
OpenVMS Alpha System
AnalysisToolsManual
Order Number: AA–REZTC–TE

June 2002

This manual explains how to use various Alpha system analysis tools to
investigate system failures and examine a running Compaq OpenVMS
system.

Revision/Update Information: This manual supersedes the OpenVMS
Alpha System Analysis Tools Manual,
Version 7.3

Software Version: OpenVMS Alpha, Version 7.3-1

Compaq Computer Corporation
Houston, Texas

© 2002 Compaq Information Technologies Group, L.P.

Compaq, the Compaq logo, Alpha, OpenVMS, Tru64, VAX, and VMS are trademarks of Compaq
Information Technologies Group, L.P.in the U.S. and/or other countries.

UNIX and X/Open are trademarks of The Open Group in the U.S. and/or other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6549

The Compaq OpenVMS documentation set is available on CD-ROM.

Contents

Preface . xi

1 Overview of System Analysis Tools

1.1 System Dump Analyzer (SDA) . 1–1
1.2 System Code Debugger (SCD) . 1–1
1.3 System Dump Debugger (SDD) . 1–2
1.4 Watchpoint Utility . 1–2
1.5 Delta/XDelta Debugger . 1–2
1.6 Dump Off System Disk (DOSD) . 1–3

Part I OpenVMS Alpha System Dump Analyzer (SDA)

2 SDA Description

2.1 Capabilities of SDA . 2–1
2.2 System Management and SDA . 2–3
2.2.1 Writing System Dumps . 2–3
2.2.1.1 Dump File Style . 2–3
2.2.1.2 Comparison of Full and Selective Dumps . 2–4
2.2.1.3 Controlling the Size of Page Files and Dump Files 2–5
2.2.1.4 Writing to the System Dump File . 2–5
2.2.1.5 Writing to the Dump File off the System Disk 2–6
2.2.1.6 Writing to the System Page File . 2–7
2.2.2 Saving System Dumps . 2–8
2.2.3 Invoking SDA When Rebooting the System . 2–8
2.3 Analyzing a System Dump . 2–9
2.3.1 Requirements . 2–10
2.3.2 Invoking SDA . 2–10
2.3.3 Mapping the Contents of the Dump File . 2–10
2.3.4 Building the SDA Symbol Table . 2–11
2.3.5 Executing the SDA Initialization File (SDA$INIT) 2–11
2.4 Analyzing a Running System . 2–12
2.5 SDA Context . 2–12
2.6 SDA Command Format . 2–14
2.6.1 General Command Format . 2–14
2.6.2 Expressions . 2–14
2.6.2.1 Radix Operators . 2–15
2.6.2.2 Arithmetic and Logical Operators . 2–15
2.6.2.3 Precedence Operators . 2–16
2.6.2.4 Symbols . 2–16
2.6.3 SDA Display Mode . 2–21
2.7 Investigating System Failures . 2–22
2.7.1 General Procedure for Analyzing System Failures 2–22

iii

2.7.2 Fatal Bugcheck Conditions . 2–23
2.7.2.1 Mechanism Array . 2–23
2.7.2.2 Signal Array . 2–25
2.7.2.3 64-Bit Signal Array . 2–27
2.7.2.4 Exception Stack Frame . 2–28
2.7.2.5 SSRVEXCEPT Example . 2–28
2.7.2.6 Illegal Page Faults . 2–33
2.8 Inducing a System Failure . 2–33
2.8.1 Meeting Crash Dump Requirements . 2–34
2.8.2 Procedure for Causing a System Failure . 2–34

3 ANALYZE Usage Summary and Qualifiers

3.1 ANALYZE Usage Summary . 3–1
3.2 ANALYZE Qualifiers . 3–2

/CRASH_DUMP . 3–3
/OVERRIDE . 3–4
/RELEASE . 3–5
/SHADOW_MEMBER . 3–6
/SYMBOL . 3–8
/SYSTEM . 3–9

4 SDA Commands

@(Execute Command) . 4–3
ATTACH . 4–4
COPY . 4–5
DEFINE . 4–7
DEFINE/KEY . 4–9
DUMP . 4–12
EVALUATE . 4–15
EXAMINE . 4–18
EXIT . 4–22
FORMAT . 4–23
HELP . 4–26
MAP . 4–28
MODIFY DUMP . 4–31
READ . 4–33
REPEAT . 4–41
SEARCH . 4–43
SET CPU . 4–45
SET ERASE_SCREEN . 4–47
SET FETCH . 4–48
SET LOG . 4–50
SET OUTPUT . 4–51
SET PROCESS . 4–53
SET RMS . 4–56
SET SIGN_EXTEND . 4–59
SET SYMBOLIZE . 4–60

iv

SHOW ADDRESS . 4–61
SHOW BUGCHECK . 4–63
SHOW CALL_FRAME . 4–64
SHOW CLUSTER . 4–66
SHOW CONNECTIONS . 4–72
SHOW CPU . 4–74
SHOW CRASH . 4–77
SHOW DEVICE . 4–81
SHOW DUMP . 4–85
SHOW EXECUTIVE . 4–88
SHOW GALAXY . 4–92
SHOW GCT . 4–93
SHOW GLOBAL_SECTION_TABLE, SHOW GST 4–97
SHOW GLOCK . 4–99
SHOW GMDB . 4–102
SHOW GSD . 4–104
SHOW HEADER . 4–106
SHOW LAN . 4–107
SHOW LOCKS . 4–117
SHOW MACHINE_CHECK . 4–123
SHOW MEMORY . 4–125
SHOW PAGE_TABLE . 4–127
SHOW PARAMETER . 4–134
SHOW PFN_DATA . 4–137
SHOW POOL . 4–142
SHOW PORTS . 4–149
SHOW PROCESS . 4–153
SHOW RAD . 4–179
SHOW RESOURCES . 4–181
SHOW RMD . 4–188
SHOW RMS . 4–190
SHOW RSPID . 4–191
SHOW SHM_CPP . 4–193
SHOW SHM_REG . 4–196
SHOW SPINLOCKS . 4–198
SHOW STACK . 4–205
SHOW SUMMARY . 4–209
SHOW SYMBOL . 4–212
SHOW TQE . 4–214
SHOW WORKING_SET_LIST, SHOW WSL . 4–217
SPAWN . 4–218
UNDEFINE . 4–220
VALIDATE PFN_LIST . 4–221
VALIDATE QUEUE . 4–223
VALIDATE SHM_CPP . 4–225
VALIDATE TQE . 4–227

v

5 SDA CLUE Extension Commands

5.1 Overview of SDA CLUE Extensions . 5–1
5.2 Displaying Data Using SDA CLUE Commands . 5–2
5.3 Using SDA CLUE with DOSD . 5–2
5.4 Listing of SDA CLUE Extension Commands . 5–3

CLUE CALL_FRAME . 5–4
CLUE CLEANUP . 5–7
CLUE CONFIG . 5–8
CLUE CRASH . 5–9
CLUE ERRLOG . 5–12
CLUE FRU . 5–13
CLUE HISTORY . 5–14
CLUE MCHK . 5–16
CLUE MEMORY . 5–17
CLUE PROCESS . 5–25
CLUE REGISTER . 5–27
CLUE SG . 5–29
CLUE STACK . 5–30
CLUE SYSTEM . 5–33
CLUE VCC . 5–34
CLUE XQP . 5–37

6 SDA Spinlock Tracing Utility

6.1 Overview of the SDA Spinlock Tracing Utility . 6–1
6.2 How to Use the SDA Spinlock Tracing Utility . 6–2
6.3 Example Command Procedure for Collection of Spinlock Statistics 6–3
6.4 Listing of SDA Spinlock Tracing Commands . 6–3

SPL LOAD . 6–4
SPL SHOW COLLECT . 6–5
SPL SHOW TRACE . 6–6
SPL START COLLECT . 6–11
SPL START TRACE . 6–12
SPL STOP COLLECT . 6–14
SPL STOP TRACE . 6–15
SPL UNLOAD . 6–16

7 SDA Extended File Cache (XFC) Extension Commands

7.1 Overview of SDA Extensions That Support the Extended File Cache
(XFC) . 7–1

7.2 Listing of SDA Extended File Cache (XFC) Extension Commands 7–1
EXIT . 7–2
LOAD DSF . 7–3
SHOW CONTEXT . 7–5
SHOW EXTENT . 7–7
SHOW FILE . 7–8
SHOW MEMORY . 7–11
SHOW SUMMARY . 7–14

vi

SHOW TABLES . 7–18
SHOW TRACE . 7–20
SHOW VOLUME . 7–22

8 SDA Extension Routines

8.1 Introduction . 8–1
8.2 General Description . 8–1
8.3 Detailed Description . 8–2
8.3.1 Compiling and Linking an SDA Extension . 8–2
8.3.2 Invoking an SDA Extension . 8–3
8.3.3 Contents of an SDA Extension . 8–3
8.4 Debugging an Extension . 8–5
8.5 Callable Routines Overview . 8–6
8.6 Callable Routines Specifics . 8–8

SDA$ADD_SYMBOL . 8–9
SDA$ALLOCATE . 8–10
SDA$DBG_IMAGE_INFO . 8–11
SDA$DEALLOCATE . 8–12
SDA$DISPLAY_HELP . 8–13
SDA$ENSURE . 8–15
SDA$FORMAT . 8–16
SDA$FORMAT_HEADING . 8–18
SDA$GET_ADDRESS . 8–19
SDA$GET_BLOCK_NAME . 8–20
SDA$GET_BUGCHECK_MSG . 8–22
SDA$GET_CURRENT_CPU . 8–24
SDA$GET_CURRENT_PCB . 8–25
SDA$GET_DEVICE_NAME . 8–26
SDA$GET_HEADER . 8–28
SDA$GET_HW_NAME . 8–30
SDA$GET_IMAGE_OFFSET . 8–31
SDA$GET_INPUT . 8–33
SDA$GET_LINE_COUNT . 8–34
SDA$GETMEM . 8–35
SDA$INSTRUCTION_DECODE . 8–37
SDA$NEW_PAGE . 8–39
SDA$PARSE_COMMAND . 8–40
SDA$PRINT . 8–42
SDA$READ_SYMFILE . 8–44
SDA$REQMEM . 8–46
SDA$SET_ADDRESS . 8–48
SDA$SET_CPU . 8–49
SDA$SET_HEADING_ROUTINE . 8–50
SDA$SET_LINE_COUNT . 8–52
SDA$SET_PROCESS . 8–53
SDA$SKIP_LINES . 8–54
SDA$SYMBOL_VALUE . 8–55

vii

SDA$SYMBOLIZE . 8–56
SDA$TRYMEM . 8–58
SDA$TYPE . 8–60
SDA$VALIDATE_QUEUE . 8–61

Part II OpenVMS Alpha System Code Debugger and System Dump
Debugger

9 The OpenVMS Alpha System Code Debugger

9.1 User-Interface Options . 9–2
9.2 Building a System Image to Be Debugged . 9–2
9.3 Setting Up the Target System for Connections . 9–3
9.3.1 Making Connections Between the Target Kernel and the System Code

Debugger . 9–5
9.3.2 Interactions Between XDELTA and the Target Kernel/System Code

Debugger . 9–6
9.4 Setting Up the Host System . 9–6
9.5 Starting the System Code Debugger . 9–7
9.6 Summary of System Code Debugger Commands . 9–8
9.7 Using System Dump Analyzer Commands . 9–8
9.8 System Code Debugger Network Information . 9–9
9.9 Troubleshooting Checklist . 9–9
9.10 Troubleshooting Network Failures . 9–10
9.11 Access to Symbols in OpenVMS Executive Images 9–10
9.11.1 Overview of How the OpenVMS Debugger Maintains Symbols 9–10
9.11.2 Overview of OpenVMS Executive Image Symbols 9–11
9.11.3 Possible Problems You May Encounter . 9–12
9.12 Sample System Code Debugging Session . 9–14

10 The OpenVMS Alpha System Dump Debugger

10.1 User-Interface Options . 10–1
10.2 Preparing a System Dump to Be Analyzed . 10–2
10.3 Setting Up the Test System . 10–3
10.4 Setting Up the Build System . 10–3
10.5 Starting the System Dump Debugger . 10–4
10.6 Summary of System Dump Debugger Commands 10–4
10.7 Using System Dump Analyzer Commands . 10–5
10.8 Limitations of the System Dump Debugger . 10–6
10.9 Access to Symbols in OpenVMS Executive Images 10–6
10.10 Sample System Dump Debugging Session . 10–6

Part III OpenVMS Watchpoint Utility

viii

11 The Watchpoint Utility

11.1 Introduction . 11–1
11.2 Initializing the Watchpoint Utility . 11–2
11.3 Creating and Deleting Watchpoints . 11–2
11.3.1 Using the $QIO Interface . 11–3
11.3.2 Invoking WPDRIVER Entry Points from System Routines 11–5
11.4 Data Structures . 11–6
11.4.1 Watchpoint Restore Entry (WPRE) . 11–6
11.4.2 Watchpoint Control Blocks (WPCB) . 11–6
11.4.3 Trace Table Entries (WPTTEs) . 11–7
11.5 Analyzing Watchpoint Results . 11–7
11.6 Watchpoint Protection Overview . 11–9
11.7 Restrictions . 11–10

Index

Examples

9–1 Booting the Target System . 9–14
9–2 Invoking the System Code Debugger . 9–14
9–3 Connecting to the Target System . 9–15
9–4 Target System Connection Display . 9–16
9–5 Setting a Breakpoint . 9–16
9–6 Finding the Source Code . 9–17
9–7 Using the Set Mode Screen Command . 9–18
9–8 Using the SCROLL/UP DEBUG Command . 9–19
9–9 Breakpoint Display . 9–20
9–10 Using the Debug Step Command . 9–21
9–11 Using the Examine and Show Calls Commands 9–22
9–12 Canceling the Breakpoints . 9–23
9–13 Using the Step/Return Command . 9–24
9–14 Source Lines Error Message . 9–25
9–15 Using the Show Image Command . 9–26
10–1 Invoking the System Dump Debugger . 10–7
10–2 Accessing the System Dump . 10–7
10–3 Displaying the Source Code . 10–8
10–4 Using the Examine and Show Calls Commands 10–9

Figures

2–1 Mechanism Array . 2–24
2–2 Signal Array . 2–26
2–3 64-Bit Signal Array . 2–27
2–4 Exception Stack Frame . 2–28
2–5 Stack Following an Illegal Page-Fault Error . 2–33
9–1 Maintaining Symbols . 9–11
11–1 Format of Data Returned in Buffer . 11–9

ix

Tables

2–1 Definitions of Bits in DUMPSTYLE . 2–4
2–2 Comparison of Full and Selective Dumps . 2–5
2–3 SDA Operators . 2–15
2–4 Modules Containing Global Symbols and Data Structures Used by

SDA . 2–18
2–5 SDA Symbols Defined on Initialization . 2–18
2–6 SDA Symbols Defined by SET CPU Command 2–19
2–7 SDA Symbols Defined by SET PROCESS Command 2–19
2–8 Exception Stack Frame Values . 2–28
4–1 Modules Defining Global Locations Within Executive Images 4–35
4–2 SET RMS Command Keywords for Displaying Process RMS

Information . 4–56
4–3 Global Section Table Entry Information . 4–97
4–4 GSD Fields . 4–105
4–5 Contents of the SHOW LOCKS and SHOW PROCESS/LOCKS

Displays . 4–119
4–6 Virtual Page Information in the SHOW PAGE_TABLE Display 4–129
4–7 Types of Virtual Pages . 4–130
4–8 Bits In the PTE . 4–130
4–9 Physical Page Information in the SHOW PAGE_TABLE Display 4–130
4–10 Types of Physical Pages . 4–131
4–11 Locations of Physical Pages . 4–132
4–12 Command Options with the /COLOR and /RAD Qualifiers 4–138
4–13 Page Frame Number Information—Line One Fields 4–139
4–14 Page Frame Number Information—Line Two Fields 4–140
4–15 Flags Set in Page State . 4–140
4–16 /TYPE and /SUBTYPE Qualifier Examples . 4–145
4–17 Options for the /WORKING_SET_LIST Qualifier 4–160
4–18 Working Set List Entry Information in the SHOW PROCESS

Display . 4–162
4–19 Process Section Table Entry Information in the SHOW PROCESS

Display . 4–162
4–20 Process Active Channels in the SHOW PROCESS Display 4–163
4–21 Process I/O Channel Information in the SHOW PROCESS Display . . . 4–164
4–22 Image Information in the SHOW PROCESS Display 4–165
4–23 Resource Information in the SHOW RESOURCES Display 4–183
4–24 Lock Modes on Resources . 4–184
4–25 RMD Fields . 4–188
4–26 Static Spinlocks . 4–199
4–27 Process Information in the SHOW SUMMARY Display 4–209
4–28 Current State Information . 4–210
4–29 TQE Types in Summary TQE Display . 4–215
4–30 Options for the SHOW WORKING_SET_LIST Command 4–217
11–1 Driver Supported Functions . 11–3
11–2 Returned Status Codes . 11–4
11–3 Returned Status Values . 11–5

x

Preface

Intended Audience
The OpenVMS Alpha System Analysis Tools Manual is intended primarily for
the system programmer who must investigate the causes of system failures and
debug kernel-mode code, such as a device driver. This manual describes the
following system analysis tools in detail; it also provides a summary of the dump
off system disk (DOSD) feature and DELTA/XDELTA debugger:

• System Dump Analyzer utility (SDA)

• System code debugger (SCD)

• System dump debugger (SDD)

• Watchpoint utility (WP)

This manual also includes such system management information as maintaining
the system resources necessary to capture and store system crash dumps,
including the use of dump off system disk (DOSD). If you need to determine the
cause of a hung process or improve system performance, refer to this manual for
instructions on using the appropriate system analysis tool to analyze a running
system.

Document Structure
The OpenVMS Alpha System Analysis Tools Manual includes the following
information:

Chapter 1 presents an overview of all the system analysis tools. It describes the
System Dump Analyzer (SDA), System Code Debugger (SCD), System Dump
Debugger (SDD), and Watchpoint utility (WP). It also provides a brief description
of the dump off system disk (DOSD) feature and the DELTA/XDELTA debugger.

Part I describes the System Dump Analyzer (SDA) commands, SDA CLUE and
spinlock tracing extension commands, and SDA extension routines.

Part II describes the system code debugger (SCD) and the system dump debugger
(SDD).

Part III describes the Watchpoint utility (WP).

Related Documents
For additional information, refer to the following documents:

• OpenVMS Alpha Version 7.3–1 Upgrade and Installation Manual

• OpenVMS Calling Standard

• OpenVMS System Manager’s Manual, Volume 1: Essentials

xi

• OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems

• OpenVMS Programming Concepts Manual, Volume II

• Writing OpenVMS Alpha Device Drivers in C

• OpenVMS AXP Internals and Data Structures

• Alpha Architecture Reference Manual

• MACRO–64 Assembler for OpenVMS AXP Systems Reference Manual

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Visit the following World Wide Web address for information about how to order
additional documentation:

http://www.openvms.compaq.com/

Conventions
In this manual, any reference to OpenVMS is synonymous with Compaq
OpenVMS.

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

xii

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiii

1
Overview of System Analysis Tools

This chapter presents an overview of the following system dump analysis tools
and features:

• System Dump Analyzer (SDA)

• System Code Debugger (SCD)

• System Dump Debugger (SDD)

• Watchpoint Utility (WP)

• Delta/XDelta Debugger

• Dump Off System Disk (DOSD)

1.1 System Dump Analyzer (SDA)
The OpenVMS Alpha system dump analyzer (SDA) utility allows you to analyze a
running system or a system dump after a system failure occurs. With a system
failure, the operating system copies the contents of memory to a system dump
file or the primary page file. Additionally, it records the hardware context of each
processor. With SDA, you can interpret the contents of the dump file, examine
the status of each processor at the fime of the system failure, and investigate the
possible causes of failure.

See Part I for complete information about SDA, SDA CLUE (Crash Log Utility
Extractor), SDA, SPL (Spinlock Tracing Utility), and SDA Extension routines.

1.2 System Code Debugger (SCD)
The OpenVMS Alpha System Code Debugger (SCD) allows you to debug
nonpageable system code and device drivers running at any interupt priority level
(IPL). You can use the SCD to perform the following tasks:

• Control the system software’s execution—-stop at points of interest, resume
execution, intercept fatal exceptions, and so on

• Trace the execution path of the system software

• Display the source code where the software is executing, and step by source
line

• Monitor exception conditions

• Examine and modify the values of variables

• In some cases, test the effect of modifications without having to edit the
source code, recompile, and relink

SCD is a symbolic debugger. You can specify variable names, routine names, and
so on, precisely as they appear in your source code.

Overview of System Analysis Tools 1–1

Overview of System Analysis Tools
1.2 System Code Debugger (SCD)

SCD recognizes the syntax, data typing, operators, expressions, scoping rules,
and other constructs of a given language. If your code or driver is written in more
than one language, you can change the debugging context from one language to
another during a debugging session.

See Part II for complete information about SCD.

1.3 System Dump Debugger (SDD)
The OpenVMS Alpha System Dump Debugger allows you to analyze certain
system dumps using the commands and semantics of SCD. You can use SDD to
perform the following tasks:

• Display the source code where the software was executing at the time of the
system failure

• Examine the values of variables and registers at the time of the system
failure

SDD is a symbolic debugger. You can specify variable names, routine names, and
so on, precisely as they appear in your source code.

SDD recognizes the syntax, data typing, operators, expressions, scoping rules,
and other constructs of a given language. If your code or driver is written in more
than one language, you can change the debugging context from one language to
another during a debugging session.

See Part II for complete information about SDD.

1.4 Watchpoint Utility
The OpenVMS Watchpoint utility allows you to maintain a history of
modifications that are made to a particular location in shared system space.
It sets watchpoints on 32-bit and 64-bit addresses, and watches any system
addresses whether in S0, S1, or S2 space.

See Part III for complete information about the Watchpoint utility.

1.5 Delta/XDelta Debugger
The OpenVMS Delta/XDelta debugger allows you to monitor the execution of
user programs and the OpenVMS operating system. The Delta/XDelta debuggers
both use the same commands and expressions, but they are different in how they
operate. Delta operates as an exception handler in a process context; whereas
XDelta is invoked directly from the hardware system control block (SCB) vector
in a system context.

You use OpenVMS Delta instead of the OpenVMS symbolic debugger to debug
programs that run in privileged processor mode at interrupt priority level (IPL)
0. Because Delta operates in a process context, you can use it to debug user-mode
programs or programs that execute at interrupt priority level (IPL) 0 in any
processor mode—user, supervisor, executive, and kernel. To run Delta in a
processor mode other than user mode, your process must have the privilege that
allows Delta to change to that mode: change-mode-to-executive (CMEXEC), or
change-mode-to-kernel (CMKRNL) privilege. You cannot use Delta to debug code
that executes at an elevated IPL. To debug with Delta, you invoke it from within
your process by specifying it as the debugger instead of the symbolic debugger.

1–2 Overview of System Analysis Tools

Overview of System Analysis Tools
1.5 Delta/XDelta Debugger

You use OpenVMS XDelta instead of the System Code Debugger when debugging
system code that runs early in booting or when there is no Ethernet adaptor
that can be dedicated to SCD. Because XDelta is invoked directly from the
hardware system control block (SCB), it can be used to debug programs executing
in any processor mode or at any IPL level. To use XDelta, you must have system
privileges, and you must include XDelta when you boot the system. Since XDelta
is not process specific, it is not invoked from a process. To debug with XDelta,
you must boot the system with a command to include XDelta in memory. XDelta’s
existence terminates when you reboot the system without XDelta.

On OpenVMS Alpha systems, XDelta supports 64-bit addressing. Quadword
display mode displays full quadwords of information. The 64-bit address display
mode accepts and displays all addresses as 64-bit quantities. XDelta has
predefined command strings for displaying the contents of the page frame number
(PFN) database.

You can use Delta/XDelta commands to perform the following debugging tasks:

• Open, display, and change the value of a particular location

• Set, clear, and display breakpoints

• Set, display modes in byte, word, longword, or ASCII

• Display instructions

• Execute the program in a single step with the option to step over a subroutine

• Set base registers

• List the names and locations of all loaded modules of the executive

• Map an address to an executive module

See the OpenVMS Delta/XDelta Debugger Manual for complete information
about using the Delta/XDelta debugging utility.

1.6 Dump Off System Disk (DOSD)
The OpenVMS Alpha system allows you to write the system dump file to a device
other than the system disk. This is useful in large memory systems and in
clusters with common system disks where sufficient disk space, on one disk, is
not always available to support your dump file requirements. To perform this
activity, you must correctly enable the DUMPSTYLE system parameter to allow
the bugcheck code to write the system dump file to an alternative device.

See the OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems for complete information about how to write the system dump
file to a disk other than the system disk.

Overview of System Analysis Tools 1–3

Part I
OpenVMS Alpha System Dump Analyzer (SDA)

Part 1 describes the capabilities and system management of SDA. It provides
how to use SDA by doing the following:

• Analyzing a system dump and a running system

• Understanding SDA context and commands

• Investigating system failures

• Inducing system failures

• Understanding the ANALYZE command and qualifiers

• Invoking SDA commands, SDA CLUE extension commands, SDA Spinlock
Tracing commands, and SDA extension routines

2
SDA Description

This chapter describes the functions and the system management of SDA. It
describes initialization, operation, and procedures in analyzing a system dump
and analyzing a running system. This chapter also describes the SDA context,
the command format, and the way both to investigate system failures and induce
system failures.

2.1 Capabilities of SDA
When a system failure occurs, the operating system copies the contents of
memory to a system dump file or the primary page file, recording the hardware
context of each processor in the system as well. The System Dump Analyzer
(SDA) is a utility that allows you to interpret the contents of this file, examine
the status of each processor at the time of the system failure, and investigate the
probable causes of the failure.

You can invoke SDA to analyze a system dump, using the DCL command
ANALYZE/CRASH_DUMP. You can then use SDA commands to perform the
following operations:

• Direct (or echo) the output of an SDA session to a file or device (SET OUTPUT
or SET LOG).

• Display the condition of the operating system and the hardware context of
each processor in the system at the time of the system failure (SHOW CRASH
or CLUE CRASH).

• Select a specific processor in a multiprocessing system as the subject of
analysis (SET CPU).

• Select the default size of address data manipulated by the EXAMINE and
EVALUATE commands (SET FETCH).

• Enable or disable the sign extension of 32-bit addresses (SET SIGN_
EXTEND).

• Display the contents of a specific process stack (SHOW STACK or CLUE
STACK).

• Format a call frame from a stack location (SHOW CALL_FRAME).

• Read a set of global symbols into the SDA symbol table (READ).

• Define symbols to represent values or locations in memory and add them to
the SDA symbol table (DEFINE).

• Delete symbols not required from the SDA symbol table (UNDEFINE).

• Evaluate an expression in hexadecimal and decimal, interpreting its value as
a symbol, a condition value, a page table entry (PTE), a processor status (PS)
quadword, or date and time (EVALUATE).

SDA Description 2–1

SDA Description
2.1 Capabilities of SDA

• Examine the contents of memory locations, optionally interpreting them as
Alpha assembler instructions, a PTE, a PS, or date and time (EXAMINE).

• Display device status as reflected in system data structures (SHOW DEVICE).

• Display the contents of the stored machine check frame (SHOW MACHINE_
CHECK or CLUE MCHK) for selected Compaq computers.

• Format system data structures (FORMAT).

• Validate the integrity of the links in a queue (VALIDATE QUEUE).

• Display a summary of all processes on the system (SHOW SUMMARY).

• Show the hardware or software context of a process (SHOW PROCESS or
CLUE PROCESS).

• Display the OpenVMS RMS data structures of a process (SHOW PROCESS
with the /RMS qualifier).

• Display memory management data structures (SHOW POOL, SHOW PFN_
DATA, SHOW PAGE_TABLE, or CLUE MEMORY).

• Display lock management data structures (SHOW RESOURCES or SHOW
LOCKS).

• Display OpenVMS Cluster management data structures (SHOW CLUSTER,
SHOW CONNECTIONS, SHOW RSPID, or SHOW PORTS).

• Display multiprocessor synchronization information (SHOW SPINLOCKS).

• Display the layout of the executive images (SHOW EXECUTIVE).

• Capture and archive a summary of dump file information in a list file (CLUE
HISTORY).

• Copy the system dump file (COPY).

• Define keys to invoke SDA commands (DEFINE/KEY).

• Search memory for a given value (SEARCH).

Although SDA provides a great deal of information, it does not automatically
analyze all the control blocks and data contained in memory. For this reason,
in the event of system failure, it is extremely important that you save not only
the output provided by SDA commands, but also a copy of the system dump file
written at the time of the failure.

You can also invoke SDA to analyze a running system, using the DCL command
ANALYZE/SYSTEM. Most SDA commands generate useful output when entered
on a running system.

Caution:

Although analyzing a running system may be instructive, you should
undertake such an operation with caution. System context, process
context, and a processor’s hardware context can change during any given
display.

In a multiprocessing environment, it is very possible that, during
analysis, a process running SDA could be rescheduled to a different
processor frequently. Therefore, avoid examining the hardware context of
processors in a running system.

2–2 SDA Description

SDA Description
2.2 System Management and SDA

2.2 System Management and SDA
The system manager must ensure that the system writes a dump file whenever
the system fails. The manager must also see that the dump file is large enough
to contain all the information to be saved, and that the dump file is saved for
analysis. The following sections describe these tasks.

2.2.1 Writing System Dumps
The operating system attempts to write information into the system dump file
only if the system parameter DUMPBUG is set. (The DUMPBUG parameter is
set by default. To examine and change its value, consult the OpenVMS System
Manager’s Manual, Volume 2: Tuning, Monitoring, and Complex Systems.) If
DUMPBUG is set and the operating system fails, the system manager has the
following choices for writing system dumps:

• Have the system dump file written to either SYSDUMP.DMP (the system
dump file) or to PAGEFILE.SYS (the primary system page file).

• Set the DUMPSTYLE system parameter to an even number (for dumps
containing all physical memory) or to an odd number (for dumps containing
only selected virtual addresses). See Section 2.2.1.1 for more information
about the DUMPSTYLE parameter values.

2.2.1.1 Dump File Style
There are two types of dump files—a full memory dump (also known as a physical
dump), and a dump of selected virtual addresses (also known as a selective
dump). Both full and selective dumps may be produced in either compressed or
uncompressed form. Compressed dumps save disk space and time taken to write
the dump at the expense of a slight increase in time to access the dump with
SDA. The SDA commands COPY/COMPRESS and COPY/DECOMPRESS can be
used to convert an existing dump.

A dump can be written to the system disk, or to another disk set aside for dumps.
When using a disk other than a system disk, the disk name is set in the console
environment variable DUMP_DEV. This disk is also known as the ‘‘dump off
system disk’’ (DOSD) disk.

When writing a system dump, information about the crash is displayed at the
system console. This can be either minimal output (for example, bug check code,
process name, and image name), or verbose output (for example, executive layout,
stack and register contents).

In an OpenVMS Alpha Galaxy system, shared memory is dumped by default.
It is sometimes necessary to disable the dumping of shared memory. For more
information about shared memory, see OpenVMS Alpha Galaxy Guide.

DUMPSTYLE, which specifies the method of writing system dumps, is a 32-
bit mask. Table 2–1 shows how the bits are defined. Each bit can be set
independently. The value of the SYSGEN parameter is the sum of the values
of the bits that have been set. Remaining or undefined values are reserved to
Compaq.

SDA Description 2–3

SDA Description
2.2 System Management and SDA

Table 2–1 Definitions of Bits in DUMPSTYLE

Bit Value Description

0 1 0= Full dump. The entire contents of physical memory will be written
to the dump file.

1= Selective dump. The contents of memory will be written to the
dump file selectively to maximize the usefulness of the dump file while
conserving disk space. (Only pages that are in use are written).

1 2 0= Minimal console output. This consists of the bugcheck code; the
identity of the CPU, process, and image where the crash occurred; the
system date and time; plus a series of dots indicating progress writing
the dump.

1= Full console output. This includes the minimal output previously
described plus stack and register contents, system layout, and
additional progress information such as the names of processes as
they are dumped.

2 4 0= Dump to system disk. The dump will be written to
SYS$SYSDEVICE:[SYSn.SYSEXE]SYSDUMP.DMP, or in its absence,
SYS$SYSDEVICE:[SYSn.SYSEXE]PAGEFILE.SYS.

1= Dump to alternate disk. The dump will be written to
dump_dev:[SYSn.SYSEXE]SYSDUMP.DMP, where dump_dev is the
value of the console environment variable DUMP_DEV.

3 8 0= Uncompressed dump. Pages are written directly to the dump file.

1= Compressed dump. Each page is compressed before it is written,
providing a saving in space and in the time taken to write the dump, at
the expense of a slight increase in time taken to access the dump.

4 16 0= Dump shared memory.

1= Do not dump shared memory.

5–31 Reserved to Compaq

The default setting for DUMPSTYLE is 0 (an uncompressed full dump, including
shared memory, written to the system disk). Unless a value for DUMPSTYLE is
specified in MODPARAMS.DAT, AUTOGEN.COM will set DUMPSTYLE either
to 1 (an uncompressed selective dump, including shared memory, written to the
system disk) if there is less than 128 megabytes of memory on the system, or to
9 (a compressed selective dump, including shared memory, written to the system
disk).

2.2.1.2 Comparison of Full and Selective Dumps
A full dump requires that all physical memory be written to the dump file.
This ensures the presence of all the page table pages required for SDA to
emulate translation of system virtual addresses. Any even-numbered value in
the DUMPSTYLE system parameter generates a full dump.

In certain system configurations, it may be impossible to preserve the entire
contents of memory in a disk file. For instance, a large memory system or a
system with small disk capacity may not be able to supply enough disk space for
a full memory dump. If the system dump file cannot accommodate all of memory,
information essential to determining the cause of the system failure may be lost.

2–4 SDA Description

SDA Description
2.2 System Management and SDA

To preserve those portions of memory that contain information most useful in
determining the causes of system failures, a system manager sets the value of
the DUMPSTYLE system parameter to specify a dump of selected virtual address
spaces. In a selective dump, related pages of virtual address space are written
to the dump file as units called logical memory blocks (LMBs). For example,
one LMB consists of the page tables for system space; another is the address
space of a particular process. Those LMBs most likely to be useful in crash dump
analysis are written first. Any odd-numbered value in the DUMPSTYLE system
parameter generates a selective dump.

Table 2–2 compares full and selective style dumps.

Table 2–2 Comparison of Full and Selective Dumps

Item Full Selective

Available
Information

Complete contents of physical
memory in use, stored in order
of increasing physical address.

System page table, global page table, system
space memory, and process and control regions
(plus global pages) for all saved processes.

Unavailable
Information

Contents of paged-out memory
at the time of the system failure.

Contents of paged-out memory at the time of the
system failure, process and control regions of
unsaved processes, and memory not mapped by a
page table.

SDA Command
Limitations

None. The following commands are not
useful for unsaved processes: SHOW
PROCESS/CHANNELS, SHOW
PROCESS/IMAGE, SHOW PROCESS/RMS,
SHOW STACK, and SHOW SUMMARY/IMAGE.

2.2.1.3 Controlling the Size of Page Files and Dump Files
You can adjust the size of the system page file and dump file using AUTOGEN
(the recommended method) or by using SYSGEN.

AUTOGEN automatically calculates the appropriate sizes for page and dump
files. AUTOGEN invokes the System Generation utility (SYSGEN) to create
or change the files. However, you can control sizes calculated by AUTOGEN
by defining symbols in the MODPARAMS.DAT file. The file sizes specified in
MODPARAMS.DAT are copied into the PARAMS.DAT file during AUTOGEN’s
GETDATA phase. AUTOGEN then makes appropriate adjustments in its
calculations.

Although Compaq recommends using AUTOGEN to create and modify page and
dump file sizes, you can use SYSGEN to directly create and change the sizes of
those files.

The sections that follow discuss how you can calculate the size of a dump file.

See the OpenVMS System Manager’s Manual for detailed information about using
AUTOGEN and SYSGEN to create and modify page and dump file sizes.

2.2.1.4 Writing to the System Dump File
OpenVMS Alpha writes the contents of the error-log buffers, processor registers,
and memory into the system dump file, overwriting its previous contents. If the
system dump file is too small, OpenVMS Alpha cannot copy all memory to the file
when a system failure occurs.

SDA Description 2–5

SDA Description
2.2 System Management and SDA

SYS$SYSTEM:SYSDUMP.DMP (SYS$SPECIFIC:[SYSEXE]SYSDUMP.DMP)
is created during installation. To successfully store a crash dump,
SYS$SYSTEM:SYSDUMP.DMP must be enlarged to hold all of memory (full
dump) or all of system space and the key processes (selective dump).

To calculate the correct size for an uncompressed full dump to
SYS$SYSTEM:SYSDUMP.DMP, use the following formula:

size-in-blocks(SYS$SYSTEM:SYSDUMP.DMP)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 10

Use the DCL command SHOW MEMORY to determine the total size of physical
memory on your system. There is a variable number of error log buffers in
any given system, depending on the setting of the ERRORLOGBUFFERS
system parameter. The size of each buffer depends on the setting of the
ERLBUFFERPAGES parameter. (See the OpenVMS System Manager’s Manual
for additional information about these parameters.)

2.2.1.5 Writing to the Dump File off the System Disk
OpenVMS Alpha allows you to write the system dump file to a device other than
the system disk. This is useful in large memory systems and in clusters with
common system disks where sufficient disk space, on one disk, is not always
available to support customer dump file requirements. To perform this activity,
the DUMPSTYLE system parameter must be correctly enabled to allow the
bugcheck code to write the system dump file to an alternative device.

The requirements for writing the system dump file off the system disk are the
following:

• The dump device directory structure must resemble the current system disk
structure. The [SYSn.SYSEXE]SYSDUMP.DMP file will reside there, with
the same boot time system root.

You can use AUTOGEN to create this file. In the MODPARAMS.DAT file, the
following symbol prompts AUTOGEN to create the file:

DUMPFILE_DEVICE = nnnddcuuuu

• The dump device cannot be part of a volume set or a member of a shadow set.

• You must set up DOSD for SDA CLUE as described in Chapter 5.

• The DUMP_DEV environment variable must exist on your system. You
specify the dump device at the console prompt, using the following format:
>>>SET DUMP_DEV device-name[,...]

On some CPU types, you can enter a list of devices. The list can include
various alternate paths to the system disk and the dump disk.

By specifying alternate paths in DUMP_DEV, a dump can still be written if
the disk fails over to an alternate path while the system is running. When
the system crashes, the bugcheck code can use the alternate path by referring
to the contents of DUMP_DEV.

When you enter a list of devices, however, the system disk must come last.

For information on how to write the system dump file to an alternative device to
the system disk, see the OpenVMS System Manager’s Manual, Volume 2: Tuning,
Monitoring, and Complex Systems.

2–6 SDA Description

SDA Description
2.2 System Management and SDA

2.2.1.6 Writing to the System Page File
If SYS$SYSTEM:SYSDUMP.DMP does not exist, and there is no DOSD device
or dump file, the operating system writes the dump of physical memory into
SYS$SYSTEM:PAGEFILE.SYS, the primary system page file, overwriting the
contents of that file.

If the SAVEDUMP system parameter is set, the dump file is retained in
PAGEFILE.SYS when the system is booted after a system failure. If the
SAVEDUMP parameter is not set, which is the default, OpenVMS Alpha uses
the entire page file for paging and any dump written to the page file is lost. (To
examine or change the value of the SAVEDUMP parameter, consult the OpenVMS
System Manager’s Manual, Volume 2: Tuning, Monitoring, and Complex Systems.)

To calculate the minimum size for a full memory dump to
SYS$SYSTEM:PAGEFILE.SYS, use the following formula:

size-in-blocks(SYS$SYSTEM:PAGEFILE.SYS)
= size-in-pages(physical-memory) * blocks-per-page
+ number-of-error-log-buffers * blocks-per-buffer
+ 10
+ value of the system parameter RSRVPAGCNT * blocks-per-page

Note that this formula calculates the minimum size requirement for saving a
physical dump in the system’s page file. Compaq recommends that the page
file be a bit larger than this minimum to avoid hanging the system. Also
note that you can only write the system dump into the primary page file
(SYS$SYSTEM:PAGEFILE.SYS). Secondary page files cannot be used to save
dump file information.

Note also that OpenVMS will not fill the page file completely when writing a
system dump, since the system might hang when rebooting after a system crash.
RSRVPAGCNT pages are kept unavailable for dumps. This applies to both full
dumps and selective dumps.

Writing crash dumps to SYS$SYSTEM:PAGEFILE.SYS presumes that you will
later free the space occupied by the dump for use by the pager. Otherwise, your
system may hang during the startup procedure. To free this space, you can do
one of the following:

• Include SDA commands that free dump space in the site-specific startup
command procedure (described in Section 2.2.3).

• Use the SDA COPY command to copy the dump from
SYS$SYSTEM:PAGEFILE.SYS to another file. Use the SDA COPY command
instead of the DCL COPY command because the SDA COPY command only
copies the blocks used by the dump and causes the pages occupied by the
dump to be freed from the system’s page file.

• If you do not need to copy the dump elsewhere, issue an ANALYZE/CRASH_
DUMP/RELEASE command. When you issue this command, SDA
immediately releases the pages to be used for system paging, effectively
deleting the dump. Note that this command does not allow you to analyze the
dump before deleting it.

SDA Description 2–7

SDA Description
2.2 System Management and SDA

2.2.2 Saving System Dumps
Every time the operating system writes information to the system dump file,
it writes over whatever was previously stored in the file. The system writes
information to the dump file whenever the system fails. For this reason, the
system manager must save the contents of the file after a system failure has
occurred.

The system manager can use the SDA COPY command or the DCL COPY
command. Either command can be used in a site-specific startup procedure, but
the SDA COPY command is preferred because it marks the dump file as copied.
As mentioned earlier, this is particularly important if the dump was written
into the page file, SYS$SYSTEM:PAGEFILE.SYS, because it releases those
pages occupied by the dump to the pager. Another advantage of using the SDA
COPY command is that this command copies only the saved number of blocks
and not necessarily the whole allotted dump file. For instance, if the size of the
SYSDUMP.DMP file is 100,000 blocks and the bugcheck wrote only 60,000 blocks
to the dump file, then DCL COPY would create a file of 100,000 blocks. However,
SDA COPY would generate a file of only 60,000 blocks.

Because system dump files are set to NOBACKUP, the Backup utility (BACKUP)
does not copy them to tape unless you use the qualifier /IGNORE=NOBACKUP
when invoking BACKUP. When you use the SDA COPY command to copy the
system dump file to another file, OpenVMS Alpha does not set the new file to
NOBACKUP.

As created during installation, the file SYS$SYSTEM:SYSDUMP.DMP is
protected against world access. Because a dump file can contain privileged
information, Compaq recommends that the system manager does not change this
default protection.

2.2.3 Invoking SDA When Rebooting the System
When the system reboots after a system failure, SDA is automatically invoked by
default. SDA archives information from the dump in a history file. In addition,
a listing file with more detailed information about the system failure is created
in the directory pointed to by the logical name CLUE$COLLECT. (Note that
the default directory is SYS$ERRORLOG unless you redefine the logical name
CLUE$COLLECT in the procedure SYS$MANAGER:SYLOGICALS.COM.) The
file name is in the form CLUE$node_ddmmyy_hhmm.LIS where the timestamp
(hhmm) corresponds to the system failure time and not the time when the file
was created.

Directed by commands in a site-specific file, SDA can take additional steps to
record information about the system failure. They include the following:

• Copying the contents of the dump file to another file. This information is
otherwise lost at the next system failure when the system saves information
only about that failure.

• Supplementing the contents of the list file containing the output of specific
SDA commands.

If the logical name CLUE$SITE_PROC points to a valid and existing
command file, it will be executed as part of the CLUE HISTORY command
when you reboot. If used, this file should contain only valid SDA commands.

2–8 SDA Description

SDA Description
2.2 System Management and SDA

Generated by a set sequence of commands, the CLUE list file contains only
an overview of the failure and is unlikely to provide enough information to
determine the cause of the failure. Compaq, therefore, recommends that you
always copy the dump file.

The following example shows SDA commands that can make up your site-specific
command file to produce a more complete SDA listing after each system failure,
and to save a copy of the dump file:

!
! SDA command file, to be executed as part of the system
! bootstrap from within CLUE. Commands in this file can
! be used to save the dump file after a system bugcheck, and
! to execute any additional SDA commands.
!

! Note that the logical name DMP$ must have been defined
! within SYS$MANAGER:SYLOGICALS.COM
!
READ/EXEC ! read in the executive images’ symbol tables
SHOW STACK ! display the stack
COPY DMP$:SAVEDUMP.DMP ! copy and save dump file
!

The CLUE HISTORY command is executed first, followed by the SDA commands
in this site-specific command file. See the reference section on CLUE HISTORY
for details on the summary information that is generated and stored in the CLUE
list file by the CLUE HISTORY command. Note that the SDA COPY command is
final command. If the dump has been written to PAGEFILE.SYS, then the space
used by the dump will be automatically returned for use for paging as soon as the
COPY is complete and no more analysis is possible.

To point to your site-specific file, add a line such as the following to the file
SYS$MANAGER:SYLOGICALS.COM:

$ DEFINE/SYSTEM CLUE$SITE_PROC SYS$MANAGER:SAVEDUMP.COM

In this example, the site-specific file is named SAVEDUMP.COM.

The CLUE list file can be printed immediately or saved for later examination.

SDA is invoked and executes the specified commands only when the system boots
for the first time after a system failure. If the system is booting for any other
reason (such as a normal system shutdown and reboot), SDA exits.

If CLUE files occupy more space than the threshold allows (the default is 5000
blocks), the oldest files will be deleted until the threshold limit is reached. The
threshold limit can be customized with the CLUE$MAX_BLOCK logical name.

To prevent the running of CLUE at system startup, define the logical
CLUE$INHIBIT in the SYLOGICALS.COM file as TRUE in the system logical
name table.

2.3 Analyzing a System Dump
SDA performs certain tasks before bringing a dump into memory, presenting its
initial displays, and accepting command input. These tasks include the following:

• Verifying that the process invoking it is suitably privileged to read the dump
file

• Using RMS to read in pages from the dump file

SDA Description 2–9

SDA Description
2.3 Analyzing a System Dump

• Building the SDA symbol table from the files SDA$READ_DIR:SYS$BASE_
IMAGE.EXE and SDA$READ_DIR:REQSYSDEF.STB

• Executing the commands in the SDA initialization file

For detailed information on investigating system failures, see Section 2.7.

2.3.1 Requirements
To analyze a dump file, your process must have read access both to the file that
contains the dump and to copies of SDA$READ_DIR:SYS$BASE_IMAGE.EXE
and SDA$READ_DIR:REQSYSDEF.STB (the required subset of the symbols in
the file SYSDEF.STB). SDA reads these tables by default.

2.3.2 Invoking SDA
If your process can access the files listed in Section 2.3.1, you can issue the DCL
command ANALYZE/CRASH_DUMP to invoke SDA. If you do not specify the
name of a dump file in the command, SDA prompts you:

$ ANALYZE/CRASH_DUMP
_Dump File:

The default file specification is as follows:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command.

If you are rebooting after a system failure, SDA is automatically invoked. See
Section 2.2.3.

2.3.3 Mapping the Contents of the Dump File
SDA first attempts to map the contents of memory as stored in the specified
dump file. To do this, it must first locate the page tables for system space among
its contents. The system page tables contain one entry for each page of system
virtual address space.

• If SDA cannot find the system page tables in the dump file, it displays the
following message:

%SDA-E-SPTNOTFND, system page table not found in dump file

If that error message is displayed, you cannot analyze the crash dump,
but must take steps to ensure that any subsequent dump can be analyzed.
To do this, you must either adjust the DUMPSTYLE system parameter as
discussed in Section 2.2.1.1 or increase the size of the dump file as indicated
in Section 2.2.1.3.

• If SDA finds the system page tables in an incomplete dump, the following
message is displayed:

%SDA-W-SHORTDUMP, dump file was n blocks too small when dump written;
analysis may not be possible

Under certain conditions, some memory locations might not be saved in the
system dump file. Additionally, if a bugcheck occurs during system initialization,
the contents of the register display may be unreliable. The symptom of such a
bugcheck is a SHOW SUMMARY display that shows no processes or only the
swapper process.

2–10 SDA Description

SDA Description
2.3 Analyzing a System Dump

If you use an SDA command to access a virtual address that has no corresponding
physical address, SDA generates the following error message:

%SDA-E-NOTINPHYS, ’location’: virtual data not in physical memory

When analyzing a selective dump file, if you use an SDA command to access a
virtual address that has a corresponding physical address not saved in the dump
file, SDA generates one of the following error messages:

%SDA-E-MEMNOTSVD, memory not saved in the dump file

%SDA-E-NOREAD, unable to access location n

2.3.4 Building the SDA Symbol Table
After locating and reading the system dump file, SDA attempts to read the system
symbol table file into the SDA symbol table. If SDA cannot find SDA$READ_
DIR:SYS$BASE_IMAGE.EXE—or is given a file that is not a system symbol
table in the /SYMBOL qualifier to the ANALYZE command—it displays a fatal
error and exits. SDA also reads into its symbol table a subset of SDA$READ_
DIR:SYSDEF.STB, called SDA$READ_DIR:REQSYSDEF.STB. This subset
provides SDA with the information needed to access some of the data structures
in the dump.

When SDA finishes building its symbol table, SDA displays a message identifying
itself and the immediate cause of the system failure. In the following example,
the cause of the system failure was the deallocation of a bad page file address.

OpenVMS Alpha System Dump Analyzer

Dump taken on 27-MAR-1993 11:22:33.92
BADPAGFILD, Bad page file address deallocated

2.3.5 Executing the SDA Initialization File (SDA$INIT)
After displaying the system failure summary, SDA executes the commands in the
SDA initialization file, if you have established one. SDA refers to its initialization
file by using the logical name SDA$INIT. If SDA cannot find the file defined as
SDA$INIT, it searches for the file SYS$LOGIN:SDA.INIT.

This initialization file can contain SDA commands that read symbols into SDA’s
symbol table, define keys, establish a log of SDA commands and output, or
perform other tasks. For instance, you may want to use an SDA initialization file
to augment SDA’s symbol table with definitions helpful in locating system code. If
you issue the following command, SDA includes those symbols that define many
of the system’s data structures, including those in the I/O database:

READ SDA$READ_DIR:filename

You may also find it helpful to define those symbols that identify the modules in
the images that make up the executive by issuing the following command:

READ/EXECUTIVE SDA$READ_DIR:

After SDA has executed the commands in the initialization file, it displays its
prompt as follows:

SDA>

This prompt indicates that you can use SDA interactively and enter SDA
commands.

An SDA initialization file may invoke a command procedure with the @ command.
However, such command procedures cannot invoke other command procedures.

SDA Description 2–11

SDA Description
2.4 Analyzing a Running System

2.4 Analyzing a Running System
Occasionally, OpenVMS Alpha encounters an internal problem that hinders
system performance without causing a system failure. By allowing you to
examine the running system, SDA enables you to search for the solution without
disturbing the operating system. For example, you may be able to use SDA to
examine the stack and memory of a process that is stalled in a scheduler state,
such as a miscellaneous wait (MWAIT) or a suspended (SUSP) state.

If your process has change-mode-to-kernel (CMKRNL) privilege, you can invoke
SDA to examine the system. Use the following DCL command:

$ ANALYZE/SYSTEM

SDA attempts to load SDA$READ_DIR:SYS$BASE_IMAGE.EXE and
SDA$READ_DIR:REQSYSDEF.STB. It then executes the contents of any
existing SDA initialization file, as it does when invoked to analyze a crash
dump (see Sections 2.3.4 and 2.3.5, respectively). SDA subsequently displays its
identification message and prompt, as follows:

OpenVMS Alpha System Analyzer

SDA>

This prompt indicates that you can use SDA interactively and enter SDA
commands. When analyzing a running system, SDA sets its process context to
that of the process running SDA.

If you are analyzing a running system, consider the following:

• When used in this mode, SDA does not map the entire system, but instead
retrieves only the information it needs to process each individual command.
To update any given display, you must reissue the previous command.

Caution:

When using SDA to analyze a running system, carefully interpret its
displays. Because system states change frequently, it is possible that the
information SDA displays may be inconsistent with the current state of
the system.

• Certain SDA commands are illegal in this mode, such as SHOW CPU and
SET CPU. Use of these commands results in the following error message:

%SDA-E-CMDNOTVLD, command not valid on the running system

• The SHOW CRASH command, although valid, does not display the contents
of any of the processor’s set of hardware registers.

2.5 SDA Context
When you invoke SDA to analyze either a crash dump or a running system, SDA
establishes a default context for itself from which it interprets certain commands.

When you are analyzing a uniprocessor system, SDA’s context is solely process
context, which means SDA can interpret its process-specific commands in the
context of either the process current on the uniprocessor or some other process
in another scheduling state. When SDA is initially invoked to analyze a crash
dump, SDA’s process context defaults to that of the process that was current
at the time of the system failure. When you invoke SDA to analyze a running

2–12 SDA Description

SDA Description
2.5 SDA Context

system, SDA’s process context defaults to that of the current process, that is, the
one executing SDA. To change SDA’s process context, issue any of the following
commands:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

When you invoke SDA to analyze a crash dump from a multiprocessing system
with more than one active CPU, SDA maintains a second dimension of context—
its CPU context—that allows it to display certain processor-specific information.
This information includes the reason for the bugcheck exception, the currently
executing process, the current IPL, and the spin locks owned by the processor.
When you invoke SDA to analyze a multiprocessor’s crash dump, its CPU context
defaults to that of the processor that induced the system failure. When you are
analyzing a running system, CPU context is not accessible to SDA. Therefore, the
SET CPU and SHOW CPU commands are not permitted.

You can change the SDA CPU context by using any of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

Changing CPU context involves an implicit change in process context in either of
the following ways:

• If there is a current process on the CPU made current, SDA process context
is changed to that of that CPU’s current process.

• If there is no current process on the CPU made current, SDA process context
is undefined and no process-specific information is available until SDA
process context is set to that of a specific process.

Changing process context can require a switch of CPU context as well. For
instance, if you issue a SET PROCESS command for a process that was current
at the time of a system failure on another CPU, SDA will automatically change
its CPU context to that of the CPU on which that process was current. The
following commands can have this effect if the process-name, pcb-address, or
index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn

SDA Description 2–13

SDA Description
2.6 SDA Command Format

2.6 SDA Command Format
The following sections describe the format of SDA commands and the expressions
you can use with SDA commands.

2.6.1 General Command Format
SDA uses a command format similar to that used by the DCL interpreter. Issue
commands in the following format:

command-name[/qualifier...] [parameter][/qualifier...] [!comment]

The command-name is an SDA command. Each command tells the utility to
perform a function. Commands can consist of one or more words, and can be
abbreviated to the number of characters that make the command unique. For
example, SH stands for SHOW.

The parameter is the target of the command. For example, SHOW PROCESS
RUSKIN tells SDA to display the context of the process RUSKIN. The command
EXAMINE 80104CD0;40 displays the contents of 40 bytes of memory, beginning
with location 80104CD0.

When you supply part of a file specification as a parameter, SDA assumes
default values for the omitted portions of the specification. The default device is
SYS$DISK, the device specified in your most recent SET DEFAULT command.
The default directory is the directory specified in the most recent SET DEFAULT
command. See the OpenVMS DCL Dictionary for a description of the DCL
command SET DEFAULT.

The qualifier modifies the action of an SDA command. A qualifier is always
preceded by a slash (/). Several qualifiers can follow a single parameter or
command name, but each must be preceded by a slash. Qualifiers can be
abbreviated to the shortest string of characters that uniquely identifies the
qualifier.

The comment consists of text that describes the command; this comment is
not actually part of the command. Comments are useful for documenting SDA
command procedures. When executing a command, SDA ignores the exclamation
point and all characters that follow it on the same line.

2.6.2 Expressions
You can use expressions as parameters for some SDA commands, such as
SEARCH and EXAMINE. To create expressions, use any of the following
elements:

• Numerals

• Radix operators

• Arithmetic and logical operators

• Precedence operators

• Symbols

Numerals are one possible component of an expression. The following sections
describe the use of the other components.

2–14 SDA Description

SDA Description
2.6 SDA Command Format

2.6.2.1 Radix Operators
Radix operators determine which numeric base SDA uses to evaluate
expressions. You can use one of the three radix operators to specify the radix
of the numeric expression that follows the operator:

• ^X (hexadecimal)

• ^O (octal)

• ^D (decimal)

The default radix is hexadecimal. SDA displays hexadecimal numbers with
leading zeros and decimal numbers with leading spaces.

2.6.2.2 Arithmetic and Logical Operators
There are two types of arithmetic and logical operators, both of which are listed
in Table 2–3.

• Unary operators affect the value of the expression that follows them.

• Binary operators combine the operands that precede and follow them.

In evaluating expressions containing binary operators, SDA performs logical
AND, OR, and XOR operations, and multiplication, division, and arithmetic
shifting before addition and subtraction. Note that the SDA arithmetic operators
perform integer arithmetic on 64-bit operands.

Table 2–3 SDA Operators

Operator Action

Unary Operators

Performs a logical NOT of the expression

+ Makes the value of the expression positive

– Makes the value of the expression negative

@ Evaluates the following expression as an address, then uses the
contents of that address as value

^Q Specifies that the size of field to be used as an address is a quadword
when used with the unary operator @1

^L Specifies that the size of field to be used as an address is a longword
when used with the unary operator @1

^W Specifies that the size of field to be used as an address is a word when
used with the unary operator @1

^B Specifies that the size of field to be used as an address is a byte when
used with the unary operator @1

^P Specifies a physical address when used with the unary operator @1

^V Specifies a virtual address when used with the unary operator @1

G Adds FFFFFFFF 8000000016 to the value of the expression2.

1The command SET FETCH can be used to change the default FETCH size and/or access method. See
the SET FETCH command description in Chapter 4 for more details and examples.
2The unary operator G corresponds to the first virtual address in S0 system space. For example, the
expression GD40 can be used to represent the address FFFFFFFF 80000D4016.

(continued on next page)

SDA Description 2–15

SDA Description
2.6 SDA Command Format

Table 2–3 (Cont.) SDA Operators

Operator Action

Unary Operators

H Adds 7FFE000016 to the value of the expression3.

I Fills the leading digits of the following hexadecimal number with hex
value of F. For example:

SDA> eval i80000000
Hex = FFFFFFFF.80000000 Decimal = -2147483648 G

SYS$PUBLIC_VECTORS_NPRO

Binary Operators

+ Addition

– Subtraction

* Multiplication

& Logical AND

| Logical OR

\ Logical XOR

/ Division4

@ Arithmetic shifting

"." Catenates two 32-bit values into a 64-bit value. For example:

SDA> eval fe.50000
Hex = 000000FE00050000 Decimal = 1090922020864

3The unary operator H corresponds to a convenient base address in P1 space (7FFE000016). You can
therefore refer to an address such as 7FFE2A6416 as H2A64.
4In division, SDA truncates the quotient to an integer, if necessary, and does not retain a remainder.

2.6.2.3 Precedence Operators
SDA uses parentheses as precedence operators. Expressions enclosed in
parentheses are evaluated first. SDA evaluates nested parenthetical expressions
from the innermost to the outermost pairs of parentheses.

2.6.2.4 Symbols
A symbol can represent a few different types of values. It can represent a
constant, a data address, a procedure descriptor address, or a routine address.
Constants are usually offsets of a particular field in a data structure; however,
they can also represent constant values such as the BUG$_xxx symbols.

All address symbols identify memory locations. SDA generally does not
distinguish among different types of address symbols. However, for a symbol
identified as the name of a procedure descriptor, SDA takes an additional step
of creating an associated symbol to name the code entry point address of the
procedure. It forms the code entry point symbol name by appending _C to the
name of the procedure descriptor.

Also, SDA substitutes the code entry point symbol name for the procedure
descriptor symbol when you enter the following command:

SDA> EXAMINE/INSTRUCTION procedure descriptor

2–16 SDA Description

SDA Description
2.6 SDA Command Format

For example, enter the following command:

SDA> EXAMINE/INSTRUCTION SCH$QAST

SDA displays the following information:

SCH$QAST_C: SUBQ SP,#X40,SP

Now enter the EXAMINE command but do not specify the /INSTRUCTION
qualifier, as follows:

SDA> EXAMINE SCH$QAST

SDA displays the following information:

SCH$QAST: 0000002C.00003009 ".0..,..."

This display shows the contents of the first two longwords of the procedure
descriptor.

Note that there are no routine address symbols on Alpha systems, except for
those in MACRO-64 assembly language modules. Therefore, SDA creates a
routine address symbol for every procedure descriptor it has in its symbol table.
The new symbol name is the same as for the procedure descriptor except that it
has an _C appended to the end of the name.

Sources for SDA Symbols
SDA can get its information from the following places:

• Images (.EXE files)

• Image symbol table files (.STB files)

• Object files

SDA also defines symbols to access registers and to access common data
structures.

The only images with symbols are shareable images and executive images. These
images contain only universal symbols, such as constants and addresses.

The image symbol table files are produced by the linker with the /SYMBOLS
qualifier. These files normally only contain universal symbols, as do the
executable images. However, if the SYMBOL_TABLE=GLOBALS linker option is
specified, the .STB file also contains all global symbols defined in the image. See
the OpenVMS Linker Utility Manual for more information.

Object files can contain global constant values. An object file used with SDA
typically contains symbol definitions for data structure fields. Such an object file
can be generated by compiling a MACRO-32 source module that invokes specific
macros. The macros, which are typically defined in SYS$LIBRARY:LIB.MLB or
STARLET.MLB, define symbols that correspond to data structure field offsets.
The macro $UCBDEF, for example, defines offsets for fields within a unit control
block (UCB). OpenVMS Alpha provides a number of such object modules in
SDA$READ_DIR, as listed in Table 2–4. For compatibility with OpenVMS VAX,
the modules’ file types have been renamed to .STB.

SDA Description 2–17

SDA Description
2.6 SDA Command Format

Table 2–4 Modules Containing Global Symbols and Data Structures Used by
SDA

File Contents

DCLDEF.STB Symbols for the DCL interpreter

DECDTMDEF.STB Symbols for transaction processing

GLXDEF.STB Symbols for OpenVMS Galaxy data structures

IMGDEF.STB Symbols for the image activator

IODEF.STB I/O database structure symbols

NETDEF.STB Symbols for DECnet data structures

REQSYSDEF.STB Required symbols for SDA

RMSDEF.STB Symbols that define RMS internal and user data
structures and RMS$_xxx completion codes

SCSDEF.STB Symbols that define data structures for system
communications services

SYSDEF.STB Symbols that define system data structures, including
the I/O database

TCPIP$NET_GLOBALS.STB1 Data structure definitions for TCP/IP internet driver,
execlet, and ACP data structures

TCPIP$NFS_GLOBALS.STB1 Data structure definitions for TCP/IP NFS server

TCPIP$PROXY_
GLOBALS.STB1

Data structure definitions for TCP/IP proxy execlet

TCPIP$PWIP_GLOBALS.STB1 Data structure definitions for TCP/IP PWIP driver, and
ACP data structures

TCPIP$TN_GLOBALS.STB1 Data structure definitions for TCP/IP TELNET/RLOGIN
server driver data structures

1Only available if TCP/IP has been installed. These are found in SYS$SYSTEM, so that all files are
not automatically read in when you issue a READ/EXEC command.

Table 2–5 lists symbols that SDA defines automatically on initialization.

Table 2–5 SDA Symbols Defined on Initialization

ASN Address space number

AST Both the asynchronous system trap status and enable registers:
AST<3:0> = AST enable; AST<7:4> = AST status

ESP Executive stack pointer

FEN Floating-point enable

FP Frame pointer (R29)

FP0 through
FP30

Floating-point registers 0-30

FPCR Floating-point control register

G FFFFFFFF.8000000016, the base address of system space

H 00000000.7FFE000016, a base address in P1 space

(continued on next page)

2–18 SDA Description

SDA Description
2.6 SDA Command Format

Table 2–5 (Cont.) SDA Symbols Defined on Initialization

I FFFFFFFF.FFFFFFFF16, also fills the leading digits of a hexadecimal
number with the value of F

KSP Kernel stack pointer

PC Program counter

PCC Process cycle counter

PS Processor status

PTBR Page table base register

R0 through R29 Integer registers

SCC System cycle counter

SP Current stack pointer of a process

SSP Supervisor stack pointer

USP User stack pointer

After a SET CPU command is issued (for analyzing a crash dump only), the
symbols defined in Table 2–6 are set for that CPU.

Table 2–6 SDA Symbols Defined by SET CPU Command

CPUDB Address of CPU database

IPL Interrupt priority level register

MCES Machine check error summary register

PCBB Process context block base register

PRBR Processor base register (CPU database address)

RAD Address of RAD database

SCBB System control block base register

SISR Software interrupt status register

VPTB Virtual Page Table Base register

After a SET PROCESS command is issued, the symbols listed in Table 2–7 are
defined for that process.

Table 2–7 SDA Symbols Defined by SET PROCESS Command

ARB Address of access rights block

FRED Address of floating-point register and execution data block

JIB Address of job information block

KTB Address of the kernel thread block

ORB Address of object rights block

PCB Address of process control block

PHD Address of process header

PSB Address of persona security block

Other SDA commands, such as SHOW DEVICE and SHOW CLUSTER, predefine
additional symbols.

SDA Description 2–19

SDA Description
2.6 SDA Command Format

SDA Symbol Initialization
On initialization, SDA reads the universal symbols defined by SYS$BASE_
IMAGE.EXE. For every procedure descriptor address symbol found, a routine
address symbol is created (with _C appended to the symbol name).

SDA then reads the object file REQSYSDEF.STB. This file contains data structure
definitions that are required for SDA to run correctly. It uses these symbols to
access some of the data structures in the crash dump file or on the running
system.

Finally, SDA initializes the process registers defined in Table 2–7 and executes a
SET CPU command, defining the symbols as well.

Use of SDA Symbols
There are two major uses of the address type symbols. First, the EXAMINE
command employs them to find the value of a known symbol. For example,
EXAMINE CTL$GL_PCB finds the PCB for the current process. Then, certain
SDA commands (such as EXAMINE, SHOW STACK, and FORMAT) use them to
symbolize addresses when generating output.

When the code for one of these commands needs a symbol for an address, it calls
the SDA symbolize routine. The symbolize routine tries to find the symbol in
the symbol table whose address is closest to, but not greater than the requested
address. This means, for any given address, the routine may return a symbol of
the form symbol_name+offset. If, however, the offset is greater than 0FFF16, it
fails to find a symbol for the address.

As a last resort, the symbolize routine checks to see if this address falls within a
known memory range. Currently, the only known memory ranges are those used
by the OpenVMS Alpha executive images and those used by active images in a
process. SDA searches through the executive loaded image list (LDRIMG data
structure) to see if the address falls within any of the image sections. If SDA does
find a match, it returns one of the following types of symbols:

executive_image_name+offset
activated_image_name+offset

The offset is the same as the image offset as defined in the map file.

The constants in the SDA symbol table are usually used to display a data
structure with the FORMAT command. For example, the PHD offsets are
defined in SYSDEF.STB; you can display all the fields of the PHD by entering the
following commands:

SDA> READ SDA$READ_DIR:SYSDEF.STB

SDA> FORMAT/TYPE=PHD phd_address

Symbols and Address Resolution
In OpenVMS Alpha, executive and user images are loaded into dynamically
assigned address space. To help you associate a particular virtual address with
the image whose code has been loaded at that address, SDA provides several
features:

• The SHOW EXECUTIVE command

• The symbolization of addresses, described in the previous section

• The READ command

• The SHOW PROCESS command with the /IMAGES qualifier

2–20 SDA Description

SDA Description
2.6 SDA Command Format

• The MAP command

The OpenVMS Alpha executive consists of two base images, SYS$BASE_
IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, and a number of other
separately loadable images. Some of these images are loaded on all systems,
while others support features unique to particular system configurations.
Executive images are mapped into system space during system initialization.

By default, a typical executive image is not mapped at contiguous virtual
addresses. Instead, its nonpageable image sections are loaded into a reserved
set of pages with other executive images’ nonpageable sections. The pageable
sections of a typical executive image are mapped contiguously into a different
part of system space. An image mapped in this manner is said to be sliced. A
particular system may have system parameters defined that disable executive
image slicing altogether.

Each executive image is described by a data structure called a loadable image
data block (LDRIMG). The LDRIMG specifies whether the image has been
sliced. If the image is sliced, the LDRIMG indicates the beginning of each image
section and the size of each section. All the LDRIMGs are linked together in a
list that SDA scans to determine what images have been loaded and into what
addresses they have been mapped. The SHOW EXECUTIVE command displays a
list of all images that are included in the OpenVMS Alpha executive.

Each executive image is a shareable image whose universal symbols are defined
in the SYS$BASE_IMAGE.EXE symbol vector. On initialization, SDA reads this
symbol vector and adds its universal symbols to the SDA symbol table.

Executive image .STB files define additional symbols within an executive image
that are not defined as universal symbols and thus are not in the SYS$BASE_
IMAGE.EXE symbol vector (see Sources for SDA Symbols in this section). You
can enter a READ/EXECUTIVE command to read symbols defined in all executive
image .STB files into the SDA symbol table, or a READ/IMAGE filespec command
to read the .STB for a specified image only.

To obtain a display of all images mapped within a process, execute a SHOW
PROCESS/IMAGE command. See the description of the SHOW PROCESS
command for additional information about displaying the hardware and software
context of a process.

You can also identify the image name and offset that correspond to a specified
address with the MAP command. With the information obtained from the MAP
command, you can then examine the image map to locate the source module and
program section offset corresponding to an address.

2.6.3 SDA Display Mode
Some SDA commands produce more output than will fit on one screen. In this
situation, SDA enters display mode, and outputs the screen overflow prompt
at the bottom of the screen:

Press RETURN for more.
SDA>

If the RETURN key is pressed, SDA will continue the output of the command it
was processing. If an EXIT command is entered, SDA will leave display mode,
abort the command it was processing and output a regular SDA prompt. If any
other command is entered, SDA will leave display mode, abort the command it
was processing, and begin processing the new command.

SDA Description 2–21

SDA Description
2.6 SDA Command Format

SDA will leave display mode once a continued command completes.

2.7 Investigating System Failures
This section discusses how the operating system handles internal errors, and
suggests procedures that can help you determine the causes of these errors. It
illustrates, through detailed analysis of a sample system failure, how SDA helps
you find the causes of operating system problems.

For a complete description of the commands discussed in the sections that follow,
refer to Chapter 4 and Chapter 5 of this document, where all the SDA and CLUE
commands are presented in alphabetical order.

2.7.1 General Procedure for Analyzing System Failures
When the operating system detects an internal error so severe that normal
operation cannot continue, it signals a condition known as a fatal bugcheck and
shuts itself down. A specific bugcheck code describes each fatal bugcheck.

To resolve the problem, you must find the reason for the bugcheck. Many failures
are caused by errors in user-written device drivers or other privileged code not
supplied by Compaq. To identify and correct these errors, you need a listing of
the code in question.

Occasionally, a system failure is the result of a hardware failure or an error in
code supplied by Compaq. A hardware failure requires the attention of Compaq
Services. To diagnose an error in code supplied by Compaq, you need listings of
that code, which are available from Compaq.

Start the search for the error by analyzing the CLUE list file that was created by
default when the system failed. This file contains an overview of the system
failure, which can assist you in finding the line of code that signaled the
bugcheck. CLUE CRASH displays the content of the program counter (PC)
in the list file. The content of the PC is the address of the next instruction after
the instruction that signaled the bugcheck.

However, some bugchecks are caused by unexpected exceptions. In such cases,
the address of the instruction that caused the exception is more informative than
the address of the instruction that signaled the bugcheck. The address of the
instruction that caused the exception is located on the stack. You can obtain this
address either by using the SHOW STACK command to display the contents of
the stack or by using the CLUE CRASH command to display the system state at
time of exception. See Section 2.7.2 for information on how to proceed for several
types of bugchecks.

Once you have found the address of the instruction that caused the bugcheck
or exception, find the module in which the failing instruction resides. Use the
MAP command to determine whether the instruction is part of a device driver or
another executive image. Alternatively, the SHOW EXECUTIVE command shows
the location and size of each of the images that make up the OpenVMS Alpha
executive.

If the instruction that caused the bugcheck is not part of a driver or executive
image, examine the linker’s map of the module or modules you are debugging to
determine whether the instruction that caused the bugcheck is in your program.

To determine the general cause of the system failure, examine the code that
signaled the bugcheck or the instruction that caused the exception.

2–22 SDA Description

SDA Description
2.7 Investigating System Failures

2.7.2 Fatal Bugcheck Conditions
There are many possible conditions that can cause OpenVMS Alpha to issue
a bugcheck. Normally, these occasions are rare. When they do occur, they are
often fatal exceptions or illegal page faults occurring within privileged code. This
section describes the symptoms of several common bugchecks. A discussion of
other exceptions and condition handling in general appears in the OpenVMS
Programming Concepts Manual.

An exception is fatal when it occurs while either of the following conditions exists:

• The process is executing above IPL 2 (IPL$_ASTDEL).

• The process is executing in a privileged (kernel or executive) processor access
mode and has not declared a condition handler to deal with the exception.

When the system fails, the operating system reports the approximate cause of the
system failure on the console terminal. SDA displays a similar message when
you issue a SHOW CRASH command. For instance, for a fatal exception, SDA
can display one of these messages:

FATALEXCPT, Fatal executive or kernel mode exception

INVEXCEPTN, Exception while above ASTDEL

SSRVEXCEPT, Unexpected system service exception

UNXSIGNAL, Unexpected signal name in ACP

When a FATALEXCPT, INVEXCEPTN, SSRVEXCEPT, or UNXSIGNAL bugcheck
occurs, two argument lists, known as the mechanism and signal arrays, are
placed on the stack.

Section 2.7.2.1 to Section 2.7.2.4 describe these arrays and related data
structures, and Section 2.7.2.5 shows example output from SDA for an
SSRVEXCEPT bugcheck.

A page fault is illegal when it occurs while the interrupt priority level (IPL) is
greater than 2 (IPL$_ASTDEL). When OpenVMS Alpha fails because of an illegal
page fault, it displays the following message on the console terminal:

PGFIPLHI, Page fault with IPL too high

Section 2.7.2.6 describes the stack contents when an illegal page fault occurs.

2.7.2.1 Mechanism Array
Figure 2–1 illustrates the mechanism array, which is made up entirely of
quadwords. The first quadword of this array indicates the number of quadwords
in this array; this value is always 2C16. These quadwords are used by the
procedures that search for a condition handler and report exceptions.

SDA Description 2–23

SDA Description
2.7 Investigating System Failures

Figure 2–1 Mechanism Array

mechanism_args quadword aligned

MCH_ARGS

MCH_FLAGS

MCH_FRAME

MCH_DEPTH

MCH_RESVD1

MCH_DADDR

MCH_ESF_ADDR

MCH_SIG_ADDR

MCH_SAVR0_HIGH

MCH_SAVR1_HIGH

:0

:4

:8

:16

:20

:24

:32

:40

:48

:56

:64

MCH_SAVR0_LOW

MCH_SAVR0

MCH_SAVR1

MCH_SAVR1_LOW

VM-0763A-AI

Integer registers 17-27

Floating registers 11-29

:160

:168

:176

:184

:344

CHF$S_CHFDEF2 = 360

MCH_SAVR16

MCH_SAVR28

MCH_SAVF0

MCH_SAVF1

MCH_SAVF30

MCH_SAVF10

:352
MCH_SIG64_ADDR

2–24 SDA Description

SDA Description
2.7 Investigating System Failures

Symbolic offsets into the mechanism array are defined as follows. The SDA
SHOW STACK command identifies the elements of the mechanism array on the
stack using these symbols.

Offset Meaning

CHF$IS_MCH_ARGS Number of quadwords that follow. In a mechanism
array, this value is always 2C16.

CHF$IS_MCH_FLAGS Flag bits for related argument mechanism
information.

CHF$PH_MCH_FRAME Address of the FP (frame pointer) of the
establisher’s call frame.

CHF$IS_MCH_DEPTH Depth of the OpenVMS Alpha search for a
condition handler.

CHF$PH_MCH_DADDR Address of the handler data quadword, if the
exception handler data field is present.

CHF$PH_MCH_ESF_ADDR Address of the exception stack frame (see
Figure 2–4).

CHF$PH_MCH_SIG_ADDR Address of the signal array (see Figure 2–2).

CHF$IH_MCH_SAVRnn Contents of the saved integer registers at the time
of the exception. The following registers are saved:
R0, R1, and R16 to R28 inclusive.

CHF$FH_MCH_SAVFnn If the process was using floating point, contents of
the saved floating-point registers at the time of the
exception. The following registers are saved: F0,
F1, and F10 to F30 inclusive.

CHF$PH_MCH_SIG64_ADDR Address of the 64-bit signal array (see Figure 2–3).

2.7.2.2 Signal Array
The signal array appears somewhat further down the stack. This array
comprises all longwords so that the structure is VAX compatible. A signal
array describes the exception that occurred. It contains an argument count, the
exception code, zero or more exception parameters, the PC, and the PS. Therefore,
the size of a signal array can vary from exception to exception. Although there
are several possible exception conditions, access violations are most common.
Figure 2–2 shows the signal array for an access violation.

SDA Description 2–25

SDA Description
2.7 Investigating System Failures

Figure 2–2 Signal Array

31 0

Vector count (n)

Condition value

Additional arguments (or none)

PC

PS

:CHF$IS_SIG_ARGS

:CHF$L_SIG_NAME

ZK−4643A−GE

n

For access violations, the signal array is set up as follows:

Value Meaning

Vector list length Number of longwords that follow. For access violations, this
value is always 5.

Condition value Exception code. The value 0C16 represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual address.

In the longword mask if bit 0 of the longword is set, the failing
instruction (at the PC saved below) caused a length violation.
If bit 1 is set, it referred to a location whose page table entry is
in a ‘‘no access’’ page. Bit 2 indicates the type of access used by
the failing instruction: it is set for write and modify operations
and clear for read operations.

The virtual address represents the low-order 32 bits of the
virtual address that the failing instruction tried to reference.

PC PC whose execution resulted in the exception.

PS PS at the time of the exception.

2–26 SDA Description

SDA Description
2.7 Investigating System Failures

2.7.2.3 64-Bit Signal Array
The 64-bit signal array also appears further down the stack. This array
comprises all quadwords and is not VAX compatible. It contains the same data
as the signal array, and Figure 2–3 shows the 64-bit signal array for an access
violation. The SDA SHOW STACK command uses the CHF64$ symbols listed in
the figure to identify the 64-bit signal array on the stack.

Figure 2–3 64-Bit Signal Array

ZK−8960A−GE

Vector count (n) :CHF64L_SIG_ARGSSS_SIGNAL_64 (2604) 16

Condition value

Additional arguments (or none)

PC

PS

:CHF64$Q_SIG_NAME

063

n

For access violations, the 64-bit signal array is set up as follows:

Value Meaning

Vector list length Number of quadwords that follow. For access violations, this
value is always 5.

Condition value Exception code. The value 0C16 represents an access violation.
You can identify the exception code by using the SDA command
EVALUATE/CONDITION_VALUE or SHOW CRASH.

Additional arguments These can include a reason mask and a virtual address.

In the quadword mask if bit 0 of the quadword is set, the
failing instruction (at the PC saved below) caused a length
violation. If bit 1 is set, it referred to a location whose page
table entry is in a ‘‘no access’’ page. Bit 2 indicates the type
of access used by the failing instruction: it is set for write and
modify operations and clear for read operations.

PC PC whose execution resulted in the exception.

PS PS at the time of the exception.

SDA Description 2–27

SDA Description
2.7 Investigating System Failures

2.7.2.4 Exception Stack Frame
Figure 2–4 illustrates the exception stack frame, which comprises all
quadwords.

Figure 2–4 Exception Stack Frame

:0
R2

R3

R4

R5

R6

R7

PC

PS

:8

:16

:24

:32

:40

:48

:56

ZK−6788A−GE

63 0

The values contained in the exception stack frame are defined as follows:

Table 2–8 Exception Stack Frame Values

Value Contents

INTSTK$Q_R2 Contents of R2 at the time of the exception

INTSTK$Q_R3 Contents of R3 at the time of the exception

INTSTK$Q_R4 Contents of R4 at the time of the exception

INTSTK$Q_R5 Contents of R5 at the time of the exception

INTSTK$Q_R6 Contents of R6 at the time of the exception

INTSTK$Q_R7 Contents of R7 at the time of the exception

INTSTK$Q_PC PC whose execution resulted in the exception

INTSTK$Q_PS PS at the time of the exception (except high-order bits)

The SDA SHOW STACK command identifies the elements of the exception stack
frame on the stack using these symbols.

2.7.2.5 SSRVEXCEPT Example
If OpenVMS Alpha encounters a fatal exception, you can find the code that
signaled it by examining the PC in the signal array. Use the SHOW CRASH or
CLUE CRASH command to display the PC and the instruction stream around the
PC to locate the exception.

2–28 SDA Description

SDA Description
2.7 Investigating System Failures

The following display shows the SDA output in response to the SHOW CRASH
and SHOW STACK commands for an SSRVEXCEPT bugcheck. It illustrates
the mechanism array, signal arrays, and the exception stack frame previously
described.

OpenVMS (TM) Alpha system dump analyzer
...analyzing a selective memory dump...

Dump taken on 30-AUG-2000 13:13:46.83
SSRVEXCEPT, Unexpected system service exception

SDA> SHOW CRASH
Time of system crash: 30-AUG-1996 13:13:46.83

Version of system: OpenVMS (TM) Alpha Operating System, Version V7.3

System Version Major ID/Minor ID: 3/0

System type: DEC 3000 Model 400

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- SSRVEXCEPT, Unexpected system service exception

System State at Time of Exception

Exception Frame:

R2 = 00000000.00000003
R3 = FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
R4 = FFFFFFFF.80D12740 PCB
R5 = 00000000.000000C8
R6 = 00000000.00030038
R7 = 00000000.7FFA1FC0
PC = 00000000.00030078
PS = 00000000.00000003

00000000.00030068: STQ R27,(SP)
00000000.0003006C: BIS R31,SP,FP
00000000.00030070: STQ R26,#X0010(SP)
00000000.00030074: LDA R28,(R31)

PC => 00000000.00030078: LDL R28,(R28)
00000000.0003007C: BEQ R28,#X000007
00000000.00030080: LDQ R26,#XFFE8(R27)
00000000.00030084: BIS R31,R26,R0
00000000.00030088: BIS R31,FP,SP

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 00 0 0 KERN 0 USER

Signal Array

Length = 00000005
Type = 0000000C
Arg = 00000000.00010000
Arg = 00000000.00000000
Arg = 00000000.00030078
Arg = 00000000.00000003

%SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual address=0000000000000000,
PC=0000000000030078, PS=00000003

SDA Description 2–29

SDA Description
2.7 Investigating System Failures

Saved Scratch Registers in Mechanism Array
--
R0 = 00000000.00020000 R1 = 00000000.00000000 R16 = 00000000.00020004
R17 = 00000000.00010050 R18 = FFFFFFFF.FFFFFFFF R19 = 00000000.00000000
R20 = 00000000.7FFA1F50 R21 = 00000000.00000000 R22 = 00000000.00010050
R23 = 00000000.00000000 R24 = 00000000.00010051 R25 = 00000000.00000000
R26 = FFFFFFFF.8010ACA4 R27 = 00000000.00010050 R28 = 00000000.00000000

CPU 00 Processor crash information

CPU 00 reason for Bugcheck: SSRVEXCEPT, Unexpected system service exception

Process currently executing on this CPU: SYSTEM

Current image file: 31DKB0:[SYS0.][SYSMGR]X.EXE;1

Current IPL: 0 (decimal)

CPU database address: 80D0E000

CPUs Capabilities: PRIMARY,QUORUM,RUN

General registers:

R0 = 00000000.00000000 R1 = 00000000.7FFA1EB8 R2 = FFFFFFFF.80D0E6C0
R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740 R5 = 00000000.000000C8
R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0 R8 = 00000000.7FFAC208
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 = 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C6EB60 R14 = 00000000.00000000
R15 = 00000000.009A79FD R16 = 00000000.000003C4 R17 = 00000000.7FFA1D40
R18 = FFFFFFFF.80C05C38 R19 = 00000000.00000000 R20 = 00000000.7FFA1F50
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 = 00000000.7FFF03C8
R24 = 00000000.7FFF0040 AI = 00000000.00000003 RA = FFFFFFFF.82A21080
PV = FFFFFFFF.829CF010 R28 = FFFFFFFF.8004B6DC FP = 00000000.7FFA1CA0
PC = FFFFFFFF.82A210B4 PS = 18000000.00000000

Processor Internal Registers:

ASN = 00000000.0000002F ASTSR/ASTEN = 0000000F
IPL = 00000000 PCBB = 00000000.003FE080 PRBR = FFFFFFFF.80D0E000
PTBR = 00000000.00001136 SCBB = 00000000.000001DC SISR = 00000000.00000000
VPTB = FFFFFFFC.00000000 FPCR = 00000000.00000000 MCES = 00000000.00000000

CPU 00 Processor crash information

KSP = 00000000.7FFA1C98
ESP = 00000000.7FFA6000
SSP = 00000000.7FFAC100
USP = 00000000.7AFFBAD0

No spinlocks currently owned by CPU 00

2–30 SDA Description

SDA Description
2.7 Investigating System Failures

SDA> SHOW STACK
Current Operating Stack (KERNEL):

00000000.7FFA1C78 18000000.00000000
00000000.7FFA1C80 00000000.7FFA1CA0
00000000.7FFA1C88 00000000.00000000
00000000.7FFA1C90 00000000.7FFA1D40

SP => 00000000.7FFA1C98 00000000.00000000
00000000.7FFA1CA0 FFFFFFFF.829CF010 EXE$EXCPTN
00000000.7FFA1CA8 FFFFFFFF.82A2059C EXCEPTION_MON_PRO+0259C
00000000.7FFA1CB0 00000000.00000000
00000000.7FFA1CB8 00000000.7FFA1CD0
00000000.7FFA1CC0 FFFFFFFF.829CEDA8 EXE$SET_PAGES_READ_ONLY+00948
00000000.7FFA1CC8 00000000.00000000
00000000.7FFA1CD0 FFFFFFFF.829CEDA8 EXE$SET_PAGES_READ_ONLY+00948
00000000.7FFA1CD8 00000000.00000000
00000000.7FFA1CE0 FFFFFFFF.82A1E930 EXE$CONTSIGNAL_C+001D0
00000000.7FFA1CE8 00000000.7FFA1F40
00000000.7FFA1CF0 FFFFFFFF.80C63780 EXE$ACVIOLAT
00000000.7FFA1CF8 00000000.7FFA1EB8
00000000.7FFA1D00 00000000.7FFA1D40
00000000.7FFA1D08 00000000.7FFA1F00
00000000.7FFA1D10 00000000.7FFA1F40
00000000.7FFA1D18 00000000.00000000
00000000.7FFA1D20 00000000.00000000
00000000.7FFA1D28 00000000.00020000 SYS$K_VERSION_04
00000000.7FFA1D30 00000005.00000250 BUG$_NETRCVPKT
00000000.7FFA1D38 829CE050.000008F8 BUG$_SEQ_NUM_OVF

CHF$IS_MCH_ARGS 00000000.7FFA1D40 00000000.0000002C
CHF$PH_MCH_FRAME 00000000.7FFA1D48 00000000.7AFFBAD0
CHF$IS_MCH_DEPTH 00000000.7FFA1D50 FFFFFFFF.FFFFFFFD
CHF$PH_MCH_DADDR 00000000.7FFA1D58 00000000.00000000
CHF$PH_MCH_ESF_ADDR 00000000.7FFA1D60 00000000.7FFA1F00
CHF$PH_MCH_SIG_ADDR 00000000.7FFA1D68 00000000.7FFA1EB8
CHF$IH_MCH_SAVR0 00000000.7FFA1D70 00000000.00020000 SYS$K_VERSION_04
CHF$IH_MCH_SAVR1 00000000.7FFA1D78 00000000.00000000
CHF$IH_MCH_SAVR16 00000000.7FFA1D80 00000000.00020004 UCB$M_LCL_VALID+00004
CHF$IH_MCH_SAVR17 00000000.7FFA1D88 00000000.00010050 SYS$K_VERSION_16+00010
CHF$IH_MCH_SAVR18 00000000.7FFA1D90 FFFFFFFF.FFFFFFFF
CHF$IH_MCH_SAVR19 00000000.7FFA1D98 00000000.00000000
CHF$IH_MCH_SAVR20 00000000.7FFA1DA0 00000000.7FFA1F50
CHF$IH_MCH_SAVR21 00000000.7FFA1DA8 00000000.00000000
CHF$IH_MCH_SAVR22 00000000.7FFA1DB0 00000000.00010050 SYS$K_VERSION_16+00010
CHF$IH_MCH_SAVR23 00000000.7FFA1DB8 00000000.00000000
CHF$IH_MCH_SAVR24 00000000.7FFA1DC0 00000000.00010051 SYS$K_VERSION_16+00011
CHF$IH_MCH_SAVR25 00000000.7FFA1DC8 00000000.00000000
CHF$IH_MCH_SAVR26 00000000.7FFA1DD0 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
CHF$IH_MCH_SAVR27 00000000.7FFA1DD8 00000000.00010050 SYS$K_VERSION_16+00010
CHF$IH_MCH_SAVR28 00000000.7FFA1DE0 00000000.00000000

00000000.7FFA1DE8 00000000.00000000
00000000.7FFA1DF0 00000000.00000000
00000000.7FFA1DF8 00000000.00000000
00000000.7FFA1E00 00000000.00000000
00000000.7FFA1E08 00000000.00000000
00000000.7FFA1E10 00000000.00000000
00000000.7FFA1E18 00000000.00000000
00000000.7FFA1E20 00000000.00000000
00000000.7FFA1E28 00000000.00000000
00000000.7FFA1E30 00000000.00000000
00000000.7FFA1E38 00000000.00000000
00000000.7FFA1E40 00000000.00000000
00000000.7FFA1E48 00000000.00000000
00000000.7FFA1E50 00000000.00000000
00000000.7FFA1E58 00000000.00000000
00000000.7FFA1E60 00000000.00000000
00000000.7FFA1E68 00000000.00000000

SDA Description 2–31

SDA Description
2.7 Investigating System Failures

00000000.7FFA1E70 00000000.00000000
00000000.7FFA1E78 00000000.00000000
00000000.7FFA1E80 00000000.00000000
00000000.7FFA1E88 00000000.00000000
00000000.7FFA1E90 00000000.00000000
00000000.7FFA1E98 00000000.00000000

CHF$PH_MCH_SIG64_ADDR 00000000.7FFA1EA0 00000000.7FFA1ED0
00000000.7FFA1EA8 00000000.00000000
00000000.7FFA1EB0 00000000.7FFA1F50
00000000.7FFA1EB8 0000000C.00000005
00000000.7FFA1EC0 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1EC8 00000003.00030078 SYS$K_VERSION_01+00078

CHF$L_SIG_ARGS 00000000.7FFA1ED0 00002604.00000005 UCB$M_TEMPLATE+00604
CHF$L_SIG_ARG1 00000000.7FFA1ED8 00000000.0000000C

00000000.7FFA1EE0 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1EE8 00000000.00000000
00000000.7FFA1EF0 00000000.00030078 SYS$K_VERSION_01+00078
00000000.7FFA1EF8 00000000.00000003

INTSTK$Q_R2 00000000.7FFA1F00 00000000.00000003
INTSTK$Q_R3 00000000.7FFA1F08 FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
INTSTK$Q_R4 00000000.7FFA1F10 FFFFFFFF.80D12740 PCB
INTSTK$Q_R5 00000000.7FFA1F18 00000000.000000C8
INTSTK$Q_R6 00000000.7FFA1F20 00000000.00030038 SYS$K_VERSION_01+00038
INTSTK$Q_R7 00000000.7FFA1F28 00000000.7FFA1FC0
INTSTK$Q_PC 00000000.7FFA1F30 00000000.00030078 SYS$K_VERSION_01+00078
INTSTK$Q_PS 00000000.7FFA1F38 00000000.00000003
Prev SP (7FFA1F40) ==> 00000000.7FFA1F40 00000000.00010050 SYS$K_VERSION_16+00010

00000000.7FFA1F48 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1F50 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
00000000.7FFA1F58 00000000.7FFA1F70
00000000.7FFA1F60 00000000.00000001
00000000.7FFA1F68 FFFFFFFF.800EE81C RM_STD$DIRCACHE_BLKAST_C+005AC
00000000.7FFA1F70 FFFFFFFF.80C6EBA0 SCH$CHSEP+001E0
00000000.7FFA1F78 00000000.829CEDE8 EXE$SIGTORET
00000000.7FFA1F80 00010050.00000002 SYS$K_VERSION_16+00010
00000000.7FFA1F88 00000000.00020000 SYS$K_VERSION_04
00000000.7FFA1F90 00000000.00030000 SYS$K_VERSION_01
00000000.7FFA1F98 FFFFFFFF.800A4D64 EXCEPTION_MON_NPRO+00D64
00000000.7FFA1FA0 00000000.00000003
00000000.7FFA1FA8 FFFFFFFF.80D12740 PCB
00000000.7FFA1FB0 00000000.00010000 SYS$K_VERSION_07
00000000.7FFA1FB8 00000000.7AFFBAD0
00000000.7FFA1FC0 00000000.7FFCF880 MMG$IMGHDRBUF+00080
00000000.7FFA1FC8 00000000.7B0E9851
00000000.7FFA1FD0 00000000.7FFCF818 MMG$IMGHDRBUF+00018
00000000.7FFA1FD8 00000000.7FFCF938 MMG$IMGHDRBUF+00138
00000000.7FFA1FE0 00000000.7FFAC9F0
00000000.7FFA1FE8 00000000.7FFAC9F0
00000000.7FFA1FF0 FFFFFFFF.80000140 SYS$PUBLIC_VECTORS_NPRO+00140
00000000.7FFA1FF8 00000000.0000001B

.

.

.

2–32 SDA Description

SDA Description
2.7 Investigating System Failures

2.7.2.6 Illegal Page Faults

When an illegal page fault occurs, the stack appears as pictured in Figure 2–5.

Figure 2–5 Stack Following an Illegal Page-Fault Error

ZK−6787A−GE

MMG$PAGEFAULT Stack Frame

SCH$PAGEFAULT Saved Scratch Registers

Exception Stack Frame

Previous Stack Content

The stack contents are as follows:

MMG$PAGEFAULT Stack
Frame

Stack frame built at entry to MMG$PAGEFAULT,
the page fault exception service routine. The frame
includes the contents of the following registers at the
time of the page fault: R3, R8, R11 to R15, R29 (frame
pointer)

SCH$PAGEFAULT Saved
Scratch Registers

Contents of the following registers at the time of the
page fault: R0, R1, R16 to R28

Exception Stack Frame Exception stack frame (see Figure 2–4)

Previous Stack Content Contents of the stack prior to the illegal page-fault
error

When you analyze a dump caused by a PGFIPLHI bugcheck, the SHOW
STACK command identifies the exception stack frame using the symbols shown
in Table 2–8. The SHOW CRASH or CLUE CRASH command displays the
instruction that caused the page fault and the instructions around it.

2.8 Inducing a System Failure
If the operating system is not performing well and you want to create a dump
you can examine, you must induce a system failure. Occasionally, a device driver
or other user-written, kernel-mode code can cause the system to execute a loop of
code at a high priority, interfering with normal system operation. This loop can
occur even though you have set a breakpoint in the code if the loop is encountered
before the breakpoint. To gain control of the system in such circumstances, you
must cause the system to fail and then reboot it.

If the system has suspended all noticeable activity and is hung, see the examples
of causing system failures in Section 2.8.2.

If you are generating a system failure in response to a system hang, be sure to
record the PC and PS as well as the contents of the integer registers at the time
of the system halt.

SDA Description 2–33

SDA Description
2.8 Inducing a System Failure

2.8.1 Meeting Crash Dump Requirements
The following requirements must be met before the operating system can write a
complete crash dump:

• You must not halt the system until the console dump messages have been
printed in their entirety and the memory contents have been written to the
crash dump file. Be sure to allow sufficient time for these events to take place
or make sure that all disk activity has stopped before using the console to
halt the system.

• There must be a crash dump file in SYS$SPECIFIC:[SYSEXE]: named either
SYSDUMP.DMP or PAGEFILE.SYS.

This dump file must be either large enough to hold the entire contents of
memory (as discussed in Section 2.2.1.1) or, if the DUMPSTYLE system
parameter is set, large enough to accommodate a subset or compressed dump
(also discussed in Section 2.2.1.1).

If SYSDUMP.DMP is not present, the operating system attempts to write
crash dumps to PAGEFILE.SYS. In this case, the SAVEDUMP system
parameter must be 1 (the default is 0).

• Alternatively, the system must be set up for DOSD. See Section 2.2.1.5, and
the OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and
Complex Systems for details.

• The DUMPBUG system parameter must be 1 (the default is 1).

2.8.2 Procedure for Causing a System Failure
This section tells you how to enter the XDelta utility (XDELTA) to force a system
failure.

Before you can use XDelta, it must be loaded at system startup. To load XDelta
during system bootstrap, you must set bit 1 in the boot flags. See the OpenVMS
Alpha Version 7.1 Upgrade and Installation Manual for information about booting
with the XDelta utility.

Put the system in console mode by pressing Ctrl/P or the Halt push button. Enter
the following commands at the console prompt to enter XDelta:

>>> DEPOSIT SIRR E
>>> CONTINUE

Once you have entered XDelta, use any valid XDelta commands to examine
register or memory locations, step through code, or force a system failure (by
entering ;C under XDelta). See the OpenVMS Delta/XDelta Debugger Manual for
more information about using XDelta.

If you did not load XDelta, you can force a system crash by entering console
commands that make the system incur an exception at high IPL. At the console
prompt, enter commands to set the program counter (PC) to an invalid address
and the PS to kernel mode at IPL 31 before continuing. This results in a forced
INVEXCEPTN-type bugcheck. Some Compaq computers employ the console
command CRASH (which will force a system failure) while other systems require
that you manually enter the commands.

2–34 SDA Description

SDA Description
2.8 Inducing a System Failure

Enter the following commands at the console prompt to force a system failure:

>>> DEPOSIT PC FFFFFFFFFFFFFF00
>>> DEPOSIT PS 1F00
>>> CONTINUE

For more information, refer to the hardware manuals that accompanied your
computer.

SDA Description 2–35

3
ANALYZE Usage Summary and Qualifiers

This chapter describes the format, usage, and qualifiers of the System Dump
Analyzer (SDA) utility.

3.1 ANALYZE Usage Summary

The System Dump Analyzer (SDA) utility helps determine the causes of system
failures. This utility is also useful for examining the running system.

Format

ANALYZE {/CRASH_DUMP
[/OVERRIDE]
[/RELEASE]
[/SHADOW_MEMBER [= device-name]]
filespec | /SYSTEM}
[/SYMBOL = system-symbols-table]

Command Parameter
filespec
Name of the file that contains the dump you want to analyze. At least one
field of the filespec is required, and it can be any field. The default filespec
is the highest version of SYSDUMP.DMP in your default directory. The
filespec is required for ANALYZE/CRASH_DUMP, but cannot be specified for
ANALYZE/SYSTEM.

Description

By default, the System Dump Analyzer is automatically invoked when you reboot
the system after a system failure.

To analyze a system dump interactively, invoke SDA by issuing the following
command:

$ ANALYZE/CRASH_DUMP filespec

If you do not specify filespec, SDA prompts you for it.

To analyze a crash dump, your process must have the privileges necessary for
reading the dump file. This usually requires system privilege (SYSPRV), but
your system manager can, if necessary, allow less privileged processes to read
the dump files. Your process needs change-mode-to-kernel (CMKRNL) privilege
to release page file dump blocks, whether you use the /RELEASE qualifier or the
SDA COPY command.

ANALYZE Usage Summary and Qualifiers 3–1

ANALYZE Usage Summary and Qualifiers
3.1 ANALYZE Usage Summary

Invoke SDA to analyze a running system by issuing the following command:

$ANALYZE/SYSTEM

To examine a running system, your process must have change-mode-to-kernel
(CMKRNL) privilege. Your process must also have the map-by-PFN privilege
(PFNMAP) to access memory by physical address on a running system. You
cannot specify filespec when using the /SYSTEM qualifier.

To send all output from SDA to a file, use the SDA command SET OUTPUT,
specifying the name of the output file. The file produced is 132 columns wide and
is formatted for output to a printer. To later redirect the output to your terminal,
use the following command:

SDA> SET OUTPUT SYS$OUTPUT

To send a copy of all the commands you type and a copy of all the output those
commands produce to a file, use the SDA command SET LOG, specifying the
name of the log file. The file produced is 132 columns wide and is formatted for
output to a printer.

To exit from SDA, use the EXIT command. Note that the EXIT command also
causes SDA to exit from display mode. Thus, if SDA is in display mode, you must
use the EXIT command twice: once to exit from display mode, and a second time
to exit from SDA. See Section 2.6.3 for a description of display mode.

3.2 ANALYZE Qualifiers
The following qualifiers described in this section determine whether the object of
an SDA session is a crash dump or a running system. They also help create the
environment of an SDA session.

/CRASH_DUMP
/OVERRIDE
/RELEASE
/SHADOW_MEMBER
/SYMBOL
/SYSTEM

3–2 ANALYZE Usage Summary and Qualifiers

ANALYZE Usage Summary and Qualifiers
/CRASH_DUMP

/CRASH_DUMP

Invokes SDA to analyze the specified dump file.

Format

/CRASH_DUMP filespec

Parameter

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

See Chapter 2, Section 2.3 for additional information on crash dump analysis.
You cannot specify the /SYSTEM qualifier when you include the /CRASH_DUMP
qualifier in the ANALYZE command.

Examples

1. $ ANALYZE/CRASH_DUMP SYS$SYSTEM:SYSDUMP.DMP
$ ANALYZE/CRASH SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

2. $ ANALYZE/CRASH SYS$SYSTEM:PAGEFILE.SYS

This command invokes SDA to analyze a crash dump stored in the system
page file.

ANALYZE Usage Summary and Qualifiers 3–3

ANALYZE Usage Summary and Qualifiers
/OVERRIDE

/OVERRIDE

When used with the /CRASH_DUMP qualifier, invokes SDA to analyze only the
structure of the specified dump file when a corruption or other problem prevents
normal invocation of SDA with the ANALYZE/CRASH_DUMP command.

Format

/CRASH_DUMP/OVERRIDE filespec

Parameter

filespec
Name of the crash dump file to be analyzed. The default file specification is:

SYS$DISK:[default-dir]SYSDUMP.DMP

SYS$DISK and [default-dir] represent the disk and directory specified in your
last SET DEFAULT command. If you do not specify filespec, SDA prompts you
for it.

Description

See Chapter 2, Section 2.3 for additional information on crash dump analysis.
Note that when SDA is invoked with /OVERRIDE, not all the commands in
Chapter 2, Section 2.3 can be used. Commands that can be used are as follows:

• Output control commands such as SET OUTPUT and SET LOG

• Dump file related commands such as SHOW DUMP and CLUE ERRLOG

Commands that cannot be used are as follows:

• Commands that access memory addresses within the dump file such as
EXAMINE and SHOW SUMMARY

Also, the /RELEASE qualifier cannot be used when you include the /OVERRIDE
qualifier in the ANALYZE/CRASH_DUMP command

When /OVERRIDE is used, the SDA command prompt is SDA>>.

Example

$ ANALYZE/CRASH_DUMP/OVERRIDE SYS$SYSTEM:SYSDUMP.DMP
$ ANALYZE/CRASH/OVERRIDE SYS$SYSTEM

These commands invoke SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP.

3–4 ANALYZE Usage Summary and Qualifiers

ANALYZE Usage Summary and Qualifiers
/RELEASE

/RELEASE

Invokes SDA to release those blocks in the specified system page file occupied by
a crash dump.

Requires CMKRNL (change-mode-to-kernel) privilege.

Format

/CRASH_DUMP/RELEASE filespec

Parameter

filespec
Name of the system page file (SYS$SYSTEM:PAGEFILE.SYS). Because the
default file specification is SYS$DISK:[default-dir]SYSDUMP.DMP, you must
identify the page file explicitly. SYS$DISK and [default-dir] represent the disk
and directory specified in your last DCL command SET DEFAULT. If you do not
specify filespec, SDA prompts you for it.

Description

Use the /RELEASE qualifier to release from the system page file those blocks
occupied by a crash dump. When invoked with the /RELEASE qualifier, SDA
immediately deletes the dump from the page file and allows no opportunity to
analyze its contents.

When you specify the /RELEASE qualifier in the ANALYZE command, do the
following:

1. Use the /CRASH_DUMP qualifier.

2. Include the name of the system page file (SYS$SYSTEM:PAGEFILE.SYS) as
the filespec.

If you do not specify the system page file or the specified page file does not
contain a dump, SDA generates the following messages:

%SDA-E-BLKSNRLSD, no dump blocks in page file to release, or not page file
%SDA-E-NOTPAGFIL, specified file is not the page file

You cannot specify the /OVERRIDE or /SHADOW_MEMBER qualifier when you
include the /RELEASE qualifier in the ANALYZE/CRASH_DUMP command.

Example

$ ANALYZE/CRASH_DUMP/RELEASE SYS$SYSTEM:PAGEFILE.SYS
$ ANALYZE/CRASH/RELEASE PAGEFILE.SYS

These commands invoke SDA to release to the page file those blocks in
SYS$SYSTEM:PAGEFILE.SYS occupied by a crash dump.

ANALYZE Usage Summary and Qualifiers 3–5

ANALYZE Usage Summary and Qualifiers
/SHADOW_MEMBER

/SHADOW_MEMBER

Specifies which member of a shadow set contains the system dump to be analyzed,
or allows the user to determine what system dumps have been written to the
members of the shadow set.

Format

/CRASH_DUMP/SHADOW_MEMBER [=device-name]

Description

If the system disk is a shadow set, a system dump will only be written to one
member of the shadow set (usually the master member at the time the dump is
written). By default, if the filespec translates to a file on a shadow set, SDA will
read the dump only from the master member. If at analysis time, the master
member is different from where the dump was written, the /SHADOW_MEMBER
qualifier allows the user to choose the member from which the dump is to be
read.

If the correct member is not known, the /SHADOW_MEMBER qualifier may
be specified without a device name. SDA will display a one-line summary of the
most recent dump written to each member and then prompt the user to determine
which member to use. The prompt is:

Shadow set action?

The possible responses are:

Command Effect

EXIT Aborts the SDA session without analyzing a dump
HELP Displays simple help text. See example 3 below.
Use <device_name> Initiates analysis of the system dump located on the

specified shadow set member.

The one-line summary for each member consists of the following fields:

Member device name
Bugcheck name
Date and time of system crash
Node name
VMS Version
Flags—none, one or more of: Bad_Checksum, ErrorLog_Dump, Not_Saved,
Old_Dump

If there is no usable dump on a member, SDA output will an explanatory warning
message followed by a line giving the member device name and the message "No
system or error log dump found."

Note that SDA cannot distinguish a dump on a shadowed system disk from a
dump copied to a shadowed data disk. SDA will therefore always read the dump
from a single member of a host-based shadow set. (In an OpenVMS Cluster
system with multiple shadowed system disks, one system’s system disk will be a

3–6 ANALYZE Usage Summary and Qualifiers

ANALYZE Usage Summary and Qualifiers
/SHADOW_MEMBER

data disk on other systems). This does not affect dumps being read directly from
a DOSD disk, since DOSD disks cannot be members of a host-based shadow set.

Note

The /SHADOW_MEMBER qualifier is not useful if the system dump has
been written to the primary page file on a shadowed system disk. You
cannot specify /RELEASE with /SHADOW_MEMBER.

Examples

1. $ ANALYZE/CRASH_DUMP DSA777:[SYS0.SYSEXE]SYSDUMP.DMP
%SDA-I-USEMASTER, accessing dump file via _31DKB200:, master member of shadow set _DSA777:

OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed selective memory dump...

Dump taken on 12-DEC-2001 08:23:07.80
SSRVEXCEPT, Unexpected system service exception

SDA>

This command initiates dump analysis using the master member of the shadow
set DSA777 (the default action).

2. $ ANALYZE/CRASH_DUMP/SHADOW_MEMBER=DKB0 DSA777:[SYS0.SYSEXE]SYSDUMP.DMP

OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed selective memory dump...

Dump taken on 12-DEC-2001 08:23:07.80
SSRVEXCEPT, Unexpected system service exception

SDA>

This command initiates dump analysis using member device 31DKB0 of the
shadow set DSA777.

3. $ ANALYZE/CRASH_DUMP/SHADOW_MEMBER DSA8888:[SYS1.SYSEXE]SYSDUMP.DMP

_70DKA303: INVEXCEPTN 16-NOV-2001 00:00:25.74 MRVP2 X96S-FT1
_70DKA202: INCONSTATE 18-NOV-2001 02:08:45.05 MRVP2 X96S-FT1

Shadow set action? HELP

Shadow set actions:

EXIT exit SDA
HELP this display
USE <shadow_set_member> proceed using specified shadow set member

Shadow set action? USE _70DKA303:

OpenVMS (TM) Alpha system dump analyzer
...analyzing a compressed selective memory dump...

%SDA-W-NOTSAVED, global pages not saved in the dump file
Dump taken on 16-NOV-2001 00:00:25.74
INVEXCEPTN, Exception while above ASTDEL

SDA> EXIT

This command displays the dumps to be found on the members of shadow set
DSA8888:[SYS1.SYSEXE]SYSDUMP.DMP and then begins analysis of the dump
written to device _70DKA303.

ANALYZE Usage Summary and Qualifiers 3–7

ANALYZE Usage Summary and Qualifiers
/SYMBOL

/SYMBOL

Specifies an alternate system symbol table for SDA to use.

Format

/SYMBOL = system-symbol-table

File specification of the OpenVMS Alpha SDA system symbol table required
by SDA to analyze a system dump or running system. The specified system-
symbol-table must contain those symbols required by SDA to find certain
locations in the executive image.

If you do not specify the /SYMBOL qualifier, SDA uses SDA$READ_
DIR:SYS$BASE_IMAGE.EXE to load system symbols into the SDA symbol
table. When you specify the /SYMBOL qualifier, SDA assumes the default disk
and directory to be SYS$DISK:[], that is, the disk and directory specified in your
last DCL command SET DEFAULT. If you specify a file for this parameter that is
not a system symbol table, SDA exits with a fatal error.

Description

The /SYMBOL qualifier allows you to specify a system symbol table to load into
the SDA symbol table. You can use the /SYMBOL qualifier whether you are
analyzing a system dump or a running system. It is not normally necessary
to use the /SYMBOL qualifier when analyzing the running system, since the
default SYS$BASE_IMAGE.EXE is the one in use in the system. However
if SDA$READ_DIR has been redefined during crash dump analysis, then the
/SYMBOL qualifier can be used to ensure that the correct base image is found
when analyzing the running system.

The /SYMBOL qualifier can be used with the /CRASH_DUMP and /SYSTEM
qualifiers. It is ignored when /OVERRIDE or /RELEASE is specified.

Example

$ ANALYZE/CRASH_DUMP/SYMBOL=SDA$READ_DIR:SYS$BASE_IMAGE.EXE SYS$SYSTEM

This command invokes SDA to analyze the crash dump stored in
SYS$SYSTEM:SYSDUMP.DMP, using the base image in SDA$READ_DIR.

