HP Open Source Security for OpenVMS
Volume 1: Common Data Security Architecture

OpenVMS Alpha 7.2-2 or higher

This manual supersedes Open Source Security for OpenVMS Alpha
Common Data Security Architecture, Version 7.3-1

i

b

invent

Manufacturing Part Number: AA-RSCUB-TE
September 2003

© Copyright 2003 Hewlett-Packard Development Company, L.P.

Legal Notice
Intel® is a trademark or registered trademark of Intel Corporation in the U.S. and other countries.

UNIX® is a registered trademark of The Open Group.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

Proprietary computer software. Valid license from HP required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical
Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

See Appendix A, Open Source Notice, for information regarding certain open source code included in this
product.

ZK6660
The HP OpenVMS documentation set is available on CD-ROM.

Contents

1. Introduction to CDSA

What 1S CD S A . . . o 9
CDSA OVEIVIBW . . oottt e e e e e e 9
Common Security Services Manager (CSSM)t 11
Service Provider ModUIES. 11
Elective Module Managers (EMMS). 16
Module Directory Services (MDS)ot 16
Maintaining CDSA INtegrity.o 17
Self-ChecK . . oo 17
Bilateral Authentication. e 17
Secure Linkage Checko 17

2. Installation and Initialization

Installation of CDSA on OpenVMS Alpha Version 7.3-2. e 19
Installation of CDSA on OpenVMS Alpha Version 7.3-1. e 20
CDSA Version 2.0 Setup and Initialization. 20
CDSA Version 1.0 Setup and Initialization. 21
Warning Against Uninstalling CDSA from OpenVMS Alpha Version 7.3-1 or Higher 21
Installation of CDSA on OpenVMS Alpha Version 7.3 0r 7.2-2.o 22
After Installation on OpenVMS Alpha Version 7.3 0r 7.2-2. i 22
Post-Installation Tasks 23
Defining CDSA SYmbOolS.o 23
Backing up the CDSA Database 23

3. CDSA Utility Programs

CDSASCERT GEN.EXE . . . o 25
SY NOP SIS e 25
OP T ONSS . 25
EXAMPLE . . 26

CDSASBISSUER.EXE . . oo e 27
SY N OP SIS e 27
OP T ONSS . 27
EXAMPLE . . 28

CDSASMDS _INSTALL.EXE . . . e e e 28
SY N OP SIS . e 28
OP T ONSS . 28
EXAMPLE . . 28

CDSASMOD _INSTALL.EXE e e 29
SY NOP SIS e 29
OP T ONSS . e 29
EXAMPLE . . 29

CDSASOUTPUT _ERROR.EXE.o e e e 29
SY N OP SIS e 29
OP T ONSS . 29
EXAMPLLES. . o e 30

CDSASBSIGN.EXE . .. 30

Contents

INtegrity SIgNING. . . . o 30
EXPOrt SIgNiNg . . .ot 32
CDSASXE092XML.EXE. . . . oo 34
SY N O P SIS . 34
O P T ION S .. 34
EXAMP LLE . . 34

4. CDSA Programming Concepts

Overview of CDSA Programming on OpenVIMS 35
Compiling @ CDSA PrOgramttt et e e e e e e e e e 35
Linking @ CDSA Programo e 35
CDSA Integrity CheCKing. oot e e e 36

Writing Signed Applications e 36
The Signing ENVIFONMENTo 37
The Signing ToolSo 37
The SIgNING PrOCESS . . o ot e e e e e 38

Deploying Signed Applications and Service Provider Modules. 42

CDSA EXample Programsottt e e e e e 42
DES Encryption/Decryption Example Program 43
MDS EXample Program 44
DES2 Encryption/Decryption Example Programt 45
DES3 Example Program 46
ADDIN EXample Program 46
DUMMY EXample Programs e e a7

CDSA Error ResOlULIONo e e 49
Decode _CDSA_EITON() . o ottt e 49
PriNT_CDSA _EITOr() . . . oot e 50

APT FUNCHIONS . . . e e e e e e 51
Elective Module Manager APIS 503

A. Open Source Notice

Preface

Intended Audience

This document is for application developers who want to use the Common Data Security Architecture (CDSA)
to add security to their programs.

This is not a tutorial manual. The reader should already have a basic understanding of fundamental
cryptographic terms and principles, as well as a broad overview of CDSA services and architecture.

Document Structure

This manual consists of the following chapters:

Chapter 1 contains a broad overview of CDSA.

Chapter 2 provides important information about installation and initialization of CDSA.
Chapter 3 describes administrative and development utilities provided with CDSA.
Chapter 4 includes programming information and examples of using CDSA.

Following the chapters is a reference section that describes the CDSA application programming interface
functions (API functions), and a Glossary.

Related Documents

The following documents are recommended for further information:

HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS.
= DCL Help file for the API functions. (Enter the HELP CDSA command at the DCL prompt.)

= Release Notes for CDSA. For Version 7.3-1 and higher, the information is included in the OpenVMS
Release Notes. For Versions 7.2-2 and 7.3, the Release Notes for CDSA can be found in
SYS$HELP:CDSA020.RELEASE_NOTES.

< Intel CDSA documents, found in SYS$COMMON:[CDSA.DOCS]:

— Intel Common Data Security Architecture Application Developer's Guide:
CDSA$APP_DEV_GUIDE.PDF

— Intel Common Data Security Architecture Service Provider Developer's Guide:
CDSA$SP_DEV_GUIDE.PDF

— Intel Common Data Security Architecture Manifest Signing Tools User’s Guide:
CDSA$SMST _GUIDE.PDF

= CDSA Technical Standard, available from The Open Group at the following Web site:
htt p: / / waww. opengr oup. or g/ onl i nepubs/ 009609799
< FIPS 186 Standard, available from the following Web site:

http://ww.itl.nist.gov/fipspubs/fipl86.htm

For additional information about HP OpenVMS products and services, see the following World Wide Web
address:

htt p: / / www. hp. con go/ openvis

For additional information about CDSA, visit the following Web sites:

http://sour cef orge. net/ proj ects/ cdsa
http://ww.intel.com | abs/archive/cdsa. htm

Reader's Comments
HP welcomes your comments on this manual.
Please send comments to either of the following addresses::

Internet: openvmsdoc@hp.com

Postal Mail:
Hewlett-Packard Company
OSSG Documentation Group
ZK03-4/U08

110 Spit Brook Road
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following World Wide Web address :

htt p: // www. hp. comf go/ openvis/ doc/ or der

Conventions

The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

Return In examples, a key name in bold indicates that you press that key.

A horizontal ellipsis in examples indicates one of the following possibilities:
- Additional optional arguments in a statement have been omitted.

- The preceding item or items can be repeated one or more times.

- Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

Convention

Meaning

[l

{}

bold type

italic type

UPPERCASE TYPE

Exanpl e

numbers

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the
command line.

Bold type represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where (dd) represents the predefined par code
for the device type).

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX command and
pathnames, PC-based commands and folders, and certain elements of the C
programming language.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the
following line.

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes — binary, octal, or hexadecimal — are explicitly
indicated.

Introduction to CDSA
What Is CDSA?

1 Introduction to CDSA

This chapter provides an overview of key components of the Common Data Security Architecture (CDSA) and
its set of integrity services.

What Is CDSA?

The Common Data Security Architecture (CDSA) is a multiplatform, industry-standard security
infrastructure. Starting with Version 7.3-1, HP provides CDSA as part of the OpenVMS Alpha operating
system. CDSA is compatible with OpenVMS Alpha Version 7.2-2 and higher.

CDSA provides a stable, standards-based programming interface that enables applications to access
operating system security services. With CDSA, you can create cross-platform, security-enabled applications.
Security services, such as cryptography and other public key operations, are available through a dynamically
extensible interface to a set of add-in modules. These modules can be supplemented or changed as business
needs and technologies evolve.

CDSA is security middleware that provides flexible mix-and-match solutions across a variety of applications
and security services. CDSA insulates you from the issues of incorporating security into applications, freeing
you to focus on the applications themselves. The security underpinnings are transparent to the user.

CDSA was originally developed by Intel® Architecture Labs and was released to the OpenSource community
in May 2000. HP's CDSA implementation is based on the Intel V2.0 Release 3 reference platform, which
implements CDSA V2.0 with Corrigenda, as defined in The Open Group's Technical Standard C914, May
2000.

CDSA Overview

The CDSA layered architecture is shown in Figure 1-1 on page 10.

Chapter 1 9

Introduction to CDSA
CDSA Overview

Figure 1-1 CDSA Layered Architecture

CDSA Applications in C and C++

CSSM Security AP : EM-API |
Integrity Services Security Context
CSP TP Module AC Module CL Module DL Module | ! aigﬂ\{s
Manager Manager Manager Manager Manager Managers
[s [T [JTar [JTeu | Jou] & Em &
7\ 7\ ZaN ZaN ZaN kit Nk

l:_:\‘
(@] .
z
)
7

Trust Certificate Data BN
Service Model Library Storage 1Categories i~
Provider Library Library Library ! of Service

Data Stores

VM-1059A-Al

Applications call the Common Security Services Manager (CSSM), which implements the CDSA APIs. The
CSSM also implements the CDSA integrity services and security contexts. The managers for each of the
CDSA add-ins are also part of CSSM. CSSM is described in more detail in “Common Security Services
Manager (CSSM)” on page 11.

In addition to the CSSM, CDSA includes the following:

= Service provider modules - See “Service Provider Modules” on page 11

= Elective module Managers (EMMSs) - See “Elective Module Managers (EMMs)” on page 16
= Module directory Services (MDS) - See “Module Directory Services (MDS)” on page 16

Chapter 4, “CDSA Programming Concepts,” on page 35 provides sample C programs that illustrate the use of
CDSA.

For additional information about CDSA, see the web links listed in the Preface.

10 Chapter 1

Introduction to CDSA
CDSA Overview

Common Security Services Manager (CSSM)

The Common Security Services Manager (CSSM) is the heart of CDSA. It is a shared library (in
SYS$SHARE:CDSA$INCSSM300_SHR.EXE) to which applications can link to obtain security services. It
defines both the API and the service provider interface (SPI) for add-in security service modules. CSSM
includes a set of core services that are common to all categories of security services. These services perform
functions such as:

= Dynamic attach of an add-in security module

= Enforced integrity, authentication, and exemption verification when dynamically attaching services
= Secure linkage checks on calls to service provider modules

= General integrity services

Applications call functions in the CSSM API, which is fully specified by the CDSA Technical Standard
(located at http://www.opengroup.org/onlinepubs/009609799/). API function names are prefaced with CSSM_
and are sometimes followed by the designation of the module that will actually handle the request. For
instance, applications call CSSM DL_DbOpen() to direct a DL module to open a data store. The associated SPI
for this module is DL_DbQOpen() . (The SPI interface is not directly callable by CDSA applications.)

An application begins by initializing its connection to CSSM using the CSSM | ni t () routine. The application
can use Module Directory Services (MDS) to inquire about available modules and their supported
functionality (see an MDS example in “MDS Example Program” on page 44) or it can directly access a specific
service provider by using its global unique identifier (GUID). The application loads the desired module using
the CSSM Modul eLoad() routine and then attaches to it using the CSSM Mydul eAt t ach() routine.

The CSSM is implemented as a sharable image on OpenVMS. Header files (in
CDSA_SYSDIR:[INCLUDES]*.H) define the CSSM API.

Service Provider Modules

There are several types of add-ins for CDSA, each supporting a different security task:

=« Cryptographic Service Provider (CSP) modules (see “Cryptographic Service Providers (CSPs)” on page 11)
« Trust Policy (TP) modules (see “Trust Policy (TP) Modules” on page 15)

= Authorization Computation (AC) modules (see “Authorization Computation (AC) Modules” on page 15)

= Certificate Library (CL) modules (see “Certificate Library (CL) Modules” on page 15)

< Data Storage Library (DL) modules (see “Data Storage Library (DL) Modules” on page 15)

On OpenVMS, service providers are implemented as sharable images.

Cryptographic Service Providers (CSPs)

The Cryptographic Service Providers (CSPs) are add-in modules to the Common Security Services Manager
(CSSM). CSPs perform cryptographic operations and securely store cryptographic keys for the applications
that call them through the CSSM API. A CSP can be in the form of software, hardware, or both.

Applications call these CSPs to provide authentication, data integrity, data and communication privacy, and
nonrepudiation of messages to users.

CSPs implement the following cryptographic algorithms, among others, in one or more modes:
= Bulk encryption algorithm in modes DES, Triple DES, DESX, RC2, RC4, and RC5
= Digital signature algorithm in modes RSA and DSS

Chapter 1 11

Introduction to CDSA
CDSA Overview

= Key negotiation algorithm in modes Diffie-Hellman and DSA
= Cryptographic hash algorithm in modes MD4, MD5, and SHA1

CSPs also provide the following services:

= Unique identification number: hard coded or random generated
= Random number generator: attended and unattended

< Encrypted data: symmetric keys and private keys

= Secure key storage

= Custom facilities unique to the CSP

The CSP module manager administers the CSPs that are installed on the local system. It defines a common
API to access all of the Cryptographic Service Providers that can be attached and used by any caller in the
system.

The specific security services API functions that are defined by the CSP module manager include the
following service categories:

SignData
VerifyData
DigestData
EncryptData
DecryptData
GenerateKeyPair
GenerateRandom
WrapKey
UnwrapKey

CDSA on OpenVMS provides CSPs based on OpenSSL and RSA BSAFE:
e OpenSSL CSP
— Message authentication based on MD5 and SHA1

— Symmetric encryption based on DES
« RSA BSAFE CSP

— Message authentication based on MD5 and SHA1
— Symmetric encryption based on DES, triple DES, DESX, and RC2, RC4, and RC5.
— Asymmetric encryption based on RSA, DSA, and Diffie-Hellman
The following sections discuss these topics:
= Establishing a session to use a CSP (see “Establishing a Session” on page 12)
= Defining the security context (see “Defining a Security Context” on page 13)
= Using keys (see “Using Keys” on page 13)
Establishing a Session An application establishes a session to select a particular CSP. Once attached, the

application can initiate a cryptographic login session with the CSP. The application requests additional
credentials, such as a passphrase or PIN, to gain access to specific keys and services managed by the CSP.

Within a module attach session or a cryptographic login session, an application creates, uses, and discards
cryptographic contexts. A cryptographic context carries the parameters required to perform a cryptographic
service. The cryptographic context can be used for the following:

12 Chapter 1

Introduction to CDSA
CDSA Overview

= Aone-step cryptographic operation in which only one call is needed to obtain the result.

= A cryptographic session of a multistaged cryptographic service, in which an initialization call is followed
by one or more update calls, ending with a completion (final) call. For most cryptographic operations, the
result is available after the final function completes its execution. An exception is staged
encryption/decryption, in which each update call generates a portion of the result.

Depending on the class of cryptographic operations, individualized attributes are available for the
cryptographic context. In addition to specifying an algorithm when creating the context, the application can
also initialize a session key, pass an initialization vector, or pass padding information to complete the
description of the session. A successful return value from the create function indicates that the desired CSP is
available.

Functions are also provided to manage the created context. The cryptographic context contains most or all of
the input parameters required for an operation. Some cryptographic service functions accept input
parameters in addition to the CSP handle and the context handle. These input parameters always take
precedence over any duplicate or conflicting parameters in the cryptographic context. When a context is no
longer required, the application calls a DeleteContext function. Resources allocated for that context can then
be reclaimed by the operating system.

Defining a Security Context The application's associated security context defines parameter values for
the low-level variables that control the details of cryptographic operations. For example, an application
issuing a request to the EncryptData call can reference a security context that defines the following
parameters:

The algorithm to be used (such as DES)

Algorithm-specific parameters (such as key length)

The object on which the operation is conducted (such as a set of buffers)

The cryptographic variables (such as the key)

Most applications use predefined, default contexts. Typically, a distinct context is used for encrypting,
hashing, and signing. For an initialized application, these contexts change little, if at all, during the
application's execution or between executions. This allows the application developer to implement security by
manipulating certificates, using previously defined security contexts, and maintaining a high-level view of
security operations.

Using Keys In CDSA, there are two main types of cryptographic algorithms that use keys:

< Asymmetric algorithms use one key to encrypt and a second key to decrypt. They are often called
public-key algorithms. One key is called the public key and the other is called the private key or secret
key. RSA (Rivest-Shamir-Adelman) is the most commonly used public-key algorithm. It can be used for
encryption and for signing.

< Symmetric algorithms use a single secret key for encryption and decryption. Both the sender and
receiver must know the secret key. Well-known symmetric functions include DES (Data Encryption
Standard) and IDEA. DES was endorsed by the U.S. Government as a standard in 1977. It's an encryption
block cipher that operates on 64-bit blocks with a 56-bit key. It is designed to be implemented in
hardware, and works well for bulk encryption. IDEA (International Data Encryption Algorithm) uses a
128-bit key.

Every CSP implements its own secure, persistent storage and management of private keys. To support chains
of trust across application domains, CSPs support importing and exporting of public and private keys among
remote and possibly foreign systems. To transfer keys, the CSP must be able to convert one key format into
any other key format and to secure the transfer of private and symmetric keys.

Chapter 1 13

Introduction to CDSA
CDSA Overview

Each CSP is responsible for securely storing the private keys it generates or imports from other sources.
Additional storage-related operations include retrieving a private key when given its corresponding public
key and wrapping private keys as key blobs for secure exportation to other systems.

On an OpenVMS Alpha system, the CSP stores private key files in EAYCSP.PRI and MAF_BSAFE.PRI. The
protections on the key files are OWNER:READ,WRITE,DELETE. The key files are user-specific and are
stored in the [.CDSA.PKD] subdirectory in the user's login directory.

Public Key Infrastructure (PKI)

The Public Key Infrastructure (PKI) is the state-of-the-art method, ultimately to be applied worldwide, for
secure and confidential electronic transactions. It employs public and private keys.

The two PKI algorithms in widespread use are:

< RSA-based algorithms
< DSA-based algorithms

For RSA-based algorithms, CDSA uses the PKCS#1 standard for key representation. For DSA-based
algorithms, no organization has published a standard. CDSA's representation of the DSA key is based on the
DSA algorithm definitions in the FIPS 186 standard. (See the Preface for web links to this and other
standards.)

A DSA public key is represented as a BER-encoding of a sequence list that contains the following:
Pri meModul us; /* p */

PrimeDivisor; /* q */

OderQ /* g */

PublicKey; /* y */

A DSA private key is represented as a BER-encoded sequence list that contains the following:
Pri meModul us; /* p */

PrimeDivisor; /* q */

OderQ /* g */

PrivateKey; /* x */

These key components are defined as follows by FIPS 186 and FIPS 186a:

< PrimeModulus. This is the public prime modulus.

p = A prime modulus, where 21 < p < 2& for 512 <= L <= 1024, and L is a multiple of 64.
= PrimeDivisor. Another public prime number dividing (p-1).

q = A prime divisor of p-1, where 2159 < q < 2160
e OrderQ. This public number has order g mod p.

g = h D/ mod p, where h is any integer with 1 < h < p-1, such that h ®1 /g mod p > 1.
= PrivateKey. The private key.

x = a pseudorandomly generated integer with 0 < x < q.
= PublicKey. The public key.

y =g*mod p.

A DSA-wrapped private key is defined by the PKCS#8 specification. The PKCS#8 standard specifies the
wrapped key format resulting from encoding an algorithm object identifier (OID) with an encoded private key.

14 Chapter 1

Introduction to CDSA
CDSA Overview

Trust Policy (TP) Modules

Trust Policy modules allow applications to request security services that require "policy review and approval®
as the first step in performing the operation. Approval can be based on the identity, integrity, and
authorization represented in a group of digital certificates.

Trust Policy modules implement policies defined by authorities and institutions. Policies define the level of
trust required before certain actions can be performed. Three basic action categories exist for all
certificate-based trust domains:

= Actions on certificates

= Actions on certificate revocation lists

= Domain-specific actions (such as issuing a check or writing a file)

The Trust Policy function can invoke certificate and data storage library functions to carry out the mechanics
of the approved action.

Authorization Computation (AC) Modules

Authorization Computation modules define a general authorization evaluation service that computes
whether a set of credentials and samples are authorized to perform a specific operation on a specific object.
AC modules implement an authorization evaluation mechanism based on caller inputs. Callers provide:

= The assumptions forming the basis of the caller's policy
= The request for which authorization is being checked
= The credentials, samples, and exhibits that could demonstrate authorization to perform the request

The Authorization Computation engine determines whether the request is authorized based on the
assumptions and caller credentials. The AC module can provide other services related to authorization
computations through the CSSM AC PassThr ough() function.

Certificate Library (CL) Modules

The Certificate Library API allows applications to manipulate memory-resident certificates and certificate
revocation lists. Operations must include creating, signing, verifying, and extracting field values from
certificates. Each add-in certificate library incorporates knowledge of certificate data formats, and how to
manipulate that format.

The CSSM Certificate API defines the generic operations that should be supported by every CL module. Each
module can choose to implement only those operations required to manipulate a specific certificate data
format, such as X.509, SDSI, etc.

The implementation of these operations is intended to be semantic-free. Semantic interpretation of
certificate values is designed to be implemented in Trust Policy modules, layered services, and applications.

The Certificate Library module provided on OpenVMS systems can manipulate X509V3 certificates and SPKI
(Simple Public Key Infrastructure) certificates.

Data Storage Library (DL) Modules

The Data Storage Library allows applications to search and select stored data objects, and to query
meta-information about each data store (such as its name, date of last modification, size of the data store, and
S0 on).

Data Storage Library modules provide stable storage for security-related data objects. These objects can be
certificates, certificate revocation lists, cryptographic keys, integrity and authentication credentials, policy
objects, or application-specific objects. Stable storage can be provided by one of the following:

Chapter 1 15

Introduction to CDSA
CDSA Overview

= Commercially-available database management system product
< Native file system

= Custom hardware-based storage device

= Remote directory services (e.g., LDAP)

= In-memory storage

Each Data Storage Library module can choose to implement only those operations required to provide
persistence under its selected model of service.

The Data Storage Library module currently provided on OpenVMS uses OpenVMS flat files.

Elective Module Managers (EMMs)

The CDSA architecture includes several extensibility mechanisms. Elective module managers support the
dynamic addition of entire new categories of service. Prior to requesting services from an add-in service
provider module, the application attaches to an instance of the service provider. For elective module
managers, the CSSM transparently attaches the associated module manager if it is not already loaded. Once
the manager is loaded, the APIs defined by that module are available to the application.

This process is transparent to the add-in module as well as to the application. Therefore, an add-in module
vendor should not need to modify their module implementation to work with an elective module manager
versus a basic module manager.

Module Directory Services (MDS)

The Module Directory Services provide facilities to describe and locate executable objects and their associated
signed manifest integrity credentials.

MDS consists of a database and a set of access methods. It is used primarily to support secure loading and the
use of add-in software modules. It is a system-wide service available to all processes. MDS defines a basic
object directory schema to name and locate software components and the signed manifest credentials
associated with those software components. Each software component in the object directory is uniquely
named by a globally unique identifier (GUID). CDSA defines an additional set of schemas to store
CDSA-specific security attributes of all CDSA components. CDSA components use the MDS-managed data to
do the following:

= Discover other available CDSA components

= Learn about the capabilities and properties of other CDSA components

« Locate the executables for CDSA components

= Locate the signed manifest credentials associated with a CDSA software component

New schemas can be defined to store the properties and capabilities of elective CDSA modules as they are
defined. CDSA applications can also define MDS schemas and use MDS services. CDSA components use
MDS managed data to support CDSA's software authentication and integrity checking procedure, known as
bilateral authentication.

Chapter 4, “CDSA Programming Concepts,” on page 35 provides an example of how to use MDS.

16 Chapter 1

Introduction to CDSA
Maintaining CDSA Integrity

Maintaining CDSA Integrity

As the foundation of the security framework, CSSM provides a set of integrity services that can be used by
CSSM, module managers, add-in modules, and applications to verify their own integrity, and the integrity,
identity, and authorizations of other components in the CDSA environment.

CSSM's set of self-contained security services establishes a security perimeter around CDSA. These services
incorporate techniques to protect against malicious attacks. Because application and add-in security service
modules are dynamic components in the system, CSSM uses and requires the use of a strong verification
mechanism to screen all components as they are added to the CSSM environment.

Applications can extend CSSM's security perimeter to include themselves by using bilateral authentication,
integrity verification, and authorization checks during dynamic binding.

The establishment of integrity between two dynamically loaded, executable objects proceeds in three phases:
« Self-check
= Bilateral authentication

= Secure linkage check

Self-Check

In the first phase, the self-check phase, the software module checks its own digital signature. The Embedded
Integrity Services Library (EISL) defines a statically linked library procedure to perform self-check.

Bilateral Authentication

In the second phase, bilateral authentication routines in the EISL offer support for securely loading,
verifying, and linking to partner software modules. The process of bilateral authentication begins in the MDS
registry, where each program can find the credentials as well as the object code of all other CDSA modules.

Verification of other modules can be done prior to loading, or, if a module is already loaded, it can be verified
in memory. Verification prior to loading prevents activating file viruses in infected modules. Verification in
memory prevents stealth viral attacks where the file is healthy, but the loaded code is infected.

Secure Linkage Check

Once verified, programs can use the verified in-memory representation of the credentials to perform validity
checks of addresses to provide secure linkage to modules. The addresses of both the callers and the
procedures to be called can be verified using the Secure Linkage Check facility.

Chapter 1 17

Introduction to CDSA
Maintaining CDSA Integrity

18 Chapter 1

Installation and Initialization
Installation of CDSA on OpenVMS Alpha Version 7.3-2

2 Installation and Initialization

This chapter provides important information about CDSA installation and initialization.

NOTE You must have the SYSPRV and CMKRNL privileges to initialize CDSA. Users of CDSA
applications do not need SYSPRYV, but you will likely need SYSPRYV to develop CDSA signed
applications and plugins

Table 2-1 lists the currently supported versions of CDSA, and the installation and configuration requirements
for the versions of OpenVMS that support CDSA.

Table 2-1 CDSA Installation and Configuration Summary

OpenVMS | ~HsA Version 1.0 CDSA Version 2.0

Version

V7.2-2&V7.3 1. Install CDSA kit. 1. Install CDSA Kkit.

(See page 22) 2. Execute this command: 2. Execute this command:
@SYS$STARTUP:CDSASINITIALIZE @SYS$STARTUP:CDSASUPGRADE

V7.3-1 (See 1. CDSA is already installed. 1. Install CDSA kit.

page 20) 2. Execute this command: 2. Execute this command:
@SYS$STARTUP:CDSASINITIALIZE @SYS$STARTUP:CDSASUPGRADE

V7.3-2 (See V1.0 is not supported 1. CDSA is already installed.

page 19) 2. Execute this command:

@SYS$STARTUP:CDSA$SUPGRADE

Installation of CDSA on OpenVMS Alpha Version 7.3-2

If you install or upgrade to OpenVMS Alpha Version 7.3-2, CDSA Version 2.0 is automatically installed.
Before you can use CDSA Version 2.0, however, you must execute the following command to initialize CDSA:
$ @YS$STARTUP: CDSA$UPGRADE

Note that you must have the SYSPRV and CMKRNL privileges to execute this procedure. This command
automatically calls CDSA$I NI TI ALI ZK() .

Chapter 2 19

Installation and Initialization
Installation of CDSA on OpenVMS Alpha Version 7.3-1

Installation of CDSA on OpenVMS Alpha Version 7.3-1

CDSA Version 1.0 is automatically installed when you install OpenVMS Alpha Version 7.3-1. However, you
can install and run CDSA Version 2.0. The following sections provide important setup and initialization
information for whichever version of CDSA you use.

CDSA Version 2.0 Setup and Initialization

If you want to run CDSA Version 2.0 on OpenVMS Version 7.3-1, you must manually install the CDSA
Version 2.0 kit, which is included on the OpenVMS Version 7.3-2 media. Use the following command to install
CDSA Version 2.0 on a Version 7.3-1 system:

$ PRODUCT | NSTALL CDSA / SOURCE=di sk: [directory]

Before you can use CDSA Version 2.0, you must perform the following manual procedure, for which you must
have SYSPRYV privileges. Execute the following command to initialize CDSA Version 2.0:

$ @YS$SSTARTUP: CDSA$UPGRADE

This procedure automatically runs CDSASINITIALIZE. It is not necessary to rerun any initialization
procedure when the system is rebooted; therefore, you do not need to add the initialization to the OpenVMS
startup procedures.

The CDSA$SUPGRADE procedure can take a few minutes, depending on your processor and disk speeds.
When the procedure is run interactively, you will see system messages similar to the following:

$ @BYSSSTARTUP: CDSASUPGRADE

Modul e uninstal | ed successful ly.
Modul e uninstal |l ed successful ly.
Modul e uninstal | ed successfully.

CDSA has previously been initialized on this system
Re-initializing CDSA

Installing CDSA

*** |nstalling MDS
MDS installed successfully

*** |nstalling CSSM

Modul e installed successfully
*** |nstalling FFDL

Modul e installed successfully.
*** |nstalling 509CL

CDSA Initialization conplete

20 Chapter 2

Installation and Initialization
Installation of CDSA on OpenVMS Alpha Version 7.3-1

CDSA Version 1.0 Setup and Initialization

Although CDSA Version 1.0 is automatically installed as part of OpenVMS Alpha Version 7.3-1, setup and
initialization of CDSA are not. Before you can use CDSA Version 1.0, you must perform the following manual
procedure, for which you must have SYSPRYV privilege. Enter the following command to initialize CDSA
Version 1.0:

$ @YS$SSTARTUP: CDSASI NI Tl ALI ZE

During initialization, CDSA checks to see whether the CDSA_SYSDIR:[CDSAFFDB] and
CDSA_SYSDIR:[REGISTRY...] directories are both present. If one is missing, CDSA outputs the following
message:

The existing CDSA configuration on this systemis corrupt.

If this occurs, you can recover by deleting both directories and rerunning the CDSA initialization procedure.
However, you will lose any CDSA information that has already been stored.

It is not necessary to rerun the initialization procedure when the system is rebooted; therefore, you do not
need to add the initialization to the OpenVMS startup procedures.

The CDSASINITIALIZE procedure can take 5 minutes or longer, depending on your processor and disk
speeds. When the procedure is run interactively, you will see system messages similar to the following:

$ @BYSSSTARTUP: CDSASI NI Tl ALI ZE
Installing CDSA

*** |nstalling MDS

MDS installed successfully.

*** |nstalling CSSM

Modul e installed successfully.

*** |nstalling FFDL
Modul e installed successfully.

*** |nstalling 509CL

CDSA Initialization conplete

When a new version of CDSA is installed (for example, in an upgrade from a field test version to a production
version, or an upgrade to a new version of OpenVMS), the CDSA upgrade procedure must be run. (See “CDSA
Version 2.0 Setup and Initialization” on page 20.) Any CDSA application should be shut down before you run
the initialization or upgrade procedure.

Warning Against Uninstalling CDSA from OpenVMS Alpha Version 7.3-1 or
Higher
The POLYCENTER Software Installation utility command PRODUCT REMOVE is not supported for CDSA

on OpenVMS Alpha Version 7.3-1 or higher, even though there is an apparent option to remove CDSA. (This
option is due to the use of the POLYCENTER Software Installation utility in the installation.) CDSA is

Chapter 2 21

Installation and Initialization
Installation of CDSA on OpenVMS Alpha Version 7.3 or 7.2-2

installed together with the operating system and is tightly bound with it. An attempt to remove it from
Version 7.3-1 or higher would not work cleanly and could create other undesirable side effects. An attempt to
remove CDSA results in the following message:

9%PCSI - E- HRDREF, product CPQ AXPVMS CDSA VX. X is
referenced by DEC AXPVMS OPENVMS V7. 3-2

-PCSI - E- HRDRF1, the two products are tightly bound
by this software dependency

Installation of CDSA on OpenVMS Alpha Version 7.3 or 7.2-2

On OpenVMS Alpha Version 7.3 or 7.2-2, CDSA is not included in the operating system installation. However,
CDSA is compatible with these versions and can be installed separately.

Use the command PRODUCT INSTALL to install CDSA. The following is a log of a CDSA installation:
$ PRODUCT | NSTALL CDSA / SOURCE=di sk: [directory]

The foll owi ng product has been sel ected:
CPQ AXPVMsS CDSA V2.0 Layered Product

Do you want to continue? [YES]
Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirenents.

CPQ AXPVMS CDSA V2.0

Do you want the defaults for all options? [YES]
Do you want to review the options? [NO
Execution phase starting ...

The followi ng product will be installed to destination:
CPQ AXPVNMS CDSA V2.0 Dl SK$SYSTEM [VVB$COMVON. |

Portion done:
0% ..10%..20%..30%..40%..50%..60%..70%..80%..90% ..100%

The foll owi ng product has been install ed:
CPQ AXPVMs CDSA V2.0 Layered Product

CPQ AXPVM5 CDSA V2.0

After Installation on OpenVMS Alpha Version 7.3 or 7.2-2

CDSA requires post-installation work on OpenVMS V7.2-2 and V7.3.
To complete the installation of CDSA, add the following line to the system startup file:
$ @BYS$STARTUP: CDSA$I NSTALL_| MAGES. COM

22 Chapter 2

Installation and Initialization
Post-Installation Tasks

In addition, you need to add the following logical name definition to SYSSMANAGER:SYLOGICALS.COM:
$ cdsa_sysdir = f$trnl nn(" SYSSCOMWON') - "]" + "CDSA.]"
$ Define/system exec/trans=conc cdsa_sysdir 'cdsa_sysdir

Prior to the first time that CDSA is used, CDSA must be initialized, on a one-time basis. To accomplish this
for CDSA V1.0, execute the following command file as shown:

$@YS$STARTUP: CDSASI NI TI TI ALI ZE
To accomplish this for CDSA V2.0, execute the following command file as shown:
$ @YS$STARTUP: CDSASUPGRADE

There is no need to add either of these initialization files to any of the system startup files, as the
initialization does not need to be rerun after a system restart.

If you want to remove CDSA from your OpenVMS Alpha Version 7.3 or 7.2-2 system, you can do so with the
POLYCENTER Software Installation utility command PRODUCT REMOVE. (This command cannot be used
to remove CDSA from a Version 7.3-1 or higher system, as described in “Warning Against Uninstalling CDSA
from OpenVMS Alpha Version 7.3-1 or Higher” on page 21.)

Post-Installation Tasks

Once you have installed CDSA, you should perform the tasks described in the following sections.

Defining CDSA Symbols

To define symbols for CDSA developers, add the following command to the SYSSMANAGER:SYLOGIN.COM
file on the system where CDSA development work is being done:

$ @YSSMANAGER: CDSA$SYMBOLS. COM

NOTE The file SYSSMANAGER:CDSA$SYMBOLS.COM does not exist for CDSA Version 1.0, so it is
not present on an OpenVMS Version 7.3-1 system unless a CDSA Version 2.0 kit has
subsequently been installed.

If this command is not defined at the system level in SYLOGIN.COM, individual CDSA developers should
add it to their personal LOGIN.COM file so that they can use the symbols.

Backing up the CDSA Database

HP recommends that you back up the CDSA database and registry files on a regular basis and when any
major changes to the data are planned. For example:

$ BACKUP CDSA_SYSDI R [CDSAFFDB] *. * -

_$ disk:[directory...]CDSA_DB BACKUP. BCK/ SAV

$ BACKUP CDSA _SYSDI R [REA STRY..]*.* -

~$ disk:[directory...] CDSA REG STRY_BACKUP. BCK/ SAV

Chapter 2 23

Installation and Initialization
Post-Installation Tasks

24 Chapter 2

CDSA Utility Programs
CDSA$CERTGEN.EXE

3 CDSA Utility Programs

This chapter describes a number of administrative and development utilities that are provided with CDSA.
Note that some of these programs are typically called only from the CDSA initialization command file unless
new add-in modules are being provided.

The CDSA utility programs comprise the following:

e CDSAS$CERTGEN.EXE - Generates digital certificates.

e CDSASISSUER.EXE - Generates the issuer key functions.

e CDSASMDS_INSTALL.EXE - Creates the MDS database.

e CDSASMOD_INSTALL.EXE - Adds entries to the MDS database.

e CDSA$OUTPUT_ERROR.EXE - Translates numeric CDSA error codes into text.
= CDSAS$SIGN.EXE - Creates manifests.

e CDSA$X5092XML.EXE - Extracts the subject name from an X509 certificate.

The shortened program names listed in this chapter's Synopsis sections are defined in the file
SYSSMANAGER:CDSA$SYMBOLS.COM. The following command should be added to the
SYSSMANAGER:SYLOGIN.COM file on the system where CDSA development work is being done:

$ @YSSMANAGER: CDSA$SYMBOLS. COM

If this command is not defined at the system level, individual CDSA developers should add it to their personal
LOGIN.COM file so that they can use the shortened program names.

CDSA$CERTGEN.EXE

The certgen utility allows the user to create digital certificates in the form r unfi | enane.cer. Private keys will
be placed in [.CDSA.PKD]csp- nanme.PRI under the login directory of the current process.

This program generally is called by CDSA_SYSDIR:[SIGN]JCDSA$GEN_CERTS.COM.

SYNOPSIS

certgen [runfil enane]

OPTIONS

runfil ename This optional parameter specifies the name of the run file that contains the parameters that
certgen needs to create a certificate. If no run file is specified, the default run file is
certgen.run in the current directory.

A certgen run file contains the following items as appropriate, each on a separate line:
certype |l ocati on

certtype can be one of the following:

Chapter 3 25

CDSA Utility Programs
CDSA$CERTGEN.EXE

-s Indicates a self-signed certificate.
- Indicates a certificate signed by another certificate.

-V Indicates that the created certificate takes its subject and public key from
a certificate issued by another vendor. You cannot use this option to create
a self-signed certificate.

| ocation Indicates where the issuer certificate is read from if -i or -v is specified.
fil ename

If certtypeis-sor-i,fil ename indicates the location of the XML template that contains
the Subject Name that must go into this certificate. If certtype is -v, fil enane indicates
the location of the Vendor Certificate.

al gorithm

Indicates the algorithm used to generate the key pair associated with the certificate being
created. The specified algorithm must be supported by one of the Cryptographic Service
Providers available in the local implementation of CDSA. The algorithm can be either DSA
or RSA. This parameter is not valid if -v is specified for certt ype.

keysi ze

Specifies the logical key size (in bits) of the key pair being generated. Typical examples are
128, 256, 512, 1024, and so on. The specified key size must be supported by one of the
Cryptographic Service Providers available in the local implementation of CDSA. This
parameter is not valid if - v is specified for certt ype.

cspgui d

The globally unique identifier of the Cryptographic Service Provider that is being used.
certfile

The output file into which the created certificate is to be written.
subj ect _password

The password used to protect a key pair if one is being generated. This parameter is not
valid if -v is specified for cert t ype.

i ssuer _password

The password used to unlock the private key required to sign the generated certificate. This
parameter is not valid if -s is specified for certt ype.

val idity_period

The validity period for the certificate. This parameter contains a start and end date for the
validity period in the form YYMMDDHHMMSS YYMMDDHHMMSS. The validity period
cannot extend beyond the year 2049. If val i di ty_peri od is not specified, the validity
period for the certificate lasts for exactly one year.

EXAMPLE

$ certgen intnods.run

The following is an example of a run file (i nt mods. r un) that creates a certificate named i nt nods. cer, which
is signed by i nt manf . cer and generates a 1024-bit DSA key pair.

26 Chapter 3

CDSA Utility Programs
CDSAS$ISSUER.EXE

-i intmanf.cer

i nt nods. xm

dsa

1024

{67ef 50d0-f e74- 11d2- a8e6-0090271d266f }
i nt nods. cer

i nt nods

i nt manf

001013000000 101013000000

CDSASISSUER.EXE

The issuer utility is used to create a set of functions that are embedded into CSSM, or are used by EISL. A
CDSA application developer needs to create only the El SL_Ret ri eveSel f CheckKey() function. The other
functions noted here are applicable only for CDSA vendors (in this case, HP).

This program generally is called by CDSA SYSDI R [SI G\N] CDSA$GEN _CERTS. COM) .

SYNOPSIS

i ssuer option certfile codefile functionnane

OPTIONS
option
A code that defines the function to be created. Specify one of the following values:
-i Creates a function that returns an issuer name from the certificate.
-S Creates a function that returns a signer name from the certificate.
-k Creates a function that returns a trusted public key.
Note: A CDSA application developer who is creating the El SL_Retri eveSel f CheckKey()
function should specify -k. The other codes are used only by CDSA vendors who are
building CDSA itself rather than a CDSA application or service provider module.
certfile
A text file that contains the name of the certificate to be used.
codefile

The file to which the generated function is written.
functi onnane
Name of the function to be generated.

Note: CDSA application developers need to create only the

El SL_RetrieveSel f CheckKey() function (the last item in the following list). The full set of
functions is listed here to provide a complete overview of the issuer utility. The other
functions are applicable only for CDSA vendors. Those who want to learn more about export
chains can refer to the Intel Common Data Security Architecture Manifest Signing Tools
User's Guide.

Chapter 3 27

CDSA Utility Programs
CDSA$MDS_INSTALL.EXE

e cssmGetlintegrityRoot Keys() (or cssm Get Export Root Keys() for export)
e cssm GetlintegrityRoot Names() (or cssm Get Expor t Root Narres() for export)
e EISL_RetrieveSel f CheckKey()

EXAMPLE

The following example extracts the public key from the certificate intmods.cer and creates a function named
El SL_RetrieveSel f CheckKey() in the file modselfkey.h.

$ create intnodscertfile.

i nt nods. cer

$!

$ issuer -k intnodscertfile. nodsel fkey.h -
_$ "El SL_RetrieveSel f CheckKey"

CDSA$SMDS_INSTALL.EXE

The mds_install utility is used to create (install) or delete (uninstall) the Module Directory Services database
used by CDSA.

This program generally is called by SYS$STARTUP:CDSASINITIALIZE.COM.

SYNOPSIS

mds_install [[-s source] [-d dbdest]] [-u]

OPTIONS
NOTE OpenVMS users can specify only the -u option (or no option). However, the other options are
described here for completeness for users who are accustomed to seeing them on another
platform.
-S sour ce Specifies the MDS DLL source location (not used by OpenVMS).
-d dbdest Specifies the destination file specification for the MDS database to be created. This
parameter is currently hardcoded on OpenVMS, and should not be changed.
-u Specifies that the operation is an uninstall of MDS, rather than an install. This parameter
cannot be used with the -s and -d parameters.
EXAMPLE

The following command creates an empty CDSA MDS database. (If it is run against an already existing
database, it does nothing.)

mds_install

28 Chapter 3

CDSA Utility Programs
CDSA$MOD_INSTALL.EXE

CDSA$SMOD_INSTALL.EXE

The mod_install utility is used to add information about CDSA modules into the Module Directory Services
database.

This program generally is called by SYS$STARTUP:CDSASINITIALIZE.COM.

SYNOPSIS

nmod_install [-f] option [-s file] [-d path]

OPTIONS
-f Specifies not to warn about unsigned or corrupt modules.
option Specifies the action to be taken by the mod_install utility:
-i Install the module.
-u Uninstall the module.
-r Refresh the installation information.
-sfile Specifies the full file specification (in UNIX® directory format) of the source file to be
installed.
-d pat h Specifies the destination path (in UNIX directory format) of the source file to be installed.
EXAMPLE

The following example installs the add-in module stubcsp300_shr.exe in the CDSA MDS database. The
logical definition in the first command is necessary because the shareable image is not in SYS$LIBRARY and
it will be invoked as part of the installation process.

