HP Open Source Security for OpenVMS
Volume 3: Kerberos

Kerberos Version 2.0 for OpenVMS, based on MIT Kerberos V5 Release 1.2.6

OpenVMS Alpha Version 7.2-2 or higher
OpenVMS VAX Version 7.3

This is a new manual.

O)

invent

Manufacturing Part Number: AA-RUEBA-TE
September 2003

© Copyright 2003 Hewlett-Packard Development Company, L.P.

Legal Notice

Kerberos™ is a trademark of the Massachusetts Institute of Technology.
UNIX® is a registered trademark of The Open Group in the U.S. and/or other countries.
All other product names mentioned herein may be trademarks of their respective companies.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

Proprietary computer software. Valid license from HP required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

See Appendix A Open Source Notices for information regarding certain open source code included in this
product.

The HP OpenVMS documentation set is available on CD-ROM.
ZK6666

Contents

1. Introduction to Kerberos

Kerberos Terminologyt e e e e e 25
Understanding Kerberost e e e e 26
Realms. . ..o 27
Security Limitations in Kerberos. i e 27
Kerberos Componentsttt e e e e 28
KD C . . it 28
Authentication Service e 29
Ticket-Granting Serviceottt e e e 29
The Kerberos Database e e e e 29
Kerberos Utility Programs. it e e e e e e 29

2. Installation and Configuration

Prerequisites e e e 31
Downloading the Kit e 31
Expanding the Kit e e 32
Installing and Configuring Kerberos on OpenVMS Version 7.3-2 and Higher 32
Updating and Configuring Kerberos on OpenVMS Version 7.3-1............ ..., 35
Installing and Configuring Kerberos on OpenVMS Version 7.2-2and 7.3....................... 39

3. Kerberos Client Programs

User Client Programst e et e e e e e e e 45
RNt . .o e e 45
3] 47
RAEStrOy . . . e e e 48
RPASSWA . . . e e e e 48

Administrative Client Programs. i e e e 49
kadmin and kadmin_local e 49
KA _util . . . e 50
5 03) 53

4. Kerberos Programming Concepts

Overview of Building a Kerberos Application on OpenVMS 57
Compiling a Kerberos Program on OpenVMS 57
Linking a Kerberos Program on OpenVMS. i 57

Kerberos Example Programs. e 58
DCL Example Programs.t e e e e 58
GMAKE Example Programsttt e e 60

5. GSSAPI (Generic Security Services Application Programming Interface)

gss_accept_sec_context — Establish a security context 66
C ProtOty e . . oo oo e e e e 66
AT gUM NS, 66
DS iption e e e 68
Return Values oo 69

gss_acquire_cred — Acquire credential handle 71

Contents

C ProtOty e . . o oo e e e e 71
AT UM NS, o e e 71
DS iption e e e 72
Return Valueso e e e e 72
gss_add_cred — Construct credentials incrementally................. 73
G ProtOty e . . oo oo e e e 73
AT UM NS, e 73
DS iption e e e 74
Return Values e e 75
gss_add_oid_set_member — Add an object identifiertoaset.............., 76
LB o 0774 1= 76
AT UM NS, e e 76
DS iPtion e e e 76
Return Values e e e e 76
gss_canonicalize_name — Convert internal name to internal mechanism name 77
C ProtOty e . . oo e e e e 77
AT UM NS,o e e 77
B0 1T o (o) o 77
Return Values e e e 77
gss_compare_name — Allow application to compare two internal names 78
G ProtOty e . . o oo e e 78
AT UM NS, e 78
DS iption e e e e 78
Return Values e e 78
gss_context_time — Check how much longer contextisvalid................................. 79
C ProtOty e . . oo oo e e e 79
AT UM NS e e 79
DS iption e e 79
Return Valueso e 79
gss_create_empty_oid_set — Create a set containing no object identifiers 80
C ProtOty e . . oo oo e e e 80
AT gUM NS, 80
DS eI PtIOn . . . o 80
Return Values e e 80
gss_delete_sec_context — Delete a security context 81
(20 5 0] 0172 o 1< OO 81
AT gUM NS, 81
DS eI PtIOn . . . o 81
Return Values o e e e e 81
gss_display_name — Provide textual representation of opaque internal name 82
L2 25 0] 70172 o 1< OO 82
AT gUM NS, 82
DS eI PtIOn . . .o 82
Return Values o e e e 82
gss_display_status — Convert GSSAPI status code to text for userdisplay 83
{20 5 0] 0172 o 1< O 83

Contents

AT UM NS, e e 83
B 1T o (o) o 83
Return Values e e e 84
gss_duplicate_name — Create a copy of an internalname................................... 85
LB o 0772 1= 85
AT UM NS, e e 85
B 1T o (o) o 85
Return Values e e e 85
gss_export_name — Convert an internal mechanism name to export form...................... 86
L o 0 0774 1= 86
AT UM NS, e e e 86
DS iPtion e e e 86
Return Values e e e 86
gss_export_sec_context — Transfer a security context to another process 87
C ProtOty e . . o oo e e e e 87
AT UM NS, e e e 87
B 1T o 1o o 87
Return Valueso e e e 87
gss_get_mic — Generate a cryptographic MIC foramessage., 88
C ProtOty e . . oo oo e e e 88
AT UM NS,o e 88
DS iPtiono e e e 88
Return Valueso e e 88
gss_import_name — Convert a printable string to an internal form 90
C ProtOty e .« . oo oo e e e 90
AT UM NS,o e 90
DS iption e e e 90
Return Values e e e 90
gss_import_sec_context — Import a transferred context 91
G ProtOty e . . oo oo e e e 91
AT gUM NS, 91
DS iption e e e 91
Return Valueso e e e 91
gss_indicate_mechs — Allow an application to determine which security mechanisms are available. 92
L2 5 0] 70172 o 1< S O 92
AT gUM NS, 92
DI PtIOn . . . o 92
Return Valueso e e e 92
gss_init_sec_context — Establish a security context. 93
L2 5 0] 701 72 o 1< SO 93
AT gUM NS, 93
DI PtIOn . . . o 96
Return Values e e e 97
gss_inquire_context — Extract security context information 99
(20 5 0] 701772 o 1< OO 99
AT gUM NS 99

Contents

DS iPtion e e e e 101
Return Values e e e 101
gss_inquire_cred — Provide calling application with information about a credential 102
C ProtOty e . . oo oo e e e e 102
AT UM NS, e e 102
DS iPtion e e 102
Return Values e e 102
gss_inquire_cred_by_mech — Obtain per-mechanism information about a credential............ 104
G ProtOty e . o o oo e e e e e 104
AT UM NS, e e e e 104
DS iPtion e e 104
Return Values e 105
gss_inquire_names_for_mech — Return set of supported nametypes 106
L o 0] 774 1= 106
AT UM NS, e e e e 106
DS iption e e e 106
Return Values e e e 106
gss_process_context_token — Pass a security context to the security service................... 107
G Prot Oty e . . oo oo e e e e 107
AT UM NS, e e e 107
DS iption e e e 107
Return Values 107
gss_release_buffer — Free storage associated withabuffer................................. 108
C ProtOty e . o o oo e e e 108
AT UM NS, e e e 108
DS iption e e e e 108
Return Values e e e 108
gss_release_cred — Mark a credential fordeletion 109
C IOt Oty e . o oo e e e 109
AT gUM NS, 109
DS iption e e e 109
Return Values e e 109
gss_release_name — Free storage associated with an internal name that was allocated by a GSSAPI
TOUBIMIE. . . .ttt e e e e e 110
L2 5 0] 01772 o 1< S 110
AT gUM NS, 110
DS CrIPtIon . .. 110
Return Values e e 110
gss_release_oid_set — Free storage associated with a gss_OID_setobject 111
L2 5 0] 01772 o 1= S 111
AT gUM NS 111
DI PtIOn . . . 111
Return Values e e 111
gss_test_oid_set_member — Determine whether an object identifier is a member of the set 112
L2 5 0] 01772 o 1< S 112
AT gUM NS, 112

Contents

DS iPtion e 112
Return Valueso 112
gss_unwrap — Verify a message with attached MIC and decrypt message content 113
LB o 7] 772 1= 113
AT UM NS, e e 113
DS iPtion e e e 113
Return Values oo 113
gss_verify_mic — Check that a cryptographic MIC fits the applied message 115
G Prot Oty e . o oo oo e e e 115
AT UM NS, e e e 115
DS iPtion e e 115
Return Valueso 115
gss_wrap — Attach a MIC to a message and encrypt the message 117
G ProtOty e . o oo oo e e e 117
AT UM NS, e e 117
DS iption e e e 117
Return Valueso 118
gss_wrap_size_limit — Check expected size of wrapped output............. 119
LB o 70774 1= 119
AT UM NS,o e e e 119
DS iPtion e e e 119
Return Valueso 120

6. KRB5 (Kerberos V5) Application Programming Interface

krb5_425_conv_principal — Convert a Kerberos V4 principal name to V5 format............... 122
G ProtOty e . . oo oo e e e e 122
AT UM NS, e e e 122
DS iPtion e e 122
Return Values e 122

krb5_address_compare — Compare two addressesttt e 123
LB o 7] 774 1= 123
AT UM NS, e e 123
DS iption e e 123
Return Values e 123

krb5_address_order — Return an ordering of two addresses 124
LB o 70772 1= 124
AT UM NS, e e e 124
DS iption e e 124
Return Values e e 124

krb5_address_search — Search for address in address list. 125
G ProtOty e . o oot e e e e 125
AT gUM NS, 125
DS CrIPtIon 125
Return Values e e 125

krb5_aname_to_localname — Convert a principal nametoalocalname 126
L2 5 0] 1772 o 1= S 126

Contents

AT UM NS, e e 126
DS P tion e e 126
Return Values e 126
krb5_auth_con_free — Free auth_context i 127
G Prot Oty e . o oot e e e e e 127
AT UM NS, e e 127
DS iption e e 127
Return Values e e e 127
krb5_auth_con_init — Initialize the auth_context 128
G ProtOty P . o oo oo e e e e 128
AT UM NS, e e e 128
DS iPtion e e 128
Return Values e e 128
krb5_auth_con_getaddrs — Retrieve address fields from the auth_context 129
L o 0 7] 774 1= 129
AT UM NS, e e e 129
DS iPtion e e e 129
Return Values e 129
krb5_auth_con_getauthenticator — Retrieve authenticator used during mutual authentication ... 130
LB o 70772 1= 130
AT UM NS, e e e 130
DS iption e e 130
Return Values e e 130
krb5_auth_con_getflags — Retrieve the flags in auth_context............................... 131
C ProtOty e . o oo oo e e e 131
AT UM NS, e e e 131
DS iPtion e e e 131
Return Values e 131
krb5_auth_con_getkey — Retrieve keyblock from auth_context 132
C ProtOty e . o oo e e 132
AT gUM NS 132
DS iption e e e e 132
Return Values 132
krb5_auth_con_getlocalseqnumber — Retrieve and store the local sequence number 133
L2 5 0] 1772 o 1< S 133
AT gUM NS, 133
DS eI PtIon . . . 133
Return Values e e 133
krb5_auth_con_getlocalsubkey — Retrieve the local_subkey keyblock from auth_context 134
L2 5 0] 01772 o 1< S 134
AT gUM NS 134
DI PtIon 134
Return Values e e 134
krb5_auth_con_getremoteseqnumber — Retrieve and store the remote sequence number 135
L2 5 0] 01772 o 1< S 135
AT gUM NS, 135

Contents

DS iPtion e 135
Return Values e e e 135
krb5_auth_con_getremotesubkey — Retrieve the remote_subkey keyblock from auth_context 136
LB o 7] 772 1= 136
AT UM NS, e e 136
DS iPtion e e e 136
Return Values e e 136
krb5_auth_con_setaddrs — Set address fields in auth_context 137
G Prot Oty e . o oo oo e e e 137
AT UM NS, e e e 137
DS iPtion e e 137
Return Values e e 137
krb5_auth_con_setflags — Set the flags in auth_context 138
G ProtOty e . . oo oo e e e e 138
AT UM NS, e e 138
DS iption e e e 138
Return Values e e 138
krb5_auth_con_setports — Set port fields in the auth_context 139
LB o 70774 1= 139
AT UM NS,o e e e 139
DS iPtion e e e 139
Return Values e e e 139
krb5_auth_con_setrcache — Set the replaycache, 140
LB o 7] 772 1= 140
AT UM NS, e e e 140
DS iption e e e 140
Return Values e e 140
krb5_auth_con_setuseruserkey — Set keyblock field in auth_context to temporary key 141
G ProtOty e . o oo oo e e e e 141
AT gUM NS, 141
DS Cription e e 141
Return Values e 141
krb5_build_principal — Build a principalname e 142
L2 5 0] 1772 o 1< SO 142
AT gUM NS, 142
DS CrIPtIOn . . . o 142
Return Values e e 142
krb5_build_principal_ext — Build a principal name extension, 143
L2 5 0] 01772 o 1< S 143
AT gUM NS, e 143
DS CrIPtIon . .. 143
Return Values e e e 143
krb5_cc_close — Close the credentialscache i . 144
L2 5 0] 1772 o 1< S OO 144
AT gUM NS 144
DS CrIPtion 144

Contents

Return Values e e 144
krb5_cc_default — Resolve the default credentials cachename.............................. 145
L o 0 7] 774 1= 145
AT UM NS, e e 145
DS iPtion e e e 145
Return Values e 145
krb5_cc_default_name — Return the name of the default credentials cache.................... 146
L o 70774 1= 146
AT UM NS, e e e 146
DS iPtion e e 146
Return Values e e 146
krb5_cc_destroy — Destroy a credentialscache. e 147
G ProtOty e . o oo oo e e e 147
AT UM NS, e e e 147
DS iPtion e e e 147
Return Values e e 147
krb5_cc_end_seq_get — Finish processing credentials cache entries............... 148
G Prot Oty e . o o oo e e e e e 148
AT UM NS, e e e 148
DS iPtion e e e 148
Return Values e 148
krb5_cc_gen_new — Generate a new credentials cache identifier 149
G ProtOty e . o o oo e e e 149
AT UM NS, e e e 149
DS iption e e e 149
Return Values e 149
krb5_cc_get_name — Return the name of the credentialscache 150
G ProtOty e . o oo oo e e e e 150
AT gUM NS, 150
DS iption e e e 150
Return Values e e e 150
krb5_cc_get_principal — Retrieve the primary principal of the credentials cache 151
L2 5 0] 1772 o 1= S 151
AT gUM NS, 151
DI PtIOn 151
Return Values o e e e 151
krb5_cc_initialize — Create/refresh a credentialscache............ 152
L2 5 0] 01772 o 1< S 152
AT gUM NS 152
DS CrIPtIon . .. o 152
Return Values e e 152
krb5_cc_next_cred — Fetch the next credentialsentry........... 153
L2 5 0] 01772 o 1= S 153
AT gUM NS, 153
DS CrIptIon . .. 153
Return Values e e 153

10

Contents

krb5_cc_remove_cred — Remove credentials from the credentialscache 154
G ProtOty e . . oo oo e e e e 154
AT UM NS, e e 154
DS iPtion e e 154
Return Values e e 155

krb5_cc_resolve — Resolve a credentials cachename...................... 156
C ProtOtY e . o oo oo e e e e 156
AT UM NS, e e e 156
DS iPtion e e 156
Return Values e e 156

krb5_cc_retrieve_cred — Search the cache for a credential and return it iffound 157
G ProtOty e . . oo oo e e e e 157
AT UM NS, e e e 157
DS iPtion e e e 158
Return Values e e 158

krb5_cc_set_flags — Set the flags on the credentialscache 159
LB 7] 772 1= 159
AT UM NS, e e 159
DS iption e e e 159
Return Values e e e 159

krb5_cc_start_seq_get — Start sequential read of cached credentials......................... 160
C ProtOty e . o oo oo e e e e 160
AT UM NS, e e e 160
DS iption e e 160
Return Values e 160

krb5_cc_store_cred — Store a credential in the credentialscache 161
G Prot Oty e . o o oo e e e 161
AT UM NS, e e e 161
DS iption e e 161
Return Values e 161

krb5_copy_addresses — Copy Kerberos addressesco i, 162
G ProtOty e . o oo oo e e e 162
AT gUM NS, 162
DS eI PtIOn 162
Return Values o e e e 162

krb5_copy_authdata — Copy a Kerberos authdata structure. 163
L2 5 0] 01772 o 1< S 163
AT gUM NS, 163
DS PtIon . ..o 163
Return Values o e e e 163

krb5_copy_authenticator — Copy an authenticator structure 164
L2l 5 0] 01772 o 1< S 164
AT gUM NS 164
DS eI PtIOn 164
Return Values e e 164

krb5_copy_checksum — Copy a checksum structure. 165

11

Contents

L o 7774 1= 165
AT UM NS, e e 165
DS iPtion . .. o e e 165
Return Valueso 165
krb5_copy_creds — Copy a credentials structure i 166
G Prot Oty e . o oo oo e e e e 166
AT UM NS, e e 166
DS iption e e e 166
Return Valueso e 166
krb5_copy_data — Copy a Kerberos data structure 167
L o 7] 772 1= 167
AT UM NS, e e e 167
DS iption e e 167
Return Values o 167
krb5_copy_keyblock — Copy a keyblock. e 168
C ProtOty e . . o oo e e e 168
AT UM NS, e e 168
DS iPtion e e 168
Return Values oo 168
krb5_copy_keyblock_contents — Copy a keyblock’s contents 169
G ProtOty e . . oo oo e e e 169
AT UM NS,o e e e 169
DS iption e e e 169
Return Valueso 169
krb5_copy_principal — Copy a principal structure 170
G ProtOty e . o oot e e e 170
AT UM NS, e e 170
DS iption e 170
Return Valueso 170
krb5_copy_ticket — Copy a Kerberos ticket structure. 171
C IOt Oty e . o oo oo e e e e 171
AT gUM NS, 171
DS eI PtIon 171
Return Values e 171
krb5_free_addresses — Free addresses allocated by krb5_copy_addresses..................... 172
L2 5 0] 1772 o1 S 172
AT gUM NS 172
DS CrIPtIon 172
Return Values o e 172

krb5_free_ap_rep_enc_part — Free subkey and other data allocated by krb5_rd_rep or krb5_send_auth
173

L2 5 0] 1772 o 1< S 173
AT gUM NS 173
DS CrIPtIon . .. 173
Return Values e 173
krb5_free_authdata — Free an authdata structure. 174

12

Contents

G ProtOty P . o oo oo e e e 174
AT UM NS, e e 174
DS iPtion e e 174
Return Values e e e 174
krb5_free_authenticator — Free authenticator storage 175
C ProtOty e . o oo oo e e e e 175
AT UM NS, e e e 175
DS iPtion e e e 175
Return Values e 175
krb5_free_checksum — Free achecksum. 176
L o 7] 774 1= 176
AT UM NS, e e e 176
DS iPtion e e 176
Return Values e e 176
krb5_free_context — Free a context structure. 177
G ProtOty e . . oo oo e e e e 177
AT UM NS, e e e 177
DS iption e e 177
Return Values e 177
krb5_free_cred_contents — Free credential structures., 178
LB o 7] 772 1= 178
AT UM NS, e 178
DS iption e e 178
Return Values e 178
krb5_free_creds — Free credentials e 179
G ProtOty e . o oo oo e 179
AT UM NS, e e 179
DS iPtion e e e 179
Return Values e e 179
krb5_free_data — Free storage associated with a krb5_dataobject 180
C ProtOty e . o oot e e e 180
AT gUM NS, 180
DS iption e e e 180
Return Values e 180
krb5_free_error — Free error information 181
L2 5 0] 1772 o 1< S 181
AT gUM NS, 181
DS eI PtIon . .. o 181
Return Values e e 181
krb5_free_host_realm — Free storage allocated by krb5_get_host_realm...................... 182
L2 5 0] 1772 o 1< S 182
AT gUM NS 182
DS eI PtIon . .. o 182
Return Values e e 182
krb5_free_keyblock — Free keyblock memory 183
L2 5 0] 1772 o 1< SO 183

13

Contents

AT UM NS, e e 183
DS P tion e e 183
Return Values oo 183
krb5_free_principal — Free the pwd_data allocated by krb5_copy_principal 184
G ProtOty e . o oo oo e e e e 184
AT UM NS, e e 184
DS iption e e 184
Return Values e e e 184
krb5_free_tgt_creds — Free TGT credentials. i, 185
L o 7] 774 1= 185
AT UM NS, e e e 185
DS iPtion e e 185
Return Values 185
krb5_free_ticket — Free ticket allocated by krb5_copy_ticket 186
G ProtOty e . o o oo e e e e e 186
AT UM NS, e e 186
DS iPtion e e 186
Return Valueso 186
krb5_get_credentials — Get an additional ticket for theclient 187
LB o 070772 1= 187
AT UM NS, e e e 187
DS iption e e 187
Return Values o 188
krb5_get_default_realm— Retrieve the defaultrealm 189
G Prot Oty e . o oot e e e 189
AT UM NS, e e e e 189
DS iption e e e 189
Return Values o 189
krb5_get_host_realm — Get the Kerberos realm names forahost 190
G ProtOty e . o oo e e e 190
AT gUM NS 190
DS iption e e e 190
Return Valueso 190
krb5_get_message — Convert an error code into the string representation 191
L2 5 0] 1772 o 1< S 191
AT gUM NS, 191
DI PtIon . .. 191
Return Values e 191
krb5_get_server_rcache — Create a replay cache for serveruse 192
L2 5 0] 701772 o 1< S 192
AT gUM NS, 192
DS CrIPtIon . .. 192
Return Values e 192
krb5_init_context — Initialize a Kerberos context structure 193
L2 5 0] 1772 o 1< S 193
AT gUM NS, 193

14

Contents

DS iPtion e 193
Return Values e e e 193
krb5_kt_add_entry — Add an entrytoakeytable 194
G Prot Oty . o o oo e e e e e 194
AT UM NS, e e e 194
DS iPtion e e e 194
Return Values e e e 194
krb5_kt_close — Close akey table i e e e e 195
C IOt Oty . . o oo e e e 195
AT UM NS, e e e 195
DS iption e e 195
Return Values e e 195
krb5_kt_default — Return a handle to the defaultkeytab 196
G ProtOty P . o o oo e e e 196
AT UM NS, e e 196
DS iption e e 196
Return Values e e e 196
krb5_kt_default_name — Get default key tablename 197
G Prot Oty e . . oo oo e e 197
AT UM NS, e e e 197
DS iption e e 197
Return Values e e e 197
krb5_kt_end_seq_get — Complete a series of sequential key table entry retrievals.............. 198
G ProtOty e . o oo oo e e e e e 198
AT UM NS, e e e 198
DS iption e e e 198
Return Values e e 198
krb5_kt_get_entry — Retrieve an entry from thekeytable 199
G ProtOty e . o oo oo e e e e 199
AT gUM NS, 199
DS Cription e e 199
Return Values e 199
krb5_kt_get_name — Get key tablename 200
L2 5 0] 1772 o 1< S 200
AT gUM NS, 200
DS eI PtIon 200
Return Values e e 200
krb5_kt_next_entry — Retrieve the next entry from the keytable 201
L2 5 0] 1772 o 1< S 201
AT gUM NS 201
DS eI PtIon . .. 201
Return Values e e 201
krb5_kt_read_service_key — Retrieve a service key from the key table 202
L2 5 0] 1772 o 1< S 202
AT gUM NS 202
DS CrIPtion 202

15

Contents

Return Values e e 202
krb5_kt_remove_entry — Remove an entry fromakeytable................................ 203
L o 0 7] 774 1= 203
AT UM NS, e e 203
DS iPtion e e e 203
Return Values e 203
krb5_kt_start_seq get — Start a sequential retrieve of key table entries...................... 204
L o 70774 1= 204
AT UM NS, e e e 204
DS iPtion e e 204
Return Values e e 204
krb5_kuserok — Determine whether the local user is authorized tologin..................... 205
G ProtOty e . . oo oo e e e 205
AT UM NS, e e e 205
DS iption e e 205
Return Values e e e 205
krb5_mk_error — Format an error messagettt e 206
C ProtOty e . o o oo e e e 206
AT UM NS, e e e e 206
DS iption e e e 206
Return Values e e 206
krb5_mk_priv — Format a KRB_PRIVmessage 207
G Prot Oty . o o oo e e e 207
AT UM NS, e e e 207
DS iPtion e e e 207
Return Values e e 208
krb5_mk_rep — Format and encrypt an AP_ REPmessage 209
G Prot Oty . . oo oo e e e 209
AT gUMENtS. 209
DS iption e e e 209
Return Values e e 209
krb5_mk_req — Format a KRB_AP_REQ message., 210
L2 5 0] 1772 o 1< SO 210
AT gUM NS e 210
DS eI PtIOn . .. 210
Return Values e 211
krb5_mk_req_extended — Format a KRB_AP_REQ message with additional options............ 212
L2 5 0] 1772 o 1< S 212
AT gUM NS, 212
DI PtIon . .. o 212
Return Values e e 213
krb5_mk_safe — Format a KRB_SAFE message. 214
L2 5 0] 01772 o 1< 214
ArgUMENtS. 214
DI PtIon . .. 214
Return Values e e e 215

16

Contents

krb5_os_localaddr — Return all protocol addresses of thishost. 216
G ProtOty e . . oo oo e e e e 216
AT UM NS, e e 216
DS iPtion e e 216
Return Values e e 216

krb5_parse_name — Convert string principal name to protocol format 217
G ProtOty e . o oo oo e e e e e 217
AT UM NS, e e e 217
DS iPtion e e 217
Return Values e e 217

krb5_principal_compare — Compare two principals.t 218
LB o 7] 772 1= 218
AT UM NS, e e e 218
DS iPtion e e e 218
Return Values e e 218

krb5_read_password — Read a password from the keyboard 219
LB o 7] 774 1= 219
AT UM NS, e e 219
DS iption e e e 219
Return Values e e e 219

krb5_rd_priv — Parse a KRB_PRIVmessagettt 220
G ProtOty e . o o oo e e e e 220
AT UM NS, e e 220
DS iption e e 220
Return Values e 220

krb5_rd_rep — Parse and decrypt an AP_REP message. 221
G Prot Oty e . o o oo e e e e 221
AT UM NS, e e e 221
DS iption e e e 221
Return Values e e 221

krb5_rd_req — Parse a KRB_AP_REQ messagettt 222
L o 0 7] 772 1= 222
AT gUM NS 222
DS eI PtIon . .. o 222
Return Values e e 223

krb5_rd_safe — Parse a KRB_SAFE message i, 224
L2 5 0] 1772 o 1< S 224
AT gUM NS, 224
DS CrIPtIon . .. o 224
Return Values e e 225

krb5_recvauth — Receive authenticated message. i 226
L2 5 0] 1772 o 1< S 226
AT gUM NS, 226
DS eI PtIon . .. 226
Return Values e e 227

krb5_sendauth — Send authenticated message 228

17

Contents

L o 7774 1= 228
AT UM NS, e e 228
DS iPtion . .. o e e 229
Return Valueso 229
krb5_set_default_realm — Sets the defaultrealm 230
LB o 7] 772 1= 230
AT UM NS, e e e 230
DS iPtion e e 230
Return Valueso 230
krb5_sname_to_principal — Generate a full principal name from a servicename............... 231
G ProtOty e . o oo oo e e e e 231
AT UM NS, e e e 231
DS iption e e 231
Return Values o 231
krb5_timeofday — Retrieves the system time of day (in seconds) since local system’s epoch. 232
LB o 70774 1= 232
AT UM NS, e e e 232
DS iption e e 232
Return Valueso 232
krb5_unparse_name — Convert protocol format principal name to string format 233
G ProtOty e . o o oo e e e e 233
AT UM NS, e e 233
DS iption e e 233
Return Valueso 233
krb5_unparse_name_ext — Convert multiple protocol format principal names to string format ... 234
G ProtOty e . . o oo e e e e e 234
AT UM NS, e e e 234
DS iption e e 234
Return Valueso 234
krb5_us_timeofday — Retrieves the system time of day (in seconds and microseconds) 235
G ProtOty e . o oo oo e e e e 235
AT gUM NS, 235
DS CrIPtIOn 235
Return Valueso 235

A. Open Source Notices

Acknowledgements. e e 237
Kerberos Copyright Notice i et e 237
OpenVision Technologies Copyright Notice e 237
University of California Copyright Notice e 238

GlOSSaArY it iiiitiieeeeseesoseesosssssssesssosssssesssssossssssssaasnsassoess24l

T <. B

18

Figure 1-1. Interrelationships Among Kerberos Components

19

Figures

20

Preface

HP Open Source Security for OpenVMS, Volume 3: Kerberos describes how to install, configure, and use
Kerberos Version 2.0 for OpenVMS, which is based on MIT Kerberos V5 Release 1.2.6.

The information in this manual applies to OpenVMS VAX as well as to OpenVMS Alpha.

Intended Audience

This document is for application developers who want to implement the Kerberos protocol that uses strong
cryptography, so that a client can prove its identity to a server (and vice versa) across an insecure network
connection.

Document Structure

This manual consists of the following chapters:

Chapter 1 provides an overview of Kerberos.

Chapter 2 contains installation and configuration instructions.

Chapter 3 includes information about client programs.

Chapter 4 is a programming tutorial about how to use Kerberos in your application.
Chapter 5 is a reference section that includes documentation about the GSSAPI.

Chapter 6 is a reference section that includes documentation about the KRB5 APIs.

Related Documents
The following HP OpenVMS documents are recommended for further information:

e HP Open Source Security for OpenVMS, Volume 1: Common Data Security Architecture
e HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS
e HP OpenVMS Guide to System Security

The following MIT Kerberos documents are available from the Kerberos for OpenVMS web site, and in the
Kerberos Version 2.0 kit in the KRBSROOT: [DOC] directory:

e Kerberos V5 Application Programming Library (LIBRARY . PDF)

e Kerberos V5 Implementer’s Guide (IMPLEMENT . PDF)

¢ Kerberos V5 Installation Guide (INSTALL-GUIDE. PS)

e Kerberos V5 System Administrator’s Guide (ADMIN-GUIDE. PS)

e Kerberos V5 UNIX User’s Guide (USER-GUIDE. PS)

e Upgrading to Kerberos V5 from Kerberos V4 (KRB425-GUIDE. PS)

For additional information about OpenVMS products and services, see the following World Wide Web address:
http://www.hp.com/go/openvms /

For information about downloading the latest version of Kerberos for OpenVMS, see the following World Wide
Web address:

21

http://h71000.www7 .hp.com/openvms/products/kerberos/

For additional information about Kerberos, see the MIT Kerberos web site at the following World Wide Web
address:

http://web.mit.edu/kerberos/www/

Reader's Comments
HP welcomes your comments on this manual.

Please send comments to either of the following addresses:

Internet: openvmsdoc@hp.com

Postal Mail:
Hewlett-Packard Company
OSSG Documentation Group
ZK03-4/U08

110 Spit Brook Road
Nashua, NH 03062-2698

How to Order Additional Documentation

For information about how to order additional documentation, visit the following World Wide Web address:

http://www.hp.com/go/openvms/doc/order/

Conventions

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

Return In examples, a key name in bold indicates that you press that key.

A horizontal ellipsis in examples indicates one of the following possibilities:
— Additional optional arguments in a statement have been omitted.

— The preceding item or items can be repeated one or more times.

— Additional arguments, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O) In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

22

Convention

Meaning

[]

bold type

italic type

UPPERCASE TYPE

Example

numbers

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the
command line.

Bold type represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

In command or script examples, bold text indicates user input.

Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output
(Internal error number), in command lines /PRODUCER=name), and in
command arguments in text (where (dd) represents the predefined par code
for the device type).

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX command and
pathnames, PC-based commands and folders, and certain elements of the C
programming language.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the
following line.

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

23

24

Introduction to Kerberos
Kerberos Terminology

1 Introduction to Kerberos

Kerberos is a network authentication protocol designed to provide strong authentication for client/server
applications by using secret-key cryptography. It was developed at the Massachusetts Institute of Technology
as part of Project Athena in the mid-1980s. Project Athena’s mandate was to explore diverse uses of
computing and to build the knowledge base needed for longer-term strategic decisions about how computers
fit into the MIT curriculum.

Kerberos is the name of the three-headed dog that guarded the gates of Hades in Greek mythology. Cerberus,
who many argue should be the name used, is the Latin name for the equivalent entity in Roman mythology.

Until Kerberos V4, this technology was not available to the general public. Prior versions were for only
internal Project Athena use. Kerberos V5, the current implementation, is the first commercial-ready release.

The Kerberos protocol uses strong cryptography, so that a client can prove its identity to a server (and vice
versa) across an insecure network connection. After a client and server have used Kerberos to prove their
identity, they can also encrypt all of their communications to assure privacy and data integrity.

OpenVMS provides support for both Kerberos clients and servers, beginning with OpenVMS Version 7.3-1.
Kerberos Version 2.0 for OpenVMS is based on MIT Kerberos V5 Release 1.2.6.

Kerberos Terminology

The following are commonly used Kerberos terms and their definitions.

Key Distribution Center (KDC)

The Ticket-Granting Service (T'GS) and the Authentication Server are usually collectively known as the Key
Distribution Center.

Principal Name

A principal is a unique identity to which Kerberos can assign tickets. It is analogous to an OpenVMS user.
The Kerberos database, which performs a function similar to the UAF file on OpenVMS, stores information
about principals.

By convention, a principal name is divided into three parts:
e A primary — For a user, a user name. For a system, the word host.
¢ The instance — An optional string that qualifies the primary.

¢ The realm — Generally, the DNS domain name in uppercase letters.

Realm

The administrative domain that encompasses Kerberos clients and servers is called a realm. Each Kerberos
realm has at least one Kerberos server, zero or more Kerberos slave servers, and any number of clients. The
master Kerberos database for that site or administrative domain is stored on the Kerberos server. Slave
servers have read-only copies of the database that are periodically propagated from the master server.

Chapter 1 25

Introduction to Kerberos
Understanding Kerberos

Secret vs. Private

Secret and private are often used interchangeably. In this manual, it takes two (or more) to share a secret,
therefore a shared DES key is a secret key. A key is private only when no one but its owner knows it.
Therefore, in public key cryptosystems, one has a public and a private key.

