
Compaq TCP/IP Services for
OpenVMS
Release Notes

April 2002

This document describes the new features and changes to the Compaq
TCP/IP Services for OpenVMS Version 5.3 software product.

Revision/Update Information: These release notes supersede the
Compaq TCP/IP Services for OpenVMS
V5.1 Release Notes.

Software Version: Compaq TCP/IP Services for OpenVMS
Version 5.3

Operating Systems: OpenVMS Alpha Versions 7.2-2, 7.3
OpenVMS VAX Versions 7.2, 7.3

Compaq Computer Corporation
Houston, Texas

© 2002 Compaq Information Technologies Group, L.P.

Compaq, the Compaq logo, Alpha, Insight Manager, OpenVMS, Tru64, VAX, VMS, and the Digital
logo are trademarks of Compaq Information Technologies Group, L.P. in the U.S. and/or other
countries.

Windows is a trademark of Microsoft Corporation in the U.S. and/or other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

Contents

Preface . xi

1 New Features and Changes

1.1 New Kernel Code Base . 1–1
1.1.1 IPv6 Transition Mechanism . 1–2
1.1.2 Advanced Programming Socket Interface . 1–2
1.1.3 Mobile IPv6 . 1–3
1.2 NTP Version 4 . 1–4
1.3 BIND Version 9 . 1–5
1.3.1 BIND 9 Features . 1–5
1.3.2 BIND 8 to BIND 9 Migration . 1–6
1.4 IMAP Server . 1–11
1.5 Kerberos Enhancements to the TELNET Client and Server 1–12
1.5.1 Kerberos Principal Names . 1–12
1.5.2 Using the Kerberos TELNET Client . 1–13
1.5.2.1 Initiating an Authenticated TELNET Connection 1–13
1.5.2.2 TELNET Command Descriptions . 1–14

TELNET/AUTHENTICATE . 1–15
1.5.3 Configuring the Kerberos TELNET Server . 1–16
1.5.3.1 Connecting to the Kerberos TELNET Server 1–16
1.6 Configuring Subsystem Attributes . 1–17
1.6.1 Displaying Subsystem Attributes and Values . 1–17
1.6.2 Modifying Subsystem Attributes in the System Configuration

Table . 1–18
1.6.2.1 Creating a Stanza File . 1–18
1.6.2.2 Updating the System Configuration Table 1–19
1.6.3 Modifying Subsystem Attributes at Run Time 1–20

sysconfig . 1–21
sysconfigdb . 1–24

1.7 Online Help for Error Messages . 1–27
1.8 LPD Server Cluster Support . 1–27
1.8.1 Implementing Clusterwide Print Queues . 1–27
1.8.2 Using Clusterwide Print Queues . 1–28
1.8.3 Defining the LPD Spooler Directory . 1–28
1.8.4 Configuring the LPD Server . 1–28
1.8.5 Using the printcap File to Prevent Line Feed Insertion 1–31
1.8.6 Configuring a High-Availability LPD Server . 1–31
1.8.7 Migrating to the Clusterwide LPD Server . 1–31
1.8.7.1 Migrating Configuration Options . 1–33
1.9 UNIX Services Database File . 1–34
1.10 NFS Support for Extended File Specifications . 1–35
1.10.1 Enabling Extended File Specifications . 1–36
1.10.2 NFS Client Support for Extended File Specifications 1–36

iii

1.11 FTP Server and FTP Client Support for UNIX Path Names (Alpha
Only) . 1–36

1.11.1 Specifying UNIX Path Names with FTP . 1–37
1.11.2 Specifying Special Characters . 1–37
1.12 Configuring User-Written Network Services . 1–38
1.12.1 Starting and Stopping User-Written Services 1–38
1.12.2 Specifying TCP and UDP . 1–38

2 Installation, Configuration, and Startup Notes

2.1 Configuring IPv6 . 2–1
2.1.1 Information for Users of the IPv6 Early Adopter’s Kit 2–1
2.1.2 Warning Message in TCPIP$CONFIG.COM . 2–1
2.2 Startup Problems and Restrictions . 2–1
2.2.1 Loading the Routing Database at Startup . 2–1
2.2.2 Startup DUPLNAM Messages . 2–2
2.3 System Page Table Entries Parameter (VAX Only) 2–2
2.4 Starting the Product After a Minimum OpenVMS Boot 2–2
2.5 Upgrading from TCP/IP Services Version 4.x . 2–3
2.6 Removing Prior Versions of this Product . 2–3
2.6.1 Upgrading OpenVMS VAX Systems . 2–3
2.6.2 Some UCX Files Remain After Installation . 2–3
2.6.3 Preserving LPD Startup and Shutdown Behavior 2–4
2.6.3.1 Preserving LPD Behavior (Alpha Systems) 2–4
2.6.3.2 Preserving LPD Behavior (VAX Systems) 2–5
2.6.3.3 Merging Edits (Alpha and VAX Systems) . 2–5
2.6.4 Saving Mail Messages When You Upgrade . 2–5
2.6.5 Preserving SNMP Startup and Shutdown Behavior 2–5
2.7 SNMP Installation and Setup Notes . 2–6
2.7.1 SNMP Messages When You Install TCP/IP Services 2–6
2.7.2 Verifying the SNMP Installation . 2–6
2.7.3 SNMP Subagent Startup Messages . 2–7
2.8 Setting Up the TCP/IP Services Message Database 2–7
2.9 Troubleshooting SMTP and LPD Shutdown Problems 2–7

3 Problems and Restrictions

3.1 Determining the TCP/IP Device Name from a Channel Assignment 3–1
3.2 RCP Full Transparent Copy Operations . 3–1
3.3 BIND Version 9 Does Not Run on VAX Systems . 3–2
3.4 NFS Problems and Restrictions . 3–2
3.4.1 NFS Server Problems and Restrictions . 3–2
3.4.2 NFS Client Problems and Restrictions . 3–3
3.5 IPv6 Requires the BIND Resolver . 3–3
3.6 TCP/IP Management Command Restrictions . 3–3
3.7 NTP Problems and Restrictions . 3–4
3.8 SNMP Problems . 3–4
3.8.1 Incomplete Restart . 3–4
3.8.2 SNMP IVP Error . 3–4
3.8.3 Using Existing MIB Subagent Modules . 3–4
3.8.4 Restrictions to RFC-Defined Functionality . 3–6
3.8.5 SNMP Restrictions and Characteristics . 3–6
3.8.6 Upgrading SNMP . 3–9
3.8.7 Communication Controller Data Not Fully Updated 3–10

iv

3.8.8 SNMP MIB Browser Usage . 3–10
3.8.9 Duplicate Subagent Identifiers . 3–10
3.8.10 eSNMP Programming and Subagent Development 3–10

4 Corrections

4.1 Software Corrections . 4–1
4.1.1 Management Command Interface Problems Fixed in This Release . . . 4–1
4.1.2 BIND Problems Fixed in This Release . 4–2
4.1.3 BIND Resolver Problems Fixed in This Release 4–2
4.1.4 IPC Problems Fixed in This Release . 4–2
4.1.5 SMTP Problems Fixed in This Release . 4–2
4.1.6 SNMP Problems Fixed in This Release . 4–2
4.1.7 FTP Problems Fixed in this Release . 4–3
4.2 Reported Problems Corrected in this Release . 4–4

5 Documentation Update

5.1 Management Guide Update . 5–1
5.2 User’s Guide Update . 5–3
5.3 Management Command Reference Update . 5–4
5.4 Sockets API and System Services Programming Update 5–6
5.5 Help Files Update . 5–6
5.5.1 The netstat Help File . 5–6
5.5.2 The whois Help File . 5–7
5.6 Guide to IPv6 Update . 5–8

A Configuring and Managing the IMAP Server for OpenVMS Mail

A.1 Key Concepts . A–1
A.1.1 IMAP Server Process . A–1
A.1.2 How to Access Mail Messages from the IMAP Server A–2
A.1.2.1 IMAP Client Configuration . A–2
A.1.2.2 OpenVMS Mail Configuration . A–3
A.1.3 How OpenVMS Mail Folder Names Map to IMAP Mailbox Names . . . A–3
A.1.4 How the IMAP Server Handles Foreign Message Formats A–4
A.1.5 Understanding IMAP Message Headers . A–5
A.1.5.1 How IMAP Rebuilds OpenVMS Mail Address Fields A–6
A.1.5.1.1 SMTP Address . A–7
A.1.5.1.2 DECnet Address . A–7
A.1.5.1.3 User Name-Only Address . A–8
A.1.5.1.4 DECnet Address That Contains Quotation Marks A–8
A.1.5.1.5 Cluster-Forwarding SMTP Address . A–9
A.1.5.1.6 All Other Addresses . A–9
A.1.6 Uploaded Messages . A–9
A.2 IMAP Server Control . A–10
A.2.1 Starting Up and Shutting Down the Server . A–10
A.2.2 Viewing Server Event Log Files . A–11
A.2.3 Modifying IMAP Server Characteristics . A–11
A.2.4 Tuning the Server . A–14
A.2.4.1 Tuning Issues . A–14
A.2.4.2 Tuning Options . A–15
A.2.4.2.1 Give more dynamic memory to an IMAP server process A–15
A.2.4.2.2 Reduce IMAP server demand for memory A–16

v

A.3 Enabling MIME Mail . A–16

B Configuring and Managing NTP

B.1 Key Concepts . B–1
B.1.1 Time Distributed Through a Hierarchy of Servers B–2
B.1.2 How Hosts Negotiate Synchronization . B–2
B.1.3 How the OpenVMS System Maintains the System Clock B–3
B.1.4 How NTP Makes Adjustments to System Time B–3
B.1.5 Configuring the Local Host . B–3
B.2 NTP Service Startup and Shutdown . B–5
B.3 Configuring Your NTP Host . B–6
B.3.1 Creating the Configuration File . B–6
B.3.2 Configuration Statements and Options . B–7
B.3.2.1 NTP Monitoring Options . B–11
B.3.2.2 Access Control Options . B–12
B.3.2.2.1 The Kiss-of-Death Packet . B–13
B.3.2.2.2 Access Control Statements and Flags B–13
B.3.2.3 Sample NTP Configuration File . B–15
B.3.3 Using NTP with Another Time Service . B–16
B.4 Configuring NTP as Backup Time Server . B–16
B.5 NTP Event Logging . B–16
B.5.1 Sample NTP Log Files . B–18
B.6 NTP Authentication Support . B–19
B.6.1 NTP Authentication Commands . B–20
B.6.2 Authentication Key Format . B–20
B.7 NTP Utilities . B–21
B.7.1 Setting the Date and Time with NTPDATE . B–22
B.7.2 Tracing a Time Source with NTPTRACE . B–22
B.7.3 Making Run-Time Requests with NTPDC . B–23
B.7.3.1 NTPDC Interactive Commands . B–24
B.7.3.2 NTPDC Control Message Commands . B–24
B.7.3.3 NTPDC Request Commands . B–27
B.7.4 Querying the NTP Server with NTPQ . B–28
B.7.4.1 NTPQ Control Message Commands . B–30
B.7.5 Generating Random Keys with NTP_GENKEYS B–33
B.8 Solving NTP Problems . B–33
B.8.1 NTP Debugging Techniques . B–34
B.8.1.1 Initial Startup . B–34
B.8.1.2 Verifying Correct Operation . B–34
B.8.1.3 Special Problems . B–37
B.8.1.4 Debugging Checklist . B–37

C Configuring and Managing BIND Version 9

C.1 Key Concepts . C–1
C.1.1 How the Resolver and Name Server Work Together C–2
C.1.2 Common BIND Configurations . C–2
C.1.2.1 Master Servers . C–2
C.1.2.2 Slave Servers . C–3
C.1.2.3 Caching-Only Servers . C–3
C.1.2.4 Forwarder Servers . C–3
C.2 Security Considerations . C–3
C.2.1 Access Control Lists . C–4

vi

C.2.2 Dynamic Update Security . C–5
C.2.3 TSIG . C–5
C.2.4 TKEY . C–7
C.2.5 SIG(0) . C–8
C.2.6 DNSSEC . C–8
C.3 Migrating from BIND Version 4 to BIND Version 9 C–10
C.3.1 Navigating Two Different BIND Environments C–10
C.4 BIND Service Startup and Shutdown . C–11
C.5 Configuring the BIND Server . C–12
C.5.1 Configuration File Elements . C–12
C.5.2 Address Match Lists . C–14
C.5.3 Configuration File Format . C–15
C.5.3.1 The ACL Statement . C–16
C.5.3.2 The CONTROLS Statement . C–17
C.5.3.3 The INCLUDE Statement . C–18
C.5.3.4 The KEY Statement . C–18
C.5.3.5 The LOGGING Statement . C–18
C.5.3.5.1 The Channel Phrase . C–19
C.5.3.5.2 The Category Phrase . C–21
C.5.3.6 The OPTIONS Statement . C–22
C.5.3.6.1 Boolean Options . C–25
C.5.3.6.2 Forwarding Options . C–28
C.5.3.6.3 Access Control Options . C–29
C.5.3.6.4 Interfaces Options . C–30
C.5.3.6.5 The Query Address Options . C–31
C.5.3.6.6 Zone Transfer Options . C–32
C.5.3.6.7 Server Resource Limits . C–33
C.5.3.6.8 Periodic Task Intervals Options . C–34
C.5.3.6.9 The TOPOLOGY Statement . C–34
C.5.3.6.10 The SORTLIST Statement . C–35
C.5.3.6.11 RRset Ordering . C–36
C.5.3.6.12 Synthetic IPv6 Responses . C–37
C.5.3.6.13 Tuning Options . C–37
C.5.3.6.14 The Statistics File . C–38
C.5.3.7 The SERVER Statement . C–39
C.5.3.8 The TRUSTED-KEYS Statement . C–40
C.5.3.9 The VIEW Statement . C–41
C.5.3.10 The ZONE Statement . C–43
C.5.3.10.1 Type of Zone . C–44
C.5.3.10.2 The Zone Class . C–45
C.5.3.10.3 Zone Options . C–45
C.5.4 IPv6 Support in BIND Version 9 . C–47
C.5.4.1 Address Lookups Using AAAA Records . C–48
C.5.4.2 Address-to-Name Lookups Using Nibble Format C–48
C.5.5 DNS Notify . C–48
C.5.6 Incremental Zone Transfers (IXFR) . C–48
C.5.7 Dynamic Updates . C–48
C.5.7.1 The Journal File . C–49
C.5.7.2 Dynamic Update Policies . C–49
C.5.7.3 Creating Updates Manually . C–50
C.5.8 Configuring Cluster Failover and Redundancy C–54
C.5.8.1 Changing the BIND Database . C–55
C.6 Populating the BIND Server Databases . C–55
C.6.1 Using Existing Databases . C–55

vii

C.6.2 Manually Editing Zone Files . C–57
C.6.2.1 Setting TTLs . C–57
C.6.2.2 Zone File Directives . C–58
C.6.3 Saving Backup Copies of Zone Data . C–58
C.6.4 Sample Database Files . C–58
C.6.4.1 Local Loopback . C–58
C.6.4.2 Hint File . C–59
C.6.4.3 Forward Translation File . C–60
C.6.4.4 Reverse Translation File . C–62
C.7 Examining Name Server Statistics . C–62
C.8 Configuring BIND with the SET CONFIGURATION Command C–63
C.8.1 Setting Up a Master Name Server . C–63
C.8.2 Setting Up a Secondary (Slave) Name Server C–64
C.8.3 Setting Up a Cache-Only Server . C–64
C.8.4 Setting Up a Forwarder Name Server . C–64
C.9 Configuring the BIND Resolver . C–64
C.9.1 Changing the Default Configuration . C–65
C.9.2 Examples . C–66
C.9.3 Resolver Default Search Behavior . C–66
C.9.4 Resolver Search Behavior in Earlier Releases C–67
C.9.5 Setting the Resolver’s Domain Search List . C–67
C.10 BIND Server Administrative Tools . C–68

bind_checkconf . C–70
bind_checkzone . C–71
dnssec_keygen . C–72
dnssec_makekeyset . C–75
dnssec_signkey . C–77
dnssec_signzone . C–79
rndc . C–82
rndc_confgen . C–86

C.11 Solving Bind Server Problems . C–88
C.11.1 BIND Server Diagnostic Tools . C–88

dig . C–89
host . C–96

C.11.2 Using NSLOOKUP to Query a Name Server . C–98
C.11.3 Solving Specific Name Server Problems . C–98
C.11.3.1 Server Not Responding . C–98

D Advanced IPv6 Programming Socket Interface

D.1 Socket-Related Data Structures for Sending and Receiving Ancillary
Data . D–1

D.2 Using IPv6 Raw Sockets . D–2
D.2.1 Accessing ICMPv6 Messages . D–3
D.2.2 Accessing the IPv6 Header . D–4
D.2.3 Accessing the IPv6 Routing Header . D–5
D.2.4 Accessing the IPv6 Options Headers . D–6
D.3 Socket Calls to Build and Examine IPv6 Options Headers D–8
D.3.1 The inet6_opt_append Socket Call . D–8
D.3.1.1 Parameters . D–8
D.3.1.2 Description . D–9
D.3.1.3 Return Values . D–9

viii

D.3.2 The inet6_opt_find Call . D–9
D.3.2.1 Parameters . D–9
D.3.2.2 Description . D–9
D.3.2.3 Return Values . D–10
D.3.3 The inet6_opt_finish Call . D–10
D.3.3.1 Parameters . D–10
D.3.3.2 Description . D–10
D.3.3.3 Return Values . D–10
D.3.4 The inet6_opt_get_val Call . D–10
D.3.4.1 Parameters . D–11
D.3.4.2 Description . D–11
D.3.4.3 Return Values . D–11
D.3.5 The inet6_opt_init Call . D–11
D.3.5.1 Parameters . D–11
D.3.5.2 Description . D–11
D.3.6 The inet6_opt_next Call . D–12
D.3.6.1 Parameters . D–12
D.3.6.2 Description . D–12
D.3.6.3 Return Values . D–12
D.3.7 The inet6_opt_set_val Call . D–12
D.3.7.1 Parameters . D–13
D.3.7.2 Description . D–13
D.3.7.3 Return Values . D–13
D.4 Socket Calls to Build and Examine IPv6 Routing Headers D–13
D.4.1 The inet6_rth_add Call . D–13
D.4.1.1 Parameters . D–13
D.4.1.2 Description . D–14
D.4.1.3 Return Values . D–14
D.4.2 The inet6_rth_getaddr Call . D–14
D.4.2.1 Parameters . D–14
D.4.2.2 Description . D–14
D.4.2.3 Return Values . D–14
D.4.3 The inet6_rth_init Call . D–14
D.4.3.1 Parameters . D–14
D.4.3.2 Description . D–15
D.4.3.3 Return Values . D–15
D.4.4 The inet6_rth_reverse Call . D–15
D.4.4.1 Parameters . D–15
D.4.4.2 Description . D–15
D.4.4.3 Return Values . D–16
D.4.5 The inet6_rth_segments Call . D–16
D.4.5.1 Description . D–16
D.4.5.2 Return Values . D–16
D.4.6 The inet6_rth_space Call . D–16
D.4.6.1 Parameters . D–16
D.4.6.2 Description . D–16
D.4.6.3 Return Values . D–17

ix

Tables

1 TCP/IP Services Documentation . xi
1–1 TCP/IP for OpenVMS Version 5.3 Features . 1–1
1–2 LPD Configuration Options and Descriptions 1–29
1–3 Logical Names and LPD Configuration Options 1–33
1–4 Valid LPD Logical Names . 1–34
1–5 Obsolete LPD Logical Names . 1–34
2–1 UCX Files Required for Backward Compatibility 2–3
4–1 BIND Resolver Problems Fixed in this Release 4–4
4–2 LBROKER Problems Fixed in this Release . 4–4
4–3 TELNET Problems Corrected in this Release 4–5
4–4 SMTP Problems Corrected in this Release . 4–5
4–5 Management Command Interface Problems Corrected in this

Release . 4–5
A–1 OpenVMS Mail SET options . A–3
A–2 OpenVMS Mail Folder-Name Mapping . A–4
A–3 IMAP File-Header Recognition . A–5
A–4 Header Information in Uploaded Messages . A–10
A–5 IMAP Configuration Options . A–11
B–1 Restrict Statement Flags . B–13
B–2 NTP Log File Messages . B–17
B–3 Authentication Commands . B–20
B–4 NTPDATE Options . B–22
B–5 NTPTRACE Options . B–23
B–6 NTPDC Options . B–28
B–7 NTPQ Options . B–33
C–1 UCX BIND and BIND Version 9 Differences . C–11
C–2 Name Server Configuration File Elements . C–12
C–3 BIND Name Server Configuration Statements C–15
C–4 Key Statement Elements . C–18
C–5 Logging Categories . C–21
C–6 BIND Server Configuration Options . C–23
C–7 BIND Server Boolean Configuration Options . C–25
C–8 Forwarding Options . C–29
C–9 Access Control Options . C–29
C–10 Interfaces Options . C–30
C–11 Query Address Options . C–31
C–12 Zone Transfer Options . C–32
C–13 Server Resource Limit Options . C–34
C–14 Periodic Task Intervals Options . C–34
C–15 Tuning Options . C–37
C–16 Statistics Counters . C–38
C–17 Server Statement Clauses . C–39
C–18 View Statement Clauses . C–41
C–19 Zone Types . C–44
C–20 Zone Options . C–45

x

C–21 Standard Resource Record Types . C–57
D–1 Differences Between IPv4 and IPv6 Raw Sockets D–2
D–2 ICMPv6 Filtering Macros . D–3
D–3 Optional Information and Socket Options . D–4
D–4 Socket Calls for Routing Header Name Description D–5
D–5 Socket Calls for Options Headers . D–6

xi

Preface

The Compaq TCP/IP Services for OpenVMS product is the Compaq
implementation of the TCP/IP protocol suite and internet services for OpenVMS
Alpha and OpenVMS VAX systems. This document describes the Compaq TCP/IP
Services for OpenVMS Version 5.3 product.

TCP/IP Services provides a comprehensive suite of functions and applications that
support industry-standard protocols for heterogeneous network communications
and resource sharing.

For installation instructions, see the Compaq TCP/IP Services for OpenVMS
Installation and Configuration manual.

The release notes provide version-specific information that supersedes the
information in the documentation set. The features, restrictions, and corrections
in this version of the software are described in the release notes. Always read the
release notes before installing the software.

Intended Audience
These release notes are intended for experienced OpenVMS and UNIX system
managers and assumes a working knowledge of OpenVMS system management,
TCP/IP networking, TCP/IP terminology, and some familiarity with the TCP/IP
Services product.

Related Documents
Table 1 lists the documents available with this version of TCP/IP Services.

Table 1 TCP/IP Services Documentation

Manual Contents

Compaq TCP/IP Services for OpenVMS
Concepts and Planning

This manual provides conceptual information about TCP/IP
networking on OpenVMS systems, including general planning
issues to consider before configuring your system to use the
TCP/IP Services software.

This manual also describes the other manuals in the TCP/IP
Services documentation set and provides a glossary of terms and
acronyms for the TCP/IP Services software product.

Compaq TCP/IP Services for OpenVMS
Release Notes

The release notes provide version-specific information that
supersedes the information in the documentation set. The
features, restrictions, and corrections in this version of the
software are described in the release notes. Always read the
release notes before installing the software.

(continued on next page)

xi

Table 1 (Cont.) TCP/IP Services Documentation

Manual Contents

Compaq TCP/IP Services for OpenVMS
Installation and Configuration

This manual explains how to install and configure the TCP/IP
Services product.

Compaq TCP/IP Services for OpenVMS
User’s Guide

This manual describes how to use the applications available with
TCP/IP Services such as remote file operations, e-mail, TELNET,
TN3270, and network printing. This manual explains how to use
these services to communicate with systems on private internets
or on the worldwide Internet.

Compaq TCP/IP Services for OpenVMS
Management

This manual describes how to configure and manage the TCP/IP
Services product.

Use this manual with the Compaq TCP/IP Services for
OpenVMS Management Command Reference manual.

Compaq TCP/IP Services for OpenVMS
Management Command Reference

This manual describes the TCP/IP Services management
commands.

Use this manual with the Compaq TCP/IP Services for
OpenVMS Management manual.

Compaq TCP/IP Services for OpenVMS
Management Command Quick
Reference Card

This reference card lists the TCP/IP management commands by
component and describes the purpose of each command.

Compaq TCP/IP Services for OpenVMS
UNIX Command Reference Card

This reference card contains information about commonly
performed network management tasks and their corresponding
TCP/IP management and Compaq Tru64 UNIX command
formats.

Compaq TCP/IP Services for OpenVMS
ONC RPC Programming

This manual presents an overview of high-level programming
using open network computing remote procedure calls (ONC
RPC). This manual also describes the RPC programming
interface and how to use the RPCGEN protocol compiler to
create applications.

Compaq TCP/IP Services for OpenVMS
Sockets API and System Services
Programming

This manual describes how to use the Sockets API and OpenVMS
system services to develop network applications.

Compaq TCP/IP Services for OpenVMS
SNMP Programming and Reference

This manual describes the Simple Network Management Protocol
(SNMP) and the SNMP application programming interface
(eSNMP). It describes the subagents provided with TCP/IP
Services, utilities provided for managing subagents, and how to
build your own subagents.

Compaq TCP/IP Services for OpenVMS
Tuning and Troubleshooting

This manual provides information about how to isolate the
causes of network problems and how to tune the TCP/IP Services
software for the best performance.

Compaq TCP/IP Services for OpenVMS
Guide to IPv6

This manual describes the IPv6 environment, the roles of
systems in this environment, the types and function of the
different IPv6 addresses, and how to configure TCP/IP Services
to access the 6bone network.

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.compaq.com/openvms

For a comprehensive overview of the TCP/IP protocol suite, you might find the
book Internetworking with TCP/IP: Principles, Protocols, and Architecture, by
Douglas Comer, useful.

xii

Reader’s Comments

Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation

Visit the following World Wide Web address for information about how to order
additional documentation:

http://www.openvms.compaq.com/

Conventions
In the product documentation, the name TCP/IP Services means both:

• Compaq TCP/IP Services for OpenVMS Alpha

• Compaq TCP/IP Services for OpenVMS VAX

The name UNIX refers to the Compaq Tru64 UNIX operating system.

The following conventions are used in the documentation. In addition, please
note that all IP addresses are fictitious.

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

xiii

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xiv

1
New Features and Changes

This chapter describes the new features of Compaq TCP/IP Services for
OpenVMS Version 5.3. For more information about configuring and managing
these services, see the Compaq TCP/IP Services for OpenVMS Management guide
provided with the TCP/IP Services for OpenVMS software.

Note

TCP/IP Services V5.3 is a direct upgrade from Version 5.1. Version 5.2 is
a limited release.

Table 1–1 lists the new features of TCP/IP Services Version 5.3 and the sections
that describe them.

Table 1–1 TCP/IP for OpenVMS Version 5.3 Features

Feature Section

New Kernel Code Base Section 1.1

NTP Version 4 Section 1.2

BIND Version 9 Section 1.3

IMAP Section 1.4

Kerberos for TELNET Section 1.5

SYSCONFIGTAB Section 1.6

HELP for Startup and Shutdown Messages Section 1.7

LPD Cluster Support Section 1.8

1.1 New Kernel Code Base
Basic IPv6 support was provided in TCP/IP Services Version 5.1. Version 5.3
builds upon the basic IPv6 functionality to provide extended services, such as:

• IPv6 tunneling (as described in RFC 2473)

• 6-to-4 tunneling (no relay router)

• Anycast address

• Updated application programming interface (API) that conforms to the latest
specification

• Mobile IPv6 correspondent node support (with processing of the binding
update suboption for route optimization)

New Features and Changes 1–1

New Features and Changes
1.1 New Kernel Code Base

• Mobile IPv6 support in UNIX management tools (to display and decode
Mobile IPv6 information)

The IPv6 enhancements are described in the following sections.

1.1.1 IPv6 Transition Mechanism
This release includes support for a new IPv6 transition mechanism called 6to4, as
defined in RFC 3056.

In this release of TCP/IP Services, an OpenVMS system can operate either as
a host in a 6to4 site or as a 6to4 border router (including support for being an
isolated-host border router). Support for the 6to4 relay router is not currently
provided.

An OpenVMS node can operate as a host within a 6to4 site without any explicit
6to4 configuration. The node obtains a 6to4 prefix using the standard IPv6
address autoconfiguration mechanisms. (That is, the 6to4 border router operating
at the edge of the 6to4 site advertises the 6to4 prefix from which the host
can automatically configure a 6to4 address.) Then, using the normal routing
mechanisms, packets sent from the node to a 6to4 destination are directed to the
border router.

Restrictions
The suggested rules for address selection that are outlined in RFC 3056 are not
currently implemented. This might cause a node operating in a mixed 6to4 and
native IPv6 site to incorrectly select the node’s source address when sending IPv6
packets. Compaq recommends that you do not operate a host in a mixed 6to4 and
native IPv6 site.

The OpenVMS border router will have exactly one interface to the IPv4-only
cloud over which 6to4 traffic can be sent and received, and will have one or more
IPv6 interfaces to the 6to4 site. (The IPv6 interfaces are attachments to different
LANs in the same 6to4 site.)

The IETF has not defined how to handle issues of multihomed networks in IPv6.
Therefore, Compaq recommends against setting up a multihomed IPv6 network
at this time. When operating as a border router in a 6to4 site, an OpenVMS
system should be the only border router in that site. Configuring multiple border
routers within a 6to4 site is not recommended.

1.1.2 Advanced Programming Socket Interface
The version of TCP/IP Services supports the advanced sockets API for IPv6, as
defined in draft-ietf-ipngwg-rfc2292bis-06.txt.

Note

The advanced sockets API for IPv6 defined in draft-ietf-ipngwg-
rfc2292bis-06.txt is different from the advanced sockets API for IPv6
defined in RFC 2292. Any application that was coded for RFC 2292 will
need to be updated to reflect the new advanced API.

For information about programming with the advanced sockets API, refer to
Appendix D.

1–2 New Features and Changes

New Features and Changes
1.1 New Kernel Code Base

1.1.3 Mobile IPv6
This release of TCP/IP Services enables an OpenVMS node to operate as a mobile
IPv6 correspondent node, as defined in the Internet draft Mobility Support in
IPv6 (draft-ietf-mobileip-ipv6-15.txt).

Note

Because this implementation is based on an IETF (Internet Engineering
Task Force) draft, it is subject to change in future versions of TCP/IP
Services.

This implementation does not support binding update authentication as
specified in draft-ietf-mobileip-ipv6-15.TXT, Section 4.4, including
the authentication data sub-option defined in Section 5.6. You should
limit the use of this kit to test environments that are not subject to
attack, since system integrity might be compromised by accepting
unauthenticated bindings.

In a mobile IPv6 environment, nodes can have the following roles:

• Mobile node — a node (host or router) that can change its point of attachment
from one link to another and still be reachable through its home address.

• Correspondent node — a peer node with which a mobile node is
communicating. The correspondent node (host or router) can be either
mobile or stationary.

• Home agent — a router on a mobile node’s home link with which the mobile
node registers its current care-of address. (Currently, OpenVMS cannot
operate as a home agent).

IPv6 is designed to support mobility through its extensible header structure,
address autoconfiguration, security (IPsec), and tunneling.

A node has a home address, which does not change; the node is always
addressable by its home address. When a mobile node is on its home link, it
is considered to be ‘‘at home.’’ Packets destined for the mobile node’s home
address are delivered through standard IP routing mechanisms. When a mobile
node moves to a foreign link, it is considered to be ‘‘away from home.’’

On the foreign link, the mobile node configures a care-of address and registers
this new binding with its home agent by sending the home agent a binding
update. This new address is the mobile node’s primary care-of address. The home
agent acknowledges the binding update by returning a binding acknowledgment
to the mobile node.

Packets sent by a correspondent node to the mobile node’s home address arrive
at its home link. The home agent intercepts the packets, encapsulates them, and
tunnels them to the mobile node’s registered care-of address.

The mobile node receives the packets tunnelled to it from its home agent and
recognizes its primary care-of address in the tunnelled packet’s header. The
mobile node assumes that the original sending correspondent node has no binding
cache entry for the mobile node; otherwise, the correspondent node would have
sent the packet directly to the mobile node using a routing header. The mobile
node returns a binding update to the correspondent node.

New Features and Changes 1–3

New Features and Changes
1.1 New Kernel Code Base

The correspondent node then caches the mobile node’s care-of address. This
enables the optimal routing of subsequent packets from the correspondent node
to the mobile node, which eliminates congestion at the mobile node’s home agent
and home link. It also reduces the impact of any possible failure of the home
agent, the home link, or intervening networks leading to or from the home link,
since these nodes and links are not involved in the delivery of most packets to the
mobile node.

To operate as a correspondent node and to communicate with mobile nodes, enter
the following TCP/IP management command:

$ TCPIP
TCPIP> sysconfig -r ipv6 mobileipv6_enabled=1

Use the netstat command with the -s option to display the contents of the
mobile IPv6 binding cache.

1.2 NTP Version 4
This release of TCP/IP Services supports NTP Version 4 (NTP V4), incorporating
new features and refinements to the NTP V3 algorithms. Except for symmetric
mode in NTP Version 1, NTP Version 4 is backward compatible with older
versions.

This section summarizes the differences between NTP V4 and NTP V3. For
information about managing NTP, see Appendix B.

• Major code cleanup was completed for NTP Version 4.

• Most calculations are now done using 64-bit floating double format rather
than 64-bit fixed-point format. The fixed-point format is still used with
raw time stamps. The algorithms that process raw timestamps produce
fixed-point differences before converting them to floating double format.

• The clock discipline algorithm has been redesigned to improve accuracy,
reduce the impact of network jitter and allow an increase in poll intervals
to well over one day. The NTP V4 design allows servers to increase the poll
intervals even when synchronized directly to the peer. In NTP V3 the poll
interval in such cases was fixed to the minimum (usually 64 seconds). For
servers with hundreds of clients, the new design can dramatically reduce the
network load.

• NTP V4 includes two new association modes that, in most applications, make
per-host configuration unnecessary:

In multicast mode, a server sends a message at fixed intervals using
specified multicast group addresses, while clients listen on these
addresses. Upon receiving the message, a client exchanges several
messages with the server in order to calibrate the multicast propagation
delay between the client and server.

In manycast mode, a client sends a message to a specified multicast
group address and expects one or more servers to reply. Using engineered
algorithms, the client selects an appropriate subset of servers from the
messages received and continues in ordinary client/server operation.
Manycast mode provides better accuracy than multicast mode, without
the price of additional network overhead.

Both modes provide for automatic discovery and configuration of servers and
clients without identifying servers or clients in advance.

1–4 New Features and Changes

New Features and Changes
1.2 NTP Version 4

• The following burst mode features are available:

Use the iburst keyword in the server configuration command when it is
important to set the clock quickly when an association is first mobilized.

Use the burst keyword in the server configuration command when the
network attachment requires an initial calling or training procedure.

• In all except a very few cases, all timing intervals are randomized, minimizing
the tendency to self-synchronize and bunch messages, especially with a large
number of configured associations.

• The arguments to the enable and disable commands are changed. Also, the
authenticate command has been removed.

• A special control message is available to help reduce the level of spurious
network traffic due to obsolete configuration files. If it is enabled, and a
packet is denied service or exceeds the client limit, a compliant server sends
the control message to the client. A compliant client will cease further
transmission and send a message to the NTP log file.

• A filter algorithm reduces errors during asymetric delays (characteristic
of PPP connections with telephone modems and downloading or uploading
considerable traffic).

• The NTP V4 ntpdc utility does not work with previous versions of NTP.
Previous versions of the ntpdc utility do not work with NTP V4.

1.3 BIND Version 9
The Domain Name System (DNS) maintains and distributes information about
Internet hosts. DNS consists of a heirarchical databases containing the names
of entities on the Internet, the rules for delegating authority over names, and
mail routing information; and the system implementation that maps the names
to Internet addresses.

In OpenVMS environments, DNS is implemented by the Berkeley Internet Name
Domain (BIND) software. Compaq TCP/IP Services for OpenVMS implements a
BIND server based on the Internet Software Consortium’s (ISC) BIND Version 9
(BIND 9).

Note

BIND 9 is supported on Alpha systems only, and future support of BIND
Version 8 (BIND 8) on VAX systems will be limited. Therefore, if you are
using BIND 8 on a VAX system, Compaq recommends that you upgrade
your BIND server to an Alpha system.

For information about managing BIND, refer to Appendix C.

1.3.1 BIND 9 Features
BIND 9 is a major rewrite of nearly all aspects of the underlying BIND
architecture. Some of the important features of BIND 9 are:

• DNS security

DNSSEC (signed zones)

TSIG (signed DNS requests)

New Features and Changes 1–5

New Features and Changes
1.3 BIND Version 9

Access control lists

Dynamic update security policies

TKEY shared secrets

SIG(0) transaction signatures

• IPv6

Answers DNS queries on IPv6 sockets

IPv6 resource records (A6, DNAME, and so forth)

Bitstring labels

• DNS protocol enhancements

IXFR, DDNS, Notify, EDNS0

Improved standards conformance

• Views

One server process can provide multiple views of the DNS name space (for
example, an inside view to certain clients, and an outside view to others).

• Multiprocessor support

• Multithreading

Note

The BIND resolver is based on the BIND 8 implementation of DNS.

To take advantage of the multiprocessor and multithreading support provided
with BIND 9, the OpenVMS SYSGEN parameter MULTITHREAD should be
nonzero on multiprocessor systems. Note that this parameter is systemwide and
affects other TCP/IP or OpenVMS components that use POSIX threads.

1.3.2 BIND 8 to BIND 9 Migration
BIND 9 is designed to be compatible with BIND 8. The following list summarizes
the differences between them.

• Configuration file compatibility

BIND 9 supports most but not all of the TCPIP$BIND.CONF options of
BIND 8.

If your TCPIP$BIND.CONF file uses an unimplemented option, the BIND
9 server logs a warning message. A message is also logged about each
option whose default has changed, unless the option is set explicitly in
TCPIP$BIND.CONF.

The default of the transfer-format option has been changed from one-
answer to many-answers. If you have slave servers running an old version
of TCP/IP Services that does not understand the many-answers zone
transfer format, you need to specify the following in either the options or
server statement:

transfer-format one-answer;

1–6 New Features and Changes

New Features and Changes
1.3 BIND Version 9

In BIND 9, the BIND server will not start if it detects an error in
TCPIP$BIND.CONF. Earlier versions of BIND would start despite errors,
causing the server to run with a partial configuration. Errors detected
during subsequent reloads do not cause the server to exit.

Errors in master files do not cause the server to exit, but they do prevent
the zone from being loaded.

The set of logging categories in BIND 9 is different from that in BIND 8.
If you have customized your logging on a per-category basis, you need to
modify your logging statement to use the new categories.

The logging statement takes effect only after the entire
TCPIP$BIND.CONF file has been read. Therefore, when the server first
starts up, any messages about errors in the configuration file are always
logged to the TCPIP$BIND_RUN.LOG file, regardless of the contents of
the logging statement. In BIND 8, the new logging configuration took
effect immediately after the logging statement was read.

The source address and port for Notify messages and Refresh queries
is now controlled by the notify-source and transfer-source options,
respectively, rather than by the BIND 8 query-source option.

Multiple classes must be put into explicit views for each class.

• Zone file compatibility

BIND 9 complies strictly with the RFC 1035 and RFC 2308 rules
regarding omitted time-to-live (TTL) values in zone files. Omitted
TTL values are replaced by the value specified with the $TTL directive or,
if there is no $TTL directive, by the previously specified TTL value.

If there is no $TTL directive and the first resource record (RR) in the file
does not have an explicit TTL field, the zone file is illegal because the TTL
value of the first RR is undefined. BIND 4 and many versions of BIND 8
accept such files without warning and use the value of the SOA MINTTL
field as a default for missing TTL values.

BIND 9 emulates the nonstandard BIND 4/8 SOA MINTTL behavior and
loads the file (provided the SOA is the first record in the file), but it also
issues the following warning message:

No TTL specified; using SOA MINTTL instead

To avoid problems, use a $TTL directive in each zone file.

Some versions of BIND allow SOA serial numbers with an embedded
period (for example, 3.002), and converts the numbers into integers. This
feature is not supported in BIND 9; serial numbers must be integers.

TXT records with unbalanced quotes (for example, ’host TXT "foo’)
do not cause errors in some versions of BIND. In BIND 9, if your zone
files contain such records, potentially confusing error messages like the
following are generated:

Unexpected end of file

This occurs because BIND 9 interprets everything up to the next quote
character as a literal string.

New Features and Changes 1–7

New Features and Changes
1.3 BIND Version 9

Some versions of BIND accept RRs that contain line breaks that are not
properly quoted with parentheses, such as the following SOA:

@ IN SOA ns.example. hostmaster.example.
(1 3600 1800 1814400 3600)

This is not legal master file syntax; BIND 9 treats it as an error. To
correct the problem, move the opening parenthesis to the first line.

The $$ construct for specifying a literal dollar sign ($) in a domain name
is not recommended. Use the \$ construct instead.

• New protocol features

If you want to accept DNS queries over IPv6, you must specify the
following in the TCPIP$BIND.CONF file:

listen-on-v6 {any; };

This is not the default.

EDNS0

BIND 9 uses EDNS0 to advertise its receive buffer size. It also sets an
EDNS flag in queries to indicate it wants to receive DNSSEC responses.

Most older servers that do not support EDNS0, including prior versions
of BIND, send an error in response to these queries. When this happens,
BIND 9 automatically retries the query without EDNS0.

Certain non-BIND name server implementations may silently ignore
these queries, instead of sending an error response. Name resolution is
very slow, or fails, in zones where this type of server is used.

When BIND 9 communicates with a server that supports EDNS0, such as
another BIND 9 server, responses of up to 4096 bytes may be transmitted
as a single UDP datagram, which is subject to fragmentation at the IP
level. If a firewall incorrectly drops IP fragments, it can cause name
resolution to slow down dramatically or fail.

Outgoing zone transfers now use the many-answers format by default.
This format is not understood by old versions of BIND 4. Use the
following option to correct this problem:

transfer-format one-answer;

To prevent security problems, upgrade the slave servers.

Zone transfers to Windows 2000 DNS servers sometimes fail to properly
handle DNS messages that are larger than 16K. To correct this problem,
use the following option:

transfer-format one-answer;

• BIND 9 does not restrict the character set of domain names. It is fully 8-bit
compatible.

Host names published in the DNS should follow the rules set forth in RFC
952, but BIND 9 does not enforce the rules.

Names containing unexpected characters cause security problems on
systems that run certain applications that do not check data from the
network sufficiently. Some earlier versions of BIND attempt to protect these
applications from attack by discarding data containing characters deemed
inappropriate in host names or mail addresses. This feature was controlled

1–8 New Features and Changes

New Features and Changes
1.3 BIND Version 9

by the check-names option in TCPIP$BIND.CONF. BIND 9 provides no such
protection. Applications with these types of flaws should be upgraded.

• Server administration tools:

The ndc utility has been replaced by the rndc utility, which is capable
of remote operation. Unlike ndc, rndc requires a configuration file. A
template file is written to the directory pointed to by the TCPIP$ETC
logical when you use the TCPIP$CONFIG.COM command procedure to
enable the BIND server. The easiest way to generate a configuration file
is to use the following command:

$ rndc_confgen

The rndc utility does not work with BIND 8 name servers.

BIND 9 will not reload zones that allow dynamic updates.

The BIND 8 implementation of nsupdate separated update requests
into multiple requests, based on the discovered zones that contained the
records. In BIND 9, each update request must pertain to a single zone.

To do multiple updates with a single invocation of nsupdate, terminate
each update with an empty line or a send command.

• BIND 9 stores the authoritative data for each zone in a separate data
structure. When a BIND 9 server is authoritative for both a child zone and
its parent, it will have two distinct sets of NS records at the delegation point:
the authoritative NS records at the child’s apex, and a set of glue NS records
in the parent.

Unable to properly distinguish between these two sets of NS records, BIND
8 copied the child’s NS records into the parent, causing the parent zone to be
silently modified. Responses and zone transfers from the parent contained
the child’s NS records rather than the glue records configured into the parent
(if any). For stub children, this behavior allowed the glue NS records to be
omitted from the parent configuration.

Sites that rely on this BIND 8 behavior need to add to the parent zone any
omitted glue NS records and any necessary glue A records.

Although stub zones can no longer be used as a mechanism for injecting NS
records into their parent zones, they are still a useful way of directing queries
for a given domain to a particular set of name servers.

• The DNSSEC and IPv6 features of BIND 9 are CPU intensive. Use large
systems for these applications.

• BIND 9 is multithreaded, allowing full utilization of multiprocessor systems.

• The memory of the server has to be large enough to hold the cache and the
zones. You can use the max-cache-size option to limit the amount of memory
used by the cache, at the expense of reducing cache hit rates and causing
more DNS traffic.

Make sure than enough memory is available to load all zone and cache data
into memory. To determine the best setting, wait until the name server
has been in operation for a few weeks. The server process should reach a
relatively stable size. Resource limits should be set higher than this stable
size.

• Zone transfers no long run in a separate image (TCPIP$BIND_SERVER_
XFER.EXE). They run in the context of a thread.

New Features and Changes 1–9

New Features and Changes
1.3 BIND Version 9

• For Alpha systems, the TCP/IP management command SET NAME
/INITIALIZE has new behavior and execution requirements. Prior to TCP/IP
Services Version 5.3, the command reloaded the BIND databases on the
local host. Now the command reloads the BIND databases and the BIND
configuration file.

The SET NAME/INITIALIZE command now requires SYSPRV, BYPASS, or
READALL privilege to be set on the user process. The command also now
requires that either TCPIP$ETC:RNDC.CONF or TCPIP$ETC:RNDC.KEY be
set up to allow secure communication between the user and the BIND server.
To enable this functionality, enter the following sequence of commands:

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

$ rndc_confgen -a

$ @SYS$STARTUP:TCPIP$BIND_SHUTDOWN.COM

$ @SYS$STARTUP:TCPIP$BIND_STARTUP.COM

This procedure creates the TCPIP$ETC:RNDC.KEY file and restarts the
BIND server so that it is aware of the newly created key file.

Note

These changes do not apply to the TCP/IP management command SET
NAME/INITIALIZE on VAX systems.

• For Alpha systems, the TCP/IP management command SHOW NAME
/STATISTICS has new behavior and execution requirements.

Prior to TCP/IP Services Version 5.3, the command wrote statistics
to the SYS$SPECIFIC:[TCPIP$BIND]TCPIP$BIND_SERVER_
STATISTICS.LOG file. The command now writes statistics information
to the SYS$SPECIFIC:[TCPIP$BIND]TCPIP$BIND.STATS file.

The SHOW NAME/STATISTICS command now requires SYSPRV, BYPASS,
or READALL privilege to be set on the user process. The command also now
requires that either TCPIP$ETC:RNDC.CONF or TCPIP$ETC:RNDC.KEY
be set up to allow for secure communication between the user and the
BIND server. To enable this functionality, enter the following sequence of
commands:

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

$ rndc_confgen -a

$ @SYS$STARTUP:TCPIP$BIND_SHUTDOWN.COM

$ @SYS$STARTUP:TCPIP$BIND_STARTUP.COM

This procedure creates the TCPIP$ETC:RNDC.KEY file and restarts the
BIND server so that it is aware of the newly created key file.

Note

These changes do not apply to the TCP/IP management command SHOW
NAME/STATISTICS on VAX systems.

1–10 New Features and Changes

New Features and Changes
1.3 BIND Version 9

• The dynamic-update safety net mechanism and dynamic update related
TCP/IP merge logicals no longer exist. Once a zone is configured to allow
updates, the zone file should not be edited directly. To update a zone, use the
nsupdate utility. If dynamic updates are enabled, zone files are written to
disk periodically and purged automatically when the number of file versions
exceeds five. Zones that are updated dynamically cannot be reloaded using
the SET NAME/INITIALIZE command or the rndc utility.

• The round-robin scheduling of the BIND server has been changed. In
previous versions of the BIND server, when multiple records were returned
in an answer, they would get placed into the response in a round-robin
manner for each consecutive request. With this version, a random round-
robin ordering is used. The BIND server will randomly choose a starting
point within the RRset and return the records in order starting at that
point. There is currently no way to modify this behavior. The TCPIP$BIND_
ROUND_ROBIN_OFF logical is ignored.

1.4 IMAP Server
The IMAP server for OpenVMS Mail and the Simple Mail Transfer Protocol
(SMTP) server work together to provide reliable mail management in a
client/server environment.

Note

IMAP is supported on Alpha systems only. Although images may appear
on VAX systems after installation, these are not supported.

The IMAP server allows users to access their OpenVMS Mail mailboxes using
client applications like Microsoft Outlook to view, move, copy, and delete
messages. The SMTP server also allows the clients to create and send e-mail
messages.

The IMAP server requires a certain level of the operating system. If you
are running one of the following versions of OpenVMS, you must install the
appropriate patch:

OpenVMS Version Minimum Level Patch Kit

Alpha V7.2-1 VMS721_MAIL-V0100

Alpha V7.2-1H1 VMS21H1_MAIL-V0100

VMS21H1_MAIL-V0200

Alpha V7.2-2 VMS722_MAIL-V0100

Alpha V7.3 VMS73_MAIL-V0100

OpenVMS versions higher than Version 7.3 automatically support the IMAP
server without requiring any patches.

For more information about managing and using the IMAP server, refer to
Appendix A.

New Features and Changes 1–11

New Features and Changes
1.5 Kerberos Enhancements to the TELNET Client and Server

1.5 Kerberos Enhancements to the TELNET Client and Server
Kerberos is freely available from the Massachusetts Institute of Technology
(MIT), under a copyright permission notice. Kerberos for OpenVMS is supplied
by Compaq Computer Corporation under the terms of the license from MIT. For
more information about the Kerberos license, see the following web site:

http://web.mit.edu/kerberos/www/.

Kerberos is a network authentication protocol designed to provide strong
authentication for client/server applications by using secret-key cryptography.
Kerberos uses strong cryptography so that a client can prove its identity to
a server (and vice versa) across an insecure network connection. The TCP/IP
TELNET service uses Kerberos to make sure the identity of any user who
requests access to a remote host is authentic.

Compaq TCP/IP Services for OpenVMS Version 5.3 supports the OpenVMS
Kerberos Version 1.0 client, which is based on MIT Kerberos Version 5.

Before you can use the Kerberos TELNET client, the OpenVMS Security Client
software must be configured on the OpenVMS system. For more information
about installing and configuring the OpenVMS Security Client software, see the
Kerberos Version 1.0 for OpenVMS Security Client Installation Guide and Release
Notes.

The Kerberos Security Client kit contains copies of the MIT documentation listed
in the Kerberos Version 1.0 for OpenVMS Security Client Installation Guide and
Release Notes.

It is assumed that anyone using the Kerberos security features in TCP/IP has
expert knowledge of Kerberos.

Note

Encryption is not supported in this version of TCP/IP Services.

1.5.1 Kerberos Principal Names
Before you use the Kerberos TELNET client, make sure the local host name
is fully qualified in the local hosts database. Kerberos realms form principal
names using fully-qualified domain names. For example, terse.mbs.com is a fully
qualified domain name; terse is a simple host name.

Compaq TCP/IP Services for OpenVMS is usually configured so that the host
name is entered in the hosts database as a simple host name. That is, on host
TERSE, the TCP/IP management command SHOW HOST TERSE returns terse,
not terse.mbs.com.

To correct a mismatch between the Kerberos realm and the TCP/IP Services
configurations, follow these steps from a privileged account at a time when
system usage is low:

1. Find the host’s numeric address. For example:

1–12 New Features and Changes

New Features and Changes
1.5 Kerberos Enhancements to the TELNET Client and Server

$ TCPIP
TCPIP> SHOW HOST terse

LOCAL database

Host address Host name

15.28.311.11 terse

2. Remove the simple host name. For example:

TCPIP> SET NOHOST terse/CONFIRM

3. Use the SET HOST command to associate the fully qualified domain name
with the IP address, as shown in the following example:

TCPIP> SET host "terse.mbs.com"/ADDRESS=15.28.311.11 -
_TCPIP> /ALIAS=("TERSE.MBS.COM", "terse", "TERSE")

Specify the /ALIAS qualifier to ensure that applications can handle host
names in uppercase and lowercase.

4. Confirm that the first name returned is fully qualified.

TCPIP> SHOW HOST terse

LOCAL database

Host address Host name

15.28.311.11 terse.mbs.com, TERSE.MBS.COM, terse, TERSE

1.5.2 Using the Kerberos TELNET Client
The following sections describe how to use the TELNET client to establish
authenticated connections.

1.5.2.1 Initiating an Authenticated TELNET Connection
To initiate an authenticated connection, perform the following steps:

1. On a Kerberos-enabled system, enter a KINIT username command. Enter
your password when prompted.

Note

Always specify the user name on the KINIT command line. Kerberos
realms are usually set up with lowercase user names, but on OpenVMS,
user names are stored in uppercase. When you specify the user name, it
will be accepted as lowercase.

2. To initiate an authenticated connection, enter the following command:

$ TELNET/AUTHENTICATE host-name

3. To use the same ticket on a remote system, you can forward your ticket by
entering the following command:

$ TELNET/AUTHENTICATE/FORWARD host-name

4. To use your credentials in another realm, enter the following command:

$ TELNET/AUTHENTICATE/REALM=realm-name.

New Features and Changes 1–13

New Features and Changes
1.5 Kerberos Enhancements to the TELNET Client and Server

1.5.2.2 TELNET Command Descriptions
This section describes the TELNET/AUTHENTICATE command.

1–14 New Features and Changes

TELNET/AUTHENTICATE

TELNET/AUTHENTICATE

Qualifiers

/AUTHENTICATE
Optional. Default: None.

Specifies that you want the TELNET session to use Kerberos features.

Note

The /AUTHENTICATE qualifier also can be used with the TELNET
commands OPEN and CONNECT.

/FORWARD
/NOFORWARD
Optional. Default: /NOFORWARD.

Forwards a copy of your Kerberos tickets to the remote host. The /NOFORWARD
qualifier overrides any forwarding specified in your machine’s configuration files.
You must request forwardable tickets at the same time that you issue the KINIT
command.

You must use the /AUTHENTICATE qualifier when you specify the /FORWARD
qualifier.

/REALM=realm-name
Optional.

Requests Kerberos tickets for the remote host in the specified realm, instead of
determining the realm itself.

You must use the /AUTHENTICATE qualifier when you specify the /REALM
qualifier.

Examples

1. $ TELNET/AUTHENTICATE/REALM=jet.mbs.com terse

%TELNET-I-TRYING, Trying ... 15.21.308.11
%TELNET-I-SESSION, Session 01, host terse, port 23
%TELNET-I-ESCAPE, Escape character is ^]

terse.ucx.ttg.mbs.com

This example logs in to system terse with Kerberos credentials.

2. $ TELNET/AUTHENTICATE/FORWARD terse

%TELNET-I-TRYING, Trying ... 15.21.308.11
%TELNET-I-SESSION, Session 01, host terse, port 23
%TELNET-I-ESCAPE, Escape character is ^]
[Kerberos V5 accepts you as ’’j_brown@terse.mbs.com’’]
[Kerberos V5 accepted forwarded credentials]

This example forwards credentials to host terse for user j_brown.

New Features and Changes 1–15

New Features and Changes
TELNET/AUTHENTICATE

1.5.3 Configuring the Kerberos TELNET Server
This version of TCP/IP Services supports a separate Kerberos TELNET server, in
addition to the standard TCP/IP TELNET server.

The Kerberos TELNET server has the same major features as the TCP/IP
Services TELNET server. However, there are minor differences between the two
servers. For example, although the TELNET server supports IPv6 connections,
the Kerberos TELNET server supports only the IPv4 protocol for communication
with the Kerberos Key Distribution Center (KDC).

The TELNET server with Kerberos support is enabled by running the
TCPIP$CONFIG.COM command procedure, as described in the Compaq TCP/IP
Services for OpenVMS Installation and Configuration guide.

If the TELNET server is currently enabled and you want to support Kerberos,
you must disable the TELNET service before you install this version of TCP/IP
Services to ensure that the required TCPIP$TELNET user account and directory
are created.

Note

Because the TELNET server will be stopped, do not use a TELNET
connection to perform the following procedure.

To disable the Kerberos TELNET server, perform the following steps:

1. Invoke the TCPIP$CONFIG command procedure by entering the following
command from a user account with system management privileges:

$ @SYS$MANAGER:TCPIP$CONFIG.COM

2. On the Configuration menu, select the Client components option.

3. From the list of client components, select TELNET.

4. On the TELNET Configuration menu, select Disable & Stop service on this
node.

5. Return to the Configuration menu.

For instructions on how to enable the Kerberos TELNET server, refer to the
Compaq TCP/IP Services for OpenVMS Installation and Configuration manual.

1.5.3.1 Connecting to the Kerberos TELNET Server
The Kerberos TELNET server uses port 2323. Specify this port on the TELNET
command line. For example:

$ TELNET/AUTHENTICATE terse.mbs.com /PORT=2323

%TELNET-I-TRYING, Trying ... 17.21.205.153
%TELNET-I-SESSION, Session 01, host terse.mbs.com, port 2323
-TELNET-I-ESCAPE, Escape character is ^]

Welcome to OpenVMS (TM) Alpha Operating System, Version V7.3

Username:

1–16 New Features and Changes

New Features and Changes
1.6 Configuring Subsystem Attributes

1.6 Configuring Subsystem Attributes
TCP/IP Services supports UNIX subsystems and allows you to modify the
attributes of those subsystems to change the way the TCP/IP Services software
operates.

Subsystem configuration is provided for compatibility with Compaq Tru64
UNIX. Compaq strongly advises you not to modify the attributes associated with
subsystems except when the adjustment of an attribute is indicated (for example,
to improve performance). In most cases, corresponding TCP/IP management
commands are provided to help limit the side effects of modifying subsystem
attributes.

The following sections describe how to display and modify the settings of the
subsystem attributes. Modifying subsystem attributes without full knowledge
of possible effects can cause unpredictable results and is recommended only as
specifically directed by Compaq.

1.6.1 Displaying Subsystem Attributes and Values
You can use the sysconfig -m command to display static and dynamic
subsystems, as follows:

$ TCPIP
TCPIP> sysconfig -m
cm: static
inet: static
iptunnel: static
ipv6: static
net: static
snmpinfo: static
socket: static
inetkvci: static
proxy: static
nfs: static
vfs: static

Depending on the configuration of your system, the list of subsystems displayed
may differ from this example. There are two types of subsystems:

• Static subsystems are loaded at startup time and can be unloaded only when
TCP/IP shuts down.

• Dynamic subsystems can be loaded and unloaded at will without shutting
down and restarting TCP/IP Services.

Subsystems can be loaded but not available for use. To determine which
subsystems are loaded, use the sysconfig -s command. This command displays
the state of all subsystems. Subsystems can have the following states:

• Loaded and configured (available for use)

• Loaded and unconfigured (not available for use)

This state applies only to static subsystems, which you can unconfigure, but
you cannot unload.

• Unloaded (not available for use)

This state applies only to loadable subsystems, which are automatically
unloaded when you unconfigure them.

New Features and Changes 1–17

New Features and Changes
1.6 Configuring Subsystem Attributes

You can modify subsystem attributes at runtime, a change that will persist only
as long as the system continues to run, or you can modify them in the system
configuration table, preserving the changes through system reboots.

The persistence of a modified attribute value depends on the command or utility
option you use, according to the following guidelines:

• For permanent modifications that persist across reboots, use the sysconfigdb
utility, as described in Section 1.6.2.

• For temporary modifications that will not persist across reboots, use the
sysconfig -r command as described in Section 1.6.3.

1.6.2 Modifying Subsystem Attributes in the System Configuration Table
To modify subsystem attributes so that changes persist across reboots,
you must store the attribute’s value in the system configuration table
(TCPIP$ETC:SYSCONFIGTAB.DAT). This file is an ASCII text file, and is
formatted in UNIX stanza file format. When a subsystem is loaded, the attributes
that are not listed in the SYSCONFIGTAB.DAT file are set to their default
values.

To modify subsystem attributes in the SYSCONFIGTAB.DAT file, follow these
steps:

1. Create a stanza file as input to the procedure, as described in Section 1.6.2.1.

2. Use the sysconfigdb utility to update the system configuration table, as
described in Section 1.6.2.2.

3. Reload the subsystem. A dynamic subsystem can be unloaded and reloaded
using the sysconfig utility. A static subsystem is reloaded when the TCP/IP
Services software is restarted.