$ define stubcsp300_shr "cdsa_tenpdir:[addin] stubcsp300_shr. exe"
$ nmod_install -i -s /cdsa_tenpdir/addin -
_$ /stubcsp300_shr.exe -d /cdsa_tenpdir/addin

CDSA$OUTPUT_ERROR.EXE

Note that this utility is defined as cdsa_error by CDSA$SYMBOLS.COM. The cdsa_error utility converts a
CDSA numeric error code into its corresponding text strings. The text is output to SYSSOUTPUT.

SYNOPSIS

cdsa_error base_flag error_code

OPTIONS

base_fl ag The mathematical base in which the error code is represented:

Chapter 3 29

CDSA Utility Programs
CDSAS$SIGN.EXE

-d Specifies that the numeric value of err or _code is decimal (base 10).
-0 Specifies that the numeric value of err or _code is octal (base 8).
-h Specifies that the numeric value of err or _code is hexadecimal (base 16).

If you specify something other than these options, you will get an error message that lists
the correct options. (See Example 2.)

error_code The error code stated in the numerical base specified by the base-f | ag parameter.

EXAMPLES

1.$ cdsa_error -h 3135
Error: CSSMERR DL_STALE_UNI QUE_RECORD
The record returned has been changed by sonmeone and is stale

2.% cdsa_error -?
dka300: [sys0. sysconmon.] [sysexe] cdsa$out put _error. exe; 1:

illegal option -- ?

cdsa$out put _error -d|o| h <Error Code>

opti ons:

-d : Error code is a deciml nunber

-0 : Error code is an octal nunber

-h : Error code is a hexadeci mal nunber

CDSAS$SIGN.EXE

Note that this utility is defined as cdsa_sign by CDSA$SYMBOLS.COM. The cdsa_sign utility takes a service
provider product, application, or CSSM binary, plus the manufacturer certificates generated using certgen,
and creates a manifest file. Manifest files have a file extension of .ESW.

This utility can be used for Integrity signing and for Export signing. Integrity signing creates a new manifest,
while Export signing adds signers to an existing manifest. The options for each function are totally different,
so they are described here in separate sections. Integrity signing for a module must always be done before
Export signing.

Integrity Signing

Integrity signing is optional for applications and mandatory for add-in modules.

SYNOPSIS

cdsa_si gn nodul e_nane subdirectory type signer_cert password cert_chain
nodul e_gui d access_tag pvcapi _tag pvcspi _tag priv_tag

OPTIONS

nodul e_narre The name of the module being signed.

subdirectory The subdirectory (in UNIX directory format) containing the module being signed.

type The module type, which can be one of the following:

30 Chapter 3

si gner _cert
passwor d

cert_chain

nodul e_gui d

access_tag

pvcapi _tag

pvcspi _tag

priv_tag

CDSA Utility Programs
CDSAS$SIGN.EXE

Service provider module
CSSM

Application sharable image
Elective Module Manager

Generic file

X & m o o >

Application executable

The name of the certificate being used to sign the module.

The password for the private key of the certificate being used to sign the module.

A text file identifying the certificates to be embedded. This file has the following form:

nunber
certl
cert2

where number is the number of certificates being embedded, and certl and cert2 are the
names of certificates to be embedded; for example:

2
introot.cer
i nt manf . cer

The string version of the globally unique identifier of the module being signed (as installed
in MDS).

For installer modules, this is the base-64 encoded, unsigned, 32-bit value (in big-endian) of
the access type defined for CDSA_DB_ACCESS_TYPE. For modules other than installers,
specify "XX" for this parameter.

Specifies whether pointer validation checking is to be done on the application program
interface boundaries. (Read more about PVC in “Pointer Validation Checking” on page 36.)
The values for the CDSA_PVC_API tag are as follows:

“EXEMPT” Specifies an application manifest, where the program can set the PVC flag
incssmlnit().

“OFF” Specifies a CSSM manifest, where the PVC flag is not applicable.

XX Specifies that the CDSA_PVC_API tag is not in the manifest.

Specifies whether pointer validation checking is to be done on the service provider interface
boundaries. (Read more about PVC in “Pointer Validation Checking” on page 36.) The
values for the CDSA_PVC_SPI tag are as follows:

“EXEMPT” Specifies a service provider manifest, where the program can set the PVC
flagincssmlnit().

“OFF” Specifies a CSSM manifest, where the PVC flag is not applicable.

XX Specifies that the CDSA_PVC_SPI tag is not in the manifest.

The CDSA_PRIV tag in the manifest. No CDSA_PRIV tag values are defined, so specify
"XX" to indicate that this tag is not in the manifest.

Chapter 3

31

CDSA Utility Programs
CDSAS$SIGN.EXE

EXAMPLE

The following is an example of the cdsa_sign command for Integrity signing:

$ define cdsa_sign "/cdsa_tenpdir/addin"

$ set default cdsa_sysdir:[sign]

$ cdsa_sign stubcsp300_shr cdsa_sign A intnods.cer -

_$ intnods intchain. {79BDEOFO-4541-11d3- ABF3-0090271D266F} -
$ XX "EXEMPT" " XXM XX!

The first command defines the logical cdsa_sign (which is used internally by the code) in UNIX directory
format as the directory where the executable to be signed can be found.

= stubcsp300_shr is the name of the module being signed.

= cdsa_sign is the logical pointing to the directory containing the module.

< Aindicates that stubcsp300_shr is a service provider module.

= intmods.cer is the name of the certificate being used to sign the module.

=< intmods is the password for the private key of the certificate (intmods.cer) being used to sign the module.
= intchain. is the name of the text file containing the names of the certificates in the certificate chain.
e {79BDEOF0-4541-11d3-A8F3-0090271D266F} is the GUID of the service provider module.

< "XX"is the access tag, which indicates that this is not an installer module.

- "EXEMPT" is the CDSA_PVC_API tag specifying that this is an application manifest.

= "XX" specifies that the CDSA_PVC_SPI tag is not in the manifest.

= "XX" specifies that the CDSA_PRIV tag is not in the manifest.

Export Signing

Export signing is optional. Before you can do Export signing for a module, you must already have done
Integrity signing and a manifest must exist. For more information about Export signing, refer to the Intel
Common Data Security Architecture Manifest Signing Tools User’s Guide.

SYNOPSIS

cdsa_sign mani fest_path signer_cert password cert_chain usee_tag priv_tag pvcapi _tag
pvcspi _tag

OPTIONS

mani fest _pat h The path (in UNIX directory format) to the manifest created in the Integrity signing phase.

signer _cert The name of the certificate being used to sign the module.

passwor d The password for the private key of the certificate being used to sign the module.
cert_chain A text file identifying the certificates to be embedded. This file has the following form:
numnber
certl
cert2

32 Chapter 3

CDSA Utility Programs
CDSAS$SIGN.EXE

where nunber is the number of certificates being embedded, and cert 1 and cert 2 are the
names of certificates to be embedded; for example:

2
introot.cer
i nt manf . cer

usee_t ag The base-64 encoded value of the CSSM_USEE_TAG value. This value must be enclosed
within double quotation marks.

priv_tag The CDSA_PRIV tag in the manifest. No CDSA_PRIV tag values are defined, so specify
"XX" to indicate that this tag is not in the manifest.

pvcapi _tag Specifies whether pointer validation checking is to be done on the application program
interface boundaries. (Read more about PVC in “Pointer Validation Checking” on page 36.)
The values for the CDSA_PVC_API tag are as follows:

“EXEMPT” Specifies an application manifest, where the program can set the PVC flag
in cssm_Init.
“OFF” Specifies a CSSM manifest, where the PVC flag is not applicable.
XX Specifies that the CDSA_PVC_API tag is not in the manifest.
pvcspi _tag Specifies whether pointer validation checking is to be done on the service provider interface

boundaries. (Read more about PVC in “Pointer Validation Checking” on page 36.) The
values for the CDSA_PVC_SPI tag are as follows:

“EXEMPT” Specifies a service provider manifest, where the program can set the PVC
flag in cssm_Init.

“OFF” Specifies a CSSM manifest, where the PVC flag is not applicable.

XX Specifies that the CDSA_PVC_SPI tag is not in the manifest.

EXAMPLE

The following is an example of the cdsa_sign command for Export signing:

$ cdsa_sign /cdsa_tenpdir/des2/des2. esw exapps. cer secret exchain. -
% "AAAAAQ==" " XX" "EXEMPT" " XX'

In this example:

« Jcdsa_tempdir/des2/des2.esw is the path (in UNIX directory format) to the manifest created during
Integrity signing.

= exapps.cer is the name of the certificate being used to sign the module.

= secret is the password for the private key of the certificate being used to sign the module.

= exchain. is the name of the text file identifying the certificates to be embedded in the signature.
< "AAAAAQ=="Iis the base-64 encoded value of the CDSA_USEE_DOMESTIC tag.

= "XX" specifies that the CDSA_PRIV tag is not in the manifest.

- "EXEMPT" is the CDSA_PVC_API tag specifying that this is an application manifest.

e "XX" specifies that the CDSA_PVC_SPI tag is not in the manifest.

Chapter 3 33

CDSA Utility Programs
CDSA$X5092XML.EXE

CDSA$X5092XML.EXE

The x5092xml utility reads an X509 certificate file, extracts the subject name, and writes the name as XML to
an XML file. This tool is useful for producing example template files that can be modified.

SYNOPSIS

x5092xm infile outfile

OPTIONS
infile
The name of the X509 certificate file from which the subject name is being extracted.
outfile
The name of the XML file to which the name is to be written.
EXAMPLE

x5092xm introot.cer introot.xmn

34 Chapter 3

CDSA Programming Concepts
Overview of CDSA Programming on OpenVMS

4 CDSA Programming Concepts

This chapter provides an overview of programming with CDSA on OpenVMS. This chapter should be read in
conjunction with the Intel Common Data Security Architecture Application Developer's Guide, the Intel
Common Data Security Architecture Service Provider Developer's Guide, and the Intel Common Data Security
Architecture Manifest Signing Tools User’s Guide.

This chapter covers the following topics:

= Anoverview of building a CDSA application on OpenVMS (see “Overview of CDSA Programming on
OpenVMS” on page 35)

= Details about writing a signed CDSA application or add-in module (see “Writing Signed Applications” on
page 36)

= Steps to deploy signed applications and service provider modules (see “Deploying Signed Applications
and Service Provider Modules” on page 42)

= Descriptions of the CDSA example programs (see “CDSA Example Programs” on page 42)

= Information about CDSA errors and how to get a meaningful error return (see “CDSA Error Resolution”
on page 49)

Overview of CDSA Programming on OpenVMS

CDSA programming on OpenVMS works much the same as on any other platform. The following sections
indicate differences and important information.

Compiling a CDSA Program

CDSA V2.0 was built using Compaqg C V6.5-001. HP recommends that applications or add-in modules be
developed using the same compiler to avoid problems that could occur if the run-time library changes in
another version.

When you compile your program, you need to add the /INCLUDE=CDSA_SYSDIR:[INCLUDES] qualifier to
your compiler command line. The following command is taken from the BUILD_DES.COM example in this
chapter (see “DES Encryption/Decryption Example Program” on page 43):

$ CC/ LI ST/ | NCLUDE=CDSA_SYSDI R: [| NCLUDES] / PREFI X=ALL DO_DES

Linking a CDSA Program

Most CDSA applications must link with SYS$SHARE:CDSA$INCSSM300_SHR.EXE. If the application uses
MDS, you might need to include SYS$SHARE:CDSA$MDS300_SHR.EXE and
SYS$SHARE:CDSA$SMDS_UTIL_API.OLB as well.

Because CDSA routines are located in shareable libraries, the use of a link options file is recommended. For
details about using link options files, refer to the OpenVMS Linker Utility Manual. The CDSA example
programs described in “CDSA Example Programs” on page 42 provide examples of using link options files for
CDSA applications.

Chapter 4 35

CDSA Programming Concepts
Writing Signed Applications

CDSA Integrity Checking

CDSA provides two types of integrity checking: bilateral authentication and pointer validation checking.

Bilateral Authentication

Bilateral authentication checks the integrity of modules as they are dynamically loaded into the system. A
bilateral authentication procedure is designed for two entities to establish trust in the identity and integrity
of each other. When loading a service provider module or an elective module manager, CDSA requires that the
attaching module participate in this authentication protocol. Both modules in the bilateral authentication
procedure must have signed credentials that bind them to the trust hierarchy used by CDSA. These
credentials are stored in the CDSA MDS database during module installation.

Refer to the Intel Common Data Security Architecture Application Developer's Guide (Chapter 11, Integrity)
and the Intel Common Data Security Architecture Manifest Signing Tools User's Guide for more detailed
explanations of the bilateral authentication process.

Pointer Validation Checking

Pointer validation checking (PVC) entails validating addresses under the following circumstances:

= Before calling across the application interface into CDSA (PVC is optional on OpenVMS in this case.)
= Before calling across the CDSA interface to an add-in module (PVC is required on OpenVMS in this case.)

The Pointer Validation Policy is established using the PvcPolicy parameter in the CSSM_Init call. The
parameter values can be derived using the constants in the file CSSMTYPE.H in
CDSA_SYSDIR:[INCLUDES]. Starting with OpenVMS Alpha Version 7.3-2, the values for the PvcPolicy
parameter that are valid for CDSA are as described in the following table.

Value Description

2 PVC validation is performed on service provider modules only. CSSM_PVC_SP is used for
PVC validation on service provider modules.

3 PVC validation is performed on both service provider and application modules. The bitwise
OR of CSSM_PVC_APP and CSSM_PVC_SP is used for PVC validation on both service
provider and application modules; for example, (CSSM_PVC_APP | CSSM_PVC_SP).

For more information about pointer validation checking, see the description of the CSSM | ni t () API.

Writing Signed Applications
Two types of applications can be developed to use CDSA integrity checking:

= An application that calls into CDSA to use one or more of the services that it provides.

CDSA applications developed on OpenVMS can optionally participate with CDSA in bilateral
authentication.

= Aservice provider module that “plugs-in” or “adds-in” to CDSA to provide a set of security related
functions that an application program can in turn use. On OpenVMS, service provider modules are
implemented as shareable images.

36 Chapter 4

CDSA Programming Concepts
Writing Signed Applications

All CDSA add-in modules developed on OpenVMS must participate in bilateral authentication (see
“Bilateral Authentication” on page 36) and pointer validation checking (see “Pointer Validation Checking”
on page 36).

The Intel Common Data Security Architecture Application Developer's Guide and the Intel Common Data
Security Architecture Service Provider Developer's Guide have in-depth information about developing
applications and add-in modules for CDSA.

The development process includes generating certificates and key pairs to be used in the signing process and
later in the integrity checking process. The public keys are extracted from the certificate into a code module
that is included in the application. The private keys remain on the signing system. After the code is built, the
certificate is used to “sign” the application or service provider module. The product of the signing is a
manifest, which is typically kept with the executable.

The following sections summarize the steps for building a signed CDSA application or add-in module on
OpenVMS.

The Signing Environment

To create manifests used for authentication of CDSA modules, you must have a working version of CDSA and
the signing tools installed on a machine. It is good practice to dedicate a specific machine or set of machines to
be the signing center. Certificates for signing should be generated on the signing machine, and the signing of
generated modules must be done there. The tools, applications, CDSA stack, and private keys used to
generate certificates should not be modified or reinstalled after the certificate generation process has
completed. Doing so will invalidate the keys used to make the certificates and will cause any modules signed
to fail integrity checking.

Development and testing of modules should be conducted on other machines so as not to disrupt the signing
environment.

The signing directory on an OpenVMS system is CDSA_SYSDIR:[SIGN].

On OpenVMS, the account that is used to create certificates must be the same account that is used for signing
developed applications and service-provider modules. This is required because the private keys are stored in
the namespace of that user account and must be accessible by the code performing those functions. Note that
this account requires the SYSPRV privilege to access the signing directory.

The Signing Tools

The following programs are used in developing CDSA applications or add-ins:

Program Name Description

SYS$SYSTEM:CDSA$SCERTGEN.EXE Certificate creation tool

SYS$SYSTEM:CDSAS$ISSUER.EXE Public key extraction tool

SYS$SYSTEM:CDSAS$SIGN.EXE Signing tool

Chapter 4 37

CDSA Programming Concepts
Writing Signed Applications

The following files in CDSA_SYSDIR:[SIGN] are named according to Intel naming conventions. Their names
can be changed to suit any other development conventions. If the names introot.cer or intmanf.cer are
changed, intchain must be updated to reflect the new names. The new certificate names will also be used as
parameters to cdsa_sign.

File Name Description

introot.cer The CDSA Integrity Root certificate containing the public key of the root of the
integrity chain.

intmanf.cer The CDSA Integrity Manufacturing certificate containing the public key of the
manufacturer.

ssintapps.run The run file that is input to the certificate creation tool
(CDSA$CERTGEN.EXE) to create a self-signed application certificate.

ssintapps.xml The X509 formatted identification of the signer of the application certificate.

ssintmods.run The run file that is input to the certificate creation tool
(CDSA$CERTGEN.EXE) to create a self-signed add-in module certificate.

ssintmods.xml The X509 formatted identification of the signer of the add-in module certificate

intchain. A list of certificates comprising the integrity certificate chain; that is,

introot.cer and intmanf.cer

The file CDSA_SYSDIR:[SIGN]CDSA$GEN_CERTS.COM is used to generate the digital certificates and
keypairs that are used by CDSA applications.

The Signing Process

The first five of the following nine steps need to be done only once for each application or add-in module being
developed. However, each time the application is changed, a new manifest must be created and the
application must be reinstalled in the CDSA MDS database (steps 8 and 9).

If you are building the example programs provided with CDSA Version 2.0 or later, some of the following
steps have been done in example code or accompanying command procedures. Read
SYS$COMMON:[SYSHLP.EXAMPLES.CDSA]JREADME.TXT for details.

1.

Generate a GUID.

Each signed application and service provider module should have a global unique identifier (GUID). This
GUID should be written to a header file in the application development directory — either as an
individual header file or included in another header file. (See the model in DESGUID.H in the DES2 or
DES3 examples: “DES2 Encryption/Decryption Example Program” on page 45 or “DES3 Example
Program” on page 46.)

If your development environment is OpenVMS Version 7.3-2 or higher, you can simply execute the GUID
generating command procedure in CDSA_SYSDIR:[SIGN] and the procedure will output a GUID as
shown in the following example:

$ @DSA_SYSDI R [SI GN] CDSA$UUI DGEN
XXXXXXXX = XXXX= XXXX= XXXX= XXXXXXXXXXXX

The string form of the GUID is used as input to the signing tool, CDSA$SIGN.EXE, when the application
or add-in module is signed.

The string form of a GUID is expressed as follows:

38

Chapter 4

CDSA Programming Concepts
Writing Signed Applications

"{ FD52A3EA- D9EC- 1159- 916B- 08002BC48051} "
The numeric form of the same GUID (as defined by the data structure CSSM_GUID) would be:

{Oxf d52a3ea,

Oxd9ec,

0x1159,

{0x91, O0x6b, 0x08, 0x0, Ox2b, Oxc4, 0x80, O0x51}}

Add a GUID variable pointer to the calls to CSSM | ni t () and, if you are using them, to
CSSM | nt r oduce() and CSSM Uni nt r oduce() .

NOTE If you are developing on a system earlier than OpenVMS Version 7.3-2, you must find
another method to generate a GUID that conforms to the preceding format.

. Generate a Certificate.

The first step in the process of creating credentials is to generate a self-signed certificate by running
CDSA$CERTGEN.EXE. This is always done on the signing system. The default directory must be set to
CDSA_SYSDIR:[SIGN] and the user must have read/write access to this directory. (Steps 3 and 8,
generating the key and the manifest, must also be done in this directory.)

This step produces a private key and a public key for the application. The private key always remains on
the signing system. The matching public key is embedded in the generated certificate.

A .RUN file and an .XML file are input to CDSA$CERTGEN.EXE. The following samples of these files
can be found in CDSA_SYSDIR:[SIGN]:

= ssintapps.run and ssintapps.xml (input to generate an application certificate)
= ssintmods.run and ssintmods.xml (input to generate a service provider module certificate)

The .RUN file contains input to the certificate generation process, including the name of the . XML file.
The . XML file contains attributes to identify the issuer of a certificate in machine-readable X500 format.
The following table shows the attributes that are used. The attribute name is not used in the . XML file
but is included in the table for human readability. Note that only one value is specified for each attribute
in the . XML file.

Attribute OID Attribute Name Example Value OpenVMS Value

2543 Common Name Senior Technician Hewlett-Packard

25.4.10 Organization Name XYZ Company BCS (Business Critical
Servers)

25411 Organizational Unit ABC Division OpenVMS

Name

254.1 Aliased Entry Name XYZ Security Product | HP OpenVMS Integrity Root

25.4.9 Street Address 110 Maple Street 110 Spit Brook Road

2547 Locality Anytown Nashua

25438 State or Province XX NH

2546 Country USA USA

25.4.17 Postal Code 54321 03062

Chapter 4

39

CDSA Programming Concepts
Writing Signed Applications

Attribute OID Attribute Name Example Value OpenVMS Value
2.5.4.23 Telephone Number 777-666-4321 (not used)
1.2.840.113549.1.9.1 | Email Address role@xyz.com OpenVMSSecurity@hp.com

Make the desired changes to the attributes in the . XML file to identify the issuer of the certificates.
Chapter 3 of the Intel Common Data Security Architecture Manifest Signing Tools User's Guide explains
the XML syntax used here.

You can run CDSA$CERTGEN.EXE by itself or you can execute the command procedure
CDSA _SYSDIR:[SIGN]JCDSA$GEN_CERTS.COM to run both CDSA$CERTGEN.EXE to generate a
certificate and CDSASISSUER.EXE to generate the key code (see Step 3).

3. Generate Key Code.
CDSASISSUER.EXE generates the code that embeds the public key in the application. You can run this
program by itself in directory CDSA_SYSDIR:[SIGN] or you can let it execute as part of
CDSA_SYSDIR:[SIGN]JCDSA$GEN_CERTS.COM. CDSA$ISSUER.EXE extracts the public key into a C
structure to be included in the developed program. It generates two certificates, ssintapps.cer and
ssintmods.cer.
Because the generated certificates are self-signed, they also need to be signed with the private key of the
root of the integrity certificate chain being used for CDSA. This root is the private key originally
generated by OpenVMS. This certificate signing is accomplished by sending email to
penVVBSecur i t y@p. com The response will provide details on how to proceed with having your
certificates signed by the OpenVMS integrity root.
CDSAS$ISSUER.EXE also generates the following include files:
e APPSELFKEY.H (used to develop an application)
« MODSELFKEY.H (used to develop a service provider module)
Copy these two files into the application development area.
4. Generate SelfCheck code.

For an application:
As part of the self-check process, you must modify the following three procedures in the CALLOUTS.C
module found in each CDSA example directory:
e EISL_RetrieveSel f CheckSecti onNane()
e EISL_RetrieveSel fCheckOredential s()
e EISL_RetrieveSel fCheckOredenti al sSi ze()
Modify these procedures to use the application GUID in calls to ndsuti | _Get Modul eCr edenti al I nfo().
In the DES2 and DES3 examples in this chapter (see “DES2 Encryption/Decryption Example Program”
on page 45 and “DES3 Example Program” on page 46), the application GUID is defined by including a file
called DESGUID.H.
Define the constant SECTION to be the name of the application executable.
CALLOUTS.H contains function prototypes for all the self-check procedures that will be invoked.
For an add-in module:

40 Chapter 4

CDSA Programming Concepts
Writing Signed Applications

Change the definition of ADDIN_SELF_CHECK_SECTION in the MAF_CONFIG.H module in the
example directory to the name of the shareable image (with no extension).

5. Add CDSA procedures to the Application.

Before making any calls to CSSM, insert a call to El SL_Sel f Check() to validate the integrity of the
application itself. After a successful return, call El SL_Recycl eVeri fi edModul eCr edent i al s() to release
the structures that were created.

If you want to ensure the integrity of CDSA, you can load it dynamically and let the code perform
integrity checking on it before any CSSM code is executed. One way to do this is by using the Application
Adaptation Layer. All code to use this layer is provided in the DES3 example program. Call
AALProxyLoadCssn() after El SL_Sel f Check(), and before making any calls to CSSM.

If you want to perform pointer validation checking across the APl boundary, you must call the APIs in the
following order so that the necessary data structures are set up:

e CSSMInit()

e CSSMI ntroduce()

e (CSSM Modul eLoad()

When processing ends, the application should call CSSM Uni nt r oduce() (if you used it) before calling
CSSM Ter mi nat e() and then AALPr oxyUnl oadCssi() .

CDSA Add-in Modules

The integrity checking process for add-in modules is provided by the Multi-service Add-in Framework. In
fact, the MAF*.* modules provide a framework for developing an add-in module.

Development of a CDSA service provider add-in module is beyond the scope of this document. The
OpenVMS CDSA example application ADDIN illustrates the development of a Cryptographic Service
Provider add-in module. The Intel Common Data Security Architecture Service Provider Developer's Guide
provides complete details for developing an add-in module for CDSA.

6. Compile and link the application or add-in module.
7. Build the code to install the application.

A service provider module can be installed in the CDSA MDS database using
SYS$SYSTEM:CDSA$SMOD_INSTALL.EXE.

An application must build a program to perform the installation. The two signed example applications
DES2 and DES3 include an installation program that demonstrates the basics of installing an
application.

8. Generate the manifest.

In directory CDSA_SYSDIR:[SIGN] on the signing system, sign the application by generating a set of
credentials. The application credentials are contained in a manifest, appl i cat i on.ESW, which
accompanies the application. Input to the credential generation includes the application executable and
the certificate being used to sign the application. For more details, refer to the Intel Common Data
Security Architecture Manifest Signing Tools User's Guide.

Each of the example programs described in this chapter includes a procedure called exanpl e_SIGN.COM
that demonstrates how to generate a manifest.

The manifests are typically kept with the application executable.

9. Install the application in the CDSA MDS database.

Chapter 4 41

CDSA Programming Concepts

Deploying Signed Applications and Service Provider Modules

Each of the example programs includes code that produces an application program and a procedure called
exanpl e_INSTALL.COM that demonstrates how to install an application in the CDSA MDS database.

Deploying Signed Applications and Service Provider Modules

To deploy a CDSA signed application or service provider module, you must deliver the following items to the
system where they are to be used:

e The executable

= The manifest (fi | enane.ESW) containing the credentials of the executable

= The installation program (for an application, a service provider module can use
CDSA$MOD_INSTALL.EXE)

After the files are in place, run the installation program.

CDSA Example Programs

Seven example programs are provided with CDSA Version 2.0 on OpenVMS. Command procedures to build,
sign, and install them are provided along with individual README files for each example.

The following table lists the example programs and describes what aspect of CDSA each program is designed

to convey.
Example Program Signed | Description Section
DES No Simple DES encryption/decryption “DES Encryption/Decryption
program Example Program” on
page 43
MDS No Program to query MDS database for “MDS Example Program” on
CDSA services page 44
DES2 Yes DES example with integrity checking, | “DES2
explicitly linked Encryption/Decryption
Example Program” on
page 45
DES3 Yes DES example with integrity checking, | “DES3 Example Program” on
using AAL (dynamically loaded) page 46
ADDIN Yes An add-in module written to the CSP | “ADDIN Example Program”
Service Provider Interface, with on page 46
integrity checking
DUMMYEMM Yes An Elective Module Manager to “DUMMYEMM Example
define a new Service Provider Program” on page 47
Interface, wtih integrity checking
42 Chapter 4

CDSA Programming Concepts
CDSA Example Programs

Example Program Signed | Description Section

DUMMYEMMADDIN | Yes An add-in module written to the SPI “DUMMYEMMADDIN
made available by DUMMYEMM, Example Program” on
with integrity checking page 48

Before you build the example programs, please read the following README files:

= For an overview of all the CDSA examples: SYSSCOMMON:[SYSHLP.EXAMPLES.CDSA]JREADME.TXT

= For details about an individual example program, see the README file in each example directory. For
example, the README file for DES is in the following location:
SYS$COMMON:[SYSHLP.EXAMPLES.CDSA.DES]README.TXT

You must initialize CDSA before running any example program. For the initialization procedure, see “CDSA
Version 2.0 Setup and Initialization” on page 20.

Pay special attention to “Writing Signed Applications” on page 36 if you plan to build one of the signed
examples or are developing a CDSA add-in module.

The examples are designed to be organized under a local build area or directory such as
di sk:[di rect ory.example].

Define the rooted logical CDSA_TEMPDIR as di sk:[di r ect ory.] using the following command:
$ DEFI NE/ TRANSLATI ON=CONCEALED CDSA_TEMPDI R di sk: [directory.]

Under this directory, the command procedures expect to find individual directories for each example; for
example:

DI SK1: [EXAMPLES. DES]
DI SK1: [EXAMPLES. MDS]
DI SK1: [EXAMPLES. DES2]

DES Encryption/Decryption Example Program

This example is a simple DES encryption/decryption program that uses CDSA with no integrity checking. It
links explicitly against CDSA$INCSSM300_SHR.EXE.

The DES example includes two source files (DES.C and DO_DES.C) and two build files (BUILD_DES.COM
and DES.OPT).

Copy the example files into a local build area and then execute the BUILD_DES command file, as follows:

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. DES] *. * di sk: [directory. DES]
$ SET DEFAULT disk: [directory. DES]
$ @U LD _DES

It is easiest to run the resulting DES.EXE file as a foreign command. Define a symbol for this command as
follows:

$ DES :== $ disk:[directory. DES] DES. EXE

You can now execute the program using any of the following applicable options:

Option Description
-e Encrypt with supplied key (requires -k option)
-d Decrypt with supplied key (requires -k option).

Chapter 4 43

CDSA Programming Concepts
CDSA Example Programs

Option Description

-k "key" Supplies a key, which must be enclosed within double quotation marks if it is ASCII
and case sensitive; no quotation marks are allowed for hexadecimal numbers.

-h The supplied key is a 16-character hexadecimal number.

For example, to encrypt MYFILE.TXT using an ASCII key with the DES example program, enter the
following command using double quotation marks, as shown, if the key is case sensitive:

$ DES -e -k "xyzzy" MYFILE. TXT MYFILE. DES
To decrypt the same file, enter the following command:
$ DES -d -k "xyzzy" MYFILE. DES MYFILE. TXT

To encrypt or decrypt with a hexadecimal key, use the -h option and make sure the key length is exactly 16
typed characters (8 hexadecimal bytes). No quotation marks, either single or double, are allowed. For
example:,

$ DES -e -k 0l2abcde0Ol2abcde -h MyFI LE. TXT MyFI LE. DES

$ DES -d -k 0l2abcde0Ol2abcde -h MYFI LE. DES MYFI LE. TXT

MDS Example Program

This program uses some of the MDS and CSSM services of CDSA, with no integrity checking. It links
explicitly against CDSA$INCSSM300_SHR.EXE.

The MDS example includes two source files (DECODE_CDSA_ERRORS.C and MDS_EXAMPLE.C) and two
build files (BUILD_MDS_EXAMPLE.COM and MDS_EXAMPLE.OPT).

The program follows the descriptions and code fragments from the Intel Common Data Security Architecture
Application Developer's Guide.

Build the MDS example program by copying the example files into a local build area and then executing the
BUILD_MDS_EXAMPLE command file, as follows:

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. MDS] *. * di sk: [directory. MDS]
$ SET DEFAULT disk:[directory. MDS]
$ @BU LD_NMDS_EXAMPLE

The resulting MDS_EXAMPLE.EXE file takes no parameters and can be executed as follows:
$ RUN disk:[directory. MDS] MDS_EXAMPLE

The following is an excerpt of output from the program:

$ RUN MDS_EXANPLE. EXE

Modul e 0) Nane: SSLeay Crypto Based CSP
Modul e 0) Modul eGui d: {67ef 50d0-f e74-11d2- a8e6- 0090271d266f }
Modul e 0) Version: 3.1
Mbdul e 0) Conpati bl eCSSM/ersion: 2.1
Mbdul e 0) Description: SSLeay Crypto Based CSP
Modul e 0) Vendor: Hew ett-Packard Conpany
Modul e 0) Flags: 0x0
Mbdul e 0) Servi ceMask: 0x2
Service 0) Description: SSLeay Crypto Based CSP
Service 0) Type: CSSM SERVI CE_CSP
Service 0) Flags: 0x0

44 Chapter 4

CDSA Programming Concepts
CDSA Example Programs

SubService 0) Mdul eType: 0

SubService 0) SubServiceld: 0

This is a SOFTWARE subservice with 30 capabilities
Cont ext Type: CSSM ALGCLASS RANDOMGEN

Al gorithm Type: CSSM ALG D_MD5Random

Modul e
Modul e
Modul e
Modul e
Modul e

Modul e
Modul e
Modul e

Attribute Type: CSSM ATTRI BUTE BLOCK_SI ZE
Attribute Type: CSSM ATTRI BUTE_DESCRI PTI ON

Cont ext Type: CSSM ALGCLASS DI GEST
Al gorithm Type: CSSM ALG D_MD5

1)
1)
1)
1)
1)

1)
1)
1)

Service

Service
Service
SubService 0) Mdul eType: 0
SubService 0) SubServiceld: 0
This is a SOFTWARE subservice with 33 capabilities
Cont ext Type: CSSM ALGCLASS RANDOMGEN
Al gorithm Type: CSSM ALG D_MD2Random

Attribute Type: CSSM ATTRI BUTE_OUTPUT S| ZE
Attribute Type: CSSM ATTRI BUTE_DESCRI PTI ON

Name: CDSA Adaptation Layer CSP for the BSafe Tool kit from RSA DSI
Modul eCui d: {d6b5e822- f 376- 11d3- 9bea- 0008c74f e165}

Version: 3.1

Conpati bl eCSSM/ersion: 2.1

Descripti on: CDSA Adaptation Layer CSP for the BSafe Tool kit from RSA

DSl
Vendor: Hew ett-Packard Conpany
Fl ags: 0x0

Ser vi ceMask: 0x2

0) Description: CDSA Adaptation Layer CSP for the BSafe Tool kit from RSA
DSl

0) Type: CSSM SERVI CE_CSP

0) Fl ags: 0x0

Attribute Type: CSSM ATTRI BUTE_DESCRI PTI ON

Cont ext Type: CSSM ALGCLASS RANDOMGEN
Al gorithm Type: CSSM ALG D_MD5Random

Attribute Type: CSSM ATTRI BUTE_DESCRI PTI ON

DES2 Encryption/Decryption Example Program

The DES2 example program is nearly identical to the DES example except that it uses integrity checking in
addition to the encryption/decryption CDSA calls. It links explicitly against CDSA$INCSSM300_SHR.EXE.
This example is designed to be signed using the CDSA signing tools.

The necessary files to build the example on OpenVMS are included, with the exception of APPSELFKEY.H.
This include file must be generated from the certificate created for the application.

See “Writing Signed Applications” on page 36 for complete instructions. A signed CDSA application will not
execute until the proper credentials are generated.

After you generate the application credentials and the include file, APPSELFKEY.H, you can build the DES2
example program by copying the example files into a local build area and executing the DES2_BUILD
command file, as follows:

Chapter 4

45

CDSA Programming Concepts
CDSA Example Programs

$ DEFI NE/ TRANS=CONCEALED CDSA TEMPDI R di sk: [directory.]
$ SET DEFAULT CDSA TEMPDI R: [DES2]

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. DES2] *. * []

$ COPY CDSA _SYSDI R [SI GN] APPSELFKEY. H []

$ @ES2_BU LD

The resulting image, DES2.EXE, must be signed. On the signing system, run the following command
procedure to generate the manifest:

$ @ES2_SI GN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @ES2_| NSTALL

It is easiest to run the application DES2.EXE file as a foreign command. Define a symbol for this command as
follows:

$ DES2 : == $CDSA TEMPDI R [DES2] DES2. EXE

The options and program usage are the same as for the DES example.

DES3 Example Program

The DES3 example program is nearly identical to the DES2 example except that it links dynamically at
run-time against CDSA$INCSSM300_SHR.EXE using the CDSA Application Adaption Layer.
This example is designed to be signed using the CDSA signing tools.

The files necessary to build the example on OpenVMS are included, with the exception of APPSELFKEY.H.
This include file must be generated from the certificate created for the application.

See “Writing Signed Applications” on page 36 for complete instructions on writing a signed application. A
signed CDSA application will not execute until the proper credentials are generated.

After you generate the application credentials and the include file APPSELFKEY.H, you can build the DES3
example program by copying the example files into a local build area and executing the DES3_BUILD
command file, as follows:

$ DEFI NE/ TRANS=CONCEALED CDSA TEMPDI R di sk: [directory.]
$ SET DEFAULT CDSA TEMPDI R: [DES3]

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. DES3] *. * []

$ COPY CDSA SYSDI R [SI GN] APPSELFKEY. H []

$ @ES3_BUI LD

The resulting image, DES3.EXE, must be “signed”. On the signing system, run the following command
procedure to generate the manifest:

$ @ES3_SI GN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @DES3_I NSTALL

It is easiest to run the resulting DES3.EXE file as a foreign command. Define a symbol for this command as
follows:

$ DES3 :== $ disk:[directory] DES3. EXE

The options and usage of the program are the same as for the DES example.

ADDIN Example Program

The ADDIN example shows how to provide a new add-in for an existing category of service.

46 Chapter 4

CDSA Programming Concepts
CDSA Example Programs

This CDSA example is an add-in (plug-in) module written to the CDSA CSP service provider interface with
integrity checking. The add-in would be “loaded” and “attached” by an application, as in the DES examples,
using CSSM Modul eLoad() , CSSM Modul eAt t ach() , and so forth. This example demonstrates the mechanics
of developing a CDSA add-in module, which is a shareable image on OpenVMS.

This example also provides the CDSA code files that are necessary to build an add-in module. The installation
procedure registers the module in the CDSA MDS database, including its credentials, properties, and
capability attributes. It attaches the module and executes Regi st er COSAMbdul e() (the definition of
INSTALL_ENTRY_NAME).

The files necessary to build the example on OpenVMS are included, with the exception of MODSELFKEY.H.
This include file must be generated from the certificate created for the add-in module.

See “Writing Signed Applications” on page 36 for complete instructions on writing a signed application. A
signed CDSA application will not execute until the proper credentials are generated.

After you generate the application credentials and the include file MODSELFKEY.H, you can build the
ADDIN example program by copying the example files to a local build directory and executing the
ADDIN_BUILD command file, as follows:

$ DEFI NE/ TRANS=CONCEALED CDSA TEMPDI R di sk: [directory.]
$ SET DEFAULT CDSA TEMPDI R: [ADDI N|

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. ADDI N| *. * []

$ COPY CDSA_SYSDI R [SI GN] MODSELFKEY. H []

$ @\DDI N_BUI LD

The resulting shareable image, STUBCSP300_SHR.EXE, must be signed. On the signing system, run the
following command procedure to generate the manifest:

$ ©@\DDI N_SI GN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @\DDI N_I NSTALL

The add-in module is now ready to be invoked by an application program.

DUMMY Example Programs

The DUMMYEMM and DUMMYEMMADDIN programs together demonstrate how to provide a new category
of service for CDSA. DUMMYEMM, an elective module manager (EMM), contains the logic for handling the
generic types of operations for the new service, and the add-in (DUMMYEMMADDIN) contains logic that is
specific to the particular operation being performed.

The ADDIN example (see the “ADDIN Example Program” on page 46) shows how to provide a new add-in for
an existing category of service. DUMMYEMM and DUMMYEMMADDIN are designed to provide an entirely
new category of service.

DUMMYEMM Example Program

This CDSA example is an elective module manager (EMM) that extends the functionality of CDSA by
providing an additional category of service. The example defines a new service provider interface (SPI) with
integrity checking.

The purpose of this example is to demonstrate the mechanics of developing a CDSA EMM, which is a
shareable image on OpenVMS. The example also provides the CDSA code files that are necessary to build an
EMM.

Chapter 4 47

CDSA Programming Concepts
CDSA Example Programs

The installation procedure registers the module in the CDSA MDS database, including its credentials,
properties, and capability attributes. It attaches the module and executes Regi st er CDSAMbdul e() (the
definition of INSTALL_ENTRY_NAME).

The files necessary to build the example on OpenVMS are included, with the exception of MODSELFKEY.H.
This include file must be generated from the certificate created for the add-in module.

Refer to “Writing Signed Applications” on page 36 for complete instructions on writing a signed application. A
signed CDSA application will not execute until the proper credentials are generated.

After you generate the application credentials and the include file MODSELFKEY.H, you can build the
DUMMYEMM example program by copying the example files to a local build directory and executing the
DUMMYEMM_BUILD command file, as follows:

$ DEFI NE/ TRANS=CONCEALED CDSA TEMPDI R di sk:[directory.]
$ SET DEFAULT CDSA TEMPDI R [DUMWEMV

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. DUMWEMM *. * []
$ COPY CDSA SYSDI R: [Sl GN] MODSELFKEY. H []

$ @UVMYEWMM BUI LD

The resulting shareable image, DUMMYEMM_SHR.EXE, must be signed. On the signing system, run the
following command procedure to generate the manifest:

$ @UVMMYEMM SI GN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @UMWYEMM | NSTALL

When an application program loads an add-in module that is written to the SPI of this EMM, the EMM will
be automatically loaded.

DUMMYEMMADDIN Example Program

This CDSA example is an elective module manager (EMM) that extends the functionality of CDSA by
providing an additional category of service. It provides an add-in module with integrity checking, written to
the SPI1 made available by the DUMMYEMM example.

The purpose of this example is to demonstrate the mechanics of developing a CDSA service provider module
for a category of service defined by an EMM. It also provides the necessary CDSA code files that are necessary
to build the module.

The installation procedure registers the module in the CDSA MDS database, including its credentials,
properties, and capability attributes. It attaches the module and executes Regi st er COSAMbdul e() (the
definition of INSTALL_ENTRY_NAME).

The files necessary to build the example on OpenVMS are included, with the exception of MODSELFKEY.H.
This include file must be generated from the certificate created for the add-in module.

See “Writing Signed Applications” on page 36 for complete instructions on writing a signed application. A
signed CDSA application will not execute until the proper credentials are generated.

After you generate the application credentials and the include file MODSELFKEY.H, you can build the
DUMMYEMMADDIN example program by copying the example files to a local build area and executing the
DUMMYEMMADDIN_BUILD command file, as follows:

$ DEFI NE/ TRANS=CONCEALED CDSA TEMPDI R di sk:[directory.]

$ SET DEFAULT CDSA_TEMPDI R: [DUMMWEMMADDI N]

$ COPY SYS$SYSROOT: [SYSHLP. EXAMPLES. CDSA. DUMWEMVADDI NJ *. * []
$ COPY CDSA SYSDI R: [Sl GN] MODSELFKEY. H []

$ @UVMYEMVADDI N_BUI LD

48 Chapter 4

CDSA Programming Concepts
CDSA Error Resolution

The resulting shareable image, DUMMYEMMADDIN_SHR.EXE, must be signed. On the signing system, run
the following command procedure to generate the manifest:

$ @UMMYEMVADDI N_SI GN
Finally, on the development system, run the command procedure to install the module, as follows:
$ @UMWEMVADDI N_| NSTALL

The add-in module is now ready to be invoked by an application program.

CDSA Error Resolution

The CDSA implementation on OpenVMS supplies a special program that can be used to translate numeric
CDSA error codes to text messages. This program resides in the SYS$SYSTEM directory and is called
CDSA$OUTPUT_ERROR.EXE. It uses the routines described in this section to convert a numeric error code
to its associated text label and error string. A foreign command, cdsa_error, has been defined in
SYS$SMANAGER:CDSA$SYMBOLS.COM to invoke this program. For details about using cdsa_error and its
options, see Chapter 3, “CDSA Utility Programs,” on page 25.