Tickets

Kerberos tickets, also known as credentials, are a set of electronic information used to verify your identity.
Kerberos tickets can be stored in a file, or they may exist only in memory.

The first ticket you obtain is a generic Ticket-Granting Ticket (TGT), which is granted upon your initial login
to the Kerberos realm. The TGT allows you to obtain additional tickets that give you permission for specific
services.

Understanding Kerberos

Kerberos performs authentication as a trusted third-party authentication service by using conventional
(shared secret key) cryptography. Kerberos provides a means of verifying the identities of principals, without
relying on authentication by the host operating system, without basing trust on host addresses, without
requiring physical security of all the hosts on the network, and under the assumption that packets traveling
along the network can be read, modified, and inserted at will.

When you integrate Kerberos into an application, it is important to review how and when Kerberos routines
ensure that the application design does not compromise the authentication. For instance, an application is
not secure if it uses Kerberos routines only on initiation of a stream-based network connection and assumes
the absence of any active attackers who might hijack the stream connection.

The Kerberos protocol code libraries, whose API is described in Chapters 5 and 6, can be used to provide
encryption to any application. To add authentication to its transactions, a typical network application adds
one or two calls to the Kerberos library, which results in the transmission of the necessary messages to
achieve authentication.

The two methods for obtaining credentials—the initial ticket exchange and the TGT exchange—use slightly
different protocols and require different API routines. The basic difference an API programmer will see is
that the initial request does not require a TGT. It does require the client's secret key, because the reply is sent
back encrypted in the client's secret key. Usually this request is for a TGT, and TGT-based exchanges are used
from then on. In a TGT exchange, the TGT is sent as part of the request for tickets and the reply is encrypted
in the session key from the TGT. For example, once a user's password is used to obtain a TGT, it is not
required for subsequent TGT exchanges.

The reply consists of a ticket and a session key, encrypted either in the user's secret key (password) or the
TGT session key. The combination of a ticket and a session key is known as a credentials cache. (In Kerberos
V4, a credentials cache was called a ticket file.) An application client can use these credentials to authenticate
to the application server by sending the ticket and an authenticator to the server. The authenticator is
encrypted in the session key of the ticket and contains the name of the client, the name of the server, and the
time the authenticator was created.

In order to verify the authentication, the application server decrypts the ticket using its service key, which is
known only by the application server and the Kerberos server. Inside the ticket, the Kerberos server had
placed the name of the client, the name of the server, a key associated with this ticket, and some additional
information. The application server then uses the ticket session key to decrypt the authenticator, and verifies
that the information in the authenticator matches the information in the ticket and that the timestamp in the

26 Chapter 1

Introduction to Kerberos
Understanding Kerberos

authenticator is recent (to prevent reply attacks). Because the session key was generated randomly by the
Kerberos server and delivered encrypted only in the service key and in a key known only by the user, the
application server can be confident that user is really who he or she claims to be, because the user was able to
encrypt the authenticator in the correct key.

To provide detection of both replay attacks and message stream modification attacks, the integrity of all the
messages exchanged between principals can also be guaranteed by generating and transmitting a
collision-proof checksum of the client's message, keyed with the session key. Privacy and integrity of the
messages exchanged between principals can be secured by encrypting the data to be passed using the session
key.

Realms

The Kerberos protocol operates across organizational boundaries. Each organization that runs a Kerberos
server establishes its own realm. The name of the realm in which a client is registered is part of the client's
name and can be used by the end service to decide whether to honor a request.

By establishing inter-realm keys, the administrators of two realms can allow a client authenticated in the
local realm to use its credentials remotely. The exchange of inter-realm keys (a separate key may be used for
each direction) registers the ticket-granting service of each realm as a principal in the other realm. A client is
then able to obtain a ticket-granting ticket for the remote realm's ticket-granting service from its local realm.
When that ticket-granting ticket is used, the remote ticket-granting service uses the inter-realm key (which
usually differs from its own normal TGS key) to decrypt the ticket-granting ticket and to assure that it was
issued by the client's own TGS. Tickets issued by the remote ticket-granting service will indicate to the end
service that the client was authenticated from another realm.

This method can be repeated to authenticate across multiple realms. To build a valid authentication path to
a distant realm, the local realm must share an inter-realm key with an intermediate realm that
communicates with either the distant realm or yet another intermediate realm.

Realms are typically organized hierarchically. Each realm shares a key with its parent and a different key
with each child. If two realms do not directly share an inter-realm key, the hierarchical organization allows
an authentication path to be easily constructed. If a hierarchical organization is not used, it may be
necessary to consult some database to construct an authentication path between realms.

Although realms are typically hierarchical, intermediate realms may be bypassed to achieve cross-realm
authentication through alternate authentication paths. It is important for the end service to know which
realms were transited when deciding how much faith to place in the authentication process. To make this
easier, a field in each ticket contains the names of the realms that were involved in authenticating the client.

Security Limitations in Kerberos
When you are designing your security application, be aware of the following limitations in Kerberos:

¢ Kerberos does not address denial of service attacks. There are places in the Kerberos protocols where an
intruder can prevent an application from participating in the proper authentication steps. Detection and
solution of such attacks (some of which can appear to be normal failure modes for the system) is usually
best left to the human administrators and users.

¢ Principals must keep their secret keys secret. If an intruder somehow steals a principal's key, it can
masquerade as that principal or impersonate any server to the legitimate principal.

e Password-guessing attacks are not solved by Kerberos. If a user chooses a poor password, it is possible for
an attacker to successfully mount an offline dictionary attack by repeatedly attempting to decrypt, with
successive entries from a dictionary, messages obtained that are encrypted under a key derived from the
user's password.

Chapter 1 27

Introduction to Kerberos
Kerberos Components

Kerberos Components

Figure 1-1 depicts the interrelationship between the various components of Kerberos.

Figure 1-1 Interrelationships Among Kerberos Components
KADMIN, KINIT, KDESTROY,
KERBEROS/ADMIN KLIST, KPASSWD

Kerberos R v |
Client <> Authentication (Registry —
A
Login _
@ '/] Ticket-Granting KDBS_UTIL
Kerberos KDC
Ticket

v

Application
Server KRB$CONFIGURE

VM-1094A-Al

When a client logs in to the realm, an authentication request is sent to the Kerberos Key Distribution Center
(KDC). A Ticket-Granting Ticket (TGT) is returned as the result of authentication. When the client

application starts, the TGT is used to request an application ticket. The application ticket is then sent to the
application server, which verifies the application ticket with the KDC. Normal communication can then begin.

The Kerberos registry can be manipulated in several ways. It is initially created via the KRBSCONFIGURE
command procedure. Other tools used to access the Kerberos information are:

® kadmin — Used for reading or updating the Kerberos registry.
¢ kinit — Creates credentials for a user.

e klist — Displays the existing credentials for a user.

e kdestroy — Deletes a user’s credentials.

¢ kpasswd — Changes a user’s Kerberos password.

¢ kdb5_util — Dumps or loads the Kerberos database for save and restore operations.

KDC

Each Kerberos realm will have at least one Kerberos server. This server, the Key Distribution Center,
contains the Authentication Service, the Ticket-Granting Service, and the master database for Kerberos.
These services are implemented as a single daemon: the KDC (KRB$KRB5KDC).

28 Chapter 1

Introduction to Kerberos
Kerberos Components

Authentication Service

The authentication service handles user authentication, or the process of verifying that principals are
correctly identified. It consists of the security server (or servers) in the KDC (or KDCs), and security clients.

A security client communicates with a security server to request information and operations. The security
server accesses the registry database to perform queries and updates and to validate user logins.

Ticket-Granting Service

Once authenticated, a principal will be granted a TGT and a ticket session key, which gives the principal the
right to use the ticket. This combination of the ticket and its associated key is known as your credentials.

A principal’s credentials are stored in a credentials cache, which is often just a file in the principal’s local
directory tree.

The Kerberos Database

The Kerberos database contains all of the realm’s Kerberos principals, their passwords, and other
administrative information about each principal.

Each KDC contains its own copy of the Kerberos database. The master KDC contains the primary copy of the
database, which it propagates at regular intervals to the slave KDCs. All database changes are made on the
master KDC. Slave KDCs provide ticket-granting services only, with no database administration. This
allows clients to continue to obtain tickets when the master KDC is unavailable.

Kerberos Utility Programs

OpenVMS provides three different versions of each of the Kerberos user interface programs: the original
UNIX® style, a DCL version, and an X Windows version. The DCL interface for the user utilities (kinit,
klist, kdestroy, kpasswd) is invoked by the DCL command:

$ KERBEROS
The DCL interface for the administrative utility (kadmin) is invoked by the DCL command:
$ KERBEROS/ADMIN

Either DCL interface can be modified with an /INTERFACE qualifier to invoke the X Windows version. For
example, the command line for the administrative program is as follows:

$ KERBEROS/ADMIN/INTERFACE=DECWINDOWS
DCL help is available within each of the DCL interfaces.
kadmin

The kadmin program allows for the maintenance of Kerberos principals, policies, and service key tables
(keytabs).

kinit

The kinit program explicitly obtains Kerberos tickets. Similarly, if a user’s Kerberos ticket expires, kinit is
used to obtain a new one.

Chapter 1 29

Introduction to Kerberos
Kerberos Components

klist

The klist program displays the existing tickets for a principal and various details about those tickets,
including expiration time.

kdestroy

The kdestroy program removes all of the tickets for a principal. Because Kerberos tickets can be stolen and
because someone who steals a ticket can masquerade as another principal, Kerberos tickets should be
destroyed when you are away from your computer.

kpasswd

The kpasswd program changes a Kerberos principal’s password. Passwords should be changed periodically.

kdb5_util

The kdb5_util program creates, destroys, dumps, and loads the Kerberos database. It also allows the
creation of a key stash file, which allows a KDC to authenticate itself to the database utilities. Unlike the
Kerberos utility programs (with the exception of kadmin), access to kdb5_util is generally limited to
Kerberos administrators.

kprop

The kprop program propagates the master KDC database to slave KDC servers.

30 Chapter 1

Installation and Configuration
Prerequisites

2 Installation and Configuration

This chapter contains information about installing and configuring Kerberos for OpenVMS.

NOTE For the latest release notes for the current version of Kerberos for OpenVMS, see the Kerberos
for OpenVMS web site at:

http://h71000.www7 .hp.com/openvms/products/kerberos/

Prerequisites

Operating System

HP OpenVMS Alpha Version 7.2-2 or higher, or

HP OpenVMS VAX Version 7.3

TCP/IP Transport

HP TCP/IP Services for OpenVMS Version 5.3 or higher

NOTE If you are running a third-party TCP/IP network product such as MultiNet or TCPware
from Process Software Corporation, contact your provider regarding running Kerberos
Version 2.0 with their TCP/IP network product.

Downloading the Kit

The Kerberos for HP OpenVMS kit is available for the Alphaand VAX platforms as compressed
self-extracting files.

o Kerberos Version 2.0 isincluded in the OpenVMS V7.3-2 operating system distribution media.
Kerberos Version 1.0 isincluded in the OpenVM SV 7.3-1 operating system distribution media. If you
are running OpenVMS Version 7.2-2 or OpenVMS Version 7.3-1, you should download and install
Kerberos Version 2.0 at your earliest opportunity. Kerberos Version 2.0 corrects security
vulnerabilities announced by MIT.

e Todownload the Alphaor VAX kit from the OpenVMS web site, fill out and submit the Kerberos for
OpenV M S regigtration form at the following URL :

http://h71000.www7 .hp.com/openvms/products/kerberos/kerberos_register.html

Chapter 2 31

Installation and Configuration
Expanding the Kit

Expanding the Kit

After you download aKerberos for OpenVM S kit, expand the self-extracting file by entering one of the
following commands, depending on the kit (Alphaor VAX) you download:

$ RUN HP-AXPVMS-KERBEROS-V0200-6-1.PCSI-DCX_AXPEXE ! for Alpha

$ RUN HP-VAXVMS-KERBEROS-V0200-6-1.PCSI_DCX_VAXEXE ! for VAX

At the Decompress into (file specification): prompt, press Return. The system expands the file and
names the decompressed file Hp-AxPVMS-KERBEROS-V0200-6-1 . PCST OF

HP-VAXVMS -KERBEROS-V0200-6-1.Pcs1. Do not rename thisfile.

Installing and Configuring Kerberos on OpenVMS Version 7.3-2 and
Higher

Kerberos Version 2.0 is automatically installed during installation of OpenVMS Version 7.3-2 or during an
upgrade from a previous version of OpenVMS to Version 7.3-2.

If you have not previously configured an earlier version of Kerberos on your system, you must run the
configuration program before starting Kerberos. Example 2-1 shows a configuration log.

Once you have a valid configuration, start Kerberos with the following command:

$ @SYSSSTARTUP:KRBSSTARTUP.COM

Example 2-1 Kerberos Configuration Log on OpenVMS Version 7.3-2
$ @SYS$STARTUP:KRB$CONFIGURE

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 1
Where will the OpenVMS Kerberos 5 KDC be running [system]:
What is the OpenVMS Kerberos 5 default domain [abc.xyz.com]:
What is the OpenVMS Kerberos 5 Realm name [SYSTEM.ABC.XYZ.COM]:

Press Return to continue ...

32 Chapter 2

Installation and Configuration
Installing and Configuring Kerberos on OpenVMS Version 7.3-2 and Higher

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 3

Where will the OpenVMS Kerberos 5 KDC be running [system]:

What is the OpenVMS Kerberos 5 default domain [abc.xyz.com]:
What is the OpenVMS Kerberos 5 Realm name [SYSTEM.ABC.XYZ.COM]:
The type of roles the KDC can perform are:

NO_KDC -- where the KDC will not be run

SINGLE_KDC -- where the KDC is the only one in the realm
MASTER_KDC -- where the KDC is the master of 1 or more other KDCs
SLAVE_KDC -- where the KDC is slave to another KDC

What will be the KDC’s role on this node [SINGLE_KDC]:
Create the OpenVMS Kerberos 5 database [Y]:

Creating OpenVMS Kerberos 5 database

Initializing database ‘krbS$root:[krb5kdc]principal’ for realm
‘SYSTEM.ABC.XYZ.COM',

master key name ‘K/ME@SYSTEM.ABC.XYZ.COM’

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key:

Re-enter KDC database master key to verify:

Priority: info

No dictionary file specified, continuing without one.

Please enter a default OpenVMS Kerberos 5 administrator [SYSTEM]:
Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with password.

Enter password for principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM”:

Re-enter password for principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM”:

Principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM” created.

Priority: info

No dictionary file specified, continuing without one.

WARNING: no policy specified for SYSTEM/admin@SYSTEM.ABC.XYZ.COM; defaulting to no policy
Create OpenVMS Kerberos 5 principals [Y]: N

Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with password.
Priority: info

No dictionary file specified, continuing without one.

KADMIN_LOCAL: Entry for principal kadmin/admin with kvno 3, encryption type Triple
DES cbc mode with HMAC/shal added to keytab WRFILE=KRBSROOT: [KRB5KDC]KADM5.KEYTAB.

KADMIN_LOCAL: Entry for principal kadmin/admin with kvno 3, encryption type DES
cbc mode with CRC-32 added to keytab WRFILE=KRBS$SROOT: [KRB5KDC]KADM5.KEYTAB.

Chapter 2 33

Installation and Configuration
Installing and Configuring Kerberos on OpenVMS Version 7.3-2 and Higher

Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with password.

Priority: info

No dictionary file specified, continuing without one.

KADMIN_LOCAL: Entry for principal kadmin/changepw with kvno 3, encryption type Triple
DES cbc mode with HMAC/shal added to keytab WRFILE=KRBSROOT: [KRB5KDC]KADM5.KEYTAB.

KADMIN_LOCAL: Entry for principal kadmin/changepw with kvno 3, encryption type DES
cbc mode with CRC-32 added to keytab WRFILE=KRBS$SROOT: [KRB5KDC]KADM5.KEYTAB.

Press Return to continue
Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 6

Starting OpenVMS Kerberos Servers (Role: SINGLE_KDC)...
Starting OpenVMS Kerberos server KRBS$SKRB5KDC

$RUN-S-PROC_ID, identification of created process is 00000060
Starting OpenVMS Kerberos server KRBSKADMIND

$RUN-S-PROC_ID, identification of created process is 00000061
Press Return to continue

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: E

34 Chapter 2

Installation and Configuration
Updating and Configuring Kerberos on OpenVMS Version 7.3-1

Updating and Configuring Kerberos on OpenVMS Version 7.3-1

If you previously installed Kerberos Version 1.0 on OpenVMS Version 7.3-1, perform the following steps to
update Kerberos to Version 2.0. Example 2-2 shows an upgrade installation log. Example 2-3 shows a
configuration log.

1. Shut down Kerberos Version 1.0 by executing the SYSSSTARTUP : KRBSSHUTDOWN . COM. (Kerberos Version
1.0 was installed by default when you installed OpenVMS Version 7.3-1.)

2. Create a directory to temporarily hold the upgrade command procedure and kit contents.

3. Set default to the temporary directory.

CAUTION Using a temporary directory is important. If you do not use a temporary directory, you may
lose files in a subsequent cleanup operation.

4. Download OVERLAY_KRB5KIT.COM from the Kerberos for OpenVMS website at
http://h71000.www7 .hp.com/openvms/products/kerberos/.

CAUTION Do not install the OVERLAY_KRB5KIT.COM that is packaged with the Kerberos Version 2.0
kit.

5. Install the Kerberos Version 2.0 kit by executing OVERLAY KRB5KIT.COM.
6. Execute KRBSCONFIGURE.COV, if Kerberos Version 1.0 was not previously configured.

7. Start Kerberos by executing SYS$SSTARTUP : KRBSSTARTUP . COM.

Example 2-2 Kerberos Upgrade Installation Log on OpenVMS Version 7.3-1

Username: system
Password:

Last interactive login on Tuesday, June 3, 2003 11:32 AM
Last non-interactive login on Wednesday, June 4, 2003 03:45 PM

$ @SYSS$STARTUP : KRB$ SHUTDOWN
$ CREATE/DIRECTORY [.OVERLAY]
$ SET DEFAULT [.OVERLAY]

$ @OVERLAY_ KRB5SKIT

Installing an overlay of HP-AXPVMS-KERBEROS-V2.0

$DELETE-W-SEARCHFAIL, error searching for SYSSCOMMON: [SYSLIB]KRBSRTL32.EXE;
-RMS-E-FNF, file not found

%CREATE-I-EXISTS, SYSSCOMMON: [SYSHLP.EXAMPLES.KRB] already exists

The following product has been selected:
HP AXPVMS KERBEROS V2.0 Layered Product

Chapter 2 35

Installation and Configuration
Updating and Configuring Kerberos on OpenVMS Version 7.3-1

Portion done: 0%...100%

OVERLAY of Kerberos V2.0 on top of VMS 7.3-1 is complete.

Example 2-3 Kerberos Configuration Log on OpenVMS Version 7.3-1

NOTE Configure Kerberos Version 2.0 only if Kerberos Version 1.0 was not previously configured.

$ @SYSS$STARTUP: KRB$CONFIGURE

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 1
Where will the OpenVMS Kerberos 5 KDC be running [system]:
What is the OpenVMS Kerberos 5 default domain [abc.xyz.com]:
What is the OpenVMS Kerberos 5 Realm name [SYSTEM.ABC.XYZ.COM]:
Press Return to continue

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 3

Where will the OpenVMS Kerberos 5 KDC be running [system]:
What is the OpenVMS Kerberos 5 default domain [abc.xyz.com]:
What is the OpenVMS Kerberos 5 Realm name [SYSTEM.ABC.XYZ.COM]:
The type of roles the KDC can perform are:

NO_KDC -- where the KDC will not be run

36 Chapter 2

Installation and Configuration
Updating and Configuring Kerberos on OpenVMS Version 7.3-1

SINGLE_KDC -- where the KDC is the only one in the realm
MASTER_KDC -- where the KDC is the master of 1 or more other KDCs
SLAVE_KDC -- where the KDC is slave to another KDC

What will be the KDC’s role on this node [SINGLE_KDC]:
Create the OpenVMS Kerberos 5 database [Y]:

Creating OpenVMS Kerberos 5 database

Initializing database ‘krbS$root:[krb5kdc]principal’ for realm
‘SYSTEM.ABC.XYZ.COM',

master key name ‘K/M@SYSTEM.ABC.XYZ.COM’

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key:

Re-enter KDC database master key to verify:

Priority: info

No dictionary file specified, continuing without one.

Please enter a default OpenVMS Kerberos 5 administrator [SYSTEM]:
Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with password.

Enter password for principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM”:

Re-enter password for principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM”:

Principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM” created.

Priority: info

No dictionary file specified, continuing without one.

WARNING: no policy specified for SYSTEM/admin@SYSTEM.ABC.XYZ.COM; defaulting to no policy
Create OpenVMS Kerberos 5 principals [Y]: N

Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with password.
Priority: info

No dictionary file specified, continuing without one.

KADMIN_LOCAL: Entry for principal kadmin/admin with kvno 3, encryption type Triple
DES cbc mode with HMAC/shal added to keytab WRFILE=KRBSROOT: [KRB5KDC]KADM5.KEYTAB.

KADMIN_LOCAL: Entry for principal kadmin/admin with kvno 3, encryption type DES
cbc mode with CRC-32 added to keytab WRFILE=KRBS$SROOT: [KRB5KDC]KADM5.KEYTAB.

Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with password.

Priority: info

No dictionary file specified, continuing without one.

KADMIN_LOCAL: Entry for principal kadmin/changepw with kvno 3, encryption type Triple
DES cbc mode with HMAC/shal added to keytab WRFILE=KRBSROOT: [KRB5KDC]KADM5.KEYTAB.

KADMIN_LOCAL: Entry for principal kadmin/changepw with kvno 3, encryption type DES
cbc mode with CRC-32 added to keytab WRFILE=KRBS$SROOT: [KRB5KDC]KADM5.KEYTAB.

Press Return to continue
Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration
2 - Edit Client configuration
3 - Setup Server configuration
4 - Edit Server configuration

Chapter 2 37

Installation and Configuration
Updating and Configuring Kerberos on OpenVMS Version 7.3-1

5 - Shutdown Servers
6 - Startup Servers
E - Exit configuration procedure

Enter Option: 6

Starting OpenVMS Kerberos Servers (Role: SINGLE_KDC)...
Starting OpenVMS Kerberos server KRBS$SKRB5KDC

$RUN-S-PROC_ID, identification of created process is 00000060
Starting OpenVMS Kerberos server KRBSKADMIND

$RUN-S-PROC_ID, identification of created process is 00000061
Press Return to continue

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: E
$ @SYS$STARTUP:KRBSSTARTUP

$KRB-I-UPDATE2DO, Kerberos V2.0 will complete its post-installation
procedure.

Delete sysS$Scommon: [sysexelkerberos_vldir_2remove.dir;
and its sub-directories when your Kerberos configuration is complete.

Starting OpenVMS Kerberos Servers (Role: SINGLE_KDC)...

Starting OpenVMS Kerberos server KRBSKRB5KDC

$RUN-S-PROC_ID, identification of created process is 00000425
Starting OpenVMS Kerberos server KRBSKADMIND

$RUN-S-PROC_ID, identification of created process is 00000426
$

38 Chapter 2

Installation and Configuration
Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and
7.3

If you previously installed Kerberos Version 1.0 on OpenVMS Version 7.2-2 or 7.3, perform the following steps
to update Kerberos to Version 2.0. Example 2-4 shows an update installation log on OpenVMS Version 7.2-2.
Example 2-5 shows a configuration log on OpenVMS Version 7.3.

1. Shut down Kerberos Version 1.0, if it was previously installed, by executing
SYS$SSTARTUP : KRBS SHUTDOWN . COM.

2. Remove Kerberos Version 1.0, if it was previously installed, by entering the PRODUCT REMOVE KERBEROS
command. (Do not remove the Kerberos data and directories if you want to preserve your Kerberos V1
configuration.)

3. Install the Kerberos Version 2.0 kit by entering PRODUCT INSTALL KERBEROS.

4. Add @SYS$STARTUP : KRBSSYMBOLS to SYSSMANAGER : SYLOGIN. COM, if Kerberos Version 1.0 was not
previously installed and configured.

5. Execute KRBSCONFIGURE.COV, if Kerberos Version 1.0 was not previously installed and configured.

6. Start Kerberos by executing SYS$SSTARTUP : KRBSSTARTUP. COM.

Example 2-4 Kerberos Update Installation Log on OpenVMS Version 7.2-2

Username: system
Password:

Last interactive login on Tuesday, June 3, 2003 11:12 AM
Last non-interactive login on Wednesday, June 4, 2003 02:30 PM

$ @SYS$STARTUP:KRBS$SHUTDOWN
$ PRODUCT REMOVE KERBEROS

The following product has been selected:
CPQ ALPVMS KERBEROS V1.0 Layered Product

Do you want to continue? [YES]

The following product will be removed from destination:

CPQ ALPVMS KERBEROS V1.0 DISK$TUTU_SYS: [VMSSCOMMON.]
Portion done: 0%...10%
Remove OpenVMS Kerberos 5 V1.0 data & directories ? [Y]: N

.30%...40%...50%...60%...70%...80%...90%...100%

The following product has been removed:
CPQ ALPVMS KERBEROS V1.0 Layered Products

$ PRODUCT INSTALL KERBEROS

The following product has been selected:
HP AXPVMS KERBEROS V2.0 Layered Product

Do you want to continue? [YES]

Chapter 2 39

Ins

tallation and Configuration

Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

Configuration phase starting

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP AXPVMS KERBEROS V2.0

Do you want the defaults for all options? [YES]
Do you want to review the options? [NO]
Execution phase starting

The following product will be installed to destination:
HP AXPVMS KERBEROS V2.0 DISKS$STUTU_SYS: [VMSSCOMMON.]

Portion done:
0%...10%...20%...30%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
HP AXPVMS KERBEROS V2.0 Layered Product

HP AXPVMS KERBEROS V2.0
Configure the OpenVMS Kerberos clients & servers
Please take the time to run the following command after the installation:
@SYSSSTARTUP: KRBSCONFIGURE.COM
The Kerberos 5 V2.0 documentation has been provided as it was received from
MIT. This documentation may differ slightly from the OpenVMS Kerberos
implementation as it describes the Kerberos implementation in a Unix

environment.

The documents are:

KRB$ROOT: [DOC] IMPLEMENT . PDF
KRB$ROOT: [DOC]LIBRARY.PDF
KRB$ROOT: [DOC]ADMIN-GUIDE. PS
KRB$ROOT: [DOC] INSTALL-GUIDE. PS
KRBS$ROOT: [DOC]KRB425-GUIDE. PS
KRBS$ROOT: [DOC]USER-GUIDE.PS
Example 2-5 Kerberos Configuration Log on OpenVMS Version 7.3

NOTE

configured.

Configure Kerberos Version 2.0 if Kerberos Version 1.0 was not previously installed and

$ @SYSS$STARTUP:KRB$SYMBOLS
$ @SYSS$STARTUP : KRB$CONFIGURE

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

40

Chapter 2

Installation and Configuration
Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 1

Where will the OpenVMS Kerberos 5 KDC be running [system]:

What is the OpenVMS Kerberos 5 default domain [abc.xyz.com]:
What is the OpenVMS Kerberos 5 Realm name [SYSTEM.ABC.XYZ.COM]:
Press Return to continue

Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 3

Where will the OpenVMS Kerberos 5 KDC be running [system]:

What is the OpenVMS Kerberos 5 default domain [abc.xyz.com]:
What is the OpenVMS Kerberos 5 Realm name [SYSTEM.ABC.XYZ.COM]:
The type of roles the KDC can perform are:

NO_KDC -- where the KDC will not be run

SINGLE_KDC -- where the KDC is the only one in the realm
MASTER_KDC -- where the KDC is the master of 1 or more other KDCs
SLAVE_KDC -- where the KDC is slave to another KDC

What will be the KDC’s role on this node [SINGLE_KDC 1]:
Create the OpenVMS Kerberos 5 database [Y]:

Creating OpenVMS Kerberos 5 database

Initializing database ‘krbS$Sroot: [krb5kdc]lprincipal’ for realm
‘SYSTEM.ABC.XYZ.COM',

master key name ‘K/ME@SYSTEM.ABC.XYZ.COM’

You will be prompted for the database Master Password.

It is important that you NOT FORGET this password.

Enter KDC database master key:
Re-enter KDC database master key to verify:
Priority: info

Chapter 2 a1

Installation and Configuration
Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

No dictionary file specified, continuing without one.

Please enter a default OpenVMS Kerberos 5 administrator [SYSTEM]:
Authenticating as principal KRBTSTADM/admin@SYSTEM.ABC.XYZ.COM with
password.

Enter password for principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM”:
Re-enter password for principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM”:
Principal “SYSTEM/admin@SYSTEM.ABC.XYZ.COM” created.

Priority: info

No dictionary file specified, continuing without one.

WARNING: no policy specified for SYSTEM/admin@SYSTEM.ABC.XYZ.COM;
defaulting to no policy

Create OpenVMS Kerberos 5 principals [Y]: N
Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with
password.

Priority: info

No dictionary file specified, continuing without one.
KADMIN_LOCAL: Entry for principal kadmin/admin with kvno 3,
encryption type Triple

DES cbc mode with HMAC/shal added to keytab
WRFILE=KRBSROOT: [KRB5KDC]KADM5 .KEYTAB.

KADMIN_LOCAL: Entry for principal kadmin/admin with kvno 3,
encryption type DES

cbc mode with CRC-32 added to keytab

WRFILE=KRBSROOT: [KRB5KDC]KADM5 .KEYTAB.

Authenticating as principal SYSTEM/admin@SYSTEM.ABC.XYZ.COM with
password.

Priority: info

No dictionary file specified, continuing without one.
KADMIN_LOCAL: Entry for principal kadmin/changepw with kvno 3,
encryption type Triple

DES cbc mode with HMAC/shal added to keytab
WRFILE=KRBSROOT: [KRB5KDC] KADM5 .KEYTAB.

KADMIN_LOCAL: Entry for principal kadmin/changepw with kvno 3,
encryption type DES

cbc mode with CRC-32 added to keytab
WRFILE=KRBSROOT: [KRB5KDC] KADM5 .KEYTAB.

Press Return to continue

Configuration options:

1 - Setup Client configuration

2 - Edit Client configuration

3 - Setup Server configuration

4 - Edit Server configuration

5 - Shutdown Servers

6 - Startup Servers

E - Exit configuration procedure

Enter Option: 6

42 Chapter 2

Installation and Configuration

Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

Starting OpenVMS Kerberos Servers (Role: SINGLE_KDC)...

Starting OpenVMS Kerberos server KRBS$SKRB5KDC

$RUN-S-PROC_ID,

identification of created process is 00000429

Starting OpenVMS Kerberos server KRBSKADMIND

$RUN-S-PROC_ID,

identification of created process is 0000042A

Press Return to continue
Kerberos V2.0 for OpenVMS Configuration Menu

Configuration options:

Enter Option:

E

Setup Client configuration
Edit Client configuration

Setup Server configuration
Edit Server configuration

Shutdown Servers
Startup Servers

Exit configuration procedure

E

$ @SYSS$STARTUP:KRBS$STARTUP

$KRB-I-UPDATE2DO, Kerberos V2.0 will complete its post-installation
procedure.

Starting OpenVMS Kerberos Servers (Role: SINGLE_KDC)...

Starting OpenVMS Kerberos server KRBSKRB5KDC

%SRUN-S-PROC_ID,

identification of created process is 00000425

Starting OpenVMS Kerberos server KRBSKADMIND

%SRUN-S-PROC_ID,

$

identification of created process is 00000426

Delete sys$Scommon: [sysexe]krb5kdc.dir;,etc.dir;,bin.dir;,log.dir;,tmp.dir;,doc.dir;
and their sub-directories when your Kerberos configuration is complete.

Chapter 2

43

Installation and Configuration
Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

44 Chapter 2

Kerberos Client Programs
User Client Programs

3 Kerberos Client Programs

In addition to the Kerberos database and Key Distribution Center, there are a number of user and
administrative programs that allow interaction with Kerberos. This chapter will detail the use of those
programs.

The Kerberos user client programs include the following:

¢ kinit — Obtains Kerberos tickets

e klist — Lists cached Kerberos tickets

¢ kdestroy — Destroys Kerberos tickets

e kpasswd — Changes a user’s Kerberos password

The Kerberos administrative client programs include the following:

¢ kadmin and kadmin_local — Administers the Kerberos database

e kdb5_util —- Dumps and restores the Kerberos database

¢ kprop - Propagates the master KDC database to slave KDCs

The symbols for these programs are defined by SYSSMANAGER:KRB$SYMBOLS.COM.

On OpenVMS, these programs are located in the system directory and are prefaced by KRB$; for example,
SYSSSYSTEM: KRBSKINIT . EXE.

NOTE All options for the client programs are case sensitive. Uppercase options should be enclosed in
double quotation marks. For example:

$ kinit “-R”

User Client Programs

This section describes the user client programs, including kinit, klist, kdestroy, and kpasswd.

kinit

The kinit program allows the user to obtain and cache a Kerberos ticket-granting ticket. A Kerberos
principal name must have already been created for the user, or another pre-existing principal must be
specified.

The kinit program optionally uses the logical name XKRB5CCNAME to specify the location and name of the
credentials (ticket) cache. The default location for the credentials cache is in the [.KRB.<nodename>]
subdirectory of the user’s login directory. The default name of the credentials cache is KRB5CC_xxxxxx. ;
where xxxxxx is a randomly generated numeric string.