Although you can edit the SYSCONFIGTAB.DAT file with any text editor, this
practice is strongly discouraged. Syntax errors introduced when you edit the file
can result in erroneous or unpredictable situations. Compaq recommends that
you use the sysconfig utility to display the system configuration table and the
sysconfigdb utility to modify its contents.

1.6.2.1 Creating a Stanza File
To add, update, or remove entries in the database, create a stanza file that
contains the names and values for attributes that you want to modify.

The syntax for a stanza file entry is as follows:

entry-name:
Attribute1-name = Attribute1-value
Attribute2-name = Attribute2-value
Attribute3-name = Attribute3-value1, Attribute3-value2
.
.
.

The entry-name variable specifies the subsystem name.

The attributes for the subsystem are specified with the Attribute1-name,
Attribute2-name, and Attribute3-name variables.

The values for the attributes are specified with the Attribute1-value, Attribute2-
value, Attribute3-value1, and Attribute3-value2 variables.

1–18 New Features and Changes

New Features and Changes
1.6 Configuring Subsystem Attributes

The stanza file syntax rules are as follows:

• Separate entries by one or more blank lines.

• A colon (:) terminates an entry name.

• A new line terminates an attribute name and value pair.

• Separate a attribute name and attribute value with an equals sign (=).

• Separate more than one attribute value with a comma (,).

• Entry names and attribute names can contain any printable character
except spaces, new lines, and special characters, which must be specified
appropriately.

• Entry attribute values can contain any printable character except new lines
and special characters, which must be specified appropriately.

• Spaces and tabs are allowed at the beginning and at the end of lines.

• A pound sign (#) at the beginning of a line indicates a comment.

• Comments should be included only at the beginning or the end of an entry.

Several special quoting characters allow attribute values to contain special
values and data representations. If you specify a quoting character, surround the
attribute value with quotation marks. For example, to specify an octal value, use
the backslash character:

\007

The TCPIP$ETC:SYSCONFIGTAB.DAT file is formatted as follows:

inet:
inet_param1=inet_value1
inet_param2=inet_value2

net:
net_param1=net_value1
net_param2=net_value2

proxy:
proxy_param1=proxy_value1

socket:
socket_param1=socket_value1

To modify a subsystem attribute, create a stanza file in your own directory. In the
following example, the stanza file is named SOCKET_ATTRS.TXT.

$ TYPE SOCKET_ATTRS.TXT

socket:
socket_param1 = socket_value1

$

1.6.2.2 Updating the System Configuration Table
After you create the stanza file, update the system configuration table using
the sysconfigdb utility. To run the sysconfigdb utility, enter the following
commands:

$ TCPIP
TCPIP> sysconfigdb

For information about using the sysconfigdb utility, refer to the command
description in these release notes.

New Features and Changes 1–19

New Features and Changes
1.6 Configuring Subsystem Attributes

To update the system configuration table, use the sysconfigdb command with
the -a option. Specify the stanza file on the command line using the -f option, as
follows:

TCPIP> sysconfigdb -a -f stanza-filename subsystem

In this command line, stanza-filename is the file name of the stanza file that
you created. The value for subsystem is the subsystem name for which you are
changing an attribute.

The sysconfigdb command reads the specified file and updates the database. The
modifications are made to the subsystem when it is reloaded.

For example, the following stanza file (TABLE_MGR.STANZA) defines the
attributes for two subsystems, TABLE_MGR_1 and TBL_MGR_2.

$ TYPE TABLE_MGR.STANZA

table_mgr_1:
size = 10
name = Ten-Element-Table

tbl_mgr_2:
size = 5
name = Five-Element-Table

$

To add the contents of this stanza file to the system configuration table enter the
following commands:

$ TCPIP
TCPIP> sysconfigdb -a -f table_mgr.stanza table_mgr_1

TCPIP> sysconfigdb -a -f table_mgr.stanza tbl_mgr_2

This example does not change the value of attributes on the running system. To
modify the value of attributes in the running system, you must do one of the
following:

• Use the sysconfig -u command to unload a dynamic subsystem, then use the
sysconfig -r command to reload the subsystem.

• Stop and restart TCP/IP Services to reload static subsystems.

1.6.3 Modifying Subsystem Attributes at Run Time
You can modify a subsystem attribute using the sysconfig utility. This type of
modification persists only during the current run session. If you shut down and
reboot the system, the modification is lost.

For a description of the sysconfig utility, see the next section. For online HELP
about sysconfig, enter the following commands:

$ TCPIP
TCPIP> HELP SYSCONFIG

To modify a subsystem attribute, enter the following command:

$ sysconfig -r attribute-name=attribute-value subsystem

The following sections describe the sysconfig and sysconfigdb utilities.

1–20 New Features and Changes

sysconfig

sysconfig
Maintains the subsystem configuration.

Format

sysconfig -c | -d | -m | -q | -Q | -r | -s | -u [subsystem-name] [attribute-list]

Description

The sysconfig command queries and modifies the in-memory subsystem
configuration. Use this command to add subsystems, reconfigure subsystems
that are already in memory, query subsystems, and unconfigure and remove
subsystems.

The sysconfig utility allows you to modify the value of subsystem attributes, as
long as the subsystem supports run-time modifications.

When you configure a subsystem using the -c flag, you make that subsystem
available for use. If the subsystem is loadable, the sysconfig command loads the
subsystem and then initializes the value of its attributes.

To modify the value of a subsystem attribute, use the -r (reconfigure) flag.
Specify the subsystem attributes and values on the command line. The sysconfig
utility modifies the named attributes by storing the value you specify in them.
The modifications take effect immediately.

To get information about subsystem attributes, use either the -q flag or the
-Q flag. You can specify an attribute list with both these flags. When you use
the -q flag, the sysconfig command displays the value of attributes from the
in-memory system configuration table. When you use the -Q flag, the sysconfig
utility displays the following information about each attribute you specify in the
attribute list or, if you omit the attribute list, every attribute for the specified
subsystem.

• Attribute datatype.

• Operations supported by the attribute. For example, this information
indicates whether you can reconfigure the attribute using the sysconfig -r
command.

• Minimum and maximum allowed attribute values.

To get information about the state of subsystems, use the -s flag. This flag
provides a list of the subsystems that are currently loaded and configured. If you
specify subsystem-name, the command displays information about the state of
that subsystem. Each subsystem can have one of three states:

• Loaded and configured (available for use)

• Loaded and unconfigured (not available for use but still loaded)

This state applies only to static subsystems, which can be unconfigured but
cannot be unloaded.

• Unloaded (not available for use)

This state applies only to loadable subsystems, which are automatically
unloaded when you unconfigure them with the sysconfig -u command.

New Features and Changes 1–21

sysconfig

Subsystems that are not being used can be unconfigured using the -u flag.
Unconfiguring subsystems can free up kernel memory, making it available
for other uses. You can unconfigure any static or loadable subsystem that
supports run-time unconfiguration. If you unconfigure a loadable subsystem, that
subsystem is also unloaded from the kernel.

You can use the sysconfig command to display the value of attributes on the
local system. If you want to configure, reconfigure, or unconfigure a subsystem,
you must be authorized to modify the kernel configuration. Only users who have
a system group UIC or who have an account with SYSPRV, BYPASS, or OPER
privilege can configure, reconfigure, or unconfigure the subsystems.

Parameters

subsystem-name
Specifies the subsystem on which you want to perform the operation. The
subsystem-name argument is required for all flags except -s and -m. If you omit
subsystem-name when you use the -s or -m flag, the sysconfig utility displays
information about all loaded subsystems.

attribute-list
Specifies attribute names and, depending on the operation, attribute values.

• For reconfigure (-r) operations, the attribute-list argument has the following
format:

attribute1=value1 attribute2=value2...

Do not include spaces between the attribute name, the equals sign (=), and
the value.

• For query attribute (-q) operations, the attribute-list argument has the
following format:

attribute1 attribute2...

The attribute-list argument is required when you use the -r flag and is optional
with the -q flag. Any attribute list specified with other flags is ignored by the
sysconfig utility.

Flags

-c
Configures the specified subsystem by initializing its attribute values and,
possibly, loading it into memory. Use this command whether you are configuring
a newly installed subsystem or one that was removed using the sysconfig -u
command option.

-d
Displays the attribute settings in the SYSCONFIGTAB.DAT file for the specified
subsystem.

-m
Queries the mode for the specified subsystems. A subsystem’s mode can be static
or dynamic. If you omit the subsystem name, sysconfig displays the mode of all
the configured subsystems.

1–22 New Features and Changes

sysconfig

-q
Queries attribute values for the configured subsystem specified by subsystem-
name. If you omit the attribute list, values for all the specified subsystem’s
attributes are displayed.

-Q
Queries information about attributes of the configured subsystem specified by
subsystem-name. The information includes the attribute data type, the operations
supported, and the minimum and maximum values allowed for the attribute.
Note that the minimum and maximum values refer to length and size for
attributes of char and binary types, respectively. If you omit the attribute-
list argument, information about all attributes in the specified subsystem is
displayed.

-r
Reconfigures the specified subsystem. You must supply the subsystem name and
the attribute list when you use this flag.

-s
Queries the subsystem state for the specified subsystems. If you omit the
subsystem name, sysconfig displays the state of all the configured subsystems.

-u
Unconfigures and, if the subsystem is loadable, unloads the specified subsystem
from the kernel.

Examples

The following examples show how to use the sysconfig command.

1. TCPIP> sysconfig -s
inet: loaded and configured
net: loaded and configured
socket: loaded and configured
iptunnel: loaded and configured
ipv6: loaded and configured
snmpinfo: loaded and configured

This example shows how to display the subsystems and their status.

2. TCPIP> sysconfig -q net
net:
ifnet_debug = 0
ifqmaxlen = 1024
lo_devs = 1
lo_def_ip_mtu = 4096
nslip = 0

This example shows how to display subsystem attributes and their values.

3. TCPIP> sysconfig -s net
net: loaded and configured

This example shows how to query the state of a particular subsystem.

New Features and Changes 1–23

sysconfigdb

sysconfigdb
Manages the subsystem configuration database.

Format

sysconfigdb {-a | -u} [-t target] -f file subsystem-name

sysconfigdb {-m | -r} [-t target] -f file [subsystem-name]

sysconfigdb -d [-t target] subsystem-name

sysconfigdb -l [-t target] [subsystem-name,...]

Description

The sysconfigdb utility is used to manage the subsystem configuration table
(TCPIP$ETC:SYSCONFIGTAB.DAT). However, it can also be used to maintain
any text file that has the same format as the SYSCONFIGTAB.DAT file. The file
being managed by the sysconfigdb utility is called the target file. By default, the
target file is the SYSCONFIGTAB.DAT file. To specify another file as a target
file, use the -t flag.

To modify a target file, create a stanza file. This stanza file contains the name
of one or more subsystems, each with a list of attributes and their values, as
described in Section 1.6.2.1.

When the target file is the SYSCONFIGTAB.DAT file, modifications you make to
it are synchronized into the subsystem configuration table, but the subsystems
are unchanged until the next time they are loaded.

When the target file is another file, there is no synchronization with the
subsystem configuration database.

Restrictions

You must have system management privileges to run the sysconfigdb utility to
modify the system configuration table.

Parameters

subsystem-name
Specifies a subsystem that contains the attributes you want to modify. The
subsystem name and attributes are in a stanza input file.

You must specify the subsystem name when deleting (-d), adding (-a), or
replacing (-u) a subsystem.

In other cases, when you do not specify a subsystem name, the operation is
attempted for all the subsystems and attributes specified in the input file.

Flags

-a
Adds the specified subsystem entry to the target file.

-d
Deletes the specified subsystem entry from the target file.

1–24 New Features and Changes

sysconfigdb

-f file
Specifies the input file, a stanza file that contains entries for one or more
subsystems. The default target file is the SYSCONFIGTAB.DAT file. Specify
another target file by using the -t target flag.

-l
Lists the specified subsystem entries in the target file. If you do not specify
a subsystem name, all subsystem entries in the target file are listed. The
SYSCONFIGTAB.DAT file is the default target file.

-m
Merges subsystem attributes specified in the input file with the subsystem
attributes in the target file. If you do not specify a subsystem name, all
subsystem entries in the input file are merged. The SYSCONFIGTAB.DAT
file is the default target file.

-r
Removes the subsystem entries specified in the input file from the target file.
The only entries removed are those that have attribute names and values that
exactly match those in the input file. If you do not specify the subsystem name,
all subsystem entries in the input file with attributes that match are removed
from the target file. The SYSCONFIGTAB.DAT file is the default target database
file.

-t file
Specifies the target file for the operation. If you do not specify this flag, the
default target file is the SYSCONFIGTAB.DAT file.

-u
Replaces a subsystem entry in the target file with the subsystem entry specified
in the input file.

Examples

The following examples show how use the sysconfigdb utility.

1. $ TCPIP
TCPIP> sysconfigdb -u -f table_mgr.stanza table_mgr_1

This command replaces the table_mgr_1 entry in the SYSCONFIGTAB.DAT
file with the information in the TABLE_MGR.STANZA file for the
table_mgr_1 subsystem. The command updates the in-memory
copy of the subsystem configuration database to match the modified
SYSCONFIGTAB.DAT file.

2. TCPIP> sysconfigdb -m -f table_mgr.stanza tbl_mgr_2

This command merges the tbl_mgr_2 information from the table_mgr.stanza
file with the information already in the tbl_mgr_2 entry in the
SYSCONFIGTAB.DAT file. The command updates the in-memory
copy of the subsystem configuration database to match the modified
SYSCONFIGTAB.DAT file.

New Features and Changes 1–25

sysconfigdb

3. TCPIP> sysconfigdb -l table_mgr_1
table_mgr_1:

size = 10
name = Ten-Element-Table

This command lists the entry for the subsystem table_mgr_1. This command
does not update the in-memory copy of the subsystem configuration database.

4. TCPIP> sysconfigdb -d table_mgr_1

This command deletes the table_mgr_1 entry from the SYSCONFIGTAB.DAT
file and updates the in-memory copy of the subsystem configuration database
to match the modified SYSCONFIGTAB.DAT file.

1–26 New Features and Changes

New Features and Changes
1.7 Online Help for Error Messages

1.7 Online Help for Error Messages
This release of TCP/IP Services provides additional online Help for error
messages. You can now access Help for messages issued during product and
service operations, such as component startup and shutdown.

For information about setting up and using the TCP/IP Services HELP message
database, see Section 2.8.

1.8 LPD Server Cluster Support
This release of TCP/IP Services features enhancements to the LPD server to
improve network printing in an OpenVMS Cluster environment. This section
describes the appropriate changes to management procedures.

1.8.1 Implementing Clusterwide Print Queues
To implement clusterwide print queues, set up the following generic print queues
and execution queues:

• Incoming print queues

The TCPIP$LPD_QUEUE execution queue is replaced by the new
TCPIP$LPD_IN generic queue and one or more execution queues for each
node in the cluster. You can specify the number of execution queues per node
using the Inbound-Queues-Per-Node configuration option, as described in
Section 1.8.4. By default, on execution queue is automatically created for
each node in the cluster.

When the LPD server starts, the appropriate number of execution queues
are automatically created and named TCPIP$LPD_IN_nodename_nn, where
nodename is the cluster node’s SCS name, and nn is the number of the
execution queue within the set of execution queues on that node. The
TCPIP$LPD_IN generic queue refers to the execution queues by number (that
is, all the first execution queues on all the nodes, followed the second, and so
forth), thus achieving load balancing across all the nodes in the cluster.

• Utility print queues

LPD utility queues are outbound execution queues for printers on remote
LPD hosts. The generic queue TCPIP$LPD_OUT can point to one or more
outbound execution queues for each node in the OpenVMS Cluster, named
TCPIP$LPD_OUT_nodename_nn, where nodename is the SCS node name of
the cluster node, and nn is the number of the queue on that node.

By default, outbound execution queues are not created automatically when
TCP/IP Services starts up. You must specify the creation of outbound
execution queues, using the Utility-Queues-Per-Node configuration option,
as described in Table 1–2.

As with the inbound execution queues, the TCPIP$LPD_OUT generic queue
points to the execution queues by number, thus achieving load balancing.

The printcap attributes of the utility queues are defined by default as follows:

TCPIP$LPD_OUT_nodename_nn:\
:lf=/TCPIP$LPD_ROOT/000000/TCPIP$LPD_OUt_nodename_nn.LOG:\
:lp=TCPIP$LPD_OUT_nodename_nn:\
:rm=localhost:\
:sd=/TCPIP$LPD_ROOT/TCPIP$LPD_OUT_nodename_nn:\

Entries in the printcap file are required only if you want to change one of
these default settings.

New Features and Changes 1–27

New Features and Changes
1.8 LPD Server Cluster Support

1.8.2 Using Clusterwide Print Queues
Print jobs are queued to the TCPIP$LPD_OUT print queue. To specify the printer
on the PRINT command line, include the following qualifiers.

/PARAMETER=(HOST=hostname), where hostname is the name of the remote
LPD host

/PARAMETER=(PRINTER=printername), where printername is the name of
the printer on the remote LPD host.

For example, to print your LOGIN.COM file on the printer named XYZPRINT on
the host LPDSVR.XYZ.ORG, enter the following command:

$ PRINT/QUEUE=TCPIP$LPD_OUT/PARAMETER=(HOST=LPDSVR.XYZ.ORG,PRINTER=XYZPRINT)-
_$ SYS$LOGIN:LOGIN.COM

You might want to associate DCL symbols with the destination printers, creating
command names that are easy to remember. The new command names can be
made available systemwide by including them in the system SYLOGIN.COM file.

The printer specified in the preceding example can be defined with the following
command:

$ XYZPRINT :== $ PRINT/QUEUE=TCPIP$LPD_OUT-
_$ /PARAMETER=(HOST=LPDSVR.XYZ.ORG,PRINTER=XYZPRINT)

If the logical name is defined systemwide, the XYZPRINT command always prints
to the specified printer on the specified host.

1.8.3 Defining the LPD Spooler Directory
The TCPIP$LPD_SPOOL logical name is replaced by the TCPIP$LPD_ROOT
logical name. The new logical name defines the LPD root directory; if not
specified, the logical name points by default to the same directory as the old
TCPIP$LPD_SPOOL logical name, SYS$SPECIFIC:[TCPIP$LPD]. You can
redefine the LPD root directory by defining TCPIP$LPD_ROOT, as follows:

$ DEFINE/SYSTEM/EXECUTIVE_MODE/TRANSLATION_ATTRIBUTES=-
_$ (CONCEALED,TERMINAL) TCPIP$LPD_ROOT dev:[directory.]

The printcap file need not be changed when you define the LPD root directory.
The root directory is defined in the printcap file using the following entry:

:sd= /TCPIP$LPD_ROOT/000000/MYQUEUE:\

Inbound execution queues do not have printcap entries; rather, they take on the
characteristics of the local queues to which they submit print jobs.

1.8.4 Configuring the LPD Server
The logical names used to modify LPD configuration information are generally
replaced by entries in the TCPIP$LPD.CONF file, a text file that you can modify
with any text editor.

Table 1–2 describes the TCPIP$LPD.CONF options.

1–28 New Features and Changes

New Features and Changes
1.8 LPD Server Cluster Support

Table 1–2 LPD Configuration Options and Descriptions

Configuration Option Description

1st-VFC-Prefix-Special Specifies not to insert an extra line feed character at the
beginning of print files.

Droptime Indicates how long after repeated timeouts a connection
should be maintained before closing the connection. The
value is specified in seconds.

The Drop timer is in effect only after the link has been
established, and it takes effect only if the Keepalive
configuration option is set. The default value for the Drop
timer is 300 seconds.

Idle-Timeout Specifies the length of time for the LPD server to wait
for an incoming LPD connection, in OpenVMS delta time
format. The default is 5 minutes. This behavior requires
that the Persistent-Server option be specified.

Inbound-Queues-Per-
Node

Specifies the number of inbound execution queues to create
for each cluster node when the LPD server starts. The
default is 1.

Keepalive Specifies the number of seconds to wait before checking the
other end of a link that appears to be idle. The Keepalive
timer detects when a remote host has failed or has been
brought down, or when the logical connection has been
broken.

Loop-Max Specifies the maximum number of times the LPD server
should retry a connection. The default is no maximum (the
same as setting this option to 0). This behavior requires
that the Persistent-Server option be specified.

Persistent-Server Enables the persistence of the LPD server. This behavior is
disabled by default.

Probetime Specifies the number of seconds to wait before timing out
the connection.

The value of the Probetime option must always be less
than or equal to the value of the Droptime option. The
default value for the Probetime option is 75 seconds.

The Probe timer controls:

• When establishing an initial connection, the number
of seconds TCP/IP Services will wait for a response
before a timeout occurs. The time is active regardless
of whether the Keepalive configuration option is set.

• The length of time (in seconds) allowed to pass before
TCP/IP Services checks an idle connection. This
requires that the Keepalive configuration option
be set.

PS-Extensions Controls Compaq PrintServer extension support. By
default, PrintServer extensions are supported by LPD.
To disable support, specify the NON_PS keyword to this
option. To enable support, specify the LPS keyword.

Retry-Interval Specifies the amount of time to wait before requeuing a
print job that failed because of a soft error, such as the
loss of the TCP connection. The default is 5 minutes
(0 00:05:00.00).

(continued on next page)

New Features and Changes 1–29

New Features and Changes
1.8 LPD Server Cluster Support

Table 1–2 (Cont.) LPD Configuration Options and Descriptions

Configuration Option Description

Retry-Maximum Specifies the OpenVMS delta time for which the LPD
symbiont will continue to requeue a print job that has failed
with a soft error. The default is 1 hour (0 01:00:00.00).

Setup-NoLF By default, the LPD server inserts a line feed into the byte
stream after the SETUP module and before the actual print
file. This option allows you to control this behavior. To
prevent LPD from inserting line feed characters, set this
option to TRUE. For information about controlling this
behavior using the printcap file, see Section 1.8.5.

Stream-Passall Controls whether LPD will add extra line feed characters
to files with embedded carriage control (the default). Set
this option to preserve the behavior of previous versions of
TCP/IP Services. This is useful when your users print from
Compaq PATHWORKS Client software.

Utility-Queues-Per-
Node

Specifies the number of outbound execution queues to
create for each cluster node when the LPD server starts.
The default is 0.

Synchronize-All-Jobs Controls whether the the LPD print symbiont process
running in an inbound execution queue (TCPIP$LPD_IN_
nodename_nn) will synchronize on the completion of each
job that it submits to a final destination print queue.

If the LPD service log option LOGOUT is set using the
TCP/IP management command SET SERVICE/LOG, when
a print job submitted by the symbiont process completes,
the LPD server synchronizes and sends an OPCOM
message containing the job number, queue name, and
user and host names of the submitter.

Each synchronization causes the consumption of one slot
of the symbiont process’s AST quota and some dynamic
memory. In situations where many jobs submitted by an
LPD symbiont process are pending (for example, because
the print queue to which they were submitted has been
stopped) the symbiont process can exhaust its AST quota or
virtual memory.

If the Synchronize-All-Jobs option is set to FALSE,
synchronization occurs only for print jobs that have either
an LPD mailback completion notice or a temporary layup
file sent from the LPD client to be used in the printing of
the job.

Setting this option to FALSE helps limit the exhaustion
of dynamic memory or AST quota when many print
jobs are outstanding, because most print jobs do not use
mailback completion (/PARAMETERS=MAIL) or layup files
(/PARAMETERS=LAYUP_DEFINITION).

The default setting for the Synchronize-All-Jobs option
is TRUE, which is appropriate for most sites. Systems with
heavy inbound processing across many print queues might
need to set this option to FALSE.

VMS-Flagpages Enables the OpenVMS flag-page print options described in
the Compaq TCP/IP Services for OpenVMS Management
guide.

1–30 New Features and Changes

New Features and Changes
1.8 LPD Server Cluster Support

1.8.5 Using the printcap File to Prevent Line Feed Insertion
To prevent the LPD server from inserting a line feed into the byte stream after
the SETUP module and before the actual print file, include the sn symbol in the
printcap printer configuration file using the TCPIP$LPRSETUP program as
described in the Compaq TCP/IP Services for OpenVMS Management guide.

Including this sn symbol prevents LPD from inserting the line feed character on a
per-queue basis, overriding the definition of the Setup-NoLF configuration option
in the TCPIP$LPD.CONF file (described in Table 1–2).

1.8.6 Configuring a High-Availability LPD Server
You can use the new LPD server cluster features to provide a high-availability,
load-balanced LPD server. To configure this, create a cluster alias for all of the
IP interfaces of your LPD server nodes. On your LPD clients, specify the cluster
alias as the LPD server to which to send LPD jobs. For more information about
load balancing and the load broker, refer to the Compaq TCP/IP Services for
OpenVMS Management guide,

1.8.7 Migrating to the Clusterwide LPD Server
The LPRSETUP utility uses clusterwide configuration definitions in new
printcap entries that it creates for you, but it does not automatically change
existing entries that refer to the node-specific directory. This section describes
how to migrate an existing LPD configuration to the cluster.

If you have been using LPD and want to migrate your current environment to
work in a cluster, you must perform some manual conversion steps. If you do
not, your existing LPD configuration will continue to work as it always has, in
single-node mode.

To migrate your system-specific LPD configuration to a clusterwide configuration:

1. Shut down LPD by entering the following command:

$ @SYS$STARTUP:TCPIP$LPD_SHUTDOWN.COM

2. Create a clusterwide directory to serve as your LPD root directory. For
example:

$ CREATE/DIRECTORY dev:[directory]/OWNER=TCPIP$LPD

For the disk device (dev:), specify a clusterwide device. For directory, specify
a directory on the clusterwide device (for example, [LPD_ROOT]).

3. Add a definition of the TCPIP$LPD_ROOT logical to your system startup
command file, pointing the logical to your new LPD root directory.

The logical must either be defined before TCPIP$STARTUP.COM runs or
in TCPIP$LPD_SYSTARTUP.COM. If you define TCPIP$LPD_ROOT in
TCPIP$LPD_SYSTARTUP.COM, make sure the logical is defined before the
DCL command that starts your client queues. If you define TCPIP$LPD_
ROOT in TCPIP$LPD_SYSTARTUP, the following informational message is
displayed when you start LPD:

%DCL-I-SUPERSEDE, previous value of TCPIP$LPD_ROOT has been superseded

This message reflects that fact that TCPIP$LPD_ROOT was defined
before TCPIP$LPD_SYSTARTUP.COM was invoked. Therefore, your
definition of TCPIP$LPD_ROOT in TCPIP$LPD_SYSTARTUP.COM will
supersede the one made by TCPIP$LPD_STARTUP.COM. If you are
defining TCPIP$LPD_ROOT in TCPIP$LPD_SYSTARTUP.COM and you

New Features and Changes 1–31

New Features and Changes
1.8 LPD Server Cluster Support

do not see this informational message, there may be an error in your
definition of TCPIP$LPD_ROOT. Make sure you included the /SYSTEM
and /EXECUTIVE_MODE qualifiers.

Your definition of the TCPIP$LPD_ROOT logical should reside in a
clusterwide file. Create a clusterwide command file to be invoked from
TCPIP$LPD_SYSTARTUP.COM. For example, create a file named LPD_
ROOT.COM in the directory that is used to store clusterwide system
management files (in this case, COMMON_MANAGER), containing the
command that defines TCPIP$LPD_ROOT.

$ TYPE COMMON_MANAGER:LPD_ROOT.COM
$ DEFINE/SYSTEM/EXECUTIVE_MODE -
_$ /TRANSLATION_ATTRIBUTES=(CONCEALED,TERMINAL) TCPIP$LPD_ROOT DISK1:[LPD_ROOT.]

Include the command to invoke the new command file at the beginning the
TCPIP$LPD_SYSTARTUP.COM file. For example:

$ @COMMON_MANAGER:LPD_ROOT.COM

4. Define the TCPIP$LPD_ROOT logical to point to the directory you just
created. For example:

$ DEFINE/SYSTEM/EXECUTIVE_MODE -
_$ /TRANSLATION_ATTRIBUTES=(CONCEALED,TERMINAL) TCPIP$LPD_ROOT DISK1:[LPD_ROOT.]

5. Copy your current printcap file to your new LPD root directory. For example:

$ COPY SYS$SPECIFIC:[TCPIP$LPD]TCPIP$PRINTCAP.DAT TCPIP$LPD_ROOT:[000000]

6. Edit the new printcap file and change all occurrences of
/SYS$SPECIFIC/TCPIP$LPD to TCPIP$LPD_ROOT/000000.

7. Create subdirectories for each of the printcap entries defined in your
printcap file.

Create a subdirectory for each subdirectory under your old LPD home
directory. Use the following command to list the subdirectories:

$ DIRECTORY SYS$SPECIFIC:[TCPIP$LPD]*.DIR

For example, if you had an existing LPD client queue called LASERJET with
a spooler directory of SYS$SPECIFIC:[TCPIP$LPD.LASERJET], enter the
following command to create the new clusterwide subdirectory:

$ CREATE/DIRECTORY DISK1:[LPD_ROOT.LASERJET]

8. Enable LPD on each cluster node. First, define TCPIP$LPD_ROOT as
you have it defined in your system startup sequence. Then run the
TCPIP$CONFIG.COM command procedure on each of the cluster nodes
on which you want to run LPD.

From Server menu, choose the option to enable LPD.

9. If you have used the LPD configuration logical names and you want to copy
the settings to the new configuration, or if you want to change the default
values for the new configuration options, modify the LPD configuration file
(TCPIP$LPD.CONF), as described in Section 1.8.4.

The LPD configuration file is optional; defaults are provided for each
configurable item. For more information about copying logical name settings
to configuration options, see Section 1.8.7.1.

1–32 New Features and Changes

New Features and Changes
1.8 LPD Server Cluster Support

10. If you are using communication proxies to authorize LPD print users, and
the TCPIP$PROXY database is not shared by all members of the OpenVMS
Cluster, you must add the proxy entries on each node that is running the LPD
server.

To determine whether communication proxies are used, enter the following
TCP/IP management command:

TCPIP> SHOW SERVICE LPD/FULL

If application proxies have been enabled, the Aprox flag appears in the list of
flags.

To determine whether the proxy database is shared by the cluster nodes,
enter the following command:

$ SHOW LOGICAL TCPIP$PROXY

This logical name points to the location of the proxy database. If it is not on
a clusterwide device, and the Aprox flag is set for the LPD service, then you
must add proxy entries on each node running the LPD service.

To display the proxy entries, enter the TCP/IP management command SHOW
PROXY. Then use the SET PROXY command to enter the application proxy
information on each node.

To load proxy information on all cluster members, restart TCP/IP Services.

11. Start LPD on each cluster node by entering the following command:

$ @SYS$STARTUP:TCPIP$LPD_STARTUP.COM

1.8.7.1 Migrating Configuration Options
Table 1–3 lists the LPD logical names and the associated options in the
TCPIP$LPD.CONF file.

Table 1–3 Logical Names and LPD Configuration Options

Logical Name TCPIP$LPD.CONF Option Name

TCPIP$LPD_PERSISTENT_SERVER Persistent-Server

TCPIP$LPD_IDLE_TIMEOUT Idle-Timeout

TCPIP$LPD_LOOP_MAX Loop-Max

TCPIP$LPD_KEEPALIVE Keepalive

TCPIP$LPD_PROBETIME Probetime

TCPIP$LPD_DROPTIME Droptime

TCPIP$LPD_SETUP_NOLF Setup-NoLF

TCPIP$LPD_1ST_VFC_PREFIX_SPECIAL 1st-VFC-Prefix-Special

TCPIP$LPD_VMS_FLAGPAGES VMS-Flagpages

TCPIP$LPD_PS_EXT PS-Extensions

TCPIP$LPD_STREAM_PASSALL Stream-Passall

TCPIP$LPD_RETRY_INTERVAL Retry-Interval

TCPIP$LPD_MAXIMUM_INTERVAL Retry-Maximum

(continued on next page)

New Features and Changes 1–33

New Features and Changes
1.8 LPD Server Cluster Support

Table 1–3 (Cont.) Logical Names and LPD Configuration Options

Logical Name TCPIP$LPD.CONF Option Name

TCPIP$LPD_qname_SETUP_NOLF None. This characteristic is defined using
the new sn symbol in the printcap file.
For more information, see Section 1.8.5.

Table 1–4 describes the logical names that continue to be valid:

Table 1–4 Valid LPD Logical Names

Logical Name Description

TCPIP$LPD_ROOT Replaces TCPIP$LPD_SPOOL.

TCPIP$LPD_SYMB_DEBUG Replaces TCPIP$LPD_DEBUG and LPD_
DEBUG.

TCPIP$LPD_RECV_DEBUG Replaces TCPIP$LPD_RCV and LPD_RCV.

Table 1–5 lists the logical names that are obsolete.

Table 1–5 Obsolete LPD Logical Names

Logical Name Replacement

TCPIP$LPD_PRINTCAP No replacement. The printcap file is named
TCPIP$PRINTCAP.DAT and is stored in the LPD root
directory.

TCPIP$LPD_LOGFILE No replacement. The log files are named for the
execution queues and are stored in the LPD root
directory in these formats:

TCPIP$LPD_ROOT:TCPIP$LPD_IN_nodename_nn.LOG
TCPIP$LPD_ROOT:TCPIP$LPD_OUT_nodename_nn.LOG

TCPIP$LPD_SPOOL Replaced by TCPIP$LPD_ROOT.

TCPIP$LPD_DEBUG
LPD_DEBUG

Replaced by TCPIP$LPD_SYMB_DEBUG.

TCPIP$LPD_RCV
LPD_RCV

Replaced by TCPIP$LPD_RECV_DEBUG.

TCPIP$LPD_CLIENT_
ENABLE

No replacement.

1.9 UNIX Services Database File
This version of TCP/IP Services provides an editable text file,
TCPIP$ETC:SERVICES.DAT, that allows you to associate Internet service
names and aliases with the port number and protocol, in the same way that they
are associated on UNIX systems using the /etc/services file. This provides
network programmers with the ability to refer to services by name rather than
hard-coded port numbers.

When you configure the BIND resolver using the TCPIP$CONFIG command
procedure, the SERVICES.DAT file is written to the directory pointed to by the
TCPIP$ETC logical name. This template file contains information about the
format of the file.

1–34 New Features and Changes

New Features and Changes
1.9 UNIX Services Database File

The following Compaq C routines are defined to operate on the SERVICES.DAT
file:

• getservbyname()

• getservbyport()

• getservent()

• setservent()

• endservent()

The getservbyname() and getservbyport() functions look first in the
traditional (RMS indexed) services database that is referenced by the
TCPIP$SERVICE logical name. If the requested service is not found there,
TCPIP$ETC:SERVICES.DAT is searched before returning an error to the caller.

Note

The TCPIP$ETC:SERVICES.DAT file is not compatible with TCP/IP
management commands. Service definitions established with the SET
SERVICE command are not stored in the TCPIP$ETC:SERVICES.DAT
file. Services listed in the TCPIP$ETC:SERVICES.DAT file are not shown
by the SHOW SERVICE command.

1.10 NFS Support for Extended File Specifications
The NFS server and the NFS client support OpenVMS extended file specifications
(EFS) on ODS-5 disk volumes.

You can use NFS server to export files on OpenVMS ODS-5 volumes. The
traditional ODS-2 volumes continue to be supported. The NFS client can emulate
an ODS-5 volume.

Note that the NFS server and NFS client support the ISO Latin-1 character set
only.

If an ODS-5 volume is mapped and exported, the NFS server automatically
supports EFS features and ignores the NAME_CONVERSION option if it is
specified in the export record.

On ODS-2 volumes (with or without the NAME_CONVERSION option), files with
all uppercase names are displayed on non-OpenVMS clients with all lowercase
letters. On ODS-5 volumes, the file names are displayed by clients in the same
case as they are displayed locally on the server host.

If an ODS-2 volume contains file names that were created using the NFS NAME_
CONVERSION option and include lowercase or special characters that are
invalid for ODS-2 file names, those file names displayed locally on the server host
contain escape codes, as described in the Compaq TCP/IP Services for OpenVMS
Management manual. If a SET VOLUME /STRUCTURE_LEVEL=5 command is
performed on this volume, the names are displayed by clients with the escape
codes exactly as they are displayed locally on the server host.

New Features and Changes 1–35

New Features and Changes
1.10 NFS Support for Extended File Specifications

1.10.1 Enabling Extended File Specifications
Extended file specifications are provided by the ODS-5 file system. To mount
an ODS-5 volume, add the /STRUCTURE=5 qualifier to TCP/IP management
command MOUNT. For example:

$ TCPIP
TCPIP> MOUNT DNFS0: BOOK1 BEATRICE -
_TCPIP> /PATH="/INFERNO" /HOST="FOO.BAR.EREWHON" -
_TCPIP> /STRUCTURE=5 /SYSTEM

The /STRUCTURE qualifier accepts the following values:

• 5 to indicate ODS-5

• 2 to indicate ODS-2 (the default)

For more information about the MOUNT/STRUCTURE command, display the
online Help by entering the following command:

TCPIP> HELP MOUNT/STRUCTURE

Note

When you display device information using the DCL command SHOW
DEVICE/FULL, the NFS disk is incorrectly shown as being accessed by
DFS. For example:

$ SHOW DEVICE/FULL
. . .
Disk DNFS1:, device type Foreign disk type 7, is online, mounted,
file-oriented device, shareable, accessed via DFS
. . .

1.10.2 NFS Client Support for Extended File Specifications
If you do not include the /STRUCTURE qualifier on the MOUNT command, the
NFS client assumes that the file system structure being accessed is an ODS-2
volume. You can change this default by defining the following logical name:

TCPIP$NFS_CLIENT_MOUNT_DEFAULT_STRUCTURE_LEVEL

You can use this logical name to ensure that all NFS disks on the system have
ODS-5 support enabled. Set the value of the logical to 2 for ODS-2 (the default),
or 5 for ODS-5. To override this logical, include the /STRUCTURE qualifier to the
TCP/IP management command MOUNT.

The NFS client supports the extended character set supported by the OpenVMS
operating system. The NFS client does not support NUL (ASCII 0). The length
of a file name is limited to 232 characters, including the file name, dot, file
extension, semicolon, and version number.

Refer to the OpenVMS product documentation for more information about
extended file specification support.

1.11 FTP Server and FTP Client Support for UNIX Path Names
(Alpha Only)

The FTP server and the FTP client have been enhanced to support UNIX path
names. The FTP client can be used to access files using UNIX paths, and the
FTP server can interpret the path names.

1–36 New Features and Changes

New Features and Changes
1.11 FTP Server and FTP Client Support for UNIX Path Names (Alpha Only)

1.11.1 Specifying UNIX Path Names with FTP
For ODS-5 volumes, the FTP client and FTP server accept a path name argument
in UNIX format. The following FTP commands accept UNIX path names:

• APPEND

• DELETE

• DIRECTORY

• GET

• PUT

• RENAME

• VIEW

For display, most UNIX path names are translated to OpenVMS format (for
example, with the DIRECTORY command). However, UNIX path names are not
translated to OpenVMS format in the following type of message:

150 Opening data connection for file-name IP-address

For the FTP client and server to support these ODS-5 features, the Compaq C
shareable library (SYS$SHARE:DECC$SHR.EXE) must be updated to an ECO
built after October 2000, including:

• VMS712_ACRTL-V0200

• VMS721H1_ACRTL-V0200

• VMS721_ACRTL-V0300

• VMS73_ACRTL-V0100

1.11.2 Specifying Special Characters
The following list describes the way certain characters are handled on ODS-5
volumes.

• All characters supported by ODS-5 volumes are valid. When you specify
files in UNIX format, do not use the caret (^) escape character to quote
special characters. For example, specify funny[path name.txt.bkp;1, not
funny^[path name^.txt.bkp;1.

• The question mark (?) and asterisk (*) characters are interpreted as UNIX
wildcard characters. OpenVMS interprets these characters as single-
character wildcard characters. The OpenVMS command interpreter accepts
the percent sign (%) in the same way. However, the percent sign is a valid
UNIX file name character.

• UNIX regular expressions (enclosed in brackets ([...])) are not supported.

• In some cases, specifying a file name (the portion of the path after the final
slash) with a dot may be ambiguous (for example, ls wow/my.file).

• When the tilde (~) and slash (/) characters are specified alone, the OpenVMS
system processes them as equivalent to SYS$LOGIN. However, a specification
such as ~/x.x is not valid.

• When you copy a file to or from the OpenVMS FTP server, the character
string .. (as used, for example, in the UNIX command cd ..) is interpreted
by the OpenVMS FTP server as [-]. Similarly, the character string . is
interpreted as [].

New Features and Changes 1–37

New Features and Changes
1.11 FTP Server and FTP Client Support for UNIX Path Names (Alpha Only)

Note, however, that character strings [-] and [] are not valid directory
specifications on a UNIX server. These characters are interpreted by the
UNIX server as file name characters.

• For the following commands, quotation marks are required around path
names that start with a slash:

APPEND

CLOSE

DELETE

DIRECTORY

GET

PUT

VIEW

• Specifying a dot in the path name when the dot is intended to indicate the
OpenVMS subdirectory can lead to indeterminate results.

• OpenVMS logical names are often specified with a trailing colon (for example,
SYS$HELP:); however, this format can lead to problems with ODS-5 volumes.
For example, my$topdir/subdir is interpreted as [.mytopdir.subdir]; it will
not be interpreted as my$topdir:[subdir].

To specify a logical name for a directory name, include a leading slash
character and enclose the directory name in quotation marks.

1.12 Configuring User-Written Network Services
The TCP/IP Services software allows you to configure and manage network
services that are not supplied with the TCP/IP Services software (user-written
services). The following sections provide information about managing user-
written services.

1.12.1 Starting and Stopping User-Written Services
TCP/IP Services supplies command procedures for starting and stopping user-
written services. To start a user-written service, enter the following command:

$ SYS$STARTUP:TCPIP$CUSTOMER_SERVICE_STARTUP service-name

For service-name, specify the name of the service as defined using the TCP/IP
management command SET SERVICE.

To stop the user-written service, enter the following command:

$ SYS$STARTUP:TCPIP$CUSTOMER_SERVICE_SHUTDOWN service-name

1.12.2 Specifying TCP and UDP
This section describes how to configure user-written services to use both TCP and
UDP protocols. Use the TCP/IP Services management command SET SERVICE
to configure the protocols for services.

You must enter a separate SET SERVICE command for each protocol. Follow
these steps:

1. Set up the service using the following command:

1–38 New Features and Changes

New Features and Changes
1.12 Configuring User-Written Network Services

$ TCPIP
TCPIP> SET SERVICE service-name /PROTOCOL=TCP -
_TCPIP> /USER_NAME=user-name /PROCESS_NAME=process -
_TCPIP> /PORT=port-number /FILE=startup-file

where:

• service-name is the name of the user-written service you are adding.

• user-name is an OpenVMS user account name defined in the SYSUAF
file.

• process is the name of the service’s process.

• port-number is the service’s port number.

• startup-file is the service’s startup file specification.

2. To add the UCP protocol, enter a second SET SERVICE command.
Include the /PROTOCOL=UCP qualifier, and repeat the following required
information from the first SET SERVICE command:

The service name (the command parameter)

OpenVMS user account name (the /USER qualifier)

The service’s process name (the /PROCESS_NAME qualifier)

The service’s port number (the /PORT qualifier)

The service’s startup file specification (the /FILE qualifier)

The service’s internet address, if the service is bound to a particular
internet address (the /ADDRESS qualifier)

For more information about the SET SERVICE command, access online help by
entering the following command:

TCPIP> HELP SET SERVICE

New Features and Changes 1–39

2
Installation, Configuration, and Startup Notes

Use this chapter in conjunction with the Compaq TCP/IP Services for OpenVMS
Installation and Configuration manual.

2.1 Configuring IPv6
The following sections describe procedures specific to systems where IPv6 is to be
enabled.

2.1.1 Information for Users of the IPv6 Early Adopter’s Kit
If you are running any version of the TCP/IP Services V5.0 IPv6 early adopter’s
kit (EAK), remove the EAK and then install the current version of the TCP/IP
Services software. You must then run the TCPIP$IP6_SETUP.COM command
procedure. For more information, refer to the Compaq TCP/IP Services for
OpenVMS Guide to IPv6.

The definition of a sockaddr structure has been changed. This change breaks
binary compatibility for IPv6 applications that were compiled using the TCP/IP
Services Version 5.0 EAK. You must recompile and relink your applications after
you install the current version of TCP/IP Services.

2.1.2 Warning Message in TCPIP$CONFIG.COM
If have run the TCPIP$IP6_SETUP.COM procedure to enable IPv6, and then
you run the TCPIP$CONFIG.COM command procedure, TCPIP$CONFIG.COM
displays the following warning message when you select the Core environment
option:

WARNING

This node has been configured for IPv6. If you make any additional
changes to the configuration of the interfaces, you must run
TCPIP$IP6_SETUP again and update your host name information in
BIND/DNS for the changes to take effect.

2.2 Startup Problems and Restrictions
The following sections describe product startup problems.

2.2.1 Loading the Routing Database at Startup
If the BIND resolver has been configured to point only to the local host and no
host name is associated with a route entry in the local hosts database, then the
loading of the permanant routes database during TCP/IP Services startup fails.

To avoid this problem, define any hosts associated with the routes database in the
local hosts database before you start TCP/IP Services.

Installation, Configuration, and Startup Notes 2–1

Installation, Configuration, and Startup Notes
2.2 Startup Problems and Restrictions

2.2.2 Startup DUPLNAM Messages
When you start TCP/IP Services, the following DUPLNAM messages may appear:

%TCPIP-E-DYNPROXERR, cannot add record to proxy database (TCPIP$PROXY) in dynamic memory
-SYSTEM-F-DUPLNAM, duplicate name
%TCPIP-E-DYNPROXERR, cannot add record to proxy database (TCPIP$PROXY) in dynamic memory
-SYSTEM-F-DUPLNAM, duplicate name
%TCPIP-I-LOADSERV, loading TCPIP server proxy information
%TCPIP-I-SERVLOADED, auxiliary server loaded with 0 proxy records
-TCPIP-I-SERVSKIP, skipped 0 communication proxy records
-TCPIP-I-SERVTOTAL, total of 8 proxy records read
%TCPIP-S-STARTDONE, TCP/IP Services startup completed at 7-JUN-2000 16:03:51.48

You can ignore these messages. They are the result of a change in the current
version of TCP/IP Services.

In previous versions of TCP/IP Services, the proxy database required that all
names for a particular host be entered in the hosts database. For example, the
host names johnws and johnws.abc.com needed to be in the hosts database if any
NFS requests were made using either of the host names.

In the current release of TCP/IP Services, the proxy information that is loaded
automatically includes all of a host’s addresses and alias names. Therefore, the
first entry for a host succeeds; any subsequent matching entries that differ only
in the host’s alias name generate DUPLNAM messages.

Proxy records for the host under multiple host names succeed, because all names
(including the duplicates) are loaded.

There is only one record for each host. Therefore, if you remove a proxy entry
under any of the host’s names, all of the addresses and aliases for that host are
removed. Subsequent removal attempts under any of the host’s other names
return an error.

2.3 System Page Table Entries Parameter (VAX Only)
On VAX systems, make sure the AUTOGEN parameter SPTREQ is set to at least
6000. Run SYSMAN to check the minimum SPTREQ value, as follows:

$ RUN SYS$SYSTEM:SYSMAN

SYSMAN> parameter show sptreq
%SYSMAN, a USE ACTIVE has been defaulted on node VMSVAX

Node VMSVAX: Parameters in use: ACTIVE
Parameter Name Current Default Minimum Maximum Unit Dynamic
-------------- ------- ------- ------- ------- ---- -------
SPTREQ 8000 3900 3000 -1 Pages

SYSMAN>

To modify the minimum SPTREQ, run the AUTOGEN command procedure as
described in the OpenVMS System Management Utilities Reference Manual: A-L.
Set the minimum SPTREQ value to 6000.

2.4 Starting the Product After a Minimum OpenVMS Boot
The product configuration and startup command procedures
(TCPIP$CONFIG.COM and TCPIP$STARTUP.COM) fails if you perform any
kind of boot other than a full boot. Therefore, booting OpenVMS with MIN, INST,
or UPGRADE is not supported.

2–2 Installation, Configuration, and Startup Notes

Installation, Configuration, and Startup Notes
2.4 Starting the Product After a Minimum OpenVMS Boot

The TCPIP$CONFIG.COM command procedure fails on systems that do not have
a SYSUAF database and a RIGHTSLIST database. These OpenVMS files must
be created before you configure TCP/IP Services.

2.5 Upgrading from TCP/IP Services Version 4.x
The following sections describe actions you can take to preserve the behavior of
the software when you upgrade from an older version of TCP/IP Services (UCX)
to the current version.

2.6 Removing Prior Versions of this Product
This section provides important information you should review before installing
the current version of TCP/IP Services.

2.6.1 Upgrading OpenVMS VAX Systems
The command procedure SYS$UPDATE:UCX$CLEANUP.COM is typically used
to clean up a previous version of the TCP/IP Services product. However, running
this command procedure when the new version of TCP/IP Services has been
installed removes files that are necessary for the operation of the product.

Caution

Do not run the UCX$CLEANUP.COM command procedure after installing
the new version of TCP/IP Services on an OpenVMS VAX system. If
you run this command procedure, it will corrupt your TCP/IP Services
installation.

Compaq strongly recommends that you remove this command procedure after
installing the new version of TCP/IP Services.

2.6.2 Some UCX Files Remain After Installation
After you install and start the current version of TCP/IP Services, some files with
a UCX$ prefix remain. (Most other files provided by this product use the prefix
TCPIP$.) The files listed in Table 2–1 are required in order to maintain backward
compatibility with previous versions of TCP/IP Services.

Table 2–1 UCX Files Required for Backward Compatibility

File Description

SYS$LIBRARY:UCX$IPC_SHR.EXE Allows the Compaq C Run-Time Library (CRTL)
to use TCP/IP sockets.

SYS$LIBRARY:UCX$INETDEF.ADA
SYS$LIBRARY:UCX$INETDEF.BAS
SYS$LIBRARY:UCX$INETDEF.FOR
SYS$LIBRARY:UCX$INETDEF.H
SYS$LIBRARY:UCX$INETDEF.MAR
SYS$LIBRARY:UCX$INETDEF.PAS
SYS$LIBRARY:UCX$INETDEF.PLI
SYS$LIBRARY:UCX$INETDEF.R32

The INETDEF files are shipped for compatibility
with applications developed under TCP/IP
Services Version 4.2. These files are identical
to the files shipped with Version 4.2

.

(continued on next page)

Installation, Configuration, and Startup Notes 2–3

Installation, Configuration, and Startup Notes
2.6 Removing Prior Versions of this Product

Table 2–1 (Cont.) UCX Files Required for Backward Compatibility

File Description

SYS$COMMON:[SYSEXE]UCX$UCP.EXE An empty (zero block) marker file that allows
some layered products that use an unsupported
test for the presence of the TCP/IP Services to
continue to operate.

SYS$COMMON:[SYSEXE]UCX$SERVICE.DAT An empty (zero block) marker file may
be created if the file does not exist
when TCPIP$STARTUP.COM executes.
The file specified by the logical name
TCPIP$SERVICE (which defaults to
SYS$COMMON:[SYSEXE]TCPIP$SERVICE.DAT)
contains the actual service information.

SYS$STARTUP:UCX$STARTUP.COM
SYS$STARTUP:UCX$CONFIG.COM

These files print an informational message to
SYS$OUTPUT, then execute the corresponding
TCPIP file. This allows the TCP/IP Services
product to continue to operate until the system
manager changes command files to use the new
TCPIP prefix.

SYS$SYSTEM:UCX$LPD_SMB.EXE Maintains backward compatibility for LPD print
queues.

SYS$SHARE:UCX$ESNMP_SHR.EXE
SYS$SHARE:UCX$ACCESS_SHR.EXE
SYS$SHARE:UCX$RPCXDR_SHR.EXE

Shareable images required for user-written
programs written under previous versions of
the product.

SYS$COMMON:[SYSEXE]UCX$TELNETSYM.EXE TELNET print symbiont executable. This file is
identical to TCPIP$TELNETSYM.EXE.

2.6.3 Preserving LPD Startup and Shutdown Behavior
Your LPD startup and shutdown command procedures may contain site-specific
edits. You must preserve these edits manually when you upgrade to the current
version of TCP/IP Services from a previous version. The procedure for preserving
your edits differs for OpenVMS Alpha systems (see Section 2.6.3.1) and OpenVMS
VAX systems (see Section 2.6.3.2). To preserve your site-specific startup and
shutdown command procedure files, use the procedure that is appropriate to the
type of system.

2.6.3.1 Preserving LPD Behavior (Alpha Systems)
When you install TCP/IP Services over an earlier version of the product, follow
the instructions displayed on your screen to preserve your edits in the LPD
startup and shutdown command procedures.

The following shows a sample screen display.

The following product will be installed to destination:
DEC AXPVMS TCPIP V5.1-9 DISK$ALPHASYS:[VMS$COMMON.]

UCX product already installed.

Another version of TCP/IP is installed. You must execute the following
three commands before continuing with this installation:
$ BACKUP SYS$COMMON:[SYSMGR]UCX$LPD_STARTUP.COM; -

SYS$COMMON:[SYSMGR]TCPIP$LPD_STARTUP.COM;
$ BACKUP SYS$COMMON:[SYSMGR]UCX$LPD_SHUTDOWN.COM; -

SYS$COMMON:[SYSMGR]TCPIP$LPD_SHUTDOWN.COM;
$ PRODUCT REMOVE UCX

2–4 Installation, Configuration, and Startup Notes

Installation, Configuration, and Startup Notes
2.6 Removing Prior Versions of this Product

After you follow these instructions and complete the installation of TCP/IP
Services, your site-specific edits to the LPD startup and shutdown files are found
in:

SYS$COMMON:[SYSMGR]TCPIP$LPD_STARTUP.COM_OLD
SYS$COMMON:[SYSMGR]TCPIP$LPD_SHUTDOWN.COM_OLD

Now merge your site-specific edits into:

SYS$COMMON:[SYSMGR]TCPIP$LPD_SYSTARTUP.COM
SYS$COMMON:[SYSMGR]TCPIP$LPD_SYSHUTDOWN.COM

2.6.3.2 Preserving LPD Behavior (VAX Systems)
To preserve your site-specific startup and shutdown information, you must install
TCP/IP Services, then copy the site-specific edits from:

SYS$COMMON:[SYSMGR]UCX$LPD_STARTUP.COM
SYS$COMMON:[SYSMGR]UCX$LPD_SHUTDOWN.COM

to the following files:

SYS$COMMON:[SYSMGR]TCPIP$LPD_STARTUP.COM
SYS$COMMON:[SYSMGR]TCPIP$LPD_SHUTDOWN.COM

2.6.3.3 Merging Edits (Alpha and VAX Systems)
When you merge edits, do not include the commands to start and stop the queue
UCX$LPD_QUEUE. This queue has been replaced with TCPIP$LPD_QUEUE.
The commands for starting and stopping TCPIP$LPD_QUEUE are in the LPD
startup and shutdown command procedure files.

After you merge the edits, modify the value of the /PROCESSOR qualifier in the
LPD client queue startup commands that you have just appended, replacing
TCPIP$LPD_SMB with UCX$LPD_SMB. For example, enter the following
command:

LSE Command> SUBSTITUTE/ALL "ucx$lpd_smb" "tcpip$lpd_smb"

2.6.4 Saving Mail Messages When You Upgrade
The new version of SMTP includes control files that are different from previous
versions. Before upgrading to the current version of TCP/IP Services, run the
ANALYZE utility to pick up any dead letters (SMTP control files that have not
been submitted to a print queue), as follows:

$ ANALYZE MAIL/REPAIR

2.6.5 Preserving SNMP Startup and Shutdown Behavior
After you upgrade to the current version of TCP/IP Services, you must perform
one of the following actions to ensure correct SNMP startup:

• If SNMP was configured under an old TCP/IP Services installation
(UCX) and you want to retain the previous configuration, run the
SYS$MANAGER:TCPIP$CONFIG.COM command procedure and select
the option to automatically convert UCX configuration files.

• After you upgrade to the current version of TCP/IP Services, run the
SYS$MANAGER:TCPIP$CONFIG.COM command procedure. If SNMP is
still enabled, disable SNMP then enable it again. This is necessary for the
proper operation of this component.

Installation, Configuration, and Startup Notes 2–5

Installation, Configuration, and Startup Notes
2.6 Removing Prior Versions of this Product

If you have customized versions of the UCX$SNMP_STARTUP.COM and
UCX$SNMP_SHUTDOWN.COM command procedures (used to start and stop
extension subagents), save your customized files to a different directory before
upgrading to the new version of TCP/IP Services. If you do not perform this step,
your customized changes will be lost.

Check for versions of these files in the following locations:

• SYS$MANAGER

• SYS$STARTUP

• SYS$SYSDEVICE:[UCX$SNMP]

After you install TCP/IP Services, manually merge your saved changes into
the new files created after installation. For more information, see the Compaq
TCP/IP Services for OpenVMS Management manual.

2.7 SNMP Installation and Setup Notes
The following sections describe procedures for installing and setting up SNMP.

2.7.1 SNMP Messages When You Install TCP/IP Services
For sites where the same version of TCP/IP Services is installed multiple times,
informational messages similar to the following may appear in the installation
dialog:

Do you want to review the options? [NO]

Execution phase starting ...

The following product will be installed to destination:
DEC AXPVMS TCPIP T5.3-9I DISK$AXPVMSSYS:[VMS$COMMON.]

The following product will be removed from destination:
DEC AXPVMS TCPIP T5.3-9H DISK$AXPVMSSYS:[VMS$COMMON.]

%PCSI-I-RETAIN, file [SYSEXE]TCPIP$ESNMP_SERVER.EXE was not replaced because
file from kit does not have higher generation number
%PCSI-I-RETAIN, file [SYSEXE]TCPIP$HR_MIB.EXE was not replaced because file
from kit does not have higher generation number
%PCSI-I-RETAIN, file [SYSEXE]TCPIP$OS_MIBS.EXE was not replaced because file
from kit does not have higher generation number
%PCSI-I-RETAIN, file [SYSLIB]TCPIP$ESNMP_SHR.EXE was not replaced because file
from kit does not have higher generation number
%PCSI-I-RETAIN, file [SYSLIB]UCX$ESNMP_SHR.EXE was not replaced because file
from kit does not have higher generation number

You can ignore these messages.

2.7.2 Verifying the SNMP Installation
SNMP has a separate installation verification procedure (IVP). To verify your
SNMP configuration, perform these steps:

1. Configure the SNMP services using the TCPIP$CONFIG.COM command
procedure, and start the TCP/IP Services software. Make sure that your
process has SYSTEM user privileges.

2. Run the TCP/IP Services configuration command procedure by entering the
following command:

$ @SYS$MANAGER:TCPIP$CONFIG

3. Choose option 7 (Run tests).

2–6 Installation, Configuration, and Startup Notes

Installation, Configuration, and Startup Notes
2.7 SNMP Installation and Setup Notes

4. From the Compaq TCP/IP Services for OpenVMS TEST Menu, choose option
2.

5. To run the SNMP IVP any time after exiting the configuration procedure,
enter the following command:

$ RUN SYS$COMMON:[SYSTEST.TCPIP]TCPIP$SNMPIVP.EXE

2.7.3 SNMP Subagent Startup Messages
The SNMP startup procedure can produce the following error messages in
subagent log files:

25-JUL-2001 14:13:32.47 **ERROR ESNMP_INIT.C line 3777: Could not
connect to master: connection refused
25-JUL-2001 14:13:32.94 WARNING OS_MIBS.C line 942: Master agent
cannot be reached. Waiting to attempt reconnect.

These messages are the result of a timing problem and can be ignored.

2.8 Setting Up the TCP/IP Services Message Database
At installation, the TCP/IP Services message database is installed at
SYS$COMMON:[SYSHLP]TCPIP.MSGHLP$DATA.

To get information about TCP/IP messages, include this database with the
OpenVMS message database, as follows:

1. Define the logical name MSGHLP$LIBRARY to point to all the databases in
the directory:

$ DEFINE/SYSTEM MSGHLP$LIBRARY SYS$COMMON:[SYSHLP]*.MSGHLP$DATA

2. Enter the DCL command HELP/MESSAGE to make sure the TCP/IP message
database is now recognized. For example:

$ HELP/MESSAGE FTP

SESDCN, FTPD: Session disconnection from ’host’ at ’time’

Facility: TCPIP, FTP Server

Explanation: This message appears when a session is disconnected, stating
the name of the client initiating the disconnection and the
time of the disconnection.