The MDS example program provides two special routines for deciphering CDSA error codes within a user
program. Because the CDSA include file that specifies error codes
(CDSA_SYSDIR:[INCLUDES]CSSMERR.H) does not allow for easy translation from the numeric code to the
associated error string, these routines can make the job of debugging a CDSA application easier. These
routines are: Decode_CDSA Error() and Print _CDSA Error().

They are described in the following sections.

Decode_CDSA _Error()

This function accepts a CDSA numeric error code and returns two strings: the ASCII name of the error and a
description of the error.

SYNOPSIS

#i ncl ude <cssnerr. h>

API:

voi d Decode_CDSA Error(Error_Code, Error_Label _String, Error_String)
CSSM RETURN Error_Code;
char *Error_Label _String;
char *Error_String;

RETURN VALUE

None

Chapter 4 49

CDSA Programming Concepts
CDSA Error Resolution

Print_CDSA_Error()

This function accepts a CDSA numeric error code, calls Decode_ CDSA_Error, and prints the resulting strings
to SYS$OUTPUT.

SYNOPSIS

#i ncl ude <cssnerr. h>

API:

void Print_CDSA Error(Error_Code)
CSSM _RETURN Error _Code;

RETURN VALUE

None

50 Chapter 4

APl Functions

This reference section contains descriptions of the CDSA API functions.

These descriptions are also available from online help. To access help, enter the HELP CDSA command at the
system prompt.

The MDSUTIL API functions are a special group of functions described in the following paragraphs.

MDS Utility Library APl Functions

Although the MDS API is a required part of any CDSA implementation, the MDSUTIL functions are not.

This library of functions was provided with the Intel CDSA reference implementation to encapsulate many
common queries that applications typically make to MDS. CDSA on OpenVMS implements the Intel CDSA
version of the MDS utility library. Other vendors may supply their own utility libraries built on top of MDS.

To use the MDS utility library, you must include two header files, MDS_UTIL_API.H and
MDS_UTIL_HELPER.H, which are in the CDSA_SYDIR:[INCLUDES] directory. You must also link with the
library files CDSA$MDS300_SHR.EXE and CDSA$SMDS_UTIL_API.OLB, which are located in SYS$SHARE.

For further information, see the Intel Common Data Security Architecture Application Developer's Guide,
Chapter 2 (Module Directory Services), under the heading MDS Utility Library.

51

AC_AuthCompute

NAME
AC_AuthCompute — Compute authorization (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMACI CSSM _AC_Aut hConput e
(CSSM_AC _HANDLE ACHandl e,

const CSSM TUPLEGROUP *BaseAut hori zati ons,
const CSSM TUPLEGROUP *Credenti al s,

ui nt 32 Nunber O Requestors,

const CSSM LI ST *Requestors,

const CSSM LI ST *Request edAut hori zati onPeri od,
const CSSM LI ST *Request edAut hori zati on,
CSSM_TUPLEGROUP_PTR Aut hori zati onResul t)

SPI :

CSSM_RETURN CSSMACI AC_Aut hConput e
(CSSM _AC _HANDLE ACHandl e,

const CSSM TUPLEGROUP *BaseAut hori zati ons,
const CSSM TUPLEGROUP *Credenti al s,

ui nt 32 Nunmber O Requestors,

const CSSM LI ST *Requestors,

const CSSM LI ST *Request edAut hori zati onPeri od,
const CSSM LI ST *Request edAut hori zati on,
CSSM_TUPLEGROUP_PTR Aut hori zati onResul t)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
ACHandl e (i nput)

The handle that describes the authorization computation module used to perform this
function.

BaseAut hori zati ons (i nput)

A pointer to a CSSM_TUPLEGROUP containing at least one ACL certificate, specifying the
authorization granted to certain root keys, named entities or combinations thereof. A NULL
group of BaseAut hori zat i ons always results in a NULL Aut hori zat i onResul t.

Oredenti al s (input/optional)

A pointer to a CSSM_TUPLEGROUP containing a group of certificates, in TUPLE form.
The tuple-certificates define the delegation of authorizations from the BaseAut hori zat i ons
to the Request or s. If no additional authorization-granting tuples are provided, then this
value is NULL and the BaseAut hori zat i ons are the only source of trusted authorizations
used as input to the authorization computation.

Nunber O Request or s (i nput)

52

The number of entries in the Request or s array.
Request or s (i nput)

A pointer to a list of requestors that define the "who" portion of the request. The list can be
of type CSSM_LIST_TYPE_SEXPR. Typical exhibits include:

=< Public keys

= Hashes of keys

= Hashes of other objects offered for proof.
Request edAut hori zat i onPer i od (input/optional)

A list defining a validity period or NULL (implying "all time"). This is the "when" portion of
the request.

If the list is of type CSSM_LIST_TYPE_SEXPR, then the validity interval is specified as a
two-element list containing the values ((not-before <datel>)(not-after <date2 >)). Note that
each element is a two-element sublist. The <date> is represented by an ASCII byte-string,

in the format (for example) "1998-11-24_15:06:16" and is assumed to be GMT. Open-ended

time intervals are specified by omitting either of the interval ends. For example, ((not-before
1997-1-1_00:00:0)) specifies all dates and times beginning on January 1, 1997 going forward
indefinitely. For programming convenience, when testing for authorization at a single point
in time, the date is represented by a one-element list containing (<date>).

Request edAut hori zati on (i nput)
A list defining the "what" portion of the authorization being requested.

If the list is of type CSSM_LIST_TYPE_SEXPR, then the list presents an authorization
request in SPKI format. If a specific authorization is being requested, then this input is a
two-element SEXPR list containing (tag <reg>). The valid values for <req> are
application-specific. If this is a request to derive all possible authorizations based on the
BaseAut hori zat i ons, Credenti al s, and Request or s, then this input value must be the
two-element list containing (tag (*)). This list corresponds to "all authorizations". With this
input, the function tests the provided ACL and certificates against the Request or s (and
possibly Request edAut hor i zat i onPeri od) to yield all authorizations for which the
provided Exhi bi t s qualify.

Aut hori zati onResul t (out put)

A CSSM_TUPLEGROUP structure, giving the result of the authorization computation.
Typically there will be one result, but there could be as many as there are entries in the
BaseAut hori zat i ons. Each of these results says, in effect: "for this machine, under this
ACL and the provided certificates, relative to the specified Request or s, the following
authorizations have been deduced". Those authorizations are available only on the current
platform (and possibly only for the application providing the ACL), and are therefore in the
form of an ACL. They are not intended to be used by any other machine or application
instance, necessarily, and need to be converted into certificates signed by some private key
available to the caller if they are to be so used.

DESCRIPTION

This function performs an authorization computation and returns the results as a group of tuple certificates.
The computation is based on the following input values:

Requestors

53

One or more items that identify the requestor. These items are matched against subject
fields in BaseAut hori zat i ons or Credent i al s. These will be of any form that occurs in an
ACL or certificate, and the class of entries is extensible. Aut hConput e uses these fields to
compare against Subj ect fields of TUPLES but does not interpret them, so it does not need
to be aware of these extensions. Request or s, taken together with

Request edAut hori zat i on and Request edAut hor i zat i onPeri od, form request tuples of
the form "who requests what, when." Request or s can be public keys that verify some signed
request, hashes of objects submitted for proof of permission, etc. In general, there will be
only one Request or, typically the public key of some keyholder signing a request or
authenticating a connection.

Request edAut hori zati on

The authorization against which the Request or s are being tested in this computation.
Request edAut hori zat i onPer i od

The time range of an authorization computation.
BaseAut hori zati ons

The group of ACL entries (unsigned certificates) provided as the basis for this computation.
Oredential s

A group of tuple-certificates used with the BaseAut hori zat i ons to grant authorizations to
the Request ors.

Kind of Subject Example Requestor

Public key (public-key (rsa-pkcsl-shal (e #03#) (n ##)))
Hash of object, key, template, etc. (hash md5 #900150983cd24fb0d6963f7d28e1772#)

The most likely Request or is a public key that signs a request. In common practice there will be one
Requestor per computation, but it is possible for an ACL or certificate to require multiple signatures or other
forms of identification before an action is authorized. In that case, there must be multiple Request or s. This
function can be used in the following modes:

= To verify the authorization of a specific request, backed up by specific Requestors

= To compute the set of authorizations that a particular set of Request or s has been granted by the
BaseAut hori zati ons and Credenti al s.

When using this function to verify an authorization, the Request edAut hori zat i on is the specific
authorization being requested and the Request edAut hori zat i onPer i od gives the date and time of that
request (typically the current date and time) using both NOT_BEFORE and NOT_AFTER dates. The result,
if any, should be an ACL entry with the same authorization that was requested. If such an ACL entry is
produced by the computation, then the request is authorized.

54

Requested Authorization Example

(http http://private.cdsa. hp.conilocal-data. htnm)

(ftp ftp://private.cdsa. hp.com users/cme/private/test.txt wite)

Requested Authorization Period Example

(valid (not-before "1999-07-28_17:00: 44") (not-after "1999-07-28_17:00:44"))

When using this function to compute the full set of possible authorizations from a set of credentials, rather
than to verify a specific access request, the inputs should be of the following form:

< Request edAut hori zati onPeri od is either an empty list or the list "val i d", indicating "all time".
= Request edAut hori zation is the list "*", indicating all possible authorizations.

The result of this computation, if any, will be one or more ACL entries representing all the granted
authorizations for the indicated requestor.

The scope of ACLs output from this function is limited to the local system. Each ACL should be interpreted to
mean: "for this machine, under these base authorization ACLs and the provided certificates, relative to the
specified requestors, the following authorizations have been deduced". Those authorizations are available
only on the current platform (and possibly only for the application providing the ACL) and are therefore in
the form of an ACL. They are not intended to be used by any other machine or application instance. However,
the resulting ACLs can be transferred and used outside of the local scope by an entity with authority in the
target scope/environment. The transfer and use is a three-step process:

1. Convert the ACL into one or more certificates. The certificates must be signed by some private key with
appropriate authority in the target scope/environment.

2. Transfer the certificates to the target environment.
3. Use the signed certificates as input Credent i al s to this function in the target scope/environment.

If the function is successful, check (* Aut hori zat i onResul t) - >NunCer t s to determine the precise number of
authorizations granted by this computation. If 0, then the r equest or s were not authorized.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_AC_| NVALI D_BASE_ACLS
CSSMERR_AC_| NVALI D_ENCODI NG
CSSMERR_AC | NVALI D_REQUESTOR
CSSMERR_AC_| NVALI D_REQUEST_DESCRI PTOR
CSSMERR_AC | NVALI D_TUPLE_CREDENTI ALS
CSSMERR_AC | NVALI D_VALI DI TY_PERI CD

55

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Reference Pages

Functions for the CSSM API:

CSSM_TP_CertGroupToTupleGroup, CSSM_TP_TupleGroupToCertGroup
Functions for the AC SPI:

TP_CertGroupToTupleGroup, TP_TupleGroupToCertGroup

56

AC_PassThrough

NAME
AC_PassThrough: CSSM_AC_PassThrough — Call exported module-specific operations (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM _AC_PassThr ough
(CSSM _AC HANDLE ACHandl e,
CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DL_DB LI ST *DBLi st,

ui nt 32 PassThroughl d,

const void *Input Parans,

voi d **CQut put Par ans)

SPI :

CSSM_RETURN CSSMACI AC_PassThr ough
(CSSM_AC HANDLE ACHandl e,

CSSM _TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DL_DB LI ST *DBLi st,

ui nt 32 PassThroughl d,

const void *I nput Parans,

voi d **Qut put Par ans)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
ACHandl e (i nput)

The handle that describes the authorization computation module used to perform this
function.

TPHandl e (input/optional)

The handle that describes the trust policy module that can be used by the authorization
computation service to implement this function. If no trust policy module is specified, the
AC module uses an assumed TP module, if required.

CLHand! e (input/optional)

The handle that describes the add-in certificate library module that can be used to
manipulate the subject certificate and anchor certificates. If no certificate library module is
specified, the AC module uses an assumed CL module, if required.

CCHandl e (input/optional)

57

The handle that describes the cryptographic context containing a handle that describes the
add-in Cryptographic Service Provider module that can be used to perform cryptographic
operations as required to perform the requested operation. If no cryptographic context is
specified, the AC module uses an assumed cryptographic context and CSP module, if
required.

DBLi st (input/optional)

A list of handle pairs specifying a data storage library module and a data store managed by
that module. These data stores can contain certificates, CRLs, and policy objects for use by
the AC module. If no DL and DB handle pairs are specified, the AC module uses an assumed
DL module and an assumed data store for this operation.

PassThr oughl d (i nput)
An identifier assigned by the AC module to indicate the exported function to perform.
| nput Par ans (i nput)

A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested AC module. If the passt hr ough
function requires access to a private key located in the CSP referenced by CSPHandl e, then
I nput Par ans should contain a passphrase, or a callback or cryptographic context that can
be used to obtain the passphrase.

Qut put Par ans (output/optional)

A pointer to a module, implementation-specific structure containing the output data. The
service provider will allocate the memory for this structure. The application must free the
memory for the structure.

DESCRIPTION

This function allows applications to call authorization computation module-specific operations that have been
exported. Such operations might include queries or services specific to the domain represented by the AC
module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_AC | NVALI D_CL_HANDLE
CSSMERR_AC_| NVALI D_CONTEXT_HANDLE
CSSMERR_AC | NVALI D _DBLI ST_POI NTER
CSSMERR_AC | NVALI D DB LI ST
CSSMERR_AC | NVALI D_DB_HANDLE
CSSMERR_AC | NVALI D_DL_HANDLE
CSSMERR_AC_| NVALI D_PASSTHROUGH_| D
CSSMERR_AC_| NVALI D_TP_HANDLE

SEE ALSO
Intel CDSA Application Developer's Guide

58

CL_CertAbortCache
NAME

CL_CertAbortCache: CSSM_CL_CertAbortCache — Terminate a certificate cache handle (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Abort Cache
(CSSM_CL_HANDLE CLHandl e,

CSSM_HANDLE Cert Handl e)

SPI :

CSSM_RETURN CSSMAPI CSSM CL_Cert Abort Cache
(CSSM_CL_HANDLE CLHandl e,

CSSM_HANDLE Cer t Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the certificate library module used to perform this function.
Cert Handl e (i nput)

The handle that identifies the cached certificate.

DECRIPTION

This function terminates a certificate cache handle created and returned by the function
CSSM CL_Cert Cache() (CSSM API) or CL_Cert Cache() (CL SPI). The Certificate Library module releases all
cache space and state information associated with the cached certificate.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CL_| NVALI D CACHE HANDLE

59

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Reference Pages

Functions for the CSSM API:
CSSM_CL_CertCache
Functions for the CLI SPI:
CL_CertCache

60

CL_CertAbortQuery

NAME
CL_CertAbortQuery: CSSM_CL_CertAbortQuery function — Terminate a results handle (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Abort Query
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e)

SPI :

CSSM_RETURN CSSMAPI CSSM CL_Cert Abort Query
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

CLHandl e (i nput)
The handle that describes the add-in certificate library module used to perform this
function.

Resul t sHandl e (i nput)

A pointer to the handle that identifies the results of a CSSM CL_Get Fi el dVal ue() (CSSM
API), or CL_Get Fi el dVal ue() (CLI SPI) request.

DESCRIPTION

This function terminates a results handle used to access multiple certificate fields identified by a single OID.
The Resul t sHandl e was created and returned by CSSM CL_Cert Get Fi r st Fi el dVal ue() (CSSM API), or
CL_CertGetFirstFieldval ue() (CL SPI), or CSSM CL_Cert Get Fi r st CachedFi el dVal ue() (CSSM API), or
CL_Cert Get Fi rst CachedFi el dval ue() (CL SPI).

The CL releases all intermediate state information associated with the repeating-value query. Once this
function has been invoked, the results handle is invalid.

Applications must invoke this function to terminate the Resul t sHandl e. Using

CSSM CL_Cert Get Next Fi el dVal ue() (CSSM API), or CL_Cert Get Next Fi el dval ue() (CL SPI), or

CSSM CL_Cert Get Next CachedFi el dval ue() (CSSM API), or CL_Cert Get Next CachedFi el dval ue() (CL
SPI), to access all of the attributes named by a single OID does not terminate the Resul t sHandl e.

This function can be invoked to terminate the results handle without accessing all values identified by the
single OID.

61

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CL_| NVALI D RESULTS HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertGetNextFieldValue,
CSSM_CL_CertGetFirstCachedFieldValue, CSSM_CL_CertGetNextCachedFieldValue

Functions for the CLI SPI:

CL_CertGetFirstFieldValue, CL_CertGetNextFieldValue, CL_CertGetFirstCachedFieldValue,
CL_CertGetNextCachedFieldValue

62

CL_CertCache

NAME
CL_CertCache: CSSM_CL_CertCache — Cache a copy of a certificate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM RETURN CSSMAPI CSSM CL_Cert Cache
(CSSM_CL_HANDLE CLHandl e,

const CSSM DATA *Cert,
CSSM_HANDLE_PTR Cer t Handl e)

SPI :

CSSM RETURN CSSMAPI CSSM CL_Cert Cache
(CSSM_CL_HANDLE CLHandl e,

const CSSM DATA *Cert,
CSSM_HANDLE_PTR Cer t Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)
The handle that describes the certificate library module used to perform this function.
Cert (i nput)
A pointer to the CSSM_DATA structure containing the encoded certificate.
Cer t Handl e (out put)

A pointer to the CSSM_HANDLE that should be used in all future references to the cached
certificate.

DESCRIPTION

This function caches a copy of a certificate for subsequent accesses using the functions

CSSM CL_Cert Get Fi r st CachedFi el dval ue() (CSSM API), or CL_Cert Get Fi r st CachedFi el dval ue() (CL
SPI), and CSSM CL_Cert Get Next CachedFi el dVal ue() (CSSM API), or

CL_Cert Get Next CachedFi el dval ue() (CL SPI).

The input certificate must be in an encoded representation. The Certificate Library module can cache the
certificate in any appropriate internal representation. Parsed or incrementally parsed representations are
common. The selected representation is opaque to the caller.

The application must call CSSM CL_Cert Abort Cache() (CSSM API), or CL_Cert Abort Cache() (CL SPI), to
remove the cached copy when additional get operations will not be performed on the cached certificate.

63

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstCachedFieldValue, CSSM_CL _CertGetNextCachedFieldValue,
CSSM_CL_CertAbortQuery, CSSM_CL_CertAbortCache

Functions for the CLI SPI:

CL_CertGetFirstCachedFieldValue, CL_CertGetNextCachedFieldValue, CL_CertAbortQuery,
CL_CertAbortCache

64

CL_CertCreateTemplate
NAME

CL_CertCreateTemplate: CSSM_CL_CertCreateTemplate — Allocate and initialize memory for a
certificate template (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Creat eTenpl at e
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nurber O Fi el ds,

const CSSM FI ELD *CertFi el ds,

CSSM _DATA_PTR Cert Tenpl at e)

SPI :

CSSM_RETURN CSSMCLI CL_Cert Creat eTenpl at e
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nurmber O Fi el ds,

const CSSM FI ELD *CertFi el ds,

CSSM _DATA_PTR Cert Tenpl at e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)
The handle that describes the certificate library module used to perform this function.
Nunber O Fi el ds (i nput)
The number of certificate field values specified in the Cert Fi el ds.
CertFiel ds (i nput)
A pointer to an array of OlD/value pairs that identify the field values to initialize a new
certificate.
Cer t Tenpl at e (out put)

A pointer to a CSSM_DATA structure that will contain the unsigned certificate template as
a result of this function.

DESCRIPTION

This function allocates and initializes memory for an encoded certificate template output in

Cer t Tenpl at e- >Dat a. The template values are specified by the input OlD/value pairs contained in
Cert Fi el ds. The initialization process includes encoding all certificate field values according to the
certificate type and certificate encoding supported by the certificate library module.

The memory for Cert Tenpl at e- >Dat a is allocated by the service provider using the calling application's
memory management routines. The application must deallocate the memory.

65

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG
CSSMERR_CL_| NVALI D_NUMBER_OF_FI ELDS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGetAllTemplateFields, CSSM_CL_CertSign
Functions for the CLI SPI:

CL_CertGetAllTemplateFields, CL_CertSign

66

CL_CertDescribeFormat

NAME

CL_CertDescribeFormat: CSSM_CL_CertDescribeFormat — Return a list of the CSSM_OID values
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Descri beFor mat
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 *Nunber O O ds,

CSSM O D_PTR *QOi dLi st)

SPI :

CSSM_RETURN CSSMAPI CSSM CL_Cert Descri beFor nat
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 *Nunber O O ds,

CSSM O D_PTR *QOi dLi st)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Nunber O O ds (out put)
The length of the returned array of OIDs.
Q dLi st (out put)

A pointer to the array of CSSM_OIDs that represent the supported certificate format. The
OID list is allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function returns a list of the CSSM_OID values this certificate library module uses to name and
reference fields of a certificate. Multiple CSSM_OID values can correspond to a single field. These OIDs can
be provided as input to CSSM CL_Cert Get Fi r st Fi el dVal ue() (CSSM API), or

CL_Cert Get First Fi el dval ue() (CL SPI), to retrieve field values from the certificate. The OID also implies
the data format of the returned value. When multiple OIDs name the same field of a certificate, those OIDs
have different return data formats associated with them.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

67

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetAllFields, CSSM_CL_CertGetFirstFieldvalue, CSSM_CL_CertGetFirstCachedFieldValue
Functions for the CLI SPI:

CL_CertGetAllFields, CL_CertGetFirstFieldValue, CL_CertGetFirstCachedFieldValue

68

CL_CertGetAllFields

NAME
CL_CertGetAllFields: CSSM_CL_CertGetAllFields — Return a list of input certificate values (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Get Al | Fi el ds
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

ui nt 32 *Nunber O Fi el ds,

CSSM FI ELD_PTR *Fi el dLi st)

SPI :

CSSM_RETURN CSSMCLI CL_Cert Get Al | Fi el ds
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

ui nt 32 *Nunber O Fi el ds,

CSSM FI ELD_PTR *Fi el dLi st)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Cert (i nput)

A pointer to the CSSM_DATA structure containing the certificate whose fields will be
returned.

Nunber O Fi el ds (out put)
The length of the returned array of fields.
Fi el dLi st (out put)

A pointer to an array of CSSM_FIELD structures that contain the values of all fields of the
input certificate. The field list is allocated by the service provider and must be deallocated
by the application by calling CSSM CL_Fr eeFi el ds() (CSSM API), or CL_Fr eeFi el ds()
(CL SPI).

DESCRIPTION

This function returns a list of the values stored in the input certificate.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

69

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

For the CSSM API:

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFields
For the CLI SPI:

CL_CertGetFirstFieldValue, CL_CertDescribeFormat, CL_FreeFields

70

CL_CertGetAllTemplateFields

NAME

CL_CertGetAllTemplateFields: CSSM_CL_CertGetAllTemplateFields — Extract and return values
stored in CertTemplate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSVAPI CSSM CL_Cert Get Al | Tenpl at eFi el ds
(CSSM_CL_HANDLE CLHandl e,

const CSSM DATA *Cert Tenpl at e,

ui nt 32 *Nunber Of Fi el ds,

CSSM FI ELD_PTR *Cer t Fi el ds)

SPI :

CSSM_RETURN CSSMCLI CL_Cert Get Al | Tenpl at eFi el ds
(CSSM_CL_HANDLE CLHandl e,

const CSSM DATA *Cert Tenpl at e,

ui nt 32 *Nunber Of Fi el ds,

CSSM FI ELD_PTR *Cer t Fi el ds)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the certificate library module used to perform this function.
Cert Tenpl at e (i nput)

A pointer to the CSSM_DATA structure containing the packed, encoded certificate
template.

Nunber O Fi el ds (out put)
The length of the output array of fields.
CertFi el ds (out put)

A pointer to an array of CSSM_FIELD structures which contains the OIDs and values of the
fields of the input certificate template.

DESCRIPTION

This function extracts and returns a copy of the values stored in the encoded Cert Tenpl at e. The memory for
the Cert Fi el ds output is allocated by the service provider using the calling application's memory
management routines. The application must deallocate the memory by calling CSSM CL_Fr eeFi el ds()
(CSSM API), or O__FreeFi el ds() (CL SPI).

71

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CL_UNKNOAN_FORNVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_FreeFields, CSSM_CL_CertCreateTemplate
Functions for the CLI SPI:

CL_FreeFields, CL_CertCreateTemplate

72

CL_CertGetFirstCachedFieldValue

NAME

CL_CertGetFirstCachedFieldValue: CSSM_CL_CertGetFirstCachedFieldValue — Return values
from the cached certificate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Get Fi r st CachedFi el dVval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM HANDLE Cert Handl e,

const CSSM O D *CertField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber O Mat chedFi el ds,

CSSM DATA_PTR *Fi el dval ue)

SPI :

CSSM_RETURN CSSMAPI CSSM CL_Cert Get Fi r st CachedFi el dVval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM HANDLE Cert Handl e,

const CSSM O D *CertField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber O Mat chedFi el ds,

CSSM DATA_PTR *Fi el dval ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Cert Handl e (i nput)

A handle identifying a certificate that the application has temporarily cached with the
Certificate Library module. The referenced certificate is searched for the field value named
by Cert Fi el d.

CertField(input)
A pointer to an object identifier that identifies the field value to be extracted from the Cert.
Resul t sHandl e (out put)

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

Nunber O Mat chedFi el ds (out put)

The total number of fields that match the Cert Fi el d OID. This count includes the first
match, which was returned by this function.

Fi el dval ue (out put)

73

A pointer to the structure containing the value of the requested field. The structure and the
field at | "(*FieldValue)->Data" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API), or CL_Fr eeFi el dVal ue() (CL SPI), function can
be used to deallocate Fi el dVal ue and (*Fi el dVal ue) - >Dat a.

DESCRIPTION

This function returns a single structure containing a set of field values from the cached certificate identified
by Cer t Handl e. The selected fields are designated by the CSSM_OID CertField and returned in the output
parameter Fi el dVal ue. The OID also identifies the data format of the values returned to the caller. If
multiple OIDs designate the same certificate field, then each such OID defines a distinct data format for the
returned values. The function CSSM CL_Cert Descri beFor nat () (CSSM API), or CL_Cert Descri beFor mat ()
(CL SPI), provides a list of all CSSM_OID values supported by a certificate library module for naming fields
of a certificate.

The Cert Fi el d OID can identify a single occurrence of a set of certificate fields, or multiple occurrences of a
set of certificate fields. If the Cert Fi el d OID matches more than one occurrence, this function outputs the
total number of matches and a Resul t sHandl e to be used as input to

CSSM Cer t Get Next CachedFi el dval ue() (CSM API), or Cert Get Next CachedFi el dval ue() (CL SPI), to
retrieve the remaining matches. The first match is returned as the return value of this function.

This function determines the complete set of matches. The number of matches and the selected field values do
not change between this function and subsequent calls to CSSM CL_Cer t Get Next CachedFi el dVal ue()
(CSSM API), or CL_Cert Get Next CachedFi el dVal ue() (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_CACHE_HANDLE
CSSMERR_CL_UNKNOAN_TAG
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetNextCachedFieldValue, CSSM_CL_CertAbortCache, CSSM_CL_CertAbortQuery,
CSSM_CL_CertGetAllFields, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CertGetNextCachedFieldValue, CL_CertAbortCache, CL_CertAbortQuery, CL_CertGetAllFields,
CL_CertDescribeFormat, CL_FreeFieldValue

74

CL_CertGetFirstFieldValue

NAME

CL_CertGetFirstFieldValue: CSSM_CL_CertGetFirstFieldValue — Return the value of the
certificate field (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Get Fi r st Fi el dVal ue
(CSSM_CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

const CSSM O D *CertField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber Of Mat chedFi el ds,

CSSM DATA_PTR *Val ue)

SPI :

CSSM _RETURN CSSMCLI CL_Cert Get Fi r st Fi el dVal ue
(CSSM_CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

const CSSM O D *CertField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber Of Mat chedFi el ds,

CSSM DATA_PTR *Val ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Cert (i nput)
A pointer to the CSSM_DATA structure containing the certificate.
CertField(input)

A pointer to an object identifier which identifies the field value to be extracted from the
Cert.

Resul t sHandl e (out put)

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

Nunber O Mat chedFi el ds (out put)

The total number of fields that match the Cert Fi el d OID. This count includes the first
match, which was returned by this function.

Val ue (out put)

75

A pointer to the structure containing the value of the requested field. The structure and the
field at | "(*Value)->Data" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API) or CL_Fr eeFi el dVval ue() (CL SPI) function can
be used to deallocate *Val ue and (* Val ue) - >Dat a.

DESCRIPTION

This function returns the value of the certificate field designated by the CSSM_OID Cert Fi el d. The OID also
identifies the data format for the field value returned to the caller. If multiple OIDs name the same certificate
field, then each such OID defines a distinct data format for the returned field value. The function

CSSM CL_Cert Descri beFormat () (CSSM API), or CL_Cert Descri beFor nat () (CL SPI), provides a list of all
CSSM_OID values supported by a certificate library module for naming fields of a certificate.

If more than one field matches the Cert Fi el d OID, the first matching field will be returned. The number of
matching fields is an output parameter, as is the Resul t sHandl e to be used to retrieve the remaining
matching fields.

The set of matching fields is determined by this function. The number of matching fields and the field values
do not change between this function and subsequent calls to CSSM CL_Cert Get Next Fi el dval ue() (CSSM
API), or CL_Cert Get Next Fi el dVal ue() (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_UNKNOAN_TAG
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetNextFieldValue, CSSM_CL_CertAbortQuery, CSSM_CL_CertGetAllField,
CSSM_CL _FreeFieldvalue, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CertGetNextFieldValue, CL_CertAbortQuery, CL_CertGetAllField, CL_FreeFieldValue,
CL_CertDescribeFormat, CL_FreeFieldValue

76

CL_CertGetKeylnfo

NAME

CL_CertGetKeylnfo: CSSM_CL_CertGetKeylInfo — Return the public key and integral information
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Get Keyl nfo
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

CSSM_KEY_PTR *Key)

SPI :

CSSM_RETURN CSSMCLI CL_Cert Get Keyl nf o
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

CSSM_KEY_PTR *Key)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Cert (i nput)

A pointer to the CSSM_DATA structure containing the certificate from which to extract the
public key information.

Key (out put)

A pointer to the CSSM_KEY structure containing the public key and possibly other key
information. The CSSM_KEY structure and its substructures are allocated by the service
provider and must be deallocated by the application.

DESCRIPTION

This function returns the public key and integral information about the key from the specified certificate. The
key structure returned is a compound object. It can be used in any function requiring a key, such as creating a
cryptographic context.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

77

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGetFirstFieldValue, CSSM_CL _FreeFieldValue
Functions for the CLI SPI:

CL_CertGetFirstFieldValue, CL_FreeFieldValue

78

CL_CertGetNextCachedFieldValue

NAME
CSSM_CL_CertGetNextCachedFieldValue — Return the value of a certificate field (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Cert Get Next CachedFi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Fi el dval ue)

SPI :

CSSM _RETURN CSSMAPI CSSM CL_Cert Get Next CachedFi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Fi el dval ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)
The handle that describes the certificate library module used to perform this function.
Resul t sHandl e (i nput)
The handle that identifies the results of a certificate query.
Fi el dval ue (out put)

A pointer to the structure containing the value of the requested field. The structure and the
field at | "(*FieldValue)->Data" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API), or CL_Fr eeFi el dVal ue() (CL SPI) function can
be used to deallocate *Fi el dVal ue and (*Fi el dval ue) - >Dat a.

DESCRIPTION

This function returns the value of a certificate field, when that field occurs multiple times in a certificate.
Certificates with repeated fields (such as multiple signatures) have multiple field values corresponding to a
single OID. A call to the function CSSM CL_Cert Get Fi r st CachedFi el dVal ue() (CSSM API), or

CL_Cert Get Fi rst CachedFi el dval ue() (CL SPI), returns a Resul t sHandl e identifying the size and values
contained in the result set. The CSSM CL_Cert Get Next CachedFi el dVal ue() (CSSMAPI), or

CL_Cert Get Next CachedFi el dVal ue() (CL SPI), function can be called repeatedly to obtain these values, one
at a time. The result set does not change in size or value between calls to this function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

79

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_RESULTS_HANDLE
CSSMERR_CL_NO _FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstCachedFieldValue, CSSM_CL_CertAbortCache, CSSM_CL_CertAbortQuery,
CSSM_CL_CertGetAllFields, CSSM_CL_CertDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CertGetFirstCachedFieldValue, CL_CertAbortCache, CL_CertAbortQuery, CL_CertGetAllFields,
CL_CertDescribeFormat, CL_FreeFieldValue

80

CL_CertGetNextFieldValue

NAME

CL_CertGetNextFieldValue: CSSM_CL_CertGetNextFieldValue — Return the value of a certificate
field (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Get Next Fi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Val ue)

SPI :

CSSM _RETURN CSSMCLI CL_Cert Get Next Fi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Val ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Resul t sHandl e (i nput)
The handle that identifies the results of a certificate query.
Val ue (out put)

A pointer to the structure containing the value of the requested field. The structure and the
field at | "(*Value)->Data" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API) or CL_Fr eeFi el dVal ue() (CL SPI), function can
be used to deallocate *Val ue and (* Val ue) - >Dat a.

DESCRIPTION

This function returns the value of a certificate field, when that field occurs multiple times in a certificate.
Certificates with repeated fields (such as multiple signatures) have multiple field values corresponding to a
single OID. A call to the function CSSM C__Cert Get Fi r st Fi el dVal ue() (CSSM API), or

CL_Cert Get First Fi el dval ue() (CL SPI), returns a results handle identifying the size and values contained
in the result set. The CSSM CL_Cert Get Next Fi el dVal ue() (CSSM API), or CL_Cert Get Next Fi el dVal ue()
(CL SPI), function can be called repeatedly to obtain these values, one at a time. The result set does not
change in size or value between calls to this function.

81

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_RESULTS_HANDLE
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertGetFirstFieldValue, CSSM_CL_CertAbortQuery, CSSM_CL_FreeFieldValue
Functions for the CLI SPI:

CL_CertGetFirstFieldValue, CL_CertAbortQuery, CL_FreeFieldValue

82

CL_CertGroupFromVerifiedBundle

NAME

CL_CertGroupFromVerifiedBundle: CSSM_CL_CertGroupFromVerifiedBundle — Verify the
signature of a bundle (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert G- oupFronVeri fi edBundl e
(CSSM_CL_HANDLE CLHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CERT_BUNDLE *Cert Bundl e,

const CSSM DATA *Si gner Cert,

CSSM_CERTGROUP_PTR *Cer t G oup)

SPI :

CSSM_RETURN CSSMCLI CL_Cert GroupFromVeri fi edBundl e
(CSSM_CL_HANDLE CLHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CERT_BUNDLE *Cert Bundl e,

const CSSM DATA *Si gner Cert,

CSSM _CERTGRQUP_PTR *Cer t G oup)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandl e (input/optional)
The handle of the cryptographic context to control the verification operation.
Cer t Bundl e (i nput)

A structure containing a reference to a signed, encoded bundle of certificates and to
descriptors of the type and encoding of the bundle. The bundled certificates are to be
separated into a certificate group (list of individual encoded certificates). If the bundle type
and bundle encoding are not specified, the add-in module might either attempt to decode the
bundle assuming a default type and encoding or might immediately fail.

Si gner Cert (input/optional)

The certificate to be used to verify the signature on the certificate bundle. If the bundle is
signed but this field is not specified, then the module will assume a default certificate for
verification.

Cert G oup (out put)

83

A pointer to the certificate group, represented as an array of individual, encoded
certificates. The certificate group and CSSM_CERTGROUP substructures are allocated by
the serivce provider and must be deallocated by the application. The group contains all
certificates contained in the certificate bundle.

DESCRIPTION

This function accepts as input a certificate bundle (a codified and signed aggregation of the certificates in the
group), verifies the signature of the bundle (if a signature is present), and returns a certificate group (as an
array of individual certificates) including every certificate contained in the bundle. The signature on the
certificate aggregate is verified using the cryptographic context and possibly using the input signer
certificate. The CL module embeds the knowledge of the verification scope for the bundle types that it
supports. A CL module's supported bundle types and encodings are available to applications by querying the
CSSM registry. The type and encoding of the certificate bundle must be specified with the input bundle. If
signature verification is successful, the certificate aggregate will be parsed into a certificate group whose
order corresponds to the certificate aggregate ordering. This certificate group will then be returned to the
calling application.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR _CL_I NVALI D_BUNDLE_POI NTER
CSSMERR _CL_| NVALI D_BUNDLE_| NFO
CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_| NVALI D_CERTGROUP_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGroupToSignedBundle
Functions for the CLI SPI:
CL_CertGroupToSignedBundle

84

CL_CertGroupToSignedBundle

NAME

CL_CertGroupToSignedBundle: CSSM_CL_CertGroupToSignedBundle — Convert a certificate
group to a certificate bundle (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert G oupToSi gnedBundl e
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM CERTGROUP *Cert Gr oupToBundl e,

const CSSM CERT_BUNDLE_HEADER *Bundl el nf o,
CSSM _DATA_PTR Si gnedBundl e)

SPI :

CSSM_RETURN CSSMCLI CL_Cert GroupToSi gnedBundl e
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM CERTGROUP *Cert Gr oupToBundl e,

const CSSM CERT_BUNDLE_HEADER *Bundl el nf o,
CSSM _DATA_PTR Si gnedBundl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandl e (input/optional)

The handle of the cryptographic context to control the signing operation. The operation will
fail if a signature is required for this type of bundle and the cryptographic context is not
valid.

Cert G oupToBundl e (i nput)

An array of individual, encoded certificates. All certificates in this list will be included in the
resulting certificate bundle.

Bundl el nf o (input/optional)

A structure containing the type and encoding of the bundle to be created. If the type and the
encoding are not specified, then the module will use a default bundle type and bundle
encoding.

Si gnedBundl e (out put)

85

The function returns a pointer to a signed certificate bundle containing all certificates in the
certificate group. The bundle is of the type and encoding requested by the caller or is the
default type defined by the library module if the Bundl el nf o was not specified by the caller.
The Si gnedBundl e- >Dat a is allocated by the service provider and must be deallocated by
the application.

DESCRIPTION

This function accepts as input a certificate group (as an array of individual certificates) and returns a
certificate bundle (a codified and signed aggregation of the certificates in the group). The certificate group will
first be encoded according to the Bundl el nf o input by the user. If Bundl el nfo is NULL, the library will
perform a default encoding for its default bundle type. If possible, the certificate group ordering will be
maintained in this certificate aggregate encoding. After encoding, the certificate aggregate will be signed
using the input context. The CL module embeds knowledge of the signing scope for the bundle types it
supports. The signature is then associated with the certificate aggregate according to the bundle type and
encoding rules and is returned as a bundle to the calling application.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR_CL_| NVALI D_CERTGROUP_PO NTER
CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT

CSSMERR _CL_I NVALI D_BUNDLE_POI NTER
CSSMERR _CL_| NVALI D_BUNDLE_| NFO

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertGroupFromVerifiedBundle
Functions for the CLI SPI:
CL_CertGroupFromVerifiedBundle

86

CL_CertSign

NAME
CSSM_CL_CertSign — Sign a certificate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Cert Si gn
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Cert Tenpl at e,
const CSSM FI ELD *Si gnScope,

ui nt 32 ScopeSi ze,

CSSM _DATA_PTR Si gnedCert)

SPI :

CSSM _RETURN CSSMCLI CL_Cert Si gn
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Cert Tenpl at e,
const CSSM FI ELD *Si gnScope,

ui nt 32 ScopesSi ze,

CSSM _DATA_PTR Si gnedCert)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandl e (i nput)

A signature context defining the CSP, signing algorithm, and private key that must be used
to perform the operation. The passphrase for the private key is also provided.

Cert Tenpl at e (i nput)

A pointer to a CSSM_DATA structure containing a certificate template in the default
format supported by this CL. The template contains values that are currently contained in
or will be contained in a signed certificate.

Si gnScope (input/optional)

A pointer to the CSSM_FIELD array containing the OID/value pairs of the fields to be
signed. A null input signs all the fields provided by Cert Tenpl at e.

ScopeSi ze (i nput)

The number of entries in the Si gnScope list. If the sign scope is not specified, the input
value for scope size must be zero.

Si gnedCert (out put)

87

A pointer to the CSSM_DATA structure containing the signed certificate.

DESCRIPTION

This function signs a certificate using the private key and signing algorithm specified in the CCHandl e. The
result is a signed, encoded certificate in Si gnedCer t . The certificate field values are specified in the input
certificate template. The template is constructed using CSSM CL_Cert Cr eat eTenpl at e() (CSSM API), or
CL_Cert Oreat eTenpl ate() (CL SPI). The template is in the default format for this CL.

The CCHandl e must be a signature context created using the function

CSSM CSP_Cr eat eSi gnat ur eCont ext () (CSSM API), or CSP_O eat eSi gnat ur eCont ext () (SPI). The context
must specify the Cryptographic Services Provider (CSP) module, the signing algorithm, and the signing key
that must be used to perform this operation. The context must also provide the passphrase or a callback
function to obtain the passphrase required to access and use the private key.

The fields included in the signing operation are identified by the OIDs in the optional S gnScope array.

The memory for the Si gnedCert - >Dat a output is allocated by the service provider using the calling
application's memory management routines. The application must deallocate the memory.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR_CL_UNKNOAN_FORVAT

CSSMERR _CL_I NVALI D_FI ELD_PO NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_SCOPE

CSSMERR CL_| NVALI D NUMBER OF FI ELDS
CSSMERR_CL_SCOPE_NOT_SUPPORTED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CertVerify, CSSM_CL_CertCreateTemplate
Functions for the CLI SPI:

CL_CertVerify, CL_CertCreateTemplate

88

CL_CertVerify

NAME
CL_CertVerify: CSSM_CL_CertVerify — Verify a signed certificate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cert Veri fy
(CSSM_CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cert ToBeVerifi ed,
const CSSM DATA *Si gner Cert,

const CSSM FI ELD *Veri f yScope,

ui nt 32 ScopesSi ze)

SPI :

CSSM_RETURN CSSMAPI CSSM CL_Cert Verify
(CSSM_CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cert ToBeVerifi ed,
const CSSM DATA *Si gner Cert,

const CSSM Fl ELD *Veri f yScope,

ui nt 32 ScopesSi ze)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandl e (input/optional)
The handle that describes the context of this cryptographic operation.
Cert ToBeVeri fi ed (i nput)

A pointer to the CSSM_DATA structure with a certificate containing at least one signature
for verification. An unsigned certificate template cannot be verified.
Si gner Cert (input/optional)

A pointer to the CSSM_DATA structure containing the certificate used to sign the subject

certificate. This certificate provides the public key to use in the verification process and if

the certificate being verified contains multiple signatures, the signer's certificate indicates
which signature is to be verified.

Veri f yScope (input/optional)

89

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be used
in verifying the signature. (This should include all fields that were used to calculate the
signature.) If the verify scope is null, the certificate library module assumes that its default
set of certificate fields were used to calculate the signature, and those same fields are used
in the verification process.

ScopeSi ze (i nput)

The number of entries in the verify scope list. If the verification scope is not specified, the
input value for scope size must be zero.

DESCRIPTION

This function verifies that the signed certificate has not been altered since it was signed by the designated
signer. Only one signature is verified by this function. If the certificate to be verified includes multiple
sighatures, this function must be applied once for each signature to be verified. This function verifies a digital
sighature over the certificate fields specified by Veri f yScope. If the verification scope fields are not specified,
the function performs verification using a preselected set of fields in the certificate.

