortran (CF95) for . . . Systems

Language Feature

CF95
UNIX
Alpha

CF95
Linux
Alpha

CF77
UNIX
Alpha

CF95
Windows

CF95
OpenVMS
Alpha

CF77
OpenVMS
Alpha

CF77
OpenVMS
VAX

Linking against static and shared
libraries

X X X X X X X

Create code for shared libraries X X X X X X X

Recursive code support X X X X X X X

AUTOMATIC and STATIC statements X X X X X X X

STRUCTURE and RECORD declara-
tions

X X X X X X X

INTEGER*1, *2, *4 X X X X X X X

LOGICAL*1, *2, *4 X X X X X X X

INTEGER*8 and LOGICAL*8 X X X X1 X X

REAL*4, *8 X X X X X X X

REAL*162 X X X X X X

COMPLEX*8, *16 X X X X X X X

COMPLEX*323 X X X

POINTER (CRAY-style) X X X X X X X

INCLUDE statements X X X X X X X

IMPLICIT NONE statements X X X X X X X

Data initialization in type declarations X X X X X X X

Automatic arrays X X X X X X

VOLATILE statements X X X X X X X

NAMELIST-directed I/O X X X X X X X

31-character names including $ and _ X X X X X X X

Source listing with machine code X X X X X X X

Debug statements in source X X X X X X X

1Alpha systems only.
2For REAL*16 data, OpenVMS VAX systems use H_float format, and Alpha systems use IEEE style X_float
format.
3For COMPLEX*32 data, Alpha systems use IEEE style X_float format for both REAL*16 parts.

(continued on next page)

A–2 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

Table A–1 (Cont.) Summary of Language Compatibility

Compaq Fortran 77 (CF77) or Compaq
Fortran (CF95) for . . . Systems

Language Feature

CF95
UNIX
Alpha

CF95
Linux
Alpha

CF77
UNIX
Alpha

CF95
Windows

CF95
OpenVMS
Alpha

CF77
OpenVMS
Alpha

CF77
OpenVMS
VAX

Bit constants to initialize data and use
in arithmetic

X X X X X X X

DO WHILE and END DO statements X X X X X X X

Built-in functions %LOC, %REF, %VAL X X X X X X X

SELECT CASE construct X X X X X X

EXIT and CYCLE statements X X X X X X

Variable FORMAT expressions (VFEs) X X X X X X X

! marks end-of-line comment X X X X X X X

Optional run-time bounds checking for
arrays and substrings

X X X X X X X

Binary (unformatted) I/O in IEEE big
endian, IEEE little endian, VAX, IBM,
and CRAY floating-point formats

X X X X X X X

Fortran 95/90 standards checking X X X X

FORTRAN-77 standards checking X X X X

IEEE exception handling X X X X X X

VAX floating data type in memory X X X

IEEE floating data type in memory X X X X X X

CDD/Repository DICTIONARY support X X

KEYED access and INDEXED files X X X

Parallel decomposition X5 5 5 5 5 X

OpenMP parallel directives X

Conditional compilation using IF . . .
DEF constructs

X X X X

Vector code support X

5For parallel processing, you can also use the optional KAP performance preprocessor for a shared memory
multiprocessor system.

(continued on next page)

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–3

Table A–1 (Cont.) Summary of Language Compatibility

Compaq Fortran 77 (CF77) or Compaq
Fortran (CF95) for . . . Systems

Language Feature

CF95
UNIX
Alpha

CF95
Linux
Alpha

CF77
UNIX
Alpha

CF95
Windows

CF95
OpenVMS
Alpha

CF77
OpenVMS
Alpha

CF77
OpenVMS
VAX

Direct inlining of Basic Linear Algebra
Subroutines (BLAS)

6 6 6 6 6 6 X

DATE_AND_TIME returns 4-digit year X X X X X X X

FORALL statement and construct X X X X

Automatic deallocation of ALLOCATABLE
arrays

X X X X

Dim argument to MAXLOC and
MINLOC

X X X X

PURE user-defined subprograms X X X X

ELEMENTAL user-defined subpro-
grams

X X X X

Pointer initialization (initial value) X X X X

The NULL intrinsic to nullify a pointer X X X X

Derived-type structure initialization X X X X

CPU_TIME intrinsic subroutine X X X X

Kind argument to CEILING and
FLOOR intrinsics

X X X X

Nested WHERE constructs, masked
ELSEWHERE statement, and named
WHERE constructs

X X X X

Comments allowed in namelist input X X X X

Generic identifier in END INTERFACE
statements

X X X X

Minimal FORMAT edit descriptor field
width

X X X X

Detection of Obsolescent and/or Deleted
features 7

X X X X

6BLAS and other routines are available with the Compaq Extended Mathematical Library (CXML) product on
Alpha systems.
7Compaq Fortran flags these deleted and obsolescent features, but fully supports them.

A–4 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

A.2 Compatibility with Compaq Fortran 77 for Compaq Tru64
UNIX Systems

This section provides compatibility information for those porting Compaq
Fortran 77 applications from Compaq Tru64 UNIX systems. It discusses the
following topics:

• Major language features for compatibility with Compaq Fortran 77 for
Compaq Tru64 UNIX systems (Section A.2.1)

• Language differences between Compaq Fortran and Compaq Fortran 77,
including Compaq Fortran 77 extensions on Compaq Tru64 UNIX Systems
that are not supported by this version of Compaq Fortran on Compaq
Tru64 UNIX Systems (Section A.2.2)

• Language features detected during compilation differently by Compaq
Fortran than Compaq Fortran 77 for Compaq Tru64 UNIX Systems
(Section A.2.3)

A.2.1 Major Language Features for Compatibility with Compaq Fortran
77 for Compaq Tru64 UNIX Systems
To simplify porting applications from Compaq Fortran 77 to Compaq Fortran
on Tru64 UNIX systems, Compaq Fortran supports the following Compaq
Fortran 77 extensions that are not part of the Fortran 95/90 standards:

• Record structures (STRUCTURE and RECORD statements)

• I/O statements, including PRINT, ACCEPT, TYPE, DELETE, and
UNLOCK

• I/O statement specifiers, such as the INQUIRE statement specifiers
CARRIAGECONTROL, CONVERT, ORGANIZATION, and RECORDTYPE

• Certain data types, including 8-byte INTEGER and LOGICAL variables
and 16-byte REAL variables (available on Alpha systems)

• Size specifiers for data declaration statements, such as INTEGER*4, in
addition to the KIND type parameter

• IEEE floating-point data type in memory

• The POINTER statement and its associated data type (CRAY pointers).

• The typeless PARAMETER statement

• The VOLATILE statement

• The AUTOMATIC and STATIC statements

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–5

• Built-in functions used in argument lists, such as %VAL and %LOC

• Hollerith constants

• Variable-format expressions (VFEs)

• Certain intrinsic functions

• The tab source form (resembles fixed-source form)

• I/O formatting descriptors

• USEROPEN routines for user-defined open routines

• Additional language features, including the DEFINE FILE, ENCODE,
DECODE, and VIRTUAL statements

In addition to language extensions, Compaq Fortran also supports the following
Compaq Fortran 77 features:

• Compaq Fortran 77 compilation control statements and directives (see the
Compaq Fortran Language Reference Manual), including:

INCLUDE statement forms using /LIST and /NOLIST (requires
compiling with -vms)

OPTIONS statement to override or set compiler command-line options

General cDEC$ directives, including:

cDEC$ ALIAS
cDEC$ IDENT
cDEC$ OPTIONS
cDEC$ PSECT
cDEC$ TITLE
cDEC$ SUBTITLE

• A nearly identical set of command-line options and their associated features
(see Section A.2.4).

• The ability to call between Compaq Fortran 77 and Compaq Fortran
routines and a common run-time environment. For example, a Compaq
Fortran 77 procedure and a Compaq Fortran procedure can perform I/O to
the same unit number (see Section A.5).

• foriosdef.for symbolic parameter definitions for use with run-time
(IOSTAT) error handling (see Chapter 8).

For More Information:
On the Compaq Fortran language, see the Compaq Fortran Language Reference
Manual.

A–6 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

A.2.2 Language Features Provided Only by Compaq Fortran 77 for
Compaq Tru64 UNIX Systems
Compaq Fortran conforms to the Fortran 95/90 standard, which is a superset
of the FORTRAN-77 standard. Compaq Fortran provides many but not all of
the FORTRAN-77 extensions provided by Compaq Fortran 77.

The following list shows FORTRAN-77 extensions provided by Compaq Fortran
77 on Compaq Tru64 UNIX systems are not provided by Compaq Fortran.
Where appropriate, this list indicates equivalent Compaq Fortran language
features:

• Octal notation for integer constants is not part of the Compaq Fortran
Language. Compaq Fortran 77 (f77 command) only supports this feature
when the -vms option is specified. For example:

I = "0014 ! Assigns 12 to I, not supported by Compaq Fortran

• The Compaq Fortran compiler discards leading zeros for "disp" in the
STOP statement. For example:

STOP 001 ! Prints 1 instead of 001

• When a single-precision constant is assigned to a double-precision variable,
Compaq Fortran 77 evaluates the constant in double precision. The
Fortran 95/90 standards require that the constant be evaluated in single
precision.

When a single-precision constant is assigned to a double-precision variable
with Compaq Fortran, it is evaluated in single precision. You can, however,
specify the f90 -fpconstant option to request that a single-precision
constant assigned to a double-precision variable be evaluated in double
precision.

In the example below, Compaq Fortran 77 assigns identical values to D1
and D2, whereas Compaq Fortran obeys the standard and assigns a less
precise value to D1.

For example:

REAL*8 D1,D2
DATA D1 /2.71828182846182/ ! Incorrect - only REAL*4 value
DATA D2 /2.71828182846182D0/ ! Correct - REAL*8 value

• The names of intrinsics introduced by Compaq Fortran may conflict with
the names of existing external procedures if the procedures were not
specified in an EXTERNAL declaration. For example:

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–7

EXTERNAL SUM
REAL A(10),B(10)
S = SUM(A) ! Correct - invokes external function
T = DOT_PRODUCT(A,B) ! Incorrect - invokes intrinsic function

• When writing namelist external records, Compaq Fortran uses the syntax
for namelist external records specified by the Fortran 95/90 standards,
rather than the Compaq Fortran 77 syntax (an extension to the FORTRAN-
77 and Fortran 95/90 standards).

Consider the following program:

% cat test.f

INTEGER I
NAMELIST /N/ I
I = 5
PRINT N
END

When this program is compiled by the f90 command and run, the following
output appears:

% f90 test.f
% a.out
&N
I = 5
/

When this program is compiled by the f77 command and run, the following
output appears:

% f77 test.f
% a.out
$N
I = 5
$END

Use the -f77rtl option to tell Compaq Fortran to generate NAMELIST
output in Compaq Fortran 77 format.

Compaq Fortran accepts Fortran 95/90 namelist syntax and Compaq
Fortran 77 namelist syntax for reading records.

• The Compaq Fortran language does not include C-style escape sequences
in standard char constants. For example:

CHARACTER NL
NL = ’\n’ ! Incorrect
NL = CHAR(10) ! Correct

A–8 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

The Compaq Fortran extension C-string allows certain C-style escape
sequences in char constants that end with a C. For example:

CHAR NL
NL = ’\n’C

• Compaq Fortran inserts a leading blank when doing list-directed I/O to an
internal file. For example:

CHARACTER*10 C
WRITE(C,*) ’FOO’ ! C = ’ FOO’

• Compaq Fortran 77 and Compaq Fortran produce different output a real
value whose data magnitude is 0 with a G field descriptor. For example:

X = 0.0
WRITE(*,100) X ! Compaq Fortran 77 prints 0.0000E+00

100 FORMAT(G12.4) ! Compaq Fortran prints 0.000

• Compaq Fortran does not allow certain intrinsics (such as SQRT) in
constant expressions for array bounds. For example:

REAL A(SQRT(31.5))
END

• Compaq Fortran 77 returns UNKNOWN while Compaq Fortran returns
UNDEFINED when the ACCESS, BLANK, and FORM characteristics can
not be determined. For example:

INQUIRE(20,ACCESS=acc,BLANK=blk,FORM=form)

• Compaq Fortran does not allow an extraneous parenthesis in I/O lists. For
example:

write(*,*) ((i,i=1,1),(j,j=1,2))

• Compaq Fortran does not allow control characters within quoted strings.
For example, the assignment statement in the following program is
incorrect because it contains the character Ctrl/C.

character*5 c
c = ’ab^cef’
end

• Compaq Fortran does not recognize certain hexadecimal and octal
constants in DATA statements, such as those used in the following
program:

INTEGER I, J
DATA I/O20101/, J/Z20/
TYPE *, I, J
END

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–9

• Compaq Fortran, like Compaq Fortran 77, supports the use of character
literal constants (such as ’ABC’ or "ABC") in numeric contexts, where they
are treated as Hollerith constants.

Compaq Fortran 77 also allows character PARAMETER constants (typed
and untyped) and character constant expressions (using the // operator) in
numeric constants as an undocumented extension.

Compaq Fortran does allow character PARAMETER constants in numeric
contexts, but does not allow character expressions. For example, the
following is valid for Compaq Fortran 77, but will result in an error
message from Compaq Fortran:

REAL*8 R
R = ’abc’ // ’def’
WRITE (5,*) R
END

Compaq Fortran does allow PARAMETER constants:

PARAMETER abcdef = ’abc’ // ’def’
REAL*8 R
R = abcdef
WRITE (5,*) R
END

• Compaq Fortran 77 namelist output formats character data delimited with
apostrophes. For example, consider:

CHARACTER CHAR4*4
NAMELIST /CN100/ CHAR4

CHAR4 = ’ABCD’
WRITE(20,CN100)
CLOSE (20)

This produces the following output file:

$CN100
CHAR4 = ’ABCD’
$END

This file is read by:

READ (20, CN100)

In contrast, Compaq Fortran produces the following output file by default:

&CN100
CHAR4 = ABCD
/

A–10 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

When read, this generates a syntax error in NAMELIST input error.
To produce delimited strings from namelist output that can be read by
namelist input, use DELIM="’" in the OPEN statement of a Compaq
Fortran program.

For More Information:

• On argument passing between Compaq Fortran and Compaq Fortran 77
for Compaq Tru64 UNIX systems, see Section A.5.

• On compatibility between Compaq Fortran for Compaq Tru64 UNIX or
Linux Alpha systems and Compaq Fortran on OpenVMS systems, see
Section A.4.

• On the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

A.2.3 Improved Compaq Fortran Compiler Diagnostic Detection
The following language features are detected or interpreted differently by
Compaq Fortran and Compaq Fortran 77:

• The Compaq Fortran compiler enforces the constraint that the ‘‘nlist’’ in
an EQUIVALENCE statement must contain at least two variables. For
example:

EQUIVALENCE (X) ! Incorrect
EQUIVALENCE (Y,Z) ! Correct

• The Compaq Fortran compiler enforces the constraint that entry points in
a SUBROUTINE must not be typed. For example:

SUBROUTINE ABCXYZ(I)
REAL ABC
I = I + 1
RETURN
ENTRY ABC ! Incorrect
BAR = I + 1
RETURN
ENTRY XYZ ! Correct
I = I + 2
RETURN

END SUBROUTINE

• The Compaq Fortran compiler enforces the constraint that a type must
appear before each list in an IMPLICIT statement. For example:

IMPLICIT REAL (A-C), (D-H) ! Incorrect
IMPLICIT REAL (O-S), REAL (T-Z) ! Correct

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–11

• The Compaq Fortran language disallows passing mismatched actual
arguments to intrinsics with corresponding integer formal arguments. For
example:

R = REAL(.TRUE.) ! Incorrect
R = REAL(1) ! Correct

• The Compaq Fortran compiler enforces the constraint that a simple list
element in an I/O list must be a variable or an expression. For example:

READ (10,100) (I,J,K) ! Incorrect
READ (10,100) I,J,K ! Correct

• The Compaq Fortran compiler enforces the constraint that if two operators
are consecutive, the second operator must be a plus or a minus. For
example:

I = J -.NOT.K ! Incorrect
I = J - (.NOT.K) ! Correct

• The Compaq Fortran compiler enforces the constraint that character
entities with a length greater than 1 cannot be initialized with a bit
constant in a DATA statement. For example:

CHARACTER*1 C1
CHARACTER*4 C4
DATA C1/’FF’X/ ! Correct
DATA C4/’FFFFFFFF’X/ ! Incorrect

• The Compaq Fortran compiler enforces the requirement that edit
descriptors in the FORMAT statement must be followed by a comma
or slash separator. For example:

1 FORMAT (SSF4.1) ! Incorrect
2 FORMAT (SS,F4.1) ! Correct

• The Compaq Fortran compiler enforces the constraint that the number and
types of actual and formal statement function arguments must match (such
as incorrect number of arguments). For example:

CHARACTER*4 C,C4,FUNC
FUNC()=C4
C=FUNC(1) ! Incorrect
C=FUNC() ! Correct

• The Compaq Fortran compiler detects the use of a format of the form
Ew.dE0 at compile time. For example:

1 format(e16.8e0) ! Compaq Fortran detects error at compile time
write(*,1) 5.0 ! Compaq Fortran 77 compiles but an output

! conversion error occurs at run time

A–12 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

• Compaq Fortran detects passing of a statement function to a routine. For
example:

foo(x) = x * 2
call bar(foo)
end

• The Compaq Fortran compiler enforces the constraint that a branch to a
statement shared by more than one DO statements must occur from within
the innermost loop. For example:

DO 10 I = 1,10
IF (L1) GO TO 10 ! Incorrect
DO 10 J = 1,10

IF (L2) GO TO 10 ! Correct
10 CONTINUE

• The Compaq Fortran compiler enforces the constraint that a file must
contain at least one program unit. For example, a source file containing
only comment lines results in an error at the last line (end-of-file).

The Compaq Fortran 77 compiler compiles files containing less than one
program unit.

• The Compaq Fortran compiler correctly detects misspellings of the
ASSOCIATEVARIABLE keyword to the OPEN statement. For example:

OPEN(1,ASSOCIATEVARIABLE = I) ! Correct
OPEN(2,ASSOCIATEDVARIABLE = J) ! Incorrect (extra D)

• The Compaq Fortran language enforces the constraint that the result of an
operation is determined by the data types of its operands. For example:

INTEGER*8 I8
I8 = 2147483647 + 1 ! Incorrect. Produces less accurate

! INTEGER*4 result
I8 = 2147483647_8 + 1_8 ! Correct

• The Compaq Fortran compiler enforces the constraint that an object can be
typed only once. Compaq Fortran 77 issues a warning message and uses
the first type. For example:

LOGICAL B,B ! Incorrect (B multiply declared)

• The Compaq Fortran compiler enforces the constraint that certain intrinsic
procedures defined by the Fortran 95/90 standards cannot be passed as
actual arguments. For example, Compaq Fortran 77 allows most intrinsic
procedures to be passed as actual arguments, but the Compaq Fortran
compiler only allows those defined by the Fortran 95/90 standards (issues
an error message).

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–13

Consider the following program:

program tstifx

intrinsic ifix,int,sin

call a(ifix)
call a(int)
call a(sin)
stop
end

subroutine a(f)
external f
integer f
print *, f(4.9)
return
end

The IFIX and INT intrinsic procedures cannot be passed as actual
arguments (the compiler issues an error message). However, the SIN
intrinsic is allowed to be passed as an actual argument by the Fortran
95/90 standards.

• Compaq Fortran reports character truncation with an error-level message,
not as a warning.

The following program produces an error message during compilation
with Compaq Fortran, whereas Compaq Fortran 77 produces a warning
message:

INIT5 = ’ABCDE’
INIT4 = ’ABCD’
INITLONG = ’ABCDEFGHIJKLMNOP’
PRINT 10, INIT5, INIT4, INITLONG

10 FORMAT (’ ALL 3 VALUES SHOULD BE THE SAME: ’ 3I)
END

• If your code invokes Compaq Fortran intrinsic procedures with the wrong
number of arguments or an incorrect argument type, Compaq Fortran
reports this with an error-level message, not with a warning. Possible
causes include:

A Compaq Fortran intrinsic has been added with the same name as a
user-defined subprogram and the user-defined subprogram needs to be
declared as EXTERNAL.

An intrinsic that is an extension to an older Fortran standard is
incompatible with a newer standard-conforming intrinsic (for example,
the older RAN function that accepted two arguments).

A–14 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

The following program produces an error message during compilation
with Compaq Fortran, whereas Compaq Fortran 77 produces a warning
message:

INTEGER ANOTHERCOUNT
ICOUNT=0

100 write(6,105) (ANOTHERCOUNT(ICOUNT), INT1=1,10)
105 FORMAT(’ correct if print integer values 1 through 10’ /10I7)

Q = 1.
R = .23
S = SIN(Q,R)
WRITE (6,110) S

110 FORMAT(’ CORRECT = 1.23 RESULT = ’,f8.2)
END

!
INTEGER FUNCTION ANOTHERCOUNT(ICOUNT)
ICOUNT=ICOUNT+1
ANOTHERCOUNT=ICOUNT
RETURN
END

REAL FUNCTION SIN(FIRST, SECOND)
SIN = FIRST + SECOND
RETURN
END

• Compaq Fortran reports missing commas in FORMAT descriptors with an
error-level message, not as a warning.

The following program produces an error message during compilation
with Compaq Fortran, whereas Compaq Fortran 77 produces a warning
message:

LOGICAL LOG/111/
TYPE 1,LOG

1 FORMAT(’ ’23X,’LOG=’O12)
END

In the preceding example, the correct coding (adding the missing comma)
for the FORMAT statement is:

1 FORMAT(’ ’,23X,’LOG=’O12)

• Compaq Fortran generates an error when it encounters a 1-character
source line containing a Ctrl/Z character, whereas Compaq Fortran 77
allows such a line (which is treated as a blank line).

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–15

• Compaq Fortran detects the use of a character variable within parentheses
in an I/O statement. For example:

CHARACTER*10 CH/’(I5)’/
INTEGER I

READ CH,I ! Acceptable

READ (CH),I ! Generates error message, interpreted as an internal READ

END

• Compaq Fortran evaluates the exponentiation operator at compile time
only if the exponent has an integer data type. Compaq Fortran 77
evaluates the exponentiation operator even when the exponent does
not have an integer data type. For example:

PARAMETER (X = 4.0 ** 1.1)

• Compaq Fortran detects an error when evaluating constants expressions
that result in an NaN or Infinity exceptional value, while Compaq Fortran
77 allows such expressions. For example:

PARAMETER (X = 4.0 / 0.0)

• Compaq Fortran reports a warning error message when the same variable
is initialized more than once. Compaq Fortran 77 allows multiple
initializations of the same variable without a warning. For example:

integer i
data i /1/
data i /2/
write (*,*) i
stop
end

For More Information:

• On passing arguments and returning function values between Compaq
Fortran and Compaq Fortran 77, see Section A.5.

• On Compaq Fortran procedure calling and argument passing, see
Section 11.1.

• On compatibility between Compaq Fortran for Compaq Tru64 UNIX
systems and Compaq Fortran 77 on OpenVMS systems, see Section A.4.

• On the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

A–16 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

A.2.4 Compiler Command-Line Differences
Compaq Fortran 77 (f77 command) and Compaq Fortran (f90 command) share
most of the same command-line options. The following options are provided
only by Compaq Fortran 77 (not by Compaq Fortran):

• -assume backslash

• -f77

• -ident

• -show xref (same as -cross_reference)

• -stand keyword

• -warn informational

• -warn nounreachable

The following options are provided only by Compaq Fortran (not by Compaq
Fortran 77):

• -align recNbyte

• -annotations

• -assume buffered_io

• -assume gfullpath

• -assume minus0

• -f77rtl

• -fixed

• -free

• -fpconstant

• -fuse_xref (TU*X only)

• -hpf (TU*X only) and associated HPF parallel options, including -assume
bigarrays, -assume nozsize, -nearest_neighbor, -nohpf_main, -show hpf,
and -warn hpf

• -intconstant

• -ladebug

• -module

• -mp (TU*X only)

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–17

• -omp (TU*X only) and assorted OpenMP parallel options including -assume
pthreads_lock and -check omp_bindings

• -std (performs Fortran 95/90 standards checking, whereas the Compaq
Fortran 77 -stand keyword performs FORTRAN 77 and NTT MIA
standards checking)

• -warn granularity

The f77 command by default executes the Compaq Fortran 90 compiler
and uses the various DECF90_ environment variables. To execute the
Compaq Fortran 77 compiler, use the f77 command with the -old_f77 option.
This option must be the first text on the command line after f77.

A.3 Language Compatibility with Compaq Visual Fortran
The following language features found in Compaq Visual Fortran (and
Microsoft Fortran Powerstation Version 4) are now supported by Compaq
Fortran:

• # Constants. Constants using a base other than 10.

• C Strings. NULL terminated strings contain C-style escape sequences.

• Conditional Compilation And Metacommand Expressions ($define,
$undefine, $if, $elseif, $else, $endif).

• $FREEFORM, $NOFREEFORM, $FIXEDFORM. Source file format.

• $INTEGER, $REAL. Selects size.

• $FIXEDFORMLINESIZE. Line length for fixed form source.

• $STRICT, $NOSTRICT. F90 conformance.

• $PACK. Structure packing.

• $ATTRIBUTES ALIAS. External name for a subprogram or common block.

• $ATTRIBUTES C, STDCALL. Calling and naming conventions.

• $ATTRIBUTES VALUE, REFERENCE. Calling conventions.

• \ Descriptor. Prevents writing an end-of-record mark.

• Ew.dDe and Gw.dDe Edit Descriptors. Similar to Ew.dEe and Gw.dEe.

• 7200 Character Statement Length.

• Free form infinite line length.

• $DECLARE and $NODECLARE = = IMPLICIT NONE.

A–18 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

• $ATTRIBUTES EXTERN. Variable allocated in another source file.

• $ATTRIBUTES VARYING. Variable number of arguments.

• $ATTRIBUTES ALLOCATABLE. Allocatable array.

• Mixing Subroutines/Functions in Generic Interfaces.

• $MESSAGE. Output message during compilation.

• $LINE = = C’s #line.

• INT1. Converts to one byte integer by truncating.

• INT2. Converts to two byte integer by truncating.

• INT4. Converts to four byte integer by truncating.

• COTAN. Returns cotangent.

• DCOTAN. Returns double precision cotangent.

• IMAG. Returns the imaginary part of complex number.

• IBCHNG. Reverses value of bit.

• ISHA. Shifts arithmetically left or right.

• ISHC. Performs a circular shift.

• ISHL. Shifts logically left or right.

A.4 Compatibility with Compaq Fortran 77 and Compaq
Fortran for OpenVMS Systems

This section provides compatibility information for those who:

• Port Compaq Fortran 77 and Compaq Fortran applications from OpenVMS
systems to Compaq Fortran on Compaq Tru64 UNIX or Linux Alpha
Systems

• Design Compaq Fortran applications to run on multiple platforms,
including OpenVMS and Compaq Tru64 UNIX or Linux Alpha systems

If your primary concern is the design and development of Compaq Fortran
applications for only Compaq Tru64 UNIX (or other U*X) systems, consider
skipping this section.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–19

This section discusses the following topics:

• Compaq Fortran 77 extensions for OpenVMS systems that are not
supported by this version of Compaq Fortran 77 or Compaq Fortran on
Compaq Tru64 UNIX or Linux Alpha Systems (Section A.4.1)

• Porting Compaq Fortran data files from an OpenVMS system to a Compaq
Tru64 UNIX or Linux Alpha system (Section A.4.2)

• Nonnative VAX floating-point representations, provided for those
converting unformatted OpenVMS floating-point data (Section A.4.3)

A.4.1 Language Features Specific to Compaq Fortran 77 and Compaq
Fortran for OpenVMS Systems
Some extensions to the FORTRAN-77 standard provided by Compaq Fortran
77 and Compaq Fortran for OpenVMS Systems are specific to the OpenVMS
operating system, VAX architecture, or certain products on OpenVMS systems.
Such extensions are not included in Compaq Fortran 77 or Compaq Fortran on
Compaq Tru64 UNIX or Linux Alpha Systems.

For information on language compatibility between Compaq Fortran and
Compaq Fortran 77 without regard to operating system or architecture
differences, see Section A.2.

Compaq Fortran 77 and Compaq Fortran products for OpenVMS systems
include:

• Compaq Fortran Version 7.4 for OpenVMS Alpha Systems

• Compaq Fortran 77 Version 7.4 for OpenVMS Alpha Systems

• Compaq Fortran 77 Version 6.6 for OpenVMS VAX Systems (previously
called VAX FORTRAN)

Unless otherwise noted, the following list describes the Compaq Fortran
77 extensions in Compaq Fortran 77 and/or Compaq Fortran for OpenVMS
systems that are not supported by Compaq Fortran for Compaq Tru64 UNIX
Systems:

• DICTIONARY statement

The DICTIONARY and related support for the CDD/Repository (common
data dictionary) product are not provided by Compaq Fortran or Compaq
Fortran 77 for Compaq Tru64 UNIX Systems.

• Support for indexed sequential files

A–20 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

I/O statement specifiers for indexed file (keyed access) record I/O using
OpenVMS OPEN and INQUIRE statement specifiers are not provided by
Compaq Fortran or Compaq Fortran 77 for Compaq Tru64 UNIX or Linux
Systems, as follows:

ACCESS=’KEYED’ EXTENDSIZE

INITIALSIZE KEY

NOSPANBLOCKS ORGANIZATION=’INDEXED’
SHARED

• FORSYSDEF symbol definitions for OpenVMS systems

The parameter definitions of run-time messages found in FORSYSDEF.TLB
library module FORIOSDEF on OpenVMS systems are provided in the file
/usr/include/foriosdef.f (see Section 8.2.2) on Compaq Tru64 UNIX
Systems. On Compaq Tru64 UNIX and Linux Alpha systems, Compaq
Fortran and Compaq Fortran 77 provides jacket routines to simplify calling
system calls and library routines (see Chapter 12).