3–8 ANALYZE Usage Summary and Qualifiers

ANALYZE Usage Summary and Qualifiers
/SYSTEM

/SYSTEM

Invokes SDA to analyze a running system.

Requires CMKRNL (change-mode-to-kernel) privilege. Also requires PFNMAP
(map-by-PFN) privilege to access memory by physical address.

Format

/SYSTEM

Parameters

None.

Description

See Chapter 2, Section 2.4 to use SDA to analyze a running system.

You cannot specify the /CRASH_DUMP, /OVERRIDE, /RELEASE, or /SHADOW_
MEMBER qualifiers when you include the /SYSTEM qualifier in the ANALYZE
command.

Example

$ ANALYZE/SYSTEM

This command invokes SDA to analyze the running system.

ANALYZE Usage Summary and Qualifiers 3–9

4
SDA Commands

This chapter describes the SDA commands that you can use to analyze a
system dump or a running system. SDA CLUE extension commands, which
can summarize information provided by certain SDA commands and provide
additional detail for some SDA commands, are described in Chapter 5.

The SDA commands are as follows:

@ (Execute Command)
ATTACH
COPY
DEFINE
DEFINE/KEY
DUMP
EVALUATE
EXAMINE
EXIT
FORMAT
HELP
MAP
MODIFY DUMP
READ
REPEAT
SEARCH
SET CPU
SET ERASE_SCREEN
SET FETCH
SET LOG
SET OUTPUT
SET PROCESS
SET RMS
SET SIGN_EXTEND
SET SYMBOLIZE
SHOW ADDRESS
SHOW BUGCHECK
SHOW CALL_FRAME
SHOW CLUSTER
SHOW CONNECTIONS
SHOW CPU
SHOW CRASH
SHOW DEVICE
SHOW DUMP
SHOW EXECUTIVE
SHOW GALAXY
SHOW GCT
SHOW GLOBAL_SECTION_TABLE, SHOW GST

SDA Commands 4–1

SDA Commands

SHOW GLOCK
SHOW GMDB
SHOW GSD
SHOW HEADER
SHOW LAN
SHOW LOCKS
SHOW MACHINE_CHECK
SHOW MEMORY
SHOW PAGE_TABLE
SHOW PARAMETER
SHOW PFN_DATA
SHOW POOL
SHOW PORTS
SHOW PROCESS
SHOW RAD
SHOW RESOURCES
SHOW RMD
SHOW RMS
SHOW RSPID
SHOW SHM_CPP
SHOW SHM_REG
SHOW SPINLOCKS
SHOW STACK
SHOW SUMMARY
SHOW SYMBOL
SHOW TQE
SHOW WORKING_SET_LIST, SHOW WSL
SPAWN
UNDEFINE
VALIDATE PFN_LIST
VALIDATE QUEUE
VALIDATE SHM_CPP
VALIDATE TQE

4–2 SDA Commands

SDA Commands
@(Execute Command)

@(Execute Command)

Causes SDA to execute SDA commands contained in a file. Use this command to
execute a set of frequently used SDA commands.

Format

@filespec

Parameter

filespec
Name of a file that contains the SDA commands to be executed. The default file
type is .COM.

Example

SDA> @USUAL

The execute (@) command executes the following commands, as contained in a file
named USUAL.COM:

SET OUTPUT LASTCRASH.LIS
SHOW CRASH
SHOW PROCESS
SHOW STACK
SHOW SUMMARY

This command procedure first makes the file LASTCRASH.LIS the destination for
output generated by subsequent SDA commands. Next, the command procedure
sends information to the file about the system failure and its context, including
a description of the process executing at the time of the failure, the contents of
the stack on which the failure occurred, and a list of the processes active on the
system.

An EXIT command within a command procedure terminates the procedure at
that point, as would an end-of-file.

Command procedures cannot be nested.

SDA Commands 4–3

SDA Commands
ATTACH

ATTACH

Switches control of your terminal from your current process to another process in
your job (for example, one created with the SDA SPAWN command).

Format

ATTACH [/PARENT] process-name

Parameter

process-name
Name of the process to which you want to transfer control.

Qualifier

/PARENT
Transfers control of the terminal to the parent process of the current process.
When you specify this qualifier, you cannot specify the process-name parameter.

Examples

1. SDA> ATTACH/PARENT

This ATTACH command attaches the terminal to the parent process of the
current process.

2. SDA> ATTACH DUMPER

This ATTACH command attaches the terminal to a process named DUMPER
in the same job as the current process.

4–4 SDA Commands

SDA Commands
COPY

COPY

Copies the contents of the dump file to another file.

Format

COPY [/qualifier...] output-filespec

Parameter

output-filespec
Name of the device, directory, and file to which SDA copies the dump file. The
default file specification is:

SYS$DISK:[default-dir]filename.DMP)

SYS$DISK and [default-dir] represent the disk and directory specified in your
last DCL command SET DEFAULT. You must specify a file name.

Qualifiers

/COMPRESS
Causes SDA to compress dump data as it is writing a copy. If the dump being
analyzed is already compressed, then SDA does a direct COPY, and issues an
informational message indicating that it is ignoring the /COMPRESS qualifier.

/DECOMPRESS
Causes SDA to decompress dump data as it is writing a copy. If the dump being
analyzed is already decompressed, then SDA does a direct COPY, and issues an
informational message indicating that it is ignoring the /DECOMPRESS qualifier.

Description

Each time the system fails, the contents of memory and the hardware context of
the current process (as directed by the DUMPSTYLE parameter) are copied into
the file SYS$SYSTEM:SYSDUMP.DMP (or the page file), overwriting its contents.
If you do not save this crash dump elsewhere, it will be overwritten the next time
that the system fails.

The COPY command allows you to preserve a crash dump by copying its contents
to another file. It is generally useful to invoke SDA during system initialization
to execute the COPY command. This ensures that a copy of the dump file is made
only after the system has failed. The preferred method for doing this, using the
logical name CLUE$SITE_PROC, is described in Section 2.2.3.

The COPY command does not affect the contents of the file containing the dump
being analyzed.

If you are using the page file (SYS$SYSTEM:PAGEFILE.SYS) as the dump
file instead of SYSDUMP.DMP, successful completion of the COPY command
will automatically cause the blocks of the page file containing the dump to be
released, thus making them available for paging. Even if the copy operation
succeeds, the release operation requires that your process have change-mode-
to-kernel (CMKRNL) privilege. When the dump pages have been released from
the page file, the dump information in these pages will be lost and SDA will

SDA Commands 4–5

SDA Commands
COPY

immediately exit. You must perform subsequent analysis upon the copy of the
dump created by the COPY command.

If you press Ctrl/T while using the COPY command, the system displays how
much of the file has been copied.

Example

SDA> COPY SYS$CRASH:SAVEDUMP

The COPY command copies the dump file into the file
SYS$CRASH:SAVEDUMP.DMP.

4–6 SDA Commands

SDA Commands
DEFINE

DEFINE

Assigns a value to a symbol.

Format

DEFINE [/qualifier...] symbol-name [=] expression

Parameters

symbol-name
Name, containing from 1 to 31 alphanumeric characters, that identifies the
symbol. See Section 2.6.2.4 for a description of SDA symbol syntax and a list of
default symbols.

expression
Definition of the symbol’s value. See Section 2.6.2 for a discussion of the
components of SDA expressions.

Qualifier

/PD
Defines a symbol as a procedure descriptor (PD). It also defines the routine
address symbol corresponding to the defined symbol (the routine address symbol
has the same name as the defined symbol, only with _C appended to the symbol
name). See Section 2.6.2.4 for more information about symbols.

Description

The DEFINE command causes SDA to evaluate an expression and then assign
its value to a symbol. Both the DEFINE and EVALUATE commands perform
computations to evaluate expressions. DEFINE adds symbols to the SDA symbol
table but does not display the results of the computation. EVALUATE displays
the result of the computation but does not add symbols to the SDA symbol table.

Examples

1. SDA> DEFINE BEGIN = 80058E00
SDA> DEFINE END = 80058E60
SDA> EXAMINE BEGIN:END

In this example, DEFINE defines two addresses, called BEGIN and END.
These symbols serve as reference points in memory, defining a range of
memory locations for the EXAMINE command to inspect.

2. SDA> DEFINE NEXT = @PC
SDA> EXAMINE/INSTRUCTION NEXT
NEXT: HALT

The symbol NEXT defines the address contained in the program counter, so
that the symbol can be used in an EXAMINE/INSTRUCTION command.

SDA Commands 4–7

SDA Commands
DEFINE

3. SDA> DEFINE VEC SCH$GL_PCBVEC
SDA> EXAMINE VEC
SCH$GL_PCBVEC: 00000000.8060F2CC "Ìò‘....."
SDA>

After the value of global symbol SCH$GL_PCBVEC has been assigned to
the symbol VEC, the symbol VEC is used to examine the memory location or
value represented by the global symbol.

4. SDA> DEFINE/PD VEC SCH$QAST
SDA> EXAMINE VEC
SCH$QAST: 0000002C.00003008 ".0..,..."
SDA> EXAMINE VEC_C
SCH$QAST_C: B75E0008.43C8153E ">.ÈC..^·"
SDA>

In this example, the DEFINE/PD command defines not only the symbol VEC,
but also the corresponding routine address symbol (VEC_C).

4–8 SDA Commands

SDA Commands
DEFINE/KEY

DEFINE/KEY

Associates an SDA command with a terminal key.

Format

DEFINE/KEY [/qualifier...] key-name command

Parameters

key-name
Name of the key to be defined. You can define the following keys under SDA:

Key Name Key Designation

PF1 LK201, VT100
PF2 LK201, VT100
PF3 LK201, VT100
PF4 LK201, VT100
KP0 . . . KP9 Keypad 0–9
PERIOD Keypad period
COMMA Keypad comma
MINUS Keypad minus
ENTER Keypad ENTER
UP Up arrow
DOWN Down arrow
LEFT Left arrow
RIGHT Right arrow
E1 LK201 Find
E2 LK201 Insert Here
E3 LK201 Remove
E4 LK201 Select
E5 LK201 Prev Screen
E6 LK201 Next Screen
HELP LK201 Help
DO LK201 Do
F7 . . . F20 LK201 Function keys

command
SDA command to define a key. You must enclose the command in quotation
marks (" ").

Qualifiers

/IF_STATE=state_list
/NOIF_STATE
Specifies a list of one or more states, one of which must be in effect for the key
definition to work. The /NOIF_STATE qualifier has the same meaning as /IF_
STATE=current_state. The state name is an alphanumeric string. States are

SDA Commands 4–9

SDA Commands
DEFINE/KEY

established with the /SET_STATE qualifier. If you specify only one state name,
you can omit the parentheses. By including several state names, you can define a
key to have the same function in all the specified states.

/KEY
Defines a key as an SDA command. To issue the command, press the defined key
and the Return key. If you use the /TERMINATE qualifier as well, you do not
have to press the Return key. You must specify the /KEY qualifier.

/LOCK_STATE
/NOLOCK_STATE
Specifies that the state set by the /SET_STATE qualifier remains in effect until
explicitly changed. By default, the /SET_STATE qualifier is in effect only for the
next definable key you press or the next read-terminating character that you
type. You can specify this qualifier only with the /SET_STATE qualifier.

The default is /NOLOCK_STATE.

/SET_STATE=state-name
/NOSET_STATE
Causes the key being defined to create a key state change instead of or in
addition to issuing an SDA command. When you use the /SET_STATE qualifier,
you supply the name of a key state to be used with the /IF_STATE qualifier in
other key definitions.

For example, you can define the PF1 key as the GOLD key and use the /IF_
STATE=GOLD qualifier to allow two definitions for the other keys, one in the
GOLD state and one in the non-GOLD state. For more information on using
the /IF_STATE qualifier, see the DEFINE/KEY command in the OpenVMS DCL
Dictionary: A–M.

The default is /NOSET_STATE.

/TERMINATE
/NOTERMINATE
Causes the key definition to include termination of the command, which causes
SDA to execute the command when the defined key is pressed. Therefore, you do
not have to press the Return key after you press the defined key if you specify the
/TERMINATE qualifier.

Description

The DEFINE/KEY command causes an SDA command to be associated with
the specified key, in accordance with any of the specified qualifiers described
previously.

If the symbol or key is already defined, SDA replaces the old definition with the
new one. Symbols and keys remain defined until you exit from SDA.

4–10 SDA Commands

SDA Commands
DEFINE/KEY

Examples

1. SDA> DEFINE/KEY PF1 "SHOW STACK"
SDA> PF1 SHOW STACK RETURN

Process stacks (on CPU 00)

Current operating stack (KERNEL):

.

.

.

The DEFINE/KEY command defines PF1 as the SHOW STACK command.
When you press the PF1 key, SDA displays the command and waits for you to
press the Return key.

2. SDA> DEFINE/KEY/TERMINATE PF1 "SHOW STACK"
SDA> PF1 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

00000000.7FF95D00 00000000.0000000B
00000000.7FF95D08 FFFFFFFF.804395C8 MMG$TBI_DATA_64+000B8
00000000.7FF95D10 00000000.00000000
00000000.7FF95D18 0000FE00.00007E04

SP => 00000000.7FF95D20 00000000.00000800 IRP$M_EXTEND
00000000.7FF95D28 00000001.000002F7 UCB$B_PI_FKB+0000B
00000000.7FF95D30 FFFFFFFF.804395C8 MMG$TBI_DATA_64+000B8
00000000.7FF95D38 00000002.00000000

.

.

.

The DEFINE/KEY command defines PF1 as the SDA SHOW STACK
command. The /TERMINATE qualifier causes SDA to execute the SHOW
STACK command without waiting for you to press the Return key.

3. SDA> DEFINE/KEY/SET_STATE="GREEN" PF1 ""
SDA> DEFINE/KEY/TERMINATE/IF_STATE=GREEN PF3 "SHOW STACK"
SDA> PF1 PF3 SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

.

.

.

The first DEFINE/KEY command defines PF1 as a key that sets a command
state GREEN. The trailing pair of quotation marks is required syntax,
indicating that no command is to be executed when this key is pressed.

The second DEFINE command defines PF3 as the SHOW STACK command,
but using the /IF_STATE qualifier makes the definition valid only when the
command state is GREEN. Thus, you must press PF1 before pressing PF3 to
issue the SHOW STACK command. The /TERMINATE qualifier causes the
command to execute as soon as you press the PF3 key.

SDA Commands 4–11

SDA Commands
DUMP

DUMP

Displays the contents of a range of memory formatted as a comma-separated
variable (CSV) list, suitable for inclusion in a spreadsheet.

Format

DUMP range
[/LONGWORD (default) | /QUADWORD]
[/DECIMAL | /HEXADECIMAL (default)]
[/FORWARD (default) | /REVERSE]
[/RECORD_SIZE=size] (default = 512)
[/INDEX_ARRAY [={ LONGWORD (default) | QUADWORD}]]
[/INITIAL_POSITION={ ADDRESS=address | RECO RD=number}]
[/COUNT = {ALL | records}] (default = all records)
[/PHYSICAL]

Parameter

range
The range of locations to be displayed. The range is specified in one of the
following formats:

m:n Range from address m to address n inclusive
m;n Range from address m for n bytes

Qualifiers

/COUNT=[{ ALL | records}]
Gives the number of records to be displayed. The default is to display all records.

/DECIMAL
Outputs data as decimal values.

/FORWARD
Causes SDA to display the records in the history buffer in ascending address
order. This is the default.

/HEXADECIMAL
Outputs data as hexadecimal values. This is the default.

/INDEX_ARRAY [={ LONGWORD (default) | QUADWORD}]
Indicates to SDA that the range of addresses given is a vector of pointers to
the records to be displayed. The vector can be a list of longwords (default) or
quadwords. The size of the range must be an exact number of longwords or
quadwords as appropriate.

/INITIAL_POSITION = { ADDRESS=address | RECORD=number}
Indicates to SDA which record is to be displayed first. The default is the lowest
addressed record if /FORWARD is used, and the highest addressed record if
/REVERSE is used. The initial position may be given as a record number within
the range, or the address at which the record is located.

/LONGWORD
Outputs each data item as a longword. This is the default.

4–12 SDA Commands

SDA Commands
DUMP

/PHYSICAL
Indicates to SDA that all addresses (range and/or start position) are physical
addresses. By default, virtual addresses are assumed.

/QUADWORD
Outputs each data item as a quadword.

/RECORD_SIZE=size
Indicates the size of each record within the history buffer, the default being 512
bytes. This size must exactly divide into the total size of the address range to be
displayed, unless /INDEX_ARRAY is specified.

/REVERSE
Causes SDA to display the records in the history buffer in descending address
order.

Description

The DUMP command displays the contents of a range of memory formatted as a
comma-separated variable (CSV) list, suitable for inclusion in a spreadsheet. It is
intended for use with a history buffer containing records of information of which
the most recently written entry is in the middle of the memory range.

Note

See SET OUTPUT/NOHEADER for related information.

Examples

1. SDA> DUMP dump g;200/initial_position=record=5/record_size=20/reverse
05,A77B0010,A79B0008,6B9C4001,47FF041F,A03E0000,47DF041C,201F0016,083
04,A03E0000,47DF041C,201F0058,083,A77B0010,A79B0008,6B9C4001,47FF041F
03,A03E0000,47DF041C,201F0075,083,A03E0000,47DF041C,201F001B,083
02,A77B0010,A79B0008,6B9C4001,47FF041F,A03E0000,47DF041C,201F0074,083
01,43E05120,083,6BFA8001,47FF041F,A77B0010,A79B0008,6B9C4001,47FF041F
0,201F0104,6BFA8001,47FF041F,47FF041F,201F0001,6BFA8001,47FF041F,47FF041F
0F,A03E0000,47DF041C,201F0065,083,A03E0000,47DF041C,201F0006,083
0E,A03E0000,47DF041C,201F001C,083,A03E0000,47DF041C,201F001A,083
0D,A03E0000,47DF041C,201F0077,083,A03E0000,47DF041C,201F0057,083
0C,A03E0000,47DF041C,201F002B,083,A03E0000,47DF041C,201F003A,083
0B,A03E0000,47DF041C,201F007D,083,A77B0010,A79B0008,6B9C4001,47FF041F
0A,A03E0000,47DF041C,201F005A,083,A03E0000,47DF041C,201F0078,083
09,A03E0000,47DF041C,201F0002,082,A03E0000,47DF041C,201F0037,083
08,A03E0000,47DF041C,201F0035,083,A03E0000,47DF041C,201F007A,083
07,A03E0000,47DF041C,201F0019,083,A03E0000,47DF041C,201F0034,083
06,A77B0010,A79B0008,6B9C4001,47FF041F,A03E0000,47DF041C,201F0018,083

This example shows the dump of an area of memory treated as 16 records of
32 bytes each, beginning at record 5, and dumped in reverse order. Note the
record number in the first field, and that the dump wraps to the end of the
memory area after the first record has been output.

SDA Commands 4–13

SDA Commands
DUMP

2. SDA> EXAMINE SMP$GL_CPU_DATA;80
00000000 00000000 8FE26000 8FE14000 00000000 00000000 8FE02000 811FE000 ...
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ...
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ...
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ...

SDA> DUMP SMP$GL_CPU_DATA;80/index_array/record_size=20/count=5
0,810C17C0,8EC7C180,026A09C0,02,0,FFFFFFFF,0,0
01,810C17C0,8EC7C400,026A09C0,02,0,FFFFFFFF,0,01
04,810C17C0,8EC7CB80,026A09C0,02,0,FFFFFFFF,0,04

This example shows the contents of the CPU database vector, then dumps the
first 32 bytes of each CPU database entry. Only the first five entries in the
array are requested, and those containing zero are ignored.

4–14 SDA Commands

SDA Commands
EVALUATE

EVALUATE

Computes and displays the value of the specified expression in both hexadecimal
and decimal. Alternative evaluations of the expression are available with the use
of the qualifiers defined for this command.

Format

EVALUATE [{/CONDITION_VALUE | /PS | /PTE
| /[NO]SYMBOLS | /TIME}] expression

Parameter

expression
SDA expression to be evaluated. Section 2.6.2 describes the components of SDA
expressions.

Qualifiers

/CONDITION_VALUE
Displays the message that the $GETMSG system service obtains for the value of
the expression.

/PS
Evaluates the specified expression in the format of a processor status.

/PTE
Interprets and displays the expression as a page table entry (PTE). The individual
fields of the PTE are separated and an overall description of the PTE’s type is
provided.

/SYMBOLS
/NOSYMBOLS
Specifies that all symbols known to be equal to the evaluated expression are to
be listed in alphabetical order. The default behavior of the EVALUATE command
displays only the first five symbols. If /NOSYMBOLS is specified, only the
hexadecimal and decimal values are displayed.

/TIME
Interprets and displays the expression as a 64-bit time value. Positive values are
interpreted as absolute time; negative values are interpreted as delta time.

Description

If you do not specify a qualifier, the EVALUATE command interprets and displays
the expression as hexadecimal and decimal values. In addition, if the expression
is equal to the value of a symbol in the SDA symbol table, that symbol is
displayed. If no symbol with this value is known, the next lower valued symbol
is displayed with an appropriate offset unless the offset is extremely large. (See
Section 2.6.2.4 for a description of how SDA displays symbols and offsets.) The
DEFINE command adds symbols to the SDA symbol table but does not display
the results of the computation. EVALUATE displays the result of the computation
but does not add symbols to the SDA symbol table.

SDA Commands 4–15

SDA Commands
EVALUATE

Examples

1. SDA> EVALUATE -1
Hex = FFFFFFFF.FFFFFFFF Decimal = -1 I

The EVALUATE command evaluates a numeric expression, displays the
value of that expression in hexadecimal and decimal notation, and displays a
symbol that has been defined to have an equivalent value.

2. SDA> EVALUATE 1
Hex = 00000000.00000001 Decimal = 1 CHF$M_CALEXT_CANCEL

CHF$M_FPREGS_VALID
CHF$V_CALEXT_LAST
IRP$M_BUFIO
IRP$M_CLN_READY
|

(remaining symbols suppressed by default)

The EVALUATE command evaluates a numeric expression and displays the
value of that expression in hexadecimal and decimal notation. This example
also shows the symbols that have the displayed value. A maximum of five
symbols are displayed by default.

3. SDA> DEFINE TEN = A
SDA> EVALUATE TEN
Hex = 00000000.0000000A Decimal = 10 IRP$B_TYPE

IRP$S_FMOD
IRP$V_MBXIO
TEN
UCB$B_TYPE
|

(remaining symbols suppressed by default)

This example shows the definition of a symbol named TEN. The EVALUATE
command then shows the value of the symbol.

Note that A, the value assigned to the symbol by the DEFINE command,
could be a symbol. When SDA evaluates a string that can be either a symbol
or a hexadecimal numeral, it first searches its symbol table for a definition of
the symbol. If SDA finds no definition for the string, it evaluates the string
as a hexadecimal number.

4. SDA> EVALUATE (((TEN * 6) + (-1/4)) + 6)
Hex = 00000000.00000042 Decimal = 66

This example shows how SDA evaluates an expression of several terms,
including symbols and rational fractions. SDA evaluates the symbol,
substitutes its value in the expression, and then evaluates the expression.
The fraction -1/4 is truncated to 0.

5. SDA> EVALUATE/CONDITION 80000018
%SYSTEM-W-EXQUOTA, exceeded quota

This example shows the output of an EVALUATE/CONDITION command.

4–16 SDA Commands

SDA Commands
EVALUATE

6. SDA> EVALUATE/PS 0B03
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 0B 0 0 KERN 0 USER

SDA interprets the entered value 0B03 as though it were a processor status
(PS) and displays the resulting field values.

7. SDA> EVALUATE/PTE 0BCDFFEE

3 3 2 2 2 1 1 1
1 0 9 7 0 8 6 5 7 6 0
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
|0|0|00| 005E |0|X| 02|1| FF |X| 37 |0|
+-+-+--+--------------+-+-+---+-+---------------+-+-----------+-+
| 00000000 |
+---+
Global PTE: Owner = S, Read Prot = KESU, Write Prot = KESU, CPY = 0

GPT Index = 00000000

The EVALUATE/PTE command displays the expression 0BCDFFEE as a page
table entry (PTE) and labels the fields. It also describes the status of the
page.

8. SDA> EVALUATE/TIME 009A9A4C.843DBA9F
10-OCT-1996 15:59:44.02

This example shows the use of the EVALUATE/TIME command.

SDA Commands 4–17

SDA Commands
EXAMINE

EXAMINE

Displays either the contents of a location or range of locations in physical memory,
or the contents of a register. Use location parameters to display specific locations
or use qualifiers to display the entire process and system regions of memory.

Format

EXAMINE [/qualifier[,...]] [location]

Parameter

location
Location in memory to be examined. A location can be represented by any valid
SDA expression. (See Section 2.6.2 for additional information about expressions.)
To examine a range of locations, use the following syntax:

m:n Range of locations to be examined, from m to n
m;n Range of locations to be examined, starting at m and continuing for n

bytes

The default location that SDA uses is initially 0 in the program region (P0)
of the process that was executing at the time the system failed (if you are
examining a crash dump) or your process (if you are examining the running
system). Subsequent uses of the EXAMINE command with no parameter
specified increase the last address examined by eight. Use of the /INSTRUCTION
qualifier increases the default address by four. To examine memory locations of
other processes, you must use the SET PROCESS command.

Qualifiers

/ALL
Examines all the locations in the program, and control regions and system
space, displaying the contents of memory in hexadecimal longwords and ASCII
characters. Do not specify parameters when you use this qualifier.

/CONDITION_VALUE
Examines the specified longword, displaying the message that the $GETMSG
system service obtains for the value in the longword.

/INSTRUCTION
Translates the specified range of memory locations into assembly instruction
format. Each symbol in the EXAMINE expression that is defined as a procedure
descriptor is replaced with the code entry point address of that procedure, unless
you also specify the /NOPD qualifier.

/NOPD
Can be used with the /INSTRUCTION qualifier to override treating symbols
as procedure descriptors. You can place the qualifier immediately after the
/INSTRUCTION qualifier, or following a symbol name.

For more details on using the /NOPD qualifier, see the description for the /PD
qualifier.

4–18 SDA Commands

SDA Commands
EXAMINE

/NOSUPPRESS
Inhibits the suppression of zeros when displaying memory with one of the
following qualifiers: /ALL, /P0, /P1, /SYSTEM, or when a range is specified.

/P0
Displays the entire program region for the default process. Do not specify
parameters when you use this qualifier.

/P1
Displays the entire control region for the default process. Do not specify
parameters when you use this qualifier.

/PD
Causes the EXAMINE command to treat the location specified in the EXAMINE
command as a procedure descriptor (PD). PD can also be used to qualify symbols.

You can use the /PD and /NOPD qualifiers with the /INSTRUCTION qualifier to
override treating symbols as procedure descriptors. Placing the qualifier right
after a symbol will override how the symbol is treated. /PD will force it to be a
procedure descriptor, and /NOPD will force it to not be a procedure descriptor.

Only the /PD qualifier can be placed right after the /INSTRUCTION qualifier. It
treats the calculated value as a procedure descriptor.

In the following examples, TEST_ROUTINE is a PD symbol. Its value is 500 and
the code address in this procedure descriptor is 1000. The first example displays
intructions starting at 520.

EXAMINE/INSTRUCTION TEST_ROUTINE/NOPD+20

The next example fetches code address from TEST_ROUTINE PD, adds 20 and
displays instructions at that address. In other words, it displays code starting at
location 1020.

EXAMINE/INSTRUCTION TEST_ROUTINE+20

The final example treates the address TEST_ROUTINE+20 as a procedure
descriptor, so it fetches the code address out of a procedure descriptor at address
520. It then uses that address to display instructions.

EXAMINE/INSTRUCTION/PD TEST_ROUTINE/NOPD+20

/PHYSICAL
Examines physical addresses. You cannot use the /PHYSICAL qualifier in
combination with the /P0, /P1, or /SYSTEM qualifiers.

/PS
Examines the specified quadword, displaying its contents in the format of
a processor status. This qualifier must precede any parameters used in the
command line.

/PTE
Interprets and displays the specified quadword as a page table entry (PTE). The
display separates individual fields of the PTE and provides an overall description
of the PTE’s type.

/SYSTEM
Displays portions of the writable system region. Do not specify parameters when
you use this qualifier.

SDA Commands 4–19

SDA Commands
EXAMINE

/TIME
Examines the specified quadword, displaying its contents in the format of a
system-date-and-time quadword.

Description

The following sections describe how to use the EXAMINE command.

Examining Locations
When you use the EXAMINE command to look at a location, SDA displays the
location in symbolic notation (symbolic name plus offset), if possible, and its
contents in hexadecimal and ASCII formats:

SDA> EXAMINE G6605C0
806605C0: 64646464.64646464 "dddddddd"

If the ASCII character that corresponds to the value contained in a byte is not
printable, SDA displays a period (.). If the specified location does not exist in
memory, SDA displays this message:

%SDA-E-NOTINPHYS, address : virtual data not in physical memory

To examine a range of locations, you can designate starting and ending locations
separated by a colon. For example:

SDA> EXAMINE G40:G200

Alternatively, you can specify a location and a length, in bytes, separated by a
semicolon. For example:

SDA> EXAMINE G400;16

When used to display the contents of a range of locations, the EXAMINE
command displays six or ten columns of information. Ten columns are used if
the terminal width is 132 or greater, or if a SET OUTPUT has been entered; six
columns are used otherwise. An explanation of the columns is as follows:

• Each of the first four or eight columns represents a longword of memory, the
contents of which are displayed in hexadecimal format.

• The fifth or ninth column lists the ASCII value of each byte in each longword
displayed in the previous four or eight columns.

• The sixth or tenth column contains the address of the first, or rightmost,
longword in each line. This address is also the address of the first, or leftmost,
character in the ASCII representation of the longwords. Thus, you read the
hexadecimal dump display from right to left, and the ASCII display from left
to right.

If a series of virtual addresses does not exist in physical memory, SDA displays a
message specifying the range of addresses that were not translated.

If a range of virtual locations contains only zeros, SDA displays this message:

Zeros suppressed from ’loc1’ to ’loc2’

Decoding Locations
You can translate the contents of memory locations into instruction format by
using the /INSTRUCTION qualifier. This qualifier causes SDA to display the
location in symbolic notation (if possible) and its contents in instruction format.
The operands of decoded instructions are also displayed in symbolic notation. The
location must be longword aligned.

4–20 SDA Commands

SDA Commands
EXAMINE

Examining Memory Regions
You can display an entire region of virtual memory by using one or more of the
qualifiers /ALL, /SYSTEM, /P0, and /P1 with the EXAMINE command.

Other Uses
Other uses of the EXAMINE command appear in the following examples.

Note

When examining individual locations, addresses are usually symbolized,
as described previously. If the SET SYMBOLIZE OFF command is issued,
addresses are not symbolized. See the SET SYMBOLIZE command for
further details.

Examples

1. SDA> EXAMINE/PS 7FF95E78
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD
0 00 00000000000 08 0 0 KERN 0 EXEC

This example shows the display produced by the EXAMINE/PS command.

2. SDA> EXAMINE/PTE @^QMMG$GQ_L1_BASE

31 30 29 27 20 18 16 15 7 6 0

0 1 00 0 xx 000 040000 11 0

VM-0969A-AI

Valid PTE: Read Prot = K---, Write Prot = K---, Owner = K, Fault on = E--,
ASM = 00, Granularity Hint = 00, CPY = 00, PFFN = 00000C37

The EXAMINE/PTE command displays and formats the level 1 page table
entry at FFFFFFFF.FF7FC000.

3. SDA> EXAMINE/CONDITION_VALUE R0
%SYSTEM-F-NOPRIV, insufficient privilege or object protection violation

This example shows the text associated with the condition code in R0.

4. SDA> EXAMINE/TIME EXE$GQ_SYSTIME
12-DEC-2001 08:23:07.80

This example displays the current system as an ASCII absolute time.

SDA Commands 4–21

SDA Commands
EXIT

EXIT

Exits from an SDA display or exits from the SDA utility.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

If SDA is displaying information on a video display terminal—and if that
information extends beyond one screen—SDA enters display mode and displays a
screen overflow prompt at the bottom of the screen:

Press RETURN for more.
SDA>

If you want to discontinue the current display at this point, enter the EXIT
command. If you want SDA to execute another command, enter that command.
SDA discontinues the display as if you entered EXIT, and then executes the
command you entered.

When the SDA> prompt is not immediately preceded by the screen overflow
prompt, entering EXIT causes your process to cease executing the SDA utility.
When issued within a command procedure (either the SDA initialization file or a
command procedure invoked with the execute (@) command), EXIT causes SDA to
terminate execution of the procedure and return to the SDA prompt.

See Section 2.6.3 for a description of SDA display mode.

4–22 SDA Commands

SDA Commands
FORMAT

FORMAT

Displays a formatted list of the contents of a block of memory.

Format

FORMAT [/TYPE=block-type] location [/PHYSICAL] [/POSITIVE]

Parameter

location
Location of the beginning of the data block. The location can be given as any
valid SDA expression.

Qualifiers

/TYPE=block-type
Forces SDA to characterize and format a data block at location as the specified
type of data structure. The /TYPE qualifier thus overrides the default behavior of
the FORMAT command in determining the type and/or subtype of a data block,
as described in the Description section. The block-type can be the symbolic prefix
of any data structure defined by the operating system.

/PHYSICAL
Specifies that the location given is a physical address.

/POSITIVE
Symbols that describe negative offsets from the start of the structure are ignored.
By default, all symbols for the block type are processed.

Description

The FORMAT command performs the following actions:

• Characterizes a range of locations as a system data block

• Assigns, if possible, a symbol to each item of data within the block

• Displays all the data within the block

Most OpenVMS Alpha control blocks include two bytes that indicate the block
type and/or subtype at offsets 0A16 and 0B16, respectively. The type and/or
subtype associate the block with a set of symbols that have a common prefix.
Each symbol’s name describes a field within the block, and the value of the
symbol represents the offset of the field within the block.

If the type and/or subtype bytes contain a valid block type/subtype combination,
SDA retrieves the symbols associated with that type of block (see $DYNDEF) and
uses their values to format the block.

For a given block type, all associated symbols have the folloiwng form:

<block_type>$<field>_<name>

SDA Commands 4–23

SDA Commands
FORMAT

where field is one of the following:

B Byte
W Word
L Longword
Q Quadword
O Octaword
A Address
C Constant
G Global Longword
P Pointer
R Structure (variable size)
T Counted ASCII string (up to 31 characters)

If SDA cannot find the symbols associated with the block type specified in the
block-type byte or by the /TYPE qualifier, it issues the following message:

%SDA-E-NOSYMBOLS, no <block type> symbols found to format this block

If you receive this message, you may want to read additional symbols into
the SDA symbol table and retry the FORMAT command. Many symbols that
define OpenVMS Alpha data structures are contained within SDA$READ_
DIR:SYSDEF.STB. Thus, you would issue the following command:

SDA> READ SDA$READ_DIR:SYSDEF.STB

If SDA issues the same message again, try reading additional symbols.
Table 2–4 lists additional modules provided by the OpenVMS operating system.
Alternatively, you can create your own object modules with the MACRO-
32 Compiler for OpenVMS Alpha. See the READ command description for
instructions on creating such an object module.

Certain OpenVMS Alpha data structures do not contain a block type and/or
subtype. If bytes contain information other than a block type/subtype—or do not
contain a valid block type/subtype—SDA either formats the block in a totally
inappropriate way, based on the contents of offsets 0A16 and 0B16, or displays the
following message:

%SDA-E-INVBLKTYP, invalid block type in specified block

To format such a block, you must reissue the FORMAT command, using the
/TYPE qualifier to designate a block-type.

The FORMAT command produces a three-column display containing the following
information:

• The first column shows the virtual address of each item within the block.

• The second column lists each symbolic name associated with a location within
the block.

• The third column shows the contents of each item in hexadecimal format,
including symbolization if a suitable symbol exists.

4–24 SDA Commands

SDA Commands
FORMAT

Example

SDA> READ SDA$READ_DIR:SYSDEF.STB
%SDA-I-READSYM, 913 symbols read from SYS$COMMON:[SYS$LDR]SYSDEF.STB
SDA> FORMAT G41F818
FFFFFFFF.8041F818 UCB$L_FQFL 8041F818 UCB

UCB$L_MB_MSGQFL
UCB$L_RQFL
UCB$W_MB_SEED
UCB$W_UNIT_SEED

FFFFFFFF.8041F81C UCB$L_FQBL 8041F818 UCB
UCB$L_MB_MSGQBL
UCB$L_RQBL

FFFFFFFF.8041F820 UCB$W_SIZE 0110
FFFFFFFF.8041F822 UCB$B_TYPE 10
FFFFFFFF.8041F823 UCB$B_FLCK 2C
FFFFFFFF.8041F824 UCB$L_ASTQFL 00000000

UCB$L_FPC
UCB$L_MB_W_AST
UCB$T_PARTNER

.

.

.

The READ command loads the symbols from SDA$READ_DIR:SYSDEF.STB
into SDA’s symbol table. The FORMAT command displays the data structure
that begins at G41F81816, a unit control block (UCB). If a field has more than
one symbolic name, all such names are displayed. Thus, the field that starts at
8041F82416 has four designations: UCBL_ASTQFL, UCBL_FPC, UCB$L_MB_
W_AST, and UCB$T_PARTNER.

The contents of each field appear to the right of the symbolic name of the field.
Thus, the contents of UCB$L_FQBL are 8041F81816.

SDA Commands 4–25

SDA Commands
HELP

HELP

Displays information about the SDA utility, its operation, and the format of its
commands.

Format

HELP [topic-name]

Parameter

topic-name
Topic for which you need information. A topic can be a command name or one of
the following keywords:

Keyword Function

ANALYZE_USAGE_
SUMMARY

Describes the parameters and qualifiers for the
ANALYZE/CRASH_DUMP and ANALYZE/SYSTEM
DCL commands

CPU_CONTEXT Describes the concept of CPU context as it governs
the behavior of SDA

EXECUTE_COMMAND Describes the use of @ file to execute SDA commands
contained in a file

EXPRESSIONS Prints a description of SDA expressions
INITIALIZATION Describes the circumstances under which SDA

executes an initialization file when first invoked
OPERATION Describes how to operate SDA at your terminal and

by means of the site-specific startup procedure
PROCESS_CONTEXT Describes the concept of process context as it governs

the behavior of SDA
SDA_CLUE_
EXTENSION_
COMMANDS

Provides an overview of SDA CLUE (Crash Log
Utility Extractor)

SDA_EXTENSION_
ROUTINES

Describes how to write, debug, and invoke an SDA
extension and provides details of all callable routines

SDA_SPINLOCK_
TRACING_COMMANDS

Provides an overview of SDA SPL (Spinlock Tracing
utility)

SYMBOLS Describes the symbols used by SDA

Qualifiers

None.

Description

The HELP command displays brief descriptions of SDA commands and concepts
on the terminal screen (or sends these descriptions to the file designated in a SET
OUTPUT command). You can request additional information by specifying the
name of a topic in response to the Topic? prompt.

4–26 SDA Commands

SDA Commands
HELP

If you do not specify a parameter in the HELP command, it lists the features of
SDA and those commands and topics for which you can request help, as follows:

Example

SDA> HELP

HELP

The System Dump Analyzer (SDA) allows you to inspect the contents
of memory as saved in the dump taken at crash time or as exists
in a running system. You can use SDA interactively or in batch
mode. You can send the output from SDA to a listing file. You can
use SDA to perform the following operations:

Assign a value to a symbol
Examine memory of any process
Format instructions and blocks of data
Display device data structures
Display memory management data structures
Display a summary of all processes on the system
Display the SDA symbol table
Copy the system dump file
Send output to a file or device
Read global symbols from any object module
Send output to a file or device
Search memory for a given value

For help on performing these functions, use the HELP command and
specify a topic.

Format

HELP [topic-name]

Additional information available:

ANALYZE_Usage_Summary ATTACH CLUE COPY CPU_Context
DEFINE DUMP EVALUATE EXAMINE Execute_Command EXIT
Expressions FORMAT HELP Initialization MAP
MODIFY Operation Process_Context READ REPEAT
SDA_CLUE_Extension_Commands SDA_Extension_Routines
SDA_Spinlock_Tracing_Commands SEARCH SET SHOW SPAWN
SPL Symbols UNDEFINE VALIDATE

Topic?

SDA Commands 4–27

SDA Commands
MAP

MAP

Transforms an address into an offset in a particular image.

Format

MAP address

Parameter

address
Address to be identified.

Qualifiers

None.

Description

The MAP command identifies the image name and offset corresponding to an
address. With this information, you can examine the image map to locate the
source module and program section offset corresponding to an address. MAP
searches for the specified address in executive images first. It then checks
activated images in process space to include those images installed using the
/RESIDENT qualifier of the Install utility. Finally, it checks all image-resident
sections in system space.

If the address cannot be found, MAP displays the following message:

%SDA-E-NOTINIMAGE, Address not within a system/installed image

Examples

1. SDA> MAP G90308
Image Base End Image Offset
SYS$VM
Nonpaged read only 80090000 800ABA00 00000308

Examining the image map identified by this MAP command (SYS$VM.MAP)
shows that image offset 308 falls within psect EXEC$HI_USE_PAGEABLE_
CODE because the psect goes from offset 0 to offset 45D3:

.

.

.
EXEC$HI_USE_PAGEABLE_CODE 00000000 000045D3 000045D4 (17876.) 2 ** 5 . . .

SYSCREDEL 00000000 0000149B 0000149C (5276.) 2 ** 5
SYSCRMPSC 000014A0 000045D3 00003134 (12596.) 2 ** 5

EXEC$NONPAGED_CODE 000045E0 0001B8B3 000172D4 (94932.) 2 ** 5 . . .
EXECUTE_FAULT 000045E0 0000483B 0000025C (604.) 2 ** 5
IOLOCK 00004840 000052E7 00000AA8 (2728.) 2 ** 5
LOCK_SYSTEM_PAGES

.

.

.

Specifically, image offset 308 is located within source module SYSCREDEL.
Therefore, to locate the corresponding code, you would look in SYSCREDEL
for offset 308 in psect EXEC$HI_USE_PAGEABLE_CODE.

4–28 SDA Commands

SDA Commands
MAP

2. SDA> MAP G550000
Image Base End Image Offset
SYS$DKDRIVER 80548000 80558000 00008000

In this example, the MAP command identifies the address as an offset into
an executive image that is not sliced. The base and end addresses are the
boundaries of the image.

3. SDA> MAP G550034
Image Base End Image Offset
SYS$DUDRIVER

Nonpaged read/write 80550000 80551400 00008034

In this example, the MAP command identifies the address as an offset into an
executive image that is sliced. The base and end addresses are the boundaries
of the image section that contains the address of interest.

4. SDA> MAP GF0040
Image Resident Section Base End Image Offset
MAILSHR 800F0000 80119000 00000040

The MAP command identifies the address as an offset into an image-resident
section residing in system space.

5. SDA> MAP 12000
Activated Image Base End Image Offset
MAIL 00010000 000809FF 00002000

The MAP command identifies the address as an offset into an activated image
residing in process-private space.

6. SDA> MAP B2340
Compressed Data Section Base End Image Offset
LIBRTL 000B2000 000B6400 00080340

The MAP command identifies the address as being within a compressed
data section. When an image is installed with the Install utility using
the /RESIDENT qualifier, the code sections are mapped in system space.
The data sections are compressed into process-private space to reduce null
pages or holes in the address space left by the absence of the code section.
The SHOW PROCESS/IMAGE=ALL display shows how the data has been
compressed; the MAP command searches this information to map an address
in a compressed data section to an offset in an image.

7. SDA> MAP 7FC06000
Shareable Address Data Section Base End Image Offset
LIBRTL 7FC06000 7FC16800 00090000

The MAP command identifies the address as an offset into a shareable
address data section residing in P1 space.

8. SDA> MAP 7FC26000
Read-Write Data Section Base End Image Offset
LIBRTL 7FC26000 7FC27000 000B0000

The MAP command identifies the address as an offset into a read-write data
section residing in P1 space.

SDA Commands 4–29

SDA Commands
MAP

9. SDA> MAP 7FC36000
Shareable Read-Only Data Section Base End Image Offset
LIBRTL 7FC36000 7FC3F600 000C0000

The MAP command identifies the address as an offset into a shareable
read-only data section residing in P1 space.

10. SDA> MAP 7FC56000
Demand Zero Data Section Base End Image Offset
LIBRTL 7FC56000 7FC57000 000E0000

The MAP command identifies the address as an offset into a demand zero
data section residing in P1 space.

4–30 SDA Commands

SDA Commands
MODIFY DUMP

MODIFY DUMP

Allows a given byte, word, longword, or quadword in the dump to be modified.

Format

MODIFY DUMP {/BLOCK=n/OFFSET=n | /NEXT} [/CONFIRM=n]
{/BYTE | /WORD | /LONGWORD (d) | /QUADWORD} value

Parameter

value
New value deposited in the specified location in the dump file.

Qualifiers

/BLOCK=n
Indicates block number to be modified. Required unless the /NEXT qualifier is
given.

/OFFSET=n
Indicates byte offset within block to be modified. Required unless the /NEXT
qualifier is given.

/NEXT
Indicates that the byte or bytes immediately following the location altered by
the previous MODIFY DUMP command are to be modified. Used instead of the
/BLOCK=n and /OFFSET=n qualifiers.

/CONFIRM=n
Checks existing contents of location to be modified.

/BYTE
Indicates that only a single byte is to be replaced.

/WORD
Indicates that a word is to be replaced.

/LONGWORD
Indicates that a longword is to be replaced. This is the default.

/QUADWORD
Indicates that a quadword is to be replaced.

Description

The MODIFY DUMP command is used on a dump file that cannot be analyzed
without specifying the /OVERRIDE qualifier on the ANALYZE/CRASH_DUMP
command. You can use the MODIFY DUMP command to correct the problem
that prevents normal analysis of a dump file. You can only use the MODIFY
DUMP command when you have invoked SDA with the ANALYZE/CRASH_
DUMP/OVERRIDE command.

SDA Commands 4–31

SDA Commands
MODIFY DUMP

Important

This command is not intended for general use. It is provided for the
benefit of Compaq support personnel when investigating crash dumps
that cannot be analyzed in other ways.

If the block being modified is part of either the dump header, the error log
buffers, or the compression map, the changes made are not seen when you issue
the appropriate SHOW DUMP command, unless you first exit from SDA and then
reissue the ANALYZE/CRASH_DUMP command.

The MODIFY DUMP command sets a bit in the dump header to indicate that
the dump has been modified. Subsequent ANALYZE/CRASH_DUMP commands
issued to that file produce the following warning message:

%SDA-W-DUMPMOD, dump has been modified

Examples

1. SDA>> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD FF

This example shows the dump file modified with the word at offset 100 in
block 00000010 replaced by 00FF.

2. SDA>> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD 0/CONFIRM=EE

This example shows that the actual word value of 00FF at offset 100 in block
00000010 does not match the given value of 00EE. The following message is
displayed:

3. %SDA-E-NOMATCH, expected value does not match value in dump; dump not updated

4. SDA>> MODIFY DUMP/BLOCK=10/OFFSET=100/WORD 0/CONFIRM=FF

This example shows the dump file modified with a word value of 00FF at
offset 100 in block 00000010 replaced by 0000.

4–32 SDA Commands

SDA Commands
READ

READ

Loads the global symbols contained in the specified file into the SDA symbol
table.

Format

READ [/[NO]LOG | /RELOCATE =expression | /SYMVA=expression]
{/EXECUTIVE [directory spec] | /FORCE filespec
| /IMAGE filespec | filespec}

Parameters

directory-spec
Name of the directory containing the loadable images of the executive.
This parameter defaults to SDA$READ_DIR, which is a search list of
SYS$LOADABLE_IMAGES and SYS$LIBRARY.

filespec
Name of the device, directory, and file that contains the file from which you
want to read global symbols. The filespec defaults to SYS$DISK:[default-
dir]filename.type, where SYS$DISK and [default-dir] represent the disk and
directory specified in your last DCL command SET DEFAULT. If no type has been
given in filespec, SDA first tries .STB and then .EXE.

If no device or directory is given in the file specification, and the file specification
is not found in SYS$DISK:[default_dir], then SDA attempts to open the file
SDA$READ_DIR:filename.type. If no type has been given in filespec, SDA first
tries .STB and then .EXE.

If the file name is the same as that of an execlet or image, but the symbols in the
file are not those of the execlet or image, then you must use the /FORCE qualifier,
and optionally /RELOCATE and /SYMVA qualifiers, to tell SDA how to interpret
the symbols in the file.

Qualifiers

/EXECUTIVE directory-spec
Reads into the SDA symbol table all global symbols and global entry points
defined within all loadable images that make up the executive. For all the
execlets in the system, SDA reads the .STB or .EXE files in the requested
directory.

/FORCE filespec
Forces SDA to read the symbols file, regardless of what other information or
qualifiers are specified. If you do not specify the /FORCE qualifier, SDA may not
read the symbols file if the specified filespec matches the image name in either
the executive loaded images or the current processes activated image list, and one
of the following conditions is true:

• The image has a symbols vector (is a shareable image), and a symbols vector
was not specified with the /SYMVA or /IMAGE qualifier.

• The image is sliced, and slicing information was not provided with the
/IMAGE qualifier.

SDA Commands 4–33

SDA Commands
READ

• The shareable or executive image is not loaded at the same address it was
linked at, and the relocation information was not provided with either the
/IMAGE or /RELOCATE qualifier.

The use of /FORCE [/SYMVA=addr][/RELOCATE=addr] filespec is a variant of
the /IMAGE qualifier and avoids fixing up the symbols to match an image of the
same name.

/IMAGE filespec
Searches the executive loaded image list and the current process activated image
list for the image specified by filespec. If the image is found, the symbols are
read in using the image symbol vector (if there is one) and either slicing or
relocation information.

This is the preferred way to read in the .STB files produced by the linker. These
.STB files contain all universal symbols, unless SYMBOL_TABLE=GLOBAL is
in the linker options file, in which case the .STB file contains all universal and
global symbols.

/LOG
/NOLOG
The /LOG qualifier causes SDA to output the %SDA-I-READSYM message for
each symbol table file it reads. This is the default. You can specify the /LOG
qualifier with any other combination of parameters and qualifiers.

The /NOLOG qualifier suppresses the output of the %SDA-I-READSYM messages.
You can specify the /NOLOG qualifier with any other combination of parameters
and qualifiers.

/RELOCATE=expression
Changes the relative addresses of the symbols to absolute addresses by adding
the value of expression to the value of each symbol in the symbol table file to be
read. This qualifier changes those addresses to absolute addresses in the address
space into which the dump is mapped.

The relocation only applies to symbols with the relocate flag set. All universal
symbols must be found in the symbol vector for the image. All constants are read
in without any relocation.

If the image is sliced (image sections are placed in memory at different relative
offsets than how the image is linked), then the /RELOCATE qualifier does not
work. SDA compares the file name used as a parameter to the READ command
against all the image names in the executive loaded image list and the current
processes activated image list. If a match is found, and that image contains a
symbol vector, an error results. At this point you can either use the /FORCE
qualifier or the /IMAGE qualifier to override the error.

/SYMVA=expression
Informs SDA whether the absolute symbol vector address is for a shareable
image (SYS$PUBLIC_VECTORS.EXE) or base system image (SYS$BASE_
IMAGE.EXE). All symbols found in the file with the universal flag are found by
referencing the symbol vector (that is, the symbol value is a symbol vector offset).

4–34 SDA Commands

SDA Commands
READ

Description

The READ command symbolically identifies locations in memory and the
definitions used by SDA for which the default files (SDA$READ_DIR:SYS$BASE_
IMAGE.EXE and SDA$READ_DIR:REQSYSDEF.STB) provide no definition. In
other words, the required global symbols are located in modules and symbol
tables that have been compiled and/or linked separately from the executive. SDA
extracts no local symbols from the files.

The file specified in the READ command can be the output of a compiler or
assembler (for example, an .OBJ file).

Note

The READ command can read both OpenVMS VAX and OpenVMS Alpha
format files. Do not use READ to read OpenVMS VAX format files that
contain VAX specific symbols, as this might change the behavior of other
OpenVMS Alpha SDA commands.

Most often the file is provided in SYS$LOADABLE_IMAGES. Many SDA
applications, for instance, need to load the definitions of system data structures
by issuing a READ command specifying SYSDEF.STB. Others require the
definitions of specific global entry points within the executive image.

The files in SYS$LOADABLE_IMAGES define global locations within executive
images, including those listed in Table 4–1. The actual list of executive images
used varies, depending on platform type, devices, and the settings of several
system parameters.

Table 4–1 Modules Defining Global Locations Within Executive Images

File Contents

ACME.EXE $ACM system service
CNX$DEBUG.EXE Connection Manager trace

routines
DDIF$RMS_EXTENSION.EXE Support for Digital Document

Interchange Format (DDIF) file
operations

ERRORLOG.STB Error-logging routines and system
services

EXCEPTION.STB1 Bugcheck and exception-handling
routines and those system services
that declare condition and exit
handlers

EXEC_INIT.STB Initialization code
F11BXQP.STB File system support
FC$GLOGALS.STB Fibrechannel symbols

1Variations of these files also exist, for example, where the file name ends in "_MON." System
parameters such as SYSTEM_CHECK determine which image is loaded.

(continued on next page)

SDA Commands 4–35

SDA Commands
READ

Table 4–1 (Cont.) Modules Defining Global Locations Within Executive Images

File Contents

IMAGE_MANAGEMENT.STB Image activator and the related
system services

IO_ROUTINES.STB1 $QIO system service, related
system services (for example,
$CANCEL and $ASSIGN), and
supporting routines

LAT$RATING.EXE CPU load-balancing routines for
LAT

LCK$DEBUG.EXE Lock manager trace routines
LMF$GROUP_TABLE.EXE Data structures for licensed

product groups
LOCKING.STB Lock management routines and

system services
LOGICAL_NAMES.STB Logical name routines and system

services
MESSAGE_ROUTINES.STB System message routines and

system services (including
$SNDJBC and $GETTIM)

MSCP.EXE Disk MSCP server
MULTIPATH.STB1 Fibrechannel multipath support

routines
NET$CSMACD.EXE CSMA/CD LAN management

module
NET$FDDI.EXE FDDI LAN management module
NT_EXTENSION.EXE NT extensions for persona system

services
PROCESS_MANAGEMENT.STB1 Scheduler, report system event,

and supporting routines and
system services

RECOVERY_UNIT_SERVICES.STB Recovery unit system services
RMS.EXE Global symbols and entry points

for RMS
SECURITY.STB1 Security management routines

and system services
SHELLxxK.STB Process shell
SPL$DEBUG.EXE Spinlock trace routines
SSPI.EXE Security Support Provider

Interface
SYS$xxDRIVER.EXE Run-time device drivers
SYS$ATMWORKS351.EXE PCI-ATM driver

1Variations of these files also exist, for example, where the file name ends in "_MON." System
parameters such as SYSTEM_CHECK determine which image is loaded.

(continued on next page)

4–36 SDA Commands

SDA Commands
READ

Table 4–1 (Cont.) Modules Defining Global Locations Within Executive Images

File Contents

SYS$CLUSTER.EXE OpenVMS Cluster support
routines

SYS$CPU_ROUTINES_xxxx.EXE Processor-specific data and
initialization routines

SYS$EW1000A.EXE Gigabit Ethernet driver
SYS$GALAXY.STB OpenVMS Galaxy support

routines
SYS$IPC_SERVICES.EXE Interprocess communication for

DECdtm and Batch/Print
SYS$LAN.EXE Common LAN routines
SYS$LAN_ATM.EXE LAN routines for ATM
SYS$LAN_ATM4.EXE LAN routines for ATM

(ForeThought)
SYS$LAN_CSMACD.EXE LAN routines for CSMA/CD
SYS$LAN_FDDI.EXE LAN routines for FDDI
SYS$LAN_TR.EXE LAN routines for Token Ring
SYS$MME_SERVICES.STB Media Management Extensions
SYS$NETWORK_SERVICES.EXE DECnet support
SYS$NTA.STB NT affinity routines and services
SYS$PUBLIC_VECTORS.EXE2 System service vector base image
SYS$SCS.EXE System Communication Services
SYS$TRANSACTION_SERVICES.EXE DECdtm services
SYS$UTC_SERVICES.EXE Universal Coordinated Time

services
SYS$VCC.STB1 Virtual I/O cache
SYS$VM.STB System pager and swapper, along

with their supporting routines,
and management system services

SYS$XFCACHE.STB1 Extented File Cache
SYSDEVICE.STB Mailbox driver and null driver
SYSGETSYI.STB Get System Information system

service ($GETSYI)
SYSLDR_DYN.STB Dynamic executive image loader
SYSLICENSE.STB Licensing system service

($LICENSE)
SYSTEM_DEBUG.EXE XDelta and SCD routines

1Variations of these files also exist, for example, where the file name ends in "_MON." System
parameters such as SYSTEM_CHECK determine which image is loaded.
2This file is located in SYS$LIBRARY.

(continued on next page)

SDA Commands 4–37

SDA Commands
READ

Table 4–1 (Cont.) Modules Defining Global Locations Within Executive Images

File Contents

SYSTEM_PRIMITIVES.STB1 Miscellaneous basic system
routines, including those that
allocate system memory, maintain
system time, create fork processes,
and control mutex acquisition

SYSTEM_SYNCHRONIZATION.STB1 Routines that enforce
synchronization

TCPIP$BGDRIVER.STB3 TCP/IP internet driver
TCPIP$INETACP.STB3 TCP/IP internet ACP
TCPIP$INETDRIVER.STB3 TCP/IP internet driver
TCPIP$INTERNET_SERVICES.STB3 TCP/IP internet execlet
TCPIP$NFS_SERVICES.STB3 Symbols for the TCP/IP NFS

server
TCPIP$PROXY_SERVICES.STB3 Symbols for the TCP/IP proxy

execlet
TCPIP$PWIPACP.STB3 TCP/IP PWIP ACP
TCPIP$PWIPDRIVER.STB3 TCP/IP PWIP driver
TCPIP$TNDRIVER.STB3 TCP/IP TELNET/RLOGIN server

driver
TMSCP.EXE Tape MSCP server
VMS_EXTENSION.EXE VMS extensions for persona

system services

1Variations of these files also exist, for example, where the file name ends in "_MON." System
parameters such as SYSTEM_CHECK determine which image is loaded.
3Only available if TCP/IP has been installed. These are found in SYS$SYSTEM, and are not
automatically read in when you issue a READ/EXEC command.

SDA can also read symbols from an image .EXE or .STB produced by the linker.
The STB and EXE files only contain universal symbols. The STB file, however,
can be forced to have global symbols for the image if you use the SYMBOL_
TABLE=GLOBAL option in the linker options file.

A number of ready-built symbol table files ship with OpenVMS Alpha. They can
be found in the directory SYS$LOADABLE_IMAGES, and all have names of the
form xyzDEF.STB. Of these files, SDA automatically reads REQSYSDEF.STB on
activation. You can add the symbols in the other files to SDA’s symbol table using
the READ command. Table 2–4 lists the files that OpenVMS Alpha provides in
SYS$LOADABLE_IMAGES that define data structure offsets.

The following MACRO program, GLOBALS.MAR, shows how to obtain symbols
in addition to those in SYS$BASE_IMAGE.EXE, other executive images listed in
Table 4–1, and the symbol table files that are listed in Table 2–4:

4–38 SDA Commands

SDA Commands
READ

.TITLE GLOBALS
; n.b. on following lines GLOBAL must be capitalized
$PHDDEF GLOBAL ; Process header definitions
$DDBDEF GLOBAL ; Device data block
$UCBDEF GLOBAL ; Unit control block
$VCBDEF GLOBAL ; Volume control block
$ACBDEF GLOBAL ; AST control block
$IRPDEF GLOBAL ; I/O request packet
; more can be inserted here
.END

Use the following command to generate an object module file containing the
globals defined in the program:

$MACRO GLOBALS+SYS$LIBRARY:LIB/LIBRARY /OBJECT=GLOBALS.STB

Examples

1. SDA> READ SDA$READ_DIR:SYSDEF.STB
%SDA-I-READSYM, 10010 symbols read from SYS$COMMON:[SYSEXE]SYSDEF.STB;1

The READ command causes SDA to add all the global symbols in SDA$READ_
DIR:SYSDEF.STB to the SDA symbol table. Such symbols are useful when you
are formatting an I/O data structure, such as a unit control block or an I/O
request packet.

2. SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

00000000.7FF95CD0 FFFFFFFF.80430CE0 SCH$STATE_TO_COM+00040
00000000.7FF95CD8 00000000.00000000
00000000.7FF95CE0 FFFFFFFF.81E9CB04 LNM$SEARCH_ONE_C+000E4
00000000.7FF95CE8 FFFFFFFF.8007A988 PROCESS_MANAGEMENT_NPRO+0E988

SP =>00000000.7FF95CF0 00000000.00000000
00000000.7FF95CF8 00000000.006080C1
00000000.7FF95D00 FFFFFFFF.80501FDC
00000000.7FF95D08 FFFFFFFF.81A5B720

.

.

.

SDA> READ/IMAGE SYS$LOADABLE_IMAGES:PROCESS_MANAGEMENT
%SDA-I-READSYM, 767 symbols read from SYS$COMMON:[SYS$LDR]PROCESS_MANAGEMENT.STB;1
SDA> SHOW STACK
Process stacks (on CPU 00)

Current operating stack (KERNEL):

00000000.7FF95CD0 FFFFFFFF.80430CE0 SCH$FIND_NEXT_PROC
00000000.7FF95CD8 00000000.00000000
00000000.7FF95CE0 FFFFFFFF.81E9CB04 LNM$SEARCH_ONE_C+000E4
00000000.7FF95CE8 FFFFFFFF.8007A988 SCH$INTERRUPT+00068

SP =>00000000.7FF95CF0 00000000.00000000
00000000.7FF95CF8 00000000.006080C1
00000000.7FF95D00 FFFFFFFF.80501FDC
00000000.7FF95D08 FFFFFFFF.81A5B720

.

.

.

The initial SHOW STACK command contains an address that SDA resolves
into an offset from the PROCESS_MANAGEMENT executive image. The READ

SDA Commands 4–39

SDA Commands
READ

command loads the corresponding symbols into the SDA symbol table such that
the reissue of the SHOW STACK command subsequently identifies the same
location as an offset within a specific process management routine.

4–40 SDA Commands

SDA Commands
REPEAT

REPEAT

Repeats execution of the last command issued. On terminal devices, the KP0
key performs the same function as the REPEAT command with no parameter or
qualifier.

Format

REPEAT [count | /UNTIL=condition]

Parameter

count
Number of times the previous command is to be repeated. The default is a single
repeat.

Qualifier

/UNTIL=condition
Defines a condition that terminates the REPEAT command. By default, there is
no terminating condition.

Description

The REPEAT command is useful for stepping through a linked list of data
structures, or for examining a sequence of memory locations. When used with
ANALYZE/SYSTEM, it allows the changing state of a system location or data
structure to be monitored.

Examples

1. SDA> SPAWN CREATE SDATEMP.COM
SEARCH 0:3FFFFFFF 12345678
SET PROCESS/NEXT
^Z

SDA> SET PROCESS NULL
SDA> @SDATEMP
SDA> REPEAT/UNTIL = BADPROC

This example demonstrates how to search the address space of each process in a
system or dump a given pattern.

2. SDA> SHOW CALL_FRAME
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF.80080CE0 MMG$RETRANGE_C+00180
Return address on stack = FFFFFFFF.8004CF30 EXCEPTION_NPRO+00F30

SDA Commands 4–41

SDA Commands
REPEAT

Registers saved on stack

7FF95E80 FFFFFFFF.FFFFFFFD Saved R2
7FF95E88 FFFFFFFF.8042DBC0 Saved R3 EXCEPTION_NPRW+03DC0
7FF95E90 FFFFFFFF.80537240 Saved R4
7FF95E98 00000000.00000000 Saved R5
7FF95EA0 FFFFFFFF.80030960 Saved R6 MMG$IMGRESET_C+00200
7FF95EA8 00000000.7FF95EC0 Saved R7
7FF95EB0 FFFFFFFF.80420E68 Saved R13 MMG$ULKGBLWSL E
7FF95EB8 00000000.7FF95F70 Saved R29
.
.
.
SDA> SHOW CALL_FRAME/NEXT_FP

Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF.80F018D0 IMAGE_MANAGEMENT_PRO+078D0
Return address on stack = FFFFFFFF.8004CF30 EXCEPTION_NPRO+00F30

Registers saved on stack

7FF95F90 FFFFFFFF.FFFFFFFB Saved R2
7FF95F98 FFFFFFFF.8042DBC0 Saved R3 EXCEPTION_ NPRW+03DC0
7FF95FA0 00000000.00000000 Saved R5
7FF95FA8 00000000.7FF95FC0 Saved R7
7FF95FB0 FFFFFFFF.80EF8D20 Saved R13 ERL$DEVINF O+00C20
7FF95FB8 00000000.7FFA0450 Saved R29
.
.
.
SDA> REPEAT
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, Jacket, Native

Procedure Entry: FFFFFFFF.80F016A0 IMAGE_MANAGEMENT_PRO+076A0
Return address on stack = 00000000.7FF2451C

Registers saved on stack

7FFA0470 00000000.7FEEA890 Saved R13
7FFA0478 00000000.7FFA0480 Saved R29
.
.
.

The first SHOW CALL_FRAME displays the call frame indicated by the current
FP value. Because the /NEXT_FP qualifier to the instruction displays the call
frame indicated by the saved FP in the current call frame, you can use the
REPEAT command to repeat the SHOW CALL_FRAME/NEXT_FP command and
follow a chain of call frames.

4–42 SDA Commands

SDA Commands
SEARCH

SEARCH

Scans a range of memory locations for all occurrences of a specified value.

Format

SEARCH [/qualifier] range [=] expression

Parameters

range
Location in memory to be searched. A location can be represented by any valid
SDA expression. To search a range of locations, use the following syntax:

m:n Range of locations to be searched, from m to n
m;n Range of locations to be searched, starting at m and continuing for n bytes

expression
Value for which SDA is to search. SDA evaluates the expression and searches
the specified range of memory for the resulting value. For a description of SDA
expressions, see Section 2.6.2.

If you do not use an equals sign to separate range and expression, then you
must insert a space between them.

Qualifiers

/LENGTH={QUADWORD | LONGWORD | WORD | BYTE }
Specifies the size of the expression value that the SEARCH command uses for
matching. If you do not specify the /LENGTH qualifier, the SEARCH command
uses a longword length by default.

/MASK=n
Allows the SEARCH command finer qranularity in its matches. It compares only
the given bits of a byte, word, longword, or quadword. To compare bits when
matching, you set the bits in the mask; to ignore bits when matching, you clear
the bits in the mask.

/PHYSICAL
Specifies that the addresses used to define the range of locations to be searched
are physical addresses.

/STEPS={QUADWORD | LONGWORD | WORD | BYTE | value }
Specifies the step factor of the search through the specified memory range. After
the SEARCH command has performed the comparison between the value of
expression and memory location, it adds the specified step factor to the address
of the memory location. The resulting location is the next location to undergo the
comparison. If you do not specify the /STEPS qualifier, the SEARCH command
uses a step factor of a longword.

Description

SEARCH displays each location as each value is found. If you press Ctrl/T
while using the SEARCH command, the system displays how far the search has
progressed. The progress display is always output to the terminal even if a SET
OUTPUT <file> command has previously been entered.

SDA Commands 4–43

SDA Commands
SEARCH

Examples

1. SDA> SEARCH GB81F0;500 B41B0000
Searching from FFFFFFFF.800B81F0 to FFFFFFFF.800B86EF in LONGWORD steps for B41B0000...
Match at FFFFFFFF.800B86E4 B41B0000

This SEARCH command finds the value B41B0000 in the longword at
FFFFFFFF.800B86E4.

2. SDA> SEARCH 80000000;200/STEPS=BYTE 82
Searching from FFFFFFFF.80000000 to FFFFFFFF.800001FF in BYTE steps for 00000082...
Match at FFFFFFFF.8000012C 00000082

This SEARCH command finds the value 00000082 in the longword at
FFFFFFFF.8000012C.

3. SDA> SEARCH/LENGTH=WORD 80000000;100 10
Match at FFFFFFFF.80000030 0010
Match at FFFFFFFF.80000040 0010
Match at FFFFFFFF.80000090 0010
Match at FFFFFFFF.800000A0 0010
Match at FFFFFFFF.800000C0 0010
5 matches found

This SEARCH command finds the value 0010 in the words at
FFFFFFFF.80000030, FFFFFFFF.80000040, FFFFFFFF.80000090,
FFFFFFFF.800000A0, FFFFFFFF.800000C0.

4. SDA> SEARCH/MASK=FF000000 80000000;40 20000000
Searching from FFFFFFFF.80000000 to FFFFFFFF.8000003F in LONGWORD steps for 20000000...
(Using search mask of FF000000)
Match at FFFFFFFF.80000000 201F0104
Match at FFFFFFFF.80000010 201F0001
2 matches found

This SEARCH command finds the value 20 in the upper byte of the longwords at
FFFFFFFF.80000000 and FFFFFFFF.80000010, regardless of the contents of the
lower 3 bytes.

4–44 SDA Commands

SDA Commands
SET CPU

SET CPU

When analyzing a system dump, selects a processor to become the current CPU
for SDA. (You cannot use this command when analyzing the running system.)

Format

SET CPU cpu-id

Parameter

cpu-id
Numeric value from 0016 to 1F16 indicating the identity of the processor to be
made the current CPU. If you specify a value outside this range or a cpu-id of a
processor that was not active at the time of the system failure, SDA displays the
following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

Qualifiers

None.

Description

When you invoke SDA to examine a system dump, the current CPU context
for SDA defaults to that of the processor that caused the system to fail. When
analyzing a system failure from a multiprocessing system, you may find it useful
to examine the context of another processor in the configuration.

The SET CPU command changes the current CPU context for SDA to that of the
processor indicated by cpu-id. The CPU specified by this command becomes the
current CPU for SDA until you either exit from SDA or change the CPU context
for SDA by issuing one of the following commands:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

The following commands also change the CPU context for SDA if the process-
name, pcb-address, or index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn

SDA Commands 4–45

SDA Commands
SET CPU

Changing CPU context can cause an implicit change in process context under the
following circumstances:

• If there is a current process on the CPU made current, SDA changes its
process context to that of that CPU’s current process.

• If there is no current process on the CPU made current, the SDA process
context is undefined and no process-specific information is available until you
set the SDA process context to that of a specific process.

See Section 2.5 for further discussion of the way in which SDA maintains its
context information.

4–46 SDA Commands

SDA Commands
SET ERASE_SCREEN

SET ERASE_SCREEN

Enables or disables the automatic clearing of the screen before each new page of
SDA output.

Format

SET ERASE_SCREEN {ON | OFF}

Parameters

ON
Enables the screen to be erased before SDA outputs a new heading. This setting
is the default.

OFF
Disables the erasing of the screen.

Qualifiers

None.

Description

SDA’s usual behavior is to erase the screen and then show the data. By setting
the OFF parameter, the clear screen action is replaced by a blank line. This
action does not affect what is written to a file when the SET LOG or SET
OUTPUT commands are used.

Examples

1. SDA> SET ERASE_SCREEN ON

The clear screen action is now enabled.

2. SDA> SET ERASE_SCREEN OFF

The clear screen action is disabled.

SDA Commands 4–47

SDA Commands
SET FETCH

SET FETCH

Sets the default size and access method of address data used when SDA evaluates
an expression that includes the @ unary operator.

Format

SET FETCH [{QUADWORD | LONGWORD | WORD | BYTE}][,][{PHYSICAL | VIRTUAL}]

Parameters

QUADWORD
Sets the default size to 8 bytes.

LONGWORD
Sets the default size to 4 bytes.

WORD
Sets the default size to 2 bytes.

BYTE
Sets the default size to 1 byte.

PHYSICAL
Sets the default access method to physical addresses.

VIRTUAL
Sets the default access method to virtual addresses.

You can specify only one parameter out of each group. If you are changing both
size and access method, separate the two parameters by spaces or a comma.
Include a comma only if you are specifying a parameter from both groups. See
examples 5 and 6.

Qualifiers

None.

Description

Sets the default size and/or default access method of address data used by the
@ unary operator in commands such as EXAMINE and EVALUATE. SDA uses
the current default size unless it is overridden by the ^Q, ^L, ^W, or ^B qualifier
on the @ unary operator in an expression. SDA uses the current default access
method unless it is overridden by the ^P or ^V qualifier on the @ unary operator
in an expression.

Examples

1. SDA> EXAMINE MMG$GQ_SHARED_VA_PTES
MMG$GQ_SHARED_VA_PTES: FFFFFFFD.FF7FE000 ".‘a....."

This example shows the location’s contents of a 64-bit virtual address.

4–48 SDA Commands

SDA Commands
SET FETCH

2. SDA> SET FETCH LONG
SDA> EXAMINE @MMG$GQ_SHARED_VA_PTES
%SDA-E-NOTINPHYS, FFFFFFFF.FF7FE000 : virtual data not in physical memory

This example shows a failure because the SET FETCH LONG causes SDA
to assume that it should take the lower 32 bits of the location’s contents as a
longword value, sign-extend them, and use that value as an address.

3. SDA> EXAMINE @^QMMG$GQ_SHARED_VA_PTES
FFFFFFFD.FF7FE000: 000001D0.40001119 "...@..."

This example shows the correct results by overriding the SET FETCH LONG
with the ^Q qualifier on the @ operator. SDA takes the full 64 bits of the
location’s contents and uses that value as an address.

4. SDA> SET FETCH QUAD
SDA> EXAMINE @MMG$GQ_SHARED_VA_PTES
FFFFFFFD.FF7FE000: 000001D0.40001119 "...@..."

This example shows the correct results by changing the default fetch size to a
quadword.

5. SDA> SET FETCH PHYSICAL
SDA> EXAMINE /PHYSICAL @0

This command uses the contents of the physical location 0 as the physical
address of the location to be examined.

6. SDA> SET FETCH QUADWORD, PHYSICAL

This command sets the default fetch size and default access method at the
same time.

SDA Commands 4–49

SDA Commands
SET LOG

SET LOG

Initiates or discontinues the recording of an SDA session in a text file.

Format

SET [NO]LOG filespec

Parameter

filespec
Name of the file in which you want SDA to log your commands and their output.
The default filespec is SYS$DISK:[default_dir]filename.LOG, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last DCL
command SET DEFAULT. You must specify a file name.

Qualifiers

None.

Description

The SET LOG command echoes the commands and output of an SDA session to a
log file. The SET NOLOG command terminates this behavior.

The following differences exist between the SET LOG command and the SET
OUTPUT command:

• When logging is in effect, your commands and their results are still displayed
on your terminal. The SET OUTPUT command causes the displays to be
redirected to the output file and they no longer appear on the screen.

• If an SDA command requires that you press Return to produce successive
screens of display, the log file produced by SET LOG will record only those
screens that are actually displayed. SET OUTPUT, however, sends the entire
output of any SDA commands to its listing file.

• The SET LOG command produces a log file with a default file type of .LOG;
the SET OUTPUT command produces a listing file whose default file type is
.LIS.

• The SET OUTPUT command can generate a table of contents, each item
of which refers to a display written to its listing file. SET OUTPUT also
produces running heads for each page of output. The SET LOG command
does not produce these items in its log file.

If you use the SET OUTPUT command to redirect output to a listing file, a SET
LOG command to direct the same output to a log file is ineffective until output is
restored to the terminal.

4–50 SDA Commands

SDA Commands
SET OUTPUT

SET OUTPUT

Redirects output from SDA to the specified file or device.

Format

SET OUTPUT [/[NO]INDEX | /[NO]HEADER | /SINGLE_COMMAND] filespec

Parameter

filespec
Name of the file to which SDA is to send the output generated by its commands.
The default filespec is SYS$DISK:[default_dir] filename.LIS, where SYS$DISK
and [default-dir] represent the disk and directory specified in your last DCL
command SET DEFAULT. You must specify a file name.

Qualifiers

/INDEX
/NOINDEX
The /INDEX qualifer causes SDA to include an index page at the beginning of
the output file. This is the default, unless you specify /NOHEADER See the
/NOHEADER description. The /NOINDEX qualifier causes SDA to omit the index
page from the output file.

/HEADER
/NOHEADER
The /HEADER qualifier causes SDA to include a heading at the top of each page
of the output file. This is the default. The /NOHEADER qualifier causes SDA to
omit the page headings. Use of /NOHEADER implies /NOINDEX.

/SINGLE_COMMAND
Indicates to SDA that the output for a single command is to be written to the
specified file and that subsequent output should be written to the terminal.

Description

When you use the SET OUTPUT command to send the SDA output to a file or
device, SDA continues displaying the SDA commands that you enter but sends
the output generated by those commands to the file or device you specify. (See the
description of the SET LOG command for a list of differences between the SET
LOG and SET OUTPUT commands.)

When you finish directing SDA commands to an output file and want to return to
interactive display, issue the following command:

SDA> SET OUTPUT SYS$OUTPUT

You do not need this command when you specify the /SINGLE_COMMAND
qualifier on the original SET OUTPUT command.

If you use the SET OUTPUT command to send the SDA output to a listing file
and do not specify /NOINDEX or /NOHEADER, SDA builds a table of contents
that identifies the displays you selected and places the table of contents at the
beginning of the output file. The SET OUTPUT command formats the output into
pages and produces a running head at the top of each page, unless you specify
/NOHEADER.

SDA Commands 4–51

SDA Commands
SET OUTPUT

Note

See the description of the DUMP command for use of SET
OUTPUT/NOHEADER.

4–52 SDA Commands

SDA Commands
SET PROCESS

SET PROCESS

Selects a process to become the SDA current process.

Format

SET PROCESS {/ADDRESS=pcb-address | process-name | /ID=nn |
/INDEX=nn | /NEXT | /SYSTEM}

Parameter

process-name
Name of the process to become the SDA current process. The process-name can
contain up to 15 uppercase letters, numerals, the underscore (_), dollar sign ($),
colon (:), and some other printable characters. If it contains any other characters
(including lowercase letters), you may need to enclose the process-name in
quotation marks (" ").

Qualifiers

/ADDRESS=pcb-address
Specifies the process control block (PCB) address of a process in order to display
information about the process.

/ID=nn
/INDEX=nn
Specifies the process for which information is to be displayed by its index into
the system’s list of software process control blocks (PCBs), or by its process
identification. You can supply the following values for nn:

• The process index itself.

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index. The PID or extended PID of any thread of a
process with multiple kernel threads may be specified. Any thread-specific
data displayed by further commands will be for the given thread.

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY/THREADS. The /ID=nn and /INDEX=nn qualifiers can be used
interchangeably.

/NEXT
Causes SDA to locate the next valid process in the process list and select that
process. If there are no further valid processes in the process list, SDA returns
an error.

/SYSTEM
Specifies the new current process by the system process control block (PCB). The
system PCB and process header (PHD) parallel the data structures that describe
processes. They contain the system working set list, global section table, and
other systemwide data.

SDA Commands 4–53

SDA Commands
SET PROCESS

Description

When you issue an SDA command such as EXAMINE, SDA displays the contents
of memory locations in its current process. To display any information about
another process, you must change the current process with the SET PROCESS
command.

When you invoke SDA to analyze a crash dump, the process context defaults
to that of the process that was current at the time of the system failure. If the
failure occurred on a multiprocessing system, SDA sets the CPU context to that
of the processor that caused the system to fail. The process context is set to that
of the process that was current on that processor.

When you invoke SDA to analyze a running system, its process context defaults
to that of the current process, that is, the one executing SDA.

The SET PROCESS command changes the current SDA process context to that of
the process indicated by process-name, pcb-address, or /INDEX=nn. The process
specified by this command becomes the current process for SDA until you either
exit from SDA or change SDA process context by issuing one of the following
commands:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SET PROCESS/SYSTEM
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn
SHOW PROCESS/SYSTEM

When you analyze a crash dump from a multiprocessing system, changing process
context may require a switch of CPU context as well. For instance, if you issue
a SET PROCESS command for a process that is current on another CPU, SDA
automatically changes its CPU context to that of the CPU on which that process
is current. The following commands can have this effect if process-name,
pcb-address, or index number (nn) refers to a current process:

SET PROCESS process-name
SET PROCESS/ADDRESS=pcb-address
SET PROCESS/INDEX=nn
SHOW PROCESS process-name
SHOW PROCESS/ADDRESS=pcb-address
SHOW PROCESS/INDEX=nn

The following commands will also switch process context when analyzing a
system dump, if there was a current process on the target CPU at the time of the
crash:

SET CPU cpu-id
SHOW CPU cpu-id
SHOW CRASH
SHOW MACHINE_CHECK cpu-id

See Section 2.5 for further discussion of the way in which SDA maintains its
context information.

4–54 SDA Commands

SDA Commands
SET PROCESS

Example

SDA> SET PROCESS/ADDRESS=80D772C0
SDA> SHOW PROCESS
Process index: 0012 Name: ERRFMT Extended PID: 00000052

Process status: 02040001 RES,PHDRES,INTER

status2: 00000001 QUANTUM_RESCHED

PCB address 80D772CO JIB address 80556600
PHD address 80477200 Swapfile disk address 01000F01
KTB vector address 80D775AC HWPCB address 81260080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 00010004 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000001 Previous ASN 000000000000002E
Initial process priority 4 Delete pending count 0
open files allowed left 100 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 0069D34E BUFIO byte count/limit 99424/99808
ASTs remaining 247 # of threads 1
Swapped copy of LEFC0 00000000 Timer entries allowed left 63
Swapped copy of LEFC1 00000000 Active page table count 4
Global cluster 2 pointer 00000000 Process WS page count 32
Global cluster 3 pointer 00000000 Global WS page count 31

The SET PROCESS command switches SDA’s current process context to the
process whose PCB is at address 80D772C0. The SHOW PROCESS command
shows that the process is ERRFMT, and displays information from its PCB and
job information block (JIB).

See the description of the REPEAT command for an example of the use of the
SET PROCESS/NEXT command.

SDA Commands 4–55

SDA Commands
SET RMS

SET RMS

Changes the options shown by the SHOW PROCESS/RMS command.

Format

SET RMS =(option[,...])

Parameter

option
Data structure or other information to be displayed by the SHOW PROCESS/RMS
command. Table 4–2 lists those keywords that may be used as options.

Table 4–2 SET RMS Command Keywords for Displaying Process RMS
Information

Keyword Meaning

[NO]ALL[:ifi]1 All control blocks (default)
[NO]ASB Asynchronous save block
[NO]BDB Buffer descriptor block
[NO]BDBSUM BDB summary page
[NO]BLB Buffer lock block
[NO]BLBSUM Buffer lock summary page
[NO]CCB Channel control block
[NO]DRC Directory cache
[NO]FAB File access block
[NO]FCB File control block
NO]FSB File statistics block
[NO]FWA File work area
[NO]GBD Global buffer descriptor
[NO]GBDSUM GBD summary page
[NO]GBH Global buffer header
[NO]GBHSH Global buffer hash table
[NO]GBSB Global buffer synchronization block
[NO]IDX Index descriptor
[NO]IFAB[:ifi]1 Internal FAB
[NO]IFB[:ifi]1 Internal FAB
[NO]IRAB Internal RAB
[NO]IRB Internal RAB
[NO]JFB Journaling file block
[NO]KLTB Key-less-than block

1The optional parameter ifi is an internal file identifier. The default ifi (ALL) is all the files the
current process has opened.

(continued on next page)

4–56 SDA Commands

SDA Commands
SET RMS

Table 4–2 (Cont.) SET RMS Command Keywords for Displaying Process RMS
Information

Keyword Meaning

[NO]NAM Name block
[NO]NWA Network work area
[NO]PIO Process-permanent I/O data structures used instead of

process image data structures
[NO]RAB Record access block
[NO]RLB Record lock block
[NO]RU Recovery unit structures, including the recovery unit block

(RUB), recovery unit stream block (RUSB), and recovery
unit file block (RUFB)

[NO]SFSB Shared file synchronization block
[NO]WCB Window control block
[NO]XAB Extended attribute block
[NO]* Current list of options displayed by the SHOW RMS

command

The default option is option=(ALL,NOPIO), designating for display by the
SHOW PROCESS/RMS command all structures for all files related to the process
image I/O.

To list more than one option, enclose the list in parentheses and separate options
by commas. You can add a given data structure to those displayed by ensuring
that the list of keywords begins with the asterisk (*) symbol. You can delete a
given data structure from the current display by preceding its keyword with NO.

Qualifiers

None.

Description

The SET RMS command determines the data structures to be displayed by the
SHOW PROCESS/RMS command. (See the examples included in the discussion
of the SHOW PROCESS command for information provided by various displays.)
You can examine the options that are currently selected by issuing a SHOW RMS
command.

SDA Commands 4–57

SDA Commands
SET RMS

Examples

1. SDA> SHOW RMS
RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,XAB,RLB,
BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

Display RMS structures for all IFI values.

SDA> SET RMS=IFB
SDA> SHOW RMS

RMS Display Options: IFB

Display RMS structures for all IFI values.

The first SHOW RMS command shows the default selection of data structures
that are displayed in response to a SHOW PROCESS/RMS command. The SET
RMS command selects only the IFB to be displayed by subsequent SET/PROCESS
commands.

2. SDA> SET RMS=(*,BLB,BLBSUM,RLB)
SDA> SHOW RMS

RMS Display Options: IFB,RLB,BLB,BLBSUM

Display RMS structures for all IFI values.

The SET RMS command adds the BLB, BLBSUM, and RLB to the list of data
structures currently displayed by the SHOW PROCESS/RMS command.

3. SDA> SET RMS=(*,NORLB,IFB:05)
SDA> SHOW RMS

RMS Display Options: IFB,BLB,BLBSUM
Display RMS structures only for IFI=5.

The SET RMS command removes the RLB from those data structures displayed
by the SHOW PROCESS/RMS command and causes only information about the
file with the ifi of 5 to be displayed.

4. SDA> SET RMS=(*,PIO)

The SET RMS command indicates that the data structures designated for display
by SHOW PROCESS/RMS be associated with process-permanent I/O instead of
image I/O.

4–58 SDA Commands

SDA Commands
SET SIGN_EXTEND

SET SIGN_EXTEND

Enables or disables the sign extension of 32-bit addresses.

Format

SET SIGN_EXTEND {ON | OFF}

Parameters

ON
Enables automatic sign extension of 32-bit addresses with bit 31 set. This is the
default.

OFF
Disables automatic sign extension of 32-bit addresses with bit 31 set.

Qualifiers

None.

Description

The 32-bit S0/S1 addresses need to be sign-extended to access 64-bit S0/S1 space.
To do this, specify explicitly sign-extended addresses, or set the sign-extend
command to ON, which is the default.

However, to access addresses in P2 space, addresses must not be sign-extended.
To do this, specify a zero in front of the address, or set the sign-extend command
to OFF.

Examples

1. SDA> SET SIGN_EXTEND ON
SDA> examine 80400000
FFFFFFFF.80400000: 23DEFF90.4A607621

This shows the SET SIGN_EXTEND command as ON.

2. SDA> SET SIGN_EXTEND OFF
SDA> EXAMINE 80400000
%SDA-E-NOTINPHYS, 00000000.80400000: virtual data not in physical memory

This shows the SET SIGN_EXTEND command as OFF.

SDA Commands 4–59

SDA Commands
SET SYMBOLIZE

SET SYMBOLIZE

Enables or disables symbolization of addresses in the display from an EXAMINE
command.

Format

SET SYMBOLIZE {ON | OFF}

Parameters

ON
Enables symbolization of addresses.

OFF
Disables symbolization of addresses.

Qualifiers

None.
Examples

1. SDA> SET SYMBOLIZE ON
SDA> examine g1234
SYS$PUBLIC_VECTORS+01234: 47DF041C "..ßG"

2. SDA> SET SYMBOLIZE OFF
SDA> examine g1234
FFFFFFFF.80001234: 47DF041C "..ßG"

These examples show the effect of enabling (default) or disabling symbolization of
addresses.

4–60 SDA Commands

SDA Commands
SHOW ADDRESS

SHOW ADDRESS

Displays the page table related information about a memory address.

Format

SHOW ADDRESS address [/PHYSICAL]

Parameter

address
The requested address.

Qualifier

/PHYSICAL
Indicates that a physical address has been given. The SHOW ADDRESS
command displays the virtual address that maps to the given physical address.

Description

The SHOW ADDRESS command displays the region of memory that contains the
memory address. It also shows all the page table entries (PTEs) that map the
page and can show the range of addresses mapped by the given address if it is
the address of a PTE.

When the /PHYSICAL qualifier is given, the SHOW ADDRESS command displays
the virtual address that maps to the given physical address. This provides you
with a way to use SDA commands that do not have a /PHYSICAL qualifier when
only the physical address of a memory location is known.

Examples

1. SDA> SHOW ADDRESS 80000000

FFFFFFFF.80000000 is an S0/S1 address

Mapped by Level-3 PTE at: FFFFFFFD.FFE00000
Mapped by Level-2 PTE at: FFFFFFFD.FF7FF800
Mapped by Level-1 PTE at: FFFFFFFD.FF7FDFF0
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

Also mapped in SPT window at: FFFFFFFF.FFDF0000

The SHOW ADDRESS command in this example shows where the address
80000000 is mapped at different page table entry levels.

2. SDA> SHOW ADDRESS 0

00000000.00000000 is a P0 address

Mapped by Level-3 PTE at: FFFFFFFC.00000000
Mapped by Level-2 PTE at: FFFFFFFD.FF000000
Mapped by Level-1 PTE at: FFFFFFFD.FF7FC000
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

The SHOW ADDRESS command in this example shows where the address 0
is mapped at different page table entry levels.

SDA Commands 4–61

SDA Commands
SHOW ADDRESS

3. SDA> SHOW ADDRESS FFFFFFFD.FF000000

FFFFFFFD.FF000000 is the address of a process-private Level-2 PTE

Mapped by Level-1 PTE at: FFFFFFFD.FF7FC000
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

Range mapped at level 2: FFFFFFFC.00000000 to FFFFFFFC.00001FFF (1 page)
Range mapped at level 3: 00000000.00000000 to 00000000.007FFFFF (1024 pages)

The SHOW ADDRESS command in this example shows where the address
FFFFFFFD.FF7FC000 is mapped at page table entry and the range mapped
by the PTE at this address.

4. SDA> SHOW ADDRESS/PHYSICAL 0

Physical address 00000000.00000000 is mapped to system-space address FFFFFFFF.828FC000

The SHOW ADDRESS command in this example shows physical address
00000000.00000000 mapped to system-space address FFFFFFFF.828FC000.

5. SDA> SHOW ADDRESS/PHYSICAL 029A6000

Physical address 00000000.029A6000 is mapped to process-space address 00000000.00030000
(process index 0024)

The SHOW ADDRESS command in this example shows physical address
00000000.029A6000 mapped to process-space address 00000000.00030000
(process index 0024).

4–62 SDA Commands

SDA Commands
SHOW BUGCHECK

SHOW BUGCHECK

Displays the value, name, and text associated with one or all bugcheck codes.

Format

SHOW BUGCHECK {/ALL (d) | name | number}

Parameters

name
Value, name, and text of the named bugcheck code.

number
Value, name, and text of the requested bugcheck code.

The parameters name and number and the qualifier /ALL are all mutually
exclusive.

Qualifier

/ALL
Displays complete list of all the bugcheck codes, giving their value, name, and
text. It is the default.

Description

The SHOW BUGCHECK command displays the value, name, and text associated
with bugcheck codes.

Examples

1. SDA> SHOW BUGCHECK 100
0100 DIRENTRY ACP failed to find same directory entry

The SHOW BUGCHECK command in this example shows the requested
bugcheck by number.

2. SDA> SHOW BUGCHECK DECNET
08D0 DECNET DECnet detected a fatal error

The SHOW BUGCHECK command in this example shows the requested
bugcheck by name.

3. SDA> SHOW BUGCHECK

BUGCHECK codes and texts

0008 ACPMBFAIL ACP failure to read mailbox
0010 ACPVAFAIL ACP failure to return virtual address space
0018 ALCPHD Allocate process header error
0020 ALCSMBCLR ACP tried to allocate space already allocated

.

.

.

The SHOW BUGCHECK command in this example shows the requested
bugcheck by displaying all codes.

SDA Commands 4–63

SDA Commands
SHOW CALL_FRAME

SHOW CALL_FRAME

Displays the locations and contents of the quadwords representing a procedure
call frame.

Format

SHOW CALL_FRAME {[starting-address] | /NEXT_FP}

Parameter

starting-address
Expression representing the starting address of the procedure call frame to be
displayed. The default starting-address is the contents of the FP register of the
SDA current process.

Qualifier

/NEXT_FP
Displays the procedure call frame starting at the address stored in the FP
longword of the last call frame displayed by this command. You must have issued
a SHOW CALL_FRAME command previously in the current SDA session in order
to use the /NEXT_FP qualifier to the command.

Description

Whenever a procedure is called, information is stored on the stack of the calling
routine in the form of a procedure call frame. The SHOW CALL_FRAME
command displays the locations and contents of the call frame. The starting
address of the call frame is determined from the specified starting address, the
/NEXT_FP qualifier, or the address contained in the SDA current process FP
register (the default action).

When using the SHOW CALL_FRAME/NEXT_FP command to follow a chain of
call frames, SDA signals the end of the chain by the following message:

%SDA-E-NOTINPHYS, 00000000.00000000 : not in physical memory

This message indicates that the saved FP in the previous call frame has a zero
value.

Example

SDA> SHOW CALL_FRAME
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF.837E9F10 EXCEPTION_PRO+01F10
Return address on stack = FFFFFFFF.837E8A1C EXE$CONTSIGNAL_C+0019C

4–64 SDA Commands

SDA Commands
SHOW CALL_FRAME

Registers saved on stack

7FF95F98 FFFFFFFF.FFFFFFFB Saved R2
7FF95FA0 FFFFFFFF.8042AEA0 Saved R3 EXCEPTION_NPRW+040A0
7FF95FA8 00000000.00000002 Saved R5
7FF95FB0 FFFFFFFF.804344A0 Saved R13 SCH$CLREF+00188
7FF95FB8 00000000.7FF9FC00 Saved R29

.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF.800FA388 RMS_NPRO+04388
Return address on stack = FFFFFFFF.80040BFC EXCEPTION_NPRO+00BFC

Registers saved on stack

7FF99F60 FFFFFFFF.FFFFFFFD Saved R2
7FF99F68 FFFFFFFF.80425BA0 Saved R3 EXCEPTION_NPRW+03DA0
7FF99F70 FFFFFFFF.80422020 Saved R4 EXCEPTION_NPRW+00220
7FF99F78 00000000.00000000 Saved R5
7FF99F80 FFFFFFFF.835C24A8 Saved R6 RMS_PRO+004A8
7FF99F88 00000000.7FF99FC0 Saved R7
7FF99F90 00000000.7FF9FDE8 Saved R8
7FF99F98 00000000.7FF9FDF0 Saved R9
7FF99FA0 00000000.7FF9FE78 Saved R10
7FF99FA8 00000000.7FF9FEBC Saved R11
7FF99FB0 FFFFFFFF.837626E0 Saved R13 EXE$OPEN_MESSAGE+00088
7FF99FB8 00000000.7FF9FD70 Saved R29
.

.

.
SDA> SHOW CALL_FRAME/NEXT_FP
Call Frame Information

Stack Frame Procedure Descriptor
Flags: Base Register = FP, No Jacket, Native

Procedure Entry: FFFFFFFF.835C2438 RMS_PRO+00438
Return address on stack = FFFFFFFF.83766020 EXE$OPEN_MESSAGE_C+00740

Registers saved on stack

7FF9FD88 00000000.7FF9FDA4 Saved R2
7FF9FD90 00000000.7FF9FF00 Saved R3
7FF9FD98 00000000.7FFA0050 Saved R29

The SHOW CALL_FRAME commands in this SDA session follow a chain of call
frames from that specified in the FP of the SDA current process.

SDA Commands 4–65

SDA Commands
SHOW CLUSTER

SHOW CLUSTER

Displays connection manager and system communications services (SCS)
information for all nodes in a cluster.

Format

SHOW CLUSTER {[{/ADDRESS=n | /CSID=csid | /NODE=name}] | /SCS}

Parameters

None.

Qualifiers

/ADDRESS=n
Displays only the OpenVMS Cluster system information for a specific OpenVMS
Cluster member node, given the address of the cluster system block (CSB) for
the node. This is mutually exclusive with the /CSID=csid and /NODE=name
qualifiers.

/CSID=csid
Displays only the OpenVMS Cluster system information for a specific OpenVMS
Cluster member node. The value csid is the cluster system identification number
(CSID) of the node to be displayed. You can find the CSID for a specific node in
a cluster by examining the CSB list display of the SHOW CLUSTER command.
Other SDA displays refer to a system’s CSID. For instance, the SHOW LOCKS
command indicates where a lock is mastered or held by CSID. This is mutually
exclusive with the /ADDRESS=n and /NODE=name qualifiers.

/NODE=name
Displays only the OpenVMS Cluster system information for a specific OpenVMS
Cluster member node, given its SCS node name. This is mutually exclusive with
the /ADDRESS=n and /CSID=csid qualifiers.

/SCS
Displays a view of the cluster as seen by SCS.

Description

The SHOW CLUSTER command provides a view of the OpenVMS Cluster system
from either the perspective of the connection manager (the default behavior), or
from the perspective of the port driver or drivers (if the /SCS qualifier is used).

OpenVMS Cluster as Seen by the Connection Manager
The SHOW CLUSTER command provides a series of displays.

The OpenVMS Cluster summary display supplies the following information:

• Number of votes required for a quorum

• Number of votes currently available

• Number of votes allocated to the quorum disk

• Status summary indicating whether or not a quorum is present

4–66 SDA Commands

SDA Commands
SHOW CLUSTER

The CSB list displays information about the OpenVMS Cluster system blocks
(CSBs) currently in operation; one CSB is assigned to each node of the cluster.
For each CSB, the CSB list displays the following information:

• Address of the CSB

• Name of the OpenVMS Cluster node it describes

• CSID associated with the node

• Number of votes (if any) provided by the node

• State of the CSB

• Status of the CSB

For information about the state and status of nodes, see the description of the
ADD CLUSTER command of the SHOW CLUSTER utility in the OpenVMS
System Management Utilities Reference Manual.

The cluster block display includes information recorded in the cluster block
(CLUB), including a list of activated flags, a summary of quorum and vote
information, and other data that applies to the cluster from the perspective of the
node for which the SDA is being run.

The cluster failover control block display provides detailed information
concerning the cluster failover control block (CLUFCB). The cluster quorum
disk control block display provides detailed information from the cluster
quorum disk control block (CLUDCB).

Subsequent displays provide information for each CSB listed previously in the
CSB list display. Each display shows the state and flags of a CSB, as well
as other specific node information. (See the ADD MEMBER command of the
SHOW CLUSTER utility in the OpenVMS System Management Utilities Reference
Manual for information about the flags for OpenVMS Cluster nodes.)

If any of the qualifiers /ADDRESS=n, /CSID=csid, or /NODE=name are specified,
then the SHOW CLUSTER command displays only the information from the CSB
of the specified node.

OpenVMS Cluster as Seen by the Port Driver
The SHOW CLUSTER/SCS command provides a series of displays.

The SCS listening process directory lists those processes that are listening for
incoming SCS connect requests. For each of these processes, this display records
the following information:

• Address of its directory entry

• Connection ID

• Name

• Explanatory information, if available

The SCS systems summary display provides the system block (SB) address,
node name, system type, system ID, and the number of connection paths for
each SCS system. An SCS system can be a OpenVMS Cluster member, storage
controller, or other such device.

SDA Commands 4–67

SDA Commands
SHOW CLUSTER

Subsequent displays provide detailed information for each of the system blocks
and the associated path blocks. The system block displays include the maximum
message and datagram sizes, local hardware and software data, and SCS
poller information. Path block displays include information that describes the
connection, including remote functions and other path-related data.

Examples

1. SDA> SHOW CLUSTER
OpenVMS Cluster data structures

--- OpenVMS Cluster Summary ---

Quorum Votes Quorum Disk Votes Status Summary
------ ----- ----------------- --------------

2 2 1 qf_dynvote,qf_vote,quorum

--- CSB list ---

Address Node CSID Votes State Status
------- ---- ---- ----- ----- ------

805FA780 FLAM5 00010006 0 local member,qf_same,qf_noaccess
8062C400 ROMRDR 000100ED 1 open member,qf_same,qf_watcher,qf_active
8062C780 VANDQ1 000100EF 0 open member,qf_same,qf_noaccess

--- Cluster Block (CLUB) 805FA380 ---

Flags: 16080005 cluster,qf_dynvote,init,qf_vote,qf_newvote,quorum

Quorum/Votes 2/2 Last transaction code 02
Quorum Disk Votes 1 Last trans. number 596
Nodes 3 Last coordinator CSID 000100EF
Quorum Disk 1DIA0 Last time stamp 31-DEC-1992
Found Node SYSID 00000000FC03 17:26:35
Founding Time 3-JAN-1993 Largest trans. id 00000254

21:04:21 Resource Alloc. retry 0
Index of next CSID 0007 Figure of Merit 00000000
Quorum Disk Cntrl Block 805FADC0 Member State Seq. Num 0203
Timer Entry Address 00000000 Foreign Cluster 00000000
CSP Queue empty

--- Cluster Failover Control Block (CLUFCB) 805FA4C0 ---

Flags: 00000000

Failover Step Index 00000037 CSB of Synchr. System 8062C780
Failover Instance ID 00000254

--- Cluster Quorum Disk Control Block (CLUDCB) 805FADC0 ---

State : 0002 qs_rem_act
Flags : 0100 qf_noaccess
CSP Flags : 0000

Iteration Counter 0 UCB address 00000000
Activity Counter 0 TQE address 805FAE00
Quorum file LBN 00000000 IRP address 00000000

Watcher CSID 000100ED

--- FLAM5 Cluster System Block (CSB) 805FA780 ---

State: 0B local
Flags: 070260AA member,qf_same,qf_noaccess,selected,local,status_rcvd,send_status
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

4–68 SDA Commands

SDA Commands
SHOW CLUSTER

Quorum/Votes 1/0 Next seq. number 0000 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue 00000000
CSID 00010006 Last ack. seq num 0000 Block xfer Q. 805FA7D8
Eco/Version 0/23 Unacked messages 0 CDT address 00000000
Reconn. time 00000000 Ack limit 0 PDT address 00000000
Ref. count 2 Incarnation 1-JAN-1993 TQE address 00000000
Ref. time 31-AUG-1992 00:00:00 SB address 80421580

17:26:35 Lock mgr dir wgt 0 Current CDRP 00000001

--- ROMRDR Cluster System Block (CSB) 8062C400 ---

State: 01 open
Flags: 0202039A member,qf_same,cluster,qf_active,selected,status_rcvd
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

Quorum/Votes 2/1 Next seq. number B350 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd E786 Resend queue 00000000
CSID 000100ED Last ack. seq num B350 Block xfer Q. 8062C458
Eco/Version 0/22 Unacked messages 1 CDT address 805E8870
Reconn. time 00000000 Ack limit 3 PDT address 80618400
Ref. count 2 Incarnation 19-AUG-1992 TQE address 00000000
Ref. time 19-AUG-1992 16:15:00 SB address 8062C140

16:17:08 Lock mgr dir wgt 0 Current CDRP 00000000

--- VANDQ1 Cluster System Block (CSB) 8062C780 ---

State: 01 open
Flags: 020261AA member,qf_same,qf_noaccess,cluster,selected,status_rcvd
Cpblty: 00000000
SWVers: 7.0
HWName: DEC 3000 Model 400

Quorum/Votes 1/0 Next seq. number 32B6 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd A908 Resend queue 00000000
CSID 000100EF Last ack. seq num 32B6 Block xfer Q. 8062C7D8
Eco/Version 0/23 Unacked messages 1 CDT address 805E8710
Reconn. time 00000000 Ack limit 3 PDT address 80618400
Ref. count 2 Incarnation 17-AUG-1992 TQE address 00000000
Ref. time 19-AUG-1992 15:37:06 SB address 8062BCC0

16:21:22 Lock mgr dir wgt 0 Current CDRP 00000000

--- SWPCTX Cluster System Block (CSB) 80D3B1C0 ---

State: 0B local
Flags: 030A60AA member,qf_same,qf_noaccess,selected,send_ext_status,local,status_rcvd
Cpblty: 00000037 rm8sec,vcc,dts,cwcreprc,threads
SWVers: V7.0
HWName: DEC 3000 Model 400

Quorum/Votes 1/1 Next seq. number 0000 Send queue 00000000
Quor. Disk Vote 1 Last seq num rcvd 0000 Resend queue 00000000
CSID 00010001 Last ack. seq num 0000 Block xfer Q. 80D3B218
Eco/Version 0/26 Unacked messages 0 CDT address 00000000
Reconn. time 00000000 Ack limit 0 PDT address 00000000
Ref. count 2 Incarnation 12-JUL-1996 TQE address 00000000
Ref. time 16-JUL-1996 15:36:17 SB address 80C50800

16:15:48 Lock mgr dir wgt 0 Current CDRP 00000001

This example illustrates the default output of the SHOW CLUSTER command.

SDA Commands 4–69

SDA Commands
SHOW CLUSTER

2. SDA> SHOW CLUSTER/SCS

OpenVMS Cluster data structures

--- SCS Listening Process Directory ---

Entry Address Connection ID Process Name Information
------------- ------------- ------------ -----------

80C71EC0 74D20000 SCS$DIRECTORY Directory Server
80C72100 74D20001 MSCP$TAPE NOT PRESENT HERE
80E16940 74D20002 MSCP$DISK MSCP$DISK
80E23B40 74D20003 VMS$SDA_AXP Remote SDA
80E23B40 74D20003 VMS$SDA_AXP Remote SDA
80E25540 74D20004 VMS$VAXcluster
80E29E80 74D20005 SCA$TRANSPORT
813020C0 74D20053 PATHWORKSclusterTurboServer

--- SCS Systems Summary ---

SB Address Node Type System ID Paths
---------- ---- ---- --------- -----

8493BC00 ARUSHA VMS 000000004CA1 2
80E23800 HSJ201 HSJ 4200101A1B20 1
80E3FF40 ORNOT VMS 000000004CA7 2
80E43F40 LOADQ VMS 000000004C31 2
80E473C0 HSJ300 HSJ 420010051D20 1
80E47CC0 HSJ101 HSJ 420010081720 1
80E47D40 HSJ100 HSJ 4200100B1520 1
80E478C0 HSJ600 HSJ 420010070920 1
80E49180 HSJ401 HSJ 4200100D0320 1
80E47DC0 HSJ301 HSJ 420010091F20 1
80E47E40 HSJ601 HSJ 4200100A0B20 1
80E49500 HSJ400 HSJ 4200100C0120 1
80E5BF80 CHOBE VMS 000000004CD6 2
80E5F080 ETOSHA VMS 000000004CF3 2
80E5FC00 VMS VMS 000000004C7A 2
80E4FF80 HSJ501 HSJ 4200101C0720 1
80E5FD80 HSJ200 HSJ 420010191920 1
80E5FE80 HSJ500 HSJ 4200101B0520 1
80E5FE00 IPL31 VMS 000000004F52 2
80E59F80 ZAPNOT VMS 000000004CBB 2
80E61F80 ALTOS VMS 000000004D0F 2
80E72000 TSAVO VMS 000000004CFE 2
80ED5D00 SLYTHE VMS 000000004DD1 1
80EDDD00 AZSUN VMS 000000004D56 1
80EDDE00 CALSUN VMS 000000004EA4 1
80EDFC00 4X4TRK VMS 00000000FF26 1
80EE93C0 GNRS VMS 00000000FC2B 1
80EE94C0 IXIVIV VMS 000000004E56 1
80EF1A80 CLAIR VMS 000000004CDF 1
80EF1C00 INT4 VMS 00000000FD70 1
80EFDF80 SCOP VMS 00000000FC87 1
80EFFAC0 MOCKUP VMS 00000000FCD5 1

--- ARUSHA System Block (SB) 8493BC00 ---

System ID 000000004CA1 Local software type VMS
Max message size 216 Local software vers. V7.2
Max datagram size 576 Local software incarn. DF4AC300
Local hardware type ALPH 009F7570
Local hardware vers. 000000000003 SCS poller timeout 5AD3

040400000000 SCS poller enable mask 27
Status: 00000000

4–70 SDA Commands

SDA Commands
SHOW CLUSTER

--- Path Block (PB) 80E55F80 ---

Status: 0020 credit

Remote sta. addr. 000000000016 Remote port type 00000010
Remote state ENAB Number of data paths 2
Remote hardware rev. 00000008 Cables state A-OK B-OK
Remote func. mask ABFF0D00 Local state OPEN
Reseting port 16 Port dev. name PNA0
Handshake retry cnt. 2 SCS MSGBUF address 80E4C528
Msg. buf. wait queue 80E55FB8 PDT address 80E2A180

--- Path Block (PB) 80ED0900 ---

Status: 0020 credit

Remote sta. addr. 0000000000DF Remote port type NI
Remote state ENAB Number of data paths 2
Remote hardware rev. 00000104 Cables state A-OK B-OK
Remote func. mask 83FF0180 Local state OPEN
Reseting port 00 Port dev. name PEA0
Handshake retry cnt. 3 SCS MSGBUF address 80ED19A0
Msg. buf. wait queue 80ED0938 PDT address 80EC3C70

.

.

.

This example illustrates the output of the SHOW CLUSTER /SCS command.

SDA Commands 4–71

SDA Commands
SHOW CONNECTIONS

SHOW CONNECTIONS

Displays information about all active connections between System
Communications Services (SCS) processes or a single connection.

Format

SHOW CONNECTIONS [{/ADDRESS=cdt-address | /NODE=name | /SYSAP=name}]

Parameters

None.

Qualifiers

/ADDRESS=cdt-address
Displays information contained in the connection descriptor table (CDT) for a
specific connection. You can find the cdt-address for any active connection on
the system in the CDT summary page display of the SHOW CONNECTIONS
command. In addition, CDT addresses are stored in many individual data
structures related to SCS connections. These data structures include class driver
request packets (CDRPs) and unit control blocks (UCBs) for class drivers that use
SCS, and cluster system blocks (CSBs) for the connection manager.

/NODE=name
Displays all CDTs associated with the specified remote SCS node name.

/SYSAP=name
Displays all CDTs associated with the specified local SYSAP.

Description

The SHOW CONNECTIONS command provides a series of displays.

The CDT summary page lists information regarding each connection on the
local system, including the following:

• CDT address

• Name of the local process with which the CDT is associated

• Connection ID

• Current state

• Name of the remote node (if any) to which it is currently connected

The CDT summary page concludes with a count of CDTs that are free and
available to the system.

SHOW CONNECTIONS next displays a page of detailed information for each
active CDT listed previously.