User Action: None.

Press RETURN to continue ...

In this example, Help Message displays all the messages that contain FTP as
part of the message ID.

2.9 Troubleshooting SMTP and LPD Shutdown Problems
If SMTP or LPD shutdown generates errors indicating that the queue manager
is not running, check your site-specific shutdown command procedure (VMS_
SYSHUTDOWN.COM). If this procedure contains the command to stop the queue
manager (STOP/QUEUE/MANAGER), make sure this command comes after any
invocation of the TCPIP$SHUTDOWN.COM procedure.

Installation, Configuration, and Startup Notes 2–7

Installation, Configuration, and Startup Notes
2.9 Troubleshooting SMTP and LPD Shutdown Problems

Note

You do not have to stop the queue manager explicitly. The queue manager
is automatically stopped and started when you restart the system.

2–8 Installation, Configuration, and Startup Notes

3
Problems and Restrictions

This chapter provides information about problems and restrictions in the current
version of TCP/IP Services.

3.1 Determining the TCP/IP Device Name from a Channel
Assignment

OpenVMS provides several ways to determine the name of a device on a channel
assignment. Using the SYS$GETDVI/SYS$GETDVIW system services, the DVI$_
DEVNAM, DVI$_FULLDEVNAM, and DVI$_UNIT items all return information
about the device. While the first two provide the full device name, DVI$_UNIT
returns only the unit number of the device. To form the complete device name,
a program must prefix the unit number (as a string) with the device name and
controller information. In the case of the TCP/IP device name, the programmer
could add the string BG or BGA. For example, BG + 1234 would produce the device
name BG1234:.

The TCP/IP device name may be altered in a future release. It is good
programming practice to use the DVI$_DEVNAM or DVI$_FULLDEVNAM
items to obtain the full device-name string. Such programs are not based on the
assumption that the TCP/IP device name is BGnnnn or BGAnnnn, and would not
be affected by any change in the TCP/IP device name strategy.

3.2 RCP Full Transparent Copy Operations
RCP on OpenVMS is best used for transferring text files. By default, RCP
converts any type of OpenVMS file that is not Stream_LF to Stream_LF format
using the standard OpenVMS $CONVERT utility with the following conversion
specification:

FILE;ORGA SEQU;RECO;CARR CARR;FORM STREAM_LF;SIZE 0;BLOCK YES

Then RCP sends the converted file using block-mode RMS file I/O (SYS$READ())
and on receive writes the data using block-mode (SYS$WRITE()).

This behavior has been changed so that RCP does not convert Fixed or Undefined
files (in addition to Stream_LF files). You can restore the old behavior using with
the TCPIP$RCP_SEND_FIX_FORMAT_AS_ASCII logical name. If this logical
name is set, the original behavior of converting Fixed and Undefined files is
restored. If this logical is set to a number other than 1, the original behavior is
restored, except for files with a fixed-length record size that exactly matches the
value of this logical name, which are not converted.

For example, if you define this logical to 512, all Fixed and Undefined files are
converted except for Fixed files with a fixed-length record size of 512 (such as
OpenVMS executable image files).

Problems and Restrictions 3–1

Problems and Restrictions
3.2 RCP Full Transparent Copy Operations

The receiving peer, if OpenVMS, always creates a file of type Stream_LF. The
RCP protocol provides no method of transferring file type information between
sender and receiver. Therefore, the receiving peer has no way of knowing
anything about file structure.

In an OpenVMS-to-OpenVMS transfer, if the original file was Fixed or Undefined
and was not converted, the user can change the attributes on the Stream_LF copy
to correspond to the format of the original file. This can be accomplished using
the DCL command SET FILE/ATTRIBUTES.

For example, after transferring an OpenVMS executable image file (Fixed with a
record-length of 512 bytes), enter the following command to make it an executable
again:

$ SET FILE/ATTR=(RFM:FIX,LRL:512) RCP-COPIED-FILE.EXE

RCP also has file-size limitations. These are due to RCP’s dependence on the
Compaq C RTL (run-time library). The RCP protocol requires the length of the
file to be sent as part of the protocol. The length is interpreted as a signed 32-bit
integer. On OpenVMS, the file’s length is determined using a Compaq C RTL call
to fstat(). Therefore, files transferred using RCP must be less than 2 GB minus
1 byte (2147483647 bytes).

In comparison, FTP does not have any of these limitations, but it utilizes a
different security model.

3.3 BIND Version 9 Does Not Run on VAX Systems
The new BIND Version 9 DNS server does not run on VAX systems. Please note
that future support of BIND 8 on VAX systems will be limited. If you are running
a BIND server on a VAX system, you should upgrade to an Alpha system.

3.4 NFS Problems and Restrictions
The following sections describe problems and restrictions with NFS.

3.4.1 NFS Server Problems and Restrictions
If the NFS server and the NFS client are in different domains and unqualified
host names are used in requests, the lock server (LOCKD) fails to honor the
request and leaves the file unlocked.

When the server attempts to look up a host using its unqualified host name
(for example, johnws) instead of the fully qualified host name (for example,
johnws.abc com), and the host is not in the same domain as the server, the
request fails.

To solve this type of problem, you can do one of the following:

• When you configure the NFS client, specify the fully qualified host name,
including the domain name. This ensures that translation will succeed.

• Add an entry to the NFS server’s hosts database for the client’s unqualified
host name. Only that NFS server will be able to translate this host name.
This solution will not work if the client obtains its address dynamically from
DHCP.

3–2 Problems and Restrictions

Problems and Restrictions
3.4 NFS Problems and Restrictions

3.4.2 NFS Client Problems and Restrictions

• To get proper timestamps, when the system time is changed for daylight
savings time (DST), dismount all DNFS devices. (The TCP/IP management
command SHOW MOUNT should show zero mounted devices.) Then remount
the devices.

• The NFS client should properly handle file names with the semicolon
character on ODS-5 disk volumes. (For example, a^;b.dat;5 is a valid file
name.)

The current version does not handle these types of file names properly; they
are truncated at the semicolon.

• The NFS client included with TCP/IP Services uses the NFS Version 2
protocol only.

• With the NFS Version 2 protocol, the value of the file size is limited to 32 bits.

• The ISO Latin-1 character set is supported. The UCS-2 characters are not
supported.

• File names, including file extensions, can be no more than 236 characters
long.

• Files containing characters not accepted by ODS-5 on the active OpenVMS
version or whose name and extension exceeds 236 characters are truncated to
zero length. This makes them invisible to OpenVMS and is consistent with
prior OpenVMS NFS client behavior.

3.5 IPv6 Requires the BIND Resolver
If you are using IPv6, you must enable the BIND resolver. If you do not have
the BIND resolver configured, you can enable it using the TCPIP$CONFIG.COM
command procedure. From the Core menu, select BIND Resolver. If you do not
have access to a BIND server, specify the node address 127.0.0.0 as your BIND
server. You must specify the BIND server to enable the BIND resolver.

3.6 TCP/IP Management Command Restrictions
The following restrictions apply to the TCP/IP management commands:

• SET NAME_SERVICE /PATH

This command requires the SYSNAM privilege. If you enter the command
without the appropriate privilege at the process level, the command does not
work and you are not notified. If you enter the command at the system level,
the command does not work but you do receive an error message.

• SET SERVICE command

When you modify parameters to a service, disable and reenable the service
for the modifications to take effect.

Problems and Restrictions 3–3

Problems and Restrictions
3.7 NTP Problems and Restrictions

3.7 NTP Problems and Restrictions
The NTP server has a stratum limit of 15. The server does not synchronize to
any time server that reports a stratum of 15 or greater. This may cause problems
if you try to synchronize to a server running the UCX NTP server, if that server
has been designated as ‘‘free running’’ (with the local-master command). For
proper operation, the local-master designation must be specified with a stratum
no greater than 14.

3.8 SNMP Problems
This section describes restrictions to the SNMP component for this release.

3.8.1 Incomplete Restart
When the SNMP master and subagents fail or are stopped, TCP/IP Services
is often able to restart all processes automatically. However, under certain
conditions, subagent processes may not restart; that is, the DCL command SHOW
SYSTEM display does not include TCPIP$OS_MIBS and TCPIP$HR_MIB. If this
situation occurs, restart SNMP by entering the following commands:

$ @SYS$STARTUP:TCPIP$SNMP_SHUTDOWN

$ @SYS$STARTUP:TCPIP$SNMP_STARTUP

3.8.2 SNMP IVP Error
On slow systems, the SNMP Installation Verification Procedure can fail because a
subagent does not respond to the test query. The error messages look like this:
. . .
Shutting down the SNMP service... done.

Creating temporary read/write community SNMPIVP_153.

Enabling SET operations.

Starting the SNMP service... done.

SNMPIVP: unexpected text in response to SNMP request:
"- no such name - returned for variable 1"
See file SYS$SYSDEVICE:[TCPIP$SNMP]TCPIP$SNMP_REQUEST.DAT for more
details.
sysContact could not be retrieved. Status = 0
The SNMP IVP has NOT completed successfully.
SNMP IVP request completed.
Press Return to continue ...

These types of messages in the IVP can be safely ignored.

3.8.3 Using Existing MIB Subagent Modules
If an existing subagent does not execute properly, you may need to relink it
against the current version of TCP/IP Services to produce a working image. Some
subagents (such as those for OpenVMS support of Compaq Insight Manager)
also require a minimum version of OpenVMS and a minimum version of TCP/IP
Services.

The following general restrictions and cautions apply:

• In general, only executable images linked against the following versions of
the eSNMP shareable image are upward compatible with the current version
of TCP/IP Services:

UCX$ESNMP_SHR.EXE from TCP/IP Services Version 4.2 ECO 4

3–4 Problems and Restrictions

Problems and Restrictions
3.8 SNMP Problems

TCPIP$ESNMP_SHR.EXE from TCP/IP Services Version 5.0A ECO 1

Images built under versions other than these can be relinked with one of the
shareable images, or with TCPIP$ESNMP_SHR.EXE in the current version
of TCP/IP Services.

• The underlying eSNMP API changed from DPI in Version 5.0 to AgentX in
the current version of TCP/IP Services. Therefore, executable images linked
against older object library versions of the API (*$ESNMP.OLB) must be
relinked against either the new object library or the new shareable image.
Linking against the shareable image ensures future upward compatibility and
results in smaller image sizes.

Note

Although images can run without being relinked, backward compatibility
is not guaranteed. These images can result in inaccurate data or run-time
problems.

• Programs that rely on TCP/IP Services Version 4.2 kernel data structures or
functions may run but may not return valid data. Such programs should be
rewritten.

• Executable images linked against UCX$ACCESS_SHR.EXE, UCX$IPC_
SHR.EXE, UCX$RPCXDR_SHR.EXE, or other older shareable images, may
not run even when relinked. You may need to recompile, or rewrite and
recompile, such programs.

If you have executable images linked against versions other than those listed
above and cannot relink, contact your Compaq support representative for
assistance.

• If you have problems running executable images linked against TCP/IP
Services Version 4.2 ECO 4 or TCP/IP Services Version 5.0A ECO 1, verify
that the version of the shareable image is the latest by entering the following
DCL command:

$ DIRECTORY/DATE/PROTECTION SYS$SHARE:*$ESNMP_SHR.EXE

The creation dates of the files with the prefix TCPIP$ and UCX$ should be
within a few seconds of each other, and only one version of each file should
exist. Make sure both images include the file protection W:RE.

Also, you can use the following command to check the version:

$ TCPIP SHOW VERSION/ALL

The second column in the line for image TCPIP$ESNMP_SHR under the
category ‘‘Network Management’’ displays the version. For example:

TCPIP$ESNMP_SHR;1 V5.1-15B 23-MAY-2001 SYS$COMMON:[SYSLIB]

• Both TCP/IP Services Version 5.0A ECO 1 and TCP/IP Services Version 5.1
provide an updated version of the UCX$ESNMP_SHR.EXE shareable image
to provide compatibility with subagents linked under TCP/IP Services Version
4.2 ECO 4. Do not delete this file.

Problems and Restrictions 3–5

Problems and Restrictions
3.8 SNMP Problems

3.8.4 Restrictions to RFC-Defined Functionality

• SNMP requests are not implemented for the following MIB-II group objects:

ipRouteMetric1 - ipRouteMetric5
tcpMaxConn

• SNMP requests are not implemented for the following Host Resources MIB
objects:

hrPartitionTable
hrPrinterTable
hrSWInstalled
hrSWInstalledTable

• SNMP set requests are not implemented for the following MIB-II group
objects:

ipDefaultTTL
ipRouteAge
ipRouteDest
ipRouteIfIndex
ipRouteMask
ipRouteNextHop
ipRouteType

• SNMP set requests are not implemented for the following Host Resources
MIB objects:

hrFSLastFullBackupDate
hrFSLastPartialBackupDate
hrStorageSize
hrSWRunStatus
hrSystemDate
hrSystemInitialLoadDevice
hrSystemInitialLoadParameters

• In the SNMP group (1.3.6.1.2.1.11), data elements noted as obsolete in RFC
1907 are not implemented.

3.8.5 SNMP Restrictions and Characteristics
This section describes restrictions and characteristics of SNMP. For more
information, refer to the Compaq TCP/IP Services for OpenVMS SNMP
Programming and Reference guide.

• The SNMP server responds correctly to SNMP requests directed to a cluster
alias. Note, however, that an unexpected host might be reached when
querying from a TCP/IP Services Version 4.x system that is a member of a
cluster group but is not the current impersonator.

• The SNMP master agent and subagents do not start if the value of logical
name TCPIP$INET_HOST does not yield the IP address of a functional
interface on the host when used in a DNS query. This problem does not occur
if the server host is configured correctly with a permanent network connection
(for example, Ethernet or FDDI). The problem can occur when a host is
connected through PPP and the IP address used for the PPP connection does
not match the IP address of the TCPIP$INET_HOST logical name.

• Under certain conditions observed primarily on OpenVMS VAX systems,
the master agent or subagent exits with an error from an internal
select() socket call. In most circumstances, looping does not occur.

3–6 Problems and Restrictions

Problems and Restrictions
3.8 SNMP Problems

You can control the number of iterations if looping occurs by defining the
TCPIP$SNMP_SELECT_ERROR_LIMIT logical name.

• The MIB browser provided with TCP/IP Services (TCPIP$SNMP_
REQUEST.EXE) supports getnext processing of OIDs that include the
32-bit OpenVMS process ID as a component. However, other MIB browsers
might not provide this support.

For example, the following OIDs and values are supported on OpenVMS:

1.3.6.1.2.1.25.4.2.1.1.1321206828 = 1321206828
1.3.6.1.2.1.25.4.2.1.1.1321206829 = 1321206829
1.3.6.1.2.1.25.4.2.1.1.1321206830 = 1321206830

These examples are from hrSWRunTable; the hrSWRunPerfTable might be
affected as well.

• sysObjectID is returned in the following format, as required for
interoperability with Compaq Insight Manager/XE:

1.3.6.1.2.1.1.2.0 = 1.3.6.1.4.1.36.2.15.22.1

In this format, the right-hand value corresponds to:

iso.org.dod.internet.private.enterprises.dec.ema.sysObjectIds.DEC-OpenVMS.eSNMP

• The sysORTable is implemented (see RFC 1907 for details). Elements are
under OID prefix 1.3.6.1.2.1.1.9.1.

When both the TCPIP$OS_MIBS and TCPIP$HR_MIB subagents are
running, a get request on the sysORTable is as follows. Except where
noted, the OIDs conform to RFC 1907:

1.3.6.1.2.1.1.9.1.2.1 = 1.3.6.1.4.1.36.15.3.3.1.1
1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.4.1.36.15.3.3.1.2
1.3.6.1.2.1.1.9.1.3.1 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.3.2 = Base o/s agent (HR_MIB) capabilities
1.3.6.1.2.1.1.9.1.4.1 = 31 = 0 d 0:0:0
1.3.6.1.2.1.1.9.1.4.2 = 36 = 0 d 0:0:0

This example is from the MIB browser (TCPIP$SNMP_REQUEST.EXE).

• The hrDeviceTable now includes template devices (for example, DNFS0 for
NFS and DAD0 for virtual devices).

• For network devices, only the template devices (those with unit number 0)
are displayed.

• The hrDeviceTable includes all devices known to the OpenVMS host except
those with the following characteristics.

Off-line

Remote

UCB marked delete-on-zero-reference-count

Mailbox device

Device with remote terminal (DEV$M_RTT characteristic)

Template terminal-class device

LAT device (begins with _LT)

Virtual terminal device (begins with _VT)

Pseudoterminal device (begins with _FT)

Problems and Restrictions 3–7

Problems and Restrictions
3.8 SNMP Problems

• Data items in the hrDevTable group have the following restrictions:

– hrDeviceID always contains a null OID (0.0).

– hrDeviceErrors is coded as described in the following table.

Code Condition

warning (3) If error logging is in progress (OpenVMS UCB value UCB$M_
ERLOGIP).

running (2) If status indicates software is valid and no error logging in progress
(OpenVMS UCB value UCB$M_VALID).

unknown (1) Any other OpenVMS status.

• On systems running versions of the operating system prior to OpenVMS
7.1-2, counters for the MIB-II ifTable do not wrap back to zero after reaching
the maximum value defined in RFC 1155 (�32

� �). Instead, they behave
like Gauge counters and remain at the maximum value until cleared by an
external event such as a system reboot. The counters affected are as follows:

ifInDiscards
ifInErrors
ifInNUcastPkts
ifInOctets
ifInUcastPkts
ifInUnknownProtos
ifOutErrors
ifOutNUcastPkts
ifOutOctets
ifOutUcastPkts

Note that for SNMPv2, these counters are data type Counter32. The following
ifTable members are always -1 for OpenVMS: ifOutDiscards (Counter32)
and ifOutQLen (Gauge32).

• Under certain conditions a subagent name may be listed more than once in
the sysORTable. For example:

1.3.6.1.2.1.1.9.1.2.2 = 1.3.6.1.4.1.36.2.15.22.1.1.1
1.3.6.1.2.1.1.9.1.2.3 = 1.3.6.1.4.1.36.2.15.22.1.1.1
1.3.6.1.2.1.1.9.1.3.2 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.3.3 = Base o/s agent (OS_MIBS) capabilities
1.3.6.1.2.1.1.9.1.4.2 = 11351 = 0 d 0:1:53
1.3.6.1.2.1.1.9.1.4.3 = 17829 = 0 d 0:2:58

In this example, the OS_MIBS subagent is listed twice because two instances
of the image SYS$SYSTEM:TCPIP$OS_MIBS.EXE are running. (This
condition indicates a problem with TCP/IP Services.) The text values for
OIDs with the following prefix are sent by subagents, and do not reflect an
error in the SNMP client:

1.3.6.1.2.1.1.9.1.3

• hrFSMountPoint (1.3.6.1.2.1.25.3.8.1.2) is DNFSn. The device may change
between restarts or after a dismount/mount procedure.

• In the hrFSTable group, if no file systems are mounted through NFS or
no information is accessible, a "no such instance" status is returned for a
get request. Browsers respond differently to this message. For example,
TCPIP$SNMP_REQUEST.EXE responds with no output and returns directly
to the DCL prompt.

3–8 Problems and Restrictions

Problems and Restrictions
3.8 SNMP Problems

After an NFS mount, the following information is returned in response to a
get request. The data items implemented for OpenVMS (refer to RFC 1514)
are:

hrFSIndex

hrFSMountPoint: local DNFS device name.

hrFSRemoteMountPoint: In UNIX format, the remote file system name.

hrFSType: OID 1.3.6.1.2.1.25.3.9.1, if the remote system is running
TCP/IP Services and the file system is not a container file system.
hrFSNFS, OID 1.3.6.1.2.1.25.3.9.14, if OpenVMS TCP/IP container file
system or UNIX host.

hrFSAccess (as defined in RFC 1514).

hrFSBootable: always HRM_FALSE (integer 2).

hrFSStorageIndex: always 0.

hrFSLastFullBackupDate: unknown time. Encoded according to RFC
1514 as hexadecimal value 00 00 01 01 00 00 00 00 (January 1, 0000).

hrFSLastPartialBackupDate: unknown time. Not available for OpenVMS
systems. Instead, the hexadecimal value 00-00-01-01-00-00-00-00
(January 1, 0000) applies.

• hrProcessorFrwID (OID prefix 1.3.6.1.2.1.25.3.3.1.1):

Not implemented on OpenVMS VAX. Always returns standard null OID
(0.0).

1.3.6.1.2.1.25.3.3.1.1.1 = 0.0

An example for OpenVMS Alpha follows. The example corresponds to
firmware version 5.56-7.

1.3.6.1.2.1.25.3.3.1.1.1 = 1.3.6.1.2.1.25.3.3.1.1.1.5.56.7

• Data items in the hrDiskStorage table have the following restrictions:

hrDiskStorageMedia: Always "unknown" (2).

hrDiskStorageRemoveble: Always "false" (2). Note the incorrect spelling
of Removeable in hrDiskStorageRemoveble (from RFC 1514).

• hrStorageType always contain the value of hrStorageFixedDisk
(1.3.6.1.2.1.25.2.1.4).

• You can ignore the following warning that appears in the log file if a null
OID value (0.0) for an instance is retrieved in response to a Get, GetNext, or
GetBulk request:

o_oid; Null oid or oid->elements, or oid->nelem == 0

3.8.6 Upgrading SNMP
After upgrading to the current version of TCP/IP Services, you must disable and
then enable SNMP using the TCPIP$CONFIG configuration command procedure.
When prompted for ‘‘this node’’ or ‘‘all nodes,’’ select the option that reflects the
previous configuration.

Problems and Restrictions 3–9

Problems and Restrictions
3.8 SNMP Problems

3.8.7 Communication Controller Data Not Fully Updated
When you upgrade TCP/IP Services and then modify an existing communication
controller, programs that use the communication controller might not have access
to the updated information.

To ensure that programs like the MIB browser (SNMP_REQUEST) have access to
the new data about the communication controller, do the following:

1. Delete the communication controller using the TCP/IP management command
DELETE COMMUNICATION_CONTROLLER.

2. Reset the communication controller by running the TCPIP$CONFIG.COM
command procedure and exiting.

3. Restart the program (such as SNMP) by entering the following commands:

$ @SYS$STARTUP:SNMP_SHUTDOWN.COM

$ @SYS$STARTUP:SNMP_STARTUP.COM

4. Use the TCP/IP management command LIST
COMMUNICATION_CONTROLLER to display the information.

3.8.8 SNMP MIB Browser Usage
If you use either the -l (loop mode) or -t (tree mode) flag, you cannot also specify
the -m (maximum repetitions) flag or the -n (nonrepeaters) flag. The latter flags
are incompatible with loop mode and tree mode.

Incorrect use of the -n and -m flags results in the following messages:

$ snmp_request mynode.co.com public getbulk -v2c -n 20 -m 10 -t 1.3.6.1.2.1
Warning: -n reset to 0 since -l or -t flag is specified.
Warning: -m reset to 1 since -l or -t flag is specified.
1.3.6.1.2.1.1.1.0 = mynode.company.com

3.8.9 Duplicate Subagent Identifiers
With this version of TCP/IP Services, two subagents can have the same identifier
parameter. Be aware, however, that having two subagents with the same name
makes it difficult to determine the cause of problems reported in the log file.

3.8.10 eSNMP Programming and Subagent Development
The following notes pertain to eSNMP programming and subagent development.

• In the documentation, the terms extension subagent, custom subagent,
and user-written subagent refer to any subagent other than the standard
subagents for MIB-II and the Host Resources MIB, which are provided as
part of the TCP/IP Services product.

• In the [.SNMP] subdirectory of TCPIP$EXAMPLES, files with the .C,
.H, .COM, .MY, and .AWK extensions contain additional comments and
documentation.

• The TCPIP$SNMP_REQUEST.EXE, TCPIP$SNMP_TRAPSND.EXE, and
TCPIP$SNMP_TRAPSND.EXE programs are useful for testing during
extension subagent development.

• For information about prototypes and definitions for the routines in the
eSNMP API, see the TCPIP$SNMP:ESNMP.H file.

3–10 Problems and Restrictions

4
Corrections

This chapter describes the problems corrected in this version of TCP/IP Services.
It contains the following sections:

• Section 4.1 describes software corrections in this release.

• Section 4.2 describes customer-reported problems corrected in this release.

4.1 Software Corrections
The following sections describe the software corrections included in this release of
TCP/IP Services, organized by component.

4.1.1 Management Command Interface Problems Fixed in This Release

• The ROUTE command no longer fails when the interface name is entered in
lowercase letters. It is no longer necessary to put quotation marks around
the interface name. The interface name is always accepted and is handled as
uppercase.

• If Ctrl/C was issued at the right moment during a SHOW HOST/NOLOCAL
command, an ACCVIO error could occur.

Also, some errno status returns were being passed back to the management
command interface, which was unable to translate them.

• The management command interface failed to consistently handle UNIX
management utility commands, whether launched as a DCL command
or TCP/IP management command. Sometimes it was necessary to quote
lowercase characters. At other times, quotation marks were not necessary.

When you enter DCL commands to manage TCP/IP Services, it is no longer
necessary to include quotation marks around UNIX utility commands (for
example, TCPIP "ifconfig -a"). You need to enclose only uppercase options
in quotation marks (for example, TCPIP ifconfig "-Q" inet).

• The following TCP/IP management commands have been enhanced to support
BIND Version 9 (Alpha systems only):

The SET NAME /INITIALIZE command now reloads all BIND databases
and the BIND configuration file. It requires that at least one of the
following process privileges be set: BYPASS, READALL, or SYSPRV.
In addition, it also requires that either TCPIP$ETC:RNDC.CONF or
TCPIP$ETC:RNDC.KEY be set up to allow for secure communication
between the user and the BIND server.

The SHOW NAME /STATISTICS command now writes statistics to the
SYS$SPECIFIC:[TCPIP$BIND]TCPIP$BIND.STATS file. The command
requires that at least one of the following process privileges be set:
BYPASS, READALL, or SYSPRV. In addition, it also requires that either

Corrections 4–1

Corrections
4.1 Software Corrections

TCPIP$ETC:RNDC.CONF or TCPIP$ETC:RNDC.KEY be set up to allow
for secure communication between the user and the BIND server.

4.1.2 BIND Problems Fixed in This Release

• The ndc commands start, stop, and restart were broken. This correction
is relevant only to VAX systems. On Alpha systems, the ndc utility has been
replaced by the rndc utility.

• In some cases, with a search path defined, the nslookup utility and the
TCP/IP management command SHOW HOST returned the ‘‘host-not-found’’
message before it exhaustsed the entire search path list.

• TCPIP$BINDSETUP.COM did not restart BIND properly.

4.1.3 BIND Resolver Problems Fixed in This Release
If the BIND resolver was not enabled, applications that used IP addresses
resulted in errors if the address was not defined in the local hosts database.

4.1.4 IPC Problems Fixed in This Release
The send()) and recv()) functions did not allow the use of 64-bit addresses.

The send()) and recv()) functions now allow 64-bit addresses. Note that the
sendto()), sendmsg()), recvfrom()), and recvmsg()) functions support only
32-bit addresses.

This change affects Alpha systems only.

4.1.5 SMTP Problems Fixed in This Release
TCP/IP Services and OpenVMS version information was revealed by the SMTP
software. This may be a security issue.

The information was revealed in the following places:

• The SMTP server’s response to the initial connection from the SMTP client.

• The Received header appended to the list of Received headers by the SMTP
server.

• The Received header inserted into the list of Received headers by the
Send-From-File feature.

To tells the SMTP software not to reveal TCP/IP Services or OpenVMS version
information, set the TCPIP$SMTP_SUPPRESS_VERSION_INFO system logical
name.

To define the logical, enter the following command:

$ DEFINE /SYSTEM TCPIP$SMTP_SUPPRESS_VERSION_INFO

4.1.6 SNMP Problems Fixed in This Release
The SNMP protocol has been updated with the following corrections:

• This version of TCP/IP Services supports the AGENTX MIB. The OID root for
this new MIB is:

1.3.6.1.2.1.74

4–2 Corrections

Corrections
4.1 Software Corrections

• The Chess example is changed to use the standard OpenVMS sysObjectID, to
match the one used for Compaq Insight Manager compatibility in the OS and
HR MIBs. The numeric value is:

1.3.6.1.4.1.36.2.15.22.1.

• False duplicate error messages when the subagent image does not exit but
when the subagent needs to restart (because of loss of contact with master
agent) are eliminated.

• Support is added for 32-bit subidentifiers in numeric OIDs.

• Traps are now generated when the client makes a SET request to a server
using a valid community name but when the client does not have write
permission for the client host.

• A configuration option for maximum SNMP message size has been added.
The following logical names are available for restricting the size of SNMP
packet size allowed by the master agent:

SNMP_MAX_GETSET_LEN, which specifies the size allowed from
incoming GET, GETNEXT, GETBULK and SET requests.

SNMP_MAX_MSG_LEN, which specifies the size allowed from incoming
GET, GETNEXT, GETBULK and SET requests, and also the size allowed
for outgoing trap messages.

To control these sizes, use the following DCL commands interactively or in a
system startup file:

$ ASSIGN /SYSTEM /EXEC size TCPIP$SNMP_MAX_GETSET_LEN
$ ASSIGN /SYSTEM /EXEC size TCPIP$SNMP_MAX_MSG_LEN

Compaq recommends that any changes to these sizes be made with extreme
caution. The values specified for size should be between 484 and 1500.

• On systems with a large number of ARP entries or TCP or UDP connections
(on the order of 10,000), the MIB-II returns the following error message:

Exceeded maximum kinfo call level (1000)

4.1.7 FTP Problems Fixed in this Release
The FTP program is updated with the following corrections:

• The FTP commands ls and directory did not display files recursively. (That
is, the contents of subdirectories were not displayed.)

To activate recursive displays of directory contents, define the following logical
name at the system level:

$ ASSIGN/SYSTEM 1 TCPIP$FTPD_DIR_RECURSIVE

On OpenVMS Version 7.2, if the file specification includes the path name
preceding the file name and also contains a wildcard character, the directory
listing is recursive.

The top-level directory is always included in the display except when input
file names do not contain a path, include a wildcard character, and end with a
backslash (\) character.

Corrections 4–3

Corrections
4.1 Software Corrections

• On systems with Version 7.2 of the Compaq C shareable library
(DECC$SHR.EXE), the following commands failed to set the local default
if the subdirectory had been assigned a logical name:

$ SHOW LOGICAL NEW
"NEW" = "MYNEW" (LNM$PROCESS_TABLE)

$ FTP
FTP> lcd new
%TCPIP-E-FTP_NOSUCHFILE, no such file new:
%Failed to set default directory to [.new:]
Local directory now SYS$SYSROOT:[SYSMGR]

4.2 Reported Problems Corrected in this Release
Compaq uses the Integrated Problem Management Tool (IPMT) to track problems
reported by customers. When a problem report is created, it is given a unique
identification number starting with ‘‘CFS.’’ When the problem is logged for
engineering attention, it receives a Problem Tracking Report (PTR) number.

This section describes problems that have been reported and corrected in this
release of TCP/IP Services, including the CFS and PTR numbers for each.

Table 4–1 describes the customer-reported problems that have been corrected in
the BIND resolver.

Table 4–1 BIND Resolver Problems Fixed in this Release

CFS Number PTR Number Description

CFS.82606 70-5-1641 Previously, applications such as the FTP client and
TELNET client may have encountered a BIND
resolver restriction that did not allow host names to
contain underscore characters (_). The applications
returned either an ‘‘unexpected nameserver’’ error
or a ‘‘nameserver experienced temporary error,
retry operation’’ error. This problem has been fixed.
The BIND resolver recognizes underscores in host
names. Note that the BIND server can still restrict
the characters that are allowed in host names.

Table 4–2 LBROKER Problems Fixed in this Release

CFS Number PTR Number Description

CFS.80807 70-5-1572 The dynamic updates being sent by the load broker
to a Windows 2000 DNS server failed with an error
similiar to unknown response: ans=0, auth=1,
add=1, rcode=3. This problem has been corrected.

CFS.84739 70-5-1729 The Load Broker failed during startup. This
problem is corrected. The maximum number of
NS records per zone has been increased from 16 to
32.

4–4 Corrections

Corrections
4.2 Reported Problems Corrected in this Release

Table 4–3 TELNET Problems Corrected in this Release

CFS Number PTR Number Description

CFS.73400
CFS.75491
CFS.75696

70-5-1260
70-5-1357
70-5-1368

After upgrading, TELNET users from a terminal
server who mistyped their password enough times
could trigger the OpenVMS Intrusion Detection
mechanism and cause all TELNET users from that
terminal server to be locked out.

You can solve the problem of inadvertent intrusion
lockout with TELNET in either of the following
ways:

• Require clients to use RLOGIN instead of
TELNET.

• Loosen the intrusion detection policies on the
system through appropriate tuning of the
SYSGEN LGI* parameters.

If neither solution is desireable, you can set the
logical name TCPIP$TELNET_NO_REM_ID.
Defining this logical name reverts TELNET to
its original behavior of not setting any SYS$REM*
logical.

Note that the use of this logical name effectively
bypasses the intrusion-detection mechanism for
TELNET logins.

Table 4–4 SMTP Problems Corrected in this Release

CFS Number PTR Number Description

CFS.87060 70-5-1855 The SMTP symbiont failed and the log file
contained the following error:

SYSTEM-F-NOPRIV, error trying to access CF control file

The error message was followed by ACCVIO errors.
This occurred under a heavy SMTP load.

The cause of the problem was corrected in the BIND
resolver, which SMTP uses heavily.

Table 4–5 Management Command Interface Problems Corrected in this Release

CFS Number PTR Number Description

CFS.88243 70-5-1904 While attempting to create a new proxy, TCP/IP
Services generated the following error message:

%SYSTEM-E-INSFMEM, insufficient dynamic memory

The problem was caused by the TCP/IP Services
startup procedure, which did not set the proxy
cache size. This problem has been corrected.

(continued on next page)

Corrections 4–5

Corrections
4.2 Reported Problems Corrected in this Release

Table 4–5 (Cont.) Management Command Interface Problems Corrected in this
Release

CFS Number PTR Number Description

CFS.81412
CFS.80586

70-5-1588
70-5-1560

In certain cases, the TCP/IP management command
SHOW HOST failed with ACCVIO errors when
retrieving the BIND database.

There are two ways that a zone can be transferred:
either in multiple DNS messages (each containing
one resource record), or in one large DNS message
that contains many resource records. The large
DNS message may also span several messages, but
it is differentiated because each message contains
multiple resource records. The BIND resolver,
which implements the SHOW HOST command,
was not equipped for such a large amount of
data arriving at one time. This problem has been
corrected.

CFS.85063 70-5-1746 Entering the SHOW HOST command twice caused
the management command interface to hang. This
problem has been corrected.

4–6 Corrections

5
Documentation Update

This chapter describes updates to the information in the TCP/IP Services for
OpenVMS product documentation.

5.1 Management Guide Update
The following chapters are updated in these release notes:

• Chapter 5, Configuring and Managing BIND, is replaced by Appendix C in
these release notes, for Alpha systems.

• Chapter 12, Configuring and Managing NTP, is replaced by Appendix B in
these release notes.

• A new chapter, Configuring and Managing the IMAP Server for OpenVMS
Mail, is provided in these release notes. See Appendix A.

In addition, the information in the Compaq TCP/IP Services for OpenVMS
Management guide is updated as follows:

• Section 19.3.5 XDM_XSESSION.COM File, is misleading. The following
changes will be made to this section:

1. Existing Text:

XDM’s default operation is to create a Common Desktop Environment
(CDE) using the commands from the SYS$SYSTEM:TCPIP$XDM_
XSESSION.COM file:

Replacement Text:

XDM’s default operation after login is controlled by the
SYS$SYSTEM:TCPIP$XDM_XSESSION.COM file. This file first parses
its P1 display parameter nodename[:server[.screen]] and creates the
DECwindows display using the following command:

$ SET DISPLAY/CREATE/NODE="’’nodename’"/TRANSPORT=tcpip -
_$ /SERVER=’server/SCREEN=’screen

The default operation is to then create a Common Desktop Environment
(CDE) using:

2. Existing Text:

$ DEFINE DECW$DISPLAY "’’p1’"

$ DEFINE display "’’p1’"

$ @CDE$PATH:XSESSION.COM

Replacement Text:

$ @CDE$PATH:XSESSION.COM

Documentation Update 5–1

Documentation Update
5.1 Management Guide Update

3. Existing Text:

At present, CDE is available only on Alpha systems in Version 1.2-4 or
later and not at all on VAX systems. If the CDE command procedure
XSESSION.COM is not found on the system, XDM looks for the
DECwindows Desktop Session Manager startup command procedure,
DECW$STARTSM.COM to initiate the session using the commands:

Replacement Text:

At present, CDE is available only on Alpha systems in version 1.2-4 or
later of DECwindows Motif, and not at all on VAX systems. If the CDE
command procedure XSESSION.COM is not found on the system, XDM
looks for the DECwindows Desktop Session Manager startup command
procedure, DECW$STARTSM.COM, to initiate the session using the
command:

4. Existing Text:

$ SET DISPLAY/CREATE/NODE=nodename/TRANSPORT=TCPIP

$ @SYS$MANAGER:DECW$STARTSM.COM

Before executing either of these command procedures, XDM looks for
an XDM_XSESSION.COM file in the user’s SYS$LOGIN directory. If
found, XDM executes the file. Users can create a DECterm by adding the
following DCL commands to their XDM_XSESSION.COM file:

$ SET PROC/PRIV=SYSNAM

$ SET DISPLAY/CREATE/NODE=workstation_display/TRANSPORT=TCPIP -
_$ /EXECUTIVE_MODE

$ CREATE/TERMINAL/WAIT/WINDOW_ATTRIBUTES=(ICON=nodename, -
_$ TITLE=window_title)

For a complete description of the CREATE and SET DISPLAY commands
and their qualifiers, use the DCL command HELP at the OpenVMS
system prompt.

Replacement Text:

$ @SYS$MANAGER:DECW$STARTSM.COM

Before executing either of these command procedures (but after
performing the $SET DISPLAY), XDM looks for an XDM_
XSESSION.COM file in the user’s SYS$LOGIN directory. If the file
is found, XDM executes that file instead, passing it both the full display
specification nodename[:server[.screen]]" as P1, and just the node name as
P2.

Users then have full control over exactly what type of session they prefer
to start. For example, to start a DECterm, the following DCL commands
are placed into their XDM_XSESSION.COM file:

$ CREATE/TERMINAL/WAIT/WINDOW_ATTRIBUTES=(ICON="’’p2’",TITLE=window_title)

For a complete description of the CREATE command and its qualifiers,
use the DCL command HELP at the OpenVMS system prompt.

• Chapter 4, Routing, does not describe the change in the handling of identical
routes between TCP/IP Services Version 5.0 and Version 5.1. In Version 5.0,
routes were chosen by round-robin selection, but this feature was disabled
by default. In Version 5.1, by default, they are chosen based on reference
count and use count, thus achieving true load balancing among identical

5–2 Documentation Update

Documentation Update
5.1 Management Guide Update

routes. If more than one default route is set, all default routes are used in
load balancing; if a route fails, then attempts to use that route also fail.

• The chapter on Remote commands (R commands) omits mention of the
TCPIP$RCP_SEND_FIX_FORMAT_AS_ASCII logical name.

For more information, see Section 3.2.

• Section 13.4.3, SNMP Options, fails to mention the fact that an SNMP
community name can be added using either the SET CONFIGURATION
SNMP command or the SNMP configuration file. The community name
can consist of any 7-bit printable ASCII character except asterisk (*). This
behavior is consistent with RFC 1157.

• In Chapter 22, the description of the LPD configuration logical TCPIP$LPD_
KEEPALIVE is incorrect. The logical is set using the following command:

$ DEFINE/SYSTEM TCPIP$LPD_KEEPALIVE 1

• In Chapter 15, Configuring and Managing FTP, the description of the FTP
configuration logical TCPIP$FTP_KEEPALIVE is incorrect. To set this
configuration parameter, enter the following command:

$ DEFINE/SYSTEM TCPIP$FTP_KEEPALIVE 1

The SET SERVICE command cannot be used to set this configuration
parameter.

• The NFS Client chapter, Section 21.1.2.1 contains the following sentences,
which are incorrect:

(The client does not provide ADFs for files with the .TXT and .C
extensions, because these are STREAM_LF.) The client maintains these
ADFs on the server.

These sentences will be removed from the manual.

• Also in the NFS Client chapter, the example of the MOUNT command in
Section 21.4.1 shows an incorrect command line. The first line of the example
should be replaced by the following:

TCPIP> MOUNT DNFS1:[A] /HOST=BART /PATH="/DKA0/ENG"

• In Chapter 13, Table 13-3, the logical name SNMP_SUPPRESS_LOGGING_
TIMESTAMP is incorrectly documented. The name of the logical is
TCPIP$SNMP_SUPPRESS_LOGGING_TIMESTAMP.

Also, in Table 13-6, the logical name TCPIP$SNMP_TRACE is incorrectly
documented. The name of the logical is SNMP_TRACE.

5.2 User’s Guide Update
The information in the Compaq TCP/IP Services for OpenVMS User’s Guide is
updated as follows:

• This release supports the use of double quotes (‘‘name’’) in the OpenVMS
personal name. If the SMTP mailer encounters double quotes in the personal
name, it changes them to single quotes (’name’).

Documentation Update 5–3

Documentation Update
5.3 Management Command Reference Update

5.3 Management Command Reference Update
The information in the Compaq TCP/IP Services for OpenVMS Management
Command Reference manual is updated as follows:

• The SHOW NFS_SERVER command displays NFS server statistics and
parameters. You can specify the following qualifiers with the SHOW NFS_
SERVER command:

/CONTINUOUS=seconds

Optional. Defaults: Static display; /CONTINUOUS=4.

Provides a dynamic display, with optional screen-update interval.

To terminate the display, press Ctrl/Y.

/RPC

Optional.

Displays only RPC-related performance counters and statistics.

/SERVER

Optional.

Displays NFS server-related performance counters and statistics.

/VERSION=version

Optional. Default: Display Version 2 and Version 3

Displays version-specific NFS server performance counters and statistics.

Versions can be specified as follows:

/VERSION=V2 Specifies only Version 2.

/VERSION=V3 Specifies only Version 3.

/VERSION=(V2,V3) Specifies both Version 2 and Version 3. This
is the default if you omit the /VERSION
qualifier.

• The SET NFS_SERVER commands allows you to specify NFS server
configuration information. Contrary to the information in manual, the
/THREADS qualifier is not a valid qualifier. To modify this value, use the
sysconfigdb utility to add an entry to the SYSCONFIGTAB file, as described
in Section 1.6.

• When you use the TCP/IP management command DISMOUNT/HOST, you
must include the /ALL qualifier.

• If you specify the /MASK qualifier on the SET ROUTE command, you must
also include the /NETWORK qualifier.

• Explanations of the use of the probe timer and the drop count in the
description of the SET PROTOCOL command are corrected as follows:

The /PROBE_TIMER qualifier specifies, in seconds, the length of time
that TCP/IP Services will wait for a response when establishing a new
TCP connection, as well as the time between idle probes when the SO_
KEEPALIVE option is set.

The /DROP_COUNT qualifier specifies the number of idle probes that can
go unsatisfied before a TCP connection is closed.

• The description of the SET CONFIGURATION ENABLE [NO]SERVICE
command is incorrect. The description should read as follows:

5–4 Documentation Update

Documentation Update
5.3 Management Command Reference Update

These commands modify service-related information in the permanent
configuration database that enable services for startup:

on each node (node-specific)

on every node in a cluster (cluster-wide)

SET CONFIGURATION ENABLE SERVICE adds an entry for a service to
the list of enabled services in the configuration database.

SET CONFIGURATION ENABLE NOSERVICE deletes an entry for a service
from the list of enabled services in the configuration database.

The FORMAT section should read as follows:

SET CONFIGURATION ENABLE [NO]SERVICE service
[/COMMON]
[/[NO]CONFIRM]

Note that the service parameter is required and must always be specified.
There is no default for the service parameter.

The PARAMETERS section should include the following:

service

Required.

Specifies the service to add or delete from the configuration database.

The QUALIFIERS section should include:

/COMMON

Optional. Default: node-specific service without /COMMON

Modifies service-related information in the configuration database for the
clusterwide enabling or disabling of services.

/CONFIRM
/NOCONFIRM

Optional. Default: /CONFIRM with wildcards; otherwise, /NOCONFIRM

Used only with SET CONFIGURATION ENABLE NOSERVICE to control
whether a request is issued before each delete operation to confirm that
the operation should be performed.

The /CONFIRM qualifier requests user confirmation when deleting service
records.

Enter one of the following at the confirmation prompt:

Y to delete the record

N to retain the record

The /NOCONFIRM qualifier eliminates all user confirmation when
deleting service records.

The examples and supporting descriptions should read as follows:

1. TCPIP> SET CONFIGURATION ENABLE SERVICE TELNET

In the configuration database, enable the TELNET service for startup on
this node.

2. TCPIP> SET CONFIGURATION ENABLE SERVICE FTP /COMMON

In the configuration database, enable the FTP service for startup on every
node in the cluster.

Documentation Update 5–5

Documentation Update
5.3 Management Command Reference Update

3. TCPIP> SET CONFIGURATION ENABLE NOSERVICE *

Enable service
TELNET

Remove? [N]:Y

In the configuration database, disable any service enabled for startup on
this node if confirmed by the user.

The online Help file for the TCP/IP management interface has been updated with
the changes listed in this section. For online help, enter the following commands:

$ TCPIP
TCPIP> HELP

5.4 Sockets API and System Services Programming Update
The information in the Compaq TCP/IP Services for OpenVMS Sockets API and
System Services Programming manual should be updated as follows:

• Table 2-2 describes the default setting for the TCPIP_KEEPIDLE option
incorrectly. The default setting for this option is 7200 seconds (14400 half
seconds). In addition, the manual fails to mention that, in order to use the
options in Table 2-2, your program must use the TCP.H file.

5.5 Help Files Update
The TCP/IP Services Help files should be updated, as described in the following
sections.

5.5.1 The netstat Help File
the following options should be added to the netstat Help file:

• -s

This option displays statistics for each protocol.

• -pudp

This option displays statistics for the UDP protocol.

• -ptcp

This option displays statistics for the TCP protocol.

• -picmp

This option displays statistics for the ICMP protocol.

• -ip

This option displays statistics for the IP protocol.

• -b

This option displays the contents of the Mobile IPv6 binding cache. When
used with the -s option, it displays binding cache statistics.

• -f address_family

This option limits reports to the specified address family. Specify one of the
following:

• inet6 for the AF_INET6 family

• inet for the AF_INET family

5–6 Documentation Update

Documentation Update
5.5 Help Files Update

The routing table display is updated with the following new flags:

• C indicates a cloning route that was created by the ROUTE command.

• c indicates a cloned route.

• f indicates fragment to path MTU size is disabled on this route

• I indicates a route that contains valid link-layer information.

• L indicates a loopback route that was created by the kernel.

• m indicates a route that was created by a Mobile IPv6 binding update.

• P indicates a route that was created by the Path MTU discovery process.

• p indicates that Path MTU discovery is disabled on this route.

5.5.2 The whois Help File
The whois is available in this release, but no Help file is available. To define the
whois command, enter the following command:

$ whois :== SYSSYSTEM:TCPIP$WHOIS.EXE

The whois utility looks up user, host, and organization names in the Network
Information Center (NIC) database.

The syntax for the whois command is as follows:

$ whois [-h server]

The -h option allows you to specify a whois server other than the default
(rs.internic.net).

The server name can specify any of the following:

• The name of the registered user.

• The name of a registered Internet host.

• The name of some other entity recognized by the whois server. By default,
the whois command queries the host rs.internic.net.

The operands specified for the whois command are concatenated together
(separated by spaces) and presented to the whois server. The default action,
unless directed otherwise with a special name, is to do a very broad search,
looking for matches to name in all types of records and most fields (such as name,
nicknames, host name, and network address) in the database.

For example:

$ whois osf.org

Open Software Foundation (OSF-DOM)

11 Cambridge Center

Cambridge, MA 02142

Domain Name: OSF.ORG
.
.
.

Documentation Update 5–7

Documentation Update
5.6 Guide to IPv6 Update

5.6 Guide to IPv6 Update
The information in the Compaq TCP/IP Services for OpenVMS Guide to IPv6
should be updated with the information in Appendix D.

5–8 Documentation Update

A
Configuring and Managing the IMAP Server for

OpenVMS Mail

The IMAP Server for OpenVMS Mail and the Simple Mail Transfer Protocol
(SMTP) server software work together to provide reliable mail management in a
client/server environment.

The IMAP Server allows users to access their OpenVMS Mail mailboxes by
clients such as Microsoft Outlook so that they can view, move, copy and delete
messages. The SMTP Server provides the extra functionality of allowing the
clients to create and send e-mail messages.

After the IMAP Server is enabled on your system, you can modify the default
characteristics by editing the configuration file (described in Section A.2.3).

This chapter reviews key IMAP concepts and describes:

• How to start up and shut down the IMAP Server (Section A.2.1)

• How to modify IMAP server characteristics (Section A.2.3)

• How to enable MIME mail using IMAP (Section A.3)

A.1 Key Concepts
IMAP stands for Internet Message Access Protocol. The IMAP Server allows
users to access their OpenVMS Mail mailboxes by clients communicating with
the IMAP4 protocol as defined in RFC 2060. The supported clients used to access
e-mail are PC clients running Microsoft Outlook or Netscape Communicator.

The IMAP server is by default assigned port number 143, and all IMAP client
connections are made to this port.

The following sections review the IMAP process and describe how the TCP/IP
Services software implements IMAP. If you are not familiar with IMAP, refer to
RFC 2060 or introductory IMAP documentation for more information.

A.1.1 IMAP Server Process
The IMAP Server is installed with SYSPRV, BYPASS, DETACH, SYSLCK,
SYSNAM, NETMBX, and TMPMBX privileges. It runs in the TCPIP$IMAP
account, which receives the correct quotas from the TCPIP$CONFIG procedure.
The IMAP Server is invoked by the auxiliary server.

The IMAP Server uses security features provided in the protocol and in the
OpenVMS operating system, as well as additional security measures. These
methods provide a secure process that minimizes the possibility of inappropriate
access to a user’s mail file on the served system.

You can modify the IMAP Server default characteristics and implement new
characteristics by defining the configuration options described in Section A.2.3.

Configuring and Managing the IMAP Server for OpenVMS Mail A–1

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

A.1.2 How to Access Mail Messages from the IMAP Server
The only client configuration that is required is in the user’s IMAP client, (see
Section A.1.2.1). Additional optional configuration settings can be made in the
OpenVMS Mail utility (see Section A.1.2.2).

A.1.2.1 IMAP Client Configuration
To access mail messages from the IMAP Server, you configure a user name and
password into your client mail application. If an account is accessible without a
password and a password is provided, the password is ignored.

In OpenVMS Mail, a user’s mailbox file is, by default, named MAIL.MAI and is
resident in the user’s default OpenVMS directory. In this simple and typical case,
the user name to be configured is the user’s OpenVMS account name.

An OpenVMS Mail user is allowed to have many mail files; a special syntax for
the user name is defined so that the user can specify the set of mail files to be
opened. This syntax is the user’s OpenVMS account name followed by a percent
sign and then partial file specifications of the mail files, each separated by a
percent sign. Note the following:

• The file extension of .MAI is not required.

• The default MAIL.MAI file is assumed, but if the user adds it to the list, it
will not be displayed twice.

In the following example, user SMITH has three mail files in a mail directory.
One is the user’s default MAIL.MAI file, and the others are ACCOUNTS.MAI and
PRIVATE.MAI. The user name would be configured in the IMAP client as:

SMITH%ACCOUNTS%PRIVATE

Your client system opens the TCP connection and attempts to access the server
by entering the IMAP LOGIN command with the configured user name and
password. On successful connection, the user’s mail files are the top level of
mailboxes; so, in the preceding example, the mailboxes displayed will be Mail,
Accounts, and Private. Unsuccessful attempts are logged in the event log file (see
Section A.2.2).

Once an OpenVMS Mail user has successfully connected to the IMAP Server, a
file called tcpip$imap_mailbox.dat will have been created in the user’s OpenVMS
mail directory. This file is a text file and has a record of the mailbox files specified
by the user. The file contains a newline separated list of partial file specifications
(completed by each user’s mail directory and the .MAI suffix)

As a result of this, the following possibilities exist:

• Next time the user connects to the IMAP Server, the user may optionally
remove percent signs and mailbox names from the user name field since they
will have been recorded permanently in tcpip$imap_mailbox.dat. It will not
make any difference if the user opts to leave the mailbox names in the user
name field.

• The user may add extra mailbox names in a later connection, and the file
tcpip$imap_mailbox.dat will be updated to provide a consolidated list.

• The IMAP Client software may create and delete mail files in the user’s
directory. These actions may be at the user’s behest, or performed
automatically such as the creation of a "Deleted Items" mailbox.

A–2 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

• A System Manager may wish to provide every user on the system with a
preloaded tree of mailboxes, and this can be achieved by copying to each
user’s mail directory a pre-formatted copy of tcpip$imap_mailbox.dat.

A.1.2.2 OpenVMS Mail Configuration
Table A–1 describes the how the IMAP Server is affected by the settings of the
OpenVMS Mail SET options.

Table A–1 OpenVMS Mail SET options

Option Description

AUTO_PURGE IMAP clients have their own purge command, often called Compact or
Compress. When a message is purged from a non-Wastebasket mailbox,
it is put in the OpenVMS Mail Wastebasket. If the Wastebasket itself is
purged, the messages are permanently deleted (equivalent to OpenVMS
Mail PURGE), and disk space is then reclaimed as soon as the IMAP client
disconnects. This occurs regardless of the AUTO_PURGE setting, which
has no affect for an IMAP client.

Any messages that are permanently deleted by an IMAP client will briefly
appear in the user’s Wastebasket but those messages will not be visible
from the IMAP client and will be purged each time a client disconnects
from that mail file.

CC_PROMPT Not applicable.

COPY_SELF Not applicable.

EDITOR Not applicable.

FILE Not used. Instead the user can configure all mail files to be available
simultaneously by the setting of the user name in the IMAP client
configuration, as described in Section A.1.2.1. Note that it is not possible
to copy or move messages between different mail files.

FOLDER Not applicable.

FORM Not applicable.

FORWARD This is not applicable to the IMAP Server, but setting a forwarding address
results in messages being forwarded by OpenVMS Mail before being seen
by the IMAP Server.

MAIL_DIRECTORY This setting is respected. The directory, with an extension of .MAI, forms
the partial file specification used to complete the file names of mail files
using the values supplied as part of the user name in the IMAP client
configuration. See Section A.1.2.1 for details.

PERSONAL_NAME Not applicable.

QUEUE Not applicable.

SIGNATURE_FILE Not applicable.

WASTEBASKET_NAME This setting is respected. This folder is always displayed by the IMAP
client, even if it is currently empty.

A.1.3 How OpenVMS Mail Folder Names Map to IMAP Mailbox Names
OpenVMS Mail folders are presented to the IMAP client as IMAP mailboxes. All
mailboxes are presented to the client in lowercase characters, beginning with an
initial capital letter, and with capital letters following each space, at sign (@),
opening parenthesis (‘‘(’’), underscore (_), and hyphen (-).

Configuring and Managing the IMAP Server for OpenVMS Mail A–3

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

The NEWMAIL folder requires special treatment . Because the IMAP protocol
requires a top-level mailbox called Inbox, the NEWMAIL folder is mapped
to Inbox. When the user opens the mailbox called Mail (which maps to file
MAIL.MAI), the NEWMAIL folder is not listed so that the user is not confused by
seeing the same folder listed twice.

OpenVMS Mail folder names are usually in all uppercase characters but can
contain lowercase characters. Any lowercase characters are mapped to an
underscore (_) followed by the character’s uppercase equivalent. Underscores are
mapped to double underscores (_ _), and dollar signs are mapped to double dollar
signs ($$).

Table A–2 shows effects of folder-name mapping.

Table A–2 OpenVMS Mail Folder-Name Mapping

OpenVMS Mail Folder Name IMAP Mailbox Name

HELLO Hello

Hello H_e_l_l_o

HELLO-ALL Hello-All

HELLO_ALL Hello_ _All

HELLO$ALL Hello$$All

A.1.4 How the IMAP Server Handles Foreign Message Formats
The IMAP Server determines the correct format for common file types.
It does this by checking the beginning of the file for a recognizable file
header that matches a set contained in the configuration file TCPIP$IMAP_
HOME:TCPIP$IMAP_MAGIC.TXT (analogous to the magic files found on UNIX
systems). If a matching file header is found, the server can let the client know
the MIME type and subtype of the file.

Though most common file formats are included, it is possible to add other formats
if the structure of the file header is known.

Table A–3 describes the format of file-header recognition records.

A–4 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

Table A–3 IMAP File-Header Recognition

Field Description

Type The type of the data to be tested. Possible values are:

• byte: A 1-byte value

• short: A 2-byte value

• long: A 4-byte value

• string: A string of bytes

• integer: An integer can be used indicating a number of bytes (30 or
fewer) to allow for long matches. Examples in the configuration file
are the two RIFF format files of WAVE and AVI.

Optionally, types can be followed by an ampersand (&) and a numeric value
(mask), expressed in hexadecimal, to specify that the value is to be AND’ed
with the numeric value before any comparisons are done. Examples in the
configuration file are the two RIFF format files of WAVE and AVI.

Test The value to be compared with the value from the file. The rules for the
value depend on the type:

• Numeric type: The value is specified as octal or hexadecimal in the C
programming language form where, for example, 013 is octal, and 0x13
is hexadecimal.

• String type: The value is specified as a C programming language
string with the usual escapes permitted (for example, \n to indicate
new line.)

Type The Content-Type type to use in the MIME version of this message.

Subtype The Content-Type subtype to use in the MIME version of this message.

Format Either ‘‘text’’ or ‘‘foreign’’, indicating what sort of OpenVMS Mail message
will be tested for this match. A test with ‘‘foreign’’ in this field is performed
on messages only if they are sent using the /FOREIGN qualifier. Note that
this implicitly advertises whether base64 or quoted-printable encoding will
be used for a given bodypart type; base64 is used only if the message was
sent using the /FOREIGN qualifier.

A.1.5 Understanding IMAP Message Headers
Mail message headers sent by the IMAP Server must conform to the standard
specified in RFC 822. Because many of the messages received on an OpenVMS
system are not in the RFC 822, or Internet, format (for example, DECnet mail
or mail from another message transport system), the IMAP Server builds a new
set of headers for each message that is not RFC 822 format and is based on the
OpenVMS message headers.

The following table describes the headers on mail messages that are forwarded by
the IMAP Server.

Configuring and Managing the IMAP Server for OpenVMS Mail A–5

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

IMAP Message Header Obtained From

Date: Arrival date of message. Changed to Internet format, which
shows the day of the week, the date, the time, and the time
zone offset from Greenwich Mean Time (GMT). An example of
the format is Wed, 30 May 01 16:19:53 +0100.

From: OpenVMS message From: field. Rebuilt to ensure RFC 822
compatibility. (See Section A.1.5.1.)

To: OpenVMS Mail To: field. Rebuilt to ensure RFC 822
compatibility. (See Section A.1.5.1.)

CC: OpenVMS Mail CC: field. Rebuilt to ensure RFC 822
compatibility. (See Section A.1.5.1.)

Subject: OpenVMS Mail Subj: field. Accented characters are RFC
2047 encoded, but the change is not visible to users because
IMAP clients reverse the encoding.

X-VMS-From: OpenVMS Mail From: field. Not rebuilt.

X-IMAP4-Server: Server host name and IMAP version information. Sent only if
configuration option Send-ID-Headers is set to True.

X-IMAP4-ID: Message UID. Sent only if configuration option Send-ID-
Headers is set to True.

The IMAP Server sends these message headers to the IMAP client unless both of
the following conditions are true:

• The configuration option Ignore-Mail11-Headers is set to True or is not
defined (see Section A.2.3).

• The message text starts with SMTP headers.

A.1.5.1 How IMAP Rebuilds OpenVMS Mail Address Fields
It is important for the IMAP Server to rebuild the From: header, because this
header can be used as a destination address if a reply is requested from the
IMAP client. The same is true for To: and CC: headers if the user requests that
a reply be sent to other listed recipients. Therefore, the IMAP server rebuilds
these fields in compliance with RFC 822 before sending the header to the IMAP
client.