• The INCLUDE statement option of including text from text libraries.

On Compaq Tru64 UNIX and Linux Alpha systems, OpenVMS text
libraries are not supported.

• The %DESCR built-in function (for OpenVMS character descriptors).

On Compaq Tru64 UNIX and Linux Alpha systems, character data is
passed by address and hidden length. For information about calling or
being called by procedures written in other languages, see Chapter 11.

• Run-time default I/O units spelled as FOR0nn.dat, SYS$INPUT, and so on

In Compaq Fortran and Compaq Fortran 77 on Compaq Tru64 UNIX and
Linux Alpha systems, these are environment variables FORTn, stdin,
stdout, and so forth (see Section 7.5).

• VAX floating-point formats and related selection of the floating-point format
in memory

Only IEEE floating-point formats are supported in memory on Compaq
Tru64 UNIX Alpha systems. (Compaq proprietary VAX floating-point
formats are not supported in memory.) You can request conversion
of unformatted files containing VAX floating-point formats into the
appropriate IEEE memory format during record I/O (see Chapter 10).

On OpenVMS VAX systems, you specify the floating-point format to be
used in memory with either the option [NO]G_FLOATING in the OPTIONS
statement or the qualifier /[NO]G_FLOATING on the FORTRAN command
line.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–21

On OpenVMS Alpha systems, you specify the floating-point format to be
used in memory using the /FLOAT qualifier on the FORTRAN command
line.

• Stream record format differences

With Compaq Fortran 77 and Compaq Fortran for OpenVMS systems, the
Stream record type is delimited by CR-LF character sequence (carriage
control and line feed characters). In Compaq Fortran for Compaq Tru64
UNIX systems, the Stream record type uses no delimiters.

For more information on compatible record types, see Section A.4.2.

• Other differences related to the OpenVMS operating system and the
Compaq Tru64 UNIX and Linux operating systems

When parsing file specifications for the OPEN, INQUIRE, and INCLUDE
statements, keep in mind that file names are case-sensitive on Compaq
Tru64 UNIX and Linux systems and that OpenVMS file specification
syntax differs from pathname syntax.

For the INCLUDE statement, the network node names (terminated by
‘‘::’’), logical names (usually terminated by ‘‘:’’), and other OpenVMS file
specification components are not recognized. Instead, the INCLUDE
statement should specify a pathname, possibly with an absolute directory
path.

• The OpenVMS operating system provides various system services (SYS$
prefix) and run-time library routines (LIB$, SMG$, and other prefixes) that
are not supported on Compaq Tru64 UNIX and Linux systems. Compaq
Tru64 UNIX systems support system calls and library routines with similar
functions (but different names).

To make programs more portable to other operating systems, wherever
possible you should use standard-conforming Compaq Fortran intrinsic
routines in place of routines specific to a particular operating system.

For more information on specifying files, see Section 7.5.3.

The following language and VAX architecture features are associated only
with Compaq Fortran 77 on OpenVMS VAX Systems (previously called VAX
FORTRAN) and are not supported by Compaq Fortran for Compaq Tru64
UNIX and Compaq Fortran for Linux Alpha systems:

• Directed decomposition features and CPAR$ directives for parallel
processing

CPAR$ directives are treated as comments (ignored). Parallel processing
capabilities (appropriate f90 options, OpenMP, Compaq Fortran parallel,
and HPF data mapping directives) are provided by Compaq Fortran.

A–22 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

• OPTIONS statement options /BLAS, /NOBLAS, /CHECK=ALIGNMENT,
/CHECK=NOALIGNMENT, /CHECK=ASSERTION,
/CHECK=NOASSERTION, /G_FLOAT, and /NOG_FLOAT

You can specify some of these options by using the corresponding f90
command-line options. The OPTIONS statement is treated as a comment
(ignored).

• CDEC$ performance directives ASSERT and NOVECTOR are treated as
comments (ignored).

• The REAL*16 floating-point data type

On VAX systems, REAL*16 data is in H_float format. On Alpha systems,
REAL*16 data is in the native IEEE style X_float; so are both halves (real
and imaginary) of COMPLEX*32 data.

• The following subroutines for PDP-11 compatibility:

ASSIGN
CLOSE
ERRSET

ERRTST
FDBSET
IRAD50

RAD50
R50ASC
USEREX

• Radix-50 constants and character set

• The BLAS routines

Similar basic linear algebra routines are provided in the Compaq Extended
Mathematical Library (CXML) product (see Section 5.1.1).

The following language and VAX architecture features are interpretation
differences between Compaq Fortran and Compaq Fortran 77 on Alpha
systems and Compaq Fortran 77 on OpenVMS VAX Systems (previously called
VAX FORTRAN):

• Random number generator (RAN)

The RAN function (one argument) generates a different pattern of numbers
in Compaq Fortran than in Compaq Fortran 77 on OpenVMS VAX Systems
for the same random seed. Compaq Fortran and Compaq Fortran 77 use
the same random seed. (The RAN and RANDU functions are provided for
Compaq Fortran 77 on OpenVMS VAX Systems compatibility. See Compaq
Fortran Language Reference Manual.)

• Hollerith constants in formatted I/O statements

Compaq Fortran 77 on OpenVMS VAX Systems and Compaq Fortran
behave differently if either of the following occurs:

Two different I/O statements refer to the same CHARACTER
PARAMETER constant as their format specifier. For example:

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–23

CHARACTER*(*) FMT2
PARAMETER (FMT2=’(10Habcdefghij)’)
READ (5, FMT2)
WRITE (6, FMT2)

Two different I/O statements use the identical character constant as
their format specifier. For example:

READ (5, ’(10Habcdefghij)’)
WRITE (6, ’(10Habcdefghij)’)

In Compaq Fortran 77 for OpenVMS VAX Systems, the parameter value
obtained by the READ statement is modified. The parameter value
modified by the READ statement is used as the output of the WRITE
statement (FMT2 is ignored). However, in Compaq Fortran, the parameter
value is not modified (the parameter value read by the READ statement
has no effect on the parameter value written by the WRITE statement.)

For More Information:

• On language compatibility information about Compaq Fortran for Compaq
Tru64 UNIX systems and Compaq Fortran 77, see Section A.2.2.

• On language interpretation differences between Compaq Fortran for
Compaq Tru64 UNIX systems and Compaq Fortran 77, see Section A.2.3.

• About the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

A.4.2 OpenVMS Data Porting Considerations
When porting data between systems running the Compaq Tru64 UNIX and
Linux Alpha operating systems and systems running the OpenVMS operating
system, the file formats and the floating-point representations may differ.

The file and record formats of Compaq Fortran 77 on Compaq Tru64 UNIX
systems are compatible with Compaq Fortran on Compaq Tru64 UNIX and
Linux Alpha systems; they share the same language run-time I/O environment
(see Chapter 7).

OpenVMS Fortran1 files containing only character, integer, or logical data
do not need field-by-field conversion, but the record types must match. The
segmented record type is the same on OpenVMS Fortran systems and Compaq
Fortran on Compaq Tru64 UNIX or Linux Alpha systems. Certain other record
types, such as variable-length records, differ between OpenVMS systems and
Compaq Fortran on Compaq Tru64 UNIX or Linux Alpha systems.

1 OpenVMS Fortran refers collectively to VAX FORTRAN, Compaq Fortran 77 for
OpenVMS Alpha Systems, and Compaq Fortran 77 for OpenVMS VAX Systems

A–24 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

Table A–2 summarizes the OpenVMS Fortran record types and their equivalent
record types in Compaq Fortran on Compaq Tru64 UNIX or Linux Alpha
systems.

Table A–2 Equivalent Record Types for OpenVMS Fortran and Compaq
Fortran on Compaq Tru64 UNIX or Linux Alpha Systems

OpenVMS Fortran
Record Type

Compaq Tru64
UNIX Fortran
Record Type Comments

Fixed-length None Equivalent (must be copied correctly) if you
use sequential access and you specify the
-vms option when compiling the Compaq
Fortran file. Otherwise, convert the file to a
different record type.

Variable-length None Not equivalent. Convert the file to a different
record type.

Segmented Segmented Equivalent (must be copied correctly).
Segmented data files can contain formatted
or unformatted data.

Stream None Not equivalent. Convert the file to a different
record type.

Stream_CR Stream_CR Equivalent (must be copied correctly).

Stream_LF Stream_LF Equivalent (must be copied correctly).

A.4.2.1 Matching Record Types
To match record types, there are several options:

• For the Segmented, Stream_CR, and Stream_LF record types, you do not
need to convert the files.

• For fixed-length records where you will only use sequential access, use the
-vms option when compiling the Compaq Fortran program that will access
the OpenVMS Fortran files. For fixed-length records where you will use
direct access, convert the files to a different record format.

• For incompatible record types, convert the files by writing a OpenVMS
Fortran or C conversion program or by using the ANALYZE/RMS/FDL and
CONVERT/FDL (or EXCHANGE/FDL) commands for an appropriate file.
For instance, convert the OpenVMS Fortran file to the segmented record
type.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–25

A.4.2.2 Copying Files
Equivalent record types must be copied carefully to preserve control
information and record characteristics. For example:

• Do not use the ASCII transfer mode for binary files.

• Segmented files must be copied in a manner that preserves record length
information.

To transfer (copy) the files, choose one of the following methods:

• From an NFS mounted disk, use the cp command (see cp(1)).

• Perform a DECnet copy from a Compaq Tru64 UNIX or Linux Alpha
system running the appropriate optional network software using dcp (see
dcp(8)). Use the dcp -i option when you want to preserve record format
information.

• Perform a copy from a Compaq Tru64 UNIX or Linux Alpha system with
rcp, possibly by using an intermediate node running the appropriate
optional network software when using a version of the OpenVMS operating
system that does not support a compatible network protocol (optional
product).

• Use ftp from a Compaq Tru64 UNIX or Linux Alpha system to copy a file
between a Compaq Tru64 UNIX or Linux Alpha system and an OpenVMS
system. Use the binary or ascii command to set the mode before you
copy (get or put) the file. For example, use the ftp binary command before
copying an unformatted file (such as the segmented record type).

• Perform a DECnet copy from an OpenVMS system with the EXCHANGE
command with the /NETWORK and /TRANSFER=BLOCK qualifiers
with a Compaq Tru64 UNIX system. To convert the file to Stream_LF
format during the copy operation, use /TRANSFER=(BLOCK,RECORD_
SEPARATOR=LF) instead of /TRANSFER=BLOCK, or specify the /FDL
qualifier to the EXCHANGE command to specify the record type.

In addition to using the correct record type and carefully transferring the files,
the data inside unformatted records may need to be converted. OpenVMS
Fortran data files that contain VAX binary floating-point data must be
converted before they can be accessed by a Compaq Fortran program. There
are several methods:

• On an OpenVMS system, a Fortran program can convert files containing
unformatted data to files containing formatted data. Once the files contain
formatted data, they can be read by the appropriate Compaq Fortran
programs. However, converting unformatted data to formatted data may
result in a loss of accuracy for unformatted floating-point data.

A–26 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

• On an OpenVMS VAX system, a Compaq Fortran 77 program can read and
write files containing unformatted data by using the Compaq Fortran
conversion capabilities described in DEC Fortran User Manual for
OpenVMS VAX Systems.

• On an OpenVMS Alpha system, a Fortran program can read and write
files containing unformatted data by using the Compaq Fortran conversion
capabilities described in the Compaq Fortran User Manual for OpenVMS
Alpha Systems.

A Compaq Fortran 77 for OpenVMS Alpha Systems program can also use
the CVT$CONVERT_FLOAT routine to convert individual floating-point
fields.

• On a Compaq Tru64 UNIX or Linux Alpha system, a Compaq Fortran
program can read and write files containing unformatted data using the
Compaq Fortran conversion capabilities described in Section 10.3. A
program using the Compaq Fortran conversion capabilities can also convert
such data to other formats.

If you need to convert unformatted floating-point data, keep in mind that
Compaq Fortran 77 for OpenVMS VAX programs (VAX hardware) store the
following:

• REAL*4 or COMPLEX*8 data in VAX F_float format

• REAL*8 or COMPLEX*16 data in either VAX D_float or G_float format

• REAL*16 data in VAX H_float format

In contrast, Compaq Fortran programs running on the Compaq Tru64 UNIX or
Linux Alpha operating system on Alpha hardware store the following:

• REAL*4 or COMPLEX*8 data in IEEE S_float format

• REAL*8 or COMPLEX*16 data in IEEE T_float format

• REAL*16 data or COMPLEX*32 data in native (IEEE style) X_float format

Compaq Fortran 77 and Compaq Fortran for OpenVMS Alpha programs store
floating-point data in the format specified by the /FLOAT qualifier:

• REAL*4 or COMPLEX*8 data in VAX F_float or IEEE S_float format

• REAL*8 or COMPLEX*16 data in VAX D_float, VAX G_float, or IEEE
T_float format

• REAL*16 data or COMPLEX*32 data in native (IEEE style) X_float format

For information on Compaq Fortran data types, see Chapter 9.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–27

For More Information:

• On Compaq Fortran I/O, see Chapter 7.

• About the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

A.4.3 Nonnative VAX Floating-Point Representations
This section provides information about VAX floating-point data formats. You
can convert unformatted files from OpenVMS systems by using the methods
described in Chapter 10.

On OpenVMS VAX systems, single-precision data (such as REAL*4) is stored
in VAX F_float format and double-precision data (such as REAL*8) data can
be stored in either VAX D_float or VAX G_float formats, depending on whether
the /G_FLOATING qualifier was specified on the FORTRAN command line (see
the DEC Fortran User Manual for OpenVMS VAX Systems).

On OpenVMS Alpha systems, you can specify the floating-point format in
memory by using the /FLOAT qualifier (see the DEC Fortran User Manual for
OpenVMS AXP Systems). Single-precision data on OpenVMS Alpha systems is
stored in either VAX F_float or IEEE S_float formats; double-precision data can
be stored in VAX D_float, VAX G_float, or IEEE T_float formats.

REAL*16 (extended precision) data is always stored in IEEE style X_float
format on Alpha systems.

With VAX floating-point data types, the binary radix point is to the left of the
most-significant bit.

A.4.3.1 VAX F_float REAL (KIND=4) or REAL*4
Intrinsic REAL (KIND=4) or REAL*4 F_float data occupies four contiguous
bytes. Bits are labeled from the right, 0 through 31, as shown in Figure A–1.

Figure A–1 VAX F_float REAL (KIND=4) or REAL*4 Representation

EXPONENT :A

631

ZK−5301A−GE

FRACTIONFRACTION

015 14

N
G
I
S

The form of REAL (KIND=4) or REAL*4 F_float data is sign magnitude, where:

• Bit 15 is the sign bit (0 for positive numbers, 1 for negative numbers).

A–28 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

• Bits 14:7 are a binary exponent in excess 128 notation (binary exponents
from –127 to 127 are represented by binary 1 to 255).

• Bits 6:0 and 31:16 are a normalized 24-bit fraction with the redundant
most significant fraction bit not represented.

When converting unformatted F_float data from an OpenVMS system, the
approximate range is 0.293873588E–38 to 1.7014117E38. The precision is
approximately one part in 2**23, typically seven decimal digits.

A.4.3.2 VAX G_float REAL (KIND=8) or REAL*8
Intrinsic REAL (KIND=8) or REAL*8 (same as DOUBLE PRECISION) G_float
data occupies eight contiguous bytes. The bits are labeled from the right, 0
through 63, as shown in Figure A–2.

Figure A–2 VAX G_float REAL (KIND=8) or REAL*8 Representation

EXPONENT :A

063

ZK−5302A−GE

FRACTION FRAC−
TION

31415

N
G
I
S

The form of REAL (KIND=8) or REAL*8 G_float data is sign magnitude,
where:

• Bit 15 is the sign bit (0 for positive numbers, 1 for negative numbers).

• Bits 14:4 are a binary exponent in excess 1024 notation (binary exponents
from –1023 to 1023 are represented by the binary 1 to 2047).

• Bits 3:0 and 63:16 are a normalized 53-bit fraction with the redundant
most significant fraction bit not represented.

When converting unformatted G_float data from an OpenVMS system, the
approximate range is 0.5562684646268004D–308 to
0.89884656743115785407D308. The precision of G_float data is approximately
one part in 2**52, typically 15 decimal digits.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–29

A.4.3.3 VAX D_float REAL (KIND=8) or REAL*8
Intrinsic REAL (KIND=8) or REAL*8 (same as DOUBLE PRECISION) D_float
data occupies eight contiguous bytes. Bits are labeled from the right, 0 through
63, as shown in Figure A–3.

Figure A–3 VAX D_float REAL (KIND=8) or REAL*8 Representation

EXPONENT :A

663

ZK−5303A−GE

FRACTION

15 14

FRACTION
N
G
I
S

0

The form of REAL (KIND=8) or REAL*8 D_float data is identical to an F_float
real number, except for an additional 32 low-significance fraction bits. The
exponent conventions and approximate range of values are the similar to those
for F_float.

When converting unformatted D_float data from an OpenVMS system, the
approximate range is 0.2938735877055719D–38 to 1.70141183460469229D38.
The precision is approximately one part in 2**55, typically 16 decimal digits.

A.4.3.4 VAX F_float COMPLEX (KIND=4) or COMPLEX*8
Intrinsic COMPLEX (KIND=4) or COMPLEX*8 (single-precision COMPLEX)
data in VAX F_float format occupies eight contiguous bytes containing a pair of
REAL*4 values. The low-order four bytes contain REAL*4 data that represents
the real part of the complex number. The high-order four bytes contain REAL
(KIND=4) or REAL*4 data that represents the imaginary part of the complex
number. Figure A–4 shows a COMPLEX*8 number in F_float format.

Figure A–4 VAX F_float COMPLEX (KIND=4) or COMPLEX*8 Representation

031

ZK−5304A−GE

15 14

EXPONENT :AFRACTION

:A+4

REAL
PART

IMAGINARY
PART

N
G
I
S

FRACTION

6

EXPONENTFRACTION
N
G
I
S

FRACTION

A–30 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

The limits for REAL (KIND=4) or REAL*4 apply to the two separate real and
imaginary parts of a COMPLEX (KIND=4) or COMPLEX*8 number. Like
REAL (KIND=4) or REAL*4 numbers, the sign bit representation is 0 (zero) for
positive numbers and 1 for negative numbers.

A.4.3.5 VAX G_float and D_float COMPLEX (KIND=8) or COMPLEX*16
Intrinsic COMPLEX (KIND=8) or COMPLEX*16 (same as DOUBLE
COMPLEX) data occupies 16 contiguous bytes containing a pair of REAL*8
or REAL (KIND=8) values. COMPLEX (KIND=8) or COMPLEX*16 data from
an OpenVMS system is in one of the following REAL*8 or REAL (KIND=8)
formats:

• VAX G_float format

• VAX D_float format

The low-order eight bytes contain REAL (KIND=8) or REAL*8 data that
represents the real part of the complex data. The high-order eight bytes
contain REAL (KIND=8) or REAL*8 data that represents the imaginary part
of the complex data, as shown in Figure A–5 (for G_float) and Figure A–6 (for
D_float).

Figure A–5 VAX G_float COMPLEX (KIND=8) or COMPLEX*16 Representation

063

ZK−5305A−GE

15 14

EXPONENT :AFRACTION

:A+8

REAL
PART

IMAGINARY
PART

N
G
I
S

3

FRAC−
TION

EXPONENTFRACTION
N
G
I
S

FRAC−
TION

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–31

Figure A–6 VAX D_float COMPLEX (KIND=8) or COMPLEX*16 Representation

063

ZK−5306A−GE

15 14

EXPONENT :AFRACTION

:A+8

REAL
PART

IMAGINARY
PART

N
G
I
S

FRACTION

6

EXPONENTFRACTION
N
G
I
S

FRACTION

The limits for REAL (KIND=8) or REAL*8 apply to the two separate real and
imaginary parts of a COMPLEX (KIND=8) or COMPLEX*16 number. Like
REAL (KIND=8) or REAL*8 numbers, the sign bit representation is 0 (zero) for
positive numbers and 1 for negative numbers.

A.4.3.6 VAX H_float Representation
The REAL (KIND=16) or REAL*16 VAX H_float data format is used only
on OpenVMS VAX systems. On Alpha systems, REAL (KIND=16) extended
precision data is always stored in Alpha X_float format.

With VAX floating-point data types, the binary radix point is to the left of the
most-significant bit.

As shown in Figure A–7, REAL*16 H_float data is 16 contiguous bytes starting
on an arbitrary byte boundary. The bits are labeled from the right, 0 through
127.

The form of an H_float REAL*16 data is sign magnitude with bit 15 the
sign bit, bits 14:0 an excess 16384 binary exponent, and bits 127:16 a
normalized 113-bit fraction with the redundant most significant fraction bit
not represented.

The value of H_float data is in the approximate range 0.84*10**–4932 through
0.59*10**4932. The precision of H_float data is approximately one part in
2**112 or typically 33 decimal digits.

For More Information:

• On converting unformatted data files, see Chapter 10.

• On native floating-point ranges, see Table 9–1.

A–32 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

Figure A–7 VAX H_float REAL*16 Representation (VAX Systems)

EXPONENT

FRACTION

FRACTION

15

N
G
I
S

0

:A

:A+2

:A+4

14

:A+6FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

112

ZK−0805−GE

:A+8

:A+10

:A+12

:A+14

127

A.5 Calling Between Compaq Fortran 77 and Compaq
Fortran

On Compaq Tru64 UNIX systems, you can call a Compaq Fortran 77
subprogram from Compaq Fortran or call a Compaq Fortran subprogram
from Compaq Fortran 77 (with a few exceptions). A Compaq Fortran 77
procedure and a Compaq Fortran procedure can also perform I/O to the same
unit number.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–33

A.5.1 Argument Passing and Function Return Values
The recommended rules for passing arguments and function return values
between Compaq Fortran 77 and Compaq Fortran procedures are as follows:

• If possible, express the following Compaq Fortran features with the
Compaq Fortran 77 language:

Function references

CALL statements

Function definitions

Subroutine definitions

Avoid using Compaq Fortran language features not available in Compaq
Fortran 77. Since Compaq Fortran is a superset of Compaq Fortran 77,
specifying the procedure interface using the Compaq Fortran 77 language
helps ensure that calls between the two languages will succeed.

• Not all data types in Compaq Fortran have equivalent Compaq Fortran
77 data types. The following Compaq Fortran features should not be used
between Compaq Fortran and Compaq Fortran 77 procedures, because they
are not supported by Compaq Fortran 77:

COMPLEX*32 data

Derived-type (user-defined) data, which has no equivalent in Compaq
Fortran 77.

Compaq Fortran data with the POINTER attribute, which has no
equivalent in Compaq Fortran 77. The pointer data type supported by
Compaq Fortran 77 is not equivalent to Compaq Fortran pointer data.

Because Compaq Fortran supports the pointer data type supported
by Compaq Fortran 77, you can use Compaq Fortran 77 pointer data
types in both Compaq Fortran and Compaq Fortran 77. (In some cases,
you can create Compaq Fortran 77 pointer data in a Compaq Fortran
procedure using the %LOC function.)

Compaq Fortran arrays with the POINTER attribute are passed by
array descriptor. A program written in Compaq Fortran 77 needs to
interpret the array descriptor format generated by a Compaq Fortran
90 array with the POINTER attribute (see Section 11.1.7).

Compaq Fortran assumed-shape arrays.

A–34 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

Compaq Fortran assumed-shape arrays are passed by array descriptor.
A program written in Compaq Fortran 77 needs to interpret the array
descriptor format generated by a Compaq Fortran assumed-shape array
(see Section 11.1.7).

You can use Compaq Fortran record structures, which are supported by
Compaq Fortran 77 and Compaq Fortran as an extension to the Fortran
95/90 standards.

For more information on how Compaq Fortran handles arguments and
function return values, see Section 11.1.4.

• Make sure the sizes of INTEGER, LOGICAL, REAL, and COMPLEX
declarations match.

For example, Compaq Fortran declarations of REAL (KIND=4) and
INTEGER (KIND=4) match Compaq Fortran 77 declarations of REAL*4
and INTEGER*4. For COMPLEX values, a Compaq Fortran declaration
of COMPLEX (KIND=4) matches a Compaq Fortran 77 declaration of
COMPLEX*8; COMPLEX (KIND=8) matches COMPLEX*16. Compaq
Fortran 77 does not have COMPLEX*32 declarations.

Your source programs may contain INTEGER, LOGICAL, REAL, or
COMPLEX declarations without a kind parameter (or size specifier). In
this case, when compiling the Compaq Fortran procedures (f90 command)
and Compaq Fortran 77 procedures (f77 command), either omit the
options or specify the equivalent options for controlling the sizes of these
declarations.

For more information on these options (the same for f90 and f77), see
Section 3.53 for INTEGER and LOGICAL declarations, Section 3.78
for REAL and COMPLEX declarations, and Section 3.34 for DOUBLE
PRECISION declarations.

• Compaq Fortran uses the same argument-passing conventions as Compaq
Fortran 77 on Compaq Tru64 UNIX systems (see Section 11.1.4).

• You can return nearly all function return values from a Compaq Fortran
function to a calling Compaq Fortran 77 routine, with the following
exceptions:

You cannot return Compaq Fortran pointer data from Compaq Fortran
to a Compaq Fortran 77 calling routine.

You cannot return Compaq Fortran user-defined data types from a
Compaq Fortran function to a Compaq Fortran 77 calling routine.

Example A–1 and Example A–2 show passing an array from a Compaq Fortran
program to a Compaq Fortran 77 subroutine that prints its value.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–35

Example A–1 shows the Compaq Fortran program (file array_to_f77.f90).
It passes the same argument as a target and a pointer. In both cases, it
is received by reference by the Compaq Fortran 77 subroutine as a target
(regular) argument. The interface block in Example A–1 is not needed, but
does allow data type checking.

Example A–1 Compaq Fortran Program Calling a Compaq Fortran 77
Subroutine

! Pass arrays to f77 routine. File: array_to_f77.f90

! this interface block is not required, but must agree
! with actual procedure. It can be used for type checking.

interface ! Procedure interface block
subroutine meg(a)
integer :: a(3)
end subroutine

end interface

integer, target :: x(3)
integer, pointer :: xp(:)

x = (/ 1,2,3 /)
xp => x

call meg(x) ! Call f77 subroutine twice.
call meg(xp)
end

Example A–2 shows the Compaq Fortran 77 subprogram called by the Compaq
Fortran program (file array_f77.f).

Example A–2 Compaq Fortran 77 Subroutine Called by a Compaq Fortran
Program

! Get array argument from F90. File: array_f77.f

subroutine meg(a)
integer a(3)
print *,a
end

These files (shown in Example A–1 and Example A–2) might be compiled,
linked, and run as follows:

A–36 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

% f77 -c array_f77.f
% f90 -o array_to_f77 array_to_f77.f90 array_f77.o
% array_to_f77

1 2 3
1 2 3

In Example A–1, because array a is not defined as a pointer in the interface
block, the Compaq Fortran pointer variable xp is passed as target data by
reference (address of the target data).

However, if the interface to the dummy argument had the POINTER attribute,
the variable xp would be passed by descriptor. This descriptor would not work
with the Compaq Fortran 77 program shown in Example A–2.

For More Information:

• On how Compaq Fortran handles arguments and function return values,
see Section 11.1.4.

• On explicit interfaces, see the Compaq Fortran Language Reference
Manual.

• On compatibility between the Compaq Fortran and Compaq Fortran 77
languages, see Appendix A.

• On other aspects of the Compaq Fortran language, see the Compaq Fortran
Language Reference Manual.

A.5.2 Using Data Items in Common Blocks
To make global data available across Compaq Fortran and Compaq Fortran 77
procedures, use common blocks.

Common blocks are supported by both Compaq Fortran 77 and Compaq
Fortran, but modules are not supported by Compaq Fortran 77. Some
suggestions about using common blocks follow:

• Use the same COMMON statement to ensure that the data items match in
order, type, and size.

If multiple Compaq Fortran procedures will use the same common block,
declare the data in a module and reference that module with a USE
statement where needed.

If Compaq Fortran 77 procedures use the same common block as the
Compaq Fortran procedures and the common block is declared in a module,
consider modifying the Compaq Fortran 77 source code as follows:

Replace the common block declaration with the appropriate USE
statement.

Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms A–37

Recompile the Compaq Fortran 77 source code with the f90 command.

• Specify the same alignment characteristics with the -align option when
compiling both Compaq Fortran procedures (f90 command) and Compaq
Fortran 77 procedures (f77 command).

When compiling the source files with more than one f90 or f77 command,
consistently use the -align dcommons or -align commons option. This
naturally aligns data items in a common block and ensures consistent
format of the common block.

• Make sure the sizes of INTEGER, LOGICAL, REAL, and COMPLEX
declarations match.

For example, Compaq Fortran declarations of REAL (KIND=4) and
INTEGER (KIND=4) match Compaq Fortran 77 declarations of REAL*4
and INTEGER*4. For COMPLEX values, a Compaq Fortran declaration
of COMPLEX (KIND=4) matches a Compaq Fortran 77 declaration of
COMPLEX*8; COMPLEX (KIND=8) matches COMPLEX*16. Fortran 77
does not have COMPLEX*32 data.

Your source programs may contain INTEGER, LOGICAL, REAL, or
COMPLEX declarations without a kind parameter or size specifier. In
this case, either omit or specify the same options that control the sizes of
these declarations when compiling the procedures with multiple commands
(same rules as Section A.5.1).

A.5.3 I/O to the Same Unit Number
Compaq Fortran and Compaq Fortran 77 share the same run-time system,
so you can perform I/O to the same unit number with Compaq Fortran and
Compaq Fortran 77 procedures. For instance, a Compaq Fortran main program
can open the file, a Compaq Fortran 77 function can issue READ or WRITE
statements to the same unit, and the Compaq Fortran main program can close
the file.