4–72 SDA Commands

SDA Commands
SHOW CONNECTIONS

Example

SDA> SHOW CONNECTIONS

--- CDT Summary Page ---

CDT Address Local Process Connection ID State Remote Node
----------- ------------- ------------- ----- -----------

805E7ED0 SCS$DIRECTORY FF120000 listen
805E8030 MSCP$TAPE FF120001 listen
805E8190 VMS$VMScluster FF120002 listen
805E82F0 MSCP$DISK FF120003 listen
805E8450 SCA$TRANSPORT FF120004 listen
805E85B0 MSCP$DISK FF150005 open VANDQ1
805E8710 VMS$VMScluster FF120006 open VANDQ1
805E8870 VMS$VMScluster FF120007 open ROMRDR
805E89D0 MSCP$DISK FF120008 open ROMRDR
805E8C90 VMS$DISK_CL_DRVR FF12000A open ROMRDR
805E8DF0 VMS$DISK_CL_DRVR FF12000B open VANDQ1
805E8F50 VMS$TAPE_CL_DRVR FF12000C open VANDQ1

Number of free CDT’s: 188

--- Connection Descriptor Table (CDT) 80C44850 ---

State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000

Local Con. ID 899F0003 Datagrams sent 0 Message queue 80C4488C
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. 80C44894
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Message Sends 0 PDT address 00000000
Min. Rec. Credit 0 Message Recvs 0 Error Notify 822FFCC0
Pend Rec. Credit 0 Mess Sends NoFP 0 Receive Buffer 00000000
Initial Rec. Credit 0 Mess Recvs NoFP 0 Connect Data 00000000
Rem. Sta. 000000000000 Send Data Init. 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Req Data Init. 0 Fast Recvmsg Rq 00000000
Queued for BDLT 0 Bytes Sent 0 Fast Recvmsg PM 00000000
Queued Send Credit 0 Bytes rcvd 0 Change Affinity 00000000

Total bytes map 0

--- Connection Descriptor Table (CDT) 805E8030 ---

State: 0001 listen Local Process: MSCP$TAPE
Blocked State: 0000

Local Con. ID FF120001 Datagrams sent 0 Message queue 805E8060
Remote Con. ID 00000000 Datagrams rcvd 0 Send Credit Q. 805E8068
Receive Credit 0 Datagram discard 0 PB address 00000000
Send Credit 0 Messages Sent 0 PDT address 00000000
Min. Rec. Credit 0 Messages Rcvd. 0 Error Notify 804540D0
Pend Rec. Credit 0 Send Data Init. 0 Receive Buffer 00000000
Initial Rec. Credit 0 Req Data Init. 0 Connect Data 00000000
Rem. Sta. 000000000000 Bytes Sent 0 Aux. Structure 00000000
Rej/Disconn Reason 0 Bytes rcvd 0
Queued for BDLT 0 Total bytes map 0
Queued Send Credit 0

.

.

.

This example shows the default output of the SHOW CONNECTIONS command.

SDA Commands 4–73

SDA Commands
SHOW CPU

SHOW CPU

When analyzing a dump, displays information about the state of a CPU at the
time of the system failure.

Note

SHOW CPU is only valid when you are analyzing a crash dump. It is not
a valid command when you are analyzing the running system, because all
the CPU-specific information may not be available.

Format

SHOW CPU [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the CPU for which
context information is to be displayed. If you specify a value outside this range,
or you specify the cpu-id of a CPU that was not active at the time of the system
failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW CPU command performs an implicit
SET CPU command, making the CPU indicated by cpu-id the current CPU for
subsequent SDA commands. (See the description of the SET CPU command and
Section 2.5 for information on how this can affect the CPU context—and process
context—in which SDA commands execute.)

Qualifiers

None.

Description

The SHOW CPU command displays system failure information about the CPU
specified by cpu-id or, by default, the SDA current CPU, as defined in Section 2.5.
You cannot use the SHOW CPU command when examining the running system
with SDA.

The SHOW CPU command produces several displays. The first display is a brief
description of the system failure and its environment that includes the following:

• Reason for the bugcheck.

• Name of the currently executing process. If no process has been scheduled on
this CPU, SDA displays the following message:

Process currently executing: no processes currently scheduled on the processor

• File specification of the image executing within the current process (if there is
a current process).

• Interrupt priority level (IPL) of the CPU at the time of the system failure.

• The CPU database address.

4–74 SDA Commands

SDA Commands
SHOW CPU

• The CPU’s capability set.

Next, the general registers display shows the contents of the CPU’s integer
registers (R0 to R30), and the AI, RA, PV, FP, PC, and PS at the time of the
system failure.

The processor registers display consists of the following parts:

• Common processor registers

• Processor-specific registers

• Stack pointers

The first part of the processor registers display includes registers common to all
Alpha processors, which are used by the operating system to maintain the current
process virtual address space, system space, or other system functions. This part
of the display includes the following registers:

• Hardware privileged context block base register (PCBB)

• System control block base register (SCBB)

• Software interrupt summary register (SISR)

• Address space number register (ASN)

• AST summary register (ASTSR)

• AST enable register (ASTEN)

• Interrupt priority level register (IPL)

• Processor priority level register (PRBR)

• Page table base register (PTBR)

• Virtual page table base register (VPTB)

• Floating-point control register (FPCR)

• Machine check error summary register (MCES)

The last part of the display includes the four stack pointers: the pointers of
the kernel, executive, supervisor, and user stacks (KSP, ESP, SSP, and USP,
respectively).

The SHOW CPU command concludes with a listing of the spinlocks, if any, owned
by the CPU at the time of the system failure, reproducing some of the information
given by the SHOW SPINLOCKS command. The spinlock display includes the
following information:

• Name of the spinlock.

• Address of the spinlock data structure (SPL).

• The owning CPU’s CPU ID.

• IPL of the spinlock.

• Indication of the depth of this CPU’s ownership of the spinlock. A number
greater than 1 indicates that this CPU has nested acquisitions of the spinlock.

• Rank of the spinlock.

• Timeout interval for spinlock acquisition (in terms of 10 milliseconds).

• Shared array (shared spinlock context block pointers)

SDA Commands 4–75

SDA Commands
SHOW CPU

Example

SDA> SHOW CPU 0
CPU 00 Processor crash information

CPU 00 reason for Bugcheck: CPUEXIT, Shutdown requested by another CPU

Process currently executing on this CPU: None

Current IPL: 31 (decimal)

CPU database address: 81414000

CPUs Capabilities: PRIMARY,QUORUM,RUN

General registers:

R0 = FFFFFFFF.81414000 R1 = FFFFFFFF.81414000 R2 = 00000000.00000000
R3 = FFFFFFFF.810AD960 R4 = 00000000.01668E90 R5 = 00000000.00000001
R6 = 66666666.66666666 R7 = 77777777.77777777 R8 = FFFFFFFF.814FB040
R9 = 99999999.99999999 R10 = FFFFFFFF.814FB0C0 R11 = BBBBBBBB.BBBBBBBB
R12 = CCCCCCCC.CCCCCCCC R13 = FFFFFFFF.810AD960 R14 = FFFFFFFF.81414018
R15 = 00000000.00000004 R16 = 00000000.000006AC R17 = 00000000.00000047
R18 = 00000000.00000000 R19 = 00000000.00000000 R20 = FFFFFFFF.8051A494
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 = 00000000.00000010
R24 = FFFFFFFF.81414000 AI = FFFFFFFF.81414000 RA = FFFFFFFF.81006000
PV = 00000001.FFFFFFFF R28 = 00000000.00000000 FP = FFFFFFFF.88ABDFD0
PC = FFFFFFFF.8009C95C PS = 18000000.00001F04

Processor Internal Registers:

ASN = 00000000.00000000 ASTSR/ASTEN = 00000000
IPL = 0000001F PCBB = 00000000.01014080 PRBR = FFFFFFFF.81414000
PTBR = 00000000.0000FFBF SCBB = 00000000.000001E8 SISR = 00000000.00000100
VPTB = FFFFFEFC.00000000 FPCR = 00000000.00000000 MCES = 00000000.00000000

KSP = FFFFFFFF.88ABDCD8
ESP = FFFFFFFF.88ABF000
SSP = FFFFFFFF.88AB9000
USP = FFFFFFFF.88AB9000

Spinlocks currently owned by CPU 00

SCS Address 810AF300
Owner CPU ID 00000000 IPL 00000008
Ownership Depth 00000000 Rank 0000001A
Timeout Interval 002DC6C0 Share Array 00000000

This example shows the default output of the SHOW CPU command.

4–76 SDA Commands

SDA Commands
SHOW CRASH

SHOW CRASH

Displays information about the state of the system at the time of failure. Provides
system information identifying a running system.

Format

SHOW CRASH [/CPU=n]

Parameters

None.

Qualifier

/CPU=n
Allows exception data to be displayed from CPUs other than the one considered
as the crash CPU when more than one CPU crashes simultaneously.

Description

The SHOW CRASH command has two different functions, depending on whether
you use it to analyze a running system or a system failure.

When used during the analysis of a running system, the SHOW CRASH command
produces a display that describes the system and the version of OpenVMS Alpha
that it is running. The system crash information display contains the following
information:

• Name and version number of the operating system

• Major and minor IDs of the operating system

• Identity of the Alpha system, including an indication of its cluster
membership

• CPU ID of the primary CPU

• Address of all CPU databases

When used during the analysis of a system failure, the SHOW CRASH command
produces several displays that identify the system and describe its state at the
time of the failure.

If the current CPU context for SDA is not that of the processor that signaled the
bugcheck, or the CPU specified with the /CPU=n qualifier, the SHOW CRASH
command first performs an implicit SET CPU command to make that processor
the current CPU for SDA. (See the description of the SET CPU command and
Section 2.5 for a discussion of how this can affect the CPU context—and process
context—in which SDA commands execute.)

The system crash information display in this context provides the following
information:

• Date and time of the system failure.

• Name and version number of the operating system.

• Major and minor IDs of the operating system.

• Identity of the system.

SDA Commands 4–77

SDA Commands
SHOW CRASH

• CPU IDs of both the primary CPU and the CPU that initiated the bugcheck.
In a uniprocessor Alpha system, these IDs are identical.

• Bitmask of the active and available CPUs in the system.

• For each active processor in the system, the name of the bugcheck that caused
the system failure. Generally, there will be only one significant bugcheck in
the system. All other processors typically display the following as their reason
for taking a bugcheck:

CPUEXIT, Shutdown requested by another CPU

Subsequent screens of the SHOW CRASH command display information about
the state of each active processor on the system at the time of the system failure.
The information in these screens is identical to that produced by the SHOW CPU
command, including the general-purpose registers, processor-specific registers,
stack pointers, and records of spinlock ownership. The first such screen presents
information about the processor that caused the failure; others follow according to
the numeric order of their CPU IDs.

Examples

1. SDA> SHOW CRASH

System crash information

Time of system crash: 1-JAN-2001 00:00:00.00

Version of system: OpenVMS (TM) Alpha Operating System, Version X901-SSB

System Version Major ID/Minor ID: 3/0

VMScluster node: VMSTS6, a

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- INVEXCEPTN, Exception while above ASTDEL

System State at Time of Exception

Exception Frame:

R2 = FFFFFFFF.810416C0 SCS$GA_LOCALSB+005C0
R3 = FFFFFFFF.81007E60 EXE$GPL_HWRPB_L
R4 = FFFFFFFF.850AEB80
R5 = FFFFFFFF.81041330 SCS$GA_LOCALSB+00230
R6 = FFFFFFFF.81038868 CON$INITLINE
R7 = FFFFFFFF.81041330 SCS$GA_LOCALSB+00230
PC = FFFFFFFF.803EF81C SYS$TTDRIVER+0F81C
PS = 30000000.00001F04

FFFFFFFF.803EF80C: STL R24,#X0060(R5)
FFFFFFFF.803EF810: LDL R28,#X0138(R5)
FFFFFFFF.803EF814: BIC R28,R27,R28
FFFFFFFF.803EF818: 00000138

PC => FFFFFFFF.803EF81C: HALT
FFFFFFFF.803EF820: HALT
FFFFFFFF.803EF824: BR R31,#XFF0000
FFFFFFFF.803EF828: LDL R24,#X0138(R5)
FFFFFFFF.803EF82C: BIC R24,#X40,R24

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD de
0 30 00000000000 1F 0 0 KERN 1 KERN

4–78 SDA Commands

SDA Commands
SHOW CRASH

Signal Array

Length = 00000003
Type = 0000043C
Arg = FFFFFFFF.803EF81C SYS$TTDRIVER+0F81C
Arg = 30000000.00001F04

%SYSTEM-F-OPCDEC, opcode reserved to Digital fault at PC=FFFFFFFF803EF81C, PS=00001F04

Saved Scratch Registers in Mechanism Array
--
R0 = 00000000.00000000 R1 = FFFFFFFF.811998B8 R16 = 00000000.00001000
R17 = FFFFFFFF.8119B1F0 R18 = 00000000.00000010 R19 = FFFFFFFF.810194F0
R20 = 00000000.00000000 R21 = 0000000F.00000000 R22 = 00000000.00000000
R23 = 00000000.00004000 R24 = 00000000.00001000 R25 = 00000000.00000000
R26 = FFFFFFFF.81041474 R27 = 00000000.00004000 R28 = 00000000.00001000

.

.

.
(CPU-specific display omitted)

.

.

.

This long display reflects the output of the SHOW CRASH command within the
analysis of a system failure.

2. SDA> SHOW CRASH

System crash information

Time of system crash: 12-OCT-2000 11:27:58.02

Version of system: OpenVMS (TM) Alpha Operating System, Version X74B-FT2

System Version Major ID/Minor ID: 3/0

System type: DEC 3000 Model 400

Crash CPU ID/Primary CPU ID: 00/00

Bitmask of CPUs active/available: 00000001/00000001

CPU bugcheck codes:
CPU 00 -- PGFIPLHI, Pagefault with IPL too high

System State at Time of Page Fault:

Page fault for address 00000000.00046000 occurred at IPL: 8
Memory management flags: 00000000.00000001 (instruction fetch)

Exception Frame:

R2 = 00000000.00000003
R3 = FFFFFFFF.810B9280 EXCEPTION_MON+39C80
R4 = FFFFFFFF.81564540 PCB
R5 = 00000000.00000088
R6 = 00000000.000458B0
R7 = 00000000.7FFA1FC0
PC = 00000000.00046000
PS = 20000000.00000803

SDA Commands 4–79

SDA Commands
SHOW CRASH

00000000.00045FF0: LDQ R2,#X0050(FP)
00000000.00045FF4: LDQ R12,#X0058(FP)
00000000.00045FF8: LDQ R13,#X0060(FP)
00000000.00045FFC: LDQ R14,#X0068(FP)

PC => 00000000.00046000: BIS R1,R17,R1
00000000.00046004: BIS R31,#X01,R25
00000000.00046008: STQ_U R1,#X0002(R10)
00000000.0004600C: BSR R26,#X00738C
00000000.00046010: LDQ_U R16,#X0002(R10)

PS =>
MBZ SPAL MBZ IPL VMM MBZ CURMOD INT PRVMOD de
0 20 00000000000 08 0 0 KERN 0 USER

.

.

.
(CPU-specific display omitted)

.

.

.

This display reflects the output of a SHOW CRASH command within the analysis
of a PGFIPLHI bugcheck.

4–80 SDA Commands

SDA Commands
SHOW DEVICE

SHOW DEVICE

Displays a list of all devices in the system and their associated data structures,
or displays the data structures associated with a given device or devices.

Format

SHOW DEVICE [device-name | /ADDRESS=ucb-address | /CDT=cdt_address |
/CHANNELS | /HOMEPAGE | /PDT | /UCB=ucb-address]

Parameter

device-name
Device or devices for which data structures are to be displayed. The following
table lists several uses of the device-name parameter:

To Display the Structures
For . . . Action

All devices in the system Do not specify a device-name (for example,
SHOW DEVICE).

A single device Specify an entire device-name (for example,
SHOW DEVICE VTA20).

All devices of a certain type
on a single controller

Specify only the device type and controller
designation (for example, SHOW DEVICE RTA
or SHOW DEVICE RTB).

All devices of a certain type
on any controller

Specify only the device type (for example, SHOW
DEVICE RT).

All devices whose names
begin with a certain
character or character string

Specify the character or character string (for
example, SHOW DEVICE D).

All devices on a single node
or HSC

Specify only the node name or HSC name (for
example, SHOW DEVICE GREEN$).

All devices with a certain
allocation class

Specify the allocation class including leading and
trailing $, for example, SHOW DEVICE 63.

Qualifiers

/ADDRESS=ucb-address
Indicates the device for which data structure information is to be displayed by the
address of its unit control block (UCB). The /ADDRESS qualifier is an alternate
method of supplying a device name to the SHOW DEVICE command. If both the
device-name parameter and the /ADDRESS qualifier appear in a single SHOW
DEVICE command, SDA responds only to the parameter or qualifier that appears
first.

/CDT=cdt_address
Identifies the device by the address of its Connector Descriptor Table (CDT). This
applies to cluster port devices only.

/CHANNELS
Displays information on active Memory Channel channel blocks. This qualifier is
ignored for devices other than Memory Channel.

SDA Commands 4–81

SDA Commands
SHOW DEVICE

/HOMEPAGE
Displays fields from the Memory Channel Home Page. This qualifier is ignored
for devices other than Memory Channel.

/PDT
Displays the Memory Channel Port Descriptor Table. This qualifier is ignored for
devices other than Memory Channel.

/UCB=ucb-address
This is a synonym for /ADDRESS=ucb-address as described previously.

Description

The SHOW DEVICE command produces several displays taken from system data
structures that describe the devices in the system configuration.

If you use the SHOW DEVICE command to display information for more than
one device or one or more controllers, it initially produces the device data
block (DDB) list to provide a brief summary of the devices for which it renders
information in subsequent screens.

Information in the DDB list appears in five columns, the contents of which are
as follows:

• Address of the device data block (DDB)

• Controller name

• Name of the ancillary control process (ACP) associated with the device

• Name of the device driver

• Address of the driver prologue table (DPT)

The SHOW DEVICE command then produces a display of information pertinent
to the device controller. This display includes information gathered from the
following structures:

• Device data block (DDB)

• Primary channel request block (CRB)

• Interrupt dispatch block (IDB)

• Driver dispatch table (DDT)

If the controller is an HSC controller, SHOW DEVICE also displays information
from its system block (SB) and each path block (PB).

Many of these structures contain pointers to other structures and driver routines.
Most notably, the DDT display points to various routines located within driver
code, such as the start I/O routine, unit initialization routine, and cancel I/O
routine.

For each device unit subject to the SHOW DEVICE command, SDA displays
information taken from its unit control block, including a list of all I/O request
packets (IRPs) in its I/O request queue. For certain mass storage devices, SHOW
DEVICE also displays information from the primary class driver data block
(CDDB), the volume control block (VCB), and the ACP queue block (AQB). For
units that are part of a shadow set, SDA displays a summary of shadow set
membership.

4–82 SDA Commands

SDA Commands
SHOW DEVICE

As it displays information for a given device unit, SHOW DEVICE defines the
following symbols as appropriate:

Symbol Meaning

UCB Address of unit control block
SB Address of system block
ORB Address of object rights block
DDB Address of device data block
DDT Address of driver dispatch table
CRB Address of channel request block
SUD Address of supplementary VCB data
SHAD Address of host-based shadowing data structure
AMB Associated mailbox UCB pointer
IRP Address of I/O request packet
2P_UCB Address of alternate UCB for dual-pathed device
LNM Address of logical name block for mailbox
PDT Address of port descriptor table
CDDB Address of class driver descriptor block for MSCP served

device
2P_CDDB Address of alternate CDDB for MSCP served device
RWAITCNT Resource wait count for MSCP served device
VCB Address of volume control block for mounted device
2P_DDB Address of secondary DDB
VP_IRP Address of volume processing IRP
MMB Address of merge management block
CPYLOCK ID of copier lock
VU_TO Virtual Unit Timeout (seconds)
VU_UCB UCB address of Virtual Unit
MPDEV Address of multipath data structure
PRIMARY_UCB UCB address for primary path
CURRENT_UCB UCB address for current path

If you are examining a driver-related system failure, you may find it helpful to
issue a SHOW STACK command after the appropriate SHOW DEVICE command,
to examine the stack for any of these symbols. Note, however, that although the
SHOW DEVICE command defines those symbols relevant to the last device unit
it has displayed, and redefines symbols relevant to any subsequently displayed
device unit, it does not undefine symbols. (For instance, SHOW DEVICE DUA0
defines the symbol PDT, but SHOW DEVICE MBA0 does not undefine it, even
though the PDT structure is not associated with a mailbox device.) To maintain
the accuracy of such symbols that appear in the stack listing, use the DEFINE
command to modify the symbol name. For example:

SDA> DEFINE DUA0_PDT PDT
SDA> DEFINE MBA0_UCB UCB

See the descriptions of the READ and FORMAT commands for additional
information on defining and examining the contents of device data structures.

SDA Commands 4–83

SDA Commands
SHOW DEVICE

Examples

1. SDA> SHOW DEVICE/ADDRESS=8041E540
OPA0 VT300_Series UCB address 8041E540

Device status: 00000010 online
Characteristics: 0C040007 rec,ccl,trm,avl,idv,odv

00000200 nnm

Owner UIC [000001 ,000004] Operation count 160 ORB address 8041E4E8
PID 00010008 Error count 0 DDB address 8041E3F8

Class/Type 42/70 Reference count 2 DDT address 8041E438
Def. buf. size 80 BOFF 00000001 CRB address 8041E740
DEVDEPEND 180093A0 Byte count 0000012C I/O wait queue 8041E5AC
DEVDEPND2 FB101000 SVAPTE 80537B80
DEVDEPND3 00000000 DEVSTS 00000001
FLCK index 3A
DLCK address 8041E880

*** I/O request queue is empty ***

This example reproduces the SHOW DEVICE display for a single device unit,
OPA0. Whereas this display lists information from the UCB for OPA0, including
some addresses of key data structures and a list of pending I/O requests for the
unit, it does not display information about the controller or its device driver. To
display the latter information, specify the device-name as OPA (for example,
SHOW DEVICE OPA).

2. SDA> SHOW DEVICE DU
I/O data structures

DDB list

Address Controller ACP Driver DPT
------- ---------- -------- ------------ ---

80D0B3C0 BLUES$DUA F11XQP SYS$DKDRIVER 807735B0
8000B2B8 RED$DUA F11XQP SYS$DKDRIVER 807735B0
80D08BA0 BIGTOP$DUA F11XQP SYS$DKDRIVER 807735B0
80D08AE0 TIMEIN$DUA F11XQP SYS$DKDRIVER 807735B0

.

.

.
Press RETURN for more.

.

.

.

This excerpt from the output of the SHOW DEVICE DU command illustrates
the format of the DDB list. In this case, the DDB list concerns itself with
those devices whose device type begins with DU. It displays devices of these
types attached to various HSCs (RED$ and BLUES$) and systems in a cluster
(BIGTOP$ and TIMEIN$).

4–84 SDA Commands

SDA Commands
SHOW DUMP

SHOW DUMP

Displays formatted information from the header, error log buffers, logical memory
blocks (LMBs), memory map, compression data, and a summary of the dump.
Also displays hexadecimal information of individual blocks.

Format

SHOW DUMP {/ALL | /BLOCK[=m[{: | ;}n]]
| [/COMPRESSION_MAP
[=m[:n[:p]] | /ERROR_LOGS | /HEADER
| /LMB[={ALL | n}] | /SUMMARY
| /MEMORY_MAP]}

Parameters

None.

Qualifiers

/ALL
Displays the equivalent to specifying all the /SUMMARY, /HEADER, /ERROR_
LOGS, /COMPRESSION_MAP, /LMB=ALL, and /MEMORY_MAP qualifiers.

/BLOCK[=m[{: | ;}n]]
Displays a hexadecimal dump of one or more blocks. You can specify ranges by
using the following syntax:

no value Displays next block
m Displays single block
m:n Displays a range of blocks from m to n, inclusive
m;n Displays a range of blocks starting at m and continuing for n

blocks

/COMPRESSION_MAP[=m[:n[:p]]]
In a compressed dump, displays details of the compression data. You can
specify levels of detail by using the following syntax, where m,n,p may each be
wildcarded (*):

no value Displays a summary of all compression map blocks.
m Displays contents of a single compression map block.
m:n Displays details of single compression map entry.
m:n:p Displays compressed and raw data for the specified compression

section. Note that m:n:p may contain wildcards (*).

/ERROR_LOGS
Displays a summary of the error log buffers.

/HEADER
Displays the formatted contents of the dump header.

SDA Commands 4–85

SDA Commands
SHOW DUMP

/LMB[={ALL | n}]
In a selective dump, displays the formatted contents of logical memory block
(LMB) headers and the virtual address (VA) ranges within the LMB. You can
express LMBs to be displayed by using the following syntax:

no value Displays next LMB
n Displays LMB at block n of the dump
ALL Displays all LMBs

/MEMORY_MAP
In a full dump, displays the contents of the memory map.

/SUMMARY
Displays a summary of the dump. This is the default.

Description

The SHOW DUMP command displays information about the structure of the
dump file. It displays the header, the error log buffers, and, if appropriate, the
compression map, the logical memory block (LMB) headers, and the memory map.
Use this command when troubleshooting dump analysis problems.

Examples

1. SDA> SHOW DUMP/SUMMARY

Summary of dump file DKA300:[SYS0.SYSEXE]SYSDUMP.DMP;8
--
Dump type: Compressed selective
Size of dump file: 000203A0/000203A0 (132000./132000.)
Highest VBN written: 0000D407 (54279.)
Uncompressed equivalent: 0001AF1C (110364.)
Compression ratio: 2.03:1 (49.2%)

Uncomp Uncomp
Dump file section VBN Blocks VBN blocks

-- ---------- -------- ------- --------
Dump header 00000001 00000002
Error log buffers 00000003 00000020
Compression map 00000023 00000010
LMB 0000 (PT space) 00000033 00000038 00000033 000000D2
LMB 0001 (S0/S1 space) 0000006B 0000621B 00000105 000095A5
LMB 0002 (S2 space) 00006286 000001A3 000096AA 00000352
LMB 0003 (Page tables of key process "SYSTEM") 00006429 00000005 000099FC 00000062
LMB 0004 (Memory of key process "SYSTEM") 0000642E 00000071 00009A5E 00000342

.

.

.
LMB 0003 (Page tables of key process "NETACP") 0000697B 00000009 0000AE14 00000052
LMB 0004 (Memory of key process "NETACP") 00006984 000013F7 0000AE66 00001F42
LMB 0005 (Key global pages) 00007D7B 000002BA 0000CDA8 00000312
LMB 0006 (Page tables of process "DTWM") 00008035 00000013 0000D0BA 00000082
LMB 0007 (Memory of process "DTWM") 00008048 000013A3 0000D13C 000022E4

.

.

.
LMB 0006 (Page tables of process "Milord_FTA1:") 0000C5E3 00000005 00019A44 00000062
LMB 0007 (Memory of process "Milord_FTA1:") 0000C5E8 00000074 00019AA6 00000222
LMB 0008 (Remaining global pages) 0000C65C 00000DAC 00019CC8 00001255

This example of the SHOW DUMP/SUMMARY command gives a summary of a

4–86 SDA Commands

SDA Commands
SHOW DUMP

selective dump.

2. SDA> SHOW DUMP/HEADER

Dump header

Header field Meaning Value

-------------------- --------------------------------------- -----------------

DMP$W_FLAGS Flags 0FC1
DMP$V_OLDDUMP: Dump has been analyzed
DMP$V_WRITECOMP: Dump write was completed
DMP$V_ERRLOGCOMP: Error log buffers written
DMP$V_DUMP_STYLE: Selective dump

Verbose messages
Dump off system disk
Compressed

DMP$B_FLAGS2 Additional flags 09
DMP$V_COMPRESSED: Dump is compressed
DMP$V_ALPHADUMP: This is an OpenVMS Alpha dump

DMP$Q_SYSIDENT System version "X69G-FT1"
DMP$Q_LINKTIME Base image link date/time " 8-JUN-1996 02:07:27.31"
DMP$L_SYSVER Base image version 03000000
DMP$W_DUMPVER Dump version 0704

DMP$L_DUMPBLOCKCNT Count of blocks dumped for memory 0000D3D5
DMP$L_NOCOMPBLOCKCNT Uncompressed blocks dumped for memory 0001AEEA
DMP$L_SAVEPRCCNT Number of processes saved 00000014

.

.

.

EMB$Q_CR_TIME Crash date/time " 3-JUL-1996 09:30:13.36"
EMB$L_CR_CODE Bugcheck code "SSRVEXCEPT"
EMB$B_CR_SCS_NAME Node name "SWPCTX "
EMB$T_CR_HW_NAME Model name "DEC 3000 Model 400"
EMB$T_CR_LNAME Process name "SYSTEM"

DMP$L_CHECKSUM Dump header checksum 439E5E91

This example of the SHOW DUMP/HEADER command shows the information in
the header.

SDA Commands 4–87

SDA Commands
SHOW EXECUTIVE

SHOW EXECUTIVE

Displays the location and size of each loadable image that makes up the
executive.

Format

SHOW EXECUTIVE [execlet-name | /SUMMARY]

Parameter

execlet-name
Data only for the specified loadable image. You can use wildcards in execlet-
name, in which case SDA displays data for all matching loadable images. The
default action is for SDA to display data for all loadable images.

Qualifier

/SUMMARY
Displays a single line of output for all loadable images.

Description

The executive consists of two base images and a number of other executive
images.

The base image called SYS$BASE_IMAGE.EXE contains:

• Symbol vectors for universal executive routines and data cells

• Procedure descriptors for universal executive routines

• Globally referenced data cells

The base image called SYS$PUBLIC_VECTORS.EXE contains:

• Symbol vectors for system service procedures

• Procedure descriptors for system services

• Transfer routines for system services

The base images are the pathways to routines and system service procedures in
the other executive images.

The SHOW EXECUTIVE command lists the location and size of each executive
image. It can enable you to determine whether a given memory address falls
within the range occupied by a particular image. (Table 4–1 describes the
contents of each executive image.)

SHOW EXECUTIVE also displays the base address and length for each nonzero
length image section.

On OpenVMS Alpha the execlets may be sliced. This means each different image
section can be relocated in system memory so that the sections are no longer
contiguous. The SHOW EXECUTIVE display contains information on where each
image section resides.

The difference between a sliced image and a non-sliced image in the display is
that the base, the end, and the length of a sliced image are blank. Only the
image section base, end, and length are valid.

4–88 SDA Commands

SDA Commands
SHOW EXECUTIVE

There are six different image section types: nonpaged read only, nonpaged read-
write, paged read only, paged read-write, init, and fixup. Only the image sections
loaded into system memory are displayed.

The MAP command makes it easier to find out in which execlet an address
resides. See the description of the MAP command for details.

By default, SDA displays each location within an executive image as an offset
from the beginning of the image, for instance, EXCEPTION+00282. Similarly,
those symbols that represent system services point to the transfer routine in
SYS$PUBLIC_VECTORS.EXE and not to the actual system service procedure.
When tracing the course of a system failure through the listings of modules
contained within a given executive image, you may find it useful to load into the
SDA symbol table all global symbols and global entry points defined within one
or all executive images. See the description of the READ command for additional
information.

The SHOW EXECUTIVE command usually shows all components of the
executive, as illustrated in the following example. In rare circumstances, you
may obtain a partial listing. For instance, after it has loaded the EXCEPTION
module (in the INIT phase of system initialization), the system can successfully
post a bugcheck exception and save a crash dump before loading all the executive
images that are normally loaded.

Examples

1. SDA> SHOW EXECUTIVE
VMS Executive layout

Image Base End Length SymVec
--------------------------------------- -------- -------- -------- --------
SYS$WSDRIVER A21B2000 A21BA000 00008000

Nonpaged read only A21B2000 A21B3600 00001600
Nonpaged read/write A21B6000 A21B6800 00000800

Linked 5-APR-1998 12:08 LDRIMG 80DA0700 --< not sliced >--

SYS$LTDRIVER A217A000 A21B2000 00038000
Nonpaged read only A217A000 A21A8800 0002E800
Nonpaged read/write A21AA000 A21AEA00 00004A00

Linked 4-APR-1998 22:42 LDRIMG 80D8F600 --< not sliced >--

LAT$RATING A2172000 A217A000 00008000
Nonpaged read only A2172000 A2172600 00000600
Nonpaged read/write A2176000 A2176600 00000600

Linked 4-APR-1998 22:45 LDRIMG 80D8F740 --< not sliced >--

SYS$RTTDRIVER A216A000 A2172000 00008000
Nonpaged read only A216A000 A216D600 00003600
Nonpaged read/write A216E000 A216EA00 00000A00

Linked 4-APR-1998 22:56 LDRIMG 80D86C80 --< not sliced >--
.
.
.
.
.

SYS$OPDRIVER
Nonpaged read only 80022000 80025800 00003800
Nonpaged read/write 9E92F000 9E92FA00 00000A00

Linked 4-APR-1998 22:42 LDRIMG 80C1E8C0 --< sliced >--

SDA Commands 4–89

SDA Commands
SHOW EXECUTIVE

SYS$CNBTDRIVER
Nonpaged read only 80020000 80021000 00001000
Nonpaged read/write 9E92EC00 9E92F000 00000400

Linked 4-APR-1998 22:35 LDRIMG 80C1D7C0 --< sliced >--

SYS$CPU_ROUTINES_1605
Nonpaged read only 8000E000 8001EE00 00010E00
Nonpaged read/write 9E92AA00 9E92EC00 00004200

Linked 8-APR-1998 10:04 LDRIMG 80C1DB80 --< sliced >--

SYS$BASE_IMAGE 9E916320
Nonpaged read only 80002000 8000D000 0000B000
Nonpaged read/write 9E905C00 9E92AA00 00024E00

Linked 6-APR-1998 16:00 LDRIMG 80C1DA40 --< sliced >--

SYS$PUBLIC_VECTORS 9E903CB8
Nonpaged read only 80000000 80002000 00002000
Nonpaged read/write 9E900000 9E905C00 00005C00

Linked 4-APR-1998 22:22 LDRIMG 80C1D900 --< sliced >--

The SHOW EXECUTIVE command displays the location and length of executive
images.

2. SDA> SHOW EXECUTIVE SYS$GAL*
VMS Executive layout

Image Base End Length SymVec
--------------------------------------- -------- -------- -------- --------
SYS$GALAXY A1A62000 A1A8A000 00028000

Nonpaged read only A1A62000 A1A83600 00021600
Nonpaged read/write A1A86000 A1A89A00 00003A00

Linked 4-APR-1998 22:43 LDRIMG 80CCA280 --< not sliced >--

This example displays the use of the wildcard with the SHOW EXECUTIVE
command.

4–90 SDA Commands

SDA Commands
SHOW EXECUTIVE

3. SDA> SHOW EXECUTIVE/SUMMARY

VMS Executive layout summary

Image LDRIMG Base End Length SymVec
--------------------------------------- -------- -------- -------- -------- --------

SYS$MADDRIVER 80D2A900 83848000 83860000 00018000
SYS$DADDRIVER 80E00C80 83838000 83848000 00010000
SYS$LASTDRIVER 80E3C600 8381C000 83838000 0001C000
SYS$LTDRIVER 80E305C0 837E4000 8381C000 00038000
LAT$RATING 80E35500 837DC000 837E4000 00008000
SYS$RTTDRIVER 80DCDF00 837D4000 837DC000 00008000
SYS$CTDRIVER 80D7BFC0 837C4000 837D4000 00010000
NDDRIVER 80D86000 8377A000 83782000 00008000
SYS$FTDRIVER 80DD4280 83772000 8377A000 00008000

.

.

.

.

.

.
SYSTEM_PRIMITIVES 80D13580 --< sliced >--
SYSTEM_DEBUG 80D12840 82FA4000 82FF4000 00050000
SYS$OPDRIVER 80D11B00 --< sliced >--
SYS$ESBTDRIVER 80D10DC0 --< sliced >--
SYS$NISCA_BTDRIVER 80D10080 --< sliced >--
SYS$CNBTDRIVER 80D0EF80 --< sliced >--
SYS$CPU_ROUTINES_0402 80D0F340 --< sliced >--
SYS$BASE_IMAGE 80D0F200 --< sliced >-- 80C16300
SYS$PUBLIC_VECTORS 80D0F0C0 --< sliced >-- 80C03C78

This example displays the list of executive images, giving base, end, and length
information for those that are not sliced.

SDA Commands 4–91

SDA Commands
SHOW GALAXY

SHOW GALAXY

Displays a brief one-page summary of the state of the Galaxy and all the
instances in the Galaxy.

Format

SHOW GALAXY

Parameters

None.

Qualifiers

None.
Example

SDA> SHOW GALAXY

Galaxy summary

GMDB address Creator node ID Revision Creation time State

----------------- --------------- -------- ----------------------- ---------------
FFFFFFFF.7F234000 00000001 1.0 31-MAR-1999 13:15:08.08 OPERATIONAL

Node ID NODEB address Name Version Join time State
-------- ----------------- -------- -------- ----------------------- ---------------
00000000 FFFFFFFF.7F236000 ANDA1A 1.0 31-MAR-1999 14:11:09.08 MEMBER (current instance)
00000001 FFFFFFFF.7F236200 ANDA2A 1.0 31-MAR-1999 14:10:49.06 MEMBER
00000002 FFFFFFFF.7F236400 ANDA3A 1.0 31-MAR-1999 14:13:26.16 MEMBER
00000003 FFFFFFFF.7F236600 - Node block is empty -

4–92 SDA Commands

SDA Commands
SHOW GCT

SHOW GCT

Displays the contents of the Galaxy configuration tree either in summary
(hierarchical) or in detail, node by node.

Format

SHOW GCT [/ADDRESS=n] | [/ALL] | [CHILDREN] |
| [/HANDLE=n] | [/OWNER=n] | [/SUMMARY (default)] | [/TYPE=type]

Parameters

None.

Qualifiers

/ADDRESS=n
Provides a detailed display of the Galaxy configuration tree (GCT) node at the
given address.

/ALL
Provides a detailed display of all nodes in the tree.

/CHILDREN
When used with /ADDRESS=n or /HANDLE=n, the /CHILDREN qualifier causes
SDA to display all nodes in the configuration tree that are children of the
specified node.

/HANDLE=n
Provides a detailed display of the Galaxy configuration tree (GCT) node with the
given handle.

/OWNER=n
Provides a detailed display of all nodes in the tree currently owned by the node
with the given handle.

/SUMMARY
Provides a summary display of the Galaxy configuration tree (GCT) in
hierarchical form. This qualifier is the default.

SDA Commands 4–93

SDA Commands
SHOW GCT

/TYPE=type
Provides a detailed display of all nodes in the tree of the given type, which can be
one of the following:

BUS CAB COMMUNITY
CPU CPU_MODULE EXP_CHASSIS
FRU_DESC FRU_ROOT HARD_PARTITION
HOSE HW_ROOT IO_CTRL
IOP MEMORY_CTRL MEMORY_DESC
MEMORY_SUB PARTITION POWER_ENVIR
PSEUDO RISER ROOT
SBB SLOT SMB
SOC SW_ROOT SYS_CHASSIS
SYS_INTER_SWITCH TEMPLATE_ROOT

The type given may be an exact match, in which case just that type is displayed
(for example, a CPU); or a partial match, in which case all matching types
are displayed (for example, /TYPE=CP displays both CPU and CPU_MODULE
nodes).

4–94 SDA Commands

SDA Commands
SHOW GCT

Examples

1. SDA> SHOW GCT

Galaxy Configuration Tree summary

Base address of Config Tree: FFFFFFFF.83694040 (2 pages)

 Initial Current Name/Min PA/ OS type/Max PA/
 Handle Hierarchy Id Owner Owner Base PA Size (bytes) Flags
-------- ------------------- ----------------- -------- -------- ----------------- ----------------- ------------------------
00000000 Root 00000000.00000000 414C4147-5958-0030-0000-......
 |
00000240 |_HW_Root 00000000.00000000
00000280 | |_IOP 00000000.00000006 00001800 000000A0.00000000 000000AF.FFFFFFFF
00000300 | |_IOP 00000000.00000007 00001700 000000B0.00000000 000000BF.FFFFFFFF
00000380 | |_IOP 00000000.00000008 00001600 000000C0.00000000 000000CF.FFFFFFFF
00000400 | |_CPU_Module 00000000.00000000 00001580
00000440 | | |_CPU 00000000.09000000 00001600 Primary
00000480 | | |_CPU 00000000.1B000001 00001600 00001800
000004C0 | |_CPU_Module 00000000.00000001 00001580
00000500 | | |_CPU 00000000.1B000002 00001600 00001800
00000540 | | |_CPU 00000000.10000003 00001600 00001700
00000580 | |_CPU_Module 00000000.00000002 00001580
000005C0 | | |_CPU 00000000.07000004 00001700 Primary
00000600 | | |_CPU 00000000.0A000005 00001700 00001800
00000640 | |_CPU_Module 00000000.00000003 00001580
00000680 | | |_CPU 00000000.07000006 00001800 Primary
000006C0 | | |_CPU 00000000.0C000007 00001800 00001600
00000700 | |_Memory_Sub 00000000.00000000 00001580 00000000.00000000 00000000.FFFFFFFF
00000780 | |_Memory_Ctrl 00000000.00000005 00001600
000007C0 | |_Memory_Desc 00000000.00000000 00001600 00000000.00000000 00000000.40000000
 | | |_Fragment 00001600 00000000.00000000 00000000.00200000 Console Private Base
 | | |_Fragment 00001600 00000000.00200000 00000000.3FD7E000 Private Base
 | | |_Fragment 00001600 00000000.3FF7E000 00000000.00082000 Console Private Base
00000A40 | |_Memory_Desc 00000000.40000000 00001700 00000000.40000000 00000000.40000000
 | | |_Fragment 00001700 00000000.40000000 00000000.00200000 Console Private Base
 | | |_Fragment 00001700 00000000.40200000 00000000.3FD7E000 Private Base
 | | |_Fragment 00001700 00000000.7FF7E000 00000000.00082000 Console Private Base
00000CC0 | |_Memory_Desc 00000000.80000000 00001800 00000000.80000000 00000000.40000000
 | | |_Fragment 00001800 00000000.80000000 00000000.00200000 Console Private Base
 | | |_Fragment 00001800 00000000.80200000 00000000.3FD7E000 Private Base
 | | |_Fragment 00001800 00000000.BFF7E000 00000000.00082000 Console Private Base
00000F40 | |_Memory_Desc 00000000.C0000000 00001580 00000000.C0000000 00000000.40000000
 | |_Fragment 00001580 00000000.C0000000 00000000.40000000 Shared
 |
000011C0 |_SW_Root 00000000.00000000
00001580 | |_Community 00000000.00000000 000011C0
00001600 | |_Partition 00000000.00000000 00001580 ANDA1A OpenVMS Alpha
00001700 | |_Partition 00000000.00000001 00001580 ANDA2A OpenVMS Alpha
00001800 | |_Partition 00000000.00000002 00001580 ANDA3A OpenVMS Alpha
 |
00001200 |_Template_Root 00000000.00000000
00001240 |_IOP 00000000.00000000
000012C0 |_CPU 00000000.00000000
00001300 |_Memory_Desc 00000000.00000000 00000000.02000000

VM-0770A-AI

This command shows the summary (hierarchical) display of the configuration
tree.

SDA Commands 4–95

SDA Commands
SHOW GCT

2. SDA> SHOW GCT/HANDLE=00000700

Galaxy Configuration Tree

Handle: 00000700 Address: FFFFFFFF.83694740
Node type: Memory_Sub Size: 0080
Id: 00000000.00000000 Flags: 00000000.00000001 Hardware

Related nodes:

Node relationship Handle Type Id
--------------------- -------- --------------------- -----------------
Initial owner 00001580 Community 00000000.00000000
Current owner -<Same>-
Parent 00000240 HW_Root 00000000.00000000
Previous sibling 00000640 CPU_Module 00000000.00000003
Next sibling -<None>-
Child 00000780 Memory_Ctrl 00000000.00000005
Configuration binding 00000240 HW_Root 00000000.00000000
Affinity binding 00000240 HW_Root 00000000.00000000

Min. physical address: 00000000.00000000
Max. physical address: 00000000.FFFFFFFF

This command shows the detailed display of the specified node.

4–96 SDA Commands

SDA Commands
SHOW GLOBAL_SECTION_TABLE, SHOW GST

SHOW GLOBAL_SECTION_TABLE, SHOW GST

Displays information contained in the global section table, including pageable
sections of loadable images.

Format

SHOW GLOBAL_SECTION_TABLE or SHOW GST [/SECTION_INDEX=n]

Parameters

None.

Qualifiers

/SECTION_INDEX=n
Displays only the global section table entry for the specified section.

Description

Displays the entire contents of the global section table, unless you specify
the qualifier /SECTION_INDEX. This command is equivalent to SHOW
PROCESS/PROCESS_SECTION_TABLE/SYSTEM. SDA displays the information
in Table 4–3 for each GST entry.

Table 4–3 Global Section Table Entry Information

Part Definition

INDEX Index number of the entry. Entries in the global section
table begin at the highest location in the table, and the table
expands toward lower addresses.

ADDRESS Address of the global section table entry.
SECT/GPTE Virtual address that marks the beginning of the first of the

section described by this entry, if a loadable image; or the
virtual address of the global page table entry for the first page,
if a global section.

CCB Address of the channel control block on which the section file
is open. This field is zero for loadable images.

PAGELETS Length of the global section. This is in units of pagelets,
except for a PFN-mapped section in which the units are pages.

VBN Virtual block number. The number of the file’s virtual block
that is mapped into the section’s first page.

WINDOW Address of the window control block on which the section file
is open.

REFCNT Number of pages of this section that are currently mapped.
(continued on next page)

SDA Commands 4–97

SDA Commands
SHOW GLOBAL_SECTION_TABLE, SHOW GST

Table 4–3 (Cont.) Global Section Table Entry Information

Part Definition

FLINK Forward link. The pointer to the next entry in the GST list.
BLINK Backward link. The pointer to the previous entry in the GST

list.
FLAGS Flags that describe the access that the system and processes

have to the global section.

Example
SDA> SHOW GST

Global Section Table

Global section table information

 Last entry allocated 00000238
 First free entry 00000000

Global section table

 Index Address Sect/GPTE Addr CCB/GSD Pagelets VBN Window Refcnt Flink Blink Flags
-------- -------- ----------------- -------- -------- -------- -------- -------- ----- ----- --------------------
00000001 81409FD8 FFFFFFFF.83384000 00000000 00000025 00000003 81419E40 00000003 0000 0000 AMOD=KRNL

00000002 81409FB0 FFFFFFFF.833AE000 00000000 00000064 00000220 8141A040 00000007 0000 0000 AMOD=KRNL

00000003 81409F88 FFFFFFFF.83312000 00000000 00000001 0000063A 81450BC0 00000001 0000 0000 CRF WRT AMOD=KRNL

00000004 81409F60 FFFFFFFF.833C0000 00000000 00000003 00000003 814233C0 00000001 0000 0000 AMOD=KRNL

00000005 81409F38 FFFFFEFE.00058890 82065C70 00000002 0000000D 814F9AC0 00000003 0005 0005 WRTMOD=EXEC AMOD=USER PERM
 Name = INS$82065BC0_003 SYSGBL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]DECW$TRANSPORT_COMMON.EXE;1

00000006 81409F10 FFFFFFFF.833E6000 00000000 00000011 00000023 8142E480 00000002 0000 0000 AMOD=KRNL

00000007 81409EE8 FFFFFEFE.00052010 82025CA0 0000000C 00000004 814C0600 00000000 0007 0007 WRTMOD=EXEC AMOD=USER PERM
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]SYS$SSISHR.EXE;1 SYSGBL

00000008 81409EC0 FFFFFFFF.83400000 00000000 000000B4 00000003 81446340 0000000C 0000 0000 AMOD=KRNL

00000009 81409E98 FFFFFFFF.83418000 00000000 00000038 000000B7 81446340 00000001 0000 0000 CRF WRT AMOD=KRNL

0000000A 81409E70 FFFFFEFE.00052028 820261B0 00000027 00000019 814C0AC0 00000003 000A 000A WRTMOD=EXEC AMOD=USER PERM
 Name = INS$82026130_006 SYSGBL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]DISMNTSHR.EXE;1

0000000B 81409E48 FFFFFEFE.00052050 82026630 0000007A 00000004 814C0D00 00000008 000B 000B WRTMOD=EXEC AMOD=USER PERM
 Name = INS$82026540_002 SYSGBL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]DTI$SHARE.EXE;1

.

.

.
VM-0750A-AI

4–98 SDA Commands

SDA Commands
SHOW GLOCK

SHOW GLOCK

Displays the Galaxy locks for the Galaxy Management Database (GMDB), process
tables, and/or system tables.

Format

SHOW GLOCK [/BRIEF]
[/GMDB_TABLE]
[/PROCESS_TABLE [=n]]
[/SYSTEM_TABLE [=n]]
[/ALL]
[/ADDRESS=n [/PHYSICAL]]
[/HANDLE=n [/LINKED]]

Parameters

None.

Qualifiers

/BRIEF
Displays a single line for each Galaxy lock, regardless of any other qualifiers.

/GMDB_TABLE
Displays the Galaxy lock table for the Galaxy Management Database (GMDB)
including the embedded and attached Galaxy locks.

/PROCESS_TABLE [=n]
Displays all the process Galaxy lock tables with the embedded and attached
Galaxy locks, as well as a summary table. The /PROCESS_TABLE=n qualifier
displays the single Galaxy lock table without a summary page.

/SYSTEM_TABLE [=n]
Displays all the system Galaxy lock tables with the embedded and attached
Galaxy locks, as well as a summary table. The /SYSTEM_TABLE=n qualifier
displays the single Galaxy lock table without a summary page.

/ALL
Displays information provided by the /GMDB_TABLE, /PROCESS_TABLE, and
/SYSTEM_TABLE qualifiers. The /ALL qualifier also displays information from
the base GMDB Galaxy lock.

/ADDRESS=n [/PHYSICAL]
Displays the single Galaxy lock at address n. Because process Galaxy locks are
located by their physical address, you must use the /PHYSICAL qualifier to enter
such an address.

/HANDLE=n [/LINKED]
Displays the single Galaxy lock whose handle is n. The optional qualifier
/LINKED causes SDA to display all Galaxy locks linked to the one specified.

SDA Commands 4–99

SDA Commands
SHOW GLOCK

Examples

1. SDA> SHOW GLOCK

Galaxy Lock Database

Base address of GLock segment of GMDB: FFFFFFFF.7F238000
Length: 00000000.00082000

Nodes: 00000000.00000007 Flags: 00000000.00000000

Process tables: 00000000.00000400 System tables: 00000000.00000400
First free: 00000002 00000001
First used: 00000001 00000000

Embedded GLocks:

GLock address: FFFFFFFF.7F238020 Handle: 80000000.00000805

GLock name: GMDB_GLOCK_LOCK Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 08 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00000000
Thread ID: 00000000.00000000

GLock address: FFFFFFFF.7F238190 Handle: 80000000.00000833

GLock name: PRC_LCKTBL_LOCK Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 08 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00000000
Thread ID: 00000000.00000000

GLock address: FFFFFFFF.7F2381D0 Handle: 80000000.0000083B

GLock name: SYS_LCKTBL_LOCK Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 08 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00000000
Thread ID: 00000000.00000000

This example shows the summary of the Galaxy lock database.

2. SDA> SHOW GLOCK/PROCESS_TABLE

Galaxy Lock Database: Process Lock Table #0001
--

Base address of Process Lock Table #0001: FFFFFFFF.7F23A000

Lock size: 0040 Flags: 01 VALID
Region Index/Sequence: 0008/00000001 Access mode: 03
Region physical size: 00000000.00002000 Virtual size: 00000000.00002000
Number of locks: 00000000.00000080 Nodes: 00000000.00000007

Per-node reference counts:

Node Count
---- -----
0000 0001
0001 0001
0002 0001

Embedded GLock:

GLock address: FFFFFFFF.7F23A040 Handle: 80000000.00000C09

4–100 SDA Commands

SDA Commands
SHOW GLOCK

GLock name: PLCKTBL_LOCK001 Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 00 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00000000
Thread ID: 00000000.00000000

Attached GLocks:

GLock address: P00000000.C05EC7C0 Handle: 00000001.000000F9

GLock name: CPU_BAL_LOCK Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 00 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00000000
Thread ID: 00000000.00000000

.

.

.

GLock address: P00000000.C05EC000 Handle: 00000001.00000001

GLock name: CPU_BAL_LOCK Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 00 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00000000
Thread ID: 00000000.00000000

Used GLock count = 0020

Free GLock count = 0060

Galaxy Lock Database: Process Lock Table Summary
--

Total used Process Lock Tables: 00000001
Total free Process Lock Tables: 000003FF

This example shows the Galaxy locks for all processes.

SDA Commands 4–101

SDA Commands
SHOW GMDB

SHOW GMDB

Displays the contents of the Galaxy Management Database (GMDB) and/or the
node blocks of the instances in the Galaxy system.

Format

SHOW GMDB [/ALL]
[/NODE [=name | =n | /ADDRESS=n] [/SUMMARY]

Parameters

None.

Qualifiers

/ADDRESS
Specifies the address of a single node block to be displayed when used with the
/NODE qualifier. See the description of the /NODE qualifier.

/ALL
Displays the contents of the Galaxy Management Database and all node blocks
that have ever been used (contents nonzero).

/NODE [=name | =n | /ADDRESS=n]
Displays the contents of the specified node block, given by either the name of the
instance, the partition number, or the address of the node block. If the /NODE
qualifier is given alone, then the node block for the current instance is displayed.

/SUMMARY
Displays a one-page summary of the GMDB and all node blocks.

Note

The default action displays the contents of the Galaxy Management
Database.

Examples

1. SDA> SHOW GMDB

Galaxy Management Database

Base address of GMDB: FFFFFFFF.7F234000
Base address of NODEB for this instance: FFFFFFFF.7F236000

Revision: 1.0 Maximum node ID: 00000003
Creation time: 31-MAR-1999 13:15:08.08 Incarnation: 00000000.00000003
State: OPERATIONAL Creator node: 00000001
Base size: 00000000.00004000 Total size: 00000000.000A6000
Last joiner ID: 00000002 Remover node ID: FFFFFFFF
Last leaver ID: 00000002 Node timeout (msec) 5000.
Lock owner 00000002 Lock flags: 0000
Break owner: FFFFFFFF Breaker ID: FFFFFFFF

Version Information:

Min Version Operational 1.0 Min Version Allowed 1.0
Max Version Operational 1.0

Membership bitmask: FFFFFFFF.7F236800

4–102 SDA Commands

SDA Commands
SHOW GMDB

Valid bits: 00000004 State: 00000000.0000001E AUTO_LOCK TIMEOUT_CRASH....
Unit count: 0001 Unit size: QUADWORD
Lock IPL: 16 Saved IPL: 00000008
Count of bits set: 00000003
Timeout count: 000186A0
Summary bitmask: 00000000.00000001

Unit bitmask:
........7 00000000

Remove node bitmask: FFFFFFFF.7F236880

Valid bits: 00000004 State: 00000000.00000018 SUMMARY_BITS SET_COUNT
Unit count: 0001 Unit size: QUADWORD
Count of bits set: 00000000
Summary bitmask: 00000000.00000000

Unit bitmask:
........0 00000000

Subfacility validation flags: 00000000

Galaxy locks segment: FFFFFFFF.7F238000 Length: 00000000.00082000
Shared memory segment: FFFFFFFF.7F2BA000 Length: 00000000.0000A000
CPU comms segment: FFFFFFFF.7F2C4000 Length: 00000000.00014000
CPU info segment: FFFFFFFF.7F2D8000 Length: 00000000.00002000
Membership segment: FFFFFFFF.7F2DA000 Length: (empty)

MMAP address: FFFFFFFF.7F234200

Level count: 0000 Flags: 0001 VALID
Top page count: 00000053 Virtual size: 00000000.000A6000
PFN list page count: 00000000 First PFN: 00060000
Data page count: 00000053)

This example shows the overall summary of the Galaxy Management Database.

2. SDA> SHOW GMDB/NODE=0

GMDB: Node ID 00000000 (current instance)

Base address of node block: FFFFFFFF.7F236000

Version: 1.0 Node name: ANDA1A
Join time: 31-MAR-1999 14:11:09.08 Incarnation: 00000000.00000005
State: MEMBER Crash_all acknowledge: 00000000
Validation done: 00000000 Reform done: 00000000

IP interrupt mask: 00000000.00000000

Little brother: 00000002 Heartbeat: 00000000.0019EAD1
Big brother: 00000001 Last watched_node: 00000000

Watched_node #0: FFFFFFFF.7F236078 Node watched: 00000002
Last heartbeat: 00000000.0017C1AD Miss count: 00000000)

This example shows Galaxy Management Database information for the specified
instance.

SDA Commands 4–103

SDA Commands
SHOW GSD

SHOW GSD

Displays information contained in the global section descriptors.

Format

SHOW GSD [/ADDRESS=n | /ALL | /DELETED | /GLXGRP
| /GLXSYS | /GROUP | /SYSTEM]

Parameters

None.

Qualifiers

/ADDRESS=n
Displays a specific global section descriptor entry, given its address.

/ALL
Displays information in all the global section descriptors, that is, the system,
group, and deleted global section descriptors, plus the Galaxy group and Galaxy
system global section descriptors, if the system or dump being analyzed is a
member of an OpenVMS Galaxy system. This qualifier is the default.

/DELETED
Displays information in the deleted (that is, delete pending) global section
descriptors.

/GLXGRP
Displays information in the group global section descriptors of a Galaxy system.

/GLXSYS
Displays information in the system global section descriptors of a Galaxy system.

/GROUP
Displays information in the group global section descriptors.

/SYSTEM
Displays information in the system global section descriptors.

Description

The SHOW GSD command displays information that resides in the global section
descriptors. Table 4–4 shows the fields and their meaning.

4–104 SDA Commands

SDA Commands
SHOW GSD

Table 4–4 GSD Fields

Field Meaning

ADDRESS Gives the address of the global section descriptor.
NAME Gives the name of the global section.
GSTX Gives the global section table index.
FLAGS Gives the settings of flags for specified global section, as a

hexadecimal number; also displays key flag bits by name.
BASEPFN1 Gives physical page frame number at which the section starts.
PAGES1 Gives number of pages (not pagelets) in section.
REFCNT1 Gives number of times this global section is mapped.

1This field applies only to PFN mapped global sections.

Example

SDA > SHOW GSD

817DAF30 SECIDX_422
817DAE60 SECIDX_421

02DD
02DC
02DB
02DA
0000
0000
02D6
02D5

SECDIX_420817DAD90
SECDIX_419

0082C3C9
008A83CD
0088C3CD
008883DC
0001C3C1
0001C3C1
0080C3CD
008083CD

SECIDX_418
817DACC0

SECIDX_417

WRT AMOD=USER PERM

SECIDX_412

817DABE0

SECIDX_411

DZRO WRT AMOD=USER PAGFIL

817DAB00

DZRO WRT AMOD=USER PERM PAGFIL

817DA890

DZRO WRT AMOD=USER PAGFIL

817DA850

AMOD=USER PERM

 .

AMOD=USER PERM

 .

DZRO WRT AMOD=USER PERM

 .

DZRO WRT AMOD=USER

00000B0B
00000B0B

00000002
00000002

00000000
00000000

System Global Section Descriptor List
--------------------------------------- -----------PFNMAP----------

ADDRESS NAME GSTX FLAGS REFCNTPAGESBASEPFN

ZK-8830A-GE

SDA Commands 4–105

SDA Commands
SHOW HEADER

SHOW HEADER

Displays the header of the dump file.

Format

SHOW HEADER

Parameters

None.

Qualifiers

None.

Description

The SHOW HEADER command produces a 10-column display, each line of which
displays both the hexadecimal and ASCII representation of the contents of
the dump file header in 32-byte intervals. Thus, the first eight columns, when
read right to left, represent the hexadecimal contents of 32 bytes of the header;
the ninth column, when read left to right, records the ASCII equivalent of the
contents. (The period [.] in this column indicates an ASCII character that cannot
be displayed.)

After it displays the contents of the header blocks, the SHOW HEADER command
displays the hexadecimal contents of the saved error log buffers.

See the OpenVMS AXP Internals and Data Structures manual for a discussion of
the information contained in the dump file header. See also the SHOW DUMP
and CLUE ERRLOG commands, which you can use to obtain formatted displays
of the dump header and error log buffers.

Example

SDA> SHOW HEADER

Dump file header
−−−−−−−−−−−−−−−−
00000000 7FFA6000 00000000 7FFA1C98 00000000 0000187C 08090FC1 00000004 Á...|.........ú......‘ú..... 00000000
00001FFF 0000000D 00002000 80D0A000 00000000 7AFFBAD0 00000000 7FFAC100 .Áú.....Ðº.z......Ð............. 00000020
0000B162 00000000 00000001 00000000 00040704 FCFFFFFF 03000000 80C13670 p6Á........ü................b±.. 00000040
00000000 00000400 00000008 00000000 3154462D 31393658 00000011 00000000 X691−FT1................ 00000060
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000080
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000A0
FF7FC000 FFFFFFFD FF000000 80C220F0 00000000 00000000 00000000 00000000 ð Â.....ý....À...... 000000C0
.
.
.

Saved error log messages
−−−−−−−−−−−−−−−−−−−−−−−−
0004FFF9 0000040B 00000001 00000000 00000070 80D0B000 80D0A00C 00000000 Ð..°Ð.p.......ù........... 80D0A000
B4510020 60030000 00000000 00000020 20585443 50575308 00000000 00020000 SWPCTX ‘ .Q´.... 80D0A020
30303320 43454412 00000002 00000000 3154462D 31393658 0000009A 2C31075A Z.1,....X691−FT1.........DEC 300 80D0A040
000000AA 59EC7C0A 00000000 00000000 00000000 00303034 206C6564 6F4D2030 0 Model 400..............|ìYª... 80D0A060
20585443 50575308 00000000 00020000 0004FFF9 0000040B 00000001 00000000 ù............SWPCTX 80D0A080
3154462D 31393658 0001009A 2C3107FD 1DDB0040 60030000 00000000 00000020 ‘@.Û.ý.1,....X691−FT1 80D0A0A0
00000000 00303034 206C6564 6F4D2030 30303320 43454412 00000003 00000000 DEC 3000 Model 400..... 80D0A0C0
4B442458 54435057 530A0064 000001AB 00000000 00010001 00000000 00000000 «...d..SWPCTX$DK 80D0A0E0
.
.
. ZK−8861A−GE

The SHOW HEADER command displays the contents of the dump file’s header.
Ellipses indicate hexadecimal information omitted from the display.

4–106 SDA Commands

SDA Commands
SHOW LAN

SHOW LAN

Displays information contained in various local area network (LAN) data
structures.

Format

SHOW LAN [/qualifier[,...]]

Parameters

None.

Qualifiers

/CLIENT=name
Specifies that information be displayed for the specified client. Valid client
designators are SCA, DECNET, LAT, MOPRC, TCPIP, DIAG, ELN, BIOS, LAST,
USER, ARP, MOPDL, LOOP, BRIDGE, DNAME, ENCRY, DTIME, and LTM.
The /CLIENT, /DEVICE, and /UNIT qualifiers are synonymous and mutually
exclusive.

/CLUEXIT
Specifies that cluster protocol information be displayed.

/COUNTERS
Specifies that the LAN station block (LSB) and unit control block (UCB) counters
be displayed.

/CSMACD
Specifies that Carrier Sense Multiple Access with Collision Detect (CSMA/CD)
information for the LAN be displayed. By default, both CSMA/CD and Fiber
Distributed Data Interface (FDDI) information is displayed.

/DEVICE=name
Specifies that information be displayed for the specified device, unit, or client. For
each LAN adapter on the system, there is one device and multiple users of that
device called, units or clients. Device designators are specified in the format
XXdn, where XX is the type of device, d is the device letter, and n is the unit
number. The device letter and unit number are optional. The first unit, which
is always present, is the template unit. These are specified as indicated in this
example for a DEMNA called EX:

/DEVICE=EX—display all EX devices on the system
/DEVICE=EXA—display the first EX device only
/DEVICE=EXA0—display the first EXA unit
/DEVICE=SCA—display SCA unit
/DEVICE=LAT—display LAT units

Valid client names are listed in the /CLIENT=name qualifier. The /CLIENT,
/DEVICE, and /UNIT qualifiers are synonymous and mutually exclusive.

/ELAN
Specifies information from an Emulated LAN (ELAN) that runs over an
asynchronous transfer mode (ATM) network. The /ELAN qualifier displays
the LAN Station Block (LSB) address, device state, and the LSB fields pertinent

SDA Commands 4–107

SDA Commands
SHOW LAN

to an ELAN for both the parent ATM device and the ELAN pseudo-device drivers.
It also specifies the name, description, parent device, state, and LAN emulation
client (LEC) attributes of the ELAN.

The qualifier /ELAN used with the device qualifier (/ELAN/DEVICE=ELA) will
only display information for the specified device or pseudo-device.

/ERRORS
Specifies that the LSB and UCB error counters be displayed.

/FDDI
Specifies that Fiber Distributed Data Interface (FDDI) information for the LAN
be displayed. By default, both CSMA/CD and FDDI information is displayed.

/FULL
Specifies that all information from the LAN, LSB, and UCB data structures be
displayed.

/COUNTERS
Specifies internal counters of the drivers by displaying the internal counters. If
the /ICOUNTERS qualifier is used with the /DEVICE qualifier, the /ICOUNTERS
specifies the internal counters of a specific driver.

/QUEUE
Specifies a listing of all queues, whether their status is valid or invalid, and
all elements of the queues. If the /QUEUE qualifier is used with the /DEVICE
qualifier, the /QUEUE specifies a specific queue.

/SUMMARY
Specifies that only a summary of LAN information (a list of flags, LSBs, UCBs,
and base addresses) be printed. This is the default.

/TIMESTAMPS
Specifies that time information (such as start and stop times and error times)
from the device and unit data structures be printed. SDA displays the data in
chronological order.

/UNIT=name
Specifies that information be displayed for the specified unit. See the descriptions
for /CLIENT=name and /DEVICE=name qualifiers.

/VCI
Specifies that information be displayed for the VMS Communication Interface
Block (VCIB) for each LAN device with an active VCI user. If you use the /VCI
qualifier with the /DEVICE qualifier, the VCIB is only displayed for the specified
device.

Description

The SHOW LAN command displays information contained in various local area
network (LAN) data structures. By default, or when the /SUMMARY qualifier is
specified, SHOW LAN displays a list of flags, LSBs, UCBs, and base addresses.
When the /FULL qualifier is specified, SHOW LAN displays all information found
in the LAN, LSB, and UCB data structures.

4–108 SDA Commands

SDA Commands
SHOW LAN

Examples

1. SDA> SHOW LAN/FULL

LAN Data Structures

-- LAN Information Summary 23-MAY-1996 13:07:52 --

LAN flags: 00000004 LAN_INIT

LAN block address 80DB7140 Timer DELTA time 10000000
Number of stations 2 DAT sequence number 1
LAN module version 1 First SVAPTE FFDF60F0
LANIDEF version 51 Number of PTEs 3
LANUDEF version 26 SVA of first page 8183C000
First LSB address 80DCA980

-- LAN CSMACD Network Management 23-MAY-1996 13:07:52 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Latest EIB 00000000
Port EAB 00000000
Station EAB 00000000
NM flags: 00000000

-- LAN FDDI Network Management 23-MAY-1996 13:07:52 --

Creation time None Times created 0
Deletion time None Times deleted 0
Module EAB 00000000 Link EAB 00000000
Port EAB 00000000 PHY port EAB 00000000
Station EAB 00000000 Module EIB 00000000
NM flags: 00000000

LAN Data Structures

-- ESA Device Information 23-MAY-1996 13:07:52 --

LSB address 80DCA980 Driver code address 80CAE838
Driver version 00000001.07010037 Device1 code address 00000000
Device1 version 00000000.00000000 Device2 code address 00000000
Device2 version 00000000.00000000 LAN code address 80CAFA00
LAN version 00000001.07010112 DLL type CSMACD
Device name EY_NITC2 MOP name MXE
MOP ID 94 HW serial Not supplied
HW version 00000000 Promiscuous mode OFF
Controller mode NORMAL Promiscuous UCB 00000000
Internal loopback OFF All multicast state OFF
Hardware address 08-00-03-DE-00-12 CRC generation mode ON
Physical address AA-00-04-00-88-FE Full Duplex Enable OFF
Active unit count 1 Full Duplex State OFF
Line speed 10

Flags: 00000000
Char: 00000000
Status: 00000003 RUN,INITED

SDA Commands 4–109

SDA Commands
SHOW LAN

LAN Data Structures

-- ESA Device Information (cont) 23-MAY-1996 13:07:52 --

Put rcv ptr/index 00000000 Get rcv ptr/index 00000015
Put xmt ptr/index 80DCB620 Get xmt ptr/index 80DCB620
Put cmd ptr/index 00000000 Get cmd ptr/index 00000000
Put uns ptr/index 00000000 Get uns ptr/index 00000000
Put smt ptr/index 00000000 Get smt ptr/index 00000000
RBufs owned by dev 0 Rcv packet limit 32
XEnts owned by dev 0 XEnts owned by host 4
CEnts owned by dev 0 Transmit timer 0
UEnts owned by dev 0 Control timer 0
SEnts owned by dev 0 Periodic SYSID timer 599
Current rcv buffers 17 Ring unavail timer 0
Rqst MAX rcv buffers 32 USB timer 26
Rqst MIN rcv buffers 16 Receive alignment 0
Curr MAX rcv buffers 32 Receive buffer size 1518
Curr MIN rcv buffers 16 Min 1st chain segment 0
FILL rcv buffers 16 Min transmit length 0
ADD rcv buffers 32 Dev xmt header size 0

LAN Data Structures

-- ESA Device Information (cont) 23-MAY-1996 13:07:52 --

Last receive 23-MAY 13:07:51 Last transmit 23-MAY 13:07:50
ADP address 80D4B280 IDB address 80DCA880
DAT stage 00000000 DAT xmt status 0000003C.003C0001
DAT number started 1 DAT xmt complete 23-MAY 13:07:19
DAT number failed 0 DAT rcv found None
DAT VCRP 80DCBB80 DAT UCB 00000000
Mailbox enable flag 0 CRAM read comman 00000000
CSR base phys addr 00000000.00000000 CRAM write comma 00000000
Mailboxes in use 0 Media UNDF
2nd LW status flags 00000000

LAN Data Structures

-- ESA Network Management Information 23-MAY-1996 13:07:52 --

Creation time None Create count 0
Deletion time None Enable count 0
Enabled time None Number of ports 0
Disabled time None Events logged 0
EIB address 00000000 NMgmt assigned addr None
LLB address 00000000 Station name itmlst 00000000
LHB address 00000000 Station itmlst len 0
First LPB address 00000000

LAN Data Structures

-- ESA Fork Information 23-MAY-1996 13:07:52 --

ISR FKB sched 23-MAY 13:07:51 ISR FKB in use flag FREE
ISR FKB time 23-MAY 13:07:51 ISR FKB count 200
IPL8 FKB sched 23-MAY 13:07:20 IPL8 FKB in use flag FREE
IPL8 FKB time 23-MAY 13:07:20 IPL8 FKB count 1
RESET FKB sched None RESET FKB in use flag FREE
RESET FKB time None RESET FKB count 0
NM FKB sched None NM FKB in use flag FREE
NM FKB time None NM FKB count 0
Fork status code 0

4–110 SDA Commands

SDA Commands
SHOW LAN

LAN Data Structures

-- ESA Queue Information 23-MAY-1996 13:07:52 --
Control hold queue 80DCACF0 Status: Valid, empty
Control request queue 80DCACF8 Status: Valid, empty
Control pending queue 80DCAD00 Status: Valid, empty
Transmit request queue 80DCACE8 Status: Valid, empty
Transmit pending queue 80DCAD18 Status: Valid, empty
Receive buffer list 80DCAD38 Status: Valid, 17 elements
Receive pending queue 80DCAD20 Status: Valid, empty
Post process queue 80DCAD08 Status: Valid, empty
Delay queue 80DCAD10 Status: Valid, empty
Auto restart queue 80DCAD28 Status: Valid, empty
Netwrk mgmt hold queue 80DCAD30 Status: Valid, empty

-- ESA Multicast Address Information 23-MAY-1996 13:07:52 --

AB-00-00-04-00-00

-- ESA Unit Summary 23-MAY-1996 13:07:52 --

UCB UCB Addr Fmt Value Client State
--- -------- --- ----- ------ -----------
ESA0 80D4F6C0
ESA1 80E35400 Eth 60-03 DECNET 0017 STRTN,LEN,UNIQ,STRTD

LAN Data Structures

-- ESA Counters Information 23-MAY-1996 13:07:52 --

Octets received 596 Octets sent 230
PDUs received 8 PDUs sent 5
Mcast octets received 596 Mcast octets sent 138
Mcast PDUs received 8 Mcast PDUs sent 3
Unrec indiv dest PDUs 0 PDUs sent, deferred 0
Unrec mcast dest PDUs 1 PDUs sent, one coll 0
Data overruns 0 PDUs sent, mul coll 0
Unavail station buffs 0 Excessive collisions 0
Unavail user buffers 0 Late collisions 0
CRC errors 0 Carrier check failure 0
Alignment errors 0 Last carrier failure None
Rcv data length err 0 Coll detect chk fail 5
Frame size errors 0 Short circuit failure 0
Frames too long 0 Open circuit failure 0
Seconds since zeroed 34 Transmits too long 0
Station failures 0 Send data length err 0

SDA Commands 4–111

SDA Commands
SHOW LAN

LAN Data Structures

-- ESA Counters Information (cont) 23-MAY-1996 13:07:52 --

No work transmits 0 Ring avail transitions 0
Buffer_Addr transmits 0 Ring unavail transitions 0
SVAPTE/BOFF transmits 0 Loopback sent 0
Global page transmits 0 System ID sent 0
Bad PTE transmits 0 ReqCounters sent 0
Restart pending counter 0 Internal counters size 40
+00 MCA not enabled 187 +2C Generic (or unused) 00000000
+04 Xmt underflows 0 +30 Generic (or unused) 00000000
+08 Rcv overflows 0 +34 Generic (or unused) 00000000
+0C Memory errors 0 +38 Generic (or unused) 80DCAD18
+10 Babbling errors 0 +3C Generic (or unused) 80DCAD18
+14 Local buffer errors 0 +40 Generic (or unused) 004E0840
+18 LANCE interrupts 202 +44 Generic (or unused) 61616161
+1C Xmt ring <31:0> 00000000 +48 Generic (or unused) 61616161
+20 Xmt ring <63:32> 00000000 +4C Generic (or unused) 61616161
+24 Soft errors handled 0 +50 Generic (or unused) 61616161
+28 Generic (or unused) 00000000 +54 Generic (or unused) 61616161

LAN Data Structures

-- ESA Error Information 23-MAY-1996 13:07:52 --

Fatal error count 0 Last error CSR 00000000
Fatal error code None Last fatal error None
Prev error code None Prev fatal error None
Transmit timeouts 0 Last USB time None
Control timeouts 0 Last UUB time None
Restart failures 0 Last CRC time None
Power failures 0 Last CRC srcadr None
Bad PTE transmits 0 Last length erro None
Loopback failures 0 Last exc collisi None
System ID failures 0 Last carrier fai None
ReqCounters failures 0 Last late collis None

LAN Data Structures

-- ESA0 Template Unit Information 23-MAY-1996 13:07:52 --

LSB address 80DCA980 Error count 0
VCIB address 00000000 Parameter mask 00000000
Stop IRP address 00000000 Promiscuous mode OFF
Restart IRP address 00000000 All multicast mode OFF
LAN medium CSMACD Source Routing mode TRANSPARENT
Packet format Ethernet Access mode EXCLUSIVE
Eth protocol type 00-00 Shared user DES None
802E protocol ID 00-00-00-00-00 Padding mode ON
802.2 SAP 00 Automatic restart DISABLED
802.2 Group SAPs 00,00,00,00 Allow prom client ON
Controller mode NORMAL Can change address OFF
Internal loopback OFF 802.2 service User
CRC generation mode ON Rcv buffers to save 1
Functional Addr mod ON Minimum rcv buffers 4
Hardware address 08-00-03-DE-00-12 User transmit FC/AC ON
Physical address FF-FF-FF-FF-FF-FF User receive FC/AC OFF

4–112 SDA Commands

SDA Commands
SHOW LAN

LAN Data Structures

-- ESA1 60-03 (DECNET) Unit Information 23-MAY-1996 13:07:52 --

LSB address 80DCA980 Error count 0
VCIB address 00000000 Parameter mask 00DA8695
Stop IRP address 80E047C0 Promiscuous mode OFF
Restart IRP address 00000000 All multicast mode OFF
LAN medium CSMACD Source Routing mode TRANSPARENT
Packet format Ethernet Access mode EXCLUSIVE
Eth protocol type 60-03 Shared user DES None
802E protocol ID 00-00-00-00-00 Padding mode ON
802.2 SAP 00 Automatic restart DISABLED
802.2 Group SAPs 00,00,00,00 Allow prom client ON
Controller mode NORMAL Can change address OFF
Internal loopback OFF 802.2 service User
CRC generation mode ON Rcv buffers to save 10
Functional Addr mod ON Minimum rcv buffers 4
Hardware address 08-00-03-DE-00-12 User transmit FC/AC ON
Physical address AA-00-04-00-88-FE User receive FC/AC OFF

LAN Data Structures

-- ESA1 60-03 (DECNET) Unit Information (cont) 23-MAY-1996 13:07:52 --

Last receive 23-MAY 13:07:47 Starter’s PID 0001000F
Last transmit 23-MAY 13:07:50 Maximum header size 16
Last start attempt 23-MAY 13:07:20 Maximum buffer size 1498
Last start done 23-MAY 13:07:20 Rcv quota charged 15040
Last start failed None Default FC value 00
MCA match enabled 01 Default AC value 00
Last MCA filtered AB-00-00-04-00-00 Maintenance state ON

UCB status: 00000017 STRTN,LEN,UNIQ,STRTD

Receive IRP queue 80E356E8 Status: Valid, 1 element
Receive pending queue 80E356E0 Status: Valid, empty

Multicast address table, embedded:
AB-00-00-04-00-00

LAN Data Structures

-- ESA1 60-03 (DECNET) Counters Information 23-MAY-1996 13:07:52 --

Octets received 483 Octets sent 180
PDUs received 7 PDUs sent 3
Mcast octets received 483 Mcast octets sent 180
Mcast PDUs received 7 Mcast PDUs sent 3
Unavail user buffer 0 Multicast not enabled 0
Last UUB time None User buffer too small 0

The SHOW LAN/FULL command displays information for all LAN, LSB, and
UCB data structures.

SDA Commands 4–113

SDA Commands
SHOW LAN

2. SDA> SHOW LAN/TIME

-- LAN History Information 12-FEB-1995 11:08:48 --

12-FEB 11:08:47.92 ESA Last receive
12-FEB 11:08:47.92 ESA Last fork scheduled
12-FEB 11:08:47.92 ESA Last fork time
12-FEB 11:08:47.77 ESA5 LAST Last receive
12-FEB 11:08:47.72 ESA3 LAT Last receive
12-FEB 11:08:41.25 ESA Last transmit
12-FEB 11:08:41.25 ESA5 LAST Last transmit
12-FEB 11:08:40.02 ESA2 DECnet Last receive
12-FEB 11:08:39.14 ESA2 DECnet Last transmit
12-FEB 11:08:37.39 ESA3 LAT Last transmit
12-FEB 10:19:25.31 ESA Last unavail user buffer
12-FEB 10:19:25.31 ESA2 DECnet Last unavail user buffer
11-FEB 14:10:20.09 ESA5 LAST Last start completed
11-FEB 14:10:02.16 ESA3 LAT Last start completed
11-FEB 14:09:58.44 ESA2 DECnet Last start completed
11-FEB 14:09:57.44 ESA Last DAT transmit

The SHOW LAN/TIME command displays print time information from device
and unit data structures.

3. SDA> SHOW LAN/VCI/DEVICE=ICB

-- ICB VCI Information 17-APR-1996 14:22:07 --

LSB address = 80A1D580
Device state = 00000003 RUN,INITED

-- ICB2 80-41 (LAST) VCI Information 17-APR-1996 14:22:07 --

VCIB address = 8096F238
CLIENT flags: 00000001 RCV_DCB
LAN flags: 00000004 LAN_INIT
DLL flags: 00000005 XMT_CHAIN,PORT_STATUS
UCB status: 00000015 STRTN,UNIQ,STRTD

VCI ID LAST VCI version 00010001
UCB address 80A4C5C0 DP VCRP address 00000000
Hardware address 00-00-93-08-52-CF LDC address 80A1D720
Physical address 00-00-93-08-52-CF LAN medium TR
Transmit available 80A1D670 Outstanding operations 0
Maximum receives 0 Outstanding receives 0
Max xmt size 4444 Header size 52
Build header rtn 808BF230 Report event rtn 86327130
XMT initiate rtn 808BF200 Transmit complete rtn 86326D80
XMT frame rtn 808BF210 Receive complete rtn 86326A80

-- ICB2 80-41 (LAST) VCI Information (cont) 17-APR-1996 14:22:07 --

Portmgmt initiate rtn 808BF0C0 Portmgmt complete rtn 86327100
Monitor request rtn 00000000 Monitor transmit rtn 00000000
Monitor flags 00000000 Monitor receive rtn 00000000
Port usable 00000000 Port unusable 00000000

The SHOW LAN/VCI/DEVICE=ICB command displays the VCIB for a Token
Ring device (ICB) that has an active VCI user (LAST).

4–114 SDA Commands

SDA Commands
SHOW LAN

4. SDA> SHOW LAN/ELAN

-- HCA Emulated LAN LSB Information 17-APR-1996 14:08:02 --

LSB address = 8098D200
Device state = 00000101 RUN,RING_AVAIL

Driver CM VC setup adr 808986A0 Driver CM VC teardown adr 80898668
NIPG CM handle adr 8096C30C NIPG CM SVC handle 00000000
NIPG CM agent handle adr 809B364C NIPG CM mgr lineup handle 809B394C
NIPG CM ILMI IO handle 809B378C MIB II handle adr 809B94CC
MIB handle adr 809B3ACC Queue header for EL LSBs 00000000
DEC MIB handle adr 809BBD8C NIPG current TQEs used 00000000
Count of allocated TQEs 0000000D NIPG current pool used 0000D2C0
NIPG pool allocations 00075730

-- ELA Emulated LAN LSB Information 17-APR-1996 14:08:02 --

LSB address = 80AB08C0
Device state = 00000001 RUN

ELAN name = ELAN 1
ELAN description = ATM ELAN
ELAN parent = HCA0
ELAN state = 00000001 ACTIVE

MAX transmit size MTU_1516 ELAN media type LAN_802_3
LEC attr buff adr 80AB1FC0 LEC attr buff size 00000328
Event mask 00000000 PVC identifer 00000000
Extended sense 00000000

-- ELA Emulated LAN LEC Attributes 17-APR-1996 14:08:02 --

LAN type 00000000 LAN MTU 00000001
Proxy flag 00000000 Control timeout 0000000A
Max UF count 00000001 Max UF time 00000001
VCC timeout 000004B0 Max retry count 00000002
LEC id 00000002 Forw delay time 0000000F
Flush timeout 00000004 Path switch delay 00000006
SM state 00000070 Illegal CTRL frames 00000000
CTRL xmt failures 00000000 CTRL frames sent 0000000C
CTRL frames_rcvd 00000012 LEARPs sent 00000000
LEARPS rcvd 00000000 UCASTs sent direct 00000000
UCASTs flooded 00000006 UCASTs discarded 00000001
NUCASTs sent 00000000
Local ESI 00000000.00000000
BUS ATM addr 3999990000000008002BA57E80.AA000302FF12.00
LES ATM addr 3999990000000008002BA57E80.AA000302FF14.00
My ATM addr 3999990000000008002BA57E80.08002B2240A0.00

The SHOW LAN/ELAN command displays information for the parent ATM
device (HCA) driver and the ELAN pseudo-device (ELA) driver.

SDA Commands 4–115

SDA Commands
SHOW LAN

5. SDA> SHOW LAN/ELAN/DEV=ELA

-- ELA Emulated LAN LSB Information 17-APR-1996 14:08:22 --

LSB address = 80AB08C0
Device state = 00000001 RUN

ELAN name = ELAN 1
ELAN description = ATM ELAN
ELAN parent = HCA0
ELAN state = 00000001 ACTIVE

MAX transmit size MTU_1516 ELAN media type LAN_802_3
LEC attr buff adr 80AB1FC0 LEC attr buff size 00000328
Event mask 00000000 PVC identifer 00000000
Extended sense 00000000

-- ELA Emulated LAN LEC Attributes 17-APR-1996 14:08:22 --

LAN type 00000000 LAN MTU 00000001
Proxy flag 00000000 Control timeout 0000000A
Max UF count 00000001 Max UF time 00000001
VCC timeout 000004B0 Max retry count 00000002
LEC id 00000002 Forw delay time 0000000F
Flush timeout 00000004 Path switch delay 00000006
SM state 00000070 Illegal CTRL frames 00000000
CTRL xmt failures 00000000 CTRL frames sent 0000000C
CTRL frames_rcvd 00000012 LEARPs sent 00000000
LEARPS rcvd 00000000 UCASTs sent direct 00000000
UCASTs flooded 00000006 UCASTs discarded 00000001
NUCASTs sent 00000000
Local ESI 00000000.00000000
BUS ATM addr 3999990000000008002BA57E80.AA000302FF12.00
LES ATM addr 3999990000000008002BA57E80.AA000302FF14.00
My ATM addr 3999990000000008002BA57E80.08002B2240A0.00

The SHOW LAN/ELAN/DEVICE=ELA command displays information for the
ELAN pseudo-device (ELA) driver only.

6. SDA> SHOW LAN/ELAN/DEVICE=HCA

-- HCA Emulated LAN LSB Information 17-APR-1996 14:08:25 --

LSB address = 8098D200
Device state = 00000101 RUN,RING_AVAIL

Driver CM VC setup adr 808986A0 Driver CM VC teardown adr 80898668
NIPG CM handle adr 8096C30C NIPG CM SVC handle 00000000
NIPG CM agent handle adr 809B364C NIPG CM mgr lineup handle 809B394C
NIPG CM ILMI IO handle 809B378C MIB II handle adr 809B94CC
MIB handle adr 809B3ACC Queue header for EL LSBs 00000000
DEC MIB handle adr 809BBD8C NIPG current TQEs used 00000000
Count of allocated TQEs 0000000D NIPG current pool used 0000D2C0
NIPG pool allocations 000757B2

The SHOW LAN/ELAN/DEVICE=HCA command displays information for the
ATM device (HCA) driver only.

4–116 SDA Commands

SDA Commands
SHOW LOCKS

SHOW LOCKS

Displays information about all lock management locks in the system, or about a
specified lock.

Format

SHOW LOCKS {lock-id | /ADDRESS=n | /ALL (d) |
/BLOCKING | /BRIEF | /CACHED | /CONVERT | /GRANTED
| /NAME=name | /POOL |
/STATUS=(keyword [,keyword...]) | /SUMMARY |
/WAITING}

Parameter

lock-id
Name of a specific lock.

Qualifiers

/ADDRESS=n
Displays a specific lock, given the address of the lock block.

/ALL
Lists all locks that exist in the system. This is the default behavior of the SHOW
LOCKS command.

/BLOCKING
Displays only the locks that have a blocking AST specified or attached.

/BRIEF
Displays a single line of information for each lock.

/CACHED
Displays locks that are no longer valid. The memory for these locks is saved so
that later requests for locks can use them. Cached locks are not displayed in the
other SHOW LOCKS commands.

/CONVERT
Displays only the locks that are on the conversion queue.

/GRANTED
Displays only the locks that are on the granted queue.

/NAME=name
Displays all locks on the specified resource. Name can be the actual name of the
resource, if it only contains uppercase letters, numerals, the underscore (_), dollar
sign, colon (:), and some other printable characters, as for example, /NAME=MY_
LOCK. If it contains other printable characters (including lowercase letters),
you may need to enclose the name in quotation marks (""), as for example,
/NAME="My_Lock/47". If it contains nonprintable characters, you can specify the
name as a comma-separated list comprised of strings and hexadecimal numbers.
For example, /NAME=("My_Lock",0C00,"/47") would specify the name "My_
Lock<NUL><FF>/47". The hexadecimal number can be no more than 8 digits (4
bytes) in length. Nonprintable sequences or more than 4 bytes must be split into

SDA Commands 4–117

SDA Commands
SHOW LOCKS

multiple hexadecimal numbers. The maximum length of a resource name is 32
characters.

/POOL
Displays the lock manager’s poolzone information, which contains the lock blocks
(LKB) and resource blocks (RSB).

/STATUS=(keyword[,keyword...])
Displays only the locks that have the specified status bits set in the LKB$L_
STATUS field. Status keywords are as follows:

Keyword Meaning

2PC_IP Indicates a two-phase operation in progress
2PC_PEND Indicates a two-phase operation pending
ASYNC Completes request asynchronously
BLKASTFLG Specifies a blocking AST
BLKASTQED Indicates a blocking AST is queued
BRL Indicates a byte range lock
CACHED Indicates a lock block in cache
CVTSUBRNG Indicates a sub-range convert request
CVTTOSYS Converts back to system-owned lock
DBLKAST Delivers a blocking AST
DCPLAST Delivers a completion AST
DPC Indicates a delete pending cache lock
FLOCK Indicates a fork lock
GRSUBRNG Grants sub-range lock
IP Indicates operation in process
MSTCPY Indicates a lock block is a master copy
NEWSUBRNG Indicates a new sub-range request
NOQUOTA Does not charge quota
PCACHED Indicates lock block needs to be cached
PROTECT Indicates a protected lock
RESEND Resends during failover
RM_RBRQD Requires remaster rebuild
RNGBLK Specifies a range block
RNGCHG Indicates a changing range
TIMOUTQ Indicates lock block is on timeout queue
VALBLKRD Indicates read access to lock value block
VALBLKWRT Indicates write access to lock value block
WASSYSOWN Indicates was system-owned lock

/SUMMARY
Displays summary data and performance counters.

/WAITING
Displays only the waiting locks.

4–118 SDA Commands

SDA Commands
SHOW LOCKS

Description

The SHOW LOCKS command displays the information described in Table 4–5 for
each lock management lock in the system, or for the lock indicated by lock-id, an
address or name. (Use the SHOW SPINLOCKS command to display information
about spinlocks.) You can obtain a similar display for the locks owned by a
specific process by issuing the appropriate SHOW PROCESS/LOCKS command.
See the OpenVMS Programming Concepts Manual for additional information.

You can display information about the resource to which a lock is queued by
issuing the SHOW RESOURCES command specifying the resource’s lock-id.

Table 4–5 Contents of the SHOW LOCKS and SHOW PROCESS/LOCKS
Displays

Display Element Description

Process Index1 Index in the PCB array to a pointer to the process
control block (PCB) of the process that owns the lock.

Name1 Name of the process that owns the lock.
Extended PID1 Clusterwide identification of the process that owns the

lock.
Lock ID Identification of the lock.
PID Systemwide identification of the lock.
Flags Information specified in the request for the lock.
Par. ID Identification of the lock’s parent lock.
Sublocks Count of the locks that the lock owns.
LKB Address of the lock block (LKB). If a blocking AST

has been enabled for this lock, the notation ‘‘BLKAST’’
appears next to the LKB address.

Priority The lock priority.
Granted at Lock mode at which the lock was granted.
RSB Address of the resource block.
Resource Dump of the resource name. The two leftmost columns

of the dump show its contents as hexadecimal values,
the least significant byte being represented by the
rightmost two digits. The rightmost column represents
its contents as ASCII text, the least significant byte
being represented by the leftmost character.

Status Status of the lock, information used internally by the
lock manager.

Length Length of the resource name.
Mode Processor access mode of the namespace in which the

resource block (RSB) associated with the lock resides.

1This display element is produced only by the SHOW PROCESS/LOCKS command.

(continued on next page)

SDA Commands 4–119

SDA Commands
SHOW LOCKS

Table 4–5 (Cont.) Contents of the SHOW LOCKS and SHOW PROCESS/LOCKS
Displays

Display Element Description

Owner Owner of the resource. Certain resources owned by the
operating system list ‘‘System’’ as the owner. Resources
owned by a group have the number (in octal) of the
owning group in this field.

Copy Indication of whether the lock is mastered on the local
system or is a process copy.

4–120 SDA Commands

SDA Commands
SHOW LOCKS

Examples

1. SDA> SHOW LOCKS

Lock Database

Lock id: 3E000002 PID: 00000000 Flags: CONVERT NOQUEUE SYNCSTS
Par. id: 00000000 SUBLCKs: 0 NOQUOTA CVTSYS
LKB: FFFFFFFF.7DF48150 BLKAST: 81107278
Priority: 0000

Granted at CR 00000000-FFFFFFFF

RSB: FFFFFFFF.7DF68D50
Resource: 494D6224 42313146 F11B$bMI Status: NOQUOTA VALBLKR VALBLKW
Length 18 4D55445F 5944414C LADY_DUM
Kernel mode 00000000 00005350 PS......
System 00000000 00000000

Local copy

Lock Database

Lock id: 3F000003 PID: 00000000 Flags: VALBLK CONVERT SYNCSTS
Par. id: 0100007A SUBLCKs: 0 CVTSYS
LKB: FFFFFFFF.7DF48250 BLKAST: 00000000
Priority: 0000

Granted at NL 00000000-FFFFFFFF

RSB: FFFFFFFF.7DF51D50
Resource: 01F77324 42313146 F11B$s÷. Status: NOQUOTA VALBLKR VALBLKW
Length 10 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000

Local copy

Lock Database

Lock id: 0A000004 PID: 0001000F Flags: VALBLK CONVERT SYNCSTS
Par. id: 00000000 SUBLCKs: 0 SYSTEM NODLCKW NODLCKB
LKB: FFFFFFFF.7DF48350 BLKAST: 81190420 QUECVT
Priority: 0000

Granted at EX 00000000-FFFFFFFF

RSB: FFFFFFFF.7DF50850
Resource: 004F0FDF 24534D52 RMS$ß.O. Status: VALBLKR VALBLKW
Length 26 5F313039 58020000 ...X901_
Exec. mode 00202020 204C354B K5L .
System 00000000 00000000

Local copy

.

.

.

SDA Commands 4–121

SDA Commands
SHOW LOCKS

2. SDA> SHOW RESOURCES/LOCKID=0A000004

Resource Database

RSB: FFFFFFFF.7DF50850 GGMODE: EX Status: DIRENTR VALID
Parent RSB: 00000000.00000000 CGMODE: EX
Sub-RSB count: 0 FGMODE: EX
Lock Count: 1 RQSEQNM: 0000
BLKAST count: 1 CSID: 00000000 (MILADY)

Resource: 004F0FDF 24534D52 RMS$ß.O. Valblk: 00000000 00000000
Length 26 5F313039 58020000 ...X901_ 00000000 00000000
Exec. mode 00202020 204C354B K5L .
System 00000000 00000000 Seqnum: 00000000

Granted queue (Lock ID / Gr mode / Range):
0A000004 EX 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

This SDA session shows the output of the SHOW LOCKS command for several
locks. The SHOW RESOURCES command, executed for the last displayed lock,
verifies that the lock is in the resource’s granted queue. (See Table 4–23 for a full
explanation of the contents of the display of the SHOW RESOURCES command.)

3. SDA> SHOW LOCK/BRIEF/BLOCKING

Lock Database

 LKB Address Lockid ParentId PID BLKAST SubLocks RQ GR Queue RSB Address Resource Name Mode
----------------- -------- -------- -------- -------- -------- -- -- ------- ----------------- ------------------------------- ----
FFFFFFFF.7FF42450 51000003 00000000 00000000 80CC7648 0 CR Granted FFFFFFFF.7FF45050 F11B$bSWPCTX_DUMPS Kern
FFFFFFFF.7FF42850 01000005 00000000 00000000 80CB5020 111 CR Granted FFFFFFFF.7FF42950 F11B$vX6JU_R3N Kern
FFFFFFFF.7FF42A50 01000006 00000000 00000000 80CD3D98 0 PR Granted FFFFFFFF.7FF42B50 VCC$vX6JU_R3N Kern
FFFFFFFF.7FF42E50 4D000008 00000000 00000000 80CC7648 0 CR Granted FFFFFFFF.7FF43150 F11B$bX6JU_R3N Kern
FFFFFFFF.7FF43E50 13000010 00000000 00000000 80CD3D98 0 PR Granted FFFFFFFF.7FF53D50 VCC$vSWPCTX_DUMPS Kern
FFFFFFFF.7FF48750 12000033 03000094 00010008 80CE7220 0 PW Granted FFFFFFFF.7FF48E50 APPENDER Exec
FFFFFFFF.7FF49550 1500003A 00000000 00010008 00010B20 0 CR Granted FFFFFFFF.7FF54E50 AUDRSV$DJ......X6JU_R3N ... User
FFFFFFFF.7FF49B50 1300003D 00000000 00010007 00035EF8 0 CR Granted FFFFFFFF.7FF56250 OPC$opcom-restart User
FFFFFFFF.7FF4BE50 2100004F 00000000 0001000B 80CE66F0 4 NL Granted FFFFFFFF.7FF4DC50 RMS$y......X6JU_R3N ... Exec
FFFFFFFF.7FF4C950 13000054 00000000 0001000B 80CE66F0 0 EX Granted FFFFFFFF.7FF4CE50 RMS$ß.O....X6JU_R3N ... Exec
FFFFFFFF.7FF4E050 0B00005F 00000000 00010009 80CE66F0 4 NL Granted FFFFFFFF.7FF4AD50 RMS$£......X6JU_R3N ... Exec
FFFFFFFF.7FF4EA50 0C000064 00000000 00010007 00035F30 0 CR Granted FFFFFFFF.7FF56150 OPC$opcom-abort User
FFFFFFFF.7FF51350 18000078 00000000 00010011 0000B930 0 PR Granted FFFFFFFF.7FF44E50 NET$NETPROXY_MODIFIED Kern
FFFFFFFF.7FF52850 0C000082 00000000 00000000 80CB5020 0 CR Granted FFFFFFFF.7FF43550 F11B$vSWPCTX_DUMPS Kern
FFFFFFFF.7FF53250 09000087 00000000 00010008 80CE66F0 4 EX Granted FFFFFFFF.7FF49850 RMS$J......X6JU_R3N ... Exec
FFFFFFFF.7FF46C50 2700008E 00000000 0001000A 80CE66F0 2 EX Granted FFFFFFFF.7FF53750 RMS$.......X6JU_R3N ... Exec
FFFFFFFF.7FF54750 03000094 00000000 00010008 80CE66F0 2 EX Granted FFFFFFFF.7FF4A950 RMS$K......X6JU_R3N ... Exec
FFFFFFFF.7FF54B50 04000098 10000042 00010008 00011358 0 CR Granted FFFFFFFF.7FF55050 WRITER User
FFFFFFFF.7FF54D50 05000099 11000047 00010009 00010F48 0 PR Granted FFFFFFFF.7FF56F50 JBC$_CHECK_DB User
FFFFFFFF.7FF55150 0100009A 10000042 00010008 000112E0 0 CR Granted FFFFFFFF.7FF55250 DOORBELL User
FFFFFFFF.7FF55350 0200009B 00000000 00010008 00010B20 0 CR Granted FFFFFFFF.7FF55450 AUDRSV$DK......X6JU_R3N ... User
FFFFFFFF.7FF55550 0200009C 00000000 00010008 80CE66F0 2 EX Granted FFFFFFFF.7FF55850 RMS$L......X6JU_R3N ... Exec
FFFFFFFF.7FF55D50 020000A0 00000000 00010008 000123E0 0 CR Granted FFFFFFFF.7FF55C50 AUDRSV$OL......X6JU_R3N ... User
FFFFFFFF.7FF57250 040000A9 00000000 0001000A 80CE66F0 2 EX Granted FFFFFFFF.7FF4AD50 RMS$£......X6JU_R3N ... Exec
FFFFFFFF.7FF57A50 030000AF 110000AA 0001000A 00012628 0 PR Granted FFFFFFFF.7FF57D50 QMAN$REF........ User
FFFFFFFF.7FF58150 010000B2 110000AA 0001000A 000109C0 0 PR Granted FFFFFFFF.7FF58050 QMAN$NEW_JOBCTL User
FFFFFFFF.7FF58E50 050000B9 110000AA 0001000A 000147F8 0 PR Granted FFFFFFFF.7FF58F50 QMAN$MASTER_QUEUES User

ZK-9158A-AI

This example shows the brief display for all locks with a blocking AST.

4–122 SDA Commands

SDA Commands
SHOW MACHINE_CHECK

SHOW MACHINE_CHECK

Displays the contents of the stored machine check frame. This command is valid
for the DEC 4000 Alpha, DEC 7000 Alpha, and DEC 10000 Alpha computers only.

Format

SHOW MACHINE_CHECK [/FULL] [cpu-id]

Parameter

cpu-id
Numeric value from 00 to 1F16 indicating the identity of the CPU for which
context information is to be displayed. This parameter changes the SDA current
CPU (the default) to the CPU specified with cpu-id. If you specify a value outside
this range, or you specify the cpu-id of a processor that was not active at the
time of the system failure, SDA displays the following message:

%SDA-E-CPUNOTVLD, CPU not booted or CPU number out of range

If you use the cpu-id parameter, the SHOW MACHINE_CHECK command
performs an implicit SET CPU command, making the CPU indicated by cpu-id
the current CPU for subsequent SDA commands. (See the description of the SET
CPU command and Section 2.5 for information on how this can affect the CPU
context—and process context—in which SDA commands execute.)

Qualifier

/FULL
Specifies that a detailed version of the machine check information be displayed.
This is currently identical to the default summary display.

Description

The SHOW MACHINE_CHECK command displays the contents of the stored
machine check frame. A separate frame is allocated at boot time for every CPU
in a multiple-CPU system. This command is valid for the DEC 4000 Alpha, DEC
7000 Alpha, and DEC 10000 Alpha computers only.

If you do not specify a qualifier, a summary version of the machine check frame is
displayed.

The default cpu-id is the SDA current CPU.

SDA Commands 4–123

SDA Commands
SHOW MACHINE_CHECK

Examples

1. SDA> SHOW MACHINE_CHECK
CPU 00 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF.800B0250 Exception Summary: 00000000.00000000
Pal base address: 00000000.00008000 Exception Mask: 00000000.00000000
HW Interrupt Request: 00000000.00000342 HW Interrupt Ena: 00000001.FFC01CE0
MM_CSR 00000000.00003640 ICCSR: 00000002.381F0000
D-cache address: 00000007.FFFFFFFF D-cache status: 00000000.000002E0
BIU status: 00000000.00000050 BIU address [7..0]: 00000000.000060E0
BIU control: 00000008.50006447 Fill Address: 00000000.00006120
Single-bit syndrome: 00000000.00000000 Processor mchck VA: 00000000.00006190
A-box control: 00000000.0000040E B-cache TAG: 00106100.83008828

System specific information:

Garbage bus info: 00200009 00000038 Device type: 000B8001
LCNR: 00000001 Memory error: 00000000
LBER: 00000009 Bus error synd 0,1: 00000000 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000 0000002C
LEP mode: 00010010 LEP lock address: 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents
of the stored machine check frame.

2. SDA> SHOW MACHINE_CHECK 1

CPU 01 Stored Machine Check Crash Data

Processor specific information:

Exception address: FFFFFFFF.800868A0 Exception Summary: 00000000.00000000
Pal base address: 00000000.00008000 Exception Mask: 00000000.00000000
HW Interrupt Request: 00000000.00000342 HW Interrupt Ena: 00000000.1FFE1CE0
MM_CSR 00000000.00005BF1 ICCSR: 00000000.081F0000
D-cache address: 00000007.FFFFFFFF D-cache status: 00000000.000002E0
BIU status: 00000000.00000050 BIU address [7..0]: 00000000.000063E0
BIU control: 00000008.50006447 Fill Address: 00000000.00006420
Single-bit syndrome: 00000000.00000000 Processor mchck VA: 00000000.00006490
A-box control: 00000000.0000040E B-cache TAG: 35028EA0.50833828

System specific information:

Garbage bus info: 00210001 00000038 Device type: 000B8001
LCNR: 00000001 Memory error: 00000080
LBER: 00040209 Bus error synd 0,1: 00000000 00000000
Bus error cmd: 00048858 00AB1C88 Bus error synd 2,3: 00000000 0000002C
LEP mode: 00010010 LEP lock address: 00041108

The SHOW MACHINE_CHECK command in this SDA display shows the contents
of the stored machine check frame for cpu-id 01.

4–124 SDA Commands

SDA Commands
SHOW MEMORY

SHOW MEMORY

Displays the availability and usage of memory resources.

Format

SHOW MEMORY [/ALL][/BUFFER_OBJECTS][/CACHE][/FILES]
[/FULL][/GH_REGIONS][/PHYSICAL_PAGES][/POOL]
[/RESERVED][/SLOTS]

Parameters

None.

Qualifiers

/ALL
Displays all available information, that is, information displayed by the following
qualifiers:

/BUFFER_OBJECTS
/CACHE
/FILES
/GH_REGIONS
/PHYSICAL_PAGES
/POOL
/RESERVED
/SLOTS

This is the default display.

/BUFFER_OBJECTS
Displays information about system resources used by buffer objects.

/CACHE
Displays information about either the Virtual I/O Cache facility or the Extended
File Cache facility. The system parameter VCC_FLAGS determines which is
used. The cache facility information is displayed as part of the SHOW MEMORY
and SHOW MEMORY/CACHE/FULL commands.

/FILES
Displays information about the use of each paging and swapping file currently
installed.

/FULL
Displays additional information about each pool area when used with the /POOL
qualifier. This qualifier is ignored unless you specify the /POOL qualifier. When
used with the /CACHE qualifier, /FULL displays additional information about the
use of the Virtual I/O Cache facility, but is ignored if the Extended File Cache
facility is in use.

/GH_REGIONS
Displays information about the granularity hint regions (GHR) that have been
established. For each of these regions, information is displayed about the size
of the region, the amount of free memory, the amount of memory in use, and
the amount of memory released to OpenVMS from the region. The granularity

SDA Commands 4–125

SDA Commands
SHOW MEMORY

hint regions information is also displayed as part of SHOW MEMORY, SHOW
MEMORY/ALL, and SHOW MEMORY/FULL commands.

/PHYSICAL_PAGES
Displays information about the amount of physical memory and the number of
free and modified pages.

/POOL
Displays information about the usage of each dynamic memory (pool) area,
including the amount of free space and the size of the largest contiguous block in
each area.

/RESERVED
Displays information about memory reservations.

/SLOTS
Displays information about the availability of partition control block (PCB) vector
slots and balance slots.

Description

For more information about the SHOW MEMORY command, see the description
in the OpenVMS DCL Dictionary: N–Z.

4–126 SDA Commands

SDA Commands
SHOW PAGE_TABLE

SHOW PAGE_TABLE

Displays a range of system page table entries, the entire system page table, or
the entire global page table.

Format

SHOW PAGE_TABLE {range | /FREE [/HEADER=address]
| /GLOBAL | /GPT | /PT
| /INVALID_PFN [=option]
| /NONMEMORY_PFN [=option]
| /PTE_ADDRESS | /SECTION_INDEX=n
| /S0S1 (d) | /S2 | /SPTW | =ALL}
{/L1 | /L2 | /L3 (d)}

Parameter

range
Range of virtual addresses or PTE addresses for which SDA displays page table
entries. If the qualifier /PTE_ADDRESS is given, then the range is of PTE
addresses; otherwise, the range is of virtual addresses.

If /PTE_ADDRESS is given, the range is expressed using the following syntax:

m Displays the single page table entry at address m
m:n Displays the page table entries from address m to address n
m;n Displays n bytes of page table entries starting at address m

If /PTE_ADDRESS is not given, then range is expressed using the following
syntax:

m Displays the single page table entry that corresponds to virtual address m
m:n Displays the page table entries that correspond to the range of virtual

addresses from m to n
m;n Displays the page table entries that correspond to a range of n bytes

starting at virtual address m

Qualifiers

/FREE
Causes the starting addresses and sizes of blocks of pages in the free PTE list
to be displayed. The qualifiers /S0S1 (default), /S2, /GLOBAL, and /HEADER
determine which free PTE list is to be displayed. A range cannot be specified, and
no other qualifiers can be combined with /FREE.

/GLOBAL
Lists the global page table. When used with the /FREE qualifier, /GLOBAL
indicates the free PTE list to be displayed.

/HEADER=address
When used with the /FREE qualifier, the /HEADER=address qualifier displays
the free PTE list for the specified private page table.

/GPT
Specifies the portion of page table space that maps the global page table as the
address range.

SDA Commands 4–127

SDA Commands
SHOW PAGE_TABLE

/INVALID_PFN [=option]
The /INVALID_PFN qualifier, which is valid only on platforms that supply an I/O
memory map, causes SDA to display only page table entries that map to PFNs
that are not in the system’s private memory, nor in Galaxy shared memory, nor
are I/O access pages.

See the /NONMEMORY_PFN qualifier definition for a description of the options.

/L1
Lists the Level 1 page table entries for the portion of memory specified.

/L2
Lists the Level 2 page table entries for the portion of memory specified.

/L3
Lists the Level 3 page table entries for the portion of memory specified. This
qualifier is the default level.

/NONMEMORY_PFN [=option]
The /NONMEMORY_PFN qualifier, supported on all platforms, causes SDA to
display only page table entries that are neither in the system’s private memory
nor in Galaxy shared memory.

Both /INVALID_PFN and /NONMEMORY_PFN qualifiers allow two optional
keywords, READONLY and WRITABLE. If neither keyword is given, all relevant
pages are displayed. If READONLY is given, only pages marked for no write
access are displayed. If WRITABLE is given, only pages that allow write
access are displayed. For example, SHOW PAGE_TABLE=ALL/INVALID_
PFN=WRITABLE would display all system pages whose protection allows write,
but which map to PFNs that do not belong to this system.

/PT
Specifies page table space, as viewed from system context, as the address range.

/PTE_ADDRESS
Specifies that the range given is of PTE addresses instead of the virtual addresses
mapped by the PTEs.

/SECTION_INDEX=n
Displays the page table for the range of pages in the global section or pageable
part of a loaded image. For pageable portions of loaded images, one of the
qualifiers /L1, /L2, or /L3 can also be specified.

/S0S1
Specifies S0 and S1 space as the address range. When used with the /FREE
qualifer, /S0S1 indicates the free PTE list to be displayed. This is the default
portion of memory or free PTE list to be displayed.

/S2
Specifies S2 space as the address range. When used with the /FREE qualifier, /S2
indicates the free PTE list to be displayed.

/SPTW
Displays the contents of the system page table window.

4–128 SDA Commands

SDA Commands
SHOW PAGE_TABLE

Option

=ALL
The SHOW PAGE = ALL command displays the page table entries for all shared
(system) addresses, without regard to the section of memory being referenced.
It is equivalent to specifying all of /S0S1, /S2, /SPTW, /PT, /GPT, and /GLOBAL.
This option can be qualified by only one of the /L1, /L2, or /L3 qualifiers, or by
/INVALID_PFN or /NONMEMORY_PFN.

Description

If the /FREE qualifier is not specified, this command displays page table entries
for the specified range of addresses or section of memory. For each virtual
address displayed by the SHOW PAGE_TABLE command, the first eight columns
of the listing provide the associated page table entry and describe its location,
characteristics, and contents. SDA obtains this information from the system page
table. Table 4–6 describes the information displayed by the SHOW PAGE_TABLE
command.

If the /FREE qualifier is specified, this command displays the free PTE list for
the specified section of memory.

The /L1, /L2, and /L3 qualifiers are ignored when used with the /FREE,
/GLOBAL, and /SPTW qualifiers.

Table 4–6 Virtual Page Information in the SHOW PAGE_TABLE Display

Value Meaning

MAPPED
ADDRESS

Virtual address that marks the base of the virtual page(s) mapped
by the PTE.

PTE
ADDRESS

Virtual address of the page table entry that maps the virtual
page(s).