The following table describes the different types of addresses that can appear in
the OpenVMS Mail address fields.

Address Type Address Format

SMTP SMTP%"legal-address", where legal-address is an
address that is compliant with RFC 822 and is
commonly in the format user@domain.

DECnet node::username

User name username

DECnet address containing
quotation marks

node::"user@host"

Cluster-forwarding SMTP address node::SMTP%"user@domain"

A host name is local if one of the following conditions is true:

• The host name is the same as the substitute domain specified in the SMTP
configuration.

A–6 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

• The host name is found in the TCPIP$SMTP_LOCAL_ALIASES.TXT file.

Some IMAP client systems are confused by the use of personal names when
you attempt to reply to a mail message or when the name contains commas
or other special characters. If you define the configuration option Personal-
Name described in Section A.2.3, then before going live make sure you test the
configuration carefully with your IMAP client systems to ensure that message
replies work successfully.

The following sections describe how IMAP rebuilds an address field for each type
of address.

A.1.5.1.1 SMTP Address The IMAP server uses the SMTP address within the
quotation marks to rebuild the address field of an SMTP address. For example,
message header From: SMTP%"john.smith@federation.gov" becomes:

From: john.smith@federation.gov

SMTP hides nested quotation marks by changing them to cent sign (¢) characters
before passing them to OpenVMS Mail and then changing them back after a
reply. The IMAP server removes any cent signs that designate double quotation
marks. For example, the following message header:

From: SMTP%"¢ABCMTS::MRGATE::\¢ABCDEF::VIVALDI \¢¢@xyz.org"

Becomes:

From: "ABCMTS::MRGATE::\"ABCDEF::VIVALDI\""@xyz.org"

A.1.5.1.2 DECnet Address The value assigned to the configuration option
Decnet-Rewrite defines how the IMAP Server rebuilds a DECnet address. The
following list describes the possible values:

• GENERIC

The entire address is changed to the SMTP format. For example, from host
widgets.xyzcorp.com, the message header From: ORDERS::J_SMITH becomes:

From: "ORDERS::J_SMITH"@widgets.xyzcorp.com

In this example, instead of widgets.xyzcorp.com, the value of configuration
option Gateway-Node (described in Section A.2.3) is used if it is defined; if
not, the value of the SMTP substitute domain is used. Only if both of these
options are undefined is the host name widgets.xyzcorp.com used.

• NONE

The From: line is sent to the IMAP client unmodified. For example:

From: ORDERS::J_SMITH

You cannot reply to this type of message from an IMAP client because the
SMTP server does not accept an address in this form.

• TRANSFORM

The IMAP Server attempts to translate the DECnet node name to a TCP/IP
host name. If the name can be translated, the IMAP server checks whether
the translated host name is local. If so, the From: header becomes an address
in the format user@substitute-domain. If not, the From: header becomes an
address in the format user@hostname. Note that the IMAP and SMTP servers
call the same routine to determine whether a host name is local.

Configuring and Managing the IMAP Server for OpenVMS Mail A–7

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

The following examples show some ways the IMAP Server translates DECnet
node names to TCP/IP node names. In these examples:

The local host name is orders.acme.widgets.com

ORDERS translates the name to "orders.acme.widgets.com"

* The message header From: ORDERS::J_SMITH becomes:

From: j_smith@orders.acme.widgets.com

* For a substitute domain of acme.widgets.com, the message header
From: ORDERS::J_SMITH becomes:

From: j_smith@acme.widgets.com

* If HOST12 translates to host12.acme.widgets.com, which is not local
on host name orders.acme.widgets.com, the message header From:
HOST12::J_SMITH becomes:

From: j_smith@host12.acme.widgets.com

* If HOST13 does not translate and host orders.acme.widgets.com
has no substitute domain defined, the message header From:
HOST13::J_SMITH becomes:

From: "HOST13::J_SMITH"@orders.acme.widgets.com

In this example, if the configuration option Gateway-Node is defined,
then its value is used instead of orders.acme.widgets.com.

A.1.5.1.3 User Name-Only Address If the address under consideration is
a recipient address, and the From: address is a DECnet address, then the
recipient address is prefixed with the same routing information as that of the
From: address. Then it is processed as if it were a DECnet address, as shown in
Section A.1.5.1.2.

Otherwise the IMAP Server appends the at sign (@) to the user name, and then
appends one of the following, in order of preference:

• The value of configuration option Gateway-Node, if defined

• An SMTP substitute domain, if defined

• The local host name

For example, with an SMTP substitute domain defined as acme.widgets.com, the
message header From: Smith becomes:

From: smith@acme.widgets.com

A.1.5.1.4 DECnet Address That Contains Quotation Marks The values
assigned to the configuration option Quoted-Decnet-Rewrite define how the IMAP
Server rebuilds a DECnet address that contains quotation marks. The following
list describes the possible values:

• GENERIC

The address is changed to the SMTP format. For example,
on host widgets.xyzcorp.com, the message header From:
ORDERS::"j_smith@acme.com" becomes:

From: "ORDERS::\"j_smith@acme.com\""@widgets.xyzcorp.com

• NONE

A–8 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

The From: line is passed to the IMAP client without being modified. For
example:

From: ORDERS::"j_smith@acme.com"

You cannot reply to this type of mail message because the SMTP server does
not accept an address of this form.

• TRANSFORM

The IMAP Server uses the text inside the quotation marks. For example, the
message header From: ORDERS::"j_smith@acme.com" becomes:

From: j_smith@acme.com

A.1.5.1.5 Cluster-Forwarding SMTP Address With a cluster-
forwarding SMTP address, the IMAP server uses the SMTP address
within the quotation marks. For example, the message header From:
ABCDEF::SMTP%"james.smith@federation.gov" becomes:

From: james.smith@federation.gov

A.1.5.1.6 All Other Addresses For all other address formats, the IMAP server
changes the entire address to the SMTP format:

• Quotation marks in the address are prefixed with the backslash (\) escape
character.

• The entire address is placed within quotation marks.

• An at sign (@) is appended.

• The value of configuration option Gateway-Node, if defined, is appended;
if not, the value of the SMTP substitute domain is appended. If both are
undefined, then the name of the local host is appended.

For example, if the substitute domain is xyz.org, the message header
From: ABCMTS::MRGATE::"ORDERS::SPECIAL" becomes:

From: "ABCMTS::MRGATE::\"ORDERS::SPECIAL\""@xyz.org

If the configuration option Ignore-Mail11-Headers is set to True and the address
is an SMTP address, the rebuilt From: field is not displayed to the user. In this
case, the IMAP Server sends the actual headers from the body of the mail as the
mail headers.

A.1.6 Uploaded Messages
A user can copy mail messages stored on the local client system to OpenVMS
Mail. This action is termed uploading and involves the creation of a new
OpenVMS Mail message.

When a message is uploaded, OpenVMS Mail treats it as a new mail message,
and a ‘‘New Mail’’ broadcast message is issued. The user will see this message
if the user also has an OpenVMS VT session open with receipt of broadcast
messages enabled.

When a message is uploaded, the entire message is copied along with the header
information described in Table A–4. Note that the additional header information
is visible only if the user reads it with MAIL or if the configuration option
Ignore-Mail11-Headers is set to False.

Configuring and Managing the IMAP Server for OpenVMS Mail A–9

Configuring and Managing the IMAP Server for OpenVMS Mail
A.1 Key Concepts

Table A–4 describes the typical headers in an uploaded message.

Table A–4 Header Information in Uploaded Messages

Header Value

Body: The entire SMTP message, including headers.

From: The underscore character (_), followed by the name of the user
who is uploading the message

To: The underscore character (_), followed by the name of the user
who is uploading the message

Subj: The subject of the uploaded message.

A.2 IMAP Server Control
The system manager controls the management functions of the IMAP Server.
These functions include:

• Starting and stopping the server

• Viewing event logs for each server

• Modifying options that control server behavior

• Tuning the server

The following sections describe these management functions.

A.2.1 Starting Up and Shutting Down the Server
The IMAP Server process starts automatically if you specified automatic startup
during the configuration procedure (TCPIP$CONFIG.COM).

The IMAP Server can be shut down and started independently of TCP/IP
Services. This is useful if you change configuration options that require the
service to be restarted.

The following files are provided:

• SYS$STARTUP:TCPIP$IMAP_STARTUP.COM allows you to start the IMAP
Server.

• SYS$STARTUP:TCPIP$IMAP_SHUTDOWN.COM allows you to shut down
the IMAP Server.

To preserve site-specific parameter settings and commands, create the following
files:

• SYS$STARTUP:TCPIP$IMAP_SYSTARTUP.COM — to be used as a
repository for site-specific definitions and parameters to be invoked when
the IMAP server is started.

• SYS$STARTUP:TCPIP$IMAP_SYSHUTDOWN.COM — to be used as a
repository for site-specific definitions and parameters to be invoked when the
IMAP Server is shut down.

Note that these files are not overwritten when you reinstall TCP/IP Services.

A–10 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.2 IMAP Server Control

A.2.2 Viewing Server Event Log Files
The IMAP Server records start and stop server events in an event log file. Other
events, such as failed user authentication events, are also recorded in this log file.
The file is called TCPIP$IMAP_HOME:TCPIP$IMAP_EVENT$node.LOG, where
node is the name of the node on which the server is running.

A.2.3 Modifying IMAP Server Characteristics
To modify the default IMAP Server settings and to configure
additional characteristics, edit the configuration file TCPIP$IMAP_
HOME:TCPIP$IMAP.CONF. If you modify the IMAP Server configuration
file, restart the IMAP Server to make the changes take effect.

You can modify the following IMAP Server characteristics:

• Server port number

• Mail header options

• Number of live connections per server process

The format of each line in the configuration file is:

option:value

where option is the setting name and value is the value given to the setting. For
example:

Server-Port:143

Comment lines may be added to the configuration file, and these lines are defined
to be lines that start with the ’#’ character.

Table A–5 describes the IMAP option names, default settings, and characteristics
that you can modify.

Table A–5 IMAP Configuration Options

Option Name Description

Server-Port TCP/IP port number for connection between IMAP clients
and the IMAP Server. The default value is 143.

Ignore-Mail11-Headers If set to True, the default, the IMAP Server ignores the
OpenVMS message headers when mail is sent via SMTP,
which contains an SMTP address in the From: field. For
information about how IMAP forms message headers, see
Section A.1.5.

Send-ID-Headers If set to True, the IMAP Server sends X-IMAP4-Server and
X-IMAP4-ID headers for each mail message. If not defined
or if set to False (the default), the ID headers are not sent
for any mail from an SMTP address. For information about
how IMAP handles message headers, see Section A.1.5.

(continued on next page)

Configuring and Managing the IMAP Server for OpenVMS Mail A–11

Configuring and Managing the IMAP Server for OpenVMS Mail
A.2 IMAP Server Control

Table A–5 (Cont.) IMAP Configuration Options

Option Name Description

Decnet-Rewrite Determines how the IMAP Server rebuilds a simple DECnet
address (of the form node::user) when it sends the mail to
the IMAP client The value of this option may be one of the
following:

• GENERIC

Simple DECnet addresses are changed to the SMTP
address format.

• NONE

Simple DECnet addresses are sent unmodified to the
IMAP client.

• TRANSFORM (default)

The IMAP server attempts to transform the DECnet
address into an SMTP address by translating the
DECnet node name to a TCP/IP host name.

For more information about how IMAP rebuilds the message
headers, see Section A.1.5.1.2.

Quoted-Decnet-Rewrite Determines how the IMAP Server rebuilds a DECnet
address that contains quotation marks (of the form
node::"user@host") in the OpenVMS Mail From: field when
it sends the message to the IMAP client. The value of this
option may be one of the following:

• GENERIC

DECnet addresses that contain quotation marks are
changed to the SMTP address format.

• NONE

DECnet addresses that contain quotation marks are
sent unmodified to the IMAP client.

• TRANSFORM (default)

The IMAP server uses the text within the quotation
marks in the From: field it sends to the IMAP server.

For more information about how IMAP rebuilds the message
headers, see Section A.1.5.1.4.

Personal-Name If defined, the IMAP server provides the IMAP clients with
the message header From: fields that include the sender’s
personal name, if one appeared in the sender’s From: field.

Gateway-Node If defined, the local node or cluster name is superseded by
the value of this configuration option, when supplying a
route from SMTP into DECnet as part of an address. The
Gateway-Node value should be an Internet address of a
TCP/IP Services SMTP server node.

For example, suppose a Decnet node name of ORDERS
cannot be mapped, and the address is ORDERS::J_SMITH
and Gateway-Node is defined to be widgets.xyzcorp.com,
then the resulting address will be "ORDERS::J_
SMITH"@widgets.xyzcorp.com.

(continued on next page)

A–12 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.2 IMAP Server Control

Table A–5 (Cont.) IMAP Configuration Options

Option Name Description

Max-Connections Each time the number of live connections to the server
reaches the Max-Connections parameter (default = 25),
a new process is started. The old server does not accept
new connections and will shut down as soon as all existing
connections are closed by the client or after 20 minutes,
whichever comes first. Service may be interrupted for
up to 5 seconds while one process takes over from the
other. You should avoid changing the value of this option
unless instructed by Compaq support personnel. Too low
a setting will result in unnecessary delays, and too high
a setting will result in too many connections contesting
per-process-limited OpenVMS Mail resources.

Message-Cap The IMAP Server has a configurable limit on the number of
messages displayed in a folder, defined by the Message-Cap
parameter. If this parameter is not defined, or is set to the
default of 0, then no limit is applied.

If a user tries to list a folder containing more messages than
the limit, then only the first n messages will be displayed,
where n is the limit. In addition the user will be informed
with the message "Only the first n messages in each folder
will be displayed. Delete or move messages to another folder
to display more."

Server-Trace The default for this setting is False. If set to True a trace
file will be created as TCPIP$IMAP_HOME:TCPIP$IMAP_
node_yyyymmddhhmmssTRACE.LOG where "node" is
the node name where the IMAP Server is running and
"yyyymmddhhmmss" is the time that the trace log is
created. All communication between IMAP clients and
the IMAP Server will be logged, with the exception of
passwords. Since a large amount of data will be recorded
on a busy system, it is recommended that tracing is only
turned on for short periods. To turn tracing on or off, it is
necessary to restart the IMAP Server.

(continued on next page)

Configuring and Managing the IMAP Server for OpenVMS Mail A–13

Configuring and Managing the IMAP Server for OpenVMS Mail
A.2 IMAP Server Control

Table A–5 (Cont.) IMAP Configuration Options

Option Name Description

Trace-Synch This setting only applies when the setting Server-Trace is
set to True. Trace-Synch governs the frequency with which
the trace log is flushed.

Trace-Synch is a non-negative integer value which specifies
the number of trace log writes between each full flush of the
trace log output to disk. Flushing the log more frequently
lowers the number of log writes that could be lost at the
end of the log in the event of a server process crash but it
also means slower performance. Conversely less frequent
flushing means better performance but more lines possibly
lost at the end of the log on a server crash.

A value of 0, which is the default, means not to flush to
disk until the server process exits, though OpenVMS Record
Management Services (RMS) will flush to disk periodically
anyway. This is the highest performance option but in the
event of a server crash many lines of trace log information
may be lost.

If you want the server to flush on each log write set Trace-
Synch to 1. This is the slowest performer but safest
regarding potential loss of trace log data in the event of
a server crash.

Benchmark testing has proven that a value of 100 strikes a
good balance between performance and data loss.

A.2.4 Tuning the Server
This section is intended for system managers who want to know more detailed
information about the IMAP server.

A.2.4.1 Tuning Issues
The only tuning issue pertains to the server’s use of Virtual Memory (VM). The
IMAP server can use large amounts of VM and may require some tuning to get
dependable performance.

The exhaustion of virtual memory can be manifested in different ways including
the server process crashing with error messages that could appear to be caused by
different problems such as access violations, ROPRAND as well as INSVIRMEM
errors. Some crashes produce PTHREAD_DUMP.LOG files in TCPIP$IMAP_
HOME.

Although the process crashes may appear to be from different causes, memory
exhaustion can be confirmed by examining the job termination information at
the tail of the TCPIP$IMAP_RUN.LOG. If the "Peak virtual size" value is at or
above the TCPIP$IMAP account’s PGFLQUO value then the process probably
terminated due to insufficient virtual memory.

The IMAP server process will sometimes hang rather than exit when it consumes
all of its dynamic memory. Use the following commands to examine the
PAGFILCNT of the IMAP server process. If the value is at or near zero then
the hang is caused by insufficient virtual memory.

A–14 Configuring and Managing the IMAP Server for OpenVMS Mail

Configuring and Managing the IMAP Server for OpenVMS Mail
A.2 IMAP Server Control

$!
$! This shows the PID(s) of the IMAP process(es)...
$ SHOW SYSTEM/PROCESS=*IMAP*
$!
$! To show the process’s PAGFILCNT do
$ WRITE SYS$OUTPUT "’’F$GETJPI("insert-pid-here","PAGFILCNT")’"

A.2.4.2 Tuning Options
The use of virtual memory by the IMAP Server can be controlled by one or both of
the following actions: increasing the PGFLQUO of the server account or reducing
the memory requirements of the process.

These two options are described in more detail in the next sections.

A.2.4.2.1 Give more dynamic memory to an IMAP server process If sufficient
memory is available, increase the PGFLQUO of the TCPIP$IMAP account
(adjusting any SYSGEN parameters that limit PGFLQUO). Take into account
that multiple server processes may need to run concurrently on a heavily loaded
system when assigning a high PGFLQUO.

The amount of memory an IMAP server can use at peak is the sum of the
following elements:

• Memory required at start-up: 10000 blocks

• Memory per connection: 1500 blocks. The number of connections per Server
is limited by the Max-Connections configuration option, default 25. Thus in a
default configuration the amount required is 37500 blocks.

• Memory per message: If a user lists a large folder, then the Server requires
an extra 3 blocks per message. If you estimate that your users are opening, at
peak, folders with an average of 1000 messages, then the amount of memory
required will be:

Max-Connections * 3 * 1000

which is 75000 blocks in a default configuration. See also the next section
where use of the configuration option Message-Cap is described, in that it can
be used to limit the maximum number of messages in a folder that can be
viewed. If Message-Cap is defined then the formula will be:

Max-Connections * 3 * Message-Cap

Configuring and Managing the IMAP Server for OpenVMS Mail A–15

Configuring and Managing the IMAP Server for OpenVMS Mail
A.2 IMAP Server Control

A.2.4.2.2 Reduce IMAP server demand for memory There are two IMAP
configuration options that can be used to reduce each IMAP server process’s
consumption of dynamic memory. They are Max-Connections and Message-Cap.

Because Max-Connections limits the number of connections that can be served
simultaneously it will implicitly limit the quantity of VM consumed by each IMAP
server process. Note that while reducing Max-Connections reduces the dynamic
memory consumption of each IMAP server process it will result in more IMAP
server processes; there will be more processes each using less dynamic memory.

Message-Cap limits the number of messages passed back to the client when a
folder is selected.

A.3 Enabling MIME Mail
The MIME (Multipurpose Internet Mail Extensions) specification provides a set
of additional headers you can use so that users can send mail messages composed
of more than simple ASCII text. MIME is an enhancement to RFC 822.

For MIME mail to be decoded correctly, follow these guidelines:

• Configure the SMTP server with the /OPTION=TOP_HEADERS qualifier,
because the first lines of mail text after the four OpenVMS message header
lines and the initial separating line must be the MIME headers.

• Configure the IMAP Server with the option Ignore-Mail11-Headers set
to True, or leave this option undefined, since True is the default value.
Otherwise, MIME headers are not parsed as message headers.

• The OpenVMS message From: field must be recognized as an SMTP address.
Otherwise, the IMAP server sends the headers it creates from OpenVMS
message headers as the headers of the mail message. For information about
IMAP message headers, see Section A.1.5.

Define the logical name TCPIP$SMTP_JACKET_LOCAL to 1 for all SMTP
cluster systems. This ensures that the mail is delivered if the domain in the
From: or To: field appears local. For example:

$ DEFINE/SYSTEM TCPIP$SMTP_JACKET_LOCAL 1

If MIME mail does not decode, check the mail headers on the client system.
If you see multiple blocks of headers and the MIME version header is not in
the first block, confirm that you have followed these guidelines. Note that the
headers of messages forwarded over OpenVMS Mail are mapped only if there is
no cover note (that is, if the headers of a forwarded message are at the top of the
message immediately following the headers of the forwarding message).

A–16 Configuring and Managing the IMAP Server for OpenVMS Mail

B
Configuring and Managing NTP

The Network Time Protocol (NTP) synchronizes time and coordinates time
distribution throughout a TCP/IP network. NTP provides accurate and
dependable timekeeping for hosts on TCP/IP networks. TCP/IP Services NTP
software is an implementation of the NTP Version 4 specification and maintains
compatibility with NTP Versions 1, 2, and 3.

Time synchronization is important in client/server computing. For example,
systems that share common databases require coordinated transaction processing
and timestamping of instrumental data.

NTP provides synchronization that is traceable to clocks of high absolute accuracy
and avoids synchronization to clocks that keep incorrect time.

This chapter reviews key concepts and describes:

• How to start up and shut down NTP (Section B.2)

• How to configure the NTP host (Section B.3)

• How to configure the host as a backup time server (Section B.4)

• NTP event logging (Section B.5)

• How to configure NTP authentication (Section B.6)

• How to use NTP utilities (Section B.7)

• How to solve NTP problems (Section B.8)

B.1 Key Concepts
Synchronized timekeeping means that hosts with accurate system timestamps
send time quotes to each other. Hosts that run NTP can be either time servers or
clients, although they are often both servers and clients.

NTP does not attempt to synchronize clocks to each other. Rather, each server
attempts to synchronize to Coordinated Universal Time (UTC) using the best
available source and the best available transmission paths to that source. NTP
expects that the time being distributed from the root of the synchronization
subnet will be derived from some external source of UTC (for example, a radio
clock).

If your network is isolated and you cannot access other NTP servers on the
internet, you can designate one of your nodes as the reference clock to which all
other hosts will synchronize.

Configuring and Managing NTP B–1

Configuring and Managing NTP
B.1 Key Concepts

B.1.1 Time Distributed Through a Hierarchy of Servers
In the NTP environment, time is distributed through a hierarchy of NTP time
servers. Each server adopts a stratum that indicates how far away it is operating
from an external source of UTC. NTP times are an offset of UTC. Stratum 1
servers have access to an external time source, usually a radio clock. A stratum 2
server is one that is currently obtaining time from a stratum 1 server; a stratum
3 server gets its time from a stratum 2 server; and so on. To avoid long-lived
synchronization loops, the number of strata is limited to 15.

Stratum 2 (and higher) hosts might be company or campus servers that obtain
time from some number of primary servers and provide time to many local clients.
In general:

• Lower-strata hosts act as time servers.

• Higher-strata hosts are clients that adjust their time clocks according to the
servers.

Internet time servers are usually stratum 1 servers. Other hosts connected to an
internet time server have stratum numbers of 2 or higher and may act as time
servers for other hosts on the network. Clients usually choose one of the lowest
accessible stratum servers from which to synchronize.

B.1.2 How Hosts Negotiate Synchronization
The identifying stratum number of each host is encoded within UDP datagrams.
Peers communicate by exchanging these timestamped UDP datagrams. NTP uses
these exchanges to construct a list of possible synchronization sources, then sorts
them according to stratum and synchronization distance. Peers are accepted or
rejected, leaving only the most accurate and precise sources.

NTP evaluates any new peer to determine whether it qualifies as a new (more
suitable) synchronization source.

NTP rejects the peer under the following conditions:

• The peer is not synchronized.

• The stratum is higher than the current source’s stratum.

• The peer is synchronized to the local node.

NTP accepts the peer under the following conditions:

• There is no current time source.

• The current source is unreachable.

• The current source is not synchronized

• The new source’s stratum is lower than the current source.

• The new source’s stratum is the same as the current source, but its distance
is closer to the synchronization source by more than 50 percent.

B–2 Configuring and Managing NTP

Configuring and Managing NTP
B.1 Key Concepts

B.1.3 How the OpenVMS System Maintains the System Clock
The OpenVMS system clock is maintained as a software timer with a resolution of
100 nanoseconds, updated at 10-millisecond intervals. A clock update is triggered
when a register, loaded with a predefined value, has decremented to zero. Upon
reaching zero, an interrupt is triggered that reloads the register, thus repeating
the process.

The smaller the value loaded into this register, the more quickly the register
reaches zero and triggers an update. Consequently, the clock runs more quickly.
A larger value means more time between updates; therefore, the clock runs more
slowly. A clock tick is the amount of time between clock updates.

B.1.4 How NTP Makes Adjustments to System Time
Once NTP has selected a suitable synchronization source, NTP compares the
source’s time with that of the local clock. If NTP determines that the local clock
is running ahead of or behind the synchronization source, NTP uses a general
drift mechanism to slow down or speed up the clock as needed. NTP accomplishes
this by issuing a series of new clock ticks. For example, if NTP detects that the
local clock is drifting ahead by +0.1884338 second, it issues a series of new ticks
to reduce the difference between the synchronization source and the local clock.

If the local system time is not reasonably correct, NTP does not set the local clock.
For example, if the new time is more than 1000 seconds off in either direction,
NTP does not set the clock. In this case, NTP logs the error and shuts down.

NTP maintains a record of the resets it makes along with informational messages
in the NTP log file, TCPIP$NTP_RUN.LOG. For details about event logging and
for help interpreting an NTP log file, see Section B.5.

B.1.5 Configuring the Local Host
The system manager of the local host, determines which network hosts to use
for synchronization and populates an NTP configuration file with a list of the
participating hosts.

NTP hosts can be configured in any of the following modes:

• Client/server mode

This mode indicates that the local host wants to obtain time from the
remote server and is willing to supply time to the remote server. This
mode is appropriate in configurations involving a number of redundant time
servers interconnected through diverse network paths. Internet time servers
generally use this mode.

Indicate this mode with a peer statement in the configuration file, as shown
in the following example:

peer 18.72.0.3

• Client mode

This mode indicates that the local host wants to obtain time from the remote
server but it is not willing to provide time to the remote server. Client mode
is appropriate for file server and workstation clients that do not provide
synchronization to other local clients. A host with higher stratum generally
uses this mode.

Configuring and Managing NTP B–3

Configuring and Managing NTP
B.1 Key Concepts

Indicate client mode with the server statement in the configuration file, as
shown in the following example:

server 18.72.0.3

• Broadcast mode

This mode indicates that the local server will send periodic broadcast
messages to a client population at the broadcast/multicast address specified.
This specification normally applies to the local server operating as a sender.

Indicate this mode with a broadcast statement in the configuration file, as
shown in the following example:

broadcast 18.72.0.255

• Multicast mode

A multicast client is configured using the broadcast statement, but with a
multicast group (class D) address instead of a local subnet broadcast address.
However, there is a subtle difference between broadcasting and multicasting.
Broadcasting is specific to each interface and local subnet address. If more
than one interface is attached to a machine, a separate broadcast statement
applies to each one.

IP multicasting is a different paradigm. A multicast message has the
same format as a broadcast message and is configured with the same
broadcast statement, but with a multicast group address instead of a local
subnet address. By design, multicast messages travel from the sender
via a shortest-path or shared tree to the receivers, which might require
these messages to emit from one or all interfaces but to carry a common
source address. However, it is possible to configure multiple multicast group
addresses using multiple broadcast statements. Other than these differences,
multicast messages are processed just like broadcast messages. Note that
the calibration feature in broadcast mode is extremely important, since IP
multicast messages can travel far different paths through the IP routing
fabric than can ordinary IP unicast messages.

The Internet Assigned Number Association (IANA) has assigned multicast
group address 224.0.1.1 to NTP, but you should use this address only where
the multicast span can be reliably constrained to protect neighbor networks.
In general, you should use group addresses that have been given out by
your administrator, as described in RFC 2365, or GLOP group addresses, as
described in RFC 2770.

• Manycast mode

Manycasting is an automatic discovery and configuration paradigm new to
NTP Version 4. It is intended as a means for a multicast client to survey the
nearby network neighborhood for cooperating manycast servers, to validate
them using cryptographic means, and to evaluate their time values with
respect to other servers that might be in the vicinity. The intended result is
that each manycast client mobilizes client associations with the best three of
the available manycast servers and automatically reconfigures to sustain this
number of servers if one or more fail.

A persistent manycast client association is configured using the server
statement, but with a multicast (class D) group address instead of an
ordinary IP (class A, B, C) address. There can be as many manycast client
associations as different group addressses.

B–4 Configuring and Managing NTP

Configuring and Managing NTP
B.1 Key Concepts

Manycast servers configured with the manycastserver statement listen on the
specified group address for manycast client messages. Note the distinction
between a manycast client, which is configured with a server statement, and
a manycast server, which is configured with a manycastserver statement.

If a manycast server is in range of the current time-to-live and is
synchronized to a valid source and operating at a stratum level equal to
or lower than the manycast client, the server replies to the manycast client
message with an ordinary server-mode message.

The manycast client that receives this message mobilizes an ephemeral client
association as in ordinary client/server mode, according to the matching
manycast client template. Then the client polls the server at its unicast
address in burst mode in order to set the host clock reliably and to validate
the source. The client runs the NTP intersection and clustering algorithms,
which discard all but the best three associations. The surviving associations
then continue in ordinary client/server mode.

• Burst mode

Two burst modes can be enabled in client/server mode using the server
statement and the iburst and burst keywords. In either mode, a single
poll initiates a burst of eight client messages at intervals randomized over a
range of 1 to 4 seconds. However, the interval between the first and second
messages is increased to about 16 seconds in order for a dialup modem to
complete a call, if necessary.

Received server messages update the NTP Version 4 clock filter, which selects
the best (most accurate) time values. When the last client message in the
burst is sent, the next received server message updates the system variables
and sets the system clock in the usual manner, as if only a single client/server
cycle had occurred. The result is not only a rapid and reliable setting of the
system clock, but also a considerable reduction in network jitter.

The iburst keyword can be configured when it is important to set the clock
quickly, such as when an association is either first mobilized or first becomes
reachable, or when the network attachment requires an initial calling or
training procedure. The burst is initiated only when the server first becomes
reachable and results in good accuracy with intermittent connections typical
of PPP and ISDN services. Outlyers caused by initial dialup delays and other
factors are avoided, and the client sets the clock within 30 seconds after the
first message.

The burst keyword can be configured in cases of excessive network jitter
or when the network attachment requires an initial calling or training
procedure. The burst is initiated at each poll interval when the server is
reachable. The burst does produce additional network overhead and can
cause trouble if used indiscriminately. It should be used only if the poll
interval is expected to settle to values equal to or greater than 1024 seconds.

B.2 NTP Service Startup and Shutdown
The NTP service can be shut down and started independently of TCP/IP Services.
The following files are provided:

• SYS$STARTUP:TCPIP$NTP_STARTUP.COM allows you to start the NTP
service.

Configuring and Managing NTP B–5

Configuring and Managing NTP
B.2 NTP Service Startup and Shutdown

• SYS$STARTUP:TCPIP$NTP_SHUTDOWN.COM allows you to shut down the
NTP service.

To preserve site-specific parameter settings and commands, create the following
files. These files are not overwritten when you reinstall TCP/IP Services:

• SYS$STARTUP:TCPIP$NTP_SYSTARTUP.COM can be used as a repository
for site-specific definitions and parameters to be invoked when the NTP
service is started.

• SYS$STARTUP:TCPIP$NTP_SYSHUTDOWN.COM can be used as a
repository for site-specific definitions and parameters to be invoked when the
NTP service is shut down.

B.3 Configuring Your NTP Host
The NTP configuration file TCPIP$NTP.CONF contains a list of hosts your system
will use for time synchronization. Before configuring your host, you must do the
following:

1. Select time sources.

2. Obtain the IP addresses or host names of the time sources.

3. Obtain the version number of NTP that the hosts are running.

To ensure reliable synchronization, select multiple time sources that you are
certain provide accurate time and that are synchronized to an Internet time
server.

To minimize common points of failure, avoid synchronizing the following:

• The local host to another peer at the same stratum, unless the latter is
receiving time from a lower stratum source to which the local host cannot
connect.

• More than one host in a particular administrative domain to the same time
server outside that domain.

To simplify configuration file maintenance, avoid configuring peer associations
with higher stratum servers.

B.3.1 Creating the Configuration File
To create a configuration file for your local host, edit a copy of the file
TCPIP$NTP.TEMPLATE (located in SYS$SPECIFIC:[TCPIP$NTP])
to add the names of participating hosts, then save the file as
SYS$SPECIFIC:[TCPIP$NTP]TCPIP$NTP.CONF. This file is not overwritten
when you install subsequent versions of TCP/IP Services.

Note

If a UCX version of NTP is configured on your system, your
TCPIP$NTP.CONF file is created automatically and is populated with
entries from the file UCX$NTP.CONF when you run the TCPIP$CONFIG
procedure.

B–6 Configuring and Managing NTP

Configuring and Managing NTP
B.3 Configuring Your NTP Host

B.3.2 Configuration Statements and Options
In the following configuration statements, the various modes are determined by
the statement keyword and the type of the required IP address. Addresses are
classsed by type as (s) a remote server or peer (IP class A, B, and C), (b) the
broadcast address of a local interface, (m) a multicast address (IP class D), or (r) a
reference clock address (127.127.x.x).

NTP configuration statements are formatted as follows:

• peer address [key ID] [version number] [prefer] [minpoll interval]
[maxpoll interval]

server address [key ID] [version number] [prefer][burst] [iburst]
[minpoll interval] [maxpoll interval]

broadcast address [key ID] [version number][minpoll interval][ttl nn]

manycastclient address [key ID] [version number][[minpoll interval]
[maxpoll interval][ttl nn]

These four statements specify the time server name or address to be used and
the mode in which to operate. The address can be either a DNS name or an
IP address in dotted-quad notation.

peer — For type s addresses only, this statement mobilizes a persistent
symmetric-active mode association with the specified remote peer. This
statement should not be used for type b, type m, or type r addresses.

server — For type s and type r addresses only, this statement mobilizes
a persistent client mode association with the specified remote server or
local reference clock. This statement should not be used for type b or type
m addresses.

broadcast — For type b and type m addresses only, this statement
mobilizes a persisent broadcast mode association. Multiple statements
can be used to specify multiple local broadcast interfaces (subnets) and/or
multiple multicast groups. Note that local broadcast messages go only to
the interface associated with the subnet specified, but multicast messages
go to all interfaces.

manycastclient — For type m addresses only, this statement mobilizes a
manycast client mode association for the multicast address specified. In
this case, a specific address must be supplied that matches the address
used on the manycastserver statement for the designated manycast
servers.

The manycastclient statement specifies that the local server is to operate
in client mode with the remote servers that are discovered as the result of
broadcast/multicast messages. The client broadcasts a request message to
the group address associated with the specified address and specifically
enabled servers respond to these messages. The client selects the servers
providing the best time and continues as with the server statement. The
remaining servers are discarded as if never heard.

The following table describes the options to the previous statements:

Configuring and Managing NTP B–7

Configuring and Managing NTP
B.3 Configuring Your NTP Host

Option Description

key ID For all packets sent to the address, includes authentication
fields encrypted using the specified key identifier, an
unsigned 32-bit integer. The default is no encryption.

version number Specifies the version number to be used for outgoing NTP
packets. Versions 1, 2, 3, and 4 are the choices. The
default is 4.

prefer Marks the server as preferred. This host will be chosen for
synchronization among a set of correctly operating hosts.

burst When the server is reachable and at each poll interval,
send a burst of eight packets instead of the usual one
packet. The spacing between the first and the second
packets is about 16 seconds to allow a modem call to
complete, while the spacing between the remaining
packets is about 2 seconds. This is designed to improve
timekeeping quality with the server command and s
addresses.

iburst When the server is unreachable and at each poll interval,
send a burst of eight packets instead of the usual one. As
long as the server is unreachable, the spacing between
packets is about 16 seconds to allow a modem call to
complete. Once the server is reachable, the spacing
between packets is about 2 seconds. This is designed
to speed the initial synchronization acquisition with the
server command and s addresses.

minpoll interval Specifies the minimum polling interval for NTP messages,
in seconds to the power of 2. The allowable range is 4
(16 seconds) to 14 (16384 seconds), inclusive. This option
is not applicable to reference clocks. The default is 6 (64
seconds).

maxpoll interval Specifies the maximum polling interval (in seconds), for
NTP messages. The allowable range is 4 (16 seconds)
to 14 (16384 seconds) inclusive. The default is 10 (1024
seconds). This option does not apply to reference clocks.

ttl nn Specifies the time-to-live for multicast packets. Used only
with broadcast and manycast modes.

• broadcastclient

This statement enables reception of broadcast server messages to any local
interface (type b) address. Upon receiving a message for the first time, the
broadcast client measures the nominal server propagation delay using a brief
client/server exchange with the server, then enters broadcastclient mode,
in which it listens for and synchronizes to succeeding broadcast messages.
Note that to avoid accidental or malicious disruption in this mode, both the
server and client should use authentication and the same trusted key and key
identifier.

• broadcastdelay seconds

The broadcast and multicast modes require a special calibration to determine
the network delay between the local and remote servers. Usually, this is
done automatically by the initial protocol exchanges between the client and
server. In some cases, the calibration procedure might fail possibly because of
network or server access controls. This statement specifies the default delay
to be used under these circumstances. Typically (for Ethernet), a number

B–8 Configuring and Managing NTP

Configuring and Managing NTP
B.3 Configuring Your NTP Host

between 0.003 and 0.007 seconds is appropriate. When this statement is not
used, the default is 0.004 seconds.

• multicastclient address

This statement enables reception of multicast server messages to the
multicast group address(es) (type m) specified. Upon receiving a message for
the first time, the multicast client measures the nominal server propagation
delay using a brief client/server exchange with the server, then enters the
broadcast client mode, in which it synchronizes to suceeding multicast
messages.

Note that to avoid accidental or malicious disruption in this mode, both the
server and client should use authentication and the same trusted key and key
identifier.

• manycastserver address

This statement enables reception of manycast client messages to the multicast
group address(es) (type m) specified. At least one address is required. The
Internet Assigned Number Association (IANA) has assigned multicast group
address 224.0.1.1 to NTP, but you should use this address only where the
multicast span can be reliably constrained to protect neighbor networks.
In general, you should use group addresses that have been given out by
your administrator, as described in RFC 2365, or GLOP group addresses, as
described in RFC 2770. Note that to avoid accidental or malicious disruption
in this mode, both the server and client should use authentication and the
same trusted key and key identifier.

• driftfile file-specification

This statement specifies the name of the file used to record the frequency
offset of the local clock oscillator. If the file exists, it is read at startup to
set the initial frequency offset, and then is updated hourly with the current
frequency computed by the NTP server.

If the file does not exist or if the driftfile statement is not specified in the
configuration file, the initial frequency offset is assumed to be zero. If the file
does not exist but the driftfile keyword is specified without a parameter,
the default, SYS$SPECIFIC:[TCPIP$NTP]TCPIP$NTP.DRIFT is used.

In these cases, it might take some hours for the frequency to stabilize and for
the residual timing errors to subside.

The drift file TCPIP$NTP.DRIFT consists of a single floating-point number
that records the frequency of the offset measured in parts per million (ppm).

• enable auth | bclient | monitor | ntp | stats

disable auth | bclient | monitor | ntp | stats

These statements enable and disable the following server options:

auth Controls synchronization with unconfigured peers only if the peer
has been correctly authenticated using a trusted key and key
identifier. By default, auth is enabled.

bclient Controls the server to listen for messages from broadcast or
multicast servers. By default, bclient is disabled.

monitor Controls the monitoring facility. By default, monitor is enabled.

Configuring and Managing NTP B–9

Configuring and Managing NTP
B.3 Configuring Your NTP Host

ntp Enables the server to adjust its local clock by means of NTP.
If disabled, the local clock free runs at its intrinsic time and
frequency offset. This statement is useful in case the local clock is
controlled by some other device or protocol and NTP is used only
to provide synchronization to other clients. In this case, the local
clock driver can be used to provide this function and also certain
time variables for error estimates and leap indicators. The default
for this flag is enable.

stats Enables the statistics facility. By default, stats is enabled.

• logconfig configkeyword

This statement controls the amount and type of output written to the system
log file. By default, all output is turned off. All configkeyword keywords
can be prefixed with a plus sign (+) and a minus sign (-), where + adds
messages and - removes messages. Messages can be controlled in four classes
(clock, peer, sys, and sync). Within these classes, four types of messages
can be controlled. Informational messages (info) control configuration
information. Event messages (events) control logging of events (reachability,
synchronization, alarm conditions). Statistics messages (statistics) control
statistical output. The final message group is the status (status) messages.
This message group describes mainly the synchronization status.

Configuration keywords are formed by concatenating the message class with
the event class. The all prefix can be used instead of a message class. A
message class can also be followed by the all keyword to enable or disable
all messages of the respective message class. Therefore, a minimal log
configuration might look like the following example:

logconfig +sysevents +syncstatus

This configuration would list the synchronization state of the NTP server and
the major system events.

For a simple reference server, the following minimum message configuration
might be useful:

logconfig +syncall +clockall

This configuration lists all clock information and synchronization information.
All other events and messages about peers, system events, and so forth, are
suppressed.

• tinker [panic panic | dispersion dispersion | minpoll minpoll | allan
allan | huffpuff huffpuff]

This statement can be used to alter several system variables in exceptional
circumstances. It should occur in the configuration file before any other
configuration options. The default values of these options have been carefully
optimized for a wide range of network speeds and reliability expectations. In
general, they interact in intricate ways that are hard to predict, and some
combinations can result in unpredictable behavior. It is rarely necessary to
change the default values.

All options are in floating-point seconds or in seconds per second. The
minpoll option is an integer in seconds to the power of 2. The options operate
as follows:

• panic panic

This option becomes the new value for the panic threshold, normally 1000
seconds. If set to zero, the panic sanity check is disabled and a clock
offset of any value is accepted.

B–10 Configuring and Managing NTP

Configuring and Managing NTP
B.3 Configuring Your NTP Host

• dispersion dispersion

This option becomes the new value for the dispersion increase rate,
usually .000015.

• minpoll minpoll

This option becomes the new value for the minimum poll interval used
when configuring a multicast client, a manycast client, and symmetric
passive-mode association. The value defaults to 6 (64 seconds) and has a
lower limit of 4 (16 seconds).

• allan allan

This option becomes the new value for the minimum Allan intercept,
which is a parameter of the PLL/FLL clock discipline algorithm. The
value defaults to 1024 seconds, which is also the lower limit.

• huffpuff huffpuff

This option becomes the new value for the experimental huff-n-puff filter
span, which determines the most recent interval that the algorithm will
search for a minimum delay. The lower limit is 900 seconds (15 minutes),
but a more reasonable value is 7200 (2 hours). There is no default, since
the filter is not enabled unless this statement is given.

B.3.2.1 NTP Monitoring Options
TCP/IP Services NTP includes a comprehensive monitoring facility that is
suitable for continuous, long-term recording of server and client timekeeping
performance. Statistics files are managed using file generation sets and scripts.

You can specify the following monitoring commands in your configuration file:

• statistics name [...]

Enables writing of statistics records. The following is a list of the supported
name statistics:

loopstats

Enables recording of loop filter statistics information. Each update of the
local clock outputs a line of the following form to the file generation set
named loopstats:

48773 10847.650 0.0001307 17.3478 2

The first two fields show the date (Modified Julian Day) and time (seconds
and fraction past UTC midnight). (A Julian Day [JD] begins at noon and
runs until the next noon. The JD number is the number of days [or part
of a day] since noon [UTC] on January 1, 4713 B.C. A Modified Julian
Day [MJD] is the JD minus 2,400,000.5.)

The next three fields show time offset (in seconds), frequency offset (in
parts per million), and time constant of the clock discipline algorithm at
each update of the clock.

peerstats

Enables recording of peer statistics information. This includes statistics
records of all peers of an NTP server and of special signals, where present
and configured. Each valid update appends a line of the following form to
the current element of a file generation set named peerstats:

48773 10847.650 127.127.4.1 9714 -0.001605 0.00000 0.00142

Configuring and Managing NTP B–11

Configuring and Managing NTP
B.3 Configuring Your NTP Host

The first two fields show the date (Modified Julian Day) and time (seconds
and fraction past UTC midnight). The next two fields show the peer
address in dotted-quad notation and status, respectively. The status field
is encoded in hexadecimal in the format described in Appendix A of the
NTP specification (RFC 1305). The final three fields show the offset,
delay, and dispersion (in seconds).

clockstats

Enables recording of clock driver statistics information. Each update
received from a clock driver outputs a line in the following form to the file
generation set named clockstats:

49213 525.624 127.127.4.1 93 226 00:08:29.606 D

The first two fields show the date (Modified Julian Day) and time (seconds
and fraction past UTC midnight). The next field shows the clock address
in dotted-quad notation, The final field shows the last time code received
from the clock in decoded ASCII format, where meaningful. In some
clock drivers, a good deal of additional information can be gathered and
displayed as well. For further details, see information specific to each
clock.

rawstats

Enables recording of raw timestamps. Each valid update appends a line
in the following form to the file generation set named rawstats:

51554 79509.68 16.20.208.53 16.20.208.97
3156617109.664603 3156617109.673268 3156617109.673268 31
56617109.673268 3156617109.666556

The first two fields show the date (Modified Julian Day) and time (seconds
and fraction past UTC midnight). The next two fields show the peer and
local addresses in dotted-quad notation. The next four fields are:

* The originate timestamp

* The received timestamp

* The transmitted timestamp (the last one sent to the same peer)

* The timestamp of the packet’s arrival on the server

statsdir directory-path

Indicates the full path of a directory in which statistics files should be
created.

B.3.2.2 Access Control Options
TCP/IP Services NTP implements a general-purpose address-and-mask based
restriction list. The list is sorted by address and by mask, and the list is searched
in this order for matches. The last match to be found defines the restriction flags
associated with the incoming packets. The source address of incoming packets is
used for the match. The 32-bit address is and’ed with the mask associated with
the restriction entry, and then is compared with the entry’s address (which has
also been and’ed with the mask) to look for a match.

Although this facility might be useful for keeping unwanted or broken remote
time servers from affecting your own, it is not considered an alternative to the
standard NTP authentication facility.

B–12 Configuring and Managing NTP

Configuring and Managing NTP
B.3 Configuring Your NTP Host

B.3.2.2.1 The Kiss-of-Death Packet Ordinarily, packets denied service are
simply dropped with no further action except to increment statistics counters.
Sometimes a more proactive response is needed, such as a server message that
explicitly requests the client to stop sending and leave a message for the system
operator. A special packet format has been created for this purpose called the
kiss-of-death (kod) packet. If the kod flag is set and either service is denied or
the client limit is exceeded, the server returns the packet and sets the leap bits
unsynchronized, stratum 0, and the ASCII string "DENY" in the reference source
identifier field. If the kod flag is not set, the server simply drops the packet.

A client or peer that receives a kiss-of-death packet performs a set of sanity
checks to minimize security exposure. If this is the first packet received from the
server, the client assumes an access-denied condition at the server. The client
updates the stratum and reference identifier peer variables and sets the access-
denied bit in the peer flash variable (for information about displaying the flash
variable, see Section B.8.1.2). If this bit is set, the client sends no packets to the
server. If this is not the first packet, the client assumes a client limit condition
at the server but does not update the peer variables. In either case, a message is
sent to the server’s log file.

B.3.2.2.2 Access Control Statements and Flags The syntax for the restrict
statement is as follows:

• restrict address [mask mask] [flag][...]

The address argument, expressed in dotted-quad form, is the address of a
host or network. The mask argument, also expressed in dotted-quad form,
defaults to 255.255.255.255, meaning that address is treated as the address of
an individual host. A default entry (address 0.0.0.0, mask 0.0.0.0) is always
included and, given the sort algorithm, is always the first entry in the list.
Note that, while address is normally given in dotted-quad format, the text
string default, with no mask option, can be used to indicate the default entry.

Flag always restricts access (that is, an entry with no flags indicates that
free access to the server is to be given). The flags are not orthogonal in that
more restrictive flags often make less restrictive ones redundant. The flags
can generally be classed into two categories: those that restrict time service
and those that restrict informational queries and attempts to do run-time
reconfiguration of the server.

You can specify one or more of the flags shown in the following table:

Table B–1 Restrict Statement Flags

Flag Description

kod If access is denied, send a kiss-of-death packet.

ignore Ignore all packets from hosts that match this entry. If this
flag is specified, neither queries nor time server polls will be
responded to.

noquery Ignore all NTP mode 6 and 7 packets (that is, information
queries and configuration requests, respectively) from the
source. Time service is not affected.

(continued on next page)

Configuring and Managing NTP B–13

Configuring and Managing NTP
B.3 Configuring Your NTP Host

Table B–1 (Cont.) Restrict Statement Flags

Flag Description

nomodify Ignore all NTP mode 6 and 7 packets that attempt to modify
the state of the server (that is, run time reconfiguration).
Queries that return information are permitted.

noserve Ignore NTP packets whose mode is other than 6 or 7. In effect,
time service is denied, though queries are still permitted.

nopeer Provide stateless time service to polling hosts, but do not
allocate peer memory resources to these hosts even if they
might be considered useful as future synchronization partners.

notrust Treat these hosts normally in other respects, but never use
them as synchronization sources.

limited These hosts are subject to limitation of number of clients from
the same net. In this context, net refers to the IP notion of
net (class A, class B, class C, and so forth). Only the first
clientlimit hosts that have shown up at the server and
that have been active during the last clientperiod seconds
are accepted. Requests from other clients from the same net
are rejected; only time request packets are taken into account.
Query packets sent by the NTPQ and NTPDC programs are
not subject to these limits. A history of clients is kept using
the monitoring capability of the NTP server. Thus, monitoring
is always active as long as there is a restriction entry with the
limited flag.

ntpport This is actually a match algorithm modifier, rather than a
restriction flag. Its presence causes the restriction entry to be
matched only if the source port in the packet is the standard
NTP UDP port (123). Both ntpport and non-ntpport can
be specified. The ntpport is considered more specific and is
sorted later in the list.

version Ignore these hosts if not the current NTP version. Default
restriction list entries, with the flags ignore, interface,
ntpport, for each of the local host’s interface addresses are
inserted into the table at startup to prevent the server from
attempting to synchronize to its own time. A default entry
is also always present if it is otherwise unconfigured. No
flags are associated with the default entry (that is, everything
besides your own NTP server is unrestricted).

• clientlimit limit

The limit sets the client_limit variable, which limits the number of
simultaneous access-controlled clients. The default value for this variable
is 3.

• clientperiod period

The period sets the client_limit_period variable that specifies the number
of seconds after which a client is considered inactive and thus no longer
counted for client limit restriction. The default value for this variable is 3600
seconds.

B–14 Configuring and Managing NTP

Configuring and Managing NTP
B.3 Configuring Your NTP Host

B.3.2.3 Sample NTP Configuration File
A sample of the NTP configuration template follows:

Copyright 2000 Compaq Computer Corporation
#
Example NTP Configuration File
#
Rename this template to TCPIP$NTP.CONF.
#
See the Compaq TCP/IP Services for OpenVMS Management manual for
additional commands and detailed instructions on using this
configuration file.
#
The Network Time Protocol (NTP) provides synchronized timekeeping among
a set of distributed time servers and clients. The local OpenVMS host
maintains an NTP configuration file, TCPIP$NTP.CONF, of participating peers.
TCPIP$NTP.CONF is maintained in the SYS$SPECIFIC:[TCPIP$NTP] directory.
#
As the system manager populating this file, you must determine the
peer hosts with which the local hosts should negotiate and synchronize.
Include at least one (but preferably three) hosts that you are
certain have the following characteristics:
#
* provide accurate time
* synchronize to Internet Time Servers (if they are not themselves
Internet Time Servers)
#
The NTP configuration file is not dynamic, and therefore requires
restarting NTP after being edited to make the changes take effect.
However, you can make run-time configuration requests interactively
using the TCPIP$NTPDC utility.

Your NTP configuration file should always include the following
driftfile entry. The driftfile is the name of the file that stores
the clock drift (also known as frequency error) of the system clock.

driftfile SYS$SPECIFIC:[TCPIP$NTP]TCPIP$NTP.DRIFT

Sample peer entries follow. Replace them with your own list of hosts
and identify the appropriate association mode. If you specify
multiple hosts, NTP can choose the best source with which to
synchronize. This also provides reliability in case one of the hosts
becomes unavailable.

Identify each peer with a fully qualified DNS host name or with
an IP address in dotted-quad notation.

peer 18.72.0.3
peer 130.43.2.2
peer 16.1.0.22
peer parrot

The following commands allow interoperation of NTP with another time service
such as DTSS. If enabled (by removing #), NTP will not set the system clock.

server 127.127.1.0 prefer
fudge 127.127.1.0 stratum 0

The following commands allow this node to act as a backup NTP server (or as
the sole NTP server on an isolated network), using its own system clock as
the reference source. If enabled (by removing #), this NTP server will
become active only when all other normal synchronization sources are
unavailable.

server 127.127.1.0
fudge 127.127.1.0 stratum 8

Configuring and Managing NTP B–15

Configuring and Managing NTP
B.3 Configuring Your NTP Host

B.3.3 Using NTP with Another Time Service
A local host can run more than one time service. For example, a host can have
both NTP and DTSS (Digital Time Synchronization Service) installed. However,
only one of these time services is allowed to set the system clock.

If you are running a time service in addition to NTP, you must stop either the
other time source or NTP from setting the system clock. You can stop NTP from
setting the system clock by adding the following statements to the configuration
file:

server 127.127.1.0 prefer
fudge 127.127.1.0 stratum 0

In these statements, the hardware address of the local clock (LOCAL) is
127.127.1.0. These statements force NTP to use its own system clock as a
reference clock. The host continues to respond to NTP time queries but does
not make any adjustments to the system clock, thereby allowing the other time
service to make those changes.

B.4 Configuring NTP as Backup Time Server
You can configure the NTP service as a backup time server. In this case, if all
other network synchronization sources become unavailable, the NTP service
becomes active. You can also use this method to allow the local node to act as
the NTP server in an an isolated network. To configure the NTP service as the
backup server or the sole NTP server, enter the following commands in the NTP
configuration file:

server 127.127.1.0
fudge 127.127.1.0 stratum 8

In this example, the stratum is set to a high number (8) so that it will not
interfere with any other, possibly better, time synchronization source. You should
set the stratum to a number that is higher than the stratum of all other time
synchronization sources.

B.5 NTP Event Logging
NTP maintains a record of system clock updates in the file
SYS$SPECIFIC:[TCPIP$NTP]TCPIP$NTP_RUN.LOG. NTP reopens this log
file daily, each time creating a new version of the file (older versions are not
automatically purged). Events logged to this file can include the following
messages:

• Synchronization status that indicates synchronization was lost, stratum
changes, and so forth

• System time adjustments

• Time adjustment status

Logging can be increased by using the logconfig option in TCPIP$NTP.CONF. For
more information, see Section B.3.2.

In addition, you can enable debugging diagnostics by defining the following logical
name with /SYSTEM and a value from 1 through 6, where 6 specifies the most
detailed logging:

$ DEFINE /SYSTEM TCPIP$NTP_LOG_LEVEL n

B–16 Configuring and Managing NTP

Configuring and Managing NTP
B.5 NTP Event Logging

Table B–2 describes the messages most frequently included in the NTP log file.

Table B–2 NTP Log File Messages

Message Description

Time slew time Indicates that NTP has set the local clock by slewing
the local time to match the synchronization source. This
happens because the local host is no longer synchronized.
For example:

time slew -0.218843 s

Synchronization lost This usually occurs after a time reset. All peer filter
registers are cleared, for example, for that particular peer;
all state variables are reset along with the polling interval;
and the clock selection procedure is once again performed.

Couldn’t resolve hostname, giving up on it Indicates that the host name could not be resolved. This
peer will not be considered for the candidate list of peers.
For example:

couldn’t resolve ’fred’, giving up on it

Send to IP-address: reason Indicates that a problem occurred while sending a packet
to its destination. The most common reason logged is
‘‘connection refused.’’ For example:

sendto(16.20.208.100): connection refused

Time Correction of delta-time seconds
exceeds sanity limit (1000); set clock
manually to the correct UTC time

NTP has detected a time difference greater than 1000
seconds between the local clock and the server clock.
You must set the clock manually or use the NTPDATE
program and then restart NTP. Once NTP sets the clock, it
continuously tracks the discrepancy between the local time
and NTP time and adjusts the clock accordingly.

offset: n sec freq x ppm poll: y sec error z An hourly message, in which:

• offset is the offset (in seconds) of the peer clock
relative to the local clock (that is, the amount to adjust
the local clock to bring it into correspondence with the
reference clock).

• freq is the computed error in the intrinsic frequency
of the local clock (also known as ‘‘drift’’) (in parts per
million).

• poll is the minimum interval (in seconds) between
transmitted messages (that is, messages sent between
NTP peers, as in a client to a server).

• error is the measure of network jitter (that is,
latencies in computer hardware and software).

(continued on next page)

Configuring and Managing NTP B–17

Configuring and Managing NTP
B.5 NTP Event Logging

Table B–2 (Cont.) NTP Log File Messages

Message Description

No clock adjustments will be made, DTSS is
active

Indicates that the DTSS time service is running on the
system. The DTSS time service should be disabled if you
would like NTP to set the system time. To disable the DTSS
time service, enter the following command:

$ RUN SYS$SYSTEM:NCL DISABLE DTSS

Alternatively, you can configure the NTP server not to
make clock adjustments, as described in Section B.3.3.
NTP dynamically detects whether the DTSS time service is
enabled at any time and will log this message if appropriate.

Clock adjustments will resume. DTSS no
longer active

Indicates that the DTSS time service has been disabled
on the system. NTP will now handle clock adjustments.
NTP dynamically detects whether the DTSS time service is
enabled at any time and will log this message if appropriate.

B.5.1 Sample NTP Log Files
The following sample shows a standard NTP log file that has no extra logging
enabled.

2 Jul 15:33:37 ntpd version = 4.1.0
2 Jul 15:33:37 precision = 976 usec
2 Jul 15:33:37 frequency initialized -66.795 from SYS$SPECIFIC:[TCPIP$NTP]
TCPI P$NTP.DRIFT

2 Jul 15:37:01 time slew 0.148981 s
2 Jul 16:33:38 offset: 0.008022 sec freq: 1.301 ppm poll: 128 sec error:
0.014056

2 Jul 17:33:41 offset: 0.003190 sec freq: 4.218 ppm poll: 256 sec error:
0.007071

2 Jul 18:33:41 offset: -0.000622 sec freq: 4.575 ppm poll: 512 sec error:
0.005358

2 Jul 19:33:41 offset: -0.003216 sec freq: 3.749 ppm poll: 1024 sec error:
0.005610

2 Jul 20:33:41 offset: -0.000899 sec freq: 2.823 ppm poll: 1024 sec error:
0.005710

2 Jul 21:33:41 offset: -0.000299 sec freq: 2.510 ppm poll: 1024 sec error:
0.005468

2 Jul 22:08:04 time slew -0.156010 s
2 Jul 22:33:41 offset: 0.002615 sec freq: 4.022 ppm poll: 1024 sec error:
0.005297

2 Jul 23:33:41 offset: -0.002466 sec freq: 3.237 ppm poll: 1024 sec error:
0.005626

3 Jul 00:33:41 offset: 0.000100 sec freq: 1.737 ppm poll: 1024 sec error:
0.006343

3 Jul 01:33:41 offset: 0.002842 sec freq: 2.393 ppm poll: 1024 sec error:
0.006023

3 Jul 02:33:41 offset: 0.000089 sec freq: 3.204 ppm poll: 1024 sec error:
0.006199

3 Jul 03:33:41 offset: 0.001094 sec freq: 3.576 ppm poll: 1024 sec error:
0.005628

The next sample shows an NTP log file with all categories of logging enabled.