For More Information:

• On the Compaq Fortran language, see the Compaq Fortran Language
Reference Manual.

• On passing arguments, function return values, and the contents of registers
on Compaq Tru64 UNIX systems, see the Compaq Tru64 UNIX Calling
Standard for Alpha Systems.

• On Compaq Fortran intrinsic data types, see Chapter 9.

• On Compaq Fortran I/O, see Chapter 7.

A–38 Compatibility: Compaq Fortran 77 and Compaq Fortran on Multiple Platforms

B
Compaq Fortran Environment Variables

This appendix contains the following topics:

• Section B.1, Commands for Setting and Unsetting Environment Variables

• Section B.2, Compile-Time Environment Variables

• Section B.3, Run-Time Environment Variables

In addition to the environment variables recognized by Compaq Fortran, the
Compaq Tru64 UNIX operating system recognizes other environment variables.
For example, you can use the PROFDIR environment variable to request a
profile data file name different from mon.out during pixie command execution
on a Compaq Tru64 UNIX system and you can set the LD_LIBRARY_PATH
environment variable to install a private shared library.

B.1 Commands for Setting and Unsetting Environment
Variables

The commands used to set and unset environment variables vary with the
shell in use.

To view the previously set environment variables, use the printenv command.
(See printenv(1).)

B.1.1 Bourne Shell (sh) and Bourne Again Shell (bash) and Korn Shell
(ksh) Commands
With the Bourne shell (sh), Bourne Again Shell (bash) (L*X only), and Korn shell
(ksh), use an export and an assignment statement to set an environment
variable:

$ export environment-variable-name
$ environment-variable-name=value

Compaq Fortran Environment Variables B–1

For example, to associate the environment variable TMPDIR with the directory
/usr/users/smith/, enter:

$ export TMPDIR
$ TMPDIR=/usr/users/smith/

To remove the association of an environment variable and its value with the
Bourne or Korn shell or bash shell (L*X only), use the unset command:

$ unset environment-variable-name

B.1.2 C Shell (csh) Commands
With the C shell (csh), use the setenv command to set an environment variable
value:

% setenv environment-variable-name value

For example, to associate the environment variable FORT8 with the file located
at /usr/users/smith/test.dat, enter:

% setenv FORT8 /usr/users/smith/test.dat

To remove the association of an environment variable and its value with the C
shell, use the unsetenv command:

% unsetenv environment-variable-name

B.2 Compile-Time Environment Variables
Table B–1 describes environment variables that Compaq Fortran recognizes at
compile time.

For more information, see Section 7.5.7, Using Environment Variables.

Table B–1 Compile-Time Environment Variables

Environment Variable Description

DECF90 Location of the f90 compiler to invoke.

DECF90_CC Location of the cc command.

DECF90_DIR Path for the f90 command to use to find the f90 compiler
and for_main.o file. DECF90_DIR supersedes DECF90 and is
superseded by DECF90_LIB_DIR.

(continued on next page)

B–2 Compaq Fortran Environment Variables

Table B–1 (Cont.) Compile-Time Environment Variables

Environment Variable Description

DECF90_FPP Contains the full file name of the preprocessor to be run.

If -cpp is specified on the command line, this preprocessor is
run instead of cpp. See Section 3.31.

If -fpp is specified on the command line, this preprocessor is
run instead of fpp. See Section 3.45.

DECF90_GMPILIB
(TU*X only)

Variable for the f90 (or f95) command. When the
-hpf_target gmpi option is specified, this variable is used
to specify a path to the desired generic Message Passing
Interface (MPI) library to link with. If this variable is not
used, then you must specify the desired MPI library to link
against on the command line. See Section 3.50, -hpf, -hpf
num, and Related Options — Compile HPF Programs for
Parallel Execution.

DECF90_HPF_TARGET
(TU*X only)

Variable for the f90 (or f95) command. If this variable is set,
it must have one of the values of the -hpf_target option.
See Section 3.50, -hpf, -hpf num, and Related Options —
Compile HPF Programs for Parallel Execution.

DECF90_WSF_TARGET is a nonpreferred synonym for
DECF90_HPF_TARGET.

DECF90_INIT Initial options for the f90 (or f95) command. If this variable
is defined, its value must have the form:

[[pre] [:: [post]]
The items enclosed in square brackets ([]) are optional and
can be empty. The pre and post variables are strings to be
added to the command line:

• pre is added to the front of the command line, before any
characters the user enters.

• post is added to the end of the command line.

DECF90_LIB_DIR Path for the f90 compiler to use to find the Fortran run-time
libraries.

DECFORT (TU*X only) Location of the Fortran 77 compiler to invoke.

DECFORT_CC (TU*X only) Location of the cc command for the Fortran 77 compiler.

(continued on next page)

Compaq Fortran Environment Variables B–3

Table B–1 (Cont.) Compile-Time Environment Variables

Environment Variable Description

DECFORT_DIR
(TU*X only)

Path for the f77 command to use to find the f77 compiler
and for_main.o file. DECFORT_DIR supersedes DECFORT
and is superseded by DECFORT_LIB_DIR.

DECFORT_FPP
(TU*X only)

Requests that the Fortran preprocessor fpp be run
before compiling Fortran 77 source files when -cpp has
been specified. For more information about the Fortran
preprocessor and the related -fpp and -nofpp options, see
Section 3.45.

DECFORT_INIT
(TU*X only)

Initial options for the f77 command. If this variable is
defined, its value must have the form:

[[pre] [:: [post]]
The items enclosed in square brackets ([]) are optional and
can be empty. The pre and post variables are strings to be
added to the command line:

• pre is added to the front of the command line, before any
characters the user enters.

• post is added to the end of the command line.

DECFORT_LIB_DIR
(TU*X only)

Path for the f77 compiler to use to find the Fortran run-time
libraries.

LD_LIBRARY_PATH
(TU*X only)

Path on which to find shared libraries for an executable
program.

TMPDIR Specifies an alternate working directory where temporary
files are created during preprocessing or compilation.

To specify an alternate working directory for temporary files,
set the TMPDIR environment variable to the desired directory
name. If TMPDIR is not set, temporary files created during
preprocessing or compilation reside in the /tmp directory.

For large applications, you might set this variable to balance
disk I/O during compilation. For performance reasons, use
a local disk (rather than using an NFS-mounted disk) to
contain the temporary files.

B–4 Compaq Fortran Environment Variables

B.3 Run-Time Environment Variables
Table B–2 describes the environment variables Compaq Fortran recognizes at
run time.

Environment variables used with OpenMP Fortran API (multithreaded parallel
processing) are described in Section 6.4, Environment Variables for Adjusting
the Run-Time Environment.)

For more information, see Section 7.5.7, Using Environment Variables.

Table B–2 Run-Time Environment Variables

Environment Variable Description

decfort_dump_flag Requests that a core dump (core file) be created when
any severe Compaq Fortran run-time error occurs. Most
severe Compaq Fortran run-time errors do not result in
a core dump, unless accompanied by certain operating
system messages.

To request that a core file be created for all severe
Compaq Fortran run-time errors, set the environment
variable decfort_dump_flag to the character Y or
y and then run the erroneous program for which you
need a core file created. For more information, see
Section 8.1.4.

FOR_ACCEPT For programs compiled with the f90 command -vms
option, specifies the name of a file to receive input from
an ACCEPT statement instead of stdin.

FOR_DISABLE_STACK_TRACE
(TU*X only)

Disables outputting of stack trace information as part
of the run-time error message for a severe error. The
normal run-time error message is produced instead. See
Section 8.1.1, Run-Time Message Format.

FOR_PRINT For programs compiled with the f90 command -vms
option, specifies the name of a file to receive output from
a PRINT statement instead of stdout.

FOR_READ For programs compiled with the f90 command -vms
option, specifies the name of a file to receive input from
a READ statement instead of stdin.

FOR_TYPE For programs compiled with the f90 command -vms
option, specifies the name of a file to receive output from
a TYPE statement instead of stdout.

(continued on next page)

Compaq Fortran Environment Variables B–5

Table B–2 (Cont.) Run-Time Environment Variables

Environment Variable Description

FORTn Allows the user to specify the directory and file
name at run time for a logical unit (n) for which the
OPEN statement does not specify a file name. If the
appropriate environment variable is not set and the
OPEN statement does not specify a file name for that
logical unit, a default file name of fort.n is used.

FORT_BUFFERED Specifies that buffered I/O will be used for sequential
output to all I/O units, except those whose output is to
the terminal. This provides a run-time mechanism
to support the behavior enabled by the -assume
buffered_io option. For more information, see
Section 3.6 and Section 5.6.7, Efficient Use of Record
Buffers and Disk I/O.

FORT_CONVERTn For an unformatted file, specifies the nonnative numeric
format of the data at run time for a logical unit (n).
Otherwise, the nonnative numeric format of the
unformatted data must be specified at compile-time
by using the f90 command -convert type option. For
more information, see Section 10.5.1.

FORT_CONVERT.ext For an unformatted file, specifies the nonnative numeric
format of the data at run time for a file whose suffix
is ext. Otherwise, the nonnative numeric format of the
unformatted data must be specified at compile-time by
using the f90 command -convert type option. For
more information, see Section 10.5.2.

MP_* (TU*X only) Compaq Fortran parallel compiler environment
variables, used with directed parallel processing.
For more information, see Section 6.4, Environment
Variables for Adjusting the Run-Time Environment.

NLSPATH If the run-time message catalog file cannot be located,
the Compaq Fortran run-time system attempts to open
the message catalog file at the location indicated by the
NLSPATH environment variable. For more information,
see Section 8.1.2.

OMP_* (TU*X only) OpenMP Fortran API environment variables, used with
directed parallel processing. For more information, see
Section 6.4, Environment Variables for Adjusting the
Run-Time Environment.

(continued on next page)

B–6 Compaq Fortran Environment Variables

Table B–2 (Cont.) Run-Time Environment Variables

Environment Variable Description

TMPDIR Specifies an alternate working directory where scratch
files are created. To specify an alternate working
directory for scratch files, set the TMPDIR environment
variable to the desired directory name. For performance
reasons, use a local disk (rather than an NFS-mounted
disk) to contain the scratch files.

If TMPDIR is not set, scratch files are created in
the directory specified in the OPEN statement
DEFAULTFILE (if specified).

Compaq Fortran Environment Variables B–7

C
Compiler Output Listings

This appendix describes the three sections of an output listing produced by the
Compaq Fortran compiler:

• Section C.1, Source-Code Section of the Output Listing

• Section C.2, Machine-Code Section of the Output Listing

• Section C.3, Compilation Summary of the Output Listing

To request a listing file, use the -V option. For example:

% f90 -V peak.f90

C.1 Source-Code Section of the Output Listing
The source-code section of a compiler output listing displays the source
program as it appears in the input file, with the addition of sequential line
numbers generated by the compiler. Example C–1 shows a sample of a
source-code section of a compiler output listing.

Compiler Output Listings C–1

Example C–1 Sample Source Code Listing

RELAX2 Source Listing 14-Nov-2001 09:59:31 Compaq Fortran V5.5-1843
13-Feb-1998 11:00:18 listing.f90

1 SUBROUTINE RELAX2(EPS)
2 INTEGER, PARAMETER :: M=40
3 INTEGER, PARAMETER :: N=60
4 COMMON X (M,N)
5 LOGICAL DONE
6 1 DONE = .TRUE.
7 DO J=1,N-1
8 DO I=1,M-1
9 XNEW = (X(I-1,J)+X(I+1,J)+X(I,J-1)+X(I,J+1))/4
10 IF (ABS(XNEW-X(I,J)) > EPS) DONE = .FALSE.
11 X(I,J) = XNEW
12 END DO
13 END DO
14 IF (.NOT. DONE) GO TO 1
15 RETURN
16 END SUBROUTINE

The first heading line contains ‘‘Source Listing,’’ the date and time the listing
file was created, and the version of Compaq Fortran.

The second line contains the creation date of the source file and its file name.

Compiler-generated line numbers appear in the left margin.

Compile-time error messages that contain line numbers refer to these
compiler-generated line numbers. See Section 2.3, Compiler Limits, Diagnostic
Messages, and Error Conditions.

C.2 Machine-Code Section of the Output Listing
The machine-code section of a compiler output listing provides a symbolic
representation of the compiler-generated object code. The representation of the
generated code and data is similar to that of assembler language.

The machine-code section is optional. To create a listing file with a machine-
code section, specify both the -V and -show code options. For example:

% f90 -c -V -show code peak.f90

Example C–2 shows a sample of a machine-code section of a compiler output
listing for an Alpha system.

Note

The machine code listing is for reference purposes only. Such code is
not intended to be assembled and run.

C–2 Compiler Output Listings

Example C–2 Sample Machine-Code Listing

RELAX2 Machine Code Listing 14-Nov-2001 09:59:31 Compaq Fortran V5.5-1843
13-Feb-1998 11:00:18 listing.f90

.text

.globl relax2_

.ent relax2_

.eflag 16
0000 relax2_:

27BB0001 0000 ldah gp, relax2_ # gp, (r27)
2FFE0000 0004 unop
23BD8420 0008 lda gp, relax2_ # gp, (gp)
2FFE0000 000C unop

0010 L$1:
23DEFFD0 0010 lda sp, -48(sp)
88100000 0014 lds f0, (r16) # 000010
B75E0000 0018 stq r26, (sp)
A79D8010 001C ldq r28, (gp) # 000009
A47D8018 0020 ldq r3, var$0004 # r3, 8(gp)
9C5E0008 0024 stt f2, 8(sp) # 000001
9C7E0010 0028 stt f3, 16(sp)
9C9E0018 002C stt f4, 24(sp)
20630000 0030 lda r3, var$0004 # r3, (r3) # 000009
9CBE0020 0034 stt f5, 32(sp) # 000001
9CDE0028 0038 stt f6, 40(sp)

.mask 0x04000000,-48

.fmask 0x0000007C,-40

.frame $sp, 48, $26

.prologue 1
883C0000 003C lds f1, (r28) # 000009

0040 .1: # 000006
209FFFFF 0040 mov -1, DONE # -1, r4
47E77405 0044 mov 59, var$0002 # 59, r5 # 000007
47F41406 0048 mov 160, r6 # 000011
2FFE0000 004C unop

0050 lab$0004: # 000007
40660407 0050 addq r3, r6, r7 # 000009
47E4F408 0054 mov 39, var$0003 # 39, r8 # 000008
20E7FF5C 0058 lda r7, -164(r7) # 000009
2FFE0000 005C unop

0060 lab$0008: # 000008
89470008 0060 lds f10, 8(r7) # 000009
8987FF64 0064 lds f12, -156(r7)
47FF041B 0068 clr r27 # 000010
89670000 006C lds f11, (r7) # 000009
.
.
.
Routine Size: 1012 bytes, Routine Base: $CODE$ + 0000

(continued on next page)

Compiler Output Listings C–3

Example C–2 (Cont.) Sample Machine-Code Listing

.rdata
$$1:

00000000 0000 .quad .literal
00000000 0008 .quad _BLNK__

.rconst
$$2:

3E800000 0000 .long 0x3E800000 # .float 0.2500000
.data

$$3:
0000 ; Procedure descriptor for relax2_

; flags :short
; rsa_offset : 0
; imask : 0x00
; fmask : 0x1F
; frame_size : 6
; sp_set : 4
; entry_length : 15
.data

$$4:
0000 ; Code range descriptor for relax2_

beginaddress : 0000
rpd_offset : 0000
flags : Standard
.comm _BLNK__ 9600

C.2.1 How Generated Code and Data are Represented in Machine-Code
Listings
Like a source listing, the first heading line contains the name of the program,
subroutine, or function; the date and time the listing file was created; and the
version of Compaq Fortran.

The second heading line contains ‘‘Machine Code Listing,’’ the creation date of
the source file, and the name of the source file.

The third heading line contains a .section assembler directive, indicating
the attributes of the machine-code program unit. The $CODE$ shown in
Example C–2 indicates a code section.

The lines following each data program section provide information such as
the contents of storage initialized for FORMAT statements, DATA statements,
constants, and subprogram argument call lists.

The lines following $CODE$ show the machine instructions represented in the
form of Alpha assembler mnemonics and syntax. Each line contains compiler-
generated object code starting at the left margin, followed by the hexadecimal
byte offset (four hexadecimal digits), followed by the actual assembler code.

C–4 Compiler Output Listings

C.2.2 Assembler Code Represented in Machine-Code Listings
General registers (0 through 31) are represented by r0 through r31 and
floating-point registers are similarly represented by fn.

Variables and arrays defined in the source program are shown as they were
defined in the program. Offsets from variables and arrays are shown in
decimal. Optimization frequently places variables in registers, so variable
names may be missing.

Fortran source labels referenced in the source program are shown with a
period (.) prefix. For example, if the source program refers to label 300,
the label appears in the machine-code listing as .300. Labels that appear in
the source program, but are not referenced or are deleted during compiler
optimization, are ignored. They do not appear in the machine-code listing
unless you specified -O0.

The compiler may generate labels for its own use. These labels appear as L$n
or lab$000n, where the value of n is unique for each such label in a program
unit.

Integer constants are shown as signed integer values.

Addresses are represented by the program section name plus the hexadecimal
offset within that program section. Changes from one program section to
another are indicated by lines.

C.3 Compilation Summary of the Output Listing
The final entries on the compiler listing are the compiler options and compiler
statistics.

The options shown include the ones specified on the command line, both f90
and fort, and the ones in effect as defaults during the compilation. The
compiler statistics are the machine resources used by the compiler.

Example C–3 shows how compiler options and f90 (on Tru64 UNIX systems)
command-line options and compilation statistics appear on the listing.

A summary of compilation statistics appears at the end of the listing file.

Example C–3 Sample Compilation Summary on Tru64 UNIX Systems

(continued on next page)

Compiler Output Listings C–5

Example C–3 (Cont.) Sample Compilation Summary on Tru64 UNIX Systems

COMPILER OPTIONS BEING USED

no -align commons no -align dcommons
-align records no -align sequence

no -align rec1byte no -align rec2byte
no -align rec4byte no -align rec8byte

-altparam no -annotations code
no -annotations detail no -annotations feedback
no -annotations inlining no -annotations loop_transforms
no -annotations loop_unrolling no -annotations prefetching
no -annotations shrinkwrapping no -annotations software_pipelining
no -annotations tail_calls no -annotations tail_recursion

-arch generic -assume accuracy_sensitive
no -assume bigarrays no -assume buffered_io
no -assume byterecl no -assume cc_omp
no -assume dummy_aliases no -assume gfullpath
no -assume minus0 -assume protect_constants
no -assume pthreads_lock -assume source_include

-assume underscore no -assume 2underscores
-assume zsize no -automatic

no -bintext -call_shared
-ccdefault default no -check arg_temp_created

no -check bounds no -check format
no -check omp_bindings no -check output_conversion
no -check overflow -check power
no -check underflow -convert native
no -D -double_size 64
no -d_lines -error_limit 30
no -extend_source no -f66
no -f77rtl no -fast
no -fpscomp filesfromcmd no -fpscomp general
no -fpscomp ioformat no -fpscomp ldio_spacing
no -fpscomp logicals no -fpconstant

-fpe0 -fprm nearest
-free -g1
-granularity quadword -Gt0

no -hpf_matmul no -hpf
-iface no -intconstant
-integer_size 32 no -ladebug
-machine_code -math_library accurate

no -mixed_str_len_arg no -module
-names lowercase -nearest_neighbor

no -nohpf_main no -non_shared
no -noinclude -numnodes 0
no -numa -numa_memories 0

-numa_tpm 0 -O4
-inline speed no -transform_loops
-pipeline -speculate none
-tune generic -unroll 0

no -pad_source no -pg
-real_size 32 no -recursive
-reentrancy none -shadow_width 0

(continued on next page)

C–6 Compiler Output Listings

Example C–3 (Cont.) Sample Compilation Summary on Tru64 UNIX Systems
no -shared no -show hpf_all
no -show hpf_comm no -show hpf_default
no -show hpf_dev no -show hpf_indep
no -show hpf_nearest no -show hpf_punt
no -show hpf_temps no -show include

-show map no -show wsfinfo
no -std no -synchronous_exceptions
no -syntax_only no -vms

-warn alignments no -warn argument_checking
no -warn declarations -warn general

-warn granularity no -warn hpf
no -warn ignore_loc no -warn truncated_source

-warn uncalled -warn uninitialized
no -warn unused -warn usage

-warning_severity warning no -fuse_xref

-I path : /usr/lib/cmplrs/hpfrtl/,/usr/include/
-V filename : listing.l
-o filename : listing.o

COMPILER: Compaq Fortran V5.5-1843-48BB1

Example C–4 shows how compiler options and fort (on Linux systems)
command-line options and compilation statistics appear on the listing.

A summary of compilation statistics appears at the end of the listing file. Note
that some options that are available on Tru64 UNIX systems are not available
on Linux Alpha systems.

Compiler Output Listings C–7

Example C–4 Sample Compilation Summary on Linux Systems

COMPILER OPTIONS BEING USED

no -align commons no -align dcommons
-align records no -align sequence

no -align rec1byte no -align rec2byte
no -align rec4byte no -align rec8byte

-altparam no -annotations code
no -annotations detail no -annotations feedback
no -annotations inlining no -annotations loop_transforms
no -annotations loop_unrolling no -annotations prefetching
no -annotations shrinkwrapping no -annotations software_pipelining
no -annotations tail_calls no -annotations tail_recursion

-arch generic -assume accuracy_sensitive
no -assume bigarrays no -assume buffered_io
no -assume byterecl no -assume cc_omp
no -assume dummy_aliases no -assume gfullpath
no -assume minus0 -assume protect_constants
no -assume pthreads_lock -assume source_include

-assume underscore -assume 2underscores
-assume zsize no -automatic

no -bintext -call_shared
-ccdefault default no -check arg_temp_created

no -check bounds no -check format
no -check omp_bindings no -check output_conversion
no -check overflow -check power
no -check underflow -convert native
no -D -double_size 64
no -d_lines -error_limit 30
no -extend_source no -f66
no -f77rtl no -fast
no -fpscomp filesfromcmd no -fpscomp general
no -fpscomp ioformat no -fpscomp ldio_spacing
no -fpscomp logicals -fixed
no -fpconstant -fpe0

-fprm nearest -g1
-granularity quadword -Gt0

no -hpf_matmul no -hpf
-iface no -intconstant
-integer_size 32 no -ladebug

no -machine_code -math_library accurate
no -mixed_str_len_arg no -module

-names lowercase -nearest_neighbor
no -nohpf_main no -non_shared
no -noinclude -numnodes 0
no -numa -numa_memories 0

-numa_tpm 0 -O4
-inline speed no -transform_loops
-pipeline -speculate none
-tune generic -unroll 0

no -pad_source no -pg
-real_size 32 no -recursive
-reentrancy none -shadow_width 0

(continued on next page)

C–8 Compiler Output Listings

Example C–4 (Cont.) Sample Compilation Summary on Linux Systems
no -shared no -show hpf_all
no -show hpf_comm no -show hpf_default
no -show hpf_dev no -show hpf_indep
no -show hpf_nearest no -show hpf_punt
no -show hpf_temps no -show include

-show map no -show wsfinfo
no -std no -synchronous_exceptions
no -syntax_only no -vms

-warn alignments no -warn argument_checking
no -warn declarations -warn general

-warn granularity no -warn hpf
no -warn ignore_loc no -warn truncated_source

-warn uncalled -warn uninitialized
no -warn unused -warn usage

-warning_severity warning no -fuse_xref

-I path : /usr/include/
-V filename : end.l
-o filename : /tmp/forlYrc7r.o

COMPILER: Compaq Fortran V1.2.0-1843-48BB1

Compiler Output Listings C–9

D
Parallel Library Routines

Note

This appendix applies only to Compaq Fortran on Tru64 UNIX systems.

This appendix contains the following sections:

• Section D.1, OpenMP Fortran API Run-Time Library Routines

• Section D.2, Other Parallel Threads Routines

This appendix summarizes the library routines available for use with directed
parallel decomposition requested by the -mp and -omp compiler options.

Where applicable, new applications should call run-time parallel library
routines using the OpenMP Fortran API format. (See Section D.1, OpenMP
Fortran API Run-Time Library Routines.) For compatibility with existing
programs, the Compaq Fortran compiler recognizes equivalent routines of the
formats described in Section D.2. Thus, for example, if your program calls
_OtsGetNumThreads, the Compaq Fortran compiler interprets that as a call to
omp_get_num_threads.

D.1 OpenMP Fortran API Run-Time Library Routines
This section describes:

• Library routines that control and query the parallel execution environment

• General-purpose lock routines supported by Compaq Fortran.

Table D–1 lists the supported OpenMP Fortran API run-time library routines.
These routines are all external procedures.

Parallel Library Routines D–1

Table D–1 OpenMP Fortran API Run-Time Library Routines

Routine Name Usage

Library Routines That Control and Query the Parallel Execution Environment

omp_get_dynamic Inform if dynamic thread adjustment is enabled. See
Section D.1.1.1, omp_get_dynamic.

omp_get_max_threads Get the maximum value that can be returned by calls to the
omp_get_num_threads() function. See Section D.1.1.2,
omp_get_max_threads.

omp_get_nested Inform if nested parallelism is enabled. See Section D.1.1.3,
omp_get_nested.

omp_get_num_procs Get the number of processors that are available to the
program. See Section D.1.1.4, omp_get_num_procs.

omp_get_num_threads Get the number of threads currently in the team executing
the parallel region from which the routine is called. See
Section D.1.1.5, omp_get_num_threads.

omp_get_thread_num Get the thread number, within the team, in the range from
zero to omp_get_num_threads()–1. See Section D.1.1.6,
omp_get_thread_num.

omp_in_parallel Inform whether or not a region is executing in parallel. See
Section D.1.1.7, omp_in_parallel.

omp_set_dynamic Enable or disable dynamic adjustment of the number of
threads available for execution of parallel regions. See
Section D.1.1.8, omp_set_dynamic.

omp_set_nested Enable or disable nested parallelism. See Section D.1.1.9,
omp_set_nested.

omp_set_num_threads Set the number of threads to use for the next parallel region.
See Section D.1.1.10, omp_set_num_threads.

General-Purpose Lock Routines

omp_destroy_lock Disassociate a lock variable from any locks. See Section D.1.2.1.

omp_init_lock Initialize a lock to be used in subsequent calls. See
Section D.1.2.2.

omp_set_lock Make the executing thread wait until the specified lock is
available. See Section D.1.2.3.

omp_test_lock Try to set the lock associated with a lock variable. See
Section D.1.2.4.

omp_unset_lock Release the executing thread from ownership of a lock. See
Section D.1.2.5.

D–2 Parallel Library Routines

D.1.1 Library Routines That Control and Query the Parallel Execution
Environment
These routines are described in detail in the following sections.

D.1.1.1 omp_get_dynamic
Determines the status of dynamic thread adjustment.

Syntax:
INTERFACE

LOGICAL FUNCTION omp_get_dynamic ()
END FUNCTION omp_get_dynamic

END INTERFACE
LOGICAL result
result = omp_get_dynamic ()

Return Values:
This function returns TRUE if dynamic thread adjustment is enabled; otherwise
it returns FALSE. The function always returns FALSE if dynamic adjustment of
the number of threads is not implemented.

See Also:

Section D.1.1.8, omp_set_dynamic

D.1.1.2 omp_get_max_threads
Returns the maximum value that can be returned by calls to the
omp_get_num_threads() function.

Syntax:
INTERFACE

INTEGER FUNCTION omp_get_max_threads ()
END FUNCTION omp_get_max_threads

END INTERFACE
INTEGER result
result = omp_get_max_threads ()

Description:
If your program uses omp_set_num_threads() to change the number of
threads, subsequent calls to omp_get_max_threads() will return the new
value. When the omp_set_dynamic() routine is set to TRUE, you can use
omp_get_max_threads() to allocate data structures that are maximally sized
for each thread.

This function has global scope.

Parallel Library Routines D–3

Return Values:
This function returns the maximum value whether executing from a serial
region or from a parallel region.

If your program used omp_set_num_threads to change the number of threads,
subsequent calls to omp_get_max_threads will return the new value.

See Also:

Section D.1.1.10, omp_set_num_threads
Section D.1.1.8, omp_set_dynamic

D.1.1.3 omp_get_nested
Determines the status of nested parallelism.

Syntax:
INTERFACE

LOGICAL FUNCTION omp_get_nested ()
END FUNCTION omp_get_nested

END INTERFACE
LOGICAL result
result = omp_get_nested ()

Description:
This function returns TRUE if nested parallelism is enabled. If nested
parallelism is disabled it returns FALSE. The function always returns FALSE
if nested parallelism is not implemented.

See Also:

Section D.1.1.9, omp_set_nested

D.1.1.4 omp_get_num_procs
Returns the number of processors that are available to the program.

Syntax:
INTERFACE

INTEGER FUNCTION omp_get_num_procs ()
END FUNCTION omp_get_num_procs

END INTERFACE
INTEGER result
result = omp_get_num_procs ()

Return Values:
This function returns an integer value indicating the number of processors
your program has available.

D–4 Parallel Library Routines

D.1.1.5 omp_get_num_threads
Returns the number of threads currently in the team executing the parallel
region from which it is called.

Syntax:
INTERFACE

INTEGER FUNCTION omp_get_num_threads ()
END FUNCTION omp_get_num_threads

END INTERFACE
INTEGER result
result = omp_get_num_threads ()

Description:
This function interacts with the omp_set_num_threads call and the
OMP_NUM_THREADS environment variable that control the number of threads
in a team. If the number of threads has not been explicitly set by the user, the
default is implementation dependent.

The omp_get_num_threads function binds to the closest enclosing PARALLEL
directive (see Chapter 6, Parallel Compiler Directives and Their Programming
Environment). It returns 1 if the call is made from the serial portion of a
program, or from a nested parallel region that is serialized.