PTE Contents of the page table entry, a quadword that describes a
system virtual page.

TYPE Type of virtual page. Table 4–7 shows the eight types and their
meanings.

READ A code, derived from bits in the PTE, that designates the
processor access modes (kernel, executive, supervisor, or user)
for which read access is granted.

WRIT A code, derived from bits in the PTE, that designates the
processor access modes (kernel, executive, supervisor, or user)
for which write access is granted.

BITS Letters that represent the setting of a bit or a combination of bits
in the PTE. These bits indicate attributes of a page. Table 4–8
shows the codes and their meanings.

GH Contents of granularity hint bits.

SDA Commands 4–129

SDA Commands
SHOW PAGE_TABLE

Table 4–7 Types of Virtual Pages

Type Meaning

VALID Valid page (in main memory).
TRANS Transitional page (on free or modified page list).
DZERO Demand-allocated, zero-filled page.
PGFIL Page within a paging file.
STX Section table’s index page.
GPTX Index page for a global page table.
IOPAG Page in I/O address space.
NXMEM Page not represented in physical memory. The page frame

number (PFN) of this page is not mapped by any of the system’s
memory controllers. This indicates an error condition.

Table 4–8 Bits In the PTE

Code Meaning

A Address space match is set.
M Page has been modified.
L Page is locked into a working set.
P Page is locked in physical memory.
K Owner is kernel mode.
E Owner is executive mode.
S Owner is supervisor mode.
U Owner is user mode.

If the virtual page has been mapped to a physical page, the last six columns of
the listing include information from the page frame number (PFN) database;
otherwise, the section is left blank. Table 4–9 describes the physical page
information displayed by the SHOW PAGE_TABLE command.

Table 4–9 Physical Page Information in the SHOW PAGE_TABLE Display

Category Meaning

PGTYP Type of physical page. Table 4–10 shows the types of physical
pages.

LOC Location of the page within the system. Table 4–11 shows the
possible locations with their meaning.

BAK Place to find information on this page when all links to this
PTE are broken: either an index into a process section table or
the number of a virtual block in the paging file.

(continued on next page)

4–130 SDA Commands

SDA Commands
SHOW PAGE_TABLE

Table 4–9 (Cont.) Physical Page Information in the SHOW PAGE_TABLE
Display

Category Meaning

REFCNT Number of references being made to this page.
FLINK Forward link within PFN database that points to the next

physical page (if the page is on one of the lists: FREE,
MODIFIED, BAD, or ZEROED); this longword also acts as
the count of the number of processes that are sharing this
global section.

BLINK Backward link within PFN database (if the page is on one of
the lists: FREE, MODIFIED, BAD, or ZEROED); also acts as
an index into the working set list.

Table 4–10 Types of Physical Pages

Page Type Meaning

PROCESS Page is part of process space.
SYSTEM Page is part of system space.
GLOBAL Page is part of a global section.
GBLWRT Page is part of a global, writable section.
PPGTBL Page is part of a process page table.
GPGTBL Page is part of a global page table.
PHD1 Page is part of a process PHD.
PPT(Ln)1 Page is a process page table page at level n.
SPT(Ln)2 Page is a system page table page at level n.
SHPT3 Page is part of a shared page table.
PFNLST2 Page is in a Shared Memory Common Property Partition PFN

database.
SHM_REG3 Page is in a Shared Memory Region.
UNKNOWN Unknown.

1These page types are variants of the PPGTBL page type.
2These page types are variants of the system page type.
3This page type is a variant of the GBLWRT page type.

SDA Commands 4–131

SDA Commands
SHOW PAGE_TABLE

Table 4–11 Locations of Physical Pages

Location Meaning

ACTIVE Page is in a working set.
MFYLST Page is in the modified page list.
FRELST Page is in the free page list.
BADLST Page is in the bad page list.
RELPND Release of the page is pending.
RDERR Page has had an error during an attempted read operation.
PAGOUT Page is being written into a paging file.
PAGIN Page is being brought into memory from a paging file.
ZROLST Page is in the zeroed-page list.
UNKNWN Location of page is unknown.

SDA indicates pages are inaccessible by displaying one of the following messages:

------- 1 null page: VA FFFFFFFE.00064000 PTE FFFFFFFD.FF800190

------- 974 null pages: VA FFFFFFFE.00064000 PTE FFFFFFFD.FF800190
-to- FFFFFFFE.007FDFFF -to- FFFFFFFD.FF801FF8

In this case, the page table entries are not in use (page referenced is inaccessible).

------- 1 entry not in memory: VA FFFFFFFE.00800000 PTE FFFFFFFD.FF802000

------- 784384 entries not in memory: VA FFFFFFFE.00800000 PTE FFFFFFFD.FF802000
-to- FFFFFFFF.7F7FDFFF -to- FFFFFFFD.FFDFDFF8

In this case, the page table entries do not exist (PTE itself is inaccessible).

------- 1 free PTE: VA FFFFFFFF.7F800000 PTE FFFFFFFD.FFDFEOOO

------- 1000 free PTEs: VA FFFFFFFF.7F800000 PTE FFFFFFFD.FFDFE000
-to- FFFFFFFF.7FFCDFFF -to- FFFFFFFD.FFDFFF38

In this case, the page table entries are in the list of free system pages.

In each case, VA is the MAPPED ADDRESS of the skipped entry, and PTE is the
PTE ADDRESS of the skipped entry.

Examples

1.

For an example of SHOW PAGE_TABLE output when the qualifier /FREE has
not been given, see the SHOW PROCESS/PAGE_TABLES command.

2. SDA> SHOW PAGE_TABLE/FREE

S0/S1 Space Free PTEs

MAPPED ADDRESS PTE ADDRESS PTE COUNT

FFFFFFFF.82A08000 FFFFFFFD.FFE0A820 0001FFE0.A8580000 00000003
FFFFFFFF.82A16000 FFFFFFFD.FFE0A858 0001FFE0.A8900000 00000003
FFFFFFFF.82A24000 FFFFFFFD.FFE0A890 0001FFE0.B3C00000 00000003
FFFFFFFF.82CF0000 FFFFFFFD.FFE0B3C0 0001FFE0.B4010000 00000001
FFFFFFFF.82D00000 FFFFFFFD.FFE0B400 0001FFE0.B4680000 00000002

4–132 SDA Commands

SDA Commands
SHOW PAGE_TABLE

.

.

.
FFFFFFFF.82E48000 FFFFFFFD.FFE0B920 0001FFE0.B9390000 00000001
FFFFFFFF.82E4E000 FFFFFFFD.FFE0B938 0001FFE0.BA200000 00000002
FFFFFFFF.82E88000 FFFFFFFD.FFE0BA20 0001FFE0.C9780000 00000003
FFFFFFFF.8325E000 FFFFFFFD.FFE0C978 0001FFE0.CC980000 00000003
FFFFFFFF.83326000 FFFFFFFD.FFE0CC98 00000000.00000000 0000066D

This example shows the output when you invoke the SHOW PAGE_TABLE/FREE
command.

SDA Commands 4–133

SDA Commands
SHOW PARAMETER

SHOW PARAMETER

Displays the name, location, and value of one or more SYSGEN parameters at
the time that the system dump is taken.

Format

SHOW PARAMETER [SYSGEN_parameter]
[/ACP][/ALL][/CLUSTER][/DYNAMIC][/GALAXY]
[/GEN][/JOB][/LGI][/MAJOR][/MULTIPROCESSING]
[/PQL][/RMS][/SCS][/SPECIAL][/SYS][/STARTUP]
[/TTY]

Parameter

SYSGEN_parameter
Name of a parameter to be displayed. The name given may include wildcards.
However, a truncated name is not recognized, unlike the equivalent SYSGEN and
SYSMAN commands.

Qualifiers

/ACP
Displays all Files-11 ACP parameters.

/ALL
Displays the values of all parameters except the special control parameters.

/CLUSTER
Displays all parameters specific to clusters.

/DYNAMIC
Displays all parameters that can be changed on a running system.

/GALAXY
Displays all parameters specific to Galaxy systems.

/GEN
Displays all general parameters.

/JOB
Displays all Job Controller parameters.

/LGI
Displays all LOGIN security control parameters.

/MAJOR
Displays the most important parameters.

/MULTIPROCESSING
Displays parameters specific to multiprocessing.

/PQL
Displays the parameters for all default and minimum process quotas.

4–134 SDA Commands

SDA Commands
SHOW PARAMETER

/RMS
Displays all parameters specific to OpenVMS Record Management Services
(RMS).

/SCS
Displays all parameters specific to OpenVMS Cluster System Communications
Services.

/SPECIAL
Displays all special control parameters.

/STARTUP
Displays the name of the site-independent startup procedure.

/SYS
Displays all active system parameters.

/TTY
Displays all parameters for terminal drivers.

Description

The SHOW PARAMETER command displays the name, location, and value of one
or more SYSGEN parameters at the time that the system dump is taken. You
can specify either a parameter name, or one or more qualifiers, but not both a
parameter and qualifiers. If you do not specify a parameter or qualifiers, then the
last parameter displayed is displayed again.

The qualifiers are the equivalent to those available for the SHOW [parameter]
command in the SYSGEN utility and the PARAMETERS SHOW command in
the SYSMAN utility. See the OpenVMS System Management Utilities Reference
Manual: M–Z for more information about these two commands. You can combine
qualifiers, and all appropriate SYSGEN parameters are displayed.

Note

To see the entire set of parameters, use the SDA command
SHOW PARAMETER /ALL /SPECIAL /STARTUP.

SDA Commands 4–135

SDA Commands
SHOW PARAMETER

Examples
1. SDA> SHOW PARAMETER *SCS*

 Parameter Variable Address Value (decimal) Offset
--------------- ------------------------------- -------- -------- ---------- -------------------------------
SCSBUFFCNT SCS$GW_BDTCNT 80C159A0 0032 50
SCSCONNCNT SCS$GW_CDTCNT 80C159A8 0005 5
SCSRESPCNT SCS$GW_RDTCNT 80C159B0 012C 300
SCSMAXDG SCS$GW_MAXDG 80C159B8 0240 576
SCSMAXMSG SCS$GW_MAXMSG 80C159C0 00D8 216
SCSFLOWCUSH SCS$GW_FLOWCUSH 80C159C8 0001 1
SCSSYSTEMID SCS$GB_SYSTEMID 80C159D0 0000FE88 65160
SCSSYSTEMIDH SCS$GB_SYSTEMIDH 80C159D8 00000000 0
SCSNODE SCS$GB_NODENAME 80C159E0 "SWPCTX "
NISCS_CONV_BOOT CLU$GL_SGN_FLAGS 80C15E68 0 0 CLU$V_NISCS_CONV_BOOT (1)
NISCS_LOAD_PEA0 CLU$GL_SGN_FLAGS 80C15E68 0 0 CLU$V_NISCS_LOAD_PEA0 (0)
NISCS_PORT_SERV CLU$GL_NISCS_PORT_SERV 80C15E70 00000000 0
SCSICLUSTER_P1 SGN$GB_SCSICLUSTER_P1 80C15EF8 " "
SCSICLUSTER_P2 SGN$GB_SCSICLUSTER_P2 80C15F00 " "
SCSICLUSTER_P3 SGN$GB_SCSICLUSTER_P3 80C15F08 " "
SCSICLUSTER_P4 SGN$GB_SCSICLUSTER_P4 80C15F10 " "
NISCS_MAX_PKTSZ CLU$GL_NISCS_MAX_PKTSZ 80C16070 000005DA 1498
NISCS_LAN_OVRHD CLU$GL_NISCS_LAN_OVRHD 80C16078 00000012 18

VM-0060A-AI

This example shows all parameters that have the string "SCS" in their name. For
parameters defined as a single bit, the name and value of the bit offset within the
location used for the parameter are also given.

2. SDA> SHOW PARAMETER WS*

 Parameter Variable Address Value (decimal) Offset
--------------- ------------------------------- -------- -------- ---------- -------------------------------
WSMAX SGN$GL_MAXWSCNT_PAGELETS 80C15710 00006800 26624
 (internal) SGN$GL_MAXWSCNT_PAGES 80C15718 00000680 1664
WSINC SCH$GL_WSINC_PAGELETS 80C157F8 00000960 2400
 (internal) SCH$GL_WSINC_PAGES 80C15800 00000096 150
WSDEC SCH$GL_WSDEC_PAGELETS 80C15808 00000FA0 4000
 (internal) SCH$GL_WSDEC_PAGES 80C15810 000000FA 250

VM-0764A-AI

This example shows all parameters whose names begin with the string "WS". For
parameters that have both an external value (pagelets) and an internal value
(pages), both are displayed.

3. SDA> SHOW PARAMETER /MULTIPROCESSING /STARTUP

SYSGEN parameters

 Parameter Variable Address Value (decimal) Offset
--------------- ------------------------------- -------- -------- ---------- -------------------------------
SMP_CPUS SGN$GL_SMP_CPUS 80C15688 FFFFFFFF -1
MULTIPROCESSING SGN$GB_MULTIPROCESSING 80C15698 03 3
SMP_SANITY_CNT SGN$GL_SMP_SANITY_CNT 80C156A8 0000012C 300
SMP_SPINWAIT SGN$GL_SMP_SPINWAIT 80C156B8 000186A0 100000
SMP_LNGSPINWAIT SGN$GL_SMP_LNGSPINWAIT 80C156C0 002DC6C0 3000000
IO_PREFER_CPUS SMP$GL_AVAILABLE_PORT_CPUS 80C16130 FFFFFFFF -1

 Startup command file = SYS$SYSTEM:STARTUP.COM
VM-0765A-AI

This example shows all the parameters specific to multiprocessing, plus the name
of the site-independent startup command procedure.

4–136 SDA Commands

SDA Commands
SHOW PFN_DATA

SHOW PFN_DATA

Displays information that is contained in the page lists and PFN database.

Format

SHOW PFN_DATA {[/qualifier] | pfn [{:end-pfn | ;length}]}

or

SHOW PFN_DATA/MAP

Parameters

pfn
Page frame number (PFN) of the physical page for which information is to be
displayed.

end-pfn
Last PFN to be displayed. When you specify the end-pfn parameter, a range of
PFNs is displayed. This range starts at the PFN specified by the pfn parameter
and ends with the PFN specified by the end-pfn parameter.

length
Length of the PFN list to be displayed. When you specify the length parameter,
a range of PFNs is displayed. This range starts at the PFN specified by the pfn
parameter and contains the number of entries specified by the length parameter.

Qualifiers

/ADDRESS=<PFN-entry-address>
Displays the PFN database entry at the address specified. The address specified
is rounded to the nearest entry address, so if you have an address that points to
one of the fields of the entry, the correct database entry will still be found.

/ALL
Displays the following lists:

Free page list
Zeroed free page list
Modified page list
Bad page list
Untested page list
Private page lists, if any
Per-color or per-RAD free and zeroed free page lists
Entire database in order by page frame number

This is the default behavior of the SHOW PFN_DATA command. SDA precedes
each list with a count of the pages it contains and its low and high limits.

/BAD
Displays the bad page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

SDA Commands 4–137

SDA Commands
SHOW PFN_DATA

/COLOR [={n | ALL}]
Displays data on page coloring. Table 4–12 shows the command options available
with this qualifier.

Table 4–12 Command Options with the /COLOR and /RAD Qualifiers

Options Meaning

/COLOR1 with no value Displays a summary of the lengths of the color1

page lists for both free pages and zeroed pages.
/COLOR=n where n is a color
number

Displays the data in the PFN lists (for the
specified color) for both free and zeroed pages.

/COLOR=ALL Displays the data in the PFN lists (for all colors),
for both free and zeroed free pages.

/COLOR=n or /COLOR=ALL
with /FREE or /ZERO

Displays only the data in the PFN list (for
the specified color or all colors), for either
free or zeroed free pages as appropriate. The
qualifiers /BAD and /MODIFIED are ignored
with /COLOR=n and /COLOR=ALL.

/COLOR without an option
specified together with one or
more of /FREE, /ZERO, /BAD,
or /MODIFIED

Displays the color summary in addition to the
display of the requested list.

1Wherever COLOR is used in this table, RAD is equally applicable, both in the qualifier name and the
meaning.

For more information on page coloring, see OpenVMS System Management
Utilities Reference Manual: M–Z.

/FREE
Displays the free page list. SDA precedes the list with a count of the pages it
contains, its low limit, and its high limit.

/MAP
Displays the contents of the PFN memory map. On platforms that support it, the
I/O space map is also displayed. You cannot combine the /MAP qualifier with any
parameters or other qualifiers.

/MODIFIED
Displays the modified page list. SDA precedes the list with a count of the pages
it contains, its low limit, and its high limit.

/PRIVATE [=address]
Displays private PFN lists. If no address is given, all private PFN lists are
displayed; if an address is given, only the PFN list whose head is at the given
address is displayed.

/RAD [={n | ALL}]
Displays data on the disposition of pages among the Resource Affinity Domains
(RADs) on applicable systems. See Table 4–12 for the command options available
with this qualifier.

4–138 SDA Commands

SDA Commands
SHOW PFN_DATA

/SYSTEM
Displays the entire PFN database in order by page frame number, starting at
PFN 0000.

/UNTESTED
Displays the state of the untested PFN list that was set up for deferred memory
testing.

/ZERO
Displays the contents of the zeroed free page list.

Description

For each page frame number it displays, the SHOW PFN_DATA command lists
information used in translating physical page addresses to virtual page addresses.
The display has two lines of information. Table 4–13 shows the first line’s fields;
Table 4–14 shows the second line’s fields.

Table 4–13 Page Frame Number Information—Line One Fields

Item Contents

PFN Page frame number.
DB ADDRESS Address of PFN structure for this page.
PT PFN PFN of the page table page that maps this page.
BAK Place to find information on this page when all links

to this PTE are broken: either an index into a process
section table or the number of a virtual block in the
paging file.

FLINK Forward link within PFN database that points to the next
physical page (if the page is on one of the lists: FREE,
MODIFIED, BAD, or ZEROED); this longword also acts
as the count of the number of processes that are sharing
this global section.

BLINK Backward link within PFN database (if the page is on one
of the lists: FREE, MODIFIED, BAD, or ZEROED); also
acts as an index into the working set list.

SWP/BO Either a swap file page number or a buffer object reference
count, depending on a flag set in the page state field.

LOC Location of the page within the system. Table 4–11 shows
the possible locations with their meaning.

FLAGS The flags in text form that are set in page state.
Table 4–15 shows the possible flags and their meaning.

SDA Commands 4–139

SDA Commands
SHOW PFN_DATA

Table 4–14 Page Frame Number Information—Line Two Fields

Item Contents

(Blank) First field of line two is left blank.
PTE ADDRESS Virtual address of the page table entry that

describes the virtual page mapped into this
physical page. If no virtual page is mapped
into this physical page then "<no backpointer>"
is displayed, and the next three fields are left
blank.

PTE Type If a virtual page is mapped into this physical
page, a description of the type of PTE is provided
across the next three fields: one of "System-
space PTE", "Global PTE (section index nnnn)",
"Process PTE (process index nnnn)". If no virtual
page is mapped into this physical page, these
fields are left blank.

REFCNT Number of references being made to this page.
PAGETYP Type of physical page. See Table 4–10 for the

types of physical pages and their meanings.
FLAGS If the page is a page table page, then the

contents of the PRN$W_PT_VAL_CNT, PFN$W_
PT_LCK_CNT, and PFN$W_PT_WIN_CNT fields
are displayed. The format is as follows:

VALCNT = nnnn LCKCNT = nnnn WINCNT = nnnn

Table 4–15 Flags Set in Page State

Flag Meaning

BUFOBJ Set if any buffer objects reference this page
COLLISION Indicates an empty collision queue when page read is

complete
BADPAG Indicates a bad page
RPTEVT Indicates a report event on I/O completion
DELCON Indicates a delete PFN when REFCNT=0
MODIFY Indicates a dirty page (modified)
UNAVAILABLE Indicates PFN is unavailable; most likely a console page
SWPPAG_VALID Indicated swap file page number is valid
TOP_LEVEL_PT Level one (1) page table
SLOT Page is part of process’s balance set
SHARED Shared memory page
ZEROED Shared memory page that has been zeroed

4–140 SDA Commands

SDA Commands
SHOW PFN_DATA

Examples

1. SDA> SHOW PFN_DATA/MAP

System Memory Map

Start PFN PFN count Flags
--------- --------- -----
00000000 000000FA 0009 Console Base
000000FA 00003306 000A OpenVMS Base
00003C00 000003FF 000A OpenVMS Base
00003FFF 00000001 0009 Console Base
00003400 00000800 0010 Galaxy_Shared

This example shows the output when you invoke the SHOW PFN/MAP
command.

VM-0766A-AI

2. SDA> SHOW PFN F23:F2F

PFN data base for PFN range

 PFN DB ADDRESS PT PFN BAK FLINK BLINK SWP/BO LOC FLAGS
 PTE ADDRESS REFCNT PAGETYP
-------- ----------------- -------- ----------------- -------- -------- ------ ------- -------------------------------
00000F23 FFFFFEFE.00025D78 000004FD FF000000.00000000 00000E85 000004C2 ---- MFYLST modify
 FFFFFEFC.001ED8E0 Process PTE (process index 001F) 0000 PROCESS

00000F24 FFFFFEFE.00025DA0 000005CD FE000702.00000000 000004B6 00000E8B ---- FRELST
 FFFFFEFC.000003F0 Process PTE (process index 001A) 0000 PROCESS

00000F25 FFFFFEFE.00025DC8 000012F7 FF000000.00000000 00000008 00000003 ---- ACTIVE modify
 FFFFFEFD.BF0007F8 Process PTE (process index 0007) 0001 PPT(L3) VALCNT=0007 LCKCNT=0006 WINCNT=FFFF

00000F26 FFFFFEFE.00025DF0 00000000 0000100E.00000F11 00000F11 0000100E ---- ZROLST
 <no backpointer> 0000 UNKNOWN

00000F27 FFFFFEFE.00025E18 00001839 FF000000.00000000 00000000 00000038 ---- ACTIVE modify
 FFFFFEFC.00000450 Process PTE (process index 001E) 0001 PROCESS

00000F28 FFFFFEFE.00025E40 000012D4 00000001.00010000 00000000 0000006F ---- ACTIVE
 FFFFFEFC.00000068 Process PTE (process index 0013) 0001 PROCESS

00000F29 FFFFFEFE.00025E68 000001C6 00000000.00000000 00000000 00000000 ---- ACTIVE
 FFFFFEFD.FFE0D8A0 System-space PTE 0001 SYSTEM

00000F2A FFFFFEFE.00025E90 000004FD FF000000.00000000 00001086 00001085 ---- MFYLST modify
 FFFFFEFC.001EC280 Process PTE (process index 001F) 0000 PROCESS

00000F2B FFFFFEFE.00025EB8 00001409 00000102.00010000 00000F2C 0000176F ---- FRELST
 FFFFFEFE.000570E0 Global PTE (section index 0102) 0000 GLOBAL

00000F2C FFFFFEFE.00025EE0 00001409 00000102.00010000 00000F1D 00000F2B ---- FRELST
 FFFFFEFE.00057190 Global PTE (section index 0102) 0000 GLOBAL

00000F2D FFFFFEFE.00025F08 000001C6 00000000.00000000 00000000 00000000 ---- ACTIVE
 FFFFFEFD.FFE0D8C0 System-space PTE 0001 SYSTEM

00000F2E FFFFFEFE.00025F30 0000097C FE000444.00000000 00000000 0000035D ---- ACTIVE
 FFFFFEFC.00000268 Process PTE (process index 0016) 0001 PROCESS

00000F2F FFFFFEFE.00025F58 00001409 000000FD.00010000 00001278 00000522 ---- FRELST
 FFFFFEFE.00056E60 Global PTE (section index 00FD) 0000 GLOBAL

This example shows the output from SHOW PFN for a range of pages.

SDA Commands 4–141

SDA Commands
SHOW POOL

SHOW POOL

Displays the contents of the nonpaged dynamic storage pool, the bus-addressable
pool, and the paged dynamic storage pool. You can display part or all of each
pool. If you do not specify a range or qualifiers, the default is SHOW POOL/ALL.
Optionally, you can display the pool history ring buffer and pool statistics.

Format

SHOW POOL {range | /ALL (d) | /BAP | /NONPAGED | /PAGED}
[/BRIEF | /CHECK | /FREE | /HEADER
| /MAXIMUM_BYTES [=n] | /SUMMARY | /TYPE=packet-type
| /SUBTYPE=packet-type | /UNUSED]
| [/RING_BUFFER]
| [/STATISTICS [= ALL] [{/NONPAGED | /BAP | /PAGED}]]

Parameter

range
Range of virtual addresses in pool that SDA is to examine. You can express a
range using the following syntax:

m:n Range of virtual addresses in pool from m to n
m;n Range of virtual addresses in pool starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the entire contents of the dynamic storage pool, except for those portions
that are free (available). This is the default behavior of the SHOW POOL
command.

/BAP
Displays the contents of the bus-addressable dynamic storage pool currently in
use.

/BRIEF
Displays only general information about the dynamic storage pool and its
addresses.

/CHECK
Checks all free packets for POOLCHECK-style corruption, in exactly the same
way that the system does when generating a POOLCHECK crash dump.

/FREE
Displays the entire contents, both allocated and free, of the specified region or
regions of pool. Use the /FREE qualifier with a range to show all of the used and
free pool in the given range.

/HEADER
Displays only the first 16 bytes of each data packet found within the specified
region or regions of pool.

/MAXIMUM_BYTES [=n]
Displays only the first n bytes of a pool packet; if you specify /MAXIMUM_BYTES
without a value, the default is 64 bytes.

4–142 SDA Commands

SDA Commands
SHOW POOL

/NONPAGED
Displays the contents of the nonpaged dynamic storage pool currently in use.

/PAGED
Displays the contents of the paged dynamic storage pool currently in use.

/RING_BUFFER
Displays the contents of the nonpaged pool history ring buffer if pool checking
has been enabled. Entries are displayed in reverse chronological order, that is,
most to least recent.

/STATISTICS [= ALL]
Displays usage statistics about each lookaside list and the variable free list. For
each lookaside list, its queue header address, packet size, the number of packets,
attempts, fails, and deallocations are displayed. (If pool checking is disabled, the
attempts, fails, and deallocations are not displayed.) For the variable free list,
its queue header address, the number of packets and the size of the smallest and
largest packets are displayed. You can further qualify /STATISTICS by using
either /NONPAGED, /BAP, or /PAGED to display statistics for a specified pool
area. (Paged pool has no lookaside lists; therefore, only variable free list statistics
are displayed.)

If you specify /STATISTICS without the ALL keyword, only active lookaside lists
are displayed. Use /STATISTICS = ALL to display all lookaside lists.

/SUBTYPE=packet-type
Displays the packets within the specified region or regions of pool that are of
the indicated packet-type. For information on packet-type, see packet-type in the
Description section.

/SUMMARY
Displays only an allocation summary for each specified region of pool.

/TYPE=packet-type
Displays the packets within the specified region or regions of pool that are of
the indicated packet-type. For information on packet-type, see packet-type in the
Description section.

/UNUSED
Displays only variable free packets and lookaside list packets, not used packets.

Description

The SHOW POOL command displays information about the contents of any
specified region of dynamic storage pool. There are several distinct display
formats, as follows:

• Pool layout display. This display includes the addresses of the pool structures
and lookaside lists, and the ranges of memory used for pool.

• Full pool packet display. This display has a section for each packet, consisting
of a summary line (the packet type, its start address and size, and, on
systems that have multiple Resource Affinity Domains (RADs), the RAD
number), followed by a dump of the contents of the packet in hexadecimal and
ASCII.

SDA Commands 4–143

SDA Commands
SHOW POOL

• Header pool packet display. This display has a single line for each packet.
This line contains the packet type, its start address and size, and, on systems
that have multiple RADs, the RAD number, followed by the first 16 bytes of
the packet, in hexadecimal and ASCII.

• Pool summary display. This display consists of a single line for each packet
type, and includes the type, the number of occurrences and the total size, and
the percentage of used pool consumed by this packet type.

• Pool statistics display. This display consists of statistics for variable free pool
and for each lookaside list. For variable free pool, it includes the number of
packets, the total bytes available, and the sizes of the smallest and largest
packets. In addition, if pool checking is enabled, the total bytes allocated from
the variable list and the number of times pool has been expanded are also
displayed.

For lookaside lists, the display includes the listhead address and size, the
number of packets (both the maintained count and the actual count), the
operation sequence number for the list, the allocation attempts and failures,
and the number of deallocations.

On systems with multiple RADs, statistics for on-RAD deallocations are
included in the display for the first RAD.

• Ring buffer display. This display is only available when pool checking is
enabled. It consists of one line for each packet in the ring buffer and includes
the address and size of the pool packet being allocated or deallocated, its type,
the PC of the caller and the pool routine called, the CPU and IPL of the call,
and the system time.

The qualifiers used on the SHOW POOL command determine which displays are
generated. The default is the pool layout display, followed by the full pool packet
display, followed by the pool summary display, these being generated in turn for
Nonpaged Pool, Bus-Addressable Pool (if it exists in the system or dump being
analyzed), and then Paged Pool.

If you specify a range, type, or subtype, then the pool layout display is not
generated, and the pool summary display is a summary only for the range, type,
or subtype, and not for the entire pool.

Not all displays are relevant for all pool types. For example, Paged Pool has no
lookaside lists, so the Paged Pool statistics display consists only of variable free
pool information. And because there is a single ring buffer for all pools, only one
ring buffer display is generated even if all pools are being displayed.

Packet-type
Each packet of pool has a type field (a byte containing a value in the range of
0-255). Many of these type values have names associated that are defined in
$DYNDEF in SYS$LIBRARY:LIB.MLB. The packet-type specified in the /TYPE
qualifier of the SHOW POOL command can either be the value of the pool type or
its associated name.

Some pool packet types have an additional subtype field (also a byte containing
a value in the range of 0–255), many of which also have associated names. The
packet-type specified in the /SUBTYPE qualifier of the SHOW POOL command
can either be the value of the pool type or its associated name. However, if given
as a value, a /TYPE qualifier (giving a value or name) must also be specified.
Note also that /TYPE and /SUBTYPE are interchangeable if packet-type is given
by name. Table 4–16 shows several examples.

4–144 SDA Commands

SDA Commands
SHOW POOL

Table 4–16 /TYPE and /SUBTYPE Qualifier Examples

/TYPE and /SUBTYPE Qualifiers Meaning

/TYPE = CI All CI packets regardless of subtype
/TYPE = CI_MSG All CI packets with subtype CI_MSG
/TYPE = MISC/SUBTYPE = 120 All MISC packets with subtype 120
/TYPE = 0 or /TYPE = UNKNOWN All packets with an unknown

TYPE/SUBTYPE combination

SDA Commands 4–145

SDA Commands
SHOW POOL

Examples

1. SDA> SHOW POOL

Non-Paged Dynamic Storage Pool

 NPOOL address: 81009088
 Pool map address: 81562900
 Number of lookaside lists: 128
 Granularity size: 64
 Ring buffer address: 81552200
 Most recent ring buffer entry: 815553A0

LSTHDS(s)

 LSTHDS Variable Lookaside
 RAD address listhead listheads
 --- ----------------- ----------------- -----------------
 00 FFFFFFFF.81008830 FFFFFFFF.8100883C FFFFFFFF.81008868
 01 FFFFFFFF.7FFFE000 FFFFFFFF.7FFFE00C FFFFFFFF.7FFFE038
 02 FFFFFFFF.7FFFC000 FFFFFFFF.7FFFC00C FFFFFFFF.7FFFC038
 03 FFFFFFFF.7FFFA000 FFFFFFFF.7FFFA00C FFFFFFFF.7FFFA038

Segment(s)

 Start End Length RAD
 -------- -------- -------- ---
 81548000 8172B9FF 001E3A00 00
 81735A00 8173D53F 00007B40 00
 81747540 8174BDBF 00004880 00
 81755DC0 81AFDFFF 003A8240 00
 81AFE000 81C43FFF 00146000 01
 81C44000 81D89FFF 00146000 02
 81D8A000 81ECFFFF 00146000 03
 81ED0000 81F1FFFF 00050000 02

Per-RAD Totals

 RAD Length
 --- --------
 00 00598000
 01 00146000
 02 00196000
 03 00146000

 Non-Paged total: 009BA000

Dump of packets allocated from Non-Paged Pool

Packet: MP_CPU Start address: 81548000 Length: 000009C0 RAD: 00

00000000 00000000 0000003E 00000001 00000002 026A09C0 ACD1A180 81C52F40 @/Å..¡Ñ¬À.j.........>........... 81548000
81548038 81548038 81548030 81548030 81548028 81548028 00000000 00000001 (.T.(.T.0.T.0.T.8.T.8.T. 81548020
81548058 81548058 81548050 81548050 81548048 81548048 81548040 81548040 @.T.@.T.H.T.H.T.P.T.P.T.X.T.X.T. 81548040

.

.

.

Packet: Unknown Start address: 815489C0 Length: 00000180 RAD: 00

FFFFFFFF AD332000 00500000 00008020 FFFFFFFF 81548B00 FFFFFFFF 81548A80 ..T.......T.....P.. 3–.... 815489C0

.

.

.

Packet: DDB Start address: 81548B40 Length: 00000300 RAD: 00

AD410000 81564480 81548BC0 000F4240 00000000 63060300 008B798F 962DA431 1¤-..y.....c....@B..À.T..DV...A– 81548B40

.

.

. Continued

VM-0767A-AI

4–146 SDA Commands

SDA Commands
SHOW POOL

Summary of Non-Paged Pool contents

 Packet type/subtype Packet count Packet bytes Percent
--------------------------- ---------------- ---------------- --------
Unknown 000001E4 00145BC0 (50.7%)
ADP 00000009 00000A00 (0.1%)
ACB 0000008D 00002500 (0.4%)
AQB 00000002 00001080 (0.2%)

.

.

.

LOADCODE 0000003D 00004C40 (0.7%)
 LDRIMG 0000003D 00004C40 (0.7%)

INIT 00000008 00003B80 (0.6%)
 PCBVEC 00000001 00001BC0 (0.3%)
 PHVEC 00000001 00000700 (0.1%)
 MPWMAP 00000005 00001840 (0.2%)
 PRCMAP 00000001 00000080 (0.0%)

.

.

.

Total space used: 002825C0 (2631104.) bytes out of 009BA000 (10199040.) bytes
 in 0000184C (6220.) packets

Total space utilization: 25.8%

.

.

.
VM-0768A-AI

This example shows the Nonpaged Pool portion of the default SHOW POOL
display.

2. SDA> SHOW POOL/TYPE=IPC/HEADER 8156E140:815912C0

Non-Paged Dynamic Storage Pool

Dump of packets allocated from Non-Paged Pool

Packet type/subtype Start Length RAD Header contents
------------------------- -------- -------- --- ---
IPC_TDB 8156E140 00000040 00 81591180 057B0040 00000040 81591180 ..Y.@...@.{...Y.
IPC_LIST 815838C0 00009840 00 004C0200 087B9840 0057A740 8158D100 .ÑX.@§W.@.{...L.
IPC_LIST 8158D100 00001840 00 00040400 087B1840 00570F00 8158E940 @éX...W.@.{.....
IPC_LIST 8158E940 00002840 00 00140200 087B2840 0056F6C0 81591180 ..Y.ÀöV.@({.....
IPC_TPCB 81591180 00000080 00 00000000 067B0080 0056CE80 81591200 ..Y..ÎV...{.....
IPC 81591200 000000C0 00 00000000 007B00C0 0056CE00 815912C0 À.Y..ÎV.À.{.....

Summary of Non-Paged Pool contents

Packet type/subtype Packet count Packet bytes Percent
--------------------------- ---------------- ---------------- --------
IPC 00000006 0000DA40 (100.0%)
IPC 00000001 000000C0 (0.3%)
IPC_TDB 00000001 00000040 (0.1%)
IPC_TPCB 00000001 00000080 (0.2%)
IPC_LIST 00000003 0000D8C0 (99.3%)

Total space used: 0000DA40 (55872.) bytes out of 00023180 (143744.) bytes
in 00000006 (6.) packets

Total space utilization: 38.9%

This example shows how you can specify a pool packet type and a range of
addresses.

SDA Commands 4–147

SDA Commands
SHOW POOL

3. SDA> SHOW POOL/STATISTICS

Non-Paged Pool statistics for RAD 00

On-RAD deallocations (all RADs): 1221036
Total deallocations (all RADs): 1347991
Percentage of on-RAD deallocations: 90.6%

Variable list statistics

Number of packets on variable list: 7
Total bytes on variable list: 3613376
Smallest packet on variable list: 256
Largest packet on variable list: 3598016
Bytes allocated from variable list: 2140480
Times pool expanded: 0

Lookaside list statistics

List Packets Packets Operation Allocation Allocation
Listhead address size (approx) (actual) sequence # attempts failures Deallocs
----------------- ---- ---------- ---------- ---------- ---------- ---------- ----------
FFFFFFFF.81008870 64 5 5 10057 10549 492 10062
FFFFFFFF.81008878 128 21 21 366 4881 4515 387
FFFFFFFF.81008880 192 33 33 27376 27542 166 27409
FFFFFFFF.81008888 256 4 4 8367 8476 118 8362

.

.

.

This example shows the Nonpaged Pool portion of the SHOW POOL/STATISTICS
display.

4. SDA> SHOW POOL/RING_BUFFER

Pool History Ring-Buffer

 (2048 entries: Most recent first)

 Packet Size Type/Subtype Caller's PC Operation IPL CPU Time
----------------- ---- ------------------ ------------------------------------ ------------------- --- --- ----------------
FFFFFFFF.81C65F40 320 SECURITY_PSB 80283A9C NSA_STD$FREE_PSB_C+0024C DEALLO_POOL_NPP 0 8 009F1E47.549449F0
FFFFFFFF.81C44E00 192 SECURITY_PXB_ARRAY 80283A30 NSA_STD$FREE_PSB_C+001E0 DEALLO_POOL_NPP 0 8 009F1E47.549449F0
FFFFFFFF.81C45A40 64 ACB 8014A09C SCH$INIT_C+00F18 DEALLO_POOL_NPP_SIZ 2 8 009F1E47.549449F0
FFFFFFFF.81C44E00 140 SECURITY_PXB_ARRAY 80283B8C NSA$GET_PSB_C+0005C ALLO_POOL_NPP 0 8 009F1E47.549449F0
FFFFFFFF.81C65F40 320 SECURITY_PSB 80283B70 NSA$GET_PSB_C+00040 ALLO_POOL_NPP 0 8 009F1E47.549449F0
FFFFFFFF.81C45A40 64 ACB 801281F8 PROCESS_MANAGEMENT_MON+001F ALLO_POOL_NPP 2 8 009F1E47.549449F0
FFFFFFFF.81C52380 576 IRP 8014A09C SCH$INIT_C+00F18 DEALLO_POOL_NPP_SIZ 2 8 009F1E47.549449F0
FFFFFFFF.81C65F40 320 SECURITY_PSB 80283A9C NSA_STD$FREE_PSB_C+0024C DEALLO_POOL_NPP 2 8 009F1E47.549449F0
FFFFFFFF.81C44E00 192 SECURITY_PXB_ARRAY 80283A30 NSA_STD$FREE_PSB_C+001E0 DEALLO_POOL_NPP 2 8 009F1E47.549449F0
FFFFFFFF.81C47400 256 BUFIO 800F6270 IOC_STD$WAKACP_C+00650 DEALLO_POOL_NPP_SIZ 2 8 009F1E47.549449F0
.
.
.

VM-0772A-AI

This example shows the output of the SHOW POOL/RING_BUFFER display.

4–148 SDA Commands

SDA Commands
SHOW PORTS

SHOW PORTS

Displays those portions of the port descriptor table (PDT) that are port
independent.

Format

SHOW PORTS [/qualifier[,...]]

Parameters

None.

Qualifiers

/ADDRESS=pdt-address
Displays the specified port descriptor table (PDT). You can find the pdt-address
for any active connection on the system in the PDT summary page display
of the SHOW PORTS command. This command also defines the symbol PE_
PDT. The connection descriptor table (CDT) addresses are also stored in many
individual data structures related to System Communications Services (SCS)
connections, for instance, in the path block displays of the SHOW CLUSTER/SCS
command.

/BUS=bus-address
Displays bus (LAN device) structure data.

/CHANNEL=channel-address
Displays channel (CH) data.

/DEVICE
Displays the network path description for a channel.

/MESSAGE
Displays the message data associated with a virtual circuit (VC).

/NODE=node
Shows only the virtual circuit block associated with the specific node. When you
use the /NODE qualifier, you must also specify the address of the PDT using the
/ADDRESS qualifier.

/VC=vc-address
Displays the virtual circuit data.

Description

The SHOW PORTS command provides port-independent information from the
port descriptor table (PDT) for those CI ports with full System Communications
Services (SCS) connections. This information is used by all SCS port drivers.

The SHOW PORTS command does not display similar information about UDA
ports, BDA ports, and similar controllers.

SDA Commands 4–149

SDA Commands
SHOW PORTS

The SHOW PORTS command also defines symbols for PEDRIVER based on the
cluster configuration. These symbols include the following information:

• Virtual circuit (VC) control blocks for each of the remote systems

• Bus data structure for each of the local LAN adapters

• Some of the data structures used by both PEDRIVER and the LAN drivers

The following symbols are defined automatically:

• VC_nodename—Example: VC_NODE1, address of the local node’s virtual
circuit to node NODE1.

• CH_nodename—The preferred channel for the virtual circuit. For example,
CH_NODE1, address of the local node’s preferred channel to node NODE1.

• BUS_busname—Example: BUS_ETA, address of the local node’s bus
structure associated with LAN adapter ETA0.

• PE_PDT—Address of PEDRIVER’s port descriptor table.

• MGMT_VCRP_busname—Example: MGMT_VCRP_ETA, address of the
management VCRP for bus ETA.

• HELLO_VCRP_busname—Example: HELLO_VCRP_ETA, address of the
HELLO message VCRP for bus ETA.

• VCIB_busname—Example: VCIB_ETA, address of the VCIB for bus ETA.

• UCB_LAVC_busname—Example: UCB_LAVC_ETA, address of the LAN
device’s UCB used for the local-area OpenVMS Cluster protocol.

• UCB0_LAVC_busname—Example: UCB0_LAVC_ETA, address of the LAN
device’s template UCB.

• LDC_LAVC_busname—Example: LDC_LAVC_ETA, address of the LDC
structure associated with LAN device ETA.

• LSB_LAVC_busname—Example: LSB_LAVC_ETA, address of the LSB
structure associated with LAN device ETA.

These symbols equate to system addresses for the corresponding data structures.
You can use these symbols, or an address, in SHOW PORTS qualifers that require
an address, as in the following:

SDA >SHOW PORTS/BUS=BUS_ETA

The SHOW PORTS command produces several displays. The initial display, the
PDT summary page, lists the PDT address, port type, device name, and driver
name for each PDT. Subsequent displays provide information taken from each
PDT listed on the summary page.

You can use the /ADDRESS qualifier to the SHOW PORTS command to produce
more detailed information about a specific port. The first display of the SHOW
PORTS/ADDRESS command duplicates the last display of the SHOW PORTS
command, listing information stored in the port’s PDT. Subsequent displays list
information about the port blocks and virtual circuits associated with the port.

4–150 SDA Commands

SDA Commands
SHOW PORTS

Examples

1. SDA > SHOW PORTS

OpenVMS Cluster data structures

--- PDT Summary Page ---

PDT Address Type Device Driver Name
----------- ---- ------- -----------

80E2A180 pn PNA0 SYS$PNDRIVER
80EC3C70 pe PEA0 SYS$PEDRIVER

--- Port Descriptor Table (PDT) 80E2A180 ---

Type: 09 pn
Characteristics: 0000

Msg Header Size 104 Flags 0000 Message Sends 3648575
Max Xfer Bcnt 00100000 Counter CDRP 00000000 Message Recvs 4026887
Poller Sweep 21 Load Vector 80E2DFCC Mess Sends NoFP 3020422
Fork Block W.Q. 80E2A270 Load Class 60 Mess Recvs NoFP 3398732
UCB Address 80E23380 Connection W.Q. 80E4BF94 Datagram Sends 0
ADP Address 80E1BF00 Yellow Q. 80E2A2E0 Datagram Recvs 0
Max VC timeout 16 Red Q. 80E2A2E8 Portlock 80E1ED80
SCS Version 2 Disabled Q. 80FABB74 Res Bundle Size 208

Port Map 00000001

--- Port Descriptor Table (PDT) 80EC3C70 ---

Type: 03 pe
Characteristics: 0000

Msg Header Size 32 Flags 0000 Message Sends 863497
Max Xfer Bcnt FFFFFFFF Counter CDRP 00000000 Message Recvs 886284
Poller Sweep 30 Load Vector 80EDBF8C Mess Sends NoFP 863497
Fork Block W.Q. 80EC3D60 Load Class 10 Mess Recvs NoFP 886284
UCB Address 80EC33C0 Connection W.Q. 80EFF5D4 Datagram Sends 0
ADP Address 00000000 Yellow Q. 80EC3DD0 Datagram Recvs 0
Max VC timeout 16 Red Q. 80EC3DD8 Portlock 00000000
SCS Version 2 Disabled Q. 812E72B4 Res Bundle Size 0

Port Map 00000000

This example illustrates the default output of the SHOW PORTS command.

SDA Commands 4–151

SDA Commands
SHOW PORTS

2. SDA > SHOW PORTS/ADDRESS=80EC3C70

OpenVMS Cluster data structures

--- Port Descriptor Table (PDT) 80EC3C70 ---

Type: 03 pe
Characteristics: 0000

Msg Header Size 32 Flags 0000 Message Sends 864796
Max Xfer Bcnt FFFFFFFF Counter CDRP 00000000 Message Recvs 887086
Poller Sweep 30 Load Vector 80EDBF8C Mess Sends NoFP 864796
Fork Block W.Q. 80EC3D60 Load Class 10 Mess Recvs NoFP 887086
UCB Address 80EC33C0 Connection W.Q. 80EFF5D4 Datagram Sends 0
ADP Address 00000000 Yellow Q. 80EC3DD0 Datagram Recvs 0
Max VC timeout 16 Red Q. 80EC3DD8 Portlock 00000000
SCS Version 2 Disabled Q. 812E72B4 Res Bundle Size 0

Port Map 00000000
Port Map 00000000

--- Port Block 80EC4540 ---

Status: 0001 authorize
VC Count: 20
Secs Since Last Zeroed: 77020

SBUF Size 824 LBUF Size 5042 Fork Count 1943885
SBUF Count 28 LBUF Count 1 Refork Count 0
SBUF Max 768 LBUF Max 384 Last Refork 00000000
SBUF Quo 28 LBUF Quo 1 SCS Messages 1154378
SBUF Miss 1871 LBUF Miss 3408 VC Queue Cnt 361349
SBUF Allocs 1676801 LBUF Allocs 28596 TQE Received 770201
SBUFs In Use 2 LBUFs In Use 0 Timer Done 770201
Peak SBUF In Use 101 Peak LBUF In Use 10 RWAITQ Count 30288
SBUF Queue Empty 0 LBUF Queue Empty 0 LDL Buf/Msg 32868
TR SBUF Queue Empty 0 Ticks/Second 10 ACK Delay 1000000
No SBUF for ACK 0 Listen Timeout 8 Hello Interval 30

Bus Addr Bus LAN Address Error Count Last Error Time of Last Error
-------- --- ----------------- ----------- ---------- -----------------------
80EC4C00 LCL 00-00-00-00-00-00 0
80EC5400 EXA 08-00-2B-17-CF-92 0
80EC5F40 FXA 08-00-2B-29-E1-40 0

--- Virtual Circuit (VC) Summary ---

VC Addr Node SCS ID Lcl ID Status Summary Last Event Time
-------- -------- ------ ------ ----------------- -----------------------
80E566C0 ARUSHA 19617 223/DF open,path 8-FEB-2001 16:01:57.58
80E98840 ETOSHA 19699 222/DE open,path 8-FEB-2001 16:01:58.41
80E98A80 VMS 19578 221/DD open,path 8-FEB-2001 16:01:58.11

.

.

.

This example illustrates the output produced by the SHOW PORTS command
for the PDT at address 80EC3C70.

4–152 SDA Commands

SDA Commands
SHOW PROCESS

SHOW PROCESS

Displays the software and hardware context of any process in the system. If
the process is suspended (ANALYZE/SYSTEM), then some displays may be
incomplete or unavailable. If the process was outswapped at the time of the
system crash, or not included in a selective dump (ANALYZE/CRASH_DUMP),
then some displays may be incomplete or unavailable.

Format

SHOW PROCESS {[process-name | ALL]
| /ADDRESS=pcb_address | /ID=nn
| /INDEX=nn | /NEXT | /SYSTEM}
[/ALL | /BUFFER_OBJECTS | /CHANNEL
| /FANDLES | /FID_ONLY | /GSTX=index | /IMAGES [=ALL]
| /INVALID_PFN [=option] | /NEXT
| /NONMEMORY_PFN [=option]
| /LOCKS [/BRIEF] | /L1 | /L2 | /L3
| /PAGE_TABLES [range] | /P0 | /P1 | /P2 | /PT
| /PERSONA [=address][/RIGHTS [/AUTHORIZED]]
| /PHD | /PROCESS_SECTION_TABLE | /PST | /PCB
| /POOL [={P0 | P1 | ALL}][range] [/BRIEF]
[/FREE][/HEADER][/MAXIMUM_BYTES [=n]]
[/STATISTICS][/SUBTYPE=packet-type]
[/SUMMARY][/TYPE=packet-type] [/UNUSED]
| /PTE_ADDRESS | /RDE [=id]
| /REGIONS [=id]
| /REGISTERS | /RMS [=option[,...]] | /SECTION_INDEX=n
| /SEMAPHORE | /THREADS
| /TQE [=ALL]
| /WORKING_SET_LIST]

Parameters

ALL
Information about all processes that exist in the system.

process-name
Name of the process for which information is to be displayed. Use of the
process-name parameter or one of the /ADDRESS, /ID, /INDEX, /NEXT, or
/SYSTEM qualifiers causes the SHOW PROCESS command to perform an
implicit SET PROCESS command, making the indicated process the current
process for subsequent SDA commands. When you analyze a crash dump from
a multiprocessing system, changing process context may require a switch of
CPU context as well. For instance, if you issue a SET PROCESS command for
a process that is current on another CPU, SDA automatically changes its CPU
context to that of the CPU on which that process is current. You can determine
the names of the processes in the system by issuing a SHOW SUMMARY
command.

The process-name can contain up to 15 uppercase letters, numerals, the
underscore (_), dollar sign, colon (:), and some other printable characters. If
it contains any other characters (including lowercase letters), you may need to
enclose the process-name in quotation marks (" ").

SDA Commands 4–153

SDA Commands
SHOW PROCESS

Qualifiers

/ADDRESS=pcb-address
Specifies the process control block (PCB) address of a process in order to display
information about the process.

/ALL
Displays all information shown by the following qualifiers:

/BUFFER_OBJECTS
/CHANNEL
/FANDLES
/IMAGES=ALL
/LOCKS
/PAGE_TABLES
/PCB
/PERSONA/RIGHTS
/PHD
/POOL/HEADER
/PROCESS_SECTION_TABLE
/REGIONS
/REGISTERS
/RMS
/SEMAPHORE
/THREADS
/TQE
/WORKING_SET_LIST

/AUTHORIZED
Used with the /PERSONA/RIGHTS qualifiers. See the
/PERSONA/RIGHTS/AUTHORIZED description for the use of the /AUTHORIZED
qualifier.

/BRIEF
When used with the /LOCKS qualifier, causes SDA to display each lock owned
by the current process in brief format, that is, one line for each lock. When used
with the /POOL qualifier, causes SDA to display only general information about
process pool and its addresses.

/BUFFER_OBJECTS
Displays all the buffer objects that a process has created.

/CHANNEL
Displays information about the I/O channels assigned to the process.

/FANDLES
Displays the data on the process’s fast I/O handles.

/FID_ONLY
When used with /CHANNEL or /PROCESS_SECTION_TABLE (/PST), causes
SDA to not attempt to translate the FID (File ID) to a file name when invoked
with ANALYZE/SYSTEM.

4–154 SDA Commands

SDA Commands
SHOW PROCESS

/FREE
When used with /POOL, displays the entire contents, both allocated and free, of
the specified region or regions of pool. Use the /FREE qualifier with a range to
show all of the used and free pool in the given range.

/GSTX=index
When used with the /PAGE_TABLES qualifier, displays only page table entries
for the specific global section.

/HEADER
When used with /POOL, displays only the first 16 bytes of each data packet found
within the specified region or regions of pool.

/IMAGES [= ALL]
For all images in use by this process, displays the address of the image control
block, the start and end addresses of the image, the activation code, the protected
and shareable flags, the image name, and the major and minor IDs of the image.
The /IMAGES = ALL qualifier also displays the base, end, image offset, and
section type for installed resident images in use by this process.

See the OpenVMS Linker Utility Manual and the Install utility chapter in the
OpenVMS System Management Utilities Reference Manual for more information
on images installed using the /RESIDENT qualifier.

/ID=nn
/INDEX=nn
Specifies the process for which information is to be displayed by its index into
the system’s list of software process control blocks (PCBs), or by its process
identification (ID). You can supply the following values for nn:

• The process index itself.

• The process identification (PID) or extended PID longword, from which SDA
extracts the correct index. You can specify the PID or extended PID of any
thread of a process with multiple kernel threads. Any thread-specific data
displayed by SHOW PROCESS will be for the given thread.

To obtain these values for any given process, issue the SDA command SHOW
SUMMARY/THREADS. You can use the /ID=nn and /INDEX=nn qualifiers
interchangeably.

/INVALID_PFN [=option]
See the /PAGE_TABLES qualifier description for an explanation of /INVALID_
PFN.

/L1
/L2
/L3
When used with the /PAGE_TABLES qualifier, /L1, /L2, /L3 displays the page
table entries at the level specified. /L3 is the default.

/LOCKS [/BRIEF]
Displays the lock management locks owned by the current process.

The /LOCKS [/BRIEF] qualifier produces a display similar in format to that
produced by the SHOW LOCKS command. See also the /BRIEF qualifier
description. Table 4–5 contains additional information.

SDA Commands 4–155

SDA Commands
SHOW PROCESS

/MAXIMUM_BYTES [=n]
When used with /POOL, displays only the first n bytes of a pool packet; if you
specify /MAXIMUM_BYTES without a value, the default is 64 bytes.

/NEXT
Locates the next valid process in the system’s process list and selects that process.
If there are no further valid processes in the system’s process list, SDA returns
an error.

/NONMEMORY_PFN [=option]
See the /PAGE_TABLES qualifier description for an explanation of
/NONMEMORY_PFN.

/P0
/P1
/P2
When used with the /PAGE_TABLES qualifier, /P0, /P1, /P2 displays only page
table entries for the specified region. The default is /P0.

/PAGE_TABLES

The /PAGE_TABLES qualifier has the following format:

/PAGE_TABLES [/P0(d)|/P1|/P2|/PT][range]
[/GSTX=index][/RDE=id]
[/REGIONS=id]
[/SECTION_INDEX=n][=ALL]
[/PTE_ADDRESS]
[/INVALID_PFN [={READONLY|WRITABLE}]
[/NONMEMORY_PFN [={READONLY|WRITABLE}]
{/L1|/L2|/L3(d)}

Displays the page tables of the process P0 (process), P1 (control), P2, or PT (page
table) region, or, optionally, page table entries for a range of addresses. The page
table entries at the level specified by /L1, /L2, or /L3 (the default) are displayed.

When /RDE=id or /REGIONS=id is used with /PAGE_TABLES, SDA displays the
page tables for the address range of the specified address region. When you do
not specify an ID, the page tables are displayed for all the process-permanent and
user-defined regions.

You can express a range using the following syntax:

m Displays the single page table entry that corresponds to virtual address m.
m:n Displays the page table entries that correspond to the range of virtual

addresses from m to n.
m;n Displays the page table entries that correspond to a range of n bytes,

starting at virtual address m.
=ALL Use /PAGE_TABLES=ALL to display the entire page table or the process

from address zero to the end of process-private page table space.

The /PTE_ADDRESS qualifier causes SDA to treat the specified range as PTE
addresses instead of virtual addresses.

The /SECTION_INDEX=n qualifier causes SDA to display only the page table
entries for the pages in the specified process section.

The /GSTX=index qualifier causes SDA to display only the page table entries for
the pages in the specified global section.

4–156 SDA Commands

SDA Commands
SHOW PROCESS

The /INVALID_PFN qualifier, which is valid on platforms that supply an I/O
memory map, causes SDA to display only page table entries that map to PFNs
that are not in the system’s private memory, nor in Galaxy shared memory, nor
are I/O access pages.

The /NONMEMORY_PFN qualifier, which is supported on all platforms, causes
SDA to display only page table entries that are neither in the system’s private
memory nor in Galaxy shared memory.

Both /INVALID_PFN and /NONMEMORY_PFN qualifiers allow two optional
keywords, READONLY and WRITABLE. If neither keyword is given, all
relevant pages are displayed. If you specify READONLY, only pages marked
for no write access are displayed. If you specify WRITABLE, only pages that
allow write access are displayed. For example, SHOW PROCESS ALL/PAGE_
TABLE=ALL/INVALID_PFN=WRITABLE would display all process pages (for
all processes) whose protection allows write, but which map to PFNs that do not
belong to this system.

/PCB
Displays the information contained in the process control block (PCB). This is the
default behavior of the SHOW PROCESS command.

/PERSONA [=address]
Displays all persona security blocks (PSBs) held in the PERSONA ARRAY of the
process, and then lists selected information contained in each initially listed PSB.
The selected information includes the contents of the following cells inside the
PSB:

Flags
Reference count
Execution mode
Audit status
Account name
UIC
Privileges
Rights enabled mask

If you specify a PSB address, the above information is provided for that specific
PSB only.

/PERSONA/RIGHTS
Displays all the /PERSONA [=address] information and additional selected
information, including all the Rights and their attributes currently held and
active for each persona security block (PSB).

/PERSONA/RIGHTS/AUTHORIZED
Displays all the /PERSONA [=address] information and additional selected
information, including all the Rights and their attributes authorized for each
persona security block (PSB).

/PHD
Lists the information included in the process header (PHD).

/POOL

Displays the dynamic storage pool of the process P0 (process) and/or P1 (control)
region, or, optionally a range of addresses.

SDA Commands 4–157

SDA Commands
SHOW PROCESS

The /POOL qualifier has the following format:

/POOL [={P0|P1|ALL}][range][/BRIEF][/FREE][/HEADER]
[MAXIMUM_BYTES [=n]][/STATISTICS]
[/SUBTYPE=packet-type][/SUMMARY]
[/TYPE=packet-type][/UNUSED]

You can express a range using the following syntax:

m:n Displays the process pool in the range of virtual addresses from m to n.
m;n Displays process pool in a range of n bytes, starting at virtual address m.

/PPT
Is a synonym for /PAGE_TABLES.

/PROCESS_SECTION_TABLE [/SECTION_INDEX=id]
Lists the information contained in the process section table (PST). The
/SECTION_INDEX=id qualifier used with /PROCESS_SECTION_TABLE displays
the process section table entry for the specified section.

/PST
Is a synonym for /PROCESS_SECTION_TABLE.

/PT
When used with the /PAGE_TABLES qualifier, displays the page table entries for
the page table space of the process.

/PTE_ADDRESS
When used with the /PAGE_TABLES qualifier, specifies that the range is of PTE
addresses instead of the virtual addresses mapped by the PTE.

/RDE [=id]
/REGIONS [=id]
Lists the information contained in the process region table for the specified
region. If you do not specify a region, the entire table is displayed, including the
process-permanent regions. You can use the qualifiers /RDE [=id] and /REGIONS
[=id] interchangeably. When used with the /PAGE_TABLES, causes SDA to
display only the page tables for the region given or all regions.

/REGISTERS
Lists the hardware context of the process, as reflected in the process registers
stored in the hardware privileged context block (HWPCB), in its kernel stack, and
possibly, in its PHD.

/RIGHTS
Used with the /PERSONA qualifier. See the /PERSONA/RIGHTS description for
use of the /RIGHTS qualifier.

/RMS [=option[,...]]
Displays certain specified RMS data structures for each image I/O or process-
permanent I/O file the process has open. To display RMS data structures for
process-permanent files, specify the PIO option to this qualifier.

SDA determines the structures to be displayed according to either of the following
methods:

• If you provide the name of a structure or structures in the option parameter,
SHOW PROCESS/RMS displays information from only the specified

4–158 SDA Commands

SDA Commands
SHOW PROCESS

structures. (See Table 4–2 for a list of keywords that you can supply as
options.)

• If you do not specify an option, SHOW PROCESS/RMS displays the current
list of options as shown by the SHOW RMS command and set by the SET
RMS command.

/SECTION_INDEX=n
When used with the /PAGE_TABLES qualifier, displays the page table for the
range of pages in the specified process section. You can also specify one of the
qualifiers /L1, /L2, or /L3.

When used with the /PROCESS_SECTION_TABLE qualifier, displays the PST for
the specified process section.

The /SECTION_INDEX=n qualifier is ignored if you do not specify either the
/PAGE_TABLES or the /PROCESS_SECTION_TABLE qualifier.

/SEMAPHORE
Displays the Inner Mode Semaphore for a multithreaded process.

/STATISTICS
When used with /POOL, displays statistics on the free list(s) in process pool.

/SUBTYPE=packet-type
When used with /POOL, displays only packets of the specified subtype. This
qualifier is interchangeable with the /TYPE qualifier.

/SUMMARY
When used with /POOL, displays only an allocation summary for each packet
type.

/SYSTEM
Displays the system’s process control block. The system PCB and process header
(PHD) parallel the data structures that describe processes. They contain the
system working set, global section table, global page table, and other systemwide
data.

/THREADS
Displays the software and hardware context of all the threads associated with the
current process.

/TQE [=ALL]
Displays all timer queue entries associated with the current process. If specified
as /TQE, a one-line summary is output for each TQE. If specified as /TQE=ALL, a
detailed display of the TQE is output. See Table 4–29 for an explanation of TQE
types in the one-line summary.

/TYPE=packet-type
When used with /POOL, displays only packets of the specified type. This qualifier
is interchangeable with the /SUBTYPE qualifier.

/UNUSED
When used with /POOL, displays only free packets.

SDA Commands 4–159

SDA Commands
SHOW PROCESS

/WORKING_SET_LIST [={PPT | PROCESS | LOCKED |
GLOBAL | MODIFIED | n}]
Displays the contents of the requested entries of the working set list for
the process. If you do not specify an option, then all working set list
entries are displayed. Table 4–17 shows the options available with SHOW
PROCESS/WORKING_SET_LIST.

Table 4–17 Options for the /WORKING_SET_LIST Qualifier

Options Results

PPT Displays process page table pages
PROCESS Displays process-private pages
LOCKED Displays pages locked into the process’s working set
GLOBAL Displays global pages currently in the working set of the process
MODIFIED Displays working set list entries marked modified
n Displays a specific working set list entry, where n is the working

set list index (WSLX) of the entry of interest

Description

The SHOW PROCESS command displays information about the process specified
by process-name, the process specified in the /ID or /INDEX qualifier, the next
process in the system’s process list, the system process, or all processes. The
SHOW PROCESS command performs an implicit SET PROCESS command under
certain uses of its qualifiers and parameters, as noted previously. By default, the
SHOW PROCESS command produces information about the SDA current process,
as defined in Section 2.5.

The default of the SHOW PROCESS command provides information taken from
the software process control block (PCB) and the kernel threads block (KTB) of
the SDA current thread. This is the first display provided by the /ALL qualifier
and the only display provided by the /PCB qualifier. This information describes
the following characteristics of the process:

• Software context

• Condition-handling information

• Information on interprocess communication

• Information on counts, quotas, and resource usage

Among the displayed information are the process PID, EPID, priority, job
information block (JIB) address, and process header (PHD) address. SHOW
PROCESS also describes the resources owned by the process, such as event
flags and mutexes. The ‘‘State’’ field records the current scheduling state for
the thread, and indicates the CPU ID of any thread whose state is CUR. See
Table 4–28 for a list of all possible states.

The /THREADS qualifier (also part of SHOW PROCESS/ALL), displays
information from the KTBs of all threads in the process, instead of only the
SDA current thread.

The SHOW PROCESS/ALL command displays additional process-specific
information, also provided by several of the individual qualifiers to the command.

4–160 SDA Commands

SDA Commands
SHOW PROCESS

The process registers display, also produced by the /REGISTERS qualifier,
describes the process hardware context, as reflected in its registers. The registers
displayed are those of the SDA current thread, or of all threads if either the
/THREADS or the /ALL qualifier have been specified.

A process hardware context is stored in the following locations:

• If the process is currently executing on a processor in the Alpha system
(that is, in the CUR scheduling state), its hardware context is contained in
that processor’s registers. (That is, the process registers and the processor’s
registers contain identical values, as illustrated by a SHOW CPU command
for that processor or a SHOW CRASH command, if the process was current at
the time of the system failure.)

• If the process is not executing, its privileged hardware context is stored in the
part of the PHD known as the HWPCB. Its integer register context is stored
on its kernel stack. Its floating-point registers are stored in its PHD.

The process registers display first lists those registers stored in the HWPCB,
kernel stack, and PHD (‘‘Saved process registers’’). If the process to be displayed
is currently executing on a processor in the Alpha system, the display then lists
the processor’s registers (‘‘Active registers for the current process’’). In each
section, the display lists the registers in the following groups:

• Integer registers (R0 through R29)

• Special-purpose registers (PC and PS)

• Stack pointers (KSP, ESP, SSP, and USP)

• Page table base register (PTBR)

• AST enable and summary registers (ASTEN and ASTSR)

• Address space number register (ASN)

The semaphore display, also produced by the /SEMAPHORE qualifier, provides
information on the inner-mode semaphore used to synchronize kernel threads.
The PC history log, recorded if the system parameter SYSTEM_CHECK is
enabled, is also displayed.

The process header display, also produced by the /PHD qualifier, provides
information taken from the PHD, which is swapped into memory when the
process becomes part of the balance set. Each item listed in the display reflects a
quantity, count, or limit for the process use of the following resources:

• Process memory

• The pager

• The scheduler

• Asynchronous system traps

• I/O activity

• CPU activity

The working set information and working set list displays, also produced by
the /WORKING_SET_LIST qualifier, describe those virtual pages that the process
can access without a page fault. After a brief description of the size, scope, and
characteristics of the working set list itself, SDA displays information for each
entry in the working set list as shown in Table 4–18.

SDA Commands 4–161

SDA Commands
SHOW PROCESS

Table 4–18 Working Set List Entry Information in the SHOW PROCESS Display

Column Contents

INDEX Index into the working set list at which information for this entry
can be found

ADDRESS Virtual address of the page that this entry describes
STATUS Four columns that list the following status information:

• Page status of VALID

• Type of physical page (See Table 4–10)

• Indication of whether the page has been modified

• Indication of whether the page is locked into the working set

When SDA locates either one or more unused working set entries, or entries that
do not match the specified option, it issues the following message:

---- n entries not displayed

In this message, n is the number (in decimal) of contiguous entries not displayed.

The process section table information and process section table displays,
also produced by the /PROCESS_SECTION_TABLE or /PST qualifier, list each
entry in the process section table (PST) and display the offsets to, and the indexes
of, the first free entry and last used entry.

SDA displays the information listed in Table 4–19 for each PST entry.

Table 4–19 Process Section Table Entry Information in the SHOW PROCESS
Display

Part Definition

INDEX Index number of the entry. Entries in the process section
table begin at the highest location in the table, and the table
expands toward lower addresses.

ADDRESS Address of the process section table entry.
SECTION
ADDRESS

Virtual address that marks the beginning of the first page of
the section described by this entry.

CCB Address of the channel control block on which the section file
is open.

PAGELETS Length of the process section. This is in units of pagelets,
except for a PFN-mapped section in which the units are pages.

VBN Virtual block number. The number of the file’s virtual block
that is mapped into the section’s first page.

WINDOW Address of the window control block on which the section file
is open.

(continued on next page)

4–162 SDA Commands

SDA Commands
SHOW PROCESS

Table 4–19 (Cont.) Process Section Table Entry Information in the SHOW
PROCESS Display

Part Definition

REFCNT Number of pages of this section that are currently mapped.
FLINK Forward link. The pointer to the next entry in the PST list.
BLINK Backward link. The pointer to the previous entry in the PST

list.
FLAGS Flags that describe the access that processes have to the

process section.

In addition, for each process section that has an associated file, the device and/or
file name is displayed. For details of this display, see Table 4–21.

The regions display, also produced by the either of the /RDE or /REGIONS
qualifiers, shows the contents of the region descriptors. This includes the three
default regions (P0, P1, P2), plus any others created by the process. A single
region will be displayed if you specify its identifier. The information displayed
for each region includes the RDE address, the address range of the region, its
identifiers and protection, and links to other RDEs.

If you use the /PAGE_TABLE or /PPT qualifer with /RDE or /REGION, the page
table for the region is also displayed, as described below.

The P0 page table, P1 page table, P2 page table, and PT page table
displays, also produced by the /PAGE_TABLES qualifier, display listings of the
process page table entries in the same format as that produced by the SHOW
PAGE_TABLE command (see Tables 4–6 through Table 4–11).

The RMS display, also produced by the /RMS qualifier, provides information
on the RMS internal data structures for all RMS-accessed open files. The data
structures displayed depend on the current setting of RMS options, as described
under the SET RMS command and Table 4–2.

The locks display, also produced by the /LOCKS qualifier, provides information
on the locks held by the process. For a full description of the information
displayed for process locks, see the SHOW LOCKS command and Table 4–5. You
can also specify the /BRIEF qualifier, which is a single-line summary of each
process lock; however, no other qualifiers from SHOW LOCKS apply to SHOW
PROCESS/LOCKS.

The process active channels display, also produced by the /CHANNEL qualifier,
displays the information in Table 4–20 for each I/O channel assigned to the
process.

Table 4–20 Process Active Channels in the SHOW PROCESS Display

Column Contents

Channel Number of the channel.
CCB The address of the channel control block (CCB).

(continued on next page)

SDA Commands 4–163

SDA Commands
SHOW PROCESS

Table 4–20 (Cont.) Process Active Channels in the SHOW PROCESS Display

Column Contents

Window Address of the window control block (WCB) for
the file if the device is a file-oriented device; zero
otherwise.

Status Status of the device: ‘‘Busy’’ if the device has an
I/O operation outstanding; ‘‘Dpnd’’ if the device is
deaccess pending; blank otherwise.

Device/file accessed Name of the device and, if applicable, name of
the file being accessed on that device.

The information listed under the heading ‘‘Device/file accessed’’ varies from
channel to channel and from process to process. SDA displays certain information
according to the conditions listed in Table 4–21.

Table 4–21 Process I/O Channel Information in the SHOW PROCESS Display

Information Displayed1 Type of Process

dcuu: SDA displays this information for devices that are not
file structured, such as terminals, and for processes that
do not open files in the normal way.

dcuu:filespec SDA displays this information only if you are examining
a running system, and only if your process has enough
privilege to translate the file-id into the filespec.

dcuu:(file-id) The file-id no longer points to a valid filespec, as when
you look at a dump from another system; or the process
in which you are running SDA does not have enough
privilege to translate the file-id into the corresponding
filespec.

(section file) The file in question is mapped into the process’s memory.

1This table uses the following conventions to identify the information displayed:
dcuu:(file-id)filespec
where:
dcuu: is the name of the device.
file-id is the RMS file identification, or
filespec is the full file specification, including directory name.

The images display, also produced by the /IMAGES qualifier, describes the
activated images in the process. SDA displays the information listed in
Table 4–22 for each image, plus a summary line giving the total image and
total page counts.

4–164 SDA Commands

SDA Commands
SHOW PROCESS

Table 4–22 Image Information in the SHOW PROCESS Display

Item Description

Image Name The name of the image.
Link Time1 The date and time the image was linked.
Section Type1 For shareable images, the data for each image section is

displayed on a separate line. For privileged shareable
images, data for the change mode vector is also displayed
on a separate line.

Start Start address of the image in process memory. For
resident shareable images, this is the start address of
the process-space portion of the image.

End End address of the image in process memory. For
resident shareable images, this is the end address of the
process-space portion of the image.

Type The image type and/or activation method, plus "PROT"
for protected images and "SHR" for shareable images.

IMCB The address of the Image Management Control Block.
Sym Vect1 The address of the image’s symbol vector, if any.
Maj,Minor ID1 The major and minor revision IDs for the image.
Base1 For shareable images, the base address of each image

section and/or the change mode vector.
Fnd1 For shareable images, the end address of each image

section and/or the change mode vector.
ImageOff1 For shareable images, the virtual offset within the image

file for each image section.

1These items are only displayed with SHOW PROCESS/IMAGE=ALL or SHOW PROCESS/ALL.

The buffer objects display, also produced by the /BUFFER_OBJECTS qualifier,
describes the buffer objects in use by the process. Information displayed by SDA
for each buffer object includes its address, access mode, size, flags, plus the base
virtual address of the object in process space and system space.

The fast I/O handles display, also produced by the /FANDLES qualifier,
describes the fast I/O handles used by the process. Information displayed by
SDA includes the address and size of the fast I/O handle vector header, then the
address, corresponding IRP, state, and buffer object handles for each fast I/O
handle, plus information on free vector entries.

The persona display, also produced by the /PERSONA qualifier, describes the
Persona status block data structures. The default output of /PERSONA consists
of summary information for all personae in use by the process (the PSB address,
flags, user name) and information for each persona (privilege masks, UIC, and so
on). When you specify /PERSONA/RIGHTS (as in SHOW PROCESS/ALL), all the
rights currently held and active for each persona are also displayed. When you
specify /PERSONA/RIGHTS/AUTHORIZED, all the rights authorized for each
persona are displayed instead.

SDA Commands 4–165

SDA Commands
SHOW PROCESS

The pool display, also produced by the /POOL qualifier, describes the P0 and P1
process pools. The default output of /POOL is the entire contents of each used
block of pool. When you specify /POOL/HEADER (as in SHOW PROCESS/ALL),
only the first 16 bytes of each used pool block is displayed. By default, all pool in
either P0 or P1 is displayed. You can limit this using /POOL=P0 or /POOL=P1.
See the description of the SHOW POOL command for explanations of other
qualifiers.

The Timer Queue Entry (TQE) display, also produced by the /TQE qualifier,
describes all timer queue entries that affect the process. The default display (as
in SHOW PROCESS/ALL) is a one-line summary of each TQE. If you specify
/TQE=ALL, a detailed display of each TQE is given. No other qualifiers from the
SHOW TQE command apply to SHOW PROCESS/TQE.

4–166 SDA Commands

SDA Commands
SHOW PROCESS

Examples

1. SDA> SHOW PROCESS

Process index: 0028 Name: SYSTEM Extended PID: 000000E8

Process status: 02040001 RES,PHDRES,INTER

status2: 00000000

PCB address 81444A40 JIB address 81443600
PHD address 821AA000 Swapfile disk address 00000000
KTB vector address 81444D2C HWPCB address 821AA080
Callback vector address 00000000 Termination mailbox 0000
Master internal PID 00030028 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000000 Current CPU Id 00000000
Previous ASNSEQ 0000000000000003 Previous ASN 0000000000000017
Initial process priority 4 # open files remaining 100/100
Delete pending count 0 Direct I/O count/limit 150/150
UIC [00001,000004] Buffered I/O count/limit 149/150
Abs time of last event 01F1A51D BUFIO byte count/limit 99424/99808
of threads 1 ASTs remaining 248/250
Swapped copy of LEFC0 00000000 Timer entries remaining 20/20
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 43
Global cluster 3 pointer 00000000 Global WS page count 28

Thread index: 0000

Current capabilities: System: 0000000C QUORUM,RUN

User: 00000000
Permanent capabilities: System: 0000000C QUORUM,RUN

User: 00000000
Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 02040001

status2: 00000000

KTB address 81444A40 HWPCB address 821AA080
PKTA address 7FFEFF98 Callback vector address 00000000
Internal PID 00030028 Callback error 00000000
Extended PID 000000E8 Current CPU id 00000000
State LEF Flags 00000000
Base priority 4 Current priority 5
Waiting EF cluster 0 Event flag wait mask DFFFFFFF
CPU since last quantum FFF8 Mutex count 0
ASTs active NONE

The SHOW PROCESS command displays information taken from the software
PCB of SYSTEM, the SDA current process. According to the State field in the
display, process SYSTEM is in Local Event Flag Wait.

SDA Commands 4–167

SDA Commands
SHOW PROCESS

SDA> SHOW PROCESS/ALL

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--
Process status: 00040011 RES,PSWAPM,PHDRES
 status2: 00000010 TCB

PCB address 81AFF480 JIB address 8177E440
PHD address 84166000 Swapfile disk address 00000000
KTB vector address 81B00900 HWPCB address 84166080
Callback vector address 81AFF8C0 Termination mailbox 000F
Master internal PID 00010013 Subprocess count 0
Creator extended PID 00000000 Creator internal PID 00000000
Previous CPU Id 00000004 Current CPU Id 00000004
Previous ASNSEQ 000000000000003D Previous ASN 0000000000000002
Initial process priority 8 # open files remaining 97/100
Delete pending count 0 Direct I/O count/limit 200/200
UIC [00001,000004] Buffered I/O count/limit 199/200
Abs time of last event 0012D67F BUFIO byte count/limit 66272/66272
of threads 2 ASTs remaining 199/200
Swapped copy of LEFC0 00000000 Timer entries remaining 64/64
Swapped copy of LEFC1 00000000 Active page table count 0
Global cluster 2 pointer 00000000 Process WS page count 350
Global cluster 3 pointer 00000000 Global WS page count 100

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

Thread index: 0000

Current capabilities: System: 0000002C QUORUM,RUN
 User: 00000000
Permanent capabilities: System: 0000002C QUORUM,RUN
 User: 00000000
Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 00040011
 status2: 00000010

KTB address 815D0880 HWPCB address 83F62080
PKTA address 7FFEFF98 Callback vector address 815BB780
Internal PID 00010013 Callback error 00000000
Extended PID 00000413 Current CPU id 00000000
State HIB Flags 00000080
Base priority 8 Current priority 13
Waiting EF cluster 0 Event flag wait mask 00130013
CPU since last quantum 0286 Mutex count 0
ASTs active NONE

Current process registers

R0 = 00000000.00000001 R1 = FFFFFFFF.815D0880 R2 = 00000000.7BC1CFF0
R3 = 00000000.7BC1CFF0 R4 = 00000000.0009D740 R5 = 00000000.7BC22E38
R6 = 00000000.00000080 R7 = 00000000.00000040 R8 = 00000000.00000001
R9 = 00000000.00000000 R10 = 00000000.00000000 R11 = 00000000.00000004
R12 = 00000000.0009DC80 R13 = FFFFFFFF.810D0B20 R14 = 00000000.7BC230B0
R15 = 00000000.7BC65558 R16 = 00000000.00000001 R17 = 00000000.0009BBE8
R18 = 00000000.00000000 R19 = 00000000.00000000 R20 = FFFFFFFF.FFFFFFFE
R21 = 00000000.00000006 R22 = 00000000.00000000 R23 = 00000000.00000001
R24 = 00000000.0009BBE8 R25 = 00000000.00000000 R26 = FFFFFFFF.801270C8
R27 = FFFFFFFF.810CD888 R28 = 00000000.00000006 FP = 00000000.0009BC20
PC = FFFFFFFF.80001934 PS = 00000000.0000001B
KSP = 00000000.7FFA1EF0 ESP = 00000000.7FFA6000 SSP = 00000000.7FFAE000
USP = 00000000.0009BC20 PTBR = 00000000.00004F65
AST{SR/EN} = 0000000F ASN = 00000000.000000FD
F0 = 00000000.00000000 F1 = 00000000.00000000 F2 = 00000000.00000000
F3 = 00000000.00000000 F4 = 00000000.00000000 F5 = 00000000.00000000
F6 = 00000000.00000000 F7 = 00000000.00000000 F8 = 00000000.00000000
F9 = 00000000.00000000 F10 = 00000000.00000000 F11 = 00000000.00000000
F12 = 00000000.00000000 F13 = 00000000.00000000 F14 = 00000000.00000000
F15 = 00000000.00000000 F16 = 00000000.00000000 F17 = 00000000.00000000
F18 = 00000000.00000000 F19 = 00000000.00000000 F20 = 00000000.00000000
F21 = 00000000.00000000 F22 = 00000000.00000000 F23 = 00000000.00000000
F24 = 00000000.00000000 F25 = 00000000.00000000 F26 = 00000000.00000000
F27 = 00000000.00000000 F28 = 00000000.00000000 F29 = 00000000.00000000
F30 = 00000000.00000000 FPCR = 00000000.00000000

2.

continued
VM-0754A-AI

4–168 SDA Commands

SDA Commands
SHOW PROCESS

Thread index: 0001

Current capabilities: System: 0000002C QUORUM,RUN
 User: 00000000
Permanent capabilities: System: 0000002C QUORUM,RUN
 User: 00000000
Current affinities: 00000000
Permanent affinities: 00000000
Thread status: 00040011
 status2: 00000010

KTB address 8153DA80 HWPCB address 84026200
PKTA address 40015F98 Callback vector address 815BB780
Internal PID 00020013 Callback error 00000000
Extended PID 00000813 Current CPU id 00000000
State HIB Flags 00000000
Base priority 8 Current priority 13
Waiting EF cluster 0 Event flag wait mask 7FFFFFFF
CPU since last quantum 0036 Mutex count 0
ASTs active NONE

Current process registers

R0 = 00000000.00000001 R1 = FFFFFFFF.815D0880 R2 = 00000000.7BC1CFF0
R3 = 00000000.7BC1CFF0 R4 = 00000000.000CB740 R5 = 00000000.7BC22E38
R6 = 00000000.00000080 R7 = 00000000.00000040 R8 = 00000000.00000001
R9 = 00000000.00000000 R10 = 00000000.00000000 R11 = 00000000.00000004
R12 = 00000000.000CBC80 R13 = FFFFFFFF.810D0B20 R14 = 00000000.7BC230B0
R15 = 00000000.7BC65558 R16 = 00000000.00000001 R17 = 00000000.000C9BE8
R18 = 00000000.00000000 R19 = 00000000.00000000 R20 = FFFFFFFF.FFFFFFFE
R21 = 00000000.00000006 R22 = 00000000.00000000 R23 = 00000000.00000001
R24 = 00000000.000C9BE8 R25 = 00000000.00000000 R26 = FFFFFFFF.801270C8
R27 = FFFFFFFF.810CD888 R28 = 00000000.00000006 FP = 00000000.000C9C20
PC = FFFFFFFF.80001934 PS = 00000000.0000001B
KSP = 00000000.40003EF0 ESP = 00000000.40008000 SSP = 00000000.4000C000
USP = 00000000.000C9C20 PTBR = 00000000.00004F65
AST{SR/EN} = 0000000F ASN = 00000000.000000F7
F0 = 00000000.00000000 F1 = 00000000.00000000 F2 = 00000000.00000000
F3 = 00000000.00000000 F4 = 00000000.00000000 F5 = 00000000.00000000
F6 = 00000000.00000000 F7 = 00000000.00000000 F8 = 00000000.00000000
F9 = 00000000.00000000 F10 = 00000000.00000000 F11 = 00000000.00000000
F12 = 00000000.00000000 F13 = 00000000.00000000 F14 = 00000000.00000000
F15 = 00000000.00000000 F16 = 00000000.00000000 F17 = 00000000.00000000
F18 = 00000000.00000000 F19 = 00000000.00000000 F20 = 00000000.00000000
F21 = 00000000.00000000 F22 = 00000000.00000000 F23 = 00000000.00000000
F24 = 00000000.00000000 F25 = 00000000.00000000 F26 = 00000000.00000000
F27 = 00000000.00000000 F28 = 00000000.00000000 F29 = 00000000.00000000
F30 = 00000000.00000000 FPCR = 00000000.00000000

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--
Inner Mode Semaphore Address: 84026000
Owner: 0000
Ownership Depth: 0000
Tolerant count: 0000
Flags: 0000
History Buffer Is Empty

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

Process header

First free P0 VA 00000000.00822000 Accumulated CPU time 0000004D
First free P1 VA 00000000.7AFCE000 Subprocess quota 10
First free P2 VA 00000000.80000000 ASTs enabled KESU
Free page file pages 1565 ASN sequence # 0000000000000075
Page fault cluster size 4 AST limit 200
Page table cluster size 1 Process header index 000D
Flags 00000026 Backup address vector 0005C9A8
Direct I/O count 17 PTs having locked WSLEs 3
Buffered I/O count 55 PTs having valid WSLEs 10
Limit on CPU time 00000000 Active page tables 10
Maximum page file count 2500 Maximum active PTs 8
Total page faults 345 Guaranteed fluid WS pages 20
File limit 100 Extra dynamic WS entries 1529
Local event flag cluster 0 E0000001 Local event flag cluster 1 80000000
Timer queue limit 64 Pagefile refcnt 00000000.000000F0
Page Table Base Register 00004F65 Virtual PT Base FFFFFEFC.00000000

continued
VM-0755A-AI

SDA Commands 4–169

SDA Commands
SHOW PROCESS

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

Working set information

First WSL entry 00000001 Current authorized working set size 3144
First locked entry 00000009 Default (initial) working set size 1572
First dynamic entry 00000010 Maximum working set allowed (quota) 3144
Last entry replaced 000001BC
Last entry in list 00000624

Working set list

 INDEX ADDRESS STATUS

00000001 FFFFFEFD.BF6FC000 VALID PPT(L1) WSLOCK
00000002 FFFFFEFD.BF000000 VALID PPT(L2) WSLOCK
00000003 FFFFFEFC.001FE000 VALID PPT(L3) WSLOCK
00000004 00000000.7FFA0000 VALID PROCESS MODIFIED WSLOCK
00000005 00000000.7FFF0000 VALID PROCESS WSLOCK
00000006 FFFFFFFF.83F62000 VALID PHD WSLOCK
00000007 FFFFFFFF.83F64000 VALID PHD WSLOCK
00000008 FFFFFFFF.83F66000 VALID PHD WSLOCK

Locked entries:
00000009 00000000.7AFE0000 VALID PROCESS WSLOCK
0000000A 00000000.7AFE2000 VALID PROCESS WSLOCK
0000000B FFFFFFFF.84026000 VALID PHD WSLOCK
0000000C 00000000.7FFEE000 VALID PROCESS WSLOCK
0000000D 00000000.40002000 VALID PROCESS WSLOCK
0000000E 00000000.40014000 VALID PROCESS WSLOCK
0000000F 00000000.40016000 VALID PROCESS WSLOCK

Dynamic entries:
00000010 00000000.7FFCE000 VALID PROCESS
00000011 FFFFFEFC.001EA000 VALID PPT(L3) WSLOCK
00000012 00000000.7AFDC000 VALID PROCESS
00000013 00000000.7FEB8000 VALID PROCESS
00000014 00000000.7AFDE000 VALID PROCESS
00000015 00000000.7FFD0000 VALID PROCESS MODIFIED
00000016 00000000.7FFBA000 VALID PROCESS
.
.
.
000001B4 FFFFFEFC.00002000 VALID PPT(L3) WSLOCK
000001B5 00000000.00806000 VALID PROCESS
000001B6 00000000.006F2000 VALID PROCESS
000001B7 00000000.006F4000 VALID PROCESS
000001B8 00000000.00804000 VALID PROCESS
000001B9 00000000.0081E000 VALID PROCESS
000001BA 00000000.0080A000 VALID PROCESS
000001BB 00000000.0080C000 VALID PROCESS
000001BC 00000000.0081C000 VALID PROCESS

 ---- 1128 entries not displayed

continued
VM-0756A-AI

4–170 SDA Commands

SDA Commands
SHOW PROCESS

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

Process section table information

 Last entry allocated 0000000B
 First free entry 0000000B

Process section table

 Index Address Section Address CCB Pagelets VBN Window Refcnt Flink Blink Flags
-------- -------- ----------------- -------- -------- -------- -------- -------- ----- ----- --------------------
00000001 81EF1FD8 00000000.00138000 7FF961A0 0000005F 00000004 814EEB00 00000006 0009 0005 AMOD=KRNL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]VMS$VMS_ACMESHR.EXE;1

00000002 81EF1FB0 00000000.7B96A000 7FF96280 00000001 00000003 814C70C0 00000000 000A 000A CRF WRT AMOD=KRNL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]TRACE.EXE;1

00000003 81EF1F88 00000000.00030000 7FF96020 000000B3 0000002F 814ED8C0 0000000C 0004 0004 AMOD=KRNL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSEXE]ACME_SERVER.EXE;1

.

.

.

00000009 81EF1E98 00000000.003A8000 7FF961A0 00000003 00000DD9 814EEB00 00000001 0008 0001 AMOD=KRNL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]VMS$VMS_ACMESHR.EXE;1

0000000A 81EF1E70 00000000.7B9FA000 7FF96280 00000013 00000345 814C70C0 00000000 0002 0002 CRF WRT AMOD=KRNL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]TRACE.EXE;1

0000000B 81EF1E48 00000000.7BA0A000 00000000 00000001 00000358 814C70C0 FFFFFFFF 000A 0002 CRF WRT AMOD=KRNL
 File = DISK$X97D_R2Y:[VMS$COMMON.SYSLIB]TRACE.EXE;1

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

Process Region Table

RDE Addr Flink Blink T Link Flags Protect Region Ident Starting Address Region Size First Free VA
-------- -------- -------- -------- -------- -------- ----------------- ----------------- ----------------- -----------------
7FEBA328 7FEBA328 7FEBA328 00000000 0000000A 00000030 00000000.00000000 00000000.00000000 00000000.40000000 00000000.00822000
7FEBA360 7FE99960 7FE99960 00000000 0000001D 00000030 00000000.00000001 00000000.40168000 00000000.3FE98000 00000000.7AFCE000
7FEBA398 7FEBA398 7FEBA398 00000000 00000008 00000030 00000000.00000002 00000000.80000000 000006FB.80000000 00000000.80000000
7FE99960 7FEBA360 7FEBA360 00000000 00000004 00000030 00000000.00000010 00000000.40000000 00000000.00168000 00000000.40018000

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

P0 space

 Mapped Address PTE Address PTE Type Read Writ Bits GH PgTyp Loc Bak RefCnt Flink Blink
----------------- ----------------- ----------------- ----- ---- ---- ---- - ------- ------ ----------------- ---- -------- --------

 -------- 8 null pages: VA 00000000.00000000 PTE FFFFFEFC.00000000
 -to- 00000000.0000FFFF -to- FFFFFEFC.00000038

00000000.00010000 FFFFFEFC.00000040 0000376A.00160F09 VALID KESU NONE M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 0000003B

 -------- 7 null pages: VA 00000000.00012000 PTE FFFFFEFC.00000048
 -to- 00000000.0001FFFF -to- FFFFFEFC.00000078

00000000.00020000 FFFFFEFC.00000080 00005060.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 00000093
00000000.00022000 FFFFFEFC.00000088 00005061.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 00000094

 -------- 6 null pages: VA 00000000.00024000 PTE FFFFFEFC.00000090
 -to- 00000000.0002FFFF -to- FFFFFEFC.000000B8

00000000.00030000 FFFFFEFC.000000C0 0000503D.00060F01 VALID KESU NONE --U- 0 PROCESS ACTIVE 00000003.00010000 0001 00000000 00000085
00000000.00032000 FFFFFEFC.000000C8 0000503E.00060F01 VALID KESU NONE --U- 0 PROCESS ACTIVE 00000003.00010000 0001 00000000 00000086
00000000.00034000 FFFFFEFC.000000D0 0000503F.00060F01 VALID KESU NONE --U- 0 PROCESS ACTIVE 00000003.00010000 0001 00000000 00000087

.

.

.

continued
VM-0757A-AI

SDA Commands 4–171

SDA Commands
SHOW PROCESS

00000000.0081C000 FFFFFEFC.00002070 000038E4.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 000001BC
00000000.0081E000 FFFFFEFC.00002078 000038E1.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 000001B9
00000000.00820000 FFFFFEFC.00002080 00000000.0006FF00 DZERO KESU KESU --U- 0

 -------- 1007 null pages: VA 00000000.00822000 PTE FFFFFEFC.00002088
 -to- 00000000.00FFFFFF -to- FFFFFEFC.00003FF8

 -------- 129024 entries not in memory: VA 00000000.01000000 PTE FFFFFEFC.00004000
 -to- 00000000.3FFFFFFF -to- FFFFFEFC.000FFFF8

P1 space

 Mapped Address PTE Address PTE Type Read Writ Bits GH PgTyp Loc Bak RefCnt Flink Blink
----------------- ----------------- ----------------- ----- ---- ---- ---- - ------- ------ ----------------- ---- -------- --------

 -------- 1 null page: VA 00000000.40000000 PTE FFFFFEFC.00100000

00000000.40002000 FFFFFEFC.00100008 000037DC.00101709 VALID KES- K--- MLK- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 0000000D
00000000.40004000 FFFFFEFC.00100010 00000000.00023700 DZERO KES- KE-- --E- 0
00000000.40006000 FFFFFEFC.00100018 00003861.00123709 VALID KES- KE-- M-E- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 000000BC
00000000.40008000 FFFFFEFC.00100020 00000000.00047F00 DZERO KESU KES- --S- 0
00000000.4000A000 FFFFFEFC.00100028 00000000.00047F00 DZERO KESU KES- --S- 0
00000000.4000C000 FFFFFEFC.00100030 00000000.00001100 DZERO K--- K--- --K- 0
00000000.4000E000 FFFFFEFC.00100038 00000000.0000FF00 DZERO KESU KESU --K- 0
00000000.40010000 FFFFFEFC.00100040 00000000.0000FF00 DZERO KESU KESU --K- 0
00000000.40012000 FFFFFEFC.00100048 00000000.0000FF00 DZERO KESU KESU --K- 0
00000000.40014000 FFFFFEFC.00100050 000037DD.0010FF09 VALID KESU KESU MLK- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 0000000E
00000000.40016000 FFFFFEFC.00100058 000037DE.00103F09 VALID KESU KE-- MLK- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 0000000F

 -------- 1012 null pages: VA 00000000.40018000 PTE FFFFFEFC.00100060
 -to- 00000000.407FFFFF -to- FFFFFEFC.00101FF8

 -------- 118784 entries not in memory: VA 00000000.40800000 PTE FFFFFEFC.00102000
 -to- 00000000.7A7FFFFF -to- FFFFFEFC.001E9FF8

 -------- 1000 null pages: VA 00000000.7A800000 PTE FFFFFEFC.001EA000
 -to- 00000000.7AFCFFFF -to- FFFFFEFC.001EBF38

00000000.7AFD0000 FFFFFEFC.001EBF40 000038BF.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 00000195
00000000.7AFD2000 FFFFFEFC.001EBF48 00003883.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 0000011A
00000000.7AFD4000 FFFFFEFC.001EBF50 000038BE.0016FF09 VALID KESU KESU M-U- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 00000190

.

.

.
00000000.7FFEE000 FFFFFEFC.001FFFB8 00003753.0010FF09 VALID KESU KESU MLK- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 0000000C
00000000.7FFF0000 FFFFFEFC.001FFFC0 00004FAB.10103F09 VALID KESU KE-- MLK- 0 PROCESS ACTIVE FF000000.00000000 0001 00000000 00000005

 -------- 7 null pages: VA 00000000.7FFF2000 PTE FFFFFEFC.001FFFC8
 -to- 00000000.7FFFFFFF -to- FFFFFEFC.001FFFF8

P2 space

 Mapped Address PTE Address PTE Type Read Writ Bits GH PgTyp Loc Bak RefCnt Flink Blink
----------------- ----------------- ----------------- ----- ---- ---- ---- - ------- ------ ----------------- ---- -------- --------

 -------- 937164800 entries not in memory: VA 00000000.80000000 PTE FFFFFEFC.00200000
 -to- FFFFFEFB.FFFFFFFF -to- FFFFFEFD.BEFFFFF8

PT space

 Mapped Address PTE Address PTE Type Read Writ Bits GH PgTyp Loc Bak RefCnt Flink Blink
----------------- ----------------- ----------------- ----- ---- ---- ---- - ------- ------ ----------------- ---- -------- --------
FFFFFEFC.00000000 FFFFFEFD.BF000000 00003784.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 000000F3 0000001F
FFFFFEFC.00002000 FFFFFEFD.BF000008 000038DC.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 00000006 000001B4

 -------- 126 null pages: VA FFFFFEFC.00004000 PTE FFFFFEFD.BF000010
 -to- FFFFFEFC.000FFFFF -to- FFFFFEFD.BF0003F8

FFFFFEFC.00100000 FFFFFEFD.BF000400 000037DB.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 00000004 0000009F

 -------- 116 null pages: VA FFFFFEFC.00102000 PTE FFFFFEFD.BF000408
 -to- FFFFFEFC.001E9FFF -to- FFFFFEFD.BF0007A0

continued
VM-0758A-AI

4–172 SDA Commands

SDA Commands
SHOW PROCESS

FFFFFEFC.001EA000 FFFFFEFD.BF0007A8 00003758.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 0000000B 00000011
FFFFFEFC.001EC000 FFFFFEFD.BF0007B0 00003755.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 00000024 000000A1
FFFFFEFC.001EE000 FFFFFEFD.BF0007B8 00003785.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 0000005F 00000022
FFFFFEFC.001F0000 FFFFFEFD.BF0007C0 0000387B.40101309 VALID KE-- K--- MLK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 00000015 000000E5

 -------- 6 null pages: VA FFFFFEFC.001F2000 PTE FFFFFEFD.BF0007C8
 -to- FFFFFEFC.001FDFFF -to- FFFFFEFD.BF0007F0

FFFFFEFC.001FE000 FFFFFEFD.BF0007F8 00004FAD.40001309 VALID KE-- K--- -LK- 0 PPT(L3) ACTIVE FF000000.00000000 0001 0000000E 00000003

 -------- 768 null pages: VA FFFFFEFC.00200000 PTE FFFFFEFD.BF000800
 -to- FFFFFEFC.007FFFFF -to- FFFFFEFD.BF001FF8

 -------- 914432 entries not in memory: VA FFFFFEFC.00800000 PTE FFFFFEFD.BF002000
 -to- FFFFFEFD.BEFFFFFF -to- FFFFFEFD.BF6FBFF8

FFFFFEFD.BF000000 FFFFFEFD.BF6FC000 00004FAE.40001109 VALID K--- K--- -LK- 0 PPT(L2) ACTIVE FF000000.00000000 0001 00000008 00000002

 -------- 893 null pages: VA FFFFFEFD.BF002000 PTE FFFFFEFD.BF6FC008
 -to- FFFFFEFD.BF6FBFFF -to- FFFFFEFD.BF6FDBE8

FFFFFEFD.BF6FC000 FFFFFEFD.BF6FDBF0 00004F65.40000109 VALID K--- NONE -LK- 0 PPT(L1) ACTIVE 00000000.83F62000 0001 00000001 00000001

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

ASB Address: 7B02E000

LTP_POOL: 7B030800 IMPURE: 7FFD00C4
BLN: 00002600 9728.
BID: 00000032 50.

FP: 7FFA5118 7FFD00C4
SP: 7FFA5118 7FFD00C4
FLAGS: 00000000
PERSONA_ID: 2
SAVED_ID: 1

IO_OPERATION/OLD_FAB: 00000000
P4_PARM: 00000880
STS: 00018292
EFN: 0000001D
STALL_STRUCT: 00000000
ERRAST: 00000000
SUCAST: 00000000
FAB: 7FFD1000
STACK: 7B02F200
STKTOP: 7B02E070
STKBOT: 7B02F200
STKLEN: 00001190 4496.
MODE_OFFSET: 00000001 1.
SAVED_ASB: 00000000
BKP: 00002008 ASY_THREAD,STALL_WITH_PERSONA

.

.

.

BDB Address: 7B028710

FLINK: 7B02726C BID: 0C 12.
BLINK: 7B02726C BLN: 1C 28.
FLGS: 00
USERS: 0000 0. BLB_PTR: 00000000
CACHE_VAL:00 0. BUFF_ID: 0000 0.
SIZE: 00000000 NUMB: 0000003B
ADDR: 00000000 VBN: 00000000
VBNSEQNO: 00000000 WAIT: 00000000
WK1: 00000000 CURBUFADR:00000000000FC000
REL_VBN: 00000000 PRE_CCTL: 00
ASB: 00000000
ALLOC_ADDR: 00000000 BI_BDB: 00000000
ALLOC_SIZE: 0000 0 AI_BDB: 00000000
VAL_VBNS: 00000000 POST_CCTL:00
IOSB: 00000000 WAIT_Q_FLINK: 00000000

00000000 WAIT_Q_BLINK: 00000000
REUSE_COUNT: 00000000 IDX_BKT_LEVEL: 00

continued
VM-0759A-AI

SDA Commands 4–173

SDA Commands
SHOW PROCESS

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

 Process active channels

Channel CCB Window Status Device/file accessed
------- --- ------ ------ --------------------
 0010 7FEB8000 00000000 WFGLX0$DKB500:
 0020 7FEB8020 81AFEFC0 WFGLX0$DKB500:[VMS$COMMON.SYSEXE]ACME_SERVER.EXE;1
 0030 7FEB8040 81756700 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]PTHREAD$RTL.EXE;1 (section file)
 0040 7FEB8060 81753E80 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]LIBOTS.EXE;1 (section file)
 0050 7FEB8080 81753E00 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]LIBRTL.EXE;1 (section file)
 0060 7FEB80A0 81755600 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]CMA$TIS_SHR.EXE;1 (section file)
 0070 7FEB80C0 81756B00 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]DECC$SHR.EXE;1 (section file)
 0080 7FEB80E0 81756680 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]DPML$SHR.EXE;1 (section file)
 0090 7FEB8100 8175D3C0 WFGLX0$DKB500:[VMS$COMMON.SYSMSG]SHRIMGMSG.EXE;1 (section file)
 00A0 7FEB8120 8175CB00 WFGLX0$DKB500:[VMS$COMMON.SYSMSG]DECC$MSG.EXE;1 (section file)
 00B0 7FEB8140 00000000 Busy MBA16:
 00C0 7FEB8160 81B01B80 WFGLX0$DKB500:[SYS50.SYSMGR]ACME$SERVER.LOG;30
 00D0 7FEB8180 81B02140 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]VMS$VMS_ACMESHR.EXE;1
 00E0 7FEB81A0 81755340 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]SECURESHR.EXE;1 (section file)
 00F0 7FEB81C0 817534C0 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]SECURESHRP.EXE;1 (section file)
 0100 7FEB81E0 81753CC0 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]PTD$SERVICES_SHR.EXE;1 (section file)
 0110 7FEB8200 817557C0 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]CRFSHR.EXE;1 (section file)
 0120 7FEB8220 817572C0 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]ADARTL.EXE;1 (section file)
 0130 7FEB8240 81756EC0 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]CMA$RTL.EXE;1 (section file)
 0140 7FEB8260 817559C0 WFGLX0$DKB500:[VMS$COMMON.SYSLIB]TRACE.EXE;1 (section file)

 Total number of open channels : 20.

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

 Process activated images

 Image Name/Link Time/Section Type Start End Type IMCB Sym Vect Maj,Minor ID Base End ImageOff
--------------------------------------- -------- -------- ------------ -------- -------- ------------ -------- -------- --------
ACME_SERVER 00010000 000705FF MAIN 7FE98060 113,12385697
 3-FEB-2001 22:56:22.00

SHRIMGMSG 000B4000 000BA9FF MRGD SHR 7FE99840 000B4000 113,12524133
 3-FEB-2001 23:11:29.25

DECC$MSG 000BC000 000BFFFF MRGD SHR 7FE98A30 000BC000 113,12609585
 3-FEB-2001 23:20:49.27

VMS$VMS_ACMESHR 00108000 00389FFF MRGD 7FE992A0 0012DE80 113,12563930
 3-FEB-2001 23:15:50.06

SECURESHRP 7B2B4000 7B335FFF GLBL PRT SHR 7FE99A20 7B2B9640 1,4
 3-FEB-2001 22:42:02.12
 System Resident Code 80800000 808271FF 00030000
 Shareable Address Data 7B2B4000 7B2B9FFF 00000000
 Read-Write Data 7B2C4000 7B2C59FF 00010000
 Shareable Read-Only Data 7B2D4000 7B2D47FF 00020000
 Shareable Address Data 7B314000 7B314717 00060000
 Demand Zero Data 7B324000 7B3241FF 00070000
 Compressed Data 7B334000 7B334BFF 00080000

.

.

.

ADARTL 7C030000 7C07BFFF GLBL SHR 7FE98B50 7C037320 1,3
 3-FEB-2001 22:50:26.28
 Shareable Address Data 7C030000 7C0385FF 00000000
 Shareable Address Data 7C03A000 7C03D5FF 00010000
 Shareable Code 7C03E000 7C0709FF 00020000
 Read-Write Data 7C072000 7C0727FF 00060000
 Shareable Read-Only Data 7C074000 7C0745FF 00070000
 Read-Write Data 7C076000 7C0761FF 00080000
 Demand Zero Data 7C078000 7C0781FF 00090000
 Compressed Data 7C07A000 7C07AFFF 000A0000

SYS$PUBLIC_VECTORS 81003E78 81005E37 GLBL 7FE98840 81003E78 113,12237208

SYS$BASE_IMAGE 81019D90 8102C23F GLBL 7FE98720 81019D90 113,12239366

Total images = 19 Pages allocated = 885

continued
VM-0760A-AI

4–174 SDA Commands

SDA Commands
SHOW PROCESS

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

No buffer objects for this process

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

The fandle vector is empty.

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--
 PROCESS PERSONAE

 ID PSB Refcnt Flags Username
---- -------- ------ ----------------------- ---------------
0001 815C8F00 005 PERMANENT SYSTEM

Persona ID: 0001 PSB: 815C8F00 Username: SYSTEM
--
Flags : 00000001 Refcount : 005
Mode : User Noaudit : 1
Account: <start> UIC : [00001,000004]

Privileges:
 Authorized : 000000208009D025
 Permanent : 000000208009D025
 Working (Persona): 00000060D009D025
 Working (Image) : 0000000000000000

Enabled rights: 0000000000000003 (PERSONA,SYSTEM)

Rights Chain: PERSONA (Enabled) :

 ID Flags
 ---------- ----------
 00010004 00000001

Rights Chain: SYSTEM (Enabled) :

 ID Flags
 ---------- ----------
 80010001 00000000

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

P1 Dynamic Storage Pool

 NPOOL address: (None)
 Pool map address: (None)
 Number of lookaside lists: 0
 Granularity size: 16
 P1 pool available for image requests: FFFFFD30
 P1 pool allowed for image requests: 00004600
 Variable list header: 00000000.7FFF0188

Segment(s)

 Start End Length
 -------- -------- --------
 7FE96000 7FEB5FFF 00020000

Dump of packets allocated from P1 Pool

 Packet type/subtype Start Length Header contents
------------------------- -------- -------- ---
LNM 7FE96000 00000080 00000000 00400080 7FE96FD8 00000000 Øoé...@.....
LNM 7FE96080 00000080 00000000 00400080 7FE96F7C 00000000 |oé...@.....
LNM 7FE96100 00000060 00000000 00400060 7FE97044 00000000 Dpé.`.@.....

.

.

.
KFERES 7FE9A5F0 000000E0 00000008 026600E0 00000000 B7CE07D0 ‹.Î·....à.f.....
FREE_IMCB 7FE9A6D0 00000120 00000203 07660118 7FE99CD0 7FFD0698 ..‡.‹.é...f.....
KFERES 7FE9A7F0 000000E0 00000008 026600E0 00000000 B7CD9220 .Í·....à.f.....

continued
VM-0761A-AI

SDA Commands 4–175

SDA Commands
SHOW PROCESS

VM-0809A-AI

Summary of P1 Pool contents

 Packet type/subtype Packet count Packet bytes Percent
--------------------------- ---------------- ---------------- --------
Unknown 00000001 00000080 (0.7%)
RSHT 00000001 00000810 (11.1%)
LNM 0000000A 000008C0 (12.0%)

PGD 00000026 00002740 (53.9%)
 KFERES 0000000D 00000B20 (15.3%)
 IMCB 00000013 00001560 (29.4%)
 FREE_IMCB 00000006 000006C0 (9.3%)

MISC 00000001 00000040 (0.3%)
 RDE 00000001 00000040 (0.3%)

LNMC 00000020 00001000 (22.0%)
 LNMC 00000020 00001000 (22.0%)

Total space used: 000048D0 (18640.) bytes out of 00020000 (131072.) bytes
 in 00000053 (83.) packets

Total space utilization: 14.2%

Process index: 0013 Name: ACME_SERVER Extended PID: 00000413
--

Process has no TQEs

The SHOW PROCESS/ALL command displays information taken from the PCB
and KTBs of process ACME_SERVER, then displays the process registers, inner
mode semaphores, the process header and working set, the process section table,
process regions, the page tables of the process, RMS data structures, information
about I/O channels owned by the process, images activated by the process, process
persona data structures, and process pool. You can also obtain these displays
using the /PCB, /THREADS, /REGISTERS, /SEMAPHORE, /PHD, /WORKING_
SET_LIST, /PST, /RDE, /PAGE=ALL, /RMS, /CHANNELS, /IMAGES=ALL,
PERSONA/RIGHTS, and /POOL/HEADER qualifiers, respectively. This process
had no locks, buffer objects, fast I/O handles, or TQEs to be displayed.

ZK−8864A−GE

 MAPPED ADDRESS PTE ADDRESS PTE TYPE READ WRIT BITS GH PGTYP LOC BAK REFCNT FLINK BLINK

 −−−−−−−− 8 null pages: VA 00000000.00000000 PTE FFFFFFFC.00000000
 −to− 00000000.0000E000 −to− FFFFFFFC.00000038

00000000.00010000 FFFFFFFC.00000040 000003E7.00160F09 VALID KESU NONE M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000034

 −−−−−−−− 7 null pages: VA 00000000.00012000 PTE FFFFFFFC.00000048
 −to− 00000000.0001E000 −to− FFFFFFFC.00000078

00000000.00020000 FFFFFFFC.00000080 0000046E.0016FF09 VALID KESU KESU M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000037

 −−−−−−−− 7 null pages: VA 00000000.00022000 PTE FFFFFFFC.00000088
 −to− 00000000.0002E000 −to− FFFFFFFC.000000B8

00000000.00030000 FFFFFFFC.000000C0 0000015C.00060F01 VALID KESU NONE −−U− 0 PROCESS ACTIVE 00000002.00090000 0001 00000000 00000036

 −−−−−−−− 7 null pages: VA 00000000.00032000 PTE FFFFFFFC.000000C8
 −to− 00000000.0003E000 −to− FFFFFFFC.000000F8

00000000.00040000 FFFFFFFC.00000100 0000014D.00163F09 VALID KESU KE−− M−U− 0 PROCESS ACTIVE 03000000.00000000 0001 00000000 00000032

 −−−−−−−− 991 null pages: VA 00000000.00042000 PTE FFFFFFFC.00000108
 −to− 00000000.007FE000 −to− FFFFFFFC.00001FF8

 −−−−−−−− 130048 entries not in memory: VA 00000000.00800000 PTE FFFFFFFC.00002000
 −to− 00000000.3FFFE000 −to− FFFFFFFC.000FFFF8

PO page table

3. SDA> SHOW PROCESS/PAGE_TABLES/ADDRESS=805E7980

−−−−−−−−−−−−−

This example displays the page tables of a process whose PCB address is
805E7980.