Chapter 3 45

Kerberos Client Programs
User Client Programs

SYNOPSIS
kinit [-5] [-4] [-V] [-] lifetime] [-s start_time] [-r renewable_life]
[-p] [-P] [-] [-F] [-A] [-v] [-R] [k [-t keytab_file]]
[-c cache_name] [-S service_name] [principal]
OPTIONS
-5 Get Kerberos 5 tickets, overriding the default built-in behavior. This
option may be used with -4.
4 Get Kerberos 4 tickets, overriding the default built-in behavior. This
option may be used with -5.
v Display verbose output.
-1 lifetime Request a ticket whose lifetime is specified by lifetime. The value for
lifetime must be followed immediately by one of the following delimiters:
s seconds
m minutes
h hours
d days
For example:
kinit -1 90m
You cannot mix units; a value of 30h30m will result in an error.
If the -1 option is not specified, the default ticket lifetime (configured by
each site) is used. Specifying a ticket lifetime longer than the maximum
ticket lifetime (configured by each site) results in a ticket with the
maximum lifetime.
-s start_time Request a postdated ticket, valid starting at start_time. Postdated
tickets are issued with the invalid flag set, and need to be fed back to the
KDC before use.
-r renewable_life Request renewable tickets, with a total lifetime of renewable_1ife. The
duration is the same format as the -1 option, with the same delimiters.
(Not applicable to Kerberos 4.)
-f Request tickets that can be forwarded to another system. (Not applicable
to Kerberos 4.)
-F Do not request forwardable tickets. (Not applicable to Kerberos 4.)
-p Request proxiable tickets. (Not applicable to Kerberos 4.)
-P Do not request proxiable tickets. (Not applicable to Kerberos 4.)
-A Request address-less tickets. (Not applicable to Kerberos 4.)
-v Request that the ticket granting ticket in the cache (with the invalid

option set) be passed to the KDC for validation. If the ticket is within its
requested time range, the cache is replaced with the validated ticket. (Not
applicable to Kerberos 4.)

46 Chapter 3

Kerberos Client Programs
User Client Programs

-R Request renewal of the ticket-granting ticket. Note that an expired ticket
cannot be renewed, even if the ticket is still within its renewable life.
When using this option with Kerberos 4, the KDC must support Kerberos
5 to Kerberos 4 ticket conversion.

-k [-t keytab_file] Request a host ticket, obtained from a key in the local host’s keytab file.
The name and location of the keytab file may be specified with the -t
keytab_file option; otherwise the default name and location will be
used. When using this option with Kerberos 4, the KDC must support
Kerberos 5 to Kerberos 4 ticket conversion.

-c cache_name Use cache_name as the credentials (ticket) cache name and location; if
this option is not used, the default cache name and location are used.

The default credentials cache may vary between systems. If the
KRB5CCNAME logical name is set, its value is used to name the default
ticket cache. Any existing contents of the cache are destroyed by kinit.
(Not applicable to Kerberos 4).

-S service_name Specify an alternate service name to use when getting initial tickets.

klist

The k1ist program allows the user to display information about their cached Kerberos tickets. (Applicable
to Kerberos 5, or to Kerberos 4 ticket conversion if you use both Kerberos 5 and Kerberos 4 with a KDC that
supports Kerberos 5.)

SYNOPSIS

klist [-5] [-4] [-e] [[-c] [-f] [-s] [-a [n]]] [-k [-t] [-K]]
[cache_name | keytab_name |

OPTIONS

-5 List Kerberos 5 credentials. This overrides whatever the default built-in behavior may be.
This option may be used with -4.

-4 List Kerberos 4 credentials. This overrides whatever the default built-in behavior may be.
This option may be used with -5.

-e Display the encryption types of the session key and the ticket for each credential in the
credential cache, or each key in the keytab file.

-c List the tickets held in a credentials cache. This is the default if neither -c nor -k is
specified.

-f Show the options present in the credentials. Possible options are as follows:

F Forwardable

f forwarded

P Proxiable

p proxy

D postDateable
d postdated

Chapter 3 47

Kerberos Client Programs
User Client Programs

R Renewable

I Initial
i invalid
-S Cause klist to run silently (produce no output) but to still set the exit status according to

whether it finds the credential cache. The exit status is SS$_NORMAL if k1ist finds a
credentials cache.

-a Display list of addresses in credentials.

-n Show numeric addresses instead of reverse-resolving addresses.

-k List the keys held in a keytab file.

-t Display the time entry timestamps for each keytab entry in the keytab file.

-K Display the value of the encryption key in each keytab entry in the keytab file.

If cache_name or keytab_name is not specified, k1ist will display the credentials in the default credentials
cache or keytab file as appropriate. If the KRB5CCNAME logical name is set, its value will be used to name the
default ticket cache.

kdestroy

The kdestroy program destroys the user’s active Kerberos authorization tickets by writing zeros to the
specified credentials cache that contains them. If the credentials cache is not specified, the default
credentials cache is destroyed. The default behavior is to destroy both Kerberos 5 and Kerberos 4 credentials.

SYNOPSIS

kdestroy [-5] [-4] [-ql [-c cache_name]

OPTIONS

-5 Destroy Kerberos 5 credentials. This overrides whatever the default built-in behavior may
be. This option may be used with —4.

4 Destroy Kerberos 4 credentials. This overrides whatever the default built-in behavior may
be. This option may be used with —5.

-q Quiet mode. Normally, kdestroy beeps if it fails to destroy the user’s tickets, in addition to

issuing an error message. The -g option suppresses the beep, and only an error is issued.

-c cache_name Use cache_name as the credentials (ticket) cache name and location. If this option is not
used, the default cache name and location are used.

If the KRB5CCNAME logical name is set, its value is used to name the default ticket cache.

HP recommends that you place the kdestroy command in a logout command file, so that your tickets are
destroyed automatically when you log out.

kpasswd

The kpasswd program is used to change a Kerberos principal’s password. The kpasswd program prompts for
the current Kerberos password, which is used to obtain a changepw ticket from the KDC for the user’s
Kerberos realm. If kpasswd successfully obtains the changepw ticket, the user is prompted twice for the new
password, and the password is changed.

48 Chapter 3

Kerberos Client Programs
Administrative Client Programs

If the principal is governed by a policy that specifies the length or number of character classes required in the
new password, the new password must conform to the policy. (The five-character classes are: lowercase,
uppercase, numbers, punctuation, and all other characters.)

SYNOPSIS

kpasswd [principal]

OPTIONS

principal Change the password for the Kerberos principal specified by principal. Otherwise, the

principal is derived from the identity of the user invoking the kpasswd command.

Administrative Client Programs

This section describes the administrative utilities, including kadmin, kadmin_local, kdb5_util, and
kprop.

kadmin and kadmin_ local

The kadmin program allows the Kerberos administrator to make changes to the Kerberos database. The
kadmin program provides for the maintenance of Kerberos principals, policies, and service key tables
(keytabs). It exists as both a Kerberos client (kadmin), using Kerberos authentication and an RPC to operate
securely from anywhere on the network, and as a local client (kadmin_local), intended to run directly on the
KDC without Kerberos authentication.

SYNOPSIS

kadmin [-r realm] [-p principal]l [-w password] [-q query]
[-s admin_server{:port]l [[-c credentials_cache] |
[-k keytabl]
[-

kadmin_local d dbname] [-e “enc:salt ...”] [-m]

Options

-r realm Use realm as the default Kerberos realm for the database.

-p principal Use the Kerberos principal principal to authenticate to Kerberos. If this
option is not given, kadmin will append admin to either the primary
principal name or to the username of the current process.

-w password Use password as the password instead of prompting for one.

Caution: Placing the password for a Kerberos principal with
administrative access into a command file can be dangerous if
unauthorized users gain read access to the file.

-q query Pass the string query directly to kadmin. This is useful for writing
command procedures that pass specific queries to kadmin.

-s admin_server|:port] Use admin_server as the KDC to contact. Optionally specify the TCP/IP

port to use for communication.

Chapter 3 49

Kerberos Client Programs
Administrative Client Programs

-c credentials_cache

-k keytab

-d dbname

-e “enc:salt...”

kdb5_util

Use credentials_cache as the credentials cache. The credentials cache
should contain a service ticket for the kadmin/admin service, which can be
acquired with the kinit program. If this option is not specified, kadmin
requests a new service ticket from the KDC and stores it in its own
temporary cache.

Use the keytab keytab to decrypt the KDC response instead of prompting
for a password on the terminal. In this case, the principal will be
host/hostname.

This option is valid for kadmin_local only. Specify the filename of the
KDC database.

This option is valid for kadmin_local only. It sets the list of cryptosystem
and salt types to be used for any new keys created. Available types
include des3-cbc-shal :normal, des-cbc-crc:normal, and
des-cbc-crc:v4.

This option is valid for kadmin_local only. Specify the KDC database
master key.

The kdb5_util program provides a way for the Kerberos administrator to create, delete, load, or dump a
Kerberos database. It also includes a command to stash a copy of the master database key in a file on a KDC,
so that the KDC can authenticate itself to the kadmind and krb5kdc daemons at boot time.

SYNOPSIS
kdb5_util [-r realm] [-d dbname] [-k mkeytypel [-M mkeyname]
[-sf stashfilename] [-m] command [command_options]
OPTIONS
-r realm Use realm as the default Kerberos realm for the database.
-d dbname Specify the filename at the KDC database.
-k mkeytype Specify the encryption type to use from the list of supported mtypes in

-M mkeyname

-sf stashfilename

-m

command

KDC .CONF.
Specify the master key name.

Specify the file that stores the master key. If you specify this file, you are
not prompted for the master key.

Specify the KDC database master key.

The kdb5_util command can be one of the following:

ark [-e etype_list] principal

Add a random key for a Kerberos 5 database entry principal. This assumes the max key version number. As a side
effect, all old keys older than the maximum key version number are deleted.

-e etype_list

Specify the key salt to use for the random key.

50

Chapter 3

Kerberos Client Programs
Administrative Client Programs

create [-s]

Create a new Kerberos database. If you specify the -s option, kdb5_util stashes a copy of the master key in a stash
file.

destroy [-f]

Destroy the existing Kerberos database. If you do not specify the -f option, you are prompted with “are you sure?”
before the database is destroyed.

dump [-0ld] [-b6] [-oV] [-verbose] [-mkey_convert] [-new_mkey_file mkey_file] [-rev] [-recurse] [filename
[princs...]]

Dump a Kerberos database to a file.
-old
Cause the dump file to be Kerberos 5 Beta 5 and earlier dump format (kdb5_edit load_dump version 2.0).
-b6
Cause the dump file to be Kerberos 5 Beta 6 format (“kdb5_edit load_dump version 3.0”).
-ov
Cause the dump to be in ovsec_adm_export format.
-verbose
Cause the name of each principal and policy to be printed as it is dumped.
-mkey_convert
Change master key as part of dump.
-new_mkey_file mkey file
Get master key from file mkey_file.
-rev
Dump in reverse order.
-recurse
Do recursive descent tree traversal of database instead of using previous/next pointers.
filename
File name of the dump file to be output.
[princs]
Principal name to be dumped.

dump_v4 filename

Chapter 3 51

Kerberos Client Programs
Administrative Client Programs

Dump a Kerberos database to a file in Kerberos V4 format.

filename

File name of the dump file to be output.

load [-o0ld] [-b6] [-oV] [-verbose] [-update] filename

Restore a Kerberos database dump from a file, specified by filename.

-old

Requires the dump to be in the Kerberos 5 Beta 5 and earlier dump format (kdb5_edit load_dump v2.0).
-b6

Require the dump to be in the Kerberos 5 Beta 6 format (kdb5_edit load_dump v3.0).

-ov

Require the dump to be in ovsec_adm_export format

-verbose

Cause the name of each principal and policy to be printed as it is dumped.

-update

Cause records from the dump file to be updated in or added to the existing database.

filename

File name of the dump file to load.

load_v4 [-t] [-n] [-v] [-K] [-s stashfile] inputfile

Restore a Kerberos database dump from a Kerberos V4 format dump file (specifed by inputfile).

-t
Allow modification of an existing database. If you do not specify -t, the load will abort if the database exists.
-n

Read the Kerberos V4 master key from the key file.

-v

Cause the name of each principal and policy to be printed as it is dumped.

-K

Prompt for the Kerberos V5 database master password.

-s stashfile

Specify the location of the Kerberos V4 master key file.

52

Chapter 3

Kerberos Client Programs
Administrative Client Programs

inputfile
Filename of the V4 dump file to load.
stash [-f keyfile]

Create a stash file, which allows a KDC to authenticate itself to the database programs kadmin, kadmind, krb5kdc,
and kdb5_util. Ifthe -f option is not specified, kdb5_util stashes the key in the file specified in the
KRBS$ROOT : [KRB5KDC]KDC.CONF file.

kprop
The kprop program propagates the master KDC database to slave KDCs.

The following sections describe the procedure you should use to propagate your master KDC database. This
procedure involves performing steps first on the master system, then the slave system, and back and forth
again until finishing with the master system.

In the following procedure, the steps are numbered M1, M2, and so on for the master KDC server, and S1, S2
and so on for the slave KDC server.

Kerberos must be installed on both the master and slave systems.
PROCEDURE

Step 1: Configure the Master KDC Server for Propagation
M1. On the master KDC server, enter the following command:
$ @SYS$STARTUP : KRBSCONFIGURE
M2. Set up the client.
M3. Set up the server.
M4. Exit the KRBSCONFIGURE. COM file.

M5. If you added additional USER/admin principals during your configuration (other than your first admin
principal), add them to KRBSROOT: [KRB5KDC] KADM5 . ACL.

M6. Add your anticipated slave hosts to KRBSROOT: [ETC]KRB5 . CONF under the realms tag using a kdc tag as
follows:

USER/admin@REALM
kdc = nodename.domain: 88

MT7. To create KRBSROOT: [BIN]KRBSKPROP. DAT from the template file KRBSKPROP_DAT . TEMPLATE, copy
KRB$SKPROP_DAT . TEMPLATE to KRBSKPROP.DAT, and edit KRBSKPROP.DAT as follows:

Comment out the example node name lines with a # sign.

Add all of your slave node names either as just the simple node name or as fully qualified node names
that include their respective domain names. Be consistent in the naming method you choose. It is safest to
use the node name form that is used to define your node names in your local TCP/IP host setting. If you
use DNS to manage your local host lookups, you will need to use fully qualified node and domain name
strings.

If you specify local host names, know the form of the node name you use, define all propagation node
names that way in the local TCP/IP host database, and enter these propagation node names in the form
that they are locally defined.

Chapter 3 53

Kerberos Client Programs
Administrative Client Programs

Try to define all propagation nodes in your local TCP/IP hosts database, or leave them all defined in DNS
and not in your local database. If you see client not found errors during propagation, review your node
name definitions and the form that you have in the local TCP/IP database.

c. The XRBSKPROP.DAT file is simply a data file that is read by the kprop command file to see where
database propagation is performed. Make sure you do not include the local server node name in this data
file. The propagation server does not need its own data propagated to itself.

d. You need only perform step M7 on those nodes that might act as the master KDC server at some future
point, and need to have master database changes propagated to them.

MS8. Create the KRBSROOT : [KRB5KDC]KPROPD. ACL file as follows. There is no template for this file. This file
defines the names of the hosts that will be involved in propagation and includes the master server entity.
(This step will also have to be performed on each of your slave KDCs.)

a. Edit XRBSROOT: [KRB5KDC]KPROPD. ACL to add each slave KDC host/name keytab entry that will be
created in Step M11.

The form depends on how your node names are defined in TCP/IP. You can use either of the following
forms. The @REALM portion is required.

host/yournode@REALM
host/yournode.yourdomain@REALM

b. Ifyour local TCP/IP database defines the node names, the form of your node name in Step M8a must
match that of your TCP/IP database

c. Be sure to include the host/entry for your master KDC.

M9. Start your master server and run KADMIN.

NOTE In steps M10 and M11, it is critical that the node names are in the same form as your local
TCP/IP node name. You can use either simple node names or fully qualified DNS node names,
as long as you are consistent.

M10. Add the host/principals with the following commands:
addprinc -randkey host/yourmasternode
addprinc -randkey host/yourslavenode

M11. Add/export the host/keytabs with the following commands:
ktadd host/yourmasternode@REALM

ktadd host/yourslavenode@REALM

NOTE The @REALM part of this file name is important and must match the REALM entered into
KPROPD.ACL in step M8.

M12. Restart your master KDC server using the latest configuration.

Step 2: Configure the Slave KDC Servers for Propagation
After you configure the master server, perform the following steps to configure the slave KDC server.

S1. To configure your slave KDC client, enter the master KDC server name when asked where the master
KDC server resides. Do not use your local node name.

54 Chapter 3

Kerberos Client Programs
Administrative Client Programs

S2. Set up your slave KDC server by entering the following command:
$ @SYS$STARTUP:KRB$CONFIGURE

Note the following:

¢ Your KDC node name is your local node, not the master KDC node name.
e Specify SLAVE_KDC, if it is not the default.

¢ Add alocal admin principal. (This will not be used.)

e Accept the defaults for the remaining questions.

S3. Exit the configuration file and perform step M7 from the previous section only if, in the future, you may
use this slave KDC as a master KDC server. Otherwise, go to step S4.

S4. Perform Step 1, M8 on your slave KDC node. You can copy the file from the server or edit a new file using
the same host/entry information. This step is required for propagation.

S5. Export the master server's host/keytabs to the local KDC slave server keytab file. Because the slave
server is configured as a client in the master KDC, you can kinit as the master KDC server's admin and run
kadmin to extract the server's keytabs as shown in Step 1, M11. This will create your local keytab file with
the MASTER KDC server keytab information. Issue a 1istprincs command and then ktadd the host
principals.

S6. Edit KRBSROOT : [KRB5KDC] KRBSROLE . DAT. Change the second data line from a zero to a one (0 to 1), and
save the file. This tells KRBSCONFIGURE that the KRBSKPROPD. EXE daemon must be started when the slave
server is started.

S7. Edit KRBSROOT : [ETC]KRB5 . CONF and add the slave and master KDC nodes under the realms tag, if they
do not exist. Here, you can safely specify fully qualified node names with their domain names as follows:

kdc = yourmasternode.yourdomain: 88
kdc = yourslavenode.yourdomain:88

Make sure the record format for KRB5 . CONF and KPROPD.ACL is STREAM LF.

CAUTION Do not start the slave server yet.

Step 3: Complete the Configuration of the Master KDC Server
Perform the following steps on the master server.

M13. Run kadmin and re-export only the master's host/keytab as in Step 1, M11. Because this keytab was
exported on one or more slaves, the key version number is now greater than when this keytab was originally
exported, and the slave KDCs will not be able to authenticate to the master KDC with a lower key version
number.

M14. In kadmin, enter the following command:

ktadd host/yourmaster@REALM

NOTE You may have to remove the host keytabs and principals and re-add them if the slave and
master cannot agree on the key version numbers. This is an issue only with the master KDC
keytab after keys are added to the slaves. This step does correct certain authentication
problems.

M15. Restart the master server.

Chapter 3 55

Kerberos Client Programs
Administrative Client Programs

Step 4: Complete the Configuration of the Slave KDC Server
Perform the following steps on the slave server.
S8. Use kinit to get to your master server's admin account. This will refresh the master’s host keytab on the
local system and start the slave server in preparation for its first propagation from the master.
Step 5: Propagate the Master KDC Server to Each Configured Slave Server
Perform the following steps to complete the propagation procedure.
M16. Enter the following command:
@KRBS$ROOT : [BIN] KRB$SKPROP . COM

The kprop command procedure causes the following to occur:

a. The master server is stopped, the database dumped, the servers restarted, and a connection to each slave
kpropd daemon is made in order to transfer the master database to the slave servers listed in
KRBSROOT : [BIN]KRBSKPROP . DAT.

b. The slave servers are stopped, the master KDC database is loaded, the slave servers are restarted, and a
signal is sent to the master server that the propagation has successfully completed.

c¢. The master server produces a file called SLAVE_DATATRANS_DAT YOURSLAVENODE .LAST_PROP that
indicates that the propagation to the individual slave node has completed.

d. When propagation to each slave server completes, the kpropd.exe daemon exits. The next propagation
can be done only after starting the kpropd daemon on each of the KDC slave servers. This is why kpropd
should be a TCP/IP service. The TCP/IP system automatically starts the kpropd daemon for each slave
server requested by the master server.

56 Chapter 3

Kerberos Programming Concepts
Overview of Building a Kerberos Application on OpenVMS

4 Kerberos Programming Concepts

This chapter provides an overview of programming with Kerberos on OpenVMS.
Information in this chapter includes:
e An overview of building a Kerberos application on OpenVMS

e Descriptions of the Kerberos example programs

Overview of Building a Kerberos Application on OpenVMS

Kerberos programming on OpenVMS works much the same as on any other platform. The following sections
indicate differences and important information.

Compiling a Kerberos Program on OpenVMS

When you compile your program, you will need to add the / INCLUDE=KRBSROOT: [INCLUDE] qualifier to your
compiler command line. For example:

S cc/list/include=krbSroot: [include] /prefix=all gss_client

Linking a Kerberos Program on OpenVMS

Kerberos on OpenVMS provides shareable libraries in both 64-bit and 32-bit formats. All Kerberos libraries
can be found in SYSSLIBRARY.

Library Name Bit Format
GSSS$RTL.EXE 64 bits
GSS$RTL32 .EXE 32 bits
KRBSRTL.EXE 64 bits
KRBSRTL32 .EXE 32 bits

One of the GSSSRTL* libraries should be used when your program calls the GSS API. If the KRB5 API is
called, then one of the KRBSRTL* libraries will need to be linked with the program.

Because Kerberos routines are located in shareable libraries, the use of a link options file is recommended.
For details about using link options files, refer to the HP OpenVMS Linker Utility Manual. The Kerberos
example programs described in this chapter provide examples of using link options files for Kerberos
applications.

Chapter 4 57

Kerberos Programming Concepts
Kerberos Example Programs

Kerberos Example Programs

This section describes the Kerberos example programs. Kerberos must be configured before any example
program is run. For the configuration procedure, see Chapter 2.

The Kerberos example programs are found in SYSSCOMMON: [SYSHLP . EXAMPLES . KERBEROS. . .].

The Kerberos example programs are divided between those examples that use DCL to build and those that
use GMAKE to build.

DCL Example Programs

The SYS$SCOMMON : [SYSHLP.EXAMPLES . KERBEROS.DCL] directory in the Kerberos example directory tree
contains the Version 1.0 example programs and build procedures. (No new examples were added to the DCL
directory for Version 2.0.) These example programs are described in the following sections.

There are two DCL example programs, each of which has a client and server piece. Command procedures to
build and help set up the example programs are provided, along with readme files specific to each example.

The examples should be built and run from a local build area or directory. The following table lists the DCL
example programs and information about what aspect of Kerberos each program is attempting to convey.

DCL Example Program Description
GSS_CLIENT and GSS_SERVER GSSAPI example program
KRB_CLIENT and KRB_SERVER KRB5 API example program

GSSAPI Example Program
The GSSAPI example program is a simple client/server program that authenticates using the GSSAPI.
To run the GSSAPI example client program, perform the following steps:

1. Create a Kerberos principal name of gss_sample/<node name>@<realm name> before this program is
run.

2. Copy the Gss_*. * example files and the BUILD.COM and SETUP.COM files into a local build area, and then
execute the BUTLD command file as follows:

$ COPY SYSSCOMMON: [SYSHLP.EXAMPLES.KRB]GSS*.* <local_build_area>
S COPY SYSSCOMMON: [SYSHLP.EXAMPLES.KRB]*.COM <local_build_area>
S SET DEF <local_build_area>

S @BUILD GSS

3. Execute the SETUP command file to define the necessary symbols to run the example.

4. Ensure that Kerberos has been initialized and started, and that the necessary Kerberos principal name
has been created in the Kerberos database. The SETUP command file has additional information about
creating the principal name.

5. Copy either GSS_CLIENT.EXE or GSS_SERVER.EXE to another node in the same Kerberos realm, along with
the SETUP command file.

6. Start the client program and server programs using the symbols defined in SETUP.COM.

58 Chapter 4

Kerberos Programming Concepts
Kerberos Example Programs

GSS_CLIENT

SYNOPSIS

gss_client [-p port] [message] [host] [service]

OPTIONS

-p port

Specifies the TCP/IP port to use for communications. If this argument is absent, port number 4444 is used.
message

Specifies the text message to pass between client and server.

host

Specifies the host system where the GSS_SERVER is located.

service

GSS_SERVER

SYNOPSIS

gss_server [-p port] [-1 logfile] [service]

OPTIONS

-p port

Specifies the TCP/IP port to use for communications. If this argument is absent, port number 4444 is used.
-1 logfile

Indicates that a logging file with the file name specified by logfile should be opened when the GSS_SERVER
program is started.

service

Specifies the service name. If this argument is absent, gss_sample is used as the service name.

KRB5 API Example Program
The KRB5 example program is a simple client/server program that authenticates using the Kerberos API.

To run the KRB5 API example program, perform the following steps:

1. Create a Kerberos principal name of krb_sample/<node name>@<realm name> before this program is
run.

2. Copy the KRB_*. * example files and the BUILD.COM and SETUP.COM files into a local build area, and then
execute the BUILD command file as follows:

$ COPY SYS$SCOMMON: [SYSHLP.EXAMPLES .KERBEROS.DCL]KRB*.* <local build_area>
$ COPY SYSSCOMMON: [SYSHLP.EXAMPLES.KERBEROS.DCL]*.COM <local_build_area>
$ SET DEF <local_build_area>

$ @BUILD KR

3. Execute the SETUP command file to define the necessary symbols to run the example.

Chapter 4 59

Kerberos Programming Concepts
Kerberos Example Programs

4. Ensure that Kerberos has been initialized and started and that the necessary Kerberos principal name
has been created in the Kerberos database. The SETUP command file has additional information about
creating the principal name.

5. Copy either the KRB_CLIENT.EXE or KRB_SERVER.EXE to another node in the same Kerberos realm, along
with the SETUP command file.

6. Start the client and server programs using the symbols defined in SETUP.COM.

KRB5_CLIENT

SYNOPSIS

krb5_client [-p port] [message] [host] [service]

OPTIONS

-p port

Specifies the TCP/IP port to use for communications. If this argument is absent, port number 4444 is used.
message

Specifies the text message to pass between client and server.

host

Specifies the host system where the KRB_SERVER is located.

service

Specifies the service name. If this argument is absent, krb_sample is used as the service name.

KRB5_SERVER

SYNOPSIS

krb_server [-p port] [-1 logfile] [service]

OPTIONS

-p port
Specifies the TCP/IP port to use for communications. If this argument is absent, port number 4444 is used.
-1 logfile

Indicates that a logging file with the file name specified by logfile should be opened when the KRB_SERVER
program is started.

service

Specifies the service name. If this argument is absent, krb_sample is used as the service name.

GMAKE Example Programs

The SYSSCOMMON : [SYSHLP . EXAMPLES . KERBEROS.GMAKE. . .] directory in the Kerberos example directory tree
contains the Version 2.0 examples that build with GMAKE.

60 Chapter 4

Kerberos Programming Concepts
Kerberos Example Programs

GMAKE.VMS Directory

The example programs in the SYSSCOMMON : [SYSHLP . EXAMPLES . KERBEROS . GMAKE . VMS] subdirectory contain
the original OpenVMS Kerberos Version 1.0 example programs (GSSAPI and KRB5). These examples are built
with GMAKE instead of DCL. These programs show you how the two GMAKE and DCL build processes
compare using the same code base.

This build can produce the GSS and KRB example programs built against the 64-bit and 32-bit Kerberos and
GSS libraries respectively. Both types of builds can be produced without directory conflict, and they can be
run out of their respective build directories.

The server awaits a connection on a socket, receives a message from the client that it prints out, and then
echoes back to the client. Run each program with "-?" to see the runtime options for the client and server.

GMAKE.MIT Directory

Four example programs are new to Version 2.0 and are found in the
SYS$COMMON : [SYSHLP . EXAMPLES . KERBEROS . GMAKE . MIT] subdirectory.

Each of these examples builds against the 32-bit KRB and GSS runtime libraries. Because of the form of
UNIX I/O functions that they use, the 64-bit Kerberos libraries cannot be used.

The following table lists the new GMAKE example programs found in
SYS$COMMON : [SYSHLP . EXAMPLES . KERBEROS . GMAKE. MIT] and information about what aspect of Kerberos
each program is attempting to convey.

GMAKE Example Program Description

GSS-SAMPLE 32-bit based application that uses the
32-bit GSS$RTL32 library on Alpha,
and the 32-bit implementations of the
UNIX I/O library function calls

SAMPLE Demonstration client/server
application

SIMPLE UDP-based client and server
application

USER_USER Demonstrates a TCP/IP service name

used to securely communicate
between two network applications

GSS-SAMPLE Example Program

The SYS$COMMON : [SYSHLP . EXAMPLES . KERBEROS . GMAKE .MIT.GSS-SAMPLE] subdirectory contains a
GSS-SAMPLE.README file that describes in detail the function and operation of the GSS-SAMPLE program. It is
a 32-bit based application that uses the 32-bit GSSSRTL32 library on Alpha. It also uses the 32-bit
implementations of the UNIX I/O library function calls.

This directory also contains a sample GSSAPI client and server application. In addition to serving as an
example of GSSAPI programming, this application is also intended to be a tool for testing the performance of
GSSAPI implementations. Each time the client is invoked, it performs one or more exchanges with the server.

The client application can be used to simulate a variety of workloads on the server. It can serve as an example
of how to create a performance application to test a new Kerberos GSSAPI based application of your own.

Several command line options can be used to define how the client will interact with the server. The
GSS-SAMPLE.README file lists these options in detail. The following is a summary of GSS-SAMPLE options:

Chapter 4 61

Kerberos Programming Concepts
Kerberos Example Programs

SYNOPSIS

gss-sample [-d] [-f] [-ccount] [-mcount] [-na] [-nx] [-nw] [-nm]

OPTIONS
-d

Tells the client to delegate credentials to the server. For the Kerberos GSSAPI mechanism, this means that a
forwardable TGT will be sent to the server, which will put it in its credential cache. You must have acquired
your tickets with kinit -f for this to work.

-f

Tells the client that the msg argument is actually the name of a file whose contents should be used as the
message.

-ccount

Specifies how many sessions the client should initiate with the server (the connection count).
-mcount

Specifies how many times the message should be sent to the server in each session (the message count).
-na

Tells the client not to do any authentication with the server. Implies -nw, -nx and -nm.

-nx

Tells the client not to encrypt messages.

-nw

Tells the client not to wrap messages. Implies -nx.

-nm

Tells the client not to ask the server to send back a cryptographic checksum (MIC).

SAMPLE Example Program

The SYS$SCOMMON : [SYSHLP.EXAMPLES . KERBEROS .GMAKE .MIT . SAMPLE] subdirectory contains the build for a
server and a client called sserver and sclient, respectively, that are a simple demonstration client/server
application.

When sclient connects to sserver, it performs a Kerberos authentication, then sserver returns to sclient
the Kerberos principal that was used for the Kerberos authentication. This example provides a good test
that Kerberos has been successfully installed and configured on a machine.

The sclient and sserver images are built in separate directories, but the client and server are run from the
top-level directory. There is a complete README file in the sserver directory that describes the detailed
information for configuring and running these examples. You can get a fast start by simply running
SAMPLE_SETUP.COM in this directory for both the client and the server windows.

SIMPLE Example Program

The SYS$COMMON : [SYSHLP . EXAMPLES . KERBEROS . GMAKE .MIT . SIMPLE] subdirectory contains a UDP-based
client and server example. It is similar to the original Version 1.0 KRB_CLIENT and KRB_SERVER examples,
except that it uses UDP socket-based I/0O. The server receives a message from the client and simply reports
what it has received. The client reports that it successfully sent the data.

62 Chapter 4

Kerberos Programming Concepts
Kerberos Example Programs

USER_USER Example Program

The SYS$SCOMMON : [SYSHLP.EXAMPLES . KERBEROS .GMAKE .MIT.USER_USER] subdirectory holds a client and a
server example that can be used to see how a TCP/IP service name can be used to securely communicate
between two network applications. It is similar to the original Version 1.0 KRB_CLIENT and KRB_SERVER
examples, except that a TCP/IP service name is defined and used to tell the client the port number on which
the server is listening. The client sends its data to the server and the server responds to the client with the
message the client sent.

Chapter 4 63

Kerberos Programming Concepts
Kerberos Example Programs

64 Chapter 4

GSSAPI (Generic Security Services Application Programming Interface)

9 GSSAPI (Generic Security Services
Application Programming Interface)

This chapter describes the C language bindings for the routines that make up the Generic Security Services
Application Programming Interface (GSSAPI).

The GSSAPI provides security services to its callers, and is intended for implementation atop alternative
underlying cryptographic mechanisms. In this manual, the underlying cryptographic mechanism is assumed
to be Kerberos.

The GSSAPI allows a communicating application to authenticate the user associated with another
application, to delegate rights to another application, and to apply security services such as confidentiality
and integrity on a per-message basis.

There are four stages to using the GSSAPI:

¢ The application acquires a set of credentials with which it can prove its identity to other processes.

¢ A pair of communicating applications establish a joint security context using their credentials. The
security context is a pair of GSSAPI data structures that contain shared state information.

e Per-message services are invoked to apply either integrity and data origin authentication, or
confidentiality, integrity, and data authentication to application data.

e At the completion of a communications session, the peer applications call GSSAPI routines to delete the
security context.

Routines described in this chapter are implemented in the Generic Security Service library (GSSSRTL . EXE for
64-bit interfaces, or GSSSRTL32 . EXE for 32-bit interfaces) in SYSSLIBRARY.

Chapter 5 65

GSSAPI (Generic Security Services Application Programming Interface)
gss_accept_sec_context — Establish a security context

gss_accept_sec_context — Establish a security context

C Prototype

OM_uint32 gss_accept_sec_context (

OM_uint32
gss_ctx_id_t
gss_cred_id_t
gss_buffer_t
gss_channel_bindings_t
gss_name_t
gss_0OID
gss_buffer_t
OM_uint32
OM_uint32
gss_cred_id_t

Arguments

minor_status (output)

context_handle (input/output)

acceptor_cred_handle (input)

input_token_buffer (input)
input_chan_bindings (input)

src_name (output)

mech_type (output)

output_token (output)

minor_status,
context_handle,
acceptor_cred_handle,
input_token_buffer,
input_chan_bindings,
src_name,

mech_type,
output_token,
ret_flags,

time_rec,
delegated_cred_handle) ;

Mechanism-specific status code.

The context handle for the new context. Supply GSS_C_NO_CONTEXT
for the first call; use the value returned in subsequent calls. Once
gss_accept_sec_context has returned a value via this argument,
resources have been assigned to the corresponding context, and must be
freed by the application after use with a call to gss_delete_sec_context.