See Also:

Section D.1.1.10, omp_set_num_threads
OMP_NUM_THREADS environment variable in Table 6–4, OpenMP Fortran API
Environment Variables

D.1.1.6 omp_get_thread_num
Returns the thread number, within the team.

Syntax:
INTERFACE

INTEGER FUNCTION omp_get_thread_num ()
END FUNCTION omp_get_thread_num

END INTERFACE
INTEGER result
result = omp_get_thread_num ()

Description:
This function binds to the closest enclosing PARALLEL directive (see
Chapter 6, Parallel Compiler Directives and Their Programming Environment).
The master thread of the team is thread zero.

Parallel Library Routines D–5

Return Values:
The value returned ranges from zero to omp_get_num_threads() - 1. The
function returns zero when called from a serial region or from within a nested
parallel region that is serialized.

See Also:

Section D.1.1.5, omp_get_num_threads
Section D.1.1.10, omp_set_num_threads

D.1.1.7 omp_in_parallel
Returns whether or not a region is executing in parallel.

Syntax:
INTERFACE

LOGICAL FUNCTION omp_in_parallel ()
END FUNCTION omp_in_parallel

END INTERFACE
LOGICAL result
result = omp_in_parallel()

Description:
This function has global scope.

Return Values:
This function returns TRUE if it is called from the dynamic extent of a region
executing in parallel, even if nested regions exist that may be serialized;
otherwise it returns FALSE. A parallel region that is serialized is not considered
to be a region executing in parallel.

D.1.1.8 omp_set_dynamic
Enables or disables dynamic adjustment of the number of threads available for
execution in a parallel region.

Syntax:
INTERFACE

SUBROUTINE omp_set_dynamic (enable)
LOGICAL enable
END SUBROUTINE omp_set_dynamic

END INTERFACE
LOGICAL scalar_local_expression
CALL omp_set_dynamic (scalar_logical_expression)

D–6 Parallel Library Routines

Description:
To obtain the best use of system resources, certain run-time environments
automatically adjust the number of threads that are used for executing
subsequent parallel regions. This adjustment is enabled only if the value of the
scalar logical expression to omp_set_dynamic is TRUE. Dynamic adjustment is
disabled if the value of the scalar logical expression is FALSE.

When dynamic adjustment is enabled, the number of threads specified by
the user becomes the maximum thread count. The number of threads
remains fixed throughout each parallel region and is reported by the
omp_get_num_threads() function.

A call to omp_set_dynamic overrides the OMP_DYNAMIC environment variable.

The default for dynamic thread adjustment is implementation dependent. A
user code that depends on a specific number of threads for correct execution
should explicitly disable dynamic threads. Implementations are not required
to provide the ability to dynamically adjust the number of threads, but they
are required to provide the interface in order to support portability across
platforms.

See Also:

Section D.1.1.1, omp_get_dynamic
Section D.1.1.5, omp_get_num_threads
OMP_DYNAMIC environment variable in Table 6–4, OpenMP Fortran API
Environment Variables

D.1.1.9 omp_set_nested
Enables or disables nested parallelism.

Syntax:
INTERFACE

SUBROUTINE omp_set_nested (enable)
LOGICAL enable
END SUBROUTINE omp_set_nested

END INTERFACE
LOGICAL scalar_logical_expression
CALL omp_set_nested (scalar_logical_expression)
END INTERFACE

Parallel Library Routines D–7

Description:
If the value of the scalar logical expression is FALSE, nested parallelism is
disabled, and nested parallel regions are serialized and executed by the current
thread. This is the default. If the value of the scalar logical expression is set
to TRUE, nested parallelism is enabled, and parallel regions that are nested can
deploy additional threads to form the team.

A call to omp_set_nested overrides the OMP_NESTED environment variable.

When nested parallelism is enabled, the number of threads used to execute
the nested parallel regions is implementation dependent. This allows
implementations that comply with the OpenMP standard to serialize nested
parallel regions, even when nested parallelism is enabled.

See Also:

Section D.1.1.3, omp_get_nested
OMP_NESTED environment variable in Table 6–4, OpenMP Fortran API
Environment Variables

D.1.1.10 omp_set_num_threads
Sets the number of threads to use for the next parallel region.

Syntax:
INTERFACE

SUBROUTINE omp_set_num_threads (number_of_threads)
INTEGER number_of_threads
END SUBROUTINE omp_set_num_threads

END INTERFACE
INTEGER scalar_integer_expression
CALL omp_set_num_threads (scalar_integer_expression)

Description:
The compiler evaluates the scalar integer expression and interprets its value as
the number of threads to use. This function takes effect only when called from
serial portions of the program. The behavior of the function is undefined if the
function is called from a portion of the program where the omp_in_parallel
function returns TRUE.

A call to omp_set_num_threads sets the maximum number of threads to use for
the next parallel region when dynamic adjustment of the number of threads
is enabled. A call to omp_set_num_threads overrides the OMP_NUM_THREADS
environment variable.

D–8 Parallel Library Routines

See Also:

Section D.1.1.5, omp_get_num_threads
Section D.1.1.7, omp_in_parallel
OMP_NUM_THREADS environment variable in Table 6–4, OpenMP Fortran API
Environment Variables

D.1.2 General-Purpose Lock Routines
The OpenMP run-time library includes a set of general-purpose locking
routines. Your program must not attempt to access any lock variable, var,
except through the routines described in this section. The var lock variable
is an integer of a KIND large enough to hold an address. On Compaq Tru64
UNIX systems, var should be declared as INTEGER(KIND=8).

The lock control routines must be called in a specific sequence:

1. The lock to be associated with the lock variable must first be initialized.

2. The associated lock is made available to the executing thread.

3. The executing thread is released from lock ownership.

4. When finished, the lock must always be disassociated from the lock
variable.

A simple SET_LOCK and UNSET_LOCK combination satisfies this
requirement. If you want your program to do useful work while waiting
for the lock to become available, you can use the combination of TRY_LOCK
and UNSET_LOCK instead. For example:

PROGRAM LOCK_USAGE
implicit none
integer(kind=4) ID
include ’forompdef’ ! It’s in /usr/include after installation
INTEGER(KIND=8) LCK ! This variable should be of size POINTER
CALL OMP_INIT_LOCK(LCK)

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
ID = OMP_GET_THREAD_NUM()
CALL OMP_SET_LOCK(LCK)
PRINT *, MY THREAD ID IS , ID
CALL OMP_UNSET_LOCK(LCK)
DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
CALL SKIP(ID) ! Do not yet have lock, do something else
END DO
CALL WORK(ID) ! Have the lock, now do work
CALL OMP_UNSET_LOCK(LCK)

!$OMP END PARALLEL
CALL OMP_DESTROY_LOCK(LCK)
END

Parallel Library Routines D–9

The lock control routines are described in detail in the following sections.

D.1.2.1 omp_destroy_lock
Disassociates a given lock variable from any locks.

Syntax:
INTERFACE

SUBROUTINE omp_destroy_lock (var)
INTEGER(KIND=8) var
END SUBROUTINE omp_destroy_lock

END INTERFACE
INTEGER(KIND=8) v
CALL omp_destroy_lock (v)

Restriction:
Attempting to call this routine with a lock variable that has not been initialized
is an invalid operation and will cause a run-time error.

D.1.2.2 omp_init_lock
Initializes a lock associated with a given lock variable for use in subsequent
calls.

Syntax:
INTERFACE

SUBROUTINE omp_init_lock (var)
INTEGER(KIND=8) var
END SUBROUTINE omp_init_lock

END INTERFACE
INTEGER(KIND=8) v
CALL omp_init_lock (v)

Description:
The initial state of the lock variable v is unlocked.

Restriction:
Attempting to call this routine with a lock variable that is already associated
with a lock is an invalid operation and will cause a run-time error.

D.1.2.3 omp_set_lock
Makes the executing thread wait until the specified lock is available.

D–10 Parallel Library Routines

Syntax:
INTERFACE

SUBROUTINE omp_set_lock (var)
INTEGER(KIND=8) var
END SUBROUTINE omp_set_lock

END INTERFACE
INTEGER(KIND=8) v
CALL omp_set_lock (v)

Description:
When the lock becomes available, the thread is granted ownership.

Restriction:
Attempting to call this routine with a lock variable that has not been initialized
is an invalid operation and will cause a run-time error.

D.1.2.4 omp_test_lock
Tries to set the lock associated with the lock variable var.

Syntax:
INTERFACE

LOGICAL FUNCTION omp_test_lock (var)
INTEGER(KIND=8) var
END SUBROUTINE omp_test_lock

END INTERFACE
INTEGER(KIND=8) v
LOGICAL result
result = omp_test_lock (v)

Return Values:
If the attempt to set the lock specified by the variable succeeds, the function
returns TRUE; otherwise it returns FALSE. In either case, the routine does not
wait for the lock to become available.

Restriction:
Attempting to call this routine with a lock variable that has not been initialized
is an invalid operation and will cause a run-time error.

D.1.2.5 omp_unset_lock
Releases the executing thread from ownership of the lock.

Parallel Library Routines D–11

Syntax:
INTERFACE

SUBROUTINE omp_unset_lock (var)
INTEGER(KIND=8) var
END SUBROUTINE omp_unset_lock

END INTERFACE
INTEGER(KIND=8) v
CALL omp_unset_lock (v)

Description:
If the thread does not own the lock specified by the variable, the behavior is
undefined.

Restriction:
Attempting to call this routine with a lock variable that has not been initialized
is an invalid operation and will cause a run-time error.

D.2 Other Parallel Threads Routines
Note

Compaq Fortran supports the set of parallel thread routines described
in this section for existing programs. For creating new programs, use
the set of routines described in Section D.1, OpenMP Fortran API
Run-Time Library Routines.

Table D–2, Other Parallel Threads Routines shows additional parallel
threads routines. The _Otsxxx (Compaq spelling) and the mpc_xxx
(compatibility spelling) routine names are equivalent. For example, calling
_OtsGetNumThreads is the same as calling mpc_numthreads.

D–12 Parallel Library Routines

Table D–2 Other Parallel Threads Routines

Routine Name Description

_OtsGetMaxThreads
mpc_maxnumthreads

Return the number of threads that would normally be used for
parallel processing in the current environment. This is affected
by the environment variable MP_THREAD_COUNT, by the number
of processes in the current process’s processor set, and by any
call to _OtsInitParallel. Invoke as an integer function. See
Section D.2.1.

_OtsGetNumThreads
mpc_numthreads

Return the number of threads that are being used in the current
parallel region (if running within one), or the number of threads
that have been created so far (if not currently within a parallel
region). Invoke as an integer function. See Section D.2.2.

_OtsGetThreadNum
mpc_my_threadnum

Return a number that identifies the current thread. The main
thread is 0, and slave threads are numbered densely from 1.
Invoke as an integer function. See Section D.2.3.

_OtsInitParallel Start slave threads for parallel processing if they have not yet
been started implicitly (normally, the threads have been started
by default at the first parallel region). Call as a subroutine with
two arguments (see Section D.2.4):

• The total number of threads desired (or specify zero to
allow use of the environment variable MP_THREAD_COUNT or
maximum number of processors).

• A pointer to a pthreads attribute block, which can be used to
control the attributes of the slave threads.

_OtsInParallel
mpc_in_parallel_region

Return 1 if you are currently within a parallel region, or 0 if not.
Invoke as an integer function. See Section D.2.5.

_OtsSetNumThreads Sets the number of threads to use for the next parallel region.

_OtsStopWorkers
mpc_destroy

Stop any slave threads created by parallel library support.
This routine cannot be called from within a parallel region.
After this call, new slave threads will be implicitly created the
next time a parallel region is encountered, or can be created
explicitly by calling _OtsInitParallel. Call as a subroutine.
See Section D.2.7.

To call the _Otsxxx or mpc_xxx routines, use the cDEC$ ALIAS directive
(described in the Compaq Fortran Language Reference Manual) to handle the
mixed-case naming convention and missing trailing underscore.

Parallel Library Routines D–13

For example, to call the _OtsGetThreadNum routine with an alias of
OtsGetThreadNum, use the following code:

integer a(10)
INTERFACE

INTEGER FUNCTION OtsGetThreadNum ()
!DEC$ ALIAS OtsGetThreadNum, ’_OtsGetThreadNum’

END FUNCTION OtsGetThreadNum
END INTERFACE

!$par parallel do
do i = 1,10
print *, "i=",i, " thread=", OtsGetThreadNum ()
enddo

end

Fortran INTERFACE blocks for all of the _Otsxxx routines are in a file named
forompdef.f in /usr/include. Add the following line to your program and you
can use the Fortran name otsxxx to call any of the _Otsxxx routines:

USE ’forompdef.f’

Alternatively, to use the compatibility naming convention of mpc_my_threadnum:

integer a(10)
INTERFACE

INTEGER FUNCTION mpc_my_threadnum ()
!DEC$ ALIAS mpc_my_threadnum, ’mpc_my_threadnum’

END FUNCTION mpc_my_threadnum
END INTERFACE

!$par parallel do
do i = 1,10

print *, "i=",i, " thread=", mpc_my_threadnum ()
enddo

end

These parallel threads are described in detail in the following sections.

See Also:

Section 6.1.3, Parallel Processing Thread Model

D.2.1 _OtsGetMaxThreads or mpc_maxnumthreads
Returns the maximum number of threads for the current environment.

D–14 Parallel Library Routines

Syntax:
INTERFACE

INTEGER FUNCTION otsgetmaxthreads ()
!DEC$ ALIAS otsgetmaxthreads, ’_OtsGetMaxThreads’

END FUNCTION otsgetmaxthreads
END INTERFACE
INTEGER result
result = otsgetmaxthreads ()

Description:
Returns the number of threads that would normally be used for parallel
processing in the current environment. This is affected by the environment
variable MP_THREAD_COUNT, by the number of processes in the current process’s
processor set, and by any call to _OtsInitParallel.

D.2.2 _OtsGetNumThreads or mpc_numthreads
Returns the number of threads being used (in a parallel region) or created so
far (if not in a parallel region).

Syntax:
INTERFACE

INTEGER FUNCTION otsgetnumthreads ()
!DEC$ ALIAS otsgetnumthreads, ’_OtsGetNumThreads’

END FUNCTION otsgetnumthreads
END INTERFACE
INTEGER result
result = otsgetnumthreads ()

Description:
Returns the number of threads that are being used in the current parallel
region (if running within one), or the number of threads that have been created
so far (if not currently within a parallel region). You can use this call to decide
how to partition a parallel loop. For example:

nt = otsgetnumthreads ()
c$par parallel do

do i = a,nt-1
work(i) = 0
k0 = 1+(i*n)/nt
k1 = ((i+1)+n)/nt
do j = 1,m

do k = k0,k1
! use work(i)

enddo
enddo

enddo

Parallel Library Routines D–15

D.2.3 _OtsGetThreadNum or mpc_my_threadnum
Returns the number of the current thread.

Syntax:
INTERFACE

INTEGER FUNCTION otsgetthreadnum ()
!DEC$ ALIAS otsgetthreadnum, ’_OtsGetThreadNum’

END FUNCTION otsgetthreadnum
END INTERFACE
INTEGER result
result = otsgetthreadnum ()

Description:
Returns a number that identifies the current thread. The main thread is 0,
and slave threads are numbered densely from 1.

D.2.4 _OtsInitParallel
Starts slave threads.

Syntax:
INTERFACE

SUBROUTINE otsinitparallel (nthreads, attr)
!DEC$ ALIAS otsinitparallel, ’_OtsInitParallel’

INTEGER nthreads
INTEGER (KIND=8) attr

!DEC$ ATRRIBUTES, VALUE :: nthreads, attr
END SUBROUTINE otsinitparallel

END INTERFACE

Description:
Starts slave threads for parallel processing if they have not yet been started
implicitly. Use this routine if you want to:

• Override number of threads

• Override the thread attributes

• Control when thread creation occurs (by default, at the first parallel region)

The arguments are:

• nthreads is the total number of threads desired, including the master. If
nthreads is zero, the number of threads is controlled by the environment
variable MP_THREAD_COUNT, if it is defined as a nonzero number, or by
the number of processors in the current process’s processor set. (See the
processor_sets(3) reference page.)

D–16 Parallel Library Routines

• attr is a pointer to a pthreads attribute block, which can be used to control
the attributes of the slave threads. If it is zero, all defaults are used except
that the slaves’ stack size in bytes can be set by the environment variable
MP_STACK_SIZE.

D.2.5 _OtsInParallel or mpc_in_parallel_region
Returns the current status of processing activity in a parallel region.

Syntax:
INTERFACE

INTEGER FUNCTION otsinparallel ()
!DEC$ ALIAS otsinparallel, ’_OtsInParallel’

END FUNCTION OtsInParallel
END INTERFACE
INTEGER result
result = otsinparallel ()

Description:
The routine returns 1 if the program is currently running within a parallel
region; otherwise it returns 0.

D.2.6 _OtsSetNumThreads
Sets the number of threads to use for the next parallel region.

D.2.7 _OtsStopWorkers or mpc_destroy
Stops slave threads.

Syntax:
INTERFACE

SUBROUTINE otsstopworkers ()
!DEC$ ALIAS otsstopworkers, ’_OtsStopWorkers’

END SUBROUTINE otsstopworkers
END INTERFACE
CALL otsstopworkers ()

Description:
Stop any slave threads created by parallel library support. Use this routine
if you need to perform some operation, such as a call to fork(), that cannot
tolerate extra threads running in the process. This routine cannot be called
from within a parallel region. After this call, new slave threads will be
implicitly created the next time a parallel region is encountered, or can be
created explicitly by calling _OtsInitParallel.

Parallel Library Routines D–17

Index

A
a.out file, 1–12, 3–56

specifying different name for, 2–8
abort library routine, 12–5
Absolute pathname, 7–19
abstract_to_physical library routine,

12–16
ACCEPT statement, 7–3

See also Language Reference Manual
access library routine, 12–5
Access mode, 7–30
Access modes

direct, 7–30
limitations by file organization and record

type, 7–31
OPEN statement specifiers, 7–30
requirement for direct access to sequential

files, 7–42
sequential, 7–30

ACCESS specifier, 7–16, 7–30
See also Language Reference Manual

Accuracy
and dummy aliases, 5–65
and numerical data I/O, 5–37
-assume noaccuracy_sensitive

option, 3–14
floating-point constants, 3–32
-fpconstant option, 3–32
-fprm keyword options, 3–38
-fp_reorder option, 3–14
hoisting divide operations, 5–64
-intconstant option, 3–49
integer constants, 3–49

Accuracy (cont’d)
-math_library fast option, 3–52
rounding during calculations, 3–38
when converting OpenVMS Fortran

unformatted data, A–26
ACTION specifier, 7–16

See also Language Reference Manual
Actual arguments, 11–1
Adjusting the run-time parallel environment,

6–56
ADVANCE specifier, 7–11, 7–33

See also Language Reference Manual
Advancing I/O, 7–33
Affine subscripts, 5–55
AIMAG intrinsic function

See also Language Reference Manual
options controlling size returned, 3–62

alarm library routine, 12–5
ALIAS directive

See cDEC$ ALIAS directive
-align all option, 3–7
-align commons option, 3–7, 5–29
-align dcommons option, 3–8, 5–29

effect of -fast option, 3–29
Alignment, 5–21 to 5–30

argument passing, 5–23
Compaq Fortran and C structures,

11–38
array elements, 5–23
cDEC$ directives and -align options,

2–20
checking for unaligned data, 3–77, 5–24
common block data, 5–25
derived-type data, 5–27

Index–1

Alignment (cont’d)
effect of declaration statements, 5–21 to

5–29
effect of -vms option, 3–74
locating unaligned data (debugger), 4–26
loop, 6–48
of data types, 5–21 to 5–30
options controlling, 5–29

common block data, 3–7, 3–8, 5–29
derived-type data, 3–8, 5–30
record structures, 3–8, 5–30
warnings for unaligned data, 3–77

record structures, 5–29
SEQUENCE statement

effect on derived-type data, 5–30
unaligned data, 5–21

causes, 5–21
checking for, 5–24
effect on performance, 3–6, 5–21
locating in debugger, 4–26
options, 3–6, 5–29
ordering data declarations, 5–25
warning messages for, 3–77, 5–24

-align nocommons option, 5–29
-align none option, 3–8
-align norecords option, 3–8, 5–29
-align recNbyte option, 3–8
-align records option, 5–29

effect of -vms option, 5–29
-align sequence option, 3–8, 5–29
Allocating and freeing virtual memory

(library routine), 12–7 to 12–11
Alpha processor generation

specifying to compiler, 3–10, 3–70, 5–62
Alternate entry points, 4–28
-altparam option, 3–55
and function, 12–5
-annotations all option, 3–9
-annotations code option, 3–9
-annotations detail option, 3–9
-annotations feedback option, 3–9
-annotations inlining option, 3–10
-annotations keyword option, 3–9

-annotations loop_transforms option,
3–10

-annotations loop_unrolling option,
3–10

-annotations none option, 3–9
-annotations prefetching option, 3–10
-annotations shrinkwrapping option,

3–10
-annotations software_pipelining

option, 3–10
-annotations tail_calls option, 3–10
-annotations tail_recursion option,

3–10
APPEND specifier, 7–30

See also Language Reference Manual
-arch host option

effect of -fast option, 3–29
Archive library, 2–24

creating and maintaining, 1–14
linker searching options, 3–50 to 3–51
list searched by f90 command, 2–21
nonshared optimizations, 3–58
obtaining information about, 1–13
recognized file name suffix, 2–3
specifying with f90, 2–21 to 2–24

-arch option, 3–10, 5–62
ar command, 1–14
Argument passing

alignment of data passed, 5–23
C and Compaq Fortran, 11–10 to 11–22,

11–23 to 11–44
alignment of structures, 11–38
arrays, 11–41
cDEC$ ATTRIBUTES C directive,

11–14
changing default mechanisms, 11–14,

11–16, 11–32
character data, 11–33
character data example, 11–33
character null terminator, 11–35
common block values, 11–43
complex data example, 11–36
data types, 11–27 to 11–31
examples, 11–32, 11–33, 11–39,

11–42

Index–2

Argument passing
C and Compaq Fortran (cont’d)

integer data example, 11–31
passing arrays, 11–42
pointer data, 11–39 to 11–40
structures, 11–38
using C conventions, 11–20

checking for mismatches at compile-time,
3–77

checking for temporary arguments at
run-time, 3–19

Compaq Fortran, 11–1 to 11–9
arrays, 11–8
array temporary creation, 5–35
by address (%LOC), 11–13
by reference (%REF), 11–14
by value (%VAL), 11–13
changing default mechanisms, 11–12,

11–14
characters, 11–6
default passing mechanism, 11–5
descriptor format, 11–10
explicit interface, 11–3 to 11–5
hidden length, 11–6, 11–31, 11–33,

11–35
implicit interface, 11–3
omitted arguments (extra comma),

11–6
pointers, 11–9
rules, 11–5, 11–6

Compaq Fortran 77 and Compaq Fortran,
A–33 to A–38
alignment options, A–38
common block values, A–37
data type sizes, A–35
data types to avoid, A–34
differences, A–13
example, A–35
function values, A–34, A–35
I/O compatibility, A–38
mechanisms, A–35
passing target or pointer data, A–37
pointer data, A–34
similarities, 11–5
using Compaq Fortran 77 features,

A–34

Argument passing (cont’d)
efficient array use, 5–31
from USEROPEN function and Compaq

Fortran RTL, 7–36
when temporary array copy is created,

5–31
Arguments, 11–1

See also Argument passing; Language
Reference Manual

actual
differences between Compaq Fortran

77 and Compaq Fortran, A–13
dummy

aliasing and accuracy, 5–65
and implied-DO loop collapsing, 5–38
option for aliasing, 5–65

maximum allowed in CALL statement,
2–17

maximum allowed in function reference,
2–17

Arithmetic exception handling
See also Data types; Ranges
controlling floating-point exceptions, 14–1

to 14–10
controlling reporting

-check nopower option, 3–20
-check underflow option, 3–22
-fpe options, 3–33
-speculate option, 3–65
-synchronous_exceptions option,

3–69
debugger handling, 4–25
defaults and applicable options, 3–33 to

3–37
effect of speculative execution

optimization, 3–65
effect of using fast math library routines,

3–52
example program, 9–17
exceptional events, 14–1
exceptional values, 9–14 to 9–18
floating-point data, 12–8

-check nopower option, 3–20
-check underflow option, 3–22
-fpe options, 3–33

Index–3

Arithmetic exception handling
floating-point data (cont’d)

-synchronous_exceptions option,
3–69

floating-point exceptional values, 3–33
floating-point exceptions, 14–1 to 14–10
floating-point underflow, 3–22, 3–33,

3–36, 9–15
forcing core dump at run time, 8–6
FP_CLASS intrinsic, 9–18, 14–8, 14–9
IEEE NaN values (quiet and signaling),

9–14
infinity values, 9–14
integer overflow, 3–21
ISNAN intrinsic, 9–17, 14–10
options for, 3–19
signals

caught by Compaq Fortran RTL,
8–11

definition, 8–11
handling in debugger, 4–12, 4–13,

4–25
Arithmetic operators

for efficient run-time performance, 5–44
Array dimension, 5–34
Arrays, 5–31 to 5–36

See also Argument passing; Language
Reference Manual

alignment, 5–23
allocatable, 11–10
arguments, 11–7, 11–8, 11–10

See also Language Reference Manual
Compaq Fortran and Compaq Fortran

77 similarities, 11–5
example, 1–6, 11–42, A–36

array sections
viewing in debugger, 4–21

assumed-shape, 11–10, A–35
assumed-size, 11–10
bounds checking, 3–19
character

arguments passed with hidden length,
11–6

column-major order, 5–31
conformable, 11–8

Arrays (cont’d)
declaring

See Language Reference Manual
differences between Compaq Fortran and

C, 11–41
dimension limits, 2–17
efficient array syntax in I/O list, 5–31,

5–37
efficient combinations of input and output

arguments, 5–31
element sequence association, 11–9
explicit-shape, 11–10
explicit-shape arguments

example (C and Compaq Fortran),
11–42

example (Compaq Fortran 77 and
Compaq Fortran), A–35

expression syntax for debugger, 4–20
HPF_LOCAL_LIBRARY routines, 12–16
natural storage order, 5–31
nesting limits, 2–17
optimizations, 5–48, 5–56
passed by descriptor, 11–10
passing as arguments

example, 1–6
pointers to, 11–10
row-major order, 5–31
sorting

library routines for, 12–14
syntax for run-time efficiency, 5–31
temporary creation of, 5–35
using efficiently, 5–31
when temporary copy is created for

argument passing, 5–31, 5–35
writing for efficiency, 5–38
zero-sized, 3–44

Assembler file
creating, 3–64
passed to cc or ccc, 2–3

ASSOCIATEVARIABLE specifier, 7–16,
A–13

See also Language Reference Manual
Association

host, 11–3
procedure interface, 11–4

Index–4

Association (cont’d)
use, 11–2

procedure interface block, 1–6 to 1–7,
11–4

-assume accuracy_sensitive option,
5–64

-assume bigarrays option, 3–43
effect of -fast option, 3–29

-assume buffered_io option, 3–12
-assume byterecl option, 3–12
-assume cc_omp option, 3–13
-assume dummy_aliases option, 3–13,

5–65 to 5–66
-assume gfullpath option, 3–14
-assume minus0 option, 3–14
-assume no2underscores option, 3–16
-assume noaccuracy_sensitive option,

3–14
effect of -fast option, 3–29

-assume nogfullpath option, 3–14
-assume nominus0 option, 3–14
-assume noprotect_constants option,

3–15
-assume nopthreads_lock option, 3–16
-assume nosource_include option, 3–15
-assume nounderscore option, 3–15
-assume nozsize option, 3–44

effect of -fast option, 3–29
-assume protect_constants option, 3–15
-assume pthreads_lock option, 3–16
-assume source_include option, 3–15
ATOMIC directive, 6–5, 6–23
Atom toolkit, 5–20
ATTRIBUTES directives

See cDEC$ ATTRIBUTES directives
Automatic inlining, 5–47
-automatic option, 3–17, 3–62

effect on -recursive, 3–62

B
BACKSPACE statement, 7–3, 7–32
Balancing the workload

manual optimization, 6–55
SCHEDULE clause, 6–55

BARRIER directive, 6–5, 6–24, 6–31, 6–42
bash shell

FORTn environment variables, 7–23
process limits, 1–2
setting and unsetting environment

variables, B–1
Basic block, 5–14
Basic block counting, 5–14
Basic linear algebra routines (Compaq

Extended Math Library), 13–2
besj0 function, 12–5
besj1 function, 12–5
besjn function, 12–5
bessel function, 12–5
Bessel functions, 12–5 to 12–6

library routines (3f), 12–2
besy0 function, 12–5
besy1 function, 12–5
besyn function, 12–5
Big endian storage, 10–1
Binding of parallel compiler directives

rules checking, 3–20
bit function, 12–5
Bit manipulation procedures

See also Language Reference Manual
intrinsic functions and 3f routines, 12–2

BLANK specifier, 7–16
See also Language Reference Manual
effect of -vms option, 3–75

BLAS routines (Compaq Extended Math
Library), 13–2

BLOCKED option
for PDO directive, 6–42

Block IF statement
nesting limit, 2–17

BLOCKSIZE specifier, 5–39, 7–17
See also Language Reference Manual

Bottleneck, 5–36
reduction of I/O, 5–36

Bourne Again shell
See bash shell

Bourne shell (sh)
process limits, 1–2

Index–5

Bourne shell (sh)
FORTn environment variables, 7–23
setting and unsetting environment

variables, B–1
Breakpoint, 4–5
BUFFERCOUNT specifier, 5–39, 7–17

See also Language Reference Manual
Buffered output, 3–12
Buffers

for record I/O, 5–39
Built-in functions (%LOC, %REF, %VAL),

11–13 to 11–14
See also Language Reference Manual;

cDEC$ ATTRIBUTES
BWX extension, 3–10
Byte/Word manipulation instruction

extension, 3–10

C
c$CHUNK directive, 6–30
c$COPYIN directive, 6–30
c$DOACROSS directive, 6–30
c$MPSCHEDULE directive, 6–30
c$ prefix, 6–30
Cache size, 5–34
Call graph, 5–14
Calling interface