The caller can specify a Cryptographic Service Provider (CSP) and verification algorithm that the CL can use
to perform the verification. The handle for the CSP is contained in the cryptographic context identified by
QCHandl e.

The verification process requires that the caller must specify the necessary verification algorithm
parameters. These parameter values are specified in one of two locations:

< Asafield value in the S gner Cert parameter
< As aset of algorithm parameters contained in the cryptographic context identified by CCHandl e

If both of the preceding arguments are supplied, a consistency check is performed to ensure that they result
in the same verification algorithm parameters. If they are not consistent, an error is returned. If only one of
the above arguments is supplied, that argument is used to generate the verification algorithm parameters. If
no algorithm parameters are found, the certificate cannot be verified and the operation fails.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR _CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT

CSSMERR _CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_SCOPE

CSSMERR CL_I NVALI D NUMBER OF FI ELDS
CSSMERR_CL_SCOPE_NOT_SUPPORTED
CSSMERR _CL_VER! FI CATI ON_FAI LURE

90

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertSign
Functions for the CLI SPI:
CL_CertSign

91

CL_CertVerifyWithKey

NAME
CL_CertVerifyWithKey: CSSM_CL_CertVerifyWithKey — Verify with a key (CDSA)

SYNOPSIS

include <cssm h>
API:

CSSM_RETURN CSSMAPI CSSM CL_Cert Veri f yW t hKey
(CSSM CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Cert ToBeVeri fi ed)

SPI:

CSSM_RETURN CSSMCLI CL_Cert VerifyW t hKey
(CSSM CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Cert ToBeVeri fi ed)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the certificate library service module used to perform this
function.

CCHandl e (i nput)
A signature verification context defining the CSP, verification algorithm, and public key
that must be used to perform the operation.

Cert ToBeVeri fi ed (i nput)

A signed certificate whose signature is to be verified.

DESCRIPTION

This function verifies that the Cer t ToBeVeri fi ed parameter was signed using a specific private key and that
the certificate has not been altered since it was signed using that private key. The public key corresponding to
the private signing key is used in the verification process.

The CCHandl e, must be a signature verification context created using the function

CSSM CSP_Cr eat eSi gnat ur eCont ext () (CSSM API), or CSP_O eat eSi gnat ur eCont ext () (SPI). The context
must specify the Cryptographic Services Provider (CSP) module, the verification algorithm, and the public
verification key that must be used to perform this operation.

92

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_VERI FI CATI ON_FAI LURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CertVerify, CSSM_CL_CrlVerify
Functions for the CLI SPI:

CL_CertVerify, CL_CrlVerify

93

CL_CrlAbortCache

NAME
CL_CrlAbortCache: CSSM_CL_CrlAbortCache — Terminate a CRL cache handle (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Cr | Abort Cache
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Cr | Handl e)

SPI :

CSSM_RETURN CSSMCLI CL_Cr| Abort Cache
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Cr | Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the certificate library module used to perform this function.
O | Handl e (i nput)

The handle that identifies the cached CRL.

DESCRIPTION

This function terminates a CRL cache handle created and returned by the function CSSM C._Or | Cache()
(CSSM API), or O__O| Cache() (CL SPI). The Certificate Library module releases all cache space and state
information associated with the cached CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CL_| NVALI D CACHE HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

94

Online Help

Functions for the CSSM API:

CSSM_CL _CrlCache
Functions for the CLI SPI:
CL_CrlCache

95

CL_CrlAbortQuery

NAME
CL_CrlAbortQuery: CSSM_CL_CrlAbortQuery — Terminate a query (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr| Abort Query
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Abort Query
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Resul t sHandl e (i nput)
The handle that identifies the results of a CRL query.

DESCRIPTION

This function terminates the query initiated by CSSM CL_ Ol Get Fi r st Fi el dVal ue() or

CSSM CL_Cr | Get Fi rst CachedFi el dval ue() function (or their CL SPI equivalents), and allows the CL to
release all intermediate state information associated with the repeating-value get operation. Once this
function has been invoked, the results handle is invalid.

Applications must invoke this function to terminate the Resul t sHandl e. Using

CSSM CL_Cr | Get Next Fi el dval ue() or CSSM CL_Cr| Get Next CachedFi el dval ue() (or their CL SPI
equivalents), to access all of the attributes named by a single OID does not terminate the Resul t sHandl e.
This function can be invoked to terminate the results handle without accessing all of the values identified by
the single OID.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

96

CSSMERR_CL_| NVALI D_RESULTS_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstFieldValue, CSSM_CL_CrlGetNextFieldValue,
CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlGetNextCachedFieldValue

Functions for the CL SPI:

CL_CrlGetFirstFieldValue, CL_CrlGetNextFieldValue, CL_CrlGetFirstCachedFieldValue,
CL_CrlGetNextCachedFieldValue

97

CL_CrlAddCert

NAME
CL_CrlAddCert: CSSM_CL_CrlAddCert — Revoke an input certificate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Cr | AddCert
(CSSM_CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cert,

ui nt 32 Nurmber O Fi el ds,

const CSSM FI ELD *Crl EntryFi el ds,
const CSSM DATA *d dCrl,

CSSM _DATA_PTR NewCr |)

SPI :

CSSM_RETURN CSSMCLI CL_Cr| AddCert
(CSSM_CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cert,

ui nt 32 Nurmber O Fi el ds,

const CSSM FI ELD *Crl EntryFi el ds,
const CSSM DATA *d dCrl,

CSSM DATA_PTR NewCr |)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandl e (i nput)

The handle that describes the context of this cryptographic operation.
Cert (i nput)

A pointer to the CSSM_DATA structure containing the certificate to be revoked.
Nunber O Fi el ds (i nput)

The number of OID/value pairs specified in the CrlEntryFields input parameter.
O | EntryFi el ds (i nput)

An array of OlD/value pairs specifying the initial values for descriptive data fields of the
new CRL entry.

adal (i nput)

98

A pointer to the CSSM_DATA structure containing the CRL to which the newly revoked
certificate will be added.

NewCr | (out put)

A pointer to the CSSM_DATA structure containing the updated CRL. The NewCr | - >Dat a is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function revokes the input certificate by adding a record representing the certificate to the CRL. The
values for the new entry in the CRL are specified by the list of OID/value input pairs. The reason for
revocation is a typical value specified in the list. The new CRL entry is signed using the private key and
signing algorithm specified in the CCHandl e.

The CCHandl e must be a context created using the function CSSM CSP_Cr eat eSi gnat ur eCont ext () (CSSM
API), or CSP_Cr eat eSi gnat ur eCont ext () (CL SPI). The context must specify the Cryptographic Services
Provider (CSP) module, the signing algorithm, and the signing key that must be used to perform this
operation. The context must also provide the passphrase or a callback function to obtain the passphrase
required to access and use the private key.

The operation is valid only if the CRL has not been closed by the process of signing the CRL, by calling
CSSM CL_Crl Sign() (CSSM API),or __C | Sign() (CL SPI). Once the CRL has been signed, entries cannot
be added or removed.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT

CSSMERR _CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_NUMBER_OF_FI ELDS
CSSMERR_CL_| NVALI D_CRL_PQO NTER
CSSMERR_CL_CRL_ALREADY_SI GNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL._CrIRemoveCert

99

Functions for the CLI SPI:
CL_CrIRemoveCert

100

CL_CrlCache

NAME
CL_CrlICache: CSSM_CL_CrlCache — Cache a copy of a certificate revocation list (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | Cache
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Crl,

CSSM _HANDLE_PTR Cr| Handl e)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Cache
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Crl,

CSSM _HANDLE_PTR Cr| Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)
The handle that describes the certificate library module used to perform this function.
Ol (i nput)
A pointer to the CSSM_DATA structure containing the encoded CRL.
O | Handl e (out put)

A pointer to the CSSM_HANDLE that should be used in all future references to the cached
CRL.

DESCRIPTION

This function caches a copy of a Certi fi cat eRevocati onLi st (CRL) for subsequent accesses using the
functions CSSM CL_Or | Get Fi rst Fi el dVal ue() and CSSM CL_ O | Get Next Fi el dVval ue() (or their CL SPI
equivalents).

The input CRL must be in an encoded representation. The Certificate Library module can cache the CRL in
any appropriate internal representation. Parsed or incrementally parsed representations are common. The
selected representation is opaque to the caller.

The application must call CSSM CL_Or | CacheAbort () (CSSM API), or CL_Crl CacheAbort () (CL SPI), to
remove the cached copy when additional get operations will not be performed on the cached CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

101

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlGetNextCachedFieldValue,
CSSM_CL_IsCertInCachedCrl, CSSM_CL_CrlAbortQuery, CSSM_CL_CrlAbortCache

Functions for the CLI SPI:

CL_CrlGetFirstCachedFieldValue, CL_CrlGetNextCachedFieldValue, CL_IsCertInCachedCrl,
CL_CrlAbortQuery, CL_CrlAbortCache

102

CL_CrlICreateTemplate
NAME

CL_CriICreateTemplate: CSSM_CL_CrlCreateTemplate — Create an unsigned, memory-resident
CRL (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Cr | Creat eTenpl ate
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *Crl Tenpl at e,

CSSM _DATA_PTR NewCr |)

SPI :

CSSM_RETURN CSSMCLI CL_Crl CreateTenpl ate
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *Crl Tenpl at e,

CSSM DATA_PTR NewCr |)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Nunber O Fi el ds (i nput)
The number of OID/value pairs specified in the CrlITemplate input parameter.
O | Tenpl at e (i nput)

An array of OlD/value pairs specifying the initial values for descriptive data fields of the
new CRL.

NewCr | (out put)

A pointer to the CSSM_DATA structure containing the new CRL. The NewCr | -> Dat a is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function creates an unsigned, memory-resident CRL. Fields in the CRL are initialized with the
descriptive data specified by the OID/value input pairs. The specified OlD/value pairs can initialize all or a
subset of the general attribute fields in the new CRL. Subsequent values can be set using the

CSSM CL_Crl SetFi el ds() (CSSM API)orthe OL_CO | Set Fi el ds() (CL SPI) function. The new CRL contains
no revocation records.

103

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_NUMBER_OF_FI ELDS
CSSMERR_CL_I NVALI D_CRL_PQO NTER

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlSetFields, CSSM_CL_CrlAddCert, CSSM_CL_CrlSign, CSSM_CL_CertGetFirstFieldValue
Functions for the CLI SPI:

CL_CrlSetFields, CL_CrlAddCert, CL_CrlSign, CL_CertGetFirstFieldValue

104

CL_CrlDescribeFormat

NAME

CL_CrlIDescribeFormat: CSSM_CL_CrlDescribeFormat — Return a list of the CSSM_OID values
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | Descri beFor mat
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 *Nunber O O ds,

CSSM O D_PTR *QOi dLi st)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Descri beFor mat
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 *Number O O d,

CSSM O D_PTR *QOi dLi st)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

Nunber O O ds (out put)
The length of the returned array of OIDs.
Q dLi st (out put)

A pointer to the array of CSSM_OIDs that represent the supported CRL format. The OID
list is allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function returns a list of the CSSM_OID values the Certificate Library module uses to name and
reference fields of a CRL. Multiple CSSM_OID values can correspond to a single field. These OIDs can be
provided as input to CSSM CL_Or | Get Fi rst Fi el dVal ue() (CSSM API), or O__Crl Get Fi rst Fi el dVal ue()
(CL SPI), calls to retrieve field values from the CRL. The OID also implies the data format of the returned
value. When multiple OIDs name the same field of a CRL, those OIDs have different return data formats
associated with them.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

105

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO
Intel CDSA Application Developer's Guide

106

CL_CrlGetAllCachedRecordFields

NAME

CL_CrlGetAllCachedRecordFields: CSSM_CL_CrlGetAllCachedRecordFields — Return field values
from a CRL record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM CL_Cr | Get Al | CachedRecor dFi el ds
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Cr | Handl e,

const CSSM DATA *Crl Recordl ndex,

ui nt 32 *Nunber O Fi el ds,

CSSM FI ELD_PTR *Fi el ds)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Get Al | CachedRecor dFi el ds
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Cr | Handl e,

const CSSM DATA *Crl Recordl ndex,

ui nt 32 *Nunber O Fi el ds,

CSSM FI ELD_PTR *Fi el ds)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in certificate library module used to perform this
function.

O | Handl e (i nput)

A handle identifying a CRL that the application has temporarily cached with the Certificate
Library module. The referenced CRL must contain the CRL record identified by
Cr | Recor dl ndex.

O | Recor dl ndex (i nput)

An index value identifying a particular revocation record in a cached CRL.
Nunber O Fi el ds (out put)

The number of OID-value pairs returned by this function.
Fi el ds (out put)

A pointer to an array of CSSM_FIELD structures, describing the contents of the preselected
CRL record using OlID-value pairs. The field list is allocated by the service provider and
must be deallocated by the application by calling CSSM C__Fr eeFi el ds() (CSSM API), or
CL_FreeFiel ds() (CL SPI).

107

DESCRIPTION

This function returns all field values from a prelocated, cached CRL record. The scanned CRL record is
identified by O | Recor dl ndex, which is returned by the function CSSM CL_| sCert I nCachedCrl () (CSSM
API), or CL_I| sCert | nCachedCr| () (CL SPI).

Fields are returned as a set of OlID-value pairs. The OID identifies the CRL record field and the data format
of the value extracted from that field. The Certificate Library module defines and uses a preferred data
format for returning field values in this function.

Each CRL record may be digitally signed when it is added to the CRL using the function
CSSM CL_Crl AddCert () (CSSM API), or CL_O | AddCert () (CL SPI). This function does not perform any
signature verification on the CRL record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_CACHE_HANDLE
CSSMERR _CL_| NVALI D_CRL_I NDEX

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL _IsCertInCachedCrl, CSSM_CL_CrlCache, CSSM_CL_CrlAbortCache, CSSM_CL_FreeFields
Functions for the CLI SPI:

CL_IsCertInCachedCrl, CL_CriCache, CL_CrlAbortCache, CL_FreeFields

108

CL_CriGetAllFields

NAME
CL_CrlGetAllFields: CSSM_CL_CrlGetAllFields — Get the field values from the CRL (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM RETURN CSSMAPI CSSM CL_Orl Get Al | Fi el ds
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Crl,

ui nt 32 *Nunber Of Crl Fi el ds,

CSSM FI ELD_PTR *Cr| Fi el ds)

SPI :

CSSM RETURN CSSMCLI CL_Crl Get Al l Fi el ds
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Crl,

ui nt 32 *Nunber Of Crl Fi el ds,

CSSM FI ELD_PTR *Cr| Fi el ds)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Ol (i nput)

A pointer to the CSSM_DATA structure that contains the encoded, packed CRL from which
field values are to be extracted.

Nunber O Cr |l Fi el ds (out put)
The number of entries in the array O | Fi el ds.
O | Fi el ds (out put)

A pointer to an array of OID-value pairs that describe the contents of the CRL. The
extracted CRL fields are returned as the value portion of each OID-value pair. The field list
is allocated by the service provider and must be deallocated by the application by calling
CSSM CL_FreeFi el ds() (CSSM API), or CL_FreeFi el ds() (CL SPI).

DESCRIPTION

This function returns one or more structures. Each structure contains a set of field values from the encoded,
packed CRL contained in O | . Each structure is returned in the Fi el dVal ue entry of the CSSM_FIELD
structure O | Fi el ds. The parameter Nunber O O | Fi el ds indicates the number of returned structures.

109

The CRL can be signed or unsigned. This function does not perform any signature verification on the CRL
fields or the CRL records. Each CRL record can be digitally signed when it is added to the CRL using the
function CSSM CL_ Ol AddCert () (CSSM API), or CL_O | AddCert () (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_FreeFields
Functions for the CLI SPI:
CL_FreeFields

110

CL_CrlGetFirstCachedFieldVvalue

NAME

CL_CrlGetFirstCachedFieldValue: CSSM_CL_CrlGetFirstCachedFieldValue — Get field values from
the cached CRL (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | Get Fi rst CachedFi el dval ue
(CSSM CL_HANDLE CLHandl e,

CSSM HANDLE Crl Handl e,

const CSSM DATA *Crl Recordl ndex,

const CSSM AOD *CrlField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber O Mat chedFi el ds,

CSSM DATA_PTR *Fi el dVval ue)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Get First CachedFi el dVval ue
(CSSM CL_HANDLE CLHandl e,

CSSM HANDLE Crl Handl e,

const CSSM DATA *Crl Recordl ndex,

const CSSM AOD *CrlField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber O Mat chedFi el ds,

CSSM DATA_PTR *Fi el dVal ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

O | Handl e (i nput)

A handle identifying a CRL that the application has temporarily cached with the Certificate
Library module. The referenced CRL is searched for the field values identified by O | Fi el d.

O | Recor dl ndex (input/optional)

An index value identifying a particular revocation record in a cached CRL. If an index value
is supplied, the scan for the field values identified by O | Fi el d is limited to the preselected
revocation record.

Ol Field(input)
A pointer to an object identifier that identifies the field value to be extracted from the CRL.

Resul t sHandl e (out put)

111

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

Nunber O Mat chedFi el ds (out put)

The total number of fields that match the O | Fi el d OID. This count includes the first
match, which was returned by this function.

Fi el dval ue (out put)

A pointer to the structure containing the value of the requested field. The structure and the
field at1 " (*Fiel dval ue) - >Dat a" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API), or CL_Fr eeFi el dVal ue() (CL SPI), function can
be used to deallocate *Fi el dVal ue and (*Fi el dval ue) - >Dat a.

DESCRIPTION

This function returns a single structure containing a set of field values from the cached CRL identified by

O | Handl e parameter. The selected fields are designated by the CSSM_OID O | Fi el d parameter and
returned in the output parameter Fi el dVal ue. The OID also identifies the data format of the values returned
to the caller. If multiple OIDs designate the same CRL field, then each such OID defines a distinct data
format for the returned values. The function CSSM CL_Cr | Descri beFor mat () (CSSM API), or

CL_O | Descri beFormat () (CL SPI), provides a list of all CSSM_OID values supported by a CL module for
naming fields of a CRL.

The search can be limited to a particular revocation record within the CRL. A single record is identified by the
O | Recor dl ndex parameter, which is returned by the function CSSM CL_| sCert | nCachedO | () (CSSM API),
or CL_I sCertlnCachedCr | () (CL SPI). If no record index is supplied, the search is initiated from the
beginning of the CRL.

The CRL can be signed or unsigned. This function does not perform any signature verification on the CRL
fields or the CRL records. Each CRL record can be digitally signed when it is added to the CRL using the
function CSSM CL_ Ol AddCert () (CSSM API), or OL_O | AddCert () (CL SPI). The caller can examine fields
in the CRL and CRL records at any time using this function.

The Ol Fi el d OID can identify a single occurrence of a set of CRL fields or multiple occurrences of a set of
CRL fields. If the Cr | Fi el d OID matches more than one occurrence, this function outputs the total number of
matches and a Resul t sHandl e to be used as input to CSSM O | Get Next Fi el dVal ue() (CSSM API), or

O | Get Next Fi el dVal ue() (CL SPI), to retrieve the remaining matches. The first match is returned as the
return value of this function.

This function determines the complete set of matches. The number of matches and the selected field values do
not change between this function and subsequent calls to CSSM CL_Or | Get Next Fi el dVal ue() (CSSM API),
or CL_Crl Get Next Fi el dval ue() (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

112

CSSMERR_CL_| NVALI D_CACHE_HANDLE
CSSMERR _CL_| NVALI D_CRL_I NDEX
CSSMERR_CL_UNKNOAN_TAG
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetNextCachedFieldValue, CSSM_CL_IsCertInCachedCrl, CSSM_CL_CrlAbortQuery,
CSSM_CL _CrlCache, CSSM_CL_CrlAbortCache, CSSM_CL_CrlDescribeFormat, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CrlGetNextCachedFieldValue, CL_IsCertinCachedCrl, CL_CrlAbortQuery, CL_CrlCache,
CL_CrlAbortCache, CL_CrlDescribeFormat, CL_FreeFieldValue

113

CL_CrlGetFirstFieldValue

NAME

CL_CrlGetFirstFieldVvalue: CSSM_CL_CrlGetFirstFieldValue — Get the value of the first CRL field
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | Get Fi r st Fi el dval ue
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Crl,

const CSSM AOD *CrlField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber O Mat chedFi el ds,

CSSM _DATA_PTR *Val ue)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Get FirstFi el dval ue
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Crl,

const CSSM AOD *CrlField,

CSSM HANDLE_PTR Resul t sHandl e,

ui nt 32 *Nunber O Mat chedFi el ds,

CSSM _DATA_PTR *Val ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Ol (i nput)

A pointer to the CSSM_DATA structure that contains the CRL from which the field is to be
retrieved.

Ol Field(input)
An object identifier that identifies the field value to be extracted from the CRL.
Resul t sHandl e (out put)

A pointer to the CSSM_HANDLE that should be used to obtain any additional matching
fields.

Nunber O Mat chedFi el ds (out put)

The total number of fields that match the O | Fi el d OID. This count includes the first
match, which was returned by this function.

Val ue (out put)

114

A pointer to the structure containing the value of the requested field. The structure and the
field at1 " (*Val ue)->Dat a" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API), or CL_Fr eeFi el dval ue() (CL SPI), function can
be used to deallocate *Val ue and (* Val ue) - >Dat a.

DESCRIPTION

This function returns the value of the CRL field designated by the CSSM_OID O | Fi el d. The OID also
identifies the data format for the field value returned to the caller. If multiple OIDs name the same CRL field,
then each OID defines a distinct data format for the returned field value. The function

CSSM CL_Cr | Descri beFor mat () (CSSM API), or CL_CO | Descri beFormat () (CL SPI), provides a list of all
CSSM_OID values supported by a Certificate Library module for naming fields of a CRL.

If more than one field matches the O | Fi el d OID, the first matching field will be returned. The number of
matching fields is an output parameter, as is the Resul t sHandl e to be used to retrieve the remaining
matching fields.

The set of matching fields is determined by this function. The number of matching fields and the field values
do not change between this function and subsequent calls to CSSM CL_Cr | Get Next Fi el dVal ue() (CSSM
API), or CL_Crl Get Next Fi el dval ue() (CL SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CRL_PQO NTER
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_UNKNOAN_TAG
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetNextFieldValue, CSSM_CL_CrlAbortQuery, CSSM_CL_CrlGetAllFields
Functions for the CLI SPI:

CL_CrlGetNextFieldValue, CL_CrlAbortQuery, CL_CrlGetAllFields

115

CL_CrlGetNextCachedFieldValue

NAME

CL_CrlGetNextCachedFieldValue: CSSM_CL_CrlGetNextCachedFieldValue — Get the value of the
next cached CRL field (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Cr | Get Next CachedFi el dVval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Fi el dval ue)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Get Next CachedFi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Fi el dval ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Resul t sHandl e (i nput)
The handle that identifies the results of a CRL query.
Fi el dval ue (out put)

A pointer to the structure containing the value of the requested field. The structure and the
field at1 " (*Fil edVal ue)->Dat a" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API), or CL_Fr eeFi el dVal ue() (CL SPI), function can
be used to deallocate *Fi el dVal ue and (*Fi el dVval ue) - >Dat a.

DESCRIPTION

This function returns the value of a CRL field, when that field occurs multiple times in a CRL. CRLs with
repeated fields (such as revocation records) have multiple field values corresponding to a single OID. A call to
the function CSSM CL_Cr | Get Fi r st CachedFi el dval ue() (CSSM API), or

CL_O | Get Fi rst CachedFi el dval ue() (CL SPI), initiates the process and returns a Resul t sHandl e
identifying the size and values contained in the result set. The CSSM CL_Cr | Get Next CachedFi el dVal ue()
(CSSM API), or O__O | Get Next CachedFi el dval ue() (CL SPI), function can be called repeatedly to obtain
these values, one at a time. The result set does not change in size or value between calls to this function.

The result set selected by CSSM CL_Cr | Get Fi r st CachedFi el dVal ue() (CSSM API), or
CL_O | Get Fi rst CachedFi el dval ue() (CL SPI), and identified by Resul t sHandl e can reference CRL fields
repeated across multiple revocation records or within one revocation record. The scope of the scan was set by

116

an optional Cr | Recor dl ndex input to the function CSSM CL_Cr | Get Fi r st CachedFi el dVal ue() (CSSM API),
or CL_Or | Get Fi rst CachedFi el dval ue() (CL SPI). If the record index was specified, then the results set is
the revocation record identified by the index. If no record index was specified, then the results set can include
repeated fields from multiple revocation records in a CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_RESULTS_HANDLE
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlAbortQuery, CSSM_CL_IsCertInCachedCrl,
CSSM_CL _CrlCache, CSSM_CL_CrlAbortCache, CSSM_CL_FreeFieldValue

Functions for the CLI SPI:

CL_CrlGetFirstCachedFieldValue, CL_CrlAbortQuery, CL_IsCertinCachedCrl, CL_CrlCache,
CL_CrlAbortCache, CL_FreeFieldValue

117

CL_CriGetNextFieldValue

NAME

CL_CrlGetNextFieldValue: CSSM_CL_CrlGetNextFieldValue — Get the value of the next CRL field
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | Get Next Fi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Val ue)

SPI :

CSSM _RETURN CSSMCLI CL_Crl Get Next Fi el dval ue
(CSSM_CL_HANDLE CLHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DATA_PTR *Val ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Resul t sHandl e (i nput)
The handle that identifies the results of a CRL query.
Val ue (out put)

A pointer to the structure containing the value of the requested field. The structure and the
field at1 " (*Val ue)->Dat a" are allocated by the service provider. The

CSSM CL_Fr eeFi el dVal ue() (CSSM API), or CL_Fr eeFi el dVal ue() (CL SPI), function can
be used to deallocate *Val ue and (* Val ue) - >Dat a.

DESCRIPTION

This function returns the value of a CRL field, when that field occurs multiple times in a CRL. CRLs with
repeated fields (such as revocation records) have multiple field values corresponding to a single OID. A call to
the function CSSM CL_ O | Get Fi r st Fi el dVal ue() (CSSM API), or CL_Cr | Get Fi r st Fi el dval ue() (CL SPI),
initiates the process and returns a results handle identifying the size and values contained in the result set.
The CSSM CL_Or | Get Next Fi el dVal ue() (CSSM API), or OL_O | Get Next Fi el dval ue() (CL SPI), function
can be called repeatedly to obtain these values, one at a time. The result set does not change in size or value
between calls to this function.

118

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_RESULTS_HANDLE
CSSMERR_CL_NO_FI ELD_VALUES

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlGetFirstFieldValue, CSSM_CL_CrlAbortQuery
Functions for the CLI SPI:

CL_CrlGetFirstFieldValue, CL_CrlAbortQuery

119

CL_CrIRemoveCert

NAME
CL_CrIRemoveCert: CSSM_CL_CrIRemoveCert — Reinstate a certificate (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | RenpveCer t
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

const CSSM DATA *d dCrl,

CSSM _DATA_PTR NewCr |)

SPI :

CSSM_RETURN CSSMCLI CL_Crl RenoveCert
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

const CSSM DATA *d dCrl,

CSSM _DATA_PTR NewCr |)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Cert (i nput)
A pointer to the CSSM_DATA structure containing the certificate to be reinstated.
adal (i nput)

A pointer to the CSSM_DATA structure containing the CRL from which the certificate is to
be removed.

NewCr | (out put)

A pointer to the CSSM_DATA structure containing the updated CRL. The NewCr | - >Dat a is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function reinstates a certificate by removing it from the specified CRL. The operation is valid only if the
CRL has not been closed by the process of signing the CRL by executing CSSM CL_Cr | Si gn() (CSSM API), or
CL_Ol Sign() (CL SPI). Once the CRL has been signed, entries cannot be added or removed.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

120

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_| NVALI D_CERT_POI NTER
CSSMERR_CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_CRL_ALREADY_SI GNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlAddCert
Functions for the CLI SPI:
CL_CrlAddcCert

121

CL_CrlSetFields

NAME
CL_CrlSetFields: CSSM_CL_CrlSetFields — Set new field values (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr | Set Fi el ds
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *Crl Tenpl at e,

const CSSM DATA *d dCrl,

CSSM DATA_PTR Modi fiedCrl)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Set Fi el ds
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *Crl Tenpl at e,

const CSSM DATA *d dCrl,

CSSM DATA_PTR Modi fiedCrl)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Nunber O Fi el ds (i nput)
The number of OID value pairs specified in the CrITemplate input parameter.
O | Tenpl at e (i nput)

Any array of field OID value pairs containing the values to initialize the CRL attribute
fields.

adal (i nput)

The CRL to be updated with the new attribute values. The CRL must be unsigned and
available for update.

Modi fi edCrl (out put)

A pointer to the modified, unsigned CRL. The Modi fi edCr| - >Dat a is allocated by the
service provider and must be deallocated by the application.

122

DESCRIPTION

This function will set the fields of the input CRL to the new values, specified by the input OlID/value pairs. If
there is more than one possible instance of an OID (for example, as in an extension or CRL record), then a
new field with the specified value is added to the CRL.

This function should be used to update any of the CRL field values. If a specified field was initialized by
CSSM CL_Crl Creat eTenpl ate() (CSSM API), or CL_O | Creat eTenpl at e() (CL SPI), the field value is set to
the new specified value. If a specified field was not initialized by the CSSM CL_O | O eat eTenpl at e() (CSSM
API), or CL_Crl Creat eTenpl at e() (CL SPI), the field is set to the new specified value. The A dCrl must be
unsigned. Once a CRL has been signed using CSSM CL_Cr | Si gn() (CSSM API),or O__O| Sign() (CL SPI),
the signed CRL's field values cannot be modified. Modification would invalidate the cryptographic signature
of the CRL.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_NUMBER_OF _FI ELDS
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_CRL_ALREADY_SI GNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlICreateTemplate, CSSM_CL_CrlAddCert, CSSM_CL_CrlSign,
CSSM_CL_CertGetFirstFieldValue

Functions for the CLI SPI:
CL_CrlICreateTemplate, CL_CrlAddCert, CL_CrlSign, CL_CertGetFirstFieldvalue

123

CL_CrlSign
NAME
CL_CrlISign: CSSM_CL_CrlSign, CL_CrlISign — Sign a CRL (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Crl Si gn
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Unsi gnedCrl ,
const CSSM Fl ELD *Si gnScope,

ui nt 32 ScopeSi ze,

CSSM DATA_PTR Si gnedCrl)

SPI :

CSSM _RETURN CSSMCLI CL_Crl Sign
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Unsi gnedCrl ,
const CSSM Fl ELD *Si gnScope,

ui nt 32 ScopesSi ze,

CSSM DATA_PTR Si gnedCrl)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

CCHandl e (i nput)

The handle that describes the context of this cryptographic operation.
Unsi gnedCrl (i nput)

A pointer to the CSSM_DATA structure containing the CRL to be signed.
Si gnScope (input/optional)

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
signed. If the signing scope is null, the Certificate Library module includes a default set of
CRL fields in the signing process.

ScopeSi ze (i nput)

The number of entries in the sign scope list. If the signing scope is not specified, the input
scope size must be zero.

Si gnedOr| (out put)

124

A pointer to the CSSM_DATA structure containing the signed CRL. The Si gnedCr | - >Dat a
is allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function signs a CRL using the private key and signing algorithm specified in the CCHandl e parameter.
The result is a signed, encoded certificate revocation list in Si gnedCr | . The unsigned CRL is specified in the
input Unsi gnedOr | . The Unsi gnedCr | is constructed using the CSSM CL_ O | Creat eTenpl at e(),

CSSM CL_Crl SetFields(),CSSM CL_COl AddCert (), and CSSM CL_Cr | RenmoveCert () functions (for the
CSSM API), or their CL SPI equivalents.

The CCHandl e must be context created using the function CSSM CSP_(Or eat eSi gnat ur eCont ext () (CSSM
API), or CSP_Cr eat eSi gnat ur eCont ext () (SPI1). The context must specify the Cryptographic Services
Provider module, the signing algorithm, and the signing key that must be used to perform this operation. The
context must also provide the passphrase or a callback function to obtain the passphrase required to access
and use the private key.

The fields included in the signing operation are identified by the OIDs in the optional S gnScope array.

Once the CRL has been signed it cannot be modified. This means that entries cannot be added or removed
from the CRL through application of the CSSM CL_COr | AddCert () or

CSSM CL_Cr | RenmoveCert CSSM CL_Or | RenoveCert () (or their CL SPI equivalent operations. A signed CRL
can be verified, applied to a data store, and searched for values.

The memory for the Si gnedCr | - >Dat a output is allocated by the service provider using the calling
application's memory management routines. The application must deallocate the memory.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT

CSSMERR _CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_SCOPE
CSSMERR_CL_SCOPE_NOT_SUPPORTED
CSSMERR CL_| NVALI D NUMBER OF FI ELDS
CSSMERR_CL_CRL_ALREADY_SI GNED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

125

Functions:

CSSM_CL_CrlVerify, CSSM_CL_CrlVerifyWithKey
Functions for the CLI SPI:

CL_CrlVerify, CL_CrlVerifyWithKey

126

CL_CrlVerity

NAME
CL_CrlVerify: CSSM_CL_CrlVerify — Verify a signed CRL has not been altered (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Crl Verify
(CSSM_CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Crl ToBeVeri fi ed,
const CSSM DATA *Si gner Cert,
const CSSM Fl ELD *Veri f yScope,

ui nt 32 ScopesSi ze)

SPI :

CSSM_RETURN CSSMCLI CL_Crl Verify
(CSSM_CL_HANDLE CLHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Crl ToBeVeri fi ed,
const CSSM DATA *Si gner Cert,
const CSSM Fl ELD *Veri f yScope,

ui nt 32 ScopesSi ze)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

CCHandl e (input/optional)
The handle that describes the context of this cryptographic operation.
O | ToBeVerified (i nput)
A pointer to the CSSM_DATA structure containing the CRL to be verified.
Si gner Cert (input/optional)
A pointer to the CSSM_DATA structure containing the certificate used to sign the CRL.
Veri f yScope (input/optional)

A pointer to the CSSM_FIELD array containing the tag/value pairs of the fields to be
verified. If the verification scope is null, the Certificate Library module assumes that a
default set of fields were used in the signing process and those same fields are used in the
verification process.

ScopeSi ze (i nput)

127

The number of entries in the verify scope list. If the verification scope is not specified, the
input value for scope size must be zero.

DESCRIPTION

This function verifies that the signed CRL has not been altered since it was signed by the designated signer.
It does this by verifying the digital signature over the fields specified by the Veri f yScope parameter.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR _CL_I NVALI D_CERT_POI NTER
CSSMERR CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT

CSSMERR _CL_I NVALI D_FI ELD_POl NTER
CSSMERR_CL_UNKNOAN_TAG

CSSMERR_CL_| NVALI D_SCOPE

CSSMERR CL_I NVALI D NUMBER OF FI ELDS
CSSMERR_CL_SCOPE_NOT_SUPPORTED
CSSMERR _CL_VER! FI CATI ON_FAI LURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlSign
Functions for the CLI SPI:
CL_CrlISign

128

CL_CrlVerifyWithKey

NAME
CL_CrlVerifyWithKey: CSSM_CL_CrlVerifyWithKey — Verify a CRL with a specific key (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Cr |l Veri f yW t hKey
(CSSM CL_HANDLE CLHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cr| ToBeVeri fi ed)

SPI :

CSSM _RETURN CSSMCLI CL_Crl Veri fyW t hKey
(CSSM CL_HANDLE CLHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cr| ToBeVeri fi ed)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the Certificate Library service module used to perform this
function.

CCHandl e (i nput)

A signature verification context defining the Cryptographic Services Provider (CSP),
verification algorithm, and public key that must be used to perform the operation.

O | ToBeVeri fied (i nput)

A signed certificate revocation list whose signature is to be verified.

DESCRIPTION

This function verifies that the Crl ToBeVer i fi ed parameter was signed using a specific private key and that
the certificate revocation list has not been altered since it was signed using that private key. The public key
corresponding to the private signing key is used in the verification process.

The cryptographic context indicated by the CCHandl e parameter must be a signature verification context
created using the function CSSM CSP_Cr eat eSi gnat ur eCont ext () (CSSM API) or

CSP_Or eat eSi gnat ur eCont ext () (CL SPI). The context must specify the Cryptographic Services Provider
(CSP) module, the verification algorithm, and the public verification key that must be used to perform this
operation.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

129

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR_CL_I NVALI D_CRL_PQO NTER
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_VERI FI CATI ON_FAI LURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlVerify
Functions for the CLI SPI:
CL_CrlVerify

130

CL_FreeFields

NAME
CL_FreeFields: CSSM_CL_FreeFields — Free fields (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_Fr eeFi el ds
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

CSSM FI ELD_PTR *Fi el dArray)

SPI :

CSSM_RETURN CSSMCLI CL_FreeFi el ds
(CSSM_CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

CSSM FI ELD_PTR *Fi el dArray)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Nunber O Fi el ds (i nput)
The length of the array of fields in Fi el dArr ay.
Fi el dArray (i nput)
A pointer to an array of CSSM_FIELD structures that need to be deallocated.

DEFINITIONS

This function frees the fields in the Fi el dArr ay by freeing the data pointers for both the Fi el dG d and
Fi el dval ue fields. It also frees the top level Fi el dArray pointer.

This function should be used only to free CSSM_FIELD_PTR values returned from calls
CSSM TP_Cert Get Al | Tenpl at eFi el ds(), CSSM CL_Cert Get Al | Tenpl at eFi el ds(),
CSSM CL_CertGetAll Fields(),CSSM QL Ol Get All Fi el ds(),

CSSM CL_Cr | Get Al | CachedRecor dFi el ds(), or their SPI equivalent calls.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

131

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO
Intel CDSA Application Developer's Guide

132

CL_FreeFieldVvalue

NAME
CL_FreeFieldValue: CSSM_CL_FreeFieldValue — Free field data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_Fr eeFi el dval ue
(CSSM_CL_HANDLE CLHandl e,

const CSSM AOD *CertOrCrl O d,

CSSM _DATA_PTR Val ue)

SPI :

CSSM_RETURN CSSMCLI CL_FreeFi el dval ue
(CSSM_CL_HANDLE CLHandl e,

const CSSM AOD *CertOrCrl G d,

CSSM _DATA_PTR Val ue)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

CertO Ol Ad (i nput)

A pointer to the CSSM_OID structure describing the type of the Val ue to be freed.
Val ue (i nput)

A pointer to the CSSM_DATA structure containing the Dat a to be freed.

DESCRIPTION

This function frees the data specified by Val ue and Val ue- >Dat a. Cert O O | G d indicates the type of the
data in Val ue.

This function should be used only to free CSSM_DATA values returned from calls

CSSM CL_Cert Get Fi rst Fi el dval ue(), CSSM CL_Cert Get Next Fi el dval ue(),

CSSM CL_Cert Get Fi r st CachedFi el dval ue(), CSSM CL_Cer t Get Next CachedFi el dVval ue(),

CSSM CL_Crl Get Fi rstFi el dval ue(), CSSM CL_Cr| Get Next Fi el dval ue(),

CSSM CL_Cr | Get Fi rst CachedFi el dVal ue(), CSSM CL_Cr | Get Next CachedFi el dVal ue(), or their CLI SPI
equivalents.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

133

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CL_UNKNOMWN_TAG

SEE ALSO
Intel CDSA Application Developer's Guide

134

CL_IsCertInCachedCrl

NAME
CL_IsCertinCachedCrl: CSSM_CL _IsCertinCachedCrl — Search cached CRL for a record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM CL_I sCert | nCachedCr|
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

CSSM HANDLE Crl Handl e,

CSSM BOOL * Cert Found,

CSSM _DATA_PTR Crl Recordl ndex)

SPI :

CSSM_RETURN CSSMCLI CL_I sCert | nCachedCrl
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

CSSM HANDLE Crl Handl e,

CSSM BOOL * Cert Found,

CSSM _DATA_PTR Crl Recordl ndex)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Cert (i nput)
A pointer to the CSSM_DATA structure containing an encoded, packed certificate.
O | Handl e (i nput)

A handle identifying a CRL that the application has temporarily cached with the Certificate
Library module. The referenced CRL is searched for a revocation record matching the
specified Cert .

Cer t Found (out put)

A pointer to a CSSM_BOOL indicating success or failure in finding the specified certificate
in the CRL. CSSM_TRUE signifies that the certificate was found in the CRL.
CSSM_FALSE indicates that the certificate was not found in the CRL.

O | Recor dl ndex (out put)

A pointer to a CSSM_DATA structure containing an index descriptor for direct access to the
located CRL record. O | Recor dl ndex- >Dat a is allocated by the service provider and must
be deallocated by the application.

135

DESCRIPTION

This function searches the cached CRL for a record corresponding to the certificate. The result of the search is
returned in Cert Found. The CRL and the records within the CRL must be digitally signed. This function does
not verify either signature. The caller should use CSSM TP_Cr| Veri fy() or CSSM CL_Cr | Veri fy() (or their
SPI equivalents) before invoking this function. Once the CRL has been verified, the caller can invoke this
function repeatedly without repeating the verification process.

If the certificate is found in the CRL, the CL module returns an index descriptor Cr| Recor dl ndex for use
with other Certificate Library CRL functions. The index provides more direct access to the selected CRL
record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_UNKNOAN_FORVAT
CSSMERR_CL_| NVALI D_CACHE_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstCachedFieldValue, CSSM_CL_CrlGetNextCachedFieldValue,
CSSM_CL_CrlGetAllCachedRecordField, CSSM_CL_CrlCache, CSSM_CL_CrlAbortCache

Functions for the CLI SPI:

CL_CrlGetFirstCachedFieldValue, CL_CrlGetNextCachedFieldValue, CL_CrlGetAllCachedRecordField,
CL_CrlICache, CL_CrlAbortCache

136

CL_IsCertInCrl

NAME
CL_IsCertInCrl: CSSM_CL _IsCertInCrl — Search CRL for a certificate record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_IsCertlnCrl
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

const CSSM DATA *Crl,

CSSM BOOL * Cert Found)

SPI :

CSSM_RETURN CSSMCLI CL_lsCertlInCrl
(CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert,

const CSSM DATA *Crl,

CSSM BOOL * Cert Found)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

Cert (i nput)

A pointer to the CSSM_DATA structure containing the certificate to be located.
Ol (i nput)

A pointer to the CSSM_DATA structure containing the CRL to be searched.
Cer t Found (out put)

A pointer to a CSSM_BOOL indicating success or failure in finding the specified certificate
in the CRL. CSSM_TRUE signifies that the certificate was found in the CRL.
CSSM_FALSE indicates that the certificate was not found in the CRL.

DESCRIPTION

This function searches the CRL for a record corresponding to the certificate. The result of the search is
returned in Cert Found. The CRL and the records within the CRL must be digitally signed. This function does
not verify either signature. The caller should use CSSM TP_Cr| Veri fy() or CSSM CL_Cr | Veri fy() (or their
SPI equivalents) before invoking this function. Once the CRL has been verified, the caller can invoke this
function repeatedly without repeating the verification process.

137

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CL_I NVALI D_CERT_POI NTER
CSSMERR_CL_I NVALI D_CRL_PO NTER
CSSMERR_CL_UNKNOAN_FORVAT

SEE ALSO
Intel CDSA Application Developer's Guide

138

CL_PassThrough

NAME
CL_PassThrough: CSSM_CL_PassThrough — Extend certificate library functionality (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CL_PassThr ough
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

ui nt 32 PassThroughl d,

const void *I| nput Parans,

voi d **Qut put Par ans)

SPI :

CSSM_RETURN CSSMCLI CL_PassThr ough
(CSSM_CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

ui nt 32 PassThroughl d,

const void *I| nput Parans,

voi d **Qut put Par ans)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CLHandl e (i nput)

The handle that describes the add-in Certificate Library module used to perform this
function.