B–18 Configuring and Managing NTP

Configuring and Managing NTP
B.5 NTP Event Logging

10 Jul 13:38:05 ntpd version = 4.1.0
10 Jul 13:38:05 precision = 976 usec
10 Jul 13:38:05 frequency initialized 3.157 from SYS$SPECIFIC:[TCPIP$NTP]TCPIP$
NTP.DRIFT
10 Jul 13:38:05 system event ’event_restart’ (0x01) status ’sync_alarm, sync_un
spec, 1 event, event_unspec’ (0xc010)
10 Jul 13:38:11 peer 204.123.2.70 event ’event_reach’ (0x84) status ’unreach, c
onf, 1 event, event_reach’ (0x8014)
10 Jul 13:38:20 peer 204.123.2.71 event ’event_reach’ (0x84) status ’unreach, c
onf, 1 event, event_reach’ (0x8014)
10 Jul 13:38:22 peer 16.140.0.12 event ’event_reach’ (0x84) status ’unreach, co
nf, 1 event, event_reach’ (0x8014)
10 Jul 13:39:40 system event ’event_peer/strat_chg’ (0x04) status ’sync_alarm,
sync_ntp, 2 events, event_restart’ (0xc621)
10 Jul 13:39:49 system event ’event_sync_chg’ (0x03) status ’leap_none, sync_nt
p, 3 events, event_peer/strat_chg’ (0x634)
10 Jul 13:39:49 system event ’event_peer/strat_chg’ (0x04) status ’leap_none, s
ync_ntp, 4 events, event_sync_chg’ (0x643)
10 Jul 13:51:24 peer 16.141.40.135 event ’event_reach’ (0x84) status ’unreach,
conf, 1 event, event_reach’ (0x8014)
10 Jul 14:02:08 peer 16.141.40.135 event ’event_unreach’ (0x83) status ’unreach
, conf, 2 events, event_unreach’ (0x8023)
10 Jul 14:12:47 peer 16.141.40.135 event ’event_reach’ (0x84) status ’unreach,
conf, 3 events, event_reach’ (0x8034)
10 Jul 14:38:06 offset: 0.015558 sec freq: 4.407 ppm poll: 128 sec error: 0.
008575
10 Jul 14:45:54 peer 16.141.40.135 event ’event_unreach’ (0x83) status ’unreach
, conf, 4 events, event_unreach’ (0x8043)
10 Jul 15:38:07 offset: 0.021501 sec freq: 8.734 ppm poll: 512 sec error: 0.
015413
10 Jul 15:44:47 peer 16.141.40.135 event ’event_reach’ (0x84) status ’unreach,
conf, 5 events, event_reach’ (0x8054)
10 Jul 16:38:07 offset: 0.016173 sec freq: 25.014 ppm poll: 1024 sec error:
0.011453
10 Jul 17:38:07 offset: -0.043169 sec freq: 13.291 ppm poll: 1024 sec error:
0.024752
10 Jul 18:38:07 offset: -0.017786 sec freq: 6.005 ppm poll: 1024 sec error:
0.025309

B.6 NTP Authentication Support
Authentication support is implemented using the MD5 algorithm to compute a
message digest. The servers involved in an association must agree on the key
and key identifier used to authenticate their messages.

Keys and related information are specified in a key file. Keys are used for:

• Ordinary NTP associations

• The NTPQ utility program

• The NTPDC utility program

Configuring and Managing NTP B–19

Configuring and Managing NTP
B.6 NTP Authentication Support

B.6.1 NTP Authentication Commands
Table B–3 describes additional configuration statements and options that support
authentication.

Table B–3 Authentication Commands

Command Description

keys keys-file Specifies the file name for the keys file, which contains the
encryption keys and key identifiers used by NTP, NTPQ, and
NTPDC when operating in authenticated mode.

trustedkey key-ID [...] Specifies the encryption key identifiers that are trusted for the
purposes of authenticating peers suitable for synchronization,
as well as keys used by the NTPQ and NTPDC programs. The
authentication procedures require that the local and remote
servers share the same key-ID and key value for this purpose,
although different key values can be used with different
servers. The key-ID arguments are 32-bit unsigned decimal
integers from 1 to 15. Note that the NTP key 0 is used to
indicate an invalid key value or key identifier; therefore, it
should not be used for any other purpose.

requestkey key-ID Specifies the key identifier to use with the NTPDC
program, which uses a proprietary protocol specific to this
implementation of NTP. This program is useful in diagnosing
and repairing problems that affect the operation of NTP. For
information about NTPDC, see Section B.7.3.

The key-ID argument to this command is an unsigned 32-
bit decimal number that identifies the trusted key in the
keys file. If the requestkey command is not included in the
configuration file, or if the keys do not match, any request to
change a server variable is denied.

controlkey key-ID Specifies the key identifier to use with the NTPQ program,
which uses the standard protocol defined in RFC 1305. This
program is useful in diagnosing and repairing problems that
affect the operation of NTP. For more information about NTPQ,
see Section B.7.4.

The key-ID argument to this command is a 32-bit decimal
integer that identifies a trusted key in the keys file. If the
controlkey command is not included in the configuration file,
or if the keys do not match, any request to change a server
variable is denied.

Keys are defined in a keys file, as described in Section B.6.2.

B.6.2 Authentication Key Format
The NTP service reads keys from a keys file that is specified using the keys
command in the configuration file. You can supply one or more keys from 1 to 15
in the keys file.

Key entries use the following format:

key-ID key-type key-value

B–20 Configuring and Managing NTP

Configuring and Managing NTP
B.6 NTP Authentication Support

The fields include:

• key-ID, which is an arbitrary, unsigned 32-bit number (in decimal). The range
of possible values is 1 to 15. Key IDs are specified by the requestkey and
controlkey statements in the configuration file. The key ID number 0 (56
zero bits) is reserved; it is used to indicate an invalid key ID or key value.

• key-type, which identifies the type of key value. Only one key format, M, is
currently supported. This indicates that the MD5 authentication scheme is
being used.

• key-value, which is an ASCII string from one to eight characters. The
following characters are not allowed:

space
pound sign (#)
\t
\n
\0

Because this file contains authorization data, Compaq recommends that you limit
read access to this file. In particular, you should disable world read access.

The following is a sample keys file:

#
#
4 M DonTTelL
6 M hElloWrl
12 M ImASecrt

B.7 NTP Utilities
NTP provides several utility programs that help you manage and make changes
to the NTP server. These utilities include:

• NTPDATE, the date and time utility that sets the local date and time by
polling the specified server. Run NTPDATE manually or from the host
startup script to set the clock at boot time before NTP starts.

NTPDATE does not set the date if NTP is already running on the same host.

For information about using NTPDATE, see Section B.7.1.

• NTPTRACE, the trace utility that follows the chain of NTP servers back
to their master time source. For information about using NTPTRACE, see
Section B.7.2.

• NTPDC, the special query program that provides extensive state and
statistics information and allows you to set configuration options at run time.
Run this program in interactive mode or with command line arguments.

For information about using NTPDC, see Section B.7.3.

• NTPQ, the standard query program that queries NTP servers about their
current state and requests changes to that state.

For information about using NTPQ, see Section B.7.4.

• NTP_GENKEYS, the random key generator program that generates random
keys that are used by the NTP Version 3 and NTP Version 4 symmetric key
authentication scheme.

For information about using NTP_GENKEYS, see Section B.7.5.

Configuring and Managing NTP B–21

Configuring and Managing NTP
B.7 NTP Utilities

To define the commands described in the following sections, run the following
procedure:

$ @SYS$MANAGER:TCPIP$DEFINE_COMMANDS.COM

B.7.1 Setting the Date and Time with NTPDATE
The NTPDATE program sets the local date and time by polling a specified server
or servers to determine the correct time. A number of samples are obtained from
each of the servers specified, and a subset of the NTP clock filter and selection
algorithms are applied to select the best samples. The accuracy and reliability
of NTPDATE depends on the number of servers it polls, the number of polls it
makes each time it runs, and the interval length between runs.

Run NTPDATE manually to set the host clock or from the host startup file to set
the clock at boot time. In some cases, it is useful to set the clock manually before
you start NTP. The NTPDATE program makes time adjustments (called ‘‘stepping
the time’’) by calling the OpenVMS routine SYS$SETIME.

Note

NTPDATE does not set the date and time if an NTP server is running on
the same host.

Enter specific commands using the following format:

NTPDATE [option...] host [host...]

For example, the following command sets the clock based on the time provided
from one of the specified hosts (BIRDY, OWL, or FRED):

$ NTPDATE BIRDY OWL FRED

NTP sets the date and time by polling the servers you specify as arguments to
the command. Samples are obtained from each of the specified servers. NTP then
analyzes the results to select the best server to use as a time source. Table B–4
describes the NTPDATE command options.

Table B–4 NTPDATE Options

Option Description

-d Changes the time and prints information useful for debugging.

-o version Specifies the NTP version (1, 2, or 3) for outgoing packets (for
compatibility with older versions of NTP). Version 4 is the default.

-p n Specifies the number of samples NTPDATE acquires from each server.
The default is 4. You can specify from 1 to 8.

-q Specifies a query only; does not set the clock.

B.7.2 Tracing a Time Source with NTPTRACE
Use the NTPTRACE utility to determine the source from which an NTP server
obtains its time. NTPTRACE follows the chain of time servers back to the master
time source.

Use the following syntax when entering commands:

NTPTRACE [option...]

B–22 Configuring and Managing NTP

Configuring and Managing NTP
B.7 NTP Utilities

The following example shows output from an NTPTRACE command. In the
following example, the chain of servers is from the local host to the stratum 1
server FRED, which is synchronizing to a GPS reference clock.

$ NTPTRACE

LOCALHOST: stratum 3, offset -0.000000, synch distance1.50948
parrot.birds.com: stratum 2, offset -0.126774, synch distance 0.00909
fred.birds.com: stratum 1, offset -0.129567, synch distance 0.00168,
refid ’GPS’

All times are in seconds. The output fields on each line are as follows:

• Host name

• Host stratum

• Time offset between the host and the local host (not always zero for
LOCALHOST).

• Synchronization distance

• Reference clock ID (only for stratum 1 servers)

Table B–5 describes the NTPTRACE command options.

Table B–5 NTPTRACE Options

Option Description

-d Enables debugging output.

-n Displays IP addresses instead of host names. This may be necessary if
a name server is down.

-r retries Sets the number of retransmission attempts for each host. The default
is 5.

-t timeout Sets the retransmission timeout (in seconds). The default is 2.

-v Displays additional information about the NTP servers.

B.7.3 Making Run-Time Requests with NTPDC
You can make run-time changes to NTP with query commands by running the
NTPDC utility. NTPDC displays time values in seconds.

Run-time requests are always authenticated requests. Authentication not only
provides verification that the requester has permission to make such changes, but
also gives an extra degree of protection against transmission errors.

The reconfiguration facility works well with a server on the local host and
between time-synchronized hosts on the same LAN. The facility works poorly
for more distant hosts. Authenticated requests include a timestamp. The server
compares the timestamp to its receive timestamp. If they differ by more than a
small amount, the request is rejected for the following reasons:

• To make it more difficult for an intruder to overhear traffic on your LAN.

• To make it more difficult for topologically remote hosts to request
configuration changes to your server.

To run NTPDC, enter the following command:

$ NTPDC
NTPDC>

Configuring and Managing NTP B–23

Configuring and Managing NTP
B.7 NTP Utilities

At the NTPDC> prompt, enter the appropriate type of command from the
following list:

• Interactive commands

• Control commands

• Run-time configuration request commands

The following sections describe the NTPDC commands.

B.7.3.1 NTPDC Interactive Commands
Interactive commands consist of a command name followed by one or more
keywords. The interactive commands include:

• help [command-keyword]

Enter a question mark (?) to display a list of all the command keywords
known to this version of NTPDC. Enter a question mark followed by a
command keyword to display information about the function and use of the
command.

• host hostname

Sets the host to which future queries will be sent. The hostname can be either
a host name or a numeric address.

• hostnames [yes | no]

If you specify yes, host names are displayed. If you specify no, numeric
addresses are displayed. The default is yes unless you include the -n option
on the command line, as described in Table B–5.

• keyid key-ID

Specifies the key number to be used to authenticate configuration requests.
This must correspond to a key number the server has been configured to use
for this purpose.

• quit

Exits NTPDC.

• passwd

Prompts you to type in a password (not echoed) that will be used to
authenticate configuration requests. The password must correspond to the
key configured for use by the NTP server for this purpose.

• timeout milliseconds

Specify a timeout period for responses to server queries. The default is about
8000 milliseconds (8 seconds). Because NTPDC retries each query once after
a timeout, the total waiting time for a timeout will be twice the timeout value
set.

B.7.3.2 NTPDC Control Message Commands
Control message commands request information about the server. These are
read-only commands in that they make no modification of the server configuration
state.

The NTPDC control message commands include:

• listpeers

B–24 Configuring and Managing NTP

Configuring and Managing NTP
B.7 NTP Utilities

Displays a brief list of the peers for which the server is maintaining
state. These include all configured peer associations as well as those peers
whose stratum is such that the server considers them to be possible future
synchronization candidates.

• peers

Obtains a list of peers for which the server is maintaining state, along with a
summary of that state. The summary information includes:

The address of the remote peer

The local interface address (0.0.0.0 if a local address has not been
determined)

The stratum of the remote peer (a stratum of 16 indicates the remote peer
is unsynchronized)

The polling interval (in seconds)

The reachability register (in octal)

The current estimated delay, offset, and dispersion of the peer (in
seconds)

In addition, the character in the left margin indicates the operating mode of
this peer entry, as follows:

Plus sign (+) denotes symmetric active.
Minus sign (-) indicates symmetric passive.
Equals sign (=) means the remote server is being polled in client mode.
Up arrow (^) indicates that the server is broadcasting to this address.
Tilde (~) denotes that the remote peer is sending broadcasts.
Asterisk (*) marks the peer to which the server is currently
synchronizing.

The contents of the host field can be one of the following four forms:

Host name

IP address

Reference clock implementation name with its parameter

REFCLK (implementation number parameter)

If you specify hostnames no, only IP addresses are displayed.

• dmpeers

Displays a slightly different peer summary list, identical to the output of the
peers command except for the character in the leftmost column. Characters
appear only beside peers that were included in the final stage of the clock
selection algorithm:

Dot (.) indicates that this peer was rejected in the falseticker detection.
Plus sign (+) indicates that the peer was accepted.
Asterisk (*) denotes the peer to which the server is currently
synchronizing.

• showpeer peer-address [...]

Shows a detailed display of the current peer variables for one or more peers.

• pstats peer-address [...]

Shows per-peer statistics counters associated with the specified peers.

Configuring and Managing NTP B–25

Configuring and Managing NTP
B.7 NTP Utilities

• loopinfo [oneline | multiline]

Displays the values of selected loop-filter variables. The loop filter is the part
of NTP that adjusts the local system clock. These options include:

offset — the last offset given to the loop filter by the packet processing
code.

frequency — the frequency error of the local clock (in parts per million)

time_const — controls the stiffness of the phase-lock loop and, therefore,
the speed at which it can adapt to oscillator drift.

watchdog timer value — the number of seconds that have elapsed since
the last sample offset was given to the loop filter.

The oneline and multiline options specify the format in which this
information is to be displayed; multiline is the default.

• sysinfo

Displays a variety of system state variables, such as the state related to the
local server. These variables include:

system flags — shows various system flags, some of which can be set and
cleared by the enable and disable configuration commands, respectively.
These are the auth, bclient, monitor, ntp, and stats flags.

stability — the residual frequency error remaining after the system
frequency correction is applied. It is intended for maintenance and
debugging.

broadcastdelay — shows the default broadcast delay as set by the
broadcastdelay configuration command.

authdelay — shows the default authentication delay as set by the
authdelay configuration command.

• sysstats

Displays statistics counters maintained in the protocol module.

• memstats

Displays statistics counters related to memory allocation code.

• iostats

Displays statistics counters maintained in the input/output module.

• timerstats

Displays statistics counters maintained in the timer/event queue support
code.

• reslist

Displays the server’s restriction list. This list is displayed in the order in
which the restrictions are applied.

• monlist [version]

Displays traffic counts collected. This information is maintained by the
monitor facility. Normally, you should not need to specify the version number.

B–26 Configuring and Managing NTP

Configuring and Managing NTP
B.7 NTP Utilities

B.7.3.3 NTPDC Request Commands
The following commands make authenticated requests:

• addpeer peer-address key-ID [version] [prefer]

Adds a configured peer association at the given address and operates in
symmetric active mode. The existing association with the same peer can be
deleted when this command is executed or can be converted to conform to the
new configuration.

The key-ID is the key identifier for requestkey, as described in Table B–3.
All outgoing packets to the remote server will have an authentication field
attached that is encrypted with this key.

The value for version can be 1, 2, 3 or 4. The default is Version 4.

The prefer keyword indicates a preferred peer that will be used for clock
synchronization, if possible.

• addserver peer-address key-ID [version] [prefer]

This command is the same as addpeer except that the operating mode is
client.

• broadcast peer-address key-ID [version] [prefer]

This command is the same as addpeer except that the operating mode is
broadcast. In this case, a valid key identifier and key value are required.
The peer-address parameter can be either the broadcast address of the local
network or a multicast group address assigned to NTP.

• unconfig peer-address [...]

Causes the configured bit to be removed from the specified remote peer. This
deletes the peer association. When appropriate, however, the association may
persist in an unconfigured mode if the remote peer is willing to continue in
this fashion.

• enable [flag] [...]

disable [flag] [...]

These commands operate in the same way as the enable and disable
configuration commands. For details, see Section B.3.2.

• fudge peer-address [time1] [time2] [stratum stratum] [refID]

Provides a way to set time, stratum, and identification data for a reference
clock. (The TCP/IP Services product supports only the local reference clock.)

Use the following syntax to enter the NTPDC foreign command:

NTPDC [-i] [-l] [-n] [-p] [-s] [-c command][host1,host2,...]

Table B–6 describes the NTPDC options.

Configuring and Managing NTP B–27

Configuring and Managing NTP
B.7 NTP Utilities

Table B–6 NTPDC Options

Option Description

-c command The command argument is interpreted as an interactive format
command and is added to the list of commands to be executed on
the specified hosts. You can specify multiple -c options.

-i Forces NTPDC to operate in interactive mode.

-l Obtains a list of peers that are known to the servers.

-n Displays all host addresses in numeric format rather than convert
them to host names.

-p Displays a list of the peers known to the server as well as a summary
of their state.

-s Displays a list of the peers known to the server as well as a summary
of their state. Uses a slightly different format than the -p option.

B.7.4 Querying the NTP Server with NTPQ
The NTPQ program allows you to query the NTP server about its current state
and to request changes to that state. NTPQ can also obtain and display a list of
peers in a common format by sending multiple queries to the server.

The NTPQ program authenticates requests based on the key entry in the keys
file that is configured using the controlkey command (described in Table B–3).

The NTPQ program uses NTP mode 6 packets to communicate with the NTP
server; therefore, NTPQ can query any compatible server on the network.
Because NTP is a UDP protocol, this communication is somewhat unreliable over
long distances (in terms of network topology). The NTPQ program makes one
attempt to restransmit requests and times out requests if the remote host does
not respond within the expected amount of time. NTPQ displays time values in
milliseconds.

To run the NTPQ program, enter the following command:

$ NTPQ
NTPQ>

At the NTPQ> prompt, enter commands in the following syntax:

command [options...]

The following commands allow you to query and set NTP server state information:

• ? [command-keyword]

A question mark (?) by itself prints a list of all the command keywords known
to this version of NTPQ. A question mark followed by a command keyword
prints function and usage information about the command.

• addvars variable-name[=value] [,...]

• rmvars variable-name [,...]

• clearvars

The data carried by NTP mode 6 messages consists of a list of items in the
following form:

variable-name=value

B–28 Configuring and Managing NTP

Configuring and Managing NTP
B.7 NTP Utilities

In requests to the server to read variables, the =value portion is ignored
and can be omitted. The NTPQ program maintains an internal list in which
data to be included in control messages can be assembled and sent using the
readlist and writelist commands. The addvars command allows variables
and their optional values to be added to the list. If you want to add more
than one variable, separate the list items by commas and do not include
blank spaces. The rmvars command removes individual variables from the
list, while the clearvars command removes all variables from the list.

• authenticate yes | no

By default, NTPQ does not authenticate requests unless they are
write requests. The authenticate yes command causes NTPQ to send
authentication with all requests it makes. Authenticated requests cause some
servers to handle requests slightly differently. To prevent any mishap, do a
peer display before turning on authentication.

• cooked

Reformats variables that are recognized by the server. Variables that NTPQ
does not recognize are marked with a trailing question mark (?).

• debug more | less | no

Adjusts the level of NTPQ debugging. The default is debug no.

• help

Displays the list of NTPQ interactive commands. This is the same as question
mark (?).

• host [host-name]

Sets the host to which future queries will be sent; host-name can be either a
host name or an Internet address. If host-name is not specified, the current
host is used.

• hostnames yes | no

If yes is specified, displays host names in information displays. If no is
specified, displays Internet addresses instead. The default is hostnames yes.
The default can be modified using the command line option -n.

• key-ID n

Specifies the key ID number to be used to authenticate configuration requests.
This must correspond to a key ID number the server has been configured to
use for this purpose.

• keytype md5 | des

Sets the authentication key to either MD5 or DES. Only MD5 is supported in
this implementation.

• ntpversion 1 | 2 | 3 | 4

Sets the NTP version number that NTPQ claims in packets. Default is 4.
Mode 6 control messages (as well as modes) did not exist in NTP Version 1.

Configuring and Managing NTP B–29

Configuring and Managing NTP
B.7 NTP Utilities

• passwd

Prompts you to enter a password (not echoed) that is used to authenticate
configuration requests. The password must correspond to the key value
configured for use by the NTP server for this purpose (see Section B.6.2).

• quit

Exits NTPQ.

• raw

Displays all output from query commands as received from the remote server.
The only data formatting performed is to translate non-ASCII data into a
printable form.

• timeout milliseconds

Specifies a timeout period for responses to server queries. The default is
about 5000 milliseconds. Since NTPQ retries each query once after a timeout,
the total waiting time for a timeout will be twice the timeout value.

B.7.4.1 NTPQ Control Message Commands
Each peer known to an NTP server has a 16-bit integer association identifier
assigned to it. NTP control messages that carry peer variables must identify
the peer that the values correspond to by including the peer’s association ID. An
association ID of zero indicates the variables are system variables whose names
are drawn from a separate name space.

Control message commands result in one or more NTP mode 6 messages being
sent to the server, and cause the data returned to be displayed in a format that
you control using the commands listed in Section B.7.4. Most control message
commands send a single message and expect a single response. The exceptions
are the peers command, which sends a preprogrammed series of messages to
obtain the data it needs, and the mreadlist and mreadvar commands, which are
repeated for each specified association.

• associations

Displays a list of association identifiers and peer status for recognized peers
of the server being queried. The list is printed in columns. The first of these
is an index numbering the associations from 1 for internal use; the second is
the actual association identifier returned by the server; and the third is the
status word for the peer. This is followed by a number of columns containing
data decoded from the status word. The data returned by the associations
command is cached internally in NTPQ. The index is then used when dealing
with servers that use association identifiers. For any subsequent commands
that require an association identifier as an argument, the index can be used
as an alternative.

• lassociations

Obtains and displays a list of association identifiers and peer status for all
associations for which the server is maintaining state. This command differs
from the associations command only for servers that retain state for out-
of-spec client associations. Such associations are normally omitted from the
display when the associations command is used but are included in the
output of the lassociations command.

B–30 Configuring and Managing NTP

Configuring and Managing NTP
B.7 NTP Utilities

• lopeers

Obtains and displays a list of all peers and clients having the destination
address.

• lpassociations

Displays data for all associations, including unrecognized client associations,
from the internally cached list of associations.

• lpeers

Similar to peers except that a summary of all associations for which the
server is maintaining state is displayed. This command can produce a much
longer list of peers.

• mreadlist assocID assocID

Similar to the readlist command except that the query is done for each
of a range of (nonzero) association IDs. This range is determined from the
association list cached by the most recent associations command.

• mreadvar assocID assocID [variable-name[=value] [,...]]

Similar to the readvar command except that the query is done for each of
a range of (nonzero) association IDs. This range is determined from the
association list cached by the most recent associations command.

• opeers

An old form of the peers command, with the reference ID replaced by the
local interface address.

• passociations

Displays association data concerning recognized peers from the internally
cached list of associations. This command performs identically to the
associations command except that it displays the internally stored data
rather than make a new query.

• peers

Displays a list of recognized peers of the server, along with a summary of
each peer’s state. Summary information includes the address of the remote
peer; the reference ID (0.0.0.0 if the reference ID is unknown); the stratum of
the remote peer; the polling interval (in seconds); the reachability register (in
octal); and the current estimated delay, offset, and dispersion of the peer (in
milliseconds).

The character in the left margin indicates the fate of this peer in the clock
selection process. The codes are as follows:

Space indicates that the peer was discarded, because of high stratum or
failed sanity checks.
Lowercase x indicates that the peer was designated a falseticker by the
intersection algorithm.
Dot (.) indicates that this peer was culled from the end of the candidate
list.
Hyphen (-) indicates that the peer was discarded by the clustering
algorithm.
Plus sign (+) indicates that the peer was included in the final selection
set.
Pound sign (#) indicates that the peer was selected for synchronization,
but the distance exceeds the maximum.
Asterisk (*) indicates that the peer was selected for synchronization.

Configuring and Managing NTP B–31

Configuring and Managing NTP
B.7 NTP Utilities

Because the peers command depends on the ability to parse the values in
the responses it gets, it might fail to work with servers that control the data
formats poorly.

The contents of the host field can be in one of four forms: a host name, an
IP address, a reference clock implementation name with its parameter, or
REFCLK (implementation number parameter). If you specified hostnames no,
the IP addresses will be displayed.

• pstatus assocID

Sends a read status request to the server for the given association. The
names and values of the peer variables returned are printed. The status word
from the header is displayed preceding the variables, both in hexadecimal and
in English.

• readlist [assocID]

Requests that the server return the values of the variables in the internal
variable list. If the association ID is omitted or is zero, the variables
are assumed to be system variables. Otherwise, they are treated as peer
variables. If the internal variable list is empty, a request is sent without
data; the remote server should return a default display.

• readvar [assocID] [variable-name[=value] [,...]]

Requests that the values of the specified variables be returned by the server
by sending a read variables request. If the association ID is omitted or is
zero, the variables are system variables; otherwise, they are peer variables,
and the values returned are those of the corresponding peer. If the variable
list is empty, a request is sent without data; the remote server should return
a default display.

• showvars

Displays the variables on the variable list.

• version

Displays the NTPQ version number.

• writelist [assocID]

Like the readlist request except that the internal list variables are written
instead of read.

• writevar assocID variable-name=value [,...]

Like the readvar request except that the specified variables are written
instead of read.

Use the following syntax to enter the NTPQ foreign command:

NTPQ [-i] [-n] [-p] [-c command] [host1,host2,...]

Table B–7 describes the NTPQ options.

B–32 Configuring and Managing NTP

Configuring and Managing NTP
B.7 NTP Utilities

Table B–7 NTPQ Options

Option Description

-c command Adds the specified interactive command to the list of commands to be
executed on the specified host. You can enter multiple -c options on
the command line.

-i Forces NTPQ to operate in interactive mode. This is the default mode
of operation.

-n Displays host addresses numeric format rather than converting them
to host names.

-p Displays a list of the peers known to the server as well as a summary
of their state.

The -c and -p options send the query to the specified host immediately. If you
omit the host names, the default is the local host. To enter interactive mode,
specify the -i or -n option.

B.7.5 Generating Random Keys with NTP_GENKEYS
The NTP_GENKEYS program allows you to generate random keys used by the
NTP Version 3 and NTP Version 4 symmetric key authentication scheme. By
default, the program generates the TCPIP$NTP.KEYS file containing 16 random
symmetric keys. A timestamp in NTP seconds is appended to the filename.
Because the algorithms are seeded by the system clock, each run of the program
produces a different file and filename.

The TCPIP$NTP.KEYS file contains 16 MD5 keys. Each key consists of 16
characters randomized over the ASCII 95-character printing subset. The file is
read by the NTP server at the location specified by the keys configuration file
command. An additional key consisting of an easily remembered password should
be added by hand for use with the NTPQ and NTPDC programs. The file must
be distributed by secure means to other servers and clients that share the same
security compartment. The key identifier for the MD5 program uses only the
identifiers from 1 to 16. The key identifier for each association is specified as the
key argument in the server or peer configuration file command.

B.8 Solving NTP Problems
Some common NTP problems include:

• System clock not synchronized.

NTP cannot synchronize a clock that is off by more than 1000 seconds. To
solve this problem, set the clock using NTPDATE, then restart NTP.

• NTPDATE fails to set the clock.

This occurs if NTP is already running.

• More than one service is actively setting the system clock.

NTP can run with other time services but must be explicitly instructed not to
set the system clock. NTP can still provide synchronization to other clients
even if it is not updating the system clock.

• NTP appears to be running without error, but the system clock is off by a
one-, two-, three-, or four-hour interval.

You might need to adjust the time zone differential. For more information,
please consult the OpenVMS documentation set.

Configuring and Managing NTP B–33

Configuring and Managing NTP
B.8 Solving NTP Problems

B.8.1 NTP Debugging Techniques
Once the configuration file has been created and edited, the next step is to verify
correct operation and then fix any problems that might have resulted.

B.8.1.1 Initial Startup
The best way to verify correct operation is by using the NTPQ and NTPDC
programs, either on the server itself or from another machine elsewhere in the
network. The NTPQ program implements the management functions specified in
the NTP specification RFC 1305, Appendix A. The NTPDC program implements
additional functions not provided in the standard. Both programs can be used to
inspect the state variables defined in the specification and, in the case of NTPDC,
additional ones of interest. In addition, the NTPDC program can be used to
selectively reconfigure and enable or disable some functions while the server is
running. Problems are apparent in the server’s log file. The log file should show
the startup banner, some brief initialization data, and the computed precision
value.

Another common problem is incorrect DNS names. Check that each DNS name
used in the configuration file exists and that the address responds to the ping
command. When the server is first started it normally polls the servers listed
in the configuration file at 64-second intervals. To allow a sufficient number
of samples for the NTP algorithms to discriminate reliably between correctly
operating servers and possible intruders, at least four valid messages from the
majority of servers and peers listed in the configuration file are required before
the server can set the local clock. However, if the difference between the client
time and server time is greater than the panic threshold (which defaults to
1000 seconds), the server sends a message to the server log and shuts down
without setting the clock. It is necessary to set the local clock to within the panic
threshold first, either manually by wristwatch and the SET TIME command, or
by using the NTPDATE command. The panic threshold can be changed by the
tinker panic statement.

B.8.1.2 Verifying Correct Operation
After starting the server, run the NTPQ program with the -n switch to avoid
distractions because of name resolution problems. Use the peer command to
display a list showing the status of configured peers and other clients trying to
access the server. After operating for a few minutes, the display should look
similar to the following:

NTPQ> peer
remote refid st t when poll reach delay offset jitter

===
-isipc6.cairn.ne .GPS1. 1 u 18 64 377 65.592 -5.891 0.044
+saicpc-isiepc2. pogo.udel.edu 2 u 241 128 370 10.477 -0.117 0.067
+uclpc.cairn.net pogo.udel.edu 2 u 37 64 177 212.111 -0.551 0.187
*pogo.udel.edu .GPS1. 1 u 95 128 377 0.607 0.123 0.027

The host names or addresses shown in the remote column correspond to the
server and peer entries listed in the configuration file; however, the DNS names
might not agree if the names listed are not the canonical DNS names. The refid
column shows the current source of synchronization; the st column shows the
stratum; the t column shows the type (u = unicast, m = multicast, l = local, - =
don’t know); and the poll column shows the poll interval in seconds. The when
column shows the time (in seconds) since the peer was last heard, and the reach
column shows the status of the reachability register (in octal) (see RFC 1305).
The remaining entries show the latest delay, offset, and jitter (in milliseconds).

B–34 Configuring and Managing NTP

Configuring and Managing NTP
B.8 Solving NTP Problems

Note that in NTP Version 4 what used to be the dispersion column has been
replaced by the jitter column.

The symbol at the left margin displays the synchronization status of each peer.
The currently selected peer is marked with an asterisk (*), while additional peers
that are not currently selected but are designated acceptable for synchronization
are marked with a plus sign (+). Peers marked with * and + are included in the
weighted average computation to set the local clock; the data produced by peers
marked with other symbols are discarded.

Additional details for each peer can be determined by the following procedure.
First, use the associations command to display an index of association identifiers,
as shown in the following example:

NTPQ> associations
ind assID status conf reach auth condition last_event cnt
===
1 50252 f314 yes yes ok outlyer reachable 1
2 50253 f414 yes yes ok candidat reachable 1
3 50254 f414 yes yes ok candidat reachable 1
4 50255 f614 yes yes ok sys.peer reachable 1

Each line in this display is associated with the corresponding line in the preceding
peer display. The assID column shows the unique identifier for each mobilized
association, and the status column shows the peer status word (in hexadecimal),
as defined in the NTP specification.

Next, use the readvar command and the respective assID identifier to display a
detailed synopsis for the selected peer, as shown in the following example:

NTPQ> readvar 50253
status=f414 reach, conf, auth, sel_candidat, 1 event, event_reach,
srcadr=saicpc-isiepc2.cairn.net, srcport=123, dstadr=140.173.1.46,
dstport=123, keyid=3816249004, stratum=2, precision=-27,
rootdelay=10.925, rootdispersion=12.848, refid=pogo.udel.edu,
reftime=bd11b225.133e1437 Sat, Jul 8 2000 13:59:01.075, delay=10.550,
offset=-1.357, jitter=0.074, dispersion=1.444, reach=377, valid=7,
hmode=1, pmode=1, hpoll=6, ppoll=7, leap=00, flash=00 ok,
org=bd11b23c.01385836 Sat, Jul 8 2000 13:59:24.004,
rec=bd11b23c.02dc8fb8 Sat, Jul 8 2000 13:59:24.011,
xmt=bd11b21a.ac34c1a8 Sat, Jul 8 2000 13:58:50.672,
filtdelay= 10.45 10.50 10.63 10.40 10.48 10.43 10.49 11.26,
filtoffset= -1.18 -1.26 -1.26 -1.35 -1.35 -1.42 -1.54 -1.81,
filtdisp= 0.51 1.47 2.46 3.45 4.40 5.34 6.33 7.28,

A detailed explanation of the fields in this display are beyond the scope of this
manual; however, most variables defined in the NTP Version 3 specification
RFC 1305 are available, along with others defined for NTP Version 4. This
example was chosen to illustrate one of the most complex configurations involving
symmetric modes. As the result of debugging experience, the names and values
of these variables might change from time to time.

A useful indicator of miscellaneous problems is the flash value, which reveals
the state of the various sanity tests on incoming packets. There are currently
eleven bits, one for each test, numbered from right to left, which is for test 1. If
the test fails, the corresponding bit is set to 1 and 0. If any bit is set following
each processing step, the packet is discarded.

Configuring and Managing NTP B–35

Configuring and Managing NTP
B.8 Solving NTP Problems

The three lines identified as filtdelay, filtoffset, and filtdisp reveal
the round-trip delay, clock offset and dispersion for each of the last eight
measurement rounds (all in milliseconds). Note that the dispersion, which is
an estimate of the error, increases as the age of the sample increases. From
these data, it is usually possible to determine the incidence of severe packet loss,
network congestion, and unstable local clock oscillators. Every case is unique;
however, if one or more of the rounds show large values or change radically from
one round to another, the network is probably congested or experiencing loss.

Once the server has set the local clock, it continuously tracks the discrepancy
between local time and NTP time and adjusts the local clock accordingly. This
adjustment consists of two components: time and frequency. Adjustments to time
and frequency are determined automatically by the clock discipline algorithm,
which functions as a hybrid phase/frequency feedback loop. The behavior of
this algorithm is controlled carefully to minimize residual errors resulting from
normal network jitter and frequency variations of the local clock hardware
oscillator. However, when started for the first time, the algorithm may take some
time to converge on the intrinsic frequency error of the host machine.

The state of the local clock itself can be determined using the readvar statement
(without the argument), as shown in the following example:

NTPQ> readvar
status=0644 leap_none, sync_ntp, 4 events, event_peer/strat_chg,
version="ntpd 4.0.99j4-r Fri Jul 7 23:38:17 GMT 2002 (1)",
processor="i386", system="FreeBSD3.4-RELEASE", leap=00, stratum=2,
precision=-27, rootdelay=0.552, rootdispersion=12.532, peer=50255,
refid=pogo.udel.edu,
reftime=bd11b220.ac89f40a Sat, Jul 8 2002 13:58:56.673, poll=6,
clock=bd11b225.ee201472 Sat, Jul 8 2002 13:59:01.930, state=4,
phase=0.179, frequency=44.298, jitter=0.022, stability=0.001,
hostname="barnstable.udel.edu", publickey=3171372095,
params=3171372095,
refresh=3172016539

An explanation of most of these variables is in the RFC 1305 specification. The
most useful variables are clock, which shows when the clock was last adjusted,
and reftime, which shows when the server clock of refid was last adjusted.
The mean millisecond time offset (phase) and deviation (jitter) monitor the
clock quality, and the mean PPM frequency offset (frequency) and deviation
(stability) monitor the clock stability and serve as useful diagnostic tools. NTP
operators have found that these data represent useful environment and hardware
alarms. If the motherboard fan or some hardware bit malfunctions, the system
clock is usually the first to reflect these problems.

When nothing seems to happen in the peer display after several minutes, it
might indicate a network problem. One common network problem is an access-
controlled router on the path to the selected peer, or an access-controlled server
using methods described in the Access Control Options section. Another common
problem is that the server is down or is running in unsynchronized mode because
of a local problem. Use the NTPQ program to look at the server variables in the
same way you look at your own.

B–36 Configuring and Managing NTP

Configuring and Managing NTP
B.8 Solving NTP Problems

B.8.1.3 Special Problems
The frequency tolerance of computer clock oscillators can vary widely, which
can put a strain on the server’s ability to compensate for the intrinsic frequency
error. While the server can handle frequency errors up to 500 parts per million
(ppm), or 43 seconds per day, values much higher than 100 ppm reduce the
headroom and increase the time to learn the particular value and record it in
the TCPIP$NTP.DRIFT file. In extreme cases, before the particular oscillator
frequency error has been determined, the residual system time offsets can sweep
from one extreme to the other of the 128-millisecond tracking window only for
the behavior to repeat at 900-second intervals until the measurements have
converged.

To determine whether excessive frequency error is occurring, observe the nominal
filtoffset values for a number of rounds and divide by the poll interval. If the
result is approximately 500 ppm, NTP probably will not work properly until the
frequency error is reduced.

A common cause of this problem is the hardware time-of-year (TOY) clock chip,
which must be disabled when NTP disciplines the software clock.

If the TOY chip is not the cause, the problem might be that the hardware clock
frequency is too slow or too fast.

NTPD provides for access controls that deflect unwanted traffic from selected
hosts or networks. The controls described in the Access Control Options section
include detailed packet filter operations based on source address and address
mask. Normally, filtered packets are dropped without notice other than to
increment tally counters. However, the server can be configured to generate a
kiss-of-death (kod) packet to be sent to the client. If outright access is denied, the
kod is the response to the first client packet. In this case, the client association is
permanently disabled and the access-denied bit is set in the flash peer variable,
and a message is sent to the server’s log file.

The access control provisions include a limit on the packet rate from a host or
network. If an incoming packet exceeds the limit, it is dropped and a kod is sent
to the source. If this occurs after the client association has synchronized, the
association is not disabled, but a message is sent to the system log. For more
information, see the Access Control Options section in this chapter.

B.8.1.4 Debugging Checklist
If the NTPQ or NTPDC programs do not show that messages are being received
by the server or that received messages do not result in correct synchronization,
verify the following:

1. Check the TCPIP$NTP_RUN.LOG log file for messages about configuration
errors, name-lookup failures, or initialization problems.

2. Using ping or other utilities,verify that packets actually do make the round
trip between the client and server. Using dig or other utilities, verify that the
DNS server names do exist and resolve to valid Internet addresses.

3. Using the NTPDC program, verify that the packets received and packets sent
counters are incrementing. If the sent counter does not increment and the
configuration file includes configured servers, something might be wrong in
the host network or the interface configuration. If this counter does increment
but the received counter does not increment, something might be wrong in the

Configuring and Managing NTP B–37

Configuring and Managing NTP
B.8 Solving NTP Problems

network, the remote server NTP server might not be running, or the server
itself might be down or not responding.

4. If both the sent and received counters do increment but the reach values in
the peer display with NTPQ continues to show zero, received packets are
probably being discarded. If this is the case, the cause should be evident from
the flash variable.

5. If the reach values in the peer display show that the servers are alive and
responding, note the symbols at the left margin that indicate the status of
each server resulting from the various grooming and mitigation algorithms.
After a few minutes of operation, one of the reachable server candidates
should show an asterisk (*) symbol. If this does not happen, the intersection
algorithm, which classifies the servers as truechimers or falsetickers, might
be unable to find a majority of truechimers among the server population.

B–38 Configuring and Managing NTP

C
Configuring and Managing BIND Version 9

The Domain Name System (DNS) maintains and distributes information about
Internet hosts. DNS consists of a heirarchical database containing the names of
entities on the Internet, the rules for delegating authority over names, and mail
routing information; and the system implementation that maps the names to
Internet addresses.

In OpenVMS environments, DNS is implemented by the Berkeley Internet Name
Domain (BIND) software. Compaq TCP/IP Services for OpenVMS implements a
BIND server based on the Internet Software Consortium’s (ISC) BIND Version 9.

This chapter contains the following topics:

• How to migrate your existing BIND 4 environment to BIND 9 (Section C.3)

• How to configure BIND using the BIND configuration file (Section C.5),
including:

How to configure dynamic updates (Section C.5.7)

How to configure a DNS cluster failover and redundancy environment
(Section C.5.8)

• How to populate the BIND server databases (Section C.6)

• How to examine name server statistics (Section C.7)

• How to configure BIND using SET CONFIGURATION BIND commands
(Section C.8)

• How to configure the BIND resolver (Section C.9)

• How to use the BIND server administrative tools (Section C.10)

• How to troubleshoot BIND server problems (Section C.11)

C.1 Key Concepts
This section serves as a review only and assumes you are acquainted with the
InterNIC, that you applied for an IP address, and that you registered your
domain name. You should also be familiar with BIND terminology, and you
should have completed your preconfiguration planning before using this chapter
to configure and manage the BIND software.

If you are not familiar with DNS and BIND, see the Compaq TCP/IP Services for
OpenVMS Concepts and Planning guide. If you need more in-depth knowledge,
see O’Reilly’s DNS and BIND, Fourth Edition. You can find the BIND 9
Adminstrator Reference Manual at http://www.isc.org/.

Configuring and Managing BIND Version 9 C–1

Configuring and Managing BIND Version 9
C.1 Key Concepts

C.1.1 How the Resolver and Name Server Work Together
BIND is divided conceptually into two components: a resolver and a name server.
The resolver is software that queries a name server; the name server is the
software process that responds to a resolver query.

Under BIND, all computers use resolver code, but not all computers run the name
server process.

The BIND name server runs as a distinct process called TCPIP$BIND. On UNIX
systems, the name server is called named (pronounced name-dee). Name servers
are typically classified as master (previously called primary), slave (previously
called secondary), and caching-only servers, depending on their configurations.

C.1.2 Common BIND Configurations
You can configure BIND in several different ways. The most common
configurations are resolver-only systems, master servers, slave servers, forwarder
servers, and caching-only servers. A server can be any of these configurations or
can combine elements of these configurations.

Servers use a group of database files containing BIND statements and resource
records. These files include:

• The forward translation file, domain_name.DB

This file maps host names to IP addresses.

• The reverse translation file, address.DB

This file maps the address back to the host names. This address name lookup
is called reverse mapping. Each domain has its own reverse mapping file.

• Local loopback forward and reverse translation files, LOCALHOST.DB and
127_0_0.DB

These local host databases provide forward and reverse translation for
the widely used LOCALHOST name. The LOCALHOST name is always
associated with IP address 127.0.0.1 and is used for loopback traffic.

• The hint file, ROOT.HINT

This file contains the list of root name servers.

A configuration file, TCPIP$BIND.CONF, contains statements that pull all the
database files together and governs the behavior of the BIND server.

C.1.2.1 Master Servers
A master server is the server from which all data about a domain is derived.
Master servers are authoritative, which means they have complete information
about their domain and that their responses are always accurate.

To provide central control of host name information, the master server loads
the domain’s information directly from a disk file created by the domain
administrator. When a new system is added to the network, only the database on
the master server needs to be modified.

A master server requires a complete set of configuration files: zone, reverse
domain, configuration, hint, and loopback files.

C–2 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.1 Key Concepts

C.1.2.2 Slave Servers
Slave servers receive authority and their database from the master server.

A particular domain’s database file is called a zone file; copying this file to a slave
server is called a zone file transfer. A slave server assures that it has current
information about a domain by periodically transferring the domain’s zone file.
Slave servers are also authoritative for their domain.

Configuring a slave server is similar to configuring a master server. The only
difference is that, for the slave server, you need to provide the name of the master
server from which to transfer zone data.

Note

If you create a master, slave, or forwarder server for the same domain on
which your local host resides, you should reconfigure your BIND resolver
so that it uses this system (LOCALHOST) as its name server.

Slave servers require a configuration file, a hint file, and loopback files.

C.1.2.3 Caching-Only Servers
Caching-only servers get the answers to all name service queries from other
name servers. Once a caching server receives an answer to a query, it saves the
information and uses it in the future to answer queries itself. Most name servers
cache answers and use them in this way but a caching-only server depends on
this for all its server information. It does not keep name server database files as
other servers do. Caching-only servers are nonauthoritative, which means that
their information is secondhand and can be incomplete.

Caching-only servers require a hint file and loopback files.

C.1.2.4 Forwarder Servers
The forwarding facility can be used to create a large, sitewide cache on a few
servers, thereby reducing traffic over links to external name servers. Forwarder
servers process requests that slave servers cannot resolve locally (for example,
because they do not have access to the Internet).

Forwarding occurs on only those queries for which the server is not authoritative
and for which it does not have the answer in its cache.

A master or slave server specifies a particular host to which requests outside the
local zone are sent. This is a form of Internet courtesy that limits the number of
hosts that actually communicate with the root servers listed in the ROOT.HINT
file.

If you configure a forwarder server, you must provide the name of the host to
which requests outside your zones of authority are forwarded.

C.2 Security Considerations
BIND Version 9 provides the following security enhancements:

• Access control lists allow you to control access to the name server. See
Section C.2.1 for more information.

• Dynamic Update Security controls access to the dynamic update facility. See
Section C.2.2 for more information.

Configuring and Managing BIND Version 9 C–3

Configuring and Managing BIND Version 9
C.2 Security Considerations

• Transaction Signatures (TSIG) provide key-based access to the dynamic
update facility. See Section C.2.3 for more information.

• TKEY automatically generates a shared secret between two hosts. See
Section C.2.4 for more information.

• SIG(0) is another method for signing transactions. See Section C.2.5 for more
information.

• DNSSEC provides cryptographic authentication of DNS information. See
Section C.2.6 for more information.

C.2.1 Access Control Lists
Access control lists (ACLs) are address match lists that you can set up and name
for use in configuring the following options:

• allow-notify

• allow-query

• allow-recursion

• blackhole

• allow-transfer

Using ACLs, you can control who can access your name server without cluttering
your configuration files with huge lists of IP addresses.

It is a good idea to use ACLs and to control access to your server. Limiting access
to your server by outside parties can help prevent unwanted use of your server.

Here is an example of how to apply ACLs properly:

// Set up an ACL named "bogusnets" that will block RFC1918 space,
// which is commonly used in spoofing attacks.

acl bogusnets { 0.0.0.0/8; 1.0.0.0/8; 2.0.0.0/8; 192.0.2.0/24;
224.0.0.0/3; 10.0.0.0/8; 172.16.0.0/12; 192.168.0.0/16;

};
// Set up an ACL called our-nets. Replace this with the real IP numbers.

acl our-nets { x.x.x.x/24; x.x.x.x/21; };
options {
...
...
allow-query { our-nets; };
allow-recursion { our-nets; };
...
blackhole { bogusnets; };
...

};
zone "example.com" {
type master;
file "example_com.db";
allow-query { any; };

};

This example allows recursive queries of the server from the outside, unless
recursion has been previously disabled. For more information about how to use
ACLs to protect your server, see Section C.5.2.

C–4 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.2 Security Considerations

C.2.2 Dynamic Update Security
Access to the dynamic update facility should be strictly limited. In earlier
versions of BIND, the only way to do this was to include an IP address or
network prefix in the allow-update zone option. This method is insecure because
the source address of the update UDP packet is easily forged. Also, if the IP
addresses allowed by the allow-update option include the address of a slave
server that performs forwarding of dynamic updates, the master can be trivially
attacked by sending the update to the slave, which will forward it to the master
with its own source IP address. This causes the master to approve the update
without question.

For these reasons, updates should be authenticated cryptographically by means of
transaction signatures (TSIG). That is, the allow-update option should list only
TSIG key names, not IP addresses or network prefixes. Alternatively, you can use
the new update-policy option.

Some sites choose to keep all dynamically updated DNS data in a subdomain
and to delegate that subdomain to a separate zone. This way, the top-level zone
containing critical data, such as the IP addresses of public web and mail servers,
need not allow dynamic updates at all.

For information about setting up dynamic updates, see Section C.5.7.

C.2.3 TSIG
This section describes how to set up Transaction Signatures (TSIG) transaction
security in BIND. It describes changes to the configuration file as well as the
changes that are required for different features, including the process of creating
transaction keys and how to use transaction signatures with BIND.

BIND primarily supports TSIG for server-to-server communication. This includes
zone transfer, notify, and recursive query messages.

TSIG is useful for dynamic updating. A primary server for a dynamic zone should
use access control to control updates, but IP-based access control is insufficient.
Key-based access control is far superior. To use TSIG with the nsupdate utility,
specify either the -k or -y option on the NSUPDATE command line. For more
information about using the nsupdate utility, see Section C.5.7.3.

Use the following procedure to implement TSIG:

1. Generate shared keys for each pair of hosts.

You can generate shared keys automatically, or you can specify them
manually. In the example that follows, a shared secret is generated to be
shared between HOST1 and HOST2. The key name is host1-host2. The key
name must be the same on both hosts.

Longer keys are better, but shorter keys are easier to read. The maximum
key length is 512 bits; keys longer than that will be digested with MD5
to produce a 128-bit key. Use the dnssec-keygen utility to generate keys
automatically.

The following command generates a 128-bit (16-byte) HMAC-MD5 key:

$ dnssec_keygen -a hmac-md5 -b 128 -n HOST host1-host2.

Configuring and Managing BIND Version 9 C–5

Configuring and Managing BIND Version 9
C.2 Security Considerations

In this example, the key is in the file KHOST1-HOST2.157-00000_PRIVATE.
Nothing uses this file directly, but the base-64 encoded string following
Key: can be extracted from the file and can be used as a shared secret. For
example:

Key: La/E5CjG9O+os1jq0a2jdA==

The string La/E5CjG9O+os1jq0a2jdA= = can be used as the shared secret.

Keys can also be specified manually. The shared secret is a random sequence
of bits, encoded in base-64. Most ASCII strings are valid base-64 strings
(assuming the length is a multiple of 4 and that only valid characters are
used).

2. Copy the shared secret to both hosts.

Use a secure transport mechanism like a floppy disk, or a physically secure
network, to copy the shared secret between hosts.

3. Inform the servers of the key’s existence.

In the following example, HOST1 and HOST2 are both servers. Add the
following to each server’s TCPIP$BIND.CONF file:

key host1-host2. {
algorithm hmac-md5;
secret "La/E5CjG9O+os1jq0a2jdA==";

};

The HMAC-MD5 algorithm is the only one supported by BIND. It is
recommended that either TCPIP$BIND.CONF not be world readable, or
that the key statement be added to a nonworld readable file that is included
by TCPIP$BIND.CONF. For information about the key statement, see
Section C.5.3.4.

Once the configuration file is reloaded, the key is recognized. This means that
if the server receives a message signed by this key, it can verify the signature.
If the signature succeeds, the response is signed by the same key.

4. Instruct the server to use the key.

Because keys are shared only between two hosts, the server must be told
when keys are to be used. Add the following to the TCPIP$BIND.CONF file
for HOST1. The IP address of HOST2 is 10.1.2.3.

server 10.1.2.3 {
keys { host1-host2. ;};

};

Multiple keys can be present, but only the first is used. This statement does
not contain any secrets, so you can include it in a world-readable file.

If HOST1 sends a message that is a request to that address, the message will
be signed with the specified key. HOST1 will expect any responses to signed
messages to be signed with the same key.

A similar statement must be present in HOST2’s configuration file (with
HOST1’s address) for HOST2 to sign request messages to HOST1.

5. Implement TSIG key-based access control.

You can specify TSIG keys in ACL definitions and in the following
configuration options:

• allow-query

• allow-transfer

C–6 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.2 Security Considerations

• allow-update

For the key named HOST1-HOST2., specify the following allow-update
option:

allow-update { key host1-host2. ;};

This statement allows dynamic updates to succeed only if the request was
signed by a key named HOST1-HOST2.

6. Reload the configuration file.

Changes to the configuration file will not take effect until the configuration
file is reloaded. You can use one of several methods to reload the configuration
file:

The rndc utility

The TCP/IP management command SET NAME/INITIALIZE

Stopping and restarting the BIND server

7. Handle any errors.

The processing of TSIG-signed messages can result in several types of
errors. If a signed message is sent to a non-TSIG aware server, an error
is returned because the server will not understand the record. This is a
result of misconfiguration; the server must be configured explicitly to send a
TSIG-signed message to a specific server.

If a TSIG-aware server receives a message signed by an unknown key, the
response is unsigned and an error is returned.

If a TSIG-aware server receives a message with a signature that is not
validated, the response is unsigned and an error is returned.

If a TSIG aware server receives a message with a time outside of the allowed
range, the response is signed, an error is returned, and the time values are
adjusted so that the response can be successfully verified.

C.2.4 TKEY
TKEY is a mechanism for automatically generating a shared secret between two
hosts. There are several modes of TKEY that specify how the key is generated or
assigned. BIND implements only the Diffie-Hellman key exchange. Both hosts
are required to have a Diffie-Hellman KEY record (although this record is not
required to be present in a zone). The TKEY process must use messages signed
either by TSIG or SIG(0). The result of TKEY is a shared secret that can be used
to sign messages with TSIG. TKEY can also be used to delete shared secrets that
it had previously generated.

The TKEY process is initiated by a client or server by sending a signed TKEY
query (including any appropriate KEYs) to a TKEY-aware server. The server
response, if it indicates success, contains a TKEY record and any appropriate
keys. After this exchange, both participants have enough information to
determine the shared secret. When Diffie-Hellman keys are exchanged, the
shared secret is derived by both participants.

Configuring and Managing BIND Version 9 C–7

Configuring and Managing BIND Version 9
C.2 Security Considerations

C.2.5 SIG(0)
BIND Version 9 partially supports DNSSEC SIG(0) transaction signatures (as
specified in RFC 2535).

SIG(0) uses public and private keys to authenticate messages. Access control is
performed in the same manner as TSIG keys; privileges can be granted or denied
based on the key name. When a SIG(0) signed message is received, it is verified
only if the key is known and trusted by the server; the server does not attempt to
locate and validate the key.

SIG(0) signing of multiple-message TCP streams is not supported. BIND Version
9 does not include any tools that generate SIG(0) signed messages.

C.2.6 DNSSEC
Cryptographic authentication of DNS information is implemented using the DNS
Security (DNSSEC) extensions (defined in RFC 2535). This section describes how
to create and use DNSSEC signed zones.

BIND Version 9 provides several tools that are used in the process of creating and
using DNSSEC signed zones. These tools include:

• The dnssec_keygen utility, which generates keys for DNSSEC (secure DNS)
and TSIG (transaction signatures).

• The dnssec_makekeyset utility, which generates a key set.

• The dnssec_signkey utility, which signs a key set.

• The dnssec_signzone utility, which signs a zone.

For detailed information about these utilities, see Section C.10. In all cases, the
-h option displays a full list of parameters. Note that the DNSSEC tools require
the keyset and signedkey files to be in the working directory.

Administrators of the parent and child zones must agree on keys and signatures.
A zone’s security status must be indicated by the parent zone for a DNSSEC-
capable resolver to trust its data.

For other servers to trust data in this zone, they must be statically configured
either with this zone’s zone key or with the zone key of another zone above this
one in the DNS tree.

Use the following procedure to set up DNSSEC secure zones:

1. Generate keys.

To generate keys, use the dnssec_keygen program.

A secure zone must contain one or more zone keys. The zone keys sign all
other records in the zone, as well as the zone keys of any secure delegated
zones. Zone keys must have the same name as the zone, must have a name
type of ZONE, and must be usable for authentication.

The following command generates a 768-bit DSA key for the child.example
zone:

$ dnssec_keygen -a DSA -b 768 -n ZONE child.example.

Two output files are produced: KCHILD_EXAMPLE.003-12345_KEY and
KCHILD_EXAMPLE.003-12345_PRIVATE (where 12345 is the key tag). The
key file names contain the key name (child_example.), the algorithm (3 is
DSA, 1 is RSA), and the key tag (12345, in this case). The private key (in

C–8 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.2 Security Considerations

the _PRIVATE file) is used to generate signatures, and the public key (in the
_KEY file) is used verify signatures.

To generate another key with the same properties (but with a different key
tag), repeat the preceding command.

Insert the public keys into the zone file using $INCLUDE statements that
specify the _KEY files.

2. Create a key set.

To create a key set from one or more keys, use the dnssec_makekeyset utility.

After the zone keys are generated, a key set must be built for transmission
to the administrator of the parent zone, so that the parent zone can sign the
keys with its own zone key and indicate correctly the security status of this
zone. When building a key set, the list of keys to be included and the TTL
value of the set must be specified; the desired signature validity period of the
parent’s signature can also be specified.

The list of keys to be inserted into the key set can also include nonzone keys
present at the top of the zone.

The following command generates a key set containing the key generated in
the preceding example and another key similarly generated, with a TTL of
3600 and a signature validity period of 10 days starting from now:

$ dnssec_makekeyset -t 3600 -e +864000 KCHILD_EXAMPLE.003-12345 -
_$ KCHILD_EXAMPLE.003-23456

One output file is produced: KEYSET-CHILD_EXAMPLE.DAT. This file
should be transmitted to the parent to be signed. It includes the keys as well
as signatures covering keys. The signatures prove that you have the private
key that corresponds to the public key. The signatures also have the validity
period encoded in them.

3. Sign the child’s keyset.

To sign one child’s keyset, use the dnssec_signkey utility.

If the child.example zone has any delegations which are secure (for example,
grand.child.example), the child.example administrator should receive
keyset files for each secure subzone. These keys must be signed by this zone’s
zone keys.

The following command signs the child’s key set with the zone keys:

$ dnssec_signkey KEYSET-GRAND_CHILD_EXAMPLE.DAT KCHILD_EXAMPLE.003-12345 -
_$ KCHILD_EXAMPLE.003-23456

One output file is produced: SIGNEDKEY-GRAND_CHILD_EXAMPLE.DAT.
This file should be both transmitted back to the child and retained. It
includes all keys (the child’s keys) from the keyset file and signatures
generated by this zone’s zone keys.

4. Sign the zone.

To sign a zone, use the dnssec_signzone utility.

Any signed key files corresponding to secure subzones should be present, as
well as a signed key file for this zone generated by the parent (if there is one).
The zone signer generates NXT and SIG records for the zone, incorporates
the zone key signature from the parent, and indicates the security status at
all delegation points.

Configuring and Managing BIND Version 9 C–9

Configuring and Managing BIND Version 9
C.2 Security Considerations

Before signing the zone, add the KEY record to the zone database file using
the $INCLUDE statement. For example:

$INCLUDE KCHILD_EXAMPLE.003-12345_KEY

The following command signs the zone, assuming it is in a file called ZONE_
CHILD_EXAMPLE.DB. By default, all zone keys that have an available
private key are used to generate signatures.

$ dnssec_signzone -o child.example ZONE_CHILD_EXAMPLE.DB

One output file is produced: ZONE_CHILD_EXAMPLE.DB_SIGNED. This
file should be referenced by TCPIP$BIND.CONF as the input file for the zone.

5. Configure the servers.

Unlike BIND Version 8, data is not verified when the BIND Version 9
software is loaded. Therefore, zone keys for authoritative zones do not need
to be specified in the configuration file. The public key for any security
root must be present in the configuration file’s trusted-keys statement, as
described in Section C.5.

C.3 Migrating from BIND Version 4 to BIND Version 9
If you set up your BIND environment using an old version of the TCP/IP Services
product, you must convert the UCX databases and configuration information to
the BIND Version 9 format.

To convert your BIND configuration, enter the following command:

TCPIP> CONVERT/CONFIGURATION BIND

This command extracts the BIND-specific configuration information from
UCX$CONFIGURATION.DAT and creates the BIND Version 9 configuration file
TCPIP$BIND.CONF. It renames your BIND databases, where necessary.