See Argument passing; Language interface
Calling other language programs, 6–58
CALL statement, 11–2

See also Language Reference Manual
maximum arguments allowed, 2–17

-call_shared option, 2–24, 3–17
Carriage control

effect of -vms option, 3–74
CARRIAGECONTROL specifier, 3–18, 7–13,

7–16
See also Language Reference Manual
effect of -ccdefault option, 3–18
effect of -vms option, 3–76

Case sensitive
external names in C, 11–25

controlling with cDEC$ directives,
11–15, 11–16

Case sensitive (cont’d)
file name differences with OpenVMS

Fortran, A–22
file names (OPEN statement), 7–19
names

in the debugger, 4–16
options controlling, 3–54

Case sensitivity, 3–54, 3–72
ccc command, 1–9

options available from f90 command,
2–16

using fort command with, 11–23
cc command, 1–9

options and files passed by f90, 2–15
options available from f90 command,

2–16
using f90 command with, 11–23

-ccdefault option, 3–18
C compiler, 1–10
cDEC$ ALIAS directive, 11–14
cDEC$ ATTRIBUTES

ALIAS directive, 11–21
C directive, 11–18

example, 11–20
EXTERN directive, 11–22
REFERENCE directive, 11–21
STDCALL directive, 11–16
VALUE directive, 11–21
VARYING directive, 11–22

cDEC$ directives, 2–20, 11–14, 11–16
Cell

in relative organization files, 7–7
CHARACTER

data type
representation, 9–18

declaration
See Language Reference Manual

Character arguments
passing between Compaq Fortran and C,

11–27 to 11–36
example, 11–33
null terminator, 11–35

passing from USEROPEN function and
Compaq Fortran RTL, 7–36

Index–6

Character bounds checking, 3–19
Character data

using whole character string operations
for run-time efficiency, 5–37

Character I/O
library routines, 12–7 to 12–14

Character set
See Language Reference Manual

CHAR intrinsic procedure
using to null-terminate a C string, 11–6

chdir library routine, 12–5
-check arg_temp_created option, 3–19
-check bounds option, 3–19
-check noformat option, 3–19

effect of -vms option, 3–74
-check nooutput_conversion option,

3–21
effect of -vms option, 3–74

-check nopower option, 3–20
-check omp_bindings option, 3–20
-check overflow option, 3–21
-check underflow option, 3–22
chmod library routine, 12–5
Chunk, 6–27
CHUNK directive, 6–31, 6–43
CHUNK option

for PDO directive, 6–42
Chunk size, 6–27

specifying a default, 6–43
CIX extension, 3–11
C language

See also cc command; cpp preprocessor;
Language interfaces

appending underscore for external names,
11–25

calling between Compaq Fortran and C,
11–10 to 11–22, 11–23 to 11–44

C main program
-nofor_main option, 3–55

example function called by Compaq
Fortran, 11–31, 11–33

function to open file (USEROPEN), 7–36
CLOSE statement, 7–3, 7–27 to 7–28

See also Language Reference Manual

CMPLX intrinsic function
See also Language Reference Manual
options controlling size returned, 3–62

Code hoisting, 5–53
in divide operations, 5–64
in optimization, 5–53

Code instruction generation, for specific
Alpha processors, 3–10

Code motion, 5–53
Code replication, 6–49
Coding restrictions, 6–53
-col72 option, 3–28
Column-major order, 5–32
Combined parallel/worksharing constructs

Compaq Fortran parallel, 6–40 to 6–41
defined, 6–10
OpenMP, 6–22 to 6–23

Command line arguments
returning (library routine), 12–9, 12–10

Comment lines
See also Language Reference Manual
-d_lines option, 3–27

Common blocks
See also Language Reference Manual
accessing variables in the debugger, 4–16
alignment of data in, 5–25
causes of unalignment, 5–21
named

maximum allowed, 2–18
options controlling alignment, 3–7, 3–8,

5–29
order of data in, 5–25
sharing across processes, 12–14

COMMON statement
See also Language Reference Manual
and data flow and split lifetime analysis,

5–54
causes of unalignment, 5–21
data alignment, 3–7, 5–29
options controlling alignment, 3–8

Common subexpression elimination, 5–49
Compaq Extended Math Library (CXML),

13–1 to 13–3
example program, 13–3
groups of routines, 13–2

Index–7

Compaq Extended Math Library (CXML)
(cont’d)

INCLUDE statement, 13–3
linking, 13–3
types of libraries provided, 13–3

Compaq Fortran
array temporary creation, 5–35
for OpenVMS systems

comparison of floating-point data
types, A–27

compatibility, A–1, A–20 to A–28
data porting, A–24
equivalent record types, A–25
extensions not supported, A–1, A–20

to A–28
options for VAX compatibility (f90),

3–74
record type compatibility, A–22
VAX floating-point data types, A–28

online release notes
contents of, xxvii
displaying, xxvii

other platforms
language compatibility (summary),

A–1
record type portability, 7–11
version number

displaying, 3–74
obtaining from listing, C–2
obtaining from object file, 1–13

Compaq Fortran 77
for Compaq Tru64 UNIX systems

argument passing, A–34
calling between Compaq Fortran,

A–33 to A–38
compatibility, A–5 to A–16
compiler diagnostic detection

differences, A–11
I/O to same unit number, A–38
language features not supported, A–7
mixed language example, A–35
passing aligned data, A–38
passing common block values, A–37
passing pointers, A–34
passing same size data, A–38

Compaq Fortran directives, 6–1
Compaq Fortran parallel directives, 6–29 to

6–44
See also OpenMP parallel directives
BARRIER, 6–31, 6–42
CHUNK, 6–31, 6–43
COPYIN, 6–31
CRITICAL SECTION, 6–31, 6–42
DOACROSS, 6–32, 6–41
END CRITICAL SECTION, 6–31, 6–42
END PARALLEL, 6–32
END PARALLEL DO, 6–41
END PARALLEL SECTIONS, 6–33, 6–41
END PDO, 6–33, 6–39
END PSECTIONS, 6–34, 6–40
END SINGLE PROCESS, 6–34, 6–40
format, 6–29
INSTANCE, 6–32
INSTANCE PARALLEL, 6–32, 6–35,

6–36
INSTANCE SINGLE, 6–32
MP_SCHEDTYPE, 6–32, 6–43
PARALLEL, 6–32
PARALLEL DO, 6–32, 6–41
PARALLEL SECTIONS, 6–33, 6–41
PDO, 6–33, 6–39
PDONE, 6–33, 6–44
prefixes, 6–30

fixed source form, 6–30
free source form, 6–30

PSECTIONS, 6–34, 6–40
SECTION, 6–34, 6–40
SINGLE PROCESS, 6–34, 6–40
summary descriptions, 6–31 to 6–34
TASKCOMMON, 6–34, 6–35, 6–36

Compaq FUSE
-fuse_xref option, 3–39

Compaq Math Libraries Web site, 13–1
Compaq MPI, 3–46, 12–16
Compaq Visual Fortran, language

compatibility with, A–18
Compatibility

with Compaq Fortran 77 for Compaq
Tru64 UNIX systems, A–5 to A–16
language features, A–5

Index–8

Compatibility (cont’d)
with Compaq Fortran for OpenVMS

systems, A–20 to A–28
converting data, 10–3, A–26
porting data, A–24
record types, 7–11

with Compaq Fortran on other platforms,
A–1

with Compaq Visual Fortran, A–18
Compilation control, 2–20
Compiler

See also f90 command
and linker, 1–11 to 1–12, 2–2
coding restrictions summary of, 2–17
data format assumptions, 3–22
default file names, 7–20, 7–24
driver

messages, 2–16
program, 1–10

driver program, 2–13
effect of optimization level on compilation

time, 5–45
effect of optimizations on program size,

5–45
functions, 1–11 to 1–12
limits, 2–17
messages issued by

general description, 2–18
output listing summary section, C–5
passes

options for displaying, 3–74
process file descriptor limit, 1–2
process stack size, 1–2
request threaded run-time execution,

3–63, 3–70
specifying directory for temporary files,

2–9
using latest version for run-time

efficiency, 5–2
Compiler directives

See also Language Reference Manual;
Directives; cDEC$

and OPTIONS statement, 10–12

Compiler options
See f90 command

Compile-time operations, 5–49, 5–50
Compiling, linking, and running parallelized

programs, 6–59
Compiling C language programs, 11–23

examples, 2–11, 11–23
file name suffix, 2–3
use with f90, 11–23
use with fort, 11–23

Complex data types, 9–8, 9–12 to 9–13
See also Language Reference Manual
declarations and options, 3–61, 9–9
native IEEE representation, 9–12 to 9–13
ranges, 9–3
VAX representation, A–30 to A–32

COMPLEX declarations
options to control size of, 3–62

Complex variables
Fortran, 4–21

Conditional compilation
defining preprocessor symbols, 3–26
OpenMP, 6–4
undefining preprocessor symbols, 3–72

Conditional operators
use in debugging, 4–23

Condition symbols, Fortran
summary of, 8–13 to 8–32

Conformable array, 11–8
Connection

to logical I/O units by system default,
7–24

Constant pooling, 5–47
Constants

declaration
See Language Reference Manual

floating-point
double precision, 3–32

integer, 3–49
maximum size, 2–17
ranges, 9–2 to 9–4

Construct
combined parallel/worksharing

Compaq Fortran parallel, 6–40 to
6–41

Index–9

Construct
combined parallel/worksharing (cont’d)

defined, 6–10
OpenMP, 6–22 to 6–23

synchronization
Compaq Fortran parallel, 6–41 to

6–42
OpenMP, 6–23 to 6–27

worksharing, 6–10
Compaq Fortran parallel, 6–38 to

6–40
OpenMP, 6–19 to 6–21

CONTAINS statement, 11–3
See also Language Reference Manual

Continuation lines
column placement

See Language Reference Manual
maximum allowed, 2–17

Controlling data scope attributes, 6–11,
6–36

Controlling the data environment, 6–10,
6–35

-convert big_endian option, 3–22, 10–4,
10–13

-convert cray option, 3–23, 10–4, 10–13
-convert fdx option, 3–23, 10–13
-convert fgx option, 3–23, 10–13
-convert ibm option, 3–23, 10–4, 10–13
-convert little_endian option, 3–23,

10–4, 10–13
-convert native option, 3–23, 10–4,

10–13
CONVERT specifier, 7–17, 10–3

See also Language Reference Manual
-convert vaxd option, 3–24, 10–4, 10–13
-convert vaxg option, 3–24, 10–4, 10–13
-c option, 2–9, 3–17

and creating shared libraries, 2–25
effect of -o option, 2–9
example, 2–10, 2–12

-C option, 3–19
COPYIN clause

for PARALLEL directive, 6–11
for PARALLEL DO directive, 6–11

COPYIN clause (cont’d)
for PARALLEL SECTIONS directive,

6–11
COPYIN directive, 6–31
COPYIN option

for PARALLEL directive, 6–36
for PARALLEL DO directive, 6–36
for PARALLEL SECTIONS directive,

6–36
cord

related commands and f90 options, 5–19
related f90 options, 3–30

-cord option, 3–30, 5–19
with -feedback option, 3–30, 5–19

Core file
for severe errors, 8–6, B–5
signals, 8–11

Counted loop, 5–60
Count extension, 3–11
-cpp option, 3–24

effect of -P option, 3–25
cpp preprocessor, 1–10

compilation process, 2–20
effects of .F and .F90 file name suffixes,

2–2
f90 command, 2–21
macros defined, 3–24
options for, 3–24, 3–25, 3–47
retaining temporary files, 3–50
searching for include files, 3–47
undefining macros, 3–72

create system call
using to open file, 7–37

CRITICAL directive, 6–5, 6–25, 6–47, 6–52
using for locks, 6–52

Critical section, 6–25
CRITICAL SECTION directive, 6–31, 6–42
Cross-reference file

Compaq FUSE, 3–39
C shell (csh)

process limits, 1–2
setting and unsetting environment

variables, B–2

Index–10

ctime library routine, 12–5
CXML

See Compaq Extended Math Library

D
D, in column 1

options for, 3–27
Data

See also Data types; Files; I/O
alignment

checking for unaligned data, 3–77,
5–24

definition, 5–21
effect of f90 command options, 5–29
effect of statements, 5–25
options controlling

common block data, 3–7, 3–8
derived-type structures, 3–8
record structures, 3–8

placing declaration statements to
avoid unaligned data, 5–25

unaligned arguments, 5–25
big endian

definition, 10–1
unformatted file formats, 3–22, 10–3

comparison of formatted and unformatted,
7–5

converting unformatted files, 3–22, 10–1
to 10–13

declaring
See Language Reference Manual

equivalent types for C and Compaq
Fortran, 11–29

formats for unformatted files, 3–22, 10–3
formatted, 7–5
granularity of shared access, 3–41
items in common blocks

options controlling alignment, 3–7,
3–8

items in derived-type data
controlling alignment, 5–25
options controlling alignment, 3–8

items in record structures
options controlling alignment, 3–8

Data (cont’d)
list-directed I/O statements, 7–5
little endian

definition, 10–1
unformatted file formats, 10–3

namelist I/O statements, 7–5
nesting limit, 2–17
nonnative numeric formats, 10–3
porting OpenVMS Fortran data, A–24
shared memory access, 3–41
size and handling

options for, 3–27, 3–47, 3–48, 3–62
storage (automatic or static), 3–17, 3–62
stored by Compaq Fortran, 9–1 to 9–19
translation of formatted, 7–5
unformatted, 7–5
unformatted I/O statements, 7–5
VAX floating-point formats, 10–3
zero-extended and sign-extended values,

11–13
Data environment

controlling, 6–10, 6–35
Data environment directives, 6–10
Data file

advancing and nonadvancing I/O, 7–33
big endian

numeric formats, 10–3 to 10–6
porting notes, 10–13

characteristics, 7–7 to 7–13
CLOSE statement, 7–27
comparison of formatted and unformatted,

7–5
converting unformatted files, 3–22, 10–1

to 10–13
limitations, 10–7

effect of -vms option, 3–74
efficient run-time performance, 5–36
equivalent OpenVMS record types, A–25
handling I/O errors, 8–1 to 8–13
I/O unit, 7–2
INQUIRE statement, 7–25
internal, 7–8
opening with C language function, 7–36
OPEN statement, 7–13 to 7–25
OpenVMS floating-point formats, A–28

Index–11

Data file (cont’d)
organization, 7–7
porting OpenVMS

converting unformatted files, A–26
floating-point data, A–24
record formats, A–24

RECL units for unformatted files, 3–12
record I/O statements, 7–28
record position, 7–32
record transfer, 7–34
record types, 7–9

format, 7–42 to 7–48
portability considerations, 7–11

scratch, 7–8
using preconnected files, 7–13
VAX floating-point formats, 10–3 to 10–6

Data flow analysis, 5–53
Data scope attributes

controlling, 6–11, 6–36
DATA statement

See also Language Reference Manual
and value propagation, 5–50 to 5–51

Data types, 9–1 to 9–19
See also Floating-point data types;

Integer data type; Logical data type;
Language Reference Manual

alignment of, 5–21 to 5–30
big endian

definition, 10–1
unformatted file formats, 3–22, 10–3

to 10–6
character representation, 9–18
common block handling between Compaq

Fortran and C, 11–43
derived-type data alignment, 5–27
differences between Compaq Fortran and

C, 11–30
DOUBLE PRECISION declarations

options controlling size, 3–27
equivalent in C and Compaq Fortran,

11–29
exceptional floating-point numbers, 9–15
floating-point type differences with

OpenVMS Fortran, A–27
for efficient run-time performance, 5–44

Data types (cont’d)
formats for unformatted files, 3–22, 10–3

to 10–6
Hollerith representation, 9–19
IEEE style X_float representation

REAL*16, 9–11
IEEE S_float representation

COMPLEX*8, 9–12
REAL*4, 9–10

IEEE T_float representation
COMPLEX*16, 9–12
REAL*8, 9–10

IEEE X_float representation
COMPLEX*32, 9–13

INTEGER and LOGICAL declarations
options controlling size, 3–47

INTEGER representation, 9–4 to 9–6
in the debugger, 4–22
little endian

definition, 10–1
unformatted file formats, 3–22, 10–3

to 10–6
LOGICAL representation, 9–7
methods of using nonnative formats,

10–8
mixed operations and run-time

performance, 5–43
native data representation, 9–1 to 9–19
native IEEE floating-point representation,

9–8 to 9–13
nonnative

formats for unformatted file
conversion, 10–3 to 10–6

VAX floating-point representation,
A–28 to A–32

obtaining unformatted numeric formats,
10–8

porting OpenVMS Fortran data, A–24
ranges

denormalized native floating-point
data, 9–3

native numeric types, 9–2 to 9–4
VAX floating-point types, A–28 to

A–30
REAL and COMPLEX declarations

Index–12

Data types
REAL and COMPLEX declarations

(cont’d)
options controlling size, 3–61

sizes for efficient run-time performance,
5–43

VAX D_float representation
COMPLEX*16, A–31
REAL*8, A–30

VAX F_float representation
COMPLEX*8, A–30
REAL*4, A–28

VAX G_float representation
COMPLEX*16, A–31
REAL*8, A–29

VAX H_float representation
REAL*16, A–32

Date and time
returning (library routine), 12–5, 12–7,

12–10, 12–11, 12–15
dbesj0 function, 12–5
dbesj1 function, 12–6
dbesjn function, 12–6
dbesy0 function, 12–6
dbesy1 function, 12–6
dbesyn function, 12–6
dbx

See Debugger
dcp command

use in porting OpenVMS Fortran data,
A–26

Dead code elimination, 5–47
Dead store elimination, 5–51
Debugger, 4–1 to 4–28

accessing variables, 4–16
array expression syntax, 4–20
common block, 4–16
derived type, 4–17
in modules, 4–16
pointers, 4–18
record structure, 4–18

breakpoints, 4–5
character-cell interface, 4–3
commands

assign, 4–7

Debugger
commands (cont’d)

attach and detach, 4–15
catch, 4–25
cont, 4–4
delete, 4–4, 4–5
help, 4–5
history, 4–5
ignore, 4–25
listobj, 4–15
print, 4–7
quit, 4–4, 4–5
sh, 4–6
stop, 4–5, 4–7
stopi, 4–25
summary, 4–12
when, 4–7
where, 4–25

command summary, 4–12
data types, 4–22
dbx, 4–4
debugging optimized programs, 4–28
deleting a breakpoint, 4–4
displaying

array sections, 4–20
array variables, 4–20
breakpoints, 4–14
common block variables, 4–16
derived-type variables, 4–17
module variables, 4–16
online help, 4–5
pointer variables, 4–18
previous debugger commands, 4–5
record structure variables, 4–18
registers, 4–13
values, 4–6, 4–16

exception handling, 4–25
executing program, 4–4
executing shell commands, 4–6
exiting, 4–4
f90 options controlling symbol table

contents, 4–2
getting started, 4–1
handling signals, 4–12, 4–13
initial setup commands, 4–3

Index–13

Debugger (cont’d)
$lang environment variable, 4–16, 4–24
mixed-language programs, 4–24
obtaining subprogram name, 4–6
options for, 3–40
parallelized programs, 6–59
parallel regions, 6–60
resume execution, 4–5
running and exiting, 4–3
sample debugging session, 4–6 to 4–12
sample f90 command, 1–9
shared library use, 4–15
symbolic names, 4–16
tracepoint, 4–2
unaligned data (locating), 4–26
using conditional operators, 4–23
using logical operators, 4–23
using procedures, 4–23
using relational operators, 4–23
using shared variables, 6–63
watchpoint, 4–2
windowing interface, 4–3

DECF90 environment variable, B–2
DECF90_CC environment variable, B–2
DECF90_DIR environment variable, B–2
DECF90_FPP environment variable, B–3
DECF90_GMPILIB environment variable,

B–3
DECF90_HPF_TARGET environment variable,

B–3
DECF90_INIT environment variable, B–3
DECF90_LIB_DIR environment variable,

B–3
DECF90_WSF_TARGET environment variable,

B–3
DECFORT environment variable, B–3
DEC Fortran

See Compaq Fortran 77; Compaq Fortran
DEC Fortran 90

See Compaq Fortran
DECFORT_CC environment variable, B–3
DECFORT_DIR environment variable, B–4

decfort_dump_flag environment variable,
8–6, B–5

DECFORT_FPP environment variable, B–4
DECFORT_INIT environment variable, B–4
DECFORT_LIB_DIR environment variable,

B–4
DECladebug

See Debugger
Declarations

See also Language Reference Manual
unalignment and COMMON,

STRUCTURE, TYPE statements,
5–21

DECnet copy
use in porting OpenVMS Fortran data,

A–26
Decomposing loops, 6–45 to 6–58
Decomposition, 6–45

directed, 6–45
loop, 6–45

DECORATE option, 11–16
Default

chunk size, 6–43
file names, 7–20, 7–24
logical I/O unit names, 7–24
schedule type, 6–43

DEFAULT clause
for PARALLEL directive, 6–11, 6–12
for PARALLEL DO directive, 6–11, 6–12
for PARALLEL SECTIONS directive,

6–11, 6–12
DEFAULTFILE specifier, 7–16, 7–18, 7–19,

7–22
See also Language Reference Manual

DEFAULT option
for PARALLEL directive, 6–37

DEFINE FILE statement, 7–4
See also Language Reference Manual

Deleted records in relative files
effect of -vms option, 3–75, 7–7

DELETE statement, 7–4
See also Language Reference Manual
effect of -vms option, 3–75

Index–14

DELIM specifier, 7–17
See also Language Reference Manual

Denormalized numbers (IEEE), 9–15
-check underflow option, 3–22
double-precision range, 9–3
exponent value of, 9–9
-fpen options, 3–33
single-precision range, 9–3
S_float range, 9–3
T_float range, 9–3
X_float range, 9–11

Dependences requiring locks, 6–52
derfc library routine, 12–6
derf library routine, 12–6
Derived-type data

See also Language Reference Manual
accessing variables in Ladebug, 4–17
alignment of, 5–27
and data alignment, 5–29
causes of unaligned data, 5–21
controlling alignment of multiple data

items, 5–25
options controlling alignment, 3–8, 5–22,

5–29
order of members, 5–22, 5–23, 5–27
SEQUENCE statement, 5–22, 11–38

Descriptor
Compaq Fortran format, 11–10

Device I/O
library routines for, 12–9

Device information
library routines for, 12–11

dffrac library routine, 12–6
dflmax library routine, 12–6
dflmin library routine, 12–6
Direct access file

RECL values, 5–41
Direct access mode, 7–30

See also Relative file
requirements for, 7–30, 7–31

Directed decomposition, 6–45
See also Parallel execution

Directives
See also Language Reference Manual;

OPTIONS statement
cDEC$ ALIAS, 11–14
cDEC$ ATTRIBUTES, 11–14, 11–16

ALIAS, 11–16
C, 11–16
REFERENCE, 11–16
STDCALL, 11–16
VALUE, 11–16

Compaq Fortran parallel, 6–29 to 6–44
c$MP_SCHEDTYPE, 6–43
c$PAR BARRIER, 6–31, 6–42
c$PAR CHUNK, 6–31, 6–43
c$PAR COPYIN, 6–31
c$PAR CRITICAL SECTION, 6–31,

6–42
c$PAR DOACROSS, 6–32, 6–41
c$PAR END CRITICAL SECTION,

6–31, 6–42
c$PAR END PARALLEL, 6–32
c$PAR END PARALLEL DO, 6–41
c$PAR END PARALLEL SECTIONS,

6–33, 6–41
c$PAR END PDO, 6–33, 6–39
c$PAR END PSECTIONS, 6–34,

6–40
c$PAR END SINGLE PROCESS,

6–34, 6–40
c$PAR INSTANCE, 6–32
c$PAR INSTANCE PARALLEL,

6–32, 6–35, 6–36
c$PAR INSTANCE SINGLE, 6–32
c$PAR MP_SCHEDTYPE, 6–32
c$PAR PARALLEL, 6–32
c$PAR PARALLEL DO, 6–32, 6–41
c$PAR PARALLEL SECTIONS,

6–33, 6–41
c$PAR PDO, 6–33, 6–39
c$PAR PDONE, 6–33, 6–44
c$PAR PSECTIONS, 6–34, 6–40
c$PAR SECTION, 6–34, 6–40
c$PAR SINGLE PROCESS, 6–34,

6–40

Index–15

Directives
Compaq Fortran parallel (cont’d)

c$PAR TASKCOMMON, 6–34, 6–35,
6–36

cpp, 2–20
data environment, 6–10
general Compaq Fortran, 2–20
OpenMP parallel, 6–2 to 6–28

c$OMP ATOMIC, 6–5, 6–23
c$OMP BARRIER, 6–5, 6–24
c$OMP CRITICAL, 6–5, 6–25, 6–47,

6–52
c$OMP DO, 6–6, 6–19, 6–46
c$OMP END CRITICAL, 6–5, 6–25
c$OMP END DO, 6–6, 6–19
c$OMP END MASTER, 6–6, 6–26
c$OMP END ORDERED, 6–6, 6–27
c$OMP END PARALLEL, 6–7, 6–9,

6–17
c$OMP END PARALLEL DO, 6–7,

6–22
c$OMP END PARALLEL SECTIONS,

6–7, 6–22
c$OMP END SECTIONS, 6–8, 6–20
c$OMP END SINGLE, 6–8
c$OMP FLUSH, 6–6, 6–26
c$OMP MASTER, 6–6, 6–26
c$OMP ORDERED, 6–6, 6–27
c$OMP PARALLEL, 6–7, 6–9, 6–17,

6–46
c$OMP PARALLEL DO, 6–7, 6–22
c$OMP PARALLEL SECTIONS, 6–7,

6–22
c$OMP SECTION, 6–8, 6–20
c$OMP SECTIONS, 6–8, 6–20
c$OMP SINGLE, 6–8, 6–21
c$OMP THREADPRIVATE, 6–8,

6–10, 6–11, 6–12
orphaned, 6–9
summary descriptions, 6–31 to 6–34

Directory
See also Pathname
application of defaults, 7–19 to 7–23
changing (library routine), 12–5
default for OPEN statement, 7–19

Directory (cont’d)
effect of DEFAULTFILE specifier, 7–19
environment variable, 7–19 to 7–21
I/O statements default use, 7–14 to 7–24
in I/O statements, 7–18 to 7–23
link (library routine), 12–11, 12–15
OPEN statement specifiers, 7–15, 7–19
searched for module and include files,

2–6, 2–7
setting environment variables for, 7–23
symbolic link (library routine), 12–15
tilde character (~), 7–19

DISPOSE specifier, 7–16, 7–17
See also Language Reference Manual

Distribution
loop, 6–50

Division by zero, 14–1
dlgamma library routine, 12–6
-Dname option, 3–26
DOACROSS directive, 6–32, 6–41
Documentation

sending comments to Compaq, xxix
DO directive, 6–6, 6–19, 6–46

FIRSTPRIVATE clause, 6–11, 6–13
LASTPRIVATE clause, 6–11, 6–13
ORDERED clause, 6–27
PRIVATE clause, 6–11, 6–12
REDUCTION clause, 6–11, 6–14 to 6–16
SCHEDULE clause, 6–27

DO loops
See also Language Reference Manual
blocking optimization, 3–57, 3–70
distribution optimization, 3–57, 3–70
execution

options affecting, 3–28
fusion optimization, 3–57, 3–70
interchange optimization, 3–57, 3–70
limiting loop unrolling, 3–72, 5–55
outer loop unrolling optimization, 3–57,

3–70
scalar replacement optimization, 3–57,

3–70
software pipelining optimization, 3–57,

3–60, 5–58

Index–16

DO loops (cont’d)
transformation optimizations, 3–57, 3–70,

5–60
-unroll num option, 3–72
unroll optimization, 3–57
use for efficient run-time performance,

5–45
DO statement

See also Language Reference Manual
nesting limit, 2–17

Dot product operation
and -fp_reorder option, 5–64

DOUBLE PRECISION declarations
options to control size of, 3–27

-double_size option, 3–27
drand library routine, 12–6
drandm library routine, 12–6
Driver program

and ld, 2–22
definition of, 1–10
relationship to software components,

1–10
relationship with cc and ld, 2–13 to

2–16
dtime library routine, 12–6
Dummy aliases

option for aliasing, 3–13
Dummy arguments, 11–1

See also Language Reference Manual
and accuracy, 5–65
and implied-DO loop collapsing, 5–38
option for aliasing, 3–13, 5–65

DXML
See Compaq Extended Math Library

Dynamic extent, 6–9
DYNAMIC schedule type, 6–28, 6–43, 6–44
-d_lines option, 3–27

E
Edit descriptors

See Language Reference Manual
END CRITICAL directive, 6–5, 6–25

END CRITICAL SECTION directive, 6–31,
6–42

END DO directive, 6–6, 6–19
NOWAIT clause, 6–20

ENDFILE records
effect of -vms option, 3–75

ENDFILE statement, 7–3, 7–32
See also Language Reference Manual

Endian
big and little types, 10–1

END MASTER directive, 6–6, 6–26
END ORDERED directive, 6–6, 6–27
END PARALLEL directive, 6–7, 6–9, 6–17,

6–32
END PARALLEL DO directive, 6–7, 6–22,

6–41
END PARALLEL SECTIONS directive, 6–7,

6–22, 6–33, 6–41
END PDO directive, 6–33, 6–39

NOWAIT option, 6–39, 6–40
END PSECTIONS directive, 6–34, 6–40
END SECTIONS directive, 6–8, 6–20