CCHandl e (input/optional)

The handle that describes the context of the cryptographic operation. If the module-specific
operation does not perform any cryptographic operations, a cryptographic context is not
required.

PassThr oughl d (i nput)
An identifier assigned by the CL module to indicate the exported function to perform.
| nput Par ans (input/optional)

A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested CL module.

Qut put Par ans (output/optional)

A pointer to a module, implementation-specific structure containing the output data. The
service provider allocates the memory for substructures. The application must free the
memory for the substructures.

139

DESCRIPTION

This function allows applications to call certificate library module-specific operations. Such operations might
include queries or services that are specific to the domain represented by the CL module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _CL_| NVALI D_CONTEXT_HANDLE
CSSMERR_CL_I NVALI D_PASSTHROUGH_| D
CSSMERR CL_I NVALI D_DATA

SEE ALSO
Intel CDSA Application Developer's Guide

140

CSP_EventNotify
NAME

CSP_EventNotify — Notify service module of a context event

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMBPI CSP_Event Not i fy
(CSSM_MODULE_HANDLE CSPHandl e,
CSSM_CONTEXT_EVENT Event,

CSSM _CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext)

The CSP_EventNotify() function is used by the CSSM Core to interact with the CSP module. Because this
function is exposed to CSSM only as a function pointer, the function name internal to the CSP can be assigned
at the discretion of the CSP module developer. However, the parameter list and return value types must

match those defined for this function.

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Event (i nput)

One of the following event types listed:

Event

Description

CSSM CONTEXT _EVENT _CREATE

CSSM CONTEXT_EVENT_DELETE

CSSM CONTEXT_EVENT _UPDATE

A caller using this module attach handle has created
a new cryptographic context using
CSSM O eat e*** Cont ext .

A caller using this module attach handle has deleted
a cryptographic context using
CSSM Del et eCont ext ().

A caller using this module attach handle has updated
an existing cryptographic context.

CCHandl e (i nput)

The cryptographic context handle for the context affected by the event.

Cont ext

A pointer to the cryptographic context affected by the event. The results of the event are

visible in the context.

141

DESCRIPTION

This function is used to notify the service module of a context event related to a particular attach handle.
Valid events include creation, deletion, or modification of a cryptographic context. The service module can
examine the new or modified context referenced by pCont ext to determine whether the context is acceptable
to the service module.

If the cryptographic context is acceptable (if the service module examines the contents of the context only
upon use of the context), then the service module should return CSSM K. If the cryptographic context is not
acceptable, then the service module should return CSSM FAI L.

Upon receiving a return value of CSSM (K, CSSM completes the operation signaled by this event and returns
to the calling application. If the return value is CSSM FAI L, CSSM deletes a newly created context or
modifications to an existing context, and returns the failed result to the calling application. When deleting a
cryptographic context, CSSM always returns success to the calling application.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions:

CSSM_CSP_CreateSignatureContext, CSSM_CSP_CreateDigestContext,
CSSM_CSP_CreateSymmetricContext, CSSM_CSP_CreateMacContext,
CSSM_CSP_CreateRandomGenContext, CSSM_CSP_CreateAsymmetricContext,
CSSM_CSP_CreateDeriveKeyContext, CSSM_CSP_CreateKeyGenContext,
CSSM_CSP_CreatePassThroughContext, CSSM_DeleteContext, CSSM_UpdateContextAttributes

142

cssm_CcToHandle

NAME
cssm_CcToHandle — Get the module attach handle (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm CcToHandl e
(CSSM_CC_HANDLE Cc,
CSSM_MODULE_HANDLE_PTR Mbdul eHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Cc (i nput)

A handle identifying a cryptographic context.
Modul eHand! e (out put)

A service provider's module attach handle. This value will be set to
CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function returns the module attach handle identifying the service module that is managing the specified
cryptographic context.

The entry point to this function is provided to a service module in a table of upcal | functions passed to the
service provider during module attach processing.

If the PVC checking for service providers is on, the service provider has to introduce itself before calling this
function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

143

CSSM_ChangeKeyAcl

NAME
CSSM_ChangeKeyAcl — Edit a stored ACL associated with the target key (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM ChangeKeyAcl

(CSSM CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_EDIT *Acl Edit,

const CSSM KEY *Key)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation

AccessCred (i nput)

A pointer to the set of one or more credentials used to authenticate and validate the caller's
authorization to modify the ACL associated with the key. Required credentials can include
zero or more certificates, zero or more caller names, and one or more samples. If certificates
and/or caller names are provided as input, these must be provided as immediate values in
this structure. The samples can be provided as immediate values or can be obtained through
a callback function included in the AccessCr ed structure.

Acl Edi t (i nput)

A structure containing information that defines the edit operation. Valid operations include:
adding, replacing, and deleting entries in an ACL managed by the service provider. The
Acl Edi t can contain information for a new ACL entry and a handle uniquely identifying an
existing ACL entry. The information controls the edit operation as follows:

Value of AclEdit.EditMode Use of AclEdit.NewEnNtry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_ADD Adds a new ACL entry to the set of ACL entries
associated with the specified Key. The new ACL entry is
created from the ACL entry prototype contained in
NewEnt ry. A dEnt r yHandl e is ignored for this edit mode.

CSSM_ACL_EDIT_MODE_DELETE Deletes the ACL entry identified by AQ dEnt r yHandl e
and associated with the specified Key. NewEnt ry is
ignored for this edit mode.

144

Value of AclEdit.EditMode Use of AclEdit.NewEnNtry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_REPLACE Replaces the ACL entry identified by A dEnt r yHandl e
and associated with the specified Key. The existing ACL
is replaced based on the ACL entry prototype contained
in the NewEntry.

When replacing an existing ACL entry, the caller must replace all of the items in an ACL
entry. The replacement prototype includes:

Subject type and value

A CSSM_LIST structure containing a typed Subject. The Subject
identifies the entity authorized by this ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the
permissions recorded in the authorization array.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of
operations for which permission is granted to the Subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements,
the start time and the stop time for which the ACL entry is valid.

ACL entry tag

A CSSM_STRING containing a user-defined value associated with the
ACL entry.
Key (input)
A pointer to the target key whose associated ACL is being modified.

DESCRIPTION

This function edits the stored ACL associated with the target key. The ACL is modified according to the edit
mode and information provided in Acl Edi t .

The caller must be authorized to modify the target ACL. Caller authentication and authorization to edit the
ACL is determined based on the caller-provided AccessCr ed.

The caller must be authorized to add, delete, or replace the ACL entries associated with the target key. When
adding or replacing an ACL entry, the service provider must reject the creation of duplicate ACL entries.

When adding a new ACL entry to an ACL, the caller must provide a complete ACL entry prototype. All ACL
entry items, except the ACL entry Subj ect must be provided as an immediate value in Acl Edi t - >NewEnt ry.
The ACL entry Subj ect can be provided as an immediate value, from a verifier with a protected data path,
from an external authentication or authorization service, or through a callback function specified in

Acl Edi t - >Newknt ry- >Cal | back.

145

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetKeyAcl

146

CSSM_ChangeKeyOwner

NAME
CSSM_ChangeKeyOwner — Change the owner of a key (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM _ChangeKeyOaner

(CSSM CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM KEY *Key,

const CSSM ACL_OWNER PROTOTYPE * NewOaner)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

AccessCred (i nput)

A pointer to the set of one or more credentials used to prove the caller is the current Oowner
of the key. Required credentials can include zero or more certificates, zero or more caller
names, and one or more samples. If certificates and/or caller names are provided as input,
these must be provided as immediate values in this structure. The samples can be provided
as immediate values or can be obtained through a callback function included in the
AccessCr ed structure.

Key (i nput)
A pointer to the target key whose associated Owner is changed.
NewOaner (I nput)
A CSSM_ACL_OWNER_PROTOTYPE defining the new owner of the key.

DESCRIPTION
This function takes a CSSM_ACL_OWNER_PROTOTYPE defining the new owner of the key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

147

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GetKeyOwner

148

CSSM_CSP_ChangeLoginAcl

NAME
CSSM_CSP_ChangeLoginAcl — Edit a stored CSP ACL login session (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Changelogi nAcl
(CSSM CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_EDIT *Acl Edit)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation

AccessCred (i nput)

A pointer to the set of one or more credentials used to authenticate and validate the caller's
authorization to modify the ACL controlling login sessions with the CSP. Required
credentials can include zero or more certificates, zero or more caller names, and one or more
samples. Traditionally a caller name has been used to establish the context of a login
session. Certificates can be used for the same purpose. If certificates and/or caller names are
provided as input, these must be provided as immediate values in this structure. The
samples can be provided as immediate values or can be obtained through a callback
function included in the AccessCr ed structure.

Acl Edi t (i nput)

A structure containing information that defines the edit operation. Valid operations include
adding, replacing, and deleting entries in an ACL managed by the service provider. The
Acl Edi t parameter can contain information for a new ACL entry and a handle uniquely
identifying an existing ACL entry. The information controls the edit operation as follows:

Value of AclEdit.EditMode Use of AclEdit.NewENtry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_ADD Adds a new ACL entry to the set of ACL entries
controlling login sessions with the CSP. The new ACL
entry is created from the ACL entry prototype contained
in NeweEnt ry. A dEnt r yHandl e is ignored for this
Edi t Mode.

CSSM_ACL_EDIT_MODE_DELETE Deletes the ACL entry identified by A dEnt r yHandl e
and associated with login sessions with the CSP.
NewEnt ry is ignored for this Edi t Mode.

149

Value of AclEdit.EditMode Use of AclEdit.NewENtry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_REPLACE Replaces the ACL entry identified by Q dEntryHandl e
and controlling login sessions with the CSP. The existing
ACL is replaced based on the ACL entry prototype
contained in the NewEntry.

When replacing an existing ACL entry, the caller must replace all items in an ACL entry.
The replacement prototype includes:

= Subject type and value — A CSSM_LIST structure containing a typed subject. The
subject identifies the entity authorized by this ACL entry.

< Delegation flag — A CSSM_BOOL value indicating whether the subject can delegate the
permissions recorded in the authorization array.

« Authorization array — A CSSM_AUTHORIZATIONGROUP structure defining the set of
operations for which permission is granted to the subject.

= Validity period — A CSSM_ACL_VALIDITY_PERIOD structure containing two
elements, the start time and the stop time for which the ACL entry is valid.

= ACL entry tag — A CSSM_STRING containing a user-defined value associated with the
ACL entry.

DESCRIPTION

This function edits the stored ACL controlling login sessions for a Cryptographic Service Provider (CSP). The
ACL is modified according to the edit mode and information provided in Acl Edi t .

The caller must have a login session in process and must be authorized to modify the target ACL. Caller
authentication and authorization to edit the ACL is determined based on the caller-provided AccessOr ed.

The caller must be authorized to add, delete, or replace the ACL entries controlling login to the CSP. When
adding or replacing an ACL entry, the service provider must reject the creation of duplicate ACL entries.

When adding a new ACL entry to an ACL, the caller must provide a complete ACL entry prototype. All ACL
entry items, except the ACL entry Subject, must be provided as an immediate value in Acl Edit. NewEnt ry.
The ACL entry Subject can be provided as an immediate value, from a verifier with a protected data path,
from an external authentication or authorization service, or through a callback function specified in

Acl Edi t. NewEnt ry. Cal | back.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

150

SEE ALSO

Books
Intel CDSA Application Developer's Guide
Online Help

Functions: CSSM_CSP_GetLoginACLCSSM_CSP_Login, CSSM_CSP_Logout

151

CSSM_CSP_ChangelLoginOwner

NAME
CSSM_CSP_ChangeLoginOwner — Define a new login owner (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Changelogi nOaner
(CSSM_CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_OWNER PROTOTYPE * NewOaner)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

AccessCred (i nput)

A pointer to the set of one or more credentials used to prove the caller is the current login
owner. Required credentials can include zero or more certificates, zero or more caller names,
and one or more samples. If certificates and/or caller names are provided as input, these
must be provided as immediate values in this structure. The samples can be provided as
immediate values or can be obtained through a callback function included in the

AccessCr ed structure.

NewOnner (I nput)
A CSSM_ACL_OWNER_PROTOTYPE defining the new login owner.

DESCRIPTION
This function takes a CSSM_ACL_OWNER_PROTOTYPE describing the new login owner.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

152

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM CSP_Get Logi hOaner

153

CSSM_CSP_CreateAsymmetricContext
NAME

CSSM_CSP_CreateAsymmetricContext — Create an asymmetric encryption cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eAsymmet ri cCont ext
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

const CSSM ACCESS_CREDENTI ALS *AccessCred,

const CSSM KEY *Key,

CSSM_PADDI NG Paddi ng,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

A gorithm D(i nput)
The algorithm identification number for the algorithm used for asymmetric encryption.
AccessCred (i nput)

A pointer to the set of one or more credentials required to unlock the private key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a cal | back function the CSP can use to obtain one or
more credentials. Credentials can be required for encryption and decryption operations.

Key (i nput)

The key used for asymmetric encryption. The caller passes a pointer to a CSSM_KEY
structure containing the key. When the context is used for a sign operation,
AccessCredenti al s is required to access the private key used for signing. When the
context is used for a verify operation, the public key is used to verify the signature. When
the context is used for a wrapkey operation, the public key can be used as the wrapping key.
When the context is used for an unwrap operation, AccessCr edenti al s is required to
access the private key used to perform the unwrapping.

Paddi ng (input/optional)

The method for padding. Typically specified for ciphers that pad.
NewCont ext Handl e (out put)

Cryptographic context handle.

154

DESCRIPTION

This function creates an asymmetric encryption cryptographic context, given a handle of a CSP, an algorithm
identification number, a key, and padding. The cryptographic context handle is returned. The cryptographic
context handle can be used to call asymmetric encryption functions and cryptographic wrap or unwrap
functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate,
CSSM_DecryptDataFinal, CSSM_DeleteContext, CSSM_EncryptData, CSSM_EncryptDatalnit,
CSSM_EncryptDataUpdate, CSSM_EncryptDataFinal, CSSM_GetContext, CSSM_GetContextAttribute,
CSSM_QuerySize, CSSM_SetContext, CSSM_UpdateContextAttributes

155

CSSM_CSP_CreateDeriveKeyContext
NAME

CSSM_CSP_CreateDeriveKeyContext — Create a cryptographic context to derive a symmetric key
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eDer i veKeyCont ext
(CSSM CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

CSSM _KEY_TYPE Der i veKeyType,

ui nt 32 DeriveKeyLengthlnBits,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM KEY *BaseKey,

ui nt 32 IterationCount,

const CSSM DATA *Salt,

const CSSM CRYPTO _DATA *Seed,
CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

A gorithm D(i nput)
The algorithm identification number for a derived key algorithm.
Der i veKeyType (i nput)
The type of symmetric key to derive.
Deri veKeyLengt hl nBi ts (i nput)
The logical length of the key in bits to be derived (Logi cal KeySi zel nBi t s)
AccessCr ed (input/optional)

A pointer to the set of one or more credentials required to access the base key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a callback function the CSP can use to obtain one or
more credentials. If the BaseKey is NULL, then this parameter is optional.

BaseKey (input/optional)

The base key used to derive the new key. The base key can be a public key, a private key, or
a symmetric key

IterationCount (input/optional)

156

The number of iterations to be performed during the derivation process. Used heavily by
password-based derivation methods.

Sal t (input/optional)
A Salt used in deriving the key.
Seed (input/optional)

A seed used to generate a random number. The caller can either pass a seed and seed length
in bytes or pass a callback function. If Seed is NULL, the Cryptographic Service Provider
will use its default seed-handling mechanism.

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a cryptographic context to derive a symmetric key, given a handle of a CSP, an
algorithm, the type of symmetric key to derive, the length of the derived key, and an optional seed or an
optional AccessOr edenti al s structure from which to derive a new key. The cryptographic context handle is
returned. The cryptographic context handle can be used for calling the cryptographic derive key function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM Der i veKey

157

CSSM_CSP_CreateDigestContext

NAME
CSSM_CSP_CreateDigestContext — Create a digest cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eDi gest Cont ext
(CSSM CSP_HANDLE CSPHandl e,

CSSM _ALGORI THVB Al gorit hm D,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

A gorithm D(i nput)

The algorithm identification number for message digests.
NewCont ext Handl e (out put)

Cryptographic context handle.

DESCRIPTION

This function creates a digest cryptographic context, given a handle of a CSP and an algorithm identification
number. The cryptographic context handle is returned. The cryptographic context handle can be used to call
digest cryptographic functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal,
CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext, CSSM_GetContextAttribute,
CSSM_UpdateContextAttributes

158

CSSM_CSP_CreateKeyGenContext

NAME
CSSM_CSP_CreateKeyGenContext — Create a key generation cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eKey GenCont ext
(CSSM _CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

ui nt 32 KeySi zel nBits,

const CSSM CRYPTO _DATA *Seed,

const CSSM DATA *Salt,

const CSSM DATE * St art Dat e,

const CSSM DATE *EndDat e,

const CSSM DATA *Par ans,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

A gorithm D(i nput)
The algorithm identification number of the algorithm used for key generation.
KeySi zel nBit s (i nput)

The logical size of the key (specified in bits). This refers to either the actual key size (for
symmetric key generation) or the modulus size (for asymmetric key pair generation).

Seed (input/optional)

A seed used to generate the key. The caller can either pass a seed and seed length in bytes or
pass a callback function. If NULL is passed, the Cryptographic Service Provider will use its
default seed-handling mechanism.

Sal t (input/optional)

A salt used to generate the key.
St art Dat e (input/optional)

A start date for the validity period of the key or key pair being generated.
EndDat e (input/optional)

An end date for the validity period of the key or key pair being generated.
Par ans (input/optional)

A data buffer containing parameters required to generate a key pair for a specific algorithm.

159

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a key generation cryptographic context, given a handle of a CSP, an algorithm
identification number, a passphrase, a modulus size (for public or private keypair generation), a key size (for
symmetric key generation), a seed, and a salt. The cryptographic context handle is returned. The
cryptographic context handle can be used to call key/ or keypair generation functions.

Additional attributes can be added to the newly created context using the

CSSM Updat eCont ext At tri but es() function. Incremental attributes of interest for key generation include a
handle-pair identifying a Data Storage Library service module and an open data store for CSPs that manage
multiple persistent key stores. If a CSP does not support multiple key stores, the CSP ignores the presence or
absence of this attribute.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateKey, CSSM_GenerateKeyPair, CSSM_GetContext, CSSM_SetContext,
CSSM_DeleteContext, CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

160

CSSM_CSP_CreateMacContext
NAME

CSSM_CSP_CreateMacContext — Create a message authentication code cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eMacCont ext
(CSSM _CSP_HANDLE CSPHandl e,

CSSM _ALGORI THVB Al gorit hm D,

const CSSM KEY *Key,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

A gorithm D(i nput)
The algorithm identification number for the MAC algorithm.
Key (i nput)

The key used to generate a message authentication code. Caller passes a pointer to a
CSSM_KEY structure containing the key.

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a message authentication code cryptographic context, given a handle of a CSP,
algorithm identification number, and a key. The cryptographic context handle is returned. The cryptographic
context handle can be used to call message authentication code functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

161

Online Help

Functions: CSSM_GenerateMac, CSSM_GenerateMaclnit, CSSM_GenerateMacUpdate,
CSSM_GenerateMacFinal, CSSM_VerifyMac, CSSM_VerifyMaclnit, CSSM_\VerifyMacUpdate,
CSSM_VerifyMacFinal, CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

162

CSSM_CSP_CreatePassThroughContext

NAME
CSSM_CSP_CreatePassThroughContext — Create a custom cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat ePassThr oughCont ext
(CSSM CSP_HANDLE CSPHandl e,

const CSSM KEY *Key,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

Key (i nput)

The key to be used for the context. The caller passes a pointer to a CSSM_KEY structure
containing the key.

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a custom cryptographic context, given a handle of a CSP and a pointer to a custom input
data structure. The cryptographic context handle is returned. The cryptographic context handle can be used
to call the CSSM pass-through function for the CSP.

NOTES

A CSP can create its own set of custom functions. The context information can be passed through its own data
structure. The CSSM CSP_PassThr ough() function should be used with the function ID to call the desired
custom function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

163

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_CSP_PassThroughCSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

164

CSSM_CSP_CreateDeriveKeyContext
NAME

CSSM_CSP_CreateDeriveKeyContext — Create a cryptographic context to derive a symmetric key

(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eDer i veKeyCont ext
(CSSM CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

CSSM _KEY_TYPE Der i veKeyType,

ui nt 32 DeriveKeyLengthlnBits,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM KEY *BaseKey,

ui nt 32 IterationCount,

const CSSM DATA *Salt,

const CSSM CRYPTO _DATA *Seed,
CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

A gorithm D(i nput)
The algorithm identification number for a derived key algorithm.
Der i veKeyType (i nput)
The type of symmetric key to derive.
Deri veKeyLengt hl nBi ts (i nput)
The logical length of the key in bits to be derived (Logi cal KeySi zel nBi t s)
AccessCr ed (input/optional)

A pointer to the set of one or more credentials required to access the base key. The
credentials structure can contain an immediate value for the credential, such as a

passphrase, or the caller can specify a callback function the CSP can use to obtain one or

more credentials. If the BaseKey is NULL, then this parameter is optional.

BaseKey (input/optional)

The base key used to derive the new key. The base key can be a public key, a private key, or

a symmetric key

IterationCount (input/optional)

165

The number of iterations to be performed during the derivation process. Used heavily by
password-based derivation methods.

Sal t (input/optional)
A Salt used in deriving the key.
Seed (input/optional)

A seed used to generate a random number. The caller can either pass a seed and seed length
in bytes or pass a callback function. If Seed is NULL, the Cryptographic Service Provider
will use its default seed-handling mechanism.

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a cryptographic context to derive a symmetric key, given a handle of a CSP, an
algorithm, the type of symmetric key to derive, the length of the derived key, and an optional seed or an
optional AccessOr edenti al s structure from which to derive a new key. The cryptographic context handle is
returned. The cryptographic context handle can be used for calling the cryptographic derive key function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM Der i veKey

166

CSSM_CSP_CreateDigestContext

NAME
CSSM_CSP_CreateDigestContext — Create a digest cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eDi gest Cont ext
(CSSM CSP_HANDLE CSPHandl e,

CSSM _ALGORI THVB Al gorit hm D,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

A gorithm D(i nput)

The algorithm identification number for message digests.
NewCont ext Handl e (out put)

Cryptographic context handle.

DESCRIPTION

This function creates a digest cryptographic context, given a handle of a CSP and an algorithm identification
number. The cryptographic context handle is returned. The cryptographic context handle can be used to call
digest cryptographic functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal,
CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext, CSSM_GetContextAttribute,
CSSM_UpdateContextAttributes

167

CSSM_CSP_CreateKeyGenContext

NAME
CSSM_CSP_CreateKeyGenContext — Create a key generation cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eKey GenCont ext
(CSSM _CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

ui nt 32 KeySi zel nBits,

const CSSM CRYPTO _DATA *Seed,

const CSSM DATA *Salt,

const CSSM DATE * St art Dat e,

const CSSM DATE *EndDat e,

const CSSM DATA *Par ans,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

A gorithm D(i nput)
The algorithm identification number of the algorithm used for key generation.
KeySi zel nBit s (i nput)

The logical size of the key (specified in bits). This refers to either the actual key size (for
symmetric key generation) or the modulus size (for asymmetric key pair generation).

Seed (input/optional)

A seed used to generate the key. The caller can either pass a seed and seed length in bytes or
pass a callback function. If NULL is passed, the Cryptographic Service Provider will use its
default seed-handling mechanism.

Sal t (input/optional)

A salt used to generate the key.
St art Dat e (input/optional)

A start date for the validity period of the key or key pair being generated.
EndDat e (input/optional)

An end date for the validity period of the key or key pair being generated.
Par ans (input/optional)

A data buffer containing parameters required to generate a key pair for a specific algorithm.

168

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a key generation cryptographic context, given a handle of a CSP, an algorithm
identification number, a passphrase, a modulus size (for public or private keypair generation), a key size (for
symmetric key generation), a seed, and a salt. The cryptographic context handle is returned. The
cryptographic context handle can be used to call key/ or keypair generation functions.

Additional attributes can be added to the newly created context using the

CSSM Updat eCont ext At tri but es() function. Incremental attributes of interest for key generation include a
handle-pair identifying a Data Storage Library service module and an open data store for CSPs that manage
multiple persistent key stores. If a CSP does not support multiple key stores, the CSP ignores the presence or
absence of this attribute.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateKey, CSSM_GenerateKeyPair, CSSM_GetContext, CSSM_SetContext,
CSSM_DeleteContext, CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

169

CSSM_CSP_CreateMacContext
NAME

CSSM_CSP_CreateMacContext — Create a message authentication code cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eMacCont ext
(CSSM _CSP_HANDLE CSPHandl e,

CSSM _ALGORI THVB Al gorit hm D,

const CSSM KEY *Key,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

A gorithm D(i nput)
The algorithm identification number for the MAC algorithm.
Key (i nput)

The key used to generate a message authentication code. Caller passes a pointer to a
CSSM_KEY structure containing the key.

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a message authentication code cryptographic context, given a handle of a CSP,
algorithm identification number, and a key. The cryptographic context handle is returned. The cryptographic
context handle can be used to call message authentication code functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

170

Online Help

Functions: CSSM_GenerateMac, CSSM_GenerateMaclnit, CSSM_GenerateMacUpdate,
CSSM_GenerateMacFinal, CSSM_VerifyMac, CSSM_VerifyMaclnit, CSSM_\VerifyMacUpdate,
CSSM_VerifyMacFinal, CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

171

CSSM_CSP_CreatePassThroughContext

NAME
CSSM_CSP_CreatePassThroughContext — Create a custom cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat ePassThr oughCont ext
(CSSM CSP_HANDLE CSPHandl e,

const CSSM KEY *Key,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns an error.

Key (i nput)

The key to be used for the context. The caller passes a pointer to a CSSM_KEY structure
containing the key.

NewCont ext Handl e (out put)
Cryptographic context handle.

DESCRIPTION

This function creates a custom cryptographic context, given a handle of a CSP and a pointer to a custom input
data structure. The cryptographic context handle is returned. The cryptographic context handle can be used
to call the CSSM pass-through function for the CSP.

NOTES

A CSP can create its own set of custom functions. The context information can be passed through its own data
structure. The CSSM CSP_PassThr ough() function should be used with the function ID to call the desired
custom function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

172

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_CSP_PassThroughCSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

173

CSSM_CSP_CreateRandomGenContext
NAME

CSSM_CSP_CreateRandomGenContext — Create a random number generation cryptographic
context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eRandontzenCont ext
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

const CSSM CRYPTO _DATA *Seed,

ui nt 32 Length,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns AN error.

Al gorithm D(i nput)
The algorithm identification number for random number generation.
Seed (input/optional)

A seed used to generate THE random number. The caller can either pass a seed and seed
length in bytes or pass a callback function. If NULL is passed, the Cryptographic Service
Provider will use its default seed-handling mechanism.

Lengt h (i nput)

The length of the random number to be generated.
NewCont ext Handl e (out put)

Cryptographic context handle.

DESCRIPTION

This function creates a random number generation cryptographic context, given a handle of a CSP, an
algorithm identification number, a seed, and the length of the random number in bytes. The cryptographic
context handle is returned and can be used for the random number generation function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

174

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateRandom, CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext,
CSSM_GetContextAttribute, CSSM_UpdateContextAttributes

175

CSSM_CSP_CreateSignatureContext

NAME
CSSM_CSP_CreateSignatureContext — Create a signature cryptographic context (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eSi gnat ur eCont ext
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

const CSSM ACCESS_CREDENTI ALS *AccessCred,

const CSSM KEY *Key,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

Al gorithm D(i nput)
The algorithm identification number for a signature/verification algorithm.
AccessCr ed (input/optional)

A pointer to the set of one or more credentials required to unlock the private key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a callback function the CSP can use to obtain one or
more credentials. Credentials are required for signature operations, not for verify
operations.

Key (i nput)
The key used to sign and verify. The caller passes a pointer to a CSSM_KEY structure
containing the key and the key length.

NewCont ext Handl e (out put)

Cryptographic context handle.

DESCRIPTION

This function creates a signature cryptographic context for sign and verify, given a handle of a CSP, an
algorithm identification number, a key, and an AccessOr edenti al s structure. The AccessCredenti al s
structure will be used to unlock the private key when this context is used to perform a signing operation. The
cryptographic context handle is returned. The cryptographic context handle can be used to call sign and verify
cryptographic functions.

176

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataUpdate, CSSM_SignDataFinal,
CSSM_VerifyData, CSSM_VerifyDatalnit, CSSM_VerifyDataUpdate, CSSM_VerifyDataFinal,
CSSM_GetContext, CSSM_SetContext, CSSM_DeleteContext, CSSM_GetContextAttribute,
CSSM_UpdateContextAttributes

177

CSSM_CSP_CreateSymmetricContext
NAME

CSSM_CSP_CreateSymmetricContext — Create a symmetric encryption cryptographic context
(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Cr eat eSynmet ri cCont ext
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_ALGORI THVS Al gori t hm D,

CSSM_ENCRYPT_MODE Mode,

const CSSM ACCESS_CREDENTI ALS *AccessCred,

const CSSM KEY *Key,

const CSSM DATA *Init Vector,

CSSM _PADDI NG Paddi ng,

voi d *Reserved,

CSSM_CC_HANDLE *NewCont ext Handl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

A gorithm D(i nput)

The algorithm identification number for symmetric encryption.
Mode (i nput)

The mode of the specified algorithm ID.
AccessCr ed (input/optional)

A pointer to the set of one or more credentials required to unlock the private key. The
credentials structure can contain an immediate value for the credential, such as a
passphrase, or the caller can specify a cal | back function the CSP can use to obtain one or
more credentials. Credentials may be required for encryption, decryption, and wrapping
operations.

Key (i nput)

The key used for symmetric encryption. The caller passes a pointer to a CSSM_KEY
structure containing the key.

I ni tVector (input/optional)

The initial vector for symmetric encryption. This is typically specified for block ciphers.
Paddi ng (input/optional)

The method for padding. This is typically specified for ciphers that pad.

178

Reserved (i nput)

Reserved for future use.
NewCont ext Handl e (out put)

Cryptographic context handle.

DESCRIPTION

This function creates a symmetric encryption cryptographic context, given a handle of a CSP, an algorithm
identification number, a key, an initial vector, padding, and the number of encryption rounds.
Algorithm-specific attributes must be added to the context after the initial creation using the

CSSM Updat eCont ext At tri but es() function. The cryptographic context handle is returned. The
cryptographic context handle can be used to call symmetric encryption functions and the cryptographic wrap
or unwrap functions.

Additional attributes can be added to the newly created context using the

CSSM Updat eCont ext At tri but es() function . Incremental attributes of interest when using this context to
unwrap a key include a handle-pair identifying a Data Storage Library service module and an open data store
for CSPs that manage multiple, persistent key stores. If a CSP does not support multiple key stores, the CSP
ignores the presence or absence of this attribute.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate,
CSSM_DecryptDataFinal, CSSM_DeleteContext, CSSM_EncryptData, CSSM_EncryptDatalnit,
CSSM_EncryptDataUpdate, CSSM_EncryptDataFinal, CSSM_GetContext, CSSM_GetContextAttribute,
CSSM_QuerySize, CSSM_SetContext, CSSM_UpdateContextAttributes

179

CSSM_CSP_GetLoginAcl
NAME

CSSM_CSP_GetLoginAcl — Get description of CSP ACL entries (CDSA)

SYNOPSIS

#in

clude <cssm.h>

CSSM _RETURN CSSMAPI CSSM CSP_Get Logi nAcl
(CSSM_CSP_HANDLE CSPHandl e,

const CSSM STRI NG * Sel ecti onTag,

ui nt 32 *Nunber O Acl | nf os,

CSSM ACL_ENTRY_I NFO_PTR *Acl | nf 0s)

LI

BRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

CSP

Handl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

Sel ect i onTag (input/optional)

A CSSM_STRING value matching the user-defined tag value associated with one or more
ACL entries controlling login sessions. To retrieve a description of all ACL entries
controlling login sessions, this parameter must be NULL.

Nunber O Acl | nf os (out put)

Acl

The number of entries in the Acl | nf os array. If no ACL entry descriptions are returned,
this value is zero.

I nf os (out put)

An array of CSSM_ACL_ENTRY_INFO structures. The unique handle contained in this
structure can be used during the current attach session and the current login session to
reference specific ACL entries for editing. The structure is allocated by the service provider
and must be released by the caller when the structure is no longer needed. If no ACL entry
descriptions are returned, this value is NULL.

DESCRIPTION

This function returns a description of zero or more ACL entries managed by the CSP and used to control login
sessions with the CSP. The optional input Sel ecti onTag parameter restricts the returned descriptions to
those ACL entries with a matching Ent r yTag value. If a Sel ecti onTag value is specified and no matches are
found, zero descriptions are returned. If no Sel ecti onTag is specified, a description of all ACL entries used to
control login sessions are returned by this function.

Eac

h Acl | nf o structure contains:

Public contents of an ACL entry

ACL EntryHandl e, which is a unique value defined and managed by the service provider

180

The public ACL entry information returned by this function includes:

= Subject type — A CSSM_LIST structure containing one element identifying the type of subject stored in
the ACL entry.

< Delegation flag— A CSSM_BOOL value indicating whether the subject can delegate the permissions
recorded in the authorization array.

« Authorization array — A CSSM_AUTHORIZATIONGROUP structure defining the set of operations for
which permission is granted to the subject.

< Validity period — A CSSM_ACL_VALIDITY_PERIOD structure containing two elements, the start time
and the stop time for which the ACL entry is valid.

e ACL entry tag— A CSSM_STRING containing a user-defined value associated with the ACL entry.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_Login, CSSM_CSP_LoginAclICSSM_CSP_Logout

181

CSSM_CSP_GetLoginOwner

NAME
CSSM_CSP_GetLoginOwner — Get login owner data (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Get Logi nOaner
(CSSM CSP_HANDLE CSPHandl e,
CSSM_ACL_OANER_PROTOTYPE_PTR Owner)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

Onner (out put)
A CSSM_ACL_OWNER_PROTOTYPE describing the login owner.

DESCRIPTION
This function returns a CSSM_ACL_OWNER_PROTOTYPE describing the current login owner of the CSP.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_ChangeLoginOwner

182

CSSM_CSP_Login
NAME
CSSM_CSP_Login — Log user in to the CSP (CDSA)

SYNOPSIS

include <cssm.h>

CSSM _RETURN CSSMAPI CSSM CSP_Logi n

(CSSM_CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM DATA *Logi nNane,

const void *Reserved)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

Handle of the CSP to log in to.
AccessCred (i nput)

A pointer to the set of one or more credentials required to log in to the token or
Cryptographic Service Provider. The credentials structure can contain an immediate value
for the credential, such as a passphrase or PIN, or the caller can specify a callback function
the CSP can use to obtain one or more credentials.

Logi nNarne (input/optional)

A name or ID of the caller. The value is used with the provided AccessC ed to authenticate
and authorize the caller for login with the CSP. The CSP can require that a name value be
provided. If a name value is not provided, the CSP can assume a default name under which
to perform the authentication and authorization check, or the login request can fail.

Reserved (i nput)

This field is reserved for future use. The value NULL should always be given. (May be used
for multiple user support in the future.)

DESCRIPTION

Logs the user in to the CSP, allowing for multiple login types.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

183

CSSMERR_CSP_| NVALI D_LOGI N_NANVE
CSSMERR_CSP_ALREADY_LOGGED_| N

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_GetLoginAcl, CSSM_CSP_ChangeLoginAcl, CSSM_CSP_L ogout

184

CSSM_CSP_Logout
NAME

CSSM_CSP_Logout — Terminate the login session (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM CSP_Logout
(CSSM_CSP_HANDLE CSPHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)
Handle for the target CSP.

DESCRIPTION

Terminates the login session associated with the specified CSP handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_Login, CSSM_CSP_GetLoginAcl, CSSM_CSP_ChangeLoginAcl

185

CSSM_DeleteContext

NAME
CSSM_DeleteContext — Free the context structure (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Del et eCont ext
(CSSM_CC_HANDLE CCHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CCHandl e (i nput)

The handle that describes a context to be deleted.

DESCRIPTION

This function frees the context structure allocated by any of the CSSM O eat exxxxx context functions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSSM | NVALI D_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_CSP_CreateAsymmetricContext, CSSM_CSP_CreateKeyGenContext,
CSSM_CSP_CreateDigestContext, CSSM_CSP_CreateSignatureContext,
CSSM_CSP_CreateSymmetricContext, and others.

186

CSSM_DeleteContextAttributes

NAME
CSSM_DeleteContextAttributes — Delete internal data (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Del et eContext Attri butes
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 Nunmber Of At tri but es,

const CSSM _CONTEXT_ATTRI BUTE *Cont ext Attri but es)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CCHandl e (i nput)
The handle that describes a context that is to be deleted.
Nunber Of At t ri but es (i nput)
The number of attributes to be deleted as specified in the array of context attributes.
Context Attri but es (i nput)

The attributes to be deleted from the context. Only the attribute type is required. Any
attribute values in the CSSM_CONTEXT_ATTRIBUTE structures are ignored.

DESCRIPTION

This function deletes internal data associated with the given attribute type of the context handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSSM | NVALI D_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

187

Online Help

Functions: CSSM_GetContextAttributes, CSSM_UpdateContextAttributes

188

cssm_DeregisterManagerServices
NAME

cssm_DeregisterManagerServices — Deregister manager services

SYNOPSIS

include <cssm.h>

voi d CSSMAPI cssm Der egi st er Manager Ser vi ces
(const CSSM GUI D *Gui d) ;

PARAMETERS
@QJ D (i nput)

A pointer to the CSSM_GUID structure containing the global unique identifier for this
module.

DESCRIPTION

This function is used by an elective module manager to deregister its function table with CSSM core services
prior to termination. This function is invoked by an elective module manager only when exiting due to an
error condition detected by the EMM. This allows CSSM to clean up any state information associated with the
exiting EMM.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

189

CSSM_FreeContext
NAME
CSSM_FreeContext — Free memory associated with the context structure (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Fr eeCont ext
(CSSM_CONTEXT_PTR Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Cont ext (i nput)

The pointer to the memory that describes the context structure.

DESCRIPTION

This function frees the memory associated with the context structure.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetContext

190

CSSM_GetAPIMemoryFunctions
NAME

CSSM_GetAPIMemoryFunctions — Retrieve the memory function table associated with the security
service module

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Get API Menor yFuncti ons
(CSSM_MODULE_HANDLE Addl nHandl e,
CSSM_API _MEMORY_FUNCS_PTR AppMenor yFuncs)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
AddIl nHandl e (i nput)

The handle to the security service module that is associated with the requested memory
function table.

AppMenor yFuncs (out put)

The pointer to an empty memory functions table. Upon function return, the table is filled
with the memory function pointers associated with the specified attach handle. Caller has to
allocate the buffer.

DESCRIPTION

This function retrieves the memory function table associated with the security service module identified by
the input handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO
Intel CDSA Application Developer's Guide

191

cssm_GetAppMemoryFunctions
NAME

cssm_GetAppMemoryFunctions — Get service functions (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm Get AppMenor yFuncti ons
(CSSM_MODULE_HANDLE hAddl n,
CSSM _UPCALLS PTR Upcal | Tabl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
hAddI n (i nput)

The handle identifying the attach-session whose memory management function table is
returned by this function.

Upcal | Tabl e (out put)
The table containing sets of service functions among them a set of four memory
management functions provided by the application that initiated the attach-session
identified by hAddI n.

DESCRIPTION

This function gets a function table containing sets of service functions. Among these service functions are four
application-provided memory management functions. The elective module manager can use these functions to
manage memory on behalf of the application. The returned function table is specific to the attach-session
identified by the module handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

192

cssm_GetAttachFunctions

NAME
cssm_GetAttachFunctions — Get SPI function table (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm Get Att achFuncti ons
(CSSM_MODULE_HANDLE hAddl n,

CSSM_SERVI CE_MASK Addi nType,

voi d **SPFuncti ons,

CSSM_GUI D_PTR Cui d)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
hAddI n (i nput)

The handle identifying the attach-session whose function table is to be returned by this
function.

Addi nType (i nput)
A CSSM_SERVICE_MASK value identifying the type of service module whose function
table is to be returned by this function.

SPFunct i ons (out put)

A pointer to the service module function table, which CSSM acquired from the service
module during module-attach processing. The module manager should use this table to
forward application invocation of the elective APIs to their corresponding SPIs. The memory
pointed to by the function pointers should not be freed by the EMM.

Qui d (out put)

A CSSM_GUID value identifying the service module whose function table is to be returned
by this function.

DESCRIPTION

This function returns an SPI function table for the service module identified by the module handle. The
module must be of the type specified by the service mask. The SPFunct i ons parameter contains the returned
function table. The elective module manager must use this function table to forward an application's call to
the elective APIs to their corresponding SPIs represented in the function table. The returned Qui d identifies
the service module. It can be used to locate credentials and other information about the service module.

This function sets a lock on the SP functions table. The CSSM service function
cssm Rel easeAtt achFuncti ons() must be used to release the lock.

193

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

194

CSSM_GetContext

NAME
CSSM_GetContext — Get context information (CDSA)

SYNOPSIS

include <cssm.h>

CSSM RETURN CSSNVAPI CSSM Get Cont ext
(CSSM_CC_HANDLE CCHandl e,
CSSM_CONTEXT_PTR * Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CCHandl e (i nput)

The handle to the context information.
Cont ext (out put)

The pointer to the CSSM_CONTEXT_PTR structure that describes the context associated
with the CCHandl e handle. The pointer will be set to NULL if the function fails. Use
CSSM Fr eeCont ext () to free the memory allocated by the CSSM.

DESCRIPTION

This function retrieves the context information when provided with a context handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSSM | NVALI D_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_FreeContext, CSSM_SetContext

195

CSSM_GetContextAttribute

NAME
CSSM_GetContextAttribute — Get context attribute (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Get Cont ext At t ri but e
(const CSSM _CONTEXT *Cont ext,

uint 32 Attribut eType,

CSSM_CONTEXT_ATTRI BUTE_PTR * Cont ext Att ri but e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Cont ext (i nput)
A pointer to the context.
AttributeType (i nput)
The attribute type of the desired attribute value.
Context At tri but e (out put)

The pointer to the CSSM_CONTEXT_ATTRIBUTE that describes the context attributes
associated with the CCHandl e handle and the attribute type. The pointer will be set to
NULL if the function fails. Call CSSM Del et eCont ext Attri but es() to free memory
allocated by the CSSM.

DESCRIPTION

This function returns the value of a context attribute. Context references the cryptographic context to be
searched for the attribute specified by At t ri but eType. If the specified attribute is not present, then a NULL
pointer is returned.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSSM ATTRI BUTE_NOT | N_CONTEXT

196

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DeleteContextAttributes, CSSM_GetContext

197

CSSM_GetKeyAcl

NAME
CSSM_GetKeyAcl — Get ACL entries by key (CDSA)

SYNOPSIS

include <cssm.h>

CSSM _RETURN CSSMAPI CSSM Get KeyAcl
(CSSM_CSP_HANDLE CSPHandl e,

const CSSM KEY *Key,

const CSSM STRI NG * Sel ecti onTag,

ui nt 32 *Nunber O Acl | nf os,

CSSM ACL_ENTRY_I NFO_PTR *Acl I nf 0s)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic Service Provider to perform this
operation.