You can continue to use the SET CONFIGURATION BIND commands to make
changes to your configuration (see Section C.8), or you can make changes by
editing the text file TCPIP$BIND.CONF (see Section C.5). If you continue to
use the SET CONFIGURATION BIND commands, you must also enter the
CONVERT/CONFIGURATION BIND command in order for your changes to take
effect.

C.3.1 Navigating Two Different BIND Environments
This section summarizes the differences between the UCX BIND implementation
and BIND Version 9.

Remember that, in BIND Version 9, name servers are configured by editing
a text configuration file. The use of this file is described in Section C.5.
Compaq recommends, but does not require, that you use the configuration
file to set up BIND. You can continue using the TCPIP$CONFIG and the SET
CONFIGURATION BIND commands to set up your BIND environment, as you
did with previous releases of this product. The term UCX BIND in Table C–1
describes the previous configuration method even though this method is still valid
in the current release.

C–10 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.3 Migrating from BIND Version 4 to BIND Version 9

Table C–1 describes changes to the database and configuration file names.

Table C–1 UCX BIND and BIND Version 9 Differences

Database/File Names UCX BIND BIND Version 9

Configuration information UCX$CONFIGURATION.DAT TCPIP$BIND.CONF

Local loopback files NAMED.LOCAL LOCALHOST.DB,
127_0_0.DB

Forward lookup file domain_name.DB domain_name.DB

Reverse lookup file address.DB address.DB

Cache file NAMED.CA ROOT.HINT

Note

You must be consistent when making changes to your BIND environment.
If you make changes by editing the configuration file, you should continue
to make changes in that manner.

If you revert to the UCX BIND configuration method (SET
CONFIGURATION BIND and CONVERT/CONFIGURATION
BIND commands), any changes you made to the configuration file
(TCPIP$BIND.CONF) are lost.

If you continue to use the SET CONFIGURATION BIND commands, you
must always enter the CONVERT/CONFIGURATION BIND command in
order for your changes to take effect.

C.4 BIND Service Startup and Shutdown
The BIND service can be shut down and started independently of TCP/IP
Services. The following files are provided for this purpose:

• SYS$STARTUP:TCPIP$BIND_STARTUP.COM allows you to start the BIND
service.

• SYS$STARTUP:TCPIP$BIND_SHUTDOWN.COM allows you to shut down
the BIND service.

To preserve site-specific parameter settings and commands, create the following
files. These files are not overwritten when you reinstall TCP/IP Services.

• SYS$STARTUP:TCPIP$BIND_SYSTARTUP.COM can be used as a repository
for site-specific definitions and parameters to be invoked when the BIND
service is started.

• SYS$STARTUP:TCPIP$BIND_SYSHUTDOWN.COM can be used as a
repository for site-specific definitions and parameters to be invoked when the
BIND service is shut down.

Configuring and Managing BIND Version 9 C–11

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5 Configuring the BIND Server
This section describes how to configure the BIND name server on your local host.

BIND Version 9 configuration is broadly similar to BIND Version 8; however,
there are a few new areas of configuration, such as views. BIND Version 8
configuration files should work with few alterations in BIND Version 9, although
you should review more complex configurations to see whether they can be
implemented more efficiently using the new features in BIND Version 9.

BIND Version 9 stores configuration information in a text file called
TCPIP$BIND.CONF. The TCP/IP Services product provides a template for
this file located in the SYS$SPECIFIC:[TCPIP$BIND] directory. Edit this
template to reflect your site-specific configuration requirements before running
BIND.

C.5.1 Configuration File Elements
Table C–2 lists the elements used throughout the BIND Version 9 configuration
file documentation.

Table C–2 Name Server Configuration File Elements

Element Description

acl_name The name of an address_match_list as defined by the acl
statement.

address_match_list A list of one or more of the following elements:

• ip_addr

• ip_prefix

• key_id

• acl_name

See Section C.5.2 for more information.

domain_name A quoted string that will be used as a DNS name. For
example:

"my.test.domain"

dotted_decimal One or more integers valued 0 through 255 and separated
by dots, such as 123, 45.67 or 89.123.45.67.

ip4_addr An IPv4 address with exactly four elements in dotted
decimal notation.

ip6_addr An IPv6 address, such as fe80::200:f8ff:fe01:9742.

ip_addr An ip4_addr or ip6_addr.

ip_port An IP port number from 0 to 65535. Values below 1024
are restricted to well-known processes. In some cases, an
asterisk (*) character can be used as a placeholder to select
a random high-numbered port.

(continued on next page)

C–12 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–2 (Cont.) Name Server Configuration File Elements

Element Description

ip_prefix An IP network specified as an ip_addr, followed by a slash
(/) and then the number of bits in the netmask. Trailing
zeros in an ip_addr can be omitted. For example, 127/8 is
the network 127.0.0.0 with netmask 255.0.0.0 and 1.2.3.0
/28 is network 1.2.3.0 with netmask 255.255.255.240.

key_id A domain name representing the name of a shared key, to
be used for transaction security.

key_list A list of one or more key_ids, separated by semicolons and
ending with a semicolon.

number A nonnegative integer with an entire range limited by the
range of a C language signed integer (2,147,483,647 on a
machine with 32-bit integers). Its acceptable value might
be limited further by the context in which it is used.

path_name A quoted string that will be used as a path name. For
example:

"SYS$SPECIFIC:[TCPIP$BIND]"

size_spec A number, the word unlimited, or the word default.
The maximum value of size_spec is that of unsigned
long integers on the machine. An unlimited size_spec
requests unlimited use, or the maximum available amount.
A default size_spec uses the limit that was in force
when the server was started. A number can optionally be
followed by a scaling factor:

• K (or k) for kilobytes, which scales by 1024

• M (or m) for megabytes, which scales by 1024*1024

• G (or g) for gigabytes, which scales by 1024*1024*1024

Integer storage overflow is silently ignored during
conversion of scaled values, resulting in values less than
intended, possibly even negative. Using the unlimited
keyword is the best way to safely set a really large number.

yes_or_no Either yes or no. The words true and false are also
accepted, as are the numbers 1 and 0.

dialup_option One of the following:

• yes

• no

• notify

• notify-passive

• refresh

• passive

When used in a zone, notify-passive, refresh, and
passive are restricted to slave and stub zones.

Configuring and Managing BIND Version 9 C–13

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.2 Address Match Lists
Address match lists are used primarily to determine access control for server
operations. They are also used to define priorities for querying other name
servers and to set the addresses on which the BIND server listens for queries.
The following example shows the syntax of the address match list:

address_match_list = address_match_list_element ;
[address_match_list_element; ...]

address_match_list_element = [!] (ip_address [/length] |
key key_id | acl_name | { address_match_list })

The elements that constitute an address match list can be any of the following:

• An IP address (IPv4 or IPv6)

• An IP prefix (in the / notation)

• A key ID, as defined by the key statement

• The name of an address match list previously defined with the acl statement

• A nested address match list enclosed in braces

Elements can be negated with a leading exclamation mark (!). The match list
names any, none, localhost, and localnets are predefined. More information
on those names can be found in the description of the acl statement (see
Section C.5.3.1).

When a given IP address or prefix is compared to an address match list, the list
is traversed in order until an element matches. The interpretation of a match
depends on whether the list is being used for access control, defining listen-on
ports, or as a topology, and whether the element was negated. Specifically:

• When used as an access control list, a non-negated match allows access and
a negated match denies access. If there is no match, access is denied. The
following options use address match lists for this purpose:

allow-notify

allow-query

allow-transfer

allow-update

blackhole

The listen-on option causes the server not to accept queries on any of the
machine’s addresses that do not match the list.

• When used with the topology statement, a nonnegated match returns a
distance based on its position on the list; the closer the match is to the start
of the list, the shorter the distance between it and the server. A negated
match is assigned the maximum distance from the server. If there is no
match, the address gets a distance that is further than any nonnegated list
element and closer than any negated element.

Because of the first-match aspect of the algorithm, an element that defines a
subset of another element in the list should come before the broader element,
regardless of whether either is negated. For example, in 1.2.3/24; ! 1.2.3.13;,
the 1.2.3.13 element is ignored, because the algorithm will match any lookup
for 1.2.3.13 to the 1.2.3/24 element. Using ! 1.2.3.13; 1.2.3/24 corrects that
problem by having 1.2.3.13 blocked by the negation, while all other 1.2.3.* hosts
fall through.

C–14 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.3 Configuration File Format
A BIND configuration file consists of statements and comments. Statements end
with a semicolon. Many statements contain a block of substatements that also
end with a semicolon. Table C–3 describes the configuration statements.

Table C–3 BIND Name Server Configuration Statements

Statement Description

acl Specifies a named IP address matching list, for access
control and other uses.

controls Declares control channels to be used by the rndc utility.

include Includes a file.

key Specifies key information for use in authentication and
authorization using TSIG. See Section C.2.3 for more
information.

logging Specifies what the server logs, and where the log messages
are sent.

options Controls global server configuration options and sets
defaults for other statements.

server Sets configuration options, and sets defaults for other
statements.

trusted-keys Specifies trusted DNSSEC keys.

view Specifies a view.

zone Specifies a zone.

The following sample is a configuration file for a master server:

options {
directory "SYS$SPECIFIC:[TCPIP$BIND]";

};

zone "FRED.PARROT.BIRD.COM" in {
type master;
file "FRED_PARROT_BIRD_COM.DB";

};

zone "0.0.127.IN-ADDR.ARPA" in {
type master;
file "127_0_0.DB";

};

zone "LOCALHOST" in {
type master;
file "LOCALHOST.DB";

};

zone "208.20.16.IN-ADDR.ARPA" in {
type master;
file "208_20_16_IN-ADDR_ARPA.DB";

};

zone "." in {
type hint;
file "ROOT.HINT";

};

Configuring and Managing BIND Version 9 C–15

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

The following comment styles are valid in a BIND configuration file. Comments
can appear anywhere in the file.

• C-style comments that start with /* and end with */

• C++ style comments that start with // and continue to the end of the physical
line

• Shell or Perl-style comments that start with # and continue to the end of the
physical line

Note

Do not use a semicolon (;) as a comment character in your configuration
file. The semicolon indicates the end of a configuration statement;
whatever follows is interpreted as the start of the next statement.

C.5.3.1 The ACL Statement
The acl statement assigns a symbolic name to an address match list. It gets its
name from a primary use of address match lists: access control lists (ACLs).

Note

The access control lists used by the BIND service and OpenVMS ACLs
are different structures with different purposes.

The acl statement is formatted as follows:

acl acl-name {
address_match_list

};

Note that the address match list must be defined with acl before it can be used
elsewhere; forward references are not allowed.

The following ACLs are created automatically:

ACL Matches

any All hosts

none No hosts

localhost The IPv4 addresses of all interfaces on the system

localnets Any host on an IPv4 network for which the system has an
interface

The ACLs localhost and localnets do not support IPv6. The ACL localhost
does not match the host’s IPv6 addresses, and the ACL localnets does not match
the host’s attached IPv6 networks. This limitation is due to the fact that there is
no standard method for determining the complete set of local IPv6 addresses for
a host.

C–16 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.3.2 The CONTROLS Statement
The controls statement declares control channels to be used by system
administrators to affect the operation of the local name server. These control
channels are used by the rndc utility to send commands to, and retrieve non-DNS
results from, a name server. The controls statement is formatted as follows:

controls {
inet (ip_addr | *) [port ip_port] allow { address_match_list }

keys { key_list };
[inet ...;]

};

An inet control channel is a TCP/IP socket accessible to the Internet, created at
the specified ip_port on the specified ip_addr. If no port is specified, port 953 is
used by default. The asterisk character (*) cannot be used for ip_port.

The ability to issue commands over the control channel is restricted by the
allow and keys clauses. Connections to the control channel are permitted based
on the address permissions in the address match list. key_id members of the
address match list are ignored, and instead are interpreted independently based
the key_list. Each key_id in the key_list is used to authenticate commands
and responses given over the control channel, by digitally signing each message
between the server and a command client. In order to be honored, all commands
to the control channel must be signed by one of its specified keys.

If no controls statement is present, the BIND server will set up a default control
channel listening on the loopback address 127.0.0.1 and its IPv6 counterpart ::1.
In this case, and also when the controls statement is present but does not have
a keys clause, the BIND server will attempt to load the command channel key
from the file RNDC.KEY in TCPIP$ETC. To create a RNDC.KEY file, use the
following command:

rndc_confgen -a

See Section C.10 for more information about using the rndc utility.

The RNDC.KEY feature eases the transition of systems from BIND Version 8,
which did not have digital signatures on its command channel messages and
thus did not have a keys clause. You can use an existing BIND Version 8
configuration file in BIND Version 9 unchanged, and rndc will work the same
way that ndc worked in BIND Version 8.

Because the RNDC.KEY feature is only intended to allow the backward-
compatible usage of BIND Version 8 configuration files, this feature does not
have a high degree of configurability. You cannot easily change the key name or
the size of the secret. You should make a RNDC.CONF file with your own key if
you wish to change those things.

The UNIX control channel type of BIND Version 8 is not supported in BIND
Version 9, and is not expected to be added in future releases. If it is present in
the controls statement from a BIND Version 8 configuration file, it is ignored
and a warning is logged.

Configuring and Managing BIND Version 9 C–17

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.3.3 The INCLUDE Statement
The include statement inserts the specified file at the point that the include
statement is encountered. The include statement facilitates the administration
of configuration files by permitting the reading or writing of some things but not
others. For example, the statement could include private keys that are readable
only by a name server. The following example shows the format of the include
statement:

include filename;

C.5.3.4 The KEY Statement
The key statement defines a shared secret key for use with TSIG (see
Section C.2.3). The following example shows the format of the key statement:

key key_id {
algorithm algorithm-id;
secret secret-string;

};

The key statement can occur at the top level of the configuration file or inside
a view statement. Keys defined in top-level key statements can be used in all
views. Keys intended for use in a controls statement must be defined at the top
level.

Table C–4 describes the elements of the key statement.

Table C–4 Key Statement Elements

Element Description

key_id Specifies a domain name that uniquely identifies the key
(also known as the key name). It can be used in a server
statement to cause requests sent to that server to be signed
with this key, or in address match lists to verify that
incoming requests have been signed with a key matching
this name, algorithm, and secret.

algorithm-id Specifies an authentication algorithm. The only algorithm
currently supported with TSIG authentication is HMAC-
MD5.

secret-string Specifies the secret to be used by the algorithm; treated as
a Base-64 encoded string.

C.5.3.5 The LOGGING Statement
The logging statement configures a wide variety of logging options for the name
server. Its channel phrase associates output methods, format options and severity
levels with a name that can then be used with the category phrase to select the
way each class of message is logged. The following example shows the format of
the logging statement:

C–18 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

logging {
[channel channel_name {
(file path_name
| syslog
| stderr
| null);

[severity (critical | error | warning | notice |
info | debug [level] | dynamic);]

[print-category yes_or_no;]
[print-severity yes_or_no;]
[print-time yes_or_no;]

};]
[category category_name {
channel_name ; [channel_name ; ...]

};]
...

};

Use one logging statement to define as many channels and categories as you
want. If there is no logging statement, the logging configuration defaults to the
following:

logging {
category "unmatched" { "null"; };
category "default" { "default_syslog"; "default_debug"; };

};

In BIND Version 9, the logging configuration is only established after the entire
configuration file has been parsed. In BIND Version 8, it was established as soon
as the logging statement was parsed. When the server is starting up, all logging
messages regarding syntax errors in the configuration file go to the default
channels.

C.5.3.5.1 The Channel Phrase All log output goes to one or more channels; you
can make as many of them as you want. Every channel definition must include
a destination clause that says whether messages selected for the channel go to
a file (by default, TCPIP$BIND_RUN.LOG), or are discarded. It can optionally
also limit the message severity level that is accepted by the channel (the default
is info); and can specify whether to include a time stamp, the category name and
severity level (the default is not to include any).

The null destination clause causes all messages sent to the channel to be
discarded; in that case, other options for the channel are meaningless.

The file destination clause directs the channel to a disk file.

On OpenVMS, the syslog and stderr destination clauses direct the channel to
the TCPIP$BIND_RUN.LOG file.

The severity clause allows you to specify the level of diagnostic messages to be
logged.

The server can supply extensive debugging information when it is in debugging
mode. If the server’s global debug level is greater than zero, then debugging
mode is activated. The global debug level is set by one of the following:

• Starting the BIND server with the -d flag followed by a positive integer.

• Entering the trace command with the rndc utility. To set the global debug
level to zero and turn off debugging mode, enter the the notrace command.

Configuring and Managing BIND Version 9 C–19

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

All debugging messages in the server have a debug level; higher debug levels
give more detailed output. Channels that specify a debug severity level get the
specified debugging output and less any time the server is in debugging mode,
regardless of the global debugging level. For example, to produce debugging
output at level 3 and less, enter the following:

channel "specific_debug_level" {
file "foo";
severity debug 3;

};

Channels with dynamic severity use the server’s global level to determine what
messages to display.

If print-time is turned on, the date and time are logged. If print-category is
requested, then the category of the message is logged as well. Finally, if print-
severity is turned on, then the severity level of the message is logged. The
print- options can be used in any combination and are always displayed in the
following order:

1. Time

2. Category

3. Severity

The following example specifies all three print- options:

28-Feb-2000 15:05:32.863 general: notice: running

Four predefined channels are used for the BIND server’s default logging, as
shown in the following example. Section C.5.3.5.2 describes how these channels
are used.

channel "default_syslog" {
syslog daemon; // send to TCPIP$BIND_RUN.LOG

severity info; // only send priority info
// and higher

};

channel "default_debug" {
file "TCPIP$BIND_RUN.LOG"; // write to the TCPIP$BIND_RUN.LOG

severity dynamic; // log at the server’s
// current debug level

};

channel "default_stderr" {
stderr; // write to TCPIP$BIND_RUN.LOG
severity info; // only send priority info

// and higher
};

channel "null" {
null; // discard anything sent to

// this channel
};

The default_debug channel only produces output when the server’s debug level
is not zero. By default, the BIND server writes to the TCPIP$BIND_RUN.LOG
file.

Once a channel is defined, it cannot be redefined. Thus, you cannot alter the
built-in channels directly, but you can modify the default logging by pointing
categories at channels you have defined.

C–20 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.3.5.2 The Category Phrase There are many categories, so you can send the
logs you want to see anywhere, without seeing logs you do not want. If you do not
specify a list of channels for a category, then log messages in that category are
sent to the default category instead. If you do not specify a default category, the
following definition is used:

category default { default_syslog; default_debug; };

For example, if you want to log security events to a file but you also want to
preserve the default logging behavior, specify the following:

channel my_security_channel {
file "my_security_file";
severity info;

};
category security {

"my_security_channel";
default_syslog;
default_debug;

};

To discard all messages in a category, specify the null channel:

category lame-servers { null; };
category cname { null; };

Table C–5 describes the logging categories.

Table C–5 Logging Categories

Category Meaning

default The logging options for those categories where no specific configuration
has been defined.

general The default category for messages that are not classified.

database Messages relating to the databases used internally by the name server
to store zone and cache data.

security Approval and denial of requests.

config Configuration file parsing and processing.

resolver DNS resolution, such as the recursive lookups performed on behalf of
clients by a caching name server.

xfer-in Zone transfers the server is receiving.

xfer-out Zone transfers the server is sending.

notify The NOTIFY protocol.

client Processing of client requests.

unmatched Messages for which the BIND server was unable to determine the
class, or for which there was no matching view. A one-line summary is
also logged to the client category.

network Network operations.

update Dynamic updates.

queries Queries. Using this category enables query logging.

(continued on next page)

Configuring and Managing BIND Version 9 C–21

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–5 (Cont.) Logging Categories

Category Meaning

dispatch Dispatching of incoming packets to the server modules where they are
to be processed.

dnssec DNSSEC and TSIG protocol processing.

lame-servers Lame servers (misconfigurations in remote servers, discovered by BIND
9 when trying to query those servers during resolution).

C.5.3.6 The OPTIONS Statement
The options statement sets up global options to be used by BIND. This statement
should appear only once in a configuration file. If more than one occurrence is
found, the first occurrence determines the actual options used, and a warning is
generated. If there is no options statement, an options block with each option
set to its default is used.

The options statement has the following syntax:

options {
[version version_string;]
[directory path_name;]
[named-xfer path_name;]
[tkey-domain domainname;]
[tkey-dhkey key_name key_tag;]
[dump-file path_name;]
[memstatistics-file path_name;]
[pid-file path_name;]
[statistics-file path_name;]
[zone-statistics yes_or_no;]
[auth-nxdomain yes_or_no;]
[deallocate-on-exit yes_or_no;]
[dialup dialup_option;]
[fake-iquery yes_or_no;]
[fetch-glue yes_or_no;]
[has-old-clients yes_or_no;]
[host-statistics yes_or_no;]
[minimal-responses yes_or_no;]
[multiple-cnames yes_or_no;]
[notify yes_or_no | explicit;]
[recursion yes_or_no;]
[rfc2308-type1 yes_or_no;]
[use-id-pool yes_or_no;]
[maintain-ixfr-base yes_or_no;]
[forward (only | first);]
[forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ;

...] };]
[check-names (master | slave | response)(warn | fail | ignore

);]
[allow-notify { address_match_list };]
[allow-query { address_match_list };]
[allow-transfer { address_match_list };]
[allow-recursion { address_match_list };]
[allow-v6-synthesis { address_match_list };]
[blackhole { address_match_list };]
[listen-on [port ip_port] { address_match_list };]
[listen-on-v6 [port ip_port] { address_match_list };]
[query-source [address (ip_addr | *)] [port (ip_port | *)];

]
[max-transfer-time-in number;]
[max-transfer-time-out number;]
[max-transfer-idle-in number;]

C–22 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

[max-transfer-idle-out number;]
[tcp-clients number;]
[recursive-clients number;]
[serial-query-rate number;]
[serial-queries number;]
[transfer-format (one-answer | many-answers);]
[transfers-in number;]
[transfers-out number;]
[transfers-per-ns number;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ;

...] };]
[max-ixfr-log-size number;]
[cleaning-interval number;]
[heartbeat-interval number;]
[interface-interval number;]
[statistics-interval number;]
[topology { address_match_list }];
[sortlist { address_match_list }];
[rrset-order { order_spec ; [order_spec ; ...]] };
[lame-ttl number;]
[max-ncache-ttl number;]
[max-cache-ttl number;]
[sig-validity-interval number ;]
[min-roots number;]
[use-ixfr yes_or_no ;]
[treat-cr-as-space yes_or_no ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]
[port ip_port;]
[additional-from-auth yes_or_no ;]
[additional-from-cache yes_or_no ;]
[random-device path_name ;]
[max-cache-size size_spec ;]
[match-mapped-addresses yes_or_no;]

};

Table C–6 through Table C–14 describe the BIND server configuration options.

Table C–6 BIND Server Configuration Options

Option Description

version The version the server should report using a query of name
version.bind in class CHAOS. The default is the real
version number of this server.

directory The working directory of the server. Any nonabsolute
path names in the configuration file is assumed to be
relative to this directory. The default location for the server
output file (TCPIP$BIND_RUN.LOG) is this directory. If
a directory is not specified, the working directory defaults
to SYS$SPECIFIC:[TCPIP$BIND]. If you are configuring
a BIND failover environment in an OpenVMS Cluster, the
working directory is defined by the logical TCPIP$BIND_
COMMON.

(continued on next page)

Configuring and Managing BIND Version 9 C–23

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–6 (Cont.) BIND Server Configuration Options

Option Description

named-xfer This option is obsolete. It was used in BIND 8 to specify
the path name to the named-xfer program. In BIND 9, no
separate named-xfer program is needed; its functionality
is built into the name server.

tkey-domain The domain appended to the names of all shared keys
generated with TKEY. When a client requests a TKEY
exchange, it may or may not specify the desired name for
the key. If present, the name of the shared key is formatted
as follows:

"client specified part" + "tkey-domain"

If it is not present, the name of the shared key is formatted
as follows:

"random hex digits" + "tkey-domain"

In most cases, the domain name should be the server’s
domain name.

tkey-dhkey The Diffie-Hellman key used by the server to generate
shared keys with clients using the Diffie-Hellman mode
of TKEY. The server must be able to load the public and
private keys from files in the working directory. In most
cases, the key name should be the server’s host name.

dump-file The path name of the file the server dumps the database to
when instructed to do so with the rndc dumpdb command.
If not specified, the default is TCPIP$BIND_DUMP.DB.

memstatistics-file The path name of the file the server writes memory
usage statistics to on exit. If not specified, the default
is TCPIP$BIND.MEMSTATS.

This option is not yet implemented.

pid-file The path name of the file in which the server writes its
process ID. If the path name is not specified, the default is
TCPIP$BIND.PID. The PID file is used by programs that
want to send signals to the running name server.

statistics-file The path name of the file to which the server appends
statistics when instructed to do so with the rndc
stats command. If not specified, the default is
TCPIP$BIND.STATS in the server’s current directory.
The format of the file is described in Section C.5.3.6.14.

port The UDP/TCP port number the server uses for receiving
and sending DNS protocol traffic. The default is 53. This
option is intended mainly for server testing; a server using
a port other than 53 cannot communicate with the global
DNS. The port option should be placed at the beginning of
the options block, before any other options that take port
numbers or IP addresses, to ensure that the port value
takes effect for all addresses used by the server.

(continued on next page)

C–24 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–6 (Cont.) BIND Server Configuration Options

Option Description

random-device The source of entropy to be used by the server. Entropy
is needed primarily for DNSSEC operations, such as
TKEY transactions and dynamic update of signed zones.
This option specifies the file from which to read entropy.
Operations requiring entropy fail when the file has been
exhausted. If this option is not specified, entropy does not
take place.

The random-device option takes effect during the initial
configuration load at server startup time and is ignored on
subsequent reloads.

C.5.3.6.1 Boolean Options Table C–7 describes the Boolean BIND server
configuration options.

Table C–7 BIND Server Boolean Configuration Options

Option Description

auth-nxdomain If YES, then the AA bit is always set on NXDOMAIN
responses, even if the server is not actually authoritative.

The default is NO. This is a change from BIND Version 8.
If you are upgrading from old software, you might need to
set this option to YES.

deallocate-on-exit This option was used in BIND Version 8 to enable checking
for memory leaks on exit. BIND Version 9 ignores this
option and always performs the checks.

(continued on next page)

Configuring and Managing BIND Version 9 C–25

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–7 (Cont.) BIND Server Boolean Configuration Options

Option Description

dialup If YES, then the server treats all zones as if they are doing
zone transfers across a dial-on-demand dialup link, which
can be brought up by traffic originating from this server.
This has different effects according to zone type, and it
concentrates the zone maintenance so that it all happens
in a short interval, once every heartbeat-interval and
during the one call. It also suppresses some of the normal
zone maintenance traffic. The default is NO.

The dialup option can also be specified in the view and
zone statements. In these cases, it overrides the global
dialup option.

If the zone is a master zone, the server sends out a NOTIFY
request to all the slaves. This triggers the zone serial
number check in the slave (providing it supports NOTIFY),
allowing the slave to verify the zone while the connection is
active. If the zone is a slave or stub zone, then the server
suppresses the regular ‘‘zone up to date’’ (refresh) queries
and performs them only when the heartbeat-interval
expires, in addition to sending NOTIFY requests.

Finer control can be achieved by using the following
options:

• notify, which sends only NOTIFY messages.

• notify-passive, which sends NOTIFY messages and
suppresses the normal refresh queries.

• refresh, which suppresses normal refresh processing
and sends refresh queries when the heartbeat-
interval expires.

• passive, which disables normal refresh processing.

fake-iquery In BIND Version 8, this option was used to enable
simulating the obsolete DNS query type IQUERY. BIND
Version 9 never does IQUERY simulation.

fetch-glue This option is obsolete. In BIND Version 8, this option
caused the server to attempt to fetch glue resource records
it lacked when constructing the additional data section of a
response. In BIND Version 9, the server does not fetch glue
resource records.

has-old-clients This option was incorrectly implemented in BIND Version 8
and is ignored by BIND Version 9.

host-statistics In BIND Version 8, this option enabled the keeping of
statistics for every host with which the name server
interacts. This option is not implemented in BIND Version
9.

maintain-ixfr-base This option is obsolete. It was used in BIND Version
8 to determine whether a transaction log was kept for
incremental zone transfers. BIND Version 9 maintains
a transaction log whenever possible. To disable outgoing
incremental zone transfers, set the provide-ixfr option
to NO. See Section C.5.3.7 for more information.

(continued on next page)

C–26 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–7 (Cont.) BIND Server Boolean Configuration Options

Option Description

minimal-responses Specifies that when the server generates responses, it adds
records to the authority and additional data sections only
when they are required (for example, for delegations and
negative responses). This might improve the performance
of the server. The default is NO.

multiple-cnames This option was used in BIND Version 8 to allow a domain
name to allow multiple CNAME records in violation of
the DNS standards. BIND Version 9 strictly enforces the
CNAME rules, both in master files and dynamic updates.

notify Sends DNS NOTIFY messages when a zone changes for
which the server is authoritative (see Section C.5.5). The
messages are sent to the servers listed in the zone’s NS
records (except the master server identified in the SOA
MNAME field) and to any servers listed in the also-
notify option. If this option is explicitly set (the default),
notifications are sent only to servers explicitly listed using
also-notify. If it is set to NO, notifications are not sent.

The notify option can also be specified in the zone
statement. This overrides the notify option in the
options statement.

recursion When a DNS query requests recursion, specifies that
the server will attempt to do all the work required to
answer the query. If the recursion option is off and the
server does not already know the answer, it returns a
referral response. The default is YES. Note that setting
the recursion option to NO does not prevent clients
from getting data from the server’s cache; it only prevents
new data from being cached as an effect of client queries.
Caching can still occur as an effect of the server’s internal
operation, such as NOTIFY address lookups.

rfc2308-type1 Setting this option to YES causes the server to send NS
records along with the SOA record for negative answers.
The default is NO.

This option is not yet implemented.

use-id-pool This option is obsolete. BIND Version 9 always allocates
query IDs from a pool.

zone-statistics Collects statistical data on all zones in the server. These
statistics can be accessed using the rndc stats command,
which dumps them to the file listed in the statistics-
file option. See Section C.10 for more information.

use-ixfr This option is obsolete. If you need to disable IXFR to a
particular server, see the information about the provide-
ixfr option in Section C.5.3.7.

treat-cr-as-space This option was used in BIND 8 to make the server treat
carriage return characters the same way as a space or tab
character—to facilitate loading of zone files. In BIND 9,
these characters are always accepted and the option is
ignored.

(continued on next page)

Configuring and Managing BIND Version 9 C–27

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–7 (Cont.) BIND Server Boolean Configuration Options

Option Description

additional-from-auth
additional-from-cache

These options control the behavior of an authoritative
server when answering queries that have additional data or
when following CNAME and DNAME chains.

When both of these options are set to YES (the default)
and a query is being answered from authoritative data
(a zone configured into the server), the additional data
section of the reply is filled in using data from other
authoritative zones and from the cache. In some situations
this is undesirable, such as when there is concern over the
correctness of the cache, or in servers where slave zones
can be added and modified by untrusted third parties.
Also, avoiding the search for this additional data speeds
up server operations at the possible expense of additional
queries to resolve what otherwise would be provided in the
additional section.

For example, if a query asks for an MX record for host
FOO.EXAMPLE.COM, the following record is found:

MX 10 mail.example.net

The address records (A, A6, and AAAA) for
MAIL.EXAMPLE.NET are provided as well, if they are
known.

Setting these options to NO disables this behavior.

These options are intended for use in authoritative-only
servers or in authoritative-only views. If you attempt to set
these options to NO without also specifying recursion no,
the server ignores the options and log a warning message.

Specifying additional-from-cache no disables the
use of the cache not only for additional data lookups, but
also when looking up the answer. This is usually the
desired behavior in an authoritative-only server where the
correctness of the cached data is an issue.

When a name server is nonrecursively queried for a name
that is not below the apex of any served zone, it normally
answers with an ‘‘upward referral’’ to the root servers or
to the servers of some other known parent of the query
name. Because the data in an upward referral comes from
the cache, the server cannot provide upward referrals when
additional-from-cache no has been specified. Instead,
the server responds to such queries with ‘‘REFUSED.’’ This
should not cause any problems, because upward referrals
are not required for the resolution process.

match-mapped-addresses When this option is set, an IPv4-mapped IPv6 address
matches any address match list entries that match the
corresponding IPv4 address. Use of this option is not
necessary on OpenVMS systems.

C.5.3.6.2 Forwarding Options The forwarding facility helps you create a large,
sitewide cache on a few servers, thereby reducing traffic over links to external
name servers. It can also be used to allow queries by servers that do not have
direct access to the Internet but that want to look up exterior names anyway.
Forwarding occurs only on those queries for which the server is not authoritative
and does not have the answer in its cache.

C–28 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–8 describes the forwarding options.

Table C–8 Forwarding Options

Option Description

forward Meaningful only if the forwarders list is not empty. A
value of first (the default) causes the server to query the
forwarders first, and if that does not answer the question,
the server then looks for the answer itself. If only is
specified, the server queries only the forwarders.

forwarders Specifies the IP addresses to be used for forwarding. The
default is the empty list (no forwarding).

Forwarding can also be configured on a per-domain basis, allowing for the
global forwarding options to be overridden in a variety of ways. You can set
particular domains to use different forwarders, or have a different forward only
/first behavior, or not to forward at all. See Section C.5.3.10 for more information.

C.5.3.6.3 Access Control Options Access to the server can be restricted based
on the IP address of the requesting system. See Section C.5.2 for details on how
to specify IP address lists.

Table C–9 describes the access control options.

Table C–9 Access Control Options

Option Description

allow-notify Specifies which hosts are allowed to notify slaves of a zone
change in addition to the zone masters. The allow-notify
option can also be specified in the zone statement; in this
case, it overrides the allow-notify option in the options
statement. The allow-notify option is meaningful only
for a slave zone. If this option is not specified, the default
is to process notify messages from only a zone’s master.

allow-query Specifies which hosts are allowed to ask ordinary questions.
The allow-query option can also be specified in the zone
statement; in this case, it overrides the allow-query
option in the options statement. If this option is not
specified, the default is to allow queries from all hosts.

allow-recursion Specifies which hosts are allowed to make recursive queries
through this server. If this option is not specified, the
default is to allow recursive queries from all hosts. Note
that disallowing recursive queries for a host does not
prevent the host from retrieving data that is already in the
server’s cache.

allow-v6-synthesis Specifies which hosts are to receive synthetic responses to
IPv6 queries, as described in Section C.5.3.6.12.

(continued on next page)

Configuring and Managing BIND Version 9 C–29

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–9 (Cont.) Access Control Options

Option Description

allow-transfer Specifies which hosts are allowed to receive zone transfers
from the server. The allow-transfer option can also be
specified in the zone statement; in this case, it overrides
the allow-transfer statement in the options statment.
If this option is not specified, the default is to allow
transfers from all hosts.

blackhole Specifies a list of addresses from which the server will not
accept queries or will not use to resolve a query. The server
will not respond queries from these addresses. The default
is NONE.

C.5.3.6.4 Interfaces Options The interfaces and ports from which the server
answers queries can be specified using the listen-on options. Table C–10
describes the listen-on options.

Table C–10 Interfaces Options

Option Description

listen-on Specifies the port for listening for queries sent using IPv4
addresses.

The listen-on option takes an optional port number
and an address_match_list. The server listens on all
interfaces allowed by the address match list. If a port is not
specified, port 53 is used.

Multiple listen-on statements are allowed. For example:

listen-on { 5.6.7.8; };
listen-on port 1234 { !1.2.3.4; 1.2/16; };

These statements enable the name server on port 53 for the
IP address 5.6.7.8, and on port 1234 of an address on the
machine in net 1.2 that is not 1.2.3.4.

If the listen-on option is not specified, the server listens
on port 53 on all interfaces.

(continued on next page)

C–30 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–10 (Cont.) Interfaces Options

Option Description

listen-on-v6 Specifies the ports on which the server listens for incoming
queries sent using IPv6. The server does not bind a
separate socket to each IPv6 interface address as it
does for IPv4. Instead, it always listens on the IPv6
wildcard address. Therefore, the values allowed for the
address_match_list argument to the listen-on-v6
option are:

• any

• none

Multiple listen-on-v6 options can be used to listen on
multiple ports. For example:

listen-on-v6 port 53 { any; };
listen-on-v6 port 1234 { any; };

To make the server not listen on any IPv6 address, specify
the following:

listen-on-v6 { none; };

If the listen-on-v6 option is not specified, the server
does not listen on any IPv6 address.

C.5.3.6.5 The Query Address Options If the server does not know the answer
to a question, it queries other name servers. The query address options allow you
to specify the address and port for these queries.

Table C–11 describes the query address options.

Table C–11 Query Address Options

Option Description

query-source Specifies the IPv4 address and port used for such queries.
If the address is a wildcard character or is omitted, a
wildcard IP address (INADDR_ANY) is used. If the port is
a wildcard character or is omitted, a random unprivileged
port is used. The default is:

query-source address * port *;

query-source-v6 Specifies the IPv6 address and port used for such queries.
The default is:

query-source-v6 address * port *

The address specified in the query-source option is used for both UDP and TCP
queries, but the port applies only to UDP queries. TCP queries always use a
random, unprivileged port.

Configuring and Managing BIND Version 9 C–31

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.3.6.6 Zone Transfer Options BIND includes mechanisms to facilitate zone
transfers and to limit the amount of load that transfers place on the system.
Table C–12 describes the zone transfer options.

Table C–12 Zone Transfer Options

Option Description

also-notify Defines a global list of IP addresses of name servers that
are also sent NOTIFY messages whenever a fresh copy
of the zone is loaded, in addition to the servers listed in
the zone’s NS records. This helps to ensure that copies
of the zones will quickly converge on stealth servers. If
an also-notify list is given in a zone statement, that
list overrides the also-notify options in the options
statement. When a zone notify statement is set to NO,
the IP addresses in the global also-notify list are not
sent NOTIFY messages for that zone. The default is the
empty list (no global notification list).

max-transfer-time-in Inbound zone transfers running longer than this many
minutes are terminated. The default is 120 minutes.

max-transfer-idle-in Inbound zone transfers making no progress in this many
minutes are terminated. The default is 60 minutes.

max-transfer-time-out Outbound zone transfers running longer than this many
minutes are terminated. The default is 120 minutes.

max-transfer-idle-out Outbound zone transfers making no progress in this many
minutes are terminated. The default is 60 minutes.

serial-query-rate Slave servers periodically query master servers to find out
whether zone serial numbers have changed. Each such
query uses a minute amount of the slave server’s network
bandwidth. To limit the amount of bandwidth used, BIND
9 limits the rate at which queries are sent. The value of
the serial-query-rate option is the maximum number
of queries sent per second. The default is 20.

serial-queries In BIND 8, this option set the maximum number of
concurrent serial number queries allowed to be outstanding
at any given time. BIND 9 does not limit the number
of outstanding serial queries and ignores the serial-
queries option. Instead, it limits the rate at which the
queries are sent as defined by the serial-query-rate
option.

transfer-format Specifies whether zone transfers are sent using the
one-answer format or the many-answers format. The
transfer-format option is used on the master server to
determine which format it sends. When set to one-answer,
it uses one DNS message per resource record transferred.
When set to many-answers, it packs as many resource
records as possible into a message. many-answers is more
efficient, but it is supported only by relatively new slave
servers, such as BIND Version 9, BIND Version 8, and later
versions of BIND Version 4. The default is many-answers.

The transfer-format option can be overridden on a
per-server basis by using the server statement.

(continued on next page)

C–32 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–12 (Cont.) Zone Transfer Options

Option Description

transfers-in Specifies the maximum number of inbound zone transfers
that can be running concurrently. The default value is 10.
Increasing the transfers-in value might speed up the
convergence of slave zones, but it also might increase the
load on the local system.

transfers-out Specifies the maximum number of outbound zone transfers
that can be running concurrently. Zone transfer requests in
excess of the limit are refused. The default value is 10.

transfers-per-ns Specifies the maximum number of inbound zone transfers
that can be concurrently transferring from a given remote
name server. The default value is 2. Increasing the value
of the transfers-per-ns option might speed up the
convergence of slave zones, but it also might increase
the load on the remote name server. This option can be
overridden on a per-server basis by using the transfers
phrase of the server statement.

transfer-source Determines which local address is bound to IPv4 TCP
connections used to fetch zones transferred inbound by the
server. It also determines the source IPv4 address and,
optionally, the UDP port used for the refresh queries and
forwarded dynamic updates. If not set, this option defaults
to a system-controlled value, which is usually the address
of the interface closest to the remote end. This address
must appear in the remote end’s allow-transfer option
for the zone being transferred, if one is specified. This
statement sets the transfer source for all zones, but it can
be overridden on a per-view or per-zone basis by including
a transfer-source statement within the view or zone
statement in the configuration file.

transfer-source-v6 Determines which local address is bound to IPv6 TCP
connections used to fetch zones transferred inbound by the
server. This is the same as the transfer-source option,
except zone transfers are performed using IPv6.

notify-source Determines which local source address and, optionally, UDP
port is used to send NOTIFY messages. This address must
appear in the slave server’s masters clause in the zone
statement or in an allow-notify clause.

This statement sets the notify-source for all zones, but
it can be overridden on a per-zone or per-view basis by
including a notify-source statement within the zone or
view statement in the configuration file.

notify-source-v6 Determines which local source address and, optionally,
UDP port is used to send NOTIFY messages. This option
is identical to notify-source, but it applies to NOTIFY
messages sent to IPv6 addresses.

C.5.3.6.7 Server Resource Limits Table C–13 describes options that limit the
server’s resource consumption and are enforced internally by the server rather
than by the operating system.

Configuring and Managing BIND Version 9 C–33

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–13 Server Resource Limit Options

Option Description

max-ixfr-log-size This option is obsolete; it is accepted and ignored.

recursive-clients Specifies the maximum number of simultaneous recursive
lookups the server performs on behalf of clients. The
default is 1000. Because each recursing client uses about
20 kilobytes of memory, the value of the recursive-
clients option might have to be decreased on hosts with
limited memory.

tcp-clients Specifies the maximum number of simultaneous client TCP
connections that the server accepts. The default is 100.

max-cache-size Specifies the maximum amount of memory (in bytes) to
use for the server’s cache. When the amount of data in
the cache reaches this limit, the server causes records to
expire prematurely so that the limit is not exceeded. In
a server with multiple views, the limit applies separately
to the cache of each view. The default is unlimited, which
means that records are purged from the cache only when
their TTL (time-to-live) values expire.

C.5.3.6.8 Periodic Task Intervals Options Table C–14 describes the options
that control the intervals for periodic tasks.

Table C–14 Periodic Task Intervals Options

Option Description

cleaning-interval The server removes expired resource records from the cache
every cleaning-interval minutes. The default is 60
minutes. If set to 0, periodic cleaning does not occur.

heartbeat-interval The server performs zone maintenance tasks for all dialup
zones whenever this interval expires. The default is 60
minutes.

The maximum value is one day (1440 minutes). If this
option is set to 0, zone maintenance for these zones does
not occur.

interface-interval The server scans the network interface list every
interface-interval minutes. The default is 60 minutes.

If this option is set to 0, interface scanning occurs only
when the configuration file is loaded. After the scan,
listeners are started on any new interfaces (provided they
are allowed by the listen-on configuration). Listeners on
interfaces that have gone away are cleaned up.

statistics-interval Name server statistics are logged every statistics-
interval minutes. The default is 60. If set to 0, statistics
are not logged.

This option is not yet implemented.

C.5.3.6.9 The TOPOLOGY Statement When the server chooses a name server
to query from a list of name servers, it prefers the one that is topologically closest
to itself. The topology statement takes an address match list and interprets it
in a special way. Each top-level list element is assigned a distance. Nonnegated
elements get a distance based on their position in the list; the closer the match
is to the start of the list, the shorter the distance between it and the server. A
negated match is assigned the maximum distance from the server. If there is

C–34 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

no match, the address gets a distance that is further than any nonnegated list
element and closer than any negated element. For example:

topology {
10/8;
!1.2.3/24;
{ 1.2/16; 3/8; };

};

The example configuration prefers servers on network 10 the most, followed by
hosts on network 1.2.0.0 (netmask 255.255.0.0) and network 3, with the exception
of hosts on network 1.2.3 (netmask 255.255.255.0), which is the least preferred.
The default topology is:

topology { localhost; localnets; };

Note

The topology statement is not implemented in BIND Version 9.

C.5.3.6.10 The SORTLIST Statement The response to a DNS query can consist
of multiple resource records (RRs) forming a resource record set (RRset). The
name server normally returns the RRs within the RRset in an indeterminate
order. (See Section C.5.3.6.11.)

The client resolver code should rearrange the RRs as appropriate, that is, by
using any addresses on the local network in preference to other addresses.
However, not all resolvers can do this or are correctly configured. When a client
is using a local server the sorting can be performed in the server, based on the
client’s address. This requires configuring only the name servers, not all the
clients.

The sortlist statement takes an address match list and interprets it even more
specifically than the topology statement does (see Section C.5.3.6.9). Each top-
level statement in the sortlist must itself be an explicit address match list with
one or two elements. The first element (which can be an IP address, an IP prefix,
an ACL name, or a nested address match list) of each top-level list is checked
against the source address of the query until a match is found.

Once the source address of the query is matched, if the top-level statement
contains only one element, the actual primitive element that matched the source
address is used to select the address in the response to move to the beginning of
the response. If the statement is a list of two elements, then the second element
is treated the same as the address match list in a topology statement. Each
top-level element is assigned a distance and the address in the response with the
minimum distance is moved to the beginning of the response.

Example 1
In the following example, any queries received from any of the addresses of the
host itself gets responses that prefer addresses on any of the locally connected
networks. The next-most-preferred are addresses on the 192.168.1/24 network,
and after that either the 192.168.2/24 or 192.168.3/24 network with no preference
shown between these two networks. Queries received from a host on the
192.168.1/24 network prefers other addresses on that network to the 192.168.2/24
and 192.168.3/24 networks. Queries received from a host on the 192.168.4/24 or
the 192.168.5/24 network prefer only other addresses on their directly connected
networks.

Configuring and Managing BIND Version 9 C–35

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

sortlist {
{ localhost; // IF the local host

{ localnets; // THEN first fit on the
192.168.1/24; // following nets
{ 192.168.2/24; 192.168.3/24; }; }; };

{ 192.168.1/24; // IF on class C 192.168.1
{ 192.168.1/24; // THEN use .1, or .2 or .3

{ 192.168.2/24; 192.168.3/24; }; }; };
{ 192.168.2/24; // IF on class C 192.168.2

{ 192.168.2/24; // THEN use .2, or .1 or .3
{ 192.168.1/24; 192.168.3/24; }; }; };

{ 192.168.3/24; // IF on class C 192.168.3
{ 192.168.3/24; // THEN use .3, or .1 or .2

{ 192.168.1/24; 192.168.2/24; }; }; };
{ { 192.168.4/24; 192.168.5/24; }; // if .4 or .5, prefer that net
};

};

Example 2
The following example illustrates reasonable behavior for the local host and for
hosts on directly connected networks. This behavior is similar to that of the
address sort in BIND Version 4. Responses sent to queries from the local host
favor any of the directly connected networks. Responses sent to queries from
any other hosts on a directly connected network prefer addresses on that same
network. Responses to other queries are not sorted.

sortlist {
{ localhost; localnets; };
{ localnets; };

};

C.5.3.6.11 RRset Ordering When multiple records are returned in an answer,
it might be useful to configure the order of the records placed into the response.
The rrset-order statement permits configuration of the ordering of the records
in a multiple-record response.

An order_spec is defined as follows:

[class class_name][type type_name][name "domain_name"]
order ordering

If no class is specified, the default is ANY. If no type is specified, the default is
ANY. If no name is specified, the default is wildcard.

The legal values for ordering are:

• fixed (Records are returned in the order they are defined in the zone file.)

• random (Records are returned in random order.)

• cyclic (Records are returned in round-robin order.)

For example:

rrset-order {
class IN type A name "host.example.com" order random;
order cyclic;

};

This example causes any responses for type A records in class IN that have
host.example.com as a suffix to always be returned in random order. All other
records are returned in cyclic order.

C–36 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

If multiple rrset-order statements appear, they are not combined; the last one
applies.

Note

The rrset-order statement is not yet implemented. BIND currently
supports only ‘‘random-cyclic’’ ordering, in which the server randomly
chooses a starting point within the RRset and returns the records in order
starting at that point, wrapping around the end of the RRset if necessary.

C.5.3.6.12 Synthetic IPv6 Responses Many existing stub resolvers support
IPv6 DNS lookups as defined in RFC 1886, using AAAA records for forward
lookups and nibble labels in the ip6.int domain for reverse lookups. They do not
support RFC 2874 lookups (using A6 records and binary labels in the ip6.arpa
domain).

To continue to use such stub resolvers, BIND Version 9 provides a way to
automatically convert RFC 1886 lookups into RFC 2874 lookups and to return the
results as ‘‘synthetic’’ AAAA and PTR records.

This feature is disabled by default and can be enabled on a per-client basis by
adding the following clause to the to the options or view statement:

allow-v6-synthesis { address_match_list };

When this feature is enabled, recursive AAAA queries cause the server first to try
an A6 lookup and then, if that fails, an AAAA lookup. Regardless of which one
succeeds, the results are returned as a set of synthetic AAAA records. Similarly,
recursive PTR queries in ip6.int cause a lookup in ip6.arpa using binary labels
and, if that fails, another lookup in ip6.int. The results are returned as a
synthetic PTR record in ip6.int.

The synthetic records have a TTL value of 0. DNSSEC validation of synthetic
responses is not supported; therefore, responses containing synthetic RRs do not
have the AD flag set.

C.5.3.6.13 Tuning Options Table C–15 describes the options provided for
tuning the BIND server.

Table C–15 Tuning Options

Options Description

lame-ttl Sets the number of seconds to cache a lame server
indication. A value of zero disables caching. (This is
not recommended.) The default is 600 (10 minutes); the
maximum value is 1800 (30 minutes).

max-ncache-ttl To reduce network traffic and increase performance, the
server stores negative answers. The max-ncache-ttl
option is used to set a maximum retention time for these
answers in the server in seconds. The default is 10800
seconds (3 hours). The value of max-ncache-ttl cannot
exceed 7 days and is silently truncated to 7 days if set to a
greater value.

(continued on next page)

Configuring and Managing BIND Version 9 C–37

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–15 (Cont.) Tuning Options

Options Description

max-cache-ttl Sets the maximum time for which the server caches
ordinary (positive) answers. The default is one week (7
days).

min-roots The minimum number of root servers that is required for a
request for the root servers to be accepted. The default is 2.

This option is not yet implemented.

sig-validity-interval Specifies the number of days into the future when
DNSSEC signatures automatically generated as a result
of dynamic updates will expire. (See Section C.5.7 for
more information.) The default is 30 days. The signature
inception time is unconditionally set to one hour before the
current time to allow for a limited amount of clock skew.

min-refresh-time
max-refresh-time
min-retry-time
max-retry-time

Controls the server’s behavior when refreshing a zone
(querying for SOA changes) or when retrying failed
transfers. Usually the SOA values for the zone are used,
but these values are set by the master, giving slave server
administrators little control over their contents.

These options allow the administrator to set a minimum
and maximum refresh and retry time on a per-zone, per-
view, or per-server basis. These options are valid for
master, slave, and stub zones, and they set the SOA refresh
and retry times to the specified values.

C.5.3.6.14 The Statistics File The statistics file generated by BIND 9 is similar,
but not identical, to that generated by BIND 8.

The statistics dump begins with the following line:

+++ Statistics Dump +++ (973798949)

The number in parentheses is a standard UNIX time stamp, measured as seconds
since January 1, 1970. Following that line are a series of lines containing a
counter type, the value of the counter, a zone name (optional), and a view name
(optional). The lines without view and zone listed are global statistics for the
entire server. Lines with a zone and view name apply to the given view and zone
(the view name is omitted for the default view). The statistics dump ends with
the following line:

--- Statistics Dump --- (973798949)

The time stamp is identical to the one in the beginning line.

Table C–16 describes the statistics counters that are maintained.

Table C–16 Statistics Counters

Counter Description

success The number of successful queries made to the server or
zone. A successful query is defined as query that returns a
NOERROR response other than a referral response.

referral The number of queries that resulted in referral responses.

(continued on next page)

C–38 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–16 (Cont.) Statistics Counters

Counter Description

nxrrset The number of queries that resulted in NOERROR
responses with no data.

nxdomain The number of queries that resulted in NXDOMAIN
responses.

recursion The number of queries that caused the server to perform
recursion in order to find the final answer.

failure The number of queries that resulted in a failure response
other than those described in the preceding counters.

C.5.3.7 The SERVER Statement
The server statement defines characteristics to be associated with a remote name
server. The server statement has the following syntax:

server ip_addr {
[bogus yes_or_no ;]
[provide-ixfr yes_or_no ;]
[request-ixfr yes_or_no ;]
[edns yes_or_no ;]
[transfers number ;]
[transfer-format (one-answer | many-answers) ;]]
[keys { string ; [string ; [...]] } ;]

};

The server statement can occur at the top level of the configuration file or inside
a view statement. If a view statement contains one or more server statements,
only those apply to the view, and any top-level ones are ignored. If a view
contains no server statements, any top-level server statements are used as
defaults.

Table C–17 describes the clauses in the server statement.

Table C–17 Server Statement Clauses

Clause Description

bogus If you discover that a remote server is giving out bad data,
marking it as bogus prevents further queries to it. The
default value of bogus is NO.

provide-ixfr Determines whether the local server, acting as master,
responds with an incremental zone transfer when the
given remote server, a slave, requests it. If this option
is set to YES, incremental transfer is provided whenever
possible. If set to NO, all transfers to the remote server
are nonincremental. If not set, the value of the provide-
ixfr option in the global options statement is used as a
default.

(continued on next page)

Configuring and Managing BIND Version 9 C–39

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–17 (Cont.) Server Statement Clauses

Clause Description

request-ixfr Determines whether the local server, acting as a slave,
requests incremental zone transfers from the given remote
server, a master. If this option is not set, the value of the
request-ixfr option in the global options statement is
used as a default.

IXFR requests to servers that do not support IXFR
automatically falls back to AXFR. Therefore, you do not
need to list manually which servers support IXFR and
which ones do not; the global default of YES should always
work. The purpose of the provide-ixfr and request-
ixfr clauses is to make it possible to disable the use of
IXFR, even when both master and slave claim to support it;
for example, if one of the servers crashes or corrupts data
when IXFR is used. See Section C.5.6 for more information.

edns Determines whether the local server attempts to use EDNS
when communicating with the remote server. The default
is YES.

transfer-format Specifies the zone transfer method:

• one-answer uses one DNS message per resource
record transferred.

• many-answers packs as many resource records as
possible into a message.

The many-answers mode is more efficient, but it is
understood only by BIND Version 9, BIND Version 8, and
later versions of BIND Version 4. If transfer-format is
not specified, the transfer format specified by the options
statement is used.

transfers Limits the number of concurrent inbound zone transfers
from the specified server. If no transfers clause is
specified, the limit is set according to the transfers-
per-ns option, as described in Table C–12.

keys Specifies a key_id defined by the key statement, to be
used for transaction security when talking to the remote
server. The key statement must come before the server
statement that references it. When a request is sent to the
remote server, a request signature is generated using the
key specified here and appended to the message. A request
originating from the remote server is not required to be
signed by this key.

Use only one key for each server.

C.5.3.8 The TRUSTED-KEYS Statement
The trusted-keys statement defines DNSSEC security roots. (DNSSEC is
described in Section C.2.6.)

A security root is defined when the public key for a nonauthoritative zone is
known but cannot be securely obtained through DNS, either because it is the DNS
root zone or because its parent zone is unsigned. Once a key has been configured
as a trusted key, it is treated as if it had been validated and proven secure.
The resolver attempts DNSSEC validation on all DNS data in subdomains of a
security root.

C–40 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

The trusted-keys statement can contain multiple key entries. The trusted-keys
statement has the following syntax:

trusted-keys {
string number number number string ;
[string number number number string ; [...]]

};

Each statement contains the key’s domain name, flags, protocol, algorithm, and
base-64 representation of the key data.

The base-64 representation of the key data must be enclosed in quotation marks.

C.5.3.9 The VIEW Statement
The view statement allows a name server to answer a DNS query differently,
depending on who is asking. It is particularly useful for implementing split DNS
setups without having to run multiple servers.

The view statement has the following syntax:

view view_name [class] {
match-clients { address_match_list } ;
match-destinations { address_match_list } ;
match-recursive-only { yes_or_no } ;
[view_option; ...]
[zone-statistics yes_or_no ;]
[zone_statement; ...]

};

The parameters to the view statement are:

• view-name, which specifies the name of this view.

• class, which specifies the class for this view. If no class is given, class IN is
assumed.

Note

All non-IN views must contain a hint zone. Only the IN class has
compiled-in default hints.

Table C–18 describes the clauses you can include in the view statement.

Table C–18 View Statement Clauses

Clause Description

match-clients
match-destinations

Each view statement defines a view of the DNS name
space that is seen by a subset of clients. A client matches
a view if its source IP address matches the address match
list of the view’s match-clients clause and its destination
IP address matches the address match list of the view’s
match-destinations clause. If they are not specified,
both match-clients and match-destinations default
to matching all addresses.

match-recursive-only Only recursive requests from matching clients match that
view.

(continued on next page)

Configuring and Managing BIND Version 9 C–41

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–18 (Cont.) View Statement Clauses

Clause Description

view-options Many of the options given in the options statement can
also be used in a view statement, and then apply only when
resolving queries with that view. When no view statement
value is given, the value in the options statement is used
as the default.

zone-statistics Specifies whether or not to generate the zone statistics file.
See Section C.5.3.6.14 for more information.

zone-statement Specifies the zone information for this view. See
Section C.5.3.10 for more information.

The order of the view statements is significant A client request is resolved in the
context of the first view that it matches. Zones defined within a view statement
are accessible only to clients that match the view.

By defining a zone of the same name in multiple views, different zone data can be
given to different clients; for example, internal and external clients in a split DNS
setup. Also, zone statement options can have default values specified in the view
statement; these view-specific defaults take precedence over those in the options
statement.

If there are no view statements in the configuration file, a default view that
matches any client is automatically created in class IN, and any zone statements
specified on the top level of the configuration file are considered to be part of this
default view.

Note

If any explicit view statements are present, all zone statements must
occur inside view statements.

The following example shows a typical split DNS setup implemented using view
statements:

C–42 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

view "internal" {
// This should match our internal networks.

match-clients { 10.0.0.0/8; };
// Provide recursive service to internal clients only.

recursion yes;
// Provide a complete view of the example.com zone
// including addresses of internal hosts.

zone "example.com" {
type master;
file "example-internal.db";

};
};
view "external" {

match-clients { any; };
// Refuse recursive service to external clients.

recursion no;
// Provide a restricted view of the example.com zone
// containing only publicly accessible hosts.

zone "example.com" {
type master;
file "example-external.db";

};
};

C.5.3.10 The ZONE Statement
The zone statement specifies options for a specific zone. Note that if view
statements are included in the configuration file, the zone statements must
be included in view statements.

The zone statement has the following syntax:

zone zone_name [class] [{
type (master | slave | hint | stub | forward) ;
[allow-notify { address_match_list } ;]
[allow-query { address_match_list } ;]
[allow-transfer { address_match_list } ;]
[allow-update { address_match_list } ;]
[update-policy { update_policy_rule [...] } ;]
[allow-update-forwarding { address_match_list } ;]
[also-notify { ip_addr [port ip_port] ; [ip_addr [port ip_port] ;

...] };]
[check-names (warn|fail|ignore) ;]
[dialup dialup_option ;]
[file string ;]
[forward (only|first) ;]
[forwarders { ip_addr [port ip_port] ; [ip_addr [port ip_port] ;

...] };]
[ixfr-base string ;]
[ixfr-tmp-file string ;]
[maintain-ixfr-base yes_or_no ;]
[masters [port ip_port] { ip_addr [port ip_port] [key key]; [...] }

;]
[max-ixfr-log-size number ;]
[max-transfer-idle-in number ;]
[max-transfer-idle-out number ;]
[max-transfer-time-in number ;]
[max-transfer-time-out number ;]
[notify yes_or_no | explicit ;]
[pubkey number number number string ;]
[transfer-source (ip4_addr | *) [port ip_port] ;]
[transfer-source-v6 (ip6_addr | *) [port ip_port] ;]
[notify-source (ip4_addr | *) [port ip_port] ;]
[notify-source-v6 (ip6_addr | *) [port ip_port] ;]
[zone-statistics yes_or_no ;]
[sig-validity-interval number ;]

Configuring and Managing BIND Version 9 C–43

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

[database string ;]
[min-refresh-time number ;]
[max-refresh-time number ;]
[min-retry-time number ;]
[max-retry-time number ;]

}];

C.5.3.10.1 Type of Zone Table C–19 describes the types of zones that you can
specify in the type clause.