The credential handle claimed by the context acceptor. Specify
GSS_C_NO_CREDENTTIAL to accept the context as a default principal. If
GSS_S_NO_CREDENTIAL is specified, but no default acceptor principal
is defined, GSS_S_NO_CRED will be returned.

The token obtained from the remote application.

Application-specified bindings. Allows the application to securely bind
channel identification information to the security context. If channel
bindings are not used, specify GSS_C_NO_CHANNEL_BINDINGS.

The authenticated name of the context initiator. After use, this name
should be deallocated by passing it to gss_release_name. If not required,
specify NULL.

The security mechanism used. The returned OID value will be a pointer
into static storage, and should be treated as read only by the caller (in
particular, it does not need to be freed). If not required, specify NULL.

The token to be passed to the peer application. If the length field of the
returned token buffer is zero, then no token need be passed to the peer
application. If a nonzero length field is returned, the associated storage
must be freed after use by the application with a call to
gss_release_buffer.

66

Chapter 5

ret_flags (output)

GSSAPI (Generic Security Services Application Programming Interface)
gss_accept_sec_context — Establish a security context

A bit mask which contains various independent flags, each of which
indicates that the context supports a specific service option. Symbolic
names are provided for each flag, and the symbolic names corresponding
to the required flags should be logically ANDed with the ret_flags value
to test whether a given option is supported by the context. The flags are:

GSS_C_DELEG_FLAG

TRUE — Delegated credentials are available via the
delegated_cred handle argument.

FALSE — No credentials were delegated.
GSS_C_MUTUAL_FLAG

TRUE — The remote peer asked for mutual authentication.
FALSE — The remote peer did not ask for mutual authentication.
GSS_C_REPLAY_FLAG

TRUE — Replay of protected messages will be detected.
FALSE — Replayed messages will not be detected.
GSS_C_SEQUENCE_FLAG

TRUE — Out-of-sequence protected messages will be detected.
FALSE — Out-of-sequence messages will not be detected.
GSS_C_CONF_FLAG

TRUE — Confidentiality service may be invoked by calling the gss_wrap
routine.

FALSE — No confidentiality service (via gss_wrap) is available. The
gss_wrap routine will provide message encapsulation, data-origination
authentication and integrity services only.

GSS_C_INTEG_FLAG

TRUE — Integrity service may be invoked by calling either the
gss_get_mic or gss_wrap routine.

FALSE — Per-message integrity service is unavailable.
GSS_C_ANON_FLAG

TRUE — The initiator does not wish to be authenticated; the src_name
argument (if requested) contains an anonymous internal name.

FALSE — The initiator has been authenticated normally.
GSS_C_PROT_READY_FLAG

TRUE — Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available if the
accompanying status return value is either GSS_S_COMPLETE or
GSS_S_CONTINUE_NEEDED.

FALSE — Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available only if the
accompanying status return value is GSS_S_COMPLETE.

GSS_C_TRANS_FLAG

Chapter 5

67

GSSAPI (Generic Security Services Application Programming Interface)
gss_accept_sec_context — Establish a security context

TRUE — The resultant security context may be transferred to other
processes via a call to gss_export_sec_context.

FALSE — The security context is not transferable.
All other bits should be zero.

time_rec (output) The number of seconds for which the context will remain valid. Specify
NULL if not required.

delegated_cred_handle (output) The credential handle for credentials received from the context initiator.
Only valid if deleg_flagin ret_flags is TRUE, in which case an explicit
credential handle (that is, not GSS_C_NO_CREDENTIAL) will be
returned; if deleg flag is false, gss_accept_context will set this
argument to GSS_C_NO_CREDENTIAL. If a credential handle is
returned, the associated resources must be released by the application
after use with a call to gss_release_cred. Specify NULL if not required.

Description

This routine allows a remotely initiated security context between the application and a remote peer to be
established. The routine may return an output_token that should be transferred to the peer application,
where the peer application will present it to gss_init_sec_context. If no token need be sent,
gss_accept_sec_context will indicate this by setting the length field of the output_token argument to
zero. To complete the context establishment, one or more reply tokens may be required from the peer
application; if so, gss_accept_sec_context will return a status flag of GSS_S_CONTINUE_NEEDED, in
which case it should be called again when the reply token is received from the peer application, passing the
token to gss_accept_sec_context via the input_token arguments.

Portable applications should be constructed to use the token length and return status to determine whether a
token needs to be sent or waited for. A typical portable caller should always invoke
gss_accept_sec_context within a loop. For example:

gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

do {
receive_token_from_peer (input_token) ;

maj_stat = gss_accept_sec_context(&min_stat,
&context_hdl,
cred_hdl,
input_token,
input_bindings,
&client_name,
&mech_type,
output_token,
&ret_flags,
&time_rec,
&deleg_cred) ;
if (GSS_ERROR (maj_stat)) {
report_error (maj_stat, min_stat);
i
if (output_token->length !'= 0) {
send_token_to_peer (output_token) ;
gss_release_buffer (&min_stat, output_token) ;
i
if (GSS_ERROR (maj_stat)) {
if (context_hdl != GSS_C_NO_CONTEXT)

68 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_accept_sec_context — Establish a security context

gss_delete_sec_context (&min_stat,
&context_hdl,
GSS_C_NO_BUFFER) ;
break;

i

} while (maj_stat & GSS_S_CONTINUE_NEEDED) ;

Whenever the routine returns a status that includes the value GSS_S_CONTINUE_NEEDED, the context is
not fully established and the following restrictions apply to the output arguments:

The value returned via the time_rec argument is undefined unless the accompanying ret_flags
argument contains the bit GSS_C_PROT_READY_FLAG, indicating that per-message services may be
applied in advance of a successful completion status. The value returned via the mech_type argument
may be undefined until the routine returns a status of GSS_S_COMPLETE.

The value of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_FLAG, GSS_C_INTEG_FLAG, and GSS_C_ANON_FLAG
bits returned via the ret_flags argument contain the values that the implementation expects would be
valid if context establishment were to succeed.

The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags
indicate the actual state at the time gss_accept_sec_context returns, whether or not the context is
fully established.

Although this requires that GSSAPI implementations set the GSS_C_PROT_READY_FLAG in the final
ret_flags returned to a caller (that is, when accompanied by a GSS_S_COMPLETE status code),
applications should not reply on this behavior as the flag was not defined in Version 1 of the GSSAPI.
Instead, applications should be prepared to use per-message services after a successful context
establishment, according to the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument will be set to zero. While the routine returns
GSS_S_CONTINUE_NEEDED, the values returned via the ret_flags argument indicate the services
that the implementation expects to be available from the established context.

During context establishment, the information status bits GSS_S_OLD_TOKEN and
GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSSAPI mechanisms return them in association
with a routine error of GSS_S_FAILURE. This requirement for pairing did not exist in Version 1 of the
GSSAPI specification, so applications that wish to run over Version 1 implementations must special-case
these codes.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTINUE_NEEDED The service completed successfully and synchronously
(returned only if the DDTM$M_SYNCH flag is set).

GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on the
input_token failed.

GSS_S_DEFECTIVE_CREDENTIAL The options flags were invalid or the TID argument was
omitted and the bid argument was not 0.

GSS_S_NO_CRED The supplied credentials were not valid for context
acceptance, or the credential handle did not reference
any credentials.

Chapter 5 69

GSSAPI (Generic Security Services Application Programming Interface)
gss_accept_sec_context — Establish a security context

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.

GSS_S_BAD_BINDINGS The input_token contains different channel bindings
to those specified via the input_chan_bindings
argument.

GSS_S_NO_CONTEXT Indicates that the supplied context handle did not refer
to a valid context.

GSS_S_BAD_SIG The input_token contains an invalid MIC.

GSS_S_OLD_TOKEN The input_token was too old. This is a fatal error
during context establishment.

GSS_S_DUPLICATE_TOKEN The input_token is valid, but is a duplicate of a token
already processed. This is a fatal error during context
establishment.

GSS_S_BAD_MECH The received token specified a mechanism that is not
supported by the implementation or the provided
credential.

70 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_acquire_cred — Acquire credential handle

gss_acquire_cred — Acquire credential handle

C Prototype

OM_uint32 gss_acquire_cred (

OM_uint32
gss_name_t
OM_uint32
gss_OID_set
gss_cred_usage_t
gss_cred_id_t
gss_OID_set
OM_uint32

Arguments

minor_status (output)
desired_name (input)

time_req (input)

desired_mechs (input)

cred_usage (input)

output_cred_handle (output)

actual_mechs (output)

time_rec (output)

minor_status,
desired_name,
time_req,
desired_mechs,
cred_usage,
output_cred_handle,
actual_mechs,
time_rec);

The mechanism-specific status code.
The name of the principal whose credential should be acquired.

The number of seconds that credentials should remain valid. Specify
GSS_C_INDIFINITE to request that the credentials have the maximum
permitted lifetime.

The set of underlying security mechanisms that may be used.
GSS_C_NULL_OID_SET may be used to obtain an
implementation-specific default.

One of the following values:

GSS_C_BOTH — Credentials may be used either to initiate or accept
security contexts.

GSS_C_INITIATE — Credentials will only be used to initiate security
contexts.

GSS_C_ACCEPT — Credentials will only be used to accept security
contexts.

The returned credential handle. Resources associated with this credential
handle must be released by the application after use with a call to
gss_release_cred.

The set of mechanisms for which the credential is valid. Storage
associated with the returned OID-set must be released by the application
after use with a call to gss_release_oid_set. Specify NULL if not
required.

The actual number of seconds for which the returned credentials will
remain valid. If the implementation does not support expiration of
credentials, the value GSS_C_INDEFINITE will be returned. Specify
NULL if not required.

Chapter 5

71

GSSAPI (Generic Security Services Application Programming Interface)
gss_acquire_cred — Acquire credential handle

Description

This routine allows an application to acquire a handle for a pre-existing credential by name. GSSAPI
implementations must impose a local access-control policy on callers of this routine to prevent unauthorized
callers from acquiring credentials to which they are not entitled. This routine is not intended to provide a
"login to the network" function, as such a function would result in the creation of new credentials rather than
merely acquiring a handle to existing credentials.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request for a credential handle that will
invoke default behavior when passed to gss_init_sec_context (if cred_usage is GSS_C_INITIATE or
GSS_C_BOTH) or gss_accept_sec_context (if cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

This routine is expected to be used primarily by context acceptors.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_MECH Unavailable mechanism requested.

GSS_S_BAD_NAMETYPE The type contained within the desired_name argument
is not supported.

GSS_S_BAD_NAME The value supplied for the desired_name argument is
ill formed.

GSS_S_NO_CRED The supplied credentials were not valid for context

acceptance, or the credential handle did not reference
any credentials.

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.

72 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_add_cred — Construct credentials incrementally

gss_add_cred — Construct credentials incrementally

C Prototype

OM_uint32 gss_add_cred(
OM_uint32
gss_cred_id_t
gss_name_t
gss_0OID
gss_cred_usage_t
OM_uint32
OM_uint32
gss_cred_id_t
gss_OID_set
OM_uint32
OM_uint32

Arguments

minor_status (output)

input_cred_handle (input)

desired_name (input)

desired_mech (input)

cred_usage (input)

initiator_time_req (input)

acceptor_time_req (input)

output_cred_handle (output)

minor_status,
input_cred_handle,
desired_name,
desired_mech,
cred_usage,
initiator_time_req,
acceptor_time_req,
output_cred_handle,
actual_mechs,
initiator_time_rec,
acceptor_time_rec);

An implementation-specific status code.

The credential to which a credential-element will be added. If
GSS_C_NO_CREDENTIAL is specified, the routine will compose the new
credential based on default behavior. (See description). Note that, while
the credential handle is not modified by gss_add cred, the underlying
credential will be modified if output_cred_handle is NULL.

The name of the principal whose credential should be acquired.

The underlying security mechanism with which the credential may be
used.

How the credential may be used. Valid values are as follows:

GSS_C_INITIATE — Credential will only be used to initiate security
contexts.

GSS_C_ACCEPT — Credential will only be used to accept security
contexts.

The number of seconds that the credential should remain valid for
initiating security contexts. This argument is ignored if the composed
credentials are of type GSS_C_ACCEPT. Specify GSS_C_INDEFINITE to
request that the credentials have the maximum permitted initiator
lifetime.

The number of seconds that the credential should remain valid for
accepting security contexts. This argument is ignored if the composed
credentials are of type GSS_C_INITIATE. Specify GSS_C_INDEFINITE
to request that the credentials have the maximum permitted initiator
lifetime.

The returned credential handle, containing the new credential-element
and all the credential-elements from input_cred_handle. If a valid
pointer to a gss_cred_id_t is supplied for this argument, gss_add_cred
creates a new credential handle containing all credential-elements from

Chapter 5

73

GSSAPI (Generic Security Services Application Programming Interface)
gss_add_cred — Construct credentials incrementally

the input_cred_handle and the newly acquired credential-element; if
NULL is specified for this argument, the newly acquired
credential-element will be added to the credential identified by
input_cred_handle.

The resources associated with any credential handle returned via this
argument must be released by the application after use with a call to
gss_release_cred.

actual_mechs (output) The complete set of mechanisms for which the new credential is valid.
Storage for the returned OID-set must be freed by the application after
use with a call to gss_release_oid_set. Specify NULL if not required.

initiator_time_rec (output) The actual number of seconds for which the returned credentials will
remain valid for initiating contexts using the specified mechanism. Ifthe
implementation or mechanism does not support expiration of credentials,
the value GSS_C_INDEFINITE will be returned. Specify NULL if not
required.

acceptor_time_rec (output) The actual number of seconds for which the returned credentials will
remain valid for accepting security contexts using the specified
mechanism. If the implementation or mechanism does not support
expiration of credentials, the value GSS_C_INDEFINITE will be
returned. Specify NULL if not required.

Description

This routine adds a credential-element to a credential. The credential-element is identified by the name of
the principal to which it refers. This routine is not intended to provide a "login to the network" function, as
such a function would involve the creation of new mechanism-specific authentication data, rather than
merely acquiring a GSSAPI handle to existing data.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request to add a credential element that
will invoke default behavior when passed to gss_init_sec_context (if cred_usage is GSS_C_INITIATE or
GSS_C_BOTH) or gss_accept_sec_context (if cred_usage is GSS_C_ACCEPT or GSS_C_BOTH).

This routine is expected to be used primarily by context acceptors, since implementations are likely to provide
mechanism-specific ways of obtaining GSSAPI initiator credentials from the system login process. Some
implementations may therefore not support the acquisition of GSS_C_INITIATE or GSS_C_BOTH
credentials via gss_acquire_cred for any name other than GSS_C_NO_NAME, or a name produced by
applying either gss_inquire_cred to a valid credential, or gss_ingquire context to an active context.

This routine can be used to either compose a new credential containing all credential-elements of the original
in addition to the newly acquired credential element, or to add the new credential-element to an existing
credential. If NULL is specified for the output_cred_handle argument, the new credential-element will be
added to the credential identified by input_cred _handle; if a valid pointer is specified for the
output_cred_handle argument, a new credential handle will be created.

If GSS_C_NO_CREDENTIAL is specified as the input_cred_handle, gss_add_cred will compose a
credential (and set the output_cred_handle argument accordingly) based on default behavior. That is, the
call will have the same effect as if the application had first made a call to gss_acquire_cred, specifying the
same usage and passing GSS_C_NO_NAME as the desired_name argument to obtain an explicit credential
handle embodying default behavior, passed this credential handle to gss_add_cred, and finally called
gss_release_cred on the first credential handle.

If GSS_C_NO_CREDENTIAL is specified as the input_cred_handle argument, a nonNULL
output_cred_handle must be supplied.

74 Chapter 5

Return Values

GSSAPI (Generic Security Services Application Programming Interface)
gss_add_cred — Construct credentials incrementally

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE
GSS_S_BAD_MECH
GSS_S_BAD_NAMETYPE

GSS_S_BAD_NAME

GSS_S_DUPLICATE_ELEMENT

GSS_S_CREDENTIALS_EXPIRED

GSS_S_NO_CRED

Successful completion.
Unavailable mechanism requested.

The type contained within the desired name argument
is not supported.

The value supplied for the desired name argument is
ill formed.

The credential already contains an element for the
requested mechanism with overlapping usage and
validity period.

The required credentials could not be added because
they have expired.

No credentials were found for the specified name.

Chapter 5

75

GSSAPI (Generic Security Services Application Programming Interface)
gss_add_oid_set_member — Add an object identifier to a set

gss_add_oid_set_member — Add an object identifier to a set

C Prototype

OM_uint32 gss_add_oid_set_member (

OM_uint32 minor_status,
gss_0OID member_oid,
gss_OID_set oid_set);
Arguments
minor_status (output) An implementation-specific status code.
member_oid (input) The object identifier to be copied into the set.
oid_set (input/output) The set in which the object identifier should be inserted.
Description

This routine adds an object identifier to an object identifier set. It is intended for use in conjunction with
gss_create_empty_oid_set when constructing a set of mechanism OIDs for input to gss_acquire_cred.
The oid_set argument must refer to an OID-set that was created by GSSAPI (for example, a set returned by
gss_create_empty_oid_set). GSSAPI creates a copy of the member_oid and inserts this copy into the set,
expanding the storage allocated to the OID-set's elements array if necessary. The routine may add the new
member OID anywhere within the elements array; if the member_oid is already present, the oid_set
remains unchanged.

Return Values

This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

76 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_canonicalize_name — Convert internal name to internal mechanism name

gss_canonicalize_name — Convert internal name to internal
mechanism name

C Prototype
OM_uint32 gss_canonicalize_name (
OM_uint32 minor_status,
const gss_name_t input_name,
const gss_OID mech_type,
gss_name_t output_name) ;
Arguments
minor_status (output) An implementation-specific status code.
input_name (input) The name for which a canonical form is desired.
mech_type (input) The authentication mechanism for which the canonical form of the name

is desired. The desired mechanism must be specified explicitly; no default
is provided.

output_name (output) The resultant canonical name. Storage associated with this name must be
freed by the application after use by a call to gss_release_name.

Description

This routine generates a canonical mechanism name (MN) from an arbitrary internal name. The mechanism
name is the name that would be returned to a context acceptor on successful authentication of a context
where the initiator used the input_name in a successful call to gss_acquire_cred, specifying an OID set
containing mech_type as its only member, followed by a call to gss_init_sec_context, specifying mech_type
as the authentication mechanism.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_BAD_MECH The identified mechanism is not supported.
GSS_S_BAD_NAMETYPE The provided internal name contains no elements that

could be processed by the specified mechanism.

GSS_S_BAD_NAME The input_name argument was ill formed.

Chapter 5 77

GSSAPI (Generic Security Services Application Programming Interface)
gss_compare_name — Allow application to compare two internal names

gss_compare_name — Allow application to compare two internal
names

C Prototype

OM_uint32 gss_compare_name (

OM_uint32 minor_status,
gss_name_t namel,
gss_name_t name2,
int name_equal) ;
Arguments
minor_status (output) An implementation-specific status code.
namel (input) Internal-form name 1.
name2 (input) Internal-form name 2.
name_equal (output) A Boolean value.

TRUE — Names refer to the same entity.

FALSE — Names refer to different entities (strictly, the names are not
known to refer to the same identity).
Description

This routine allows an application to compare two internal-form names to determine whether they refer to
the same entity. If either name presented to gss_compare_name denotes an anonymous principal, the routine
will indicate that the two names do not refer to the same identity.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAMETYPE The type contained within either namel or name2 was
unrecognized, or the names were of incomparable types.

GSS_S_BAD_NAME One or both of namel or name2 was ill formed.

78 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_context_time — Check how much longer context is valid

gss_context_time — Check how much longer context is valid

C Prototype

OM_uint32 gss_context_time (

OM_uint32 minor_status,
gss_ctx_id_t context_handle,
OM_uint32 time_rec);
Arguments
minor_status (output) An implementation-specific status code.
context_handle (input) Identifies the context to be interrogated.
time_rec (output) The number of seconds that the context will remain valid. If the context

has already expired, zero will be returned.

Description

Determines the number of seconds for which the specified context will remain valid.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTEXT_EXPIRED The context has already expired.

GSS_S_NO_CONTEXT The context_handle argument did not identify a valid
context.

Chapter 5 79

GSSAPI (Generic Security Services Application Programming Interface)
gss_create_empty_oid_set — Create a set containing no object identifiers

gss_create_empty_oid_set — Create a set containing no object
identifiers

C Prototype

OM_uint32 gss_create_empty_oid_set (

OM_uint32 minor_status,
gss_OID_set oid_set);
Arguments
minor_status (output) An implementation-specific status code.
oid_set (output) The empty object identifier set. The routine will allocate the

gss_OID_set_desc object, which the application must free after use with
a call to gss_release_oid_set.

Description

This routine creates an object identifier set containing no object identifiers, to which members may be
subsequently added using the gss_add_oid_set_member routine. These routines are intended to be used to
construct sets of mechanism object identifiers, for input to gss_acquire_cred.

Return Values

This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

80 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_delete_sec_context — Delete a security context

gss_delete_sec_context — Delete a security context

C Prototype

OM_uint32 gss_delete_sec_context (

OM_uint32 minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t output_token) ;
Arguments
minor_status (output) A mechanism-specific status code.

context_handle (input/output) A context handle identifying the context to delete. After deleting the
context, the GSSAPI will set this context handle to
GSS_C_NO_CONTEXT.

output_token (output) A token to be sent to the remote application to instruct it to also delete the
context. It is recommended that applications specify
GSS_C_NO_BUFFER for this argument, requesting local deletion only. If
a buffer argument is provided by the application, the mechanism will
either return a token in it, or set the length field of this token to zero to
indicate to the application that no token is to be sent to the peer.

Description

This routine deletes a security context. The gss_delete_sec_context routine deletes the local data
structures associated with the specified security context, and may generate an output_token, which when
passed to the peer gss_process_context_token will instruct it to do likewise. No further security services
may be obtained using the context specified by context_handle.

The output_token argument is retained for compatibility with Version 1 of the GSSAPI. It is recommended
that both peer applications invoke gss_delete_sec_context passing the value GSS_C_NO_BUFFER for the
output_token argument, indicating that no token is required, and that gss_delete_sec_context should
simply delete local context data structures.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_FAILURE Failure. See minor_status for more information.
GSS_S_NO_CONTEXT No valid context was supplied.

Chapter 5 81

GSSAPI (Generic Security Services Application Programming Interface)
gss_display_name — Provide textual representation of opaque internal name

gss_display_name — Provide textual representation of opaque
internal name

C Prototype

OM_uint32 gss_display_name (

OM_uint32 minor_status,
gss_name_t input_name,
gss_buffer_t output_name_buffer,
gss_OID output_name_type);
Arguments
minor_status (output) An implementation-specific status code.
input_name (input) The name to be displayed.
output_name_buffer (output) A buffer to receive the textual name string. The application must free

storage associated with this name after use with a call to
gss_release_buffer.

output_name_type (output) The type of the returned name. The returned gss_0ID will be a pointer
into static storage, and should be treated as read-only by the caller. (In
particular, the application should not attempt to free it). Specify NULL if
not required.

Description

This routine allows an application to obtain a textual representation of an opaque internal-form name for
display purposes. The syntax of a printable name is defined by the GSSAPI implementation.

If input_name denotes an anonymous principal, the routine will return the gss_0ID value
GSS_C_NT_ANONYMOUS as the output_name_type, and a textual name that is syntactically distinct from
all valid supported printable names in the output_name_ buffer.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_BAD_NAMETYPE The type of input_name was not recognized.
GSS_S_BAD_NAME The input_name was ill formed.

82 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_display_status — Convert GSSAPI status code to text for user display

gss_display_status — Convert GSSAPI status code to text for user
display

C Prototype

OM_uint32 gss_display_status (

OM_uint32 minor_status,

OM_uint32 status_value,

int status_type

gss_0OID mech_type,

OM_uint32 message_context,

gss_buffer_t status_string);
Arguments
minor_status (output) An implementation-specific status code.
status_value (input) The status value to be converted.
status_type (input) One of the following values:

GSS_C_GSS_CODE — The status_value is a GSS status code.

GSS_C_MECH_CODE — The status_value is a mechanism status
code.

mech_type (input) The underlying mechanism (used to interpret a minor_status value).
Supply GSS_C_NO_OID to obtain the system default.

message_context (input/output) This argument should be initialized to zero by the caller on the first call.
If further messages are contained in the status_value argument,
message_context will be nonzero on return, and this value should be
passed back to subsequent calls, along with the same status_value,
status_type, and mech_type arguments.

status_string (output) The textual interpretation of the status_value. Storage associated with
this argument must be freed by the application after use with a call to
gss_release_buffer.

Description

This routine allows an application to obtain a textual representation of a GSSAPI status code, for display to
the user or for logging purposes. Since some status values may indicate multiple conditions, applications may
need to call gss_display_status multiple times, each call generating a single text string. The
message_context argument is used to store state information about which error messages have already been
extracted from a given status_value; message_context must be initialized to zero by the application prior
to the first call, and gss_display_status will return a nonzero value in this argument if there are further
messages to extract.

The message_context argument contains all state information required by gss_display_status in order to
extract further messages from the status_value; even when a nonzero value is returned in this argument,
the application is not required to call gss_display status again unless subsequent messages are desired.
The following code extracts all messages from a given status code and prints them to SYS$ERROR.

Chapter 5 83

GSSAPI (Generic Security Services Application Programming Interface)
gss_display_status — Convert GSSAPI status code to text for user display

OM_uint32 message_context;
OM_uint32 status_code;
OM_uint32 maj_status;
OM_uint32 min_status;
gss_buffer_desc status_string;

message_context = 0;

do {
maj_status = gss_display_ status (&min_status
status_code,
GSS_C_GSS_CODE,
GSS_C_NO_OID,
&message_context,
&status_string) ;
fprintf (stderr,
“%.*s\n”,
(int) status_string.length,
(char *)status_string.value);
gss_release_buffer (&min_status, &status_string);
} while (message_context != 0);

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_MECH Indicates that translation in accordance with an
unsupported mechanism type was requested.

GSS_S_BAD_STATUS The status_value was not recognized, or the

status_type was neither GSS_C_GSS_CODE nor

GSS_C_MECH_CODE.

84

Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_duplicate_name — Create a copy of an internal name

gss_duplicate_name — Create a copy of an internal name

C Prototype

OM_uint32 gss_duplicate_name (

OM_uint32 minor_status,
const gss_name_t input_name,
gss_name_t dest_name) ;
Arguments
minor_status (output) An implementation-specific status code.
input_name (input) The internal name to be duplicated.
dest_name (output) The resultant copy of input_name. Storage associated with this name

must be freed by the application after use by a call to gss_release_name.

Description

This routine creates a duplicate of the existing internal name input_name. The new dest_name will be
independent of input_name (that is, input_name and dest_name must both be released, and the release of
one will not affect the validity of the other).
Return Values
This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAME The input_name argument was ill formed.

Chapter 5 85

GSSAPI (Generic Security Services Application Programming Interface)
gss_export_name — Convert an internal mechanism name to export form

gss_export_name — Convert an internal mechanism name to export
form

C Prototype

OM_uint32 gss_export_name (

(OM_uint32 minor_status,
const gss_na input_name,
gss_buffer_t exported_name) ;
Arguments
minor_status (output) An implementation-specific status code.
input_name (input) The mechanism name to be exported.
exported_name (output) The canonical contiguous string form of input_name. Storage associated

with this string must be freed by the application after use by a call to
gss_release_buffer.
Description

This routine produces a canonical contiguous string representation of a mechanism name (MN), suitable for
direct comparison (for example, with memcmp) for use in authorization functions (for example, matching
entries in an access-control list). The input_name argument must specify a valid MN (that is, an internal
name generated by gss_accept_sec_context or by gss_canonicalize_name).

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NAME_NOT_MN The provided internal name was not a mechanism
name.

GSS_S_BAD_NAME The provided internal name was ill formed.

GSS_S_BAD_NAMETYPE The internal name was of a type not supported by the

GSSAPI implementation.

86 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_export_sec_context — Transfer a security context to another process

gss_export_sec_context — Transfer a security context to another
process

C Prototype

OM_uint32 gss_export_sec_context (

OM_uint32 *minor_status,
gss_ctx_id_t *context_handle,
gss_buffer_t interprocess_token) ;
Arguments
minor_status (output) An implementation-specific status code.
context_handle (input/output) The context handle identifying the context to transfer.
interprocess_token (output) The token to be transferred to the target process. Storage associated with

this token must be freed by the application after use with a call to
gss_release_buffer.

Description

This routine is provided to support the sharing of work between multiple processes. It will typically be used
by the context acceptor, in an application where a single process receives incoming connection requests and
accepts security contexts over them, then passes the established context to one or more other processes for
message exchange. The gss_export_sec_context routine deactivates the security context for the calling
process and creates an interprocess token which, when passed to gss_import_sec_context in another
process, will re-activate the context in the second process. Only a single instantiation of a given context may
be active at any one time; a subsequent attempt by a context exporter to access the exported security context
will fail.

The implementation may constrain the set of processes by which the interprocess token may be imported,
either as a function of local security policy, or as a result of implementation decisions. For example, some
implementations may constrain contexts to be passed only between processes that run under the same
account, or which are part of the same process group.

The interprocess token may contain security-sensitive information (for example, cryptographic keys).

If the creation of the interprocess token is successful, all process-wide resources associated with the security
context will be deallocated, and the context_handle will be set to GSS_C_NO_CONTEXT.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_CONTEXT_EXPIRED The context has expired.
GSS_S_NO_CONTEXT The context was invalid.
GSS_S_UNAVAILABLE The operation is not supported.

Chapter 5 87

GSSAPI (Generic Security Services Application Programming Interface)
gss_get_mic — Generate a cryptographic MIC for a message

gss_get_mic — Generate a cryptographic MIC for a message

C Prototype

OM_uint32 gss_get_mic(
OM_uint32
gss_ctx_id_t
gss_qgop_t
gss_buffer_t
gss_buffer_t

Arguments

minor_status (output)
context_handle (input)

qop_req (input)

message_buffer (input)

message_token (output)

Description

minor_status,
context_handle,
gop_req,
message_buffer,
message_token);

An implementation-specific status code.
Identifies the context on which the message will be sent.

Specifies the requested quality of protection. Callers are encouraged, on
portability grounds, to accept the default quality of protection offered by
the chosen mechanism, which may be requested by specifying
GSS_C_QOP_DEFAULT for this argument. If an unsupported protection
strength is requested, gss_get_mic will return a status of
GSS_S_BAD_QOP.

The message to be protected.

A buffer to receive the token. The application must free storage associated
with this buffer after use with a call to gss_release_buffer.

This routine supports data origin authentication and data integrity services. When gss_get_mic is invoked
on an input message, it generates a cryptographic MIC, and places the MIC in a per-message token
containing data items that allow underlying mechanisms to provide the specified security services. The
original message, along with the generated per-message token, is passed to the remote peer; these two data
elements are processed by gss_verify_mic, which validates the message in conjunction with the separate
token. The gop_reqg argument allows a choice between several cryptographic algorithms.

This routine is functionally equivalent to the gss_sign routine. New code should use gss_get_mic instead of
gss_sign. Although both routines are supported, gss_sign has been deprecated in the GSSAPI Version 2

specification.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE

Indicates that an integrity check, suitable for an
established security context, was successfully applied
and that the message and corresponding
per_msg_token are ready for transmission.

GSS_S_CONTEXT_EXPIRED Indicates that context-related data items have expired,

so that the requested operation cannot be performed.

88

Chapter 5

GSS_S_NO_CONTEXT

GSS_S_BAD_QOP

GSSAPI (Generic Security Services Application Programming Interface)
gss_get_mic — Generate a cryptographic MIC for a message

Indicates that the context_handle argument did not
identify a valid context.

Indicates that the provided QOP value is not recognized
or supported for the context.

Chapter 5

89

GSSAPI (Generic Security Services Application Programming Interface)
gss_import_name — Convert a printable string to an internal form

gss_import_name — Convert a printable string to an internal form

C Prototype

OM_uint32 gss_import_name (

OM_uint32 minor_status,
gss_buffer_t input_name_buffer,
gss_0OID input_name_type,
gss_name_t output_name) ;
Arguments
minor_status (output) An implementation-specific status code.
input_name_buffer (input) A buffer containing the contiguous string name to convert.
input_name_type (input) The object ID specifying the type of printable name. Applications may

specify either GSS_C_NO_OID to use a local system-specific printable
syntax, or an OID recognized by the GSSAPI implementation to name a
specific namespace.

output_name (output) The returned name in internal form. Storage associated with this name
must be freed by the application after use with a call to
gss_release_name.

Description

This routine converts a contiguous string name to internal form. In general, the internal name returned (via
the output_name argument) will not be an internal mechanism name; the exception to this is if the
input_name_type indicates that the contiguous string provided via the input_name_buffer argument is of
type GSS_C_NT_EXPORT_NAME, in which case the returned internal name will be a mechanism name for
the mechanism that exported the name.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_BAD _NAMETYPE The input_name_type was unrecognized.
GSS_S_BAD_NAME The input_name_buf fer argument could not be

interpreted as a name of the specified type.

GSS_S_BAD _MECH The input name type was
GSS_C_NT_EXPORT_NAME, but the mechanism
contained within the input name is not supported.

90 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_import_sec_context — Import a transferred context

gss_import_sec_context — Import a transferred context

C Prototype

OM_uint32 gss_import_sec_context (

OM_uint32 minor_status,
gss_buffer_t interprocess_token,
gss_ctx_id_t context_handle);
Arguments
minor_status (output) An implementation-specific status code.

interprocess_token (input/output) The token received from the exporting process.

context_handle (output) The context handle of the newly reactivated context. Resources associated
with this context handle must be released by the application after use
with a call to gss_delete_sec_context.

Description

This routine allows a process to import a security context established by another process. A given

interprocess token may be imported only once. See gss_export_sec_context for additional information.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CONTEXT The token did not contain a valid context reference.
GSS_S_DEFECTIVE_TOKEN The token was invalid.

GSS_S_UNAVAILABLE The operation is unavailable.
GSS_S_UNAUTHORIZED Local policy prevents the import of this context by the

current process.