4–176 SDA Commands

SDA Commands
SHOW PROCESS

4. SDA> SHOW PROCESS/BUFFER_OBJECTS/FANDLES

Process index: 0022 Name: Milord_RTA1: Extended PID: 00000062

Process Buffer Objects

ADDRESS ACMODE SEQUENCE REFCNT PID PAGCNT BASE PVA BASE SVA
-------- ------ -------- -------- -------- -------- ----------------- -----------------
8151AE00 User 00000011 00000031 00010022 00000001 00000000.00084000 FFFFFFFF.7DE68000 S2_WINDOW
814A6CC0 User 00000012 00000009 00010022 00000001 00000000.80000000 FFFFFFFF.7DE66000 S2_WINDOW
814FBA00 User 00000013 00000009 00010022 00000001 00000000.80000000 FFFFFFFF.FFFFFFFF NOSVA
81512200 User 00000014 00000009 00010022 00000001 00000000.80028000 FFFFFFFF.7DE64000 S2_WINDOW
8151A8C0 User 00000015 00000009 00010022 00000001 00000000.80028000 FFFFFFFF.FFFFFFFF NOSVA
81438580 User 00000016 00000009 00010022 00000001 FFFFFEFB.FF800000 FFFFFFFF.7DE62000 S2_WINDOW
81464480 User 00000017 00000009 00010022 00000001 FFFFFEFB.FF800000 FFFFFFFF.FFFFFFFF NOSVA
81416F00 Kernel 00000018 00000001 00010022 00000001 00000000.7FF76000 FFFFFFFF.8120C000 NOQUOTA

Fandle Vector Header

Address Maxfix Real_Size CCB buffer handle
-------- -------- --------- -----------------
7FF68290 00000043 00000880 00000018.81416F00

Fandles

Address IRP fastio_done Orgfun Data bo handle IOSA bo handle DBYLEN
-------- -------- ----------- -------- ----------------- ----------------- -----------------
7FF682B0 815CEF40 set 00020031 00000016.81438580 00000011.8151AE00 00000000.00002000
7FF682D0 815CE4C0 set 00020030 00000016.81438580 00000011.8151AE00 00000000.00002000
7FF682F0 815CE200 set 00000031 00000016.81438580 00000011.8151AE00 00000000.00002000
7FF68310 815D4B80 set 00000030 00000016.81438580 00000011.8151AE00 00000000.00002000
7FF68330 815D65C0 set 00020031 00000015.8151A8C0 00000011.8151AE00 00000000.00002000
7FF68350 815D6880 set 00020030 00000015.8151A8C0 00000011.8151AE00 00000000.00002000

.

.

.

7FF68810 815D6B40 set 00020031 00000013.814FBA00 00000011.8151AE00 00000000.00002000
7FF68830 815D5880 set 00020030 00000013.814FBA00 00000011.8151AE00 00000000.00002000

----- 00000013 free FVEs (IRP = 00000000) VA 7FF68850
-to- 7FF68A90

7FF68AB0 815D9840 set 00020031 00000017.81464480 00000011.8151AE00 00000000.00002000
7FF68AD0 815CD040 set 00020030 00000017.81464480 00000011.8151AE00 00000000.00002000
7FF68AF0 815CB480 set 00000031 00000017.81464480 00000011.8151AE00 00000000.00002000

The SHOW PROCESS/BUFFER_OBJECTS/FANDLES command displays all the
buffered objects and fast I/O handles that a process has created.

SDA Commands 4–177

SDA Commands
SHOW PROCESS

5. SDA> SHOW PROCESS JOB_CONTROL/TQE

Process index: 000C Name: JOB_CONTROL Extended PID: 0000004C
--

Timer queue entries

TQE
address Expiration Time Type
-------- --- ------
81504080 00A05ABD.895F93C5 27-NOV-2001 11:17:17.37 TSD---
815026C0 00A05AC3.80D0E000 27-NOV-2001 12:00:00.00 TSA---
81502180 00A0C160.635594EF 7-APR-2002 02:00:00.12 TSA---

This example shows the timer queue entries for the process JOB_CONTROL. See
Table 4–29 for an explanation of the Type codes.

4–178 SDA Commands

SDA Commands
SHOW RAD

SHOW RAD

Displays the settings and explanations of the RAD_SUPPORT system parameter
fields, and the assignment of CPUs and memory to the Resource Affinity Domains
(RADs). This command is only useful on platforms that support RADs. By
default, the SHOW RAD command displays the settings of the RAD_SUPPORT
system parameter fields.

Format

SHOW RAD [number | /ALL]

Parameter

number
Information on CPUs and memory for the specified RAD.

Qualifier

/ALL
Displays settings of the RAD_SUPPORT parameter fields and the CPU and
memory assignments for all RADs.

Examples

1. SDA> SHOW RAD

Resource Affinity Domains

RAD information header address: FFFFFFFF.81032340
Maximum RAD count: 00000008
RAD containing SYS$BASE_IMAGE: 00000000
RAD support flags: 0000004F

3 2 2 1 1
1 4 3 6 5 8 7 0
+-----------+-----------+-----------+-----------+
|..|..| skip|ss|gg|ww|pp|..|..|..|..|.p|fs|cr|ae|
+-----------+-----------+-----------+-----------+
|..|..| 0| 0| 0| 0| 0|..|..|..|..|.1|00|11|11|
+-----------+-----------+-----------+-----------+

Bit 0 = 1: RAD support is enabled

Bit 1 = 1: Soft RAD affinity support is enabled
(Default scheduler skip count of 16 attempts)

Bit 2 = 1: System-space replication support is enabled

Bit 3 = 1: Copy on soft fault is enabled

Bit 4 = 0: Default RAD-based page allocation in use

Allocation Type RAD choice
--------------- ----------
Process-private pagefault Home
Process creation or inswap Random
Global pagefault Random
System-space page allocation Current

Bit 5 = 0: RAD debug feature is disabled

SDA Commands 4–179

SDA Commands
SHOW RAD

Bit 6 = 1: Per-RAD non-paged pool is enabled

This example shows the settings of the RAD_SUPPORT system parameter
fields.

2. SDA> SHOW RAD 2

Resource Affinity Domain 0002

CPU sets:

Active 08 10 11
Active 08 10 11
Configure 08 09 10 11
Potential 08 10 11

PFN ranges:

Start PFN End PFN PFN count Flags
--------- -------- --------- -----
01000000 0107FFE7 0007FFE8 000A OpenVMS Base
0107FFE8 0107FFFF 00000018 0009 Console Base

SYSPTBR: 01002A01

RAD data: B817C000

This example shows information on the CPUs and memory for RAD 2.

4–180 SDA Commands

SDA Commands
SHOW RESOURCES

SHOW RESOURCES

Displays information about all resources in the system or about a resource
associated with a specific lock.

Format

SHOW RESOURCES {/ADDRESS=n | /ALL (d)
| /BRIEF | /CACHED | /CONTENTION [=ALL]
| /LOCKID=lock-id | /LIST | /NAME=name
| /OWNED | /STATUS= (keyword [,keyword...])}

Parameters

None.

Qualifiers

/ADDRESS=n
Displays information from the resource block at the specified address.

/ALL
Displays information from all resource blocks (RSBs) in the system. This is the
default behavior of the SHOW RESOURCES command.

/BRIEF
Displays a single line of information for each resource.

/CACHED
Displays resource blocks that are no longer valid. The memory for these resources
is saved so that later requests for resources can use them.

/CONTENTION [=ALL]
Displays only resources that have at least one lock on either the waiting or
conversion queue. Unless you specify the ALL keyword, resources with locks on
the waiting or conversion queues that are not participating in deadlock searches
are ignored. (Locks not participating in deadlock searches are requested with
either the LCK$M_NODLCKWT or LCK$M_NODLCKBLK flags.)

/LIST
Displays summary information for each resource, followed by a list of all locks
associated with the resource.

/LOCKID=lock-id
Displays information on the resource associated with the lock with the specified
lock-id.

/NAME=name
Displays information about the specific resource. Name may be the actual name
of the resource, if it only contains uppercase letters, numerals, the underscore
(_), dollar sign, colon (:), and some other printable characters, as for example,
/NAME=MY_LOCK. If it contains other printable characters (including lowercase
letters), you may need to enclose the name in quotation marks (""), as for
example, /NAME="My_Lock/47". If it contains nonprintable characters, the name
may be specified as a comma-separated list comprised of strings and hexadecimal

SDA Commands 4–181

SDA Commands
SHOW RESOURCES

numbers, as for example, /NAME=("My_Lock",0C00,"/47") would specify the name
"My_Lock<NUL><FF>/47". The hexadecimal number can be no more than 8
digits (4 bytes) in length. Nonprintable sequences or more than 4 bytes must
be split into multiple hexadecimal numbers. The maximum length of a resource
name is 32 characters.

/OWNED
Displays only owned resources.

/STATUS=(keyword [,keyword...])
Displays only resources that have the specified status bits set in the RSB$L_
STATUS field. Status keywords are as follows:

Keyword Meaning

2PC_IP Indicates a two-phase convert operation in progress
BRL Indicates byte range resource
CHK_BTR Checks for better master
CVTFULRNG Indicates full-range requests in convert queue
CVTSUBRNG Indicates sub-range requests in convert queue
DIRENTRY Indicates directory entry during failover
DIR_IP Creates directory entry
DIR_RQD Indicates directory entry required
INVPEND Checks for value block invalidation
RBLD_ACT Indicates lock rebuild active for this tree
RBLD_IP Indicates rebuild operation in progress
RBLD_RQD Indicates rebuild required for this resource tree
RM_ACCEPT Accepts new master
RM_DEFLECT Deflects remote interest
RM_IP Indicates resource remaster in progress
RM_PEND Indicates a pending resource remaster operation
RM_RBLD Indicates to always rebuild resource tree
RM_WAIT Blocks local activity
VALCUR Indicates value block is current
VALINVLD Indicates value block invalid
WTFULRNG Indicates full-range requests in wait queue
WTSUBRNG Indicates a sub-range requests in wait queue

Description

The SHOW RESOURCES command displays the information listed in Table 4–23
either for each resource in the system or for the specific resource associated with
the specified lock-id, address, or name.

4–182 SDA Commands

SDA Commands
SHOW RESOURCES

Table 4–23 Resource Information in the SHOW RESOURCES Display

Field Contents

Address of RSB Address of the resource block (RSB) that describes this
resource.

GGMODE Indication of the most restrictive mode in which a lock
on this resource has been granted. Table 4–24 shows the
values and their meanings.
For information on conflicting and incompatible lock
modes, see the OpenVMS System Services Reference
Manual.

Status The contents of the resource block status field.
Parent RSB Address of the RSB that is the parent of this RSB. This

field is 00000000 if the RSB itself is a parent block.
CGMODE Indication of the most restrictive lock mode to which a

lock on this resource is waiting to be converted. This does
not include the mode for which the lock at the head of the
conversion queue is waiting. See Table 4–24.

Sub-RSB count Number of RSBs of which this RSB is the parent. This
field is 0 if the RSB has no sub-RSBs.

FGMODE Indication of the full-range grant mode. See Table 4–24.
Lock Count The total count of all locks on the resource.
RQSEQNM Sequence number of the request.
BLKAST count Number of locks on this resource that have requested a

blocking AST.
CSID Cluster system identification number (CSID) and name of

the node that owns the resource.
Resource Dump of the name of this resource, as stored at the end

of the RSB. The first two columns are the hexadecimal
representation of the name, with the least significant
byte represented by the rightmost two digits in the
rightmost column. The third column contains the ASCII
representation of the name, the least significant byte
being represented by the leftmost character in the column.
Periods in this column represent values that correspond
to nonprinting ASCII characters.

Valblk Hexadecimal dump of the 16-byte value block associated
with this resource.

Length Length in bytes of the resource name.
Mode Processor mode of the namespace in which this RSB

resides.
Owner Owner of the resource. Certain resources, owned by

the operating system, list ‘‘System’’ as the owner. Locks
owned by a group have the number (in octal) of the
owning group in this field.

(continued on next page)

SDA Commands 4–183

SDA Commands
SHOW RESOURCES

Table 4–23 (Cont.) Resource Information in the SHOW RESOURCES Display

Field Contents

Seqnum Sequence number associated with the resource’s value
block. If the number indicates that the value block is not
valid, the words ‘‘Not valid’’ appear to the right of the
number.

Granted queue List of locks on this resource that have been granted. For
each lock in the list, SDA displays the number of the lock
and the lock mode in which the lock was granted.

Conversion queue List of locks waiting to be converted from one mode
to another. For each lock in the list, SDA displays
the number of the lock, the mode in which the lock
was granted, and the mode to which the lock is to be
converted.

Waiting queue List of locks waiting to be granted. For each lock in the
list, SDA displays the number of the lock and the mode
requested for that lock.

Table 4–24 Lock Modes on Resources

Value1 Meaning

NL Null mode
CR Concurrent-read mode
CW Concurrent-write mode
PR Protected-read mode
PW Protected-write mode
EX Exclusive mode

1Values are shown in order from the least restrictive mode to the most restrictive.

4–184 SDA Commands

SDA Commands
SHOW RESOURCES

Examples

1. SDA> SHOW RESOURCES
Resource database

RSB: FFFFFFFF.7FD47950 GGMODE: PR Status: VALID
Parent RSB: 00000000.00000000 CGMODE: PR
Sub-RSB count: 0 FGMODE: PR
Lock Count: 1 RQSEQNM: 0000
BLKAST count: 1 CSID: 00000000 (SWORKS)

Resource: 6D632445 48434143 CACHE$cm Valblk: 00000000 00000000
Length 24 525F534B 524F5753 SWORKS_R 00000000 00000000
Kernel mode 000027DA 4E455641 AVENÚ’..
System 00000000 00000000 Seqnum: 00000000

Granted queue (Lock ID / Gr mode / Range):
0100042F PR 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

Resource Database

RSB: FFFFFFFF.7FA66A50 GGMODE: NL Status: VALID
Parent RSB: FFFFFFFF.7FD88350 CGMODE: NL
Sub-RSB count: 0 FGMODE: NL
Lock Count: 2 RQSEQNM: 004D
BLKAST count: 0 CSID: 00000000 (SWORKS)

Resource: 001E7324 42313146 F11B$s.. Valblk: 00000001 0000033A
Length 10 00000000 00000000 00000000 00000000
Kernel mode 00000000 00000000
System 00000000 00000000 Seqnum: 00000672

Granted queue (Lock ID / Gr mode / Range):
69000F80 NL 00000000-FFFFFFFF 01001810 NL 00000000-FFFFFFFF

Conversion queue (Lock ID / Gr mode / Range -> Rq mode / Range):
*** EMPTY QUEUE ***

Waiting queue (Lock ID / Rq mode / Range):
*** EMPTY QUEUE ***

.

.

.

The SHOW RESOURCES command displays information taken from the RSBs of
all resources in the system. For instance, the RSB at FFFFFFFF.7FA66A5016 is
a parent block with no sub-RSBs.

SDA Commands 4–185

SDA Commands
SHOW RESOURCES

ZK-9159A-AI

2. SDA> SHOW RESOURCE/CONTENTION

Resource Contention Information:

 RSB Address Parent RSB Addr Resource Name LKB Address PID Node Lockid GR RQ Queue
----------------- ----------------- ------------------------------- ----------------- -------- ------ -------- -- -- -------
FFFFFFFF.7FAAC550 FFFFFFFF.7FB47A50 P.......
 FFFFFFFF.7FAEC350 00010027 SWORKS 04001158 PW Granted
 FFFFFFFF.7FB34550 00000000 CMOS 08000E46 CR Granted
 FFFFFFFF.7FA93250 00000000 CMOS 030015A3 CR Granted
 FFFFFFFF.7FB3EA50 00000000 CMOS 09000DC0 CR Granted
 FFFFFFFF.7FAE7B50 00000000 CMOS 080011C6 CR Granted
 FFFFFFFF.7FA36050 00010023 SWORKS 060019F3 CR Granted
 FFFFFFFF.7FA7BE50 00000000 CMOS 020016A1 NL Granted
 FFFFFFFF.7FAAC650 00000000 SWORKS 010014AC NL Granted
 FFFFFFFF.7FA62C50 00010028 SWORKS 020017C1 CR PW Convert
 FFFFFFFF.7FAF9950 00010024 SWORKS 040010E5 CR PW Convert
 FFFFFFFF.7FA33C50 00000000 CMOS 02001A36 PW Waiting
 FFFFFFFF.7FB14550 00000000 CMOS 0F00010E PW Waiting

FFFFFFFF.7FB39050 FFFFFFFF.7FB47A50 P...ö...
 FFFFFFFF.7FB3CC50 00010024 SWORKS 0B000DDC PW Granted
 FFFFFFFF.7FAC0E50 00010023 SWORKS 03001400 CR Granted
 FFFFFFFF.7FA74950 00000000 CMOS 030016DE CR Granted
 FFFFFFFF.7FA4C050 00010026 SWORKS 020018CE CR Granted
 FFFFFFFF.7FAC5050 00010022 SWORKS 070013C3 CR Granted
 FFFFFFFF.7FB38450 00010025 SWORKS 09000E0E CR Granted
 FFFFFFFF.7FACD450 00010028 SWORKS 0700134E CR Granted
 FFFFFFFF.7FAD2250 00000000 CMOS 080012DF CR Granted
 FFFFFFFF.7FAE0750 00000000 CMOS 0100120F NL Granted
 FFFFFFFF.7FB37B50 00000000 SWORKS 01000E3D NL Granted
 FFFFFFFF.7FB14A50 00010027 SWORKS 2500011C CR PR Convert
 FFFFFFFF.7FAD4950 00000000 CMOS 070012CA CR PR Convert
 FFFFFFFF.7FAC9550 00000000 CMOS 0900138D CR PR Convert
 FFFFFFFF.7FB03250 00000000 CMOS 0C001069 CR PR Convert
 FFFFFFFF.7FD70C50 00000000 CMOS 080005AF CR PR Convert

FFFFFFFF.7FD7A250 00000000.00000000 †...T...&.à!....
 FFFFFFFF.7FDC5650 00010026 SWORKS 1A00084C PW Granted
 FFFFFFFF.7FDF4950 00010020 SWORKS 010009A1 PW Waiting

FFFFFFFF.7FD9A250 00000000.00000000 †...T...$.à!....
 FFFFFFFF.7FD07550 00010024 SWORKS 2E0004EB PW Granted
 FFFFFFFF.7FDF4A50 00010020 SWORKS 010009A2 PW Waiting

FFFFFFFF.7FD36450 FFFFFFFF.7FD0EC50 QMAN$JBC_ALIVE_01
 FFFFFFFF.7FD27050 00000000 CMOS 1A0002CA EX Granted
 FFFFFFFF.7FD7B450 00000000 CMOS 050007D4 CR Waiting

This example of the SHOW RESOURCES/CONTENTION commands shows all
the resources for which there is contention, and which are to be included in dead
lock searches.

4–186 SDA Commands

SDA Commands
SHOW RESOURCES

3.SDA> SHOW RESOURCES/LIST

Resource Database

 RSB Address Parent RSB Addr Resource Name LKB Address PID Node Lockid GR RQ Queue
----------------- ----------------- ------------------------------- ----------------- -------- ------ -------- -- -- -------
FFFFFFFE.DD058180 00000000.00000000 F11Bb217$DKC200: QTV11
 FFFFFFFE.DD04E580 00000000 MHERTZ 02000DDF CR Granted

FFFFFFFE.DCF6F080 00000000.00000000 F11Bv22$DKB12: QTV11
 FFFFFFFE.DD063180 00000000 MHERTZ 0200122D CR Granted

FFFFFFFE.DCFAC680 00000000.00000000 SYS$_$70$DKA302: QTV11
 FFFFFFFE.DCF21180 00000000 MHERTZ 03001130 CR Granted

FFFFFFFE.DCFBA580 FFFFFFFE.DCEFBC80 F11B$s.#.. BACH
 FFFFFFFE.DD032380 00000000 MHERTZ 0D000C9F NL Granted

FFFFFFFE.DD00E380 00000000.00000000 CACHE$cmRAVEN_BACKUPù... MHERTZ
 FFFFFFFE.DCF54A80 00000000 B8OVEN 03000280 PR Granted
 FFFFFFFE.DCEF8780 00000000 QTV9 12000C51 PR Granted
 FFFFFFFE.DD029880 00000000 KHERTZ 07000A6B PR Granted
 FFFFFFFE.DD002780 00000000 MHERTZ 16000829 PR Granted

FFFFFFFE.DD060A80 00000000.00000000 SYS$_DSA71: QTV11
 FFFFFFFE.DCF91580 00000000 MHERTZ 1A00115D CR Granted

FFFFFFFE.DCF22B80 00000000.00000000 CACHE$cmB_PICCHUBCK Ú... WHAMOO

FFFFFFFE.DCF57E80 00000000.00000000 $DSA7779_$SEQCMD QTV9
 FFFFFFFE.DCF37D80 00000000 MHERTZ 0300011C PR Granted

FFFFFFFE.DCFDD780 00000000.00000000 CACHE$cmPAGE_SWAP Ü... QTV11
 FFFFFFFE.DCFD3880 00000000 MHERTZ 0D00062A PR Granted

 .
 .
 .

FFFFFFFE.DCFA6480 00000000.00000000 VCCv1$DUA126: QTV11
 FFFFFFFE.DD053980 00000000 MHERTZ 23000E09 PR Granted

FFFFFFFE.DCF9BA80 00000000.00000000 $DSA7778_$WATCHR EBJB17
 FFFFFFFE.DCFFA280 00000000 MHERTZ 02000AF3 EX Waiting

FFFFFFFE.DCF50380 00000000.00000000 F11B$aRAVEN_BACKUPö... KHERTZ
 FFFFFFFE.DCEED980 00000000 MHERTZ 01000025 PR Granted

 .
 .
 . VM-0947A-AI

This example shows the output from the SHOW RESOURCES/LIST command.

SDA Commands 4–187

SDA Commands
SHOW RMD

SHOW RMD

Displays information contained in the reserved memory descriptors. Reserved
memory is used within the system by memory-resident global sections.

Format

SHOW RMD [/QUALIFIERS]

Parameters

None.

Qualifiers

/ADDRESS=n
Displays a specific reserved memory descriptor entry, given its address.

/ALL
Displays information in all the reserved memory descriptors. This qualifier is the
default.

Description

The SHOW RMD command displays information that resides in the reserved
memory descriptors. Table 4–25 shows the fields and their meanings.

Table 4–25 RMD Fields

Field Meaning

ADDRESS Gives the address of the reserved memory descriptor.
NAME Gives the name of the reserved memory descriptor.
GROUP Gives the UIC group that owns the reserved memory. This is

given as -S- for system global reserved memory.
RAD Gives the required RAD for the reserved memory. Displays

"Any" if no RAD specified.
PFN Gives starting page number of the reserved memory.
COUNT Gives the number of pages reserved.
IN_USE
/ERROR

Gives the number of pages in use. If an error occurred when the
reserved memory was being allocated, the error condition code
is displayed in parentheses. A second line, giving the text of the
error, is also displayed in this case.

ZERO_PFN Gives the next page number to be zeroed.
FLAGS Gives the settings of flags for specified reserved memory

descriptor as a hexadecimal number, then displays key flag
bits by name. The names may use multiple lines in the display.

4–188 SDA Commands

SDA Commands
SHOW RMD

Example

SDA> SHOW RMD

Reserved Memory Descriptor List

In_Use
Address Name Group RAD PFN Count (Error) Zero_PFN Flags
-------- ------------------- ----- ---- -------- -------- -------- -------- ------------------------------
814199C0 LARGE 00022 Any 00000000 000004E2 00000000 00000000 000000E0 Group Page_Tables

GBLSec
81419940 LARGE 00022 Any 00000000 00138800 (0000244C) 00000000 000001A0 Error Group GBLSec

Error = %SYSTEM-F-INSFLPGS, insufficient Fluid Pages available
81419AC0 SMALL 00011 0001 00000180 00000001 00000000 00000180 000000E1 Alloc Group

Page_Tables GBLSec
81419A40 SMALL 00011 0001 00000E00 00000080 00000000 00000E00 000000A1 Alloc Group GBLSec

This example shows the default output of a SHOW RMD command.

SDA Commands 4–189

SDA Commands
SHOW RMS

SHOW RMS

Displays the RMS data structures selected by the SET RMS command to be
included in the default display of the SHOW PROCESS/RMS command.

Format

SHOW RMS

Parameters

None.

Qualifiers

None.

Description

The SHOW RMS command lists the names of the data structures selected for the
default display of the SHOW PROCESS/RMS command.

For a description of the significance of the options listed in the SHOW RMS
display, see the description of the SET RMS command and Table 4–2.

For an illustration of the information displayed by the SHOW PROCESS/RMS
command, see the examples included in the description of the SHOW PROCESS
command.

Examples

1. SDA> SHOW RMS

RMS Display Options: IFB,IRB,IDX,BDB,BDBSUM,ASB,CCB,WCB,FCB,FAB,RAB,NAM,
XAB,RLB,BLB,BLBSUM,GBD,GBH,FWA,GBDSUM,JFB,NWA,RU,DRC,SFSB,GBSB

Display RMS structures for all IFI values.

The SHOW RMS command displays the full set of options available for
display by the SHOW PROCESS/RMS command. SDA, by default, selects the
full set of RMS options at the beginning of an analysis.

2. SDA> SET RMS=(IFAB=1,CCB,WCB)
SDA> SHOW RMS

RMS Display Options: IFB,CCB,WCB

Display RMS structures only for IFI =0001

The SET RMS command establishes the IFB, CCB, and WCB as the
structures to be displayed, and only for the file whose internal File Identifer
has the value 1, when the SHOW PROCESS/RMS command is issued. The
SHOW RMS command verifies this selection of RMS options.

4–190 SDA Commands

SDA Commands
SHOW RSPID

SHOW RSPID

Displays information about response IDs (RSPIDs) of all System Communications
Services (SCS) connections or, optionally, about a specific SCS connection.

Format

SHOW RSPID [/CONNECTION=cdt-address]

Parameters

None.

Qualifier

/CONNECTION=cdt-address
Displays RSPID information for the specific SCS connection whose connection
descriptor table (CDT) address is provided in cdt-address. You can find the cdt-
address for any active connection on the system in the CDT summary page
display of the SHOW CONNECTIONS command. CDT addresses are also stored
in many individual data structures related to SCS connections. These data
structures include class driver request packets (CDRPs) and unit control blocks
(UCBs) for class drivers that use SCS and cluster system blocks (CSBs) for the
connection manager.

Description

Whenever a local system application (SYSAP) requires a response from a remote
SYSAP, a unique number, called an RSPID, is assigned to the response by the
local system. The RSPID is transmitted in the original request (as a means of
identification), and the remote SYSAP returns the same RSPID in its response to
the original request.

The SHOW RSPID command displays information taken from the response
descriptor table (RDT), which lists the currently open local requests that require
responses from SYSAPs at a remote node. For each RSPID, SDA displays the
following information:

• RSPID value

• Address of the class driver request packet (CDRP), which generally represents
the original request

• Address of the CDT that is using the RSPID

• Name of the local process using the RSPID

• Remote node from which a response is required (and has not yet been
received)

SDA Commands 4–191

SDA Commands
SHOW RSPID

Examples

1. SDA> SHOW RSPID

--- Summary of Response Descriptor Table (RDT) 805E6F18 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

39D00000 8062CC80 805E8710 VMS$VMScluster VANDQ1
EE210001 80637260 805E8C90 VMS$DISK_CL_DRVR ROMRDR
EE240002 806382E0 805E8DF0 VMS$DISK_CL_DRVR VANDQ1
EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR VANDQ1
5DB90004 80636BC0 805E8870 VMS$VMScluster ROMRDR
5C260005 80664040 805E8870 VMS$VMScluster ROMRDR
38F80006 80664A80 805E8710 VMS$VMScluster VANDQ1

This example shows the default output for the SHOW RSPID command.

2. SDA> SHOW RSPID/CONNECTION=805E8F50

--- Summary of Response Descriptor Table (RDT) 805E6F18 ---

RSPID CDRP Address CDT Address Local Process Name Remote Node
----- ------------ ----------- ------------------ -----------

EE440003 806393E0 805E8F50 VMS$TAPE_CL_DRVR VANDQ1

This example shows the output for a SHOW RSPID/CONNECTION command.

4–192 SDA Commands

SDA Commands
SHOW SHM_CPP

SHOW SHM_CPP

Displays information about the shared memory common property partitions
(CPPs). The default display shows a single-page summary that includes a single
line for each CPP.

Format

SHOW SHM_CPP [/ QUALIFIERS]

Parameters

None.

Qualifiers

/ADDRESS=n
Displays a detailed page of information about an individual shared memory CPP
given the address of the SHM_CPP structure.

/ALL
Displays a detailed page of information about each shared memory CPP.

/IDENT=n
Displays a detailed page of information about an individual shared memory CPP.

/PFN [=option]
Displays PFN data in addition to the basic SHM_CPP. The default is all lists
(free, bad, untested), plus the PFN database pages and the complete range of
PFNs in the CPP.

To display only the complete range of PFNs in the CPP, use the keyword ALL_
FRAGMENTS with the /PFN qualifier:

/PFN = ALL_FRAGMENTS

To display only the bad page list, use the keyword BAD with the /PFN qualifier:

/PFN = BAD

To display only the free page list, use the keyword FREE with the /PFN qualifier:

/PFN = FREE

To display the PFNs containing the PFN database, use the keyword PFNDB with
the /PFN qualifier:

/PFN = PFNDB

To display only the untested page list, use the keyword UNTESTED with the
/PFN qualifier:

/PFN = UNTESTED

To display multiple lists, you can combine keywords with the /PFN qualifier:

/PFN = (x,y)

If you specify /PFN without /ALL, /IDENT, or /ADDRESS, then the system
displays the PFN lists from the last shared memory CPP accessed.

SDA Commands 4–193

SDA Commands
SHOW SHM_CPP

Examples

1. SDA> SHOW SHM_CPP

Summary of Shared Memory Common Property Partitions

Base address of SHM_CPP array: FFFFFFFF.7F2BA140
Maximum number of SHM_CPP entries: 00000007
Size of each SHM_CPP: 00000240
Maximum fragment count per SHM_CPP: 00000010

Valid CPP count: 00000001

ID SHM_CPP address MinPFN MaxPFN Page count Free pages Flags
---- ----------------- -------- -------- -------- -------- --------
-- SHM_CPP IDs 0000 to 0002: VALID flag clear --

0003 FFFFFFFF.7F2BA800 00060000 0007FFFF 00020000 0001FCF7 00000001 VALID

-- SHM_CPP IDs 0004 to 0006: VALID flag clear --

This example shows the default output for the SHOW SHM_CPP command.

2. SDA> SHOW SHM_CPP/IDENT=3

Shared Memory CPP 0003

SHM_CPP address: FFFFFFFF.7F2BA800

Version: 00000001 Flags: 00000001 VALID
Size: 00000000.000000C0 Page count: 00020000
Actual fragment count: 00000001 Minimum PFN: 00060000
Maximum fragment count: 00000010 Maximum PFN: 0007FFFF

Length of free page list: 0001FCF7
Length of bad page list: 00000000
Length of untested page list: 00000000

PMAP array for PFN database pages

PMAP Start PFN PFN count
----- -------- --------

0. 00060053 00000280

PMAP array for all fragments

PMAP Start PFN PFN count
----- -------- --------

0. 00060000 00020000

GLock address: FFFFFFFF.7F2BA8C0 Handle: 80000000.00010D19

GLock name: SHM_CPP00000003 Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 08 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 00249F00
Thread ID: 00000000.00000000

Connected GNode bitmask: FFFFFFFF.7F2BA900

Valid bits: 00000004 State: 00000000.00000000
Unit count: 0001 Unit size: QUADWORD

Unit bitmask:
........7 00000000

4–194 SDA Commands

SDA Commands
SHOW SHM_CPP

Ranges of free pages

Range Start PFN PFN count
----- -------- --------

1. 000602F6 00000002
2. 0006030B 0001FCF5

This example shows the details for a single SHM_CPP.

SDA Commands 4–195

SDA Commands
SHOW SHM_REG

SHOW SHM_REG

Displays information about shared memory regions. The default display shows a
single page summary that includes a single line for each region.

Format

SHOW SHM_REG [/ QUALIFIERS] [name]

Parameter

name
Detailed page of information about the named region.

Qualifiers

/ADDRESS=n
Displays a detailed page of information about an individual region given the
address of the SHM_REG structure.

/ALL
Displays a detailed page of information about each region.

/IDENT=n
Displays a detailed page of information about the specified region.

Examples

1. SDA>SHOW SHM_REG

Summary of Shared Memory Regions

Base address of SHM_REG array: FFFFFFFF.7F2BB140
Maximum number of SHM_REG entries: 00000040
Size of each SHM_REG: 00000208
Base address of SHM_DESC array: FFFFFFFF.7F2DC000

Valid region count: 00000009

ID SHM_REG address Region Tag SysVA / GSTX Flags
---- ----------------- --------------------------------------- ----------------- --------
0000 FFFFFFFF.7F2BB140 SYS$GALAXY_MANAGEMENT_DATABASE FFFFFFFF.7F234000 00000001 VALID
0001 FFFFFFFF.7F2BB348 SYS$SHARED_MEMORY_PFN_DATABASE FFFFFFFE.00000000 00000001 VALID
0002 FFFFFFFF.7F2BB550 SMCI$SECTION_PBA_04001 -<None>- 00000001 VALID
0003 FFFFFFFF.7F2BB758 GLXCPUBALANCER$SYSGBL 0000013F 00000005 VALID SHARED_CONTEXT_VALID
0004 FFFFFFFF.7F2BB960 SMCI$CHANNEL_PBA_0_1 FFFFFFFF.8F3AE000 00000001 VALID
0005 FFFFFFFF.7F2BBB68 SMCI$CHANNEL_PBA_0_2 FFFFFFFF.8FAEE000 00000001 VALID
0006 FFFFFFFF.7F2BBD70 SMCI$CHANNEL_PBA_1_2 -<Not Attached>- 00000001 VALID
0007 FFFFFFFF.7F2BBF78 LAN$SHM_REG FFFFFFFF.7F20C000 00000009 VALID ATTACH_DETACH
0008 FFFFFFFF.7F2BC180 GLX$CPU_BAL_GLOCK $000006 00000140 00000005 VALID SHARED_CONTEXT_VALID

-- SHM_REG IDs 0009 to 003F: never used --

This example shows the summary of all shared memory regions in the system.

4–196 SDA Commands

SDA Commands
SHOW SHM_REG

2. SDA> SHOW SHM_REG SMCI$CHANNEL_PBA_0_1

SHM_REG address: FFFFFFFF.7F2BB960

Version: 00000001 Flags: 00000001 VALID
Index/Sequence: 0004/00000003 Size: 00000000.00000120

Region tag: SMCI$CHANNEL_PBA_0_1
Creation time: 31-MAR-1999 14:11:11.37

SHM_DESC address: FFFFFFFF.7F2DC200

Version: 00000001 Flags: 00000005 ATTACHED SYS_VA_VALID
System VA: FFFFFFFF.8F3AE000 Virtual size: 00000000.00274000
I/O ref count: 00000000.00000000
Index/Sequence: 0004/00000003 Context: FFFFFFFF.80F42480
Callback: FFFFFFFF.8F38E5C0 SYS$PBDRIVER+185C0

MMAP address: FFFFFFFF.7F2BB9E0

Level count: 0001 Flags: 0001 VALID
Top page count: 00000001 Virtual size: 00000000.00274000
PFN list page count: 00000001 First PFN: 000602D4
Data page count: 00000009

GLock address: FFFFFFFF.7F2BBA80 Handle: 80000000.00010F51

GLock name: SHM_REG00000004 Flags: 00
Owner count: 00 Owner node: 00
Node sequence: 0000 Owner: 000000
IPL: 08 Previous IPL: 00
Wait bitmask: 00000000.00000000 Timeout: 002DC6C0
Thread ID: 00000000.00000000

Attached GNode bitmask: FFFFFFFF.7F2BBAC0

Valid bits: 00000004 State: 00000000.00000012 AUTO_LOCK SET_COUNT
Unit count: 0001 Unit size: QUADWORD
Lock IPL: 08 Saved IPL: 00000008
Count of bits set: 00000002

Unit bitmask:
........3 00000000

I/O in progress bitmask: FFFFFFFF.7F2BBAF8

Valid bits: 00000004 State: 00000000.00000012 AUTO_LOCK SET_COUNT
Unit count: 0001 Unit size: QUADWORD
Lock IPL: 08 Saved IPL: 00000000
Count of bits set: 00000000

Unit bitmask:
........0 00000000

SHM_CPP bitmask: FFFFFFFF.7F2BBB30

Valid bits: 00000007 State: 00000000.00000000
Unit count: 0001 Unit size: QUADWORD

Unit bitmask:
........08 00000000)

This example shows the details for a single shared memory region.

SDA Commands 4–197

SDA Commands
SHOW SPINLOCKS

SHOW SPINLOCKS

Displays the multiprocessing synchronization data structures.

Format

SHOW SPINLOCKS {[name] | /ADDRESS=expression | /INDEX=expression}
[/COUNTS | /OWNED | /DYNAMIC | /STATIC
| /PCB | /PORT | /CACHED_PCB | /MAILBOX] [{/BRIEF | /FULL}]

Parameter

name
Name of the spinlock to be displayed. Device spinlock names are of the form
node$lock, where node indicates the OpenVMS Cluster node name and lock
indicates the device and controller identification (for example, HAETAR$DUA).
If there is no OpenVMS Cluster node name, the dollar sign ($) is also skipped
(for example, DUA). This parameter cannot be used to identify mailbox, PCB, or
cached PCB spinlocks.

Qualifiers

/ADDRESS=expression
Displays the spinlock at the address specified in expression. You can use the
/ADDRESS qualifier to display a specific device spinlock; however, the name of
the spinlock is listed as ‘‘Unknown’’ in the display.

/BRIEF
Produces a condensed display of the spinlock information displayed by default
by the SHOW SPINLOCKS command, including the following: address, spinlock
name or device name, IPL or device IPL, rank, ownership depth, and CPU ID of
the owner CPU. If the system under analysis was executing with full-checking
multiprocessing enabled (according to the setting of the MULTIPROCESSING
or SYSTEM_CHECK system parameter), then the number of waiting CPUs and
interlock status are also displayed.

/CACHED_PCB
Displays all PCB-specific spinlocks associated with PCBs of deleted processes.

/COUNTS
Produces a display of Spin, Wait, and Acquire counts for each spinlock (only if
full-checking multiprocessing is enabled).

/DYNAMIC
Displays information for all dynamic spinlocks in the system (device, port,
mailbox, PCB, and cached PCB spinlocks).

/FULL
Displays full descriptive and diagnostic information for each displayed spinlock.

/INDEX=expression
Displays the static spinlock whose index is specified in expression. You can only
use the /INDEX qualifier to display a named static spinlock.

4–198 SDA Commands

SDA Commands
SHOW SPINLOCKS

/MAILBOX
Displays all mailbox-specific spinlocks.

/OWNED
Displays information for all spinlocks owned by the SDA current CPU. If a
processor does not own any spinlocks, SDA displays the following message:

No spinlocks currently owned by CPU xx

The xx represents the CPU ID of the processor.

/PCB
Displays all PCB-specific spinlocks.

/PORT
Displays all port spinlocks.

/STATIC
Displays information for all static spinlocks in the system.

Description

The SHOW SPINLOCKS command displays status and diagnostic information
about the multiprocessing synchronization structures known as spinlocks.

A static spinlock is a spinlock whose data structure is permanently assembled
into the system. Static spinlocks are accessed as indexes into a vector of longword
addresses called the spinlock vector, the address of which is contained in
SMP$AR_SPNLKVEC. Table 4–26 lists the static spinlocks.

A dynamic spinlock is a spinlock that is created based on the configuration of a
particular system. One such dynamic spinlock is the device lock SYSMAN creates
when configuring a particular device. This device lock synchronizes access to the
device’s registers and certain UCB fields. The system creates a dynamic spinlock
by allocating space from nonpaged pool, rather than assembling the lock into the
system as it does in creating a static spinlock. Other types of dynamic spinlocks
are: port spinlocks, mailbox spinlocks, PCB and cached PCB spinlocks.

See the Writing OpenVMS Alpha Device Drivers in C for a full discussion of the
role of spinlocks in maintaining synchronization of kernel-mode activities in a
multiprocessing environment.

Table 4–26 Static Spinlocks

Name Description

QUEUEAST Spinlock for queuing ASTs at IPL 6
FILSYS Spinlock on file system structures
LCKMGR Spinlock on all lock manager structures
IOLOCK8/SCS Spinlock for executing a driver fork process at IPL 8
TX_SYNCH Transaction processing spinlock
TIMER Spinlock for adding and deleting timer queue entries and

searching the timer queue
(continued on next page)

SDA Commands 4–199

SDA Commands
SHOW SPINLOCKS

Table 4–26 (Cont.) Static Spinlocks

Name Description

PORT Template structure for dynamic spinlocks for ports with
multiple devices

IO_MISC Miscellaneous short-term I/O spinlocks
MMG Spinlock on memory management, PFN database, swapper,

modified page writer, and creation of per-CPU database
structures

SCHED Spinlock on some process data structures and the scheduler
database.

IOLOCK9 Spinlock for executing a driver fork process at IPL 9
IOLOCK10 Spinlock for executing a driver fork process at IPL 10
IOLOCK11 Spinlock for executing a driver fork process at IPL 11
MAILBOX Spinlock for sending messages to the permanent system

(OPCOM, JOBCTL, and so on) mailboxes
POOL Spinlock on nonpaged pool database
PERFMON Spinlock for I/O performance monitoring
INVALIDATE Spinlock for system space translation buffer (TB) invalidation
HWCLK Spinlock on hardware clock database, including the

quadword containing the due time of the first timer queue
entry (EXE$GQ_1ST_TIME) and the quadword containing
the system time (EXE$GQ_SYSTIME)

MEGA Spinlock for serializing access to fork-wait queue
EMB/MCHECK Spinlock for allocating and releasing error-logging buffers

and synchronizing certain machine error handling

For each spinlock in the system, SHOW SPINLOCKS provides the following
information:

• Name of the spinlock (or device name for the device lock)

• Address of the spinlock data structure (SPL)

• The owning CPU’s CPU ID

• IPL at which allocation of the lock is synchronized on a local processor

• Number of nested acquisitions of the spinlock by the processor owning the
spinlock (Ownership Depth)

• Rank of the spinlock

• Timeout interval for spinlock acquisition (in terms of 10 milliseconds)

• Shared array (shared spinlock context block pointer)

• Number of processors waiting to obtain the spinlock

• Interlock (synchronization mutex used when full-checking multiprocessing is
enabled)

The last two items (CPUs waiting and Interlock) are only displayed if full-
checking multiprocessing is enabled.

4–200 SDA Commands

SDA Commands
SHOW SPINLOCKS

SHOW SPINLOCKS/BRIEF produces a condensed display of this same
information, excluding the share array and timeout interval.

SHOW SPINLOCKS/COUNTS displays only the Spin, Wait, and Acquire counts
for each spinlock.

If the system under analysis was executing with full-checking multiprocessing
enabled, SHOW SPINLOCKS/FULL adds to the spinlock display the Spin, Wait,
and Acquire counts and the last sixteen PCs at which the lock was acquired or
released. If applicable, SDA also displays the PC of the last release of multiple,
nested acquisitions of the lock.

If no spinlock name, address, or index is given, then information is displayed for
all applicable spinlocks.

SDA Commands 4–201

SDA Commands
SHOW SPINLOCKS

Examples

1. SDA> SHOW SPINLOCKS

System static spinlock structures

EMB Address 810AE300
Owner CPU ID None IPL 0000001F
Ownership Depth FFFFFFFF Rank 00000000
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

MCHECK Address 810AE300
Owner CPU ID None IPL 0000001F
Ownership Depth FFFFFFFF Rank 00000000
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

MEGA Address 810AE400
Owner CPU ID None IPL 0000001F
Ownership Depth FFFFFFFF Rank 00000002
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

HWCLK Address 810AE500
Owner CPU ID None IPL 00000016
Ownership Depth FFFFFFFF Rank 00000004
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

.

.

.

System dynamic spinlock structures

QTV14$OPA Address 8103FB00
Owner CPU ID None DIPL 00000015
Ownership Depth FFFFFFFF Rank FFFFFFFF
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

QTV14$MBA Address 810AE900
Owner CPU ID None IPL 0000000B
Ownership Depth FFFFFFFF Rank 0000000C
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

QTV14$NLA Address 810AE900
Owner CPU ID None IPL 0000000B
Ownership Depth FFFFFFFF Rank 0000000C
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

QTV14$PKA Address 814AA100
Owner CPU ID None DIPL 00000015
Ownership Depth FFFFFFFF Rank FFFFFFFF
Timeout Interval 000186A0 Share Array 00000000
CPUs Waiting 00000000 Interlock Free

.

.

.

This excerpt illustrates the default output of the SHOW SPINLOCKS command.

4–202 SDA Commands

SDA Commands
SHOW SPINLOCKS

2. SDA> SHOW SPINLOCKS/BRIEF

System static spinlock structures

Spinlock Owner CPUs
Address Name IPL Rank Depth CPU Waiting Interlock
-------- ------------ ---- -------- -------- -------- -------- ---------
810AE300 EMB 001F 00000000 FFFFFFFF None 00000000 Free
810AE300 MCHECK 001F 00000000 FFFFFFFF None 00000000 Free
810AE400 MEGA 001F 00000002 FFFFFFFF None 00000000 Free
810AE500 HWCLK 0016 00000004 FFFFFFFF None 00000000 Free
810AE600 INVALIDATE 0015 00000006 FFFFFFFF None 00000000 Free
810AE700 PERFMON 000F 00000008 FFFFFFFF None 00000000 Free
810AE800 POOL 000B 0000000A FFFFFFFF None 00000000 Free
810AE900 MAILBOX 000B 0000000C FFFFFFFF None 00000000 Free
810AEA00 IOLOCK11 000B 0000000E FFFFFFFF None 00000000 Free
810AEB00 IOLOCK10 000A 0000000F FFFFFFFF None 00000000 Free
810AEC00 IOLOCK9 0009 00000010 FFFFFFFF None 00000000 Free
810AED00 SCHED 0008 00000012 00000000 00000000 00000001 Free
810AEE00 MMG 0008 00000014 FFFFFFFF None 00000000 Free
810AEF00 IO_MISC 0008 00000016 FFFFFFFF None 00000000 Free
810AF000 PORT 0008 00000017 FFFFFFFF None 00000000 Free
810AF100 TIMER 0008 00000018 00000000 00000000 00000000 Free
810AF200 TX_SYNCH 0008 00000019 FFFFFFFF None 00000000 Free
810AF300 SCS 0008 0000001A FFFFFFFF None 00000000 Free
810AF400 LCKMGR 0008 0000001B FFFFFFFF None 00000000 Free
810AF500 FILSYS 0008 0000001C FFFFFFFF None 00000000 Free
810AF600 QUEUEAST 0006 0000001E FFFFFFFF None 00000000 Free

System dynamic spinlock structures

Device Owner CPUs
Address Name DIPL Rank Depth CPU Waiting Interlock
-------- ------------ ---- -------- -------- -------- -------- ---------
8103FB00 QTV14$OPA 0015 FFFFFFFF FFFFFFFF None 00000000 Free
810AE900 QTV14$MBA 000B 0000000C FFFFFFFF None 00000000 Free
810AE900 QTV14$NLA 000B 0000000C FFFFFFFF None 00000000 Free
814AA100 QTV14$PKA 0015 FFFFFFFF FFFFFFFF None 00000000 Free

.

.

.

This excerpt illustrates the condensed form of the display produced in the first
example.

3. SDA> SHOW SPINLOCKS/FULL SCHED

System static spinlock structures

SCHED Address 810AED00
Owner CPU ID 00000000 IPL 00000008
Ownership Depth 00000000 Rank 00000012
Timeout Interval 002DC6C0 Share Array 00000000
CPUs Waiting 00000001 Interlock Free

Spins 00000000.0458E8DC Busy waits 00252E8D
Acquires 00000000.01279BE0

SDA Commands 4–203

SDA Commands
SHOW SPINLOCKS

Spinlock SPL$C_SCHED was last acquired or released from:
(Most recently) 8004AD00 EXE$SWTIMER_FORK_C+00170

. 8004B1D4 EXE$SWTIMER_FORK_C+00644

. 8004AD00 EXE$SWTIMER_FORK_C+00170

. 8004B1D4 EXE$SWTIMER_FORK_C+00644

. 8004AD00 EXE$SWTIMER_FORK_C+00170

. 8004B1D4 EXE$SWTIMER_FORK_C+00644

. 8004AD00 EXE$SWTIMER_FORK_C+00170

. 8004B1D4 EXE$SWTIMER_FORK_C+00644

. 8004AD00 EXE$SWTIMER_FORK_C+00170

. 80136A2C SCH$INTERRUPT+0070C

. 80117580 SCH$IDLE_C+002A0

. 8004B230 EXE$SWTIMER_FORK_C+006A0

. 8004AFC4 EXE$SWTIMER_FORK_C+00434

. 80117360 SCH$IDLE_C+00080

. 8012E5F4 EXE$HIBER_INT_C+00074
(Least recently) 80132150 EXE$SCHDWK_C+00110

Last release of multiple acquisitions occurred at:
80262A54 EXE$CHECK_VERSION_C+009F4

This display shows the detailed information on the SCHED spinlock, including
the PC history.

4–204 SDA Commands

SDA Commands
SHOW STACK

SHOW STACK

Displays the location and contents of the process stacks (of the SDA current
process) and the system stack.

Format

SHOW STACK {range | /ALL | [/EXECUTIVE | /INTERRUPT | /KERNEL
| /PHYSICAL | /SUPERVISOR | /SYSTEM | /USER]} {/LONG | /QUAD
(d)}

Parameter

range
Range of memory locations you want to display in stack format. You can express
a range using the following syntax:

m:n Range of addresses from m to n
m;n Range of addresses starting at m and continuing for n bytes

Qualifiers

/ALL
Displays the locations and contents of the four process stacks for the SDA current
process and the system stack.

/EXECUTIVE
Shows the executive stack for the SDA current process.

/INTERRUPT
Shows the system stack and is retained for compatibility with OpenVMS VAX.
The interrupt stack does not exist in OpenVMS Alpha.

/KERNEL
Shows the kernel stack for the SDA current process.

/LONG
Displays longword width stacks. If you do not specify this qualifier, SDA by
default displays quadword width stacks.

/PHYSICAL
Treats the start and end addresses in the given range as physical addresses. This
qualifier is only relevant when a range is specified. By default, SDA treats range
addresses as virtual addresses.

/QUAD
Displays quadword width stacks. This is the default.

/SUPERVISOR
Shows the supervisor stack for the SDA current process.

/SYSTEM
Shows the system stack.

/USER
Shows the user stack for the SDA current process.

SDA Commands 4–205

SDA Commands
SHOW STACK

Description

The SHOW STACK command, by default, displays the stack that was in use when
the system failed, or, in the analysis of a running system, the current operating
stack. For a process that became the SDA current process as the result of a SET
PROCESS command, the SHOW STACK command by default shows its current
operating stack.

The various qualifiers to the command allow display of any of the four per-process
stacks for the SDA current process, as well as the system stack for the SDA
current CPU. In addition, any given range can be displayed in stack format.

You can define SDA process and CPU context by using the SET CPU, SHOW
CPU, SHOW CRASH, SET PROCESS, and SHOW PROCESS commands as
indicated in their command descriptions. A complete discussion of SDA context
control appears in Section 2.5.

SDA provides the following information in each stack display:

Section Contents

Identity of stack SDA indicates whether the stack is a process stack (user,
supervisor, executive, or kernel) or the system stack.

Stack pointer The stack pointer identifies the top of the stack. The
display indicates the stack pointer by the symbol SP =>.

Stack address SDA lists all the addresses that the operating system
has allocated to the stack. The stack addresses are listed
in a column that increases in increments of 8 bytes (one
quadword) unless you specify the /LONG qualifier, in
which case addresses are listed in increments of 4 (one
longword).

Stack contents SDA lists the contents of the stack in a column to the
right of the stack addresses.

Symbols SDA attempts to display the contents of a location
symbolically, using a symbol and an offset.
If the stack is being displayed in quadword width and
the location cannot be symbolized as a quadword, SDA
attempts to symbolize the least significant longword and
then the most significant longword. If the address cannot
be symbolized, this column is left blank.

Canonical stack When displaying the kernel stack of a noncurrent process
in a crash dump, SDA identifies the stack locations used
by the scheduler to store the register contents of the
process.

Mechanism array
Signal array
Exception frame

When displaying the current stack in a FATALEXCPT,
INVEXCEPTN, SSRVEXCEPT, or UNXSIGNAL bugcheck,
SDA identifies the stack locations used to store registers
and other key data for these structures.

If a stack is empty, the display shows the following:

SP => (STACK IS EMPTY)

4–206 SDA Commands

SDA Commands
SHOW STACK

Example

SDA> SHOW STACK
Current Operating Stack (SYSTEM):

FFFFFFFF.8244BD08 FFFFFFFF.800600FC SCH$REPORT_EVENT_C+000FC
FFFFFFFF.8244BD10 00000000.00000002
FFFFFFFF.8244BD18 00000000.00000005
FFFFFFFF.8244BD20 FFFFFFFF.8060C7C0

SP => FFFFFFFF.8244BD28 FFFFFFFF.8244BEE8
FFFFFFFF.8244BD30 FFFFFFFF.80018960 EXE$HWCLKINT_C+00260
FFFFFFFF.8244BD38 00000000.000001B8
FFFFFFFF.8244BD40 00000000.00000050
FFFFFFFF.8244BD48 00000000.00000210 UCB$N_RSID+00002
FFFFFFFF.8244BD50 00000000.00000000
FFFFFFFF.8244BD58 00000000.00000000
FFFFFFFF.8244BD60 FFFFFFFF.804045D0 SCH$GQ_IDLE_CPUS
FFFFFFFF.8244BD68 FFFFFFFF.8041A340 EXE$GL_FKWAITFL+00020
FFFFFFFF.8244BD70 00000000.00000250 UCB$T_MSGDATA+00034
FFFFFFFF.8244BD78 00000000.00000001

CHF$IS_MCH_ARGS FFFFFFFF.8244BD80 00000000.0000002B
CHF$PH_MCH_FRAME FFFFFFFF.8244BD88 FFFFFFFF.8244BFB0
CHF$IS_MCH_DEPTH FFFFFFFF.8244BD90 80000000.FFFFFFFD G
CHF$PH_MCH_DADDR FFFFFFFF.8244BD98 00000000.00001600 CTL$C_CLIDATASZ+00060
CHF$PH_MCH_ESF_ADDR FFFFFFFF.8244BDA0 FFFFFFFF.8244BF40
CHF$PH_MCH_SIG_ADDR FFFFFFFF.8244BDA8 FFFFFFFF.8244BEE8
CHF$IH_MCH_SAVR0 FFFFFFFF.8244BDB0 FFFFFFFF.8041FB00 SMP$RELEASEL+00640
CHF$IH_MCH_SAVR1 FFFFFFFF.8244BDB8 00000000.00000000
CHF$IH_MCH_SAVR16 FFFFFFFF.8244BDC0 00000000.0000000D
CHF$IH_MCH_SAVR17 FFFFFFFF.8244BDC8 0000FFF0.00007E04
CHF$IH_MCH_SAVR18 FFFFFFFF.8244BDD0 00000000.00000000
CHF$IH_MCH_SAVR19 FFFFFFFF.8244BDD8 00000000.00000001
CHF$IH_MCH_SAVR20 FFFFFFFF.8244BDE0 00000000.00000000
CHF$IH_MCH_SAVR21 FFFFFFFF.8244BDE8 FFFFFFFF.805AE4B6 SISR+0006E
CHF$IH_MCH_SAVR22 FFFFFFFF.8244BDF0 00000000.00000001
CHF$IH_MCH_SAVR23 FFFFFFFF.8244BDF8 00000000.00000010
CHF$IH_MCH_SAVR24 FFFFFFFF.8244BE00 00000000.00000008
CHF$IH_MCH_SAVR25 FFFFFFFF.8244BE08 00000000.00000010
CHF$IH_MCH_SAVR26 FFFFFFFF.8244BE10 00000000.00000001
CHF$IH_MCH_SAVR27 FFFFFFFF.8244BE18 00000000.00000000
CHF$IH_MCH_SAVR28 FFFFFFFF.8244BE20 FFFFFFFF.804045D0 SCH$GQ_IDLE_CPUS

FFFFFFFF.8244BE28 30000000.00000300 UCB$L_PI_SVA
FFFFFFFF.8244BE30 FFFFFFFF.80040F6C EXE$REFLECT_C+00950
FFFFFFFF.8244BE38 18000000.00000300 UCB$L_PI_SVA
FFFFFFFF.8244BE40 FFFFFFFF.804267A0 EXE$CONTSIGNAL+00228
FFFFFFFF.8244BE48 00000000.7FFD00A8 PIO$GW_IIOIMPA
FFFFFFFF.8244BE50 00000003.00000000
FFFFFFFF.8244BE58 FFFFFFFF.8003FC20 EXE$CONNECT_SERVICES_C+00920
FFFFFFFF.8244BE60 FFFFFFFF.8041FB00 SMP$RELEASEL+00640
FFFFFFFF.8244BE68 00000000.00000000
FFFFFFFF.8244BE70 FFFFFFFF.8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF.8244BE78 00000000.0000000D
FFFFFFFF.8244BE80 0000FFF0.00007E04
FFFFFFFF.8244BE88 00000000.00000000
FFFFFFFF.8244BE90 00000000.00000001
FFFFFFFF.8244BE98 00000000.00000000
FFFFFFFF.8244BEA0 FFFFFFFF.805AE4B6 SISR+0006E
FFFFFFFF.8244BEA8 00000000.00000001
FFFFFFFF.8244BEB0 00000000.00000010
FFFFFFFF.8244BEB8 00000000.00000008
FFFFFFFF.8244BEC0 00000000.00000010
FFFFFFFF.8244BEC8 00000000.00000001
FFFFFFFF.8244BED0 00000000.00000000
FFFFFFFF.8244BED8 FFFFFFFF.804045D0 SCH$GQ_IDLE_CPUS
FFFFFFFF.8244BEE0 00000000.00000001

SDA Commands 4–207

SDA Commands
SHOW STACK

CHF$L_SIG_ARGS FFFFFFFF.8244BEE8 0000000C.00000005
CHF$L_SIG_ARG1 FFFFFFFF.8244BEF0 FFFFFFFC.00010000 SYS$K_VERSION_08

FFFFFFFF.8244BEF8 00000300.FFFFFFFC UCB$L_PI_SVA
FFFFFFFF.8244BF00 00000002.00000001
FFFFFFFF.8244BF08 00000000.0000000C
FFFFFFFF.8244BF10 00000000.00000000
FFFFFFFF.8244BF18 00000000.FFFFFFFC
FFFFFFFF.8244BF20 00000008.00000000
FFFFFFFF.8244BF28 00000000.00000001
FFFFFFFF.8244BF30 00000008.00000000
FFFFFFFF.8244BF38 00000000.FFFFFFFC

INTSTK$Q_R2 FFFFFFFF.8244BF40 FFFFFFFF.80404668 SCH$GL_ACTIVE_PRIORITY
INTSTK$Q_R3 FFFFFFFF.8244BF48 FFFFFFFF.8042F280 SCH$WAIT_KERNEL_MODE
INTSTK$Q_R4 FFFFFFFF.8244BF50 FFFFFFFF.80615F00
INTSTK$Q_R5 FFFFFFFF.8244BF58 00000000.00000000
INTSTK$Q_R6 FFFFFFFF.8244BF60 FFFFFFFF.805AE000
INTSTK$Q_R7 FFFFFFFF.8244BF68 00000000.00000000
INTSTK$Q_PC FFFFFFFF.8244BF70 00000000.FFFFFFFC
INTSTK$Q_PS FFFFFFFF.8244BF78 30000000.00000300 UCB$L_PI_SVA

FFFFFFFF.8244BF80 FFFFFFFF.80404668 SCH$GL_ACTIVE_PRIORITY
FFFFFFFF.8244BF88 00000000.7FFD00A8 PIO$GW_IIOIMPA
FFFFFFFF.8244BF90 00000000.00000000
FFFFFFFF.8244BF98 FFFFFFFF.8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF.8244BFA0 00000000.00000044
FFFFFFFF.8244BFA8 FFFFFFFF.80403C30 SMP$GL_FLAGS

Prev SP (8244BFB0) => FFFFFFFF.8244BFB0 FFFFFFFF.8042CD50 SCH$WAIT_PROC+00060
FFFFFFFF.8244BFB8 00000000.00000000
FFFFFFFF.8244BFC0 FFFFFFFF.805EE040
FFFFFFFF.8244BFC8 FFFFFFFF.8006DB54 PROCESS_MANAGEMENT_NPRO+0DB54
FFFFFFFF.8244BFD0 FFFFFFFF.80404668 SCH$GL_ACTIVE_PRIORITY
FFFFFFFF.8244BFD8 FFFFFFFF.80615F00
FFFFFFFF.8244BFE0 FFFFFFFF.8041B220 SCH$RESOURCE_WAIT
FFFFFFFF.8244BFE8 00000000.00000044
FFFFFFFF.8244BFF0 FFFFFFFF.80403C30 SMP$GL_FLAGS
FFFFFFFF.8244BFF8 00000000.7FF95E00

The SHOW STACK command displays a system stack. The data shown before
the stack pointer may not be valid. The mechanism array, signal array, and
exception frame symbols displayed on the left appear only for INVEXCEPTN,
FATALEXCPT, UNXSIGNAL, and SSRVEXCEPT bugchecks.

4–208 SDA Commands

SDA Commands
SHOW SUMMARY

SHOW SUMMARY

Displays a list of all active processes and the values of the parameters used in
swapping and scheduling these processes.

Format

SHOW SUMMARY [/IMAGE | /PROCESS_NAME=process_name
| /THREAD | /USER=username]

Parameters

None.

Qualifiers

/IMAGE
Causes SDA to display, if possible, the name of the image being executed within
each process.

/PROCESS_NAME=process_name
Displays only processes with the specified process name. You can use wildcards
in process_name, in which case SDA displays all matching processes. The default
action is for SDA to display data for all processes, regardless of process name.

/THREAD
Displays information on all the current threads associated with the current
process.

/USER=username
Displays only the processes of the specified user. You can use wildcards in
username, in which case SDA displays processes of all matching users. The
default action is for SDA to display data for all processes, regardless of user
name.

Description

The SHOW SUMMARY command displays the information in Table 4–27 for each
active process in the system.

Table 4–27 Process Information in the SHOW SUMMARY Display

Column Contents

Extended PID The 32-bit number that uniquely identifies the process.
Indx Index of this process into the PCB array.
Process name Name assigned to the process.
Username Name of the user who created the process.
State Current state of the process. Table 4–28 shows the 14 states

and their meanings.
(continued on next page)

SDA Commands 4–209

SDA Commands
SHOW SUMMARY

Table 4–27 (Cont.) Process Information in the SHOW SUMMARY Display

Column Contents

Pri Current scheduling priority of the process.
PCB/KTB Address of the process control block or address of the kernel

thread block.
PHD Address of the process header.
Wkset Number (in decimal) of pages currently in the process

working set.

Table 4–28 Current State Information

State Meaning

COM Computable and resident in memory
COMO Computable, but outswapped
CUR nn Currently executing on CPU ID nn
CEF Waiting for a common event flag
LEF Waiting for a local event flag
LEFO Outswapped and waiting for a local event flag
HIB Hibernating
HIBO Hibernating and outswapped
SUSP Suspended
SUSPO Suspended and outswapped
PFW Waiting for a page that is not in memory (page-fault wait)
FPG Waiting to add a page to its working set (free-page wait)
COLPG Waiting for a page collision to be resolved (collided-page wait);

this usually occurs when several processes cause page faults on
the same shared page

MWAIT Miscellaneous wait
RWxxx Waiting for system resource xxx
TBS Waiting "To Be Scheduled" by class scheduler
TBSO Waiting "To Be Scheduled" and outswapped
TBS_P "To Be Scheduled" state is pending
TBSPO "To Be Scheduled" state is pending and outswapped
WTBYT Waiting for BYTCNT quota
WTTQE Waiting for TQCNT quota

4–210 SDA Commands

SDA Commands
SHOW SUMMARY

Example

SDA> SHOW SUMMARY
Current process summary

Extended Indx Process name Username State Pri PCB/KTB PHD Wkset
-- PID -- ---- --------------- ----------- ------- --- -------- -------- ------
00000041 0001 SWAPPER HIB 16 80C641D0 80C63E00 0
00000045 0005 IPCACP SYSTEM HIB 10 80DC0780 81266000 39
00000046 0006 ERRFMT SYSTEM HIB 8 80DC2240 8126C000 57
00000047 0007 OPCOM SYSTEM HIB 8 80DC3340 81272000 31
00000048 0008 AUDIT_SERVER AUDIT$SERVER HIB 10 80D61280 81278000 152
00000049 0009 JOB_CONTROL SYSTEM HIB 10 80D620C0 8127E000 50
0000004A 000A SECURITY_SERVER SYSTEM HIB 10 80DC58C0 81284000 253
0000004B 000B TP_SERVER SYSTEM HIB 10 80DC8900 8128A000 75
0000004C 000C NETACP DECNET HIB 10 80DBFE00 8125A000 78
0000004D 000D EVL DECNET HIB 6 80DCA080 81290000 76
0000004E 000E REMACP SYSTEM HIB 8 80DE4E00 81296000 14
00000050 0010 DECW$SERVER_0 SYSTEM HIB 8 80DEF940 812A2000 739
00000051 0011 DECW$LOGINOUT <login> LEF 4 80DF0F00 812A8000 273
00000052 0012 SYSTEM SYSTEM LEF 9 80D772C0 81260000 75

The SHOW SUMMARY command describes all active processes in the system at
the time of the system failure. Note that there was no process in the CUR state
at the time of the failure.

SDA Commands 4–211

SDA Commands
SHOW SYMBOL

SHOW SYMBOL

Displays the hexadecimal value of a symbol and, if the value is equal to an
address location, the contents of that location.

Format

SHOW SYMBOL [/ALL [/ALPHA | /VALUE]] symbol-name

Parameter

symbol-name
Name of the symbol to be displayed. You must provide a symbol-name unless
you specify the /ALL qualifier.

Qualifiers

/ALL
Displays information on all symbols whose names begin with the characters
specified in symbol-name. If no symbol name is given, all symbols are displayed.

/ALPHA
When used with the /ALL qualifier, displays the symbols sorted only in
alphabetical order. The default is to display the symbols twice, sorted
alphabetically and then by value.

When used with a wildcard symbol name, displays the symbols in alphabetical
order. This is the default action.

/VALUE
When used with the /ALL qualifier, displays the symbols sorted only in value
order. The default is to display the symbols twice, sorted alphabetically and then
by value.

When used with a wildcard symbol name, displays the symbols in value order.

Description

The SHOW SYMBOL command with the /ALL qualifier outputs all symbols
whose names begin with the characters specified in symbol-name in both
alphabetical order and in value order. If no symbol-name is given, all symbols
are output.

The SHOW SYMBOL/ALL command is useful for determining the values of
symbols that belong to a symbol set, as illustrated in the second example below.

The SHOW SYMBOL command without the /ALL qualifier allows for standard
wildcards in the symbol-name parameter. By default, matching symbols are
displayed only in alphabetical order. If you specify SHOW SYMBOL/VALUE,
then matching symbols are output sorted by value. If you specify SHOW
SYMBOL/ALPHA/VALUE, then matching symbols are displayed twice, sorted
alphabetically and then by value.

The SHOW SYMBOL command without the /ALL qualifier and no wildcards in
the symbol-name parameter outputs the value associated with the given symbol.

4–212 SDA Commands

SDA Commands
SHOW SYMBOL

When displaying any symbol value, SDA also treats the value as an address and
attempts to obtain the contents of the location. If successful, the contents are also
displayed.

Examples

1. SDA> SHOW SYMBOL G
G = FFFFFFFF.80000000 : 6BFA8001.201F0104

The SHOW SYMBOL command evaluates the symbol G as
FFFFFFFF.8000000016 and displays the contents of address
FFFFFFFF.8000000016 as 6BFA8001.201F010416.

2. SDA> SHOW SYMBOL/ALL BUG
Symbols sorted by name

BUG$L_BUGCHK_FLAGS = FFFFFFFF.804031E8 : 00000000.00000001
BUG$L_FATAL_SPSAV = FFFFFFFF.804031F0 : 00000000.00000001
BUG$REBOOT = FFFFFFFF.8042E320 : 00000000.00001808
BUG$REBOOT_C = FFFFFFFF.8004F4D0 : 47FB041D.47FD0600

.

.

.
Symbols sorted by value

BUG$REBOOT_C = FFFFFFFF.8004F4D0 :47FB041D.47FD0600
BUG$L_BUGCHK_FLAGS = FFFFFFFF.804031E8 :00000000.00000001
BUG$L_FATAL_SPSAV = FFFFFFFF.804031F0 :00000000.00000001
BUG$REBOOT = FFFFFFFF.8042E320 :00000000.00001808

.

.

.

This example shows the display produced by the SHOW SYMBOL/ALL
command. SDA searches its symbol table for all symbols that begin with the
string ‘‘BUG’’ and displays the symbols and their values. Although certain
values equate to memory addresses, it is doubtful that the contents of those
addresses are actually relevant to the symbol definitions in this instance.

SDA Commands 4–213

SDA Commands
SHOW TQE

SHOW TQE

Displays the entries in the timer queue. The default output is a summary display
of all timer queue entries (TQEs) in chronological order.

Format

SHOW TQE [/ADDRESS=n][/ALL][/BACKLINK][/PID=n]
[/ROUTINE=n]

Parameters

None.

Qualifiers

/ADDRESS=n
Outputs a detailed display of the TQE at the specified address.

/ALL
Outputs a detailed display of all TQEs.

/BACKLINK
Outputs the display of TQEs, either detailed (/ALL) or brief (default), in reverse
order, starting at the entry furthest into the future.

/PID=n
Limits the display to the TQEs that affect the process with the specified internal
PID. The PID format required is the entire internal PID, including both the
process index and the sequence number, and not the extended PID or process
index alone, as used elsewhere in SDA. You can also display TQEs specific to a
process using SHOW PROCESS/TQE.

/ROUTINE=n
Limits the display to the TQEs for which the specified address is the fork PC.

Description

The SHOW TQE command allows the timer queue to be displayed. By default a
summary display of all TQEs is output in chronological order, beginning with the
next entry to become current.

The /ADDRESS, /PID, and /ROUTINE qualifiers are mutually exclusive. The
/ADDRESS and /BACKLINK qualifiers are mutually exclusive.

4–214 SDA Commands

SDA Commands
SHOW TQE

In the summary display, the TQE type is given as a six-character code, as in
Table 4–29.

Table 4–29 TQE Types in Summary TQE Display

Column Symbol Meaning

1 T Timer ($SETIMR) entry
S System subroutine entry
W Scheduled wakeup ($SCHDWK) entry

2 S Single-shot entry
R Repeated entry

3 D Delta time
A Absolute time

4 C CPU time
– Elapsed time

5 E Extended format (64-bit TQE)
– 32-bit TQE

6 N TQE not to be deallocated at AST completion
– TQE to be deallocated at AST completion

Examples

1. SDA> SHOW TQE

Timer queue entries

System time: 15-NOV-2001 15:09:06.92
First TQE time: 15-NOV-2001 15:09:06.92

TQE PID/
address Expiration Time Type routine
-------- --- ------ --------
815AB8C0 00A0516F.EF279B0F 15-NOV-2001 15:09:06.92 SSD--- 835FCC48 TCPIP$INTERNET_SERVICES+9EC48
812CB3C0 00A0516F.EF279B0F 15-NOV-2001 15:09:06.92 SRD--- 812CCEC8 SYS$PPPDRIVER+0EEC8
81514140 00A0516F.EF29FD5F 15-NOV-2001 15:09:06.94 TSD--- 0001000F SECUURITY_SERVER
815C8040 00A0516F.EF2B2E87 15-NOV-2001 15:09:06.95 SRD--- 81361BA0 SYS$LTDRIVER+31BA0
8148CF98 00A0516F.EF2C52AD 15-NOV-2001 15:09:06.95 SRD--- 812786B0 LAN$CREATE_LAN+000B0
81318290 00A0516F.EF2FDC84 15-NOV-2001 15:09:06.98 SRD--- 813187B8 PWIPDRIVER+047B8
814FB080 00A0516F.EF3238D0 15-NOV-2001 15:09:06.99 TSD--- 0001000F SECURITY_SERVER
8140FF40 00A0516F.EF32851A 15-NOV-2001 15:09:06.99 TSD--- 0001000F SECURITY_SERVER
...
81503100 00A05177.0AED8000 15-NOV-2001 16:00:00.00 TSA--- 0001000C JOB_CONTROL
815030C0 00A0C160.63CD14D9 7-APR-2002 02:00:00.91 TSA--- 0001000C JOB_CONTROL

This example shows the summary display of all TQEs.

SDA Commands 4–215

SDA Commands
SHOW TQE

2. SDA> SHOW TQE/ADDRESS=8131F5C0

Timer queue entry 8131F5C0

TQE Address: 8131F5C0 Type: 00000005 SYSTEM_SUBROUTINE REPEAT
FLink: 8129C6D8 BLink: 83975948
Requestor process ID: 00000000 Access Mode: 00000000

Expiration time: 009EADD2.417463F4 30-MAY-2000 15:14:47.31 +67860
Delta repeat time: 00000000.00989680 0 00:00:01.00

Fork PC: 811FDCD0 NETDRIVER+190D0
Fork R3: 00000000.00000000
Fork R4: FFFFFFFF.8131DB00

This example shows the detailed display for a single TQE.

4–216 SDA Commands

SDA Commands
SHOW WORKING_SET_LIST, SHOW WSL

SHOW WORKING_SET_LIST, SHOW WSL

Displays the system working set list and retains the current process context.

Format

SHOW WORKING_SET_LIST or SHOW WSL [={GPT | SYSTEM | LOCKED | n}]

Parameters

None.

Qualifiers

None.

Description

The SHOW WORKING_SET_LIST command displays the contents of requested
entries in the system working set list. If you do not specify an option, all working
set list entries are displayed. Table 4–30 shows the options available with
SHOW WORKING_SET_LIST. The SHOW WORKING_SET_LIST command is
equivalent to the SHOW PROCESS/SYSTEM/WORKING_SET_LIST command,
but the SDA current process context returns to the prior process upon completion.
See the SHOW PROCESS command and Table 4–18 for more information.

Table 4–30 Options for the SHOW WORKING_SET_LIST Command

Options Results

GPT Displays only working set list entries for global page table pages
SYSTEM Displays only working set list entries for pageable system pages
LOCKED Displays only working set list entries for pageable system pages

that are locked in the system working set
n Displays a specific working set entry, where n is the working set

list index (WSLX) of the entry of interest

SDA Commands 4–217

SDA Commands
SPAWN

SPAWN

Creates a subprocess of the process currently running SDA, copying the context
of the current process to the subprocess and, optionally, executing a specified
command within the subprocess.

Format

SPAWN [/qualifier[,...]] [command]

Parameter

command
Name of the command that you want the subprocess to execute.

Qualifiers

/INPUT=filespec
Specifies an input file containing one or more command strings to be executed
by the spawned subprocess. If you specify a command string with an input file,
the command string is processed before the commands in the input file. When
processing is complete, the subprocess is terminated.

/NOLOGICAL_NAMES
Specifies that the logical names of the parent process are not to be copied to the
subprocess. The default behavior is that the logical names of the parent process
are copied to the subprocess.

/NOSYMBOLS
Specifies that the DCL global and local symbols of the parent process are not
to be passed to the subprocess. The default behavior is that these symbols are
passed to the subprocess.

/NOTIFY
Specifies that a message is to be broadcast to SYS$OUTPUT when the subprocess
either completes processing or aborts. The default behavior is that such a
message is not sent to SYS$OUTPUT.

/NOWAIT
Specifies that the system is not to wait until the subprocess is completed before
allowing more commands to be specified. This qualifier allows you to specify new
commands while the spawned subprocess is running. If you specify /NOWAIT,
use /OUTPUT to direct the output of the subprocess to a file to prevent more than
one process from simultaneously using your terminal.

The default behavior is that the system waits until the subprocess is completed
before allowing more commands to be specified.

/OUTPUT=filespec
Specifies an output file to which the results of the SPAWN operation are written.
To prevent output from the spawned subprocess from being displayed while
you are specifying new commands, specify an output other than SYS$OUTPUT
whenever you specify /NOWAIT. If you omit the /OUTPUT qualifier, output is
written to the current SYS$OUTPUT device.

4–218 SDA Commands

SDA Commands
SPAWN

/PROCESS=process-name
Specifies the name of the subprocess to be created. The default name of the
subprocess is USERNAME_n, where USERNAME is the user name of the parent
process. The variable n represents the subprocess number.

Example

SDA> SPAWN
$ MAIL

.

.

.
$ DIR

.

.

.
$ LO

Process SYSTEM_1 logged out at 5-JAN-1993 15:42:23.59
SDA>

This example uses the SPAWN command to create a subprocess that issues DCL
commands to invoke the Mail utility. The subprocess then lists the contents of a
directory before logging out to return to the parent process executing SDA.

SDA Commands 4–219

SDA Commands
UNDEFINE

UNDEFINE

Removes the specified symbol from SDA’s symbol table.

Format

UNDEFINE symbol

Parameter

symbol
The name of the symbol to be deleted from SDA’s symbol table. A symbol name is
required.

Qualifiers

None.

4–220 SDA Commands

SDA Commands
VALIDATE PFN_LIST

VALIDATE PFN_LIST

Validates that the page counts on lists are correct.

Format

VALIDATE PFN_LIST {/ALL (d) | [/BAD | /FREE | /MODIFIED | /PRIVATE |
/UNTESTED | /ZERO]}

Parameters

None.

Qualifiers

/ALL
Validates all the PFN lists: bad, free, modified, zeroed free pages, and private
pages.

/BAD
Validates the bad page list.

/FREE
Validates the free page list.

/MODIFIED
Validates the modified page list.

/PRIVATE
Validates all private page lists.

/UNTESTED
Validates the untested page list that was set up for deferred memory testing.

/ZERO
Validates the zeroed free page list.

Description

The VALIDATE PFN_LIST command validates the specified PFN list by counting
the number of entries in the list and comparing that to the running count of
entries for each list maintained by the system.

Examples

1. SDA> VALIDATE PFN_LIST
Free page list validated: 1433 pages

(excluding zeroed free page list with expected size 103 pages)
Zeroed free page list validated: 103 pages
Modified page list validated: 55 pages
Bad page list validated: 0 pages
Untested page list validated: 0 pages
Private page list at 81486340 validated: 2 pages

SDA Commands 4–221

SDA Commands
VALIDATE PFN_LIST

2. SDA> VALIDATE PFN_LIST/FREE
Free page list validated: 1433 pages

(excluding zeroed free page list with expected size 103 pages)

4–222 SDA Commands

SDA Commands
VALIDATE QUEUE

VALIDATE QUEUE

Validates the integrity of the specified queue by checking the pointers in the
queue.

Format

VALIDATE QUEUE [address]
[/BACKLINK | /LIST | /PHYSICAL |
/QUADWORD | /SELF_RELATIVE | /SINGLY_LINKED]

Parameter

address
Address of an element in a queue.

If you specify the period (.) as the address, SDA uses the last evaluated
expression as the queue element’s address.

If you do not specify an address, the VALIDATE QUEUE command determines
the address from the last issued VALIDATE QUEUE command in the current
SDA session.

If you do not specify an address, and no queue has previously been specified,
SDA displays the following error message:

%SDA-E-NOQUEUE, no queue has been specified for validation

Qualifiers

/BACKLINK
Allows doubly linked lists to be validated from the tail of the queue. If the queue
is found to be broken when validated from the head of the queue, you can use
/BACKLINK to narrow the list of corrupted entries.

/LIST
Displays the address of each element in the queue.

/PHYSICAL
Allows validation of queues whose header and links are physical addresses.

/QUADWORD
Allows the validate operation to occur on queues with linked lists of quadword
addresses.

/SELF_RELATIVE
Specifies that the selected queue is a self-relative queue.

/SINGLY_LINKED
Allows validation of queues that have no backward pointers.

SDA Commands 4–223

SDA Commands
VALIDATE QUEUE

Description

The VALIDATE QUEUE command uses the forward and, optionally, backward
pointers in each element of the queue to make sure that all such pointers are
valid and that the integrity of the queue is intact. If the queue is intact, SDA
displays the following message:

Queue is complete, total of n elements in the queue

In these messages, n represents the number of entries the VALIDATE QUEUE
command has found in the queue.

If SDA discovers an error in the queue, it displays one of the following error
messages:

Error in forward queue linkage at address nnnnnnnn after tracing x elements
Error comparing backward link to previous structure address (nnnnnnnn)
Error occurred in queue element at address oooooooo after tracing pppp elements

These messages can appear frequently when you use the VALIDATE QUEUE
command within an SDA session that is analyzing a running system. In a
running system, the composition of a queue can change while the command is
tracing its links, thus producing an error message.

If there are no entries in the queue, SDA displays this message:

The queue is empty

Examples

1. SDA> VALIDATE QUEUE/SELF_RELATIVE IOC$GQ_POSTIQ
Queue is complete, total of 159 elements in the queue

This example validates the self-relative queue IOC$GQ_POSTIQ. The
validation is successful and the system determines that there are 159 IRPs in
the list.

2. SDA> VALIDATE QUEUE/QUADWORD FFFFFFFF80D0E6CO/LIST
Entry Address Flink Blink
----- ------- ------ -----
Header FFFFFFFF80D0E6CO FFFFFFFF80D03780 FFFFFFFF80D0E800

1. FFFFFFFF80D0E790 FFFFFFFF80D0E7CO FFFFFFFF80D0E6C0
2. FFFFFFFF80D0E800 FFFFFFFF80D0E6C0 FFFFFFFF80D0E7C0

Queue is complete, total of 3 elements in the queue

This example shows the validation of quadword elements in a list.

3. SDA> VALIDATE QUEUE/SINGLY_LINKED EXE$GL_NONPAGED+4
Queue is zero-terminated, total of 95 elements in the queue

This example shows the validation of singly linked elements in the queue.
The forward link of the final element is zero instead of being a pointer back
to the queue header.

4–224 SDA Commands

SDA Commands
VALIDATE SHM_CPP

VALIDATE SHM_CPP

Validates all the shared memory common property partitions (CPPs) and the
counts and ranges of attached PFNs; optionally, it can validate the contents of the
database for each PFN.

Format

VALIDATE SHM_CPP [/QUALIFIERS]

Parameters

None.

Qualifiers

/ADDRESS=n
Validates the counts and ranges for a single shared memory CPP given the
address of the SHM_CPP structure.

/ALL
Validates all the shared memory CPPs. This is the default.

/IDENT=n
Validates the counts and ranges for a single shared memory CPP.

/PFN
Validates the PFN database contents for each attached PFN. The default is all
lists (free, bad, untested) plus the PFN database pages and the complete range of
PFNs in the CPP.

To validate only the complete range of PFNs in the CPP, use the keyword ALL_
FRAGMENTS with the /PFN qualifier:

/PFN = ALL_FRAGMENTS

To validate only the bad page list, use the keyword BAD with the /PFN qualifier:

/PFN = BAD

To validate only the free page list, use the keyword FREE with the /PFN qualifier:

/PFN = FREE

To validate the PFNs containing the PFN database, use the keyword PFNDB
with the /PFN qualifier:

/PFN = PFNDB

To validate only the untested page list, use the keyword UNTESTED with the
/PFN qualifier:

/PFN = UNTESTED

To validate multiple lists, you can combine keywords for use with the /PFN
qualifier:

/PFN = (x,y)

If you specify the /PFN without /ALL, /IDENT, or /ADDRESS, then the system
validates the PFN lists from the last shared memory CPP.

SDA Commands 4–225

SDA Commands
VALIDATE SHM_CPP

Example

SDA> SHOW SHM_CPP
Not validating SHM_CPP 0000 at FFFFFFFF.7F2BA140, VALID flag clear

Not validating SHM_CPP 0001 at FFFFFFFF.7F2BA380, VALID flag clear

Not validating SHM_CPP 0002 at FFFFFFFF.7F2BA5C0, VALID flag clear

Validating SHM_CPP 0003 at FFFFFFFF.7F2BA800 ...

Validating counts and ranges in the free page list ...
... o.k.

Not validating the bad page list, list is empty

Not validating the untested page list, list is empty

Not validating SHM_CPP 0004 at FFFFFFFF.7F2BAA40, VALID flag clear

Not validating SHM_CPP 0005 at FFFFFFFF.7F2BAC80, VALID flag clear

Not validating SHM_CPP 0006 at FFFFFFFF.7F2BAEC0, VALID flag clear

This example shows the default output for the VALIDATE SHM_CPP command.

4–226 SDA Commands

SDA Commands
VALIDATE TQE

VALIDATE TQE

Validates all the data structures associated with timer queue entries (TQEs).

Format

VALIDATE TQE

Parameters

None.

Qualifiers

None.

Description

TQEs are linked together with index blocks that point to TQEs or to another level
of index block. VALIDATE TQE checks that all the index blocks are correctly
linked together.

Example

SDA> VALIDATE TQE
Validating time index buckets...

... o.k.
Validating ID index buckets...

... o.k.
Validating 1st time...

... o.k.
Validating counts...

... o.k.

This example shows the output from a successful VALIDATE TQE command.

SDA Commands 4–227

5
SDA CLUE Extension Commands

This chapter presents an overview of the SDA CLUE (Crash Log Utility
Extractor) extension commands, how to display information using these
commands, and how to use SDA CLUE with DOSD. This chapter also describes
the SDA CLUE commands.

5.1 Overview of SDA CLUE Extensions
SDA CLUE (Crash Log Utility Extractor) commands automate the analysis of
crash dumps and maintain a history of all fatal bugchecks on either a standalone
or cluster system. You can use SDA CLUE commands in conjunction with SDA to
collect and decode additional dump file information not readily accessible through
standard SDA commands. SDA CLUE extension commands can summarize
information provided by certain standard SDA commands and provide additional
detail for some SDA commands. For example, SDA CLUE extension commands
can quickly provide detailed extended QIO processor (XQP) summaries. You can
also use SDA CLUE commands interactively on a running system to help identify
performance problems.

You can use all CLUE commands when analyzing crash dumps; the only CLUE
commands that are not allowed when analyzing a running system are CLUE
CRASH, CLUE ERRLOG, CLUE HISTORY, and CLUE STACK.

When you reboot the system after a system failure, you automatically invoke
SDA by default. To facilitate better crash dump analysis, SDA CLUE commands
automatically capture and archive summary dump file information in a CLUE
listing file.

A startup command procedure initiates commands that do the following:

• Invoke SDA

• Issue an SDA CLUE HISTORY command

• Create a listing file called CLUE$nodename_ddmmyy_hhmm.LIS

The CLUE HISTORY command adds a one-line summary entry to a history file
and saves the following output from SDA CLUE commands in the listing file:

• Crash dump summary information

• System configuration

• Stack decoder

• Page and swap files

SDA CLUE Extension Commands 5–1

SDA CLUE Extension Commands
5.1 Overview of SDA CLUE Extensions

• Memory management statistics

• Process DCL recall buffer

• Active XQP processes

• XQP cache header

The contents of this CLUE list file can help you analyze a system failure. If these
files accumulate more space than the threshold allows (default is 5000 blocks),
the oldest files are deleted until the threshold limit is reached. You can also
customize this list file using the CLUE$MAX_BLOCK logical name.

For additional information on the contents of the CLUE listing file, see the
reference section on CLUE HISTORY.

It is important to remember that CLUE$nodename_ddmmyy_hhmm.LIS contains
only an overview of the crash dump and does not always contain enough
information to determine the cause of the crash. The dump itself should always
be saved using the procedures described in Section 2.2.2 and Section 2.2.3.

To inhibit the running of CLUE at system startup, define the logical
CLUE$INHIBIT in the SYLOGICALS.COM file as /SYS TRUE.

5.2 Displaying Data Using SDA CLUE Commands
To invoke a CLUE command, enter the command at the SDA prompt. For
example:

SDA> CLUE CONFIG

5.3 Using SDA CLUE with DOSD
DOSD (Dump Off System Disk) allows you to write the system dump file to a
device other than the system disk. For SDA CLUE to be able to correctly find the
dump file to be analyzed after a system crash, you need to perform the following
steps:

1. Modify the command procedure SYS$MANAGER:SYCONFIG.COM to add the
system logical name CLUE$DOSD_DEVICE to point to the device where the
dump file resides. You need to supply only the physical or logical device name
without a file specification.

2. Modify the command procedure SYS$MANAGER:SYCONFIG.COM to mount
systemwide the device where the dump file resides. Otherwise, SDA CLUE
cannot access and analyze the dump file.

In the following example, the dump file has been placed on device 3DUA25,
which has the label DMP$DEV. You need to add the following commands to
SYS$MANAGER:SYCONFIG.COM:

$mount/system/noassist 3dua25: dmp$dev dmp$dev
$define/system clue$dosd_device dmp$dev

5–2 SDA CLUE Extension Commands

SDA CLUE Extension Commands
5.4 Listing of SDA CLUE Extension Commands

5.4 Listing of SDA CLUE Extension Commands
This section describes the following SDA CLUE extension commands:

CLUE CALL_FRAME
CLUE CLEANUP
CLUE CONFIG
CLUE CRASH
CLUE ERRLOG
CLUE FRU
CLUE HISTORY
CLUE MCHK
CLUE MEMORY
CLUE PROCESS
CLUE REGISTER
CLUE SG
CLUE STACK
CLUE SYSTEM
CLUE VCC
CLUE XQP

SDA CLUE Extension Commands 5–3

SDA CLUE Extension Commands
CLUE CALL_FRAME

CLUE CALL_FRAME

Displays key information, such as the PC of the caller, from the active call frames
at time of the crash.

Format

CLUE CALL_FRAME [/CPU [cpu-id | ALL]
| /PROCESS [/ADDRESS=n | INDEX=n
| /IDENTIFICATION=n | process-name | ALL]]

Parameters

ALL
When used with /CPU, it requests information about all CPUs in the system.
When used with /PROCESS, it requests information about all processes that exist
in the system.

cpu-id
When used with /CPU, it gives the number of the CPU for which information is
to be displayed. Use of the cpu-id parameter causes the CLUE CALL_FRAME
command to perform an implicit SET CPU command, making the indicated CPU
the current CPU for subsequent SDA commands.

process-name
When used with /PROCESS, it gives the name of the process for which
information is to be displayed. Use of the process-name parameter, the
/ADDRESS qualifier, the /INDEX qualifier, or the /IDENTIFICATION qualifier
causes the CLUE CALL_FRAME command to perform an implicit SET PROCESS
command, making the indicated process the current process for subsequent SDA
commands. You can determine the names of the processes in the system by
issuing a SHOW SUMMARY command.

The process-name can contain up to 15 letters and numerals, including the
underscore (_) and dollar sign ($). If it contains any other characters, you must
enclose the process-name in quotation marks (" ").

Qualifiers

/ADDRESS=n
Specifies the PCB address of the desired process when used with CLUE CALL_
FRAME/PROCESS.

/CPU [cpu-id | ALL]
Indicates that the call frame for a CPU is required. Specify the CPU by its
number or use ALL to indicate all CPUs.

/IDENTIFICATION=n
Specifies the identification of the desired process when used with CLUE CALL_
FRAME/PROCESS.

/INDEX=n
Specifies the index of the desired process when used with CLUE CALL_
FRAME/PROCESS.

5–4 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE CALL_FRAME

/PROCESS [process-name | ALL]
Indicates that the call frame for a process is required. The process should be
specified with either one of the qualifiers /ADDRESS, /IDENTIFICATION, or
/INDEX, or by its name, or by using ALL to indicate all processes.

Description

The CLUE CALL_FRAME command displays call chain information for a process
or a CPU. The process context calls work on both the running system and dump
file; the CPU context calls only on dump files.

If neither /CPU nor /PROCESS is specified, the parameter (CPU-id or process-
name) is ignored and the call frame for the SDA current process is displayed.

Examples

1. SDA>CLUE CALL/PROCESS IPCACP
Call Chain: Process index: 000B Process name: IPCACP PCB: 8136EF00

Procedure Frame Procedure Entry Return Address
--------------- ---------------------------------- ---------------------------
7FFA1CA0 Null 800C8C90 SCH$WAIT_PROC_C
7FFA1D00 Stack 800D9250 SYS$HIBER_C 0003045C IPCACP+0003045C
7FFA1D50 Stack 00030050 IPCACP+00030050 800D11C8 EXE$CMKRNL_C+000D8
7FFA1E60 Null 800B6120 EXE$BLDPKTSWPR_C
7FFA1E78 Null 800B6120 EXE$BLDPKTSWPR_C
7FFA1EC0 Null 80248120 NSA$CHECK_PRIVILEGE_C
7FFA1F00 Null 80084640 EXE$CMODEXECX_C
7FFA1F70 Stack 800D10F0 EXE$CMKRNL_C 80084CC8 EXE$CMODKRNL_C+00198
7B01FAB0 Stack 00030010 IPCACP+00030010 83EA3454 SYS$IMGSTA_C+00154
7B01FB10 Stack 83EA3300 SYS$IMGSTA_C 83D99CC4 EXE$PROC_IMGACT_C+00384
7B01FBA0 Stack 83D99BA0 EXE$PROC_IMGACT_C+00260 83D99B9C EXE$PROC_IMGACT_C+0025C

In this example, the CLUE CALL_FRAME command displays the call frame from
the process IPCACP.

2. SDA>CLUE CALL/CPU ALL
Call Chain: Process index: 0000 Process name: NULL PCB: 827377C0 (CPU 0)

Procedure Frame Procedure Entry Return Address
--------------- ---------------------------------- ---------------------------
8F629D28 Null 80205E00 SYS$SCS+05E00
8F629D68 Null 8020A850 SCS$REC_MSGREC_C
8F629D98 Null 914A5340 SYS$PBDRIVER+07340
8F629DB8 Null 914A4FD0 SYS$PBDRIVER+06FD0
8F629DE0 Stack 914AACF0 SYS$PBDRIVER+0CCF0 914AE5CC SYS$PBDRIVER+105CC
8F629E50 Stack 914AE418 SYS$PBDRIVER+10418 800503B0 EXE_STD$QUEUE_FORK_C+00350
8F629F88 Null 800E95F4 SCH$WAIT_ANY_MODE_C
8F629FD0 Stack 800D0F80 SCH$IDLE_C 800E92D0 SCH$INTERRUPT+00BB0

Call Chain: Process index: 0000 Process name: NULL PCB: 827377C0 (CPU 2)

Procedure Frame Procedure Entry Return Address
--------------- -------------------------------- ---------------------------
90FCBF88 Null 800E95F4 SCH$WAIT_ANY_MODE_C
90FCBFC8 Null 800E95F4 SCH$WAIT_ANY_MODE_C
90FCBFD0 Stack 800D0F80 SCH$IDLE_C 800E92D0 SCH$INTERRUPT+00BB0

SDA CLUE Extension Commands 5–5

SDA CLUE Extension Commands
CLUE CALL_FRAME

Call Chain: Process index: 0000 Process name: NULL PCB: 827377C0 (CPU 6)

Procedure Frame Procedure Entry Return Address
--------------- ------------------------------ ---------------------------
90FCBF88 Null 800E95FA SCH$WAIT_ANY_MORE_c
90FD9F88 Null 800E95F4 SCH$WAIT_ANY_MODE_C
90FD9FD0 Stack 800D0F80 SCH$IDLE_C 800E92D0 SCH$INTERRUPT+00BB0

In this example, CLUE/CPU ALL shows the call frame for all CPUs.

5–6 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE CLEANUP

CLUE CLEANUP

Performs housekeeping operations to conserve disk space.

Format

CLUE CLEANUP

Parameters

None.

Qualifiers

None.

Description

CLUE CLEANUP performs housekeeping operations to conserve disk space. To
avoid filling up the system disk with listing files generated by CLUE, CLUE
CLEANUP is run during system startup to check the overall disk space used by
all CLUE$*.LIS files.

If the CLUE$COLLECT:CLUE$*.LIS files occupy more space than the logical
CLUE$MAX_BLOCKS allows, then the oldest files are deleted until the threshold
is reached. If this logical name is not defined, a default value of 5,000 disk blocks
is assumed. A value of zero disables housekeeping and no check on the disk space
is performed.

Example

SDA> CLUE CLEANUP
%CLUE-I-CLEANUP, housekeeping started...
%CLUE-I-MAXBLOCK, maximum blocks allowed 5000 blocks
%CLUE-I-STAT, total of 4 CLUE files, 192 blocks.

In this example, the CLUE CLEANUP command displays that the total number
of blocks of disk space used by CLUE files does not exceed the maximum number
of blocks allowed. No files are deleted.

SDA CLUE Extension Commands 5–7

SDA CLUE Extension Commands
CLUE CONFIG

CLUE CONFIG

Displays the system, memory, and device configurations.

Format

CLUE CONFIG

Parameters

None.

Qualifiers

None.

Description

CLUE CONFIG displays the system, memory, and device configurations.
Example

SDA> CLUE CONFIG
System Configuration:

System Information:
System Type AlphaServer 4100 5/400 4MB Primary CPU ID 00
Cycle Time 2.5 nsec (400 MHz) Pagesize 8192 Byte

Memory Configuration:
Cluster PFN Start PFN Count Range (MByte) Usage
 #00 0 256 0.0 MB - 2.0 MB Console
 #01 256 32510 2.0 MB - 255.9 MB System
 #02 32766 2 255.9 MB - 256.0 MB Console

Per-CPU Slot Processor Information:
CPU ID 00 CPU State rc,pa,pp,cv,pv,pmv,pl
CPU Type EV56 Pass 2 (21164A) Halt Request "Default, No Action"
PAL Code 1.19-12 Halt PC 00000000.20000000
CPU Revision Halt PS 00000000.00001F00
Serial Number Halt Code "Bootstrap or Powerfail"
Console Vers V5.0-47

CPU ID 02 CPU State pa,pp,cv,pv,pmv,pl
CPU Type EV56 Pass 2 (21164A) Halt Request "Default, No Action"
PAL Code 1.19-12 Halt PC 00000000.00000000
CPU Revision Halt PS 00000000.00000000
Serial Number Halt Code "Bootstrap or Powerfail"
Console Vers V5.0-47

Adapter Configuration:

TR Adapter ADP Hose Bus BusArrayEntry Node CSR Vec/IRQ Port Slot Device Name / HW-Id
-- ----------- ----------------- ---- ----------------------- ---- ---------------------- ---- ---- ---------------------------
 1 KA1605 FFFFFFFF.8120FB40 0 GLOBAL_BUS
 2 MC_BUS FFFFFFFF.8120FF00 7 MC_BUS
 FFFFFFFF.81210150 4 FFFFFFFF.85BB8000 4 KA1605_PCI
 FFFFFFFF.81210268 1 00000000.00000000 1 KA1605_MEMORY
 3 PCI FFFFFFFF.81210300 60 PCI
 FFFFFFFF.81210550 8 FFFFFFFF.85BC2000 900 1 MERCURY
 FFFFFFFF.81210588 10 FFFFFFFF.85DEA000 980 GQA: 2 S3 Trio32/64
 FFFFFFFF.812105C0 18 FFFFFFFF.85DEC000 9C0 EWA: 3 DC21140 - 100 mbit NI (Tulip)
 FFFFFFFF.812105F8 20 FFFFFFFF.85DEE000 A00 PKA: 4 Qlogic ISP1020 SCSI-2
 FFFFFFFF.81210630 28 FFFFFFFF.85DF0000 A40 PKB: 5 FWD SCSI (KZPSA)
 4 EISA FFFFFFFF.81210800 60 EISA
 FFFFFFFF.81210A18 0 FFFFFFFF.85BC4000 0 0 System Board
 5 XBUS FFFFFFFF.81210DC0 60 XBUS
 FFFFFFFF.81210F98 0 FFFFFFFF.85BC4000 0 0 EISA_SYSTEM_BOARD
 FFFFFFFF.81210FD0 1 FFFFFFFF.85BC4000 6 DVA: 1 Floppy
 FFFFFFFF.81211008 2 FFFFFFFF.85BC4000 7 LRA: 2 Line Printer (parallel port)
 FFFFFFFF.812110B0 5 FFFFFFFF.85BC4000 11 IIA: 5 I2C bus driver

VM-0011A-AI

5–8 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE CRASH

CLUE CRASH

Displays a crash dump summary.

Format

CLUE CRASH

Parameters

None.

Qualifiers

None.

Description

CLUE CRASH displays a crash dump summary, which includes the following
items:

• Bugcheck type

• Current process and image

• Failing PC and PS

• Executive image section name and offset

• General registers

• Failing instructions

• Exception frame, signal and mechanism arrays (if available)

• CPU state information (spinlock related bugchecks only)

Example

SDA> CLUE CRASH
Crash Time: 30-AUG-1996 13:13:46.83
Bugcheck Type: SSRVEXCEPT, Unexpected system service exception
Node: SWPCTX (Standalone)
CPU Type: DEC 3000 Model 400
VMS Version: X6AF-FT2
Current Process: SYSTEM
Current Image: 31DKB0:[SYS0.][SYSMGR]X.EXE;1
Failing PC: 00000000.00030078 SYS$K_VERSION_01+00078
Failing PS: 00000000.00000003
Module: X
Offset: 00030078

SDA CLUE Extension Commands 5–9

SDA CLUE Extension Commands
CLUE CRASH

Boot Time: 30-AUG-1996 09:06:22.00
System Uptime: 0 04:07:24.83
Crash/Primary CPU: 00/00
System/CPU Type: 0402
Saved Processes: 18
Pagesize: 8 KByte (8192 bytes)
Physical Memory: 64 MByte (8192 PFNs, contiguous memory)
Dumpfile Pagelets: 98861 blocks
Dump Flags: olddump,writecomp,errlogcomp,dump_style
Dump Type: raw,selective
EXE$GL_FLAGS: poolpging,init,bugdump
Paging Files: 1 Pagefile and 1 Swapfile installed

Stack Pointers:
KSP = 00000000.7FFA1C98 ESP = 00000000.7FFA6000 SSP = 00000000.7FFAC100
USP = 00000000.7AFFBAD0

General Registers:
R0 = 00000000.00000000 R1 = 00000000.7FFA1EB8 R2 = FFFFFFFF.80D0E6C0
R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740 R5 = 00000000.000000C8
R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0 R8 = 00000000.7FFAC208
R9 = 00000000.7FFAC410 R10 = 00000000.7FFAD238 R11 = 00000000.7FFCE3E0
R12 = 00000000.00000000 R13 = FFFFFFFF.80C6EB60 R14 = 00000000.00000000
R15 = 00000000.009A79FD R16 = 00000000.000003C4 R17 = 00000000.7FFA1D40
R18 = FFFFFFFF.80C05C38 R19 = 00000000.00000000 R20 = 00000000.7FFA1F50
R21 = 00000000.00000000 R22 = 00000000.00000001 R23 = 00000000.7FFF03C8
R24 = 00000000.7FFF0040 AI = 00000000.00000003 RA = FFFFFFFF.82A21080
PV = FFFFFFFF.829CF010 R28 = FFFFFFFF.8004B6DC FP = 00000000.7FFA1CA0
PC = FFFFFFFF.82A210B4 PS = 18000000.00000000

Exception Frame:
R2 = 00000000.00000003 R3 = FFFFFFFF.80C63460 R4 = FFFFFFFF.80D12740
R5 = 00000000.000000C8 R6 = 00000000.00030038 R7 = 00000000.7FFA1FC0
PC = 00000000.00030078 PS = 00000000.00000003

Signal Array: 64-bit Signal Array:
Arg Count = 00000005 Arg Count = 00000005
Condition = 0000000C Condition = 00000000.0000000C
Argument #2 = 00010000 Argument #2 = 00000000.00010000
Argument #3 = 00000000 Argument #3 = 00000000.00000000
Argument #4 = 00030078 Argument #4 = 00000000.00030078
Argument #5 = 00000003 Argument #5 = 00000000.00000003

Mechanism Array:
Arguments = 0000002C Establisher FP = 00000000.7AFFBAD0
Flags = 00000000 Exception FP = 00000000.7FFA1F00
Depth = FFFFFFFD Signal Array = 00000000.7FFA1EB8
Handler Data = 00000000.00000000 Signal64 Array = 00000000.7FFA1ED0
R0 = 00000000.00020000 R1 = 00000000.00000000 R16 = 00000000.00020004
R17 = 00000000.00010050 R18 = FFFFFFFF.FFFFFFFF R19 = 00000000.00000000
R20 = 00000000.7FFA1F50 R21 = 00000000.00000000 R22 = 00000000.00010050
R23 = 00000000.00000000 R24 = 00000000.00010051 R25 = 00000000.00000000
R26 = FFFFFFFF.8010ACA4 R27 = 00000000.00010050 R28 = 00000000.00000000

System Registers:
Page Table Base Register (PTBR) 00000000.00001136
Processor Base Register (PRBR) FFFFFFFF.80D0E000
Privileged Context Block Base (PCBB) 00000000.003FE080
System Control Block Base (SCBB) 00000000.000001DC
Software Interrupt Summary Register (SISR) 00000000.00000000
Address Space Number (ASN) 00000000.0000002F
AST Summary / AST Enable (ASTSR_ASTEN) 00000000.0000000F
Floating-Point Enable (FEN) 00000000.00000000
Interrupt Priority Level (IPL) 00000000.00000000
Machine Check Error Summary (MCES) 00000000.00000000
Virtual Page Table Base Register (VPTB) FFFFFFFC.00000000

5–10 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE CRASH

Failing Instruction:
SYS$K_VERSION_01+00078: LDL R28,(R28)

Instruction Stream (last 20 instructions):
SYS$K_VERSION_01+00028: LDQ R16,#X0030(R13)
SYS$K_VERSION_01+0002C: LDQ R27,#X0048(R13)
SYS$K_VERSION_01+00030: LDA R17,(R28)
SYS$K_VERSION_01+00034: JSR R26,(R26)
SYS$K_VERSION_01+00038: LDQ R26,#X0038(R13)
SYS$K_VERSION_01+0003C: BIS R31,SP,SP
SYS$K_VERSION_01+00040: BIS R31,R26,R0
SYS$K_VERSION_01+00044: BIS R31,FP,SP
SYS$K_VERSION_01+00048: LDQ R28,#X0008(SP)
SYS$K_VERSION_01+0004C: LDQ R13,#X0010(SP)
SYS$K_VERSION_01+00050: LDQ FP,#X0018(SP)
SYS$K_VERSION_01+00054: LDA SP,#X0020(SP)
SYS$K_VERSION_01+00058: RET R31,(R28)
SYS$K_VERSION_01+0005C: BIS R31,R31,R31
SYS$K_VERSION_01+00060: LDA SP,#XFFE0(SP)
SYS$K_VERSION_01+00064: STQ FP,#X0018(SP)
SYS$K_VERSION_01+00068: STQ R27,(SP)
SYS$K_VERSION_01+0006C: BIS R31,SP,FP
SYS$K_VERSION_01+00070: STQ R26,#X0010(SP)
SYS$K_VERSION_01+00074: LDA R28,(R31)
SYS$K_VERSION_01+00078: LDL R28,(R28)
SYS$K_VERSION_01+0007C: BEQ R28,#X000007
SYS$K_VERSION_01+00080: LDQ R26,#XFFE8(R27)
SYS$K_VERSION_01+00084: BIS R31,R26,R0
SYS$K_VERSION_01+00088: BIS R31,FP,SP

SDA CLUE Extension Commands 5–11

SDA CLUE Extension Commands
CLUE ERRLOG

CLUE ERRLOG

Extracts the error log buffers from the dump file and places them into the binary
file called CLUE$ERRLOG.SYS.

Format

CLUE ERRLOG [/OLD]

Parameters

None.

Qualifier

/OLD
Dumps the errorlog buffers into a file using the old errorlog format. The default
action, if /OLD is not specified, is to dump the errorlog buffers in the common
event header format.

Description

CLUE ERRLOG extracts the error log buffers from the dump file and places them
into the binary file called CLUE$ERRLOG.SYS.

These buffers contain messages not yet written to the error log file at the time
of the failure. When you analyze a failure on the same system on which it
occurred, you can run the Error Log utility on the actual error log file to see
these error log messages. When analyzing a failure from another system, use the
CLUE ERRLOG command to create a file containing the failing system’s error
log messages just prior to the failure. System failures are often triggered by
hardware problems, so determining what, if any, hardware errors occurred prior
to the failure can help you troubleshoot a failure.

You can define the logical CLUE$ERRLOG to any file specification if you want
error log information written to a file other than CLUE$ERRLOG.SYS.

Note

You need at least DECevent V2.9 to analyze the new common event
header (CEH) format file. The old format file can be analyzed by
ANALYZE/ERROR or any version of DECevent.

Example

SDA> CLUE ERRLOG

Sequence Date Time
-------- ----------- -----------

128 11-MAY-1994 00:39:31.30
129 11-MAY-1994 00:39:32.12
130 11-MAY-1994 00:39:44.83
131 11-MAY-1994 00:44:38.97 * Crash Entry

In addition to writing the error log buffers into CLUE$ERRLOG.SYS, the CLUE
ERRLOG command displays the sequence, date, and time of each error log buffer
extracted from the dump file.

5–12 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE FRU

CLUE FRU

Outputs the Field Replacement Unit (FRU) table to a file for display by
DECevent.

Format

CLUE FRU

Parameters

None.

Qualifiers

None.

Description

The FRU command extracts the FRU table into an output file (CLUE$FRU.SYS),
which can then be displayed by DECevent. This command works on the running
system, as well as on dump files.

SDA CLUE Extension Commands 5–13

SDA CLUE Extension Commands
CLUE HISTORY

CLUE HISTORY

Updates history file and generates crash dump summary output.

Format

CLUE HISTORY [/qualifier]

Parameters

None.

Qualifier

/OVERRIDE
Allows execution of this command even if the dump file has already been analyzed
(DMP$V_OLDDUMP bit set).

Description

This command updates the history file pointed to by the logical name
CLUE$HISTORY with a one-line entry and the major crash dump summary
information. If CLUE$HISTORY is not defined, a file CLUE$HISTORY.DAT in
your default directory will be created.

In addition, a listing file with summary information about the system failure is
created in the directory pointed to by CLUE$COLLECT. The file name is of the
form CLUE$node_ddmmyy_hhmm.LIS where the timestamp (hhmm) corresponds
to the system failure time and not the time when the file was created.

The listing file contains summary information collected from the following SDA
commands:

• CLUE CRASH

• CLUE CONFIG

• CLUE MEMORY/FILES

• CLUE MEMORY/STATISTIC

• CLUE PROCESS/RECALL

• CLUE XQP/ACTIVE

Refer to the reference section for each of these commands to see examples of the
displayed information.

The logical name CLUE$FLAG controls how much information is written to the
listing file.

• Bit 0—Include crash dump summary

• Bit 1—Include system configuration

• Bit 2—Include stack decoding information

• Bit 3—Include page and swap file usage

• Bit 4—Include memory management statistics

• Bit 5—Include process DCL recall buffer

5–14 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE HISTORY

• Bit 6—Include active XQP process information

• Bit 7—Include XQP cache header

If this logical name is undefined, all bits are set by default internally and all
information is written to the listing file. If the value is zero, no listing file is
generated. The value has to be supplied in hexadecimal form (for example,
DEFINE CLUE$FLAG 81 will include the crash dump summary and the XQP
cache header information).