Table C–19 Zone Types

Type Description

master The server that has a master copy of the data for the zone
and that can provide authoritative answers for it.

slave A replica of a master zone. The masters option specifies
the IP addresses of one or more master servers that this
slave can contact to update its copy of the zone information.

stub Similar to a slave zone, except that it replicates only the
NS records of a master zone instead of the entire zone.
Stub zones are not a standard part of the DNS; they are a
feature specific to the BIND implementation.

Stub zones can be used to eliminate the need for glue NS
record in a parent zone at the expense of maintaining a
stub zone entry and a set of name server addresses in
TCPIP$BIND.CONF. This usage is not recommended for
new configurations, and BIND Version 9 supports it only
in a limited way. In BIND Version 4 and BIND Version 8,
zone transfers of a parent zone included the NS records
from stub children of that zone. This made it possible
to configure child stubs only in the master server for the
parent zone. BIND Version 9 never mixes together zone
data from different zones in this way. Therefore, if a BIND
Version 9 master serving a parent zone has child stub
zones, all the slave servers for the parent zone also need to
have the same child stub zones.

Stub zones can also be used as a way of forcing the
resolution of a given domain to use a particular set of
authoritative servers. For example, the caching name
servers on a private network using RFC 2157 addressing
can be configured with stub zones for 10.in-addr.arpa
to use a set of internal name servers as the authoritative
servers for that domain.

(continued on next page)

C–44 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–19 (Cont.) Zone Types

Type Description

forward A forward zone allows you to configure forwarding on a
per-domain basis. A zone statement of type forward
can contain forward and forwarders statements, which
applies to queries within the domain specified by the zone
name. If no forwarders statement is present or if an
empty list for forwarders is specified, then forwarding is not
done for the domain, thereby canceling the effects of any
forwarders in the options statement.

If you want to use this type of zone to change the behavior
of the global forward option (using the first value to
specify the zone to which to forward first, or the only value
to specify forwarding to this zone only), and you want to use
the same servers that are set globally, you need to respecify
the global forwarders.

hint The initial set of root name servers is specified using a hint
zone. When the server starts up, it uses the root hints to
find a root name server and to get the most recent list of
root name servers. If no hint zone is specified for class IN,
the server uses a default set of root servers hints. Classes
other than IN have no built-in defaults hints.

C.5.3.10.2 The Zone Class The zone name can optionally be followed by a
class. If the class is not specified, class IN (for Internet) is assumed. This is
correct for the vast majority of cases.

The hesiod class is named for an information service from MIT’s Project Athena.
It is used to share information about various systems databases, such as users,
groups, printers, and so on. The keyword HS is a synonym for hesiod.

Another MIT development is CHAOSnet, a LAN protocol created in the mid-1970s.
Zone data for CHAOSnet can be specified with the CH class.

C.5.3.10.3 Zone Options Table C–20 describes the options you can include in
the zone statement.

Table C–20 Zone Options

Option Description

allow-notify See the description of allow-notify in Section C.5.3.6.3.

allow-query See the description of allow-query in Section C.5.3.6.3.

allow-transfer See the description of allow-transfer in
Section C.5.3.6.3.

allow-update Specifies which hosts are allowed to submit dynamic DNS
updates for master zones. The default is to deny updates
from all hosts.

update-policy Specifies an update policy, as described in Section C.5.7.2.

(continued on next page)

Configuring and Managing BIND Version 9 C–45

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–20 (Cont.) Zone Options

Option Description

allow-update-
forwarding

Specifies which hosts are allowed to submit dynamic
updates to slave zones to be forwarded to the master.
The default is NONE, which means that update forwarding
is not performed. To enable update forwarding, specify
ANY. Do not specify any other value; the responsibility for
update access control should rest with the master server,
not with the slaves.

Enabling the update forwarding feature on a slave server
can expose master servers relying on insecure IP-address
based access control to attacks; see Section C.2.2 for more
details.

also-notify Meaningful only if notify is active for this zone. The
set of machines that receives a NOTIFY message for this
zone is made up of all the listed name servers (other than
the primary master) for the zone, plus any IP addresses
specified with the also-notify statement. A port can
be specified with each also-notify address to send the
notify messages to a port other than the default of 53.
also-notify is not meaningful for stub zones. The default
is the empty list.

check-names This option was used in BIND 8 to restrict the character
set of domain names in master files and of DNS responses
received from the network. BIND 9 does not restrict the
character set of domain names and does not implement the
check-names option.

database Specifies the type of database to be used for storing the
zone data. The string following the database keyword is
interpreted as a list of space-delimited words. The first
word identifies the database type; any subsequent words
are passed as arguments to the database to be interpreted
in a way specific to the database type.

The default is rbt, the native database used by BIND 9.
This database does not take arguments.

dialup See the description of the dialup option in
Section C.5.3.6.1.

forward Meaningful only if the zone has a forwarders list. The
only keyword causes the lookup to fail after trying the
forwarders and getting no answer. The first keyword
allows attempts at normal lookups.

forwarders Overrides the list of global forwarders.

If the zone type is not forward, forwarding is not done for
the zone, and the global options are not used.

ixfr-base This option was used in BIND 8 to specify the name of the
transaction log (journal) file for dynamic update and IXFR.
BIND 9 ignores this option and constructs the name of the
journal file by appending _JNL to the name of the zone file.

ixfr-tmp-file An undocumented option in BIND 8. Ignored in BIND 9.

(continued on next page)

C–46 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Table C–20 (Cont.) Zone Options

Option Description

masters Specifies one or more IP addresses of master servers that
the slave contacts to update its copy of the zone.

By default, transfers are made from port 53 on the servers;
this can be changed for all servers by specifying a port
number before the list of IP addresses, or on a per-server
basis after the IP address. Authentication to the master
can also be done with per-server TSIG keys. If a file is
specified, then the replica is written to this file whenever
the zone is changed and is reloaded from this file on a
server restart. Use of a file is recommended because it
often speeds server startup and eliminates a waste of
bandwidth.

max-transfer-time-in See the description of max-transfer-time-in in
Section C.5.3.6.6.

max-transfer-idle-in See the description of max-transfer-idle-in in
Section C.5.3.6.6.

max-transfer-time-out See the description of max-transfer-time-out in
Section C.5.3.6.6.

max-transfer-idle-out See the description of max-transfer-idle-out in
Section C.5.3.6.6.

notify See the description of notify in Section C.5.3.6.

pubkey In BIND Version 8, this option was used for specifying a
public zone key for verification of signatures in DNSSEC-
signed zones when they are loaded from disk. BIND
Version 9 does not verify signatures on loading and ignores
the option.

zone-statistics If YES, the server keeps statistical information for this
zone, which can be dumped to the statistics file defined in
the server options. See Section C.5.3.6.

sig-validity-interval See the description of sig-validity-interval in
Section C.5.3.6.13.

transfer-source See the description of transfer-source in
Section C.5.3.6.6.

transfer-source-v6 See the description of transfer-source-v6 in
Section C.5.3.6.6.

notify-source See the description of notify-source in Section C.5.3.6.6.

notify-source-v6 See the description of notify-source-v6 in
Section C.5.3.6.6.

min-refresh-time
max-refresh-time
min-retry-time
max-retry-time

See the descriptions of these options in Section C.5.3.6.13.

C.5.4 IPv6 Support in BIND Version 9
BIND supports all forms of IPv6 name-to-address and address-to-name lookups.
It also uses IPv6 addresses to make queries when running on an IPv6-capable
system.

The use of AAAA records is recommended because A6 records have been moved
to experimental status. Like most stub resolvers, the resolver in TCP/IP Services
supports only AAAA lookups because of the difficulty of following A6 chains.

Configuring and Managing BIND Version 9 C–47

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

For IPv6 lookups, the use of the nibble format used in the ip6.int domain is
recommended because the bitstring format used in the ip6.arpa domain has been
moved to experimental status. For more information about A6 and the bitstring
format, refer to RFC 2874.

C.5.4.1 Address Lookups Using AAAA Records
The AAAA record is a parallel to the IPv4 A record. It specifies the entire address
in a single record. For example:

$ORIGIN example.com.
host 3600 IN AAAA 3ffe:8050:201:1860:42::1

C.5.4.2 Address-to-Name Lookups Using Nibble Format
As in IPv4, when looking up an address in nibble format, the address components
are simply reversed and ip6.int. is appended to the resulting name. For
example, the following would provide reverse name lookup for a host with address
3ffe:8050:201:1860:42::1:

$ORIGIN 0.6.8.1.1.0.2.0.0.5.0.8.e.f.f.3.ip6.int.
1.0.0.0.0.0.0.0.0.0.0.0.2.4.0.0 14400 IN PTR host.example.com.

C.5.5 DNS Notify
DNS Notify allows master name servers to notify their slave servers of changes to
a zone’s data. In response to a NOTIFY message from a master server, the slave
checks to see whether its version of the zone is the current version. If it is not,
the slave initiates a transfer. For more information, see the description of the
notify option in Table C–7.

C.5.6 Incremental Zone Transfers (IXFR)
The incremental zone transfer (IXFR) protocol is a way for slave servers to
transfer only changed data instead of having to transfer the entire zone. The
IXFR protocol is documented in RFC 1995.

When acting as a master, BIND Version 9 supports IXFR for those zones in which
the necessary change history information is available. These include master
zones maintained by dynamic update and slave zones whose data was obtained
by IXFR, but not manually maintained master zones and slave zones obtained by
performing a full zone transfer (AXFR). When acting as a slave, BIND attempts
to use IXFR unless it is explicitly disabled. For more information about disabling
IXFR, see the description of the request-ixfr clause of the server statement in
Section C.5.3.7.

C.5.7 Dynamic Updates
With dynamic updates, the BIND server can add, modify, or delete records or
RRsets in the master zone files.

Dynamic updating is enabled on a zone-by-zone basis by including an allow-
update or update-policy clause in the zone statement. Dynamic updating is
described in RFC 2136.

Updating of secure zones (zones using DNSSEC) is presented in RFC 3007.
SIG and NXT records affected by updates are automatically regenerated by the
server using an online zone key. Update authorization is based on transaction
signatures and on an explicit server policy.

C–48 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

C.5.7.1 The Journal File
All changes made to a zone using dynamic update are stored in the zone’s journal
file. This file is automatically created by the server when when the first dynamic
update takes place. The name of the journal file is formed by appending _JNL to
the name of the corresponding zone file. The journal file is in a binary format and
should not be edited manually.

The server also occasionally writes (or ‘‘dumps’’) the complete contents of the
updated zone to its zone file. This is not done immediately after each dynamic
update; that would be too slow when a large zone is updated frequently. Instead,
the dump is delayed by 15 minutes, allowing additional updates to take place.

When a server is restarted after a shutdown or failure, it replays the journal file
to incorporate into the zone any updates that took place after the last zone dump.
Changes that result from incoming incremental zone transfers are journaled in a
similar way.

The zone files of dynamic zones normally cannot be edited because they are not
guaranteed to contain the most recent dynamic changes—those are only in the
journal file. The only way to ensure that the zone file of a dynamic zone is up to
date is to use the rndc stop command.

If you have to make changes to a dynamic zone manually, use the following
procedure:

1. Flush any dynamic updates in _JNL files to the master zone files using the
following command:

$ rndc flush-updates

2. Shut down the server using the following command:

$ @SYS$STARTUP:TCPIP$BIND_SHUTDOWN.COM

3. Remove the zone’s _JNL file.

4. Edit the zone file.

5. Restart the server using the following command:

$ @ SYS$STARTUP:TCPIP_BIND_STARTUP.COM

Removing the _JNL file is necessary because the manual edits are not present in
the journal, rendering it inconsistent with the contents of the zone file.

C.5.7.2 Dynamic Update Policies
BIND Version 9 supports two methods of granting clients the right to perform
dynamic updates to a zone. You can configure them using either the allow-
update option or the update-policy option.

The allow-update clause works the same way as in previous versions of BIND. It
grants given clients the permission to update any record of any name in the zone.

The update-policy clause is new in BIND 9 and allows more fine-grained control
over what updates are allowed. A set of rules is specified, where each rule either
grants or denies permissions for one or more names to be updated by one or more
identities. The rules apply to master zones only.

Configuring and Managing BIND Version 9 C–49

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

The update-policy statement only examines the signer of a message; the source
address is not relevant. If the dynamic update request message is signed (that
is, it includes either a TSIG or SIG(0) record), the identity of the signer can be
determined.

If an allow-update statement appears when the update-policy statement is
present, a configuration error occurs.

Use the following format to define rules:

(grant | deny) identity nametype name [types]

Each rule grants or denies privileges. Once a message has successfully matched
a rule, the operation is immediately granted or denied and no further rules are
examined. A rule is matched when the signer matches the identity field, the
name matches the name field, and the type is specified in the type field. The rule
definition includes the following fields:

• grant or deny specifies whether to grant or deny privileges.

• identity specifies the signer of the message. Use a name or a wildcard in the
identity field.

• name specifies the name to be updated.

• nametype specifies one of the following:

name, which matches when the updated name is the same as the name in
the name field.

subdomain, which matches when the updated name is a subdomain of the
name in the name field (including the name itself).

wildcard, which matches an updated name that is a valid expansion of
the wildcard name in the name field.

self, which matches when the updated name is the same as the message
signer. The name field is ignored.

• types specifies the types of resource records.

If no types are specified, the rule matches all types except SIG, NS, SOA, and
NXT. Types can be specified by name, including ANY. ANY matches all types
except NXT, which can never be updated.

C.5.7.3 Creating Updates Manually
If the name server for the domain is configured to accept dynamic updates, you
can manually create updates to the domain database file using the nsupdate
utility.

Note

Zones that are under dynamic control using nsupdate or a DHCP server
should not be edited by hand. Manual edits could conflict with dynamic
updates and could cause loss of data.

You start the utility using the NSUPDATE command, which is defined when you
run the TCPIP$DEFINE_COMMANDS.COM procedure.

You can enter commands to the nsupdate utility interactively, or you can specify
a file that contains nsupdate commands.

C–50 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

Transaction signatures can be used to authenticate update requests, as described
in Section C.2.3. Signatures rely on a shared secret that should be known to
only the nsupdate utility and the name server. TSIG uses the HMAC-MD5
encryption algorithm. It is important to specify the encryption algorithm because
additional algorithms will be made available in the future. Use the appropriate
configuration options in the server and key statements in TCPIP$BIND.CONF
to ensure the name server associates the secret key and algorithm with the IP
address of the client application that uses TSIG authentication. The nsupdate
utility does not read the TCPIP$BIND.CONF file.

The format of the NSUPDATE command is:

NSUPDATE [-d] [-y keyname:secret | -k keyfile] [-v] [file-name]

In the NSUPDATE command line, you can include the following:

-d Specifies debug mode.

-y keyname:secret Generates a signature, where keyname specifies the name of
the key and secret is a base-64 encoded secret. This option
is not recommended because it displays the shared secret in
plain text. Instead, use the -k option.

-k keyfile Specifies a file (keyfile) that contains the shared secret. The
file name has the following format:

Kname.157-random_PRIVATE

For historical reasons, the file Kname.157-random_KEY
must also be present.

-v Specifies that nsupdate use the TCP protocol instead of
the UDP protocol. By default, nsupdate sends update
requests using UDP.

file-name Specifies a file that contains nsupdate commands.

If you do not specify the name of a command file, the NSUPDATE command
prompts for a command line. The following list describes the commands for the
nsupdate utility.

• server servername [port]

Sends all dynamic update requests to the specified name server. When no
name server is specified, the nsupdate utility sends updates to the master
server of the correct zone. The MNAME field of that zone’s SOA record
identifies the master server for that zone. port is the port number to which
the dynamic update requests are sent on the specified name server. If no port
number is specified, the default DNS port number of 53 is used.

• local {address} [port]

Sends all dynamic update requests using the local address. When no local
address is provided, the nsupdate utility sends updates using an address and
port chosen by the system. Specify port to make requests come from a specific
port. If no port number is specified, the system assigns one.

• zone {zonename}

Specifies that all updates are to be made to the specified zone. If no zone
command is provided, the nsupdate utility attempts to determine the correct
zone to update based on the rest of the input.

• key {keyname secret}

Specifies that all updates are to be TSIG signed, using the specified keyname
and key secret pair.

Configuring and Managing BIND Version 9 C–51

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

The key command overrides any key specified on the command line using the
-y or -k options.

• prereq nxdomain domain-name

Requires that no resource record of any type exist with the specified domain
name.

• prereq yxrset domain-name type [data]

Makes the presence of an RR set of the specified type owned by domain-name
a prerequisite to performing the update. This requires that a resource record
of the specified type, class, and domain name must exist. If class is omitted,
IN (Internet) is assumed.

• prereq nxrrset {domain-name} [class] {type}

Makes the nonexistence of an RRset of type owned by domain-name
a prerequisite to performing the update specified in successive update
commands. This requires that no resource record exist of the specified type,
class, and domain name. If class is omitted, IN (Internet) is assumed.

The data from each set of prerequisites of this form sharing a common type,
class, and domain name are combined to form a set of resource records. This
set of resource records must exactly match the set of resource records on the
zone at the given type, class, and domain name. The data is written in the
standard text representation of the resource record’s RDATA.

• prereq yxdomain domain-name

Makes the existence of the specified domain-name a prerequisite to
performing the update. This requires that the domain name has at least
one resource record of any type.

• update delete domain-name ttl [class] [type] [rdata]

Deletes any resource records with the specified domain name. If type and
data are provided, only matching resource records are removed. If class is
omitted, IN (Internet) is assumed. The ttl value is ignored and is included
only for compatibility.

• update add domain-name ttl [class] type data

Adds a new resource record with the specified ttl, class, and data to the zone.
The ttl value, the type, and the data must be included. The class is optional
and defaults to IN.

• show

Displays the current message, containing all of the prerequisites and updates
specified since the last send command.

• send

Sends the current message. This is equivalent to entering a blank line.

If you use a file to supply the updates, the data in the file must be in the following
format:

class section name ttl type data

In this format:

• class is any one of the following keywords:

update

C–52 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

zone

prereq

• section is any one of the following keywords:

add

delete

nxdomain

yxdomain

nxrrset

yxrrset

• name is the name of the entry being added.

• ttl is the time to live (in seconds) for this entry. After this time period, the
name server no longer serves the entry.

• type specifies the RR type (for example, A, CNAME, NS, MX, TXT).

• rdata specifies the data appropriate for the RR type being updated.

Lines beginning with a semicolon are comments and are ignored.

Examples

1. The following example shows how to supply a file (NSUPD.TXT) to the
nsupdate utility.

$ TYPE NSUPD.TXT
update delete www.nads.zn.
update add www.nads.zn. 60 CNAME ivy18.nads.zn

$ NSUPDATE NSUPD.TXT

2. The following example shows how the nsupdate utility is used interactively
to insert and delete resource records from the example.com zone. Notice that
the input contains an extra blank line so that a group of commands are sent
as one dynamic update request to the master name server for example.com.

$ NSUPDATE
> update delete oldhost.example.com A
> update add newhost.example.com 86400 A 172.16.1.1
>

Any A records for oldhost.example.com are deleted, and an A record for
newhost.example.com with IP address 172.16.1.1 is added. The newly added
record has a TTL value of 86400 seconds (one day).

3. The following example tells the BIND server to verify the
prerequisite condition that no resource records of any type exist for
nickname.example.com. If any records exist, the update request fails. If
no records with that name exist, a CNAME is added for it.

This prerequisite condition is an RFC restriction that has been relaxed to
allow for SIG, KEY, and NXT records to exist.

$ NSUPDATE
> prereq nxdomain nickname.example.com
> update add nickname.example.com CNAME somehost.example.com
>

Configuring and Managing BIND Version 9 C–53

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

After entering data in interactive mode, press Return (or Enter) on a line
with no data to complete the input. The nsupdate utility then processes all
update entries in one operation.

C.5.8 Configuring Cluster Failover and Redundancy
In the same OpenVMS Cluster, multiple BIND master servers can share a
common database, thereby providing redundancy and a failover mechanism when
one of the servers becomes unavailable.

To configure a DNS cluster failover and redundancy environment, perform the
following steps on each node participating in the cluster.

1. Run the TCPIP$CONFIG command procedure, and from the Servers menu
enable the BIND service.

2. Edit the BIND configuration file,
SYS$SPECIFIC:[TCPIP$BIND]TCPIP$BIND.CONF.

a. Configure the node as a master server.

b. Add or edit the options statement. The directory substatement should
be as follows:

options {
directory "TCPIP$BIND_COMMON";

};

TCPIP$BIND_COMMON is a logical name defined in the TCPIP$BIND_
COMMON_STARTUP.COM command procedure as a search list. The
search list consists of the SYS$SPECIFIC:[TCPIP$BIND] directory and
the common directory. In the next step, the setup command procedure
prompts you to specify the device on which the common directory is to
reside. If you do not specify a device, the default device and directory
is common_device:[TCPIP$BIND_COMMON], where common_device is
generated automatically in the following manner:

If the SYSUAF logical is defined, the common disk is determined from
its definition.

If the SYSUAF logical is not defined, the system uses
SYS$SYSDEVICE as the default device.

3. Run the SYS$MANAGER:TCPIP$BIND_CLUSTER_SETUP.COM command
procedure.

This procedure creates two other command procedures that manage the
startup and shutdown processes of the BIND component in a cluster
environment:

• SYS$MANAGER:TCPIP$BIND_COMMON_STARTUP.COM

• SYS$MANAGER:TCPIP$BIND_COMMON_SHUTDOWN.COM

These files define the BIND system logicals and accounting information. To
remove the failover setup from your system, delete these two files.

4. Place any database files to be shared in the common directory.

Note

Be careful to remove from SYS$SPECIFIC:[BIND] any databases that
are to be shared. Using the search list logical, BIND will find any

C–54 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.5 Configuring the BIND Server

SYS$SPECIFIC:[BIND] databases first and use those. This might not be
the result you want.

5. Start up BIND by entering the following command:

$ @SYS$MANAGER:TCPIP$BIND_STARTUP.COM

Caution

The use of dynamic updates in conjunction with a master BIND server
that is participating in cluster failover and redundancy is not supported
and might cause serious problems.

C.5.8.1 Changing the BIND Database
If multiple master BIND servers are running in a cluster, and a change is made
to the common BIND database, the database must be reloaded on each node
that is running the master BIND server. To reload the BIND database on every
node in the cluster where the master BIND server is running, enter the following
command:

TCPIP> SET NAME_SERVICE /INITIALIZE /CLUSTER=dev:[directory]

The /CLUSTER qualifier takes the directory specification of the common BIND
directory as a value. If you omit the device and directory, they default to:

common_device:[TCPIP$BIND_COMMON]

In this case, common_device is generated automatically in the following manner:

• If the SYSUAF logical is defined, the the common disk is determined from its
definition.

• If SYSUAF logical is not defined, the system uses SYS$SYSDEVICE as the
default device.

C.6 Populating the BIND Server Databases
To populate the BIND server database files, use one of the following methods:

• Convert an existing host database with the CONVERT/UNIX BIND
command.

• Manually edit the ZONE.DB files.

C.6.1 Using Existing Databases
To populate the BIND server database by copying information from the hosts
database and other database files, enter the CONVERT/UNIX BIND command.
This command:

• Creates a BIND server database (if needed).

• Extracts data from the hosts database. (The BIND server uses UNIX style
formatted files.)

• Extracts Mail Exchange (MX) information from the routes database.

• Populates the BIND server database with the host and MX records.

Configuring and Managing BIND Version 9 C–55

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

• Creates a forward translation file with the following characteristics:

It has address, canonical name, and MX entries.

If a file with the same name as the output file already exists, the serial
number from that file’s start-of-authority (SOA) entry increments and
becomes the serial number of the new output file.

If no previous version of the output file exists, the serial number for the
new file is 1.

When you specify forward translation (by omitting the /DOMAIN qualifier),
any host in the hosts database that is not qualified with a domain is included
in the target domain. For example, if the local domain is x.y.z., the
CONVERT/UNIX BIND command includes: a, b.x.y.z, c.x.y.z.z but does
not include d.x.y.h.

• Creates a reverse translation file if you specify /DOMAIN=(domain.name) and
the end of domain.name is IN-ADDR.ARPA.

The created reverse translation file has the following characteristics:

Only records applicable to the domain you specify are placed into the
output file.

The output file has domain name pointer entries.

If a file with the same name as the output file already exists, the serial
number from that file’s SOA entry increments and becomes the serial
number of the new output file.

If no previous version of the output file exists, the serial number for the
new file is 1.

The file selects hosts with IP addresses that match the partial IP address
from domain.name. For example, /DOMAIN=16.99.IN-ADDR.ARPA does
a reverse translation and selects hosts whose addresses begin with 99.16.

If the BIND server’s directory is SYS$SPECIFIC:[TCPIP$BIND] and
you have specified domain abc.def.com, the default output file is named
SYS$SPECIFIC:[TCPIP$BIND]ABC_DEF_COM.DB.

Compaq suggests that you do not change the default directory name. If you do,
the file is created in your current directory.

On the command line, specify the full OpenVMS file specification. Do not specify
a version number, and do not use wildcards. The following example uses the
domain ucx.ern.sea.com, creates a UCX_ERN_SEA_COM.DB file, creates a
208_20_9_IN-ADDR_ARPA.DB file, and checks the results by displaying directory
listings with the new file.

TCPIP> CONVERT/UNIX BIND /DOMAIN=UCX.ERN.SEA.COM
TCPIP> CONVERT/UNIX BIND /DOMAIN=208.20.9.IN-ADDR.ARPA

TCPIP> SET DEFAULT SYS$SPECIFIC:[TCPIP$BIND]
$ DIRECTORY

Directory SYS$SPECIFIC:[TCPIP$BIND]

127_0_0.DB;1 208_20_9_IN-ADDR_ARPA.DB;1
LOCALHOST.DB;1
LOGIN.COM;1 ROOT.HINT;1 TCPIP$BIND.CONF;1
TCPIP$BIND_CONF.TEMPLATE;1 TCPIP$BIND_RUN.LOG;4339
TCPIP$BIND_SERVER.PID;1 UCX_ERN_SEA_COM.DB;5

C–56 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

C.6.2 Manually Editing Zone Files
All name server zone files use the same type of records to define domain database
information. Compaq recommends that you review these resource records before
you edit any BIND files. Table C–21 describes the standard resource records
(RR).

Table C–21 Standard Resource Record Types

Record Type Description

SOA Start of authority. Marks the beginning of a zone’s data and defines
parameters that affect the entire zone.

NS Name server. Identifies a domain’s name server.

A Address. Maps a host name to an address.

PTR Pointer. Maps an address to a host name.

MX Mail Exchange. Identifies where to deliver mail for a given domain.

CNAME Canonical name. Defines an alias host name.

HINFO Host information. Describes a host’s hardware and operating system.

WKS Well-known service. Advertises network services.

The format of DNS records is as follows:

[name] [ttl] IN type data

In this format:

name Specifies the name of the domain object referenced by a
resource record. The string entered for name is the current
domain unless it ends with a dot. If the name field is blank,
the record applies to the domain object last named.

ttl Defines the length of time, in seconds, that the information
in this resource record should be kept in cache. Usually, the
time-to-live field is left blank, and the default ttl, set for the
entire zone SOA record, is used.

IN Identifies the record as an Internet DNS resource record.

type Identifies what kind of resource record this is. (See
Table C–21 for the record types you can specify.)

data Information specific to this type of resource record. For
example, in an A record, this is the field that contains the
actual IP address.

C.6.2.1 Setting TTLs
The time to live (TTL) of the RR field is a 32-bit integer that represents the
number of seconds that an RR can be cached before it should be discarded. The
following types of TTL values are used in a zone file:

• SOA

The last field in the SOA is the negative caching TTL. This controls how long
other servers cache no-such-domain (NXDOMAIN) responses from you.

The maximum time for negative caching is 3 hours (3h).

• $TTL

The $TTL directive at the top of the zone file (before the SOA) gives a default
TTL for every RR without a specific TTL set.

Configuring and Managing BIND Version 9 C–57

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

• RR TTLs

Each RR can have a TTL as the second field in the RR, which controls how
long other servers can cache it.

All of these TTLs default to units of seconds, though units can be explicitly
specified (for example, 1h30m for 1 hour and 30 minutes).

C.6.2.2 Zone File Directives
While the master file format itself is class independent, all records in a master
file must be of the same class. The master file directives are described in the
following list:

• $ORIGIN domain-name [comment]

Sets the domain name that is appended to any unqualified records. When a
zone is first read, an implicit $ORIGIN zone-name directive is applied.

If domain specified is not absolute, the current $ORIGIN is appended to it.

For example, the following are interpreted the same way:

$ORIGIN example.com
WWW CNAME MAIN-SERVER

And:

WWW.EXAMPLE.COM. CNAME MAIN-SERVER.EXAMPLE.COM.

• $INCLUDE filename [origin] [comment]

Reads and processes the specified file as if it were included into the file at
this point. If origin is specified, the file is processed with $ORIGIN set to that
value; otherwise, the current $ORIGIN is used.

Once the file has been read, the origin and the current domain name revert to
the values they had prior to the $INCLUDE.

• $TTL default-ttl [comment]

Sets the default time to live (TTL) for subsequent records with undefined
TTLs. Valid TTLs are in the range of 0—2147483647 seconds.

C.6.3 Saving Backup Copies of Zone Data
The name server saves backup copies of the zone data in
SYS$SPECIFIC:[TCPIP$BIND]. Do not delete these backup copies. When
the master server is down and the secondary server is started, the secondary
server cannot perform a zone transfer until the master server is up. However,
with backup copies, the secondary server has some data (though possibly out of
date) to perform its basic tasks.

C.6.4 Sample Database Files
The following sections provide sample BIND database files.

C.6.4.1 Local Loopback
In the LOCALHOST.DB file, the local host address is usually 127.0.0.1. The
following sample LOCALHOST.DB file shows the forward translation for the local
loopback interface:

C–58 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

;
; BIND data file for local loopback interface (forward
translation).
;
; Provided for Compaq TCP/IP Services for OpenVMS.
;
$ORIGIN localhost.
@ 1D IN SOA @ root (

42 ;Serial
3H ;Refresh
15M ;Retry
1W ;Expiry
1D) ;Minimum

;
1D IN NS @
1D IN A 127.0.0.1

The following sample 127_0_0.DB file shows the reverse translation for the local
loopback interface:

;
; BIND data file for local loopback interface (reverse
translation).
;
; Provided for Compaq TCP/IP Services for OpenVMS.
;
$ORIGIN 0.0.127.in-addr.arpa.
@ 1D IN SOA localhost.
root.localhost. (

42 ;Serial
3H ;Refresh
15M ;Retry
1W ;Expiry
1D) ;Minimum

;
1D IN NS localhost.

1 1D IN PTR localhost.

These local host databases provide forward and reverse translation for the widely
used LOCALHOST name. The LOCALHOST name is always associated with the
IP address 127.0.0.1 and is used for local loopback traffic.

C.6.4.2 Hint File
This file contains root name server hints. Any name server running on a host
without direct Internet connectivity should list the internal roots in its hint file.

The following sample shows a ROOT.HINT file. In earlier releases, this file was
called NAMED.CA:

; Data file for initial cache data for root domain servers.
;
; Provided for Compaq TCP/IP Services for OpenVMS.
;
; <<>> DiG 9.2.0 <<>>
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 11672
;; flags: qr rd ra; QUERY: 1, ANSWER: 13, AUTHORITY: 0, ADDITIONAL: 13

;; QUESTION SECTION:
;. IN NS

Configuring and Managing BIND Version 9 C–59

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

;; ANSWER SECTION:
. 417496 IN NS E.ROOT-SERVERS.NET.
. 417496 IN NS F.ROOT-SERVERS.NET.
. 417496 IN NS G.ROOT-SERVERS.NET.
. 417496 IN NS H.ROOT-SERVERS.NET.
. 417496 IN NS I.ROOT-SERVERS.NET.
. 417496 IN NS J.ROOT-SERVERS.NET.
. 417496 IN NS K.ROOT-SERVERS.NET.
. 417496 IN NS L.ROOT-SERVERS.NET.
. 417496 IN NS M.ROOT-SERVERS.NET.
. 417496 IN NS A.ROOT-SERVERS.NET.
. 417496 IN NS B.ROOT-SERVERS.NET.
. 417496 IN NS C.ROOT-SERVERS.NET.
. 417496 IN NS D.ROOT-SERVERS.NET.

;; ADDITIONAL SECTION:
A.ROOT-SERVERS.NET. 503896 IN A 198.41.0.4
B.ROOT-SERVERS.NET. 503896 IN A 128.9.0.107
C.ROOT-SERVERS.NET. 503896 IN A 192.33.4.12
D.ROOT-SERVERS.NET. 503896 IN A 128.8.10.90
E.ROOT-SERVERS.NET. 503896 IN A 192.203.230.10
F.ROOT-SERVERS.NET. 503896 IN A 192.5.5.241
G.ROOT-SERVERS.NET. 503896 IN A 192.112.36.4
H.ROOT-SERVERS.NET. 503896 IN A 128.63.2.53
I.ROOT-SERVERS.NET. 503896 IN A 192.36.148.17
J.ROOT-SERVERS.NET. 503896 IN A 198.41.0.10
K.ROOT-SERVERS.NET. 503896 IN A 193.0.14.129
L.ROOT-SERVERS.NET. 503896 IN A 198.32.64.12
M.ROOT-SERVERS.NET. 503896 IN A 202.12.27.33

;; Query time: 2144 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Wed Oct 17 12:03:16 2001
;; MSG SIZE rcvd: 436

This cache initialization file contains NS records that name root servers and A
records that provide the addresses of root servers.

To create a ROOT.HINT file:

1. Run TCPIP$CONFIG.

2. Select the Server Components menu.

3. Select the BIND server.

4. Enable the BIND server.

This procedure creates the ROOT.HINT file and places the file in the
SYS$SPECIFIC:[TCPIP$BIND] directory.

C.6.4.3 Forward Translation File
The forward translation file, domain_name.DB, stores host-name-to-address
mapping. For example, the database file ROBIN_BIRD_COM.DB is created for
the domain ROBIN.BIRD.COM.

The following example shows a domain_name.DB file:

C–60 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

$TTL 86400
$ORIGIN ucx.ern.sea.com.
@ IN SOA owl.ucx.ern.sea.com. pmaster.owl.ern.sea.com.
(

23 ; Serial
600 ; Refresh
300 ; Retry
172800 ; Expire
43200) ; Minimum

;
IN NS owl.ucx.ern.sea.com.
IN NS condor.ucx.ern.sea.com.

;
thrush IN A 9.20.208.53
condor IN A 9.20.208 or 90
birdy IN A 9.20.208.47

IN MX 10 birdy.ucx.ern.sea.com.
IN MX 100 inet-gw-1.pa.emu.com.
IN MX 100 mts-gw.pa.emu.com.
IN MX 200 crl.emu.com.
IN MX 300 nester.emu.com.

seagull IN A 9.20.208.30
IN MX 10 seagull.ucx.ern.sea.com.
IN MX 100 inet-gw-1.pa.emu.com.
IN MX 100 mts-gw.pa.emu.com.
IN MX 200 crl.emu.com.
IN MX 300 nester.emu.com.

owl IN A 9.20.208.72
IN MX 10 owl.ucx.ern.sea.com.
IN MX 100 inet-gw-1.pa.emu.com.
IN MX 100 mts-gw.pa.emu.com.
IN MX 200 crl.emu.com.
IN MX 300 nester.emu.com.

peacock IN A 9.20.208.73
IN MX 10 pultdown.ucx.ern.sea.com.
IN MX 100 inet-gw-1.pa.emu.com.
IN MX 100 mts-gw.pa.emu.com.
IN MX 200 crl.emu.com.
IN MX 300 nester.emu.com.

redwing IN A 9.20.208.79
IN MX 10 redwing.ucx.ern.sea.com.
IN MX 100 inet-gw-1.pa.emu.com.
IN MX 100 mts-gw.pa.emu.com.
IN MX 200 crl.emu.com.
IN MX 300 nester.emu.com.

robin IN A 9.20.208.47
IN A 9.20.208.30
IN A 9.20.208.72

This file is created only for the master server. All other servers obtain this
information from the master server. This file contains most of the domain
information and has the following characteristics:

• Begins with an SOA record and a few NS records that define the domain and
its servers.

• Maps host names to IP addresses.

• Contains A, MX, CNAME, and other records.

MX records identify the servers in a domain that are used for forwarding mail.
Use MX records and preference numbers to define the order in which mail servers
are used. The lower the preference number, the more desirable the server.

Configuring and Managing BIND Version 9 C–61

Configuring and Managing BIND Version 9
C.6 Populating the BIND Server Databases

C.6.4.4 Reverse Translation File
The reverse translation file, address.DB, stores address-to-host-name mapping
(reverse mapping) information. For example, for the same domain, a file with the
name 208_20_9_IN-ADDR_ARPA.DB is created.

The following example shows an address.DB file:

$TTL 86400
$ORIGIN 208.20.9.in-addr.arpa.
@ IN SOA owl.ucx.ern.sea.com. pmaster.owl.ucx.ern.sea.com.
(

1 ; Serial
600 ; Refresh
300 ; Retry
172800 ; Expire
43200) ; Minimum

;
IN NS owl.ucx.ern.sea.com.
IN NS condor.ucx.ern.sea.com.

;
53 IN PTR thrush.ucx.ern.sea.com.
10 IN PTR condor.ucx.ern.sea.com.
47 IN PTR birdy.ucx.ern.sea.com.
30 IN PTR seagull.ucx.ern.sea.com.
72 IN PTR owl.ucx.ern.sea.com.
73 IN PTR peacock.ucx.ern.sea.com.
79 IN PTR redwing.ucx.ern.sea.com.

PTR records predominate in this file because they are used to translate addresses
to host names.

C.7 Examining Name Server Statistics
The BIND server collects statistics that record server activity. To examine BIND
statistics, use one of the following commands:

• The TCP/IP management command SHOW NAME_SERVICE/STATISTICS

• The rndc stats command

Statistics are logged to the TCPIP$BIND.STATS file, located in
SYS$SPECIFIC:[TCPIP$BIND].

The following sample shows a statistics log:

+++ Statistics Dump +++ (1004986341)
success 17
referral 0
nxrrset 1
nxdomain 1
recursion 6
failure 0
--- Statistics Dump --- (1004986341)

The statistics dump begins with the line +++ Statistics Dump +++ (973798949).
The number in parentheses is a standard UNIX timestamp, measured as seconds
since January 1, 1970. Following that line are a series of lines containing a
counter type, the value of the counter, a zone name (optional), and a view name
(optional).

The lines without view and zone listed are global statistics for the entire server.
Lines with a zone and view name are for the given view and zone. (The view
name is omitted for the default view.)

C–62 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.7 Examining Name Server Statistics

The statistics dump ends with the line --- Statistics Dump --- (973798949)
The number in parentheses is identical to the number in the beginning line.

The following statistics counters are maintained:

• success

The number of successful queries made to the server or zone. A successful
query is defined as query that returns a NOERROR response other than a
referral response.

• referral

The number of queries that resulted in referral responses.

• nxrrset

The number of queries that resulted in NOERROR responses with no data.

• nxdomain

The number of queries that resulted in NXDOMAIN responses.

• recursion

The number of queries that caused the server to perform recursion in order to
find the final answer.

• failure

The number of queries that resulted in a failure response other than those
described in the previous counters.

C.8 Configuring BIND with the SET CONFIGURATION Command
The following sections describe how to set up BIND servers manually using the
TCP/IP management command SET CONFIGURATION BIND.

Note

This command creates a UCX Version 4.x configuration. If you set up your
BIND name server using this command, you must also use the TCP/IP
management command CONVERT/CONFIGURATION BIND command
to convert the databases to the BIND Version 9 format. If you omit this
step, your changes will not take effect.

C.8.1 Setting Up a Master Name Server
To instruct the master name server to read the appropriate database files
using the information in TCPIP$CONFIGURATION.DAT, use the SET
CONFIGURATION BIND command. Use the SHOW CONFIGURATION
BIND command to display BIND information from the configuration database
(TCPIP$CONFIGURATION.DAT).

The following commands tell the name server to read the appropriate files:

TCPIP> SET CONFIGURATION BIND /CACHE

TCPIP> SET CONFIGURATION BIND -
_TCPIP> /PRIMARY=(DOMAIN:0.0.127.IN-ADDR.ARPA, FILE:NAMED.LOCAL)

TCPIP> SET CONFIGURATION BIND -
_TCPIP> /PRIMARY=(DOMAIN:UCX.ERN.SEA.COM, FILE:UCX_ERN_SEA_COM.DB)

Configuring and Managing BIND Version 9 C–63

Configuring and Managing BIND Version 9
C.8 Configuring BIND with the SET CONFIGURATION Command

TCPIP> SET CONFIGURATION BIND -
_TCPIP> /PRIMARY=(DOMAIN:208.20.9.IN-ADDR.ARPA, FILE:208_20_9_IN-ADDR_ARPA.DB)

To view these settings, use the SHOW CONFIGURATION BIND command.

C.8.2 Setting Up a Secondary (Slave) Name Server
You can configure a secondary server to populate itself by copying the DNS
database files from the master server.

To configure a secondary server, enter the following commands:

TCPIP> SET CONFIGURATION BIND /CACHE

TCPIP> SET CONFIGURATION BIND -
_TCPIP> /PRIMARY=(DOMAIN:0.0.127.IN-ADDR.ARPA, FILE:NAMED.LOCAL)

TCPIP> SET CONFIGURATION BIND -
_TCPIP> /SECONDARY=(DOMAIN:UCX.ERN.SEA.COM, -
_TCPIP> FILE:UCX_ERN_SEA_COM.DB,HOST:OWL)

TCPIP> SET CONFIGURATION BIND -
_TCPIP> /SECONDARY=(DOMAIN:208.20.9.IN-ADDR.ARPA, -
_TCPIP> FILE:208_20_9_IN-ADDR_ARPA.DB, -
_TCPIP> HOST:OWL.UCX.ERN.SEA.COM)

C.8.3 Setting Up a Cache-Only Server
To configure a cache-only server, enter the following command:

TCPIP> SET CONFIGURATION BIND /CACHE

This command points the server to the file NAMED.CA.

C.8.4 Setting Up a Forwarder Name Server
To configure a forwarder server, enter the following command:

TCPIP> SET CONFIGURATION BIND /FORWARDERS=(HOST:host)

In this command, host specifies the forwarding server.

Note

You cannot set up a server to be both a forwarder and a caching server.

C.9 Configuring the BIND Resolver
Your host uses the BIND resolver to obtain information from a name server.
When a request for name translation arrives, the resolver first searches the
local host database for the host information. If the information is not found, the
resolver then queries the BIND name server for host information.

Note

The BIND resolver is based on the BIND Version 8 implementation of
DNS.

C–64 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.9 Configuring the BIND Resolver

The resolver is automatically configured by TCPIP$CONFIG when you choose
Option 1 --- Core Environment. To display your resolver configuration, enter the
following TCP/IP management command:

TCPIP> SHOW NAME_SERVICE

TCP/IP Services displays the following data:

BIND Resolver Parameters

Local domain: ucx.ern.sea.com

System

State: Started, Enabled

Transport: UDP
Domain: ucx.ern.sea.com
Retry: 4
Timeout: 4
Servers: lark
Path: ucx.ern.sea.com,ern.sea.com,sea.com

Process

State: Enabled

Transport:
Domain:
Retry:
Timeout:
Servers:
Path:

Here, host LARK in the current domain is the default name server. To add
records to the local hosts database, use the SET HOST command. For example,
the following command adds host birdy to the local hosts database. (For more
information about using SET commands, see the Compaq TCP/IP Services for
OpenVMS Management Command Reference manual.)

TCPIP> SET HOST birdy /ADDRESS=9.20.208.47

To delete server entries from the configuration database or to add new entries,
enter the following command:

TCPIP> SET NAME_SERVICE /NOSERVER=LARK /SYSTEM

This command modifies the volatile database. To the the change to the permanent
database, enter the SET CONFIGURATION NAME_SERVICE command.

To view the results, enter the SHOW CONFIGURATION NAME_SERVICE
command.

C.9.1 Changing the Default Configuration
To add a new server and enable the BIND resolver, enter the following command:

TCPIP> SET NAME_SERVICE /SERVER=host /ENABLE /SYSTEM

For host, specify the host name or IP address of the BIND server or servers that
the BIND resolver is to query.

To specify multiple hosts, list them by request preference. The BIND resolver
sends the first lookup request to the first host on the list.

Configuring and Managing BIND Version 9 C–65

Configuring and Managing BIND Version 9
C.9 Configuring the BIND Resolver

If you define a server list and then add a new server with the
SET NAME_SERVICE /SERVER command, the new server is added to the
end of the list.

SET commands affect the volatile database. To save your changes to the
permanent database, use the SET CONFIGURATION commands. The changes
you make with the SET CONFIGURATION commands take effect the next time
the software starts up. For example:

TCPIP> SET CONFIGURATION NAME_SERVICE /SERVER=host /ENABLE

TCPIP> SHOW CONFIGURATION NAME_SERVICE

BIND Resolver Configuration

Transport: UDP
Domain: ucx.ern.sea.com
Retry: 4
Timeout: 4
Servers: 9.20.208.47, 9.20.208.53
Path: No values defined

C.9.2 Examples
The following command defines hosts PARROT, SORA, and JACANA as
systemwide BIND servers and enables the BIND resolver:

PARROT> TCPIP
TCPIP> SET NAME_SERVICE /SERVER=(PARROT,SORA,JACANA) /SYSTEM /ENABLE

The following example defines, for the current login session, host OSPREY as
the BIND server. As a result, the servers that are defined systemwide are not
queried.

TCPIP> SET NAME_SERVICE /SERVER=OSPREY

C.9.3 Resolver Default Search Behavior
By default, if no search list is defined and the host name as you typed it has no
dot (.) in the name, the BIND resolver performs a lookup using the following
forms of the host name (in this order):

1. The host name, with the default domain appended

2. Just the host name

For example, suppose you enter the following command:

TCPIP> SHOW HOST OWL

Assuming that the default domain is ucx.ern.sea.com, the resolver performs
lookups as follows:

1. On the host name and domain owl.ucx.ern.sea.com.

2. If that lookup was unsuccessful, the resolver searches for host owl.

This behavior is different than the resolver lookup behavior in previous releases
(UCX BIND Version 4.x.). The following section provides more information.

C–66 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.9 Configuring the BIND Resolver

C.9.4 Resolver Search Behavior in Earlier Releases
In previous releases, the resolver performed lookups as follows:

1. Appended the default domain to the host name and performed a lookup.

2. If the previous lookup failed, the resolver removed the leftmost label from the
default domain name, appended the result to the host name and performed
the lookup.

3. If that lookup failed, the resolver again removed the leftmost label from the
default domain name, appended the result to the host name, and performed
the lookup.

For each unsuccessful lookup, this procedure was repeated until only two labels
remained in the resulting domain name.

If all these attempts failed, the resolver tried just the host name as typed (as long
as it contained at least one dot).

For example, suppose you entered the following command:

TCPIP> SHOW HOST OWL

Assuming the default domain was ucx.ern.sea.com, the resolver performed
lookups as follows:

1. On owl.ucx.ern.sea.com.

2. If the previous lookup was unsuccessful, the resolver searched for
owl.ern.sea.com.

3. If that lookup was unsuccessful, the resolver searched for owl.sea.com.

4. Finally, if the preceding lookup was unsuccessful, the resolver searched for
owl.

C.9.5 Setting the Resolver’s Domain Search List
The search list is provided to make entering lookup commands easier by not
requiring you to type fully qualified domain names. The search list consists of
domain names that the resolver uses when performing lookups. By default,
the search list consists of only the default domain, which is stored in the
TCPIP$CONFIGURATION.DAT file.

You can change the elements in the search list by entering the
SET NAME_SERVICE command, as shown in the following example:

TCPIP> SET NAME_SERVICE /PATH=(ucx.ern.sea.com,dux.sea.com,mux.ern.sea.com)/SYSTEM

For example, suppose you enter the following command:

TCPIP> SHOW HOST CANARY

The resolver performs lookups as follows:

1. On canary.ucx.ern.sea.com.

2. If the previous lookup was unsuccessful, the resolver searches for
canary.dux.sea.com.

3. If that lookup was unsuccessful, the resolver searches for
canary.mux.ern.sea.com.

4. If that lookup was unsuccessful, the resolver searches for canary.

Configuring and Managing BIND Version 9 C–67

Configuring and Managing BIND Version 9
C.9 Configuring the BIND Resolver

In the following output of the SHOW NAME_SERVICE command, the PATH:
label shows the search list information entered with the SET NAME_SERVICE
/PATH command. This command displays systemwide information and process-
specific information (if process-specific information is set).

TCPIP> SHOW NAME_SERVICE

BIND Resolver Parameters

Local domain: ucx.ern.sea.com

System

State: Started, Enabled

Transport: UDP
Domain: ucx.ern.sea.com
Retry: 4
Timeout: 4
Servers: ucx, lemng, 16.99.0.10
Path: ucx.ern.sea.com, dux.ern.sea.com, mux.ern.sea.com

Process

State: Enabled
Transport:
Domain:
Retry:
Timeout:
Servers:
Path:
$

Any additions you make are appended to the end of the search list.

To remove an element from the search list, enter the following command:

TCPIP> SET NAME_SERVICE /NOPATH=dux.ern.sea.com /SYSTEM

Note

When you run TCPIP$CONFIG.COM after upgrading from UCX
to TCP/IP Services for OpenVMS, the system creates a domain
search list that is consistent with the UCX default lookup behavior.
TCPIP$CONFIG.COM uses the default domain to create a
search list consisting of each parent domain. For example, if the
default domain is ucx.ern.sea.com, the resulting search list is
ucx.ern.sea.com,ern.sea.com,sea.com. You can modify the current
search list by using the SET CONFIGURATION NAME_SERVER /PATH
command.

C.10 BIND Server Administrative Tools
The following administrative tools play an integral part in the management of a
server.

• The bind_checkconf utility checks the syntax of the BIND server
configuration file.

• The bind_checkzone utility checks a zone file for syntax and consistency.

• The dnssec_keygen generates keys for DNSSEC (secure DNS) and TSIG
(transaction signatures).

C–68 Configuring and Managing BIND Version 9

Configuring and Managing BIND Version 9
C.10 BIND Server Administrative Tools

• The dnssec_makekeyset utility generates a key set.

• The dnssec_signkey utility signs a key set.

• The dnssec_signzone utility signs a zone.

• The rndc utility allows you to control the operation of a name server.

• The rndc_confgen utility generates configuration files for the rndc utility.

To use these utilities, you must have system management privileges. Run the
TCPIP$DEFINE_COMMANDS.COM procedure to define the commands described
in the following reference sections.

Configuring and Managing BIND Version 9 C–69

bind_checkconf

bind_checkconf
Checks the syntax of a BIND server configuration file.

Format

bind_checkconf [-v] [-t directory] filename

Description

The bind_checkconf utility checks the syntax, but not the semantics, of a BIND
server configuration file.

Options

-t directory
Looks for filename in the specified directory. The default directory is
SYS$SPECIFIC:[TCPIP$BIND].

-v
Displays only the version number of the bind_checkconf utility and exits.

filename
Specifies the name of the configuration file to be checked. The default file is
SYS$SPECIFIC:[TCPIP$BIND]TCPIP$BIND.CONF.

C–70 Configuring and Managing BIND Version 9

bind_checkzone

bind_checkzone
Checks a zone file for syntax and consistency.

Format

bind_checkzone [-d] [-q] [-v] [-c class] [-t directory] zonename filename

Description

The bind_checkzone utility checks the syntax and integrity of a zone file. It
performs the same checks as the BIND server does when it loads a zone. This
makes bind_checkzone useful for checking zone files before configuring them into
a name server.

Options

-d
Enables debugging mode.

-q
Enables quiet mode (exit code only).

-v
Print the version number of bind_checkzone and exits.

-c class
Specifies the class of the zone. If not specified, the default is IN.

-t directory
Looks for the zone in the specified directory. The default directory is
SYS$SYSPECIFIC:[TCPIP$BIND].

zonename
Specifies the name of the zone being checked.

filename
Specifies the name of the zone file.

Configuring and Managing BIND Version 9 C–71

dnssec_keygen

dnssec_keygen
Generates keys for DNSSEC.

Format

dnssec_keygen -a algorithm -b keysize -n nametype [-c class] [-e] [-g generator] [-h]
[-p protocol] [-r randomfile] [-t type] [-v level] name

Description

The dnssec_keygen generates keys for DNSSEC, as defined in RFC 2535. It can
also generate keys for use with TSIG (Transaction Signatures), as defined in RFC
2845.

Parameters

-a algorithm
Selects the cryptographic algorithm. The value of algorithm must be one of the
following:

• RSAMD5

• RSA

• DSA

• DH (Diffie-Hellman)

• HMAC-MD5

These values are not case sensitive.

-b keysize
Specifies the number of bits in the key. The choice of key size depends on the
algorithm used:

• RSA keys must be between 512 and 4096 bits.

• Diffie-Hellman keys must be between 128 and 4096 bits.

• DSA keys must be between 512 and 1024 bits and must be an exact multiple
of 64.

• HMAC-MD5 keys must be between 1 and 512 bits.

-n nametype
Specifies the owner type of the key. The value of nametype must one of the
following:

• ZONE (for a DNSSEC zone key)

• HOST or ENTITY (for a key associated with a host)

• USER (for a key associated with a user)

These values are not case sensitive.

name
Specifies the name of the domain.

C–72 Configuring and Managing BIND Version 9

dnssec_keygen

Options

-c class
Indicates that the DNS record containing the key should have the specified class.
If not specified, class IN is used.

-e
If generating an RSA key, specifies the use of a large exponent.

-g generator
If generating a Diffie-Hellman key, specifies the generator. Allowed values for
generator are 2 and 5. If no generator is specified, a known prime from RFC 2539
is used, if possible; otherwise the default is 2.

-h
Displays a short summary of the options and arguments to the dnssec_keygen
command.

-p protocol
Sets the protocol value for the generated key. The value of protocol is a number
between 0 and 255. For keys of type USER, the default is 2 (e-mail). For all other
key types, the default is 3 (DNSSEC). Other possible values for this argument are
listed in RFC 2535 and its successors.

-r randomfile
Specifies the source of randomness. The default source of randomness is keyboard
input. randomfile specifies the name of a file containing random data to be used
instead of the default. The special value keyboard indicates that keyboard input
should be used.

Note

When you use the keyboard to generate random data, you must input a
large amount of data. Input requiring hundreds of lines of data is not
unusual for some algorithms. The string ‘‘stop typing’’ appears when
enough data has been input.

-s strength
Specifies the strength value of the key. The value of strength is a number between
0 and 15. This option is currently not used.

-t type
Indicates the use of the key. The type must be one of the following:

• AUTHCONF (authenticate and encrypt data)

• NOAUTHCONF (do not authenticate and do not encrypt data)

• NOAUTH (do not authenticate data)

• NOCONF (do not encrypt data)

The default is AUTHCONF.

-v level
Sets the debugging level.

Configuring and Managing BIND Version 9 C–73

dnssec_keygen

Generated Keys

When dnssec_keygen completes successfully, it displays a string of the following
form to standard output:

Knnnn.aaa-iiiii

This is an identification string for the key it has generated. These strings can be
used as arguments to the dnssec_makekeyset utility. The string is interpreted as
follows:

• nnnn is the key name.

• aaa is the numeric representation of the algorithm.

• iiiii is the key identifier (or footprint).

dnssec_keygen creates two files, with names based on the printed string. The
file Knnnn.aaa-iiiii_KEY contains the public key, and Knnnn.aaa-iiiii_PRIVATE
contains the private key.

The _KEY file contains a DNS KEY record that can be inserted into a zone file
(either directly, or using an $INCLUDE statement).

The _PRIVATE file contains algorithm-specific fields. For security reasons, this
file does not have general read permission.

Both _KEY and _PRIVATE files are generated for symmetric encryption
algorithms such as HMAC-MD5, even though the public and private key are
equivalent.

Examples

To generate a 768-bit DSA key for the domain example.com, enter the
following command:

1. $ dnssec_keygen -a DSA -b 768 -n ZONE example.com

This command displays a string of the form:

Kexample_com.003-26160

In this example, dnssec_keygen creates the files KEXAMPLE_COM.003-
26160_KEY and KEXAMPLE_COM.003-26160_PRIVATE.

C–74 Configuring and Managing BIND Version 9

dnssec_makekeyset

dnssec_makekeyset
Generates signed key sets for DNSSEC.

Format

dnssec_makekeyset [-a] [-s start-time] [-e end-time] [-h] [-p] [-r randomfile] [-t ttl] [-v level] key...

Description

The dnssec_makekeyset utility generates a key set from one or more keys created
by the dnssec_keygen utility. It creates a file containing a KEY record for each
key, and self-signs the key set with each zone key. The output file is of the form
KEYSET-name.DAT, where name is the zone name.

Options

-a
Verifies all generated signatures.

-s start-time
Specifies the date and time when the generated SIG records become valid. This
can be either an absolute or relative time. An absolute start time is indicated by
a number in YYYYMMDDHHMMSS notation. 20000530144500 denotes 14:45:00
UTC on May 30, 2000. A relative start time is indicated by +N, which is N
seconds from the current time. If no start time is specified, the current time is
used.

-e end-time
Specifies the date and time when the generated SIG records expire. An absolute
end time is indicated in YYYYMMDDHHMMSS notation. A time relative to the
start time is indicated by +N, which is N seconds from the start time. A time
relative to the current time is indicated by now+N. If no end time is specified, 30
days from the start time is used as a default.

-h
Displays a short summary of the options and arguments to the
dnssec_makekeyset command.

-p
Uses pseudorandom data when signing the zone. This is faster, but less secure,
than using real random data. This option is useful when signing large zones or
when the entropy source is limited.

-r randomfile
Specifies the source of randomness. The default source of randomness is keyboard
input. The argument randomfile specifies the name of a file containing random
data to be used instead of the default. The special value keyboard indicates that
keyboard input should be used.

Note

When you use the keyboard to generate random data, you must input a
large amount of data. Input requiring hundreds of lines of data is not

Configuring and Managing BIND Version 9 C–75

dnssec_makekeyset

unusual for some algorithms. The string ‘‘stop typing’’ appears when
enough data has been input.

-t ttl
Specifies the time to live (TTL) value of the KEY and SIG records. The default is
3600 seconds.

-v level
Sets the debugging level.

key
Specifies the list of keys to be included in the keyset file. These keys
are expressed in the form Knnnn.aaa-iiiii, which was generated by the
dnssec_keygen utility.

Examples

The following command generates a keyset containing the DSA key for
example.com generated in the dnssec_keygen example.

1. $ dnssec_makekeyset -t 86400 -s 20000701120000 -e +2592000 -
_$ Kexample.com.003-26160

In this example, dnssec_makekeyset creates the file KEYSET-EXAMPLE_
COM.DAT. This file contains the specified key and a self-generated signature.

The DNS administrator for example.com could send KEYSET-EXAMPLE_
COM.DAT to the DNS administrator for .com for signing, if the .com zone
is DNSSEC-aware and the administrators of the two zones have some
mechanism for authenticating each other and for exchanging the keys and
signatures securely.

C–76 Configuring and Managing BIND Version 9

dnssec_signkey

dnssec_signkey
Signs keysets for DNSSEC.

Format

dnssec_signkey [-a] [-c class] [-s start-time] [-e end-time] [-h] [-p] [-r randomfile] [-v level] keyset key...

Description

The dnssec_signkey utility signs a keyset. The keyset, generated by the
dnssec_makekeyset utility, is for a child zone. The child zone’s keyset is
signed with the zone keys for its parent zone. The output file is of the form
SIGNEDKEY-name.DAT, where name is the zone name.

Parameters

keyset
Specifies the file containing the child’s keyset.

key...
Specifies the keys used to sign the child’s keyset.

Options

-a
Verifies all generated signatures.

-c class
Specifies the DNS class of the key sets.