Chapter 5 91

GSSAPI (Generic Security Services Application Programming Interface)
gss_indicate_mechs — Allow an application to determine which security mechanisms are available

gss_indicate_mechs — Allow an application to determine which
security mechanisms are available

C Prototype

OM_uint32 gss_indicate_mechs (

OM_uint32 minor_status,
gss_OID_set mech_set);
Arguments
minor_status (output) An implementation-specific status code.
mech_set (output) A set of implementation-supported mechanisms. The returned

gss_OID_set value will be a dynamically allocated OID set that should be
released by the caller after use with a call to gss_release_oid_set.

Description

This routine allows an application to determine which underlying security mechanisms are available.

Return Values

This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

92 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_init_sec_context — Establish a security context

gss_init_sec_context — Establish a security context

C Prototype

OM_uint32 gss_init_sec_context (

OM_uint32 minor_status,
gss_cred_id_t claimant_cred_handle,
gss_ctx_id_t context_handle,
gss_name_t target_name,
gss_0OID mech_type,
OM_uint32 req flags,
OM_uint32 time_req,
gss_channel_bindings_t input_chan_bindings,
gss_buffer_t input_token,
gss_0OID actual_mech_type,
gss_buffer_t output_token,
OM_uint32 ret_flags,
OM_uint32 time_rec);
Arguments
minor_status (output) An implementation-specific status code.

claimant_cred_handle (input) A handle for credentials claimed. Supply GSS_C_NO_CREDENTIAL to
act as a default initiator principal. If no default initiator is defined, the
routine will return GSS_S_NO_CRED.

context_handle (input/output) The context handle for the new context. Supply GSS_C_NO_CONTEXT
for the first call; use the value returned by the first call in continuation
calls. Resources associated with this context handle must be released by
the application after use with a call to gss_delete sec_context.

target_name (input) The name of the target.

mech_type (input) The object ID of the desired mechanism. Supply GSS_C_NOOID to obtain
A mechanism-specific default.

req_flags (input) Contains various independent flags, each of which requests that the
context support a specific service option. Symbolic names are provided for
each flag, and the symbolic names corresponding to the required flags
should be logically ORed together to form the bit-mask value. Valid values
are:

GSS_C_DELEG_FLAG

TRUE — Delegate credentials to the remote peer.

FALSE — Do not delegate.

GSS_C_MUTUAL_FLAG

TRUE — Request that the remote peer authenticate itself.
FALSE — Authenticate self to the remote peer only.
GSS_C_REPLAY_FLAG

Chapter 5 93

GSSAPI (Generic Security Services Application Programming Interface)
gss_init_sec_context — Establish a security context

time_req (input)

input_chan_bindings (input)

input_token (input)

actual_mech_type (output)

output_token (output)

ret_flags (output)

TRUE — Enable replay detection for messages protected with gss_wrap
or gss_get_mic.

FALSE — Do not attempt to detect replayed messages.
GSS_C_SEQUENCE_FLAG

TRUE — Enable detection of out-of-sequence protected messages.
FALSE — Do not attempt to detect out-of-sequence messages.
GSS_C_CONF_FLAG

TRUE — Request that confidentiality service be made available (by
calling gss_wrap).

FALSE — No per-message confidentiality service is required.
GSS_C_INTEG_FLAG

TRUE — Request that integrity service be made available (by calling
either gss_get_mic or gss_wrap).

FALSE — No per-message integrity service is required.
GSS_C_ANON_FLAG

TRUE — Do not reveal the initiator's identity to the acceptor.
FALSE — Authenticate normally.

The desired number of seconds for which the context should remain valid.
Supply zero to request a default validity period.

Application-specified bindings. Allows the application to securely bind
channel identification information to the security context. Specify
GSS_C_NO_CHANNEL_BINDINGS if channel bindings are not used.

The token received from the peer application. Supply
GSS_C_NO_BUFFER, or a pointer to a buffer containing the value
GSS_C_EMPTY_BUFFER on the initial call.

The actual mechanism used. The OID returned via this argument will be
a pointer to static storage that should be treated as read only; in
particular the application should not attempt to free it. Specify NULL if
not required.

The token to be sent to the peer application. Ifthe length field of the
returned buffer is zero, no token need be sent to the peer application.
Storage associated with this buffer must be freed by the application after
use with a call to gss_release buffer.

Contains various independent flags, each of which indicates that the
context supports a specific service option. Specify NULL if not required.
Symbolic names are provided for each flag, and the symbolic names
corresponding to the required flags should be logically ANDed with the
ret_flags value to test whether a given option is supported by the
context. The flags are:

GSS_C_DELEG_FLAG
TRUE — Credentials were delegated to the remote peer.
FALSE — No credentials were delegated.

94

Chapter 5

time_rec (output)

GSSAPI (Generic Security Services Application Programming Interface)
gss_init_sec_context — Establish a security context

GSS_C_MUTUAL_FLAG

TRUE — The remote peer has authenticated itself.

FALSE — The remote peer has not authenticated itself.
GSS_C_REPLAY_FLAG

TRUE — Replay of protected messages will be detected.
FALSE — Replayed messages will not be detected.
GSS_C_SEQUENCE_FLAG

TRUE — Out-of-sequence protected messages will be detected.
FALSE — Out-of-sequence messages will not be detected.
GSS_C_CONF_FLAG

TRUE — Confidentiality service may be invoked by calling the gss_wrap
routine.

FALSE — No confidentiality service (via gss_wrap) is available. The
gss_wrap routine will provide message encapsulation, data-origin
authentication, and integrity services only.

GSS_C_INTEG_FLAG

TRUE — Integrity service may be invoked by calling either gss_get_mic
or gss_wrap routines.

FALSE — Per-message integrity service is unavailable.
GSS_C_ANON_FLAG

TRUE — The initiator's identity has not been revealed, and will not be
revealed if any emitted token is passed to the acceptor.

FALSE — The initiator's identity has been or will be authenticated
normally.

GSS_C_PROT_READY_FLAG

TRUE — Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available for use if
the accompanying status return value is either GSS_S_COMPLETE or
GSS_S_CONTINUE_NEEDED.

FALSE — Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available only if the
accompanying major status return value is GSS_S_COMPLETE.

GSS_S_TRANS_FLAG

TRUE — The resultant security context may be transferred to other
processes via a call to gss_export_sec_context.

FALSE — The security context is not transferable.
All other bits should be set to zero.

The number of seconds for which the context will remain valid. If the
implementation does not support credential expiration, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

Chapter 5

95

GSSAPI (Generic Security Services Application Programming Interface)
gss_init_sec_context — Establish a security context

Description

This routine indicates the establishment of a security context between the application and a remote peer.
Initially, the input_token argument should be specified either as GSS_C_NO_BUFFER, or as a pointer to a

gss_buffer_desc object whose length field contains the value zero. The routine may return an

output_token that should be transferred to the peer application, where the peer application will present it to
gss_accept_sec_context. Ifno token need be sent, gss_init_sec_context will indicate this by setting the
length field of the output_token argument to zero. To complete the context establishment, one or more reply
tokens may be required from the peer application; if so, gss_init_sec_context will return a status

containing the supplementary information bit GSS_S_CONTINUE_NEEDED. In this case,

gss_init_sec_context should be called again when the reply token is received from the peer application,

passing the token to gss_init_sec_context via the input_token arguments.

Portable applications should be constructed to use the token length and return status to determine whether a

token needs to be sent or waited for. Thus a typical portable caller should always invoke

gss_init_sec_context within a loop:

int context_established = 0;
gss_ctx_id_t context_hdl = GSS_C_NO_CONTEXT;

input_token->length = 0;

while (!context_established) {
maj_stat = gss_init_sec_context (&min_stat,
cred_hdl,
&context_hdl,
target_name,
desired_mech,
desired_services,
desired_time,
input_bindings,
input_token,
&actual_mech,
output_token,
&actual_services,
&actual_time) ;
if (GSS_ERROR (maj_stat)) {
report_error (maj_stat, min_stat);

if (output_token->length !'= 0) {
send_token_to_peer (output_token) ;
gss_release_buffer (&min_stat, output_token)

if (GSS_ERROR (maj_stat)) {

if (context_hdl != GSS_C_NO_CONTEXT)
gss_delete_sec_context (&min_stat,
&context_hdl,
GSS_C_NO_BUFFER) ;
break;

i
if (maj_stat & GSS_S_CONTINUE_NEEDED) {
receive_token_from_peer (input_token) ;
} else {
context_established = 1;

96

Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_init_sec_context — Establish a security context

Whenever the routine returns a status that indicates the value GSS_S_CONTINUE_NEEDED, the context is
not fully established and the following restrictions apply to the output arguments:

e The value returned via the time_rec argument is undefined unless the accompanying ret_flags
argument contains the bit GSS_C_PROT_READY_FLAG, indicating that per-message services may be
applied in advance of a successful completion status, the value returned via the actual_mech_type
argument is undefined until the routine returns a status value of GSS_S_COMPLETE.

e The values of the GSS_C_DELEG_FLAG, GSS_C_MUTUAL_FLAG, GSS_C_REPLAY_FLAG,
GSS_C_SEQUENCE_FLAG, GSS_C_CONF_GLAG, GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG
bits returned via the ret_flags argument contain the values that the implementation expects would be
valid if context establishment were to succeed. In particular, if the application has requested a service
such as delegation or anonymous authentication via the req_flags argument, and such a service is
unavailable from the underlying mechanism, gss_init_sec_context generates a token that will not
provide the service, and indicates via the ret_flags argument that the service will not be supported.
The application may choose to abort the context establishment by calling gss_delete_sec_context (if it
cannot continue in the absence of the service), or it may choose to transmit the token and continue context
establishment (if the service was merely desired but not mandatory).

e The values of the GSS_C_PROT_READY_FLAG and GSS_C_TRANS_FLAG bits within ret_flags
indicate the actual state at the time gss_init_sec_context returns, whether or not the context is fully
established.

e GSSAPI implementations that support per-message protection are encouraged to set the
GSS_C_PROT_READY_FLAG in the final ret_flags returned to a caller (that is, when accompanied by
a GSS_S_COMPLETE status code). However, applications should not rely on this behavior, as the flag
was not defined in Version 1 of the GSSAPI. Instead, applications should determine what per-message
services are available after a successful context establishment according to the GSS_C_INTEG_FLAG
and GSS_C_CONF_FLAG values.

If the initial call of gss_init_sec_context fails, a context object is not created, and the value of the
context_handle argument is set to GSS_C_NO_CONTEXT to indicate this.

During context establishment, the informational status bits GSS_OLD_TOKEN and
GSS_S_DUPLICATE_TOKEN indicate fatal errors, and GSSAPI mechanisms return them in association
with a routine error of GSS_S_FAILURE. This requirement for pairing did not exist in Version 1 of the
GSSAPI specification, so applications that wish to run over Version 1 implementations must special-case
these codes.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_CONTINUE_NEEDED Indicates that a token from the peer application is
required to complete the context and that
gss_init_sec_context must be called again with that
token.

GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on the
input_token failed.

Chapter 5 97

GSSAPI (Generic Security Services Application Programming Interface)
gss_init_sec_context — Establish a security context

GSS_S_DEFECTIVE_CREDENTIAL Indicates that consistency checks performed on the
credential failed.

GSS_S_NO_CRED The supplied credentials were not valid for context
initiation, or the credential handle did not reference
any credentials.

GSS_S_CREDENTIALS_EXPIRED The referenced credentials have expired.

GSS_S_BAD_BINDINGS The input_token contains different channel bindings
to those specified via the input_chan_bindings
argument.

GSS_S_BAD_SIG The input_token contains an invalid MIC, or a MIC
that could not be verified.

GSS_S_OLD_TOKEN The input_token was too old. This is a fatal error
during context establishment.

GSS_S_DUPLICATE_TOKEN The input_token is valid, but is a duplicate of a token
already processed. This is a fatal error during context
establishment.

GSS_S_NO_CONTEXT Indicates that the supplied context handle did not refer
to a valid context.

GSS_S_BAD_NAMETYPE The provided target_name argument contained an
invalid or unsupported type of name.

GSS_S_BAD_NAME The provided target_name argument was ill formed.

GSS_S_BAD _MECH The specified mechanism is not supported by the
provided credential, or is unrecognized by the
implementation.

98 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_context — Extract security context information

gss_inquire_context — Extract security context information

C Prototype

OM_uint32 gss_inquire_context (

OM_uint32
gss_ctx_id_t
gss_name_t
gss_name_t
OM_uint32
gss_0OID
OM_uint32
int

int

Arguments

minor_status (output)

context_handle (input)

src_name (output)

targ_name (output)

lifetime_rec (output)

mech_type (output)

ctx_flags (output)

minor_status,
context_handle,
src_name,
targ_name,
lifetime_rec,
mech_type,
ctx_flags,
locally_initiated,
open) ;

An implementation-specific status code.

A context handle identifying the context for which information is to be
returned.

The name of the context initiator. If the context was established using
anonymous authentication, and if the application invoking
gss_inquire_context is the context acceptor, an anonymous name will
be returned. Storage associated with this name must be freed by the
application after use with a call to gss_release_name.

The name of the context target. Storage associated with this name must
be freed by the application after use with a call to gss_release_name. If
the context acceptor did not authenticate itself, and if the initiator did not
specify a target name in its call to gss_init_sec_context, the value
GSS_C_NO_NAME will be returned. Specify NULL if not required.

The number of seconds for which the context will remain valid. If the
context has expired, this argument will be set to zero. If the
implementation does not support credential expiration, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

The security mechanism providing the context. The returned OID will be
a pointer to static storage that should be treated as read only by the
application; in particular the application should not attempt to free it.
Specify NULL if not required.

Contains several independent flags, each of which indicates that the
context supports (or is expected to support, if open is FALSE), a specific
service option. If not needed, specify NULL. Symbolic names are
provided for each flag, and the symbolic names corresponding to the
required flags should be logically ANDed with the ret_flags value to test
whether a given option is supported by the context. The flags are:

GSS_C_DELEG_FLAG
TRUE — Credentials were delegated from the initiator to the acceptor.
FALSE — No credentials were delegated.

Chapter 5

99

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_context — Extract security context information

locally_initiated (output)

open (output)

GSS_C_MUTUAL_FLAG

TRUE — The acceptor was authenticated to the initiator.
FALSE — The acceptor did not authenticate itself.
GSS_C_REPLAY_FLAG

TRUE — Replay of protected messages will be detected.
FALSE — Replay messages will not be detected.
GSS_C_SEQUENCE_FLAG

TRUE — Out-of-sequence protected messages will be detected.
FALSE — Out-of-sequence messages will not be detected.
GSS_C_CONF_FLAG

TRUE — Confidentiality service may be invoked by calling the gss_wrap
routine.

FALSE — No confidentiality service (via gss_wrap) is available. The
gss_wrap routine provides message encapsulation, data-origin
authentication, and integrity services only.

GSS_C_INTEG_FLAG

TRUE — Integrity service may be invoked by calling either the
gss_get_mic or gss_wrap routine.

FALSE — Per-message integrity service is unavailable.
GSS_C_ANON_FLAG

TRUE — The initiator's identity will not be revealed to the acceptor. The
src_name argument (if requested) contains an anonymous internal name.

FALSE — The initiator has been authenticated normally.
GSS_C_PROT_READY_FLAG

TRUE — Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available for use.

FALSE — Protection services (as specified by the states of the
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG) are available only if the
context is fully established (that is, if the open argument is nonzero).

GSS_C_TRANS_FLAG

TRUE — The resultant security context may be transferred to other
processes via a call to gss_export_sec_context.

FALSE — The security context is not transferable.

A Boolean value. Specify NULL if not required.
TRUE if the caller is the context initiator.
FALSE if the caller is the acceptor.

A Boolean value. Specify NULL if not required.
TRUE if the context is fully established

100

Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_context — Extract security context information

FALSE if a context-establishment token is expected from the peer
application.

Description

This routine is used to extract information describing characteristics of a security context. The caller must
already have obtained a handle that refers to the context, although the context need not be fully established.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Indicates that the referenced context is valid and that
ctx_flags, locally initiated, and open return
values describe the corresponding characteristics of the
context. If open is TRUE, lifetime_rec is also
returned; if open is TRUE and the context peer's name
is known, src_name and targ_name are valid in
addition to the values listed previously. The mech_type
value must be returned for contexts where open is
TRUE and may be returned for contexts where open is
FALSE.

GSS_S_NO_CONTEXT Indicates that no valid context was recognized for the
input context_handle provided. Return values other
than minor_ status are undefined.

Chapter 5 101

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_cred — Provide calling application with information about a credential

gss_inquire_cred — Provide calling application with information
about a credential

C Prototype

OM_uint32 gss_inquire_cred (

OM_uint32 minor_status,
gss_cred_id_t cred_handle,
gss_name_t name,
OM_uint32 lifetime,
gss_cred_usage_t cred_usage,
gss_OID_set mechanisms) ;
Arguments
minor_status (output) An implementation-specific status code.
cred_handle (input) A handle that refers to the target credential. Specify
GSS_C_NO_CREDENTTAL to inquire about the default initiator
principal.
name (output) The name whose identity the credential asserts. Storage associated with

this name should be freed by the application after use with a call to
gss_release_name. Specify NULL if not required.

lifetime (output) The number of seconds for which the credential will remain valid. If the
credential has expired, this argument will be set to zero. If the
implementation does not support credential expiration, the value
GSS_C_INDEFINITE will be returned. Specify NULL if not required.

cred_usage (output) How the credential may be used. Specify NULL if not required. Valid
values are as follows:

GSS_C_INITIATE
GSS_C_ACCEPT
GSS_C_BOTH

mechanisms (output) The set of mechanisms supported by the credential. Storage associated
with this OID set must be freed by the application after use with a call to
gss_release_oid_set. Specify NULL if not required.

Description

This routine obtains information about a credential. The caller must already have obtained a handle that
refers to the credential.

Return Values
This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

102 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)

gss_inquire_cred — Provide calling application with information about a credential

GSS_S_NO_CRED
GSS_S_DEFECTIVE_CREDENTIAL
GSS_S_CREDENTIALS_EXPIRED

The referenced credentials could not be accessed.
The referenced credentials were invalid.

The referenced credentials have expired. If the lifetime
argument was not passed as NULL, it will be set to
zero.

Chapter 5

103

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_cred_by_mech — Obtain per-mechanism information about a credential

gss_inquire_cred_by_mech — Obtain per-mechanism information
about a credential

C Prototype

OM_uint32 gss_inquire_cred_by_ mech (

OM_uint32 minor_status,
gss_cred_id_t cred_handle,
gss_0OID mech_type,
gss_name_t name,
OM_uint32 initiator_lifetime,
OM_uint32 acceptor_lifetime,
gss_cred_usage_t cred_usage) ;
Arguments
minor_status (output) A handle that refers to the target credential. Specify
GSS_C_NO_CREDENTTIAL to inquire about the default initiator
principal.
mech_type (input) The mechanism for which information should be returned.
name (output) The name whose identity the credential asserts.
initiator_lifetime (output) The number of seconds for which the credential will remain capable of

initiating security contexts under the specified mechanism. If the
credential can no longer be used to initiate contexts, or if the credential
usage for this mechanism is GSS_C_ACCEPT, this argument will be set to
zero. Ifthe implementation does not support expiration of initiator
credentials, the value GSS_C_INDEFINITE will be returned. Specify
NULL if not required.

acceptor_lifetime (output) The number of seconds for which the credential will remain capable of
accepting security contexts under the specified mechanism. If the
credential can no longer be used to accept contexts, or if the credential
usage for this mechanism is GSS_C_INITIATE, this argument will be set
to zero. If the implementation does not support expiration of acceptor
credentials, the value GSS_C_INDEFINITE will be returned. Specify
NULL if not required.

cred_usage (output) How the credential may be used with the specified mechanism. Specify
NULL if not required. Valid values are as follows:

GSS_C_INITIATE
GSS_C_ACCEPT
GSS_C_BOTH

Description

This routine obtains per-mechanism information about a credential.

104 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_cred_by_mech — Obtain per-mechanism information about a credential

Return Values

This routine returns one of the following GSS status codes:
GSS_S_COMPLETE Successful completion.
GSS_S_NO_CRED The referenced credentials could not be accessed.
GSS_S_DEFECTIVE_CREDENTIAL The referenced credentials were invalid.

Chapter 5 105

GSSAPI (Generic Security Services Application Programming Interface)
gss_inquire_names_for_mech — Return set of supported nametypes

gss_inquire_names_for_mech — Return set of supported nametypes

C Prototype

OM_uint32 gss_inquire_names_for_mech (

OM_uint32 minor_status,
gss_0OID mechanism,
gss_OID_set name_types) ;
Arguments
minor_status (output) An implementation-specific status code.
mechanism (input) The mechanism to be interrogated.
name_types (output) The set of name-types supported by the specified mechanism. The

returned OID set must be freed by the application after use with a call to
gss_release o0id_set.

Description

This routine returns the set of nametypes supported by the specified mechanism.

Return Values
This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

106 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_process_context_token — Pass a security context to the security service

gss_process_context_token — Pass a security context to the security
service

C Prototype

OM_uint32 gss_process_context_token (

OM_uint32 minor_status,
gss_ctx_id_t context_handle,
gss_buffer_t token_buffer);
Arguments
minor_status (output) An implementation-specific status code.
context_handle (input) The context handle of the context on which the token is to be processed.
token_buffer (input) A pointer to the token to process.
Description

This routine provides a way to pass an asynchronous token to the security service. Most context-level tokens
are emitted and processed synchronously by gss_init_sec_context and gss_accept_sec_context, and the
application is informed as to whether further tokens are expected by the GSS_C_CONTINUE_NEEDED
status return. Occasionally, a mechanism may need to emit a context-level token at a point when the peer
entity is not expecting a token. For example, the initiator's final call to gss_init_sec_context may emit a
token and return a status of GSS_S_COMPLETE, but the acceptor's call to gss_accept_sec_context may
fail. The acceptor's mechanism may wish to send a token containing an error indication to the initiator, but
the initiator is not expecting a token at this point, believing that the context is fully established. The
gss_process_context_token routine provides a way to pass such a token to the mechanism at any time.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on the
token failed.

GSS_S_FAILURE Failure. See minor_status for more information.

GSS_S_NO_CONTEXT The context_handle did not refer to a valid context.

Chapter 5 107

GSSAPI (Generic Security Services Application Programming Interface)
gss_release_buffer — Free storage associated with a buffer

gss_release_buffer — Free storage associated with a buffer

C Prototype

OM_uint32 gss_release_buffer (

OM_uint32 minor_status,
gss_buffer_t buffer);
Arguments
minor_status (output) An implementation-specific status code.
buffer (input/output) The storage associated with the buffer will be deleted. The

gss_buffer_desc object will not be freed, but its length field will be zeroed.

Description

This routine frees storage associated with a buffer. The storage must have been allocated by a GSSAPI
routine. In addition to freeing the associated storage, the routine will zero the length field in the descriptor to
which the buffer argument refers. Any buffer object returned by a GSSAPI routine may be passed to
gss_release_buffer (even if there is no storage associated with the buffer).

Return Values

This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

108 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_release_cred — Mark a credential for deletion

gss_release_cred — Mark a credential for deletion

C Prototype

OM_uint32 gss_release_cred(

OM_uint32 minor_status,
gss_cred_id_t cred_handle) ;
Arguments
minor_status (output) A mechanism-specific status code.
cred_handle (input/output) A buffer containing an opaque credential handle identifying the credential

to be released. If GSS_C_NO_CREDENTIAL is supplied, the routine will
complete successfully, but will do nothing.
Description
This routine informs GSSAPI that the specified credential handle is no longer required by the application,
and frees associated resources. When all processes have released a credential, it will be deleted.
Return Values
This routine returns one of the following GSS status codes:
GSS_S_COMPLETE Successful completion.
GSS_S_NO_CRED The credentials could not be accessed.

Chapter 5 109

GSSAPI (Generic Security Services Application Programming Interface)
gss_release_name — Free storage associated with an internal name that was allocated by a GSSAPI routine

gss_release_name — Free storage associated with an internal name
that was allocated by a GSSAPI routine

C Prototype

OM_uint32 gss_release_name (

OM_uint32 minor_status,

gss_name_t input_name) ;
Arguments
minor_status (output) An implementation-specific status code.
input_name (input/output) The name to be deleted.
Description

This routine frees GSSAPI allocated storage associated with an internal form name.

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Successful completion.
GSS_S_BAD_NAME The input_name argument did not contain a valid
name.

110 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_release_oid_set — Free storage associated with a gss_OID_set object

gss_release_oid_set — Free storage associated with a gss_OID_set
object

C Prototype

OM_uint32 gss_release_oid_set(

OM_uint32 minor_status,
gss_OID_set set);
Arguments
minor_status (output) An implementation-specific status code.
set (input) The gss_0ID_set whose storage is to be deleted.
Description

This routine frees storage associated with a GSSAPI generated gss_0ID_set object. The set argument must
refer to an OID-set that was returned from a GSSAPI routine. The gss_release_oid_set routine frees the
storage associated with each individual member OID, the OID set's elements array, and the
gss_OID_set_desc.

Return Values

This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

Chapter 5 111

GSSAPI (Generic Security Services Application Programming Interface)
gss_test_oid_set_member — Determine whether an object identifier is a member of the set

gss_test_oid_set_member — Determine whether an object identifier is
a member of the set

C Prototype

OM_uint32 gss_test_oid_set_member (

OM_uint32 minor_status,
gss_0OID member,
gss_OID_set set,
int present) ;
Arguments
minor_status (output) An implementation-specific status code.
member (input) The object identifier whose presence is to be tested.
set (input) The object identifier set.
present (output) A Boolean value:

TRUE — The specified OID is a member of the set.
FALSE — The specified OID is not a member of the set.

Description

This routine interrogates an object identifier set to determine whether a specified object identifier is a
member. It is intended to be used with OID sets returned by gss_indicate_mechs, gss_acquire_cred, and
gss_inquire_cred, but will also work with user-generated sets.

Return Values
This routine returns the following GSS status code:

GSS_S_COMPLETE Successful completion.

112 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_unwrap — Verify a message with attached MIC and decrypt message content

gss_unwrap — Verify a message with attached MIC and decrypt
message content

C Prototype

OM_uint32 gss_unwrap (

OM_uint32 minor_status,

gss_ctx_id_t context_handle,

gss_buffer_t input_message_buffer,

gss_buffer_t output_message_buffer,

int conf_state,

gss_gop_t qgop_state);
Arguments
minor_status (output) An implementation-specific status code.
context_handle (input) Identifies the context in which the message arrived.
input_message_buffer (input) The protected message.

output_message_buffer (output) A buffer to receive the unwrapped message. Storage associated with this
buffer must be freed by the application after use with a call to
gss_release_buffer.

conf state (output) A Boolean value indicating which services have been applied. Specify
NULL if not required.

TRUE — Confidentiality and integrity protection services have been

applied.

FALSE — Only integrity service has been applied.
qop_state (output) The quality of protection provided. Specify NULL if not required.
Description

This routine converts a message previously protected by gss_wrap back to a usable form, verifying the
embedded Message Integrity Code (MIC). The conf_state argument indicates whether the message was
encrypted; the gop_state argument indicates the strength of the protection that was used to provide the
confidentiality and integrity services.

This routine is functionally equivalent to the gss_unseal routine. New code should use gss_unwrap instead
of gss_unseal. Although both routines are supported, gss_unseal has been deprecated in the GSSAPI
Version 2 specification.

Return Values
This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Indicates that the input_message_buffer was
successfully processed and that the
output_message_buffer is ready for transmission.

Chapter 5 113

GSSAPI (Generic Security Services Application Programming Interface)
gss_unwrap — Verify a message with attached MIC and decrypt message content

GSS_S_DEFECTIVE_TOKEN Indicates that the input_message_buffer was
successfully processed and that the
output_message_buffer is ready for transmission.

GSS_S_BAD_SIG Indicates that consistency checks performed on the
token extracted from the input_message_buffer
failed, preventing further processing from being
performed with that token.

GSS_S_DUPLICATE_TOKEN Indicates that the MIC extracted from the
input_message_buffer contains an incorrect integrity
check for the message.

GSS_S_OLD_TOKEN The token extracted from the input_message_buffer
is valid, and contained a correct MIC for the message,
but is a duplicate of a token already processed. This is
a fatal error during context establishment.

GSS_S_UNSEQ_TOKE Indicates that the token was valid, and contained a
correct MIC for the message, but has been verified out
of sequence; a later token has already been received.

GSS_S_GAP_TOKEN Indicates that the token was valid, and contained a
correct MIC for the message, but has been verified out
of sequence; an earlier expected token has not yet been
received.

GSS_S_CONTEXT_EXPIRED Indicates that context-related data items have expired,
so that the requested operation cannot be performed

GSS_S_NO_CONTEXT Indicates that no valid context was recognized for the
input context_handle provided.

114 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_verify_mic — Check that a cryptographic MIC fits the applied message

gss_verify_mic — Check that a cryptographic MIC fits the applied
message

C Prototype

OM_uint32 gss_verify mic(

OM_uint32 minor_status,

gss_ctx_id_t context_handle,

gss_buffer_t message_buffer,

gss_buffer_t message_token,

gss_gop_t gop_state);
Arguments
minor_status (output) An implementation-specific status code.
context_handle (input) Specifies the context on which the message arrived.
message_buffer (input) Specifies the message to be verified.
message_token (input) Specifies the token to be associated with the message.
qop_state (output) Returns the quality of protection gained from the MIC. Specify NULL if

not required.

Description

This routine checks that a cryptographic MIC, contained in the message_token argument, fits the message in
the message_buffer argument. The gqop_state argument allows a message recipient to determine the
strength of protection that was applied to the message.

This routine is functionally equivalent to the gss_verify routine. New code should use gss_verify_mic
instead of gss_verify. Although both routines are supported, gss_verify has been deprecated in the
GSSAPI Version 2 specification.

Return Values
This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Indicates that the message was successfully verified.

GSS_S_DEFECTIVE_TOKEN Indicates that consistency checks performed on the
received message_token failed, preventing further
processing from being performed with that token.

GSS_S_BAD_SIG Indicates that the received message_ token contains an
incorrect MIC for the message.

GSS_S_DUPLICATE_TOKEN The message_token was valid, and contained a correct
MIC for the message, but is a duplicate of a token
already processed. This is a fatal error during context
establishment.

Chapter 5 115

GSSAPI (Generic Security Services Application Programming Interface)
gss_verify_mic — Check that a cryptographic MIC fits the applied message

GSS_S_OLD_TOKEN The message_token was valid, and contained a correct
MIC for the message, but the message_token was too
old to check for duplication. This is a fatal error during
context establishment.

GSS_S_UNSEQ_TOKEN Indicates that the cryptographic check value on the
received message was correct, and the message_token
contained a correct MIC, but the token has been
verified out of sequence; a later token has already been
received.

GSS_S_GAP_TOKEN Indicates that the cryptographic check value on the
received message was correct, and the message_token
contained a correct MIC, but the token has been
verified out of sequence; an earlier expected token has
not yet been received.

GSS_S_CONTEXT_EXPIRED Indicates that context-related data items have expired,
so that the requested operation cannot be performed

GSS_S_NO_CONTEXT Indicates that no valid context was recognized for the
input context_handle provided.

116 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_wrap — Attach a MIC to a message and encrypt the message

gss_wrap — Attach a MIC to a message and encrypt the message

C Prototype

OM_uint32 gss_wrap (

OM_uint32 minor_status,

gss_ctx_id_t context_handle,

int conf_req flag,

gss_gop_t gop_req,

gss_buffer_t input_message_buffer,

int conf_state,

gss_buffer_t output_message_buffer);
Arguments

minor_status (output)
context_handle (input)

conf req_flag (input)

qop_req (input)

input_message_buffer (input)

conf_state (output)

output_message_buffer (output)

Description

An implementation-specific status code.

Identifies the context on which the message will be sent.

A Boolean value indicating which services are to be used.

TRUE — Both confidentiality and integrity services are requested.
FALSE — Only integrity service is requested.

Specifies the required quality of protection. A mechanism-specific default
may be requested by setting gop_reqgto GSS_C_QOP_DEFAULT. Ifan
unsupported protection strength is requested, gss_wrap will return a
status of GSS_S_BAD_QOP.

The message to be protected.

A Boolean value indicating which services have been applied. Specify
NULL if not required.

TRUE — Confidentiality, data origin authentication and integrity services
have been applied.

FALSE — Only integrity and data origin services have been applied.

The buffer to receive the protected message. Storage associated with this
message must be freed by the application after use with a call to
gss_release_buffer.

This routine attaches a cryptographic MIC and optionally encrypts the specified input_message_buffer.
The output_message_buffer contains both the MIC and the message. The gop_reqg argument allows a
choice between several cryptographic algorithms.

This routine is functionally equivalent to the gss_seal routine. New code should use gss_wrap instead of
gss_seal. Although both routines are supported, gss_seal has been deprecated in the GSSAPI Version 2

specification.

Chapter 5

117

GSSAPI (Generic Security Services Application Programming Interface)
gss_wrap — Attach a MIC to a message and encrypt the message

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE Indicates that the input_message_buffer was
successfully processed and that the
output_message_buffer is ready for transmission.

GSS_S_CONTEXT_EXPIRED Indicates that context-related data items have expired,
so that the requested operation cannot be performed.

GSS_S_NO_CONTEXT Indicates that the context_handle argument did not
identify a valid context.

GSS_S_BAD_QOP Indicates that the provided QOP value is not recognized
or supported for the context.

118 Chapter 5

GSSAPI (Generic Security Services Application Programming Interface)
gss_wrap_size_limit — Check expected size of wrapped output

gss_wrap_size_limit — Check expected size of wrapped output

C Prototype

OM_uint32 gss_wrap_size_limit (

OM_uint32 minor_status,
gss_ctx_id_t context_handle,
int conf_req flag,
gss_gop_t qgop_req,
OM_uint32 reqg_output_size,
OM_uint32 max_input_size);
Arguments
minor_status (output) An implementation-specific status code.
context_handle (input) A handle that refers to the security over which the messages will be sent..
conf req_flag (input) A Boolean value indicating whether gss_wrap will be asked to apply

confidentiality protection in addition to integrity protection.
TRUE — Both confidentiality and integrity services are requested.
FALSE — Only integrity service is requested.

qop_req (input) Specifies the requested quality of protection that gss_wrap will be asked
to provide. Callers are encouraged, on portability grounds, to accept the
default quality of protection offered by the chosen mechanism, which may
be requested by specifying GSS_C_QOP_DEFAULT for this argument.

req_output_size (input) The desired maximum size for tokens emitted by gss_wrap.

max_input_size (output) The maximum input message size that may be presented to gss_wrap in
order to guarantee that the emitted token shall be no larger than
reqg _output_size bytes.