Key (i nput)
A pointer to the target key whose associated ACL entries are scanned and returned.
Sel ect i onTag (input/optional)

A CSSM_STRING value matching the user-defined tag value associated with one or more
ACL entries for the target Key. To retrieve a description of all ACL entries for the target
Key, this parameter must be NULL.

Nunber O Acl | nf os (out put)

The number of entries in the Acl | nf os array. If no ACL entry descriptions are returned,
this value is zero.

Acl I nf os (out put)

An array of CSSM_ACL_ENTRY_INFO structures. The unique handle contained in this
structure can be used during the current attach session to reference specific ACL entries for
editing. The structure is allocated by the service provider and must be released by the caller
when the structure is no longer needed. If no ACL entry descriptions are returned, this
value is NULL.

DESCRIPTION

This function returns a description of zero or more ACL entries managed by the CSP and associated with the
target key. The optional input Sel ect i onTag restricts the returned descriptions to those ACL entries with a
matching Ent r yTag value. If a Sel ect i onTag value is specified and no matches are found, zero descriptions
are returned. If no Sel ecti onTag is specified, a description of all ACL entries associated with the key is
returned by this function.

198

Each Acl | nf o structure contains:

= Public contents of an ACL entry

= ACL EntryHandl e, which is a unique value defined and managed by the service provider
The public ACL entry information returned by this function includes:

Subject type and value

A CSSM_LIST structure containing one element identifying the type of subject stored in the
ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the permissions recorded
in the authorization array.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of operations for which
permission is granted to the subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements, the start time and
the stop time for which the ACL entry is valid.

ACL entry tag
A CSSM_STRING containing a user-defined value associated with the ACL entry.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_ChangeKeyAcl

199

CSSM_GetKeyOwner

NAME
CSSM_GetKeyOwner — Get data describing key owner (CDSA)

SYNOPSIS

include <cssm.h>

CSSM RETURN CSSMAPI CSSM Get KeyOwner
(CSSM _CSP_HANDLE CSPHandl e,

const CSSM KEY *Key,
CSSM_ACL_OWNER_PROTOTYPE_PTR Oaner)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The module handle that identifies the Cryptographic service provider to perform this
operation.

Key (i nput)
A pointer to the target key whose associated Owner is returned.
Onner (out put)
A CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Key.

DESCRIPTION
This function returns a CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

200

Online Help

Functions: CSSM_ChangeKeyOwner

201

CSSM_GetModuleGUIDFromHandle

NAME
CSSM_GetModuleGUIDFromHandle — Get GUID of the attached module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Get Modul eGUI DFr onHandl e
(CSSM_MODULE_HANDLE Modul eHandl e,
CSSM _GUI D_PTR Modul eGUI D)

PARAMETERS

Modul eHandl e (i nput)

The handle of the module for which the GUID should be returned.
Modul eGJ D (out put)

The GUID of the module associated with Mbdul eHandl e. n.

DESCRIPTION

This function returns the GUID of the attached module identified by the specified handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GetSubserviceUIDFromHandle

202

cssm_GetModulelnfo
NAME

cssm_GetModulelnfo — Get the module handle state information

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm Get Modul el nf o
(CSSM_MODULE_HANDLE Mbdul e,

CSSM GUI D_PTR Gui d,

CSSM_VERSI ON_PTR Ver si on,

ui nt 32 *SubServicel d,

CSSM_SERVI CE_TYPE * SubSer vi ceType,
CSSM_ATTACH_FLAGS *AttachFl ags,
CSSM_KEY_HI ERARCHY *KeyHi er ar chy,

CSSM APl _MEMORY_FUNCS_PTR At t achedMenfuncs,
CSSM_FUNC_NAME_ADDR_PTR Functi onTabl e,
ui nt 32 NunfFuncti onTabl e);

PARAMETERS
Modul e (i nput)

The handle to a service provider module.
QU D(i nput)

A pointer to the CSSM_GUID structure containing the global unique identifier for this
module.

Ver si on (out put)
The version number set on ModuleAttach.
SubSer vi cel d (out put)
The slot number of the reader to which the module is attached.
SubSer vi ceType (out put)
A CSSM_SERVICE_TYPE value identifying the class of security service.
At t achFl ags (out put)

This parameter provides the caller with session specific information associated with the
module handle.

KeyH er ar chy (out put)

The key hierarchy supplied when the module was attached.
At t achedMentuncs (out put)

The memory functions supplied when the module was attached.
Functi onTabl e (input/output optional)

A table of function-name and API function-pointer pairs. The caller provides the name of
the functions as input. The corresponding API function pointers are returned on output.

203

The function table allows dynamic linking of CDSA interfaces, including interfaces to
Elective Module Managers, which are transparently loaded by CSSM during the

CSSM Modul eAt t ach() function. The caller of this function should allocate the memory for
the number of slots required.

Nunfuncti onTabl e (i nput)

The number of entries in the FunctionTable parameter. If no FunctionTable is provided, this
value must be zero.

DESCRIPTION

This function returns the state information associated with the module handle. The information returned by
this function is that set by the call to the CSSM Modul eAt t ach() function. The entry point to this function is
provided to a service module in a table of upcall functions passed to the service provider during module attach
processing.

If the PVC checking for service providers is on, the service provider has to introduce itself before calling this
function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

204

CSSM_GetPrivilege
NAME
CSSM_GetPrivilege — Get CSSM privilege value (CDSA)

SYNOPSIS

include <cssm.h>

CSSM _RETURN CSSMAPI CSSM Get Pri vi | ege
(CSSM_PRI VI LECE *Privil ege;

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Pri vi | ege (out put)
The CSSM_PRIVILEGE value currently set.

DESCRIPTION

The CSSM Get Pri vi | ege() function returns the CSSM_PRIVILEGE value currently established in the
framework.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

205

CSSM_GetSubserviceUIDFromHandle
NAME

CSSM_GetSubserviceUIDFromHandle — Complete a subservice unique identifier structure (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Get Subser vi ceUl DFr onHandl e
(CSSM_MODULE_HANDLE Modul eHandl e,
CSSM_SUBSERVI CE_UI D_PTR Subser vi ceUl D)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul eHandl e (i nput)

Handle of the module subservice for which the subservice unique identifier should be
returned.

Subser vi ceU D (out put)

Subservice UID value associated with Modul eHandl e. The caller has to allocate the buffer.

DESCRIPTION

This function completes a structure containing the persistent unique identifier of the attached module
subservice, as identified by the input handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_GetModuleGUIDFromHandle

206

CSSM_Init

NAME
CSSM_Init — Initialize CSSM (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM I ni t (
const CSSM _VERSI ON *Ver si on,
CSSM_PRI VI LEGE_SCCOPE Scope,
const CSSM @QUID * Callercuid,
CSSM_KEY_HI ERARCHY KeyHi er ar chy,
CSSM _PVC_MODE *PvcPol i cy,

const void *Reserved)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

Ver si on (i nput)

Scope (i nput)

The major and minor version number of the CSSM release the application is compatible
with.

The scope of the global privilege value. The scope may either process scope wide
(CSSM_PRIVILEGE_SCOPE_PROCESS) or thread wide
(CSSM_PRIVILEGE_SCOPE_THREAD). This parameter is ignored after the first call to
CSSM Init().

Cal I ercui d (i nput)

The GUID associated with the caller. This GUID is used to locate the caller's credentials
when evaluating the request for privileges.

KeyH erar chy (i nput)

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

PvcPol i cy (input/output)

Configures the way in which pointer validation checks will be performed. If not the first call
to CSSM I ni t (), the previously configured policy is returned in the PvcPol i cy bitmask and
the CSSM | ni t () call continues processing. If successfully completed, the error code
CSSMERR_CSSM_PVC ALREADY_CONFIGURED is returned.

Value Description
0 PVC validation is not performed
1 PVC validation is performed on application modules

207

Value Description

2 PVC validation is performed on service provider
modules
3 Both types of PVC validations are performed

Reserved (i nput)

A reserved input.

DESCRIPTION

This function initializes CSSM and verifies that the version of CSSM expected by the application is
compatible with the version of CSSM on the system. This function should be called at least once by the
application. It is an error to call any function of the CSSM API other than CSSM | ni t () before a call to
CSSM I ni t () has returned successfully (that is, with CSSM_OK).

Implementations of CSSM might have platform specific characteristics associated with the implementation of
CSSM Set Pri vi |l ege() API. The privilege value might have thread specific scope or process specific scope.
The application can specify the anticipated scope at CSSM | ni t (). If the anticipated scope is not appropriate
for the implementation, an error is returned. The scope can be configured only once. Subsequent attempts to
configure scope are ignored.

CSSM integrity model includes the ability to make and check assertions about trusted dynamically loaded
libraries. Checking assertions happens while the program executes. It is known as Pointer Validation
Checking (PVC). Pointer validation checking can be applied every time execution flow crosses the CSSM API
or SPI interfaces.

Performing pointer validation checks has two purposes:

= It allows exportation of CSSM.
= Itaids in detering unanticipated run-time modification of the program.

The CSSM can be configured to bypass pointer validation under some circumstances. Pointer validation
cannot be bypassed when privileged operations are being performed.

The prerequisites for performing PVC on another module, be it service provider, CSSM, or other library, are:

= The module must have been signed and have an accompanying signed manifest.
< The module must be loaded into process address space.
= An entry-point into the module must be available.

Typically, the entry points are discovered when a module's functions are called by another module. The CSSM
performs pointer validation checks based on the configured checking policy. Checking policies are established
by the manufacturers of CSSM and other libraries. The checking policy to be applied during execution is
configured using the CSSM | ni t () call. The policy can be configured once during the life of the process and
occurs the first time CSSM I ni t () is called.

PVC POLICY CONFIGURATION OPTIONS

Pointer validation checking can be applied at the CSSM API interface, the CSSM SPI interface, or both. The
CSSM vendor can configure a default policy through instructions contained in the CSSM signed manifest.
Manifest attributes pertaining to pointer validation checking are defined as follows:

208

Module

Tag

Value

Description

CSSM

CSSM

CSSM

CSSM

App

App

App

App

CDSA _PVC_API

CDSA _PVC_API

CDSA_PVC_SPI

CDSA _PVC_SPI

CDSA _PVC_API

CDSA _PVC_API

CDSA_PVC_SPI

CDSA_PVC_SPI

unspecified

OFF

unspecified

OFF

EXEMPT

unspecified

EXEMPT

unspecified

CSSM will perform PVC
checks at the API
boundary.

CSSM will not perform
PVC checks at the API
boundary.

CSSM will perform PVC
checks at the SPI
boundary.

CSSM will not perform
PVC checks at the SPI
boundary.

The calling module is
allowed to override the
CSSM policy for the API
boundary.

The calling module
cannot weaken the
CSSM API policy.

The calling module is
allowed to override the
CSSM policy for the SPI
boundary.

The calling module
cannot weaken the
CSSM SPI policy.

The PvcPol i cy parameter to CSSM | ni t () configures the run-time policy for the process. The PvcPol i cy
parameter is a bitmask allowing both API and SPI policies to be specified simultaneously. Unspecified policies
default to the most conservative operational mode. CSSM performs pointer validation checks unless explicitly
disabled. Application modules cannot override CSSM policy unless exemptions are explicitly granted. The
following table shows the what policies can be configured for various manifest attribute values:

CSSM Manifest

Calling Module Manifest

Acceptable PvcPolicy Values

CDSA_PVC_API=<n/a>
CDSA_PVC_API=OFF
CDSA_PVC_APIl=<n/a>
CDSA_PVC_API=OFF

CDSA_PVC_API=EXEMPT

CDSA_PVC_API=EXEMPT

CDSA_PVC_APl=<n/a>

CDSA_PVC_APl=<n/a>

API checks: off (0) or on (1)
API checks: off (0) or on (1)
API checks: on (1)

API checks: off (0) or on (1)

The following table shows the PvcPol i cy configuations available for the SPI:

209

SSM Manifest

Calling Module Manifest

Acceptable PvcPolicy Values

CDSA_PVC_SPIl=<n/a>
CDSA_PVC_SPI=OFF
CDSA_PVC_SPl=<n/a>
CDSA_PVC_SPI=OFF

CDSA_PVC_SPI=EXEMPT
CDSA_PVC_SPI=EXEMPT
CDSA_PVC _SPl=<n/a>
CDSA_PVC_SPl=<n/a>

SPI checks: off (0) or on (2)
SP1 checks: off (0) or on (2)
SPI checks: on (2)

SPI checks: off (0) or on (2)

If an application module does not have a manifest and CSSM requires the application module be subject to
pointer validation checks, then pointer validation checks fail and CSSM will not operate with the anonymous
module. All service provider modules are expected to have signed manifests.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM SCOPE_NOT_SUPPORTED

CSSMERR_CSSM_PVC_ALREADY_CONFI GURED

CSSMERR_CSSM | NVALI D_PVC

SEE ALSO

Books

Intel CDSA Application Developer's Guide

210

CSSM_Introduce

NAME
CSSM_Introduce — Identify an executable module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM I nt r oduce
(const CSSM _GUI D *NMbdul el D,
CSSM_KEY_HI ERARCHY KeyHi er ar chy)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul el D (i nput)

The CSSM_GUID of the calling library or other library that might call CDSA interfaces.
The GUID is used to locate the signed manifest credentials of the named module to
calculate module integrity information.

KeyH erar chy (i nput)

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

DESCRIPTION

The CSSM | nt roduce() function identifies a dynamically loadable executable module (for example, DLL) to
the CSSM framework. CSSM uses the Modul el Dinformation to locate the signed manifest and library on the
host platform. The Module Directory Service (MDS) should be used to obtain the information. CSSM performs
an integrity cross-check on the module identified by Modul el Dand caches the result in an internal structure.
The integrity cross-check uses the KeyHi er ar chy information to determine which classes of embedded public
keys must serve as anchors when doing certificate path validation. If the export key hierarchy is specified, the
set of export privileges contained in the manifest are retrieved from the manifest and saved with the integrity
state information in the cache. Privileges granted to a module are accepted only if the manifest sections
containing the privilege set have been signed by a principal in the export key hierarchy class and that hash of
the module binary is part of the hash of the privilege attributes.

The CSSM | nt roduce() can be called at any time after CSSM | ni t (), by any module, on behalf of any module.

Once a module is introduced into CSSM the load location of the module must not change. If the load location
changes then the module must be reintroduced. Once introduced, the module load location, integrity, and
privilege information is held until CSSM Ter m nat e() is called or the process terminates. Initialization of
internal data structures maintaining the table of introductions is performed when CSSM | ni t () is called.

If CSSM I nt roduce() is called on behalf of another module, then the caller needs to make sure that the other
module is loaded into the process address space. If the library is already loaded into process address space,
but a reference to the library cannot be obtained, a different error is returned
(CSSMERR_CSSM_LIB_REF_NOT_FOUND).

211

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM | NVALI D_KEY_HI ERARCHY
CSSMERR_CSSM LI B_REF_NOT_FOUND

SEE ALSO
Intel CDSA Application Developer's Guide

212

cssm_IsFuncCallvalid

NAME
cssm_IsFuncCallValid — Check secure linkage (CDSA)
SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm | sFuncCal | Val i d

(CSSM_MODULE_HANDLE hAddi n,

CSSM_PROC_ADDR SrcAddress, /* application */,
CSSM_PROC_ADDR Dest Addr ess,

CSSM PRI VI LEGE I nPriv,

CSSM PRI VI LEGE *CQut Pri v,

CSSM BI TMASK Hi nt s,

CSSM BOOL * | sCK)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
hAddI n (i nput)

The handle identifying the attach-session whose caller and callee scope is being tested by
this function.

Sr cAddr ess (input/optional)

An address to be tested for containment within the application that requested and created
the attach-session identified by the module handle.

Dest Addr ess (input/optional)

An address within a service module. The destination address must be valid for the service
provider associated with the attach-session identified by the module handle.

I nPriv (i nput)

The privilege value to be checked. Privilege checks apply to both Sr cAddr ess and
Dest Addr ess.

Qut Pri v (out put)

If non-NULL, the global privilege will be checked and returned in Qut Pri v.
H nts (i nput)

A flag providing search hints.
| sOK (out put)

CSSM_TRUE if success, CSSM_FALSE if fail.

213

DESCRIPTION

This function checks secure linkage between an application and a service module. Based on address scope of
the application and the service module associated with the attach handle, CSSM determines whether the

Sr cAddr ess is within an associated application and Dest Addr ess is within the associated service module.
The scope of the application and the service module is determined by their respective signed manifest
credentials, which attest to the integrity of each entity.

This function uses the input privilege value | nPri v to compare against the privilege range associated with
the ranges for Sr cAddr ess and Dest Addr es. The privilege check is performed when the | nPri v privilege
value is non-NULL. If the EMM wants the global privilege value to be checked, | nPri v is zero and Qut Pri v is
non-NULL. CSSM will return the privilege value in Qut Pri v. If integrity only checks are to be performed,
InPriviszeroand QutPrivis NULL.

Another parameter called Hi nt s is used to help CSSM efficiently perform the integrity and privilege
verification operations. H nt s helps CSSM know where to look to find the desired state information. In the
regular case, CSSM will look for Sr cAddr ess in the Cal | erLi st and Dest Addr ess in the At t achLi st. For
callback functions, the SrcAddr ess and Dest Addr ess are likely to be in At t achlLi st .

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

214

CSSM_ListAttachedModuleManagers

NAME

CSSM_ListAttachedModuleManagers — Get a list of GUIDs for the attached module
manager(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Li st Att achedvbdul eManager s
(uint32 *Nunber O Mbdul eManager s,
CSSM_GUI D_PTR Mbdul eManager Gui ds)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Nunber O Modul eManager s (input/output)

The number of GUIDs in the array. If the array is not large enough, then the actual number
needed is returned and the error CSSMERR_CSSM_BUFFER_TOO_SMALL is returned.
The caller should then allocate an appropriately sized list and call the function again. If the
supplied list is larger than needed, the number of module managers found is returned and
no error is set.

Modul eManager Qui ds (input/output)

A pointer to an array of CSSM_GUID structures, one per active module manager. The caller
allocates this array.

DESCRIPTION

This function returns a list of GUIDs for the currently attached and active module managers in the CSSM
environment.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM BUFFER_TOO SMALL
CSSMERR_CSSM | NVALI D_GUI D

SEE ALSO
Intel CDSA Application Developer's Guide

215

CSSM_ModuleAttach

NAME
CSSM_ModuleAttach — Attach and verify a service provider module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Mbdul eAtt ach
(const CSSM GUI D *Mbdul eCui d,

const CSSM _VERSI ON *Ver si on,

const CSSM API _MEMORY_FUNCS * Menor yFuncs,
ui nt 32 Subservi cel D,

CSSM_SERVI CE_TYPE SubServi ceType,
CSSM_ATTACH_FLAGS Att achFl ags,
CSSM_KEY_HI ERARCHY KeyHi er ar chy,
CSSM_FUNC_NAME_ADDR * Functi onTabl e,

ui nt 32 NunfunctionTabl e,

const void *Reserved,
CSSM_MCDULE_HANDLE_PTR Newhbdul eHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul eQui d (i nput)

A pointer to the CSSM_GUID structure containing the global unique identifier for the CSP
module.

Ver si on (i nput)

The major and minor version number of CDSA that the application is compatible with.
Menor yFuncs (i nput)

A structure containing pointers to the memory routines.
Subser vi cel D(i nput)

A SubSer vi cel Didentifying a particular subservice within the module. Subservice IDs can
be obtained from MDS or gleaned from insertion events reported through the cal | back
function installed through CSSM Mydul eLoad() . Modules that provide only one service can
use zero as their subservice ID.

SubSer vi ceType (i nput)

A service mask describing the type of service the caller is requesting of the service provider
module.

At t achFl ags (i nput)
A mask representing the caller's request for session-specific services.

KeyH erar chy (i nput)

216

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

Functi onTabl e (input/output/optional)

A table of function-name and API function-pointer pairs. The caller provides the name of
the functions as input. The corresponding API function pointers are returned on output.
The function table allows dynamic linking of CDSA interfaces, including interfaces to
Elective Module Managers (EMMs), which are transparently loaded by CSSM during
CSSM _Modul eAtt ach() .

Nunfuncti onTabl e (i nput)

The number of entries in the Funct i onTabl e parameter. If no Funct i onTabl e is provided,
this value must be zero.

Reserved (i nput)
This field is reserved for future use. It should always be set to zero
NewMbdul eHandl e (out put)

A new module handle that can be used to interact with the requested service provider. The
value will be set to CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function attaches the service provider module and verifies that the version of the module expected by the
application is compatible with the version on the system. The module can implement subservices (described
in your service provider's documentation). The caller can specify a specific subservice provided by the module.

If the subservice is supported as part of the CSSM framework as well as by an EMM, Modul eAt t ach attaches
the Service Provider to the CSSM framework. If the subservice is supported only by an EMM, Mdul eAt t ach
loads the appropriate EMM. The service provider is given an indication of whether it is being attached to the
CSSM framework or an EMM.

The caller can provide a function table containing function names for the desired services. On output each
function name is matched with an API function pointer. The caller can use the pointers to invoke service
module operations through CSSM.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM | NVALI D_ADDI N_FUNCTI ON_TABLE
CSSMERR_CSSM_EMM AUTHENTI CATE_FAI LED
CSSMERR_CSSM ADDI N_AUTHENTI CATE_FAI LED
CSSMERR_CSSM | NVALI D_SERVI CE_NMASK
CSSMERR_CSSM_MODULE_NOT_LOADED
CSSMERR_CSSM | NVALI D_SUBSERVI CEl D
CSSMERR_CSSM | NVALI D_KEY_HI ERARCHY
CSSMERR_CSSM | NVALI D_GUI D

217

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_ModuleDetach

218

CSSM_ModuleDetach
NAME
CSSM_ModuleDetach — Detach application from service provider module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Modul eDet ach
(CSSM_MODULE_HANDLE Modul eHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul eHandl e (i nput)

The handle that describes the service provider module.

DESCRIPTION

This function detaches the application from the service provider module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_ModuleAttach

219

CSSM_ModulelLoad

NAME
CSSM_ModuleLoad — Initialize the security service module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM _RETURN CSSVAPI CSSM Modul eLoad

(const CSSM _GUI D *Modul eGui d,

CSSM _KEY_HI ERARCHY KeyHi er ar chy,

CSSM_API _Mobdul eEvent Handl er AppNot i f yCal | back,
voi d* AppNoti fyCal | backCt x)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul eQui d (i nput)

The GUID of the module selected for loading.
KeyH erar chy (i nput)

The CSSM_KEY_HIERARCHY option directing CSSM what embedded key to use when
verifying integrity of the named module.

AppNot i fyCal | back (input/optional)

The event notification function provided by the caller. This defines the callback for event
notifications from the loaded (and later attached) service module.

AppNot i fyCal | backCQt x (input/optional)

When the selected service module raises an event, this context is passed as an input to the
event handler specified by AppNot i f yCal | back. CSSM does not interpret or modify the
value of AppNot i f yCal | backCt x.

DESCRIPTION

This function initializes the security service module. Initialization includes registering the application’s
module-event handler and enabling events with the security service service module. The application can
choose to provide an event handler function to receive notification of insert, remove, and fault events. The
specified event handler is the single callback point for all attached sessions with the specified service module.

The function CSSM | ni t () must be invoked prior to calling CSSM Mydul eLoad() . The function
CSSM Mbdul eAtt ach() can be invoked multiple times per call to CSSM Modul eLoad() .

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

220

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM | NVALI D_GUI D
CSSMERR_CSSM ADDI N_LOAD_FAI LED
CSSMERR_CSSM_EMM LOAD_FAI LED
CSSMERR_CSSM | NVALI D_KEY_HI ERARCHY

SEE ALSO
Intel CDSA Application Developer's Guide

221

CSSM_ModuleUnload
NAME

CSSM_ModuleUnload — Deregister event notification callbacks (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Modul eUnl oad

(const CSSM GUI D *Mbdul eCui d,

CSSM_API _Mobdul eEvent Handl er AppNot i f yCal | back,
voi d* AppNoti fyCal | backCt x)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul eQui d (i nput)

The GUID of the module selected for unloading.
AppNot i fyCal | back (input/optional)

The event notification function to be deregistered. The function must have been provided by
the caller in CSSM Modul eLoad() .

AppNot i fyCal | backCt x (input/optional)

The event notification context that was provided in the corresponding call to
CSSM _Modul eLoad() .

DESCRIPTION

The function deregisters event notification callbacks for the caller identified by Modul eQui d. The

CSSM Modul eUnl oad() function is the analog call to CSSM Mbdul eLoad() . If all callbacks registered with
CSSM are removed, then CSSM unloads the service module that was loaded by calls to CSSM Mbdul eLoad() .
Calls to CSSM Modul eUnl oad() that are not matched with a previous call to CSSM Modul eLoad() result in an
error.

The CSSM uses the three input parameters Modul eGui d, AppNot i f yCal | back, and AppNot i f yCal | backCt x
to uniquely identify registered callbacks.

This function should be invoked after all necessary calls to CSSM Modul eDet ach() have been performed.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

222

CSSMERR_CSSM ADDI N_UNLOAD_FAI LED
CSSMERR_CSSM_EMM UNLOAD_FAI LED
CSSMERR_CSSM EVENT_NOTI FI CATI ON_CALLBACK_NOT_FOUND

SEE ALSO
Intel CDSA Application Developer's Guide

223

cssm_ReleaseAttachFunctions
NAME

cssm_ReleaseAttachFunctions — Release lock on the SP function table (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI cssm Rel easeAttachFuncti ons
(CSSM_MODULE_HANDLE hAddl n)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
hAddI n (i nput)

The handle identifying the attach-session whose function table is to be released by this
function.

DESCRIPTION

This function releases the lock on the SP function table for the service module identified by the module
handle. The SPI function table was obtained by the elective module manager through the
cssm Get At t achFuncti ons() operation.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

224

CSSM_SetContext

NAME
CSSM_SetContext — Replace all context information (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Set Cont ext
(CSSM_CC_HANDLE CCHandl e,
const CSSM _CONTEXT *Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CCHandl e (i nput)

The handle to the context.
Cont ext (i nput)

The context data describing the service to replace the current service associated with
context handle CCHandle.

DESCRIPTION

This function replaces all context information associated with an existing context specified by CCHandl e. The
contents of the basic context structure and all attributes included in that structure are replaced by the
context structure and attribute values contained in the Cont ext input parameter.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM | NVALI D_ATTRI BUTE
CSSMERR_CSSM | NVALI D_CONTEXT_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

225

Online Help

Functions: CSSM_GetContext

226

CSSM_SetPrivilege

NAME
CSSM_SetPrivilege — Store privilege value in CSSM framework (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Set Privi |l ege
(CSSM_PRI VI LECE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)
The CSSM_PRIVILEGE value to be applied to subsequent calls to CSSM interfaces.

DESCRIPTION

The CSSM Set Pri vi | ege() function accepts as input a privilege value and stores it in the CSSM framework.
The integrity credentials of the module calling CSSM Set Pri vi | ege() must be verified by CSSM before the
privilege value is updated. Integrity credentials are established using CSSM | nt r oduce() . CSSM will
perform a pointer validation check to ensure the caller has been previously introduced. The

CSSM Set Privi | ege() function will fail if no integrity information can be found for the caller.

After pointer validation checks, CSSM verifies the requested privilege is authorized. This is done by
comparing Pri vi | ege with the set of privileges contained in the caller manifest. If Privi | ege isnota
member, the CSSM Set Pri vi | ege() call fails.

Subsequent calls to the framework that require privileges inherit the privilege value previously established
by CSSM Set Pri vi | ege() . CSSM will perform pointer validation checks on the API caller before servicing the
API call. If OK, then the Pri vi | ege value is supplied to the SPI function.

Internally, CSSM builds and maintains privilege information based on the chosen scope of the
implementation. The scope may be dictated by the capabilities of the platform hosting the CSSM. If threading
is available, the privilege value can be associated with the thread ID of the currently executing thread. In this
scenario, CSSM can manage a table of tuples consisting of t hr eadl Dand privilege value. If threading is not
available, the privilege value can be global to the process.

Because the selected privilege value is shared, the application programmer should take precautions to reset
the privilege value whenever program flow leaves the caller's module and again when control flow returns. In
general, any time there is a possibility for CSSM Set Pri vi | ege() to be called while within the context of the
security critical section, CSSM Set Pri vi | ege() should be called again. Otherwise, the module receiving
execution control could have called CSSM Set Pri vi | ege(), resulting in the privilege value being reset.

Data structures used to maintain the global privilege value should be initialized in CSSM I ni t (). This
includes lock initialization and preliminary resource allocation. The CSSM | ni t () function is assumed to be
idempotent with respect to shared structure initialization. This means CSSM | ni t () will ensure a single
thread initializes the shared structure and subsequent calls to CSSM | ni t () will not reinitialize it. A
reference count of calls to CSSM | ni t () is needed to ensure matching calls to CSSM Ter m nat e() are handled.

227

Resource cleanup is performed at CSSM Ter mi nat e() after the reference count falls to zero. The last call to
CSSM Ter mi nat e() results in shared resources being freed and lock structures being released.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

228

CSSM_SPI_ModuleAttach

NAME
CSSM_SPI_ModuleAttach — Attach a service provider module(CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM _SPI _Modul eAtt ach
(const CSSM GUI D *Mbdul eCui d,

const CSSM _VERSI ON *Ver si on,

ui nt 32 Subservi cel D,

CSSM_SERVI CE_TYPE SubServi ceType,
CSSM_ATTACH_FLAGS AttachFl ags,
CSSM_MODULE_HANDLE Mbdul eHandl e,
CSSM_KEY_HI ERARCHY KeyHi er ar chy,
const CSSM GUI D *Cssnfui d,

const CSSM GUI D *Mbdul eManager Cui d,
const CSSM @UI D *Cal |l er Gui d,

const CSSM UPCALLS *Upcal | s,
CSSM_MCDULE_FUNCS_PTR * FuncThl)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul eQui d (i nput)

The CSSM_GUID of the invoked service provider module.
Ver si on (i nput)

The major and minor version number of the required level of system services and features.
The service module must determine whether its services are compatible with the required
version.

Subser vi cel d (i nput)

The identifier for the requested subservice within this module. If only one service is
provided by the module, then subservi cel d can be zero.

SubSer vi ceType (out put)

A CSSM_SERVICE_MASK indicating the type of services provided by the service module
and the ordering of the function table returned in the output parameter FuncTbl .

At t achFl ags (i nput)
A mask representing the caller's request for session-specific services.
Modul eHandl e (i nput)

The CSSM_HANDLE value assigned by CSSM and associated with the attach session being
created by this function.

KeyH erar chy (i nput)

229

The CSSM_KEY_HIERARCHY option directing CSSM which embedded key or keys to use
when verifying integrity of the named modules.

Cssmui d (i nput)

The CSSM_GUID of the CSSM invoking this function.
Modul eManager Qui d (i nput)

The CSSM_GUID of the module that will route calls to the service provider.
Cal I erQui d (i nput)

The CSSM_GUID of the caller who invoked CSSM Mbdul eAt t ach(), which resulted in
CSSM invoking this function.

Upcal | s (i nput)

A set of function pointers the service module must use to obtain selected CSSM services and
to manage application memory. The memory management functions are provided when the
application invokes CSSM Mbdul eAt t ach() . CSSM forwards these function pointers with
CSSM service function pointers to the module.

FuncTbl (out put)

A CSSM_MODULE_FUNCS table containing pointers to the service module functions the
caller can use. CSSM uses this table to proxy calls from an application caller to the add-in
service module.

DESCRIPTION

This function is invoked by CSSM once for each invocation of CSSM Modul eAt t ach() , specifying the module
identified by Modul eQui d. Four entities are stakeholders in this function and each is identified by a
CSSM_GUID value:

Service Module

The executing service provider performing the CSSM SPI _Mdul eAt t ach() operation. The
module is identified by Modul eGui d.

CSSM
The CSSM that invoked the service module. CSSM is identified by Cssnui d.
Modul eManager Qui d

The module that will be routing calls to the service provider. This value will be the same as
Cssntaui d if CSSM is managing the calls to this service provider.

Caller

The entity that invoked CSSM through the CSSM Mbdul eAt t ach() function. The caller is
identified by Cal | er Gui d.

The service provider module should perform an integrity check of CSSM. CssmQui d can be used to locate
CSSM's signed manifest credentials. The service provider can require an integrity check of the Caller. The
Cal | er Qui d parameter can be used to locate the Caller's signed manifest credentials. The KeyH er ar chy flag
identifies the class of embedded public keys CSSM will use to check the integrity of the service provider. If the
manifest for the target module does not encounter an embedded key for all the key classes in KeyHi er ar chy,
the integrity cross-check fails.

230

The service module must verify compatibility with the system version level specified by Ver si on. If the
version is not compatible, then this function fails. The service module should perform all initializations
required to support the new attached session and should return a function table for the SPI entry points that
can be invoked by CSSM in response to APl invocations by Cal | er Qui d. CSSM uses this function table to
dispatch requests for the attach session created by this function. Each attach session has its own function
table.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleDetach, CSSM_SPI1_ModuleLoad

231

CSSM_SPI_ModuleDetach

NAME
CSSM_SPI_ModuleDetach — Notify service module of a context event (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM SPI _Modul eDet ach
(CSSM_MODULE_HANDLE Modul eHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

Modul eHandl e (i nput)

The CSSM_HANDLE value associated with the attach session being terminated by this
function.

DESCRIPTION

This function is invoked by CSSM once for each invocation of CSSM Modul eDet ach() specifying the
attach-session identified by Modul eHandl e. The function entry point for CSSM SPI _Mbodul eDet ach is included
in the module function table CSSM MODULE_FUNCS returned to CSSM as output of a successful

CSSM SPI_Modul eAtt ach.

The service module must perform all cleanup operations associated with the specified attach handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleAttach, CSSM_SPI_ModuleUnload

232

CSSM_SPI_ModulelLoad

NAME
CSSM_SPI_ModuleLoad — Initialize process between CSSM and the add-in service module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM SPI _Modul eLoad

(const CSSM GUI D *Cssnfaui d,

const CSSM GUI D * Modul eCui d,

CSSM _SPI _Modul eEvent Handl er CssmNoti fyCal | back,
voi d* CssnNot i fyCal | backCt x)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Cssnui d (i nput)

The CSSM_GUID of the caller. Used to locate the caller's signed manifest credentials.
Modul eQui d (i nput)

The CSSM_GUID of the invoked service provider module. Used to locate the module's
signed manifest credentials.

Cssm\ot i f yCal | back (i nput)

A function pointer for the CSSM event handler that manages events of type
CSSM_MODULE_EVENT.

Cssm\ot i f yCal | backC x (i nput)

The context to be returned to CSSM as input on each callback to the event handler defined
by Cssm\ot i f yCal | back.

DESCRIPTION

This function completes the module initialization process between CSSM and the add-in service module.
Before invoking this function, CSSM verifies the add-in service module's manifest credentials. If the
credentials verify this module is loaded (physically if required), the CSSM SPI _Mdul eLoad() function is
invoked.

The Cssntaui d parameter identifies the caller and should be used by the module to locate the caller's signed
manifest credentials and to complete integrity verification and secure linkage checks on the caller. The
Modul eQui d identifies the invoked module and should be used by the module to locate its credentials and to
complete an integrity self-check.

The CssmiNot i fyCal | back and CssnmNot i f yCal | backQ x parameters define a callback and callback context
respectively. The module must retain this information for later use. The module should use the callback to
notify CSSM of module events of type CSSM_MODULE_EVENT in any ongoing, attached sessions.

233

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleAttach, CSSM_SPI_ModuleUnload

234

CSSM_SPI_ModuleUnload

NAME
CSSM_SPI_ModuleUnload — Disable events and deregister CSSM event notification (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMSPI CSSM _SPI _Mbdul eUnl oad
(const CSSM GUI D *Cssnfaui d,

const CSSM GUI D * Modul eCui d,

CSSM _SPI _Modul eEvent Handl er CssmNoti fyCal | back,
voi d* CssnNot i fyCal | backCt x)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Cssnui d (i nput)
The CSSM_GUID of the caller.
Modul eQui d (i nput)
The CSSM_GUID of the invoked service provider module.
Cssm\ot i f yCal | back (i nput)

A function pointer for the CSSM event handler that manages events of type
CSSM_MODULE_EVENT.

Cssm\ot i f yCal | backC x (i nput)

The context to be returned to CSSM as input on each callback to the event handler defined
by Cssm\ot i f yCal | back.

DESCRIPTION

This function disables events and deregisters the CSSM event - noti fi cati on function. The add-in service
module can perform cleanup operations, reversing the initialization performed in CSSM SPI _Modul eLoad() .

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

235

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_SPI_ModuleDetach, CSSM_SPI1_ModuleLoad

236

CSSM_Terminate
NAME

CSSM_Terminate — Terminate the use of CSSM (CDSA)

SYNOPSIS

include <cssm.h>

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

None

DESCRIPTION

This function terminates the caller's use of CSSM. CSSM can clean up all internal states associated with the
calling application. This function must be called once by each application.

CSSM Ter mi nat e() must be called one time for each time CSSM | ni t () was previously called.

CSSM services remain available to the program until the final call to CSSM Ter nmi nat e() completes. After
that final call, all information introduced by the caller (including privileges, handles, contexts, introduced
libraries, and so forth) is lost, and it is an error to subsequently call any CSSM API function other than
CSSM I nit().

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions CSSM_Init

237

CSSM_TP_RetrieveCredResult

NAME
CSSM_TP_RetrieveCredResult — Return the results of the credentials request (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM TP_Retri eveCredResul t
(CSSM_TP_HANDLE TPHandl e,

const CSSM DATA *Referenceldentifier,

const CSSM TP_CALLERAUTH_CONTEXT *Cal | er Aut hCr edenti al s,
sint32 *Estimat edTi ne,

CSSM BOOL *Confirnmati onRequired,

CSSM TP_RESULT_SET_PTR *Retri eveQut put)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)
The handle that describes the certification authority module used to perform this function.
Ref erencel dentifier (i nput)

A reference identifier that uniquely identifies the CSSM TP_Submi t Cr edRequest () call that
initiated the certificate service request whose results are returned by this function. The
identifier persists across application executions and becomes undefined when all local
processing of the request has completed.

Local processing is completed in one of two ways:

= For certificate services that do not require explicit confirmation by the requester, the
reference identifier is invalidated when the corresponding
CSSM TP_Ret ri eveCredResul t () function completes (by returning valid results or by
failure, which blocks returned results).

= For certificate services that require explicit confirmation by the requester, the reference
identifier is invalidated by successfully invoking the function
CSSM TP_Confi rmOr edResul t ().

Cal | er Aut hCredenti al s (input/optional)

This structure contains a set of caller authentication credentials. The authentication
information can be a passphrase, a PIN, a completed registration form, a certificate, or a
template of user-specific data. The required set of credentials is defined by the service
provider module and recorded in a record in the MDS Primary relation. Multiple credentials
can be required. If the local service provider module does not require credentials from a
caller, then the Or edent i al s field of this verification context structure can be NULL. The
structure optionally contains additional credentials that can be used to support the
authentication process. Authentication credentials required by the authority should be
included in the Request | nput . The local TP module can forward information from

Cal | er Aut hCredent i al s to the authority, as appropriate, but is not required to do so.

238

Est i mat edTi e (out put)

The number of seconds estimated before the results of a requested service will be returned
to the requester. When the local TP module or the authority process cannot estimate the
time required to perform the requested service, the output value for estimated time is
CSSM_ESTIMATED_TIME_UNKNOWN.

Confirnati onRequi r ed (out put)

A Boolean value indicating whether the caller must invoke CSSM TP_Conf i r nOr edResul t ()
to acknowledge retrieving the results of the service request. CSSM_TRUE indicates the
caller must call CSSM TP_Confi r mOr edResul t () . CSSM_FALSE indicates that the caller
must not call CSSM TP_Conf i r mOr edResul t () . The value of this output parameter is not
applicable until CSSM TP_Ret ri eveCr edResul t () completes by returning results of the
request or terminates in unrecoverable failure.

Ret ri eveQut put (out put)

A pointer to the results returned by the authority in response to the service requests
submitted by CSSM TP_Submi t Cr edRequest () . The output results are ordered
corresponding to the requests. The structure of the response set is determined by the type of
request. The caller and the service provider must retain knowledge of the request type
associated with the Ref erencel denti fier.

DESCRIPTION

This function returns the results of a CSSM TP_Subm t O edRequest () call.

The single identifier Ref er encel denti fi er denotes the CSSM TP_Subm t O edRequest () invocation that
initiated the request.

It is possible that the results are not ready to be retrieved when this call is made. In that case, an
Est i mat edTi e to complete processing is returned. The caller must attempt to retrieve the results again after
the estimated time to completion has elapsed.

This function can fail in total for any one of the following reasons:

= The reference identifier is invalid.
= The TP process cannot be located.
= The TP process encountered a fatal error when attempting to process the requests.

When this function completes, the set of return results is ordered corresponding to the order of the originating
request.

Some certificate services require the requester to confirm retrieval of the results. The
Confi r mat i onRequi r ed parameter indicates whether the caller must confirm completion of
CSSM TP_Retri eveCr edResul t () by calling CSSM TP_Conf i r nr edResul t () .

239

RETURN VALUE

A CSSM_RETURN value combined with estimated time to indicate one of three results:

Complete Function Function Return RetrieveOutput EstimatedTime
Result Value
Request resultsreturnedto CSSM_OK Non-NULL pointer NA
caller
Request results not ready, CSSM_OK NULL pointer CSSM_ESTIMATED_TIM

but expected in the future

Fatal Error, results will (ICSSM_OK) NA
never be returned

E_UNKNOWN or
<estimated seconds>

NA

The (ICSSM_OK) return value represents a specific error code.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_| DENTI FI ER_POI NTER
CSSMERR _TP_I NVALI D_| DENTI FI ER

CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR _TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE

CSSMERR TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_I NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALID_YET

CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE

CSSMERR _TP_| NVALI D_NANE
CSSMERR_TP_REQUEST_LOST
CSSMERR_TP_REQUEST_REJECTED

240

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_SubmitCredRequest
Functions for the TP SPI:
TP_SubmitCredRequest

241

CSSM_Unintroduce

NAME
CSSM_Unintroduce — Remove module (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSM Uni ntr oduce
(const CSSM GUI D *Mbdul el D)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Modul el D (i nput)

The CSSM_GUID of the calling library or other library that can call CDSA interfaces. The
GUID is used to locate the module integrity and privilege information. If the Modul el Dis
NULL, then the caller will be unintroduced.

DESCRIPTION

The CSSM_Uni nt roduce() function removes the module referenced by Modul el D from the list of module
information maintained by the CSSM framework.

A caller can unintroduce modules other than itself if the caller has been previously introduced.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR_CSSM | NVALI D_GUI D

SEE ALSO
Intel CDSA Application Developer's Guide

242

CSSM_UpdateContextAttributes

NAME
CSSM_UpdateContextAttributes — Update context attribute values (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Updat eCont ext Attri butes
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 Nunmber Of At tri but es,

const CSSM _CONTEXT_ATTRI BUTE *Cont ext Attri but es)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CCHandl e (i nput)
The handle to the existing context.
Nunber Of At t ri but es (i nput)
The number of CSSM_CONTEXT_ATTRIBUTE structures to allocate.
Context Attri but es (i nput)

Pointer to data that describes the attributes to be associated with this context.

DESCRIPTION

This function updates one or more context attribute values stored as part of an existing context specified by
CCHandl e. The basic context structure is not modified by this function. Only the context attributes are
updated.