NOWAIT clause, 6–20
END SINGLE directive, 6–8

NOWAIT clause, 6–21
END SINGLE PROCESS directive, 6–34,

6–40
END specifier, 7–29, 7–33, 8–7

See also Language Reference Manual
Entry point

main, 2–19
ENTRY statement

See Language Reference Manual
Environment variables, B–1 to B–7

adjusting the run-time parallel
environment, 6–56

associating with files, 7–23
effect of -vms option, 3–75, 7–24

commands for setting and unsetting (sh,
ksh, csh), B–1 to B–2

Compaq Fortran parallel
MP_CHUNK_SIZE, 6–58
MP_SPIN_COUNT, 6–58
MP_STACK_SIZE, 6–58
MP_THREAD_COUNT, 6–58

Index–17

Environment variables
Compaq Fortran parallel (cont’d)

MP_YIELD_COUNT, 6–58
compiler

specifying directory for temporary
files, 2–9

converting nonnative numeric data, 10–9,
10–10

decfort_dump_flag, 8–6, B–5
displaying values of, B–1
forcing core dump at run time, 8–6
FORTn, 7–14, 7–23, B–6
FORT_BUFFERED, B–6
FORT_CONVERT.ext, 10–10, B–6
FORT_CONVERTn, 10–9, B–6
FOR_ACCEPT, 7–24, B–5
FOR_DISABLE_STACK_TRACE, 8–3, B–5
FOR_PRINT, 7–24, B–5
FOR_READ, 7–24, B–5
FOR_TYPE, 7–24, B–5
message catalog location, 8–5
NLSPATH, 8–5
NLSPATH, B–6
OpenMP parallel

OMP_DYNAMIC, 6–57
OMP_NESTED, 6–57
OMP_NUM_THREADS, 6–17, 6–57
OMP_SCHEDULE, 6–57

PROFDIR, 5–15
recognized at compile time, B–2
recognized at run time, B–5
setting in .login or shell files, 1–3
TMPDIR, 2–9, 3–50, B–4, B–7
used by OPEN statement, 7–20, 7–23

EOR specifier, 7–33, 8–7
See also Language Reference Manual

.EQ. operator
See Language Reference Manual

Equivalenced structures
in data flow and split lifetime analysis,

5–55
Equivalence group, 5–55
EQUIVALENCE statement

See also Language Reference Manual
and data alignment, 5–21, 5–29

EQUIVALENCE statement (cont’d)
and implied-DO loop collapsing, 5–38

erfc library routine, 12–7
erf library routine, 12–7
Error function

returning (library routines), 12–6, 12–7
Error handling

See also EOR, ERR, IOSTAT
arithmetic exception handling, 3–20,

3–33
forcing core dump at run time, 8–6
library routines for, 8–10, 12–9, 12–10,

12–14
operating system, 8–10
overview, 8–1
processing performed by Compaq Fortran

RTL, 8–1 to 8–32
run-time errors summary, 8–13 to 8–32
signals, 8–11
system errors (errno), 8–10
user controls in I/O statements, 7–15,

7–29, 8–7, 8–9
See also Language Reference Manual

Errors
See also Error handling; Messages;

Signals
and signals, 8–11
compiler

effect on linker, 2–19
-error_limit nn option, 3–27

driver messages, 2–16
forcing core dump at run time, 8–6
linker messages, 2–19
operating system, 8–10
run-time errors summary, 8–13 to 8–32
Run-Time Library, 8–1 to 8–32
run-time messages

list, numeric order, 8–13 to 8–32
transporting message file, 8–5

-error_limit nn option, 3–27
ERR specifier, 7–29, 8–7

See also Language Reference Manual
example, 8–9

Index–18

etime library routine, 12–7
Exception (debugging)

-fpen option, 4–25, 4–26
-synchronous_exceptions option,

4–25, 4–26
using debugger to locate, 4–25

Exceptional IEEE floating-point values,
9–14

Exception handling
See Arithmetic exception handling

EXCHANGE Utility (VMS)
use in porting OpenVMS Fortran data,

A–26
Executable programs

See also Program; Parallel execution;
Threaded program execution

creating using f90 command, 1–5
effect of -call_shared option on size,

3–17
effect of optimization level on size, 5–45
installing using Compaq Tru64 UNIX

tools, 1–13
naming, 2–8, 2–12
running, 1–5
specifying name, 2–8

Expansion
inline, 5–58

Explicit interface, 11–3
calling non-Fortran subprograms, 11–3
effect on array argument passing, 11–10
passing pointers, 11–9
when calling C subprograms, 11–10

export command, 7–24, B–1
Expressions

See also Language Reference Manual
parentheses in

maximum allowed, 2–18
-extend_source option, 3–28
Extensions

compatibility with Compaq Fortran 77 for
Compaq Tru64 UNIX systems, A–7

compatibility with Compaq Fortran 77 for
OpenVMS systems, A–20

External file, 7–2
External names

appending underscore, 3–15, 3–16, 11–6
case sensitivity, 3–54, 11–15
controlling with cDEC$ directives, 11–15,

11–16
passed between C and Compaq Fortran,

11–6, 11–15, 11–16, 11–24
specifying alias names, 11–15
use of library routines or intrinsics,

12–19
External procedures

name passing rule, 11–6, 11–24
references and optimization, 5–54

EXTERNAL statement, 2–21, 11–4, 12–19
See also Language Reference Manual
for C language functions, 11–26
use with 3f routines, 12–19
use with USEROPEN specifier, 7–36

External subprogram, 11–4

F
-f66 option, 3–28
-f77 option, 3–29
-f77rtl option, 3–29, A–8
f90 command

alignment options, 3–6 to 3–8, 5–29
and cc, 2–13
and ld, 2–13, 2–22
and other software components, 1–9 to

1–10
arithmetic exceptions and reporting, 3–36

-check underflow option, 3–22
-fpe options, 3–33
-math_library fast option, 3–52
-speculate option, 3–65
-synchronous_exceptions option,

3–69
C language main program, 3–55

example, 11–24
command options for efficient run-time

performance, 5–5
consistent use of options for multiple

compilations, 3–2, 3–37

Index–19

f90 command (cont’d)
creating module files, 2–5
creating shared libraries, 2–25 to 2–27
debugging options, 4–2
driver program, 1–10, 2–13
error messages, 2–16
examples, 2–10 to 2–12

application with modules, 1–7
compiling multiple files, 2–12
compiling multiple files for efficient

run-time performance, 2–9, 5–4
cord, 5–19
debugging, 4–4
for debugging, 1–9
linking object file, 2–11
module subprogram, 1–7
multiple source files, 2–10
preserving object file, 2–11
profiling (gprof), 5–16
profiling (prof), 5–15
renaming output file, 2–11
requesting listing file, 2–12
requesting software pipelining, 2–12
separate and combined compilation,

1–7
single file, 1–5
specifying additional link libraries,

2–12
using .c file, 2–11, 11–25
using different file name suffixes,

2–4
file name suffixes

effect on cpp use, 2–2
effect on source form, 2–2
interaction with options, 2–2

files created by, 2–8
for efficient run-time performance, 5–4
format, 2–4
groups of options, 3–2
include file use, 2–6
linking, 2–2, 2–21 to 2–28
listing file with machine code, C–2
list of options, 3–1 to 3–80
messages, 2–18
module file use, 2–5

f90 command (cont’d)
multiple source files, 2–9
name of compiler, 1–12
name on Tru64 UNIX systems, xxxi
options, 3–1 to 3–80

effect on output files, 2–9
for HPF parallel processing, 3–42
listed in functional groups, 3–2
overriding, 2–20
passed to cc or ld, 2–15

OPTIONS statement, effect on options,
2–20

output files, 2–8
passing options to preprocessors, 3–26
processes used by, 1–10
recognized file name suffix characters,

2–2
return values, 2–15
source file directives, effect on options,

2–20
specifying

additional directory for ld, 3–50
additional library for ld, 3–51
directory for module files, 2–5
directory for temporary files, 2–9
include files, 2–6
input files, 2–4 to 2–5, 2–9
listing of include file, 2–7
output file, 2–8

temporary files, 2–8 to 2–9
falloc library routine, 12–7
-fast option, 3–29, 5–61
fdate library routine, 12–7
Feedback files, 5–19

related f90 options, 3–30
Feedback on documentation

sending comments to Compaq, xxix
-feedback option, 3–30, 5–19
ffrac library routine, 12–7
fgetc library routine, 12–7
Fields

in common blocks
causes of unaligned data, 5–21
options controlling alignment, 3–6,

5–21, 5–29

Index–20

Fields (cont’d)
in derived-type data and record structures

causes of unaligned data, 5–21
controlling alignment, 5–25
options controlling alignment, 3–6,

5–22, 5–29
File

external, 7–2
file command, 1–13
File descriptor

returning (library routine), 12–10
File descriptor limit

increasing number per process, 1–2
File format

See also Record type; Formatted data;
Unformatted files

File name
application of defaults, 7–19 to 7–21
compiler defaults, 7–20, 7–24
environment variable, 7–19 to 7–21
I/O statements default use, 7–14 to 7–24
in I/O statements, 7–18 to 7–23
OPEN statement specifiers, 7–15, 7–19
setting environment variables for, 7–23
suffix

and source form, 1–3, 2–2
libraries, 2–3
modules, 2–3
object files, 2–3
preprocessor intermediate files, 2–3
source files, 2–2

File organization, 7–7
See also Sequential files; Relative files
available storage media, 7–7
default for OPEN statement, 7–30
I/O statements for, 7–4
importance of specifying in OPEN

statement, 7–30
overview (sequential, relative), 7–7
record types for, 7–31
relative, 7–7
sequential, 7–7

Files
changing output file names (f90), 2–8,

2–11, 3–56

Files (cont’d)
combining at source compilation, 2–20
compiling multiple input files, 2–9, 2–10
created by f90, 2–8
determining accessibility of (library

routine), 12–5
effect of options on output files (f90), 2–9
external, definition, 7–2
feedback

related options, 3–30
file descriptor for USEROPEN function,

7–36 to 7–38
INCLUDE files, 2–20
input to f90, 2–5, 2–9
internal, 7–8
module files, 2–20
object files created by f90, 2–8
opening using USEROPEN function,

7–39
preconnected, 7–14
protection of created (library routine),

12–15
protection of existing (library routine),

12–5
relative organization, 7–7
renaming (library routine), 12–14
retaining object files (f90), 2–8, 3–17
scratch, 7–9
sequential organization, 7–7
specifying access using USEROPEN

function, 7–39
specifying name and pathname, 7–18

example program, 8–9
status of (library routine), 12–9, 12–15
temporary (f90), 2–9, 3–50

File sharing
OPEN statement, SHARED specifier,

7–31
File specifications

differences with OpenVMS Fortran, A–22
use in OPEN statements, 7–15

FILE specifier, 7–16, 7–18, 7–19, 7–22
See also Language Reference Manual
example, 8–9

Index–21

FIND statement, 7–4
See also Language Reference Manual

Finite number, 9–14
FIRSTPRIVATE clause

for DO directive, 6–11, 6–13
for PARALLEL directive, 6–11, 6–13
for PARALLEL DO directive, 6–11, 6–13
for PARALLEL SECTIONS directive,

6–11, 6–13
for SECTIONS directive, 6–11, 6–13
for SINGLE directive, 6–11, 6–13

FIRSTPRIVATE option
for PARALLEL directive, 6–37
for PARALLEL DO directive, 6–37
for PARALLEL SECTIONS directive,

6–37
for PDO directive, 6–37
for PSECTIONS directive, 6–37
for SINGLE PROCESS directive, 6–37

Fixed-length records, 7–10, 7–42
data transferred by I/O statements, 7–34
importance of specifying record length,

7–42
OpenVMS data compatibility, A–25
requirement for direct access, 7–30, 7–31
use for optimal performance, 5–41

-fixed option, 3–31
Fixed source form prefixes

Compaq Fortran parallel directives, 6–30
OpenMP conditional compilation, 6–4
OpenMP directives, 6–3

FIX extension, 3–11
flmax library routine, 12–7
flmin library routine, 12–7
Floating-point data types

arithmetic exception handling, 3–20,
3–33

comparison of OpenVMS and native
formats, A–27

constants
request double precision, 3–32

conversion, 10–3 to 10–6
limitations, 10–7

CRAY big endian formats, 10–5
declarations and options, 3–61, 9–9

Floating-point data types (cont’d)
declaring, 9–9

See also Language Reference Manual
denormal values, 9–15
digits of precision, 9–10 to 9–11
endian (big and little), 10–1
endian order of native formats, 9–1
exceptional values, 3–33, 9–14 to 9–18
handling of single-precision constants,

3–32
IBM big endian formats, 10–5
IEEE big endian formats, 10–5
IEEE denormalized values, 9–15
IEEE style X_float, 9–8, 9–11
IEEE S_float, 9–8, 10–6
IEEE T_float, 9–8, 10–6
infinity, 9–14
methods of specifying nonnative formats,

10–8
NaN values, 9–14
nonnative formats, 10–3 to 10–6
normal and denormalized values of native

formats, 9–3
obtaining unformatted numeric formats,

10–8
options controlling size of COMPLEX and

REAL declarations, 3–62
options controlling size of DOUBLE

PRECISION declarations, 3–27
options related to accuracy, 3–14, 3–52
options related to exceptions, 3–20
porting VAX formats, A–24
ranges, 9–3, 9–8 to 9–11
representation of native formats, 9–8 to

9–13
representation of VAX formats, A–28 to

A–32
representation of zero, 9–15
rounding modes, 3–38
routines for arithmetic exception handling,

12–8
values for constants, 9–3
VAX D_float format, 10–5, 10–6, A–28
VAX F_float format, 10–5, 10–6, A–28
VAX G_float format, 10–5, 10–6, A–28

Index–22

Floating-point data types (cont’d)
VAX H_float format, 10–6
zero values, 9–15

Floating-point exception handling
See Arithmetic exception handling

Floating-point numbers
library routines for, 12–7

FLOAT intrinsic function
See also Language Reference Manual
options controlling size returned, 3–62

FLUSH directive, 6–6, 6–26
flush library routine, 12–7, 12–9
FMT specifier, 7–29

See also Language Reference Manual
FOR$IOS

prefix for condition symbols
for run-time errors, 8–13 to 8–32

FORALL statement
See also Language Reference Manual
array optimizations, 5–48

fordef.f file
floating-point class identifiers, 14–8

foriosdef.f file
condition symbol values, 8–12

fork library routine, 12–9
Format

Compaq Fortran parallel directives, 6–29
OpenMP directives, 6–2

Format descriptors
See also Language Reference Manual
option controlling format mismatch

handling, 3–19
Format groups

nesting limits, 2–17
Format statement

length limit, 2–17
FORMAT statement

See also Language Reference Manual
and implied-DO loop collapsing, 5–38

Formatted data, 7–5
and DO loop collapsing, 5–48
and I/O statements, 7–6
and variable format expressions, 5–39
effect on run-time performance, 5–37

Formatted data (cont’d)
with Fortran carriage control, fpr

command, 7–13
Formatted I/O statements, 7–5

See also Language Reference Manual
option controlling format mismatch

handling, 3–19
option controlling format truncation

handling, 3–21
FORM specifier, 7–5 to 7–6, 7–13, 7–16

See also Language Reference Manual
fort command

and other software components, 1–9 to
1–10

debugging options, 4–2
driver program, 1–10
examples, 2–10 to 2–12

multiple source files, 2–10
format, 2–4
groups of options, 3–2
list of options, 3–1 to 3–80
name on Linux systems, xxxi
options, 3–1 to 3–80

listed in functional groups, 3–2
FORTn environment variable, 7–14, B–6
Fortran 90

reusing source file code, 1–4
sample main and subprogram, 1–5, 1–6
source file contents, 1–4
source form

file name suffix, 1–3
Fortran 95

standard checking, 3–66
Fortran 95/90

logical unit numbers, 7–24
source form

file name suffix, 2–2
standard

and RECL units for unformatted files,
10–13

-assume dummy_aliases option,
3–13, 5–65

checking, 3–66
standards, 1–15

Index–23

Fortran carriage control
fpr command, 7–13

Fortran compiler
See f90 command

FORTRAN IV
options for compatibility, 3–28

Fortran preprocessors
and cpp, 3–25
and fpp, 3–38
invoking cpp, 3–24
retaining temporary files, 3–50

fortran routine, 12–9
Fortran statements

See also Language Reference Manual;
appropriate statement name

coding restrictions and limits summary,
2–17

maximum line length, 3–28
FORT_BUFFERED environment variable, B–6
FORT_CONVERT.ext environment variable,

B–6
use with nonnative numeric data, 10–10

FORT_CONVERTn environment variable, B–6
use with nonnative numeric data, 10–9

FOR_ACCEPT environment variable, 7–24,
B–5

FOR_DISABLE_STACK_TRACE environment
variable, 8–3, B–5

for_fpe_flags.f file
floating-point exception flags, 14–2, 14–3

for_get_fpe function, 14–2, 14–5
for_get_fpe library routine, 3–37, 12–8
FOR_PRINT environment variable, 7–24,

B–5
FOR_READ environment variable, 7–24, B–5
for_rtl_finish_ library routine (C), 12–8
for_rtl_init_ library routine (C), 12–8
for_set_fpe function, 14–2, 14–6
for_set_fpe library routine, 3–37, 12–8
for_set_reentrancy library routine, 12–9
FOR_TYPE environment variable, 7–24, B–5
-fpconstant option, 3–32
-fpe0 option, 3–34

-fpe1 option, 3–34
-fpe2 option, 3–34
-fpe3 option, 3–35
-fpe4 option, 3–35
-fpen option

use when debugging, 4–25, 4–26
-fpe option, 3–34
-fpe options, 3–33
-fpp option, 3–38
fpp preprocessor, 1–10

options for, 3–47
searching for include files, 3–47

fpr command, 7–13
-fprm option, 3–38
fputc library routine, 12–9
FP_CLASS intrinsic, 9–18, 14–8, 14–9
-fp_reorder option, 3–14, 5–64

effect of -fast option, 3–29
Freeing and allocating virtual memory

(library routine), 12–7
free library routine, 12–9
-free option, 3–31
Free source form prefixes

Compaq Fortran parallel directives, 6–30
OpenMP conditional compilation, 6–5
OpenMP directives, 6–3

3f routine, 12–1
fseek library routine, 12–9
fsplit command, 1–14
fstat library routine, 12–9
ftell library routine, 12–9
ftp command

use in porting OpenVMS Fortran data,
A–26

Function reference
maximum arguments allowed, 2–17

Function return values
changing default passing mechanisms,

11–12
default passing mechanism, 11–6
passing rules, 11–6
passing with Compaq Fortran, 11–6
setting, 11–2
with C, 11–27
with Compaq Fortran, 11–5

Index–24

Function return values (cont’d)
with Compaq Fortran 77, A–35

Functions
See also Intrinsic procedures; Library

routines
alternate entry points, 4–28
bit, 12–5 to 12–15
C language

invoking, 11–26
declaration statements, 11–2
example declaration, 1–7
example interface block in module, 1–6
example use

3f routines, 12–20, 12–22
with module, 1–6

%LOC, %VAL, %REF, 11–12
FUNCTION statement, 11–2

See also Language Reference Manual
-fuse_xref option, 3–39

G
-g0 option, 3–40, 4–2
-g1 option, 3–40, 4–2
-g2 or -g option, 3–40, 4–2
-g3 option, 3–41, 4–2
.GE. operator

See Language Reference Manual
-gen_feedback option, 3–31
gerror library routine, 8–10, 12–9
getarg library routine, 12–9
getc library routine, 12–9
getcwd library routine, 12–9
getenv library routine, 12–10

example, 11–33
getfd library routine, 12–10
getgid library routine, 12–10
getlog library routine, 12–10
getpid library routine, 12–10
getuid library routine, 12–10
get_hpf_my_node library routine, 12–16
get_hpf_numnodes library routine, 12–16
global_alignment library routine, 12–16

global_bounds library routine, 12–16
global_distribution library routine,

12–16
global_template library routine, 12–17
global_to_local library routine, 12–17
global_to_physical library routine,

12–17
gmtime library routine, 12–10
GOTO statement

See also Language Reference Manual
computed or assigned

maximum labels allowed, 2–18
gprof command

for call graph information, 5–16
related f90 option, 3–61
use with f90, 5–16 to 5–17

Granularity
and unaligned data, 3–41
for threaded applications, 3–41
importance of VOLATILE declarations,

3–41
shared memory access, 3–41

-granularity options, 3–41
GSS schedule type, 6–44
.GT. operator

See Language Reference Manual
GUIDED schedule type, 6–28, 6–43, 6–44

H
Help (online)

See appropriate reference page
See Release notes

Hidden bit normalization, 9–9
High Performance Fortran

options for parallel processing, 3–42
Hollerith constants

See also Language Reference Manual
maximum size, 2–17
representation, 9–19

HPF global routines
with nonparallel main program, 3–55

Index–25

HPF library, 2–22
-hpf or -hpf nn option

and -std option, 3–68
profiling option, 3–60

-hpf or -hpf num option, 3–42 to 3–46
3hpf routine, 12–15
HPF_LIBRARY routines

See Language Reference Manual
HPF_LOCAL_LIBRARY

routines, 12–16
hpf_synch library routine, 12–17
-hpf_target cmpi option, 3–46
-hpf_target gmpi option, 3–46
-hpf_target option, 3–46
-hpf_target smpi option, 3–46

I
I/O, 7–1 to 7–48

See also Files; Record I/O; I/O statements
advancing and nonadvancing, 7–33
choosing optimal record type, 5–41
closing files, 7–27
Compaq Fortran 77 and Compaq Fortran

compatibility, A–38
converting unformatted files, 10–1 to

10–13
data formats for unformatted files, 10–1

to 10–6
device and buffer use for efficient run-time

performance, 5–39
disk, 5–39 to 5–41
eliminating bottlenecks, 5–36
files and file characteristics, 7–6
guidelines for efficient run-time

performance, 5–36 to 5–42
limitations

opening file with user-supplied
function (USEROPEN), 7–36

logical unit, 7–2
obtaining file information, 7–25
OPEN statement

opening file with user-supplied
function, 7–36

performance, 5–38

I/O (cont’d)
pipes, 7–18
preconnected files, 7–14
reading deleted records and ENDFILE

records
effect of -vms option, 3–76

record, 5–39
access, 7–30
for internal files, 7–8
general description, 7–34
operations, 7–28

record types, 7–9
comparison with Compaq Fortran 77,

7–11
comparison with OpenVMS systems,

A–22, A–24 to A–25
formats, 7–42
portability considerations, 7–11

sockets, 7–18
specifying files, 7–18
specifying record length for efficiency,

5–41
summary of statements, 7–3
using C language function to open a file

(USEROPEN), 7–36
I/O implied DO

nesting limit, 2–17
I/O statements

See also Language Reference Manual
advancing and nonadvancing I/O, 7–33
auxiliary, 7–4
available for sequential and direct access,

7–6
CLOSE statement, 7–27
Compaq Fortran extensions, 7–3
default devices, 7–24
default environment variables, 7–24
DELETE statement

effect of -vms option, 3–75
ENDFILE records

effect of -vms option, 3–75
file connection, 7–3
forms of, 7–4, 7–5
for relative files, 7–4
for sequential files, 7–4

Index–26

I/O statements (cont’d)
implicit logical I/O unit, 7–14
INQUIRE statement, 7–25
list of, 7–3
OPEN statement, 7–22

See also OPEN statement
CONVERT specifier, 10–3
effect of -vms option, 3–75, 3–76
interdependencies of file and

directory, 7–22
record access modes, 7–30
record input, 7–3
record operations, 7–28
record output, 7–3
record position, 7–3
record transfer, 7–34
types of access modes, 7–30
with formatted, unformatted, list-directed,

and namelist records, 7–6
-i2 option, 3–47
-i4 option, 3–48
-i8 option, 3–48
iargc library routine, 12–10
idate library routine, 12–10
-Idir option, 2–5, 2–6, 2–7, 3–47
IEEE

See also Data types
exceptional floating-point numbers, 9–15
exception handling, 3–33
floating-point data

exceptional values, 9–14 to 9–18
native, 9–2, 9–8 to 9–13
nonnative big endian, 10–3, 10–5
representation of zero, 9–15

nonnative big endian data, 10–3, 10–5
rounding modes

floating-point calculations, 3–38
S_float data, 9–9, 9–10

ranges, 9–3
T_float data, 9–9, 9–10

ranges, 9–3
X_float data, 9–11

ranges, 9–3

ierrno library routine, 8–10, 12–10
IF clause

for PARALLEL directive, 6–18
IF statement

See Language Reference Manual
Implicit interface, 11–3

types of subprograms, 11–3
IMPLICIT NONE statement

See also Language Reference Manual
and -u option, 3–78
and -warn declarations option, 3–78

Implied-DO loop
and I/O performance, 5–37
collapsing, 5–38, 5–48

Include files
directory search order, 2–7
specifying directory, 2–7
using, 2–6 to 2–8

INCLUDE statement, 2–6 to 2–8, 2–20
See also Language Reference Manual
and modules, 11–3
directory searched for filenames, 3–75
effect of -vms option, 3–75
file nesting limit, 2–18
forms for include files, 2–7

index function, 12–10
Infinity values

representation in Alpha floating-point
data, 9–14

Initialization values
reduction operators and intrinsics, 6–15

Inline expansion, 5–58
of statement functions and intrinsics,

5–47
subprograms, 3–48, 5–45, 5–57, 5–62

-inline option, 3–48, 5–62
Inlining, 5–58

automatic, 5–47
inmax function, 12–10
Input file, standard

reading from a redirected, 5–42
INQUIRE statement, 7–3, 7–25 to 7–27

See also Language Reference Manual
by file name, 7–26
by output item list, 7–27

Index–27

INQUIRE statement (cont’d)
by unit number, 7–25
default values returned, 7–25
obtaining unformatted numeric format,

10–8
OPENED specifier, 7–26
to an opened file, 10–12

INSTANCE directive, 6–32
INSTANCE PARALLEL directive, 6–32,

6–35, 6–36
INSTANCE SINGLE directive, 6–32
Instruction extensions, generated for specific

Alpha processors, 3–10
Instruction scheduling, 5–53
-intconstant option, 3–49
Integer conversion

library routines (3f), 12–11, 12–14
Integer data type

declarations and options, 3–47, 9–4
declaring, 9–4

See also Language Reference Manual
endian order of native formats, 9–1
methods of specifying endian format,

10–8
nonnative formats, 10–1 to 10–6
options controlling size of INTEGER

declarations, 3–47
ranges, 9–2, 9–5 to 9–6
representation, 9–5 to 9–6

Integers
library routines for, 12–10

-integer_size 16 option, 3–47
-integer_size 32 option, 3–48
-integer_size 64 option, 3–48
Interchanging loops

for manual optimization, 6–54
Interface block, 11–2

See also Language Reference Manual
components of, 11–4
declaration statements, 11–2
example, 1–6
for explicit procedure interface, 11–4

Interface body, 11–2

INTERFACE statement, 1–6, 11–2, 11–4
See also Language Reference Manual

INTERLEAVED schedule type, 6–43, 6–44
Internal file

See also Language Reference Manual
I/O, 7–8
I/O forms and statements, 7–6

Internal subprogram, 11–3
Intrinsic COMPLEX kinds, 9–9
Intrinsic procedures

See also Language Reference Manual
and 3f routine, 12–5
and equivalent 3f routines, 12–2
argument passing

differences between Compaq Fortran
77 and Compaq Fortran, A–13

bit (3f routine), 12–13
CHAR

to null-terminate a C string, 11–6
for timing program execution, 5–14
FP_CLASS, 9–18
3f routines and EXTERNAL statement,

12–19
3f routines with same name, 12–19
inline expansion of, 5–48
ISNAN, 9–17
lshift (3f routine), 12–11
not (3f routine), 12–11
options controlling DOUBLE PRECISION

size returned, 3–27
options controlling REAL or COMPLEX

size returned, 3–62
random numbers, 12–2
requesting faster, less accurate versions,

3–52
RESHAPE, 11–42
return date and time, 12–3
rshift (3f routine), 12–14
SUM, 1–7
UBOUND, 1–7
using array, 5–31
using existing Compaq Fortran, 5–33
using instead of 3f routines, 12–2
xor (3f routine), 12–15
ZEXT, 11–13

Index–28

Intrinsic REAL kinds, 9–9
INTRINSIC statement

See also Language Reference Manual
Invalid operation, 14–1
-I option, 3–47
IOSTAT specifier, 7–29, 8–7 to 8–10

See also Language Reference Manual
example, 8–9
return values from run-time messages,

8–14
symbolic definitions in foriosdef.f,

8–9
irand library routine, 12–10, 12–22
irandm library routine, 12–10
isatty library routine, 12–11
ISHFT intrinsic, 5–49

See also Language Reference Manual
ISNAN intrinsic, 9–17, 14–10

See also Language Reference Manual
itime library routine, 12–11

J
Jacket routines, 12–2

K
KAP preprocessor, 1–11

improving run-time performance, 5–3
kill library routine, 12–11
Kind type parameter

See also Language Reference Manual
COMPLEX declarations, 9–9
INTEGER declarations, 9–4
LOGICAL declarations, 9–7
REAL declarations, 9–9

-K option (cpp), 3–50
Korn shell (ksh)

process limits, 1–2
Korn shell (ksh)

FORTn environment variables, 7–23
setting and unsetting environment

variables, B–1

L
Labels

See also Language Reference Manual
in computed or assigned GOTO list

maximum allowed, 2–18
Ladebug

See Debugger
-ladebug option, 3–41, 4–2

for Ladebug, 4–2
Language compatibility

See Compatibility
Language dialects

Compaq Fortran compatibility
information, A–1 to A–24

options for, 3–13, 3–28, 3–66
Language extensions

See also Language Reference Manual
Compaq Fortran on other platforms

(summary), A–1
compatibility with Compaq Fortran 77 for

Compaq Tru64 UNIX systems, A–7
compatibility with Compaq Fortran 77 for

OpenVMS systems, A–20
compatibility with Compaq Fortran on

other platforms, A–1
compatibility with Compaq Visual

Fortran, A–18
Language interface

C and Compaq Fortran
allowing C programs to use Compaq

Fortran RTL, 12–8
appending underscore for external

names, 11–25
calling subroutines, 11–29
changing default argument passing

mechanisms, 11–14, 11–32
changing default mechanisms, 11–16
character arguments, 11–33
C language main program, 3–55,