Description

This routine allows an application to determine the maximum message size that, if presented to gss_wrap
with the same conf_req flagand gop_req arguments, will result in an output token containing no more
than req output_size bytes.

This call is intended for use by applications that communicate over protocols that impose a maximum
message size. It enables the application to fragment messages prior to applying protection.

This call is intended for use by applications that communicate over protocols that impose a maximum
message size. It enables the application to fragment messages prior to applying protection.

Successful completion of this call does not guarantee that gss_wrap will be able to protect a message of length
max_input_size bytes, since this ability may depend on the availability of system resources at the time that
gss_wrap is called.

Chapter 5 119

GSSAPI (Generic Security Services Application Programming Interface)
gss_wrap_size_limit — Check expected size of wrapped output

Return Values

This routine returns one of the following GSS status codes:

GSS_S_COMPLETE

GSS_S_CONTEXT_EXPIRED

GSS_S_NO_CONTEXT

GSS_S_BAD_QOP

Indicates a successful token size determination: an
input message with a length in octets equal to the
returned max_input_size value will, when passed to
gss_wrap for processing on the context identified by the
context_handle argument with the confidentiality
request state as provided in conf_req_flag and with the
quality of protection specifier provided in the gop_req
argument, yield an output token no larger than the
value of the provided req_output_size argument.

Indicates that the provided input context_handle is
recognized, but that the referenced context has expired.
Return values other than minor_status are undefined.

Indicates that no valid context was recognized for the
input context_handle provided. Return values other
than minor_ status are undefined.

Indicates that the provided QOP value is not recognized
or supported for the context.

120

Chapter 5

KRB5 (Kerberos V5) Application Programming Interface

6 KRB5 (Kerberos V5) Application
Programming Interface

This chapter describes the C language bindings for the routines that make up the KRB5 Application
Programming Interface.

NOTE Additional Kerberos KRB5 APIs are not documented in this manual. The APIs themselves are
included in the Kerberos for OpenVMS library (KRB$RTL.EXE for 64 bit interfaces, or
KRB$RTL32.EXE for 32 bit interfaces) in SYS$LIBRARY.

Chapter 6 121

KRB5 (Kerberos V5) Application Programming Interface
krb5_425_conv_principal — Convert a Kerberos V4 principal name to V5 format

krb5_425_conv_principal — Convert a Kerberos V4 principal name to
V5 format

C Prototype

krb5_error_code krb5_425_conv_principal (

krb5_context context,

const char *name,

const char *instance,

const char *realm,

krb5_principal *princ);
Arguments
context (input/output) The context structure.
name (input) Kerberos V4 name.
instance (input) Kerberos V4 instance.
realm (input) Kerberos V4 realm.
principal (output) Kerberos V5 principal name.
Description

This routine builds a principal princ from a V4 specification made up of name. instance@realm. The routine
is site customized to convert the V4 naming scheme to a V5 scheme. For instance, the V4 rcmd is changed to
host.

The returned principal should be freed with krb5_free_principal.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

122 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface

krb5_address_compare — Compare two addresses

krb5_address_compare — Compare two addresses

C Prototype

krb5_boolean krb5_address_compare (

krb5_context
const krb5_address
const krb5_address
Arguments
context (input/output)
addrl (input)
addr2 (input)

Description

context,
*addrl,
*addr2);

The context structure.

The first address to compare.

The second address to compare.

This routine compares two Kerberos addresses.

Return Values

This routine returns one of the following KRB5 status codes:

TRUE The two addresses are the same.

FALSE The two addresses are different.

Chapter 6

123

KRB5 (Kerberos V5) Application Programming Interface
krb5_address_order — Return an ordering of two addresses

krb5_address_order — Return an ordering of two addresses

C Prototype

int krb5_address_order (

krb5_context context,

const krb5_address *addrl,

const krb5_address *addr2) ;
Arguments
context (input/output) The context structure.
addrl (input) The first address to compare.
addr2 (input) The second address to compare.
Description

This routine returns an ordering on the two addresses.

Return Values

This routine returns one of the following KRB5 status codes:

=0 The two addresses are the same.
<0 First address is less than second.
>0 First address is greater than second.

124 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_address_search — Search for address in address list

krb5 address_search — Search for address in address list

C Prototype

krb5_boolean krb5_address_search (
krb5_context context,
const krb5_address *addr,
krb5_address * krb5_const *addrlist);

Arguments

context (input/output) The context structure.

addr (input) The address to search for.

addrlist (input) The address list to search, as an array of addresses. The last entry in the
array must be a NULL pointer. Specify NULL for this argument if no
address list is present.

Description

This routine searches addrlist for the address in addr.

Return Values
This routine returns one of the following KRB5 status codes:

TRUE addr is listed in addrlist, or addrlist is NULL.

FALSE addr is not listed in addrlist.

Chapter 6 125

KRB5 (Kerberos V5) Application Programming Interface
krb5_aname_to_localname — Convert a principal name to a local name

krb5_aname_to_localname — Convert a principal name to a local
name

C Prototype

krb5_error_code krb5_aname_to_localname (

krb5_context context,
krb5_const_principal aname,
int Insize,
char *1lname) ;
Arguments
context (input) The context structure.
aname (input) A principal name.
Insize (input) Specifies the maximum length name that is to be filled into 1name.
Iname (output) The local name.
Description

This routine converts a principal name aname to a local name suitable for use by programs wishing a
translation to an environment-specific name (for example, user account name).

The translation will be NULL terminated in all nonerror returns.

Return Values

This routine returns the following KRB5 status code:

System errors.

126 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_free — Free auth_context

krb5 auth_con_free — Free auth_context

C Prototype

krb5_error_code krb5_auth_con_free(

krb5_context context,
krb5_auth_context auth_context);
Arguments
context (input/output) The context structure.
auth_context (output) A per connection context.
Description

This routine frees the auth_context returned by krb5_auth_con_init.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 127

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_init — Initialize the auth_context

krb5 auth con_init — Initialize the auth context

C Prototype

krb5_error_code krb5_auth_con_init (

krb5_context context,
krb5_auth_context *auth_context) ;
Arguments
context (input/output) The context structure.
auth_context (output) A per connection context.
Description

This routine initializes the auth_context. The auth_context contains all data pertinent to the various
authentication routines.

The default flags for the context are set to enable the use of the replay cache (krb5_auth_context_do_time)
but no sequence numbers. The function krb5_auth_con_setflags allows the flags to be changed.

The default checksum type is set to CKSUMTYPE_RSA_MD4_DES. This may be changed with
krb5_auth_con_setcksumtype.

The auth_context structure should be freed with krb5_auth_con_free.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

128 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getaddrs — Retrieve address fields from the auth_context

krb5_auth_con_getaddrs — Retrieve address fields from the
auth_context

C Prototype

krb5_error_code krb5_auth_con_getaddrs (

krb5_context context,
krb5_auth_context auth_context,
krb5_address **local_addr,
krb5_address **remote_addr);
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
local_addr (output) Local address.
remote_addr (output) Remote address.
Description

This routine retrieves local_addr and remote_addr from auth_context. If local_addr or remote_addr is
not NULL, the memory is first freed with krb5_free_address and then newly allocated. It is the caller’s
responsibility to free the returned addresses in this way.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 129

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getauthenticator — Retrieve authenticator used during mutual authentication

krb5_auth_con_getauthenticator — Retrieve authenticator used
during mutual authentication

C Prototype

krb5_error_code krb5_auth_con_getauthenticator(

krb5_context context,
krb5_auth_context auth_context,
krb5_authenticator **authenticator);
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
authenticator (output) The authenticator used during mutual authentication.
Description

This routine retrieves the authenticator that was used during mutual authentication. It is the caller’s
responsibility to free the memory allocated to authenticator by calling krb5_free_authenticator.

Return Values

This routine returns the following KRB5 status codes:

KRB5_S_COMPLETE Successful completion.

130 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getflags — Retrieve the flags in auth_context

krb5_auth_con_getflags — Retrieve the flags in auth_context

C Prototype

krb5_error_code krb5_auth_con_getflags(

krb5_context context,
krb5_auth_context auth_context,
krb5_1int32 *flags);
Arguments
context (input/output) The context structure.
auth_context (input) A per connection context.
flags (input) A bit mask representing the flags to set in the auth_context. Valid flags
are:

KRB5_AUTH_CONTEXT_DO_TIME — Use timestamps.

KRB5_AUTH_CONTEXT_RET TIME — Save timestamps to output
structure.

KRB5_AUTH_CONTEXT_DO_SEQUENCE — Use sequence numbers.

KRB5_AUTH_RET_SEQUENCE — Copy sequence numbers to output
structure.

Description

This routine retrieves the flags from auth_context.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 131

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getkey — Retrieve keyblock from auth_context

krb5_auth_con_getkey — Retrieve keyblock from auth_context

C Prototype

krb5_error_code krb5_auth_con_getkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock **keyblock) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
keyblock (output) Key stored in auth_context.
Description

This routine retrieves the keyblock stored in auth context. The memory allocated in this function should be
freed with a call to krb5_free keyblock.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

132 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getlocalseqnumber — Retrieve and store the local sequence number

krb5_auth_con_getlocalseqnumber — Retrieve and store the local
sequence number

C Prototype

krb5_error_code krb5_auth con_getlocalsegnumber (

krb5_context context,
krb5_auth_context auth_context,
krb5_int32 *segnumber) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
seqnumber (input) The address of the location to store the local sequence number.
Description

This routine retrieves the local sequence number that was used during authentication and stores it in
segnumber .

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 133

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getlocalsubkey — Retrieve the local_subkey keyblock from auth_context

krb5_auth_con_getlocalsubkey — Retrieve the local_subkey keyblock
from auth_context

C Prototype

krb5_error_code krb5_auth con_getlocalsubkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock **keyblock);
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
keyblock (output) local_subkey keyblock stored in auth_context.
Description

This routine retrieves the local_subkey keyblock stored in auth_context. The memory allocated in this
function should be freed with a call to krb5_free_keyblock.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

134 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getremoteseqnumber — Retrieve and store the remote sequence number

krb5_auth_con_getremoteseqnumber — Retrieve and store the
remote sequence number

C Prototype

krb5_error_code krb5_auth_ con_getremotesegnumber (

krb5_context context,
krb5_auth_context auth_context,
krb5_int32 *segnumber) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
seqnumber (input) The address of the location to store the remote sequence number.
Description

This routine retrieves the remote sequence number that was used during authentication and stores it in
segnumber .

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 135

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_getremotesubkey — Retrieve the remote_subkey keyblock from auth_context

krb5_auth_con_getremotesubkey — Retrieve the remote_subkey
keyblock from auth_context

C Prototype

krb5_error_code krb5_auth_ con_getremotesubkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock **keyblock);
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
keyblock (output) remote_subkey keyblock stored in auth_context.
Description

This routine retrieves the remote_subkey keyblock stored in auth_context. The memory allocated in this
function should be freed with a call to krb5_free_ keyblock.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

136 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_setaddrs — Set address fields in auth_context

krb5 auth_con_setaddrs — Set address fields in auth_context

C Prototype

krb5_error_code krb5_auth_con_setaddrs(

krb5_context context,
krb5_auth_context auth_context,
krb5_address *local_addr,
krb5_address *remote_addr) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
local_addr (input) Local address.
remote_addr (input) Remote address.
Description

This routine copies the local _addr and remote_addr into auth_context. If either address is NULL, the
previous address remains in place.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 137

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_setflags — Set the flags in auth_context

krb5_auth_con_setflags — Set the flags in auth_context

C Prototype

krb5_error_code krb5_auth_con_setflags/(

krb5_context context,
krb5_auth_context auth_context,
krb5_1int32 flags);
Arguments
context (input/output) The context structure.
auth_context (output) A per-connection context.
flags (input) A bit mask representing the flags to set in auth_context. Valid values
are:

KRB5_AUTH_CONTEXT _DO_TIME — Use timestamps.

KRB5_AUTH_CONTEXT_RET TIME — Save timestamps to output
structure.

KRB5_AUTH_CONTEXT_DO_SEQUENCE — Use sequence numbers.
KRB5_AUTH_RET_SEQUENCE — Copy sequence numbers to output

structure.
Description

This routine sets the flags of auth_context to the flags argument.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

138 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_setports — Set port fields in the auth_context

krb5_auth_con_setports — Set port fields in the auth_context

C Prototype

krb5_error_code krb5_auth_con_setports(

krb5_context context,
krb5_auth_context auth_context,
krb5_address *local_port,
krb5_address *remote_port);
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
local_addr (input) Local address.
remote_addr (input) Remote address.
Description

This routine copies the local_port and remote_port addresses into auth_context. If either address is
NULL, the previous address remains in place. These addresses are set by krb5_auth_con_genaddrs.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 139

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_setrcache — Set the replay cache

krb5_auth_con_setrcache — Set the replay cache

C Prototype

krb5_error_code krb5_auth_con_setrcache(

krb5_context context,
krb5_auth_context auth_context,
krb5_rcache rcache) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
rcache (input) The replay cache to be set.
Description

This routine sets the replay cache that is used by the authentication routines to rcache.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

140

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_auth_con_setuseruserkey — Set keyblock field in auth_context to temporary key

krb5_auth_con_setuseruserkey — Set keyblock field in auth_context
to temporary key

C Prototype

krb5_error_code krb5_auth con_setuseruserkey (

krb5_context context,
krb5_auth_context auth_context,
krb5_keyblock *keyblock) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) A per-connection context.
keyblock (input) Server key for incoming request.
Description

This routine overloads the keyblock field. It is only useful prior to a krb5_rd_reqg_decode call for user-to-user
authentication where the server has the key and needs to use it to decrypt the incoming request. Once
decrypted, this key is no longer necessary. It is then overwritten with the session key sent by the client.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 141

KRB5 (Kerberos V5) Application Programming Interface
krb5_build_principal — Build a principal name

krb5_build_principal — Build a principal name

C Prototype

krb5_error_code krb5_build_principal (

krb5_context
krb5_principal

int

const char

char

Arguments

context (input/output)
principal (output)
rlen (input)

realm (input)

... (input)

Description

context,
*principal,
rlen,
*realm,
*sl, ...)

The context structure.
Principal name.
Realm name length.

Realm name.

A variable-length argument list. These arguments are added to the

principal data.

This routine and krb5_build_principal_va perform the same function. krb5_build_principal takes a

variable-length argument list, which is added to the principal data being built.

Both functions take a realm name realm, realm name length rlen, and a list of null-terminated strings, and
fill in a pointer to a principal structure principal, making it point to a structure representing the named

principal. The last string must be followed in the argument list by a NULL pointer.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE

Successful completion.

142

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_build_principal_ext — Build a principal name extension

krb5_build_principal_ext — Build a principal name extension

C Prototype

krb5_error_code krb5_build_principal_ext (

krb5_context context,

krb5_principal *principal,

int rlen,

const char *realm,

int lenl, char *sl, ...)
Arguments
context (input/output) The context structure.
principal (output) Principal name.
rlen (input) Realm name length.
realm (input) Realm name.
.. (input) A list of (list, contents) pairs to be added to the principal data.
Description

This routine is similar to krb5_build_principal but it takes its components as a list of (length, contents)
pairs rather than a list of null-terminated strings. A length of zero indicates the end of the list.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 143

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_close — Close the credentials cache

krb5 cc_close — Close the credentials cache

C Prototype

krb5_error_code krb5_cc_close(

krb5_context context,
krb5_ccache id);
Arguments
context (input/output) The context structure.
id (input/output) A credentials cache identifier.
Description

This routine closes the credentials cache id, invalidates id, and releases id and any other resources acquired
during use of the credentials cache. It requires that id identifies a valid credentials cache. After return, id

must not be used unless it is first reinitialized using krb5_cc_resolve or krb5_cc_gen_new.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

144

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_default — Resolve the default credentials cache name

krb5 cc_default — Resolve the default credentials cache name

C Prototype

krb5_error_code krb5_cc_default(

krb5_context context,
krb5_ccache *ccache);
Arguments
context (input/output) The context structure.
ccache (output) The default credentials cache name.
Description

This routine is equivalent to krb5_cc_resolve (context, krb5_cc_default_name, ccache).

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 145

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_default_name — Return the name of the default credentials cache

krb5 cc_default name — Return the name of the default credentials

cache

C Prototype

char * krb5_cc_default_name (

krb5_context context);
Arguments
context (input/output) The context structure.
Description

This routine returns the name of the default credentials cache; this may be equivalent to
getenv ("KRB5CCACHE”) with an appropriate fallback.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

146

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_destroy — Destroy a credentials cache

krb5_cc_destroy — Destroy a credentials cache

C Prototype

krb5_error_code krb5_cc_destroy(
krb5_context context,

krb5_ccache id);
Arguments
context (input/output) The context structure.
id (input/output) A credentials cache identifier.
Description

This routine destroys the credentials cache identified by id, invalidates id, and releases any other resources
acquired during use of the credentials cache. This routine requires that id identifies a valid credentials
cache. After return, id must not be used unless it is first reinitialized using krb5_cc_resolve or
krb5_cc_gen_new.

Return Values
This routine returns the following KRB5 status code:

Permission errors.

Chapter 6 147

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_end_seq_get — Finish processing credentials cache entries

krb5_cc_end_seq_get — Finish processing credentials cache entries

C Prototype

krb5_error_code krb5_cc_end_seq get(

krb5_context context,
krb5_ccache id,
krb5_cc_cursor *cursor);
Arguments
context (input/output) The context structure.
id (input/output) A credentials cache identifier.
cursor (input/output) The cursor created by krb5_cc_start_seq_get.
Description

This routine finishes sequential processing mode and invalidates *cursor. *cursor must never be reused
after this call.

It requires that id identifies a valid credentials cache and *cursor be a cursor returned by
krb5_cc_start_seqg_get or a subsequent call to krb5_cc_next_cred.

Return Values

This routine returns the following KRB5 status code:

Error code if *cursor is invalid.

148 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_gen_new — Generate a new credentials cache identifier

krb5_cc_gen_new — Generate a new credentials cache identifier

C Prototype

krb5_error_code krb5_cc_gen_new(

krb5_context context,
krb5_ccache *id) ;
Arguments
context (input/output) The context structure.
id (output) A new, unique credentials cache identifier.
Description

This routine fills in 1d with a unique ccache identifier. The cache is left unopened.

Return Values
This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 149

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_get_name — Return the name of the credentials cache

krb5_cc_get_name — Return the name of the credentials cache

C Prototype

char * krb5_cc_get_name (

krb5_context context,
krb5_ccache id);
Arguments
context (input/output) The context structure.
id (output) A credentials cache identifier.
Description

This routine returns the name of the credentials cache denoted by id.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

150

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_get_principal — Retrieve the primary principal of the credentials cache

krb5_cc_get_principal — Retrieve the primary principal of the
credentials cache

C Prototype

krb5_error_code krb5_cc_get_principal (
krb5_context context,
krb5_ccache id,
krb5_principal *principal);

Arguments

context (input/output) The context structure.

id (input) A credentials cache identifier.
principal (output) The returned primary principal.
Description

This routine retrieves the primary principal of the credentials cache (as set by krb5_cc_initialize
request). The primary principal is set to *principal; the caller should release this memory by calling
krb5_free_principal on *principal when finished.

It requires that 1d identifies a valid credentials cache.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 151

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_initialize — Create/refresh a credentials cache

krb5 cc_initialize — Create/refresh a credentials cache

C Prototype

krb5_error_code krb5_ cc_initialize(
krb5_context context,
krb5_ccache id,
krb5_principal primary principal);

Arguments

context (input/output) The context structure.

id (input/output) A credentials cache identifier.
primary_principal (input) The primary principal for the credentials cache.
Description

This routine creates or refreshes a credentials cache identified by id with the primary principal set to
primary_principal. Ifthe credentials cache already exists, its contents are destroyed.

This routine also modifies cache identified by id.

Return Values

This routine returns one of the following KRB5 status codes:

System errors.

Permission errors.

152 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_next_cred — Fetch the next credentials entry

krb5_cc_next_cred — Fetch the next credentials entry

C Prototype

krb5_error_code krb5_cc_next_cred(

krb5_context
krb5_ccache
krb5_creds
krb5_cc_cursor

Arguments
context (input/output)
id (input/output)
creds (output)

cursor (input/output)

Description

context,
id,
*creds,
*cursor);

The context structure.
A credentials cache identifier.
The returned credentials cache entry.

The cursor created by krb5_cc_start_seq_get. This value is updated
upon return to be used in subsequent calls to krb5_cc_next_cred. The
returned credentials cache entry.

This routine fetches the next entry from id, returning its values in *creds, and updates *cursor for the next
request. It requires that id identifies a valid credentials cache and *cursor is a cursor returned by
krb5_cc_start_seqg_get or a subsequent call to krb5_cc_next_cred. The krb5_end_seq_get routine is
called when no more entries are to be read.

Return Values

This routine returns the following KRB5 status code:

Error code if there are no more cache entries.

Chapter 6

153

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_remove_cred — Remove credentials from the credentials cache

krb5 cc_remove cred — Remove credentials from the credentials

cache

C Prototype

krb5_error_code krb5_cc_remove_cred(
context,

krb5_context
krb5_ccache
krb5_flags
krb5_creds
Arguments
context (input/output)
id (input)
which (input)

cred (input)

Description

id,

which,

*cred);

The context structure.
A credentials cache identifier.

A bit mask representing the search flags to use. The values should be
logically ORed together. Valid values are:

KRB5_TC_MATCH_TIMES - The requested lifetime is required to be at
least as great as that specified.

KRB5_TC_MATCH_IS_SKEY — The is_skey field much match exactly.

KRB5 TC_MATCH_FLAGS — The set bits in mcreds must match in
creds.

KRB5_TC_MATCH_TIMES_EXACT - The requested lifetime must
match exactly.

KRB5_TC_MATCH_FLAGS_EXACT - All bits in mcreds must match
exactly.

KRB5 TC _MATCH_AUTHDATA — The authorization data must match.

KRB5_TC_MATCH_SRV_NAMEONLY - Only the name portion of the
principal name must match. The realm portion may be different. If this
flag is not set, the entire principal name must match.

KRB5_TC_MATCH_2ND_TKT - The second tickets must match.
KRB5_TC_MATCH_KTYPE - The encryption key types must match.

KRB5_TC_MATCH_SUPPORTED_KTYPES - Check all matching
entries that have any supported encryption type and return the one with
the encryption type listed earliest. Return CC_NOT_KTYPE if a match is
found except for having a supported encryption type.

The credentials to match.

This routine removes any credentials from id which match the principal name (cred->server) and the fields
in cred masked by which. It requires that id identifies a valid credentials cache.

154

Chapter 6

KRBS5 (Kerberos V5) Application Programming Interface
krb5_cc_remove_cred — Remove credentials from the credentials cache

Return Values

This routine returns one of the following KRB5 status codes:

Error code if nothing matches.

Error code if could not delete.

Chapter 6 155

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_resolve — Resolve a credentials cache name

krb5 cc_resolve — Resolve a credentials cache name

C Prototype

krb5_error_code krb5_cc_resolve(

krb5_context context,
char *string_name,
krb5_ccache *id) ;
Arguments
context (input/output) The context structure.
string_name (input) The credentials cache name to resolve.
id (output) The credentials cache identifier that corresponds to the name in

string_name.

Description

This routine fills in id with a ccache identifier that corresponds to the name in string_name.

It requires that string_name be of the form type:residual and type is a type known to the library.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

156 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_retrieve_cred — Search the cache for a credential and return it if found

krb5 cc_retrieve cred — Search the cache for a credential and return
it if found

C Prototype

krb5_error_code krb5_cc_retrieve_cred(

krb5_context context,
krb5_ccache id,
krb5_flags whichfields,
krb5_creds *mcreds,
krb5_creds *creds) ;
Arguments
context (input/output) The context structure.
id (input) A credentials cache identifier.
whichfields (input) A bit mask representing the search flags to use. The values should be

logically ORed together. Valid values are:

KRB5_TC_MATCH_TIMES - The requested lifetime is required to be at
least as great as that specified.

KRB5_TC_MATCH_IS_SKEY - The is_skey field much match exactly.

KRB5 TC_MATCH_FLAGS — The set bits in mcreds must match in
creds.

KRB5_TC_MATCH_TIMES_EXACT - The requested lifetime must
match exactly.

KRB5_TC_MATCH_FLAGS_EXACT - All bits in mcreds must match
exactly.

KRB5 TC _MATCH_AUTHDATA — The authorization data must match.

KRB5_TC_MATCH_SRV_NAMEONLY - Only the name portion of the
principal name must match. The realm portion may be different. If this
flag is not set, the entire principal name must match.

KRB5_TC_MATCH_2ND_TKT - The second tickets must match.
KRB5_TC_MATCH_KTYPE - The encryption key types must match.

KRB5_TC_MATCH_SUPPORTED_KTYPES - Check all matching
entries that have any supported encryption type and return the one with
the encryption type listed earliest. Return CC_NOT_KTYPE if a match is
found except for having a supported encryption type.

mcreds (input) The credentials to match.

creds (output) The credentials found in the cache that match the requested value.

Chapter 6 157

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_retrieve_cred — Search the cache for a credential and return it if found

Description

This routine searches the cache id for credentials matching mcreds. The fields which are to be matched are
specified by set bits in whichfields, and always include the principal name mcreds->server. This routine
requires that id identifies a valid credentials cache.

If at least one match is found, one of the matching credentials is returned in *creds. The credentials should
be freed using krb5_free_credentials.

Return Values

This routine returns the following KRB5 status code:

Error code if no matches found.

158 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_set_flags — Set the flags on the credentials cache

krb5_cc_set_flags — Set the flags on the credentials cache

C Prototype

krb5_error_code krb5_cc_set_flags(

krb5_context context,
krb5_ccache id,
krb5_flags flags);
Arguments
context (input/output) The context structure.
id (input/output) A credentials cache identifier.
flags (input) A bit mask representing the flags to set. The values should be logically

ORed together. Valid values are:

KRB5_TC_OPENCLOSE — Turn on OPENCLOSE mode (open and close
the cache each time a credentials cache routine is called). The default, if
this flag is not set, is to have the cache stay open until krb5_cc_close is
called.

Description

This routine sets the flags on the credentials cache id to flags.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 159

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_start_seq_get — Start sequential read of cached credentials

krb5_cc_start_seq_get — Start sequential read of cached credentials

C Prototype

krb5_error_code krb5_cc_start_seqg get(

krb5_context context,
krb5_ccache id,
krb5_cc_curso *cursor);
Arguments
context (input/output) The context structure.
id (input) A credentials cache identifier.
cursor (output) A cursor to be used in calls to krb5_cc_next_cred.
Description

This routine prepares to sequentially read every set of cached credentials.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

160 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_cc_store_cred — Store a credential in the credentials cache

krb5 cc_store cred — Store a credential in the credentials cache

C Prototype

krb5_error_code krb5_cc_store_cred(

krb5_context context,
krb5_ccache id,
krb5_creds *creds) ;
Arguments
context (input/output) The context structure.
id (input) A credentials cache identifier.
creds (input) The credentials to store in the cache.
Description

This routine stores creds in the cache id, tagged with creds->client. It requires that id identifies a valid
credentials cache.

Return Values
This routine returns one of the following KRB5 status codes:

Permission error.

Storage failure error.

Chapter 6 161

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_addresses — Copy Kerberos addresses

krb5_copy_addresses — Copy Kerberos addresses

C Prototype

krb5_error_code krb5_copy_ addresses (

krb5_context context,
krb5_address * const *inaddr,
krb5_address ***outaddr);
Arguments
context (input/output) The context structure.
inaddr (input) An array of addresses.
outaddr (output) A pointer to a copy of the array of addresses.
Description

This routine copies addresses in inaddr to *outaddr, which is allocated memory and should be freed with
krbb5_free_addresses.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

162 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_authdata — Copy a Kerberos authdata structure

krb5_copy_authdata — Copy a Kerberos authdata structure

C Prototype

krb5_error_code krb5_copy authdata (

krb5_context context,
krb5_authdata * const *inauthdat,
krb5_authdata ***outauthdat) ;
Arguments
context (input/output) The context structure.
inauthdat (input) An array of krb5_authdata structures. The last element must be NULL.
outauthdat (output) A copy of the array of krb5_authdata structures.
Description

This routine copies an authdata structure, filling in *outauthdat to point to the newly allocated copy, which
should be freed with krb5_free_authdata.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 163

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_authenticator — Copy an authenticator structure

krb5_copy_authenticator — Copy an authenticator structure

C Prototype

krb5_error_code krb5_copy_authenticator (

krb5_context context,

const krb5_authenticator *authfrom,

krb5_authenticator **guthto);
Arguments
context (input/output) The context structure.
authfrom (input) The authenticator to be copied.
authto (output) A copy of the authenticator.
Description

This routine copies an authenticator structure, filling in *outauthdat to point to the newly allocated copy,

which should be freed with krb5_free_authenticator.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

164

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_checksum — Copy a checksum structure

krb5_copy_checksum — Copy a checksum structure

C Prototype

krb5_error_code krb5_copy checksum (

krb5_context context,
const krb5_checksum *ckfrom,
krb5_checksum **ckto);
Arguments
context (input/output) The context structure.
ckfrom (input) The checksum to be copied.
ckto (output) A pointer to a copy of the checksum.
Description

This routine copies a checksum structure, filling in *ckto to point to the newly allocated copy, which should
be freed with krb5_free_checksum.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 165

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_creds — Copy a credentials structure

krb5_copy_creds — Copy a credentials structure

C Prototype

krb5_error_code krb5_copy creds(

krb5_context
const krb5_creds
krb5_creds

Arguments

context (input/output)

incred (input)

outcred (output)

Description

context,
*incred,
**outcred) ;

The context structure.
The credentials structure to be copied.

A pointer to a copy of the credentials structure.

This routine copies a credentials structure, filling in *outcred to point to the newly allocated copy, which
should be freed with krb5_free_creds.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE

Successful completion.

166

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_data — Copy a Kerberos data structure

krb5_copy_data — Copy a Kerberos data structure

C Prototype

krb5_error_code krb5_copy data (

krb5_context context,
const krb5_data *indata,
krb5_data **outdata) ;
Arguments
context (input/output) The context structure.
indata (input) The data structure to be copied.
outdata (output) A pointer to a copy of the data structure.
Description

This routine copies a data structure, filling in *outdata to point to the newly allocated copy, which should be
freed with krb5_free_data.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 167

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_keyblock — Copy a keyblock

krb5_copy_keyblock — Copy a keyblock

C Prototype

krb5_error_code krb5_copy keyblock (

krb5_context context,
const krb5_key lock *from,
krb5_keyblock **to) ;
Arguments
context (input/output) The context structure.
from (input) The keyblock to copy.
to (output) A pointer to a copy of the keyblock.
Description

This routine copies a keyblock, and sets the *to argument to point to the newly allocated copy, which should

be freed with krb5_free_keyblock.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

168

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_keyblock_contents — Copy a keyblock’s contents

krb5_copy_keyblock_contents — Copy a keyblock’s contents

C Prototype

krb5_error_code krb5_copy_ keyblock_contents(

krb5_context context,
const krb5_keyblock *from,
krb5_keyblock *to);
Arguments
context (input/output) The context structure.
from (input) The keyblock to copy the contents of.
to (output) A pointer to a copy of the keyblock contents.
Description

This routine copies keyblock contents from from to to, including allocated storage. The allocated storage
should be freed by using free (to->contents).

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 169

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_principal — Copy a principal structure

krb5_copy_principal — Copy a principal structure

C Prototype

krb5_error_code krb5_copy_principal (

krb5_context context,
krb5_const_principal inprinc,
krb5_principal *outprinc) ;
Arguments
context (input/output) The context structure.
inprinc (input) Principal name to be copied.
outprinc (output) Copy of input principal name.
Description

This routine copies a principal structure, setting *outprinc to point to the newly allocated copy, which should

be freed with krb5_free principal.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

170

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_copy_ticket — Copy a Kerberos ticket structure

krb5_copy_ticket — Copy a Kerberos ticket structure

C Prototype

krb5_error_code krb5_copy_ticket (

krb5_context context,
const krb5_ticket *from,
krb5_ticket **pto);
Arguments
context (input/output) The context structure.
from (input) The ticket structure to be copied.
pto (output) A pointer to a copy of the ticket structure.
Description

This routine copies a ticket structure, setting *pto to point to the newly allocated copy, which should be freed
with krb5_free_ticket.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 171

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_addresses — Free addresses allocated by krb5_copy_addresses

krb5_free_addresses — Free addresses allocated by
krb5_copy_addresses

C Prototype

void krb5_free_addresses(

krb5_context context,
krb5_address **val);
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the series of addresses *val that have been allocated from krb5_copy_ addresses.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

172 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_ap_rep_enc_part — Free subkey and other data allocated by krb5_rd_rep or krb5_send_auth

krb5_free_ap_rep_enc_part — Free subkey and other data allocated
by krb5_rd_rep or krb5_send_auth

C Prototype

void krb5_free_ap_rep_enc_part (
krb5_context context,
krb5_ap_rep_enc_part *val);

Arguments

context (input/output) The context structure.

val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the subkey keyblock (if set) as well as val that has been allocated from krb5_rd_rep or
krb5_send_auth.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 173

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_authdata — Free an authdata structure

krb5 free authdata — Free an authdata structure

C Prototype

void krb5_free_authdata (

krb5_context context,
krb5_authdata **val);
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the authdata structure pointed to by val that has been allocated from
krb5_copy_authdata.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

174

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_authenticator — Free authenticator storage

krb5_free_authenticator — Free authenticator storage

C Prototype

void krb5_free_authenticator (

krb5_context context,
krb5_authenticator *val);
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the authenticator val, including the pointer val.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 175

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_checksum — Free a checksum

krb5 free checksum — Free a checksum

C Prototype

void krb5_free_checksum (

krb5_context context,
krb5_checksum *val) ;
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees checksum and the pointer val.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

176

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_context — Free a context structure

krb5 free context — Free a context structure

C Prototype

Void krb5_free_context (
krb5_context context);

Arguments

context (input) Context structure to be freed.