-s start-time
Specifies the date and time when the generated SIG records become valid. This
can be either an absolute or relative time. An absolute start time is indicated by
a number in YYYYMMDDHHMMSS notation; 20000530144500 denotes 14:45:00
UTC on May 30, 2000. A relative start time is indicated by +N, which is N
seconds from the current time. If no start time is specified, the current time is
used.

-e end-time
Specifies the date and time when the generated SIG records expire. An absolute
time is indicated in YYYYMMDDHHMMSS notation. A time relative to the start
time is indicated by +N, which is N seconds from the start time. A time relative
to the current time is indicated by now+N. If no end time is specified, 30 days from
the start time is used as a default.

-h
Displays a short summary of the options and arguments to the dnssec_signkey
command.

-p
Use pseudorandom data when signing the zone. This is faster, but less secure,
than using real random data. This option may be useful when signing large zones
or when the entropy source is limited.

Configuring and Managing BIND Version 9 C–77

dnssec_signkey

-r randomfile
Specifies the source of randomness. The default source of randomness is keyboard
input. randomfile specifies the name of a file containing random data to be used
instead of the default. The special value keyboard indicates that keyboard input
should be used.

Note

When you use the keyboard to generate random data, you must input a
large amount of data. Input requiring hundreds of lines of data is not
unusual for some algorithms. The string ‘‘stop typing’’ appears when
enough data has been input.

-v level
Sets the debugging level.

Examples

The DNS administrator for a DNSSEC-aware .com zone would use the
following command to sign the keyset file for example.com created by the
dnssec_makekeyset utility with a key generated by the dnssec_keygen utility:

1. $ dnssec_signkey keyset-example.com. Kcom.003-51944

In this example, the dnssec_signkey utility creates the file SIGNEDKEY-
EXAMPLE_COM.DAT, which contains the example.com keys and the
signatures by the .com keys.

C–78 Configuring and Managing BIND Version 9

dnssec_signzone

dnssec_signzone
Signs a zone.

Format

dnssec_signzone [-a] [-c class] [-d directory] [-s start-time] [-e end-time] [-f output-file] [-h] [-i interval]
[-n nthreads] [-o origin] [-p] [-r randomfile] [-t] [-v level] zonefile [key...]

DESCRIPTION

The dnssec_signzone utility signs a zone. It generates NXT and SIG records and
produces a signed version of the zone. If there is a signedkey file from the zone’s
parent, the parent’s signatures are incorporated into the generated signed zone
file. The security status of delegations from the signed zone (that is, whether
or not the child zones are secure) is determined by the presence or absence of a
signedkey file for each child zone.

Before signing the zone, you must add the KEY record to the zone database file by
using the $INCLUDE statement. For example, in the zone file example_com.db,
add:

$INCLUDE Kexample_com.003-26160_KEY

Parameters

zonefile
Specifies the file containing the zone to be signed.

key
Specifies the keys used to sign the zone. If no keys are specified, the default is all
zone keys that have private key files in the current directory.

Options

-a
Verifies all generated signatures.

-c class
Specifies the DNS class of the zone.

-d directory
Looks for signedkey files in the specified directory.

-s start-time
Specifies the date and time when the generated SIG records become valid. This
can be either an absolute or relative time. An absolute start time is indicated by
a number in YYYYMMDDHHMMSS notation. 20000530144500 denotes 14:45:00
UTC on May 30, 2000. A relative start time is indicated by +N, which is N
seconds from the current time. If no start time is specified, the current time is
used.

-e end-time
Specifies the date and time when the generated SIG records expire. An absolute
time is indicated in YYYYMMDDHHMMSS notation. A time relative to the start
time is indicated by +N, which is N seconds from the start time. A time relative

Configuring and Managing BIND Version 9 C–79

dnssec_signzone

to the current time is indicated by now+N. If no end time is specified, 30 days from
the start time is used as a default.

-f output-file
Specifies the name of the output file containing the signed zone. The default is to
append _SIGNED to the input file name.

-h
Displays a short summary of the options and arguments to the dnssec_signzone
command.

-i interval
When a previously signed zone is passed as input, records may be signed again.
The interval option specifies the cycle interval as an offset from the current
time (in seconds). If a SIG record expires after the cycle interval, it is retained.
Otherwise, it is considered to be expiring soon, and it will be replaced.

The default cycle interval is one quarter of the difference between the signature
end and start times. Therefore, if neither the end time nor the start time is
specified, the dnssec_signzone utility generates signatures that are valid for 30
days, with a cycle interval of 7.5 days. Therefore, if any existing SIG records are
due to expire in less than 7.5 days, they are replaced.

-n nthreads
Specifies the number of threads to use. By default, one thread is started for each
detected CPU.

-o origin
Specifies the zone origin. If this option is not specified, the name of the zone file
is assumed to be the origin.

-p
Uses pseudorandom data when signing the zone. This is faster, but less secure,
than using real random data. This option can be useful when signing large zones
or when the entropy source is limited.

-r randomfile
Specifies the source of randomness. The default source of randomness is keyboard
input. randomfile specifies the name of a file containing random data to be used
instead of the default. The special value keyboard indicates that keyboard input
should be used.

Note

When you use the keyboard to generate random data, you must input a
large amount of data. Input requiring hundreds of lines of data is not
unusual for some algorithms. The string ‘‘stop typing’’ appears when
enough data has been input.

-t
Displays statistics at completion.

-v level
Sets the debugging level.

C–80 Configuring and Managing BIND Version 9

dnssec_signzone

Examples

The following command signs the example.com zone with the DSA key
generated by the dnssec_keygen utility. The zone’s keys must be in the zone.
If there are signedkey files associated with this zone or any child zones, they
must be in the current directory.

1. dnssec_signzone -o example.com example_com.db Kexample_com.003-26160

In this example, dnssec_signzone creates the file EXAMPLE_COM.DB_
SIGNED. This file should be referenced in a zone statement in the
TCPIP$BIND.CONF file. This command displays the following:

example_com.db_signed

Configuring and Managing BIND Version 9 C–81

rndc

rndc
Controls the operation of the BIND server.

Format

rndc [-c config] [-s server] [-p port] [-V] [-y key-id] command

Description

The rndc utility controls the operation of a name server. rndc communicates with
the name server over a TCP connection, sending commands authenticated with
digital signatures. The only supported authentication algorithm is HMAC-MD5,
which uses a shared secret on each end of the connection. This provides TSIG-
style authentication for the command request and the name server’s response.
All commands sent over the channel must be signed by a key_id known to the
server.

In BIND Version 9, rndc supports all the commands of the BIND Version 8 ndc
utility except start, restart, and stop. Use the BIND startup and shutdown
command procedures, as described in Section C.4, to accomplish these tasks.

The rndc utility reads a configuration file to determine how to contact the name
server and decide what algorithm and key it should use.

A configuration file is required, since all communication with the server is
authenticated with digital signatures that rely on a shared secret, and there is
no way to provide that secret other than with a configuration file. The default
location for the rndc configuration file is TCPIP$ETC:RNDC.CONF, but an
alternate location can be specified with the -c option. If the configuration
file is not found, rndc also looks in TCPIP$ETC:RNDC.KEY. The RNDC.KEY
file is generated by running rndc_confgen -a. This command provides basic
functionality, but it offers less configuration flexibility than modifying the
RNDC.CONF file.

Note

For the BIND server to recognize a newly generated RNDC.KEY file, you
must stop and restart the BIND server.

Format of the RNDC.CONF File
The configuration file for the rndc utility is TCPIP$ETC:RNDC.CONF. The
structure of this file is similar to TCPIP$BIND.CONF. Statements are enclosed
in braces and are terminated with semicolons. Clauses in the statements are also
terminated with semicolons. For example:

options {
default-server localhost;
default-key samplekey;

};

server localhost {
key samplekey;

};

C–82 Configuring and Managing BIND Version 9

rndc

key samplekey {
algorithm hmac-md5
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW";

};

Three statements are used in the RNDC.CONF file:

• The options statement contains three clauses:

The default-server clause is followed by the name or address of a name
server. This host is used when the name server is not specified as an
argument to rndc.

The default-key clause is followed by the name of a key, which is
represented by a key statement and is used when the key-id is not
specified on the rndc command line and when no key clause is found in a
matching server statement. This key is used to authenticate the server’s
commands and response.

The default-port clause is followed by the port to connect to on the
remote name server. This port is used if no -p port statement is supplied
on the rndc command line and no port clause is included in a matching
server statement.

• The server statement specifies a host name or address for a name server.
The statement may include the key clause and the port clause. The key
name must match the name of a key statement in the file. The port number
specifies the port to connect to.

• The key statement specifies the name of a key. The statement has two
clauses:

algorithm specifies the encryption algorithm for rndc to use (HMAC-
MD5).

A secret clause containing the 64-bit encoding of the algorithm’s
encryption key. The base-64 string is enclosed in quotation marks.

To generate the base-64 string for the secret clause, use the
rndc_confgen utility. For example, enter the following command:

$ RNDC_CONFGEN

A complete RNDC.CONF file, including the randomly-generated key,
is automatically generated. The rndc_confgen command also displays
commented key and controls statements for the TCPIP$BIND.CONF
file.

Commands

reload
Reloads configuration file and zones.

reload zone [class [view]]
Reload the given zone.

refresh zone [class [view]]
Schedule zone maintenance for the given zone.

Configuring and Managing BIND Version 9 C–83

rndc

reconfig
Reloads the configuration file and loads new zones, but does not reload existing
zone files even if they have changed. This is faster than a full reload when there
is a large number of zones because it avoids the need to examine the modification
times of the zones files.

stats
Writes server statistics to the statistics file, TCPIP$BIND.STATS.

querylog
Toggles query logging. Query logging can also be enabled by explicitly directing
the queries category to a channel in the logging section of TCPIP$BIND.CONF.

dumpdb
Dumps the server’s caches to the dump file, TCPIP$BIND_DUMP.DB.

trace
Increments the servers debugging level by one.

trace level
Sets the server’s debugging level to an explicit value.

notrace
Sets the server’s debugging level to 0.

flush
Flushes the server’s cache.

status
Displays the status of the server.

flush-updates
Saves any pending dynamic updates being stored in the zone journal (_JNL) files
to the master zone file. (This command is available on OpenVMS systems only.)

Options

-c config-file
Uses config-file as the configuration file instead of the default,
TCPIP$ETC:RNDC.CONF.

-s server
Specifies the name or address of the server which matches a server statement
in the configuration file for rndc. If no server is supplied on the command line,
the host named by the default-server clause in the option statement of the
configuration file is used.

-p port
Send commands to the specified TCP port instead of the default control channel
port, 953.

-V
Enables verbose logging.

C–84 Configuring and Managing BIND Version 9

rndc

-y keyid
Use the specified keyid from the configuration file specified with the -c option.
If the configuration file was not specified on the command line, the rndc
configuration file, RNDC.CONF, is used. The keyid must be known by the
BIND server with the same algorithm and secret string in order for control
message validation to succeed.

If no keyid is specified, rndc first looks for a key clause in the server statement
of the server being used, or if no server statement is present for that host, then
the default-key clause of the options statement.

Note that the configuration file contains shared secrets that are used to send
authenticated control commands to name servers. Therefore, the file should not
have general read or write access.

Configuring and Managing BIND Version 9 C–85

rndc_confgen

rndc_confgen
Generates the configuration files used by the rndc utility.

Format

rndc_confgen [-a] [-b keysize] [-c keyfile] [-h] [-k keyname] [-p port] [-r randomfile] [-s address]

Description

The rndc_confgen utility generates configuration files for the rndc utility. It
can be used as a convenient alternative to writing the RNDC.CONF file and
the corresponding controls and key statements in TCPIP$BIND.CONF by hand.
The utility can be run with the -a option to set up an RNDC.KEY file, thereby
avoiding the need for an RNDC.CONF file and a controls statement.

Options

-a
Configures rndc automatically. This option creates the file RNDC.KEY in
TCPIP$ETC that is read by both rndc and the BIND server on startup.
The RNDC.KEY file defines a default command channel and authentication
key, allowing rndc to communicate with the BIND server with no further
configuration.

Using the -a option allows BIND Version 9 and rndc to be used as drop-in
replacements for BIND Version 8 and ndc, with no changes to the existing
TCPIP$BIND.CONF file.

Note

For the BIND server to recognize a newly generated RNDC.KEY file, you
must stop and restart the BIND server.

-b keysize
Specifies the size of the authentication key in bits. Must be between 1 and 512
bits; the default is 128.

-c keyfile
Used with the -a option to specify an alternate location for RNDC.KEY.

-h
Prints a short summary of the options and arguments to rndc_confgen.

-k keyname
Specifies the key name of the rndc authentication key. This must be a valid
domain name. The default is rndc-key.

-p port
Specifies the command channel port where the BIND server listens for
connections from rndc. The default is 953.

C–86 Configuring and Managing BIND Version 9

rndc_confgen

-r randomfile
Specifies a source of random data for generating the authorization. The default
source of randomness is keyboard input. randomfile specifies the name of a file
containing random data to be used instead of the default. The special value
keyboard indicates that keyboard input should be used.

-s address
Specifies the IP address where the BIND server listens for command channel
connections from rndc. The default is the loopback address 127.0.0.1.

Configuring and Managing BIND Version 9 C–87

Configuring and Managing BIND Version 9
C.11 Solving Bind Server Problems

C.11 Solving Bind Server Problems
To solve BIND server problems, see the following sections:

• Section C.11.1, BIND Server Diagnostic Tools

• Section C.11.2, Using NSLOOKUP to Query a Name Server

• Section C.11.3, Solving Specific Name Server Problems

C.11.1 BIND Server Diagnostic Tools
The TCP/IP Services product provides the following utilities for diagnosing
problems with the BIND server:

• The dig utility

• The host utility

• The nslookup utility

The following sections describe these utilities.

Note

The nslookup utility is no longer recommended. Use the dig utility
instead.

C–88 Configuring and Managing BIND Version 9

dig

dig
Gathers information from the Domain Name System servers.

Format

dig [@server] [-option] [name] [type] [class] [queryopt...]

Description

dig is a flexible tool for interrogating DNS name servers. It performs DNS
lookups and displays the answers that are returned from the name servers that
were queried. Most DNS administrators use dig to troubleshoot DNS problems
because of its flexibility, ease of use and clarity of output. Other lookup tools tend
to have less functionality than dig.

Although dig normally is used with command-line arguments, it also has a batch
mode of operation for reading lookup requests from a file. A brief summary of
its command-line arguments and options is printed when the -h option is given.
Unlike earlier versions of BIND, the BIND Version 9 implementation of dig
allows multiple lookups to be issued from the command line.

Unless it is told to query a specific name server, dig tries each of the servers
listed in your resolver configuration. When no command line arguments or
options are given, dig performs an NS query for "." (the root).

dig has two modes: simple interactive mode, for a single query, and batch mode,
which executes a query for each in a list of several query lines. All query options
are accessible from the command line.

To get online help for the dig utility, enter the -h option on the command line.
For example:

$ dig -h

Parameters

@server
Specifies the name or IP address of the name server to query. This can be either
an IPv4 address in dotted-decimal notation or an IPv6 address in colon-delimited
notation. When the supplied server argument is a host name, dig resolves that
name before querying that name server. If no server argument is provided, dig
consults your resolver configuration and queries the name servers listed there.
The reply from the name server that responds is displayed.

name
Specifies the name of the resource record to look up.

type
Indicates the type of query required (ANY, A, MX, SIG, and so forth). If the type
parameter is not supplied, dig performs a lookup for an A record.

class
Specifies the DNS query class. The default is class IN (Internet).

Configuring and Managing BIND Version 9 C–89

dig

Options

-b address
Sets the source IP address of the query to address. This must be a valid address
on one of the host’s network interfaces.

-c class
Specifies the query class. class is any valid class, such as HS for hesiod records or
CH for CHAOSnet records. The default query class is IN (Internet).

-f filename
Makes dig operate in batch mode by reading a list of lookup requests to process
from the specified file. The file contains a number of queries, one per line. Each
entry in the file should be organized in the same way that dig queries are
presented using the command-line interface.

-k filename
Allows you to sign the DNS queries sent by dig and their responses using
transaction signatures (TSIG). Specify a TSIG key file for filename.

-p port
Allows you to specify a nonstandard port number. port is the port number that
dig uses to send its queries instead of the standard DNS port number 53. You
can use this option to test a name server that has been configured to listen for
queries on a nonstandard port number.

-t type
Sets the query type to type, which can be any valid query type supported in BIND
Version 9. The default query type is A, unless the -x option is supplied to indicate
a reverse lookup. A zone transfer can be requested by specifying a type of AXFR.
When an incremental zone transfer (IXFR) is required, type is set to ixfr=N. The
incremental zone transfer contains the changes made to the zone since the serial
number in the zone’s SOA record was N.

-x addr
Specifies reverse lookups (mapping addresses to names). addr is either an IPv4
address in dotted-decimal notation or a colon-delimited IPv6 address. This
option eliminates the need to provide the name, class, and type arguments. dig
automatically performs a lookup for a name like 11.12.13.10.in-addr.arpa
and sets the query type and class to PTR and IN, respectively. By default, IPv6
addresses are looked up using the IP6.ARPA domain and binary labels as defined
in RFC 2874. To use the older RFC 1886 method using the IP6.INT domain and
nibble labels, specify the -n (nibble) option.

-y name:key
Allows you to specify the TSIG key itself on the command line. name is the name
of the TSIG key and key is the actual key. The key is a base-64 encoded string,
typically generated by dnssec_keygen. When using TSIG authentication with
dig, the name server that is queried needs to know the key and algorithm that
is being used. In BIND, this is done by providing appropriate key and server
statements in TCPIP$BIND.CONF.

C–90 Configuring and Managing BIND Version 9

dig

Query Options

Each query option is identified by a keyword preceded by a plus sign (+). Some
keywords set or reset an option. These can be preceded by the string no to
negate the meaning of that keyword. Other keywords (like that which sets the
timeout interval) assign values to options. These types of keywords have the form
+keyword=value.

The query options are:

+[no]tcp
Specifies whether to use TCP when querying name servers. The default behavior
is to use UDP unless an AXFR or IXFR query is requested, in which case a TCP
connection is used.

+[no]vc
Specifies whether to use TCP when querying name servers. This alternate syntax
to [no]tcp is provided for backward compatibility. (vc stands for virtual circuit.)

+[no]ignore
Ignores truncation in UDP responses instead of retrying with TCP. By default,
TCP retries are performed.

+domain=name
Sets the search list to contain the single domain name, as if specified in a domain
directive in your resolver configuration. Enables search list processing as if the
search option were specified.

+[no]search
Specifies whether to use the search list defined by the path directive in your
resolver configuration. By default, the search list is not used.

+[no]defname
This deprecated option is treated as a synonym for [no]search.

+[no]aaonly
This option does nothing. It is provided for compatibility with old versions of dig,
in which it set an unimplemented resolver flag.

+[no]adflag
Specifies whether to set the AD (authentic data) bit in the query. The AD bit
currently has a standard meaning only in responses, not in queries, but the
ability to set the bit in the query is provided for completeness.

+[no]cdflag
Specifies whether to set the CD (checking disabled) bit in the query. This requests
the server to not perform DNSSEC validation of responses.

+[no]recursive
Toggles the setting of the RD (recursion desired) bit in the query. This bit is
set by default, which means dig normally sends recursive queries. Recursion is
automatically disabled when the nssearch or trace query options are used.

+[no]nssearch
Attempts to find the authoritative name servers for the zone containing the name
being looked up. Displays the SOA record that each name server has for the zone.

Configuring and Managing BIND Version 9 C–91

dig

+[no]trace
Toggles tracing of the delegation path from the root name servers for the name
being looked up. Tracing is disabled by default. When tracing is enabled, dig
makes iterative queries to resolve the name being looked up, following referrals
from the root servers and showing the answer from each server that was used to
resolve the lookup.

+[no]cmd
Toggles the printing of the initial comment in the output identifying the version
of dig and the query options that have been applied. This comment is printed by
default.

+[no]short
Provides a terse answer. The default is to print the answer in verbose form.

+[no]identify
Specifies whether to show the IP address and port number that supplied the
answer when the +short option is enabled. If terse answers are requested, the
default is not to show the source address and port number of the server that
provided the answer.

+[no]comments
Toggles the display of comment lines in the output. The default is to print
comments.

+[no]stats
Toggles the printing of statistics, such as when the query was made, the size of
the reply, and so on. The default behavior is to print the query statistics.

+[no]qr
Specifies whether to print the query as it is sent. By default, the query is not
printed.

+[no]question
Specifies whether to print the question section of a query when an answer is
returned. The default is to print the question section as a comment.

+[no]answer
Specifies whether to display the answer section of a reply. The default is to
display the answer section.

+[no]authority
Specifies whether to display the authority section of a reply. The default is to
display the authority section.

+[no]additional
Specifies whether to display the additional section of a reply. The default is to
display the additional section.

+[no]all
Specifies whether to set or clear all display flags.

+time=T
Sets the timeout for a query to T seconds. The default timeout is 5 seconds. An
attempt to set T to less than 1 results in a query timeout of 1 second.

C–92 Configuring and Managing BIND Version 9

dig

+tries=A
Sets the number of times to retry UDP queries to the server to A instead of to the
default of 3. If A is less than or equal to zero, the number of retries is silently
rounded up to 1.

+ndots=D
Set the number of dots that have to appear in name to D for it to be considered
absolute. The default value is 1.

Names with fewer dots are interpreted as relative names and are searched
for in the domains listed in the search or domain directive in your resolver
configuration.

+bufsize=B
Set the UDP message buffer size advertised using EDNS0 to B bytes. The
maximum and minimum sizes of this buffer are 65535 and 0, respectively. Values
outside this range are rounded up or down appropriately.

+[no]multiline
Prints records like the SOA records in a verbose multiline format with human-
readable comments. The default is to print each record on a single line, to
facilitate machine parsing of the output.

+[no]fail
Does not continue querying the next server if a SERVFAIL error occurs.

+[no]besteffort
Attempts to parse even illegal messages.

+[no]dnssec
Requests DNSSEC records.

Multiple Queries

The BIND Version 9 implementation of dig supports the specification of multiple
queries on the command line (in addition to supporting the -f batch file option).
Each of those queries can be supplied with its own set of flags, options, and query
options.

Each query argument represent an individual query in the command-line syntax.
Each individual query consists of any of the standard options and flags, the name
to be looked up, an optional query type and class, and any query options that are
needed.

A global set of query options, which should be applied to all queries, can also
be supplied. These global query options must precede the first tuple of name,
class, type, options, flags, and query options supplied on the command line. Any
global query options (except for the +[no]cmd option) can be overridden by a
query-specific set of query options.

Examples

The following example shows how to use dig from the command line to make
three lookups:

1. An ANY query for www.isc.org

2. A reverse lookup of 127.0.0.1

Configuring and Managing BIND Version 9 C–93

dig

3. A query for the NS records of isc.org.

1. dig +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr

; <<>> DiG 9.2.0 <<>> +qr www.isc.org any -x 127.0.0.1 isc.org ns +noqr
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 38437
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 5

;; QUESTION SECTION:
;www.isc.org. IN ANY

;; ANSWER SECTION:
www.isc.org. 3421 IN CNAME isc.org.

;; AUTHORITY SECTION:
isc.org. 3421 IN NS gns1.nominum.com.
isc.org. 3421 IN NS gns2.nominum.com.
isc.org. 3421 IN NS ns-ext.vix.com.
isc.org. 3421 IN NS ns-int.vix.com.
isc.org. 3421 IN NS ns1.gnac.com.

;; ADDITIONAL SECTION:
ns1.gnac.com. 17389 IN A 209.182.195.77
gns1.nominum.com. 92 IN A 198.133.199.1
gns2.nominum.com. 68661 IN A 198.133.199.2
ns-ext.vix.com. 2601 IN A 204.152.184.64
ns-int.vix.com. 828 IN A 204.152.184.65

;; Query time: 134 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Tue Nov 6 13:09:16 2001
;; MSG SIZE rcvd: 241

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 16441
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1

;; QUESTION SECTION:
;1.0.0.127.in-addr.arpa. IN PTR

;; ANSWER SECTION:
1.0.0.127.in-addr.arpa. 86400 IN PTR localhost.

;; AUTHORITY SECTION:
0.0.127.in-addr.arpa. 86400 IN NS localhost.

;; ADDITIONAL SECTION:
localhost. 86400 IN A 127.0.0.1

;; Query time: 224 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Tue Nov 6 13:09:16 2001
;; MSG SIZE rcvd: 93

;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 9922
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 5

;; QUESTION SECTION:
;isc.org. IN NS

;; ANSWER SECTION:
isc.org. 3421 IN NS ns-ext.vix.com.
isc.org. 3421 IN NS ns-int.vix.com.
isc.org. 3421 IN NS ns1.gnac.com.
isc.org. 3421 IN NS gns1.nominum.com.
isc.org. 3421 IN NS gns2.nominum.com.

C–94 Configuring and Managing BIND Version 9

dig

;; ADDITIONAL SECTION:
ns1.gnac.com. 17389 IN A 209.182.195.77
gns1.nominum.com. 92 IN A 198.133.199.1
gns2.nominum.com. 68661 IN A 198.133.199.2
ns-ext.vix.com. 2601 IN A 204.152.184.64
ns-int.vix.com. 828 IN A 204.152.184.65

;; Query time: 198 msec
;; SERVER: 127.0.0.1#53(127.0.0.1)
;; WHEN: Tue Nov 6 13:09:17 2001
;; MSG SIZE rcvd: 223

A global query option of +qr is applied so that dig shows the initial query
it made for each lookup. The final query has a local query option of +noqr,
which means that dig will not print the initial query when it looks up the NS
records for isc.org.

The final portion of the output displays the following information:

• Amount of time the query took

• Server and port to which the query was sent, in the form server#port

• Date and time of the query

• Message size

Configuring and Managing BIND Version 9 C–95

host

host
The host utility allows you to look up Internet host names. By default, the host
utility converts between host names and Internet addresses, but its functionality
can be extended with the use of options.

Format

host [-aCdlrTvw] [-c class] [-n] [-N ndots] [-R number] [-t type] [-W wait] name [server]

Description

The host utility is used to convert names to IP addresses and vice versa. When
no arguments or options are given, the host utility prints a short summary of its
command line arguments and options.

Parameters

name
Specifies the domain name that is to be looked up. It can also be a dotted-decimal
IPv4 address or a colon-delimited IPv6 address, in which cases the host performs
a reverse lookup for that address by default.

[server]
Specifies the name or IP address of the name server that the host utility should
query instead of the server or servers listed in your resolver configuration.

Options

-a
Equivalent to setting the -v option and asking the host utility to make a query of
type ANY.

-C
Displays the SOA records for zone name from all the listed authoritative name
servers for that zone. The list of name servers is defined by the NS records that
are found for the zone. The -C option must be enclosed in quotation marks. For
example:

$ host -"C" name

-c class
Makes a DNS query of class class. This can be used to look up hesiod or
CHAOSnet class resource records. The default class is IN (Internet).

-d
Specifies verbose output.

-l
Selects list mode. This makes the host utility perform a zone transfer for zone
name. The argument is provided for compatibility with older implemementations.
This option is equivalent to making a query of type AXFR.

-n
Specifies that reverse lookups of IPv6 addresses should use the IP6.INT domain
and nibble labels, as defined in RFC 1886. The default is to use IP6.ARPA and
binary labels, as defined in RFC 2874.

C–96 Configuring and Managing BIND Version 9

host

-N number
Sets the number of dots that have to be in the zone name for it to be considered
absolute. The default value is 1. Names with fewer dots are interpreted as
relative names and are searched for in the domains listed in the search path
defined in the resolver configuration.

-R number
Changes the number of UDP retries for a lookup. The value for number indicates
how many times the host utility repeats a query that does not get answered.
The default number of retries is 1. If number is negative or zero, the number of
retries defaults to 1.

-r
Makes nonrecursive queries. Setting this option clears the RD (recursion desired)
bit in the query that the host utility makes. This should mean that the name
server receiving the query does not attempt to resolve name. The -r option
enables host to mimic the behavior of a name server by making nonrecursive
queries and expecting to receive answers to those queries that are usually
referrals to other name servers.

-T
Uses a TCP connection when querying the name server. By default, the host
utility uses UDP when making queries.

TCP is automatically selected for queries that require it, such as zone transfer
(AXFR) requests.

-t type
Selects the query type. type can be any recognized query type, such as CNAME,
NS, SOA, SIG, KEY, or AXFR. When no query type is specified, the host utility
automatically selects an appropriate query type. By default, the host utility looks
for A records, but if the -C option is specified, queries are made for SOA records.
If name is a dotted-decimal IPv4 address or a colon-delimited IPv6 address, the
host utility queries for PTR records.

-v
Generates verbose output.

-W wait
Makes the host utility wait for the number of seconds specified by wait before
making the query. If wait is less than 1, the wait interval is set to 1 second.

-w
Waits forever for a reply. The time to wait for a response is set to the number of
seconds given by the hardware’s maximum value for an integer quantity.

Configuring and Managing BIND Version 9 C–97

Configuring and Managing BIND Version 9
host

C.11.2 Using NSLOOKUP to Query a Name Server
The nslookup utility is a debugging tool provided with BIND that allows anyone
to directly query a name server and retrieve information. Use NSLOOKUP to
determine whether your local name server is running correctly or to retrieve
information from remote servers.

nslookup makes direct queries to name servers around the world to obtain DNS
information, which includes the following:

• Host names and addresses on the local domain

• Host names and addresses on remote domains

• Host names that serve as Mail Exchange (MX) records

• Name servers for a specific zone

Note

The nslookup utility is deprecated. Compaq recommends that you use the
dig utility instead.

For online information about using the nslookup utility, enter the following
command:

$ HELP TCPIP_SERVICES NSLOOKUP

C.11.3 Solving Specific Name Server Problems
The following sections describe some problems commonly encountered with BIND
and how to solve them.

C.11.3.1 Server Not Responding
A missing client name in the BIND server’s database files results in lack of
service to that client. If records that point to the name servers (NS records) in a
domain are missing from your server’s database files, you might see the following
messages:

%TCPIP-W-BIND_NOSERVNAM, Server with address 199.85.8.8 is not responding
%TCPIP-E-BIND_NOSERVERS, Default servers are not available
%TCPIP-W-NORECORD, Information not found
-TCPIP-E-BIND_NOSERVERS, Default servers are not available

When the CONVERT/ULTRIX BIND /DOMAIN command creates the .DB files
from the hosts database, it cannot detect the existence or the names of name
servers in a domain. Therefore, it does not add NS records for the name servers
to the .DB files.

To solve the problem, follow these steps:

1. Stop the BIND server.

2. Manually add NS records for the missing names.

3. Update the start-of-authority (SOA) records by incrementing the serial
number.

4. Restart the BIND server.

C–98 Configuring and Managing BIND Version 9

D
Advanced IPv6 Programming Socket Interface

This appendix describes:

• The data structures for sending and receiving ancillary data (Section D.1)

• How to use IPv6 raw socket (Section D.2)

• The socket calls used to build and examine IPv6 options headers (Section D.3)

• The socket calls used to build and examine IPv6 routing headers (Section D.4)

D.1 Socket-Related Data Structures for Sending and Receiving
Ancillary Data

The following data structures enable applications to send and receive ancillary
data using the sendmsg and recvmsg system calls:

• struct msghdr

This data structure, which is defined in the sys/socket.h header file, also
allows AF_INET sockets and raw AF_INET6 sockets to receive certain data.

For IPv4, see the Compaq TCP/IP Services for OpenVMS Sockets API
and System Services Programming manual for the descriptions of the
IP_RECVDSTADDR and IP_RECVOPTS options.

For IPv6, this section describes the IPV6_RECVHOPOPTS, IPV6_RECVDSTOPTS,
and IPV6_RECVRTHDR options.

The msghdr data structure consists of the following components:

struct msghdr {
void *msg_name; /* optional address */
size_t msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* ancillary data, see below */
size_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

};

• struct cmsghdr

Describes ancillary data objects transferred by the sendmsg and recvmsg
system calls.

The msg_control member of the msghdr data structure points to the ancillary
data that are contained in a cmsghdr structure. Typically, only one data object
is passed in a cmsghdr structure. However, the IPv6 advanced sockets API
enables the sendmsg and recvmsg system calls to pass multiple objects. See
Section D.2 for information about using raw IPv6 sockets.

The data structure is defined in the sys/socket.h header file.

Advanced IPv6 Programming Socket Interface D–1

Advanced IPv6 Programming Socket Interface
D.1 Socket-Related Data Structures for Sending and Receiving Ancillary Data

The cmsghdr data structure consists of the following components:

struct cmsghdr {
socklen_t cmsg_len; /* #bytes, including this header */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by unsigned char cmsg_data[]; */

};

D.2 Using IPv6 Raw Sockets
Raw sockets are used in both IPv4 and IPv6 to bypass the TCP and UDP
transport layers.

Table D–1 describes the principal differences between IPv4 and IPv6 raw
sockets.

Table D–1 Differences Between IPv4 and IPv6 Raw Sockets

IPv4 IPv6

Use Access ICMPv4, IGMPv4, and to
read and write IPv4 datagrams
that contain a protocol field the
kernel does not recognize.

Access
ICMPv6,and to
read and write
IPv6datagrams
that contain a
Next Header field
the kernel does
not recognize.

Byte order Not specified. Network byte
order for all data
sent and received.

Send and receive complete
packets

Yes No. Uses ancillary
data objects to
transfer extension
headers and hop
limit information.

For output, applications can modify all fields, except for the flow label field, by
using ancillary data or socket options, or both.

For input, applications can access all fields, except for the flow label, version
number, and Next Header fields, and all extension headers by using ancillary
data.

For IPv6 raw sockets other than ICMPv6 raw sockets, the application must set
the IPV6_CHECKSUM socket option. For example:

int offset = 2;
setsockopt (fd, IPPROTO_IPV6, IPV6_CHECKSUM, &offset, sizeof(offset));

This enables the kernel to compute and store a checksum for output and to verify
the checksum on input. This relieves the application from having to perform
source address selection on all outgoing packets. This socket option is disabled by
default. You can disable this option by setting the offset variable to -1.

Using IPv6 raw sockets, an application can access the following information:

• ICMPv6 messages

• IPv6 header

D–2 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.2 Using IPv6 Raw Sockets

• Routing header

• IPv6 options headers: hop-by-hop options header and destination options
header

The following sections describe how to access this information.

D.2.1 Accessing ICMPv6 Messages
An ICMPv6 raw socket is a socket that is created by calling the socket function
with the PF_INET6, SOCK_RAW, and IPPROTO_ICMPV6 arguments.

The kernel calculates and inserts the ICMPv6 checksum for all outbound ICMPv6
packets and verifies the checksum for all received packets. If the received
checksum is incorrect, the packet is discarded.

Because ICMPv6 is a superset of ICMPv4,an ICMPv6 raw socket can receive
many more messages than an ICMPv4 raw socket. By default, when you create
an ICMPv6 raw socket, it passes all ICMPv6 message types to an application. An
application, however, does not need access to all messages. An application can
specify the ICMPv6 message types it wants passed by creating an ICMPv6 filter.

The ICMPv6 filter has a datatype of struct icmp6_filter. Use getsockopt to
retrieve the current filter and setsockopt to store the filter. For example, to
enable filtering of ICMPv6 messages, use the ICMP6_FILTER option, as follows:

struct icmp6_filter myfilter;

setsockopt (fd, IPPROTO_ICMPV6, IPV6_FILTER, &(myfilter), (sizeof)(myfilter));

The value of myfilter is an ICMPv6 message type between 0 and 255.

Table D–2 describes the ICMPv6 filter macros.

Table D–2 ICMPv6 Filtering Macros

Macro Description

ICMP6_FILTER_SETPASSALL Passes all ICMPv6 messages to an application.

ICMP6_FILTER_SETBLOCKALL Blocks all ICMPv6 messages from being passed to an
application.

ICMP6_FILTER_SETPASS Passes ICMPv6 messages of a given type to an
application.

ICMP6_FILTER_SETBLOCK Blocks ICMPv6 messages of a given type from being
passed to an application.

ICMP6_FILTER_WILLPASS Returns true, if specified message type is passed to
application.

ICMP6_FILTER_WILLBLOCK True, if the specified message type is blocked from
being passed to an application.

To clear an installed filter, call setsockopt for the ICMP_FILTER option with a
zero-length filter.

The kernel does not perform any validity checks on message type, message
content, or packet structure. The application is responsible for checking them.

Advanced IPv6 Programming Socket Interface D–3

Advanced IPv6 Programming Socket Interface
D.2 Using IPv6 Raw Sockets

D.2.2 Accessing the IPv6 Header
When using IPv6 raw sockets, applications must be able to receive the IPv6
header content. To receive this optional information, use the setsockopt system
call with the appropriate socket option.

Table D–3 describes the socket options for receiving optional information.

Table D–3 Optional Information and Socket Options

Optional Information Socket Option cmsg_type

Source and destination IPv6
address, and sending and
receiving interface

IPV6_RECVPKTINFO IPV6_PKTINFO

Hop limit IPV6_RECVHOPLIMIT IPV6_HOPLIMIT

Routing header IPV6_RECVRTHDR IPV6_RTHDR

Hop-by-Hop options IPV6_RECVHOPOPTS IPV6_HOPOPTS

Destination options IPV6_RECVDSTOPTS IPV6_DSTOPTS

The recvmsg system call returns the received data as one or more ancillary data
objects in a cmsghdr data structure.

To determine the value of a socket option, use the getsockopt system call with
the corresponding option. If the IPV6_RECVPKTINFO option is not set, the function
returns an in6_pktinfo data structure with ipi6_addr set to in6addr_any and
ipi6_addr set to zero. For other options, the function returns an option_len
value of zero if there is no option value.

An application can receive the following IPv6 header information as ancillary
data from incoming packets:

• Destination IPv6 address

• Interface index

• Hop limit

The IPv6 address and interface index are contained in a in6_pktinfo data
structure that is received as ancillary data with the recvmsg system call. the
in6_pktinfo data structure is defined in netinet/in.h. The tasks associated
with the IPv6 header are:

• Receiving an IPv6 address

If the IPV6_RECVPKTINFO option is enabled, the recvmsg system call returns
a in6_pktinfo data structure as ancillary data. The ipi6_addr member
contains the destination IPv6 address from the received packet. For TCP
sockets, the destination address is the local address of the connection.

• Receiving an interface

If the IPV6_RECVPKTINFO option is enabled, the recvmsg system call returns
a in6_pktinfo data structure as ancillary data. The ipi6_ifindex member
contains the interface index of the interface that received the packet.

• Receiving a hop limit

D–4 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.2 Using IPv6 Raw Sockets

If the IPV6_RECVHOPLIMIT option is enabled, the recvmsg system call returns
a cmsghdr data structure as ancillary data. The cmsg_type member is
IPV6_HOPLIMIT and the cmsg_data[] member contains the first byte of the
integer hop limit.

D.2.3 Accessing the IPv6 Routing Header
The advanced sockets API enables you to access the IPv6 routing header. The
routing header is an IPv6 extension header that enables an application to perform
source routing. RFC 2460 defines the type 0 routing header, which supports up to
127 intermediate nodes, or 128 hops.

Table D–4 describes the sockets calls that an application uses to build and
examine routing headers.

Table D–4 Socket Calls for Routing Header Name Description

Name Description

inet6_rth_space Returns the number of bytes required for a routing
header.

inet6_rth_init Initializes buffer data for a routing header.

inet6_rth_add Adds one address to a routing header.

inet6_rth_reverse Reverses the order of fields in a routing header.

inet6_rth_segments Returns the number of segments, or addresses, in a
routing header.

inet6_rth_getaddr Fetches one address from a routing header.

The tasks associated with the routing header are:

• Receiving a routing header

To receive a routing header, an application calls setsockopt with the
IPV6_RECVRTHDR option enabled. See Section D.4 for more information.

For each received routing header, the kernel passes one ancillary data object
in a cmsghdr structure with the cmsg_type member set to IPV6_RTHDR.
An application processes a routing header by calling inet6_rth_reverse,
inet6_rth_segments, and inet6_rth_getaddr.

• Sending a routing header

To send a routing header, an application specifies the header either as
ancillary data in a call to sendmsg or by calling setsockopt. An application
can remove a sticky routing header by calling setsockopt for the IPV6_RTHDR
option and specifying a option length of zero.

When using ancillary data,the application sets cmsg_level member
to IPPROTO_IPV6 and the cmsg_type member to IPV6_RTHDR. Use the
inet6_rth_space, inet6_rth_init, and inet6_rth_add calls to build the
routing header. See Section D.4 for more information.

When an application specifies a routing header, the destination address
specified in a call to the connect sendto or sendmsg function is the final
destination of the datagram. Therefore, the routing header contains the
addresses of all intermediate nodes.

Because of the order of extension headers specified in RFC 2460, an
application can specify only one outgoing routing header.

Advanced IPv6 Programming Socket Interface D–5

Advanced IPv6 Programming Socket Interface
D.2 Using IPv6 Raw Sockets

D.2.4 Accessing the IPv6 Options Headers
The advanced sockets API enables applications to access the following IPv6
options headers:

• Hop-by-hop header

A single hop-by-hop options header can contain a variable number of hop-by-
hop options. Each option is encoded with a type, length, and value (TLV).
The application uses sticky options or ancillary data to communicate this
information with the kernel.

• Destination header

One or more destination options headers can contain a variable number of
destination options. A destination options header appearing before a routing
header is processed by the first and subsequent destinations specified in the
routing header. A destination option appearing after the routing header is
processed only by the final destination. Each option is encoded with a type,
length, and value (TLV). The application uses sticky options or ancillary data
to communicate this information with the kernel.

See RFC 2460 for additional information about the alignment requirements of the
headers and ordering of the extensions headers.

Table D–5 lists the sockets calls that an application uses to build and examine
hop-by-hop and destination headers.

Table D–5 Socket Calls for Options Headers

Socket Call Description

inet6_opt_init Initializes buffer data for options.

inet6_opt_append Adds an option to the options header.

inet6_opt_finish Finishes adding options to the options header.

inet6_opt_set_val Adds one component of the option content to the
options header.

inet6_opt_next Extracts the next option from the options header.

inet6_opt_find Extracts an option of a specified type from the options
header.

inet6_opt_get_val Retrieves one component of the option content from
the options header.

The tasks associate with options headers are:

• Receiving hop-by-hop options

To receive a hop-by-hop options header, an application calls setsockopt with
the IPV6_RECVHOPOPTS option enabled.

When using ancillary data, the kernel passes a hop-by-hop options header to
the application and sets the cmsg_level member to IPPROTO_IPV6 and the
cmsg_type member to IPV6_HOPOPTS.

An application retrieves these options by calling inet6_opt_next,
inet6_opt_find, and inet6_opt_get_val. See Section D.3 for more
information

• Sending hop-by-hop options

D–6 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.2 Using IPv6 Raw Sockets

To send a hop-by-hop options header, an application specifies the header
either as ancillary data in a call to sendmsg or by calling setsockopt
An application can remove a sticky hop-by-hop options header by calling
setsockopt for the IPV6_HOPOPTS option and specifying a option length of zero
(0).

When using ancillary data, all hop-by-hop options are specified by a
single ancillary data object. The application sets cmsg_level member
to IPPROTO_IPV6 and the cmsg_type member to IPV6_HOPOPTS. Use
the inet6_opt_init, inet6_opt_append, inet6_opt_finish, and
inet6_opt_set_val calls to build the option header. See Section D.3 for
more information.

• Receiving destination options

To receive a destination options header, an application calls setsockopt with
the IPV6_RECVDSTOPTS option enabled. The kernel passes each destination
option to the application as one ancillary data object and sets the cmsg_level
member to IPPROTO_IPV6 and the cmsg_type member to IPV6_DSTOPTS.

An application processes these options by calling inet6_opt_next,
inet6_opt_find, and inet6_opt_get_val. See Section D.3 for more
information.

• Sending destination options

To send a destination options header, an application specifies the header
either as ancillary data in a call to sendmsg or by calling setsockopt.

An application can remove a sticky hop-by-hop options header by calling
setsockopt for either the IPV6_RTHDRDSTOPTS or the IPV6_DSTOPTS option and
specifying a option length of zero (0).

In accordance with RFC 2460, the API assumes that the extension headers
are in order. Only one set of destination options can precede a routing header
and only one set of destination options can follow a routing header.

Each set can contain one or more options, but each set is considered a single
extension header.

When using ancillary data, the application passes a destination options
header to the kernel in one of the following ways:

For destination options that precede a routing header, the application sets
the cmsg_level member to IPPROTO_IPV6 and the cmsg_type member to
IPV6_RTHDRDSTOPTS. Any setsockopt or ancillary data is ignored unless
the application explicitly specifies its own routing header.

For destination options that follow a routing header or when no routing
header is specified, the application sets the cmsg_level member to
IPPROTO_IPV6 and the cmsg_type member to IPV6_DSTOPTS.

An application builds these options by calling inet6_opt_init,
inet6_opt_append, inet6_opt_finish, and inet6_opt_set_val. See
Section D.3 for more information.

Advanced IPv6 Programming Socket Interface D–7

Advanced IPv6 Programming Socket Interface
D.3 Socket Calls to Build and Examine IPv6 Options Headers

D.3 Socket Calls to Build and Examine IPv6 Options Headers
The socket calls that are used to build and examine IPv6 option headers are:

• inet6_opt_append

• inet6_opt_find

• inet6_opt_finish

• inet6_opt_get_val

• inet6_opt_init

• inet6_opt_next

• inet6_opt_set_val

D.3.1 The inet6_opt_append Socket Call
Returns the length of an IPv6 extension header with a new option and appends
the option.

#include <netinet/ip6.h>

int inet6_opt_apppend(void *extbuf, size_t extlen, int prevlen,
uint8_t type, size_t len, uint_t align, void **databufp);

D.3.1.1 Parameters

• extbuf

Points to a buffer that contains an extension header. This is either a valid
pointer or a NULL pointer.

• extlen

Specifies the length of the extension header to initialize. Valid values are 0 if
_extbuf equals 0, a value returned by inet6_opt_finish(), or any number
that is a multiple of 8.

• prevlen

Specifies the length of the existing extension header. Obtain this value from
a prior call to inet6_opt_init() or inet6_opt_append().

• type

Specifies the type of option. Specify a value from 2 to 255, inclusive, excluding
194.

• len

Specifies the length of the option data, excluding the option type and option
length fields. Specify a value from 0 to 255, inclusive.

• align

Specifies the alignment of the option. Specify one of the following values: 1,
2, 4, or 8.

• databufp

Points to a buffer that contains the option data.

D–8 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.3 Socket Calls to Build and Examine IPv6 Options Headers

D.3.1.2 Description
The inet6_opt_append() function, when called with extbuf as a NULL pointer
and extlen as 0, returns the updated number of bytes in an extension header.

If you specify extbuf as a valid pointer and valid extlen and align parameters,
the function returns the same information as in the previous case, but also inserts
the pad option, initializes the type and length fields, and returns a pointer to the
location for the option content.

After you call inet6_opt_append(), you can then use the data buffer directly or
call inet6_optt_set_val() to specify the option contents.

D.3.1.3 Return Values
Upon successful completion, the inet6_opt_append() function returns the
updated number of bytes in an extension header.

Upon failure, it returns a -1.

D.3.2 The inet6_opt_find Call
Finds a specific option in an extension header.

#include <netinet/ip6.h>

int inet6_opt_find(
void *extbuf, size_t extlen, int prevlen, uint8_t type,
size_t *lenp, void **databufp);

D.3.2.1 Parameters

• extbuf

Points to a buffer that contains an extension header.

• extlen

Specifies the length, in bytes, of the extension header.

• prevlen

Specifies the location in the extension header of an option. Valid values are
either 0 (zero) for the first option or the length returned from a previous call
to either inet6_opt_next() or inet6_opt_find().

• type

Specifies the type of option to find.

• lenp

Points to the length of the option found.

• databufp

Points to the option data.

D.3.2.2 Description
The inet6_opt_find() function searches a received option extension header
for an option specified by type. If it finds the specified option, it returns the
option length and a pointer to the option data. In addition, it returns an offset
to the next option that you specify in the prevlen parameter to subsequent calls
to inet6_opt_next() in order to search for additional occurrences of the same
option type.

Advanced IPv6 Programming Socket Interface D–9

Advanced IPv6 Programming Socket Interface
D.3 Socket Calls to Build and Examine IPv6 Options Headers

D.3.2.3 Return Values
Upon successful completion, the inet6_opt_find() function returns an offset
from which you can begin the next search in the data buffer.

Upon failure, it returns a -1.

D.3.3 The inet6_opt_finish Call
Returns the total length of an IPv6 extension header, including padding, and
initializes the option.

#include <netinet/ip6.h>

int inet6_opt_finish(
void *extbuf, size_t extlen, int prevlen);

D.3.3.1 Parameters

• extbuf

Points to a buffer that contains an extension header. This is either a valid
pointer or a NULL pointer.

• extlen

Specifies the length of the extension header to finish initializing. A valid
value is any number greater than or equal to 0.

• prevlen

Specifies the length of the existing extension header. Obtain this value from
a prior call to inet6_opt_init() or inet6_opt_append().

D.3.3.2 Description
The inet6_opt_finish() function when called with extbuf as a NULL pointer
and extlen as 0, returns the total number of bytes in an extension header,
including final padding.

If you specify extbuf as a valid pointer and a valid extlen parameter, the
function returns the same information as in the previous case, increments the
buffer pointer, and verifies that the buffer is large enough to hold the header.

D.3.3.3 Return Values
Upon successful completion, the inet6_opt_finish() function returns the total
number of bytes in an extension header, including padding.

Upon failure, it returns a -1.

D.3.4 The inet6_opt_get_val Call
Extracts data items from the data portion of an IPv6 option.

#include <netinet/ip6.h>

int inet6_opt_get_val(
void *databuf, size_t offset, void *val, int vallen);

D–10 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.3 Socket Calls to Build and Examine IPv6 Options Headers

D.3.4.1 Parameters

• databuf

Points to a buffer that contains an extension header. This is a pointer
returned by a call to inet6_opt_find() or inet6_opt_next().

• offset

Specifies the location in the data portion of the option from which to extract
the data. You can access the first byte after the option type and length by
specifying the offset of 0.

• val

Points to a destination for the extracted data.

• vallen

Specifies the length of the data, in bytes, to be extracted.

D.3.4.2 Description
The inet6_opt_get_val() function copies data items from data buffer databuf
beginning at offset to the location val. In addition, it returns the offset for the
next data field to assist you in extracting option content that has multiple fields.

Make sure that each field is aligned on its natural boundaries.

D.3.4.3 Return Values
Upon successful completion, the inet6_opt_get_val() unction returns the offset
for the next field in the data buffer.

Upon failure, it returns a -1.

D.3.5 The inet6_opt_init Call
Returns the length of an IPv6 extension header with no options and initializes
the header.

#include <netinet/ip6.h>

int inet6_opt_innit(void *extbuf, size_t extlen);

D.3.5.1 Parameters

• extbuf

Points to a buffer that contains an extension header. This is either a valid
pointer or a NULL pointer.

• extlen

Specifies the length of the extension header to initialize. Valid values are 0
and any number that is a multiple of 8.

D.3.5.2 Description
The inet6_opt_init() unction when called with extbuf as a NULL pointer and
extlen as 0, returns the number of bytes in an extension header that has no
options.

If you specify extbuf as a valid pointer and extlen as a number that is a multiple
of 8, the function returns the same information as in the previous case, initializes
the extension header, and sets the length field.

Advanced IPv6 Programming Socket Interface D–11

Advanced IPv6 Programming Socket Interface
D.3 Socket Calls to Build and Examine IPv6 Options Headers

Return Values

Upon successful completion, the inet6_opt_init() function returns the number
of bytes in an extension header with no options.

Upon failure, it returns a -1.

D.3.6 The inet6_opt_next Call
Parses received option extension headers.

#include <netinet/ip6.h>

int inet6_opt_next(
void *extbuf, size_t extlen, int prevlen, uint8_t *typep,
size_t *lenp, void **databufp);

D.3.6.1 Parameters

• extbuf

Points to a buffer that contains an extension header.

• extlen

Specifies the length, in bytes, of the extension header.

• prevlen

Specifies the location in the extension header of an option. Valid values are
either 0 for the first option or the length returned from a previous call to
either inet6_opt_next() or inet6_opt_find().

• typep

Points to the type of the option found.

• lenp

Points to the length of the option found.

• databufp

Points to the option data.

D.3.6.2 Description
The inet6_opt_next() function parses a received option extension header and
returns the next option. In addition, it returns an offset to the next option that
you specify in the prevlen parameter to subsequent calls to inet6_opt_next().

This function does not return any PAD1 or PADN options.

D.3.6.3 Return Values
Upon successful completion, the inet6_opt_next() function returns the offset for
the next option in the data buffer.

Upon failure, it returns a -1.

D.3.7 The inet6_opt_set_val Call
Inserts data items into the data portion of the IPv6 option.

#include <netinet/ip6.h>

int inet6_opt_set_val(void *databuf, size_t offset, void *val, int vallen);

D–12 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.3 Socket Calls to Build and Examine IPv6 Options Headers

D.3.7.1 Parameters

• databuf

Points to a buffer that contains an extension header. This is a pointer
returned by a call to inet6_opt_append().

• offset

Specifies the location in the data portion of the option into which to insert
the data. You can access the first byte after the option type and length by
specifying the offset of 0 (zero).

• val

Points to the data to be inserted.

• vallen

Specifies the length of the data, in bytes, to be inserted.

D.3.7.2 Description
The inet6_opt_set_val() function copies data items at the location val into a
data buffer databuf beginning at offset. In addition, it returns the offset for the
next data field to assist you in composing content that has multiple fields.

Make sure that each field is aligned on its natural boundaries.

D.3.7.3 Return Values
Upon successful completion, the inet6_opt_set_val() function returns the offset
for the next field in the data buffer.

Upon failure, it returns a -1.

D.4 Socket Calls to Build and Examine IPv6 Routing Headers
The socket call used to build and examine IPv6 routing headers are:

• inet6_rth_add

• inet6_rth_getaddr

• inet6_rth_init

• inet6_rth_reverse

• inet6_rth_segments

• inet6_rth_space

D.4.1 The inet6_rth_add Call
Adds an IPv6 address to the routing header under construction.

#include <netinet/ip6.h>

int inet6_rth_add(void *bp, const struct in6_addr *addr);

D.4.1.1 Parameters

• bp

Points to a buffer that is to contain an IPv6 routing header.

• addr

Points to an IPv6 address to add to the routing header.

Advanced IPv6 Programming Socket Interface D–13

Advanced IPv6 Programming Socket Interface
D.4 Socket Calls to Build and Examine IPv6 Routing Headers

D.4.1.2 Description
The inet6_rth_add() function adds IPv6 address to the end of the routing
header under construction. The address pointed to by addr cannot be either an
IPv6 V4-mapped address or an IPv6 multicast address.

The function increments the ip60r_segleft member in the ip6_rthdr0
structure. The ip6_rthdr0 structure is defined in netinet/ip6.h.

Only routing header type 0 is supported.

D.4.1.3 Return Values
Upon successful completion, the inet6_rth_add() function returns 0 (zero).

Upon failure, it returns a -1.

D.4.2 The inet6_rth_getaddr Call
Retrieves an address for an index from an IPv6 routing header.

#include <netinet/ip6.h>

struct in6_addr *inet6_rth_getaddr(const void *bp,int index);

D.4.2.1 Parameters

• bp

Points to a buffer that contains an IPv6 routing header.

• index

Specifies a value that identifies a position in a routing header for a
specific address. Valid values range from 0 to the return value from
inet6_rth_segments() minus 1.

D.4.2.2 Description
The inet6_rth_getaddr() function uses a specified index value and
retrieves a pointer to an address in a Routing header specified by bp. Call
inet6_rth_segments() before calling this function in order to determine the
number of segments (addresses) in the routing header.

D.4.2.3 Return Values
Upon successful completion, the inet6_rth_getaddr() function returns a pointer
to an address.

Upon failure, it returns a NULL pointer.

D.4.3 The inet6_rth_init Call
Initializes an IPv6 routing header buffer.

#include <netinet/ip6.h>

void inet6_rth_init(void *bp, int bp_len, int type, int segments);

D.4.3.1 Parameters

• bp

Points to a buffer that is to contain an IPv6 routing header.

• bp_len

Specifies the length, in bytes, of the buffer.

• type

D–14 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.4 Socket Calls to Build and Examine IPv6 Routing Headers

Specifies the type of routing header. The valid value is IPV6_RTHDR_TYPE_0
for IPv6 routing header type 0.

• segments

Specifies the number of segments or addresses that are to be included in the
routing header. The valid value is from 0 to 127, inclusive.

D.4.3.2 Description
The inet6_rth_init() function initializes a buffer and buffer data for an
IPv6 routing header. The function sets the ip60r_segleft, ip6r0_nxt, and
ip6r0_reserved members in the ip6_rthdr0 structure to zero. In addition, it
sets the ip6r0_type member to type and sets the ip6r0_len member based in the
segments parameter. (See RFC 2460 for a description of the actual value.) The
ip6_rthdr0 structure is defined in netinet/ip6.h.

The application must allocate the buffer. Use the inet6_rth_space() function to
determine the buffer size.

Use the returned pointer as the first argument to the inet6_rth_add() function.

D.4.3.3 Return Values
Upon successful completion, the inet6_rth_init() function returns a pointer to
the buffer that is to contain the routing header.

If the type is not supported, the bp is a null, or the number of bp_len is invalid,
the function returns a NULL pointer.

D.4.4 The inet6_rth_reverse Call
Reverses the order of addresses in an IPv6 routing header.

#include <netinet/ip6.h>

int inet6_rth_reverse(const void *in, void *out);

D.4.4.1 Parameters

• in

Points to a buffer that contains an IPv6 routing header.

• out

Points to a buffer that is to contain the routing header with the reversed
addresses. This parameter can point to the same buffer specified by the in
parameter.

D.4.4.2 Description
The inet6_rth_reverse() function reads an IPv6 routing header and writes a
new routing header, reversing the order of addresses in the new header. The in
and out parameters can point to the same buffer.

The function sets the ip60r_segleft member in the ip6_rthdr0 structure to the
number of segments (addresses) in the new header.

The ip6_rthdr0 structure is defined in netinet/ip6.h.

Advanced IPv6 Programming Socket Interface D–15

Advanced IPv6 Programming Socket Interface
D.4 Socket Calls to Build and Examine IPv6 Routing Headers

D.4.4.3 Return Values
Upon successful completion, the inet6_rth_reverse() function returns 0.

Upon failure, it returns a -1.

D.4.5 The inet6_rth_segments Call
Returns the number of segments (addresses) in an IPv6 routing header.

#include <netinet/ip6.h>

int inet6_rth_segments(const void *bp);

Parameters

• bp

Points to a buffer that contains an IPv6 routing header.

D.4.5.1 Description
The inet6_rth_segments() function returns the number of segments (or
addresses) in an IPv6 routing header.

D.4.5.2 Return Values
Upon successful completion, the inet6_rth_segments() function returns the
number of segments, 0 (zero) or greater than 0.

Upon failure, it returns a -1.

D.4.6 The inet6_rth_space Call
Returns the number of bytes required for an IPv6 routing header.

#include <netinet/ip6.h>

size_t inet6_rth_space(int type, int segments);

D.4.6.1 Parameters

• type

Specifies the type of routing header. The valid value is IPV6_RTHDR_TYPE_0
for IPv6 routing header type 0.

• segments

Specifies the number of segments or addresses that are to be included in the
routing header. The valid value is from 0 to 127, inclusive.

D.4.6.2 Description
The inet6_rth_space() function determines the amount of space, in bytes,
required for a routing header. Although the function returns the amount of space
required, it does not allocate buffer space. This enables the application to allocate
a larger buffer.

If the application uses ancillary data, it must pass the returned length to
CMSG_LEN() to determine the amount of memory required for the ancillary data
object, including the cmsghdr structure.

Note

If an application wants to send other ancillary data objects, it must
specify them to sendmsg() as a single msg_control buffer.

D–16 Advanced IPv6 Programming Socket Interface

Advanced IPv6 Programming Socket Interface
D.4 Socket Calls to Build and Examine IPv6 Routing Headers

D.4.6.3 Return Values
Upon successful completion, the inet6_rth_space() function returns the length,
in bytes, of the routing header and the specified number of segments.

If the type is not supported or the number of segments is invalid for the type of
routing header, the function returns 0.

Advanced IPv6 Programming Socket Interface D–17