If the logical name CLUE$SITE_PROC points to a valid and existing file, it will
be executed as the final step of the CLUE HISTORY command (for example,
automatic saving of the dump file during system startup). If used, this file should
contain only valid SDA commands.

Refer to Chapter 2, Section 2.2.3 for more information on site-specific command
files.

SDA CLUE Extension Commands 5–15

SDA CLUE Extension Commands
CLUE MCHK

CLUE MCHK

This command is obsolete.

Format

CLUE MCHK

Parameters

None.

Qualifiers

None.

Description

The CLUE MCMK command has been withdrawn. Issuing the command produces
the following output, explaining the correct way to obtain MACHINECHECK
information from a crash dump.

Please use the following commands in order to extract the errorlog buffers
from the dumpfile header and analyze the machine check entry:

$ analyze/crash sys$system:sysdump.dmp
SDA> clue errlog
SDA> exit
$ diagnose clue$errlog

5–16 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE MEMORY

CLUE MEMORY

Displays memory- and pool-related information.

Format

CLUE MEMORY [/qualifier[,...]]

Parameters

None.

Qualifiers

/FILES
Displays information about page and swap file usage.

/FREE [/FULL]
Validates and displays dynamic nonpaged free packet list queue.

/GH [/FULL]
Displays information about the granularity hint regions.

/LAYOUT
Decodes and displays much of the system virtual address space layout.

/LOOKASIDE
Validates the lookaside list queue heads and counts the elements for each list.

/STATISTIC
Displays systemwide performance data such as page fault, I/O, pool, lock
manager, MSCP, and file system cache.

Description

The CLUE MEMORY command displays memory- and pool-related information.

Examples

1. SDA> CLUE MEMORY/FILES
Paging File Usage (blocks):

Swapfile (Index 1) Device DKA0:
PFL Address FFFFFFFF.81531340 UCB Address FFFFFFFF.814AAF00
Free Blocks 44288 Bitmap FFFFFFFF.815313E0
Total Size (blocks) 44288 Flags inited,swap_file
Total Write Count 0 Total Read Count 0
Smallest Chunk (pages) 2768 Largest Chunk (pages) 2768
Chunks GEQ 64 Pages 1 Chunks LT 64 Pages 0

Pagefile (Index 254) Device DKA0:
PFL Address FFFFFFFF.8152E440 UCB Address FFFFFFFF.814AAF00
Free Blocks 1056768 Bitmap FFFFFFFF.6FB16008
Total Size (blocks) 1056768 Flags inited
Total Write Count 0 Total Read Count 0
Smallest Chunk (pages) 66048 Largest Chunk (pages) 66048
Chunks GEQ 64 Pages 1 Chunks LT 64 Pages 0

Summary: 1 Pagefile and 1 Swapfile installed

SDA CLUE Extension Commands 5–17

SDA CLUE Extension Commands
CLUE MEMORY

Total Size of all Swap Files: 44288 blocks
Total Size of all Paging Files: 1056768 blocks
Total Committed Paging File Usage: 344576 blocks

This example shows the display produced by the CLUE MEMORY/FILES
command.

2. SDA> CLUE MEMORY/FREE/FULL
Non-Paged Dynamic Storage Pool - Variable Free Packet Queue:
--

CLASSDR FFFFFFFF.80D157C0 : 64646464 64646464 00000040 80D164C0 ÀdÑ.@...dddddddd

CLASSDR FFFFFFFF.80D164C0 : 64646464 64646464 00000080 80D17200 .rÑ.....dddddddd

CLASSDR FFFFFFFF.80D17200 : 64646464 64646464 00000080 80D21AC0 À.Ò.....dddddddd

CLASSDR FFFFFFFF.80D21AC0 : 64646464 64646464 00000080 80D228C0 À(Ò.....dddddddd

VCC FFFFFFFF.80D228C0 : 801CA5E8 026F0040 00000040 80D23E40 @>Ò.@...@.o.è¥..

CLASSDR FFFFFFFF.80D23E40 : 64646464 64646464 00000040 80D24040 @@Ò.@...dddddddd

CLASSDR FFFFFFFF.80D24040 : 64646464 64646464 00000040 80D26FC0 ÀoÒ.@...dddddddd

CLASSDR FFFFFFFF.80D26FC0 : 64646464 64646464 00000080 80D274C0 ÀtÒ.....dddddddd

CLASSDR FFFFFFFF.80D274C0 : 64646464 64646464 00000040 80D2E200 .âÒ.@...dddddddd

CLASSDR FFFFFFFF.80D2E200 : 64646464 64646464 00000080 80D2E440 @äÒ.....dddddddd

CLASSDR FFFFFFFF.80D2E440 : 64646464 64646464 00000040 80D2F000 .Ò.@...dddddddd

CLASSDR FFFFFFFF.80D2F000 : 64646464 64646464 00000080 80D2F400 .ôÒ.....dddddddd
.
.
.

CLASSDR FFFFFFFF.80E91D40 : 64646464 64646464 00000500 80E983C0 À.é.....dddddddd

CLASSDR FFFFFFFF.80E983C0 : 64646464 64646464 00031C40 00000000@...dddddddd

Free Packet Queue, Status: Valid, 174 elements

Largest free chunk: 00031C40 (hex) 203840 (dec) bytes
Total free dynamic space: 0003D740 (hex) 251712 (dec) bytes

The CLUE MEMORY/FREE/FULL command validates and displays dynamic
nonpaged free packet list queue.

3. SDA> CLUE MEMORY/GH/FULL
Granularity Hint Regions - Huge Pages:

Execlet Code Region Pages/Slices
Base/End VA FFFFFFFF.80000000 FFFFFFFF.80356000 Current Size 427/ 427
Base/End PA 00000000.00400000 00000000.00756000 Free / 0
Total Size 00000000.00356000 3.3 MB In Use / 427
Bitmap VA/Size FFFFFFFF.80D17CC0 00000000.00000040 Initial Size 512/ 512
Slice Size 00000000.00002000 Released 85/ 85
Next free Slice 00000000.000001AB

5–18 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE MEMORY

Image Base End Length
SYS$PUBLIC_VECTORS FFFFFFFF.80000000 FFFFFFFF.80001A00 00001A00
SYS$BASE_IMAGE FFFFFFFF.80002000 FFFFFFFF.8000D400 0000B400
SYS$CNBTDRIVER FFFFFFFF.8000E000 FFFFFFFF.8000F000 00001000
SYS$NISCA_BTDRIVER FFFFFFFF.80010000 FFFFFFFF.8001FA00 0000FA00
SYS$ESBTDRIVER FFFFFFFF.80020000 FFFFFFFF.80022400 00002400
SYS$OPDRIVER FFFFFFFF.80024000 FFFFFFFF.80027C00 00003C00
SYSTEM_DEBUG FFFFFFFF.80028000 FFFFFFFF.80050200 00028200
SYSTEM_PRIMITIVES FFFFFFFF.80052000 FFFFFFFF.80089000 00037000
SYSTEM_SYNCHRONIZATION FFFFFFFF.8008A000 FFFFFFFF.80095400 0000B400
ERRORLOG FFFFFFFF.80096000 FFFFFFFF.80099200 00003200
SYS$CPU_ROUTINES_0402 FFFFFFFF.8009A000 FFFFFFFF.800A3A00 00009A00
EXCEPTION_MON FFFFFFFF.800A4000 FFFFFFFF.800BC800 00018800
IO_ROUTINES_MON FFFFFFFF.800BE000 FFFFFFFF.800E2000 00024000
SYSDEVICE FFFFFFFF.800E2000 FFFFFFFF.800E5C00 00003C00
PROCESS_MANAGEMENT_MON FFFFFFFF.800E6000 FFFFFFFF.8010B000 00025000
SYS$VM FFFFFFFF.8010C000 FFFFFFFF.80167200 0005B200
SHELL8K FFFFFFFF.80168000 FFFFFFFF.80169200 00001200
LOCKING FFFFFFFF.8016A000 FFFFFFFF.8017BE00 00011E00
MESSAGE_ROUTINES FFFFFFFF.8017C000 FFFFFFFF.80182A00 00006A00
LOGICAL_NAMES FFFFFFFF.80184000 FFFFFFFF.80186C00 00002C00
F11BXQP FFFFFFFF.80188000 FFFFFFFF.80190400 00008400
SYSLICENSE FFFFFFFF.80192000 FFFFFFFF.80192400 00000400
IMAGE_MANAGEMENT FFFFFFFF.80194000 FFFFFFFF.80197A00 00003A00
SECURITY FFFFFFFF.80198000 FFFFFFFF.801A0E00 00008E00
SYSGETSYI FFFFFFFF.801A2000 FFFFFFFF.801A3A00 00001A00
SYS$TRANSACTION_SERVICES FFFFFFFF.801A4000 FFFFFFFF.801C5000 00021000
SYS$UTC_SERVICES FFFFFFFF.801C6000 FFFFFFFF.801C7000 00001000
SYS$VCC_MON FFFFFFFF.801C8000 FFFFFFFF.801D4E00 0000CE00
SYS$IPC_SERVICES FFFFFFFF.801D6000 FFFFFFFF.80214A00 0003EA00
SYSLDR_DYN FFFFFFFF.80216000 FFFFFFFF.80219200 00003200
SYS$MME_SERVICES FFFFFFFF.8021A000 FFFFFFFF.8021B000 00001000
SYS$TTDRIVER FFFFFFFF.8021C000 FFFFFFFF.8022FE00 00013E00
SYS$PKCDRIVER FFFFFFFF.80230000 FFFFFFFF.80240400 00010400
SYS$DKDRIVER FFFFFFFF.80242000 FFFFFFFF.80251600 0000F600
RMS FFFFFFFF.80252000 FFFFFFFF.802C5E00 00073E00
SYS$GXADRIVER FFFFFFFF.802C6000 FFFFFFFF.802CE000 00008000
SYS$ECDRIVER FFFFFFFF.802CE000 FFFFFFFF.802D1000 00003000
SYS$LAN FFFFFFFF.802D2000 FFFFFFFF.802D8E00 00006E00
SYS$LAN_CSMACD FFFFFFFF.802DA000 FFFFFFFF.802E6600 0000C600
SYS$MKDRIVER FFFFFFFF.802E8000 FFFFFFFF.802F1C00 00009C00
SYS$YRDRIVER FFFFFFFF.802F2000 FFFFFFFF.802F9600 00007600
SYS$SODRIVER FFFFFFFF.802FA000 FFFFFFFF.802FF000 00005000
SYS$INDRIVER FFFFFFFF.80300000 FFFFFFFF.8030EA00 0000EA00
NETDRIVER FFFFFFFF.80310000 FFFFFFFF.80310200 00000200
NETDRIVER FFFFFFFF.80312000 FFFFFFFF.80329E00 00017E00
SYS$IMDRIVER FFFFFFFF.8032A000 FFFFFFFF.8032EA00 00004A00
SYS$IKDRIVER FFFFFFFF.80330000 FFFFFFFF.8033AC00 0000AC00
NDDRIVER FFFFFFFF.8033C000 FFFFFFFF.8033F800 00003800
SYS$WSDRIVER FFFFFFFF.80340000 FFFFFFFF.80341600 00001600
SYS$CTDRIVER FFFFFFFF.80342000 FFFFFFFF.8034D200 0000B200
SYS$RTTDRIVER FFFFFFFF.8034E000 FFFFFFFF.80351800 00003800
SYS$FTDRIVER FFFFFFFF.80352000 FFFFFFFF.80354200 00002200

Execlet Data Region Pages/Slices
Base/End VA FFFFFFFF.80C00000 FFFFFFFF.80CC0000 Current Size 96/ 1536
Base/End PA 00000000.00800000 00000000.008C0000 Free / 11
Total Size 00000000.000C0000 0.7 MB In Use / 1525
Bitmap VA/Size FFFFFFFF.80D17D00 00000000.00000100 Initial Size 128/ 2048
Slice Size 00000000.00000200 Released 32/ 512
Next free Slice 00000000.000005F5

SDA CLUE Extension Commands 5–19

SDA CLUE Extension Commands
CLUE MEMORY

Image Base End Length
SYS$PUBLIC_VECTORS FFFFFFFF.80C00000 FFFFFFFF.80C05000 00005000
SYS$BASE_IMAGE FFFFFFFF.80C05000 FFFFFFFF.80C25E00 00020E00
SYS$CNBTDRIVER FFFFFFFF.80C25E00 FFFFFFFF.80C26200 00000400
SYS$NISCA_BTDRIVER FFFFFFFF.80C26200 FFFFFFFF.80C29400 00003200
SYS$ESBTDRIVER FFFFFFFF.80C29400 FFFFFFFF.80C29800 00000400
SYS$OPDRIVER FFFFFFFF.80C29800 FFFFFFFF.80C2A200 00000A00
SYSTEM_DEBUG FFFFFFFF.80C2A200 FFFFFFFF.80C4E400 00024200
SYSTEM_PRIMITIVES FFFFFFFF.80C4E400 FFFFFFFF.80C58200 00009E00
SYSTEM_SYNCHRONIZATION FFFFFFFF.80C58200 FFFFFFFF.80C5A000 00001E00
ERRORLOG FFFFFFFF.80C5A000 FFFFFFFF.80C5A600 00000600
SYS$CPU_ROUTINES_0402 FFFFFFFF.80C5A600 FFFFFFFF.80C5CA00 00002400
EXCEPTION_MON FFFFFFFF.80C5CA00 FFFFFFFF.80C64C00 00008200
IO_ROUTINES_MON FFFFFFFF.80C64C00 FFFFFFFF.80C6AA00 00005E00
SYSDEVICE FFFFFFFF.80C6AA00 FFFFFFFF.80C6B600 00000C00
PROCESS_MANAGEMENT_MON FFFFFFFF.80C6B600 FFFFFFFF.80C72600 00007000
SYS$VM FFFFFFFF.80C72600 FFFFFFFF.80C79000 00006A00
SHELL8K FFFFFFFF.80C79000 FFFFFFFF.80C7A000 00001000
LOCKING FFFFFFFF.80C7A000 FFFFFFFF.80C7BA00 00001A00
MESSAGE_ROUTINES FFFFFFFF.80C7BA00 FFFFFFFF.80C7D000 00001600
LOGICAL_NAMES FFFFFFFF.80C7D000 FFFFFFFF.80C7E200 00001200
F11BXQP FFFFFFFF.80C7E200 FFFFFFFF.80C7FA00 00001800
SYSLICENSE FFFFFFFF.80C7FA00 FFFFFFFF.80C7FE00 00000400
IMAGE_MANAGEMENT FFFFFFFF.80C7FE00 FFFFFFFF.80C80600 00000800
SECURITY FFFFFFFF.80C80600 FFFFFFFF.80C83000 00002A00
SYSGETSYI FFFFFFFF.80C83000 FFFFFFFF.80C83200 00000200
SYS$TRANSACTION_SERVICES FFFFFFFF.80C83200 FFFFFFFF.80C89E00 00006C00
SYS$UTC_SERVICES FFFFFFFF.80C89E00 FFFFFFFF.80C8A200 00000400
SYS$VCC_MON FFFFFFFF.80C8A200 FFFFFFFF.80C8BC00 00001A00
SYS$IPC_SERVICES FFFFFFFF.80C8BC00 FFFFFFFF.80C91000 00005400
SYSLDR_DYN FFFFFFFF.80C91000 FFFFFFFF.80C92200 00001200
SYS$MME_SERVICES FFFFFFFF.80C92200 FFFFFFFF.80C92600 00000400
SYS$TTDRIVER FFFFFFFF.80C92600 FFFFFFFF.80C94C00 00002600
SYS$PKCDRIVER FFFFFFFF.80C94C00 FFFFFFFF.80C96A00 00001E00
SYS$DKDRIVER FFFFFFFF.80C96A00 FFFFFFFF.80C99800 00002E00
RMS FFFFFFFF.80C99800 FFFFFFFF.80CAAC00 00011400
RECOVERY_UNIT_SERVICES FFFFFFFF.80CAAC00 FFFFFFFF.80CAB000 00000400
SYS$GXADRIVER FFFFFFFF.80CAB000 FFFFFFFF.80CAF000 00004000
SYS$ECDRIVER FFFFFFFF.80CAF000 FFFFFFFF.80CAFC00 00000C00
SYS$LAN FFFFFFFF.80CAFC00 FFFFFFFF.80CB0800 00000C00
SYS$LAN_CSMACD FFFFFFFF.80CB0800 FFFFFFFF.80CB1800 00001000
SYS$MKDRIVER FFFFFFFF.80CB1800 FFFFFFFF.80CB3000 00001800
SYS$YRDRIVER FFFFFFFF.80CB3000 FFFFFFFF.80CB3C00 00000C00
SYS$SODRIVER FFFFFFFF.80CB3C00 FFFFFFFF.80CB4E00 00001200
SYS$INDRIVER FFFFFFFF.80CB4E00 FFFFFFFF.80CB5E00 00001000
NETDRIVER FFFFFFFF.80CB5E00 FFFFFFFF.80CB8800 00002A00
SYS$IMDRIVER FFFFFFFF.80CB8800 FFFFFFFF.80CB9400 00000C00
SYS$IKDRIVER FFFFFFFF.80CB9400 FFFFFFFF.80CBAA00 00001600
NDDRIVER FFFFFFFF.80CBAA00 FFFFFFFF.80CBB400 00000A00
SYS$WSDRIVER FFFFFFFF.80CBB400 FFFFFFFF.80CBBC00 00000800
SYS$CTDRIVER FFFFFFFF.80CBBC00 FFFFFFFF.80CBD800 00001C00
SYS$RTTDRIVER FFFFFFFF.80CBD800 FFFFFFFF.80CBE200 00000A00
SYS$FTDRIVER FFFFFFFF.80CBE200 FFFFFFFF.80CBEA00 00000800
11 free Slices FFFFFFFF.80CBEA00 FFFFFFFF.80CC0000 00001600

S0/S1 Executive Data Region Pages/Slices
Base/End VA FFFFFFFF.80D00000 FFFFFFFF.80ECA000 Current Size 229/ 229
Base/End PA 00000000.00900000 00000000.00ACA000 Free / 0
Total Size 00000000.001CA000 1.7 MB In Use / 229
Bitmap VA/Size FFFFFFFF.80D17E00 00000000.00000020 Initial Size 229/ 229
Slice Size 00000000.00002000 Released 0/ 0
Next free Slice 00000000.00000007

5–20 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE MEMORY

Item Base End Length
System Header FFFFFFFF.80D00000 FFFFFFFF.80D0A000 0000A000
Error Log Allocation Buffers FFFFFFFF.80D0A000 FFFFFFFF.80D0C000 00002000
Nonpaged Pool (initial size) FFFFFFFF.80D0E000 FFFFFFFF.80ECA000 001BC000

Resident Image Code Region Pages/Slices
Base/End VA FFFFFFFF.80400000 FFFFFFFF.80C00000 Current Size 1024/ 1024
Base/End PA 00000000.00C00000 00000000.01400000 Free / 223
Total Size 00000000.00800000 8.0 MB In Use / 801
Bitmap VA/Size FFFFFFFF.80D17E20 00000000.00000080 Initial Size 1024/ 1024
Slice Size 00000000.00002000 Released 0/ 0
Next free Slice 00000000.00000321

Image Base End Length
LIBRTL FFFFFFFF.80400000 FFFFFFFF.8049EA00 0009EA00
LIBOTS FFFFFFFF.804A0000 FFFFFFFF.804AEC00 0000EC00
CMA$TIS_SHR FFFFFFFF.804B0000 FFFFFFFF.804B2600 00002600
DPML$SHR FFFFFFFF.804B4000 FFFFFFFF.8050B600 00057600
DECC$SHR FFFFFFFF.8050C000 FFFFFFFF.80657000 0014B000
SECURESHRP FFFFFFFF.80658000 FFFFFFFF.80676000 0001E000
SECURESHR FFFFFFFF.80676000 FFFFFFFF.8068C000 00016000
SECURESHR FFFFFFFF.8068C000 FFFFFFFF.8068C200 00000200
LBRSHR FFFFFFFF.8068E000 FFFFFFFF.806A3E00 00015E00
DECW$TRANSPORT_COMMON FFFFFFFF.806A4000 FFFFFFFF.806B0C00 0000CC00
CDE$UNIX_ROUTINES FFFFFFFF.806B2000 FFFFFFFF.806C1E00 0000FE00
DECW$XLIBSHR FFFFFFFF.806C2000 FFFFFFFF.80781C00 000BFC00
DECW$XTLIBSHRR5 FFFFFFFF.80782000 FFFFFFFF.807C7600 00045600
DECW$XMLIBSHR12 FFFFFFFF.807C8000 FFFFFFFF.8096AE00 001A2E00
DECW$MRMLIBSHR12 FFFFFFFF.8096C000 FFFFFFFF.80994200 00028200
DECW$DXMLIBSHR12 FFFFFFFF.80996000 FFFFFFFF.80A40400 000AA400
223 free Slices FFFFFFFF.80A42000 FFFFFFFF.80C00000 001BE000

S2 Executive Data Region Pages/Slices
Base/End VA FFFFFFFE.00000000 FFFFFFFE.00050000 Current Size 40/ 8
Base/End PA 00000000.00350000 00000000.003A0000 Free / 0
Total Size 00000000.00050000 0.3 MB In Use / 8
Bitmap VA/Size FFFFFFFF.80D17EA0 00000000.00000008 Initial Size 40/ 8
Slice Size 00000000.0000A000 Released 0/ 0
Next free Slice 00000000.00000008

Item Base End Length
PFN Database FFFFFFFE.00000000 FFFFFFFE.00050000 00050000

The CLUE MEMORY/GH/FULL command displays data structures that describe
granularity hint regions and huge pages.

SDA CLUE Extension Commands 5–21

SDA CLUE Extension Commands
CLUE MEMORY

4. SDA> CLUE MEMORY/LAYOUT
System Virtual Address Space Layout:

Item Base End Length
System Virtual Base Address FFFFFEFE.00000000
PFN Database FFFFFEFE.00000000 FFFFFEFE.00280000 00280000
Permanent Mapping of System L1PT FFFFFEFE.00280000 FFFFFEFE.00282000 00002000
Global Page Table (GPT) FFFFFEFE.00282000 FFFFFEFE.0089CD38 0061AD38
Resource Hash Table FFFFFFFF.6FC1A000 FFFFFFFF.6FC22000 00008000
Lock ID Table FFFFFFFF.6FC22000 FFFFFFFF.70000000 003DE000
Execlet Code Region FFFFFFFF.80000000 FFFFFFFF.80800000 00800000
Resident Image Code Region FFFFFFFF.80800000 FFFFFFFF.81000000 00800000
System Header FFFFFFFF.81400000 FFFFFFFF.8140E000 0000E000
Error Log Allocation Buffers FFFFFFFF.8140E000 FFFFFFFF.81414000 00006000
Nonpaged Pool (initial size) FFFFFFFF.81414000 FFFFFFFF.817C8000 003B4000
Nonpaged Pool Expansion Area FFFFFFFF.817C8000 FFFFFFFF.82664000 00E9C000
Execlet Data Region FFFFFFFF.81000000 FFFFFFFF.81400000 00400000
Fork Buffers Secondary to Primary FFFFFFFF.8268C000 FFFFFFFF.8268E000 00002000
Erase Pattern Buffer Page FFFFFFFF.8268E000 FFFFFFFF.82690000 00002000
363 Balance Slots, 33 pages each FFFFFFFF.826A0000 FFFFFFFF.88436000 05D96000
Paged Pool FFFFFFFF.88436000 FFFFFFFF.887E4000 003AE000
System Control Block (SCB) FFFFFFFF.887E4000 FFFFFFFF.887EC000 00008000
Restart Parameter Block (HWRPB) FFFFFFFF.88832000 FFFFFFFF.88832B48 00000B48
Erase Pattern Page Table Page FFFFFFFF.82690000 FFFFFFFF.82692000 00002000
Posix Cloning Parent Page Mapping FFFFFFFF.88B1E000 FFFFFFFF.88B20000 00002000
Posix Cloning Child Page Mapping FFFFFFFF.88B20000 FFFFFFFF.88B22000 00002000
Swapper Process Kernel Stack FFFFFFFF.88B56000 FFFFFFFF.88B5A000 00004000
Swapper Map FFFFFFFF.88B60000 FFFFFFFF.88B82000 00022000
Idle Loop’s Mapping of Zero Pages FFFFFFFF.88C5E000 FFFFFFFF.88C60000 00002000
PrimCPU Machine Check Logout Area FFFFFFFF.88C60400 FFFFFFFF.88C60800 00000400
PrimCPU Sys Context Kernel Stack FFFFFFFF.88C58000 FFFFFFFF.88C5C000 00004000
Tape Mount Verification Buffer FFFFFFFF.88C62000 FFFFFFFF.88C66000 00004000
Mount Verification Buffer FFFFFFFF.88C66000 FFFFFFFF.88C68000 00002000
Demand Zero Optimization Page FFFFFFFF.88E68000 FFFFFFFF.88E6A000 00002000
Executive Mode Data Page FFFFFFFF.88E6A000 FFFFFFFF.88E6C000 00002000
System Space Expansion Region FFFFFFFF.8C000000 FFFFFFFF.FFDF0000 73DF0000
System Page Table Window FFFFFFFF.FFDF0000 FFFFFFFF.FFFF0000 00200000
N/A Space FFFFFFFF.FFFF0000 FFFFFFFF.FFFFFFFF 00010000

The CLUE MEMORY/LAYOUT command decodes and displays the sytem virtual
address space layout.

5–22 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE MEMORY

5. SDA> CLUE MEMORY/LOOKASIDE
Non-Paged Dynamic Storage Pool - Lookaside List Queue Information:
--
Listhead Addr: FFFFFFFF.80C50400 Size: 64 Status: Valid, 11 elements
Listhead Addr: FFFFFFFF.80C50408 Size: 128 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50410 Size: 192 Status: Valid, 29 elements
Listhead Addr: FFFFFFFF.80C50418 Size: 256 Status: Valid, 3 elements
Listhead Addr: FFFFFFFF.80C50420 Size: 320 Status: Valid, 7 elements
Listhead Addr: FFFFFFFF.80C50428 Size: 384 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50430 Size: 448 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50438 Size: 512 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50440 Size: 576 Status: Valid, 6 elements
Listhead Addr: FFFFFFFF.80C50448 Size: 640 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50450 Size: 704 Status: Valid, 5 elements
Listhead Addr: FFFFFFFF.80C50458 Size: 768 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50460 Size: 832 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C50468 Size: 896 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50470 Size: 960 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50478 Size: 1024 Status: Valid, 6 elements
Listhead Addr: FFFFFFFF.80C50480 Size: 1088 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50488 Size: 1152 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50490 Size: 1216 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50498 Size: 1280 Status: Valid, 2 elements
Listhead Addr: FFFFFFFF.80C504A0 Size: 1344 Status: Valid, 2 elements
Listhead Addr: FFFFFFFF.80C504A8 Size: 1408 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504B0 Size: 1472 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504B8 Size: 1536 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504C0 Size: 1600 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504C8 Size: 1664 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504D0 Size: 1728 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504D8 Size: 1792 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504E0 Size: 1856 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C504E8 Size: 1920 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C504F0 Size: 1984 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C504F8 Size: 2048 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50500 Size: 2112 Status: Valid, 1 element
Listhead Addr: FFFFFFFF.80C50508 Size: 2176 Status: Valid, 15 elements
Listhead Addr: FFFFFFFF.80C50510 Size: 2240 Status: Valid, empty
Listhead Addr: FFFFFFFF.80C50518 Size: 2304 Status: Valid, 1 element

.

.

.

Total free space: 00016440 (hex) 91200 (dec) bytes

The CLUE MEMORY/LOOKASIDE command summarizes the state of
nonpageable lookaside lists. For each list, an indication of whether the queue
is well formed is given. If a queue is not well formed or is invalid, messages
indicating what is wrong with the queue are displayed. This command is
analogous to the SDA command VALIDATE QUEUE.

These messages can also appear frequently when you use the VALIDATE QUEUE
command within an SDA session that is analyzing a running system. In a
running system, the composition of a queue can change while the command is
tracing its links, thus producing an error message.

SDA CLUE Extension Commands 5–23

SDA CLUE Extension Commands
CLUE MEMORY

6. SDA> CLUE MEMORY/STATISTIC
Memory Management Statistics:

Pagefaults: Non-Paged Pool:
Total Page Faults 1060897 Successful Expansions 32
Total Page Reads 393414 Unsuccessful Expansions 0
I/O’s to read Pages 163341 Failed Pages Accumulator 0
Modified Pages Written 121 Total Alloc Requests 55596
I/O’s to write Mod Pages 19 Failed Alloc Requests 0
Demand Zero Faults 281519
Global Valid Faults 378701 Paged Pool:
Modified Faults 236189 Total Failures 0
Read Faults 0 Failed Pages Accumulator 0
Execute Faults 28647 Total Alloc Requests 10229

Failed Alloc Requests 0

Direct I/O 591365 Cur Mapped Gbl Sections 653
Buffered I/O 589652 Max Mapped Gbl Sections 654
Split I/O 213 Cur Mapped Gbl Pages 12193
Hits 83523 Max Mapped Gbl Pages 12196
Logical Name Transl 1805476 Maximum Processes 46
Dead Page Table Scans 0 Sched Zero Pages Created 0

Distributed Lock Manager: Local Incoming Outgoing
$ENQ New Lock Requests 674059 0 0
$ENQ Conversion Requests 497982 0 0
$DEQ Dequeue Requests 671626 0 0
Blocking ASTs 26 0 0
Directory Functions 0 0
Deadlock Messages 0 0

$ENQ Requests that Wait 822 Deadlock Searches Performed 0
$ENQ Requests not Queued 3 Deadlocks Found 0

MSCP Statistics: Total IOs 0
Count of VC Failures 0 Split IOs 0
Count of Hosts Served 0 IOs that had to Wait (Buf) 0
Count of Disks Served 10 Requests in MemWait Queue 0
MSCP_BUFFER (SYSGEN) 128 Max Req ever in MemWait 0
MSCP_CREDITS (SYSGEN) 8

File System Cache: Current SYSGEN Param Hits Misses Hitrate
File Header Cache (ACP_HDRCACHE = 726) 196207 1214 99.3%
Storage Bitmap Cache (ACP_MAPCACHE = 181) 38 9 80.8%
Directory Data Cache (ACP_DIRCACHE = 726) 153415 199 99.8%
Directory LRU (ACP_DINDXCACHE= 181) 138543 106 99.9%
FID Cache (ACP_FIDCACHE = 64) 119 6 95.2%
Extent Cache (ACP_EXTCACHE = 64) 229 9 96.2%
Quota Cache (ACP_QUOCACHE = 365) 0 0 0.0%

Volume Synch Locks 958 Window Turns 1464
Volume Synch Locks Wait 0 Currently Open Files 630
Dir/File Synch Locks 432071 Total Count of OPENs 52903
Dir/file Synch Locks Wait 746 Total Count of ERASE QIOs 186
Access Locks 151648
Free Space Cache Wait 12608

Global Pagefile Quota 785957 GBLPAGFIL (SYSGEN) Limit 786688

The CLUE MEMORY/STATISTIC command displays systemwide performance
data such as page fault, I/O, pool, lock manager, MSCP, and file system cache
statistics.

5–24 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE PROCESS

CLUE PROCESS

Displays process-related information from the current process context.

Format

CLUE PROCESS [/qualifier[,...]]

Parameters

None.

Qualifiers

/BUFFER [/ALL]
Displays the buffer objects for the current process. If the /ALL qualifier is
specified, then the buffer objects for all processes (that is, all existing buffer
objects) are displayed.

/LAYOUT
Displays the process P1 virtual address space layout.

/LOGICAL
Displays the process logical names and equivalence names, if they can be
accessed.

/RECALL
Displays the DCL recall buffer, if it can be accessed.

Description

The CLUE PROCESS command displays process-related information from the
current process context. Much of this information is in pageable address space
and thus may not be present in a dump file.

Examples

1. SDA> CLUE PROCESS/LOGICAL

Process Logical Names:

"SYS$OUTPUT" = "_CLAWS$LTA5004:"
"SYS$OUTPUT" = "_CLAWS$LTA5004:"
"SYS$DISK" = "WORK1:"
"BACKUP_FILE" = "_65DUA6"
"SYS$PUTMSG" = "...À...À.."
"SYS$COMMAND" = "_CLAWS$LTA5004:"
"TAPE_LOGICAL_NAME" = "_1MUA3:"
"TT" = "LTA5004:"
"SYS$INPUT" = "_$65$DUA6:"
"SYS$INPUT" = "_CLAWS$LTA5004:"
"SYS$ERROR" = "21C00303.LOG"
"SYS$ERROR" = "_CLAWS$LTA5004:"
"ERROR_FILE" = "_65DUA6"

The CLUE PROCESS/LOGICAL command displays logical names for each
running process.

SDA CLUE Extension Commands 5–25

SDA CLUE Extension Commands
CLUE PROCESS

2. SDA> CLUE PROCESS/RECALL
Process DCL Recall Buffer:

Index Command
1 ana/sys
2 @login
3 mc sysman io auto /log
4 show device d
5 sea <.x>*.lis clue$
6 tpu <.x>*0914.lis
7 sh log *hsj*
8 xd <.x>.lis
9 mc ess$ladcp show serv
10 tpu clue_cmd.cld
11 ana/sys

The CLUE PROCESS/RECALL command displays a listing of the DCL
commands that have been executed most recently.

5–26 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE REGISTER

CLUE REGISTER

Displays the active register set for the crash CPU. The CLUE REGISTER
command is valid only when analyzing crash dumps.

Format

CLUE REGISTER

Parameters

None.

Qualifiers

None.

Description

The CLUE REGISTER command displays the active register set of the crash
CPU. It also identifies any known data structures, symbolizes any system virtual
addresses, interprets the processor status (PS), and attempts to interpret R0 as a
condition code.

Example

SDA> CLUE REGISTER

Current Registers: Process index: 0042 Process name: BATCH_3 PCB: 817660C0 (CPU 1)
--

R0 = 00000000.00000000
R1 = FFFFFFFF.814A2C80 MP_CPU (CPU Id 1)
R2 = 00000000.00000000
R3 = 00000000.23D6BBEE
R4 = 00000000.00000064
R5 = FFFFFFFF.831F8000 PHD
R6 = 00000000.12F75475
R7 = 00000000.010C7A70
R8 = 00000000.00000001
R9 = 00000000.00000000
R10 = 00000000.00000000
R11 = FFFFFFFF.814A2C80 MP_CPU (CPU Id 1)
R12 = FFFFFFFF.810AA5E0 SYSTEM_SYNCHRONIZATION+293E0
R13 = FFFFFFFF.810AC408 SMP$TIMEOUT
R14 = FFFFFFFF.810AED00 SMP$GL_SCHED
R15 = 00000000.7FFA1DD8
R16 = 00000000.0000078C
R17 = 00000000.00000000
R18 = FFFFFFFF.810356C0 SYS$CPU_ROUTINES_2208+1D6C0
R19 = FFFFFFFF.81006000 EXE$GR_SYSTEM_DATA_CELLS
R20 = FFFFFFFF.80120F00 SCH$QEND_C+00080
R21 = 00000000.00000000
R22 = FFFFFFFF.00000000
R23 = 00000000.00000000
R24 = 00000000.00000000
AI = FFFFFFFF.81006000 EXE$GR_SYSTEM_DATA_CELLS
RA = 00000000.00000000
PV = 00000000.00000000
R28 = FFFFFFFF.810194A0 EXE$GL_TIME_CONTROL

SDA CLUE Extension Commands 5–27

SDA CLUE Extension Commands
CLUE REGISTER

FP = 00000000.7FFA1F90
PC = FFFFFFFF.800863A8 SMP$TIMEOUT_C+00068
PS = 18000000.00000804 Kernel Mode, IPL 8, Interrupt

5–28 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE SG

CLUE SG

Displays the scatter-gather map.

Format

CLUE SG [/CRAB=address]

Parameters

None.

Qualifier

/CRAB=address
Displays the ringbuffer for the specified Counted Resource Allocation Block
(CRAB). The default action is to display the ringbuffer for all CRABs.

Description

CLUE SG decodes and displays the scatter/gather ringbuffer entries.
Examples

1. SDA> CLUE SG/CRAB=81224740
Scatter/Gather Ringbuffer for CRAB 81224740:
--
XAct CRCTX Item_Num Item_Cnt DMA_Addr Status Callers_PC Count Buf_Addr
---- -------- -------- -------- -------- -------- -- -------- --------
ALLO 81272780 00000020 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000018 81240AE0
ALLO 81272700 0000001C 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000017 81240AC0
ALLO 81272680 00000018 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000016 81240AA0
ALLO 81272600 00000014 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000015 81240A80
ALLO 81272580 00000010 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000014 81240A60
ALLO 81272500 0000000C 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000013 81240A40
ALLO 81272480 00000008 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000012 81240A20
ALLO 81272400 00000004 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000011 81240A00
ALLO 81272380 00000000 00000004 00000000 00000001 847DDA94 SYS$EWDRIVER+01A94 00000010 812409E0
DEAL 841DBEA0 00000000 0000000C C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 0000000F 812409C0
ALLO 841DBEA0 00000000 0000000C 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 0000000E 812409A0
DEAL 841DBEA0 00000000 00000012 C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 0000000D 81240980
ALLO 841DBEA0 00000000 00000012 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 0000000C 81240960
DEAL 841DBEA0 00000000 0000000C C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 0000000B 81240940
ALLO 841DBEA0 00000000 0000000C 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 0000000A 81240920
DEAL 841DBEA0 00000000 00000012 C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 00000009 81240900
ALLO 841DBEA0 00000000 00000012 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 00000008 812408E0
DEAL 841DBEA0 00000000 00000012 C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 00000007 812408C0
ALLO 841DBEA0 00000000 00000012 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 00000006 812408A0
DEAL 841DBEA0 00000000 00000012 C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 00000005 81240880
ALLO 841DBEA0 00000000 00000012 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 00000004 81240860
DEAL 841DBEA0 00000000 00000012 C0000000 00000001 803B5124 SYS$PKQDRIVER+0B124 00000003 81240840
ALLO 841DBEA0 00000000 00000012 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 00000002 81240820
DEAL 841DBEA0 00000000 0000000C C0001E00 00000001 803B5124 SYS$PKQDRIVER+0B124 00000001 81240800
ALLO 841DBEA0 00000000 0000000C 00000000 00000001 803B4FB8 SYS$PKQDRIVER+0AFB8 00000000 812407E0)

VM-0769A-AI

In this example, the scatter-gather ringbuffer for the CRAB at address 81224740
is displayed.

2. SDA> CLUE SG/CRAB=8120D600
Scatter/Gather Ringbuffer for CRAB 8120D600:
--
XAct CRCTX Item_Num Item_Cnt DMA_Addr Status Callers_PC Count Buf_Addr
---- -------- -------- -------- -------- -------- -- -------- --------
ALLO 8128A380 0001C000 00004000 00000000 00000001 8480E990 SYS$MCDRIVER+02990 00000000 8121C760)

VM-0194A-AI

In this example, the scatter-gather ringbuffer for the CRAB address 8120D600 is
displayed.

SDA CLUE Extension Commands 5–29

SDA CLUE Extension Commands
CLUE STACK

CLUE STACK

Identifies and displays the current stack. Use the SDA command SHOW STACK
to display and decode the whole stack for the more common bugcheck types.

Format

CLUE STACK

Parameters

None.

Qualifiers

None.

Description

The CLUE STACK command identifies and displays the current stack together
with the upper and lower stack limits. In case of a FATALEXCPT, INVEXCEPTN,
SSRVEXCEPT, UNXSIGNAL, or PGFIPLHI bugcheck, CLUE STACK tries to
decode the whole stack.

Example

SDA> CLUE STACK
Stack Decoder:

Normal Process Kernel Stack:
Stack Pointer 00000000.7FFA1C98
Stack Limits (low) 00000000.7FFA0000

(high) 00000000.7FFA2000

SSRVEXCEPT Stack:

Stack Pointer SP => 00000000.7FFA1C98

Information saved by Bugcheck:
a(Signal Array) 00000000.7FFA1C98 00000000.00000000

EXE$EXCPTN[E] Temporary Storage:
EXE$EXCPTN[E] Stack Frame:
PV 00000000.7FFA1CA0 FFFFFFFF.829CF010 EXE$EXCPTN

Entry Point FFFFFFFF.82A21000 EXE$EXCPTN_C
return PC 00000000.7FFA1CA8 FFFFFFFF.82A2059C SYS$CALL_HANDL_C+0002C
saved R2 00000000.7FFA1CB0 00000000.00000000
saved FP 00000000.7FFA1CB8 00000000.7FFA1CD0

SYS$CALL_HANDL Temporary Storage:
00000000.7FFA1CC0 FFFFFFFF.829CEDA8 SYS$CALL_HANDL
00000000.7FFA1CC8 00000000.00000000

SYS$CALL_HANDL Stack Frame:
PV 00000000.7FFA1CD0 FFFFFFFF.829CEDA8 SYS$CALL_HANDL

Entry Point FFFFFFFF.82A20570 SYS$CALL_HANDL_C
00000000.7FFA1CD8 00000000.00000000

return PC 00000000.7FFA1CE0 FFFFFFFF.82A1E930 CHF_REI+000DC
saved FP 00000000.7FFA1CE8 00000000.7FFA1F40

5–30 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE STACK

Fixed Exception Context Area:
Linkage Pointer 00000000.7FFA1CF0 FFFFFFFF.80C63780 EXCEPTION_MON_NPRW+06D80
a(Signal Array) 00000000.7FFA1CF8 00000000.7FFA1EB8
a(Mechanism Array) 00000000.7FFA1D00 00000000.7FFA1D40
a(Exception Frame) 00000000.7FFA1D08 00000000.7FFA1F00
Exception FP 00000000.7FFA1D10 00000000.7FFA1F40
Unwind SP 00000000.7FFA1D18 00000000.00000000
Reinvokable FP 00000000.7FFA1D20 00000000.00000000
Unwind Target 00000000.7FFA1D28 00000000.00020000 SYS$K_VERSION_04
#Sig Args/Byte Cnt 00000000.7FFA1D30 00000005.00000250 BUG$_NETRCVPKT
a(Msg)/Final Status 00000000.7FFA1D38 829CE050.000008F8 BUG$_SEQ_NUM_OVF

Mechanism Array:
Flags/Arguments 00000000.7FFA1D40 00000000.0000002C
a(Establisher FP) 00000000.7FFA1D48 00000000.7AFFBAD0
reserved/Depth 00000000.7FFA1D50 FFFFFFFF.FFFFFFFD
a(Handler Data) 00000000.7FFA1D58 00000000.00000000
a(Exception Frame) 00000000.7FFA1D60 00000000.7FFA1F00
a(Signal Array) 00000000.7FFA1D68 00000000.7FFA1EB8
saved R0 00000000.7FFA1D70 00000000.00020000 SYS$K_VERSION_04
saved R1 00000000.7FFA1D78 00000000.00000000
saved R16 00000000.7FFA1D80 00000000.00020004 UCB$M_NI_PRM_MLT+00004
saved R17 00000000.7FFA1D88 00000000.00010050 SYS$K_VERSION_16+00010
saved R18 00000000.7FFA1D90 FFFFFFFF.FFFFFFFF
saved R19 00000000.7FFA1D98 00000000.00000000
saved R20 00000000.7FFA1DA0 00000000.7FFA1F50
saved R21 00000000.7FFA1DA8 00000000.00000000
saved R22 00000000.7FFA1DB0 00000000.00010050 SYS$K_VERSION_16+00010
saved R23 00000000.7FFA1DB8 00000000.00000000
saved R24 00000000.7FFA1DC0 00000000.00010051 SYS$K_VERSION_16+00011
saved R25 00000000.7FFA1DC8 00000000.00000000
saved R26 00000000.7FFA1DD0 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
saved R27 00000000.7FFA1DD8 00000000.00010050 SYS$K_VERSION_16+00010
saved R28 00000000.7FFA1DE0 00000000.00000000
FP Regs not valid [...............]
a(Signal64 Array) 00000000.7FFA1EA0 00000000.7FFA1ED0
SP Align = 10(hex) [...............]

Signal Array:
Arguments 00000000.7FFA1EB8 00000005
Condition 00000000.7FFA1EBC 0000000C
Argument #2 00000000.7FFA1EC0 00010000 LDRIMG$M_NPAGED_LOAD
Argument #3 00000000.7FFA1EC4 00000000
Argument #4 00000000.7FFA1EC8 00030078 SYS$K_VERSION_01+00078
Argument #5 00000000.7FFA1ECC 00000003

64-bit Signal Array:
Arguments 00000000.7FFA1ED0 00002604.00000005
Condition 00000000.7FFA1ED8 00000000.0000000C
Argument #2 00000000.7FFA1EE0 00000000.00010000 LDRIMG$M_NPAGED_LOAD
Argument #3 00000000.7FFA1EE8 00000000.00000000
Argument #4 00000000.7FFA1EF0 00000000.00030078 SYS$K_VERSION_01+00078
Argument #5 00000000.7FFA1EF8 00000000.00000003

Interrupt/Exception Frame:
saved R2 00000000.7FFA1F00 00000000.00000003
saved R3 00000000.7FFA1F08 FFFFFFFF.80C63460 EXCEPTION_MON_NPRW+06A60
saved R4 00000000.7FFA1F10 FFFFFFFF.80D12740 PCB
saved R5 00000000.7FFA1F18 00000000.000000C8
saved R6 00000000.7FFA1F20 00000000.00030038 SYS$K_VERSION_01+00038
saved R7 00000000.7FFA1F28 00000000.7FFA1FC0
saved PC 00000000.7FFA1F30 00000000.00030078 SYS$K_VERSION_01+00078
saved PS 00000000.7FFA1F38 00000000.00000003 IPL INT CURR PREV
SP Align = 00(hex) [...............] 00 0 Kern User

SDA CLUE Extension Commands 5–31

SDA CLUE Extension Commands
CLUE STACK

Stack Frame:
PV 00000000.7FFA1F40 00000000.00010050 SYS$K_VERSION_16+00010

Entry Point 00000000.00030060 SYS$K_VERSION_01+00060
00000000.7FFA1F48 00000000.00010000 LDRIMG$M_NPAGED_LOAD

return PC 00000000.7FFA1F50 FFFFFFFF.8010ACA4 AMAC$EMUL_CALL_NATIVE_C+000A4
saved FP 00000000.7FFA1F58 00000000.7FFA1F70

Stack (not decoded):
00000000.7FFA1F60 00000000.00000001
00000000.7FFA1F68 FFFFFFFF.800EE81C RM_STD$DIRCACHE_BLKAST_C+005AC

Stack Frame:
PV 00000000.7FFA1F70 FFFFFFFF.80C6EBA0 EXE$CMKRNL

Entry Point FFFFFFFF.800EE6C0 EXE$CMKRNL_C
00000000.7FFA1F78 00000000.829CEDE8 EXE$SIGTORET
00000000.7FFA1F80 00010050.00000002
00000000.7FFA1F88 00000000.00020000 SYS$K_VERSION_04
00000000.7FFA1F90 00000000.00030000 SYS$K_VERSION_01

return PC 00000000.7FFA1F98 FFFFFFFF.800A4D64 __RELEASE_LDBL_EXEC_SERVICE+00284
saved R2 00000000.7FFA1FA0 00000000.00000003
saved R4 00000000.7FFA1FA8 FFFFFFFF.80D12740 PCB
saved R13 00000000.7FFA1FB0 00000000.00010000 LDRIMG$M_NPAGED_LOAD
saved FP 00000000.7FFA1FB8 00000000.7AFFBAD0

Interrupt/Exception Frame:
saved R2 00000000.7FFA1FC0 00000000.7FFCF880 MMG$IMGHDRBUF+00080
saved R3 00000000.7FFA1FC8 00000000.7B0E9851
saved R4 00000000.7FFA1FD0 00000000.7FFCF818 MMG$IMGHDRBUF+00018
saved R5 00000000.7FFA1FD8 00000000.7FFCF938 MMG$IMGHDRBUF+00138
saved R6 00000000.7FFA1FE0 00000000.7FFAC9F0
saved R7 00000000.7FFA1FE8 00000000.7FFAC9F0
saved PC 00000000.7FFA1FF0 FFFFFFFF.80000140 SYS$CLREF_C
saved PS 00000000.7FFA1FF8 00000000.0000001B IPL INT CURR PREV
SP Align = 00(hex) [...............] 00 0 User User

CLUE STACK identifies and displays the current stack and its upper and lower
limit. It then decodes the current stack if it is one of the more common bugcheck
types. In this case, CLUE STACK tries to decode the entire INVEXCEPTN stack.

5–32 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE SYSTEM

CLUE SYSTEM

Displays the contents of the shared logical name tables in the system.

Format

CLUE SYSTEM /LOGICAL

Parameters

None.

Qualifier

/LOGICAL
Displays all the shared logical names.

Description

The CLUE SYSTEM/LOGICAL command displays the contents of the shared
logical name tables in the system.

Example

SDA> CLUE SYSTEM/LOGICAL

Shareable Logical Names:

"XMICONBMSEARCHPATH" = "CDE$HOME_DEFAULTS:[ICONS]%B%M.BM"
"MTHRTL_TV" = "MTHRTL_D53_TV"
"SMGSHR_TV" = "SMGSHR"
"DECW$DEFAULT_KEYBOARD_MAP" = "NORTH_AMERICAN_LK401AA"
"CONVSHR_TV" = "CONVSHR"
"XDPS$INCLUDE" = "SYS$SYSROOT:[XDPS$INCLUDE]"
"DECW$SYSTEM_DEFAULTS" = "SYS$SYSROOT:[DECW$DEFAULTS.USER]"
"SYS$PS_FONT_METRICS" = "SYS$SYSROOT:[SYSFONT.PS_FONT_METRICS.USER]"
"SYS$TIMEZONE_NAME" = "???"
"STARTUP$STARTUP_VMS" = "SYS$STARTUP:VMS$VMS.DAT"
"PASMSG" = "PAS$MSG"
"UCX$HOST" = "SYS$COMMON:[SYSEXE]UCX$HOST.DAT;1"
"SYS$SYLOGIN" = "SYS$MANAGER:SYLOGIN"
"DNS$SYSTEM" = "DNS$SYSTEM_TABLE"
"IPC$ACP_ERRMBX" = "d.Ú."
"CDE$DETACHED_LOGICALS" = "DECW$DISPLAY,LANG"
"DECW$SERVER_SCREENS" = "GXA0"
"DNS$_COTOAD_MBX" = "ä<â."
"DNS$LOGICAL" = "DNS$SYSTEM"
"OSIT$MAILBOX" = "äAë."
"XNL$SHR_TV" = "XNL$SHR_TV_SUPPORT.EXE"
"MOM$SYSTEM" = "SYS$SYSROOT:[MOM$SYSTEM]"
"MOP$LOAD" = "SYS$SYSROOT:<MOM$SYSTEM>"
.
.
.

SDA CLUE Extension Commands 5–33

SDA CLUE Extension Commands
CLUE VCC

CLUE VCC

Displays virtual I/O cache-related information.

Note

If extended file cache (XFC) is enabled, the CLUE VCC command is
disabled.

Format

CLUE VCC [/qualifier[,...]]

Parameters

None.

Qualifiers

/CACHE
Decodes and displays the cache lines that are used to correlate the file virtual
block numbers (VBNs) with the memory used for caching. Note that the cache
itself is not dumped in a selective dump. Use of this qualifier with a selective
dump produces the following message:

%CLUE-I-VCCNOCAC, Cache space not dumped because DUMPSTYLE is selective

/LIMBO
Walks through the limbo queue (LRU order) and displays information for the
cached file header control blocks (FCBs).

/STATISTIC
Displays statistical and performance information related to the virtual I/O cache.

/VOLUME
Decodes and displays the cache volume control blocks (CVCB).

5–34 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE VCC

Examples

1. SDA> CLUE VCC/STATISTIC
Virtual I/O Cache Statistics:

Cache State pak,on,img,data,enabled
Cache Flags on,protocol_only
Cache Data Area 80855200

Total Size (pages) 400 Total Size (MBytes) 3.1 MB
Free Size (pages) 0 Free Size (MBytes) 0.0 MB
Read I/O Count 34243 Read I/O Bypassing Cache 3149
Read Hit Count 15910 Read Hit Rate 46.4%
Write I/O Count 4040 Write I/O Bypassing Cache 856
IOpost PID Action Rtns 40829 IOpost Physical I/O Count 28
IOpost Virtual I/O Count 0 IOpost Logical I/O Count 7
Read I/O past File HWM 124 Cache Id Mismatches 44
Count of Cache Block Hits 170 Files Retained 100

Cache Line LRU 82B11220 82B11620 Oldest Cache Line Time 00001B6E
Limbo LRU Queue 80A97E3C 80A98B3C Oldest Limbo Queue Time 00001B6F
Cache VCB Queue 8094DE80 809AA000 System Uptime (seconds) 00001BB0

2. SDA> CLUE VCC/VOLUME
Virtual I/O Cache - Cache VCB Queue:

CacheVCB RealVCB LockID IRP Queue CID LKSB Ocnt State
-------- -------- -------- ----------------- ---- ---- ---- ---------------
8094DE80 80A7E440 020007B2 8094DEBC 8094DEBC 0000 0001 0002 on
809F3FC0 809F97C0 0100022D 809F3FFC 809F3FFC 0000 0001 0002 on
809D0240 809F7A40 01000227 809D027C 809D027C 0000 0001 0002 on
80978B80 809F6C00 01000221 80978BBC 80978BBC 0000 0001 0002 on
809AA000 809A9780 01000005 809AA83C 809AA03C 0007 0001 0002 on

3. SDA> CLUE VCC/LIMBO
Virtual I/O Cache - Limbo Queue:

CFCB CVCB FCB CFCB IOerrors FID (hex)

-------- -------- -------- -Status- -------- --------------
80A97DC0 809AA000 80A45100 00000200 00000000 (076B,0001,00)
80A4E440 809AA000 809CD040 00000200 00000000 (0767,0001,00)
80A63640 809AA000 809FAE80 00000200 00000000 (0138,0001,00)
80AA2540 80978B80 80A48140 00000200 00000000 (0AA5,0014,00)
80A45600 809AA000 80A3AC00 00000200 00000000 (0C50,0001,00)
80A085C0 809AA000 809FA140 00000200 00000000 (0C51,0001,00)
80A69800 809AA000 809FBA00 00000200 00000000 (0C52,0001,00)
80951000 809AA000 80A3F140 00000200 00000000 (0C53,0001,00)
80A3E580 809AA000 80A11A40 00000200 00000000 (0C54,0001,00)
80A67F80 809AA000 80978F00 00000200 00000000 (0C55,0001,00)
809D30C0 809AA000 809F4CC0 00000200 00000000 (0C56,0001,00)
809D4B80 809AA000 8093E540 00000200 00000000 (0C57,0001,00)
[......]
80A81600 809AA000 8094B2C0 00000200 00000000 (0C5D,0001,00)
80AA3FC0 809AA000 80A2DEC0 00000200 00000000 (07EA,000A,00)
80A98AC0 809AA000 8093C640 00000200 00000000 (0C63,0001,00)

SDA CLUE Extension Commands 5–35

SDA CLUE Extension Commands
CLUE VCC

4. SDA> CLUE VCC/CACHE

Virtual I/O Cache - Cache Lines:

CL VA CVCB CFCB FCB CFCB IOerrors FID (hex)
-------- -------- -------- -------- -------- -Status- -------- ------------
82B11200 82880000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B15740 82AAA000 809AA000 80A07A00 80A24240 00000000 00000000 (0765,0001,00)
82B14EC0 82A66000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B12640 82922000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B123C0 8290E000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B13380 8298C000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B15A40 82AC2000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B15F40 82AEA000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B12AC0 82946000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B12900 82938000 809D0240 809D7000 80A01100 00000200 00000000 (006E,0003,00)
82B10280 82804000 809AA000 80A45600 80A3AC00 00000200 00000000 (0C50,0001,00)
82B122C0 82906000 809AA000 80A1AC00 80A48000 00000000 00000000 (0164,0001,00)
82B14700 82A28000 809AA000 809FFEC0 809F8DC0 00000004 00000000 (07B8,0001,00)
82B11400 82890000 809AA000 80A113C0 80A11840 00000000 00000000 (00AF,0001,00)
[......]
82B11380 8288C000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)
82B130C0 82976000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)
82B11600 828A0000 809AA000 809DA0C0 809C99C0 00002000 00000000 (00AB,0001,00)

5–36 SDA CLUE Extension Commands

SDA CLUE Extension Commands
CLUE XQP

CLUE XQP

Displays XQP-related information.

Format

CLUE XQP [/qualifier[,...]]

Parameters

None.

Qualifiers

/ACTIVE [/FULL]
Displays all active XQP processes.

/AQB
Displays any current I/O request packets (IRPs) waiting at the interlocked queue.

/BFRD=index
Displays the buffer descriptor (BFRD) referenced by the index specified. The
index is identical to the hash value.

/BFRL=index
Displays the buffer lock block descriptor (BFRL) referenced by the index specified.
The index is identical to the hash value.

/BUFFER=(n,m) [/FULL]
Displays the BFRDs for a given pool. Specify either 0, 1, 2 or 3, or a combination
of these in the parameter list.

/CACHE_HEADER
Displays the block buffer cache header.

/FCB=address [/FULL]
Displays all file header control blocks (FCBs) with a nonzero DIRINDX for a
given volume. If no address is specified, the current volume of the current process
is used.

The address specified can also be either a valid volume control block (VCB), unit
control block (UCB), or window control block (WCB) address.

/FILE=address
Decodes and displays file header (FCB), window (WCB), and cache information
for a given file. The file can be identified by either its FCB or WCB address.

/GLOBAL
Displays the global XQP area for a given process.

/LBN_HASH=lbn
Calculates and displays the hash value for a given logical block number (LBN).

/LIMBO
Searches through the limbo queue and displays FCB information from available,
but unused file headers.

SDA CLUE Extension Commands 5–37

SDA CLUE Extension Commands
CLUE XQP

/LOCK=lockbasis
Displays all file system serialization, arbitration, and cache locks found for the
specified lockbasis.

/THREAD=n
Displays the XQP thread area for a given process. The specified thread number
is checked for validity. If no thread number is specified, the current thread is
displayed. If no current thread, but only one single thread is in use, then that
thread is displayed. If more than one thread exists or an invalid thread number
is specified, then a list of currently used threads is displayed.

/VALIDATE=(n,m)
Performs certain validation checks on the block buffer cache to detect corruption.
Specify 1, 2, 3, 4, or a combination of these in the parameter list. If an
inconsistency is found, a minimal error message is displayed. If you add the
/FULL qualifier, additional information is displayed.

Description

The CLUE XQP command displays XQP information. XQP is part of the I/O
subsystem.

Examples

1. SDA> CLUE XQP/CACHE_HEADER
Block Buffer Cache Header:

Cache_Header 8437DF90 BFRcnt 000005D2 FreeBFRL 843916A0
Bufbase 8439B400 BFRDbase 8437E080 BFRLbase 8438F7E0
Bufsize 000BA400 LBNhashtbl 84398390 BFRLhashtbl 84399BC8
Realsize 000D78A0 LBNhashcnt 0000060E BFRLhashcnt 0000060E

Pool #0 #1 #2 #3
Pool_LRU 8437E5C0 84385F40 84387E90 8438EEB0

8437F400 84385D60 8438AC80 8438EE20
Pool_WAITQ 8437DFE0 8437DFE8 8437DFF0 8437DFF8

8437DFE0 8437DFE8 8437DFF0 8437DFF8
Waitcnt 00000000 00000000 00000000 00000000
Poolavail 00000094 00000252 00000251 00000094
Poolcnt 00000095 00000254 00000254 00000095

AmbigQFL 00000000 Process_Hits 00000000 Cache_Serial 00000000
AmbigQBL 00000000 Valid_Hits 00000000 Cache_Stalls 00000000
Disk_Reads 00000000 Invalid_Hits 00000000 Buffer_Stalls 00000000
Disk_Writes 00000000 Misses 00000000

The SDA command CLUE XQP/CACHE_HEADER displays the block buffer cache
header.

2. SDA> CLUE XQP/VALIDATE=(1,4)
Searching BFRD Array for possible Corruption...
Searching Lock Basis Hashtable for possible Corruption...

In this example, executing the CLUE XQP/VALIDATE=1,4 command indicated
that no corruption was detected in either the BFRD Array or the Lock Basis
Hashtable.

5–38 SDA CLUE Extension Commands

6
SDA Spinlock Tracing Utility

This chapter presents an overview of the SDA Spinlock Tracing Utility
commands, and describes the SDA Spinlock Tracing commands.

6.1 Overview of the SDA Spinlock Tracing Utility
To synchronize access to data structures, the OpenVMS operating system uses
a set of static and dynamic spinlocks, such as IOLOCK8 and SCHED. The
operating system acquires a spinlock to synchronize data, and at the end of the
critical code path the spinlock is then released. If a CPU attempts to acquire
a spinlock while another CPU is holding it, the CPU attempting to acquire the
spinlock has to spin, waiting until the spinlock is released. Any lost CPU cycles
within such a spinwait loop are charged as MPsynch time.

By using the MONITOR utility, you can monitor the time in process modes,
for example, with the command $ MONITOR MODES. A high rate of
MP synchronization indicates contention for spinlocks. However, until the
implementation of the Spinlock Tracing utility, there was no way to tell which
spinlock was heavily used, and who was acquiring and releasing the contended
spinlocks. The Spinlock Tracing utility allows a characterization of spinlock
usage. It can also collect performance data for a given spinlock on a per-CPU
basis.

This tracing ability is built into the system synchronization execlet, which
contains the spinlock code, and can be enabled or disabled while the system is
running. There is no need to reboot the system to load a separate debug image.
The images that provide spinlock tracing functionality are as follows:

SYS$LOADABLE_IMAGES:SPL$DEBUG.EXE
SYS$SHARE:SPL$SDA.EXE

The SDA> prompt provides the command interface. From this command
interface, you can load and unload the spinlock debug execlet using SPL LOAD
and SPL UNLOAD, and start, stop and display spinlock trace data. This allows
you to collect spinlock data for a given period of time without system interruption.
Once information is collected, the trace buffer can be deallocated and the execlet
can be unloaded to free up system resources. The spinlock trace buffer is
allocated from S2 space and pages are taken from the freelist.

Should the system crash while spinlock tracing is enabled, the trace buffer is
dumped into the system dump file, and it can later be analyzed using the spinlock
trace utility. This is very useful in tracking down CPUSPINWAIT bugcheck
problems.

Note that by enabling spinlock tracing, there is a performance impact. The
amount of the impact depends on the amount of spinlock usage.

SDA Spinlock Tracing Utility 6–1

SDA Spinlock Tracing Utility
6.1 Overview of the SDA Spinlock Tracing Utility

Note

The Spinlock Tracing utility is still under development. The command
format, displays, and suggested approach to spinlock analysis are all
subject to change.

6.2 How to Use the SDA Spinlock Tracing Utility
The following steps will enable you to collect spinlock statistics using the Spinlock
Tracing Utility.

1. Load the Spinlock Tracing Utility execlet.

SDA> SPL LOAD

2. Allocate a trace buffer and start tracing.

SDA> SPL START TRACE

3. Wait a few seconds to allow some tracing to be done, then find out which
spinlocks are incurring the most acquisitions and the most spinwaits.

SDA> SPL SHOW TRACE/SUMMARY

For example, you might see contention for the SCHED and IOLOCK8
spinlocks (a high acquisition count, with a significant proportion of the
acquisitions being forced to wait).

4. Look to see if the spinlocks with a high proportion of spinwaits caused a
significant delay in the acquisition of the spinlock. You must now collect more
detailed statistics on a specific spinlock.

SDA> SPL START COLLECT/SPINLOCK=SCHED

This command accumulates additional data for the specified spinlock.
As long as tracing is not stopped, collection will continue to accumulate
spinlock-specific data from the trace buffer.

5. Display the additional data collected for the specified spinlock.

SDA> SPL SHOW COLLECT

This display includes the average hold time of the spinlock and the average
spinwait time while acquiring the spinlock.

6. Repeat steps 4 and 5 for each spinlock that has contention. A START
COLLECT cancels the previous collection.

7. Disable spinlock tracing when you have collected all the needed spinlock
statistics and release all the memory used by the Spinlock Tracing utility
with the following commands.

SDA> SPL STOP COLLECT
SDA> SPL STOP TRACE
SDA> SPL UNLOAD

6–2 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
6.3 Example Command Procedure for Collection of Spinlock Statistics

6.3 Example Command Procedure for Collection of Spinlock
Statistics

The following example shows a command procedure that can be used for
gathering spinlock statistics:

$ analyze/system
spl load
spl start trace/buffer=1000
spawn wait 00:00:15
spl stop trace
read/executive/nolog
set output spl_trace.lis
spl show trace/summary
spl start collect/spin=sched
spawn wait 00:00:05
spl show collect
spl start collect/spin=iolock8
spawn wait 00:00:05
spl show collect
spl start collect/spin=lckmgr
spawn wait 00:00:05
spl show collect
spl start collect/spin=mmg
spawn wait 00:00:05
spl show collect
spl start collect/spin=timer
spawn wait 00:00:05
spl show collect
spl start collect/spin=mailbox
spawn wait 00:00:05
spl show collect
spl start collect/spin=perfmon
spawn wait 00:00:05
spl show collect
spl stop collect
spl unload
exit

$ exit

A more comprehensive procedure is provided as SYS$EXAMPLES:SPL.COM.

6.4 Listing of SDA Spinlock Tracing Commands
The following is a list of the spinlock tracing commands:

SPL LOAD
SPL SHOW COLLECT
SPL SHOW TRACE
SPL START COLLECT
SPL START TRACE
SPL STOP COLLECT
SPL STOP TRACE
SPL UNLOAD

SDA Spinlock Tracing Utility 6–3

SDA Spinlock Tracing Utility
SPL LOAD

SPL LOAD

Loads the SPL$DEBUG execlet. This must be done prior to starting spinlock
tracing.

Format

SPL LOAD

Parameters

None.

Qualifiers

None.

Description

The SPL LOAD command loads the SPL$DEBUG execlet, which contains the
tracing routines.

Example

SDA> SPL LOAD
SPL$DEBUG load status = 00000001

6–4 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
SPL SHOW COLLECT

SPL SHOW COLLECT

Displays the collected spinlock data.

Format

SPL SHOW COLLECT [/RATES | /TOTALS]

Parameters

None.

Qualifiers

/RATES
Reports activity as a rate per second and hold/spin time as a percentage of time.
This is the default.

/TOTALS
Reports activity as a count and hold/spin time as cycles.

Description

The SPL SHOW COLLECT command displays the collected spinlock data. It
displays first a summary on a per-CPU basis, followed by the callers of the
specific spinlock. This second list is sorted by the top consumers of the spinlock
(in percent of time held). These displays show average spinlock hold and spinlock
wait time in system cycles.

Example

SDA> SPL SHOW COLLECT

Spinlock Trace Information for SCHED:

 Spin to
CPU ID % Time Held Acquires/sec Average Hold % Time Spinning Waits/sec Average Spin Hold Ratio
------ --------------- ------------ ------------ --------------- ------------ ------------ -----------
 08 4.6 1651.4 8296 0.3 298.2 2601 0.06
 09 4.9 1941.8 7578 0.2 276.3 1841 0.03
 10 4.0 1593.5 7454 0.1 225.4 1794 0.03
 11 5.2 2185.6 7185 0.2 272.8 1924 0.03
 12 5.4 2105.1 7702 0.2 271.3 2012 0.03
 13 5.7 6131.5 2785 2.5 2288.8 3330 0.45
 --------------- ------------ ------------ --------------- ------------ ------------ -----------
 29.7 15608.8 6833 3.5 3632.8 2250 0.12

Spinlock Trace Information for SCHED: (6-DEC-2001 09:01:52.26, 3.3 nsec, 300 MHz)

 % Time Acquires Spinwaits Average % Time
Caller's PC Held /sec Maximum Minimum Average /sec Spinwait Spin
-- ------ --------- ---------- -------- --------- --------- --------- ------
80342384 LCK$SND_CVTREQ_C+00344 17.1 5758.4 26384 3531 8912 65.7 3181 0.1
8012D53C SCH$IDLE_C+0024C 5.3 2614.5 20897 1384 6134 1083.3 1524 0.5
80347BB0 LCK$DEALLOC_LKB_C+00220 5.2 5880.6 7767 472 2641 2248.5 3332 2.5
80151F84 SCH$INTERRUPT+00064 0.5 214.1 15564 1619 6895 35.3 6092 0.1
80343FB8 LCK$SND_LOCKREQ_C+00148 0.4 137.8 24063 4716 9509 0.0 0 0.0
801375C0 SCH$QEND_C+00080 0.3 228.9 12107 2474 4251 29.0 3315 0.0

VM-0674A-AI

SDA Spinlock Tracing Utility 6–5

SDA Spinlock Tracing Utility
SPL SHOW TRACE

SPL SHOW TRACE

Displays spinlock tracing information.

Format

SPL SHOW TRACE [/[NO]SPINLOCK=spinlock | /[NO]FORKLOCK=forklock
| /[NO]ACQUIRE | /RATES | /[NO]RELEASE | /[NO]WAIT
| /[NO]FRKDSPTH | /[NO]FRKEND
| /SUMMARY | /CPU=n | /TOP=n | /TOTALS]

Parameters

None.

Qualifiers

/SPINLOCK=spinlock
/NOSPINLOCK
The /SPINLOCK=n qualifier specifies the display of a specific spinlock, for
example, /SPINLOCK=LCKMGR or /SPINLOCK=SCHED.

The /NOSPINLOCK qualifier specifies that no spinlock trace information be
displayed. If omitted, all spinlock trace entries are decoded and displayed.

/FORKLOCK=forklock
/NOFORKLOCK
The /FORKLOCK=forklock qualifier specifies the display of a specific forklock, for
example, /FORKLOCK=IOLOCK8 or /FORKLOCK=IPL8.

The /NOFORKLOCK qualifier specifies that no forklock trace information be
displayed. If omitted, all fork trace entries are decoded and displayed.

/ACQUIRE
/NOACQUIRE
The /ACQUIRE qualifier displays any spinlock acquisitions.

The /NOACQUIRE qualifier ignores any spinlock acquisitions.

/RATES
Reports activity as a rate per second and hold/spin time as a percentage of time.
This is the default.

/RELEASE
/NORELEASE
The /RELEASE qualifier displays any spinlock releases.

The /NORELEASE qualifier ignores any spinlock releases.

/TOTALS
Reports activity as a count and hold/spin time as cycles.

/WAIT
/NOWAIT
The /WAIT qualifier displays any spinwait operations.

The /NOWAIT qualifier ignores any spinwait operations.

6–6 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
SPL SHOW TRACE

/FRKDSPTH
/NOFRKDSPTH
The /FRKDSPTH qualifier displays all invocations of fork routines within the fork
dispatcher. This is the default.

The /NOFRKDSPTH qualifier ignores all of the operations of the /FRKDSPTH
qualifier.

/FRKEND
/NOFRKEND
The /FRKEND qualifier displays all returns from fork routines within the fork
dispatcher. This is the default.

The /NOFRKEND qualifier ignores all operations of the /FRKEND qualifier.

/CPU=n
Specifies the display of information for a specific CPU only, for example, /CPU=5
or /CPU=PRIMARY. By default, all trace entries for all CPUs are displayed.

/SUMMARY
Steps through the entire trace buffer and displays a summary of all spinlock and
forklock activity. It also displays the top ten callers.

/TOP=n
Displays a different number other than the top ten callers or fork PCs. By
default, the top ten are displayed. This qualifier is only useful when you also
specify the /SUMMARY qualifier.

Description

The SPL SHOW TRACE command displays spinlock tracing information. The
latest acquired or released spinlock is displayed first, and then the trace buffer is
stepped backwards in time.

By default, all trace entries will be displayed, but you can use qualifiers to select
only certain entries.

Since this is not a time critical activity and a table lookup has to be done
anyway to translate the SPL address to a spinlock name, commands like
/SPINLOCK=(SCHED,IOLOCK8) do work. /SUMMARY will step the entire
trace buffer and display a summary of all spinlock activity, along with the top-ten
callers’ PCs. You can use /TOP=n to display a different number of the top ranked
callers.

SDA Spinlock Tracing Utility 6–7

SDA Spinlock Tracing Utility
SPL SHOW TRACE

Examples
Spinlock Trace Information:

Timestamp CPU Spin/Forklock/IPL Caller's/Fork PC EPID Operation Trace Buffer

---------------------- --- ----------------- -------------------------------------- -------- --------------------- -----------------
23-JAN 15:32:03.223052 05 810B2200 MMG 80175594 MMG_STD$IOLOCK_BUF_C+00214 00000568 Release FFFFFFFE.05F635E0
23-JAN 15:32:04.794732 0B 810B2900 FILSYS 800F4340 IOC_STD$MAPVBLK_C+002A0 0000056E Restore FFFFFFFE.05F635C0
23-JAN 15:32:05.307011 0D 810B2200 MMG 8017B154 SYS$VM+17154 00000570 Release FFFFFFFE.05F635A0
23-JAN 15:32:05.307497 09 810B2100 SCHED 80144770 PROCESS_MANAGEMENT+2A770 00000000 Release FFFFFFFE.05F63580
23-JAN 15:32:05.306490 0E 810B2200 MMG 8017550C MMG_STD$IOLOCK_BUF_C+0018C 00000571 Acquire (spin) FFFFFFFE.05F63560
23-JAN 15:32:05.307951 00 810B2200 MMG 80175D9C MMG_STD$IOUNLOCK_BUF_C+000 00000000 Acquire (spin) FFFFFFFE.05F63540
23-JAN 15:32:05.818853 0E 810B2200 MMG 80175594 MMG_STD$IOLOCK_BUF_C+00214 00000571 Release FFFFFFFE.05F63520
23-JAN 15:32:05.819422 0C 810B2100 SCHED 8011F53C SCH$CALC_CPU_LOAD_C+0049C 00000000 Acquire (spin) FFFFFFFE.05F63500
23-JAN 15:32:05.819374 0D 810B2100 SCHED 8014C0E8 EXE$SYNCH_LOOP_C+00458 00000570 Acquire (spin) FFFFFFFE.05F634E0
23-JAN 15:32:05.818851 0E 810B2200 MMG 8017550C MMG_STD$IOLOCK_BUF_C+0018C 00000571 Acquire FFFFFFFE.05F634C0
23-JAN 15:32:05.820320 00 810B2100 SCHED 801473A0 SCH$QAST_C+004F0 00000000 Acqnoipl FFFFFFFE.05F634A0
23-JAN 15:32:05.819370 0D 810B2700 IOLOCK8 800FFB30 EXE_STD$INSIOQ_C+002B0 00000570 Release FFFFFFFE.05F63480
23-JAN 15:32:05.819415 0C 810B2100 SCHED 8011F370 SCH$CALC_CPU_LOAD_C+002D0 00000000 Release FFFFFFFE.05F63460
23-JAN 15:32:05.820316 00 8994FE00 ??? 80146F44 SCH$QAST_C+00094 00000000 Acquire (nospin) FFFFFFFE.05F63440
23-JAN 15:32:05.820314 00 810B2200 MMG 80175DC0 MMG_STD$IOUNLOCK_BUF_C+000 00000000 Restore FFFFFFFE.05F63420
23-JAN 15:32:05.820312 00 810B2200 MMG 80175D9C MMG_STD$IOUNLOCK_BUF_C+000 00000000 Acquire FFFFFFFE.05F63400
23-JAN 15:32:05.819409 0C 810B2100 SCHED 8014C0E8 EXE$SYNCH_LOOP_C+00458 0000056F Acquire FFFFFFFE.05F633E0

VM-0675A-AI

1.

2 31 5 764

Callout Meaning

1 Shows timestamps that are collected as system cycle counters (SCC)
and then displayed with an accuracy down to microseconds. Each CPU
is incrementing its own SCC as soon as it is started, so there is some
difference between different CPUs’ system cycle counters. The standard
system time is incremented only every 10 Msec and as such is not
exact enough. Adjusting the SCC to the specific CPU’s system time and
translating it into an accurate timestamp will thus sometimes display
times out of order for different CPUs. However, for the same CPU ID,
the timestamps are accurate.

2 Shows the physical CPU ID of the CPU logging the trace entry.
3 Shows the address of the spinlock fork. If it is a static one, its name is

displayed; otherwise, it is marked as ???.
4 Shows the caller’s PC address that acquired or released the spinlock, or

the fork PC if the trace entry is a forklock. Symbolization is attempted,
so a READ/EXECUTIVE might help to display a routine name, instead
of simply a module and offset.

5 Shows the EPID, which is the external PID of the process generating the
trace entry. If an interrupt or fork was responsible for the entry, then a
zero EPID is displayed.

6 Shows the trace operation. For a spinlock, which was acquired without
going through a spinwait, there is a matching acquire/release pair of
trace entries for the same CPU ID for a given spinlock. If a spinlock
is held, it cannot be acquired immediately, so there is also a spinwait
trace entry for this pair. The different variations of the acquire and
release operations are distinguished, as are the same spinlocks if they
are acquired recursively multiple times.

7 Shows the address of the trace buffer entry, in case there is a need to
access the raw and undecoded trace data.

6–8 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
SPL SHOW TRACE

SDA> SPL SHOW TRACE/SUMMARY

Spinlock Trace Information: (at 6-DEC-2001 09:01:47.02, trace time 00:00:01.415159)
--

 Events Acquires Releases Acq Own Acq NoSpin Spinwaits %
Spinlock /sec /sec /sec /sec /sec /sec Spinwait
---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
EMB 1.4 0.7 0.7 0.0 0.0 0.0 0.0
MEGA 1.4 0.7 0.7 0.0 0.0 0.0 0.0
HWCLK 2049.2 1024.6 1024.6 0.0 0.0 0.0 0.0
INVALIDATE 221.9 110.9 110.9 0.0 0.0 0.0 0.0
MAILBOX 4.2 2.1 2.1 0.0 0.0 0.0 0.0
SCHED 34851.2 15609.6 15608.8 0.0 0.0 3632.8 23.3
MMG 1776.5 781.5 888.2 12.7 94.0 0.0 0.0
TIMER 308.1 154.0 154.0 0.0 0.0 0.0 0.0
TX_SYNCH 57.9 29.0 29.0 0.0 0.0 0.0 0.0
IOLOCK8 33944.6 15285.9 15292.3 6.4 0.0 3360.0 22.0
LCKMGR 53421.6 17816.4 17843.2 0.0 28.3 17733.7 99.4
FILSYS 278.4 139.2 139.2 0.0 0.0 0.0 0.0
QUEUEAST 5.7 2.8 2.8 0.0 0.0 0.0 0.0
??? 41312.0 20538.3 20655.6 0.0 117.3 0.7 0.0
---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
 168234.1 71495.8 71752.4 19.1 239.5 24727.3 34.5

Spinlock Trace Information:

 Events Acquires or Spins % Own
Spinlock /sec Releases/sec /sec Spin /sec Caller's PC Module Offset
---------- ---------- --------------- ------- ----- ------ -------------------------------------- ----------------------------------
.
.
.
SCHED 8129.1 5880.6 Acq/s 2248.5 38.2 0.0 80347BB0 LCK$DEALLOC_LKB_C+00220 SYS$CLUSTER 00027BB0
SCHED 6186.6 6186.6 Rel/s 0.0 0.0 0.0 80152668 SCH$INTERRUPT+00748 PROCESS_MANAGEMENT 0002A668
SCHED 5880.6 5880.6 Rel/s 0.0 0.0 0.0 80347C24 LCK$DEALLOC_LKB_C+00294 SYS$CLUSTER 00027C24
SCHED 5824.1 5758.4 Acq/s 65.7 1.1 0.0 80342384 LCK$SND_CVTREQ_C+00344 SYS$CLUSTER 00022384
SCHED 3697.8 2614.5 Acq/s 1083.3 41.4 0.0 8012D53C SCH$IDLE_C+0024C PROCESS_MANAGEMENT 0000553C
SCHED 2614.5 2614.5 Rel/s 0.0 0.0 0.0 8012D370 SCH$IDLE_C+00080 PROCESS_MANAGEMENT 00005370
SCHED 444.5 368.9 Acq/s 75.6 20.5 0.0 80157E10 SCH$POSTEF_C+00050 PROCESS_MANAGEMENT 0002FE10
SCHED 368.9 368.9 Rel/s 0.0 0.0 0.0 80157A70 SCH$POSTEF_SCHED_C+00140 PROCESS_MANAGEMENT 0002FA70
SCHED 258.6 229.7 Acq/s 29.0 12.6 0.0 801375C0 SCH$QEND_C+00080 PROCESS_MANAGEMENT 0000F5C0
SCHED 249.4 214.1 Acq/s 35.3 16.5 0.0 80151F84 SCH$INTERRUPT+00064 PROCESS_MANAGEMENT 00029F84

MMG 154.8 154.8 Acq/s 0.0 0.0 0.0 80186AA4 MMG$PAGEFAULT_C+000A4 SYS$VM 00014AA4
MMG 106.7 106.7 Acq/s 0.0 0.0 0.0 8017E658 MMG_STD$SET_GH_AND_FASTMAP_6 SYS$VM 0000C658
MMG 106.7 106.7 Rel/s 0.0 0.0 0.0 8017E68C MMG_STD$SET_GH_AND_FASTMAP_6 SYS$VM 0000C68C
MMG 88.3 88.3 Rel/s 0.0 0.0 0.0 80187024 MMG$PAGEFAULT_C+00624 SYS$VM 00015024
MMG 77.7 77.7 Rel/s 0.0 0.0 0.0 8019E904 MMG_STD$SETPRTPAG_64_C+002C4 SYS$VM 0002C904
.
.
.

continued
VM-0676A-AI

8

9

Callout Meaning

8 Shows the summary information by stepping through the whole trace
buffer, and displaying a single line of information for each spinlock. If
the percent of spin wait is very high, then a spinlock is a candidate for
high contention.

9 For each spinlock in the summary display, the top ten callers’ PCs are
displayed along with the number of spinlock acquisitions and releases, as
well as spinwait counts and the number of multiple acquisitions of the
same spinlock.

SDA Spinlock Tracing Utility 6–9

SDA Spinlock Tracing Utility
SPL SHOW TRACE

Forklock Trace Information: (at 6-DEC-2001 09:01:47.02, trace time 00:00:01.415159)
--

 Total CPU ID
Forklock Events/sec 8 9 10 11 12 13
---------- ---------- --
IPL 08 2523.4 0.0 0.0 0.0 0.0 0.0 2523.4
TIMER 49.5 49.5 0.0 0.0 0.0 0.0 0.0
IOLOCK8 686.1 684.0 0.7 0.7 0.0 0.7 0.0
LCKMGR 3069.6 168.2 0.0 0.0 0.0 0.0 2901.4
QUEUEAST 2.8 0.0 0.7 0.0 1.4 0.7 0.0
 ---------- --
Totals 6331.4 901.7 1.4 0.7 1.4 1.4 5424.8

Forklock Trace Information:

Forklock Event/sec % Time Held Average Minimum Maximum Fork PC
---------- --------- --------------- --------- --------- --------- --

IPL 08 2523.4 16.7 19911 5761 66873 803F1490 SYS$PCADRIVER+05490
---------- --------- ---------------
Totals 2523.4 16.7

TIMER 49.5 0.6 35812 504 813332 80050050 EXE$SWTIMER_FORK_C
---------- --------- ---------------
Totals 49.5 0.6

IOLOCK8 496.1 1.1 6732 491 24046 805C4840 SYS$EWDRIVER+04840
IOLOCK8 190.1 0.5 7619 1224 28993 805EEEC8 EXEC.FORK_C+00080
---------- --------- ---------------
Totals 686.1 1.6

LCKMGR 3069.6 18.7 18268 3933 64563 8032E5E0 CNX$RCV_MSG_LCKMGR_FRK_C
---------- --------- ---------------
Totals 3069.6 18.7

QUEUEAST 2.8 0.0 24885 20589 32203 802E4370 XFCCOMMONFORKDISPATCH_C
---------- --------- ---------------
Totals 2.8 0.0

========== ========= ===============
Totals 6331.4 37.6

VM-0775A-AI

10

Callout Meaning

10 The forklock summary displays the number of fork operations on a
specific CPU for each forklock. For each forklock, the top ten fork
PC addresses are displayed, along with the minimum, maximum and
average duration of the fork operation in system cycles. The percent of
time spent in a given fork routine is displayed along with the percent of
time for the forklock.

6–10 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
SPL START COLLECT

SPL START COLLECT

Starts to collect spinlock information a longer period of time than will fit into the
trace buffer.

Format

SPL START COLLECT [/SPINLOCK=spinlock | /ADDRESS=n]

Parameters

None.

Qualifiers

/SPINLOCK=spinlock
Specifies the tracing of a specific spinlock, for example, /SPINLOCK=LCKMGR or
/SPINLOCK=SCHED.

/ADDRESS=n
Specifies the tracing of a specific spinlock by address.

Description

The SPL START COLLECT command starts a collection of spinlock information
for a longer period of time than will fit into the trace buffer. You need to enable
spinlock tracing before a spinlock collection can be started. On a system with
heavy activity, the trace buffer typically can only hold a relatively small time
window of spinlock information. In order to collect spinlock information over a
longer time period, a collection can be started. The collection tries to catch up
with the running trace index and save the spinlock information into a balanced
tree within the virtual address space of the process performing the spinlock
collection. Either use the name of a static spinlock, or supply the address of a
dynamic spinlock, for which information should be gathered.

The trace entries are kept in the trace buffer, which is allocated from S2 space,
hence there is no disruption, if tracing is started from within SDA and then
the user exits from SDA. However, for the longer period data collection, the
information is kept in process-specific memory, thus a user needs to stay within
SDA; otherwise the data collection is automatically terminated by SDA’s image
rundown. You can collect data for two or more spinlocks simultaneously, by using
a separate process for each collection.

Examples

1. SDA> SPL START COLLECT
Use /SPINLOCK=name or /ADDRESS=n to specify which spinlock info needs to be collected...

This example shows that you need to supply either a spinlock name of a static
spinlock, or the address of a dynamic spinlock, if you want to collect information
over a long period of time.

2. SDA> SPL START COLLECT/SPINLOCK=LCKMGR

This example shows the command line to start to collect information on the usage
of the LCKMGR spinlock.

SDA Spinlock Tracing Utility 6–11

SDA Spinlock Tracing Utility
SPL START TRACE

SPL START TRACE

Enables spinlock tracing.

Format

SPL START TRACE [/[NO]SPINLOCK=spinlock | /[NO]FORKLOCK=forklock
| /BUFFER=pages | /[NO]ACQUIRE |
| /[NO]RELEASE | /[NO]WAIT | /[NO]FRKDSPTH
| /[NO]FRKEND | /CPU=n]

Parameters

None.

Qualifiers

/SPINLOCK=spinlock
/NOSPINLOCK
The /SPINLOCK=spinlock qualifier specifies the tracing of a specific spinlock, for
example, /SPINLOCK=LCKMGR or /SPINLOCK=SCHED.

The /NOSPINLOCK qualifier disables spinlock tracing and does not collect any
spinlock data. If omitted, all spinlocks are traced.

/FORKLOCK=forklock
/NOFORKLOCK
The /FORKLOCK=forklock qualifier specifies the tracing of a specific forklock, for
example, /FORKLOCK=IOLOCK8 or /FORKLOCK=IPL8.

The /NOFORKLOCK qualifier disables forklock tracing and does not collect any
forklock data. If omitted, all forks are traced.

/BUFFER=pages
Specifies the size of the trace buffer (in Alpha page units). It defaults to 128
pages, which is equivalent to 1MB, if omitted.

/ACQUIRE
/NOACQUIRE
The /ACQUIRE qualifier traces any spinlock acquisitions. This is the default.

The /NOACQUIRE qualifier ignores any spinlock acquisitions.

/RELEASE
/NORELEASE
The /RELEASE qualifier traces any spinlock releases. This is the default.

The /NORELEASE qualifier ignores any spinlock releases.

/WAIT
/NOWAIT
The /WAIT qualifier traces any spinwait operations. This is the default.

The /NOWAIT qualifier ignores any spinwait operations.

6–12 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
SPL START TRACE

/FRKDSPTH
/NOFRKDSPTH
The /FRKDSPTH qualifier traces all invocations of fork routines within the fork
dispatcher. This is the default.

The /NOFRKDSPTH qualifier ignores all of the /FRKDSPTH operations.

/FRKEND
/NOFRKEND
The /FRKEND qualifier traces all returns from fork routines within the fork
dispatcher. This is the default.

The /NOFRKEND qualifier ignores all of the operations of the /FRKEND qualifier.

/CPU=n
Specifies the tracing of a specific CPU only, for example, /CPU=5 or
/CPU=PRIMARY. By default, all CPUs are traced.

Description

The SPL START TRACE command enables spinlock and fork tracing. By default
all spinlocks and forks are traced and a 128 page (1MByte) trace buffer is
allocated and used as a ring buffer.

Examples

1. SDA> SPL START TRACE/BUFFER=1000
Tracing started... (Spinlock = 00000000, Forklock = 00000000)

This example shows how to enable a tracing for all spinlock and forklock
operations into a 8 MByte trace buffer.

2. SDA> SPL START TRACE/CPU=PRIMARY/SPINLOCK=SCHED /NOFORKLOCK
Tracing started... (Spinlock = 810AF600, Forklock = 00000000)

This example shows how to trace only SCHED spinlock operations on the
primary CPU.

3. SDA> SPL START TRACE /NOSPINLOCK /FORKLOCK=IPL8
Tracing started... (Spinlock = 00000000, Forklock = 863A4C00)

This example shows how to trace only fork operations to IPL8.

SDA Spinlock Tracing Utility 6–13

SDA Spinlock Tracing Utility
SPL STOP COLLECT

SPL STOP COLLECT

Stops the spinlock collection, but does not stop spinlock tracing.

Format

SPL STOP COLLECT

Parameters

None.

Qualifiers

None.

Description

The SPL STOP COLLECT command stops the data collection, but does not affect
tracing. This allows the user to start another collection for a different spinlock
during the same trace run.

Example

SDA> SPL STOP COLLECT

6–14 SDA Spinlock Tracing Utility

SDA Spinlock Tracing Utility
SPL STOP TRACE

SPL STOP TRACE

Disables spinlock tracing, but it does not deallocate the trace buffer.

Format

SPL STOP TRACE

Parameters

None.

Qualifiers

None.

Description

The SPL STOP TRACE command stops tracing, but leaves the trace buffer
allocated for further analysis.

Example

SDA> SPL STOP TRACE
Tracing stopped...

SDA Spinlock Tracing Utility 6–15

SDA Spinlock Tracing Utility
SPL UNLOAD

SPL UNLOAD

Unloads the SPL$DEBUG execlet and performs cleanup. Tracing is automatically
disabled and the trace buffer deallocated.

Format

SPL UNLOAD

Parameters

None.

Qualifiers

None.

Description

The SPL UNLOAD command disables the tracing or collection functionality with
a delay to a state of quiescence. This ensures that all pending trace operations
in progress have finished before the trace buffer is deallocated. Finally the SPL
UNLOAD command unloads the SPL$DEBUG execlet.

Example

SDA> SPL UNLOAD
SPL$DEBUG unload status = 00000001

6–16 SDA Spinlock Tracing Utility

7
SDA Extended File Cache (XFC) Extension

Commands

This chapter describes the SDA extension commands for the Extended File Cache
(XFC).

7.1 Overview of SDA Extensions That Support the Extended File
Cache (XFC)

The SDA extension commands for Extended File Cache (XFC) enable you to
perform the following tasks:

• Display, in a convenient and readable format, various XFC data structures

• Display, in a convenient and readable format, statistics that aid in tuning the
extended file cache

7.2 Listing of SDA Extended File Cache (XFC) Extension
Commands

The section describes the following SDA XFC extension commands:

EXIT
LOAD DSF
SHOW CONTEXT
SHOW EXTENT
SHOW FILE
SHOW MEMORY
SHOW SUMMARY
SHOW TABLES
SHOW TRACE
SHOW VOLUME

SDA Extended File Cache (XFC) Extension Commands 7–1

SDA Extended File Cache (XFC) Extension Commands
EXIT

EXIT

Exits the XFC SDA extensions.

Format

EXIT

Parameters

None.

Qualifiers

None.

Description

The EXIT command issued from the SDA> prompt exits you from SDA to the
DCL ($) prompt. If you invoke XFC at the SDA> prompt, you receive an XFC>
prompt, from which you can then invoke a specific command, for example, SHOW
SUMMARY. If you invoke EXIT at the XFC> prompt, you are returned to the
SDA> prompt.

Example

SDA> XFC
XFC> SHOW SUMMARY

XFC Summary

Extended File Cache V1.0 (May 6 2002 11:33:46)
Anchor Block Address: FFFFFFFF80D30410
Build Id:
Cache State: 0000A010
Cache in no-cache state: False

.

.

.
XFC>EXIT
SDA>

This command shows the procedure for exiting from the XFC extension.

7–2 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
LOAD DSF

LOAD DSF

Loads the symbols in the specified debug symbol file (DSF) for use with the SDA
FORMAT command.

Format

LOAD DSF filename

Parameter

filename
The name of the symbol file.

Qualifiers

None.

Description

The LOAD DSF command loads the symbol tables for the XFC internal data
structures. The XFC symbol tables are contained in a file SYS$XFCACHE.DSF,
which is located in the system directory, SYS$LOADABLE_IMAGES.

SDA Extended File Cache (XFC) Extension Commands 7–3

SDA Extended File Cache (XFC) Extension Commands
LOAD DSF

Example

SDA> XFC SHOW FILE/BRIEF

XFC Cache File Block brief listing

CFB Address CVB Address Volume Name File ID Access
FFFFFFFD83120D40 FFFFFFFD831FA080 DISK$FRROOG_RUBY (541,5,0) 0

.

.

.
SDA> FORMAT FFFFFFFD83120D40
%SDA-E-NOSYMBOLS, no "VCC_CFB" symbols found to format this block
DA> xfc load dsf sys$loadable_images:sys$xfcache
Reading symbols from SYS$SYSROOT:[SYS$LDR]SYS$XFCACHE.DSF;21

Loaded 825 symbols>

SDA> FORMAT FFFFFFFD83120D40
FFFFFFFD.83120D40 CFB$R_PSNOLDHEADER 00000001
FFFFFFFD.83120D44 00000001
FFFFFFFD.83120D48 CFB$W_UWMUSTBEONE 0001
FFFFFFFD.83120D4A CFB$B_BTYPE 6F
FFFFFFFD.83120D4B CFB$B_BSUBTYPE 40
FFFFFFFD.83120D4C CFB$R_PFCBFILE 81935900
FFFFFFFD.83120D50 CFB$Q_UQSIZE 0000021C
FFFFFFFD.83120D54 00000000
FFFFFFFD.83120D58 CFB$R_PCVBCACHEVOLUME 831FA080
FFFFFFFD.83120D5C FFFFFFFD
FFFFFFFD.83120D60 CFB$R_QHDQUEUEHEAD 83120B40
FFFFFFFD.83120D64 FFFFFFFD
FFFFFFFD.83120D68 83121800
FFFFFFFD.83120D6C FFFFFFFD

.

.

.

This example shows the output of loading symbols from the XFC debug symbols
file, and using those symbols to format a CFB structure.

7–4 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW CONTEXT

SHOW CONTEXT

Displays the contents of an XFC context block (CTX).

Format

SHOW CONTEXT [address][/STALLING | /FULL | /BRIEF]

Parameter

address
The address of the CTX. If no address is supplied, then all the context structures
are displayed.

Qualifiers

/BRIEF
Displays a brief summary for each context; for example, the I/O type, start virtual
block number (VBN), and length of I/O.

/FULL
Displays the complete context structure. This is the default.

/STALLING
Displays only contexts that are stalling; for example, those that have a stall
reason code other than estrNotStalling.

Description

The SHOW CONTEXT command displays the contents of an active context block.
The state of each active operation within XFC is maintained in a data structure
called a context block.

Examples

1. SDA> XFC SHOW CONTEXT/BRIEF

List of All XFC Active Contexts (CTX)

Address I/O Type I/O phase I/O Stall reason Volume ID File ID Start VBN Length IRP
FFFFFFFF818C6250 eiotReadThrough eiopFillContext estrWindowTurn FFFFFFFD8311BD00 3156 382593 32 818F7780
FFFFFFFF81854D10 eiotReadThrough eiopFillContext estrWindowTurn FFFFFFFD8311BD00 3156 283873 32 81B26940
FFFFFFFF818787D0 eiotReadThrough eiopFillContext estrWindowTurn FFFFFFFD8311BD00 3156 351777 32 81265FC0
FFFFFFFF81849E50 eiotReadAround eiopSegmentDone estrDiskIO FFFFFFFD8311BD00 3156 289089 32 818F7540
FFFFFFFF818DC0D0 eiotReadAround eiopSegmentDone estrDiskIO FFFFFFFD8311BD00 3156 271809 32 817C1800
FFFFFFFF81854190 eiotClusterTrans eiopClusterIdle estrNotStalled 0000000000000000 0 0 0 00000000

Contexts found: 6
VM-1055A-AI

This example shows the address of the context block, I/O type (the type of
operation), I/O phase (what phase the operation is in), I/O stall (reason for its
stalling), volume ID (address of the control volume block), start VBN (starting
VBN of the I/O), length of the I/O, and I/O request packet (the address of the
IRP).

SDA Extended File Cache (XFC) Extension Commands 7–5

SDA Extended File Cache (XFC) Extension Commands
SHOW CONTEXT

2. SDA> XFC SHOW CONTEXT FFFFFFFF8190D690

List of All XFC Active Contexts (CTX)

Context (CTX) Address: FFFFFFFF8190D690
I/O Phase: eiopFillContext
I/O Type: eiotReadThrough
Operation started: 17-APR-2002 11:23:29.00
Stall Reason: estrWindowTurn
Stall Extent: 0000000000000000
Stall Op (IRP): FFFFFFFF81267A40
Saved AST Parameter: 0000000000000000
Restart Routine: 0000000000000000
Context state flags 00000000
Cache Hit: False
HWM Checked: False
Fork Restarted False
AST Required (flush) False
Buffer locked False
Stalled converting False
Fork Block in use False
Override resource checks False
Restart cluster trans False
Restart cluster flush False
MV volumes skipped False
Depose pending False
Ignore CFB Quiesce False
Delete CFB False
Read-ahead hit False

ECB Count: 0
Index: 00000000 (0)
Start VBN: 000107C1 (67521)
Length in Blocks: 00000020 (32)
Next VBN: 000107C1 (67521)
I/O Extent Count: 0
Disk I/O Length: 00000020 (32)
Bytes Copied: 0
Bytes Zeroed: 0
Bytes Requested: 16384
Volume (CVB): 0000000000000000
Volume Id: FFFFFFFD8311BD00
File Id: 0000000000000C54
Cache File Block: FFFFFFFD82CEA2A0
Process (PCB): FFFFFFFF818FA500

This example shows output of a full display of a context block for a read I/O.

7–6 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW EXTENT

SHOW EXTENT

Displays the contents of an extent control block (ECB).

Format

SHOW EXTENT address

Parameter

address
The address of the ECB.

Qualifiers

None.

Description

The SHOW EXTENT command diplays the contents of an extent control block
(ECB). The data in the cache is divided into groups of VBNs called extents. Each
extent is maintained in a data structure called an extent control block.

Example

SDA> XFC SHOW EXTENT FFFFFFFD82A58A20

Cache Extent Address: FFFFFFFD82A58A20
Type: Primary
Flink: FFFFFFFF7F880350
Blink: FFFFFFFF7F880350
Start VBN: 00000001 (1)
Start LBN: 00BA711C (12218652)
Length in Blocks: 00000006 (6)
Data State: Clean
Pin: None
Buffer Address: FFFFFFFDB0996000
Secondary ECB Queue: FFFFFFFD82A58A60

Flink: FFFFFFFD83199A20
Blink: FFFFFFFD83199A20

Primary ECB: 0000000000000000
LRU Queue: FFFFFFFD82A58AAC

Flink: FFFFFFFD82A5A26C
Blink: FFFFFFFD82A5344C

Waiters Queue: FFFFFFFD82A58A50
Flink: FFFFFFFD82A58A50
Blink: FFFFFFFD82A58A50

Lock Id: 00000000
Parent CFB: FFFFFFFD82A61180
ECB delete pending False
ECB on LRU queue True
ECB depose pending False
ECB read ahead False
LRU priority: 1

This example shows the contents of an extent control block.

SDA Extended File Cache (XFC) Extension Commands 7–7

SDA Extended File Cache (XFC) Extension Commands
SHOW FILE

SHOW FILE

Displays the contents of the cache file block (CFB).

Format

SHOW FILE [address] [/EXTENTS | /ID=file-id
| /CVB=address | /OPEN | /CLOSED | /STATISTICS | /FULL
| /BRIEF]

Parameter

address
The address of the CFB. The /OPEN and /CLOSED qualifiers, if present, are
ignored. If no address is supplied, then all the CFBs are displayed.

Qualifiers

/BRIEF
Displays summary information for each cache file block (CFB), such as the CFB
address, cache volume block (CVB) address, access count, active I/O count, and
file ID.

/CLOSED
Displays only CFBs whose access count is zero.

/CVB=address
Displays only information about any files matching the given cache volume block
address.

/EXTENTS
Displays the cache extents held in cache for any displayed files. This shows the
primary and secondary cache extents along with their data state and virtual block
numbers (VBNs). It also shows a summary of memory usage (pagelets used and
pagelets valid) for any displayed files. The /EXTENTS qualifier is incompatible
with the /BRIEF qualifier.

/FULL
Displays all fields for each cache file block. This is the default.

/ID=file-id
Displays only information about any files matching the given file-identification
(FID). The file identification (FID) is the hexadecimal file number component in a
format file ID (file number, sequence number, relative volume number).

/OPEN
Displays only CFBs whose access count is greater than zero.

/STATISTICS
Displays more statistics about the specified file. The /STATISTICS qualifier is
incompatible with the /BRIEF qualifier.

7–8 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW FILE

Description

The SHOW FILE command displays the contents of the XFC cache file block. The
state of any file in the cache is maintained in a data structure called a cache file
block (CFB). There is a CFB for every open file on a system and a CFB for each
closed file that is still being cached.

Examples

1. SDA> XFC SHOW FILE/BRIEF

XFC Cache File Block brief listing

CFB Address CVB Address Volume Name File ID Access Write Total Read Hit Extent Allocated

 Count Access I/Os Hits Rate Count Pages
FFFFFFFD831A24C0 FFFFFFFD831FE080 DISK$FRROOG_RUBY (899,4,0) 1 0 14 6 42.86% 13 13
FFFFFFFD8319EF60 FFFFFFFD831FE080 DISK$FRROOG_RUBY (2098,4,0) 1 0 1 0 0.00% 1 1
FFFFFFFD831E97E0 FFFFFFFD831FE080 DISK$FRROOG_RUBY (2336,4,0) 1 0 10 3 30.00% 4 4
FFFFFFFD831F3C20 FFFFFFFD831FE080 DISK$FRROOG_RUBY (423,4,0) 1 0 2 0 0.00% 3 3
FFFFFFFD831104C0 FFFFFFFD831FE080 DISK$FRROOG_RUBY (904,4,0) 1 0 6 0 0.00% 3 3
FFFFFFFD831F04C0 FFFFFFFD831FE080 DISK$FRROOG_RUBY (426,4,0) 1 0 2 0 0.00% 4 4
FFFFFFFD8318FA00 FFFFFFFD831FE080 DISK$FRROOG_RUBY (2338,4,0) 1 0 141 101 71.63% 131 131
FFFFFFFD831F0080 FFFFFFFD831FE080 DISK$FRROOG_RUBY (427,4,0) 1 0 2 0 0.00% 4 4
.
.
.

VM-1056A-AI

This example shows the brief output from this command.

2. SDA> XFC SHOW FILE/STATISTICS FFFFFFFD831A24C0

Full Cache File Block (CFB) Details

CFB Address: FFFFFFFD831A24C0
CFB Address: FFFFFFFD831A24C0
Flink: FFFFFFFD831A22C0
Blink: FFFFFFFD831A2700
Access Count: 1
Write Access Count: 0
Volume (CVB): FFFFFFFD831FE080
Quiescing: False
File (FCB): FFFFFFFF81943D80
Volume Id: FFFFFFFD831FE080
File Id: 0000000000000383
External FID: (899,4,0)
Predicted Next VBN: 000000FB (251)
Active Caching Mode: Write Through
Active I/O count: 0
Flush Fail Status: 00000000 (0)
No Readahead Reasons: 0
Active Readaheads: 0
File Bad: False
Caching disabled: False
File deleted on close: False
File Quiescing: False
File Deposing: False
File Deleting: False
File BlkASTInProg: False
File IgnoreBlkAST False
File Readahead EOF False
PECBs Allocated: 13 (13 pages)
PECBs Deallocated: 0
PECBs Deallocated: 0
SECBs Allocated: 3
SECBs Deallocated: 19
Lock Id: 0C00037F

Granted Lock mode: PRMode
Conversion phase: Illegal

Conversion phase count: 1

SDA Extended File Cache (XFC) Extension Commands 7–9

SDA Extended File Cache (XFC) Extension Commands
SHOW FILE

Hash Bucket Queue: FFFFFFFD831A2520
Flink: FFFFFFFF7FF819B0
Blink: FFFFFFFF7FF819B0

PECB Queue: FFFFFFFD831A2530
Flink: FFFFFFFD8311888C
Blink: FFFFFFFD831A072C

Stalled IOs Queue: FFFFFFFD831A24F0
Flink: FFFFFFFD831A24F0
Blink: FFFFFFFD831A24F0

FAL transition Queue: FFFFFFFD831A2500
Flink: FFFFFFFD831A2500
Blink: FFFFFFFD831A2500

Contexts Waiting: FFFFFFFD831A2510
Flink: FFFFFFFD831A2510
Blink: FFFFFFFD831A2510

BlkASTs Waiting: FFFFFFFD831A2540
Flink: FFFFFFFD831A2540
Blink: FFFFFFFD831A2540

Deaccess Wait List: FFFFFFFD831A2600
Flink: 0000000000000000

Quiesce context: 0000000000000000
Up convert context: 0000000000000000
File IO Statistics - all in decimal

Statistics Valid From: 19-APR-2002 07:10:32.77

Total QIOs to this file: 14
Read IOs to this file: 14
Write IOs to this file: 0
Write IOs to this file: 0
Read Hits: 6
Hit Rate: 42.86 %
Average Overall I/O response time to this file
in milliseconds: 0.9525
Average Cache Hit I/O response time to this file
in milliseconds: 0.0702
Average Disk I/O response time to this file
in milliseconds: 1.6141
Accuracy of I/O resp time: 65 %
Read Ahead Count: 0
Read Through Count: 14
Write Through Count: 0
Read Around Count: 0
Write Around Count: 0
CFB FAL stalls: 1
CFB Operation stalls: 0
FAL Blocking ASTs: 0
Quiesce Depose: 0
Quiesce depose Stalls: 0

(I/O size statistics not collected for this file)

Files found: 1

This example shows a collection of performance statistics for a file.

7–10 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW MEMORY

SHOW MEMORY

Displays information about memory used by the cache.

Format

SHOW MEMORY [/BRIEF | /FULL]

Parameters

None.

Qualifiers

/BRIEF
Displays summary statistics on XFC memory use.

/FULL
Displays full statistics on XFC memory use.

Examples

1. SDA> XFC SHOW MEMORY

XFC Memory Statistics

Pool allocation calls : 430
Pool allocation failures : 0
Pool deallocation calls : 0

Page allocation calls : 2745
Page deallocation calls : 6

Cache VA Regions and Limits

Cache VA region from FFFFFFFD80000000 to FFFFFFFF80000000 (1048576 pages)

permanent area : FFFFFFFD80000000 to FFFFFFFDBE800000 (128000 pages)
pool : FFFFFFFD80000000 to FFFFFFFD83200000 (6400 pages)
data : FFFFFFFD83200000 to FFFFFFFDBE800000 (121600 pages)

dynamic area : FFFFFFFDBE800000 to FFFFFFFF7F780000 (919488 pages)
pool : FFFFFFFDBE800000 to FFFFFFFDD4F2C000 (45974 pages)
data : FFFFFFFDD4F2C000 to FFFFFFFF7F780000 (873514 pages)

extent hash table: FFFFFFFF7F780000 to FFFFFFFF7FF80000 (1024 pages)
file hash table : FFFFFFFF7FF80000 to FFFFFFFF80000000 (64 pages)
file hash table : FFFFFFFF7FF80000 to FFFFFFFF80000000 (64 pages)

qhdPermanentPoolFreePages : FFFFFFFF80D305B8
qhdPermanentDataFreePages : FFFFFFFF80D305C8
Non-Paged Pool allocated : 45248 (44.1 KB)
Non-Paged Pool number of - FKBs : 403
Non-Paged Pool number of - DBMs : 3
Non-Paged Pool number of - CTXs : 10
Current Maximum Cache Size : 8589934592 (8.0 GB)
Boottime Maximum Cache Size : -1

Permanent Data Pages: Allocated : 121600
In use : 2739

Pool Pages: Allocated : 6400
In use : 128

SDA Extended File Cache (XFC) Extension Commands 7–11

SDA Extended File Cache (XFC) Extension Commands
SHOW MEMORY

Dynamic Pages: Max Allowed : 919488
Allocated : 0
In use : 0
Min Allowed : 20971

Data Pages: Allowed : 873514
In use : 0

Pool Pages: Allowed : 45974
In use : 0

PFN List : 0
Non PFN List : 0

Total Cache Memory (bytes) : 1048621248 (1000.0 MB)

Private PFN List Stats

Dynamic Area PFN List : FFFFFFFF818EB340
Free physical pages on list : 0
Pages attributed to this list : 0
Pages being requested for return: 0
List priority : 0
Callback routine : 80DF8A40
Free PFN queue head : FFFFFFFF818EB350
First free page : 0000000000000000
Last free page : 0000000000000000

MMG Callback Counters

MMG callback active : 0
MMG callback count : 0
MMG callback requeues : 0
MMG callback requeue again : 0
Expand attempts callback active : 0
Pages reclaimed : 0
Trim reclaim attempts : 0
LRU depose calls TrimWorkingSet : 0
Zone Purges: Permanent : 0

Dynamic PFNLST : 0
Dynamic No PFNLST : 0

Pool Zone Stats (S2 Space) Permanent Dynamic
SECB: Size 112, PerPage 71

Pages / MaxPages 12 / 6400 ||| 0 / 45974
FreePkts / TotalPkts 64 / 852 ||| 0 / 0
Hits 5499 ||| 0
Not first page 0 ||| 0
Misses (expns/fails) 12 (12 /0) ||| 0 (0 / 0)

PECB: Size 176, PerPage 45
Pages / MaxPages 85 / 6400 ||| 0 / 45974
FreePkts / TotalPkts 6 / 3825 ||| 0 / 0
Hits 3740 ||| 0
Not first page 0 ||| 0
Misses (expns/fails) 85 (85 /0) ||| 0 (0 / 0)

CFB: Size 544, PerPage 14
Pages / MaxPages 29 / 6400 ||| 0 / 45974
FreePkts / TotalPkts 3 / 406 ||| 0 / 0
Hits 488 ||| 0
Not first page 0 ||| 0
Misses (expns/fails) 29 (29 /0) ||| 0 (0 / 0)

CVB: Size 608, PerPage 13
Pages / MaxPages 2 / 6400 ||| 0 / 45974
FreePkts / TotalPkts 12 / 26 ||| 0 / 0
Hits 12 ||| 0
Not first page 0 ||| 0
Misses (expns/fails) 2 (2 /0) ||| 0 (0 / 0)

7–12 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW MEMORY

IOSIZE: Size 3120, PerPage 2
Pages / MaxPages 0 / 6400 ||| 0 / 45974
FreePkts / TotalPkts 0 / 0 ||| 0 / 0
Hits 0 ||| 0
Not first page 0 ||| 0
Misses (expns/fails) 0 (0 /0) ||| 0 (0 / 0)

This example shows the full output from this command.