Description

This routine frees the context returned by krb5_init_context. Internally calls krb5_os_free_context.

Return Values

None.

Chapter 6 177

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_cred_contents — Free credential structures

krb5 free cred _contents — Free credential structures

C Prototype

void krb5_free_cred_contents (

krb5_context context,
krb5_creds *val) ;
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine zeros out the session key stored in the credential and then frees the credentials structures. The
argument val is not freed.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

178 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_creds — Free credentials

krb5 free creds — Free credentials

C Prototype

void krb5_free_creds(

krb5_context context,
krb5_creds *val);
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine calls krb5_free_cred_contents with val as the argument. val is freed as well.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 179

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_data — Free storage associated with a krb5_data object

krb5_free_data — Free storage associated with a krb5_data object

C Prototype

void krb5_free_data(

krb5_context context,
krb5_data *val);
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the data structure val, including the pointer val, which has been allocated by any of
numerous routines.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

180 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_error — Free error information

krb5 free error — Free error information

C Prototype

void krb5_free_error(

krb5_context context,
krb5_error *val) ;
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the error val that has been allocated from krb5_read error or krb5_sendauth.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 181

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_host_realm — Free storage allocated by krb5_get_host_realm

krb5_free_host_realm — Free storage allocated by
krb5_get_host_realm

C Prototype

krb5_error_code krb5_free_host_realm(

krb5_context context,
char * const *realmlist);
Arguments
context (input) The context structure.
realmlist (output) A pointer to a list of realm names.
Description

This routine frees the storage taken by a realmlist returned by krb5_get_host_realm.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

182 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_keyblock — Free keyblock memory

krb5_free_keyblock — Free keyblock memory

C Prototype

void krb5_free_keyblock (

krb5_context context,
krb5_keyblock *val) ;
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the pointer val and memory, and zeroes the keyblock contents of val.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 183

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_principal — Free the pwd_data allocated by krb5_copy_principal

krb5_free_principal — Free the pwd_data allocated by
krb5_copy_principal

C Prototype

void krb5_free_principal (
krb5_context context,
krb5_principal val);

Arguments

context (input/output) The context structure.

val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the pwd_data val that has been allocated from krb5_copy_principal.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

184

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_tgt_creds — Free TGT credentials

krb5_free_tgt_creds — Free TGT credentials

C Prototype

void krb5_free_tgt_creds(

krb5_context context,
krb5_creds **tgts);
Arguments
context (input/output) The context structure.
tgts (input/output) A pointer to the credentials to be freed.
Description

This routine frees the TGT credentials tgts returned by krb5_get_cred_from_kdc.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 185

KRB5 (Kerberos V5) Application Programming Interface
krb5_free_ticket — Free ticket allocated by krb5_copy_ticket

krb5_free_ticket — Free ticket allocated by krb5_copy_ticket

C Prototype

void krbb5_free_ticket (

krb5_context context,
krb5_ticket *val) ;
Arguments
context (input/output) The context structure.
val (input/output) A pointer to the data structure to be freed.
Description

This routine frees the ticket val that has been allocated from krb5_copy_ticket and other routines.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

186 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_get_credentials — Get an additional ticket for the client

krb5_get_credentials — Get an additional ticket for the client

C Prototype

krb5_error_code krb5_get_credentials (

krb5_context context,
const krb5_flags options,
krb5_ccache ccache,
krb5_creds *in_creds,
krb5_creds *out_creds);
Arguments
context (input/output) The context structure.
options (input) Valid values are as follows:
KRB5_GC_USER_USER — Return a full user to user authentication
ticket

KRB5_GC_GC_CACHED — Only search credentials cache for the ticket.

ccache (input) The credentials cache.
in_creds (input) Input credentials.
out_creds (output) Output credentials.
Description

This routine attempts to use the credentials cache ccache or a TGS exchange to get an additional ticket for
the client identified by in_creds->client, with the following information:

¢ The server identified by in_creds->server.

¢ The options in options. Valid choices are KRB5_GC_USER_USER and KRB5_GC_GC_CACHED.
¢ The expiration date specified in in_creds->times.endtime.

¢ The session key type specified in in_creds->keyblock.keytype if it is nonzero.

If options specifies KRB5_GC_CACHED, then krb5_get_credentials will only search the credentials cache for a
ticket.

If options specifies KRB5_GC_USER_USER, then krb5_get_credentials will get credentials for a user-to-user
authentication. In a user-to-user authentication, the secret key for the server is the session key from the
server's ticket granting ticket (TGT). The TGT is passed from the server to the client over the network; this is
safe since the T'GT is encrypted in a key known only by the Kerberos server. The client must pass this TGT to
krb5_get_credentialsin in_creds->second_ticket. The Kerberos server will use this TGT to construct a
user-to-user ticket that can be verified by the server, by using the session key from its TGT.

The effective expiration date is the minimum of the following:
¢ The expiration date as specified in in_creds->times.endtime.

¢ The requested start time plus the maximum lifetime of the server as specified by the server's entry in the
Kerberos database.

Chapter 6 187

KRB5 (Kerberos V5) Application Programming Interface
krb5_get_credentials — Get an additional ticket for the client

¢ The requested start time plus the maximum lifetime of tickets allowed in the local site, as specified by the
KDC. This is a compile-time option, KRB5_KDB_MAX_LIFE in config.h, and is by default one day.

If any special authorization data needs to be included in the ticket for example, restrictions on how the ticket
can be used, they should be specified in in_creds->authdata. Ifthere is no special authorization data to be
passed, in_creds->authdata should be NULL.

Any returned ticket and intermediate ticket-granting tickets are stored in ccache.

Return Values

This routine returns one of the following KRB5 status codes:

System errors.

Errors from encryption routines.

188 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_get_default_realm— Retrieve the default realm

krb5_get_default_realm— Retrieve the default realm

C Prototype

krb5_error_code krb5_get_default_realm/(

krb5_context context,
char **]1realm);
Arguments
context (input) The context structure.
Irealm (output) A pointer to the default realm.
Description

This routine retrieves the default realm to be used if no user-specified realm is available (for example, to
interpret a user-typed principal name with the realm omitted for convenience), setting 1realm with a pointer
to the default realm in allocated storage.

It is the caller's responsibility for freeing the allocated storage pointed to be 1realm when it is finished with
it.

Return Values

This routine returns the following KRB5 status code:

System errors.

Chapter 6 189

KRB5 (Kerberos V5) Application Programming Interface
krb5_get_host_realm — Get the Kerberos realm names for a host

krb5_get_host_realm — Get the Kerberos realm names for a host

C Prototype

krb5_error_code krb5_get_host_realm(

krb5_context context,
const char *host,
char ***realmlist);
Arguments
context (input) The context structure.
host (input) The host name.
realmlist (output) A pointer to a list of realm names.
Description

This routine determines the Kerberos realm names for host, filling in realmlist with a pointer to an argv| |
style list of names, terminated with a NULL pointer.

If host is NULL, the local host's realms are determined.
If there are no known realms for the host, the filled-in pointer is set to NULL.

The pointer array and strings pointed to are all in allocated storage, and should be freed by the caller when
finished.

Return Values

This routine returns the following KRB5 status code:

System errors.

190 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_get_message — Convert an error code into the string representation

krb5_get_message — Convert an error code into the string
representation

C Prototype

char * krb5_get_message (
long code);

Arguments

code (input) The Kerberos numeric error code.

Description

This routine is supported on the OpenVMS platform only. It converts a Kerberos numeric error code into the
string that describes the error.

Return Values

A pointer to an ASCII string describing the error indicated by code. The storage allocated at this pointer
location should not be freed; it is part of an internal table of error messages.

Chapter 6 191

KRB5 (Kerberos V5) Application Programming Interface
krb5_get_server_rcache — Create a replay cache for server use

krb5_get_server_rcache — Create a replay cache for server use

C Prototype

krb5_error_code krb5_get_server_rcache (

krb5_context
const krb5_data
krb5_rcache

Arguments

context (input/output)

piece (input)

ret_rcache (output)

Description

context,
*piece,
*ret_rcache);

The context structure.

Used to distinguish this replay cache from others in use on the system.
Typically, pieceis the first component of the principal name for the client
or server that is calling krb5_get_server_rcache.

A handle to an open rcache.

This routine generates a replay cache name, allocates space for its handle, and opens it.

Upon successful return, ret_rcache is filled in to contain a handle to an open rcache, which should be closed

with krb5_rc_close.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE

Successful completion.

192

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_init_context — Initialize a Kerberos context structure

krb5 init context — Initialize a Kerberos context structure

C Prototype

krb5_error_code krb5_init_context (

krb5_context *context);
Arguments
context (output) A pointer to the context structure that has been initialized.
Description

This routine initializes the context for the application. The context contains the encryption types, a pointer to
operating specific data and the default realm. In the future, the context may also contain thread specific data.
The data in the context should be freed with krb5_free_context.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 193

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_add_entry — Add an entry to a key table

krb5_kt_add_entry — Add an entry to a key table

C Prototype

krb5_error_code krb5_kt_add_entry(

krb5_context context,
krb5_keytab id,
krb5_keytab_entry *entry);
Arguments
context (input/output) The context structure.
id (input) A key table handle.
entry (input) The new entry to add to the key table.
Description

This routine adds a new entry to a key table. If the table is not writeable, then KRB5_KT_NOWRITE is
returned.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

194 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_close — Close a key table

krb5_kt_close — Close a key table

C Prototype

krb5_error_code krb5_kt_close(

krb5_context context,

krb5_keytab id);
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
Description

This routine closes the keytab identified by id and invalidates id, and releases any other resources acquired
during use of the key table.

It requires that id identifies a keytab.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 195

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_default — Return a handle to the default keytab

krb5_kt_default — Return a handle to the default keytab

C Prototype

krb5_error_code krb5_kt_default(

krb5_context context

krb5_keytab *id) ;
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
Description

This routine fills id with a handle identifying the default keytab.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

196

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_default_name — Get default key table name

krb5_kt_default_ name — Get default key table name

C Prototype

krb5_error_code krb5_kt_default_name (

krb5_context context
char *name,
int namesize);
Arguments
context (input/output) The context structure.
name (input/output) Key table name to resolve.
namesize (input) The size of the name to return. Anything more than namesize will be

zeroed in name upon completion.

Description

This routine fills name with the first namesize bytes of the name of the default keytab. Ifthe name is
shorter than namesize, then the remainder of name will be zeroed.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 197

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_end_seq_get — Complete a series of sequential key table entry retrievals

krb5_kt_end_seq_get — Complete a series of sequential key table
entry retrievals

C Prototype

krb5_error_code krb5_kt_end_seq get(

krb5_context context,
krb5_keytab id,
krb5_kt_cursor *cursor);
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
cursor (input/output) The cursor to be invalidated.
Description

This routine finishes sequential processing mode and invalidates cursor, which must never be reused after
this routine call.

This routine requires that id identifies a valid keytab and *cursor be a cursor returned by
krb5_kt_start_seqg _get or a subsequent call to krb5_kt_next_entry.

Return Values

This routine returns the following KRB5 status code:

Error code if cursor is invalid.

198 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_get_entry — Retrieve an entry from the key table

krb5_kt_get_entry — Retrieve an entry from the key table

C Prototype

krb5_error_code krb5_kt_get_entry(

krb5_context context,
krb5_keytab id,
krb5_principal principal,
krb5_kvno vno,
krb5_keytype keytype,
krb5_keytab_entry *entry);
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
principal (input) A principal name.
vno (input) Key version number. If vno is zero, the first entry whose principal matches

is returned.

keytype (input) The key encryption type. Use a keytype of zero if an encryption type does
not matter.

entry (output) The returned key table entry.

Description

This routine searches the keytab identified by id for an entry whose principal matches principal, whose
keytype matches keytype, and whose key version number matches vno. It returns an error code if no suitable
entry is found. If an entry is found, the entry is returned in *entry; its contents should be deallocated by
calling krb5_kt_free entry when no longer needed.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 199

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_get_name — Get key table name

krb5_kt_get_name — Get key table name

C Prototype

krb5_error_code krb5_kt_get_name (

krb5_context context,
krb5_keytab id,
char *name,
int namesize);
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
name (output) The key table name.
namesize (input) The maximum length to fill in name.
Description

This routine fills name with the first namesize bytes of the name of the keytab identified by id. If the name
is shorter than namesize, then name will be NULL terminated.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

200 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_next_entry — Retrieve the next entry from the key table

krb5_kt_next_entry — Retrieve the next entry from the key table

C Prototype

krb5_error_code krb5_kt_next_entry(

krb5_context context,
krb5_keytab id,
krb5_keytab_entry *entry,
krb5_kt_cursor *cursor) ;
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
entry (output) The returned key table entry.
cursor (input/output) A cursor to be used in subsequent calls to krb5_kt_next_entry.
Description

This routine fetches the next entry in the keytab, returning it in *entry, and updates *cursor for the next
request. If the keytab changes during the sequential get, an error is guaranteed. The argument *entry
should be freed after use by calling krb5_kt_free_entry.

This routine requires that id identifies a valid keytab, and *cursor be a cursor returned by
krb5_kt_start_seqg _get or a subsequent call to krb5_kt_next_entry.

Return Values
This routine returns the following KRB5 status code:

Error code if no more cache entries or if the keytab changes.

Chapter 6 201

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_read_service_key — Retrieve a service key from the key table

krb5_kt_read_service_key — Retrieve a service key from the key table

C Prototype

krb5_error_code krb5_kt_read_service_key(\funcinout

krb5_context

\funcin
krb5_pointer
krb5_principal
krb5_kvno
krb5_keytype
\funcout

krb5_keyblock

Arguments

context (input/output)
keyprocarg (input)
principal (input)

vno (input)
keytype (input)
key (output)

Description

context,

keyprocarg,
principal,
vno,
keytype,

**key) ;

The context structure.
The name of a keytab, or NULL to use the default keytab.
The service principal.

Key version number. Use a vno of zero to specify the key with the highest
version number.

The key encryption type. Use a keytype of zero if an encryption type does
not matter.

The returned service key.

The routine opens and searches keytab for the entry identified by principal, keytype, and vno, returning the
resulting key in *key or returning an error code if it is not found. If keyprocarg is not NULL, it is taken to be
a char* denoting the name of a keytab. Otherwise, the default keytab will be used.

krb5_free_keyblock should be called on *key when the caller is finished with the key.

Return Values

This routine returns the following KRB5 status code:

Error code if the entry is not found.

202

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_remove_entry — Remove an entry from a key table

krb5_kt_remove_entry — Remove an entry from a key table

C Prototype

krb5_error_code krb5_kt_remove_entry (

krb5_context context,
krb5_keytab id,
krb5_keytab_entry *entry);
Arguments
context (input/output) The context structure.
id (input) A key table handle.
entry (input) The entry to remove from the key table.
Description

This routine removes an entry from a key table. If this routine is not available, then KRB5_KT_NOWRITE
is returned.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 203

KRB5 (Kerberos V5) Application Programming Interface
krb5_kt_start_seq_get — Start a sequential retrieve of key table entries

krb5_kt_start_seq_get — Start a sequential retrieve of key table
entries

C Prototype

krb5_error_code krb5_kt_start_seqg get(

krb5_context context,
krb5_keytab id,
krb5_kt_cursor *cursor);
Arguments
context (input/output) The context structure.
id (input/output) A key table handle.
cursor (output) A cursor to be used in calls to krb5_kt_next_entry.
Description

This routine prepares to read sequentially every key in the keytab identified by id. The cursor argument is
filled in with a cursor to be used in calls to krb5_kt_next_entry.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

204 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_kuserok — Determine whether the local user is authorized to log in

krb5 kuserok — Determine whether the local user is authorized to
log in

C Prototype

krb5_boolean krb5_kuserok(

krb5_context context,

krb5_principal principal,

const char *luser);
Arguments
context (input) The context structure.
principal (input) A Kerberos principal name.
luser (input) A local username.
Description

This routine determines whether user is authorized to log in to the account luser, given a Kerberos principal
principal and a local username luser.

Return Values
This routine returns one of the following KRB5 status codes:

TRUE User is authorized to log in.
FALSE User is not authorized to log in.

Chapter 6 205

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_error — Format an error message

krb5_mk_error — Format an error message

C Prototype

krb5_error_code krb5_mk_error(

krb5_context context,

const krb5_error *dec_err,

krb5_data *enc_err);
Arguments
context (input/output) The context structure.
dec_err (input) The error structure to format.
enc_err (output) The formatted error buffer.
Description

This routine formats the error structure *dec_err into an error buffer *enc_err.

The error buffer storage (enc_err->data) is allocated, and should be freed by the caller when finished.

Return Values

This routine returns the following KRB5 status code:

System errors.

206 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_priv — Format a KRB_PRIV message

krb5_mk_priv — Format a KRB_PRIV message

C Prototype

krb5_error_code krb5_mk_priv(

krb5_context context,
krb5_auth_context auth_context,
const krb5_data *userdata,
krb5_data *outbuf,
krb5_replay data *outdata) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context. The flags from auth_context select whether

sequence numbers or timestamps should be used to identify the message.
Valid values are:

KRB5_AUTH_CONTEXT DO_TIME — Use timestamps and replay
cache.

KRB5_AUTH_CONTEXT_RET_TIME — Copy timestamp to *outdata.

KRB5_AUTH_CONTEXT_DO_SEQUENCE — Use sequence numbers
in replay cache.

KRB5_AUTH_CONTEXT _RET_SEQUENCE — Use sequence numbers
in replay cache and output data.

userdata (input) The user data in the message.
outbuf (output) The formatted KRB_PRIV buffer.
outdata (input/output) Contains the sequence numbers if

KRB5_AUTH_CONTEXT RET SEQUENCE was specified in

auth_context.

Description

This routine formats a KRB_PRIV message into outbuf. Behaves similarly to krb5_mk_safe, but the
message is encrypted and integrity protected rather than just integrity-protected.

The inbuf, auth_context, outdata and outbuf arguments function as in krb5_mk_safe.

As in krb5_mk_safe, the remote_addr and remote_port part of the auth_context is optional; if the
receiver's address is not known, it may be replaced by NULL. The 1ocal_addr, however, is mandatory.

The encryption type is taken from the auth_context keyblock portion. If the i_vector portion of the

auth context is nonNULL, it is used as an initialization vector for the encryption (if the chosen encryption
type supports initialization vectors), and its contents are replaced with the last block of encrypted data upon
return.

Chapter 6 207

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_priv — Format a KRB_PRIV message

Return Values

This routine returns one of the following KRB5 status codes:

System errors.

Encryption errors.

208 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_rep — Format and encrypt an AP_REP message

krb5_mk_rep — Format and encrypt an AP_REP message

C Prototype

krb5_error_code krb5_mk_rep(

krb5_context context,
krb5_auth_context auth_context,
krb5_data *outbuf);
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context.
outbuf (output) AP_REQ message information.
Description

This routine formats and encrypts an AP_REP message, including in it the data in the authentp portion of
auth_context, encrypted using the keyblock portion of auth_context.

When successful, outbuf->length and outbuf->data are filled in with the length of the AP_REQ message
and allocated data holding it. The outbuf->data argument should be freed by the caller when it is no longer
needed.

If the flags in auth_context indicate that a sequence number should be used (either
KRB5_AUTH_CONTEXT DO_SEQUENCE or KRB5_AUTH_CONTEXT RET_SEQUENCE) and the local
sequence number in the auth context is 0, a new number will be generated with

krb5_generate_seq number.

Return Values

This routine returns the following KRB5 status code:

System errors.

Chapter 6 209

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_req — Format a KRB_AP_REQ message

krb5_mk_req — Format a KRB_AP_REQ message

C Prototype

krb5_error_code krb5_mk_reqg(

krb5_context context,
krb5_auth_context *auth_context,
const krb5_flags ap_req_options,
char *service,
char *hostname,
krb5_data *in_data,
krb5_ccache ccache,
krb5_data *outbuf);
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context. Contains the checksum method to be used. A

new authentication context will be returned if NULL is specified.

ap_req_options (input) Specifies the KRB_AP_REQ options desired. Valid options are:
AP_OPTS_USE_SESSION_KEY
AP_OPTS_MUTUAL_REQUIRED
AP_OPTS_USE_SUBKEY

service (input) Used to specify the principal name, in conjunction with hostname.

hostname (input) The server to receive the message.

in_data (input) Application data whose checksum should be included in the authenticator.
Specify NULL if no checksum is to be included.

ccache (input/output) The credentials cache.

outbuf (output) A pointer to an existing krb5_data structure to be filled. Returns the

generated AP_REQ message.

Description

This routine formats a KRB_AP_REQ message into outbuf.

The principal of the server to receive the message is specified by hostname and service. If credentials are
not present in the credentials cache ccache for this server, the TGS request with default arguments is used in
an attempt to obtain such credentials, and they are stored in ccache.

The checksum method to be used is as specified in auth_context.

The outbuf argument should point to an existing krb5_data structure. outbuf->length and outbuf->data
will be filled in on success, and the latter should be freed by the caller when it is no longer needed; if an error
is returned, however, no storage is allocated and outbuf->data does not need to be freed.

210 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_req — Format a KRB_AP_REQ message

Return Values
This routine returns one of the following KRB5 status codes:

System errors.

Error getting credentials for server.

Chapter 6 211

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_req_extended — Format a KRB_AP_REQ message with additional options

krb5_mk_req_extended — Format a KRB_AP_REQ message with
additional options

C Prototype

krb5_error_code krb5_mk_req extended

krb5_context context,
krb5_auth_context *auth_context,
const krb5_flags ap_req_options,
krb5_data *in_data,
krb5_creds *in_creds,
krb5_data *outbuf);
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context. Contains the checksum method to be used. A

new authentication context will be returned if NULL is specified.
ap_req_options (input) Specifies the KRB_AP_REQ options desired. Valid options are:

AP_OPTS_USE_SESSION_KEY

AP_OPTS_MUTUAL_REQUIRED

in_data (input) Application data whose checksum should be included in the authenticator.
Specify NULL if no checksum is to be included.

in_creds (input) Specifies the credentials for the service.

outbuf (output) A pointer to an existing krb5_data structure to be filled. Returns the
generated AP_REQ message.

Description

This routine formats a KRB_AP_REQ message into outbuf, with more complete options than krb5_mk_regq.

The outbuf, ap_reqg options, auth_context, and ccache arguments are used in the same fashion as for
krb5_mk_reqg

The in_creds argument is used to supply the credentials (ticket and session key) needed to form the request.
If in_creds->ticket has no data (length == 0), then an error is returned.

During a call to this routine, the structure elements in in_creds may be freed and reallocated. Hence all of
the structure elements which are pointers should point to allocated memory, and there should be no other
pointers aliased to the same memory, since it may be deallocated during this routine call.

If ap_req options specifies AP_OPTS_USE_SUBKEY, then a subkey will be generated if need be by
krb5_generate_subkey.

A copy of the authenticator will be stored in the auth_context, with the principal and checksum fields nulled
out, unless an error is returned. (This is to prevent pointer-sharing problems; the caller should not need
these fields anyway, since the caller supplied them.)

212 Chapter 6

KRBS5 (Kerberos V5) Application Programming Interface
krb5_mk_req_extended — Format a KRB_AP_REQ message with additional options

Return Values

This routine returns one of the following KRB5 status codes:

System errors.

Error getting credentials for server.

Chapter 6 213

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_safe — Format a KRB_SAFE message

krb5_mk_safe — Format a KRB_SAFE message

C Prototype

krb5_error_code krb5_mk_safe(

krb5_context context,
krb5_auth_context *auth_context,
const krb5_data *userdata,
krb5_data *outbuf,
krb5_replay data *outdata) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context. The auth_context->auth_context_flags select

whether sequence numbers or timestamps should be used to identify the
message. Valid flags are:

KRB5_AUTH_CONTEXT DO_TIME — Use timestamps and replay
cache.

KRB5_AUTH_CONTEXT_RET_TIME — Copy timestamp to *outdata.
KRB5_AUTH_CONTEXT_DO_SEQUENCE — Use sequence numbers.

KRB5_AUTH_CONTEXT_RET_SEQUENCE — Copy sequence
numbers to *outdata.

userdata (input) The user data in the message.
outbuf (output) The formatted KRB_SAFE buffer.
outdata (input/output) Contains the sequence numbers if

KRB5_AUTH_CONTEXT RET SEQUENCE was specified in

auth_context.

Description

This routine formats a KRB_SAFE message into outbuf.

The userdata argument is formatted as the user data in the message. Portions of auth_context specify the
checksum type, the keyblock that might be used to seed the checksum, and full addresses (host and port) for
the sender and receiver. The local_addr portion of *auth_context is used to form the addresses used in the
KRB_SAFE message. The remote_addr is optional; if the receiver's address is not known, it may be replaced
by NULL. The 1local_addr argument, however, is mandatory.

If timestamps are to be used (that is, if KRB5_AUTH_CONTEXT_DO_TIME is set), an entry describing the
message will be entered in the replay cache so that the caller may detect if this message is sent back by an
attacker. If KRB5_AUTH_CONTEXT_DO_TIME is not set, the auth_context replay cache is not used.

If sequence numbers are to be used (if either KRB5_AUTH_CONTEXT_DO_SEQUENCE or
KRB5_AUTH_CONTEXT_RET _SEQUENCE is set), then auth_context local sequence number will be
placed in the protected message as its sequence number.

The outbuf buffer storage (outbuf->data) is allocated, and should be freed by the caller when finished.

214 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_mk_safe — Format a KRB_SAFE message

Return Values

This routine returns one of the following KRB5 status codes:

System errors.

Encryption errors.

Chapter 6 215

KRB5 (Kerberos V5) Application Programming Interface
krb5_os_localaddr — Return all protocol addresses of this host

krb5_os_localaddr — Return all protocol addresses of this host

C Prototype

krb5_error_code krb5_os_localaddr (

krb5_context context,
krb5_address ***addr);
Arguments
context (input) The context structure.
addr (output) A pointer to an array of address pointers.
Description

This routine returns all of the protocol addresses of this host.

Compile-time configuration flags will indicate which protocol family addresses might be returned. The *addr
argument is filled in to point to an array of address pointers, terminated by a NULL pointer. All the storage
pointed to is allocated and should be freed by the caller with krb5_free_address when no longer needed.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

216 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_parse_name — Convert string principal name to protocol format

krb5_parse_name — Convert string principal name to protocol
format

C Prototype

krb5_error_code krb5_parse_name (

krb5_context context,

const char *name,

krb5_principal *principal);
Arguments
context (input/output) The context structure.
name (input) Single string representation of a Kerberos principal name.
principal (output) Multipart principal format used in the protocols.
Description

This routine converts a single-string representation name of the principal name to the multi-part principal
format used in the protocols.

A single-string representation of a Kerberos name consists of one or more principal name components,
separated by slashes, optionally followed by the @ character and a realm name. Ifthe realm name is not
specified, the local realm is used.

The slash and @ characters can be quoted (included as part of a component rather than as a component
separator or realm prefix) by preceding them with a backslash (\) character. Similarly, newline, tab,
backspace, and NULL characters can be included in a component by using \n, \t,\b or \0, respectively.

The realm in a Kerberos name cannot contain the slash, colon, or NULL characters.

The *principal argument points to allocated storage that should be freed by the caller (using
krb5_free_principal) after use.

Return Values

This routine returns one of the following KRB5 status codes:
KRB5_PARSE_MALFORMED The name string is badly formatted.
ENOMEM Space for the return value cannot be allocated.

Chapter 6 217

KRB5 (Kerberos V5) Application Programming Interface
krb5_principal_compare — Compare two principals

krb5_principal_compare — Compare two principals

C Prototype

krb5_boolean krb5_principal_compare (

krb5_context context,
krb5_const_principal princl,
krb5_const_principal princ2);
Arguments
context (input/output) The context structure.
princl (input) First principal name.
princ2 (input) Second principal name.
Description

This routine compares two principal names.

Return Values

This routine returns one of the following KRB5 status codes:

TRUE Principals are the same.
FALSE Principals are different.

218

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_read_password — Read a password from the keyboard

krb5_read_password — Read a password from the keyboard

C Prototype

krb5_error_code krb5_read password (

krb5_context context,
const char *prompt,
const char *prompt?2,
char *return_pwd,
int *size_return);
Arguments
context (input) The context structure.
prompt (input) First user prompt when reading password.
prompt2 (input) Second user prompt, or NULL to read the password only once.
return_pwd (output) The returned password.
size_return (input/output) On input, the maximum size of the password to be returned. On output,

the total number of bytes returned in return_pwd.

Description

This routine reads a password from the keyboard. The first *size_return bytes of the password entered are
returned in return_pwd. If fewer than *size_return bytes are typed as a password, the remainder of
return_pwd is zeroed. Upon success, the total number of bytes filled in is stored in *size_return.

The prompt argument is used as the prompt for the first reading of a password. It is printed to the terminal,
and then a password is read from the keyboard. No newline or spaces are emitted between the prompt and
the cursor, unless the newline/space is included in the prompt.

If prompt2 is a NULL pointer, then the password is read once.

If prompt?2 is set, then it is used as a prompt to read another password in the same manner as described for
prompt. After the second password is read, the two passwords are compared, and an error is returned if they
are not identical.

Echoing is turned off when the password is read.

Return Values
This routine returns one of the following KRB5 status codes:
0

Error in reading or verifying the password.

Chapter 6 219

KRB5 (Kerberos V5) Application Programming Interface
krb5_rd_priv — Parse a KRB_PRIV message

krb5_rd_priv — Parse a KRB_PRIV message

C Prototype

krb5_error_code krb5_rd_priv(

krb5_context context,

krb5_auth_context auth_context,

const krb5_data *inbuf,

krb5_data *outbuf,

krb5_data *outdata) ;
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context.
inbuf (input) The KRB_PRIV message to be parsed.
outbuf (output) The data parsed from the KRB_PRIV message.
outdata (input/output) Contains the sequence numbers if

KRB5_AUTH_CONTEXT RET SEQUENCE was specified in

auth_context.

Description

This routine parses a KRB_PRIV message from inbuf, placing the data in *outbuf after decrypting it. It
behaves similarly to krb5_rd_safe, but the message is decrypted rather than integrity checked.

The inbuf, auth_context, outdata and outbuf arguments function as in krb5_rd_safe.

The remote_addr part of the auth_context as set by krb5_auth_con_setaddrs is mandatory; it specifies
the address of the sender. If the address of the sender in the message does not match the remote_addr, the
error KRB5KRB_AP_ERR_BADADDR will be returned.

If local_addr portion of the auth_context is nonNULL, then the address of the receiver in the message
must match it.If it is NULL, the receiver address in the message will be checked against the list of local
addresses as returned by krb5_os_localaddr.

The keyblock portion of auth_context specifies the key to be used for decryption of the message. If the
i_vector element is nonNULL, it is used as an initialization vector for the decryption (if the encryption type
of the message supports initialization vectors) and its contents are replaced with the last block of encrypted
data in the message.

The auth_context flags specify whether timestamps (KRB5_AUTH_CONTEXT_DO_TIME) and sequence
numbers (KRB5_AUTH_CONTEXT _DO_SEQUENCE) are to be used.

Return Values
This routine returns one of the following KRB5 status codes:

System errors.

Integrity errors.

220 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_rd_rep — Parse and decrypt an AP_REP message

krb5_rd_rep — Parse and decrypt an AP_REP message

C Prototype

krb5_error_code krb5_rd_rep

krb5_context context,
krb5_auth_context auth_context,
const krb5_data *inbuf,

krb5_ap_rep_enc_part **repl);

Arguments

context (input/output) The context structure.

auth_context (input/output) Authentication context.

inbuf (input) The AP_REP message to parse and decrypt.
repl (output) The parsed message.

Description

This routine parses and decrypts an AP_REP message from *inbuf, filling in *repl with a pointer to allocated
storage containing the values from the message. The caller is responsible for freeing this structure with
krb5_free_ap_rep enc_part.

The keyblock stored in auth_context is used to decrypt the message after establishing any key preprocessing
with krb5_process_key.

Return Values

This routine returns one of the following KRB5 status codes:
System errors.
Encryption errors.

Replay errors.

Chapter 6 221

KRB5 (Kerberos V5) Application Programming Interface
krb5_rd_req — Parse a KRB_AP_REQ message

krb5_rd_req — Parse a KRB_AP_REQ message

C Prototype

krb5_error_code krb5_rd_reqg(

krb5_context context,
krb5_auth_context *auth_context,
const krb5_data *inbuf,
krb5_const_principal server,
krb5_keytab keytab,
krb5_flags *ap_req options,
krb5_ticket **ticket);
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context. A new authentication context will be returned if
NULL is specified.
inbuf (input) Contains the KRB_AP_REQ message to be parsed.
server (input) Specifies the expected server’s principal name for the ticket.
keytab (input) Specifies a keytab containing a decryption key. If NULL,

krb5_kt_default will be used to find the default keytab and the key
taken from there.

ap_req_options (input/output) If nonNULL on input, this field will be set to contain the application
request flags on output.

ticket (output) Returns the ticket from the AP_REQ message. The caller is responsible
for deallocating this space by using krb5_free_ticket. Ifno ticket is
desired, specify NULL.

Description

This routine parses a KRB_AP_REQ message, returning its contents. Upon successful return, if ticket is
nonNULL, *ticket will be modified to point to allocated storage containing the ticket information.

If auth_context is NULL, one will be generated and freed internally by the function.
The server argument specifies the expected server's name for the ticket.

If server is NULL, then any server name will be accepted if the appropriate key can be found, and the caller
should verify that the server principal matches some trust criterion.

If server is not NULL, and a replay detection cache has not been established with auth_context, one will be
generated.

If a keyblock is present in the auth_context, it will be used to decrypt the ticket request and the keyblock
freed with krb5_free_keyblock. This is useful for user-to-user authentication.

If no keyblock is specified, the keytab is consulted for an entry matching the requested keytype, server, and
version number and used instead.

222 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_rd_req — Parse a KRB_AP_REQ message

The authenticator in the request is decrypted and stored in auth_context. The client specified in the
decrypted authenticator is compared to the client specified in the decoded ticket to ensure that the compare
was performed.