The Nunber O At t ri but es parameter specifies the number of attributes to update. The new attribute values
are specified in Cont ext At t ri but es. If an attribute provided in Cont ext At t ri but es is already present in
the existing context, the existing value is replaced by the new value. If an attribute provided in

Cont ext At tri but es is not present in the existing context, then the new attribute is added. Attribute values
are never deleted from the existing context.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM | NVALI D_CONTEXT _HANDLE
CSSMERR_CSSM | NVALI D_ATTRI BUTE

243

SEE ALSO

Books
Intel CDSA Application Developer's Guide
Online Help

Functions: CSSM_DeleteContextAttributes, CSSM_GetContextAttribute

244

DecryptData

NAME
DecryptData: CSSM_DecryptData, CSP_DecryptData — Decrypt buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Decr ypt Dat a
(CSSM_CC_HANDLE CCHandl e,
const CSSM DATA *Ci pher Buf s,
ui nt 32 Ci pher Buf Count ,

CSSM _DATA _PTR Cl ear Buf s,

ui nt 32 Cl ear Buf Count,

ui nt 32 *byt esDecr ypt ed,

CSSM _DATA_PTR RenDat a)

SPI :

CSSM_RETURN CSSMCSPI CSP_Decr ypt Dat a
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,
const CSSM CONTEXT *Cont ext,
const CSSM DATA *Ci pher Buf s,
ui nt 32 Ci pher Buf Count ,

CSSM _DATA _PTR Cl ear Buf s,

ui nt 32 Cl ear Buf Count,

ui nt 32 *byt esDecr ypt ed,

CSSM _DATA_PTR RenDat a,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

G pher Buf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be decrypted.
G pher Buf Count (i nput)

The number of G pher Buf s.
d ear Buf s (out put)

A pointer to a vector of CSSM_DATA structures that contain the decrypted data resulting
from the decryption operation.

d ear Buf Count (i nput)

The number of A ear Buf s.

245

byt esDecr ypt ed (out put)
A pointer to ui nt 32 for the size of the decrypted data in bytes.
RenDat a (out put)

A pointer to the CSSM_DATA structure for the remaining plain text if there is not enough
buffer space available in the output data structures.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
A pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function decrypts all data contained in the set of input buffers using information in the context. The
CSSM Quer ySi ze() (CSSM API), or CSP_Quer ySi ze() (CSP SPI), function can be used to estimate the output
buffer size required. The minimum number of buffers required to contain the resulting plain text is produced
as output. If the plain text result does not fit within the set of output buffers, the remaining plain text is
returned in the single output buffer RenDat a.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, pre-allocated output
buffer, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value greater than zero and a non-NULL data pointer field value. To specify automatic output buffer
allocation by the CSP, the caller must provide an array of one or more CSSM_DATA structures, each
containing a Length field value equal to zero and a NULL data pointer field value. The application is always
responsible for deallocating the memory when it is no longer needed. In-place decryption can be done by
supplying the same input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

246

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SI ZE_M SMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_QuerySize, CSSM_EncryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate,
CSSM_DecryptDataFinal, CSSM_DecryptP, CSSM_DecryptDatalnitP

Functions for the CSP SPI:

CSP_QuerySize, CSP_EncryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate,
CSP_DecryptDataFinal

247

DecryptDataFinal

NAME

DecryptDataFinal: CSSM_DecryptDataFinal, CSP_DecryptDataFinal — Finalize staged decryption
process (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM Decr ypt Dat aFi nal
(CSSM_CC_HANDLE CCHandl e,

CSSM _DATA_PTR RenDat a)

SPI :

CSSM_RETURN CSSMCSPI CSP_Decr ypt Dat aFi nal
(CSSM_CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

CSSM _DATA_PTR RenDat a)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

RenDat a (out put)
A pointer to the CSSM_DATA structure for the last decrypted block, if necessary.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged decryption process by returning any remaining plain text not returned in
the previous staged decryption call. The plain text is returned in a single buffer.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, pre-allocated output

buffer, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value greater than zero and a non-NULL data pointer field value. To specify automatic output buffer

248

allocation by the CSP, the caller must provide an array of one or more CSSM_DATA structures, each

containing a Length field value equal to zero and a NULL data pointer field value. The application is always

responsible for deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SI ZE_M SMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataUpdate
Functions for the CSP SPI:

CSP_DecryptData, CSP_DecryptDatalnit, CSP_DecryptDataUpdate

249

DecryptDatalnit

NAME

DecryptDatalnit: CSSM_DecryptDatalnit, CSP_DecryptDatalnit — Initialize the staged decrypt
function(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Decr ypt Dat al ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSSM _CSP_Decr ypt Dat al ni t
(CSSM CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function initializes the staged decrypt function.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

250

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DecryptData, CSSM_DecryptDataUpdate, CSSM_DecryptDataFinal, CSSM_DecryptDataP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:
CSP_DecryptData, CSP_DecryptDataUpdate, CSP_DecryptDataFinal

251

DecryptDatalnitP

NAME
DecryptDatalnitP — Intialize the staged decrypt function with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSVAPI CSSM Decrypt Datal nit P
(CSSM_CC_HANDLE CCHandl e,
CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM Decr ypt Dat al ni t () for other parameters.

DESCRIPTION

This function is similar to CSSM Decr ypt Dat al ni t (). It also accepts a USEE tag as a privilege request
parameter. CSSM checks that either its own privilege set or the application's privilege set (if the application
is signed) includes the tag. If the tag is found and the service provider privilege set indicates that it is
supported, the tag is forwarded to the service provider.

For staged operations using privilege initialization functions CSSM Decr ypt Dat al ni t P(), the completion
functions CSSM Decr ypt Dat aUpdat e() and CSSM Decr ypt Dat aFi nal i ze() are used.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

252

Online Help

Functions: CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP, CSSM_QuerySize

253

DecryptDataP

NAME
DecryptDataP — Decrypt data with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM _RETURN CSSMAPI CSSM Decr ypt Dat aP
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

CSSM DATA_PTR Cl ear Buf s,

ui nt 32 Cl ear Buf Count,

ui nt 32 *byt esDecr ypt ed,

CSSM _DATA_PTR RenDat a,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM Decr ypt Dat a() for other parameters.

DESCRIPTION

This function is similar to CSSM Decr ypt Dat a() . It also accepts a USEE tag as a privilege request parameter.
CSSM checks that either its privilege set or the application's privilege set (if the application is signed)
includes the tag. If the tag is found and the service provider privilege set indicates that it is supported, the tag
is forwarded to the service provider.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SI ZE_M SMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

254

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP, CSSM_QuerySize

255

DecryptDataUpdate

NAME

DecryptDataUpdate: CSSM_DecryptDataUpdate, CSP_DecryptDataUpdate — Continue the staged
decryption process (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Decr ypt Dat aUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

CSSM DATA_PTR Cl ear Buf s,

ui nt 32 Cl ear Buf Count,

ui nt 32 *byt esDecr ypt ed)

SPI :

CSSM_RETURN CSSMCSPI CSP_Decr ypt Dat aUpdat e
(CSSM CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

CSSM DATA_PTR Cl ear Buf s,

ui nt 32 Cl ear Buf Count,

ui nt 32 *byt esDecr ypt ed)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

G pher Buf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
G pher Buf Count (i nput)

The number of G pher Buf s.
d ear Buf s (out put)

A pointer to a vector of CSSM_DATA structures that contain the decrypted data resulting
from the decryption operation.

d ear Buf Count (i nput)
The number of A ear Buf s.
byt esDecr ypt ed (out put)
A pointer to ui nt 32 for the size of the decrypted data in bytes.

256

SPI PARAMETER
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged decryption process over all data in the set of input buffers. There can be
algorithm-specific and token-specific rules restricting the lengths of data in CSSM Decr ypt Updat e() calls, but
multiple input buffers are supported. The minimum number of buffers required to contain the resulting plain
text is produced as output. Excess output buffer space is not remembered across staged decryption calls. Each
staged call begins filling one or more new output buffers. The CSSM Quer ySi ze() (CSSM API), or
CSP_QuerySi ze() (CSP SPI), function can be used to estimate the output buffer size required for each update
call.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed. In-place decryption can be done by supplying the same
input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_QuerySize, CSSM_DecryptData, CSSM_DecryptDatalnit, CSSM_DecryptDataFinal

257

Functions for the CSP SPI:
CSP_QuerySize, CSP_DecryptData, CSP_DecryptDatalnit, CSP_DecryptDataFinal

258

DeriveKey

NAME
DeriveKey: CSSM_DeriveKey, CSP_DeriveKey — Derive new symmetric key (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Der i veKey

(CSSM_CC_HANDLE CCHandl e,

CSSM _DATA_PTR Par am

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM KEY_PTR Deri vedKey)

SPI :

CSSM_RETURN CSSMCSPI CSP_Der i veKey

(CSSM _CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

CSSM _DATA _PTR Par am

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM KEY_PTR Deri vedKey)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation.
Par am(input/output)

This parameter varies depending on the derivation algorithm. Password based derivation
algorithms use this parameter to return a cipher block chaining initialization vector.
Concatenation algorithms use this parameter to get the second item to concatenate.

KeyUsage (i nput)

A bit mask indicating all permitted uses for the new derived key.
KeyAttr (i nput)

A bit mask defining other attribute values for the new derived key.
KeyLabel (input/optional)

Pointer to a byte string that will be used as the label for the derived key.
O edAndAcl Ent ry (input/optional)

259

A structure containing one or more credentials authorized for creating a key and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the CSP to acquire the credentials and/or the subject of the ACL entry
interactively. If the CSP provides public access for creating a key, then the credentials can
be NULL. If the CSP defines a default initial ACL entry for the new key, then the ACL entry
prototype can be empty.

Der i vedKey (out put)
A pointer to a CSSM_KEY structure that returns the derived key.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function derives a new symmetric key using the context and/or information from the base key in the
context. The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

Subject

A CSSM_LIST structure, containing the type of the subject and a template value that can
be used to verify samples that are presented in credentials when resource access is
requested.

Delegation flag

A value indicating whether the Subject can delegate the permissions recorded in the
Aut hori zat i onTag. (This item only applies to public key subjects).

Authorization tag

The set of permissions that are granted to the Subject.
Validity period

The start time and the stop time for which the ACL entry is valid.
ACL entry tag

A user-defined string value associated with the ACL entry.

260

The service provider can modify the caller-provided initial ACL entry to conform to any
innate resource-access policy that the service provider may be required to enforce. If the
initial ACL entry provided by the caller contains values or permissions that are not
supported by the service provider, then the service provider can modify the initial ACL
appropriately or can fail the request to create the new resource. Service providers list their
supported Aut hor i zat i onTag values in their Module Directory Services primary record.

The CSP can require that the cryptographic context include access credentials for
authentication and authorization checks when using a private key or a secret key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CSP_KEY_LABEL_ALREADY_ EXI STS

COMMENTS

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() (CSSM API), or CSP_FreeKey() (CSP SPI) call, or with the memory
functions registered for the CSPHandl e.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions: CSSM_CSP_CreateDeriveKeyContext

261

DigestData

NAME
DigestData: CSSM_DigestData, CSP_DigestData — Compute message digest (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Di gest Dat a
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

CSSM DATA_PTR Di gest)

SPI :

CSSM_RETURN CSSMCSPI CSP_Di gest Dat a
(CSSM _CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

CSSM DATA_PTR Di gest)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs.
D gest (out put)

A pointer to the CSSM_DATA structure for the message digest.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

262

DESCRIPTION

This function computes a message digest for all data contained in the set of input buffers.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specifed in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_OUTPUT _LENGTH _ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal, CSSM_DigestDataClone
Functions for the CSP SPI:

CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFinal, CSP_DigestDataClone

263

DigestDataClone

NAME

DigestDataClone: CSSM_DigestDataClone, CSP_DigestDataClone — Clone a staged message digest
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Di gest Dat aCl one
(CSSM_CC_HANDLE CCHandl e,

CSSM_CC_HANDLE *Cl onednewCCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Di gest Dat aCl one
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

CSSM_CC_HANDLE Cl onednewCCHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of a staged message digest operation.
d onednewCCHandl e (out put)

The cloned digest context handle. The handle will be set to CSSM_INVALID_HANDLE if
the function fails.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function clones a given staged message digest context with its cryptographic attributes and intermediate
result.

NOTES

When a digest context is cloned, a new context is created with data associated with the parent context.
Changes made to the parent context after calling this function will not be reflected in the cloned context. The
cloned context could be used with the CSSM D gest Dat aUpdat e() and CSSM D gest Dat aFi nal () functions.

264

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataFinal
Functions for the CSP SPI:

CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataFinal

265

DigestDataFinal

NAME

DigestDataFinal: CSSM_DigestDataFinal, CSP_DigestDataFinal — Finalize the staged message
digest (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Di gest Dat aFi nal
(CSSM_CC_HANDLE CCHandl e,

CSSM DATA_PTR Di gest)

SPI :

CSSM_RETURN CSSMCSPI CSP_Di gest Dat aFi nal
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

CSSM DATA_PTR Di gest)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

D gest (out put)
A pointer to the CSSM_DATA structure for the message digest.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged message digest function.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

266

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard. .
CSSMERR _CSP_OUTPUT_LENGTH _ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataUpdate, CSSM_DigestDataClone
Functions for the CSP SPI:

CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataUpdate, CSP_DigestDataClone

267

DigestDatalnit

NAME

DigestDatalnit: CSSM_DigestDatalnit, CSP_DigestDatalnit — Initialize the staged message digest
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Di gest Dat al ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Di gest Dat al ni t
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function initializes the staged message digest function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

268

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDataUpdate, CSSM_DigestDataClone, CSSM_DigestDataFinal
Functions for the CSP SPI:

CSP_DigestData, CSP_DigestDataUpdate, CSP_DigestDataClone, CSP_DigestDataFinal

269

DigestDataUpdate

NAME
DigestDataUpdate: CSSM_DigestDataUpdate — Continue the staged process of digesting (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Di gest Dat aUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

SPI :

CSSM_RETURN CSSMCSPI CSP_Di gest Dat aUpdat e
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)
A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged process of digesting all data contained in the set of input buffers. The
resulting digest value will be returned as part of the staged digesting process.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

270

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DigestData, CSSM_DigestDatalnit, CSSM_DigestDataClone, CSSM_DigestDataFinal
Functions for the CSP SPI:

Functions: CSP_DigestData, CSP_DigestDatalnit, CSP_DigestDataClone, CSP_DigestDataFinal

271

DL_Authenticate

NAME
DL_Authenticate: CSSM_DL_Authenticate — Provide authentication credentials (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Aut henti cate

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _DB_ACCESS_TYPE AccessRequest,

const CSSM ACCESS_CREDENTI ALS *AccessCred)
SPI :

CSSM_RETURN CSSMDLI DL_Aut henticate

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _DB_ACCESS_TYPE AccessRequest,

const CSSM ACCESS_CREDENTI ALS *AccessCred)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module used to perform this
function and the data store to which access is being requested. If the form of authentication
being requested is authentication to the DL module in general, then the data store handle
must be NULL.

AccessRequest (i nput)
An indicator of the requested access mode for the data store or DL module in general.
AccessCred (i nput)

A pointer to the set of one or more credentials being presented for authentication by the
caller. The credentials can apply to the DL module in general or to a particular data store
managed by this service module. The credentials required for creating new data stores is
defined by the DL and recorded in a record in the MDS Primary DL relation. The required
set of credentials to access a particular data store is defined by the Dbl nf o record containing
meta-data for the specified data store.

The credentials structure can contain multiple types of credentials, as required for
multi-factor authentication. The credential data can be an immediate value, such as a
passphrase, PIN, certificate, or template of user-specific data, or the caller can specify a
callback function the DL can use to obtain one or more credentials.

DESCRIPTION

This function allows the caller to provide authentication credentials to the DL module at a time other than
data store creation, deletion, open, import, and export. AccessRequest defines the type of access to be
associated with the caller. If the authentication credential applies to access and use of a DL module in

272

general, then the data store handle specified in the DLDBHandl e must be NULL. When the authorization
credential is to apply to a specific data store, the handle for that data store must be specified in the
DLDBHandl e pair.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_I NVALI D_ACCESS_REQUEST
CSSMERR DL_| NVALI D_DB_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

273

DL_ChangeDbAcl

NAME
DL_ChangeDbAcl: CSSM_DL_ChangeDbAcl — Edit stored ACL (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM DL_ChangeDbAc!
(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_EDIT *Acl Edit)

SPI :

CSSM_RETURN CSSMDLI DL_ChangeDbAcl

(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_EDIT *Acl Edit)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the data storage library module to be used to perform this
function, and the open data store whose associated ACL entries are to be updated.

AccessCred (i nput)

A pointer to the set of one or more credentials used to authenticate and validate the caller's
authorization to modify the ACL associated with the target data base. Required credentials
can include zero or more certificates, zero or more caller names, and one or more samples. If
certificates and/or caller names are provided as input these must be provided as immediate
values in this structure. The samples can be provided as immediate values or can be
obtained through a callback function included in the AccessCr ed structure.

Acl Edi t (i nput)

A structure containing information that defines the edit operation. Valid operations include
adding, replacing and deleting entries in the set of ACL entries managed by the service
provider. The Acl Edi t can contain information for a new ACL entry and a unique handle
identifying an existing ACL entry. The information controls the edit operation as follows:

Value of AclEdit.EditMode Use of AclEdit.NewEnNtry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_ADD Adds a new ACL entry to the set of ACL entries
associated with the specified data base. The new ACL
entry is created from the prototype ACL entry contained
in NeweEnt ry. A dEnt ryHandl e is ignored for this
Edi t Mode.

274

Value of AclEdit.EditMode Use of AclEdit.NewEnNtry and
AclEdit.OldEntryHandle

CSSM_ACL_EDIT_MODE_DELETE Deletes the ACL entry identified by d dEnt r yHandl e
and associated with the specified data base. NewEntry is
ignored for this Edi t Mode.

CSSM_ACL_EDIT_MODE_REPLACE Replaces the ACL entry identified by A dEnt r yHandl e
and associated with the specified data base. The existing
ACL is replaced based on the ACL entry prototype
contained in NewEntry.

When replacing an existing ACL entry, the caller must replace all of the items in an ACL
entry. The replacement prototype includes:

Subject type and value

A CSSM_LIST structure containing a typed Subject. The Subject
identifies the entity authorized by this ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the
permissions recorded in the authorization array.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of
operations for which permission is granted to the Subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements,
the start time and the stop time for which the ACL entry is valid.

ACL entry tag

A CSSM_STRING containing a user-defined value associated with the
ACL entry.

DESCRIPTION

This function edits the stored ACL associated with the target data base identified by DLDBHandl e. DBHandl e.
The ACL is modified according to the edit mode and information provided in Acl Edi t .

The caller must be authorized to modify the target ACL. Caller authentication and authorization to edit the
ACL is determined based on the caller-provided AccessCr ed.

The caller must be authorized to add, delete or replace the ACL entries associated with the target data base.
When adding or replacing an ACL entry, the service provider must reject the creation of duplicate ACL
entries.

When adding a new ACL entry to an ACL, the caller must provide a complete ACL entry prototype. All ACL
entry items, except the ACL entry TypedSubj ect must be provided as an immediate value in

Acl Edi t - >Newent ry. The ACL entry Subject can be provided as an immediate value, from a verifier with a
protected data path, from an external authentication or authorization service, or through a callback function
specified in Acl Edi t - >NewEnt ry- >Cal | back.

275

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR DL_| NVALI D DB _HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbAcl
Functions for the DL SPI:
DL_GetDbAcl

276

DL_ChangeDbOwner

NAME
DL_ChangeDbOwner: CSSM_DL_ChangeDbOwner — Define a new data base owner (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_ChangeDbOaner
(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_OWNER PROTOTYPE * NewOaner)
SPI :

CSSM_RETURN CSSMDLI DL_ChangeDbOwner

(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM ACL_OWNER _PROTOTYPE * NewOaner)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the data storage library module to be used to perform this
function, and the open data store whose associated Owner is to be updated.

AccessCred (i nput)

A pointer to the set of one or more credentials used to prove the caller is the current Owner
of the Data Base. Required credentials can include zero or more certificates, zero or more
caller names, and one or more samples. If certificates and/or caller names are provided as
input these must be provided as immediate values in this structure. The samples can be
provided as immediate values or can be obtained through a callback function included in the
AccessCr ed structure.

NewOnner (i nput)
A CSSM ACL_OMNER _PROTOTYPE defining the new Owner of the Data Base.

DESCRIPTION
This function takes a CSSM ACL_ OMER_PROTOTYPE defining the new Owner of the Data Base.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

277

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR DL_| NVALI D_NEW OANER

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbOwner
Functions for the DL SPI:
DL_GetDbOwner

278

DL_CreateRelation
NAME

DL_CreateRelation: CSSM_DL_CreateRelation — Create a new persistent relation (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM DL_Cr eat eRel ati on

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM DB_RECORDTYPE Rel ati onl D,

const char *Rel ati onNane,

ui nt 32 Nunber OF Attri butes,

const CSSM DB_SCHEMA ATTRI BUTE_I NFO *pAttri butel nfo,
ui nt 32 Nunber O | ndexes,

const CSSM DB_SCHEMA_| NDEX_I NFO *pl ndex| nf o)

SPI :

CSSM_RETURN CSSMDLI DL_Creat eRel ati on

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM DB_RECORDTYPE Rel ati onl D,

const char *Rel ati onNane,

ui nt 32 Nunber OF Attri butes,

const CSSM DB_SCHEMA ATTRI BUTE_I NFO *pAttri butel nfo,
ui nt 32 Nunber O | ndexes,

const CSSM DB_SCHEMA_| NDEX_I NFO *pl ndex| nf o)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store in which to insert the new relation record. The
database should be opened in administrative mode using the
CSSM_DB_ACCESS_PRIVILEGED flag.

Rel ati onl D (i nput)

Indicates the type of relation record being added to the data store.
Rel ati onNare (i nput)

Indicates the name of the relation being added to the data store.
Nunber Of At t ri butes (i nput)

Indicates the number of attributes specified in pAttri but el nf o.
pAttri but el nfo (i nput)

A list of structures containing the meta information (schema) describing the attributes for
the relation being added to the specified data store. The list contains at most one entry per
attribute in the specified record type.

279

Nunber O | ndexes (i nput)
Indicates the number of indexes specified in pl ndexl| nf o.
pl ndexI nf o (i nput)

A list of structures containing the meta information (schema) describing the indexes for the
relation being added to the specified data store. The list contains at most one entry per
index in the specified record type.

DESCRIPTION

This function creates a new persistent relation of the specified type by inserting it into the specified data
store. The pAttri but el nf o and pl ndexI nf o specify the values contained in the new relation record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_FI ELD_SPECI FI ED MULTI PLE
CSSMERR DL_I NVALI D_ATTRI BUTE_| NFO
CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR DL_I NVALI D_| NDEX_| NFO
CSSMERR DL_| NVALI D_RECORDTYPE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DestroyRelation
Functions for the DL SPI:
DL_DestroyRelation

280

DL_DataAbortQuery

NAME
DL_DataAbortQuery: CSSM_DL_DataAbortQuery — Terminate DL_DataGetFirst query (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM DL_Dat aAbort Query
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _HANDLE Resul t sHandl e)

SPI :

CSSM _RETURN CSSMDLI DL_Dat aAbort Query
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _HANDLE Resul t sHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which records were selected by the initiating

query.
Resul t sHandl e (i nput)

The selection handle returned from the initial query function.

DESCRIPTION

This function terminates the query initiated by DL_Dat aGet Fi rst () and allows a DL to release all
intermediate state information associated with the query, and release any locks on the resource. The
user/application must call CSSM DL_Dat aAbor t Query() at the termination.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR DL_I NVALI D_RESULTS_HANDLE

281

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext
Functions for the DL SPI:

DL_DataGetFirst, dL_DataGetNext

282

DL_DataDelete

NAME
DL_DataDelete: CSSM_DL_DataDelete — Remove data record (CDSA)

SYNOPSIS

#include <cssm.h>

API :

CSSM_RETURN CSSVAPI CSSM DL_Dat alel et e

(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM DB_UNI QUE_RECORD *Uni queRecor dl dentifier)
SPI :

CSSM_RETURN CSSMDLI DL_Dat aDel et e

(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM DB_UNI QUE_RECORD *Uni queRecor dl dentifier)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which to delete the specified data record.

Uni queRecordl denti fier (i nput)

A pointer to a CSSM_DB_UNIQUE_RECORD identifier containing unique identification of
the data record to be deleted from the data store. Once the associated record has been
deleted, this unique record identifier cannot be used in future references, except as an
argument to DL_Fr eeUni queRecor d() which must still be called.

DESCRIPTION

This function removes the data record specified by the unique record identifier from the specified data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR_DL_| NVALI D_RECORD Ul D
CSSMERR_DL_RECORD_NOT_FOUND

283

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_Datalnsert
Functions for the DL SPI:
DL_Datalnsert

284

DL_DataGetFirst

NAME

DL_DataGetFirst: CSSM_DL_DataGetFirst — Get first data record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Dat aGet Fi r st
(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM QUERY *Query,

CSSM HANDLE_PTR Resul t sHandl e,

CSSM DB_RECORD_ATTRI BUTE_DATA PTR Attributes,
CSSM _DATA_PTR Dat a,

CSSM DB_UNI QUE_RECORD PTR *Uni quel d)

SPI :

CSSM_RETURN CSSMDLI DL_Dat aGet Fi r st

(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM QUERY *Query,

CSSM HANDLE_PTR Resul t sHandl e,

CSSM _DB_RECORD_ATTRI BUTE_DATA PTR Attributes,
CSSM _DATA_PTR Dat a,

CSSM DB_UNI QUE_RECORD PTR *Uni quel d)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store to search for records satisfying the query.

Query (input/optional)

The query structure specifying the selection predicate(s) used to query the data store. The
structure contains meta information about the search fields and the relational and
conjunctive operators forming the selection predicate. The comparison values to be used in
the search are specified in the Attributes field of this Query structure. If a search attribute
is of type CSSM_DB_ATTRIBUTE_FORMAT_STRING and the search value specified for
that string includes a null-terminator, then the length count for that string should include
the terminating character. (If null-terminators are used they should be used consistently,
storing the terminator as part of the string in the data store, otherwise selection predicates
will not locate expected matches.) The Query structure attributes also identify the
particular attributes to be searched by this query. If no query is specified, the DL module
can return the first record in the data store, performing sequential retrieval, or return an
error. If no selection predicates are specified, the DL module can return the first record in
the data store, performing sequential retrieval, or return an error
(CSSM_DL_UNSUPPORTED_NUM_SELECTION_PREDS). When selection predicates are

285

specified, the Nunber O Val ues of the At tri but e of each selection predicate must be 1. If
any selection predicate does not satisfy this requirement, the error
CSSMERR_DL_INVALID_QUERY is returned.

Resul t sHandl e (out put)

This handle should be used to retrieve subsequent records that satisfied this query.
Attribut es (optional-input/output)

If the Att ri but es structure pointer is NULL, no values are returned.

Otherwise, the Dat aRecor dType, Nunber OF At t ri but es and At t ri but eDat a fields are read.
At tri but eDat a must be an array of Nunber Of At tri but es
CSSM_DB_RECORD_ATTRIBUTE elements. Only the | nf o field of each element is used
on input. The At t ri but eFor nat field of the | nf o field is ignored on input.

On output, a CSSM_DB_RECORD_ATTRIBUTE structure containing a list of all or the
requested attribute values (subset) from the retrieved record. The Senant i cl nf or nat i on
field is set. For each CSSM_DB_ATTRIBUTE_DATA contained in the At tri but eDat a
array, the Nunber O Val ues field is set to reflect the size of the Val ue array which is
allocated by the DL using the application specified allocators. Each CSSM_DATA in the
Val ue array will have it's Dat a field as a pointer to data allocated using the application
specified allocators containing the attributes value, and have it's Lengt h set to the length of
the value.

All values for an attribute are returned (this could be 0). All fields in the | nf o field of the
CSSM_DB_ATTRIBUTE_DATA are left unchanged except for the At t ri but eFor mat field,
which is set to reflect the schema.

Dat a (optional-input/output)

Data values contained in the referenced memory are ignored during processing and are
overwritten with the retrieved opaque object. On output, a CSSM_DATA structure
containing the opaque object stored in the retrieved record.

Uni quel d (out put)

If successful and (at least) a record satisfying the query has been found, then this parameter
returns a pointer to a CSSM_UNIQUE_RECORD_PTR structure containing a unique
identifier associated with the retrieved record. This unique identifier structure can be used
in future references to this record using this DLDBHandl e pairing. It may not be valid for
other DLHandl es targeted to this DL module or to other DBHandl es targeted to this data
store. If there are no records satisfying the query, then this pointer is NULL and

CSSM DL_Dat aCGet Fi rst () must return CSSM_DL_ENDOFDATA,; in this case a normal
termination condition has occurred. The CSSM DL_Fr eeUni queRecor d() must be used to
deallocate this structure.

DESCRIPTION

This function retrieves the first data record in the data store that matches the selection criteria. The selection
criteria (including selection predicate and comparison values) is specified in the Query structure. If the Query
specifies an attribute that is not defined in the database's meta-information, an error condition is returned.
The DL module can use internally-managed indexing structures to enhance the performance of the retrieval
operation. This function selects the first record satisfying the query based on the list of Attributes and the
opaque Data object. The output buffers for the retrieved record are allocated by this function using the
memory management functions provided during the module attach operation. This function also returns a
results handle to be used when retrieving subsequent records satisfying the query.

286

Additional matching records are iteratively retrieved using the CSSM DL_Dat aGet Next () function . The data
storage module supports one of two retrieval models:

= Transactional - all query results are determined at initial query evaluation. Results do not change during
an incremental retrieval process.

= File System Scan - query results are selected during the incremental retrieval process. Records matching
the query may be added to or deleted from the underlying data store during the iterative retrieval. The
caller may receive the new matching records and not received the deleted records.

The caller can determine which retrieval model is supported by examining the encapsulated product
description for this data storage module.

If the query selection criteria also specifies time for space limits for executing the query, those limits also
apply ro retrieval of the additional selected data records retrieved using the CSSM DL_Dat aGet Next ()
function. Finally, this function returns a unique record identifier associated with the retrieved record. This
structure can be used in future references to the retrieved data record. Once a user has finished using a
certain query, it must call CSSM Dat aAbort Query() for releasing resources that CSSM uses. If all records
satisfying the query have been retrieved, then query is automatically terminated.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_ENDOFDATA

CSSMERR DL_FI ELD_SPECI FI ED_ MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR DL_| NVALI D_DB_HANDLE

CSSMERR DL_I NVALI D_FI ELD_NAVE
CSSMERR_DL_| NVALI D_PARSI NG_MODULE
CSSMERR DL_I NVALI D_QUERY

CSSMERR DL_| NVALI D_RECORDTYPE
CSSMERR DL_I NVALI D_RECORD Ul D
CSSMERR_DL_UNSUPPORTED_FI ELD_FORMAT
CSSMERR_DL_UNSUPPORTED_NUM SELECTI ON_PREDS
CSSMERR_DL_UNSUPPORTED OPERATOR
CSSMERR_DL_UNSUPPORTED_QUERY
CSSMERR_DL_UNSUPPORTED QUERY_LIM TS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

CSSM_DL_DataGetNext, CSSM_DL_DataAbortQuery
Functions for the DL SPI:

287

DL_DataGetNext, DL_DataAbortQuery

288

DL_DataGetFromUniqueRecordld

NAME

DL_DataGetFromUniqueRecordld: CSSM_DL_DataGetFromUniqueRecordld — Get data record
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Dat aGet Fromni queRecordl d
(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM DB_UN QUE_RECORD PTR Uni queRecord,
CSSM DB_RECCRD_ATTRI BUTE_DATA PTR Attributes,
CSSM DATA_PTR Dat a)

SPI :

CSSM_RETURN CSSMDLI DL_Dat aGet Fr onni queRecor dl d
(CSSM DL_DB_HANDLE DLDBHandl e,

const CSSM DB_UN QUE _RECCORD PTR Uni queRecord,
CSSM DB_RECCRD_ATTRI BUTE_DATA PTR Attributes,
CSSM DATA_PTR Dat a)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store to search for the data record.

Uni queRecord (i nput)

The pointer to a unique record structure returned from a DL_Dat al nsert,
DL_Dat aGet Fi rst, or DL_Dat aGet Next operation.

Attri but es (optional-input/output)
If the At tri but es structure pointer is NULL, no values are returned.

Otherwise, the Dat aRecor dType, Nunber OF At t ri but es and At t ri but eDat a fields are read.
At tri but eDat a must be an array of Nunber Of At tri but es
CSSM_DB_RECORD_ATTRIBUTE elements. Only the | nf o field of each element is used
on input. The At t ri but eFor nat field of the | nf o field is ignored on input.

On output, a CSSM_DB_RECORD_ATTRIBUTE structure containing a list of all or the
requested attribute values (subset) from the retrieved record. The Senant i cl nf or nat i on
field is set. For each CSSM_DB_ATTRIBUTE_DATA contained in the At tri but eDat a
array, the Nunber O Val ues field is set to reflect the size of the Val ue array which is
allocated by the DL using the application specified allocators. Each CSSM_DATA in the
Val ue array will have it's Dat a field as a pointer to data allocated using the application
specified allocators containing the attributes value, and have it's Lengt h set to the length of
the value.

289

All values for an attribute are returned (this could be 0). All fields in the | nf o field of the
CSSM_DB_ATTRIBUTE_DATA are left unchanged except for the At t ri but eFor mat field,
which is set to reflect the schema.

Dat a (optional-input/output)

Data values contained in the referenced memory are ignored during processing and are
overwritten with the retrieved opaque object. On output, a CSSM_DATA structure
containing the opague object stored in the retrieved record. If the pointer is data structure
pointer is NULL, the opaque object is not returned.

DESCRIPTION

This function retrieves the data record and attributes associated with this unique record identifier. The
Attri but es parameter can specify a subset of the attributes to be returned. If At t ri but es specifies an
attribute that is not defined in the database's meta-information, an error condition is returned. The output
buffers for the retrieved record are allocated by this function using the memory management functions
provided during the module attach operation. The DL module can use an indexing structure identified in the
Uni queRecor dl d to enhance the performance of the retrieval operation.

The DL should assume that the value of CSSM_QUERY_FLAGS is when performing this operation. In
particular this means that if the data of a key record is being retrieved, the DL will return a CSSM_KEY
structure with a key reference.

If the record referenced by Uni queRecor dl denti fi er has been modified since the last time it was retrieved,
the error (warning) CSSMERR_DL_RECORD_MODIFIED is returned but the requested attributes and data
of the new record is returned. The caller should be advised that other attributes (or the data) might have
changed that were not fetched from the DL with this call.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_FI ELD_SPECI FI ED_ MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR DL_| NVALI D_DB_HANDLE

CSSMERR DL_I NVALI D_FI ELD_NAVE
CSSMERR DL_| NVALI D_RECORDTYPE
CSSMERR DL_| NVALI D_RECORD Ul D

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_Datalnsert, CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext

290

Functions for the DL SPI:
CSSM_DL_Datalnsert, CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext

291

DL_DataGetNext

NAME
DL_DataGetNext: CSSM_DL_DataGetNext — Get next data record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Dat aGet Next
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DB_RECCRD_ATTRI BUTE_DATA PTR Attributes,
CSSM DATA_PTR Dat a,

CSSM DB_UNI QUE_RECORD_PTR *Uni quel d)

SPI :

CSSM_RETURN CSSMDLI DL_Dat aGet Next

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _HANDLE Resul t sHandl e,

CSSM DB_RECCRD_ATTRI BUTE_DATA PTR Attributes,
CSSM DATA_PTR Dat a,

CSSM DB_UNI QUE_RECORD_PTR *Uni quel d)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

DLDBHandl e (i nput)
The handle pair that describes the add-in data storage library module to be used to perform
this function, and the open data store from which records were selected by the initiating
query.

Resul t sHandl e (i nput)

The handle identifying a set of records retrieved by a query executed by the
CSSM DL_Dat aCet Fi rst () function.

Attri but es (optional-input/output)
If the At tri but es structure pointer is NULL, no values are returned.

Otherwise, the Dat aRecor dType, Nunber OF At tri but es and At t ri but eDat a fields are read.
At tri but eDat a must be an array of Nunber Of At tri but es
CSSM_DB_RECORD_ATTRIBUTE elements. Only the | nf o field of each element is used
on input. The At t ri but eFor nat field of the | nf o field is ignored on input.

On output, a CSSM_DB_RECORD_ATTRIBUTE structure containing a list of all or the
requested attribute values (subset) from the retrieved record. The Senant i cl nf or nat i on
field is set. For each CSSM_DB_ATTRIBUTE_DATA contained in the At tri but eDat a
array, the Nunber O Val ues field is set to reflect the size of the Val ue array which is
allocated by the DL using the application specified allocators. Each CSSM_DATA in the

292

Val ue array will have it's Dat a field as a pointer to data allocated using the application
specified allocators containing the attributes value, and have it's Lengt h set to the length of
the value.

All values for an attribute are returned (this could be 0). All fields in the | nf o field of the
CSSM_DB_ATTRIBUTE_DATA are left unchanged except for the At tri but eFor mat field,
which is set to reflect the schema.

Dat a (optional-input/output)

Data values contained in the referenced memory are ignored during processing and are
overwritten with the retrieved opaque object. On output, a CSSM_DATA structure
containing the opaque object stored in the retrieved record. If the pointer is data structure
pointer is NULL, the opaque object is not returned.

Uni quel d (out put)

If successful and (at least) a record satisfying the query has been found, then this parameter
returns a pointer to a CSSM_UNIQUE_RECORD_PTR structure containing a unique
identifier associated with the retrieved record. This unique identifier structure can be used
in future references to this record using this DLDBHandl e pairing. It may not be valid for
other DLHandl| es targeted to this DL module or to other DBHandl es targeted to this data
store. If there are no more records satisfying the query, then this pointer is NULL and
CSSM DL_Dat aGet Next () must return CSSM_DL_ENDOFDATA, in this case a normal
termination condition has occurred. The CSSM DL_Fr eeUni queRecor d() must be used to
deallocate this structure.

DESCRIPTION

This function returns the next data record referenced by the Resul t sHandl e. The Resul t sHandl e references
a set of records selected by an invocation of the Dat aGet Fi r st function. The Attributes parameter can specify
a subset of the attributes to be returned. If At t ri but es specifies an attribute that is not defined in the
database's meta-information, an error condition is returned. The record values are returned in the

Attribut es and Dat a parameters. The output buffers for the retrieved record are allocated by this function
using the memory management functions provided during the module attach operation. The function also
returns a unique record identifier for the return record.

The data storage module supports one of two retrieval models: transactional or file system scan. The
transactional model freezes the set of records to be retrieved at query initiation. The file system scan model
selects from a potentially changing set of records during the retrieval process. The EndO Dat aSt or e()
function indicates when all matching records have been retrieved. The caller can determine which retrieval
model is supported by examining the encapsulated product description for this data storage module. Once a
user has finished using a certain query, it must call CSSM Dat aAbort Quer y() for releasing resources that
CSSM uses. If all records satisfying the query have been retrieved, then query is automatically terminated.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

293

CSSMERR_DL_ENDOFDATA

CSSMERR DL_FI ELD_SPECI FI ED MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR DL_| NVALI D_DB_HANDLE

CSSMERR DL_I NVALI D_FI ELD_NAVE
CSSMERR DL_| NVALI D_RECORDTYPE
CSSMERR DL_I NVALI D_RECORD Ul D
CSSMERR DL_| NVALI D_RESULTS_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DataGetFirst, CSSM_DL_DataAbortQuery
Functions for the DL SPI:

DL_DataGetFirst, DL_DataAbortQuery

294

DL_Datalnsert
NAME

DL_Datalnsert: CSSM_DL_Datalnsert — Create new persistent data record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Dat al nsert

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _DB_RECORDTYPE Recor dType,

const CSSM DB_RECORD_ATTRI BUTE_DATA *Attri but es,
const CSSM DATA *Dat a,

CSSM DB_UNI QUE_RECORD PTR *Uni quel d)

SPI :

CSSM_RETURN CSSMDLI DL_Dat al nsert

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _DB_RECORDTYPE Recor dType,

const CSSM DB_RECORD_ATTRI BUTE_DATA *Attri but es,
const CSSM DATA *Dat a,

CSSM DB_UNI QUE_RECORD PTR *Uni quel d)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store in which to insert the new data record.

Recor dType (i nput)

Indicates the type of data record being added to the data store.

Attri but es (input/optional)

A list of structures containing the attribute values to be stored in that attribute, and the
meta information (schema) describing those attributes. The list contains at most one entry
per attribute in the specified record type. The specified At t ri but eFor mat for each attribute
must match that of the database schema, otherwise the error
CSSMERR_DL_INCOMPATIBLE_FIELD_FORMAT is returned. If an attribute is of type
CSSM_DB_ATTRIBUTE_FORMAT_STRING and the value specified for that string
includes a null-terminator, then the length count in the CSSM_DATA structure containing
the input string should include the terminating character. (If null-terminators are used,
they should be used consistently when storing, searching, and retrieving the string value,
otherwise selection predicates will not locate expected matches.) For those attributes that
are not assigned values by the caller, the DL module may assume the values to be the empty
set, or assume default values, or return an error. If the specified record type does not contain
any attributes, this parameter must be NULL.

Dat a (input/optional)

295

A pointer to the CSSM_DATA structure which contains the opaque data object to be stored
in the new data record. If the specified record type does not contain an opaque data object,
this parameter must be NULL.

Uni quel d (out put)

A pointer to a CSSM_DB_UNIQUE_RECORD_PTR containing a unique identifier
associated with the new record. This unique identifier structure can be used in future
references to this record during the current open data base session. The pointer will be set
to NULL if the function fails. The CSSM DL_Fr eeUni queRecor d() function must be used to
deallocate this structure.

DESCRIPTION

This function creates a new persistent data record of the specified type by inserting it into the specified data
store. The values contained in the new data record are specified by the Attri but es and the Dat a. The
attribute value list contains zero or more attribute values. The At t ri but es parameter also specifies a record
type. This type must be the same as the type specified by the Recor dType input parameter. The DL module
may require initial values for the CSSM pre-defined attributes. The DL module can assume default values for
any unspecified attribute values or can return an error condition when DLM-required attribute values are
not specified by the caller. The Data is an opaque object to be stored in the new data record.

If a primary key (concatination of all unique indexes in the relation) exists, the error
CSSMERR_DL_INVALID_UNIQUE_INDEX_DATA is returned. The client should call
CSSM DL_Dat aGet Fi rst (), followed by CSSM DL_Dat aMbdi fy() to change an existing record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_FI ELD_SPECI FI ED_ MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR DL_I NVALI D_FI ELD_NAVE
CSSMERR DL_| NVALI D_DB_HANDLE
CSSMVERR_DL_| NVALI D_PARSI NG_MODULE
CSSMERR DL_| NVALI D_RECORDTYPE
CSSMERR DL_I NVALI D_RECORD Ul D
CSSMERR DL_| NVALI D_UNI QUE_| NDEX_DATA
CSSMERR DL_I NVALI D_VALUE
CSSMERR_DL_M SSI NG VALUE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

296

CSSM_DL_DataDelete
Functions for the DL SPI:
DL_DataDelete

297

DL_DataModify

NAME
DL_DataModify: CSSM_DL_DataModify — Modify persistent data record (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Dat aMbdi fy

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM DB_RECCRDTYPE Recor dType,

CSSM DB_UNI QUE_RECORD_PTR Uni queRecordl dentifier,

const CSSM DB_RECORD_ATTRI BUTE_DATA *Attri but esToBeMdi fi ed,
const CSSM DATA *Dat aToBeMbdi fi ed,

CSSM _DB_MODI FY_MODE Modi f yMode)

SPI :

CSSM _RETURN CSSMDLI DL_Dat aMbdi fy

(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM DB_RECCRDTYPE Recor dType,

CSSM _DB_UNI QUE_RECORD_PTR Uni queRecordl dentifier,

const CSSM DB_RECORD_ATTRI BUTE_DATA *Attri but esToBeMdi fi ed,
const CSSM DATA *Dat aToBeMbdi fi ed,

CSSM _DB_MODI FY_MODE Modi f yMode)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store to search for records satisfying the query.