2. SDA> XFC SHOW MEMORY/BRIEF

XFC Memory Summary

Current Maximum Cache Size : 8589934592 (8.0 GB)
Boottime Maximum Cache Size : -1

Permanent Data Pages: Allocated : 121600
In use : 2739

Pool Pages: Allocated : 6400
In use : 128

Dynamic Pages: Max Allowed : 919488
Allocated : 0
In use : 0
Min Allowed : 20971

Data Pages: Allowed : 873514
In use : 0

Pool Pages: Allowed : 45974
In use : 0

PFN List : 0
Non PFN List : 0

Total Cache Memory (bytes) : 1048621248 (1000.0 MB)

This example shows the brief output from this command.

SDA Extended File Cache (XFC) Extension Commands 7–13

SDA Extended File Cache (XFC) Extension Commands
SHOW SUMMARY

SHOW SUMMARY

Displays general information about the Extended File Cache.

Format

SHOW SUMMARY [/STATISTICS]

Parameters

None.

Qualifier

/STATISTICS
Displays read and write activity arranged by I/O size.

Example

SDA> XFC SHOW SUMMARY

XFC Summary

Extended File Cache V1.0 Let unk I/Os through (Apr 18 2002 15:01:16)
Anchor Block Address: FFFFFFFF80D30210
Build Id:
Cache State: 0000A010
Cache in no-cache state: False
MaxAllowedCacheMode: eNodeFullXFC
Minimum cache size in Pages: 0001F400 (128000)

General

Extent Hash Table Address: FFFFFFFF7F780000
Extent Hash Table Buckets: 524287
File Hash Table Address: FFFFFFFF7FF80000
File Hash Table Buckets: 32767
Count of private CTXs: 10
Count of private FKBs: 403
Count of private DIOBMs: 3

LRU

LRU Priority 0 Queue Address: FFFFFFFF80D30288

Queue Length: 00000446 (1094)
LRU Priority 1 Queue Address: FFFFFFFF80D30298

Queue Length: 00000AA5 (2725)
qhdContexts Address FFFFFFFF80D302B0
qhdIRPs Address FFFFFFFF80D302C0

Spinlock

Cache Spinlock: 8125E780
Last Acquiring Module: ROOT$:[XFC.TMPSRC]XFC_SYS.C;4

Acquiring Line: 2887
Acquiring IPL: 0

7–14 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW SUMMARY

Cache Tracing

Number of trace entries: 10000
Size of trace buffer: 800000
Current trace level: 4
Lost trace entrys: 0
Current trace sequence number: 318768

System Wide I/O Statistics since last reset

Time of Last System-Wide Reset: 19-APR-2002 07:10:23.43

Total cache calls: 4505
Total cache calls: 4505
- Sum of Paging I/Os: 2493
- and other QIOs: 2012
- and NoCVB or PermNoCache QIOs: 0

Total Virtual Reads: 4197
Total Virtual Writes: 112
Total PageIOs not cached: 196
Total Logical I/Os: 0
Total Physical I/Os: 0
Total bypass write I/Os: 0

Synchronous I/O completions: 598
Physical I/O completions: 0
Total PID completion I/Os: 0

Total num IOs on reserved files: 1606
Total num IOs on global sections: 247
Count of stalls performed: 13

System Wide Read Percentage: 97.40 %
System Wide Cache Hit ratio: 57.90 %

System-Wide Read Statistics since last reset
--
Virtual Reads: 4197
Sum of Read Around Count: 179
and Read Through Count: 4018

Reads Completed: 4197
Read Hits: 2495
Read Cache Hit Percentage: 59.45 %
Total Synch Completion Count: 598
Read Around due to Het. Cluster: 0
Read Around due to Modifiers: 0
Read Around due to Size: 16
Total reads past EOF: 1
Total I/Os with read-ahead: 239
Read Hits due to read-ahead: 307
Paging I/Os: 2493

System-Wide Write Statistics since last reset

Virtual Writes: 112
Sum of Write Around Count: 0
and Write Through Count: 112

Write Around due to Het. Cluster: 0
Writes Completed: 112
Write Around due to Modifiers: 0
Write Around due to Size: 0
Total writes past EOF: 0

SDA Extended File Cache (XFC) Extension Commands 7–15

SDA Extended File Cache (XFC) Extension Commands
SHOW SUMMARY

File/Volume Statistics

Open Files: 239
Closed Files in the Cache: 164
Number of files truncated: 3
Volumes in Full XFC Mode: 0
Volumes in VIOC Compatible Mode: 13
Volumes in No Caching Mode: 1
Volumes in Perm. No Caching Mode: 0
Volume Queue: FFFFFFFF80D30238

File/Volume Statistics

FAL locks currently held: 370
FAL locks chosen to skip: 0
FAL locks acquired since boot: 374
FAL locks released since boot: 4
FAL locks converted: 55

I/Os that have stalled for FAL 0
CACHE$ACCESS stalls for CFB 0
ulStallOpQStalls 1
Read-thro->Read-around conv. 0
Writes converted to write-around 0
ulLockResourceExhaustionRetries: 0
ulFALLocksEverInContention: 3
ulFALUpConversionRequests: 3
ulFALLocksConvertedToPR: 0
ulFALLocksConvertedToNL: 0
FAL BlkASTs received: 1
FAL BlkASTs ignored: 0
ECBs Split Right: 2229
ECBs Split Left: 1710
ECBs Split Three Ways: 786
ECBs Requiring no splits: 5802

Volume Lock Statistics

VIL Blocking ASTs received 0
VIL Blocking ASTs stalled 0
VIL Blocking ASTs started 0
VIL Blocking ASTs completed 0
VIL Up-conversion requests made 0
VIL Up-conversion grants 0
VCML Blocking ASTs received 0
VCML Blocking ASTs stalled 0
VCML Blocking ASTs started 0
VCML Blocking ASTs completed 0
VCML Up-conversion requests made 0
VCML Up-conversion grants 0
Stalls on VCML up-conversion 0
Restarts on VCML up-conversion 0

Quiesce and Depose Statistics

Quiesce and Depose files Stalled: 0
File Quiesce and Deposes Started: 114
File Quiesce and Deposes Cmpltd: 114
File Quiesce and Deposes Cmpltd: 114
Q&D CTX used count: 0
Q&D CTX in use: False

7–16 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW SUMMARY

Most recent Depose time 0.0005 msec.
Most recent Depose ECB count 0
Maximum Depose time 0.1125 msec.
Maximum ECBs deposed 3
Total Depose time 0.0002 seconds
Total ECBs deposed 6

Pending Lock Up-conversion Statistics

Up-conversions stalled: 0
Up-conversions started: 0

This example shows the output of detailed statistics and status for the cache.

SDA Extended File Cache (XFC) Extension Commands 7–17

SDA Extended File Cache (XFC) Extension Commands
SHOW TABLES

SHOW TABLES

Displays both the extent hash table (EHT) and the file hash table (FHT).

Format

SHOW TABLES [/ALL][/EXTENT][/FILE][/SUMMARY]

Parameters

None.

Qualifiers

/ALL
Displays the contents of the extent hash table (EHT) and file hash table (FHT).
This is the default.

/EXTENT
Displays only the contents of the EHT.

/FILE
Displays only the contents of the FHT.

/SUMMARY
Displays summary information about EHT and FHT.

Description

The SHOW TABLES command outputs information about the two hash tables
used by XFC to locate key data structures.

Example

SDA> XFC SHOW TABLES/SUMMARY

Full Map of CFB HashTable

FHT: Contents of 32768 buckets

0(32366)
1(401)
2(1)
Total number of CFBs: 403
Longest chain length: 2
Shortest chain length: 0
Shortest chain length: 0
Average chain length: 0.01

Full Map of PECB HashTable

EHT: verifying 524288 buckets

7–18 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW TABLES

0(520501)
1(3755)
2(32)
Total number of PECBs: 3819
Longest chain length: 2
Shortest chain length: 0
Average chain length: 0.01

This example shows summary output about each of the hash tables.

SDA Extended File Cache (XFC) Extension Commands 7–19

SDA Extended File Cache (XFC) Extension Commands
SHOW TRACE

SHOW TRACE

Displays all or selected portions of the XFC trace buffer, starting with the most
recent entry and moving backward in time.

Format

SHOW TRACE [/ALL]/CONTAINING=value | /CPU=cpu-num
| /LINENUMBER=linenumber
| /MATCH [=[AND | OR]] | /Px=value

Parameters

None.

Qualifiers

/ALL
Displays the entire trace buffer. This is the default.

/CONTAINING=value
Displays only records where any of the traced parameters is equal to value.

/CPU=cpu-num
Displays only records from threads executing on CPU cpu-num.

/LINENUMBER=linenumber
Displays only records from tracepoints at line linenumber in the relevant source
files.

/MATCH [=AND | OR]
Alters the sense of the match condition when more than one of the filter qualifiers
/CPU, /LINENUMBER, /FILENAME, /Px, or /CONTAINING are specified.

/Px=value
Displays only records where one of the traced parameters P1, P2, P3, or P4 is
equal to value.

Description

The SHOW TRACE command outputs the contents of each entry in the XFC trace
buffer. Currently, detailed XFC tracing is enabled only for debug versions of XFC.

7–20 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW TRACE

Example

SDA> XFC SHOW TRACE

XFC Trace Buffer

Sequence Time Label Line C I P1 P2 P3 P4

319011 19-APR 09:11:16.70 SYS $IOPOST p1, p2, p3 8811 0 4 000000000001000C 0000000000000200 00000010B9BFF800 000002000087A72D
319010 19-APR 09:11:16.70 SYS $IOPOST 8803 0 4 FFFFFFFF81987940 0000000000000002 000000000000600B FFFFFFFF8150F200
319009 19-APR 09:11:16.69 Sys LOGIO 5305 3 2 0000000000000000 0000000000088000 0000000000000009 0000000000000010
319008 19-APR 09:11:16.69 Sys Logical_IO1 4989 3 2 0000000000088000 0000000000000000 FFFFFFFF8150F200 FFFFFFFF81905100
319007 19-APR 09:11:16.69 Sys Logical_IO 4981 3 2 FFFFFFFF81987940 FFFFFFFFB9BFF800 0000000000000200 000000000087A72D
319006 19-APR 09:11:16.69 Mem FreeContext 1829 3 8 FFFFFFFF81905910 FFFFFFFF81905F80 0000000000000000 0000000000000000
319005 19-APR 09:11:16.69 Sys eiopCloseComplete 8276 3 8 FFFFFFFF81905910 FFFFFFFD831853A0 0000000000000000 0000000000000000
319004 19-APR 09:11:16.69 Common Restart CFBW 332 3 8 FFFFFFFD831853A0 0000000000000000 0000000000000003 0000000000000000
319003 19-APR 09:11:16.69 Sys eiopCloFlushed 7700 3 8 FFFFFFFF81905910 FFFFFFFD831853A0 0000000000000000 0000000000000000
319002 19-APR 09:11:16.69 Sys eiopCloseInit 7659 3 8 FFFFFFFF81905910 FFFFFFFD831853A0 0000000000000000 0000000000000000

.

.

.

VM-1057A-AI

This example shows the output of XFC trace information.

SDA Extended File Cache (XFC) Extension Commands 7–21

SDA Extended File Cache (XFC) Extension Commands
SHOW VOLUME

SHOW VOLUME

Displays the contents of a cache volume block (CVB).

Format

SHOW VOLUME [address]/BRIEF | /FULL | /NAME=DISK$volume_label |
/STATISTICS

Parameter

address
The address of a CVB. If no address is supplied, then all volumes are displayed.

Qualifiers

/BRIEF
Displays summary information for each volume.

/FULL
Displays a complete list of information about each volume. This is the default.

/NAME=DISK$volume_label
Displays information for the volume with the specified name.

/STATISTICS
Displays the read and write I/O activity for this volume. The /STATISTICS
qualifier is incompatible with the /BRIEF qualifier.

Description

The SHOW VOLUME command shows state information and statistics about all
volumes mounted on the system.

7–22 SDA Extended File Cache (XFC) Extension Commands

SDA Extended File Cache (XFC) Extension Commands
SHOW VOLUME

Examples

1. SDA> XFC SHOW VOLUME/BRIEF

Summary of XFC Cached Volumes (CVBs)

Volume Name CVB Open Closed Total Read Read Write ... Response (Milliseconds)...

 Files Files I/Os Hits Count Count Hits disk Average
DISK$SNKRNET FFFFFFFD8311C080 0 0 0 0 0 0
DISK$FRROOGSYS FFFFFFFD831FFD00 0 0 0 0 0 0
DISK$V73_DENBO2 FFFFFFFD831FFAA0 0 0 0 0 0 0
DISK$DENBO2_V73 FFFFFFFD831FF840 0 1 1 0 1 0 0.0000 14.2451 14.2451
DISK$VEALSYS FFFFFFFD831FF5E0 0 0 0 0 0 0
DISK$SCRATCH2 FFFFFFFD831FF380 0 0 0 0 0 0
DISK$SCRATCH1 FFFFFFFD831FF120 0 0 0 0 0 0
DISK$BRAMHA_SCR FFFFFFFD831FEEC0 0 0 0 0 0 0
DISK$COMMON FFFFFFFD831FEC60 0 0 0 0 0 0
DISK$X907_BRAMHA FFFFFFFD831FEA00 0 0 0 0 0 0
DISK$OLDSYS FFFFFFFD831FE7A0 0 1 1 0 1 0 0.0000 7.8946 7.8946
DISK$RAM_FRROOG FFFFFFFD831FE540 0 0 0 0 0 0
DISK$RMSTA2_USER FFFFFFFD831FE2E0 3 5 115 89 112 3 0.0370 20.7218 4.7135
DISK$FRROOG_RUBY FFFFFFFD831FE080 236 157 4195 2408 4085 110 0.0789 4.8671 2.1186

Volumes found: 14

VM-1058A-AI

This example shows the output derived from invoking the /BRIEF qualifer.

2. SDA> XFC SHOW VOLUME FFFFFFFD831FE080

Cache Volume Block (CVB)

Statistics Valid From: 19-APR-2002 07:10:23.54

Name: DISK$FRROOG_RUBY
CVB Address: FFFFFFFD831FE080
Flink: FFFFFFFF80D30238
Blink: FFFFFFFD831FE300
Volume (VCB): FFFFFFFF81905100
Unit (UCB): FFFFFFFF8150F200
Files Queue: FFFFFFFD831FE0C0

Flink: FFFFFFFD83111800
Blink: FFFFFFFD831FC0A0

Cached Open Files: 236
Cached Closed Files: 157
Files Ever Opened: 502
Files Ever Deposed: 109
Pages Allocated: 2726
Total QIOs: 4195
Read Hit Count: 2408
Virtual Read Count: 4085
Virtual Write Count: 110
Read Percentage: 97 %
Hit Rate: 57 %
Average Overall I/O response time to this Volume
in milliseconds: 2.1186
Average Cache Hit I/O response time to this Volume
in milliseconds: 0.0789
Average Disk I/O response time to this Volume
in milliseconds: 4.8671
Accuracy of I/O resp time: 83 %
Readahead Count: 233
Volume Caching Mode: evcmVIOCCompatible
Mounted /NOCACHE: False VCML Allows Caching: True
Quiescing: False Quiesce in Progress: False
No Cache from Logio: False VIL Blk AST Stall: False
Flush Pending: False VCML Blk AST Stall: False
VCML Blk CTX Stall: False VIL Blk CTX Stall: False
Dismount Stall: False Logio Stall: False
Flush in Progress: False Cluster Trans Stall: False

SDA Extended File Cache (XFC) Extension Commands 7–23

SDA Extended File Cache (XFC) Extension Commands
SHOW VOLUME

Dismount Pending: False VIL Up Needed: False
Tqe In Use: False VCML Up Needed: False
VIL blocking AST CTX: 0000000000000000
VCML blocking AST CTX: 0000000000000000
Dismount Stall CTX: 0000000000000000
LogIO Stall CTX: 0000000000000000
Up conversion CTX: 0000000000000000
VIL lock id: 0100007A
VIL LogIO lock id: 00000000
VCML lock id: 010000FF
VCML LogIO lock id: 00000000
Logical IO safety: elogioNotSafe
LogIOMutex: 00000000818EB610
Last LogIO time: 00000000
Active I/O count: 0
Stalled Ops Queue: FFFFFFFD831FE0B0

Flink: FFFFFFFD831FE0B0
Blink: FFFFFFFD831FE0B0

Volumes found: 1

This example shows the output for a specific cache volume block (CVB).

7–24 SDA Extended File Cache (XFC) Extension Commands

8
SDA Extension Routines

This chapter describes how to write, debug, and invoke an SDA Extension. This
chapter also describes the routines available to an SDA Extension.

8.1 Introduction
When analysis of a dump file or a running system requires intimate knowledge
of data structures that are not known to the System Dump Analyzer, the
functionality of SDA can be extended by the addition of new commands into which
the necessary knowledge has been built. Note that in this description, whenever
a reference is made to accessing a dump file (ANALYZE/CRASH_DUMP), this
also includes accessing memory in the running system (ANALYZE/SYSTEM).

For example, a user-written device driver allocates nonpaged pool and records
additional data about the device there (logging different types of I/O, perhaps),
and a pointer to the new structure is saved in the device-specific extension of the
UCB. After a system crash, the only way to look at the data from SDA is to do
the following:

• Invoke the SDA command DEFINE to define a new symbol (for example,
UCB$L_FOOBAR) whose value is the offset in the UCB of the pointer to the
new structure.

• Invoke the SDA commands "SHOW DEVICE <device>" and "FORMAT UCB"
to obtain the address of the nonpaged pool structure.

• Invoke the SDA command "EXAMINE <address>;<length>" to display the
contents of the data in the new nonpaged pool structure as a series of
hexadecimal longwords.

• Decode manually the contents of the data structure from this hexadecimal
dump.

An SDA extension that knows the layout of the nonpaged pool structure, and
where to find the pointer to it in the UCB, could output the data in a formatted
display that alerts the user to unexpected data patterns.

8.2 General Description
The following discussion uses an example of an SDA extension that invokes the
MBX command to output a formatted display of the status of the mailbox devices
in the system. The source file, MBX$SDA.C, is provided in SYS$EXAMPLES.

An SDA extension consists of a shareable image, in this case MBX$SDA.EXE,
either located in the directory SYS$LIBRARY or found by translating the logical
name MBX$SDA. It contains two universal symbols: SDA$EXTEND, the entry
point; and SDA$EXTEND_VERSION, the address of a longword that contains the
version of the interface used (in the format of major/minor ident), which allows
SDA to confirm it has activated a compatible extension. The image contains
at least two modules: MBX$SDA, the user-written module that defines the

SDA Extension Routines 8–1

SDA Extension Routines
8.2 General Description

two symbols and provides the code and data necessary to produce the desired
formatted output; and SDA_EXTEND_VECTOR, which provides jackets for all
of the callable SDA routines, and is found in SYS$LIBRARY:VMS$VOLATILE_
PRIVATE_INTERFACES.OLB. The user-written portion can be split into multiple
modules.

Whenever SDA receives an unrecognized command, like "SDA> MBX", it attempts
to activate the shareable image MBX$SDA at the SDA$EXTEND entry point.
If you choose a command name that matches the abbreviation of an existing
command, SDA can be forced to activate the extension using the "DO" command.
For example, if you had an SDA extension called VAL$SDA, you could not
activate it with a command like "SDA> VAL" as SDA would interpret that as
an abbreviation of its VALIDATE command. But VAL$SDA can be activated by
issuing "SDA> DO VAL".

With or without the "DO" prefix, the rest of the command line is passed to the
extension; it is up to the extension to parse it. The example extension MBX$SDA
includes support for commands of the form "SDA> MBX SUMMARY" and
"SDA> MBX <address>" to demonstrate this. If the extension is invoked with no
arguments, it should do no more than display a simple announcement message,
or prompt for input. This assists in the debugging of the extension, as described
in Section 8.4.

8.3 Detailed Description
This section describes how to compile, link, and invoke an SDA extension. It also
describes the contents of an SDA extension.

8.3.1 Compiling and Linking an SDA Extension
The user-written module is only supported when written in Compaq C (minimum
Version 5.2), following the pattern of the example extension, MBX$SDA.C. It
should be compiled and linked using commands of the following form:

$cc mbx$sda + alpha$library:sys$lib_c /library
$link /share -

mbx$sda.obj, -
alpha$library:vms$volatile_private_interfaces /library, -
sys$input /option

symbol_vector = (sda$extend=procedure)
symbol_vector = (sda$extend_version=data)

Note

1. You can include the qualifier /INSTRUCTION=NOFLOAT on the
compile command line if floating-point instructions are not needed.

2. The + ALPHA$LIBRARY:SYS$LIB_C /LIBRARY is not needed on the
compile command line if the logical name DECC$TEXT_LIBRARY is
defined and translates to ALPHA$LIBRARY:SYS$LIB_C.TLB.

3. If the user-written extension needs to signal SDA condition
codes, or output their text with $PUTMSG, you should
add the qualifier /INCLUDE=SDAMSG to the parameter
ALPHA$LIBRARY:VMS$VOLATILE_PRIVATE_INTERFACES /LIBRARY.

8–2 SDA Extension Routines

SDA Extension Routines
8.3 Detailed Description

8.3.2 Invoking an SDA Extension
You can invoke the SDA extension as follows:

$define mbx$sda sys$disk:[]mbx$sda
$analyze /system
SDA>mbx summary
SDA>mbx <address>

8.3.3 Contents of an SDA Extension
At a minimum, the user-written module must contain:

• #include statements for DESCRIP.H and SDA_ROUTINES.H

• The global variable SDA$EXTEND_VERSION, initialized as follows:

int sda$extend_version = SDA_FLAGS$K_VERSION;

• The routine SDA$EXTEND (prototype follows)

Optionally, the user-written module may also contain the statement:

#define __NEW_STARLET

You should use this option because it provides type checking of function
arguments and gives consistency in casing and naming conventions.

The entry point in the user-written module, SDA$EXTEND, is called as a routine
with three arguments and no return value. The declaration is as follows:

void sda$extend (
int *transfer_table,
struct dsc$descriptor_s *cmd_line,
SDA_FLAGS sda_flags)

The arguments in this code example have the following meanings:

SDA Extension Routines 8–3

SDA Extension Routines
8.3 Detailed Description

Line of Code Meaning

transfer_table Address of the vector table in the base image. The user-written
routine SDA$EXTEND must copy this to SDA$EXTEND_
VECTOR_TABLE_ADDR before any SDA routines can be called.

cmd_line Address of the descriptor of the command line as entered by
the user, less the name of the extension. So, if you enter "SDA>
MBX" or "SDA> DO MBX", the command line is a zero length
string. If you enter the command "SDA> MBX 80102030",
the command line is " 80102030" (the separating space is not
stripped).

sda_flags Definition for the following four bits in this structure:

Bit Meaning

sda_flags.sda_flags$v_override Indicates SDA has
been activated with
the ANALYZE/CRASH_
DUMP/OVERRIDE
command

sda_flags.sda_flags$v_current Indicates SDA has
been activated with the
ANALYZE/SYSTEM
command

sda_flags.sda_flags$v_target Indicates that SDA was
invoked from the kept
debugger during an SCD
or SDD session or when
analyzing a process dump

sda_flags.sda_flags$v_process Indicates SDA was activated
with the ANALYZE/CRASH_
DUMP command to analyze
a process dump

No bits set Indicates SDA was activated
with the ANALYZE/CRASH_
DUMP command to analyze
a system dump

The first executable statement of the routine must be to copy TRANSFER_TABLE
to SDA$VECTOR_TABLE (which is declared in SDA_ROUTINES.H):

sda$vector_table = transfer_table;

If this is not done, you cannot call any of the routines described below. Any
attempts to call the routines receive a status return of SDA$_VECNOTINIT. (For
routines defined not to return a status, this value can be found only by examining
R0.)

The next statement should be one to establish a condition handler, as it is often
difficult to track down errors in extensions such as access violations because the
extension is activated dynamically with LIB$FIND_IMAGE_SYMBOL. A default
condition handler, SDA$COND_HANDLER, is provided that outputs the following
information in the event of an error:

• The error condition

• The VMS version

• A list of activated images, with start and end virtual addresses

8–4 SDA Extension Routines

SDA Extension Routines
8.3 Detailed Description

• The signal array and register dump

• The current call frame chain

You can establish this condition handler as follows:

lib$establish (sda$cond_handler);

Note

The error condition, signal array, and register dump are output directly to
SYS$OUTPUT and/or SYS$ERROR, and are not affected by the use of the
SDA commands SET OUTPUT and SET LOG.

Thus, a minimal extension would be:

#define __NEW_STARLET 1
#include <descrip.h>
#include <sda_routines.h>

int sda$extend_version = SDA_FLAGS$K_VERSION;

void sda$extend (int *transfer_table,
struct dsc$descriptor_s *cmd_line,
SDA_FLAGS sda_flags)

{
sda$vector_table = transfer_table;
lib$establish (sda$cond_handler);

sda$print ("hello, world");
return;
}

8.4 Debugging an Extension
In addition to the "after-the-fact" information provided by the condition handler,
you can debug SDA extensions using the OpenVMS Debugger. A second copy of
the SDA image, SDA_DEBUG.EXE, is provided in SYS$SYSTEM. By defining
the logical name SDA to reference this image, you can debug SDA extensions as
follows:

• Compile your extension /DEBUG/NOOPT and link it /DEBUG.

• Define logical names for SDA and the extension, and invoke SDA.

• Type GO at the initial DBG> prompt.

• Invoke the extension with no argument at the initial SDA> prompt.

• Return control to Debug at the next prompt (either from SDA or the
extension).

• Use Debug commands to set breakpoints, and so on, in the extension and
then type GO.

• Invoke the extension, providing the necessary arguments.

SDA Extension Routines 8–5

SDA Extension Routines
8.4 Debugging an Extension

An example of the preceding steps is as follows:

$ cc /debug /noopt mbx$sda + alpha$library:sys$lib_c /library
$ link /debug /share -

mbx$sda.obj, -
alpha$library:vms$volatile_private_interfaces /library, -
sys$input /option

symbol_vector = (sda$extend=procedure)
symbol_vector = (sda$extend_version=data)
$!
$ define mbx$sda sys$disk:[]mbx$sda
$ define sda sda_debug
$ analyze /system
...
DBG> go
...
SDA> mbx
MBX commands: ’MBX SUMMARY’ and ’MBX <address>’
SDA>
^C <CR>
DBG> set image mbx$sda
DBG> set language c
DBG> set break /exception
DBG> go
SDA> mbx summary
...
SDA> mbx <address>
...
%DEBUG-I-DYNMODSET, setting module MBX$SDA
%SYSTEM-E-INVARG, invalid argument
...
DBG>

8.5 Callable Routines Overview
The user-written routine may call SDA routines to accomplish any of the
following tasks:

• Read the contents of memory locations in the dump.

• Translate symbol names to values and vice-versa, define new symbols, and
read symbol table files.

• Map an address to the activated image or executive image that contains that
address.

• Output text to the terminal, with page breaks, page headings, and so on (and
which is output to a file if the SDA commands SET OUTPUT or SET LOG
have been used).

• Allocate and deallocate dynamic memory.

• Validate queues/lists.

• Format data structures.

• Issue any SDA command.

8–6 SDA Extension Routines

SDA Extension Routines
8.5 Callable Routines Overview

The full list of available routines is as follows:

SDA$ADD_SYMBOL SDA$GETMEM

SDA$ALLOCATE SDA$INSTRUCTION_DECODE

SDA$DBG_IMAGE_INFO SDA$NEW_PAGE

SDA$DEALLOCATE SDA$PARSE_COMMAND

SDA$DISPLAY_HELP SDA$PRINT

SDA$ENSURE SDA$READ_SYMFILE

SDA$FORMAT SDA$REQMEM

SDA$FORMAT_HEADING SDA$SET_ADDRESS

SDA$GET_ADDRESS SDA$SET_CPU

SDA$GET_BLOCK_NAME SDA$SET_HEADING_ROUTINE

SDA$GET_BUGCHECK_MSG SDA$SET_LINE_COUNT

SDA$GET_CURRENT_CPU SDA$SET_PROCESS

SDA$GET_CURRENT_PCB SDA$SKIP_LINES

SDA$GET_DEVICE_NAME SDA$SYMBOL_VALUE

SDA$GET_HEADER SDA$SYMBOLIZE

SDA$GET_HW_NAME SDA$TRYMEM

SDA$GET_IMAGE_OFFSET SDA$TYPE

SDA$GET_INPUT SDA$VALIDATE_QUEUE

SDA$GET_LINE_COUNT

The details of all these routines follow. But there are some points to be aware of
in using them:

• There are three different routines available to read the contents of
memory locations in the dump: SDA$TRYMEM, SDA$GETMEM, and
SDA$REQMEM. They are used as follows:

SDA$TRYMEM is called from both SDA$GETMEM and SDA$REQMEM as
the lower-level routine that actually does the work. SDA$TRYMEM returns
success/failure status in R0, but does not signal any errors. Use it directly
when you expect that the location being read may be inaccessible. The caller
of SDA$TRYMEM will handle this situation by checking the status returned
by SDA$TRYMEM.

SDA$GETMEM signals a warning when any error status is returned from
SDA$TRYMEM. Signaling a warning will print out a warning message, but
does not abort the SDA command in progress. You should use this routine
when you expect the location to be read to be accessible. This routine does
not prevent the command currently being executed from continuing. The
caller of SDA$GETMEM must allow for this by checking the status returned
by SDA$GETMEM.

SDA$REQMEM signals an error when any error status is returned from
SDA$TRYMEM. Signaling an error will print out an error message, abort the
SDA command in progress and return to the "SDA>" prompt. You should use
this routine when you expect the location to be read to be accessible. This
routine will prevent the command currently being executed from continuing.
The caller of SDA$REQMEM will not resume if an error occurs.

SDA Extension Routines 8–7

SDA Extension Routines
8.5 Callable Routines Overview

• You should use only the routines provided to output text. Do not use
printf() or any other standard routine. If you do, the SDA commands SET
OUTPUT and SET LOG will not produce the expected results. Do not
include control characters in output (except tab); in particular, avoid <CR>,
<LF>,<FF>, and the FAO directives that create them. Use the FAO directive
!AF when contents of memory returned by SDA$TRYMEM, and so on, are
being displayed directly, because embedded control characters will cause
undesirable results. For example, displaying process names or resource
names that contain particular control characters or escape sequences can lock
up the terminal.

• You should use only the routines provided to allocate and deallocate dynamic
memory. Do not use malloc() and free(). Where possible, allocate dynamic
memory once, the first time the extension is activated, and deallocate it only
if it needs to be replaced by a larger allocation. Because SDA commands can
be interrupted by invoking another command at the "Press return for more"
prompt, it is very easy to cause memory leaks.

• Some routines expect 32-bit pointers, and others expect 64-bit pointers. At
first this not may appear to be logical, but in fact it is. All code and data used
by SDA and any extensions must be in P0 or P1 space, as SDA does not need
to (and does not) use P2 space for local data storage. However, addresses in
the system dump (or running system, in the case of ANALYZE/SYSTEM) are
64-bit addresses, and SDA must provide access to all locations in the dump.

So, for example, the first two arguments to the routine SDA$TRYMEM are:

VOID_PQ start /* 64-bit pointer */

void *dest /* 32-bit pointer */

They specify the address of interest in the dump and the address in local storage
to which the dump contents are to be copied.

8.6 Callable Routines Specifics
The following section describes the SDA extension callable routines.

8–8 SDA Extension Routines

SDA Extension Routines
SDA$ADD_SYMBOL

SDA$ADD_SYMBOL

Adds a symbol to SDA’s local symbol table.

Format

void sda$add_symbol (char *symbol_name, uint64 symbol_value);

Arguments

symbol_name
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of symbol name string (zero-terminated).

symbol_value
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access read only
mechanism by value

The symbol value.

Description

SDA maintains a list of symbols and the corresponding values. SDA$ADD_
SYMBOL is used to insert additional symbols into this list, so that they can be
used in expressions and during symbolization.

Condition Values Returned

None

Example

sda$add_symbol ("MBX", 0xFFFFFFFF80102030);

This call defines the symbol MBX to the hexadecimal value FFFFFFFF80102030.

SDA Extension Routines 8–9

SDA Extension Routines
SDA$ALLOCATE

SDA$ALLOCATE

Allocates dynamic memory.

Format

void sda$allocate (uint32 size, void **ptr_block);

Arguments

size
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Size of block to allocate (in bytes).

ptr_block
OpenVMS usage address
type longword (unsigned)
access write only
mechanism by reference

Address of longword to receive address of block.

Description

The requested memory is allocated and the address returned. Note that this is
the only supported mechanism for allocation of dynamic memory.

Related Routine
SDA$DEALLOCATE

Condition Values Returned

None

If no memory is available, the error is signaled and the SDA session aborted.

Example

PCB *local_pcb;
...
sda$allocate (PCB$C_LENGTH, (void *)&local_pcb);

This call allocates a block of heap storage for a copy of a PCB, and stores its
address in the pointer LOCAL_PCB.

8–10 SDA Extension Routines

SDA Extension Routines
SDA$DBG_IMAGE_INFO

SDA$DBG_IMAGE_INFO

Displays a list of activated images together with their virtual address ranges for
debugging purposes.

Format

void sda$dbg_image_info ();

Arguments

None.

Description

A list of the images currently activated, with their start and end addresses, is
displayed. This is provided as a debugging aid for SDA extensions.

Condition Values Returned

None

Example

sda$dbg_image_info ();

SDA outputs the list of images in the following format:

Current VMS Version: "X6DX-FT1"

Process Activated Images:

Start VA End VA Image Name
00010000 000301FF SDA
00032000 00177FFF SDA$SHARE
7B508000 7B58BFFF DECC$SHR
7B2D8000 7B399FFF DPML$SHR
7B288000 7B2C9FFF CMA$TIS_SHR
7B698000 7B6D9FFF LBRSHR
0021A000 0025A3FF SCRSHR
00178000 002187FF SMGSHR
7B1E8000 7B239FFF LIBRTL
7B248000 7B279FFF LIBOTS
80C140D0 80C23120 SYS$BASE_IMAGE
80C036B8 80C05288 SYS$PUBLIC_VECTORS
002C6000 002D31FF PRGDEVMSG
002D4000 002DA9FF SHRIMGMSG
002DC000 002DFFFF DECC$MSG
00380000 003E03FF MBX$SDA

SDA Extension Routines 8–11

SDA Extension Routines
SDA$DEALLOCATE

SDA$DEALLOCATE

Deallocates and frees dynamic memory.

Format

void sda$deallocate (void *ptr_block, uint32 size);

Arguments

ptr_block
OpenVMS usage address
type longword (unsigned)
access read only
mechanism by value

Starting address of block to be freed.

size
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Size of block to deallocate (in bytes).

Description

The specified memory is deallocated. Note that this is the only supported
mechanism for deallocation of dynamic memory.

Related Routine
SDA$ALLOCATE

Condition Values Returned

None

If an error occurs, it is signaled and the SDA session aborted.

Example

PCB *local_pcb;
...
sda$deallocate ((void *)local_pcb, PCB$C_LENGTH;

This call deallocates the block of length PCB$C_LENGTH whose address is stored
in the pointer LOCAL_PCB.

8–12 SDA Extension Routines

SDA Extension Routines
SDA$DISPLAY_HELP

SDA$DISPLAY_HELP

Displays online help.

Format

void sda$display_help (char *library_desc, char *topic_desc);

Arguments

library
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of library filespec. Specify as zero-terminated ASCII string.

topic
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of topic name. Specify as zero-terminated ASCII string.

Description

Help from the specified library is displayed on the given topic.

Condition Values Returned

None

Example

sda$display_help ("SYS$HELP:SDA", "HELP");

This call produces the following output at the terminal:

HELP

The System Dump Analyzer (SDA) allows you to inspect the contents
of memory as saved in the dump taken at crash time or as exists
in a running system. You can use SDA interactively or in batch
mode. You can send the output from SDA to a listing file. You can
use SDA to perform the following operations:

SDA Extension Routines 8–13

SDA Extension Routines
SDA$DISPLAY_HELP

Assign a value to a symbol
Examine memory of any process
Format instructions and blocks of data
Display device data structures
Display memory management data structures
Display a summary of all processes on the system
Display the SDA symbol table
Copy the system dump file
Send output to a file or device
Read global symbols from any object module
Send output to a file or device
Read global symbols from any object module
Search memory for a given value

For help on performing these functions, use the HELP command and
specify a topic.

Format

HELP [topic-name]

Additional information available:

Parameter

HELP Subtopic?

8–14 SDA Extension Routines

SDA Extension Routines
SDA$ENSURE

SDA$ENSURE

Ensures sufficient space on the current output page.

Format

void sda$ensure (uint32 lines);

Argument

lines
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Number of lines to fit on a page.

Description

This routine checks and makes sure that the number of lines specified fit on the
current page; otherwise, it issues a page break.

Condition Values Returned

None

Example

sda$ensure (5);

This call ensures that there are five lines left on the current page, and it outputs
a page break if there are not.

SDA Extension Routines 8–15

SDA Extension Routines
SDA$FORMAT

SDA$FORMAT

Displays the formatted contents of a data structure.

Format

void sda$format (VOID_PQ struct_addr, _ _optional_params);

Arguments

struct_addr
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

The address in the system dump of the data structure to be formatted.

options
OpenVMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

The following provides more information on options:

Option Meaning

None Uses structure type from the xxx$B_
TYPE and/or xxx$B_SUBTYPE field of
the structure. This is the default.

SDA_OPT$M_FORMAT_TYPE Uses the structure type given in struct_
prefix.

SDA_OPT$M_FORMAT_PHYSICAL Indicates that struct_addr is a physical
address instead of a virtual address.

struct_prefix
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of structure name string (zero-terminated).

Description

This routine displays the formatted content of a data structure that begins at
the address specified. If no symbol prefix is passed, then SDA tries to find the
symbols associated with the block type specified in the block-type byte of the data
structure.

8–16 SDA Extension Routines

SDA Extension Routines
SDA$FORMAT

Condition Values Returned

None

Example

PCB *local_pcb;
PHD *local_phd;
...
sda$format (local_pcb);
sda$format (local_phd, SDA_OPT$M_FORMAT_TYPE, "PHD");

The first call formats the structure whose system address is held in the variable
LOCAL_PCB, determining the type from the type and/or subtype byte of the
structure. The second call formats the structure whose system address is held in
the variable LOCAL_PHD, using PHD symbols.

SDA Extension Routines 8–17

SDA Extension Routines
SDA$FORMAT_HEADING

SDA$FORMAT_HEADING

Formats a new page heading.

Format

void sda$format_heading (char *ctrstr, _ _optional_params);

Arguments

ctrstr
OpenVMS usage char_string
type character-coded text string
access read only
mechanism by reference

Address of control string (zero-terminated ASCII string).

prmlst
OpenVMS usage varying_arg
type quadword (signed or unsigned)
access read only
mechanism by value

FAO parameters that are optional. All arguments after the control string are
copied into a quadword parameter list as used by $FAOL_64.

Description

This routine prepares and saves the page heading to be used whenever
SDA$NEW_PAGE is called. Nothing is output either until SDA$NEW_PAGE
is next called, or a page break is necessary because the current page is full.

Condition Values Returned

None

If the $FAOL_64 call issued by SDA$FORMAT_HEADING fails, the control string
is used as the page heading.

Example

char hw_name[64];
...
sda$get_hw_name (hw_name, sizeof(hw_name));
sda$format_heading (

"SDA Extension Commands, system type !AZ",
&hw_name);

sda$new_page ();

This example produces the following heading:

SDA Extension Commands, system type DEC 3000 Model 400
--

8–18 SDA Extension Routines

SDA Extension Routines
SDA$GET_ADDRESS

SDA$GET_ADDRESS

Gets the address value of the current memory location.

Format

void sda$get_address (VOID_PQ *address);

Argument

address
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access write only
mechanism by reference

Location to store the current 64-bit memory address.

Description

Returns the current address being referenced by SDA (location ".").

Condition Values Returned

None

Example

VOID_PQ current_address;
...
sda$get_address (¤t_address);

This call stores SDA’s current memory location in the long pointer CURRENT_
ADDRESS.

SDA Extension Routines 8–19

SDA Extension Routines
SDA$GET_BLOCK_NAME

SDA$GET_BLOCK_NAME

Returns the name of a structure, given its type and/or subtype.

Format

void sda$extend_get_block_name (uint32 block_type, uint32 block_subtype,
char *buffer_ptr, uint32 buffer_len);

Arguments

block_type
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Block type in range 0 - 255 (usually extracted from xxx$b_type field).

block_subtype
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Block subtype in range 0 - 255 (ignored if the given block type has no subtypes).

buffer_ptr
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of buffer to save block name, which is returned as a zero-terminated
string.

buffer_len
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of buffer to receive block name.

Description

Given the block type and/or subtype of a structure, this routine returns the
name of the structure. If the structure type is one that has no subtypes, the
given subtype is ignored. If the structure type is one that has subtypes, and
the subtype is given as zero, the name of the block type itself is returned. If an
invalid type or subtype (out of range) is given, an empty string is returned.

8–20 SDA Extension Routines

SDA Extension Routines
SDA$GET_BLOCK_NAME

Note

The buffer should be large enough to accomodate the largest possible
block name (25 bytes plus the termination byte). The block name is
truncated if it is too long for the supplied buffer.

Condition Values Returned

None

Example

char buffer[32];
...
sda$get_block_name (0x6F, 0x20,

buffer,
sizeof (buffer));

if (strlen (buffer) == 0)
sda$print ("Block type: no named type/subtype");

else
sda$print ("Block type: !AZ", buffer);

This example produces the following output:

Block type: VCC_CFCB

SDA Extension Routines 8–21

SDA Extension Routines
SDA$GET_BUGCHECK_MSG

SDA$GET_BUGCHECK_MSG

Gets the text associated with a bugcheck code.

Format

void sda$get_bugcheck_msg (uint32 bugcheck_code, char *buffer_ptr, uint32
buffer_size);

Arguments

bugcheck_code
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

The bugcheck code to look up.

buffer_ptr
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of buffer to save bugcheck message.

buffer_len
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of buffer to receive message.

Description

Gets the string representing the bugcheck code passed as the argument. The
bugcheck message string is passed in the buffer (represented as a pointer and
length) as a zero-terminated ASCII string.

Note

The buffer should be large enough to accomodate the largest possible
bugcheck message (128 bytes including the termination byte). The text is
terminated if it is too long for the supplied buffer.

Condition Values Returned

None

8–22 SDA Extension Routines

SDA Extension Routines
SDA$GET_BUGCHECK_MSG

Example

char buffer[128];
...
sda$get_bugcheck_msg (0x108, buffer, sizeof(buffer));
sda$print ("Bugcheck code 108 (hex) =");
sda$print ("!_\"!AZ\"", buffer);

This example produces the following output:

Bugcheck code 108 (hex) =
"DOUBLDALOC, Double deallocation of swap file space"

SDA Extension Routines 8–23

SDA Extension Routines
SDA$GET_CURRENT_CPU

SDA$GET_CURRENT_CPU

Gets the CPU database address of the currently selected CPU.

Format

void sda$get_current_cpu (CPU **cpudb);

Arguments

cpudb
OpenVMS usage address
type longword (unsigned)
access write only
mechanism by reference

Location to which the address of the CPU database is to be returned.

Description

This routine causes SDA to return the address of the database for the currently
selected CPU.

Condition Values Returned

None

Example

#include <cpudef>
CPU *current_cpu;
sda$get_current_cpu (¤t_cpu);

In this example, the system address of the database for the current CPU is
returned in variable current_cpu.

8–24 SDA Extension Routines

SDA Extension Routines
SDA$GET_CURRENT_PCB

SDA$GET_CURRENT_PCB

Gets the PCB address of the "SDA current process" currently selected.

Format

void sda$get_current_pcb (PCB **pcbadr);

Argument

pcbadr
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access write only
mechanism by reference

Location in which to store the current PCB address.

Description

The PCB address of the process currently selected by SDA is returned in the
specified location.

Condition Values Returned

None

Example

PCB *current_pcb;
...
sda$get_current_pcb (¤t_pcb);

This call stores the system address of the PCB of the process currently being
referenced by SDA in the pointer CURRENT_PCB.

SDA Extension Routines 8–25

SDA Extension Routines
SDA$GET_DEVICE_NAME

SDA$GET_DEVICE_NAME

Gets the device name, given the UCB address of the device.

Format

int sda$get_device_name (VOID_PQ ucb_addr, char *name_buf, int name_len);

Arguments

ucb_addr
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

System address of the Unit Control Block of the device.

name_buf
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of buffer to receive device name.

name_len
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of buffer to receive device name.

Description

This routine creates and returns the name for the device described by the given
UCB. The device name is returned as a zero-terminated ASCII string.

Note

The buffer should be large enough to accomodate the largest possible
device name (32 bytes including the termination byte). The text is
terminated if it is too long for the supplied buffer.

Condition Values Returned

SDA$_SUCCESS Successful completion
SDA$_NOTAUCB The address given is not the address of a UCB
SDA$_NOREAD The data is inaccessible for some reason
Others The data is inaccessible for some reason

8–26 SDA Extension Routines

SDA Extension Routines
SDA$GET_DEVICE_NAME

Example

VOID_PQ address;
char buffer[32];
...
sda$parse_command ("SHOW DEVICE DKB0:");
sda$symbol_value ("UCB", (uint64 *)&address);
sda$get_device_name ((VOID_PQ)address, buffer, 32);
sda$print ("UCB address: !XL = ""!AZ:""", address, buffer);

This example produces the following output:

UCB address: 814A9A40 = 31DKB0:

SDA Extension Routines 8–27

SDA Extension Routines
SDA$GET_HEADER

SDA$GET_HEADER

Returns pointers to local copies of the dump file header and the error log buffer
together with the sizes of those data structures.

Format

void sda$get_header (DMP **dmp_header, uint32 *dmp_header_size, void
**errlog_buf, uint32 *errlog_buf_size);

Arguments

dmp_header
OpenVMS usage address
type longword (unsigned)
access write only
mechanism by reference

Location in which to store the address of the copy of the dump file header held by
SDA.

dmp_header_size
OpenVMS usage longword_unsigned
type longword (unsigned)
access write only
mechanism by reference

Location in which to store the size of the dump file header.

errlog_buf
OpenVMS usage address
type longword (unsigned)
access write only
mechanism by reference

Location in which to store the address of the copy of the error log buffer held by
SDA.

errlog_buf_size
OpenVMS usage longword_unsigned
type longword (unsigned)
access write only
mechanism by reference

Location in which to store the size of the error log buffer.

Description

This routine returns the addresses and sizes of the dump header and error logs
read by SDA when the dump file is opened. If this routine is called when the
running system is being analyzed with ANALYZE/SYSTEM, then the following
occurs:

• Returns the address and size of SDA’s dump header buffer, but the header
contains zeroes

• Returns zeroes for the address and size of SDA’s error log buffer

8–28 SDA Extension Routines

SDA Extension Routines
SDA$GET_HEADER

Condition Values Returned

None

Example

DMP *dmp_header;
uint32 dmp_header_size;
char *errlog_buffer;
uint32 errlog_buffer_size;
...
sda$get_header (&dmp_header,

&dmp_header_size,
(void **)&errlog_buffer,
&errlog_buffer_size);

This call stores the address and size of SDA’s copy of the dump file header in
DMP_HEADER and DMP_HEADER_SIZE, and stores the address and size
of SDA’s copy of the error log buffers in ERRLOG_BUFFER and ERRLOG_
BUFFER_SIZE, respectively.

SDA Extension Routines 8–29

SDA Extension Routines
SDA$GET_HW_NAME

SDA$GET_HW_NAME

Returns the full name of the hardware platform where the dump was written.

Format

void sda$get_hw_name (char *buffer_ptr, uint32 buffer_len);

Arguments

buffer_ptr
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of buffer to save HW name.

buffer_len
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of buffer to receive HW name.

Description

Returns a zero-terminated ASCII string representing the platform hardware
name and puts it in the buffer passed as the argument.

Note

The buffer should be large enough to accomodate the largest possible
hardware platform name (120 bytes including the termination byte). The
name is truncated if it is too long for the supplied buffer.

Condition Values Returned

None

Example

char hw_name[64];
...
sda$get_hw_name (hw_name, sizeof(hw_name));
sda$print ("Platform name: \"!AZ\"", hw_name);

This example produces output of the form:

Platform name: "DEC 3000 Model 400"

8–30 SDA Extension Routines

SDA Extension Routines
SDA$GET_IMAGE_OFFSET

SDA$GET_IMAGE_OFFSET

Maps a given virtual address onto an image or execlet.

Format

COMP_IMG_OFF sda$get_image_offset (VOID_PQ va, VOID_PQ img_info,
VOID_PQ subimg_info, VOID_PQ offset);

Arguments

va
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

Virtual address of interest.

img_info
OpenVMS usage address
type quadword (unsigned)
access write only
mechanism by reference

Pointer to return addr of LDRIMG or IMCB block.

subimg_info
OpenVMS usage address
type quadword (unsigned)
access write only
mechanism by reference

Pointer to return addr of ISD_OVERLAY or KFERES.

offset
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access write only
mechanism by reference

Pointer to address to return offset from image.

Description

Given a virtual address, this routine finds in which image it falls and returns
the image information and offset. The loaded image list is traversed first to find
this information. If it is not found, then the activated image list of the currently
selected process is traversed. If still unsuccessful, then the resident installed
images are checked.

SDA Extension Routines 8–31

SDA Extension Routines
SDA$GET_IMAGE_OFFSET

Condition Values Returned

SDA_CIO$V_VALID Set if image offset is found
SDA_CIO$V_PROCESS Set if image is an activated image
SDA_CIO$V_SLICED Set if the image is sliced
SDA_CIO$V_COMPRESSED Set if activated image contains compressed data

sections
SDA_CIO$V_ISD_INDEX Index into ISD_LABELS table (only for LDRIMG

execlets)

The status returned indicates the type of image if a match was found.

SDA_CIO$V_xxx flags set: img_info type: subimg_info type:

valid LDRIMG n/a
valid && sliced LDRIMG ISD_OVERLAY
valid && process IMCB n/a
valid && process && sliced IMCB KFERES_SECTION

Example

VOID_PQ va = (VOID_PQ)0xFFFFFFFF80102030;
COMP_IMG_OFF sda_cio;
int64 img_info;
int64 subimg_info;
int64 offset;
...
sda_cio = sda$get_image_offset (va,

&img_info,
&subimg_info,
&offset);

For an example of code that interprets the returned COMP_IMG_OFF structure,
see the supplied example program, SYS$EXAMPLES:MBX$SDA.C.

8–32 SDA Extension Routines

SDA Extension Routines
SDA$GET_INPUT

SDA$GET_INPUT

Reads input commands.

Format

int sda$get_input (char *prompt, char *buffer, uint32 buflen);

Arguments

prompt
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of prompt string (zero-terminated ASCII string).

buffer
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of buffer to store command.

buflen
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Maximum length of buffer.

Description

The command entered is returned as a zero-terminated string. The string is not
uppercased. If you do not enter input but simply press <return> or <ctrl/Z>, the
routine returns a null string.

Condition Values Returned

SS$_NORMAL Successful completion.
RMS$_EOF User pressed <ctrl/Z>

Example

int status;
char buffer[128];
...
status = sda$get_input ("MBX> ", buffer, sizeof (buffer));

This call prompts you for input with "MBX> " and stores the response in the
buffer.

SDA Extension Routines 8–33

SDA Extension Routines
SDA$GET_LINE_COUNT

SDA$GET_LINE_COUNT

Obtains the number of lines currently printed on the current page.

Format

void sda$get_line_count (uint32 *line_count);

Argument

line_count
OpenVMS usage longword_unsigned
type longword (unsigned)
access write only
mechanism by reference

The number of lines printed on current page.

Description

Returns the number of lines that have been printed so far on the current page.

Condition Values Returned

None

Example

uint32 line_count;
...
sda$get_line_count (&line_count);

This call copies the current line count on the current page of output to the
location LINE_COUNT.

8–34 SDA Extension Routines

SDA Extension Routines
SDA$GETMEM

SDA$GETMEM

Reads dump or system memory and signals a warning if inaccessible.

Format

int sda$getmem (VOID_PQ start, void *dest, int length, _ _optional_params);

Arguments

start
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

Starting virtual address in dump or system.

dest
OpenVMS usage address
type varies
access write only
mechanism by reference

Return buffer address.

length
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of transfer.

physical
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

0: <start> is a virtual address. This is the default.
1: <start> is a physical address.

Description

This routine transfers an area from the memory in the dump file or the running
system to the caller’s return buffer. It performs the necessary address translation
to locate the data in the dump file. SDA$GETMEM signals a warning and
returns an error status if the data is inaccessible.

Related Routines
SDA$REQMEM and SDA$TRYMEM

SDA Extension Routines 8–35

SDA Extension Routines
SDA$GETMEM

Condition Values Returned

SDA$_SUCCESS Successful completion
SDA$_NOREAD The data is inaccessible for some reason.
SDA$_NOTINPHYS The data is inaccessible for some reason.
Others The data is inaccessible for some reason.

If a failure status code is returned, it has already been signaled as a warning.

Example

int status;
PCB *current_pcb;
PHD *current_phd;
...
status = sda$getmem ((VOID_PQ)¤t_pcb->pcb$l_phd, ¤t_phd, 4);

This call returns the contents of the PCB$L_PHD field of the PCB, whose system
address is in the pointer CURRENT_PCB, to the pointer CURRENT_PHD.

8–36 SDA Extension Routines

SDA Extension Routines
SDA$INSTRUCTION_DECODE

SDA$INSTRUCTION_DECODE

Translates one Alpha machine instruction into the assembler string equivalent.

Format

int sda$instruction_decode (void *istream_ptr, char *buffer, uint32 buflen);

Arguments

istream_ptr
OpenVMS usage address
type longword (unsigned)
access read/write
mechanism by reference

Address of the pointer that points to a copy of the i-stream in a local buffer.

buffer
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of a string buffer into which to store the output assembler string.

buflen
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Maximum size of the string buffer.

Description

Translates an Alpha machine instruction into the assembler string equivalent.
Alpha instructions are always 4 bytes long. The instruction stream must first
be read into local memory and then the address of a pointer to the local copy of
the instruction stream is passed to the routine. For every successful translated
instruction, the pointer is automatically updated to point to the next instruction.

The output assembler string is zero-terminated and in case of a failure a null
string is returned.

Condition Values Returned

SS$_NORMAL Successful completion.
SS$_BADPARAM Any of the following failures:

Output buffer too small
Invalid register
Invalid opcode class/format
Could not translate instruction

SDA Extension Routines 8–37

SDA Extension Routines
SDA$INSTRUCTION_DECODE

Example

int status;
VOID_PQ va = (VOID_PQ)0xFFFFFFFF80102030;
uint32 instruction;
uint32 *istream = &instruction;
char buffer[64];
...
sda$reqmem (va, &instruction, 4);
status = sda$instruction_decode (&istream, buffer, sizeof (buffer));

This example reads the instruction at dump location VA and decodes it, putting
the result into BUFFER. Pointer ISTREAM is incremented (to the next longword).

8–38 SDA Extension Routines

SDA Extension Routines
SDA$NEW_PAGE

SDA$NEW_PAGE

Begins a new page of output.

Format

void sda$new_page ();

Arguments

None.

Description

This routine causes a new page to be written and outputs the page heading
(established with SDA$FORMAT_HEADING) and the current subheading
(established with SDA$SET_HEADING_ROUTINE).

Condition Values Returned

None

Example

sda$new_page ();

This call outputs a page break and displays the current page heading and
subheading (if any).

SDA Extension Routines 8–39

SDA Extension Routines
SDA$PARSE_COMMAND

SDA$PARSE_COMMAND

Parses and executes an SDA command line.

Format

void sda$parse_command (char *cmd_line, _ _optional_params);

Arguments

cmd_line
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of a valid SDA command line (zero-terminated).

options
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

The options argument has the following values:

Value Meaning

SDA_OPT$K_PARSE_DONT_SAVE Indicates "do not save this command." This
is the default.

SDA_OPT$K_PARSE_SAVE Indicates "save this command." That is, it
can be recalled with KP0 or REPEAT.

Description

Not every SDA command has a callable extension interface. For example, to
redirect SDA’s output, you would pass the command string "SET OUTPUT
MBX.LIS" to this parse command routine. Abbreviations are allowed.

Condition Values Returned

None

Example

sda$parse_command ("SHOW ADDRESS 80102030");

This call produces the following output:

8–40 SDA Extension Routines

SDA Extension Routines
SDA$PARSE_COMMAND

FFFFFFFF.80102030 is an S0/S1 address

Mapped by Level-3 PTE at: FFFFFFFD.FFE00408
Mapped by Level-2 PTE at: FFFFFFFD.FF7FF800
Mapped by Level-1 PTE at: FFFFFFFD.FF7FDFF8
Mapped by Selfmap PTE at: FFFFFFFD.FF7FDFF0

Also mapped in SPT window at: FFFFFFFF.FFDF0408

The "SHOW ADDRESS" command is not recorded as the most recent command
for use with the KP0 key or the REPEAT command.

SDA Extension Routines 8–41

SDA Extension Routines
SDA$PRINT

SDA$PRINT

Formats and prints a single line.

Format

int sda$print (char *ctrstr, _ _optional_params);

Arguments

ctrstr
OpenVMS usage char_string
type character-coded text string
access read only
mechanism by reference

Address of a zero-terminated control string.

prmlst
OpenVMS usage varying_arg
type quadword (signed or unsigned)
access read only
mechanism by value

Optional FAO parameters. All arguments after the control string are copied into
a quadword parameter list, as used by $FAOL_64.

Description

Formats and prints a single line. This is normally output to the terminal, unless
you used the SDA commands SET OUTPUT or SET LOG to redirect or copy the
output to a file.

Condition Values Returned

SDA$_SUCCESS Indicates a successful completion.
SDA$_CNFLTARGS Indicates more than twenty FAO parameters

given.
Other Returns from the $PUT issued by SDA$PRINT

(the error is also signaled). If the $FAOL_64 call
issued by SDA$PRINT fails, the control string is
output.

8–42 SDA Extension Routines

SDA Extension Routines
SDA$PRINT

Example

char buffer[32];
...
sda$get_block_name (0x6F, 0x20,

buffer,
sizeof (buffer));

sda$print ("Block type: !AZ", buffer);

This example outputs the following line:

Block type: VCC_CFCB

SDA Extension Routines 8–43

SDA Extension Routines
SDA$READ_SYMFILE

SDA$READ_SYMFILE

Reads symbols from a given file.

Format

int sda$read_symfile (char *filespec, uint32 options, _ _optional_params);

Arguments

filespec
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Address of file or directory specification from which to read the symbols (zero-
terminated ASCII string).

options
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Indicates type of symbol file and flags, as shown in the following:

Flags Effect

SDA_OPT$M_READ_FORCE read/force <file>
SDA_OPT$M_READ_IMAGE read/image <file>
SDA_OPT$M_READ_SYMVA read/symva <file>
SDA_OPT$M_READ_RELO read/relo <file>
SDA_OPT$M_READ_EXEC read/exec [<dir>]
SDA_OPT$M_READ_NOLOG /nolog, suppress count of symbols read
SDA_OPT$M_READ_FILESPEC <file> or <dir> given
SDA_OPT$M_READ_NOSIGNAL return status, without signaling errors

relocate_base
OpenVMS usage address
type longword (unsigned)
access read only
mechanism by value

Base address for symbols (nonsliced symbols).

symvect_va
OpenVMS usage address
type longword (unsigned)
access read only
mechanism by value

The symbol vector address (symbols are offsets into the symbol vector).

8–44 SDA Extension Routines

SDA Extension Routines
SDA$READ_SYMFILE

symvect_size
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Size of symbol vector.

loaded_img_info
OpenVMS usage address
type longword (unsigned)
access read only
mechanism by reference

The address of $LDRIMG data structure with execlet information.

Description

This command reads symbols from a given file to add symbol definitions to the
working symbol table by reading GST entries. The file is usually a symbol file
(.STB) or an image (.EXE). If SDA_OPT$M_READ_EXEC is specified in the
options, then the filespec is treated as a directory specification, where symbol files
and/or image files for all execlets may be found (as with READ/EXECUTIVE). If
no directory specification is given, the logical name SDA$READ_DIR is used.

Note that when SDA reads symbol files and finds routine names, the symbol
name that matches the routine name is set to the address of the procedure
descriptor. A second symbol name, the routine name with "_C" appended, is set
to the start of the routine’s prologue.

Condition Values Returned

SDA$_SUCCESS Successful completion.
SDA$_CNFLTARGS No filename given and SDA_OPT$M_READ_

EXEC not set.

Others errors are signaled and/or returned, exactly as though the equivalent SDA
READ command had been used. Use HELP/MESSAGE for explanations.

Example

sda$read_symfile ("SDA$READ_DIR:SYSDEF", SDA_OPT$M_READ_NOLOG);

The symbols in SYSDEF.STB are added to SDA’s internal symbol table, and the
number of symbols found is not output to the terminal.

SDA Extension Routines 8–45

SDA Extension Routines
SDA$REQMEM

SDA$REQMEM

Reads dump or system memory and signals an error if inaccessible.

Format

int sda$reqmem (VOID_PQ start, void *dest, int length, _ _optional_params);

Arguments

start
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

Starting virtual address in dump or system.

dest
OpenVMS usage address
type varies
access write only
mechanism by reference

Return buffer address.

length
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of transfer.

physical
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

0: <start> is a virtual address. This is the default.
1: <start> is a physical address.

Description

This routine transfers an area from the memory in the dump file or the running
system to the caller’s return buffer. It performs the necessary address translation
to locate the data in the dump file. SDA$REQMEM signals an error and aborts
the current command if the data is inaccessible.

Related Routines
SDA$GETMEM and SDA$TRYMEM

8–46 SDA Extension Routines

SDA Extension Routines
SDA$REQMEM

Condition Values Returned

SDA$_SUCCESS Successful completion.

Any failure is signaled as an error and the current command aborts.

Example

VOID_PQ address;
uint32 instruction;
...
sda$symbol_value ("EXE_STD$ALLOCATE_C", (uint64 *)&address);
sda$reqmem (address, &instruction, 4);

This example reads the first instruction of the routine EXE_STD$ALLOCATE
into the location INSTRUCTION.

SDA Extension Routines 8–47

SDA Extension Routines
SDA$SET_ADDRESS

SDA$SET_ADDRESS

Stores a new address value as the current memory address (".").

Format

void sda$set_address (VOID_PQ address);

Argument

address
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access read only
mechanism by value

Address value to store in current memory location.

Description

The specified address becomes SDA’s current memory address (the predefined
SDA symbol ".").

Condition Values Returned

None

Example

sda$set_address ((VOID_PQ)0xFFFFFFFF80102030);

This call sets SDA’s current address to FFFFFFFF.80102030.

8–48 SDA Extension Routines

SDA Extension Routines
SDA$SET_CPU

SDA$SET_CPU

Sets a new SDA CPU context.

Format

int sda$set_cpu (int cpu_id);

Arguments

cpu_id
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

The desired CPU ID.

Description

This routine causes SDA to set the specified CPU as the currently selected CPU.

Condition Values Returned

SDA$_SUCCESS Successful completion.

Any failure is signaled as an error and the current command aborts.

Example

int cpu_id = 2;
status = sda$set_cpu (cpu_id);

In this example, SDA’s current CPU context is set to the CPU whose number is
held in the variable CPU_ID.

SDA Extension Routines 8–49

SDA Extension Routines
SDA$SET_HEADING_ROUTINE

SDA$SET_HEADING_ROUTINE

Sets the current heading routine to be called after each page break.

Format

void sda$set_heading_routine (void (*heading_rtn) ());

Argument

heading_rtn
OpenVMS usage procedure
type rocedure value
access read only
mechanism by value

Address of routine to be called after each new page.

Description

When SDA begins a new page of output (either because SDA$NEW_PAGE was
called, or because the current page is full), it outputs two types of headings. The
first is the page title, and is set by calling the routine SDA$FORMAT_HEADING.
This is the title that is included in the index page of a listing file when you issue
a SET OUTPUT command. The second heading is typically for column headings,
and as this can vary from display to display, you must write a routine for each
separate heading. When you call SDA$SET_HEADING_ROUTINE to specify a
user-written routine, the routine is called each time SDA begins a new page.

To stop the routine from being invoked each time SDA begins a new page,
call either SDA$FORMAT_HEADING to set a new page title, or SDA$SET_
HEADING_ROUTINE and specify the routine address as NULL.

If the column headings need to be output during a display (that is, in the middle
of a page), and then be re-output each time SDA begins a new page, call the user-
written routine directly the first time, then call SDA$SET_HEADING_ROUTINE
to have it be called automatically thereafter.

Condition Values Returned

None

8–50 SDA Extension Routines

SDA Extension Routines
SDA$SET_HEADING_ROUTINE

Example

void mbx$title (void)
{
sda$print ("Mailbox UCB ...");
sda$print (" Unit Address ...");
sda$print ("------------------------");
return;
}

...
sda$set_heading_routine (mbx$title);
...
sda$set_heading_routine (NULL);

This example sets the heading routine to the routine MBX$TITLE, and
later clears it. The routine is called if any page breaks are generated by the
intervening code.

SDA Extension Routines 8–51

SDA Extension Routines
SDA$SET_LINE_COUNT

SDA$SET_LINE_COUNT

Sets the number of lines printed so far on the current page.

Format

void sda$set_line_count (uint32 line_count);

Argument

line_count
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

The number of lines printed on current page.

Description

The number of lines that have been printed so far on the current page is set to
the given value.

Condition Values Returned

None

Example

sda$set_line_count (5);

This call sets SDA’s current line count on the current page of output to 5.

8–52 SDA Extension Routines

SDA Extension Routines
SDA$SET_PROCESS

SDA$SET_PROCESS

Sets a new SDA process context.

Format

int sda$set_process (const char *proc_name, int proc_index, int proc_addr);

Arguments

proc_name
OpenVMS usage character_string
type character string
access read only
mechanism by reference

Address of the process name string (zero-terminated).

proc_index
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

The index of the desired process.

proc_addr
OpenVMS usage address
type longword (unsigned)
access read only
mechanism by value

The address of the PCB for the desired process.

Description

This routine causes SDA to set the specified process as the currently selected
process.

Note

The proc_name, proc_index, and proc_addr are mutually exclusive.

Condition Values Returned

SDA$_SUCCESS Successful completion.

Any failure is signaled as an error and the current command aborts.

Example

status = sda$set_process ("JOB_CONTROL", 0, 0);

In this example, SDA’s current process context is set to the JOB_CONTROL
process.

SDA Extension Routines 8–53

SDA Extension Routines
SDA$SKIP_LINES

SDA$SKIP_LINES

This routine outputs a specified number of blank lines.

Format

void sda$skip_lines (uint32 lines);

Argument

lines
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Number of lines to skip.

Description

The specified number of blank lines are output.

Condition Values Returned

None

Example

sda$skip_lines (2);

This call causes two blank lines to be output.

8–54 SDA Extension Routines

SDA Extension Routines
SDA$SYMBOL_VALUE

SDA$SYMBOL_VALUE

Obtains the 64-bit value of a specified symbol.

Format

int sda$symbol_value (char *symb_name, uint64 *symb_value);

Arguments

symb_name
OpenVMS usage char_string
type character string
access read only
mechanism by reference

Zero-terminated string containing symbol name.

symb_value
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access write only
mechanism by reference

Address to receive symbol value.

Description

A search through SDA’s symbol table is made for the specified symbol. If found,
its 64-bit value is returned.

Condition Values Returned

SDA$_SUCCESS Symbol found.
SDA$_BADSYM Symbol not found.

Example

int status;
VOID_PQ address;
...
status = sda$symbol_value ("EXE_STD$ALLOCATE_C", (uint64 *)&address);

This call returns the start address of the prologue of routine
EXE_STD$ALLOCATE to location ADDRESS.

SDA Extension Routines 8–55

SDA Extension Routines
SDA$SYMBOLIZE

SDA$SYMBOLIZE

Converts a value to a symbol name and offset.

Format

int sda$symbolize (uint64 value, char *symbol_buf, uint32 symbol_len);

Arguments

value
OpenVMS usage quadword_unsigned
type quadword (unsigned)
access read only
mechanism by value

Value to be translated.

symbol_buf
OpenVMS usage char_string
type character string
access write only
mechanism by reference

Address of buffer to which to return string.

symbol_len
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Maximum length of string buffer.

Description

This routine accepts a value and returns a string that contains a symbol and
offset corresponding to that value. First the value is checked in the symbol
table. If no symbol can be found (either exact match or up to 0XFFF less than
the specified value), the value is then checked to see if it falls within one of the
loaded or activated images.

Condition Values Returned

SS$_NORMAL Successful completion.
SS$_BUFFEROVF Buffer too small, string truncated.
SS$_NOTRAN No symbolization for this value (null string

returned).

8–56 SDA Extension Routines

SDA Extension Routines
SDA$SYMBOLIZE

Example

VOID_PQ va = VOID_PQ(0xFFFFFFFF80102030);
char buffer [64]
status = sda$symbolize (va, buffer, sizeof(buffer));
sda$print ("FFFFFFFF.80102030 = \"!AZ\"", buffer);

This example outputs the following:

FFFFFFFF.80102030 = "EXE$WRITE_PROCESS_C+00CD0"

SDA Extension Routines 8–57

SDA Extension Routines
SDA$TRYMEM

SDA$TRYMEM

Reads dump or system memory and returns the error status (without signaling) if
inaccessible.

Format

int sda$trymem (VOID_PQ start, void *dest, int length, _ _optional_params);

Arguments

start
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

Starting virtual address in dump or system.

dest
OpenVMS usage address
type varies
access write only
mechanism by reference

Return buffer address.

length
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

Length of transfer.

physical
OpenVMS usage longword_unsigned
type longword (unsigned)
access read only
mechanism by value

0: <start> is a virtual address. This is the default.
1: <start> is a physical address.

Description

This routine transfers an area from the memory in the dump file or the running
system to the caller’s return buffer. It performs the necessary address translation
to locate the data in the dump file. SDA$TRYMEM does not signal any warning
or errors. It returns the error status if the data is inaccessible.

Related Routines
SDA$GETMEM and SDA$REQMEM

8–58 SDA Extension Routines

SDA Extension Routines
SDA$TRYMEM

Condition Values Returned

SDA$_SUCCESS Successful completion.
SDA$_NOREAD The data is inaccessible for some reason.
SDA$_NOTINPHYS The data is inaccessible for some reason.
Others The data is inaccessible for some reason.

Example

int status;
DDB *ddb;
...
status = sda$trymem (ddb->ddb$ps_link, ddb, DDB$K_LENGTH);
if ($VMS_STATUS_SUCCESS (status))

sda$print ("Next DDB is successfully read from dump");
else

sda$print ("Next DDB is inaccessible");

This example attempts to read the next DDB in the DDB list from the dump.

SDA Extension Routines 8–59

SDA Extension Routines
SDA$TYPE

SDA$TYPE

Formats and types a single line to SYS$OUTPUT.

Format

int sda$type (char *ctrstr, _ _optional_params);

Arguments

ctrstr
OpenVMS usage char_string
type character-coded text string
access read only
mechanism by reference

Address of a zero-terminated control string.

prmlst
OpenVMS usage varying_arg
type quadword (signed or unsigned)
access read only
mechanism by value

Optional FAO parameters. All arguments after the control string are copied into
a quadword parameter list, as used by $FAOL_64.

Description

Formats and prints a single line to the terminal. This is unaffected by the use of
the SDA commands SET OUTPUT or SET LOG.

Condition Values Returned

SDA$_SUCCESS Indicates a successful completion.
SDA$_CNFLTARGS Indicates more than twenty FAO parameters

given.
Other Returns from the $PUT issued by SDA$TYPE

(the error is also signaled). If the $FAOL_64 call
issued by SDA$TYPE fails, the control string is
output.

Example

int status;
...
status = sda$type ("Invoking SHOW SUMMARY to output file...");

This example displays the message "Invoking SHOW SUMMARY to output file..."
to the terminal.

8–60 SDA Extension Routines

SDA Extension Routines
SDA$VALIDATE_QUEUE

SDA$VALIDATE_QUEUE

Validates queue structures.

Format

void sda$validate_queue (VOID_PQ queue_header, _ _optional_params);

Arguments

queue_header
OpenVMS usage address
type quadword (unsigned)
access read only
mechanism by value

Address from which to start search.

options
OpenVMS usage mask_longword
type longword (unsigned)
access read only
mechanism by value

The following table shows the flags that indicate the type of queue:

Flag Meaning

None Defaults to doubly-linked
longword queue

SDA_OPT$M_QUEUE_BACKLINK Validates the integrity of a doubly-
linked queue using the back links
instead of the forward links

SDA_OPT$M_QUEUE_LISTQUEUE Displays queue elements for
debugging

SDA_OPT$M_QUEUE_QUADLINK Indicates a quadword queue
SDA_OPT$M_QUEUE_SELF Indicates a self-relative queue
SDA_OPT$M_QUEUE_SINGLINK Indicates a singly-linked queue

Description

You can use this routine to validate the integrity of doubly-linked, singly-linked
or self-relative queues either with longword or quadword links. If you specify the
option SDA_OPT$M_QUEUE_LISTQUEUE, the queue elements are displayed
for debugging. Otherwise a one-line summary indicates how many elements were
found and whether the queue is intact.

Condition Values Returned

None

If an error occurs, it is signaled by SDA$VALIDATE_QUEUE.

SDA Extension Routines 8–61

SDA Extension Routines
SDA$VALIDATE_QUEUE

Example

int64 temp;
int64 *queue;
...
sda$symbol_value ("EXE$GL_NONPAGED", &temp);
temp += 4;
sda$reqmem ((VOID_PQ)temp, &queue, 4);
sda$validate_queue (queue, SDA_OPT$M_QUEUE_SINGLINK);

This sequence validates the nonpaged pool free list, and outputs a message of the
form:

Queue is zero-terminated, total of 204 elements in the queue

8–62 SDA Extension Routines

Part II
OpenVMS Alpha System Code Debugger and

System Dump Debugger

Part II describes the System Code Debugger (SCD) and the System Dump
Debugger (SDD). It presents how to use SCD and SDD by doing the following:

• Building a system image to be debugged

• Setting up the target system for connections

• Setting up the host system

• Starting SCD

• Troubleshooting connections and network failures

• Looking at a sample SCD session

• Analyzing memory as recorded in a system dump

• Looking at a sample SDD session

9
The OpenVMS Alpha System Code Debugger

This chapter describes the OpenVMS Alpha System Code Debugger (SCD) and
how it can be used to debug nonpageable system code and device drivers running
at any interrupt priority level (IPL).

You can use SCD to perform the following tasks:

• Control the system software’s execution—-stop at points of interest, resume
execution, intercept fatal exceptions, and so on

• Trace the execution path of the system software

• Monitor exception conditions

• Examine and modify the values of variables

• Test the effect of modifications, in some cases, without having to edit the
source code, recompile, and relink

The use of SCD requires two systems:

• The host system, probably also the system where the image to be debugged
has been built

• The target system, usually a standalone test system, where the image being
debugged is executed

SCD is a symbolic debugger. You can specify variable names, routine names, and
so on, precisely as they appear in your source code. SCD can also display the
source code where the software is executing, and allow you to step by source line.

SCD recognizes the syntax, data typing, operators, expressions, scoping rules,
and other constructs of a given language. If your code or driver is written in more
than one language, you can change the debugging context from one language to
another during a debugging session.

To use SCD, you must do the following:

• Build a system image or device driver to be debugged.

• Set up the target kernel on a standalone system.

The target kernel is the part of SCD that resides on the system that is being
debugged. It is integrated with XDELTA and is part of the SYSTEM_DEBUG
execlet.

• Set up the host system environment, which is integrated with the OpenVMS
Debugger.

The following sections cover these tasks in more detail, describe the available
user-interface options, summarize applicable OpenVMS Debugger commands, and
provide a sample SCD session.

The OpenVMS Alpha System Code Debugger 9–1

The OpenVMS Alpha System Code Debugger
9.1 User-Interface Options

9.1 User-Interface Options
SCD has the following user-interface options:

• A DECwindows Motif interface for workstations

When using this interface, you interact with SCD by using a mouse and
pointer to choose items from menus, click on buttons, select names in
windows, and so on.

Note that you can also use OpenVMS Debugger commands with the
DECwindows Motif interface.

• A character cell interface for terminals and workstations

When using this interface, you interact with SCD by entering commands at
a prompt. The sections in this chapter describe how to use the system code
debugger with the character cell interface.

For more information about using the OpenVMS DECwindows Motif interface
and OpenVMS Debugger commands with SCD, see the OpenVMS Debugger
Manual.

9.2 Building a System Image to Be Debugged

1. Compile the sources you want to debug, and be sure to use the /DEBUG and
/NOOPT qualifiers.

Note

Debugging optimized code is much more difficult and is not recommended
unless you know the Alpha architecture well. The instructions are
reordered so much that single-stepping by source line will look like you
are randomly jumping all over the code. Also note that you cannot access
all variables. SCD reports that they are optimized away.

2. Link your image using the /DSF (debug symbol file) qualifier. Do not use the
/DEBUG qualifier, which is for debugging user programs. The /DSF qualifier
takes an optional filename argument similar to the /EXE qualifier. For more
information, see the OpenVMS Linker Utility Manual. If you specify a name
in the /EXE qualifier, you will need to specify the same name for the /DSF
qualifier. For example, you would use the following command:

$ LINK/EXE=EXE$:MY_EXECLET/DSF=EXE$:MY_EXECLET OPTIONS_FILE/OPT

The .DSF and .EXE file names must be the same. Only the extensions will be
different, that is .DSF and .EXE.

The contents of the .EXE file should be exactly the same as if you had linked
without the /DSF qualifier. The .DSF file will contain the image header and
all the debug symbol tables for .EXE file. It is not an executable file, and
cannot be run or loaded.

3. Put the .EXE file on your target system.

4. Put the .DSF file on your host system, because when you use SCD to debug
code in your image, it will try to look for a .DSF file first and then look for
an .EXE file. The .DSF file is better because it has symbols in it. Section 9.4
describes how to tell SCD where to find your .DSF and .EXE files.

9–2 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.3 Setting Up the Target System for Connections

9.3 Setting Up the Target System for Connections
The target kernel is controlled by flags and devices specified when the system
is booted, by XDELTA commands, by a configuration file, and by several system
parameters. The following sections contain more information about these items.

Boot Command
The form of the boot command varies depending on the type of OpenVMS Alpha
system you are using. However, all boot commands have the concept of boot flags
and boot devices as well as a way to save the default boot flags and devices. This
section uses syntax from a DEC 3000 Model 400 Alpha Workstation in examples.

To use SCD, you must specify an Ethernet device with the boot command on
the target system. The target system uses this device to communicate with the
host debugger. It is currently a restriction that this device must not be used for
anything else (either for booting or network software such as DECnet, TCP/IP
products, and LAT products). Thus, you must also specify a different device from
which to boot. For example, the following command will boot a DEC 3000 Model
400 from the DKB100 disk, and SCD will use the ESA0 Ethernet device.

>>> boot dkb100,esa0

To find out the Ethernet devices available on your system, enter the following
command:

>>> show device

In addition to devices, you can also specify flags on the boot command line. Boot
flags are specified as a hex number; each bit of the number represents a true or
false value for a flag. The following flag values are relevant to the system code
debugger.

• 8000

This is the SCD boot flag. It enables operation of the target kernel. If this
SCD boot flag is not set, not only will it be impossible to use SCD to debug the
system, but the additional XDELTA commands related to the target kernel
will generate an XDELTA error message. If this boot flag is set, SYSTEM_
DEBUG is loaded, and SCD is enabled.

• 0004

This is the initial breakpoint boot flag. It controls whether the system calls
INI$BRK at the beginning and end of EXEC_INIT. Notice that if SCD is the
default debugger, the first breakpoint is not as early as it is for XDELTA. It is
delayed until immediately after the PFN database is set up.

• 0002

This is the XDELTA boot flag, which controls whether XDELTA is loaded. It
behaves slightly differently when the SCD boot flag is also set.

If the SCD boot flag is clear, this flag simply determines if XDELTA is
loaded. If the SCD boot flag is set, this flag determines whether XDELTA
or the system code debugger is the default debugger. If the XDELTA flag is
set, XDELTA will be the default debugger. In this state, the initial system
breakpoints and any calls to INI$BRK trigger XDELTA, and you must enter
an XDELTA command to start using SCD. If the XDELTA boot flag is clear,
the initial breakpoints and calls to INI$BRK go to SCD. You cannot use
XDELTA if the XDELTA boot flag is clear.

The OpenVMS Alpha System Code Debugger 9–3

The OpenVMS Alpha System Code Debugger
9.3 Setting Up the Target System for Connections

Boot Command Example The following command boots a DEC 3000 Model 400
from disk DKA0, enables SCD, defaults to using XDELTA, and takes the initial
system boot breakpoints.

>>> boot dka0,esa0 -fl 0,8006

You can set these devices and flags to be the default values so that you will not
have to specify them each time you boot the system. On a DEC 3000 Model 400,
use the following commands:

>>> set bootdef_dev dka0,esa0
>>> set boot_osflags 0,8006

SCD Configuration File
The SCD target system reads a configuration file in SYS$SYSTEM named
DBGTK$CONFIG.SYS. The first line of this file contains a default password,
which must be specified by the host debug system to connect to the target. The
default password may be the null string; in this case the host must supply
the null string as the password (/PASSWORD="") on the connect command
as described in Section 9.5, or no password at all. Other lines in this file are
reserved by Compaq. Note that you must create this file because Compaq does
not supply it. If this file does not exist, you can only run SCD by specifying
a default password with the XDELTA ;R command described in the following
section.

XDELTA Commands
When the system is booted with both the XDELTA boot flag and the SCD boot
flag, the following two additional XDELTA commands are enabled:

• n,\xxxx;R ContRol SCD connection

You can use this command to do the following:

Change the password which the SCD host must present

Disconnect the current session from SCD

Give control to SCD by simulating a call to INI$BRK

Any combination of these

Optional string argument xxxx specifies the password that the system code
debugger must present for its connection to be accepted. If this argument is
left out, the required password is unchanged. The initial password is taken
from the first line of the SYS$SYSTEM:DBGTK$CONFIG.SYS file. The new
password does not remain in effect across a boot of the target system.

9–4 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.3 Setting Up the Target System for Connections

The optional integer argument n controls the behavior of the ;R command as
follows:

Value of N Action

+1 Gives control to SCD by simulating a call to INI$BRK

+2 Returns to XDELTA after changing the password. 2;R without a
password is a no-op

0 Performs the default action

-1 Changes the password, breaks any existing connection to SCD,
and then simulates a call to INI$BRK (which will wait for a new
connection to be established and then give control to SCD)

-2 Returns to XDELTA after changing the password and breaking an
existing connection

Currently, the default action is the same action as +1.

If SCD is already connected, the ;R command transfers control to SCD, and
optionally changes the password that must be presented the next time a
system code debugger tries to make a connection. This new password does
not last across a boot of the target system.

• n;K Change inibrK behavior

If optional argument n is 1, future calls to INI$BRK will result in a
breakpoint being taken by SCD. If the argument is 0, or no argument is
specified, future calls to INI$BRK will result in a breakpoint being taken by
XDELTA.

SYSTEM Parameters

• DBGTK_SCRATCH

Bits 0 through 7 specify how many pages of memory are allocated for SCD.
This memory is allocated only if system code debugging is enabled with the
SCD boot flag (described earlier in this section). Usually, the default value of
1 is adequate; however, if SCD displays an error message, increase this value.

Bits 8 through 31 are reserved by Compaq.

• SCSNODE

Identifies the target kernel node name for SCD. See Section 9.3.1 for more
information.

9.3.1 Making Connections Between the Target Kernel and the System Code
Debugger

It is always SCD on the host system that initiates a connection to the target
kernel. When SCD initiates this connection, the target kernel accepts or rejects
the connection based on whether the remote debugger presents it with a node
name and password that matches the password in the target system (either
the default password from the SYS$SYSTEM:DBGTK$CONFIG.SYS file, or a
different password specified via XDELTA). SCD obtains the node name from the
SCSNODE system parameter.

The target kernel can accept a connection from SCD any time the system is
running below IPL 22, or if XDELTA is in control (at IPL 31). However, the
target kernel actually waits at IPL 31 for a connection from the SCD host
in two cases: when it has no existing connection to an SCD host and (1) it

The OpenVMS Alpha System Code Debugger 9–5

The OpenVMS Alpha System Code Debugger
9.3 Setting Up the Target System for Connections

receives a breakpoint caused by a call to INI$BRK (including either of the initial
breakpoints), or (2) when you enter a 1;R or -1;R command to XDELTA.

9.3.2 Interactions Between XDELTA and the Target Kernel/System Code
Debugger

XDELTA and the target kernel are integrated into the same system. Normally,
you choose to use one or the other. However, XDELTA and the target kernel can
be used together. This section explains how they interoperate.

The XDELTA boot flag controls which debugger (XDELTA or the SCD target
kernel) gets control first. If it is not set, the target kernel gets control first, and
it is not possible to use XDELTA without rebooting. If it is set, XDELTA gets
control first, but you can use XDELTA commands to switch to the target kernel
and to switch INI$BRK behavior such that the target kernel gets control when
INI$BRK is called.

Breakpoints always stick to the debugger that set them; for example, if you set a
breakpoint at location ‘‘A’’ with XDELTA, and then you enter the commands 1;K
(switch INI$BRK to the system code debugger) and ;R (start using the system
code debugger) then, from SCD, you can set a breakpoint at location ‘‘B’’. If the
system executes the breakpoint at A, XDELTA reports a breakpoint, and SCD
will see nothing (though you could switch to SCD by issuing the XDELTA ;R
command). If the system executes the breakpoint at B, SCD will get control and
report a breakpoint (you cannot switch to XDELTA from SCD).

Notice that if you examine location A with SCD, or location B with XDELTA, you
will see a BPT instruction, not the instruction that was originally there. This is
because neither debugger has any information about the breakpoints set by the
other debugger.

One useful way to use both debuggers together is when you have a system that
exhibits a failure only after hours or days of heavy use. In this case, you can boot
the system with SCD enabled (8000), but with XDELTA the default (0002) and
with initial breakpoints enabled (0004). When you reach the initial breakpoint,
set an XDELTA breakpoint at a location that will only be reached when the error
occurs. Then proceed. When the error breakpoint is reached, possibly days later,
then you can set up a remote system to debug it and enter the ;R command to
XDELTA to switch control to SCD.

Here is another technique to use when you do not know where to put an error
breakpoint as previously mentioned. Boot the system with only the SCD boot
flag set. When you see that the error has occurred, halt the system and initiate
an IPL 14 interrupt, as you would to start XDELTA. The target kernel will get
control and wait for a connection for SCD.

9.4 Setting Up the Host System
To set up the host system, you need access to all system images and drivers that
are loaded (or can be loaded) on the target system. You should have access to a
source listings kit or a copy of the following directories:

SYS$LOADABLE_IMAGES:
SYS$LIBRARY:
SYS$MESSAGE:

You need all the .EXE files in those directories. The .DSF files are available with
the OpenVMS Alpha source listings kit.

9–6 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.4 Setting Up the Host System

Optionally, you need access to the source files for the images to be debugged.
SCD will look for the source files in the directory where they were compiled. If
your build system and host system are different, you must use the SET SOURCE
command to point SCD to the location of the source code files. For an example of
the SET SOURCE command, see Section 9.12.

Before making a connection to the target system, you must set up the logical
name DBGHK$IMAGE_PATH, which must be set up as a search list to the area
where the system images or .DSF files are kept. For example, if the copies are in
the following directories:

DEVICE:[SYS$LDR]
DEVICE:[SYSLIB]
DEVICE:[SYSMSG]

you would define DBGHK$IMAGE_PATH as follows:

$ define dbghk$image_path DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:[SYSMSG]

This works well for debugging using all the images normally loaded on a given
system. However, you might be using the debugger to test new code in an execlet
or a new driver. Because that image is most likely in your default directory, you
must define the logical name as follows:

$ define dbghk$image_path [],DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:[SYSMSG]

If SCD cannot find one of the images through this search path, a warning
message is displayed. SCD will continue initialization as long as it finds at
least one image. If SCD cannot find the SYS$BASE_IMAGE file, which is
the OpenVMS Alpha operating system’s main image file, an error message is
displayed and the debugger exits.

If and when this happens, check the directory for the image files and compare it
to what is loaded on the target system.

9.5 Starting the System Code Debugger
To start SCD on the host side, enter the following command:

$ DEBUG/KEEP

SCD displays the DBG> prompt. With the DBGHK$IMAGE_PATH logical name
defined, you can invoke the CONNECT command and the optional qualifiers
/PASSWORD and /IMAGE_PATH.

To use the CONNECT command and the optional qualifiers (/PASSWORD and
/IMAGE_PATH) to connect to the node with name <node-name>, enter the
following command:

DBG> CONNECT %NODE_NAME node-name /PASSWORD="password"

If a password has been set up on the target system, you must use the
/PASSWORD qualifier. If a password is not specified, a zero length string is
passed to the target system as the password.

The /IMAGE_PATH qualifier is also optional. If you do not use this qualifier, SCD
uses the DBGHK$IMAGE_PATH logical name as the default. The /IMAGE_PATH
qualifier is a quick way to change the logical name. However, when you use it,
you cannot specify a search list. You can use only a logical name or a device and
directory, although the logical name can be a search list.

The OpenVMS Alpha System Code Debugger 9–7

The OpenVMS Alpha System Code Debugger
9.5 Starting the System Code Debugger

Usually, SCD obtains the source file name from the object file. This is put there
by the compiler when the source is compiled with the /DEBUG qualifier. The SET
SOURCE command can take a list of paths as a parameter. It treats them as a
search list.

9.6 Summary of System Code Debugger Commands
In general, any OpenVMS debugger command can be used in SCD. For a complete
list, refer to the OpenVMS Debugger Manual. The following are a few examples:

• Commands to manipulate the source display, such as TYPE and SCROLL.

• Commands used in OpenVMS debugger command programs, such as DO and
IF.

• Commands that affect output formats, such as SET RADIX.

• Commands that manipulate symbols and scope, such as EVALUATE, SET
LANGUAGE, and CANCEL SCOPE. Note that the debugger SHOW IMAGE
command is equivalent to the XDELTA ;L command, and the debugger
DEFINE command is equivalent to the XDELTA ;X command.

• Commands that cause code to be executed, such as STEP and GO. Note
that the debugger STEP command is equivalent to the XDELTA S and O
commands, and the debugger GO command is equivalent to the XDELTA ;P
and ;G commands.

• Commands that manipulate breakpoints, such as SET BREAK and CANCEL
BREAK. These commands are equivalent to the XDELTA ;B command.
However, unlike XDELTA, there is no limit on the number of breakpoints in
SCD.

• Commands that affect memory, such as DEPOSIT and EXAMINE. These
commands are equivalent to the XDELTA /,!,[,",’ commands.

You can also use the OpenVMS debugger command SDA to examine the target
system with System Dump Analyzer semantics. This command, which is not
available when debugging user programs, is described in the next section.

9.7 Using System Dump Analyzer Commands
Once a connection has been established to the target system, you can use the
commands listed in the previous section to examine the target system. You
can also use some System Dump Analyzer (SDA) commands, such as SHOW
SUMMARY and SHOW DEVICE. This feature allows the system programmer
to take advantage of the strengths of both the OpenVMS Debugger and SDA to
examine the state of the target system and to debug system programs such as
device drivers.

To obtain access to SDA commands, you simply type "SDA" at the OpenVMS
Debugger prompt ("DBG>") at any time after a connection has been established
to the target system. SDA initializes itself and then outputs the "SDA>" prompt.
Enter SDA commands as required. (See Chapter 4 for more information.) To
return to the OpenVMS Debugger, you enter "EXIT" at the "SDA>" prompt.
Optionally, you may invoke SDA to perform a single command and then return
immediately to the OpenVMS Debugger, as in the following example:

DBG>SDA SHOW SUMMARY

9–8 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.7 Using System Dump Analyzer Commands

You may reenter SDA at any time, with or without the optional SDA command.
Once SDA has been initialized, the SDA> prompt is output more quickly on
subsequent occasions.

Note that there are some limitations on the use of SDA from within SCD.

• You cannot switch between processes, whether requested explicitly (SET
PROCESS <name>) or implicitly (SHOW PROCESS <name>). The exception
to this is that access to the system process is possible.

• You cannot switch between CPUs.

• SDA has no knowledge of the OpenVMS debugger’s Motif or Windows
interfaces. Therefore, all SDA input and output occurs at the terminal or
window where the OpenVMS debugger was originally invoked. Also, while
using SDA, the OpenVMS debugger window is not refreshed; you must exit
SDA to allow the OpenVMS debugger window to be refreshed.

• When you invoke SDA from SCD with an immediate command, and that
command produces a full screen of output, SDA displays the message "Press
RETURN for more." followed by the "SDA>" prompt before continuing. If you
enter another SDA command at this prompt, SDA does not automatically
return to SCD upon completion. To do this, you must enter an EXIT
command.

9.8 System Code Debugger Network Information
The SCD host and the target kernel use a private Ethernet protocol to
communicate. For the two systems to see each other, they have to be on the
same Ethernet segment.

The network portion of the target system finds the first Ethernet device and
communicates through it. The network portion of the host system also finds
the first Ethernet device and communicates through it. However, if for some
reason, SCD picks the wrong device, you can override this by defining the logical
DBGHK$ADAPTOR to the template device name for the appropriate adaptor.

9.9 Troubleshooting Checklist
If you have trouble starting a connection, perform the following tasks to correct
the problem:

• Check SCSNODE on the target system.

It must match the name you are using in the host CONNECT command.

• Make sure that both the Ethernet and boot device are on the boot command.

• Make sure that the host system is using the correct Ethernet device, and that
the host and target systems are connected to the same Ethernet segment.

• Check the version of the operating system and make sure that both the host
and target systems are running the same version of the OpenVMS Alpha
operating system.

The OpenVMS Alpha System Code Debugger 9–9

The OpenVMS Alpha System Code Debugger
9.10 Troubleshooting Network Failures

9.10 Troubleshooting Network Failures
There are three possible network errors:

• NETRETRY

Indicates the system code debugger connection is lost

• SENDRETRY

Indicates a message send failure

• NETFAIL

Results from the two previous errors

The netfail error message has a status code that can be one of the following
values:

Value Status

2, 4, 6 Internal network error, submit a problem report to Compaq.

8,10,14,16,18,20,26,28,34,38 Network protocol error, submit a problem report to Compaq.

22,24 Too many errors on the network device most likely due to congestion.
Reduce the network traffic or switch to another network backbone.

30 Target system scratch memory not available. Check DBGTK_SCRATCH. If
increasing this value does not help, submit a problem report to Compaq.

32 Ran out of target system scratch memory. Increase value of DBGTK_
SCRATCH.

All others There should not be any other network error codes printed. If one occurs
that does not match the previous ones, submit a problem report to Compaq.

9.11 Access to Symbols in OpenVMS Executive Images
Accessing OpenVMS executive images’ symbols is not always straightforward
with SCD. Only a subset of the symbols may be accessible at one time and
in some cases, the symbol value the debugger currently has may be stale. To
understand these problems and their solutions, you must understand how the
debugger maintains its symbol tables and what symbols exist in the OpenVMS
executive images. The following sections briefly summarize these topics.

9.11.1 Overview of How the OpenVMS Debugger Maintains Symbols
The debugger can access symbols from any image in the OpenVMS loaded system
image list by reading in either the .DSF or .EXE file for that particular image.
The .EXE file contains information only about symbols that are part of the symbol
vector for that image. The current image symbols for any set module are defined.
(You can tell if you have the .DSF or .EXE file by doing a SHOW MODULE.
If there are no modules, you have the .EXE file.) This includes any symbols in
the SYS$BASE_IMAGE.EXE symbol vector for which the code or data resides
in the current image. However, you cannot access a symbol that is part of the
SYS$BASE_IMAGE.EXE symbol vector that resides in another image.

In general, at any one point in time, the debugger can access only the symbols
from one image. It does this to reduce the time it takes to search for a symbol
in a table. To load the symbols for a particular image, use the SET IMAGE
command. When you set an image, the debugger loads all the symbols from
the new image and makes that image the current image. The symbols from
the previous image are in memory, but the debugger will not look through

9–10 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.11 Access to Symbols in OpenVMS Executive Images

them to translate symbols. To remove symbols from memory for an image,
use the CANCEL IMAGE command (which does not work on the main image,
SYS$BASE_IMAGE).

There is a set of modules for each image the debugger accesses. The symbol
tables in the image that are part of these modules are not loaded with the SET
IMAGE command. Instead they can be loaded with the SET MODULE <module-
name> or SET MODULE/ALL commands. As they are loaded, a new symbol table
is created in memory under the symbol table for the image. Figure 9–1 shows
what this looks like.

Figure 9–1 Maintaining Symbols

ZK−7460A−GE

Module
1

Module
2

Module
M..

Symbol Table
for Image 1

Symbol Table
for Image N−1 for Image N

Symbol Table

Current Image

When the debugger needs to look up a symbol name, it first looks at the current
image to find the information. If it does not find it there, it then looks into the
appropriate module. It determines which module is appropriate by looking at the
module range symbols which are part of the image symbol table.

To see the symbols that are currently loaded, use the debugger’s SHOW SYMBOL
command. This command has a few options to obtain more than just the symbol
name and value. (See the OpenVMS Debugger Manual for more details.)

9.11.2 Overview of OpenVMS Executive Image Symbols
Depending on whether the debugger has access to the .DSF or .EXE file, different
kinds of symbols could be loaded. Most users will have the .EXE file for the
OpenVMS executive images and a .DSF file for their private images—that is, the
images they are debugging.

The OpenVMS executive consists of two base images, SYS$BASE_IMAGE.EXE
and SYS$PUBLIC_VECTORS.EXE, and a number of separately loadable
executive images.

The two base images contain symbol vectors. For SYS$BASE_IMAGE.EXE, the
symbol vector is used to define symbols accessible by all the separately loadable
images. This allows these images to communicate with each other through cross-
image routine calls and memory references. For SYS$PUBLIC_VECTORS.EXE,
the symbol vector is used to define the OpenVMS system services. Because these
symbol vectors are in the .EXE and the .DSF files, the debugger can load these
symbols no matter which one you have.

All images in the OpenVMS executive also contain global and local symbols.
However, none of these symbols ever gets into the .EXE file for the image. These
symbols are put in the specific module’s section of the .DSF file if that module
was compiled using /DEBUG and the image was linked using /DSF.

The OpenVMS Alpha System Code Debugger 9–11

The OpenVMS Alpha System Code Debugger
9.11 Access to Symbols in OpenVMS Executive Images

9.11.3 Possible Problems You May Encounter

• Access to All Executive Image Symbols

When the current image is not SYS$BASE_IMAGE, but one of the separately
loaded images, the debugger does not have access to any of the symbols in
the SYS$BASE_IMAGE symbol vector. This means you cannot access (set
breakpoints, and so on) any of the cross-image routines or data cells. The
only symbols you have access to are the ones defined by the current image.

If the debugger has access only to the .EXE file, then only symbols that have
vectors in the base image are accessible. For .DSF files, the current image
symbols for any set module are defined. (You can tell if you have the .DSF or
.EXE by using the SHOW MODULE command—if there are no modules you
have the .EXE). This includes any symbols in the SYS$BASE_IMAGE.EXE
symbol vector for which the code or data resides in the current image.
However, the user cannot access a symbol that is part of the SYS$BASE_
IMAGE.EXE symbol vector that resides in another image. For example,
if you are in one image and you want to set a breakpoint in a cross-image
routine from another image, you do not have access to the symbol. Of course,
if you know in which image it is defined, you can do a SET IMAGE, SET
MODULE/ALL, and then a SET BREAK.

There is a debugger workaround for this problem. The debugger and SCD
let you use the SET MODULE command on an image by prefixing the image
name with SHARE$ (SHARESYSBASE_IMAGE, for example). This treats
that image as a module which is part of the current image. In the previous
figure, think of it as another module in the module list for an image. Note,
however, that only the symbols for the symbol vector are loaded. None of the
symbols for the modules of the SHARE$xxx image are loaded. Therefore, this
command is only useful for base images.

So, in other words, by doing SET MODULE SHARESYSBASE_IMAGE,
the debugger gives you access to all cross-image symbols for the OpenVMS
executive.

• Stale Data from the Symbol Vector

When an OpenVMS executive based image is loaded, the values in the symbol
vectors are only correct for information that resides in that based image. For
all symbols that are defined in the separately loaded images, the based image
contains a pointer to a placeholder location. For routine symbols this is a
routine that just returns "an image not loaded" failure code. A symbol vector
entry is fixed to contain the real symbol address when the image in which the
data resides is loaded.

Therefore, if you do a SET IMAGE command to a base image before all
the symbol entries are corrected, the SET IMAGE obtains the placeholder
value for those symbols. Then, once the image containing the real data is
loaded, the debugger will still have the placeholder value. This means that
you are looking at stale data. One solution to this is to make sure to do a
SET IMAGE command on the base image in order to get the most up-to-date
symbol vector loaded into memory.

The CANCEL IMAGE/SET IMAGE combination does not currently work
for SYS$BASE_IMAGE because it is the main image and DEBUG does not
allow you to CANCEL the main image. Therefore, if you connect to the target
system early in the boot process, you will have stale data as part of the
SYS$BASE_IMAGE symbol table. However, the SET MODULE SHARE$xxx
command always reloads the information from the symbol vector. So, to solve

9–12 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.11 Access to Symbols in OpenVMS Executive Images

this problem you could SET IMAGE to an image other than SYS$BASE_
IMAGE and then use the CANCEL MODULE SHARESYSBASE_IMAGE
and SET MODULE SHARESYSBASE_IMAGE commands to do the same
thing. The only other solution is to always connect to the target system
once all images are loaded that define the real data for values in the symbol
vectors. You could also enter the following commands, and you would obtain
the latest values from the symbol vector:

SET IMAGE EXEC_INIT
SET MODULE/ALL
SET MODULE SHARESYSBASE_IMAGE

• Problems with SYS$BASE_IMAGE.DSF

For those who have access to the SYS$BASE_IMAGE.DSF file, there may
be another complication with accessing symbols from the symbol vector. The
problem is that the module SYSTEM_ROUTINES contains the placeholder
values for each symbol in the symbol vector. So, if SYSTEM_ROUTINES is
the currently set module (which is the case if you are sitting at the INI$BRK
breakpoint) then the debugger will have the placeholder value of the symbol
as well as the value in the symbol vector. You can see what values are loaded
with the SHOW SYMBOL/ADDRESS command. The symbol vector version
should be marked with (global); the local one is not.

To set a breakpoint at the correct code address for a routine when in this
state, use the SHOW SYMBOL/ADDRESS command on the routine symbol
name. If the global and local values for the code address are the same, then
the image with the routine has not yet been loaded. If not, set a breakpoint
at the code address for the global symbol.

The OpenVMS Alpha System Code Debugger 9–13

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

9.12 Sample System Code Debugging Session
This section provides a sample session that shows the use of some OpenVMS
debugger commands as they apply to SCD. The examples in this session show
how to work with C code that has been linked into the SYSTEM_DEBUG execlet.
It is called as an initialization routine for SYSTEM_DEBUG.

To reproduce this sample session, the host system needs access to the SYSTEM_
DEBUG.DSF matching the SYSTEM_DEBUG.EXE file on your target
system, and to the source file C_TEST_ROUTINES.C, which is available in
SYS$EXAMPLES. The target system is booted with the boot flags 0, 8004, so it
stops at an initial breakpoint, and the devices DKB200,ESA0.

Example 9–1 Booting the Target System

>>> b -fl 0,8004 dkb200,esa0
INIT-S-CPU...
INIT-S-RESET_TC...
INIT-S-ASIC...
INIT-S-MEM...
INIT-S-NVR...
INIT-S-SCC...
INIT-S-NI...
INIT-S-SCSI...
INIT-S-ISDN...
INIT-S-TC0...
AUDIT_BOOT_STARTS ...
AUDIT_CHECKSUM_GOOD
AUDIT_LOAD_BEGINS
AUDIT_LOAD_DONE

%SYSBOOT-I-GCTFIL, Using a configuration file to boot as a Galaxy instance.

OpenVMS (TM) Alpha Operating System, Version V7.2

DBGTK: Initialization succeeded. Remote system debugging is now possible.

DBGTK: Waiting at breakpoint for connection from remote host.

The example continues by invoking the system code debugger’s character cell
interface on the host system.

Example 9–2 Invoking the System Code Debugger

$ define dbg$decw$display " "
$ debug/keep

OpenVMS Alpha Debug64 Version V7.2-019

DBG>

9–14 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Use the CONNECT command to connect to the target system. In this example,
the target system’s default password is the null string, and the logical name
DBGHK$IMAGE_PATH is used for the image path; so the command qualifiers
/PASSWORD and /IMAGE_PATH are not being used. You may need to use them.

When you have connected to the target system, the DBG> prompt is displayed.
Enter the SHOW IMAGE command to see what has been loaded. Because you
are reaching a breakpoint early in the boot process, there are very few images.
See Example 9–3. Notice that SYS$BASE_IMAGE has an asterisk next to it.
This is the currently set image, and all symbols currently loaded in the debugger
come from that image.

Example 9–3 Connecting to the Target System

DBG> connect %node_name TSTSYS
%DEBUG-I-INIBRK, target system interrupted
%DEBUG-I-DYNMODSET, setting module SYSTEM_ROUTINES
DBG> show image
image name set base address end address

ERRORLOG no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF80084000 FFFFFFFF80086FFF
NPRW1 FFFFFFFF80CA3600 FFFFFFFF80CA3BFF

EXEC_INIT no FFFFFFFF8306E000 FFFFFFFF830A2000
*SYS$BASE_IMAGE yes 0000000000000000 FFFFFFFFFFFFFFFF

NPRO0 FFFFFFFF80002000 FFFFFFFF8000EDFF
NPRW1 FFFFFFFF80C05C00 FFFFFFFF80C2AFFF

SYS$CNBTDRIVER no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF8001A000 FFFFFFFF8001AFFF
NPRW1 FFFFFFFF80C2D600 FFFFFFFF80C2D9FF

SYS$CPU_ROUTINES_0402 no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF80010000 FFFFFFFF800191FF
NPRW1 FFFFFFFF80C2B000 FFFFFFFF80C2D5FF

SYS$ESBTDRIVER no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF8002C000 FFFFFFFF8002E1FF
NPRW1 FFFFFFFF80C30C00 FFFFFFFF80C30FFF

SYS$NISCA_BTDRIVER no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF8001C000 FFFFFFFF8002ADFF
NPRW1 FFFFFFFF80C2DA00 FFFFFFFF80C30BFF

SYS$OPDRIVER no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF80030000 FFFFFFFF800337FF
NPRW1 FFFFFFFF80C31000 FFFFFFFF80C319FF

SYS$PUBLIC_VECTORS no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF80000000 FFFFFFFF80001FFF
NPRW1 FFFFFFFF80C00000 FFFFFFFF80C05BFF

SYSTEM_DEBUG no FFFFFFFF82FFE000 FFFFFFFF83056000
SYSTEM_PRIMITIVES_MIN no 0000000000000000 FFFFFFFFFFFFFFFF

NPRO0 FFFFFFFF80034000 FFFFFFFF800775FF
NPRW1 FFFFFFFF80C31A00 FFFFFFFF80CA11FF

SYSTEM_SYNCHRONIZATION_UNI no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF80078000 FFFFFFFF800835FF
NPRW1 FFFFFFFF80CA1200 FFFFFFFF80CA35FF

total images: 12 bytes allocated: 1517736

The OpenVMS Alpha System Code Debugger 9–15

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Example 9–4 shows the target system’s console display during the connect
sequence. Note that for security reasons, the name of the host system, the user’s
name, and process ID are displayed.

Example 9–4 Target System Connection Display

DBGTK: Connection attempt from host HSTSYS user GUEST process 2E801C2F
DBGTK: Connection attempt succeeded

To set a breakpoint at the first routine in the C_TEST_ROUTINES module of the
SYSTEM_DEBUG.EXE execlet, do the following:

1. Load the symbols for the SYSTEM_DEBUG image with the DEBUG SET
IMAGE command.

2. Use the SET MODULE command to obtain the symbols for the module.

3. Set the language to be C and set a breakpoint at the routine test_c_code.

The language must be set because C is case sensitive and test_c_code needs
to be specified in lowercase. The language is normally set to the language of
the main image, in this example SYS$BASE_IMAGE.EXE. Currently that is
not C.

Example 9–5 Setting a Breakpoint

DBG> set image system_debug
DBG> show module
module name symbols language size

AUX_TARGET no C 15928
BUFSRV_TARGET no C 11288
BUGCHECK_CODES no BLISS 26064
CRTLPRINTF no C 29920
C_TEST_ROUTINES no C 3808
FATAL_EXC no C 1592
HIGH_ADDRESS no C 372
LIB$CALLING_STANDARD_AUX no MACRO64 1680
LINMGR_TARGET no C 13320
LOW_ADDRESS no C 368
OBJMGR no C 5040
PLUMGR no C 19796
POOL no C 116
PROTOMGR_TARGET no C 17868
SOCMGR no C 3324
SYS$DOINIT no AMACRO 81740
TARGET_KERNEL no C 207244
TMRMGR_TARGET no C 3516
XDELTA no BLISS 189940
XDELTA_ISRS no MACRO64 2428

total modules: 20. bytes allocated: 1585168.

(continued on next page)

9–16 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Example 9–5 (Cont.) Setting a Breakpoint
DBG> set module c_test_routines
DBG> show module c_test_routines
module name symbols size

C_TEST_ROUTINES yes 3808

total C modules: 1. bytes allocated: 1592264.
DBG> set language c
DBG> show symbol test_c_code*
routine C_TEST_ROUTINES\test_c_code5
routine C_TEST_ROUTINES\test_c_code4
routine C_TEST_ROUTINES\test_c_code3
routine C_TEST_ROUTINES\test_c_code2
routine C_TEST_ROUTINES\test_c_code
DBG> set break test_c_code

Now that the breakpoint is set, you can proceed and activate the breakpoint.
When that occurs, the debugger tries to open the source code for that location in
the same place as where the module was compiled. Because that is not the same
place as on your system, you need to tell the debugger where to find the source
code. This is done with the debugger’s SET SOURCE command, which takes a
search list as a parameter so you can make it point to many places.

Example 9–6 Finding the Source Code

DBG> set source/latest sys$examples,sys$library
DBG> go
break at routine C_TEST_ROUTINES\test_c_code

166: x = xdt$fregsav[0];

The OpenVMS Alpha System Code Debugger 9–17

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Now that the debugger has access to the source, you can put the debugger into
screen mode to see exactly where you are and the code surrounding it.