11–24
complex arguments, 11–36
handling arrays, 11–41
handling common blocks, 11–43

Index–29

Language interface
C and Compaq Fortran (cont’d)

integer arguments, 11–31
invoking a C function from Compaq

Fortran, 11–26
invoking a Compaq Fortran

subprogram from C, 11–26
library routines for, 12–1
null-terminating character

arguments, 11–35
opening file with user-supplied

function, 7–36
passing arguments between, 11–10 to

11–22, 11–23 to 11–44
USEROPEN function, 7–36
using

C conventions, 11–20
f90 command, 11–23
fort command, 11–23

Compaq Fortran
argument passing rules, 11–5
changing default argument passing

mechanisms, 11–12, 11–14
default argument passing mechanism,

11–5
descriptor format, 11–10
explicit interface, 11–3
passing

arrays, 11–8
character arguments, 11–6
pointers, 11–9

passing arguments, 11–1 to 11–9
Compaq Fortran 77 and Compaq Fortran

alignment options, A–38
common block values, A–37
data types to avoid, A–34
example, A–35
function values, A–34
I/O compatibility, A–38
mechanisms, A–35
passing

arguments, A–33 to A–38
target or pointer data, A–37

pointer data, A–34
similarities, 11–5

external names

Language interface
external names (cont’d)

controlling with cDEC$ directives,
11–15, 11–16

USEROPEN function, 7–36
LAPACK routines (Compaq Extended Math

Library), 13–2
LASTLOCAL option

for PARALLEL DO directive, 6–37
for PDO directive, 6–37

LASTPRIVATE clause
for DO directive, 6–11, 6–13
for PARALLEL DO directive, 6–11, 6–13
for PARALLEL SECTIONS directive,

6–11, 6–13
for SECTIONS directive, 6–11, 6–13

Latch variable, 6–25
-Ldir option, 2–23, 3–50
ld linker

creating shared object libraries, 2–25 to
2–28

effect of EXTERNAL statement, 2–21
f90 command-line options for, 3–50
functions performed, 1–12
libraries passed to by f90 command,

2–21
locating undefined symbols using nm

command, 2–23
messages, 2–19
options and files passed by f90, 2–15
options for, 3–51
option to prevent running ld, 3–17
relationship to f90 command, 1–12, 2–2,

2–13, 2–22
request threaded run-time library, 3–70
restrictions creating shared libraries,

2–27
routines with opposition settings, 5–66
sample use with f90 command, 1–5, 1–7,

2–11
specifying

object libraries, 2–21 to 2–25
shared object libraries, 2–25

Index–30

LD_LIBRARY_PATH environment variable,
B–4

.LE. operator
See Language Reference Manual

len, 12–11
Length

DOUBLE PRECISION declarations
options controlling size, 3–27

INTEGER or LOGICAL declarations
options controlling size, 3–47

REAL or COMPLEX declarations
options controlling size, 3–61

source file line, 2–17
LEN specifier, 11–7

See also Language Reference Manual
Lexical tokens per statement

maximum, 2–18
lgamma, 12–11
Library

See also Shared library; Archive library
linker searching options, 3–50 to 3–51
list passed by f90 command to ld, 1–5
list searched automatically by f90

command, 2–21
obtaining information about, 1–13
recognized file name suffixes, 2–3
selecting archive or shared for linking (f90

options), 2–24, 3–17
specifying with f90 command, 2–21 to

2–25
types of, 2–24

Library routines, 12–1 to 12–23
accessing reference pages for, 12–18
bessel, 12–2, 12–5 to 12–6
bit manipulation, 12–2
directories and files, 12–2
equivalent intrinsic functions, 12–2
error handling, 12–2
example program, 12–20, 12–22
EXTERNAL statement, 12–19
3f, 12–1 to 12–15
for arithmetic exception handling, 12–4
for C main language program, 12–3
for timing program execution, 5–14
3hpf, 12–15 to 12–18

Library routines (cont’d)
HPF_LIBRARY

See Language Reference Manual
HPF_LOCAL_LIBRARY, 12–16
I/O, 12–2
jacket, 12–2
language interface, 12–1
parallel run-time, D–1 to D–17
random numbers, 12–2
returning

date and time, 12–2
error function, 12–3
file descriptor, 12–4
process, system, or command-line

information, 12–3
shared memory, 12–4
signals and processes, 12–3
summary, 12–4
thread locking, D–9
using intrinsic procedures instead of,

12–2
virtual memory allocation, 12–3

Limits
compiler, 2–17

Line length
fixed-format source

extending, 3–28
free-format source

See Language Reference Manual
source file, 2–17

Linker and library searching
See ld linker

link library routine, 12–11
LINPACK benchmark, 5–66
List-directed I/O statements, 7–5

See also Language Reference Manual
Listing file

See Source code listing
Little endian storage, 10–1
lnblnk library routine, 12–11
LOCAL option

for PARALLEL directive, 6–37
for PARALLEL DO directive, 6–37

Index–31

LOCAL option (cont’d)
for PARALLEL SECTIONS directive,

6–37
for PDO directive, 6–37
for PSECTIONS directive, 6–37
for SINGLE PROCESS directive, 6–37

local_to_global library routine, 12–17
Lock routines, D–9
Locks

for dependences, 6–52
using CRITICAL directive, 6–52

loc library routine, 12–11
Logical data type

converting nonnative data, 10–14
declarations and options, 3–47, 9–4
declaring, 9–7

See also Language Reference Manual
differences with nonnative formats,

10–13
options controlling size of LOGICAL

declarations, 3–47
ranges, 9–7
representation, 9–7

Logical I/O unit, 7–2
See also Language Reference Manual
implicit system defaults, 7–24
INQUIRE statement, 7–25
OPEN statement options, 7–22
summary, 7–18
system unit numbers and names, 7–23

Logical operators
use in debugging, 4–23

Logical record, 7–45
Logical unit, 7–2
long library routine, 12–11
Loop alignment, 6–48
Loop blocking, 5–60
Loop control variable

and implied-DO loop collapsing, 5–38
Loop decomposition, 6–45
Loop distribution, 5–60, 6–50
Loop fusion, 5–61
Loop interchange, 5–61

Loops
See also DO loops; Optimization
and register use, 5–52
blocking optimization, 3–57, 3–70
controlling number of times unrolled,

5–61
distribution optimization, 3–57, 3–70
efficient coding suggestions, 5–31, 5–37,

5–38, 5–45
fusion optimization, 3–57, 3–70
interchange optimization, 3–57, 3–70
limiting loop unrolling, 3–72, 5–55
optimizations for, 5–48, 5–53, 5–55 to

5–62
outer loop unrolling optimization, 3–57,

3–70
relationship to basic block size, 5–14
scalar replacement optimization, 3–57,

3–70
software pipelining optimization, 3–57,

3–60, 5–58
terminating execution early, 6–44
transformation optimizations, 3–57, 3–70,

5–47, 5–60
unroll optimization, 3–57

-L option, 2–24, 3–50
Lowercase names

case sensitivity, 3–54
options controlling, 3–54

lshift function, 12–11
lstat library routine, 12–11
-lstring option, 2–23, 3–51

and creating shared libraries, 2–26
.LT. operator, 4–23

See also Language Reference Manual
ltime library routine, 12–11

M
Machine-code output listing

general description, C–2 to C–5
-machine_code option, 3–64
Main program

C language
f90 option for, 3–55, 11–24

Index–32

Main program
C language (cont’d)

fort option for, 11–24
statements for, 11–1

make, 1–13
options related to, 3–25

makefile, 1–13
example of using, 12–21

malloc library routine, 12–11
man command, xxx

f90(1), 1–1
fort(1), 1–2
viewing routine reference pages, 12–18

Manual optimization, 6–54
balancing the workload, 6–55
interchanging loops, 6–54

MASTER directive, 6–6, 6–26
Master thread, 6–9
Math Libraries Web site, 13–1
-math_library accurate option, 3–52
-math_library fast option, 3–52

effect of -fast option, 3–29
effect on -fpen option, 3–37

MAX extension, 3–10
MAXREC specifier, 7–16

See also Language Reference Manual
Memory

allocating and freeing virtual (library
routine), 12–7

for intermediate storage, 5–38
Message catalog

file, 8–5
location of, 8–3
transporting, 8–3

Message Passing Interface (MPI), 3–42,
3–46

Messages
See also Warning messages
driver-related errors, 2–16
issued by compiler

general description, 2–18
limiting the number, 3–27

language dialects and standards checking,
3–66

linking, 2–19

Messages (cont’d)
run-time format, 8–3
run-time messages

list, numeric order, 8–13 to 8–32
transporting message file, 8–5

severity
meaning to run-time system, 8–3

Mixed real/complex operation, 5–53
-mixed_str_len_arg option, 3–53, 11–6
Module file, 2–5
-module option, 3–53
Modules, 2–5 to 2–6, 11–2

See also Language Reference Manual
compiler use of process descriptor limit,

1–2
declaration example, 1–6
example compilation, 1–7
file name suffix, 2–3
files created and used by compiler, 3–53
.mod file suffix, 2–5
subprogram, 11–3
to contained subprograms, 11–4
use association, 11–4

MODULE statement, 1–6, 2–5, 11–2
See also Language Reference Manual

Module variables
accessing in Ladebug, 4–16

-M option (cpp), 3–25
mpc_destroy library routine, D–17
mpc_in_parallel_region library routine,

D–17
mpc_maxnumthreads library routine, D–14
mpc_my_threadnum library routine, D–16
mpc_numthreads library routine, D–15
MPI

See Message Passing Interface (MPI)
-mp option, 3–54, 6–29, 6–45
MP_CHUNK_SIZE environment variable,

6–58
MP_SCHEDTYPE directive, 6–32, 6–43
MP_SCHEDTYPE option

for PDO directive, 6–43

Index–33

MP_SPIN_COUNT environment variable,
6–58

MP_STACK_SIZE environment variable,
6–58

MP_THREAD_COUNT environment variable,
6–58

MP_YIELD_COUNT environment variable,
6–58

Multimedia instructions extension, 3–10
Multiple thread locking routines, D–9

N
Named common blocks

Privatizing, 6–10, 6–35
Name length, symbolic

maximum, 2–18
Namelist I/O statements, 3–29, 7–5

See also Language Reference Manual
-names keyword options, 3–54
NAME specifier, 7–16

See also Language Reference Manual
NaN values (IEEE)

See also ISNAN intrinsic
representation in Alpha floating-point

data, 9–14
Natural alignment, 5–21
Natural ascending storage order, 5–32
Natural storage order, 5–38
.NE. operator

See Language Reference Manual
-nearest_neighbor option, 3–44
Nested parallel region, 6–19
Nesting limits

source code, 2–17
NLSPATH environment variable

use by RTL, 8–5
NLSPATH environment variable, B–6
nm command

use in locating undefined symbols, 2–23
NML specifier, 7–29

See also Language Reference Manual

-noextend_source option, 3–28
-nof66 option, 3–29
-nof77 option, 3–28
-nofor_main option, 3–55, 11–24
-noi4 option, 3–47
-noinclude option, 2–6, 2–7, 3–47, 3–56
-noinline option, 3–48, 5–62
Nonadvancing I/O, 7–33
-non_shared option, 2–24, 3–18
-nopad_source option, 3–59
-norun option, 3–56
.NOT. operator

See Language Reference Manual
not function, 12–11
NOWAIT clause

for END DO directive, 6–20
for END SECTIONS, 6–20
for END SINGLE, 6–21

NOWAIT option
for END PDO directive, 6–39, 6–40

-nowarn option, 3–79
-nowsf_main option, 3–55
-no_archive option (ld)

and creating shared libraries, 2–26
-no_fp_reorder option, 5–64
Numerical data

output of, 5–37
Numeric range

See Data type

O
-O0 option, 3–57
-O1 option, 3–57
-O2 option, 3–57
-O3 option, 3–57
-O4 or -O option, 3–57
-O5 option, 3–57
Object file

and cDEC$ directives, 2–21
contents, 1–11, 4–2
directory used, 2–9
effect of -gn option on size, 3–40
effect of -On options on size, 3–57

Index–34

Object file (cont’d)
effect of optimization level on size, 5–45,

5–47, 5–62
linker order of loading, 2–22
linking, 2–2
multiple input files and options, 2–9
naming, 2–8, 2–11
nonshared optimizations, 3–58
obtaining information about, 1–13
options controlling size of, 4–2
passing directly to ld (example), 2–4
prevent creation of, 3–69
recognized file name suffix, 2–3
renaming, 2–8
retaining, 2–8, 2–11, 3–17
used to create a shared library, 2–26,

3–18
Object library

See Shared library; Archive library
.o file suffix, 2–8
-old_f77 option, A–18
-om option, 3–58, 5–8
-omp option, 3–59, 6–2, 6–45
omp_destroy_lock library routine, D–10
OMP_DYNAMIC environment variable, 6–57
omp_get_dynamic library routine, D–3
omp_get_max_threads library routine,

D–3
omp_get_nested library routine, D–4
omp_get_num_procs library routine, D–4
omp_get_num_threads library routine,

D–5
omp_get_thread_num library routine, D–5
omp_init_lock library routine, D–10
omp_in_parallel library routine, D–6
OMP_NESTED environment variable, 6–57
OMP_NUM_THREADS environment variable,

6–17, 6–57
OMP_SCHEDULE environment variable, 6–57
omp_set_dynamic library routine, D–6
omp_set_lock library routine, D–10
omp_set_nested library routine, D–7

omp_set_num_threads library routine,
D–8

omp_test_lock library routine, D–11
omp_unset_lock library routine, D–11
-On (optimization) options, 3–56, 5–46

additional global, 5–55
automatic inlining, 5–57
effect of -gen_feedback option, 3–31
effect of -g options, 4–2
global, 5–53
local, 5–48

-onetrip option, 3–28
-o option, 2–8, 2–9

and creating shared libraries, 2–25
effect of -c option, 2–9

-o output option, 3–56
OPENED specifier, 7–26

See also Language Reference Manual
OpenMP

conditional compilation, 6–4
conditional compilation prefixes

fixed source form, 6–4
free source form, 6–5

specification, xxviii
OpenMP directives, 6–1
OpenMP parallel directives, 6–2 to 6–28

ATOMIC, 6–5, 6–23
BARRIER, 6–5, 6–24
CRITICAL, 6–5, 6–25, 6–47, 6–52
DO, 6–6, 6–19, 6–46
END CRITICAL, 6–5, 6–25
END DO, 6–6, 6–19
END MASTER, 6–6, 6–26
END ORDERED, 6–6, 6–27
END PARALLEL, 6–7, 6–9, 6–17
END PARALLEL DO, 6–7, 6–22
END PARALLEL SECTIONS, 6–7, 6–22
END SECTIONS, 6–8, 6–20
END SINGLE, 6–8
FLUSH, 6–6, 6–26
format, 6–2
MASTER, 6–6, 6–26
ORDERED, 6–6, 6–27
PARALLEL, 6–7, 6–9, 6–17, 6–46
PARALLEL DO, 6–7, 6–22

Index–35

OpenMP parallel directives (cont’d)
PARALLEL SECTIONS, 6–7, 6–22
prefixes, 6–3

fixed source form, 6–3
free source form, 6–3

SECTION, 6–8, 6–20
SECTIONS, 6–8, 6–20
SINGLE, 6–8, 6–21
summary descriptions, 6–5 to 6–8
THREADPRIVATE, 6–8, 6–10, 6–11,

6–12
OpenMP run-time library routines, D–1

reference page listing, 12–13
OPEN statement, 7–3, 7–13 to 7–25

See also Language Reference Manual
access mode, 7–30
ACCESS specifier, 7–16, 7–30
ACTION specifier, 7–16
APPEND specifier, 7–30 to 7–31
ASSOCIATEVARIABLE specifier, 7–16
BLANK specifier, 7–16

effect of -vms option, 3–75
BLOCKSIZE specifier, 5–39, 7–17
BUFFERCOUNT specifier, 5–39, 7–17
CARRIAGECONTROL specifier, 7–13,

7–16
effect of -vms option, 3–76

CONVERT specifier, 3–22, 3–24, 7–17,
10–3, 10–11

DEFAULTFILE specifier, 7–16, 7–18,
7–19, 7–22

defaults
See also Language Reference Manual
converting nonnative data, 10–13
pathname used, 7–19, 7–20
units for preconnected files, 7–14

DELIM specifier, 7–17
directory and file name defaults, 7–19 to

7–23
DISPOSE specifier, 7–16, 7–17
effect of opening previously open file,

7–15
effect of -vms option, 3–76
environment variables

effect of -vms option, 3–75

OPEN statement (cont’d)
ERR specifier, 7–17

example, 8–9
example, 8–9
file organization, 7–7

importance of specifying, 7–30
FILE specifier, 7–16, 7–18, 7–19, 7–22

example, 8–9
file status, 7–2
FORM specifier, 7–5 to 7–6, 7–16
I/O statement interdependencies, 7–19
implied and explicit file open, 7–2
importance of examining defaults, 7–15
importance of specifying record type,

7–30
interdependencies of file and directory,

7–22
IOSTAT specifier, 7–17

example, 8–9
MAXREC specifier, 7–16
NAME specifier, 7–16
obtaining file descriptor (library routine),

12–10
opening file with user-supplied function

(USEROPEN), 7–36
ORGANIZATION specifier, 7–7, 7–16
PAD specifier, 7–17

with fixed-length records, 7–10
POSITION specifier, 7–16, 7–32
READONLY specifier, 7–16
RECL specifier, 7–7, 7–16

excluding overhead bytes, 7–12
obtaining value for unformatted files,

7–27
option to specify units, 3–12
performance considerations, 5–41
specifying for fixed-length records,

7–10, 7–42
units, 7–13
units for unformatted files, 10–13

record length, 7–12, 7–42
RECORDSIZE specifier, 7–16
RECORDTYPE specifier, 7–11, 7–16
SHARED specifier, 7–16, 7–31
specifiers for efficient I/O, 5–39

Index–36

OPEN statement (cont’d)
specifiers identifying

error handling capabilities, 7–17
file access and position, 7–16
file and record characteristics, 7–16
file and unit, 7–16
file close action, 7–17
record transfer characteristics, 7–16

STATUS specifier, 7–2, 7–16
SCRATCH value, 7–9

summary of specifiers, 7–15
TYPE specifier, 7–16
UNIT specifier, 7–2, 7–16, 7–18, 7–22
USEROPEN specifier, 7–16, 7–36
using preconnected files, 7–14

open system call
example USEROPEN function (C), 7–39
using to open file, 7–37

OpenVMS Fortran
and Compaq Fortran record types, A–25
options for VAX compatibility (f90), 3–74
porting code, A–20 to A–24
porting data, A–24

Operations
mixed real/complex, 5–53

Operators
See also Language Reference Manual
arithmetic

for efficient run-time performance,
5–44

Optimization, 5–45 to 5–66
additional global, 5–55
and performance measurement, 5–51
automatic inlining, 5–57
code hoisting, 5–53
code replication to eliminate branches,

5–56
common subexpression elimination, 5–49
compile-time operations, 5–49
constant pooling, 5–47
controlling procedure inlining, 5–62
data flow and split lifetime analysis, 5–53
dead code, 5–47
dead store elimination (unused variables),

5–51

Optimization (cont’d)
effect on

compilation time, 5–45
debugging, 4–28

floating-point calculations, 3–14
for parallel HPF programs, 3–44
for specific Alpha processor generation,

3–70, 5–62
global, 5–46, 5–53
implied DO loop collapsing, 5–38, 5–48
inline expansion, 5–47
inlining procedures, 3–48, 5–58
instruction scheduling, 5–55, 5–56, 5–57,

5–58
interprocedure analysis, 5–57
level

summary of options for controlling,
3–56 to 3–58

limiting loop unrolling, 3–72, 5–61
linker, 3–58
local, 5–46, 5–48
loop blocking, 3–57, 3–70, 5–60
loop distribution, 3–57, 3–70, 5–60
loop fusion, 3–57, 3–70, 5–61
loop interchange, 3–57, 3–70, 5–61
loop outer loop unrolling, 3–57, 3–70
loops, 3–57, 3–60, 3–72
loop scalar replacement, 3–57, 3–70
loop transformation, 3–57, 3–70, 5–60
loop unrolling, 5–55
math library use, 3–52
mixed real/complex operations, 5–53
multiplication and division expansion,

5–49
of loops, 5–55 to 5–62
of multiple source files

effect of -c option, 2–9
of statement functions and intrinsics,

5–47
options for

summary, 5–5
outer loop unrolling, 5–61
overview of levels, 5–46
register use, 5–51
removal optimizations, 5–50

Index–37

Optimization (cont’d)
reordering floating-point operations, 5–64
scalar replacement, 5–61
setting options with -fast, 3–29
software pipelining, 3–57, 3–60, 5–58
source code guidelines for (check list),

5–21 to 5–45
speculative execution, 3–65
summary of levels, 5–46
summary of -O options, 5–46
to reduce program size (space

optimizations), 5–47
-tune option, 5–62, 5–63
using correct options with multiple input

files, 2–9, 2–10
using dummy aliases, 5–65
value propagation, 5–50

-1 option, 3–28
-66 option, 3–28
OPTIONS statement, 2–20, 3–1

See also Language Reference Manual
specifying unformatted file floating-point

format, 10–12
ORDERED clause

for DO directive, 6–27
ORDERED directive, 6–6, 6–27
ORDERED option

for PDO directive, 6–39
Order of subscript progression

in I/O, 5–38
or function, 12–13
ORGANIZATION specifier, 7–7, 7–16

See also Language Reference Manual
Orphaned directives, 6–9
OtsGetMaxThreads library routine, D–14
_OtsGetMaxThreads library routine, D–14
OtsGetNumThreads library routine, D–15
_OtsGetNumThreads library routine, D–15
OtsGetThreadNum library routine, D–16
_OtsGetThreadNum library routine, D–16
OtsInitParallel library routine, D–16
_OtsInitParallel library routine, D–16
OtsInParallel library routine, D–17

_OtsInParallel library routine, D–17
_OtsSetNumThreads library routine, D–17
OtsStopWorkers library routine, D–17
_OtsStopWorkers library routine, D–17
Outer loop unrolling, 5–61
Output files

changing output file names (f90), 2–11
created by f90, 2–8
naming (f90), 2–8

Output listing, 2–18, C–1 to C–9
compilation-summary section, C–5
machine-code section, C–2 to C–5
options for, 3–45, 3–64, 3–73

Overflow, 14–1
Overhead

record, 7–12
Overriding implicit synchronization, 6–40

P
-p0 option, 3–60
-p1 and -p option, 3–60
Padding source records, 3–59
PAD specifier, 7–17

See also Language Reference Manual
-pad_source option, 3–59
Page fault

and temporary storage, 5–38
Parallel compiler directives

ATOMIC, 6–5, 6–23
BARRIER, 6–5, 6–24, 6–31, 6–42
binding rules checking, 3–20
CHUNK, 6–31, 6–43
COPYIN, 6–31
CRITICAL, 6–5, 6–25, 6–47, 6–52
CRITICAL SECTION, 6–31, 6–42
DO, 6–6, 6–19, 6–46
DOACROSS, 6–32, 6–41
END CRITICAL, 6–5, 6–25
END CRITICAL SECTION, 6–31, 6–42
END DO, 6–6, 6–19
END MASTER, 6–6, 6–26
END ORDERED, 6–6, 6–27
END PARALLEL, 6–7, 6–9, 6–17, 6–32
END PARALLEL DO, 6–7, 6–22, 6–41

Index–38

Parallel compiler directives (cont’d)
END PARALLEL SECTIONS, 6–7, 6–22,

6–33, 6–41
END PDO, 6–33, 6–39
END PSECTIONS, 6–34, 6–40
END SECTIONS, 6–8, 6–20
END SINGLE, 6–8
END SINGLE PROCESS, 6–34, 6–40
FLUSH, 6–6, 6–26
INSTANCE, 6–32
INSTANCE PARALLEL, 6–32, 6–35,

6–36
INSTANCE SINGLE, 6–32
MASTER, 6–6, 6–26
MP_SCHEDTYPE, 6–32, 6–43
ORDERED, 6–6, 6–27
PARALLEL, 6–7, 6–9, 6–17, 6–32, 6–46
PARALLEL DO, 6–7, 6–22, 6–32, 6–41
PARALLEL SECTIONS, 6–7, 6–22, 6–33,

6–41
PDO, 6–33, 6–39
PDONE, 6–33, 6–44
PSECTIONS, 6–34, 6–40
SECTION, 6–8, 6–20, 6–34, 6–40
SECTIONS, 6–8, 6–20
SINGLE, 6–8, 6–21
SINGLE PROCESS, 6–34, 6–40
summary descriptions, 6–5 to 6–8
TASKCOMMON, 6–34, 6–35, 6–36
THREADPRIVATE, 6–8, 6–10, 6–11,

6–12
Parallel construct, 6–9
PARALLEL directive, 6–7, 6–9, 6–17, 6–32,

6–46
COPYIN clause, 6–11
COPYIN option, 6–36
DEFAULT clause, 6–11, 6–12
DEFAULT option, 6–37
FIRSTPRIVATE clause, 6–11, 6–13
FIRSTPRIVATE option, 6–37
IF clause, 6–18
LOCAL option, 6–37
PRIVATE clause, 6–11, 6–12
PRIVATE option, 6–37
REDUCTION clause, 6–11, 6–14 to 6–16

PARALLEL directive (cont’d)
SHARED clause, 6–11, 6–16
SHARED option, 6–38

PARALLEL DO directive, 6–7, 6–22, 6–32,
6–41

COPYIN clause, 6–11
COPYIN option, 6–36
DEFAULT clause, 6–11, 6–12
FIRSTPRIVATE clause, 6–11, 6–13
FIRSTPRIVATE option, 6–37
LASTLOCAL option, 6–37
LASTPRIVATE clause, 6–11, 6–13
LOCAL option, 6–37
PRIVATE clause, 6–11, 6–12
PRIVATE option, 6–37
REDUCTION clause, 6–11, 6–14 to 6–16
REDUCTION option, 6–37
SHARED clause, 6–11, 6–16
SHARED option, 6–38

Parallel execution
directives, 3–54, 3–59, 6–1 to 6–70
for multiple compile units, 3–43
KAP for Compaq Fortran, 5–3
options for HPF programs, 3–42 to 3–46
requesting directed decomposition, 3–54,

3–59
thread model, 6–9, 6–34
using directed decomposition, 6–1 to 6–70

Parallel HPF and Non-Parallel HPF Code,
calling between, 11–44

Parallel library routines, D–1 to D–17
OpenMP Fortran API run-time, D–1

reference page listing, 12–13
Ots and mpc threads routines, D–12

Parallel processing
thread model, 6–9

Parallel programming environment, 6–1 to
6–70

Parallel region, 6–10, 6–17, 6–38
Parallel regions

debugging, 6–60
Parallel run-time

library routines, D–1 to D–17

Index–39

PARALLEL SECTIONS directive, 6–7, 6–22,
6–33, 6–41

COPYIN clause, 6–11
COPYIN option, 6–36
DEFAULT clause, 6–11, 6–12
FIRSTPRIVATE clause, 6–11, 6–13
FIRSTPRIVATE option, 6–37
LASTPRIVATE clause, 6–11, 6–13
LOCAL option, 6–37
PRIVATE clause, 6–11, 6–12
PRIVATE option, 6–37
REDUCTION clause, 6–11, 6–14 to 6–16
SHARED clause, 6–11, 6–16

Parallel threads routines, D–12
PARAMETER statements, alternative syntax

for, 3–55
Parentheses in expressions

maximum allowed, 2–18
Pathname

absolute, 7–19
application of defaults, 7–19 to 7–23
directory, 7–19
effect of DEFAULTFILE specifier, 7–19
I/O statements default use, 7–14 to 7–24
in I/O statements, 7–18 to 7–23
OPEN statement specifiers, 7–15, 7–19
relative, 7–19
setting environment variables for, 7–23
tilde character (~), 7–19, 7–21

PDO directive, 6–33, 6–39
BLOCKED option, 6–42
CHUNK option, 6–42
FIRSTPRIVATE option, 6–37
LASTLOCAL option, 6–37
LOCAL option, 6–37
MP_SCHEDTYPE option, 6–43
ORDERED option, 6–39
PRIVATE option, 6–37
REDUCTION option, 6–37

PDONE directive, 6–33, 6–44
Performance, 5–1 to 5–66

arithmetic operators and run-time
performance, 5–44

array use efficiency, 5–31, 5–37
-assume dummy_aliases option, 5–65

Performance (cont’d)
checking

for unaligned data, 5–24
process limits, 1–2, 5–11

choosing optimal record type, 5–41
compilation, 1–2, 5–11
compilation times and optimization levels,

5–45
controlling procedure inlining, 5–62
cord and feedback files, 5–19
data alignment efficiency, 5–21 to 5–29
data types and run-time performance,

5–43, 5–44
DO loop coding and run-time performance,

5–45
effect of formatted files on run-time

performance, 5–37
equivalence and run-time performance,

5–45
feedback files, 5–19
-fp_reorder option, 5–64
internal subprograms and run-time

performance, 5–45
limiting loop unrolling, 5–61
measuring

optimized programs, 5–51
using shell commands, 5–12

mixed data type operations and run-time
performance, 5–43

nonshared object optimizations, 3–58,
5–63

OPEN statement specifiers for efficient
I/O, 5–39 to 5–41

optimization for Alpha processor
generation, 3–70, 5–62

optimization levels, 5–45 to 5–61
options

controlling
alignment, 3–6
dummy aliases, 3–13
floating-point calculations, 3–14
parallel execution, 3–42, 3–54,