If the remote_addr portion of the auth context is set, then this routine checks if the request came from the
right client.

The replay cache is checked to see if the ticket and authenticator have been seen and, if so, returns an error. If
not, the ticket and authenticator are entered into the cache.

Various other checks are made of the decoded data, including cross-realm policy, clockskew, and ticket
validation times.

The keyblock, subkey, and sequence number of the request are all stored in the auth_context for future use.

If the request has the AP_OPTS_MUTUAL_REQUIRED bit set, the local sequence number, which is stored in
the auth_context, is XORed with the remote sequence number in the request.
Return Values
This routine returns one of the following KRB5 status codes:
System errors.
Encryption errors.

Replay errors.

Chapter 6 223

KRB5 (Kerberos V5) Application Programming Interface
krb5_rd_safe — Parse a KRB_SAFE message

krb5_rd_safe — Parse a KRB_SAFE message

C Prototype

krb5_error_code krb5_rd_safe(
krb5_context
krb5_auth_context
const krb5_data
krb5_data
krb5_replay data

Arguments

context (input/output)

auth_context (input/output)

context,
*auth_context,
*inbuf,
*outbuf,
*outdata) ;

The context structure.

Authentication context.

inbuf (input) The KRB_SAFE message to be parsed.

outbuf (output) The data parsed from the KRB_SAFE message.

outdata (input/output) Contains the sequence numbers if
KRB5_AUTH_CONTEXT RET SEQUENCE was specified in

auth_context.

Description

This routine parses a KRB_SAFE message from inbuf, placing the data in outbuf after verifying its
integrity.

The keyblock used for verifying the integrity of the message is taken from the auth_context local_subkey,
remote_subkey, or keyblock. The keyblock is chosen in the preceding order by the first one that is not
NULL.

The remote_addr and localaddr portions of the *auth_context specify the full addresses (host and port) of
the sender and receiver, and must be of type ADDRTYPE_ADDRPORT.

The remote_addr argument is mandatory; it specifies the address of the sender. If the address of the sender
in the message does not match remote_addr, the error KRBS5KRB_AP_ERR_BADADDR will be returned.

If local_addr is nonNULL, then the address of the receiver in the message much match it. Ifit is NULL, the
receiver address in the message will be checked against the list of local addresses as returned by
krb5_os_localaddr. If the check fails, KRBS5KRB_AP_ERR_BADARRD is returned.

The outbuf buffer storage (outbuf->data) is allocated storage which the caller should free when it is no
longer needed.

If auth_context_flags portion of auth_context indicates that sequence numbers are to be used (if
KRB5_AUTH_CONTEXT_DOSEQUENCE is set in it), the remote_seqg number portion of auth_context is
compared to the sequence number for the message, and KRB5_KRB_AP_ERR_BADORDER is returned if it
does not match. Otherwise, the sequence number is not used.

If timestamps are to be used (if KRB5_AUTH_CONTEXT_DO_TIME is set in auth_context), then two
additional checks are performed:

224 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_rd_safe — Parse a KRB_SAFE message

¢ The timestamp in the message must be within the permitted clock skew (which is usually five minutes),
or KRB5KRB_AP_ERR_SKEW is returned.

¢ The message must not be a replayed message, according to rcache.

Return Values
This routine returns one of the following KRB5 status codes:
System errors.

Integrity errors.

Chapter 6 225

KRB5 (Kerberos V5) Application Programming Interface
krb5_recvauth — Receive authenticated message

krb5_recvauth — Receive authenticated message

C Prototype

krb5_error_code krb5_recvauth/(

krb5_context context,
krb5_auth_context *auth_context,
krb5_pointer fd,
char *appl_version,
krb5_principal server,
krb5_int32 flags,
krb5_keytab keytab,
krb5_ticket **ticket);
Arguments
context (input/output) The context structure.
auth_context (input/output) Authentication context.
fd (input) A pointer to a file descriptor describing the network socket.
appl_version (input) A string describing the application protocol version that the client is

expecting to use for this exchange. If the client is using a different
application protocol, an error will be returned, and the authentication
exchange will be aborted.

server (input) If server is nonNULL, then krb5_recvauth verifies that the server
principal requested by the client matches server. If not, an error will be
returned and the authentication exchange will be aborted.

flags (input) The flags argument allows the caller to modify the behavior of
krb5_recvauth. For nonlibrary callers, flags should be 0.

keytab (input) Specifies a keytab containing a decryption key.

ticket (output) Ticket is optional and is only filled in if nonNULL. It is filled with the data

from the ticket sent by the client, and should be freed with
krb5_free_ticket when it is no longer needed.

Description

This routine provides a convenient means for client and server programs to send authenticated messages to
one another through network connections. The krb5_sendauth routine is the matching routine to
krb5_recvauth for the server. The krb5_recvauth routine will engage in an authentication dialog with the
client program running krb5_sendauth to authenticate the client to the server. In addition, if requested by
the client, krb5_recvauth will provide mutual authentication to prove to the client that the server
represented by krb5_recvauth is legitimate.

The £d argument is a pointer to the network connection. As in krb5_sendauth, in the MIT UNIX and
OpenVMS implementations, £d is a pointer to a file descriptor.

The arguments server, auth_context, and keytab are used by krb5_rd_req to obtain the server's private
key.

226 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_recvauth — Receive authenticated message

If server is nonNULL, the principal component of it is used to determine the replay cache to use. Otherwise,
krb5_recvauth will use a default replay cache.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 227

KRB5 (Kerberos V5) Application Programming Interface
krb5_sendauth — Send authenticated message

krb5_sendauth — Send authenticated message

C Prototype

krb5_error_code krb5_sendauth (

krb5_context

krb5_auth_context

krb5_pointer
char

krb5_principal
krb5_principal

krb5_flags
krb5_data
krb5_creds
krb5_ccache
krb5_error

krb5_ap_rep_enc_part

krb5_creds

Arguments

context (input/output)

auth_context (input/output)

fd (input)

appl_version (input)

client (input)
server (input)

ap_req_options (input)

in_data (input
in_creds (input)
ccache (input/output)

error (output)

rep_result (output)

out_creds (output)

context,
*auth_context,
fd,
*appl_version,
client,
server,
ap_req_options,
*in_data,
*in_creds,
ccache,
**error,
**rep_result,
**out_creds);

The context structure.
Authentication context.
A pointer to a file descriptor describing the network socket.

A string describing the application protocol version that the client is
expecting to use for this exchange. If the server is using a different
application protocol, an error will be returned.

The Kerberos principal for the client. Ignored if in_creds is nonNULL.
The Kerberos principal for the server. Ignored if in_creds is nonNULL.

Specifies the KRB_AP_REQ flags that should be passed to krb5_mk_req.
Valid flags are:

AP_OPTS_USE_SESSION_KEY
AP_OPTS_MUTUAL_REQUIRED
AP_OPTS_USE_SUBKEY

The data to be sent to the server.
Input credentials, or NULL.

The credentials cache.

If nonNULL, contains the error packet returned from the server. This
error should be freed with krb5_free_error.

If nonNULL, contains the result of the mutual authentication exchange.
The *rep_result argument should be freed with
krb5_free_ap_rep_enc_part when the caller is done with it.

If nonNULL, the retrieved credentials.

228

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_sendauth — Send authenticated message

Description

This routine provides a convenient means for client and server programs to send authenticated messages to
one another through network connections. The krb5_sendauth routine sends an authenticated ticket from
the client program to the server program using the network connection specified by £d. In the MIT UNIX and
OpenVMS implementations, £d should be a pointer to a file descriptor describing the network socket.

The arguments client and server specify the Kerberos principals for the client and the server. They are
ignored if in_creds is nonNULL. Otherwise, server must be nonNULL, but client may be NULL, in which
case the client principal used is the one in the credential cache's default principal.

The ap_reqg_options argument specifies the options that should be passed to krb5_mk_req. If
ap_req_options specifies MUTUAL_REQUIRED, then krb5_sendauth will perform a mutual
authentication exchange, and if rep_result is nonNULLI, it will be filled in with the result of the mutual
authentication exchange; the caller should free *rep_result with krb5_free_ap_rep_enc_part when done
with it.

If in_creds is nonNULL, then in_creds->client and in_creds->server must be filled in, and either the

other structure fields should be filled in with valid credentials, or in_creds->ticket.length should be zero.
If in_creds->ticket.length is nonzero, then in_creds will be used as-is as the credentials to send to the

server, and ccache is ignored; otherwise, ccache is used as described later, and out_creds, if not NULL, is

filled in with the retrieved credentials.

The ccache argument specifies the credential cache to use when one is needed (that is, when in_creds is
NULL or in_creds->ticket.length is zero). When a credential cache is not needed, ccache is ignored.
When a credential cache is needed and ccache is NULL, the default credential cache is used. Note that if the
credential cache is needed and does not contain the needed credentials, they will be retrieved from the KDC
and stored in the credential cache.

If mutual authentication is used and rep_result is nonNULL, the sequence number for the server is
available to the caller in *rep_result->seq number. (If mutual authentication is not used, there is no way
to negotiate a sequence number for the server.)

If an error occurs during the authenticated ticket exchange and error is nonNULL, the error packet (if any)
that was sent from the server will be placed in it. This error should be freed with krb5_free_error.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

Chapter 6 229

KRB5 (Kerberos V5) Application Programming Interface
krb5_set_default_realm — Sets the default realm

krb5 set _default realm — Sets the default realm

C Prototype

krb5_error_code krb5_set_default_realm(

krb5_context context,
char *realm) ;
Arguments
context (input) The context structure.
realm (output) The default realm to be set. If realm is NULL, then the operating system

default value will used.

Description

This routine sets the default realm to be used if no user-specified realm is available (for example, to interpret

a user-typed principal name with the realm omitted for convenience).

Return Values

This routine returns the following KRB5 status code:

System errors.

230

Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_sname_to_principal — Generate a full principal name from a service name

krb5_sname_to_principal — Generate a full principal name from a
service name

C Prototype

krb5_error_code krb5_sname_to_principal (

krb5_context context,
const char *hostname,
const char *sname,
krb5_1int32 type,

krb5_principal *ret_princ);

Arguments

context (input) The context structure.

hostname (input) The host name, or NULL to use the local host..

sname (input) The service name.

type (input) A principal type. The type argument controls how
krb5_sname_to_principal generates the principal name, ret_princ, for
the named service, sname. Valid values are:
KRB5_NT_SRV_HST — The hostname will be canonicalized (a fully
qualified lowercase hostname using the primary name and the domain
name), before ret_princ is generated in the form
sname/hostname@LOCAL.REALM. Most applications should use
KRB5_NT_SRV_HST.
KRB5_NT_UNKNOWN — While the generated principal name will have
the form sname/hostname@LOCAL.REALM, the hostname will not be
canonicalized first. It will appear exactly as it was passed in hostname.

ret_princ (output) The returned full principal name.

Description

This routine generates a full principal name to be used when authenticating with the named service on the
host., given a hostname hostname and a generic service name sname. The full principal name is returned in
ret_princ.

The realm of the principal is determined internally by calling krb5_get_host_realm.

The caller should release the storage in ret_princ by calling krb5_free_principal when it is finished with
the principal.

Return Values
This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 231

KRB5 (Kerberos V5) Application Programming Interface
krb5_timeofday — Retrieves the system time of day (in seconds) since local system’s epoch

krb5_timeofday — Retrieves the system time of day (in seconds) since
local system’s epoch

C Prototype

krb5_error_code krb5_timeofday (

krb5_context context,
krb5_1int32 *timeret);
Arguments
context (input/output) The context structure.
timeret (output) The system time of day, in seconds, since the local system’s epoch.
Description

This routine retrieves the system time of day, in seconds since the local system's epoch.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

232 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_unparse_name — Convert protocol format principal name to string format

krb5_unparse_name — Convert protocol format principal name to
string format

C Prototype

krb5_error_code krb5_unparse_name (

krb5_context context,
krb5_const_principal principal,
char **name) ;
Arguments
context (input/output) The context structure.
principal (input) Multipart principal format used in the protocols.
name (output) Single string representation of a Kerberos principal name.
Description

This routine converts the multipart principal name principal from the format used in the protocols to a
single-string representation of the name. The resulting single-string representation will use the format and
quoting conventions described for krb_parse_name.

The *name argument points to allocated storage and should be freed by the caller when finished.

Return Values
This routine returns one of the following KRB5 status codes:

KRB5_PARSE_MALFORMED The principal does not contain at least two components.
ENOMEM Unable to allocate memory.

Chapter 6 233

KRB5 (Kerberos V5) Application Programming Interface
krb5_unparse_name_ext — Convert multiple protocol format principal names to string format

krb5_unparse_name_ext — Convert multiple protocol format
principal names to string format

C Prototype

krb5_error_code krb5_unparse_name_ext (

krb5_context context,
krb5_const_principal principal,
char **name,
int *size);
Arguments
context (input/output) The context structure.
principal (input) Multipart principal format used in the protocols.
name (output) Single string representation of a Kerberos principal name.
size (output) Size of the unparsed name buffer.
Description

This routine is designed for applications which must unparse a large number of principals, and are
concerned about the speed impact of needing to do a lot of memory allocations and deallocations. It functions
similarly to krb5_unparse_name except if *name is nonNULL, in which case, it is assumed to contain an
allocated buffer of size *size and this buffer will be resized with realloc to hold the unparsed name. Note
that in this case, *size must not be NULL.

The *name argument points to allocated storage and should be freed by the caller when finished.

Return Values

This routine returns the following KRB5 status code:

KRB5_S_COMPLETE Successful completion.

234 Chapter 6

KRB5 (Kerberos V5) Application Programming Interface
krb5_us_timeofday — Retrieves the system time of day (in seconds and microseconds)

krb5_us_timeofday — Retrieves the system time of day (in seconds
and microseconds)

C Prototype

krb5_error_code krb5_us_timeofday (

krb5_context context,

krb5_1int32 *seconds,

krb5_1int32 *microseconds) ;
Arguments
context (input) The context structure.
seconds (output) The system time of day, in seconds, since the local system’s epoch.
microseconds (output) The microseconds portion of the system time of day.
Description

This routine retrieves the system time of day, in seconds, since the local system's epoch.

The seconds portion is returned in *seconds, the microseconds portion in *microseconds.

Return Values

This routine returns the following KRB5 status code:

Successful completion.

Chapter 6 235

KRB5 (Kerberos V5) Application Programming Interface
krb5_us_timeofday — Retrieves the system time of day (in seconds and microseconds)

236 Chapter 6

Open Source Notices
Acknowledgements

A Open Source Notices

Acknowledgements

The Kerberos model is based in part on Needham and Schroeder's trusted third-party authentication protocol
and on modifications suggested by Denning and Sacco. The original design and implementation of Kerberos
Versions 1 through 4 was the work of Steve Miller of the former Digital Equipment Corporation (now
Hewlett-Packard Company) and Clifford Neuman (now at the Information Sciences Institute of the
University of Southern California), along with Jerome Saltzer, Technical Director of Project Athena, and
Jeffrey Schiller, MIT Campus Network Manager. Many other members of Project Athena have also
contributed to the work on Kerberos. Version 4 is publicly available, and has seen wide use across the
Internet.

Version 5 (described in this document) has evolved from Version 4 based on new requirements and desires for
features not available in Version 4.

Kerberos Copyright Notice

Copyright Notice, Kerberos ® 1986-2001 by the Massachusetts Institute of Technology.

Export of software employing encryption from the United States of America
may require a specific license from the United States Government.

It is the responsibility of any person or organization contemplating
export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute
this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of MIT not be used
in advertising or publicity pertaining to distribution of the software
without specific, written prior permission. Furthermore if you modify
this software you must label your software as modified software and not
distribute it in such a fashion that it might be confused with the original
MIT software. MIT makes no representations about the suitability of this
software for any purpose. It is provided “as is” without express or
implied warranty.

OpenVision Technologies Copyright Notice

Copyright Notice, OpenVision Technologies, Inc., ® 1996, All Rights Reserved.

Appendix A 237

Open Source Notices
University of California Copyright Notice

The following copyright and permission notice applies to the
OpenVision Kerberos Administration system located in kadmin/create,
kadmin/dbutil, kadmin/passwd, kadmin/server, lib/kadm5, and
portions of lib/rpc:

WARNING: Retrieving the OpenVision Kerberos Administration system
source code, as described below, indicates your acceptance of the
following terms. If you do not agree to the following terms, do not
retrieve the OpenVision Kerberos administration system.

You may freely use and distribute the Source Code and Object Code
compiled from it, with or without modification, but this Source Code
is provided to you ‘AS IS’ EXCLUSIVE OF ANY WARRANTY, INCLUDING,
WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE, OR ANY OTHER WARRANTY, WHETHER EXPRESS

OR IMPLIED. IN NO EVENT WILL OPENVISION HAVE ANY LIABILITY FOR ANY
LOST PROFITS, LOSS OF DATA OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THIS AGREEMENT, INCLUDING, WITHOUT LIMITATION, THOSE
RESULTING FROM THE USE OF THE SOURCE CODE, OR THE FAILURE OF THE SOURCE
CODE TO PERFORM, OR FOR ANY OTHER REASON.

OpenVision retains all copyrights in the donated Source Code.
OpenVision also retains copyright to derivative works of the Source
Code, whether created by OpenVision or by a third party. The OpenvVision
copyright notice must be preserved if derivative works are made based
on the donated Source Code.

OpenVision Technologies, Inc. has donated this Kerberos Administration
system to MIT for inclusion in the standard Kerberos 5 distribution.

This donation underscores our commitment to continuing Kerberos technology
development and our gratitude for the valuable work which has been
performed by MIT and the Kerberos community

University of California Copyright Notice

Copyright Notice, University of California at Berkeley ©® 1983 Regents of the University of
California.

MIT Kerberos includes documentation and software developed at the
University of California at Berkeley, which includes this copyright notice:

All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

238 Appendix A

Open Source Notices
University of California Copyright Notice

e All advertising materials mentioning features or use of this software
must display the following acknowledgement: “This product includes
software developed by the University of California, Berkeley and

its contributors.”

e Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notices and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified versions

of this manual under the conditions for verbatim copying, provided
also that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of

this manual into another language, under the above conditions

for modified versions.

Appendix A 239

Open Source Notices
University of California Copyright Notice

240 Appendix A

Glossary

A-Z

Authentication Verification of the claimed
identity of a principal.

Authentication header A record containing a
ticket and an authenticator to be presented to a
server as part of the authentication process.

Authentication path A sequence of intermediate
realms transited in the authentication process when
communicating from one realm to another.

Authenticator A record containing information
that can be shown to have been recently generated
using the session key known only by the client and
server.

Authorization The process of determining whether
a client may use a service, the objects the client is
allowed to access, and the type of access allowed.

Ciphertext The output of an encryption function.
Encryption transforms plaintext into ciphertext.

Client A process that uses a network service on
behalf of a user. In some cases a server may itself be
a client of some other server. (For example, a print
server may be a client of a file server.)

Credentials A ticket plus the secret session key
necessary to successfully use that ticket in an
authentication exchange.

KDC (Key Distribution Center) A network service
that supplies tickets and temporary session keys, or
an instance of that service or the host on which it
runs. The KDC services both initial ticket and
ticket-granting ticket requests.

The initial ticket portion is sometimes referred to as
the authentication server (or service). The
ticket-granting ticket portion is sometimes referred
to as the ticket-granting server (or service).

Kerberos 1. In ancient mythology, the three-headed
dog guarding Hades. 2. The name given to Project
Athena's authentication service, the protocol used by
that service, or the code used to implement the
authentication service.

Plaintext The input to an encryption function or
the output of a decryption function. Decryption
transforms ciphertext into plaintext.

Principal A uniquely named client or server
instance that participates in a network
communication.

Principal identifier The name used to uniquely
identify each different principal.

Realm The administrative domain that
encompasses Kerberos clients and servers.

Seal To encipher a record containing several fields
in such a way that the fields cannot be individually
replaced without either knowledge of the encryption
key or leaving evidence of tampering.

Secret key An encryption key shared by a principal
and the KDC, distributed outside the bounds of the
system, with a long lifetime. In the case of a human
user's principal, the secret key is derived from a
password.

Server A particular principal that provides a
resource to network clients.

Service A resource provided to network clients;
often provided by more than one server (for example,
remote file service).

Session key A temporary encryption key used
between two principals, with a lifetime limited to the
duration of a single login session.

Sub-session key A temporary encryption key used
between two principals, selected and exchanged by
the principals using the session key, and with a
lifetime limited to the duration of a single
association.

Ticket A record that helps a client authenticate
itself to a server; it contains the client's identity, a
session key, a timestamp, and other information, all
sealed using the server's secret key. It only serves to
authenticate a client when presented along with a
fresh authenticator.

241

242

A

Administrative utilities, 49
Authentication path, 27
Authentication service, 29

C

Cerberus, 25

Client programs, 45

Compiling Kerberos application, 57
Configuration logs, 32

D

Database, 29
Denial of service attacks, 27

E

Example programs, 58
GSSAPI, 58
KRB5 API, 59

G
GSSAPI example program, 58

I

Installation logs, 39
Inter-realm key, 27

K

kadmin, 29, 49
kdb5_util, 30, 50
KDC, 25, 28
kdestroy, 30, 48
Kerberos
compiling application, 57
linking application, 57
Kerberos database, 29
Kerberos for OpenVMS website, 31
Key Distribution Center, 25
kinit, 29, 45
klist, 30, 47
kpasswd, 30, 48
kprop
using to propagate database, 53
KRB5 API example program, 59

L
Linking Kerberos application, 57

M

Massachusetts Institute of Technology, 25
Master KDC server

propagation of, 53
MultiNet, 31

P

Principal name, 25
Private key, 26

R
Realm, 25, 27

S

Secret key, 26

Secret key cryptography, 26
Service key, 26

Session key, 26

T

TCP/IP Services for OpenVMS, 31
TCPware, 31

TGT, 26

Ticket, 26

Ticket-granting service, 29
Ticket-granting ticket, 26

U

Utilities
administrative, 49
user, 45

Utility programs, 29

Index

243

	HP Open Source Security for OpenVMS ���Volume 3: Kerberos
	1 Introduction to Kerberos
	Kerberos Terminology
	Understanding Kerberos
	Realms
	Security Limitations in Kerberos

	Kerberos Components
	KDC
	Authentication service
	Ticket-granting service
	Kerberos database
	Utility programs

	2 Installation and Configuration
	Prerequisites
	Downloading the Kit
	Expanding the Kit
	Installing and Configuring Kerberos on OpenVMS Version 7.3-2 and Higher
	Updating and Configuring Kerberos on OpenVMS Version 7.3-1
	Installing and Configuring Kerberos on OpenVMS Version 7.2-2 and 7.3

	3 Kerberos Client Programs
	User Client Programs
	kinit
	klist
	kdestroy
	kpasswd

	Administrative Client Programs
	kadmin and kadmin_local
	kdb5_util
	kprop
	Step 1: Configure the Master KDC Server for Propagation
	Step 2: Configure the Slave KDC Servers for Propagation
	Step 3: Complete the Configuration of the Master KDC Server
	Step 4: Complete the Configuration of the Slave KDC Server
	Step 5: Propagate the Master KDC Server to Each Configured Slave Server

	4 Kerberos Programming Concepts
	Overview of Building a Kerberos Application on OpenVMS
	Compiling Kerberos application
	Linking a Kerberos Program on OpenVMS

	Example programs
	DCL Example Programs
	Example programs:GSSAPI
	KRB5 API example program

	GMAKE Example Programs
	GMAKE.VMS Directory
	GMAKE.MIT Directory
	GSS-SAMPLE Example Program
	SAMPLE Example Program
	SIMPLE Example Program
	USER_USER Example Program

	5 GSSAPI (Generic Security Services Application Programming Interface)
	gss_accept_sec_context — Establish a security context
	C Prototype
	Arguments
	Description
	Return Values

	gss_acquire_cred — Acquire credential handle
	C Prototype
	Arguments
	Description
	Return Values

	gss_add_cred — Construct credentials incrementally
	C Prototype
	Arguments
	Description
	Return Values

	gss_add_oid_set_member — Add an object identifier to a set
	C Prototype
	Arguments
	Description
	Return Values

	gss_canonicalize_name — Convert internal name to internal mechanism name
	C Prototype
	Arguments
	Description
	Return Values

	gss_compare_name — Allow application to compare two internal names
	C Prototype
	Arguments
	Description
	Return Values

	gss_context_time — Check how much longer context is valid
	C Prototype
	Arguments
	Description
	Return Values

	gss_create_empty_oid_set — Create a set containing no object identifiers
	C Prototype
	Arguments
	Description
	Return Values

	gss_delete_sec_context — Delete a security context
	C Prototype
	Arguments
	Description
	Return Values

	gss_display_name — Provide textual representation of opaque internal name
	C Prototype
	Arguments
	Description
	Return Values

	gss_display_status — Convert GSSAPI status code to text for user display
	C Prototype
	Arguments
	Description
	Return Values

	gss_duplicate_name — Create a copy of an internal name
	C Prototype
	Arguments
	Description
	Return Values

	gss_export_name — Convert an internal mechanism name to export form
	C Prototype
	Arguments
	Description
	Return Values

	gss_export_sec_context — Transfer a security context to another process
	C Prototype
	Arguments
	Description
	Return Values

	gss_get_mic — Generate a cryptographic MIC for a message
	C Prototype
	Arguments
	Description
	Return Values

	gss_import_name — Convert a printable string to an internal form
	C Prototype
	Arguments
	Description
	Return Values

	gss_import_sec_context — Import a transferred context
	C Prototype
	Arguments
	Description
	Return Values

	gss_indicate_mechs — Allow an application to determine which security mechanisms are available
	C Prototype
	Arguments
	Description
	Return Values

	gss_init_sec_context — Establish a security context
	C Prototype
	Arguments
	Description
	Return Values

	gss_inquire_context — Extract security context information
	C Prototype
	Arguments
	Description
	Return Values

	gss_inquire_cred — Provide calling application with information about a credential
	C Prototype
	Arguments
	Description
	Return Values

	gss_inquire_cred_by_mech — Obtain per-mechanism information about a credential
	C Prototype
	Arguments
	Description
	Return Values

	gss_inquire_names_for_mech — Return set of supported nametypes
	C Prototype
	Arguments
	Description
	Return Values

	gss_process_context_token — Pass a security context to the security service
	C Prototype
	Arguments
	Description
	Return Values

	gss_release_buffer — Free storage associated with a buffer
	C Prototype
	Arguments
	Description
	Return Values

	gss_release_cred — Mark a credential for deletion
	C Prototype
	Arguments
	Description
	Return Values

	gss_release_name — Free storage associated with an internal name that was allocated by a GSSAPI r...
	C Prototype
	Arguments
	Description
	Return Values

	gss_release_oid_set — Free storage associated with a gss_OID_set object
	C Prototype
	Arguments
	Description
	Return Values

	gss_test_oid_set_member — Determine whether an object identifier is a member of the set
	C Prototype
	Arguments
	Description
	Return Values

	gss_unwrap — Verify a message with attached MIC and decrypt message content
	C Prototype
	Arguments
	Description
	Return Values

	gss_verify_mic — Check that a cryptographic MIC fits the applied message
	C Prototype
	Arguments
	Description
	Return Values

	gss_wrap — Attach a MIC to a message and encrypt the message
	C Prototype
	Arguments
	Description
	Return Values

	gss_wrap_size_limit — Check expected size of wrapped output
	C Prototype
	Arguments
	Description
	Return Values

	6 KRB5 (Kerberos V5) Application Programming Interface
	krb5_425_conv_principal — Convert a Kerberos V4 principal name to V5 format
	C Prototype
	Arguments
	Description
	Return Values

	krb5_address_compare — Compare two addresses
	C Prototype
	Arguments
	Description
	Return Values

	krb5_address_order — Return an ordering of two addresses
	C Prototype
	Arguments
	Description
	Return Values

	krb5_address_search — Search for address in address list
	C Prototype
	Arguments
	Description
	Return Values

	krb5_aname_to_localname — Convert a principal name to a local name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_free — Free auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_init — Initialize the auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getaddrs — Retrieve address fields from the auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getauthenticator — Retrieve authenticator used during mutual authentication
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getflags — Retrieve the flags in auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getkey — Retrieve keyblock from auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getlocalseqnumber — Retrieve and store the local sequence number
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getlocalsubkey — Retrieve the local_subkey keyblock from auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getremoteseqnumber — Retrieve and store the remote sequence number
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_getremotesubkey — Retrieve the remote_subkey keyblock from auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_setaddrs — Set address fields in auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_setflags — Set the flags in auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_setports — Set port fields in the auth_context
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_setrcache — Set the replay cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_auth_con_setuseruserkey — Set keyblock field in auth_context to temporary key
	C Prototype
	Arguments
	Description
	Return Values

	krb5_build_principal — Build a principal name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_build_principal_ext — Build a principal name extension
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_close — Close the credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_default — Resolve the default credentials cache name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_default_name — Return the name of the default credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_destroy — Destroy a credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_end_seq_get — Finish processing credentials cache entries
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_gen_new — Generate a new credentials cache identifier
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_get_name — Return the name of the credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_get_principal — Retrieve the primary principal of the credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_initialize — Create/refresh a credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_next_cred — Fetch the next credentials entry
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_remove_cred — Remove credentials from the credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_resolve — Resolve a credentials cache name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_retrieve_cred — Search the cache for a credential and return it if found
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_set_flags — Set the flags on the credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_start_seq_get — Start sequential read of cached credentials
	C Prototype
	Arguments
	Description
	Return Values

	krb5_cc_store_cred — Store a credential in the credentials cache
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_addresses — Copy Kerberos addresses
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_authdata — Copy a Kerberos authdata structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_authenticator — Copy an authenticator structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_checksum — Copy a checksum structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_creds — Copy a credentials structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_data — Copy a Kerberos data structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_keyblock — Copy a keyblock
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_keyblock_contents — Copy a keyblock’s contents
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_principal — Copy a principal structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_copy_ticket — Copy a Kerberos ticket structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_addresses — Free addresses allocated by krb5_copy_addresses
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_ap_rep_enc_part — Free subkey and other data allocated by krb5_rd_rep or krb5_send_auth
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_authdata — Free an authdata structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_authenticator — Free authenticator storage
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_checksum — Free a checksum
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_context — Free a context structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_cred_contents — Free credential structures
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_creds — Free credentials
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_data — Free storage associated with a krb5_data object
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_error — Free error information
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_host_realm — Free storage allocated by krb5_get_host_realm
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_keyblock — Free keyblock memory
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_principal — Free the pwd_data allocated by krb5_copy_principal
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_tgt_creds — Free TGT credentials
	C Prototype
	Arguments
	Description
	Return Values

	krb5_free_ticket — Free ticket allocated by krb5_copy_ticket
	C Prototype
	Arguments
	Description
	Return Values

	krb5_get_credentials — Get an additional ticket for the client
	C Prototype
	Arguments
	Description
	Return Values

	krb5_get_default_realm— Retrieve the default realm
	C Prototype
	Arguments
	Description
	Return Values

	krb5_get_host_realm — Get the Kerberos realm names for a host
	C Prototype
	Arguments
	Description
	Return Values

	krb5_get_message — Convert an error code into the string representation
	C Prototype
	Arguments
	Description
	Return Values

	krb5_get_server_rcache — Create a replay cache for server use
	C Prototype
	Arguments
	Description
	Return Values

	krb5_init_context — Initialize a Kerberos context structure
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_add_entry — Add an entry to a key table
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_close — Close a key table
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_default — Return a handle to the default keytab
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_default_name — Get default key table name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_end_seq_get — Complete a series of sequential key table entry retrievals
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_get_entry — Retrieve an entry from the key table
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_get_name — Get key table name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_next_entry — Retrieve the next entry from the key table
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_read_service_key — Retrieve a service key from the key table
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_remove_entry — Remove an entry from a key table
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kt_start_seq_get — Start a sequential retrieve of key table entries
	C Prototype
	Arguments
	Description
	Return Values

	krb5_kuserok — Determine whether the local user is authorized to log in
	C Prototype
	Arguments
	Description
	Return Values

	krb5_mk_error — Format an error message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_mk_priv — Format a KRB_PRIV message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_mk_rep — Format and encrypt an AP_REP message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_mk_req — Format a KRB_AP_REQ message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_mk_req_extended — Format a KRB_AP_REQ message with additional options
	C Prototype
	Arguments
	Description
	Return Values

	krb5_mk_safe — Format a KRB_SAFE message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_os_localaddr — Return all protocol addresses of this host
	C Prototype
	Arguments
	Description
	Return Values

	krb5_parse_name — Convert string principal name to protocol format
	C Prototype
	Arguments
	Description
	Return Values

	krb5_principal_compare — Compare two principals
	C Prototype
	Arguments
	Description
	Return Values

	krb5_read_password — Read a password from the keyboard
	C Prototype
	Arguments
	Description
	Return Values

	krb5_rd_priv — Parse a KRB_PRIV message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_rd_rep — Parse and decrypt an AP_REP message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_rd_req — Parse a KRB_AP_REQ message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_rd_safe — Parse a KRB_SAFE message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_recvauth — Receive authenticated message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_sendauth — Send authenticated message
	C Prototype
	Arguments
	Description
	Return Values

	krb5_set_default_realm — Sets the default realm
	C Prototype
	Arguments
	Description
	Return Values

	krb5_sname_to_principal — Generate a full principal name from a service name
	C Prototype
	Arguments
	Description
	Return Values

	krb5_timeofday — Retrieves the system time of day (in seconds) since local system’s epoch
	C Prototype
	Arguments
	Description
	Return Values

	krb5_unparse_name — Convert protocol format principal name to string format
	C Prototype
	Arguments
	Description
	Return Values

	krb5_unparse_name_ext — Convert multiple protocol format principal names to string format
	C Prototype
	Arguments
	Description
	Return Values

	krb5_us_timeofday — Retrieves the system time of day (in seconds and microseconds)
	C Prototype
	Arguments
	Description
	Return Values

	A Open Source Notices
	Acknowledgements
	Kerberos Copyright Notice
	OpenVision Technologies Copyright Notice
	University of California Copyright Notice

	Glossary