Example 9–7 Using the Set Mode Screen Command

DBG> Set Mode Screen; Set Step Nosource

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);
158: xdt$fregsav[3] = test;
159: return xdt$fregsav[23];
160: }
161: void test_c_code(void)
162: {
163: int x,y;
164: int64 x64,y64;
165:

-> 166: x = xdt$fregsav[0];
167: y = xdt$fregsav[1];
168: x64 = xdt$fregsav[2];
169: y64 = xdt$fregsav[3];
170: xdt$fregsav[14] = test_c_code2(x64+y64,x+y,x64+x,&y64);
171: test_c_code4();
172: return;
173: }

- OUT -output---

- PROMPT -error-program-prompt--

DBG>

9–18 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Now, you want to set another breakpoint inside the test_c_code3 routine. You
use the debugger’s SCROLL/UP command (8 on the keypad) to move to that
routine and see that line 146 would be a good place to set the breakpoint. It is at
a recursive call. Then you proceed to that breakpoint with the GO command.

Example 9–8 Using the SCROLL/UP DEBUG Command

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
133: void test_c_code4(void)
134: {
135: int i,k;
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)
146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else

- OUT -output---

- PROMPT -error-program-prompt--

DBG> Scroll/Up
DBG> set break %line 146
DBG> go
DBG>

The OpenVMS Alpha System Code Debugger 9–19

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

When you reach that breakpoint, the source code display is updated to show
where you currently are, which is indicated by an arrow. A message also appears
in the OUT display indicating you reach the breakpoint at that line.

Example 9–9 Breakpoint Display

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
135: int i,k;
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)

-> 146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);

- OUT -output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 146

- PROMPT -error-program-prompt--

DBG> Scroll/Up
DBG> set break %line 146
DBG> go
DBG>

9–20 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Now you try the debugger’s STEP command. The default behavior for STEP is
STEP/OVER, unlike XDELTA and DELTA, which is STEP/INTO, so, normally
you would expect to step to line 147 in the code. However, because you have a
breakpoint inside test_c_code3 that is called at line 146, you will reach that event
first.

Example 9–10 Using the Debug Step Command

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
135: int i,k;
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)

-> 146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);

- OUT -output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
break at C_TEST_ROUTINES\test_c_code3\%LINE 146

- PROMPT -error-program-prompt--

DBG>
DBG> set break %line 146
DBG> go
DBG> Step
DBG>

The OpenVMS Alpha System Code Debugger 9–21

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Now, you try a couple of other commands, EXAMINE and SHOW CALLS. The
EXAMINE command allows you to look at all the C variables. Note that the
C_TEST_ROUTINES module is compiled with the /NOOPTIMIZE switch which
allows access to all variables. The SHOW CALLS command shows you the call
sequence from the beginning of the stack. In this case, you started out in the
image EXEC_INIT. (The debugger prefixes all images other than the main image
with SHARE$ so it shows up as SHARE$EXEC_INIT.)

Example 9–11 Using the Examine and Show Calls Commands

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
135: int i,k;
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)

-> 146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);

- OUT -output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
C_TEST_ROUTINES\test_c_code3\subrtnCount: 8
module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 146 00000000000000C4 FFFFFFFF83002D64
*C_TEST_ROUTINES test_c_code3 146 00000000000000D4 FFFFFFFF83002D74
*C_TEST_ROUTINES test_c_code2 157 00000000000001A0 FFFFFFFF83002E40
*C_TEST_ROUTINES test_c_code 170 0000000000000260 FFFFFFFF83002F00
*XDELTA XDT$SYSDBG_INIT 9371 0000000000000058 FFFFFFFF83052238
*SYS$DOINIT INI$DOINIT 1488 0000000000000098 FFFFFFFF830520B8
SHARE$EXEC_INIT 0000000000018C74 FFFFFFFF83086C74
SHARE$EXEC_INIT 0000000000014BD0 FFFFFFFF83082BD0

- PROMPT -error-program-prompt--
DBG>
DBG> set break %line 146
DBG> go
DBG> Step
DBG> examine subrtnCount
DBG> show calls
DBG>

9–22 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

If you want to proceed because you are done debugging this code, first cancel
all the breakpoints and then enter the GO command. Notice, however, that you
do not keep running but receive a message that you have stepped to line 147.
This happens because the STEP command used earlier never completed. It was
interrupted by the breakpoint on line 146.

Note that the debugger remembers all step events and only removes them once
they have completed.

Example 9–12 Canceling the Breakpoints

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)
146: subrtnCount = test_c_code3(subrtnCount);

-> 147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);
158: xdt$fregsav[3] = test;

- OUT -output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
C_TEST_ROUTINES\test_c_code3\subrtnCount: 8
module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 146 00000000000000C4 FFFFFFFF83002D64
*C_TEST_ROUTINES test_c_code3 146 00000000000000D4 FFFFFFFF83002D74
*C_TEST_ROUTINES test_c_code2 157 00000000000001A0 FFFFFFFF83002E40
*C_TEST_ROUTINES test_c_code 170 0000000000000260 FFFFFFFF83002F00
*XDELTA XDT$SYSDBG_INIT 9371 0000000000000058 FFFFFFFF83052238
*SYS$DOINIT INI$DOINIT 1488 0000000000000098 FFFFFFFF830520B8
SHARE$EXEC_INIT 0000000000018C74 FFFFFFFF83086C74
SHARE$EXEC_INIT 0000000000014BD0 FFFFFFFF83082BD0
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 147

- PROMPT -error-program-prompt--
DBG> go
DBG> Step
DBG> examine subrtnCount
DBG> show calls
DBG> cancel break/all
DBG> go
DBG>

The OpenVMS Alpha System Code Debugger 9–23

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

The STEP/RETURN command, a different type of step command, single steps
assembly code until it finds a return instruction. This command is useful if you
want to see the return value for the routine, which is done here by examining the
R0 register.

For more information about using other STEP command qualifiers, see the
OpenVMS Debugger Manual.

Example 9–13 Using the Step/Return Command

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)
146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;

-> 148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);
158: xdt$fregsav[3] = test;
159: return xdt$fregsav[23];

- OUT -output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
C_TEST_ROUTINES\test_c_code3\subrtnCount: 8
module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 146 00000000000000C4 FFFFFFFF83002D64
*C_TEST_ROUTINES test_c_code3 146 00000000000000D4 FFFFFFFF83002D74
*C_TEST_ROUTINES test_c_code2 157 00000000000001A0 FFFFFFFF83002E40
*C_TEST_ROUTINES test_c_code 170 0000000000000260 FFFFFFFF83002F00
*XDELTA XDT$SYSDBG_INIT 9371 0000000000000058 FFFFFFFF83052238
*SYS$DOINIT INI$DOINIT 1488 0000000000000098 FFFFFFFF830520B8
SHARE$EXEC_INIT 0000000000018C74 FFFFFFFF83086C74
SHARE$EXEC_INIT 0000000000014BD0 FFFFFFFF83082BD0
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 147
stepped on return from C_TEST_ROUTINES\test_c_code3\%LINE 147 to C_TEST_ROUTINES\test_c_code3\%LINE 148
C_TEST_ROUTINES\test_c_code3\%R0: 0
- PROMPT -error-program-prompt--
DBG> examine subrtnCount
DBG> show calls
DBG> cancel break/all
DBG> go
DBG> step/return
DBG> examine r0
DBG>

9–24 The OpenVMS Alpha System Code Debugger

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

After you finish the SCD session, enter the GO command to leave this module.
You will encounter another INI$BRK breakpoint at the end of EXEC_INIT.
An error message indicating there are no source lines for address 80002010 is
displayed, because debug information on this image or module is not available.

Also notice that there is no message in the OUT display for this event. That
is because INI$BRKs are special breakpoints that are handled as SS$_DEBUG
signals. They are a method for the system code to break into the debugger and
there is no real breakpoint in the code.

Example 9–14 Source Lines Error Message

- SRC: module SYSTEM_ROUTINES -scroll-source------------------------------------
15896: Source line not available
15897: Source line not available
.
.
.

15906: Source line not available
->5907: Source line not available
15908: Source line not available
.
.
.

15917: Source line not available
15918: Source line not available
- OUT -output---
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
break at C_TEST_ROUTINES\test_c_code3\%LINE 146
C_TEST_ROUTINES\test_c_code3\subrtnCount: 8
module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 146 00000000000000C4 FFFFFFFF83002D64
*C_TEST_ROUTINES test_c_code3 146 00000000000000D4 FFFFFFFF83002D74
*C_TEST_ROUTINES test_c_code2 157 00000000000001A0 FFFFFFFF83002E40
*C_TEST_ROUTINES test_c_code 170 0000000000000260 FFFFFFFF83002F00
*XDELTA XDT$SYSDBG_INIT 9371 0000000000000058 FFFFFFFF83052238
*SYS$DOINIT INI$DOINIT 1488 0000000000000098 FFFFFFFF830520B8
SHARE$EXEC_INIT 0000000000018C74 FFFFFFFF83086C74
SHARE$EXEC_INIT 0000000000014BD0 FFFFFFFF83082BD0
stepped to C_TEST_ROUTINES\test_c_code3\%LINE 147
stepped on return from C_TEST_ROUTINES\test_c_code3\%LINE 147 to C_TEST_ROUTINES\test_c_code3\%LINE 148
C_TEST_ROUTINES\test_c_code3\%R0: 0
- PROMPT -error-program-prompt--
DBG> examine r0
DBG> go
%DEBUG-I-INIBRK, target system interrupted
%DEBUG-I-DYNIMGSET, setting image SYS$BASE_IMAGE
%DEBUG-W-SCRUNAOPNSRC, unable to open source file SYS$COMMON:[SYSLIB]SYSTEM_ROUTINES.M64;
-RMS-E-FNF, file not found
DBG>

The OpenVMS Alpha System Code Debugger 9–25

The OpenVMS Alpha System Code Debugger
9.12 Sample System Code Debugging Session

Enter the SHOW IMAGE command. You will see more images displayed as the
boot path has progressed further.

Finally, enter GO, allowing the target system to boot completely, because there
are no more breakpoints in the boot path. The debugger will wait for another
event to occur.

Example 9–15 Using the Show Image Command

- SRC: module SYSTEM_ROUTINES -scroll-source------------------------------------
15896: Source line not available
15897: Source line not available
.
.
.

15906: Source line not available
->5907: Source line not available
15908: Source line not available
.
.
.

15917: Source line not available
15918: Source line not available
- OUT -output---

PRO2 FFFFFFFF8329C000 FFFFFFFF832A2DFF
SYSLICENSE no 0000000000000000 FFFFFFFFFFFFFFFF

NPRO0 FFFFFFFF80188000 FFFFFFFF801883FF
NPRW1 FFFFFFFF80CCC000 FFFFFFFF80CCC5FF
PRO2 FFFFFFFF8321E000 FFFFFFFF832247FF
PRW3 FFFFFFFF83226000 FFFFFFFF832265FF

SYSTEM_DEBUG yes FFFFFFFF82FFE000 FFFFFFFF83056000
SYSTEM_PRIMITIVES_MIN no 0000000000000000 FFFFFFFFFFFFFFFF

NPRO0 FFFFFFFF80034000 FFFFFFFF800775FF
NPRW1 FFFFFFFF80C31A00 FFFFFFFF80CA11FF

SYSTEM_SYNCHRONIZATION_UNI no 0000000000000000 FFFFFFFFFFFFFFFF
NPRO0 FFFFFFFF80078000 FFFFFFFF800835FF
NPRW1 FFFFFFFF80CA1200 FFFFFFFF80CA35FF

total images: 40 bytes allocated: 2803296
- PROMPT -error-program-prompt--
%DEBUG-I-INIBRK, target system interrupted
%DEBUG-I-DYNIMGSET, setting image SYS$BASE_IMAGE
%DEBUG-W-SCRUNAOPNSRC, unable to open source file X6P3_RESD$:[SYSLIB]SYSTEM_ROUTINES.M64;
-RMS-E-FNF, file not found
DBG> show image
DBG> go

9–26 The OpenVMS Alpha System Code Debugger

10
The OpenVMS Alpha System Dump Debugger

This chapter describes the OpenVMS Alpha System Dump Debugger (SDD) and
how you can use it to analyze system crash dumps.

SDD is similar in concept to SCD as described in Chapter 9. Where SCD allows
connection to a running system with control of the system’s execution and the
examination and modification of variables, SDD allows analysis of memory as
recorded in a system dump.

Use of the SDD usually involves two systems, although all the required
environment can be set up on a single system. The description that follows
assumes that two systems are being used:

• The build system, where the image that causes the system crash has been
built

• The test system, where the image is executed and the system crash occurs

In common with SCD, the OpenVMS debugger’s user interface allows you to
specify variable names, routine names, and so on, precisely as they appear in
your source code. Also, SDD can display the source code where the software was
executing at the time of the system crash.

SDD recognizes the syntax, data typing, operators, expressions, scoping rules,
and other constructs of a given language. If your code or driver is written in more
than one language, you can change the debugging context from one language to
another during a debugging session.

To use SDD, you must do the following:

• Build the system image or device driver that is causing the system crash.

• Boot a system, including the system image or device driver, and perform the
necessary steps to cause the system crash.

• Reboot the system and save the dump file.

• Invoke SDD, which is integrated with the OpenVMS debugger.

The following sections cover these tasks in more detail, describe the available
user-interface options, summarize applicable OpenVMS Debugger commands, and
provide a sample SDD session.

10.1 User-Interface Options
SDD has the following user-interface options.

• A DECwindows Motif interface for workstations.

When using this interface, you interact with SDD by using a mouse and
pointer to choose items from menus, click on buttons, select names in
windows, and so on.

The OpenVMS Alpha System Dump Debugger 10–1

The OpenVMS Alpha System Dump Debugger
10.1 User-Interface Options

Note that you can also use OpenVMS Debugger commands with the
DECwindows Motif interface.

• A character cell interface for terminals and workstations.

When using this interface, you interact with SDD by entering commands at
a prompt. The sections in this chapter describe how to use the system dump
debugger with the character cell interface.

For more information about using the OpenVMS DECwindows Motif interface
and OpenVMS Debugger commands with SDD, see the OpenVMS Debugger
Manual.

10.2 Preparing a System Dump to Be Analyzed
To prepare a system dump for analysis, perform the following steps:

1. Compile the sources you will want to analyze, and use the /DEBUG
(mandatory) and /NOOPT (preferred) qualifiers.

Note

Because you are analyzing a snapshot of the system, it is not as vital
to use unoptimized code as it is with the system code debugger. But
note that you cannot access all variables. SDD may report that they are
optimized away.

2. Link your image using the /DSF (debug symbol file) qualifier. Do not use the
/DEBUG qualifier, which is for debugging user programs. The /DSF qualifier
takes an optional filename argument similar to the /EXE qualifier. For more
information, see the OpenVMS Linker Utility Manual. If you specify a name
in the /EXE qualifier, you will need to specify the same name for the /DSF
qualifier. For example, you would use the following command:

$ LINK/EXE=EXE$:MY_EXECLET/DSF=EXE$:MY_EXECLET OPTIONS_FILE/OPT

The .DSF and .EXE file names must be the same. Only the extensions will be
different, that is, .DSF and .EXE.

The contents of the .EXE file should be exactly the same as if you had linked
without the /DSF qualifier. The .DSF file will contain the image header and
all the debug symbol tables for .EXE file. It is not an executable file, and
cannot be run or loaded.

3. Put the .EXE file on your test system.

4. Boot the test system and perform the necessary steps to cause the system
crash.

5. Reboot the test system and copy the dump to the build system using the
System Dump Analyzer (SDA) command COPY. See Chapter 4.

10–2 The OpenVMS Alpha System Dump Debugger

The OpenVMS Alpha System Dump Debugger
10.3 Setting Up the Test System

10.3 Setting Up the Test System
The only requirement for the test system is that the .DSF file matching the .EXE
file that causes the crash is available on the build system.

There are no other steps necessary in the setup of the test system. With the
system image copied to the test system, it can be booted in any way necessary
to produce the system crash. Since SDD can analyze most system crash dumps,
any system can be used, from a standalone system to a member of a production
cluster.

Note

It is assumed that the test system has a dump file large enough for
the system dump to be recorded. Any dump style may be used (full or
selective, compressed or uncompressed). A properly AUTOGENed system
will meet these requirements.

10.4 Setting Up the Build System
To set up the build system, you need access to all system images and drivers that
were loaded on the test system. You should have access to a source listings kit or
a copy of the following directories:

SYS$LOADABLE_IMAGES:
SYS$LIBRARY:
SYS$MESSAGE:

You need all the .EXE files in those directories. The .DSF files are available with
the OpenVMS Alpha source listings kit.

Optionally, you need access to the source files for the images to be debugged.
SDD will look for the source files in the directory where they were compiled. You
must use the SET SOURCE command to point SDD to the location of the source
code files if they are not in the directories used when the image was built. For an
example of the SET SOURCE command, see Section 10.9.

Before you can analyze a system dump with SDD, you must set up the logical
name DBGHK$IMAGE_PATH, which must be set up as a search list to the area
where the system images or .DSF files are kept. For example, if the copies are in
the following directories:

DEVICE:[SYS$LDR]
DEVICE:[SYSLIB]
DEVICE:[SYSMSG]

you would define DBGHK$IMAGE_PATH as follows:

$ define dbghk$image_path DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:[SYSMSG]

This works well for analyzing a system dump using all the images normally
loaded on a given system. However, you might be using SDD to analyze new code
either in an execlet or a new driver. Because that image is most likely in your
default directory, you must define the logical name as follows:

$ define dbghk$image_path [],DEVICE:[SYS$LDR],DEVICE:[SYSLIB],DEVICE:[SYSMSG]

The OpenVMS Alpha System Dump Debugger 10–3

The OpenVMS Alpha System Dump Debugger
10.4 Setting Up the Build System

If SDD cannot find one of the images through this search path, a warning
message is displayed. SDD will continue initialization as long as it finds at
least one image. If SDD cannot find the SYS$BASE_IMAGE file, which is
the OpenVMS Alpha operating system’s main image file, an error message is
displayed and the debugger exits.

If and when this happens, check the directory for the image files and compare it
to what was loaded on the test system.

10.5 Starting the System Dump Debugger
To start SDD on the build system, enter the following command.

$ DEBUG/KEEP

SDD displays the DBG> prompt. With the DBGHK$IMAGE_PATH logical name
defined, you can invoke the ANALYZE/CRASH_DUMP command and optional
qualifier /IMAGE_PATH.

To use the ANALYZE/CRASH_DUMP command and optional qualifier (/IMAGE_
PATH) to analyze the dump in file <file-name> enter the following command:

DBG> ANALYZE/CRASH_DUMP file-name

The /IMAGE_PATH qualifier is optional. If you do not use this qualifier, SDD
uses the DBGHK$IMAGE_PATH logical name as the default. The /IMAGE_PATH
qualifier is a quick way to change the logical name. However, when you use it,
you cannot specify a search list. You can use only a logical name or a device and
directory, although the logical name can be a search list.

Usually, SDD obtains the source file name from the object file. This is put there
by the compiler when the source is compiled with the /DEBUG qualifier. The SET
SOURCE command can take a list of paths as a parameter. It treats them as a
search list.

10.6 Summary of System Dump Debugger Commands
Only a subset of OpenVMS debugger commands can be used in SDD. The
following are a few examples of commands that you can use in SDD:

• Commands to manipulate the source display, such as TYPE and SCROLL

• Commands used in OpenVMS debugger command programs, such as DO and
IF

• Commands that affect output formats, such as SET RADIX

• Commands that manipulate symbols and scope, such as EVALUATE, SET
LANGUAGE, and CANCEL SCOPE

• Commands that read the contents of memory and registers, such as
EXAMINE

Examples of commands that cannot be used in SDD are as follows:

• Commands that cause code to be executed, such as STEP and GO

• Commands that manipulate breakpoints, such as SET BREAK and CANCEL
BREAK

• Commands that modify memory or registers, such as DEPOSIT

10–4 The OpenVMS Alpha System Dump Debugger

The OpenVMS Alpha System Dump Debugger
10.6 Summary of System Dump Debugger Commands

You can also use the OpenVMS debugger command SDA to examine the system
dump with System Dump Analyzer semantics. This command, which is not
available when debugging user programs, is described in the next section.

10.7 Using System Dump Analyzer Commands
Once a dump file has been opened, you can use the commands listed in the
previous section to examine the system dump. You can also use some System
Dump Analyzer (SDA) commands, such as SHOW SUMMARY and SHOW
DEVICE. This feature allows the system programmer to take advantage of the
strengths of both the OpenVMS Debugger and SDA to examine the system dump
and to debug system programs such as device drivers, without having to invoke
both the OpenVMS debugger and SDA separately.

To obtain access to SDA commands, you simply type "SDA" at the OpenVMS
Debugger prompt ("DBG>") at any time after the dump file has been opened.
SDA initializes itself and then outputs the "SDA>" prompt. Enter SDA commands
as required. (See Chapter 4 for more information.) To return to the OpenVMS
Debugger, you enter "EXIT" at the "SDA>" prompt. Optionally, you may invoke
SDA to perform a single command and then return immediately to the OpenVMS
Debugger, as in the following example:

DBG> SDA SHOW SUMMARY

SDA may be reentered at any time, with or without the optional SDA command.
Once SDA has been initialized, the SDA> prompt is output more quickly on
subsequent occasions.

Note that there are some limitations on the use of SDA from within SDD:

• You cannot switch between processes, whether requested explicitly (SET
PROCESS <name>) or implicitly (SHOW PROCESS <name>). The exception
to this is that access to the system process is possible.

• You cannot switch between CPUs.

• SDA has no knowledge of the OpenVMS debugger’s Motif or Windows
interfaces. Therefore, all SDA input and output occurs at the terminal or
window where the OpenVMS debugger was originally invoked. Also, while
using SDA, the OpenVMS debugger window is not refreshed; you must exit
SDA to allow the OpenVMS debugger window to be refreshed.

• When you invoke SDA from SDD with an immediate command, and that
command produces a full screen of output, SDA displays the message "Press
RETURN for more." followed by the "SDA>" prompt before continuing. At
this prompt, if you enter another SDA command, SDA does not automatically
return to SDD upon completion. To do this, you must enter an EXIT
command.

If the need arises to switch between processes or CPUs in the system dump, then
you must invoke SDA separately using the DCL command ANALYZE/CRASH_
DUMP.

The OpenVMS Alpha System Dump Debugger 10–5

The OpenVMS Alpha System Dump Debugger
10.8 Limitations of the System Dump Debugger

10.8 Limitations of the System Dump Debugger
SDD provides a narrow window into the context of the system that was current
at the time that the system crashed (stack, process, CPU, and so on). It does not
provide full access to every part of the system as is provided by SDA. However,
it does provide a view of the failed system using the semantics of the OpenVMS
debugger—source correlation and display, call frame traversal, examination of
variables by name, language constructs, and so on.

SDD therefore provides an additional approach to analyzing system dumps that is
difficult to realize with SDA, often allowing quicker resolution of system crashes
than is possible with SDA alone. When SDD cannot provide the needed data from
the system dump, you should use SDA instead.

10.9 Access to Symbols in OpenVMS Executive Images
For a discussion and explanation of how the OpenVMS debugger accesses symbols
in OpenVMS executive images, see Section 9.11.

10.10 Sample System Dump Debugging Session
This section provides a sample session that shows the use of some OpenVMS
debugger commands as they apply to the system dump debugger. The examples
in this section show how to work with a dump created as follows:

1. Follow the steps in Section 9.12, up to and including Example 8-9 (Breakpoint
Display).

2. When the breakpoint at line 146 is reached, enter the OpenVMS debugger
command to clear R27 and then continue:

DBG> DEPOSIT R27=0
DBG> GO

3. The system then crashes and a dump is written.

4. When the system reboots, copy the contents of
SYS$SYSTEM:SYSDUMP.DMP to the build system with SDA:

$ analyze/crash sys$system:sysdump.dmp

OpenVMS (TM) Alpha system dump analyzer
...analyzing a selective memory dump...

%SDA-W-NOTSAVED, global pages not saved in the dump file
Dump taken on 1-JAN-1998 00:00:00.00
INVEXCEPTN, Exception while above ASTDEL

SDA> copy hstsys::sysdump.dmp
SDA>

To reproduce this sample session, you need access to the SYSTEM_DEBUG.DSF
matching the SYSTEM_DEBUG.EXE file on your test system and to the source
file C_TEST_ROUTINES.C, which is available in SYS$EXAMPLES.

10–6 The OpenVMS Alpha System Dump Debugger

The OpenVMS Alpha System Dump Debugger
10.10 Sample System Dump Debugging Session

The example begins by invoking the system dump debugger’s character cell
interface on the build system.

Example 10–1 Invoking the System Dump Debugger

$ define dbg$decw$display " "
$ debug/keep

OpenVMS Alpha Debug64 Version V7.2-019

DBG>

Use the ANALYZE/CRASH_DUMP command to open the system dump. In this
example, the logical name DBGHK$IMAGE_PATH is used for the image path, so
the command qualifier /IMAGE_PATH is not being used. You may need to use it.

When you have opened the dump file, the DBG> prompt is displayed. You should
now do the following:

1. Set the language to be C, the language of the module that was active at the
time of the system crash.

2. Set the source directory to the location of the source of the module. Use the
debugger’s SET SOURCE command, which takes a search list as a parameter
so you can make it point to many places.

Example 10–2 Accessing the System Dump

DBG> analyze/crash_dump sysdump.dmp
%SDA-W-NOTSAVED, global pages not saved in the dump file
%DEBUG-I-INIBRK, target system interrupted
%DEBUG-I-DYNIMGSET, setting image SYSTEM_DEBUG
%DEBUG-I-DYNMODSET, setting module C_TEST_ROUTINES
DBG> set language c
DBG> set source/latest sys$examples,sys$library
DBG>

The OpenVMS Alpha System Dump Debugger 10–7

The OpenVMS Alpha System Dump Debugger
10.10 Sample System Dump Debugging Session

Now that the debugger has access to the source, you can put the debugger into
screen mode to see exactly where you are and the code surrounding it.

Example 10–3 Displaying the Source Code

DBG> Set Mode Screen; Set Step Nosource

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
135: int i,k;
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)

-> 146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);

- OUT -output---

- PROMPT -error-program-prompt--

DBG>

10–8 The OpenVMS Alpha System Dump Debugger

The OpenVMS Alpha System Dump Debugger
10.10 Sample System Dump Debugging Session

Now, you try a couple of other commands, EXAMINE and SHOW CALLS. The
EXAMINE command allows you to look at all the C variables. Note that the
C_TEST_ROUTINES module is compiled with the /NOOPTIMIZE switch which
allows access to all variables. The SHOW CALLS command shows you the call
sequence from the beginning of the stack. In this case, you started out in the
image EXEC_INIT. (The debugger prefixes all images other than the main image
with SHARE$ so it shows up as SHARE$EXEC_INIT.)

Example 10–4 Using the Examine and Show Calls Commands

DBG> Set Mode Screen; Set Step Nosource

- SRC: module C_TEST_ROUTINES -scroll-source------------------------------------
135: int i,k;
136: for(k=0;k<1000;k++)
137: {
138: test_c_code5(&i);
139: }
140: return;
141: }
142: int test_c_code3(int subrtnCount)
143: {
144: subrtnCount = subrtnCount - 1;
145: if (subrtnCount != 0)

-> 146: subrtnCount = test_c_code3(subrtnCount);
147: return subrtnCount;
148: }
149: int test_c_code2(int64 in64,int in32, int64 test, int64* pVar)
150: {
151: xdt$fregsav[5] = in64;
152: xdt$fregsav[6] = in32;
153: if (xdt$fregsav[9] > 0)
154: *pVar = (*pVar + xdt$fregsav[17])%xdt$fregsav[9];
155: else
156: *pVar = (*pVar + xdt$fregsav[17]);
157: xdt$fregsav[7] = test_c_code3(10);

- OUT -output---
C_TEST_ROUTINES\test_c_code3\subrtnCount: 9
module name routine name line rel PC abs PC
*C_TEST_ROUTINES test_c_code3 146 00000000000000CC FFFFFFFF83002D6C
*C_TEST_ROUTINES test_c_code2 157 00000000000001A0 FFFFFFFF83002E40
*C_TEST_ROUTINES test_c_code 170 0000000000000260 FFFFFFFF83002F00
*XDELTA XDT$SYSDBG_INIT 9371 0000000000000058 FFFFFFFF83052238
*SYS$DOINIT INI$DOINIT 1488 0000000000000098 FFFFFFFF830520B8
SHARE$EXEC_INIT 0000000000018C74 FFFFFFFF83086C74
SHARE$EXEC_INIT 0000000000014BD0 FFFFFFFF83082BD0

- PROMPT -error-program-prompt--

DBG> e subrtnCount
DBG> show calls
DBG>

The OpenVMS Alpha System Dump Debugger 10–9

Part III
OpenVMS Watchpoint Utility

Part 3 describes the Watchpoint utility. It presents how to use the Watchpoint
utility by doing the following:

• Loading the watchpoint driver

• Creating and deleting watchpoints

• Looking at watchpoint driver data

• Acquiring collected watchpoint data

• Looking at the protection attributes and access fault mechanism

• Looking at some watchpoint restrictions

11
The Watchpoint Utility

This chapter describes the Watchpoint utility (WP), which enables you to monitor
write access to user-specified locations. The chapter contains the following
sections:

Section 11.1 presents an introduction of the Watchpoint utility.

Section 11.2 describes how to load the watchpoint driver.

Section 11.3 describes the creation and deletion of watchpoints and the
constraints upon watchpoint locations.

Section 11.4 contains detailed descriptions of the watchpoint driver data
structures, knowledge of which may be required to analyze collected watchpoint
data.

Section 11.5 discusses acquiring collected watchpoint data.

Section 11.6 describes the watchpoint protection facility.

Section 11.7 describes its restrictions.

11.1 Introduction
A watchpoint is a data field to which write access is monitored. The field is
from 1 to 8 bytes long and must be contained within a single page. Typically,
watchpoints are in nonpaged pool. However, subject to certain constraints
(see Section 11.3.1), they can be defined in other areas of system space. The
Watchpoint facility can simultaneously monitor a large number (50 or more)
watchpoints.

The utility is implemented in the WPDRIVER device driver and the utility
program WP. This document concentrates on the device driver, which can be
invoked directly or through the WP utility.

For information on the WP utility, see its help files, which can be displayed with
the following DCL command:

$ HELP/LIBRARY=SYS$HELP:WP

Once the driver has been loaded, a suitably privileged user can designate a
watchpoint in system space. Any write to a location designated as a watchpoint is
trapped. Information is recorded about the write, including its time, the register
contents, and the program counter (PC) and processor status longword (PSL) of
the writing instruction. Optionally, one or both of the following user-specified
actions can be taken:

• An XDELTA breakpoint1 or SCD breakpoint which occurs just after the write
to the watchpoint

1 For simplicity, this chapter only mentions XDELTA. Any reference to XDELTA
breakpoints also implies SCD breakpoints.

The Watchpoint Utility 11–1

The Watchpoint Utility
11.1 Introduction

• A fatal watchpoint bugcheck which occurs just after the write to the
watchpoint

You define a watchpoint by issuing QIO requests to the watchpoint driver;
entering commands to the WP utility, which issues requests to the driver; or, from
kernel mode code, invoking a routine within the watchpoint driver.

The WPDRIVER data structures store information about writes to a watchpoint.
This information can be obtained either through QIO requests to the WPDRIVER,
commands to the WP utility, XDELTA commands issued during a requested
breakpoint, or SDA commands issued during the analysis of a requested
crashdump.

11.2 Initializing the Watchpoint Utility
From a process with CMKRNL privilege, run the SYSMAN utility to load the
watchpoint driver, SYS$WPDRIVER.EXE. Enter the following commands:

$ RUN SYS$SYSTEM:SYSMAN
SYSMAN> IO CONNECT WPA0:/NOADAPTER/DRIVER=SYS$WPDRIVER
SYSMAN> EXIT

SYSMAN creates system I/O data structures for the pseudo-device WPA0, loads
WPDRIVER, and invokes its initialization routines. WPDRIVER initialization
includes the following actions:

• Allocating nonpaged pool and physical memory for WPDRIVER data
structures

• Appropriating the SCB vector specific to access violations

• Recording in system space the addresses of the WPDRIVER routines invoked
by kernel mode code to create and delete watchpoints

Memory requirements for WPDRIVER and its data structures are:

• Device driver and UCB—approximately 3K bytes of nonpaged pool

• Trace table and a related array—36 bytes for each of system parameter
WPTTE_SIZE trace table entries

• Watchpoint restore entries—system parameter WPRE_SIZE pages of
physically contiguous memory

• Each watchpoint—176 bytes of nonpaged pool

It is advisable to load the watchpoint driver relatively soon after system
initialization to ensure its allocation of physically contiguous memory. If the
driver cannot allocate enough physically contiguous memory, it does not set
WPA0: online. If the unit is offline, you will not be able to use the watchpoint
utility.

11.3 Creating and Deleting Watchpoints
There are three different ways to create and delete watchpoints:

• An image can assign a channel to device WPA0: and then request the Queue
I/O Request ($QIO) system service to create or delete a watchpoint.

• Code running in kernel mode can dispatch directly to routines within the
WPDRIVER to create and delete watchpoints.

• You can enter commands to the WP utility.

11–2 The Watchpoint Utility

The Watchpoint Utility
11.3 Creating and Deleting Watchpoints

The first two methods are described in detail in the sections that follow.

11.3.1 Using the $QIO Interface
An image first assigns a channel to the pseudo-device WPA0: and then issues
a $QIO request on that channel. The process must have the privilege PHY_IO;
otherwise, the $QIO request is rejected with the error SS$_NOPRIV.

Table 11–1 shows the functions that the driver supports.

Table 11–1 Driver Supported Functions

Function Activity

IO$_ACCESS Creates a watchpoint

IO$_DEACCESS Deletes a watchpoint

IO$_RDSTATS Receives trace information on a watchpoint

The IO$_ACCESS function requires the following device/function dependent
arguments:

• P2—Length of the watchpoint. A number larger than 8 is reduced to 8.

• P3—Starting address of the watchpoint area.

The following are the constraints on the watchpoint area. It must be:

• Nonpageable system space.

• Write-accessible from kernel mode.

• Within one page. If it is not, the requested length is reduced to what will fit
within the page containing the starting address.

• Within a page accessed only from kernel mode and by instructions that incur
no pagefaults.

• Within a page whose protection is not altered while the watchpoint is in
place.

• Outside of certain address ranges. These are the WPDRIVER code, its data
structures, and the system page table.

Because of the current behavior of the driver, there is an additional requirement
that there be no ‘‘unexpected’’ access violations referencing a page containing a
watchpoint. See Section 11.7 for further details.

To specify that an XDELTA breakpoint or a fatal bugcheck occur if the watchpoint
is written, use the following I/O function code modifiers:

• IO$M_CTRL to request an XDELTA breakpoint

• IO$M_ABORT to request a fatal bugcheck

For an XDELTA breakpoint to be taken, OpenVMS must have been booted
specifying that XDELTA and/or the SCD be resident (bit 1 or bit 15 in the
boot flags must be set). If both watchpoint options are requested, the XDELTA
breakpoint is taken first. At exit from the breakpoint, the driver crashes the
system.

The Watchpoint Utility 11–3

The Watchpoint Utility
11.3 Creating and Deleting Watchpoints

A request to create a watchpoint can succeed completely, succeed partially, or fail.
Table 11–2 shows the status codes that can be returned in the I/O status block.

Table 11–2 Returned Status Codes

Status Code Meaning

SS$_NORMAL Success.

SS$_BUFFEROVF A watchpoint was established, but its length is less than
was requested because the requested watchpoint would have
straddled a page boundary.

SS$_EXQUOTA The watchpoint could not be created because too many
watchpoints already exist.

SS$_INSFMEM The watchpoint could not be created because there was
insufficient nonpaged pool to create data structures specific
to this watchpoint.

SS$_IVADDR The requested watchpoint resides in one of the areas in
which the WPDRIVER is unable to create watchpoints.

SS$_WASSET An existing watchpoint either coincides or overlaps with the
requested watchpoint.

The following example MACRO program assigns a channel to the WPA0 device
and creates a watchpoint of 4 bytes, at starting address 80001068. The program
requests neither an XDELTA breakpoint nor a system crash for that watchpoint.

$IODEF
.PSECT RWDATA,NOEXE,RD,WRT,LONG

;
WP_IOSB: .BLKL 2 ; I/O status block.
WP_ADDR: .LONG ^X80001068 ; Address of watchpoint to create.
WP_NAM: .ASCID /WPA0:/ ; Device to which to assign channel.
WP_CHAN: .BLKW 1 ; Channel number.

.PSECT PROG,EXE,NOWRT
;

START: .CALL_ENTRY

$ASSIGN_S DEVNAM=WP_NAM,CHAN=WP_CHAN
BLBC R0,RETURN

$QIOW_S CHAN=WP_CHAN,-
FUNC=#IO$_ACCESS,-
IOSB=WP_IOSB,-
P2=#4,-
P3=WP_ADDR

BLBC R0,RETURN
MOVL WP_IOSB,R0 ; Move status to R0.

RETURN: RET ; Return to caller.
.END START

A watchpoint remains in effect until it is explicitly deleted. (Note, however, that
watchpoint definitions do not persist across system reboots.) To delete an existing
watchpoint, issue an IO$_DEACCESS QIO request.

The IO$_DEACCESS function requires the following device/function dependent
argument: P3 - Starting address of the watchpoint to be deleted.

11–4 The Watchpoint Utility

The Watchpoint Utility
11.3 Creating and Deleting Watchpoints

Table 11–3 shows the status values that are returned in the I/O status block.

Table 11–3 Returned Status Values

Status Value Meaning

SS$_NORMAL Success.

SS$_IVADDR The specified watchpoint does not exist.

Section 11.5 describes the use of the IO$_RDSTATS QIO request.

11.3.2 Invoking WPDRIVER Entry Points from System Routines
When the WPDRIVER is loaded, it initializes two locations in system space
with the addresses of routines within the driver. These locations, WP$CREATE_
WATCHPOINT and WP$DELETE_WATCHPOINT, enable dispatch to create and
delete watchpoint routines within the loaded driver. Input arguments for both
routines are passed in registers.

Code running in kernel mode can execute the following instructions:

JSB @G^WP$CREATE_WATCHPOINT ; create a watchpoint

and

JSB @G^WP$DELETE_WATCHPOINT ; delete a watchpoint

Both these routines save IPL at entry and set it to the fork IPL of the
WPDRIVER, IPL 11. Thus, they should not be invoked by code threads running
above IPL 11. At exit, the routines restore the entry IPL.

These two locations contain an RSB instruction prior to the loading of the driver.
As a result, if a system routine tries to create or delete a watchpoint before the
WPDRIVER is loaded, control immediately returns.

WP$CREATE_WATCHPOINT has the following register arguments:

• R0—User-specified watchpoint options

Bit 1 equal to 1 specifies that a fatal OPERCRASH bugcheck should occur
after a write to the watchpoint area.

Bit 2 equal to 1 specifies that an XDELTA breakpoint should occur after a
write to the watchpoint area.

• R1—Length of the watchpoint area

• R2—Starting address of the watchpoint area

Status is returned in R0. The status values and their interpretations are identical
to those for the QIO interface to create a watchpoint. The only difference is that
the SS$_NOPRIV status cannot be returned with this interface.

WPS$DELETE_WATCHPOINT has the following register argument:

• R2—Starting address of the watchpoint area

Status is returned in R0. The status values and their interpretations are identical
to those for the QIO interface.

The Watchpoint Utility 11–5

The Watchpoint Utility
11.4 Data Structures

11.4 Data Structures
The WPDRIVER uses three different kinds of data structures:

• One watchpoint restore entry (WPRE) for each page of system space in which
one or more active watchpoints are located

• One watchpoint control block (WPCB) for each active watchpoint

• Trace table entries (WPTTEs) in a circular trace buffer which maintains a
history of watchpoint writes

These data structures are described in detail and illustrated in the sections that
follow.

11.4.1 Watchpoint Restore Entry (WPRE)
There is one WPRE for each system page that contains a watchpoint. That is,
if nine watchpoints are defined which are in four different system pages, four
WPREs are required to describe those pages. When WPDRIVER is loaded, its
initialization routine allocates physically contiguous memory for the maximum
number of WPREs. The number of pages to be allocated is specified by system
parameter WPRE_SIZE.

The WPDRIVER allocates WPREs starting at the beginning of the table and
maintains a tightly packed list. That is, when a WPRE in the middle of those
in use is ‘‘deallocated,’’ its current contents are replaced with the contents of
the last WPRE in use. The number in use at any given time is in the driver
variable WP$L_WP_COUNT. The system global EXE$GA_WP_WPRE points to
the beginning of the WPRE table.

The WPRE for a page contains information useful for:

• Determining whether a given access violation refers to an address in the page
associated with this WPRE

• Restoring the original SPTE value for the associated page

• Reestablishing the modified SPTE value when watchpoints are reenabled

• Invalidating the translation buffer when the SPTE is modified

• Locating the data structures associated with individual watchpoints defined
in this system page

11.4.2 Watchpoint Control Blocks (WPCB)
The WPCBs associated with a given system page are singly-linked to a list
header in the associated WPRE. A WPCB is allocated from a nonpaged pool
when a watchpoint is created. A WPCB contains static information about the
watchpoint such as the following:

• Its starting address and length

• Original contents of the watchpoint at the time it was established

• User-specified options for this watchpoint

In addition, the WPCB contains dynamic data associated with the most recent
write reference to the watchpoint. This data includes the following:

• Number of times that the watchpoint has been written.

• Address of the first byte within the watchpoint that was modified at the last
write reference.

11–6 The Watchpoint Utility

The Watchpoint Utility
11.4 Data Structures

• PC-PSL pair that made the last write reference.

• System time at the last write reference.

• Contents of the general registers at the time of the last write reference.

• A copy of up to 15 bytes of instruction stream data beginning at the program
counter (PC) of the instruction that made the last write reference. The
amount of instruction stream data that is copied here is the lesser of 15 bytes
and the remaining bytes on the page containing the PC.

• Contents of the watchpoint before the last write reference.

• Contents of the watchpoint after the last write reference. This value is
presumably the current contents of the watchpoint.

• A pointer to an entry in the global circular trace buffer where all recent
references to watchpoints are traced.

11.4.3 Trace Table Entries (WPTTEs)
Whenever a watchpoint is written, all the relevant data is recorded in the
WPCB associated with the watchpoint. In addition, to maintain a history, the
WPDRIVER copies a subset of the data to the oldest WPTTE in the circular
trace buffer. Thus, the circular trace buffer contains a history of the last N
references to watchpoints. The driver allocates nonpaged pool to accommodate
the number of trace table entries specified by the system parameter WPTTE_
SIZE. The WPTTEs for all watchpoints are together in the table, but the ones for
a particular watchpoint are chained together.

The subset of data in a WPTTE includes the following:

• Starting address of the watchpoint

• Relative offset of the first byte modified on this reference

• Opcode of the instruction that modified the watchpoint

• A relative backpointer to the previous WPTTE of this watchpoint

• PC-PSL of the write reference

• System time of the write reference

• Contents of the watchpoint before this reference

11.5 Analyzing Watchpoint Results
Analyzing watchpoint results is a function of the mode in which the WPDRIVER
is used. For example, if you have only one watchpoint and have specified that an
XDELTA breakpoint and/or a bugcheck occur on a write to the watchpoint, then
when the reference occurs, simply find the program counter (PC) that caused the
reference.

This PC (actually the PC of the next instruction) and its processor status
longword (PSL) are on the stack at the time of the breakpoint and/or bugcheck.
The layout that follows is the stack as it appears within an XDELTA breakpoint.
Examined from a crash dump, the stack is similar but does not contain the return
address from the JSB to INI$BRK.

The Watchpoint Utility 11–7

The Watchpoint Utility
11.5 Analyzing Watchpoint Results

+--------------------------------------+
|address in WPDRIVER from JSB G^INI$BRK| :SP
|PC of next instruction |
|PSL at watchpoint access |
+--------------------------------------+

Furthermore, R0 contains the address of the WPCB associated with that
watchpoint. You can examine the WPCB to determine the original contents of the
watchpoint area and the registers at the time of the write.

Definitions for the watchpoint data structures are in SYS$LIBRARY:LIB.MLB.
Build an object module with its symbol definitions by entering the following DCL
commands:

$ MACRO/OBJ=SYS$LOGIN:WPDEFS SYS$INPUT: + SYS$LIBRARY:LIB/LIB
$WPCBDEF GLOBAL !n.b. GLOBAL must be capitalized
$WPREDEF GLOBAL
$WPTTEDEF GLOBAL
.END

CTRL/Z

Then, within SDA, you can format watchpoint data structures. For example,
enter the following SDA commands:

SDA>READ SYS$LOGIN:WPDEFS.OBJ
SDA>FORMAT @R0 /TYPE=WPCB !type definition is required
SDA>DEF WPTTE = @R0 + WPCB$L_TTE
SDA>FORMAT WPTTE /TYPE=WPTTE

An alternative to crashing the system or using XDELTA to get watchpoint
information is the QIO function IO$_RDSTAT. This function returns watchpoint
control block contents and trace table entries for a particular watchpoint.

It requires the following device/function dependent arguments:

• P1—Address of buffer to receive watchpoint data.

• P2—Length of the buffer. The minimum size buffer of 188 bytes is only large
enough for WPCB contents.

• P3—Watchpoint address.

The data returned in the buffer has the format shown in Figure 11–1.

11–8 The Watchpoint Utility

The Watchpoint Utility
11.5 Analyzing Watchpoint Results

Figure 11–1 Format of Data Returned in Buffer

VM-0970A-AI

Number of bytes copied to buffer

Total number of WPTTEs for watchpoint

Number of WPTTEs copied to buffer

WPCB

Most recent WPTTE

Next recent WPTTE

Next WPTTE

Next WPTTE

11.6 Watchpoint Protection Overview
The overall design of the watchpoint facility uses protection attributes on system
pages and the access violation fault mechanism. To establish a watchpoint within
a page of system space, the WPDRIVER changes the protection of the page to
disallow writes. The WPDRIVER modifies the access violation vector to point to
its own routine, WP$ACCVIO.

Any subsequent write to this page causes an access violation and dispatch to
WP$ACCVIO. Thus, the WPDRIVER gains control on all write references to
watchpoints and can monitor such accesses.

When WP$ACCVIO is entered, it raises IPL to 31 to block all other threads of
execution. It first must determine whether the faulting address (whose reference
caused the access violation) is within a page containing a watchpoint. However,
any major amount of CPU processing at this point might access an area in system
space whose protection has been altered to establish watchpoints. As a result,
such processing might cause a reentry into WP$ACCVIO. To avoid recursive
reentry, WP$ACCVIO first restores all SPTEs that it had modified to their values
prior to the establishment of any watchpoints. From this point until this set
of SPTEs are remodified, no watchpoints are in effect. Now WP$ACCVIO can
determine whether the reference was to a page containing a watchpoint.

To determine whether the reference is to a watchpoint page, WP$ACCVIO
compares the faulting address to addresses of pages whose protection has been
altered by WPDRIVER. If the faulting address is not in one of these pages,
then WP$ACCVIO passes the access violation to the usual OpenVMS service
routine, EXE$ACVIOLAT. If the faulting address is within a page containing a
watchpoint, more extensive processing is required.

As a temporary measure, WP$ACCVIO first records all data related to the
reference in its UCB. It cannot immediately associate the access violation with
a particular watchpoint. This ambiguity arises from imprecision in the faulting
virtual address recorded at the access violation. The CPU need merely place on
the stack ‘‘some virtual address in the faulting page.’’

The Watchpoint Utility 11–9

The Watchpoint Utility
11.6 Watchpoint Protection Overview

As a result, when a reference to a page with a watchpoint results in an access
violation, the watchpoint driver first merely captures the data in its UCB. The
data captured at this point includes the following:

• PC and PSL of the faulting instruction

• Current system time

• Values of all the general registers from R0 through SP

• A copy of up to 15 bytes of the instruction stream, beginning at the PC
previously captured

If the reference later turns out not to be one to a watchpoint, the captured data
is discarded. If the reference is to a watchpoint, the data is copied to the WPCB
and circular trace buffer.

The watchpoint driver distinguishes between these two possibilities by
reexecuting the faulting instruction under a controlled set of circumstances.

Once the instruction has reexecuted, WP$TBIT can determine whether
watchpoint data has been modified by comparing the current contents of all
watchpoints within the page of interest to the contents that they had prior to
this reference. Because the driver has run at IPL 31 since the write access that
caused an access violation, any change in the contents is attributable to the
reexecuted instruction. If the contents of a watchpoint are different, WP$TBIT
copies the data temporarily saved in its UCB to the WPCB associated with this
watchpoint and records a subset of this data in a WPTTE.

The driver can cause either or both an XDELTA breakpoint or a bugcheck,
depending on what action was requested with the watchpoint definition. If an
XDELTA breakpoint was requested, the driver invokes XDELTA. After the user
proceeds from the XDELTA breakpoint, if a bugcheck was not requested, the
driver restores the SPTEs of pages containing watchpoints, the saved registers
and IPL, and REIs to dismiss the exception.

11.7 Restrictions
The WPDRIVER can monitor only those write references to system space
addresses that arise in a CPU. I/O devices can write to memory and thereby
modify watchpoints without the WPDRIVER’s becoming aware of the write.

Because a write access to a watchpoint is determined by comparing the contents
of the watchpoint before and after the write, a write of data identical to the
original contents is undetectable.

Because the WPDRIVER modifies SPTEs, a device page that directly interprets
tables may experience access violations when it attempts to write into a memory
page whose protection has been modified to monitor watchpoints. In other
words, a page containing a watchpoint should not also contain a buffer for such a
controller.

When you create a watchpoint, you should ensure that the system is quiet with
respect to activity affecting the watchpoint area. Otherwise, an inconsistent copy
of the original contents of the watchpoint area may be saved. WPDRIVER raises
IPL to 11 to copy the watchpoint area’s original contents. This means that if the
area is modified from a thread of execution running as the result of an interrupt
above 11, WPDRIVER can copy inconsistent contents. An inconsistent copy of the
original contents may result in spuriously detected writes and missed writes.

11–10 The Watchpoint Utility

The Watchpoint Utility
11.7 Restrictions

If the page containing the watchpoint area is written by an instruction that
incurs a page fault, the system can crash with a fatal PGFIPLHI bugcheck. As
described in the previous section, after detecting an attempt to write to a page
with a watchpoint, the WPDRIVER re-executes the writing instruction at IPL 31.
Page faults at IPL 31 are not allowed.

If an outer access mode reference to a watchpointed page causes an access
violation, the system will likely crash. When an access violation occurs on a page
with a watchpoint, the current driver does not probe the intended access and
faulting mode against the page’s original protection code. Instead, it assumes
that any access violation to that page represents a kernel mode instruction that
can be reexecuted at IPL 31. The driver’s subsequent attempt to REI, restoring a
program status longword (PSL) with an outer mode and IPL 31, causes a reserved
operand fault and, generally, a fatal INVEXCEPTN bugcheck.

You must be knowledgeable about the accesses to the page with the watchpoint
and careful in using the driver. You should test the watchpoint creation on a
standalone system. You should leave the watchpoint in effect long enough to have
some confidence that pagefaults in instructions accessing that page are unlikely.

An attempt to CONNECT a WPA unit other than zero results in a fatal
WPDRVRERR bugcheck.

The WPDRIVER is suitable for use only on a single CPU system. That is, it
should not be used on a symmetric multiprocessing system. There are no plans to
remove this restriction in the near future.

The Watchpoint Utility 11–11

Index

A
Access rights block, 2–19
Access violations, 2–25, 2–26
ACME.EXE file, 4–35
ACPs (ancillary control processes), 4–82
Addition operator (+), 2–16
Addresses, examining, 4–18
Address operator (@), 2–15
Address operator (^B), 2–15
Address operator (^L), 2–15
Address operator (^P), 2–15
Address operator (^Q), 2–15
Address operator (^V), 2–15
Address operator (^W), 2–15
Address space number (ASN), 2–18
ANALYZE command

/CRASH_DUMP qualifier, 2–10, 3–1, 3–3
/OVERRIDE qualifier, 3–4
/RELEASE qualifier, 3–5
/SHADOW_MEMBER qualifier, 3–6
/SYMBOL qualifier, 3–8
/SYSTEM qualifier, 2–2, 3–1, 3–9

Analyzing watchpoint results, 11–7
Ancillary control process

See ACPs
AND operator (&), 2–16
AQBs (ACP queue blocks), 4–83
ARB symbol, 2–19
Arithmetic operators, 2–15
Arithmetic shifting operator (@), 2–16
ASBs (asynchronous save blocks), 4–56
ASN register displaying, 4–75
ASTEN register, displaying, 4–75
ASTs (asynchronous system traps), 2–18
ASTSR register, displaying, 4–75
AST symbols, 2–18
Asynchronous save blocks

See ASBs
Asynchronous system traps

See ASTs
At sign (@)

as execute command, 4–3
as shifting operator, 2–16

ATTACH command, 4–4
/PARENT qualifier, 4–4

B
Backup utility (BACKUP), copying system dump

file, 2–8
BDBs (buffer descriptor blocks), 4–56
BDBSUM (BDB summary page), 4–56
Binary operators, 2–16
BLBs (buffer lock blocks), 4–56
BLBSUM (BLB summary page), 4–56
Buffer descriptor blocks

See BDBs
Buffer lock blocks

See BLBs
Bugcheck

code, 2–22
fatal conditions, 2–23 to 2–33
halt/restart, 2–10
handling routines

global symbols, 4–35
reasons for taking, 4–78

C
Call frames

displaying in SDA, 4–64
following a chain, 4–64

Cancel I/O routine, 4–82
Catenate operator (.), 2–16
CCBs (channel control blocks), displaying in SDA,

4–56
CDDBs (class driver data blocks), 4–83
CDRPs (class driver request packets), 4–72, 4–191
CDTs (connection descriptor tables), 4–72, 4–191
Channel control blocks

See CCBs
/CHANNEL qualifier, 4–163
Channel request blocks

See CRBs
Class driver data blocks

See CDDBs
Class driver request packets

See CDRPs

Index–1

CLUBs (cluster blocks), 4–67
CLUDCBs (cluster quorum disk control blocks),

4–67
CLUE$SITE_PROC logical name, 5–15
CLUE CALL_FRAME command, 5–4

/ADDRESS qualifier, 5–4
/CPU qualifier, 5–4
/IDENTIFICATION qualifier, 5–4
/INDEX qualifier, 5–4
/PROCESS qualifier, 5–5

CLUE CLEANUP command, 5–7
CLUE commands, archiving information, 2–8
CLUE CONFIG command, 5–8
CLUE CRASH command, 2–22, 5–9
CLUE ERRLOG command, /OLD qualifier, 5–12
CLUE FRU command, 5–13
CLUE HISTORY command, /OVERRIDE qualifier,

5–14
CLUE MCHK command, 5–16
CLUE MEMORY command, 5–17

/FILES qualifier, 5–17
/FREE qualifier, 5–17
/FULL qualifier, 5–17
/LAYOUT qualifier, 5–17
/LOOKASIDE qualifier, 5–17
/STATISTIC qualifier, 5–17

CLUE PROCESS command, 5–25
/BUFFER qualifier, 5–25
/LAYOUT qualifier, 5–25
/LOGICAL qualifier, 5–25
/RECALL qualifier, 5–25

CLUE REGISTER command, 5–27
CLUE SG command, /CRAB qualifier, 5–29
CLUE STACK command, 5–30
CLUE SYSTEM command, /LOGICAL qualifier,

5–33
CLUE VCC command, 5–34

/CACHE qualifier, 5–34
/LIMBO qualifier, 5–34
/STATISTIC qualifier, 5–34
/VOLUME qualifier, 5–34

CLUE XOP command, /ACTIVE [/FULL] qualifier,
5–37

CLUE XQP command, 5–37
/AQB qualifier, 5–37
/BFRD qualifier, 5–37
/BFRL qualifier, 5–37
/BUFFER [/FULL] qualifier, 5–37
/CACHE_HEADER qualifier, 5–37
/FCB [/FULL] qualifier, 5–37
/FILE qualifier, 5–37
/GLOBAL qualifier, 5–37
/LBN_HASH qualifier, 5–37
/LIMBO qualifier, 5–37
/LOCK qualifier, 5–38
/THREAD qualifier, 5–38
/VALIDATE qualifier, 5–38

CLUFCBs (cluster failover control blocks), 4–67
Cluster blocks

See CLUBs
Cluster failover control blocks

See CLUFCBs
Cluster quorum disk control blocks

See CLUDCBs
Cluster system blocks

See CSBs
Cluster system identification numbers

See CSIDs
CNX$DEBUG.EXE file, 4–35
Compressed data section, 4–29
Condition-handling routines, global symbols, 4–35
Condition values, evaluating, 4–15
Connection descriptor tables

See CDTs
Connection manager, displaying SDA information,

4–66
Connections, displaying SDA information about,

4–72, 4–149, 4–191
Contents of stored machine check frames

displaying in SDA, 4–123
Context

SDA CPU, 2–13
SDA process, 2–12

Control blocks, formatting, 4–23
Control region, 2–18

examining, 4–19
Control region operator (H), 2–16
COPY command, 2–7, 2–8, 4–5

/COMPRESS qualifier, 4–5
/DECOMPRESS qualifier, 4–5

/CPU=n qualifier, 4–77
CPU context

changing, 4–54
using SET CPU command, 4–45
using SHOW CPU command, 4–74
using SHOW CRASH command, 4–77
using SHOW PROCESS command, 4–153

displaying, 4–74
CPUDB symbol, 2–19
CPU ID

See CPU identification number
CPU identification number, 4–74
Crash dumps

file headers, 4–106
headers, 4–106
incomplete, 2–10
short, 2–10

CRBs (channel request blocks), 4–82
CREATE command, 2–7
Creating and deleting watchpoints, 11–2
CSBs (cluster system blocks), 4–67, 4–72

Index–2

CSIDs (cluster system identification numbers),
4–66, 4–183, 4–184

Current stack pointer, 2–19

D
Data structures

formatting, 4–23
global symbols, 2–18
stepping through a linked list, 4–41

DCLDEF.STB file, 2–18
DCL interpreter, global symbols, 2–18
DDBs (device data blocks), 4–82
DDIF$RMS_EXTENSION.EXE file, 4–35
DDTs (driver dispatch tables), 4–82
Debugging system image, 9–2
DECDTMDEF.STB file, 2–18
Decimal value of an expression, 4–15
DECnet, global symbols, 2–18
DEFINE command, 4–7, 4–9

/IF_STATE qualifier, 4–10
/KEY qualifier, 4–10
/LOCK_STATE qualifier, 4–10
/PD qualifier, 4–7
/SET_STATE qualifier, 4–10

DEFINE command/TERMINATE qualifier, 4–10
Delta/XDelta Debugger (DELTA/XDELTA), 1–2
Device data blocks

See DDBs
Device driver routines, address, 4–82
Devices, displaying SDA information, 4–81
Division operator (/), 2–16
DOSD (dump off system disk), 1–3, 5–2
DPTs (driver prologue tables), 4–82
Driver dispatch tables

See DDTs
Driver prologue tables

See DPTs
DUMPBUG system parameter, 2–3, 2–34
DUMP command, 4–12

/COUNT = [{ ALL | records}] qualifier, 4–12
/DECIMAL qualifier, 4–12
/FORWARD qualifier, 4–12
/HEXADECIMAL qualifier, 4–12
/INDEX_ARRAY [= { LONGWORD |

QUADWORD}], 4–12
/INITIAL_POSITION qualifier, 4–12
/LONGWORD qualifier, 4–12
/PHYSICAL qualifier, 4–13
/QUADWORD qualifier, 4–13
/RECORD_SIZE=size qualifier, 4–13
/REVERSE qualifier, 4–13

Dump file
analyzing, 3–1
copying, 4–5
displaying a summary of, 5–9
displaying machine check information, 5–16

Dump file (cont’d)
displaying memory with CLUE MEMORY,

5–17
displaying process information, 5–25
displaying the current stack, 5–30
displaying virtual I/O cache, 5–34
displaying XQP information, 5–37
extracting errorlog buffers, 5–12
purging files using CLUE CLEANUP, 5–7
saving automatically, 2–8, 5–1
saving output, 5–14
using CLUE CONFIG, 5–8

DUMPSTYLE system parameter, 2–5
DUMP subset, 2–5

E
ERRORLOG.STB file, 4–35
ERRORLOGBUFFERS system parameter, 2–7
Error logging

global symbols, 4–35
routines, 4–35

Error log messages, 5–12
ESP symbol, 2–18
EVALUATE command, 4–15

/CONDITION_VALUE qualifier, 4–15
/NOSYMBOLS qualifier, 4–15
/PS qualifier, 4–15
/PTE qualifier, 4–15
/SYMBOLS qualifier, 4–15
/TIME qualifier, 4–15

EXAMINE command, 4–18
/ALL qualifier, 4–18
/CONDITION_VALUE qualifier, 4–18
/INSTRUCTION qualifier, 4–18
/NOPD qualifier, 4–18
/NOSUPPRESS qualifier, 4–19
/P0 qualifier, 4–19
/P1 qualifier, 4–19
/PD qualifier, 4–19
/PHYSICAL qualifier, 4–19
/PS qualifier, 4–19
/PTE qualifier, 4–19
/SYSTEM qualifier, 4–19
/TIME qualifier, 4–20

EXCEPTION.STB file global symbols, 4–35
Exception-handling routines, global symbols, 4–35
Executive images

contents, 4–35, 4–88
global symbols, 4–33

Executive stack pointer, 2–18
EXEC_INIT.STB file, 4–35
EXIT command, 4–22
Exiting from SDA, 4–22
Expressions, 2–14

evaluating, 4–15

Index–3

Extended attribute blocks
See XABs

F
F11BXQP.STB file, 4–35
FABs (file access blocks), 4–56
Fatal exceptions, 2–23
FATALEXCPT bugcheck, 2–23
FC$GLOBALS.STB file, 4–35
FCBs (file control blocks), 4–56
FEN symbol, 2–18
File access blocks

See FABs
File control blocks

See FCBs
File statistics blocks

See FSB
File systems global symbols, 4–35
File work areas

See FWAs
Floating point

control register, 2–18
enable, 2–18
registers, 2–18

FORMAT command, 4–23
/PHYSICAL qualifier, 4–23
/POSITIVE qualifier, 4–23
/TYPE qualifier, 4–23

FPCR register displaying, 4–75
FPCR symbol, 2–18
FP symbol, 2–18
Frame pointers, 2–18
FRED symbol, 2–19
FSB (file statistics block), 4–56
Full and selective dumps, 2–4
FWAs (file work areas), 4–56

G
GBDs (global buffer descriptors), summary page,

4–56
GBHs (global buffer headers), 4–56
GBHSH (global buffer hash table), 4–56
GBSBs (global buffer synchronization blocks),

4–56
Global buffer descriptors

See GBDs
Global buffer hash table

See GBHSH
Global buffer headers

See GBHs
Global buffer synchronization blocks

See GBSBs
Global page tables, displaying, 4–127

G operator, 2–15
G symbol, 2–18

H
Headers, crash dump, 4–106
HELP command, 4–26
Hexadecimal value of an expression, 4–15
H operator, 2–16
H symbol, 2–18

I
I/O databases

displaying SDA information, 4–81
global symbols, 2–18

I/O request packets
See IRPs

IDBs (interrupt dispatch blocks), 4–82
IDXs (index descriptors), 4–56
IFABs (internal file access blocks), 4–56
IFIs (internal file identifiers), 4–56
Image activator, global symbols, 2–18, 4–36
IMAGE_MANAGEMENT.STB file, global symbols,

4–36
IMGDEF.STB file, 2–18
Implementing the Watchpoint utility, WPDRIVER,

11–1
Index descriptors

See IDXs
/INDEX qualifier, 4–53
Initialization code global symbols, 4–35
Initializing Watchpoint utility, 11–2
Interlocked queues, validating, 4–223
Internal file access blocks

See IFABs
Internal file identifiers

See IFIs
Interrupt dispatch blocks

See IDBs
INVEXCEPTN bugcheck, 2–23
IODEF.STB file, 2–18
I operator, 2–16
IO_ROUTINES.STB file global symbols, 4–36
IPL register displaying, 4–75
IPL symbol, 2–19
IRABs (internal record access blocks), 4–56
IRPs (I/O request packets), 4–82
I symbol, 2–19

J
JFBs (journaling file blocks), 4–56
JIBs (job information blocks), 4–160
JIB symbol, 2–19

Index–4

Job information block
See JIB

Journaling file blocks
See JFBs

K
Kernel stacks

displaying contents, 4–205
pointer, 2–19

Kernel threads block, 2–19
Kernel Threads Block

KTB, 4–160
Key-less-than block

See KLTB
Keys (keyboard), defining for SDA, 4–9
KLTB (key-less-than block), 4–56
KSP symbol, 2–19
KTB

kernel threads block, 4–160
KTB symbol, 2–19

L
LAT$RATING.EXE file, 4–36
LCK$DEBUG.EXE file, 4–36
Linker map, use in crash dump analysis, 2–22
Linking two 32-bit values ("."), 2–16
LKB (lock block), 4–119
LMF$GROUP_TABLE.EXE file, 4–36
Location in memory

examining, 4–18
SDA default, 4–18
translating to instruction, 4–18

LOCKING.STB file, 4–36
Lock management routines, global symbols, 4–36
Lock manager, displaying SDA information, 4–117
Locks, displaying SDA information, 4–183
Logical operators, 2–15, 2–16

AND operator (&), 2–16
NOT operator (#), 2–15
OR operator (|), 2–16
XOR operator (\), 2–16

LOGICAL_NAMES.STB file global symbols, 4–36
Lookaside lists displaying contents, 4–142

M
Machine check frames displaying in SDA, 4–123
MAP command, 4–28
MCES register displaying, 4–75
MCES symbol, 2–19
Mechanism arrays, 2–23
Memory

examining, 4–18
formatting, 4–23
locations

decoding, 4–20

Memory
locations (cont’d)

examining, 4–20
region

examining, 4–21
MESSAGE_ROUTINES.STB file global symbols,

4–36
MODIFY DUMP command, 4–31

/BLOCK=n qualifier, 4–31
/BYTE command, 4–31
/CONFIRM=n qualifier, 4–31
/LONGWORD qualifier, 4–31
/NEXT qualifier, 4–31
/OFFSET=n qualifier, 4–31
/QUADWORD qualifier, 4–31
/WORD qualifier, 4–31

MSCP.EXE file, 4–36
MULTIPATH.STB file, 4–36
Multiplication operator (*), 2–16
Multiprocessing, global symbols, 4–38
Multiprocessors

analyzing crash dumps, 2–12
displaying synchronization structures, 4–198

N
NAMs (name blocks), 4–57
Negative operator (–), 2–15
NET$CSMACD.EXE file, 4–36
NET$FDDI.EXE file, 4–36
NETDEF.STB file, 2–18
Nonpaged dynamic storage pool, displaying

contents, 4–142
NOT operator (#), 2–15
NT_EXTENSION.EXE file, 4–36
NWA (network work area), 4–57

O
Object rights block, 2–19
OpenVMS Cluster environments

displaying SDA information, 4–66
OpenVMS Cluster environments, displaying SDA

information, 4–66
OpenVMS Galaxy data structures, symbols, 2–18
OpenVMS RMS

See RMS
Operators (mathematical)

precedence of, 2–15, 2–16
ORB symbol, 2–19
OR operator (|), 2–16

Index–5

P
P0 region, examining, 4–19
P1 region, examining, 4–19
Paged dynamic storage pool displaying contents,

4–142
Page faults, illegal, 2–33
Page files

See also SYS$SYSTEM:PAGEFILE.SYS file
Page table base register, 2–19
Page table entries

See PTEs
Page tables, displaying, 4–127, 4–156
Parentheses (), as precedence operators, 2–16
PB (path block), 4–82
PCBB register displaying, 2–19, 4–75
PCBB symbol, 2–19
PCBs (process control blocks), 2–19

displaying, 4–157
hardware, 4–161
specifying the address of, 4–53, 4–154

PCB symbol, 2–19
PCC (process cycle counter), 2–19
PCC symbol, 2–19
PCs (program counters), 2–19

in a crash dump, 2–22
PC symbol, 2–19
PDTs (port descriptor tables), 4–149
PFN (page frame number)

See also PFN database
PFN database, displaying, 4–130, 4–137
PGFIPLHI bugcheck, 2–33
PHDs (process headers), 2–19, 4–157
PHD symbol, 2–19
Physical address operator (^P), 2–15
PID numbers, 4–155
PIO, Use process-permanent I/O data structures,

4–57
Port drivers, displaying SDA information, 4–66
Positive operator (+), 2–15
PRBR register displaying, 4–75
PRBR symbol, 2–19
Precedence operators, 2–16
Privileges

to analyze a crash dump, 3–1
to analyze a running system, 2–12, 3–2

Process contexts, changing, 4–46, 4–53, 4–77,
4–153

Process control blocks
See PCBs and System PCBs
See system PCBs

Process control region, 2–18
operator (H), 2–16

Processes
displaying

SDA information, 4–153, 4–209

Processes (cont’d)
examining hung, 2–12
image, 4–209
listening, 4–67
lock [brief], 4–155
scheduling state, 4–161, 4–210
spawning a subprocess, 4–218
system, 4–53

Process indexes, 4–155
Process names, 4–153
Processor base registers, 2–19
Processor context, changing, 4–45, 4–54, 4–74,

4–77, 4–153
Processor status

See PS
Process section tables

See PSTs
PROCESS_MANAGEMENT.STB file global

symbols, 4–36
Program regions, examining, 4–19
PS (processor status)

evaluating, 4–15
examining, 4–19

PSB symbol, 2–19
PS symbol, 2–19
PSTs (process section tables) displaying, 4–158
PTBR register displaying, 4–75
PTBR symbol, 2–19
PTEs (page table entries)

evaluating, 4–15
examining, 4–19

Q
Queues

stepping through, 4–41
validating, 4–223

Quorum, 4–66

R
RABs (record access blocks), 4–57
Radixes, default, 2–15
Radix operators, 2–15
RAD symbol, 2–19
RDTs (response descriptor tables), 4–191
READ command, 4–34

/EXECUTIVE qualifier, 4–33
/FORCE qualifier, 4–33
/IMAGE qualifier, 4–34
/LOG qualifier, 4–34
/NOLOG qualifier, 4–34
/RELOCATE qualifier, 4–34
/SYMVA qualifier, 4–34
SYS$DISK, 4–35

Record access blocks
See RABs

Index–6

Record lock blocks
See RLBs

Recovery unit blocks
See RUBs

Recovery unit file blocks
See RUFBs

Recovery unit stream blocks
See RUSBs

Recovery unit system services, global symbols,
4–36

RECOVERY_UNIT_SERVICES.STB file, global
symbols, 4–36

Registers
displaying, 4–75, 4–158
integer, 2–19

REPEAT command, 4–41
/UNTIL=condition qualifier, 4–41

Report system event, global symbols, 4–36
REQSYSDEF.STB file, 2–18
Resident images, 4–155, 4–166
/RESIDENT qualifier installing an image, 4–29
Resource blocks

See RSBs
Resources, displaying SDA information, 4–181
Response descriptor tables

See RDTs
Response ID

See RSPID
RLBs (record lock blocks), 4–57
RMS

data structures shown by SDA, 4–56
displaying data structures, 4–158, 4–190
global symbols, 2–18, 4–36

RMS.STB file, 4–36
RMSDEF.STB file, 2–18
RSBs (resource blocks), 4–119, 4–183
RSPID (response ID), displaying SDA information,

4–191
RUBs (recovery unit blocks), 4–57
RUFBs (recovery unit file blocks), 4–57
RUSBs (recovery unit stream blocks), 4–57

S
S0 region, examining, 4–19
SAVEDUMP system parameter, 2–7, 2–34
SBs (system blocks), 4–67, 4–82
SCBB register, displaying, 4–75
SCBB symbol, 2–19
SCC (system cycle counter), 2–19
SCC symbol, 2–19
SCD

See System Code Debugger
Schedulers, global symbols, 4–36

SCS (System Communications Services)
displaying SDA information, 4–66, 4–67, 4–72,

4–149, 4–191
global symbols, 2–18

SCSDEF.STB file, 2–18
SDA$ADD_SYMBOL callable routine, 8–9
SDA$ALLOCATE callable routine, 8–10
SDA$DBG_IMAGE_INFO callable routine, 8–11
SDA$DEALLOCATE callable routines, 8–12
SDA$DISPLAY_HELP callable routine, 8–13
SDA$ENSURE callable routine, 8–15
SDA$FORMAT callable routine, 8–16
SDA$FORMAT_HEADING callable routine, 8–18
SDA$GETMEM callable routine, 8–35
SDA$GET_ADDRESS callable routine, 8–19
SDA$GET_BLOCK_NAME callable routine, 8–20
SDA$GET_BUGCHECK_MSG callable routine,

8–22
SDA$GET_CURRENT_CPU callable routine,

8–24
SDA$GET_CURRENT_PCB callable routine, 8–25
SDA$GET_DEVICE_NAME callable routine, 8–26
SDA$GET_HEADER callable routine, 8–28
SDA$GET_HW_NAME callable routine, 8–30
SDA$GET_IMAGE_OFFSET callable routine,

8–31
SDA$GET_INPUT callable routine, 8–33
SDA$GET_LINE_COUNT callable routine, 8–34
SDA$INIT logical name, 2–11
SDA$INSTRU CTION_DECODE callable routine,

8–37
SDA$NEW_PAGE callable routine, 8–39
SDA$PARSE_COMMAND callable routine, 8–40
SDA$PRINT callable routine, 8–42
SDA$READ_DIR:REQSYSDEF.STB file, 2–10,

2–11
SDA$READ_DIR:SYS$BASE_IMAGE.EXE file,

2–10, 2–11
SDA$READ_DIR:SYSDEF.STB file, 2–11
SDA$READ_SYMFILE callable routine, 8–44
SDA$REQMEM callable routine, 8–46
SDA$SET_ADDRESS callable routine, 8–48
SDA$SET_CPU callable routine, 8–49
SDA$SET_HEADING_ROUTINE callable routine,

8–50
SDA$SET_LINE_COUNT callable routine, 8–52
SDA$SET_PROCESS callable routine, 8–53
SDA$SKIP_LINES callable routine, 8–54
SDA$SYMBOLIZE callable routine, 8–56
SDA$SYMBOL_VALUE callable routine, 8–55
SDA$TRYMEN callable routine, 8–58
SDA$TYPE callable routine, 8–60
SDA$VALIDATE_QUEUE callable routine, 8–61
SDA, invoking by default, 2–8
SDA capabilities, 2–1
SDA CLUE, dump off system disk, 5–2

Index–7

SDA CLUE commands
archiving dump file information, 5–1
collecting dump file information, 5–1

SDA command format, 2–14
SDA current CPU, 2–13, 4–45, 4–54, 4–74, 4–77,

4–153, 4–206
SDA current process, 2–13, 4–46, 4–53, 4–77,

4–153, 4–206
SDA Extended File Cache (XFC)

commands, 7–1
XFC, 7–1

SDA symbol table
building, 2–11
expanding, 2–11

SDD
See System Dump Debugger

SEARCH command, 4–43
/LENGTH qualifier, 4–43
/MASK=n qualifier, 4–43
/PHYSICAL qualifier, 4–43
/STEPS qualifier, 4–43

Section type, 4–155, 4–166
SECURITY.STB file global symbols, 4–36
Self-relative queue, validating, 4–223
SET CPU command, 2–13, 4–45

analyzing a running system, 2–12
SET ERASE_SCREEN command, 4–47
SET FETCH command, 4–48
SET LOG command, 4–50

compared with SET OUTPUT command, 4–50
SET NOLOG command, 4–50
SET OUTPUT command, 4–51

compared with SET LOG command, 4–50
/HEADER qualifier, 4–51
/INDEX qualifier, 4–51
/NOHEADER qualifier, 4–51
/NOINDEX qualifier, 4–51

SET OUTPUT command/SINGLE_COMMAND
qualifier, 4–51

SET PROCESS command, 2–13, 4–53
/address qualifier, 4–53
/ID=nn qualifier, 4–53
/NEXT qualifier, 4–53
/SYSTEM qualifier, 4–53

SET RMS command, 4–56
SET SIGN_EXTEND command, 4–59
SET SYMBOLIZE command, 4–60
SFSBs (shared file synchronization blocks), 4–57
Shadow set displaying SDA information, 4–83
Shareable address data section, 4–29
Shared file synchronization blocks

See SFSBs
SHOW ADDRESS command, /PHYSICAL

qualifier, 4–61

SHOW BUGCHECK command, /ALL qualifier,
4–63

SHOW CALL_FRAME command, /NEXT_FP
qualifier, 4–64

SHOW CLUSTER command, 4–66
/ADDRESS qualifier, 4–66
/CSID qualifier, 4–66
/NODE qualifier, 4–66
/SCS qualifier, 4–66

SHOW CONNECTIONS command, 4–72
/ADDRESS qualifier, 4–72
/NODE qualifier, 4–72
/SYSAP qualifier, 4–72

SHOW CPU command, 2–13, 4–45, 4–74
analyzing a running system, 2–12

SHOW CRASH command, 2–13, 2–22, 2–23, 4–45,
4–77

analyzing a running system, 2–12
/CPU qualifier, 4–77

SHOW DEVICE command, 2–22, 4–81
/ADDRESS qualifier, 4–81
/CDT qualifier, 4–81

SHOW DUMP command, 4–85
/ALL qualifier, 4–85
/BLOCK qualifier, 4–85
/COMPRESSION_MAP qualifier, 4–85
/ERROR_LOGS qualifier, 4–85
/HEADER qualifier, 4–85
/LMB qualifier, 4–86
/MEMORY_MAP qualifier, 4–86
/SUMMARY qualifier, 4–86

SHOW EXECUTIVE command, 4–88
/SUMMARY qualifier, 4–88

SHOW GALAXY command, 4–92
SHOW GCT command, 4–93

/ADDRESS qualifier, 4–93
/ALL qualifier, 4–93
/CHILDREN qualifier, 4–93
/HANDLE qualifier, 4–93
/OWNER qualifier, 4–93
/SUMMARY qualifier, 4–93
/type qualifier, 4–94

SHOW GLOBAL_SECTION_TABLE command,
4–97

/SECTION_INDEX qualifier, 4–97
SHOW GLOCK command, 4–99

/ADDRESS qualifier, 4–99
/ALL qualifier, 4–99
/BRIEF qualifier, 4–99
/GMDB_TABLE qualifier, 4–99
/HANDLE qualifier, 4–99
/PROCESS_TABLE qualifier, 4–99
/SYSTEM_TABLE, 4–99

SHOW GMDB command, 4–102
/ADDRESS qualifier, 4–102
/ALL qualifier, 4–102
/NODE qualifier, 4–102
/SUMMARY qualifier, 4–102

Index–8

SHOW GSD command, 4–104
/ADDRESS qualifier, 4–104
/ALL qualifier, 4–104
/DELETED qualifier, 4–104
/GLXGRP qualifier, 4–104
/GLXSYS qualifier, 4–104
/GROUP qualifier, 4–104
/SYSTEM qualifier, 4–104

SHOW GST command, 4–97
SHOW HEADER command, 4–106
SHOW LAN command, 4–107

/CLIENT qualifier, 4–107
/CLUEXIT qualifier, 4–107
/COUNTERS qualifier, 4–107
/CSMACD qualifier, 4–107
/DEVICE qualifier, 4–107
/ELAN qualifier, 4–108
/ERRORS qualifier, 4–108
/FDDI qualifier, 4–108
/FULL qualifier, 4–108
/ICOUNTERS qualifier, 4–108
/QUEUE qualifier, 4–108
/SUMMARY qualifier, 4–108
/TIMESTAMPS qualifier, 4–108
/UNIT qualifier, 4–108
/VCI qualifier, 4–108

SHOW LOCKS command, 4–117
/ADDRESS qualifier, 4–117
/ALL qualifier, 4–117
/BLOCKING qualifier, 4–117
/BRIEF qualifier, 4–117
/CACHED qualifier, 4–117
/CONVERT qualifier, 4–117
/GRANTED, 4–117
/NAME qualifier, 4–118
/POOL qualifier, 4–118
/STATUS qualifier, 4–118
/SUMMARY qualifier, 4–118
/WAITING qualifier, 4–118

SHOW MACHINE_CHECK command, 2–13,
4–123

/FULL qualifier, 4–123
SHOW MEMORY command, 2–6, 4–125

/ALL qualifier, 4–125
/BUFFER_OBJECTS qualifier, 4–125
/CACHE qualifier, 4–125
/FILES qualifier, 4–125
/FULL qualifier, 4–125
/GH_REGIONS qualifier, 4–125
/PHYSICAL_PAGES qualifier, 4–126
/POOL qualifier, 4–126
/RESERVED qualifier, 4–126
/SLOTS qualifier, 4–126

SHOW PAGE_TABLE command, 4–127
/FREE qualifier, 4–127
/GLOBAL qualifier, 4–127
/GPT qualifier, 4–127
/INVALID_PRN qualifier, 4–128

SHOW PAGE_TABLE command (cont’d)
/L1 qualifier, 4–128
/L2 qualifier, 4–128
/L qualifier, 4–128
/NONMEMORY qualifier, 4–128
/PTE_ADDRESS qualifier, 4–128
/PT qualifier, 4–128
/S0S1 qualifier, 4–128
/S2 qualifier, 4–128
/SECTION_INDEX qualifier, 4–128
/SPTW qualifier, 4–128

SHOW PAGE_TABLE command/HEADER
qualifier, 4–127

SHOW PARAMETER command, 4–134
/ACP qualifier, 4–134
/ALL qualifier, 4–134
/CLUSTER qualifier, 4–134
/DYNAMIC qualifier, 4–134
/GALAXY qualifier, 4–134
/GEN qualifier, 4–134
/JOB qualifier, 4–134
/LGI qualifier, 4–134
/MAJOR qualifier, 4–134
/MULTIPROCESSING qualifier, 4–134
/PQL qualifier, 4–134
/RMS qualifier, 4–135
/SCS qualifier, 4–135
/SPECIAL qualifier, 4–135
/STARTUP qualifier, 4–135
/SYS qualifier, 4–135
/TTY qualifier, 4–135

SHOW PFN_DATA command, 4–137
/ADDRESS qualifier, 4–137
/ALL qualifier, 4–137
/BAD qualifier, 4–137
/COLOR qualifier, 4–138
/FREE qualifier, 4–138
/MAP qualifier, 4–138
/MODIFIED qualifier, 4–138
/PRIVATE qualifier, 4–138
/RAD qualifier, 4–138
/UNTESTED qualifier, 4–139
/ZERO qualifier, 4–139

SHOW POOL command, 4–142
/ALL qualifier, 4–142
/BAP qualifier, 4–142
/BRIEF qualifier, 4–142
/CHECK qualifier, 4–142
/FREE qualifier, 4–142
/HEADER qualifier, 4–142
/MAXIMUM_BYTES qualifier, 4–142
/NONPAGED qualifier, 4–143
/PAGED qualifier, 4–143
/RING_BUFFER qualifier, 4–143
/STATISTICS qualifier, 4–143
/SUBTYPE qualifier, 4–143
/SUMMARY qualifier, 4–143
/TYPE qualifier, 4–143

Index–9

SHOW PORTS command
/ADDRESS qualifier, 4–149
/BUS qualifier, 4–149
/CHANNEL qualifier, 4–149
/DEVICE qualifier, 4–149
/MESSAGE qualifier, 4–149
/NODE qualifier, 4–149
/VC qualifier, 4–149

SHOW PRN_DATA command
/SYSTEM qualifier, 4–139

SHOW PROCESS/ALL command, 4–160
SHOW PROCESS/LOCKS command, 4–119
SHOW PROCESS/RMS command, 4–190

selecting display options, 4–57
SHOW PROCESS command, 4–54, 4–153

/ADDRESS qualifier, 4–154
/ALL qualifier, 4–154
/AUTHORIZED qualifier, 4–154
/BRIEF qualifier, 4–154
/BUFFER_OBJECTS qualifier, 4–154
/CHANNEL qualifier, 4–154
/FANDLES qualifier, 4–154
/FID_ONLY qualifier, 4–154
/FREE qualifier, 4–155
/GSTX qualifier, 4–155
/HEADER qualifier, 4–155
/ID qualifier, 4–155
/IMAGES qualifier, 4–155
/INDEX qualifier, 4–155
/INVALID_PFN qualifier, 4–155
/LOCKS qualifier, 4–155
/MAXIMUM_BYTES qualifier, 4–156
/NEXT qualifier, 4–156
/NONMEMORY_PFN qualifier, 4–156
/PAGE_TABLES qualifier, 4–156
/PCB qualifier, 4–157
/PERSONA/RIGHTS/AUTHORIZED qualifier,

4–157
/PERSONA/RIGHTS qualifier, 4–157
/PERSONA qualifier, 4–157
/PHD qualifier, 4–157
/POOL qualifier, 4–157
/PPT qualifier, 4–158
/PROCESS_SECTION_TABLE qualifier, 4–158
/PST qualifier, 4–158
/PTE_ADDRESS qualifier, 4–158
/PT qualifier, 4–158
/RDE qualifier, 4–158
/REGIONS qualifier, 4–158
/REGISTERS qualifier, 4–158
/RIGHTS qualifier, 4–158
/RMS qualifier, 4–158
/SECTION_INDEX qualifier, 4–159
/SEMAPHORE qualifier, 4–159
/STATISTICS qualifier, 4–159
/SUBTYPE qualifier, 4–159
/SUMMARY qualifier, 4–159
/SYSTEM qualifier, 4–159

SHOW PROCESS command (cont’d)
/THREADS qualifier, 4–159
/TQE qualifier, 4–159
/TYPE qualifier, 4–159
/UNUSED qualifier, 4–159
/WORKING_SET_LIST qualifier, 4–160

SHOW RAD command, /ALL qualifier, 4–179
SHOW RESOURCES command, 4–119, 4–181

/ADDRESS qualifier, 4–181
/ALL qualifier, 4–181
/BRIEF qualifier, 4–181
/CACHED qualifier, 4–181
/CONTENTION qualifier, 4–181
/LOCKID qualifier, 4–181
/NAME qualifier, 4–182
/OWNED qualifier, 4–182
/STATUS qualifier, 4–182

SHOW RMD command, 4–188
/ADDRESS qualifier, 4–188
/ALL qualifier, 4–188

SHOW RMS command, 4–190
SHOW RSPID command, /CONNECTION

qualifier, 4–191
SHOW SHM_CPP command, 4–193

/ADDRESS qualifier, 4–193
/ALL qualifier, 4–193
/IDENT qualifier, 4–193
/PFN qualifier, 4–193

SHOW SHM_REG command, 4–196
/ADDRESS qualifier, 4–196
/ALL qualifier, 4–196
/IDENT qualifier, 4–196

SHOW SPINLOCKS command, 4–199
/ADDRESS qualifier, 4–198
/BRIEF qualifier, 4–198
/CACHED_PCB qualifier, 4–198
/COUNTS qualifier, 4–198
/DYNAMIC qualifier, 4–198
/FULL qualifier, 4–198
/INDEX qualifier, 4–198
/MAILBOX qualifier, 4–199
/OWNED qualifier, 4–199
/PCB qualifier, 4–199
/PORT qualifier, 4–199
/STATIC qualifier, 4–199

SHOW STACK command, 4–205
/ALL qualifier, 4–205
/EXECUTIVE qualifier, 4–205
/INTERRUPT qualifier, 4–205
/KERNEL qualifier, 4–205
/LONG qualifier, 4–205
/PHYSICAL qualifier, 4–205
/QUAD qualifier, 4–205
/SUPERVISOR qualifier, 4–205
/SYSTEM qualifier, 4–205
/USER qualifier, 4–205

Index–10

SHOW SUMMARY command, 4–153, 4–209
/IMAGE qualifier, 4–209
/PROCESS_NAME qualifier, 4–209
/THREAD qualifier, 4–209
/USER qualifier, 4–209
/VALUE qualifier, 4–212

SHOW SYMBOL command, 4–212
/ALL qualifier, 4–212
/ALPHA qualifier, 4–212

SHOW TQE command, 4–214
/ADDRESS qualifier, 4–214
/ALL qualifier, 4–214
/BACKLINK qualifier, 4–214
/PID qualifier, 4–214
/ROUTINE qualifier, 4–214

SHOW WORKING SET LIST command, 4–217
Signal array, 2–25
SISR register, displaying, 4–75
SISR symbol, 2–19
Site-specific startup command procedure, 2–8,

5–15
releasing page file blocks, 2–7

Software interrupt status register, 2–19
SPAWN command, 4–218

/INPUT qualifier, 4–218
/NOLOGICAL_NAMES qualifier, 4–218
/NOSYMBOLS qualifier, 4–218
/NOTIFY qualifier, 4–218
/NOWAIT qualifier, 4–218
/OUTPUT qualifier, 4–218
/PROCESS qualifier, 4–219

Spin locks
displaying SDA information, 4–198
owned, 4–75

Spinlock tracing, 6–1
Spinlock Tracing utility, using, 6–2
SPL$DEBUG.EXE file, 4–36
SPL LOAD command, 6–4
SPL SHOW COLLECT

/TOTALS qualifier, 6–5
SPL SHOW COLLECT command, 6–5

/RATES qualifier, 6–5
SPL SHOW TRACE

/NOWAIT qualifier, 6–6
/WAIT qualifier, 6–6

SPL SHOW TRACE command, 6–6
/ACQUIRE qualifier, 6–6
/FORKLOCK qualifier, 6–6
/FRKDSPTH qualifier, 6–6
/FRKEND qualifier, 6–7
/NOACQUIRE qualifier, 6–6
/NOFORKLOCK qualifier, 6–6
/NOFRKDSPTH qualifier, 6–6
/NOFRKEND qualifier, 6–7
/NORELEASE qualifier, 6–6
/NOSPINLOCK qualifier, 6–6
/RATES qualifier, 6–6
/RELEASE qualifier, 6–6

SPL SHOW TRACE command (cont’d)
/SPINLOCK qualifier, 6–6
/SUMMARY qualifier, 6–7
/TOP qualifier, 6–7
/TOTALS qualifier, 6–6

SPL START COLLECT command
/ADDRESS qualifier, 6–11
/SPINLOCK qualifier, 6–11

SPL START TRACE
/FORKLOCK qualifier, 6–12
/FRKDSPTH qualifier, 6–12
/NOFORKLOCK qualifier, 6–12
/NOFRKDSPTH qualifier, 6–12

SPL START TRACE command
/ACQUIRE qualifier, 6–12
/BUFER qualifier, 6–12
/CPU qualifier, 6–13
/FRKEND qualifier, 6–13
/NOACQUIRE qualifier, 6–12
/NOFRKEND qualifier, 6–13
/NORELEASE qualifier, 6–12
/NOSPINLOCK qualifier, 6–12
/NOWAIT qualifier, 6–12
/RELEASE qualifier, 6–12
/SPINLOCK qualifier, 6–12
/WAIT qualifier, 6–12

SPL STOP COLLECT command, 6–14
SPL STOP TRACE command, 6–15
SPL UNLOAD command, 6–16
SP symbol, 2–19
SPTs (system page tables), displaying, 4–127
SPTs (system page tables), in system dump file,

2–5
SSPI.EXE file, 4–36
SSP symbol, 2–19
SSRVEXCEPT bugcheck, 2–23
Stack frames

displaying in SDA, 4–64
following a chain, 4–64

Stacks displaying contents, 4–205
Start I/O routine, 4–82
Subprocesses, 4–218
Subtraction operator (–), 2–16
Supervisor stack

displaying contents, 4–205
pointer to, 2–19

Symbols
defining

for SDA, 4–7
evaluating, 4–212
listing, 4–212
loading into the SDA symbol table, 4–34
name, 4–7
representing executive modules, 4–89
user-defined, 4–7

Index–11

Symbol table files reading into SDA symbol table,
4–35

Symbol tables, specifying an alternate SDA, 3–8
SYS$ATMWORKS351.EXE file, 4–36
SYS$CLUSTER.EXE file, 4–37
SYS$DISK

as SDA output, 4–51
global read, 4–35

SYS$EW1000A.EXE file, 4–37
SYS$GALAXY.STB file, 4–37
SYS$IPC_SERVICES.EXE file, 4–37
SYS$LAN.EXE file, 4–37
SYS$LAN_ATM.EXE file, 4–37
SYS$LAN_ATM4.EXE file, 4–37
SYS$LAN_CSMACD.EXE file, 4–37
SYS$LAN_FDDI.EXE file, 4–37
SYS$LAN_TR.EXE file, 4–37
SYS$LOADABLE_IMAGES:SYS.EXE file contents,

4–35
SYS$MME_SERVICES.STB file, 4–37
SYS$NTA.STB file, 4–37
SYS$SCS.EXE file, 4–37
SYS$SYSTEM:PAGEFILE.SYS file, 2–34

See also System dump files
as dump file, 2–7
releasing blocks containing a crash dump, 3–5

SYS$SYSTEM:SYS.EXE file, 4–33
contents, 4–88

SYS$SYSTEM:SYSDEF.STB file, 2–12
SYS$SYSTEM:SYSDUMP.DMP file, 2–34

See also System dump files
protection, 2–8
size of, 2–6

SYS$TRANSACTION_SERVICES.EXE file, 4–37
SYS$UTC_SERVICES.EXE file, 4–37
SYS$XFCACHE*.STB file, 4–37
SYSAP (system application), 4–191
SYSDEVICE.STB file global symbols, 4–37
SYSGETSYI.STB file global symbols, 4–37
SYSLDR_DYN.STB file global symbols, 4–37
SYSLICENSE.STB file global symbols, 4–37
System blocks

See SBs
System Code Debugger, 1–1, 9–1

interface options, 9–2
networking, 9–9
starting, 9–7

System Code Debugger, sample session, 9–14
System Code Debugger commands, 9–8
System Communications Services

See SCS
System control block base register, 2–19
System Dump Analyzer (SDA) commands, 9–8
System Dump Analyzer utility (SDA), 1–1

invoked automatically on reboot, 5–1

System Dump Debugger, 1–2, 10–1
access to symbols in

OpenVMS executive images, 10–6
limitations, 10–6
preparing a System Dump, 10–2
sample session, 10–6
setting up test system, 10–3
setting up the build system, 10–3
starting, 10–4
summary of commands, 10–4
user-interface options, 10–1
using commands, 10–5

System dump files, 2–3 to 2–7
mapping physical memory to, 2–10
requirements for analysis, 2–10

System failures
analyzing, 2–22
causing, 2–33 to 2–35
diagnosing from PC contents, 2–22
summary, 4–77

System hang, 2–33
System images

contents, 4–35, 4–88
global symbols, 4–33

System management creating a crash dump file,
2–3

System message routines global symbols, 4–36
System page file

as dump file, 2–7
releasing blocks containing a crash dump, 3–5

System page tables
See SPTs

System PCBs (process control blocks) displaying,
4–159

System processes, 4–53
System region, examining, 4–19
Systems

analyzing running, 2–2, 2–12, 3–2
investigating performance problems, 2–12

System space base address, 2–18
System space operator (G), 2–15
System symbol table, 2–10
System time quadword examining, 4–20
SYSTEM_DEBUG.EXE file, 4–37
SYSTEM_PRIMITIVES.STB file global symbols,

4–38
SYSTEM_SYNCHRONIZATION_xxx.STB file

global symbols, 4–38

T
TCPIP$BGDRIVER.STB global symbols, 4–38
TCPIP$INTEETACP.STB global symbols, 4–38
TCPIP$INTERNET_SERVICES.STB global

symbols, 4–38

Index–12

TCPIP$NET_GLOBALS.STB file, 2–18
TCPIP$NFS_GLOBALS.STB file, 2–18
TCPIP$NFS_SERVICES.STB file, 4–38
TCPIP$PROXY_GLOBALS.STB file, 2–18
TCPIP$PROXY_SERVICES.STB file, 4–38
TCPIP$PWIPACP.STB global symbols, 4–38
TCPIP$PWIPDRIVER.STB global symbols, 4–38
TCPIP$PWIP_GLOBALS.STB file, 2–18
TCPIP$TNDRIVER.STB global symbols, 4–38
TCPIP$TN_GLOBALS.STB file, 2–18
Terminal keys defining for SDA, 4–9
TMSCP.EXE file, 4–38
Trace table entries

See WPPTEs
Transaction processing, global symbols, 2–18

U
UCBs (unit control blocks), 4–72
Unary operators, 2–15 to 2–16
UNDEFINE command, 4–220
Unit control blocks

See UCBs
UNXSIGNAL bugcheck, 2–23
Use process-permanent I/O data structures

See PIO
User stacks

displaying contents, 4–205
pointer, 2–19

Using the $QIO interface Watchpoint utility, 11–3
Using the Spinlock Tracing utility, 6–2
USP symbol, 2–19

V
VALIDATE PFN_LIST command, 4–221

/ALL qualifier, 4–221
/BAD qualifier, 4–221
/FREE qualifier, 4–221
/MODIFIED qualifier, 4–221
/PRIVATE qualifier, 4–221
/UNTESTED qualifier, 4–221
/ZERO qualifier, 4–221

VALIDATE QUEUE command, 4–223
/BACKLINK qualifier, 4–223
/LIST qualifier, 4–223
/PHYSICAL qualifier, 4–223
/QUADWORD qualifier, 4–223
/SELF_RELATIVE qualifier, 4–223
/SINGLY_LINKED qualifier, 4–223

VALIDATE SHM_CPP command, 4–225
/ADDRESS qualifier, 4–225
/ALL qualifier, 4–225
/IDENT qualifier, 4–225
/PRN qualifier, 4–225

VALIDATE TQE command, 4–227
VCBs (volume control blocks), 4–83
Virtual address operator (^V), 2–15
VMS_EXTENSION.EXE file, 4–38
Volume control blocks

See VCBs
Votes, 4–66
VPTB register, displaying, 4–75
VPTB symbol, 2–19

W
Watchpoint control blocks

See WPCBs
Watchpoint protection, 11–9
Watchpoint restore entries

See WPREs
Watchpoint restrictions, 11–10
Watchpoint utility, 1–2
Watchpoint utility (WP)

implementation, 11–1
WCBs (window control blocks), 4–57
Window control blocks

See WCBs
WPCBs (watchpoint control blocks), 11–6
WPDRIVER

data structures, 11–6
device driver, 11–1
invoking, 11–5

WPPTEs (trace table entries), 11–7
WPREs (watchpoint restore entries), 11–6

X
XABs (extended attribute blocks), 4–57
XDELTA breakpoint, 11–3
XFC

SDA Extended file Cache, 7–1
XFC EXIT command, 7–2
XFC LOAD DSF command, 7–3
XFC SHOW CONTEXT command, 7–5
XFC SHOW EXTENT command, 7–7
XFC SHOW FILE command, 7–8
XFC SHOW MEMORY command, 7–11
XFC SHOW SUMMARY command, 7–14
XFC SHOW TABLES command, 7–18
XFC SHOW TRACE command, 7–20
XFC SHOW VOLUME command, 7–22
XOR operator (\), 2–16

Index–13

	OpenVMS Alpha System AnalysisTools Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	1 Overview of System Analysis Tools
	1.1 System Dump Analyzer (SDA)
	1.2 System Code Debugger (SCD)
	1.3 System Dump Debugger (SDD)
	1.4 Watchpoint Utility
	1.5 Delta/XDelta Debugger
	1.6 Dump Off System Disk (DOSD)

	Part I OpenVMS Alpha System Dump Analyzer (SDA)
	2 SDA Description
	2.1 Capabilities of SDA
	2.2 System Management and SDA
	2.2.1 Writing System Dumps
	2.2.2 Saving System Dumps
	2.2.3 Invoking SDA When Rebooting the System

	2.3 Analyzing a System Dump
	2.3.1 Requirements
	2.3.2 Invoking SDA
	2.3.3 Mapping the Contents of the Dump File
	2.3.4 Building the SDA Symbol Table
	2.3.5 Executing the SDA Initialization File (SDA$INIT)

	2.4 Analyzing a Running System
	2.5 SDA Context
	2.6 SDA Command Format
	2.6.1 General Command Format
	2.6.2 Expressions
	2.6.3 SDA Display Mode

	2.7 Investigating System Failures
	2.7.1 General Procedure for Analyzing System Failures
	2.7.2 Fatal Bugcheck Conditions

	2.8 Inducing a System Failure
	2.8.1 Meeting Crash Dump Requirements
	2.8.2 Procedure for Causing a System Failure

	3 ANALYZE Usage Summary and Qualifiers
	3.1 ANALYZE Usage Summary
	3.2 ANALYZE Qualifiers
	/CRASH_DUMP
	/OVERRIDE
	/RELEASE
	/SHADOW_MEMBER
	/SYMBOL
	/SYSTEM

	4 SDA Commands
	@(Execute Command)
	ATTACH
	COPY
	DEFINE
	DEFINE/KEY
	DUMP
	EVALUATE
	EXAMINE
	EXIT
	FORMAT
	HELP
	MAP
	MODIFY DUMP
	READ
	REPEAT
	SEARCH
	SET CPU
	SET ERASE_SCREEN
	SET FETCH
	SET LOG
	SET OUTPUT
	SET PROCESS
	SET RMS
	SET SIGN_EXTEND
	SET SYMBOLIZE
	SHOW ADDRESS
	SHOW BUGCHECK
	SHOW CALL_FRAME
	SHOW CLUSTER
	SHOW CONNECTIONS
	SHOW CPU
	SHOW CRASH
	SHOW DEVICE
	SHOW DUMP
	SHOW EXECUTIVE
	SHOW GALAXY
	SHOW GCT
	SHOW GLOBAL_SECTION_TABLE, SHOW GST
	SHOW GLOCK
	SHOW GMDB
	SHOW GSD
	SHOW HEADER
	SHOW LAN
	SHOW LOCKS
	SHOW MACHINE_CHECK
	SHOW MEMORY
	SHOW PAGE_TABLE
	SHOW PARAMETER
	SHOW PFN_DATA
	SHOW POOL
	SHOW PORTS
	SHOW PROCESS
	SHOW RAD
	SHOW RESOURCES
	SHOW RMD
	SHOW RMS
	SHOW RSPID
	SHOW SHM_CPP
	SHOW SHM_REG
	SHOW SPINLOCKS
	SHOW STACK
	SHOW SUMMARY
	SHOW SYMBOL
	SHOW TQE
	SHOW WORKING_SET_LIST, SHOW WSL
	SPAWN
	UNDEFINE
	VALIDATE PFN_LIST
	VALIDATE QUEUE
	VALIDATE SHM_CPP
	VALIDATE TQE

	5 SDA CLUE Extension Commands
	5.1 Overview of SDA CLUE Extensions
	5.2 Displaying Data Using SDA CLUE Commands
	5.3 Using SDA CLUE with DOSD
	5.4 Listing of SDA CLUE Extension Commands
	CLUE CALL_FRAME
	CLUE CLEANUP
	CLUE CONFIG
	CLUE CRASH
	CLUE ERRLOG
	CLUE FRU
	CLUE HISTORY
	CLUE MCHK
	CLUE MEMORY
	CLUE PROCESS
	CLUE REGISTER
	CLUE SG
	CLUE STACK
	CLUE SYSTEM
	CLUE VCC
	CLUE XQP

	6 SDA Spinlock Tracing Utility
	6.1 Overview of the SDA Spinlock Tracing Utility
	6.2 How to Use the SDA Spinlock Tracing Utility
	6.3 Example Command Procedure for Collection of Spinlock Statistics
	6.4 Listing of SDA Spinlock Tracing Commands
	SPL LOAD
	SPL SHOW COLLECT
	SPL SHOW TRACE
	SPL START COLLECT
	SPL START TRACE
	SPL STOP COLLECT
	SPL STOP TRACE
	SPL UNLOAD

	7 SDA Extended File Cache (XFC) Extension Commands
	7.1 Overview of SDA Extensions That Support the Extended File Cache (XFC)
	7.2 Listing of SDA Extended File Cache (XFC) Extension Commands
	EXIT
	LOAD DSF
	SHOW CONTEXT
	SHOW EXTENT
	SHOW FILE
	SHOW MEMORY
	SHOW SUMMARY
	SHOW TABLES
	SHOW TRACE
	SHOW VOLUME

	8 SDA Extension Routines
	8.1 Introduction
	8.2 General Description
	8.3 Detailed Description
	8.3.1 Compiling and Linking an SDA Extension
	8.3.2 Invoking an SDA Extension
	8.3.3 Contents of an SDA Extension

	8.4 Debugging an Extension
	8.5 Callable Routines Overview
	8.6 Callable Routines Specifics
	SDA$ADD_SYMBOL
	SDA$ALLOCATE
	SDA$DBG_IMAGE_INFO
	SDA$DEALLOCATE
	SDA$DISPLAY_HELP
	SDA$ENSURE
	SDA$FORMAT
	SDA$FORMAT_HEADING
	SDA$GET_ADDRESS
	SDA$GET_BLOCK_NAME
	SDA$GET_BUGCHECK_MSG
	SDA$GET_CURRENT_CPU
	SDA$GET_CURRENT_PCB
	SDA$GET_DEVICE_NAME
	SDA$GET_HEADER
	SDA$GET_HW_NAME
	SDA$GET_IMAGE_OFFSET
	SDA$GET_INPUT
	SDA$GET_LINE_COUNT
	SDA$GETMEM
	SDA$INSTRUCTION_DECODE
	SDA$NEW_PAGE
	SDA$PARSE_COMMAND
	SDA$PRINT
	SDA$READ_SYMFILE
	SDA$REQMEM
	SDA$SET_ADDRESS
	SDA$SET_CPU
	SDA$SET_HEADING_ROUTINE
	SDA$SET_LINE_COUNT
	SDA$SET_PROCESS
	SDA$SKIP_LINES
	SDA$SYMBOL_VALUE
	SDA$SYMBOLIZE
	SDA$TRYMEM
	SDA$TYPE
	SDA$VALIDATE_QUEUE

	Part II OpenVMS Alpha System Code Debugger and System Dump Debugger
	9 The OpenVMS Alpha System Code Debugger
	9.1 User-Interface Options
	9.2 Building a System Image to Be Debugged
	9.3 Setting Up the Target System for Connections
	9.3.1 Making Connections Between the Target Kernel and the System Code Debugger
	9.3.2 Interactions Between XDELTA and the Target Kernel/System Code Debugger

	9.4 Setting Up the Host System
	9.5 Starting the System Code Debugger
	9.6 Summary of System Code Debugger Commands
	9.7 Using System Dump Analyzer Commands
	9.8 System Code Debugger Network Information
	9.9 Troubleshooting Checklist
	9.10 Troubleshooting Network Failures
	9.11 Access to Symbols in OpenVMS Executive Images
	9.11.1 Overview of How the OpenVMS Debugger Maintains Symbols
	9.11.2 Overview of OpenVMS Executive Image Symbols
	9.11.3 Possible Problems You May Encounter

	9.12 Sample System Code Debugging Session

	10 The OpenVMS Alpha System Dump Debugger
	10.1 User-Interface Options
	10.2 Preparing a System Dump to Be Analyzed
	10.3 Setting Up the Test System
	10.4 Setting Up the Build System
	10.5 Starting the System Dump Debugger
	10.6 Summary of System Dump Debugger Commands
	10.7 Using System Dump Analyzer Commands
	10.8 Limitations of the System Dump Debugger
	10.9 Access to Symbols in OpenVMS Executive Images
	10.10 Sample System Dump Debugging Session

	Part III OpenVMS Watchpoint Utility
	11 The Watchpoint Utility
	11.1 Introduction
	11.2 Initializing the Watchpoint Utility
	11.3 Creating and Deleting Watchpoints
	11.3.1 Using the $QIO Interface
	11.3.2 Invoking WPDRIVER Entry Points from System Routines

	11.4 Data Structures
	11.4.1 Watchpoint Restore Entry (WPRE)
	11.4.2 Watchpoint Control Blocks (WPCB)
	11.4.3 Trace Table Entries (WPTTEs)

	11.5 Analyzing Watchpoint Results
	11.6 Watchpoint Protection Overview
	11.7 Restrictions

	Index
	Examples
	Example 9–1 Booting the Target System
	Example 9–2 Invoking the System Code Debugger
	Example 9–3 Connecting to the Target System
	Example 9–4 Target System Connection Display
	Example 9–5 Setting a Breakpoint
	Example 9–6 Finding the Source Code
	Example 9–7 Using the Set Mode Screen Command
	Example 9–8 Using the SCROLL/UP DEBUG Command
	Example 9–9 Breakpoint Display
	Example 9–10 Using the Debug Step Command
	Example 9–11 Using the Examine and Show Calls Commands
	Example 9–12 Canceling the Breakpoints
	Example 9–13 Using the Step/Return Command
	Example 9–14 Source Lines Error Message
	Example 9–15 Using the Show Image Command
	Example 10–1 Invoking the System Dump Debugger
	Example 10–2 Accessing the System Dump
	Example 10–3 Displaying the Source Code
	Example 10–4 Using the Examine and Show Calls Commands

	Figures
	Figure 2–1 Mechanism Array
	Figure 2–2 Signal Array
	Figure 2–3 64-Bit Signal Array
	Figure 2–4 Exception Stack Frame
	Figure 2–5 Stack Following an Illegal Page-Fault Error
	Figure 9–1 Maintaining Symbols
	Figure 11–1 Format of Data Returned in Buffer

	Tables
	Table 2–1 Definitions of Bits in DUMPSTYLE
	Table 2–2 Comparison of Full and Selective Dumps
	Table 2–3 SDA Operators
	Table 2–4 Modules Containing Global Symbols and Data Structures Used by SDA
	Table 2–5 SDA Symbols Defined on Initialization
	Table 2–6 SDA Symbols Defined by SET CPU Command
	Table 2–7 SDA Symbols Defined by SET PROCESS Command
	Table 2–8 Exception Stack Frame Values
	Table 4–1 Modules Defining Global Locations Within Executive Images
	Table 4–2 SET RMS Command Keywords for Displaying Process RMS Information
	Table 4–3 Global Section Table Entry Information
	Table 4–4 GSD Fields
	Table 4–5 Contents of the SHOW LOCKS and SHOW PROCESS/LOCKS Displays
	Table 4–6 Virtual Page Information in the SHOW PAGE_TABLE Display
	Table 4–7 Types of Virtual Pages
	Table 4–8 Bits In the PTE
	Table 4–9 Physical Page Information in the SHOW PAGE_TABLE Display
	Table 4–10 Types of Physical Pages
	Table 4–11 Locations of Physical Pages
	Table 4–12 Command Options with the /COLOR and /RAD Qualifiers
	Table 4–13 Page Frame Number Information—Line One Fields
	Table 4–14 Page Frame Number Information—Line Two Fields
	Table 4–15 Flags Set in Page State
	Table 4–16 /TYPE and /SUBTYPE Qualifier Examples
	Table 4–17 Options for the /WORKING_SET_LIST Qualifier
	Table 4–18 Working Set List Entry Information in the SHOW PROCESS Display
	Table 4–19 Process Section Table Entry Information in the SHOW PROCESS Display
	Table 4–20 Process Active Channels in the SHOW PROCESS Display
	Table 4–21 Process I/O Channel Information in the SHOW PROCESS Display
	Table 4–22 Image Information in the SHOW PROCESS Display
	Table 4–23 Resource Information in the SHOW RESOURCES Display
	Table 4–24 Lock Modes on Resources
	Table 4–25 RMD Fields
	Table 4–26 Static Spinlocks
	Table 4–27 Process Information in the SHOW SUMMARY Display
	Table 4–28 Current State Information
	Table 4–29 TQE Types in Summary TQE Display
	Table 4–30 Options for the SHOW WORKING_SET_LIST Command
	Table 11–1 Driver Supported Functions
	Table 11–2 Returned Status Codes
	Table 11–3 Returned Status Values