3–59
for run-time efficiency, 5–5
nonshared object optimizations, 3–58
related to

Index–40

Performance
options

related to (cont’d)
math library use, 3–52
profiling, 3–60

related to profiling, 3–60
that improve performance, 5–5
that slow performance, 5–9

profiling code, 5–14 to 5–20
basic block sampling, 5–17
call graph information, 5–16
PC sampling, 5–15
source line sampling, 5–18

realistic measurements, 5–51
record I/O buffers, 5–39
redirecting scrolled output and run-time

performance, 5–12
reordering floating-point operations, 5–64
run-time, 5–1 to 5–66

I/O efficiency, 5–36 to 5–42
source code guidelines for run-time

efficiency, 5–21 to 5–45
statement functions and run-time

performance, 5–45
timing

using routines, 5–14, 12–6, 12–7
using shell commands, 5–12

perror library routine, 8–10, 12–14
-pg option, 3–60
Physical record, 7–46
physical_to_abstract library routine,

12–17
-pipeline option, 3–60
pixie command, 1–13

for basic block sampling, 5–17
for source line sampling, 5–18
related f90 options, 3–60
use with f90, 5–14 to 5–20
use with feedback files, 5–19

-pixie option
with prof command, 5–18

Platform labels, xxviii
Pointers

See also Language Reference Manual
C language, 11–39

Pointers (cont’d)
effect of explicit interface, 11–9
passed between Compaq Fortran and C,

11–39
passing as arguments, 11–9
passing between C and Compaq Fortran,

11–40
use with Compaq Fortran 77, A–34

-p option, 3–60
-P option (cpp), 3–25
POSITION specifier, 7–16, 7–32

See also Language Reference Manual
Preconnected files

OPEN statement, 7–14
Prefetch instructions, 5–55
Prefixes

Compaq Fortran parallel directives, 6–30
OpenMP conditional compilation

fixed source form, 6–4
free source form, 6–5

OpenMP directives, 6–3
Preprocessor

See also cpp preprocessor
See also fpp preprocessor
See also KAP preprocessor
improving run-time performance, 5–3

Preprocessor symbols
defining, 3–26
undefining, 3–72

printenv command (shell)
viewing environment variables, B–1

PRINT statement, 7–3
See also Language Reference Manual

PRIVATE clause
for DO directive, 6–11, 6–12
for PARALLEL directive, 6–11, 6–12
for PARALLEL DO directive, 6–11, 6–12
for PARALLEL SECTIONS directive,

6–11, 6–12
for SECTIONS directive, 6–11, 6–12
for SINGLE directive, 6–11, 6–12
using to resolve dependences, 6–47

Index–41

PRIVATE option
for PARALLEL directive, 6–37
for PARALLEL DO directive, 6–37
for PARALLEL SECTIONS directive,

6–37
for PDO directive, 6–37
for PSECTIONS directive, 6–37
for SINGLE PROCESS directive, 6–37

Privatizing named common blocks, 6–10,
6–35

Procedure
types of subprograms, 11–3

Procedure interface
See also Language Reference Manual
argument passing rules, 11–5
array arguments, 11–8
changing default passing mechanisms,

11–12, 11–14
C language main program

-nofor_main option, 3–55
Compaq Fortran 77 and Compaq Fortran

passing arguments, A–33 to A–38
Compaq Fortran and C, 11–10 to 11–22,

11–23 to 11–44
Compaq Fortran descriptor format, 11–10
Compaq Fortran subprograms, 11–1 to

11–14
explicit, 11–3
implicit, 11–3
module, 11–2
modules, 11–4
pointer arguments, 11–9
procedure interface block, 11–2, 11–4
types of subprograms, 11–3

Procedures
See also Language Reference Manual
analyzing performance, 5–14
inlining, 3–48, 5–45, 5–48, 5–57, 5–62

compiling multiple files, 5–5
use in debugging, 4–23

Process control
library routines, 12–5 to 12–15

Process information
returning (library routine), 12–10

Process limits
checking, 5–11
increasing file descriptor limit, 1–2
increasing stack size, 1–2

prof command, 1–13
for basic block sampling, 5–17
for PC sampling, 5–15
for source line sampling, 5–18
options to limit report contents, 5–15
related f90 options, 3–60
use with f90, 5–14 to 5–20
use with feedback files, 5–19

PROFDIR environment variable, 5–15
Profiling code

basic block sampling, 5–17
call graph information, 5–16
Compaq Tru64 UNIX tools, 1–13
options related to, 3–60
PC sampling, 5–15
source line sampling, 5–18
timing program execution

using routines, 5–14, 12–7
using shell commands, 5–12

with f90, 5–14 to 5–20
Program

See also Executable programs
compiling, 1–1, 1–5, 1–7, 2–1
parallel execution

KAP preprocessor, 5–3
related HPF command-line options,

3–42
running, 1–8
section, 5–55
size

dividing large source programs
(fsplit), 1–14

effect of -call_shared option,
3–17

effect of optimization levels, 5–45
insufficient virtual memory run-time

error, 8–20
limitations, 2–18
process stack size, 1–2
space optimizations, 5–47

terminating (library routine), 12–5

Index–42

Program (cont’d)
threaded execution

related command-line options, 3–63,
3–70

transportability
See Compatibility

units
creating modules for, 11–3

Program counter sampling, 5–14
PROGRAM statement, 1–5, 11–1

See also Language Reference Manual
Program transportability, A–1 to A–28
PSECTIONS directive, 6–34, 6–40

FIRSTPRIVATE option, 6–37
LOCAL option, 6–37
PRIVATE option, 6–37

-pthread option, 3–70
putc library routine, 12–14

Q
qsort library routine, 12–14, 12–22
Quotation mark character

See Language Reference Manual
effect of -vms option, 3–75

R
-r16 option, 3–62
-r8 option, 3–62
rand library routine, 12–14
random library routine, 12–14
Random number generation (Compaq

Extended Math Library), 13–2
Random number generator

library routines for, 12–10, 12–14
RAN function

See Language Reference Manual; Intrinsic
procedures

Ranges
for complex constants, 9–3
for integer constants, 9–2
for logical constants, 9–2
for real constants, 9–3

Rank, 11–7
ranlib command, 1–14
rcp command

use in porting OpenVMS Fortran data,
A–26

Reading deleted records
effect of -vms option, 3–76

READONLY specifier, 7–16
See also Language Reference Manual

READ statement, 7–3
See also Language Reference Manual
ADVANCE specifier, 7–33
deleted records

effect of -vms option, 3–76
Real data types, 9–8, 9–10 to 9–11

See also Language Reference Manual
declarations and options, 3–61, 9–9
native IEEE representation, 9–9 to 9–11
ranges, 9–3, 9–10
VAX representation, A–28 to A–30

REAL declarations
options to control size of, 3–62

REAL intrinsic function
See also Language Reference Manual
options controlling size returned, 3–62

-real_size option, 3–61
RECL specifier, 7–16

See also Language Reference Manual
excluding overhead bytes, 7–12
option to specify units, 3–12
performance considerations, 5–41
specifying for fixed-length records, 7–10,

7–42
units for formatted files, 7–13
units for unformatted files, 7–13

Record
logical, 7–45
physical, 7–46
record types, 7–9

Record access, 7–30
Record access mode

direct, 7–30
limitations by file organization and record

type, 7–31

Index–43

Record access mode (cont’d)
OPEN statement specifiers, 7–30
sequential, 7–30

Record I/O, 7–9 to 7–12
ADVANCE specifier, 7–33
advancing and nonadvancing, 7–33
amount of data transferred by I/O

statements, 7–34
available I/O statements and forms, 7–6
buffers and disk I/O, 5–39
data transfer, 7–34
END specifier, 7–33
EOR specifier, 7–33
flush buffers (library routine), 12–7, 12–9
in internal files, 7–8
length

effect on performance, 5–41
locking records, 7–31
maximum length, 7–12
overhead bytes, 7–12
performance, 5–39
position, 7–32
record types, 7–11 to 7–12
reposition file (library routine), 12–9
SIZE specifier, 7–33
statement specifiers, 7–29

Record length
INQUIRE statement, 7–25
maximum, 7–12

RECORD statement
See also Language Reference Manual
and data alignment, 5–29
causes of unaligned data, 5–21

Record structures
See also Language Reference Manual
accessing variables in the debugger, 4–18
alignment of, 5–29
memory diagrams of, 5–29
options controlling alignment, 3–8
order of data in, 5–28
storage of, 5–28

Record type
available file organizations, 7–10
choosing for optimal run-time

performance, 5–41

Record type (cont’d)
converting nonnative data

See also Language Reference Manual
OPEN statement defaults, 10–13

declaring
See Language Reference Manual

fixed-length, 7–10, 7–42
general description, 7–9
importance of specifying in OPEN

statement, 7–30
limitations on access modes, 7–31
maximum record length, 7–12
OpenVMS Fortran portability

considerations, A–25
overhead, 7–12
portability considerations, 7–10, 7–11
porting data with OpenVMS systems,

A–25
segmented, 7–10, 7–45
stream, 7–10, 7–47

differences with OpenVMS systems,
A–22

stream_CR, 7–10, 7–47
stream_LF, 7–10, 7–47
variable-length, 7–10, 7–43
VAX FORTRAN portability considerations,

A–25
RECORDTYPE specifier, 7–11, 7–16

See also Language Reference Manual
REC specifier, 7–29

See also Language Reference Manual
Recursion

See also Language Reference Manual
options related to, 3–62

-recursive option, 3–62
Redirection, 5–42
REDUCTION clause

for DO directive, 6–11, 6–14 to 6–16
for PARALLEL directive, 6–11, 6–14 to

6–16
for PARALLEL DO directive, 6–11, 6–14

to 6–16
for PARALLEL SECTIONS directive,

6–11, 6–14 to 6–16

Index–44

REDUCTION clause (cont’d)
for SECTIONS directive, 6–11, 6–14 to

6–16
Reduction operators and intrinsics

initialization values, 6–15
REDUCTION option

for PARALLEL DO directive, 6–37
for PDO directive, 6–37

-reentrancy keyword option, 3–63
Reentrant program

threaded execution, 3–63, 3–70
Reference pages

and man command, 12–18
for 3f and 3hpf library routines, 12–18

References
See also Language Reference Manual;

EXTERNAL statement; USE
statement

unresolved (linker), 2–19
Region

nested parallel, 6–19
parallel, 6–10

Register usage
and listing of assembler code, C–5
array index, 5–52
display by debugger, 4–13
effect of optimization, 5–51
effect of VOLATILE statement, 5–53
holding variables, 5–52
option to create assembler file, 3–64
option to create assembler listing, 3–64

Relational operators
See also Language Reference Manual
use in debugging, 4–23

Relative file
access modes, 7–30
general description, 7–7
record types for, 7–30
specifying

See OPEN statement; Language
Reference Manual

importance of OPEN statement
specifiers, 7–30

specifying RECL when creating, 7–7

Relative organization, 7–7
Relative pathname, 7–19
Release notes

displaying, xxvii
Removal optimizations, 5–50 to 5–51
rename library routine, 12–14
Replication

code, 6–49
RESHAPE intrinsic procedure, 11–42
Resolving dependences

loop-carried, 6–48
manually, 6–47
using temporary variables, 6–47

Restructuring a loop, 6–51
Return values

See also Error handling; Function return
values

from f90 command to shell, 2–15
from Run-Time Library to shell, 8–6

REWIND statement, 7–3, 7–32
See also Language Reference Manual

REWRITE statement, 7–4
See also Language Reference Manual

Rounding modes
floating-point calculations, 3–38

Row-major order, 5–32
rshift library routine, 12–14
Run-Time Library (RTL)

See also Library routines
and implied-DO loop collapsing, 5–38,

5–48
error processing performed by, 8–1 to

8–32
message catalog location, 8–5
requesting threaded execution, 3–63,

3–70
transporting message file, 8–5
use from C programs (routines), 12–8
using latest version for run-time

efficiency, 5–2
values returned to shell, 8–6

Run-time parallel environment
adjusting, 6–56

Index–45

RUNTIME schedule type, 6–28, 6–44

S
Scalar replacement, 5–61
SCHEDULE clause

balancing the workload, 6–55
for DO directive, 6–27

Schedule types, 6–27, 6–43
DYNAMIC, 6–28, 6–43, 6–44
GSS, 6–44
GUIDED, 6–28, 6–43, 6–44
INTERLEAVED, 6–43, 6–44
RUNTIME, 6–28, 6–44
SIMPLE, 6–43
specifying a default, 6–43
STATIC, 6–27, 6–43, 6–44

Scheduling
instruction, 5–53

Scratch file, 7–9
See also Language Reference Manual

SCRATCH specifier
See Language Reference Manual

SCRATCH value
for STATUS specifier, 7–9

Searching for include files, 3–47
SECTION directive, 6–8, 6–20, 6–34, 6–40
SECTIONS directive, 6–8, 6–20

FIRSTPRIVATE clause, 6–11, 6–13
LASTPRIVATE clause, 6–11, 6–13
PRIVATE clause, 6–11, 6–12
REDUCTION clause, 6–11, 6–14 to 6–16

Segmented records, 7–10, 7–45 to 7–46
OpenVMS Fortran data compatibility,

A–25
portability considerations, 7–10, 7–11

SEQUENCE statement
See also Language Reference Manual
derived-type data order, 5–22, 11–38

Sequential access mode, 7–30
optimal record types, 5–41

Sequential file
access modes, 7–30
general description, 7–7
record types for, 7–30

Sequential file (cont’d)
specifying

See also OPEN statement; Language
Reference Manual

importance of OPEN statement
specifiers, 7–30

Sequential organization, 7–7
setenv command, B–2
setenv command

See also Environment variables
setenv library routine

example, 11–33
SHARED clause

for PARALLEL directive, 6–11, 6–16
for PARALLEL DO directive, 6–11, 6–16
for PARALLEL SECTIONS directive,

6–11, 6–16
Shared library

creating, 2–25 to 2–28
file name suffix, 2–25
required options, 2–25
restrictions, 2–27
using f90, 2–26
using f90, 2–25
using f90 and ld, 2–25, 2–26

installing, 2–28
linker searching options, 3–17, 3–18,

3–50 to 3–51
list searched by f90 command, 2–21
obtaining information about, 1–13
options for creating, 2–25, 3–18
recognized file name suffix, 2–3
requirements for symbol reference, 2–25
restrictions creating, 2–27
sharing common blocks across processes,

12–14
specifying with f90, 2–21 to 2–25

Shared memory access
See also VOLATILE statement
granularity, 3–41
library routines (3f), 12–4
requesting threaded program execution,

3–63, 3–70

Index–46

Shared object library, 2–24
-shared option, 2–24, 3–18

creating shared libraries, 2–25, 2–26
SHARED option

for PARALLEL directive, 6–38
for PARALLEL DO directive, 6–38

SHARED specifier, 7–16, 7–31
See also Language Reference Manual

Shared variables
debugging, 6–63

Sharing files
OPEN statement, 7–31

shcom_connect library routine, 12–14,
12–20

Shell
return values at program termination,

8–6
return values from f90 command, 2–15

Shell command execution
library routine for, 12–15

short library routine, 12–14
-show code option, 3–64
-show hpfinfo option, 3–45
-show hpf option, 3–45, 3–64
-show hpf_all option, 3–45
-show include option, 3–64
-show map option, 3–64
-show wsfinfo option

See -show hpfinfo option
signal library routine, 8–11, 12–14
Signal processing routines (Compaq

Extended Math Library), 13–2
Signals

and error handling, 8–11
arithmetic exception handling, 3–33
caught by Compaq Fortran RTL, 8–11
debugger ignore command, 4–25
definition of, 8–11
floating-point exception options and

routines, 3–33
handling in debugger, 4–25, 4–26
library routines for, 12–11, 12–14
SIGFPE, 8–11
SIGILL, 8–11, 8–27
SIGINT, 8–11, 8–24

Signals (cont’d)
SIGIOT, 8–11
SIGQUIT, 8–11, 8–25
SIGSEGV, 8–11
SIGTERM, 8–11
SIGTRAP, 8–11, 8–26, 8–27
summary of floating-point underflow

options, 3–22
summary of integer overflow options,

3–21
value returned to the shell at program

stop, 8–6
SIMPLE schedule type, 6–43
SINGLE directive, 6–8, 6–21

FIRSTPRIVATE clause, 6–11, 6–13
PRIVATE clause, 6–11, 6–12

SINGLE PROCESS directive, 6–34, 6–40
FIRSTPRIVATE option, 6–37
LOCAL option, 6–37
PRIVATE option, 6–37

SIZE specifier, 7–33
See also Language Reference Manual

sleep library routine, 12–15
SNGL intrinsic function

See also Language Reference Manual
options controlling size returned, 3–62

Software pipelining, 3–57, 5–47, 5–58, 5–61
-S option, 3–64
Sorting (Compaq Extended Math Library),

13–2
Source code

case control
options for, 3–54

coding restrictions, 2–17
columns

See Language Reference Manual
include files, 2–6
limits, 2–17
listing, 2–18

directives to specify title and subtitle,
2–21

module files, 2–5
names

case sensitivity, 3–54
recognized file name suffixes, 2–2

Index–47

Source code (cont’d)
source form and file name suffix, 2–2

Source code listing, 2–12, C–1 to C–9
defaults and applicable options, 3–73
general description, C–1 to C–2
options for, 3–45, 3–64, 3–65, 3–73, C–1
output listing section, C–1 to C–2

Source comments
options for, 3–27

Source files
analyzing source code using Compaq

Tru64 UNIX tools, 1–13
building using Compaq Tru64 UNIX tools,

1–13
creating and revising, 1–5, 1–7
managing using Compaq Tru64 UNIX

tools, 1–13
Source form

See also Language Reference Manual
and file name suffix, 1–3
recognized file name suffixes, 2–2

Source format
options for specifying, 3–31

Source line CPU cycle use, 5–15
Source lines

coding restrictions, 2–17
form-feed effect on listing file, 3–73
option controlling maximum length (fixed

form), 3–28
Source records

option controlling padding, 3–59
-source_listing option, 3–65
Space optimization, 5–47
Sparse linear system routines (Compaq

Extended Math Library), 13–2
Specifier options (Fortran 90)

See I/O statements; Language Reference
Manual

Specifying
chunk size, 6–27 to 6–28, 6–42
default chunk size, 6–43
default schedule type, 6–43
schedule type, 6–27 to 6–28, 6–43

-speculate option, 3–65, 5–63
Split lifetime analysis, 5–53
Square root and floating-point conversion

extension, 3–11
srand library routine, 12–15
Stack

increasing size per process, 1–2
space, 6–58

Stack trace
disable output of, B–5
information, 8–3

Standard I/O file
I/O statements default use, 7–14

Standard input file
reading from a redirected, 5–42

Standards
ANSI FORTRAN-77 and FORTRAN 66,

1–15
Fortran 90, 1–15
Fortran 95, 1–15
Fortran 95/90

checking, 3–66
High Performance Fortran language,

1–15
OpenMP, 1–15

Statement functions
See also Language Reference Manual
in data flow analysis, 5–47
inline expansion of, 3–48, 5–47
use for efficient run-time performance,

5–45
Statement labels

See Language Reference Manual; Labels;
Source code

Static extent, 6–9
-static option, 3–17
STATIC schedule type, 6–27, 6–43, 6–44
stat library routine, 12–15
STATUS specifier, 7–2, 7–16

See also Language Reference Manual
-std90 option, 3–68
-std95 option, 3–68
STDCALL keyword, 11–16

Index–48

stderr, 7–2, 7–14
stdin

default logical unit number, 7–2, 7–14
default use with I/O statements, 7–24

-std option, 3–29, 3–66, 3–67
stdout

default logical unit number, 7–2, 7–14
default use with I/O statements, 7–24

Storage order
natural ascending, 5–32
unnatural, 5–38

Stream records, 7–10, 7–47
differences with OpenVMS Fortran, A–22
OpenVMS data compatibility, A–25

Stream_CR records, 7–10, 7–47 to 7–48
OpenVMS data compatibility, A–25
portability considerations, 7–11

Stream_LF records, 7–10, 7–47 to 7–48
OpenVMS data compatibility, A–25
portability considerations, 7–11
use for optimal performance, 5–41

Strength reduction, 5–53
strings command, 1–13
strip command, 1–14, 4–3
Structures

See also Language Reference Manual;
Record structures

nesting limit, 2–18
STRUCTURE statement

See also Language Reference Manual
causes of unaligned data, 5–21

Subprogram
See also Language Reference Manual;

Procedure interface
arguments, 11–1, A–34

See also Language Reference Manual
C and Fortran, 11–16, 11–23

definition of, 11–1
external, 11–4

case-sensitive names, 3–54
inlining, 3–48, 5–45, 5–57, 5–62

compiling multiple files, 5–5
internal (host association), 11–3
module (use association), 11–3
references

Subprogram
references (cont’d)

case-sensitive names, 3–54
requiring a procedure interface block for

explicit interface, 11–4
Subrecord, 7–44
Subroutine

See also Language Reference Manual
alternate entry points, 4–28
declaration statements, 11–2

Subroutine calls
See also Library routines
between Compaq Fortran and C, 11–29
in data flow and split lifetime analysis,

5–54
SUBROUTINE statement, 11–2

See also Language Reference Manual
Suffix

file name, 2–2 to 2–3
SUM intrinsic, 1–7
Summary descriptions

Compaq Fortran parallel directives, 6–31
to 6–34

compiler options by function, 3–2 to 3–6
3f library routines, 12–2 to 12–15
language compatibility, A–1 to A–4
OpenMP directives, 6–5 to 6–8

Symbolic names
See also Language Reference Manual
maximum length, 2–18

Symbol table
created by compiler, 1–11, 3–40, 4–3
defaults and applicable options, 3–40
options for, 3–40, 4–2

symlnk library routine, 12–15
Synchronization

defined, 6–10
overriding, 6–40

Synchronization constructs
Compaq Fortran parallel, 6–41 to 6–42
defined, 6–10
OpenMP, 6–23 to 6–27

Index–49

-synchronous_exceptions option, 3–69,
4–25, 4–26

-syntax_only option, 3–69
System

error codes, 8–10
information

library routines for, 12–9
System calls

Fortran jacket routine, 12–1
Fortran jacket routines, 12–4
using to open file, 7–36

system library routine, 12–15
System time

returning (library routine), 12–5, 12–7,
12–10, 12–11

T
TASKCOMMON directive, 6–34, 6–35, 6–36
-taso option, 3–76
Team of threads, 6–9
Temporary files

created by f90, 2–9
directory used by f90, 2–9
retaining with f90, 3–50
TMPDIR environment variable used by

f90, 2–9
Temporary variables

using PRIVATE clause, 6–47
Terminating loop execution early, 6–44
Threaded program execution

alignment requirements, 3–41
parallel processing, 6–9, 6–34
related command-line options, 3–41, 3–63
requesting, 3–63, 3–70
VOLATILE statement, 3–41

Thread model
parallel processing, 6–9

THREADPRIVATE directive, 6–8, 6–10,
6–11, 6–12

-threads option, 3–70
Tilde character (~)

in pathname, 7–21

Time
returning (library routine), 12–5, 12–6,

12–7, 12–10, 12–11, 12–15
time library routine, 12–15
Timing program execution

using routines, 5–14, 12–6, 12–7
using shell commands, 5–12

TMPDIR environment variable, B–4, B–7
use during compilation, 2–9, 3–50
use with scratch files, 7–9

TotalView, 6–65
Traceback information, 8–3
Tracepoint, 4–2
-transform_loops option, 3–70
Transportability

See Compatibility; Data, converting
unformatted files

ttynam library routine, 12–15
-tune host option

effect of -fast option, 3–29
-tune option, 3–70, 5–62
Type

schedule, 6–27
TYPE specifier, 7–16

See also Language Reference Manual
TYPE statement, 7–4

See also Language Reference Manual

U
UBOUND intrinsic, 1–7
umask library routine, 12–15
Unaligned data, 5–21

See also Alignment
causes, 5–21 to 5–23
checking for, 5–24
compiler, 5–24
error messages

compiler, 3–77
run-time, 5–24

using debugger to locate, 4–26
-Uname option, 3–26, 3–72

Index–50

-Uname option (cpp), 3–72
Underflow, 14–1
Unformatted data, 7–5

and DO loop collapsing, 5–48
and I/O statements, 7–6
and nonnative numeric formats, 10–3
efficient run-time performance, 5–37

Unformatted files
converting nonnative data

record type, 10–13
methods of specifying endian format,

10–8
obtaining numeric specifying format,

10–8
specifying format, 10–3 to 10–6
using command-line option to specify

format, 3–22
using command-line option to specify

RECL units, 3–12
using -convert option to specify format,

10–13
using environment variable method to

specify format, 10–9, 10–10
using OPEN Statement

CONVERT=keyword method
to specify format, 10–11

using OPTIONS statement /CONVERT to
specify format, 10–12

Unformatted I/O statements, 7–5
See also Language Reference Manual

UNIT specifier, 7–2, 7–16, 7–18
See also Language Reference Manual

unlink library routine, 12–15
UNLOCK statement, 7–4

See also Language Reference Manual
Unnatural storage order, 5–38
Unresolved references, 2–19
-unroll num option, 3–72, 5–61
unset command, 7–24, B–2
unsetenv command, B–2
-U option, 3–72
User-defined (derived) type data

causes of unaligned data, 5–21
options controlling alignment, 5–22, 5–29

USEROPEN function, 7–36 to 7–38
argument passing, 7–36
example calling program (Fortran 95/90),

7–40
example program (C), 7–39
file descriptor requirements, 7–38
for sockets, 7–18
routines available to open the file, 7–37,

7–38
USEROPEN specifier, 7–16, 7–36

See also Language Reference Manual
USE statement, 1–6, 11–2

See also Language Reference Manual
Utility routines (Compaq Extended Math

Library), 13–2

V
Value propagation, 5–50 to 5–51
Variable

latch, 6–25
Variable format expression, 5–39
Variable-length records, 7–10, 7–43

OpenVMS data compatibility, A–25
portability considerations, 7–10
use for optimal performance, 5–41

Variables
See also Language Reference Manual
accessing in debugger, 4–16
alignment, 3–6, 5–21 to 5–30
assigned but never used, 5–51
Fortran complex, 4–21
treatment as automatic or static

related options, 3–17, 3–62
used before value assigned

option controlling warning message,
3–78

Variables declared in other languages,
accessing, 11–22

VAX FORTRAN
See Compaq Fortran 77; VAX systems

VAX systems
Compaq Fortran 77 (OpenVMS)

extensions not supported, A–20 to
A–28

Index–51

VAX systems
Compaq Fortran 77 (OpenVMS) (cont’d)

floating-point data comparison, A–27
floating-point data conversion

guidelines, A–26
floating-point data representation,

A–28
porting floating-point data, A–24

converting data to IEEE formats, 10–1,
10–3

floating-point data
COMPLEX, A–30
COMPLEX*16, A–31
converting, 10–1, 10–3
D_float, A–30
F_float, A–28
G_float, A–29
H_float, A–32
representation, A–28 to A–32

options for Fortran compatibility (f90),
3–74

Vector mathematics (Compaq Extended Math
Library), 13–2

-version option, 3–74
Virtual memory

allocating and freeing (library routine),
12–7

-vms option, 3–19, 3–74 to 3–76
effect on -align records, 5–29
effect on other options, 3–74

VMS systems
See also VAX systems; OpenVMS Fortran

VOLATILE statement
See also Language Reference Manual
and data flow and split lifetime analysis,

5–53
and granularity, 3–41
and implied-DO loop collapsing, 5–38
for threaded applications, 3–41
use with %LOC, 11–13
when to use, 5–53

-v option, 3–74
-V option, 3–73

example, 2–10, 2–12

-VS linker option, 3–76

W
wait library routine, 12–15
-warn argument_checking option, 3–77
-warn declarations option, 3–78
-warn hpf option, 3–78
-warn ignore_loc option, 3–78
Warning messages

about a variable declared but never used,
3–79

about questionable programming
practices, 3–79

about statement functions never called,
3–79

alignment (compile-time), 3–77
alignment (run-time), 5–24
argument checking (compile-time), 3–77
arithmetic exception handling (run-time),

3–20, 3–33
floating-point underflow (run-time), 3–22,

3–33
format mismatches (run-time), 3–19
format truncation (run-time), 3–21
integer overflow (run-time), 3–21
language dialects (compile-time), 3–66
limiting (compile-time), 3–27, 3–77
nonprinting ASCII characters

(compile-time), 3–73
parallel compiler directives, binding rules,

3–20
raising severity (compile-time), 3–79
requesting additional (compile-time),

3–66, 3–77
standards checking (compile-time), 3–66
suppressing all (compile-time), 3–79
suppressing NONGRNACC, 3–78
undeclared variable use (compile-time),

3–78
variables used before value assigned

(compile-time), 3–78
-warning_severity option, 3–79

Index–52

-warn noalignments option, 3–77
-warn nogranularity option, 3–78
-warn nouncalled option, 3–79
-warn nouninitialized option, 3–78
-warn nounused option, 3–79
-warn nousage option, 3–79
-warn truncated_source option, 3–78
-warn uncalled option, 3–79
-warn unused option, 3–79
-warn usage option, 3–79
Watchpoint, 4–2
-what option, 3–74
-Wl,-xxx option, 3–76
-w option, 3–79
Worksharing constructs, 6–10

Compaq Fortran parallel, 6–38 to 6–40
OpenMP, 6–19 to 6–21

-Wp,-xxx option, 3–26

Write-hint instructions, 5–55
WRITE statement, 7–3

See also Language Reference Manual
ADVANCE specifier, 7–33

-wsf option, 3–42

X
xor function, 12–15

Z
Zero

representation in Alpha floating-point
data, 9–15

Zero-sized arrays, 3–44
ZEXT function, 11–13

See also Language Reference Manual

Index–53