Recor dType (i nput)
Indicates the type of data record being modified.
Uni queRecordl denti fi er (input/output)

A pointer to a CSSM_DB_UNIQUE_RECORD containing a unique identifier associated
with the record to modify. If the modification succeeds, the Uni queRecor dl denti fi er
points to a CSSM_DB_UNIQUE_RECORD containing a unique identifier associated with
the updated record. If the modification fails, the Uni queRecor dl denti fi er is not modified.

Attri butesToBeModi fi ed (input/optional)

A list of structures containing the attribute values to be stored in that attribute and the
meta information (schema) describing those attributes. The list contains at most one entry
per attribute in the specified record type. The specified At t ri but eFor mat for each attribute
must match that of the database schema, otherwise the error
CSSMERR_DL_INCOMPATIBLE_FIELD_FORMAT is returned. If an attribute is of type
CSSM_DB_ATTRIBUTE_FORMAT_STRING and the value specified for that string
includes a null-terminator, then the length count in the CSSM_DATA structure containing

298

the input string should include the terminating character. (If null-terminators are used,
they should be used consistently when storing, searching, and retrieving the string value,
otherwise selection predicates will not locate expected matches.) Each attribute specified is
modified according to the value of Modi f yMode (see table in the DESCRI PTI ONsection of this
definition). Those attributes that are not specified as part of this parameter remain
unchanged. If the Attri but esToBeMbdi fi ed parameter is NULL, no attribute modification
occurs.

Dat aToBeModi fi ed (input/optional)

A pointer to the CSSM_DATA structure which contains the opaque data object to be stored
in the data record. If this parameter is NULL, no Data modification occurs.

Modi f yMode (i nput)

A CSSM_DB_MODIFY_MODE value indicating the type of modification to be performed on
the record attributes identified by At t ri but esToBeModi fi ed. If no attributes are specified,
then this value must be CSSM_DB_MODIFY_ATTRIBUTE_NONE.

DESCRIPTION

This function modifies the persistent data record identified by the Uni queRecordl denti fier. The
modifications are specified by the Attri but es and Dat a parameters. The Modi f yMbde indicates how the
attributes are to be updated. The Modi f yMbde has no affect on updating the data blob contained in the record.
If the data blob is the only record attribute being updated by this function call, then the modification mode
must be 0. The current modification modes behave as follows:

Modi f yMode Val ue Functi on Behavi or
CSSM_DB_MODIFY_ATTRIBUTE_NONE No Attributes are being updated.
CSSM_DB_MODIFY_ATTRIBUTE_ADD The specified values are added to the set of current

values for each attribute. If O values are specified
then the error
CSSMERR_DL_INVALID_MODIFY_MODE is
returned. If a DL does not support multiple values
per attribute, the error
CSSMERR_DL_MULTIPLE_VALUES_UNSUPPO
RTED is returned.

CSSM_DB_MODIFY_ATTRIBUTE_DELETE The specified values are removed from the set of
current values for each attribute. If 0 values are
specified then all values are deleted or the
attributes value is replaced with the default for this
attribute. If a DL does not support multiple values
per attribute, the error
CSSMERR_DL_MULTIPLE_VALUES_UNSUPPO
RTED is returned.

299

CSSM_DB_MODIFY_ATTRIBUTE_REPLACE The values for each attribute are replaced with the
specified set of values for each attribute. If no
values are specified then all values are deleted or
the attributes value is replaced with the default for
this attribute. If a DL does not support multiple
values per attribute, the error
CSSMERR_DL_MULTIPLE_VALUES_UNSUPPO
RTED is returned when more than 1 value is
specified.

If the attribute lists specifies an attribute that is not defined in the database's meta-information, an error
condition is returned. For each attribute-value pair, the value replaces the corresponding attribute value in
the record. If a data value is specified, the record's data value is replaced with the specified value. A record's
data value or attribute values can be set to NULL or zero to represent deletion or the lack of a known value.

If the record referenced by Uni queRecor dl denti fi er has been modified since the last time it was updated,
the error CSSMERR_DL_STALE_UNIQUE_RECORD is returned and no modification takes place.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_FI ELD_SPECI FI ED MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR DL_| NVALI D_DB_HANDLE

CSSMERR DL_I NVALI D_FI ELD_NAVE
CSSMERR_DL_I NVALI D_MODI FY_NMODE
CSSMERR DL_| NVALI D_RECORDTYPE
CSSMERR DL_I NVALI D_RECORD Ul D
CSSMERR DL_I NVALI D_UNI QUE_| NDEX_DATA
CSSMERR DL_I NVALI D_VALUE
CSSMERR_DL_MULTI PLE_VALUES_UNSUPPORTED
CSSMERR_DL_STALE_UNI QUE_RECORD

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_Datalnsert, CSSM_DL_DataDelete
Functions for the DL SPI:

DL_Datalnsert, DL_DataDelete

300

DL_DbClose

NAME
DL_DbClose: CSSM_DL_DbClose — Close open data store (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM DL_Dbd ose
(CSSM DL_DB_HANDLE DLDBHandl e)

SPI :

CSSM_RETURN CSSMDLI DL_DbCl ose
(CSSM DL_DB_HANDLE DLDBHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

A handle structure containing the DL handle for the attached DL module and the DB
handle for an open data store managed by the DL. This specifies the open data store to be
closed.

DESCRIPTION

This function closes an open data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR DL_| NVALI D DB _HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:
CSSM_DL_DbOpen

301

Functions for the DL SPI:
DL_DbOpen

302

DL_DbCreate

NAME
DL_DbCreate: CSSM_DL_DbCreate — Create and open new data store (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_DbCreate

(CSSM _DL_HANDLE DLHandl e,

const char *DbNane,

const CSSM NET_ADDRESS *DblLocati on,

const CSSM DBI NFO *DBI nf o,

CSSM _DB_ACCESS_TYPE AccessRequest,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
const void *OpenPar anet ers,

CSSM DB_HANDLE *DbHandl e)

SPI :

CSSM_RETURN CSSMDLI DL_DbCreat e

(CSSM DL_HANDLE DLHandl e,

const char *DbNane,

const CSSM NET_ADDRESS *DblLocati on,

const CSSM DBI NFO *DBI nf o,

CSSM _DB_ACCESS_TYPE AccessRequest,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
const void *OpenPar anet ers,

CSSM DB_HANDLE *DbHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLHandl e (i nput)

The handle that describes the add-in data storage library module used to perform this
function.

DbNane (i nput)
The logical name for the new data store.
DbLocat i on (input/optional)

A pointer to a network address directly or indirectly identifying the location of the storage
service process. If the input is NULL, the module can assume a default storage service
process location. If the DoName does not distinguish the storage service process, the service
cannot be performed and the operation fails.

DBl nf o (i nput)
A pointer to a structure describing the format/schema of each record type that will be stored
in the new data store.

AccessRequest (i nput)

303

An indicator of the requested access mode for the data store, such as read-only or
read-write.

O edAndAcl Ent ry (input/optional)

A structure containing one or more credentials authorized for creating a data base and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the DL to acquire the credentials and/or the ACL entry interactively. If
the DL provides public access for creating a data base, then the credentials can be NULL. If
the DL defines a default initial ACL entry for the new data base, then the ACL entry
prototype can be an empty list.

penPar anet er s (input/optional)
A pointer to a module-specific set of parameters required to open the data store.
DbHandl e (out put)

The handle to the newly created and open data store. The value will be set to
CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function creates and opens a new data store. The name of the new data store is specified by the input
parameter DbNarre. The record schema for the data store is specified in the DBINFO structure. If any
Recor dType defined in the DBINFO structure does not have an associated parsing module, then the

Modul eSubser vi ceU d specified for that record type must be zero.

The newly created data store is opened under the specified access mode. If user authentication credentials are
required, they must be provided. Also, additional open parameters may be required and are supplied in
penPar anet er s. If user authentication credentials are required, they must be provided.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

Subject

A CSSM_LIST structure, containing the type of the subject and a template value that can
be used to verify samples that are presented in credentials when resource access is
requested.

Delegation flag

A value indicating whether the Subject can delegate the permissions recorded in the
Aut hori zat i onTag. (This item only applies to public key subjects).

Authorization tag

The set of permissions that are granted to the Subject.
Validity period

The start time and the stop time for which the ACL entry is valid.
ACL entry tag

304

A user-defined string value associated with the ACL entry.

The service provider can modify the caller-provided initial ACL entry to conform to any
innate resource-access policy that the service provider may be required to enforce. If the
initial ACL entry provided by the caller contains values or permissions that are not
supported by the service provider, then the service provider can modify the initial ACL
appropriately or can fail the request to create the new resource. Service providers list their
supported Aut hor i zat i onTag values in their Module Directory Services primary record.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_DATASTORE_ALREADY_EXI STS
CSSMERR DL_FI ELD_SPECI FI ED MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR_DL_I NVALI D_ACCESS_REQUEST
CSSMERR DL_| NVALI D_DB_LOCATI ON
CSSMERR DL_| NVALI D_DB_NAVE

CSSMERR DL_I NVALI D_FI ELD_NAVE

CSSMERR DL_I NVALI D_OPEN_PARAMETERS
CSSMERR_DL_| NVALI D_PARSI NG_MODULE
CSSMERR DL_| NVALI D_RECORDTYPE

CSSMERR DL_| NVALI D_RECORD | NDEX
CSSMERR_DL_UNSUPPORTED_FI ELD_FORMAT
CSSMERR_DL_UNSUPPORTED_| NDEX_| NFO
CSSMERR_DL_UNSUPPORTED LOCALI TY
CSSMERR_DL_UNSUPPORTED NUM ATTRI BUTES
CSSMERR_DL_UNSUPPORTED_NUM | NDEXES
CSSMERR_DL_UNSUPPORTED_NUM_RECORDTYPES
CSSMERR_DL_UNSUPPORTED RECORDTYPE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DL_DbOpen, CSSM_DL_DbClose, CSSM_DL_DbDelete
Functions for the DL SPI:

DL_DbOpen, DL_DbClose, DL_DbDelete

305

DL_DbDelete

NAME
DL_DbDelete: CSSM_DL_DbDelete — Delete all records (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM DL_DbDel et e
(CSSM _DL_HANDLE DLHandl e,

const char *DbNane,

const CSSM NET_ADDRESS *DblLocati on,

const CSSM ACCESS_CREDENTI ALS *AccessCred)
SPI :

CSSM_RETURN CSSMDLI DL_DbDel et e

(CSSM _DL_HANDLE DLHandl e,

const char *DbNane,

const CSSM NET_ADDRESS *DblLocati on,

const CSSM ACCESS_CREDENTI ALS *AccessCred)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLHandl e (i nput)

The handle that describes the add-in data storage library module to be used to perform this
function.

DbNane (i nput)
A pointer to the string containing the logical name of the data store.
DbLocat i on (input/optional)

A pointer to a network address directly or indirectly identifying the location of the storage
service process. If the input is NULL, the module can assume a default storage service
process location. If the DoNane does not distinguish the storage service process, the service
cannot be performed and the operation fails.

AccessCr ed (input/optional)

A pointer to the set of one or more credentials being presented for authentication by the
caller. These credentials are required to obtain access to the specified data store. The
credentials structure can contain multiple types of credentials, as required for multi-factor
authentication. The credential data can be an immediate value, such as a passphrase, PIN,
certificate, or template of user-specific data, or the caller can specify a callback function the
DL can use to obtain one or more credentials. The required set of credentials to access a
particular data store is defined by the Dbl nf o record containing meta-data for the specified
data store. If credentials are not required to access the specified data store, then this field
can be NULL.

306

DESCRIPTION

This function deletes all records from the specified data store and removes all state information associated
with that data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_DATASTORE_DOESNOT_EXI ST
CSSMERR_DL_DATASTORE | S_OPEN
CSSMERR DL_| NVALI D_DB_LOCATI ON
CSSMERR DL_| NVALI D_DB_NAVE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_DL_DbCreate, CSSM_DL_DbOpen, CSSM_DL_DbClose
Functions for the DL SPI:

DL_DbCreate, DL_DbOpen, DL_DbClose

307

DL_DbOpen
NAME
DL_DbOpen: CSSM_DL_DbOpen — Open a data store (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_DbCpen

(CSSM _DL_HANDLE DLHandl e,

const char *DbNane,

const CSSM NET_ADDRESS *DblLocati on,

CSSM _DB_ACCESS_TYPE AccessRequest,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const void *OpenPar anet ers,

CSSM DB_HANDLE *DbHandl e)

SPI :

CSSM _RETURN CSSMDLI DL_DbOpen

(CSSM _DL_HANDLE DLHandl e,

const char *DbNane,

const CSSM NET_ADDRESS *DblLocati on,

CSSM _DB_ACCESS_TYPE AccessRequest,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const void *OpenPar anet ers,

CSSM DB_HANDLE *DbHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLHandl e (i nput)

The handle that describes the add-in data storage library module to be used to perform this
function.

DbNane (i nput)
A pointer to the string containing the logical name of the data store.
DbLocat i on (input/optional)

A pointer to a network address directly or indirectly identifying the location of the storage
service process. If the input is NULL, the module can determine a storage service process
and its location based on the DbName (for existing data stores) or can assume a default
storage service process location. If the DbName does not distinguish the storage service
process, the service cannot be performed and the operation fails.

AccessRequest (i nput)

An indicator of the requested access mode for the data store, such as read-only or
read-write.

AccessCr ed (input/optional)

308

A pointer to the set of one or more credentials being presented for authentication by the
caller. These credentials are required to obtain access to the specified data store. The
credentials structure can contain multiple types of credentials, as required for multi-factor
authentication. The credential data can be an immediate value, such as a passphrase, PIN,
certificate, or template of user-specific data, or the caller can specify a callback function the
DL can use to obtain one or more credentials. The required set of credentials to access a
particular data store is defined by the Dbl nf o record containing meta-data for the specified
data store. If credentials are not required to access the specified data store, then this field
can be NULL.

penPar anet er s (input/optional)
A pointer to a module-specific set of parameters required to open the data store.
DbHandl e (out put)

The handle to the opened data store. The value will be set to CSSM_INVALID_HANDLE if
the function fails.

DESCRIPTION

This function opens the data store with the specified logical name under the specified access mode. If user
authentication credentials are required, they must be provided. Also, additional open parameters may be
required to open a given data store, and are supplied in the QoenPar anet er s.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_DL_DB_LOCKED

CSSMERR_DL_I NVALI D_ACCESS_REQUEST
CSSMERR DL_| NVALI D_DB_LOCATI ON
CSSMERR DL_| NVALI D_DB_NAVE
CSSMERR_DL_DATASTORE_DOESNOT_EXI ST
CSSMVERR_DL_| NVALI D_PARSI NG_MODULE
CSSMERR DL_I NVALI D_OPEN_PARAMETERS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_DbClose
Functions for the DL SPI:
DL_DbClose

309

DL_DestroyRelation

NAME
DL_DestroyRelation: CSSM_DL_DestroyRelation — Destroy an existing relation (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM DL_Dest royRel ation
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM DB_RECCRDTYPE Rel ati onl D)

SPI :

CSSM_RETURN CSSMDLI DL_DestroyRel ati on
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM DB_RECCRDTYPE Rel ati onl D)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which to delete the relation record.

Rel ati onl D (i nput)

Indicates the type of relation record being deleted from the data store.

DESCRIPTION

This function destroys an existing relation of the specified type by removing its entry from the specified data
store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR DL_| NVALI D_RECORDTYPE

310

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_CreateRelation
Functions for the DL SPI:
DL_CreateRelation

311

DL_FreeNameL.ist

NAME
DL_FreeNamelList: CSSM_DL_FreeNameList — Free the list of the logical data store names (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Fr eeNaneLi st
(CSSM_DL_HANDLE DLHandl e,

CSSM_NAME_LI ST_PTR NanelLi st)

SPI :

CSSM_RETURN CSSMDLI DL_FreeNaneLi st
(CSSM_DL_HANDLE DLHandl e,

CSSM_NAME_LI ST_PTR NanelLi st)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLHandl e (i nput)

The handle that describes the add-in data storage library module to be used to perform this
function.

NaneLi st (i nput)
A pointer to the CSSM_NAME_LIST.

DESCRIPTION

This function frees the list of the logical data store names that was returned by CSSM DL_Get DbNarres.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

312

Online Help

Functions for the CSSM API:

CSSM_DL_GetDbNames
Functions for the DL SPI:
DL_GetDbNames

313

DL_FreeUniqueRecord

NAME
DL_FreeUniqueRecord: CSSM_DL_FreeUniqueRecord — Free data store memory (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Fr eeUni queRecord
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _DB_UNI QUE_RECORD_PTR Uni queRecor d)

SPI :

CSSM_RETURN CSSMDLI DL_Fr eeUni queRecor d
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _DB_UNI QUE_RECORD_PTR Uni queRecor d)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store from which the UniqueRecord identifier was assigned.

Uni queRecor d(i nput)

The pointer to the memory that describes the data store unique record structure.

DESCRIPTION

This function frees the memory associated with the data store unique record structure.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR_DL_| NVALI D_RECORD Ul D

SEE ALSO

Books

Intel CDSA Application Developer's Guide

314

Online Help

Functions for the CSSM API:

CSSM_DL_Datalnsert, CSSM_DL_DataGetFirst, CSSM_DL_DataGetNext
Functions for the DL SPI:
DL_Datalnsert, DL_DataGetFirst, DL_DataGetNext

315

DL_GetDbAcl

NAME
DL_GetDbAcl: CSSM_DL_GetDbAcl — Get ACL description (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_ Get DbAcl
(CSSM DL_DB_HANDLE DLDBHandl e,
const CSSM STRI NG * Sel ecti onTag,

ui nt 32 *Nunber O Acl | nf os,

CSSM ACL_ENTRY_I NFO_PTR *Acl I nf 0s)
SPI :

CSSM_RETURN CSSMDLI DL_Get DbAcl
(CSSM DL_DB_HANDLE DLDBHandl e,
const CSSM STRI NG *Sel ecti onTag,

ui nt 32 *Nunber O Acl | nf os,

CSSM ACL_ENTRY_I NFO_PTR *Acl | nf 0s)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that identifies the Data Storage service provider to perform this operation
and the target data store whose associated ACL entries are scanned and returned.

Sel ect i onTag (input/optional)

A CSSM_STRING value matching the user-defined tag value associated with one or more
ACL entries for the target data base. To retrieve a description of all ACL entries for the
target data base, this parameter must be NULL.

Nunber O Acl | nf os (out put)

The number of entries in the Acl | nf os array. If no ACL entry descriptions are returned,
this value is zero.

Acl I nf os (out put)

An array of CSSM_ACL_ENTRY_INFO structures. The unique handle contained in each
structure can be used during the current attach session to reference the ACL entry for
editing. The structure is allocated by the service provider and must be released by the caller
when the structure is no longer needed. If no ACL entry descriptions are returned, this
value is NULL.

DESCRIPTION

This function returns a description of zero or more ACL entries managed by the data storage service provider
module and associated with the target database identified by DLDBHand| e. DBHandl e. The optional input
Sel ect i onTag restricts the returned descriptions to those ACL entries with a matching Ent r yTag value. If a

316

Sel ect i onTag value is specified and no matches are found, zero descriptions are returned. If no
Sel ecti onTag is specified, a description of all ACL entries associated with the target data base are returned
by this function.

Each Acl | nf o structure contains:

= Public contents of an ACL entry

= ACL EntryHandl e, which is a unique value defined and managed by the service provider
The public ACL entry information returned by this function includes:

The subject type

A CSSM_LIST structure containing one element identifying the type of subject stored in the
ACL entry.

Delegation flag

A CSSM_BOOL value indicating whether the subject can delegate the permissions recorded
in Authorization.

Authorization array

A CSSM_AUTHORIZATIONGROUP structure defining the set of operations for which
permission is granted to the Subject.

Validity period

A CSSM_ACL_VALIDITY_PERIOD structure containing two elements, the start time and
the stop time for which the ACL entry is valid.

ACL entry tag
A CSSM_STRING containing a user-defined value associated with the ACL entry.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR DL_| NVALI D DB _HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_ChangeDbAcl
Functions for the DL SPI:
DL_ChangeDbAcl

317

DL_GetDbNameFromHandle

NAME
DL_GetDbNameFromHandle: CSSM_DL_GetDbNameFromHandle — Get data source name (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Get DbNameFr onHandl e
(CSSM DL_DB_HANDLE DLDBHandl e,

char **DbNane)

SPI :

CSSM_RETURN CSSMDLI DL_Get DbNaneFr omHandl e
(CSSM DL_DB_HANDLE DLDBHandl e,

char **DbNane)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that identifies the add-in data storage library module and the open data
store whose name should be retrieved.

DbNane (out put)

Returns a zero terminated string which contains a data store name. The memory is
allocated by the service provider and must be deallocated by the application.

DESCRIPTION

This function retrieves the data source name corresponding to an opened data store handle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR DL_| NVALI D DB _HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

318

Online Help

Functions for the CSSM API:

CSSM_DL_GetDbNames
Functions for the DL SPI:
DL_GetDbNames

319

DL_GetDbNames

NAME
DL_GetDbNames: CSSM_DL_GetDbNames — Get list of logical data store names (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Get DbNames
(CSSM_DL_HANDLE DLHandl e,

CSSM NAMVE_LI ST_PTR *NaneLi st)

SPI :

CSSM_RETURN CSSMDLI DL_Get DbNanes
(CSSM_DL_HANDLE DLHandl e,

CSSM NAMVE_LI ST_PTR *NaneLi st)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLHandl e (i nput)

The handle that describes the add-in data storage library module to be used to perform this
function.

NaneLi st (out put)
Returns a list of data store names in a CSSM_NAME_LIST_PTR structure.

DESCRIPTION

This function returns the list of logical data store names for all data stores that are known by and accessible
to the specified DL module. This list also includes the number of data store names in the return list.

The CSSM DL_Fr eeNareLi st () function must be called to deallocate memory containing the list.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

320

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_DL_GetDbNameFromHandle, CSSM_DL_FreeNameL.ist
Functions for the DL SPI:

DL_GetDbNameFromHandle, DL_FreeNameList

321

DL_GetDbOwner

NAME
DL_GetDbOwner: CSSM_DL_GetDbOwner — Get data base owner (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_Get DbOwner
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _ACL_OANER_PROTOTYPE_PTR Owner)

SPI :

CSSM _RETURN CSSMDLI DL_Get DbOaner
(CSSM DL_DB_HANDLE DLDBHandl e,

CSSM _ACL_OANER_PROTOTYPE_PTR Owner)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETER
DLDBHandl e (i nput)

The handle pair that describes the data storage library module to be used to perform this
function, and the open data store whose associated Owner is to be retrieved.

Onner (out put)
A CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Data Base.

DESCRIPTION
This function returns a CSSM_ACL_OWNER_PROTOTYPE describing the current Owner of the Data Base.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR DL_| NVALI D DB _HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

322

Online Help

Functions for the CSSM API:

CSSM_DL_ChangeDbOwner
Functions for the DL SPI:
DL_ChangeDbOwner

323

DL_PassThrough

NAME
DL_PassThrough: CSSM_DL_PassThrough — Extend data storage module functionality (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM DL_PassThr ough
(CSSM DL_DB_HANDLE DLDBHandl e,

ui nt 32 PassThroughl d,

const void *I| nput Parans,

voi d **Qut put Param

SPI :

CSSM_RETURN CSSMDLI DL_PassThr ough
(CSSM DL_DB_HANDLE DLDBHandl e,

ui nt 32 PassThroughl d,

const void *I| nput Parans,

voi d **Qut put Param

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
DLDBHandl e (i nput)

The handle pair that describes the add-in data storage library module to be used to perform
this function and the open data store upon which the function is to be performed.

PassThr oughl d (i nput)
An identifier assigned by a DL module to indicate the exported function to be performed.
| nput Par ans (i nput)
A pointer to a module implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested DL module.
Qut put Par ans (out put)

A pointer to a module, implementation-specific structure containing the output data. The
service provider will allocate the memory for this structure. The application should free the
memory for the structure.

DESCRIPTION

This function allows applications to call data storage library module-specific operations that have been
exported. Such operations may include queries or services that are specific to the domain represented by a DL
module.

324

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DB_HANDLE
CSSMERR_DL_I NVALI D_PASSTHROUGH_| D

SEE ALSO

Books

Intel CDSA Application Developer's Guide

325

EncryptData

NAME
EncryptData: CSSM_EncryptData, CSP_EncryptData — Encrypts all buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Encrypt Dat a
(CSSM_CC_HANDLE CCHandl e,
const CSSM DATA *d ear Buf s,
ui nt 32 Cl ear Buf Count,

CSSM _DATA_PTR Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

ui nt 32 *byt esEncr ypt ed,
CSSM _DATA_PTR RenDat a)

SPI :

CSSM_RETURN CSSMCSPI CSP_Encr ypt Dat a
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,
const CSSM CONTEXT *Cont ext,
const CSSM DATA *d ear Buf s,
ui nt 32 Cl ear Buf Count,

CSSM _DATA_PTR Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

ui nt 32 *byt esEncrypt ed,
CSSM _DATA_PTR RenDat a,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

d ear Buf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
d ear Buf Count (i nput)

The number of A ear Buf s.
QG pher Buf s (out put)

A pointer to a vector of CSSM_DATA structures that contain the results of the operation on
the data.

QG pher Buf Count (i nput)
The number of G pher Buf s.

326

byt esEncr ypt ed (out put)
A pointer to ui nt 32 for the size of the encrypted data in bytes.
RenDat a (out put)

A pointer to the CSSM_DATA structure for the remaining cipher text if there is not enough
buffer space available in the output data structures.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function encrypts all data contained in the set of input buffers using information in the context. The
CSSM Quer ySi ze() function can be used to estimate the output buffer size required. The minimum number of
buffers required to contain the resulting cipher text is produced as output. If the cipher text result does not fit
within the set of output buffers, the remaining cipher text is returned in the single output buffer RenbDat a.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL Data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed. In-place encryption can be done by supplying the same
input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

327

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SI ZE_M SMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_QuerySize, CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:

CSP_QuerySize, CSP_DecryptData, CSP_EncryptDatalnit, CSP_EncryptDataUpdate,
CSP_EncryptDataFinal

328

EncryptDataFinal

NAME

EncryptDataFinal: CSSM_EncryptDataFinal, CSP_EncryptDataFinal — Finalize staged encryption
process (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM Encr ypt Dat aFi nal
(CSSM_CC_HANDLE CCHandl e,

CSSM _DATA_PTR RenDat a)

SPI :

CSSM_RETURN CSSMCSPI CSP_Encr ypt Dat aFi nal
(CSSM_CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

CSSM _DATA_PTR RenDat a)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

RenDat a (out put)

A pointer to the CSSM_DATA structure for the last encrypted block containing padded
data, if necessary.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged encryption process by returning any remaining cipher text not returned in
the previous staged encryption call. The cipher text is returned in a single buffer.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's

declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by

329

the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SI ZE_M SMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

CSSM_QuerySize, CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:
CSP_EncryptData, CSP_EncryptDatalnit, CSP_EncryptDataUpdate

330

EncryptDatalnit

NAME

EncryptDatalnit: CSSM_EncryptDatalnit, CSP_EncryptDatalnit — Initialize the staged encrypt
funciton (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Encrypt Dat al ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Encrypt Dat al ni t
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function initializes the staged encrypt function. There may be algorithm-specific and token-specific rules
restricting the lengths of data following data update calls making use of these parameters.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

331

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_QuerySize, CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:

CSP_QuerySize, CSP_DecryptData, CSP_EncryptDatalnit, CSP_EncryptDataUpdate,
CSP_EncryptDataFinal

332

EncryptDatalnitP
NAME

EncryptDatalnitP — Initialize the staged encrypt function with privilege (CDSA)

SYNOPSIS

include <cssm h>

CSSM_RETURN CSSVAPI CSSM Encrypt Datal nit P
(CSSM_CC_HANDLE CCHandl e,
CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM_EncryptDatalnit for other parameters.

DESCRIPTION

This function is similar to CSSM Encr ypt Dat al ni t (). It also accepts a USEE tag as a privilege request
parameter. CSSM checks that either its privilege set or the application's privilege set (if the application is
signed) includes the tag. If the tag is found and the service provider privilege set indicates that it is
supported, the tag is forwarded to the service provider.

For staged operations using privilege initialization functions CSSM Encr ypt Dat al ni t P(), the completion
functions CSSM Encr ypt Dat aUpdat e() and CSSM Encr ypt Dat aFi nal i ze() are used.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

333

Online Help

Functions: CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP, CSSM_QuerySize

334

EncryptDataP

NAME
EncryptDataP — Encrypt data with privilege (CDSA)

SYNOPSIS

include <cssm h>

CSSM _RETURN CSSMAPI CSSM Encr ypt Dat aP
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *d ear Buf s,

ui nt 32 Cl ear Buf Count,

CSSM _DATA_PTR Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

ui nt 32 *byt esEncrypt ed,

CSSM _DATA_PTR RenDat a,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM_EncryptData for other parameters.

DESCRIPTION

This function is similar to CSSM Encrypt Dat a() . It also accepts a USEE tag as a privilege request parameter.
CSSM checks that either its own privilege set or the application's privilege set (if the application is signed)
includes the tag. If the tag is found and the service provider privilege set indicates that it is supported, the tag
is forwarded to the service provider.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_BLOCK_SI ZE_M SMATCH
CSSMERR_CSP_OUTPUT_LENGTH_ERROR

335

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP, CSSM_QuerySize

336

EncryptDataUpdate

NAME

EncryptDataUpdate: CSSM_EncryptDataUpdate, CSP_EncryptDataUpdate — Continue the staged
encryption process (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM Encrypt Dat aUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *d ear Buf s,

ui nt 32 Cl ear Buf Count,

CSSM _DATA_PTR Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

ui nt 32 *byt esEncrypt ed)

SPI :

CSSM_RETURN CSSMCSPI CSP_Encr ypt Dat aUpdat e
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *d ear Buf s,

ui nt 32 Cl ear Buf Count,

CSSM _DATA_PTR Ci pher Buf s,

ui nt 32 Ci pher Buf Count ,

ui nt 32 *byt esEncrypt ed)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

d ear Buf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
d ear Buf Count (i nput)

The number of A ear Buf s.
QG pher Buf s (out put)

A pointer to a vector of CSSM_DATA structures that contain the encrypted data resulting
from the encryption operation.

QG pher Buf Count (i nput)
The number of G pher Buf s.
byt esEncr ypt ed (out put)
A pointer to ui nt 32 for the size of the encrypted data in bytes.

337

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged encryption process over all data in the set of input buffers. There can be
algorithm-specific and token-specific rules restricting the lengths of data in CSSM Encr ypt Updat e() calls, but
multiple input buffers are supported. The minimum number of buffers required to contain the resulting
cipher text is produced as output. Excess output buffer space is not remembered across staged encryption
calls. Each staged call begins filling one or more new output buffers. The CSSM QuerySi ze() function can be
used to estimate the output buffer size required for each update call.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL Data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed. In-place encryption can be done by supplying the same
input and output buffers.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

338

CSSM_QuerySize, CSSM_DecryptData, CSSM_EncryptDatalnit, CSSM_EncryptDataUpdate,
CSSM_EncryptDataFinal, CSSM_EncryptDataP, CSSM_EncryptDatalnitP, CSSM_DecryptP,
CSSM_DecryptDatalnitP

Functions for the CSP SPI:
CSP_QuerySize, CSP_DecryptData, CSP_EncryptDatalnit, CSP_EncryptDataFinal

339

FreeKey

NAME
FreeKey: CSSM_FreeKey, CSP_FreeKey — Clean up keys (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Fr eeKey

(CSSM_CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
CSSM KEY_PTR KeyPtr,

CSSM BOOL Del et e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Fr eeKey

(CSSM_CSP_HANDLE CSPHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
CSSM KEY_PTR KeyPtr,

CSSM _BOOL Del et e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the module to perform this operation.
AccessCr ed (input/optional)

If the target key referenced by KeyPt r is protected and Del et e has the value CSSM_TRUE,
this parameter must contain the certificates and samples required to access the target key.
The certificates must be presented as immediate values in the input structure. The samples
can be immediate values, be obtained through a protected mechanism, or be obtained
through a cal | back function.

KeyPtr (i nput)
The key whose associated keying material can be discarded at this time.
Del et e (i nput)

If this value is CSSM_TRUE, the key data in the key structure will be removed and any
internal storage related to that key will also be removed. In this case the key no longer
exists in any form, unless previously wrapped out of the CSP by the application. If this
value is CSSM_FALSE, then only the resources related to the key structure are released.
The key may still be accessible by other means internally to the CSP.

340

DESCRIPTION

This function requests the Cryptographic Service Provider to clean up any key material associated with the
key, and to possibly delete the key from the CSP completely. This function also releases the internal storage
referenced by the KeyData field of the key structure, which can hold the actual key value. The key reference
by KeyPt r can be a persistent key or a transient key. This function clears the cached copy of the key and can
have an effect on the long term persistence or transience of the key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

341

GenerateAlgorithmParams
NAME

GenerateAlgorithmParams: CSSM_GenerateAlgorithmParams, CSP_GenerateAlgorithmParams —
Generate algorithm parameters (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Gener at eAl gor i t hnPar ans
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 ParanBits,

CSSM _DATA_PTR Par am)

SPI :

CSSM_RETURN CSSMCSPI CSP_GCener at eAl gor i t hnPar ans
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

ui nt 32 ParanBits,

CSSM _DATA _PTR Par am

ui nt 32 *Nunber Of Updat edAt tri but es,
CSSM_CONTEXT_ATTRI BUTE_PTR *Updat edAt t ri but es)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Par anBi t s (i nput)
Used to generate parameters for the algorithm (for example, Diffie-Hellman).
Par am(out put)

Pointer to a CSSM_DATA structure used to provide information to the parameter
generation process, or to receive information resulting from the generation process that is
not required as a parameter to the algorithm. For instance, phase 2 of the KEA algorithm
requires a private random value, rA, and a public version, Ra, to be generated. The private
value, rA, is added to the context and the public value, Ra, is returned to the caller. In some
cases, when both input and output is required, a data structure is passed to the algorithm.
In this situation, Par am >Dat a references the structure and Par am >Lengt h is set to the
length of the structure.

SPI PARAMETERS
CSPHandl e (i nput)

342

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Modifying this structure has no effect on the internal structure maintained by the CSSM. It
is only a copy of the actual data. Changes to the context attributes must be returned using
the Updat edAt t ri but es return parameter.

Nunber O Updat edAt t ri but es (out put)

The number of CSSM_CONTEXT_ATTRIBUTE structures contained in the
Updat edAt t ri but es array. If this value is zero, Updat edAt t ri but es should be set to
NULL.

Updat edAt tri but es (out put)

An array of attributes that will be added to the context should be returned using this
parameter. Memory for the attribute structures should be allocated using the
CSSM_UPCALLS callbacks provided to the service provider module when

CSSM SPI_Modul eAt t ach() is called.

DESCRIPTION

This function generates algorithm parameters for the specified context. These parameters include

D ffie-Hel | man key agreement parameters and DSA key generation parameters. In most cases the
algorithm parameters will be added directly to the cryptographic context (by returning an array of
CSSM_CONTEXT_ATTRIBUTE structures), but an algorithm may return some data to the caller via the
Par amparameter. The generated parameters are added to the context as an attribute of type
CSSM_ATTRIBUTE_ALG_PARAMS. Other attributes returned are added to the context, or replace existing
values in the context.

NOTES FOR API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, pre-allocated output
buffer, the caller must provide an array of one or more CSSM_DATA structures each, containing a Length
field value greater than zero and a non-NULL data pointer field value. To specify automatic output buffer
allocation by the CSP, the caller must provide an array of one or more CSSM_DATA structures, each
containing a Length field value equal to zero and a NULL data pointer field value. The application is always
responsible for deallocating the memory when it is no longer needed.

NOTES FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

343

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

344

GenerateKey

NAME
GenerateKey: CSSM_GenerateKey, CSP_GenerateKey — Generate a symmetric key (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Cener at eKey

(CSSM_CC_HANDLE CCHandl e,

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM KEY_PTR Key)

SPI :

CSSM_RETURN CSSMCSPI CSP_Cener at eKey

(CSSM_CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM KEY_PTR Key)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

KeyUsage (i nput)

A bit mask indicating all permitted uses for the new key.
KeyAttr (i nput)

A bit mask defining attribute values for the new key.
KeyLabel (input/optional)

Pointer to a byte string that will be used as the label for the key.
O edAndAcl Ent ry (input/optional)

A structure containing one or more credentials authorized for creating a key and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the CSP to acquire the credentials and/or the ACL entry interactively. If

345

the CSP provides public access for creating a key, then the credentials can be NULL. If the
CSP defines a default initial ACL entry for the new key, then the ACL entry prototype can
be an empty list.

Key (out put)

Pointer to CSSM_KEY structure used to hold the new key. The CSSM_KEY structure
should be empty upon input to this function. The CSP will ignore any values residing in this
structure at function invocation. Input values should be supplied in the cryptographic
context, KeyUsage, KeyAttr, and KeyLabel input parameters.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up-calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Key (out put)

Pointer to CSSM_KEY structure used to obtain the key. Upon function invocation, any
values in the CSSM_Key structure should be ignored. All input values should be supplied in
the cryptographic Cont ext , KeyUsage, KeyAt tr, and KeyLabel input parameters.

DESCRIPTION

This function generates a symmetric key. The KeyUsage, and KeyAt t r are used to initialize the keyheader for
the newly created key. These values are not retained in the cryptographic Context, which contains additional
parameters for this operation. The CSP may cache keying material associated with the new symmetric key.
When the symmetric key is no longer in active use, the application can invoke the CSSM Fr eeKey() interface
to allow cached keying material associated with the symmetric key to be removed.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

= Subject - A CSSM_LIST structure, containing the type of the subject and a template value that can be
used to verify samples that are presented in credentials when resource access is requested.

< Delegation flag - A value indicating whether the Subject can delegate the permissions recorded in the
Aut hori zat i onTag. (This item only applies to public key subjects).

= Authorization tag - The set of permissions that are granted to the Subject.
= Validity period - The start time and the stop time for which the ACL entry is valid.
< ACL entry tag - A user-defined string value associated with the ACL entry.

The service provider can modify the caller-provided initial ACL entry to conform to any innate
resource-access policy that the service provider may be required to enforce. If the initial ACL entry
provided by the caller contains values or permissions that are not supported by the service provider, then

346

the service provider can modify the initial ACL appropriately or can fail the request to create the new
resource. Service providers list their supported Aut hori zat i onTag values in their Module Directory
Services primary record.

NOTES

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() (CSSM API), or CSP_Fr eeKey() (CSP SPI), function or with the memory
functions registered for the CSPHandl e.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CSP_KEY_LABEL_ALREADY_ EXI STS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_GenerateRandom, CSSM_GenerateKeyPair
Functions for the CSP SPI:
CSP_GenerateRandom, CSP_GenerateKeyPair

347

GenerateKeyP

NAME
GenerateKeyP — Generate a key with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Cener at eKeyP
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM _KEY_PTR Key,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Pri vil ege (i nput)
The privilege to be applied during the cryptographic operation.

See CSSM_GenerateKey for other parameters.

DESCRIPTION

This function is similar to the CSSM Gener at eKey() function. It also accepts a USEE tag as a privilege
request parameter. CSSM checks that either its own privilege set or the application's privilege set (if the
application is signed) includes the tag. If the tag is found and the service provider privilege set indicates that
it is supported, the tag is forwarded to the service provider.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

348

Online Help

Functions: CSSM_GenerateKeyPairP, CSSM_GenerateRandom

349

GenerateKeyPair
NAME

GenerateKeyPair: CSSM_GenerateKeyPair, CSP_GenerateKeyPair — Generate an asymmetric key
pair (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Gener at eKeyPai r
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 Publ i cKeyUsage,

ui nt 32 Publ i cKeyAttr,

const CSSM DATA *Publ i cKeyLabel ,

CSSM KEY_PTR Publ i cKey,

ui nt 32 Privat eKeyUsage,

uint 32 Privat eKeyAttr,

const CSSM DATA *Privat eKeyLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM _KEY_PTR Pri vat eKey)

SPI :

CSSM_RETURN CSSMCSPI CSP_Cener at eKeyPai r
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

ui nt 32 Publ i cKeyUsage,

ui nt 32 Publ i cKeyAttr,

const CSSM DATA *Publ i cKeylLabel ,

CSSM KEY_PTR Publ i cKey,

ui nt 32 Privat eKeyUsage,

uint 32 Privat eKeyAttr

const CSSM DATA *Privat eKeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM _KEY_PTR Pri vat eKey,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Publ i cKeyUsage (i nput)

A bit mask indicating all permitted uses for the new public key.
Publ i cKeyAttr (i nput)

A bit mask defining attribute values for the new public key.

Publ i cKeyLabel (input/optional)

350

Pointer to a byte string that will be used as the label for the public key.
Publ i cKey (out put)

Pointer to CSSM_KEY structure used to hold the new public key. The CSSM_KEY structure
should be empty upon input to this function. The CSP will ignore any values residing in this
structure at function invocation. Input values should be supplied in the cryptographic

Cont ext , Publ i cKeyUsage, Publ i cKeyAttr, and Publ i cKeyLabel input parameters.

Pri vat eKeyUsage (i nput)
A bit mask indicating all permitted uses for the new private key.
Pri vat eKeyAttr (i nput)
A bit mask defining attribute values for the new private key.
Pri vat eKeyLabel (input/optional)
Pointer to a byte string that will be used as the label for the private key.
O edAndAcl Ent ry (input/optional)

A structure containing one or more credentials authorized for creating a key and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the CSP to acquire the credentials and/or the ACL entry interactively. If
the CSP provides public access for creating a key, then the credentials can be NULL. If the
CSP defines a default initial ACL entry for the new key, then the ACL entry prototype can
be an empty list.

Pri vat eKey (out put)

Pointer to CSSM_KEY structure used to obtain the private key. Upon function invocation,
any values in the CSSM_Key structure should be ignored. All input values should be
supplied in the cryptographic Cont ext, Pri vat eKeyUsage, Pri vat eKeyAttr, and

Pri vat eKeyLabel input parameters.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Pri vil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified privilege.

351

DESCRIPTION

This function generates an asymmetric key pair. The CSP may cache keying material associated with the new
asymmetric keypair. When one or both of the keys are no longer in active use, the application can invoke the
CSSM FreeKey() interface to allow cached keying material associated with the key to be removed.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

= Subject - A CSSM_LIST structure, containing the type of the subject and a template value that can be
used to verify samples that are presented in credentials when resource access is requested.

< Delegation flag - A value indicating whether the Subject can delegate the permissions recorded in the
Aut hori zat i onTag. (This item only applies to public key subjects).

= Authorization tag - The set of permissions that are granted to the Subject.
= Validity period - The start time and the stop time for which the ACL entry is valid.
< ACL entry tag - A user-defined string value associated with the ACL entry.

The service provider can modify the caller-provided initial ACL entry to conform to any innate
resource-access policy that the service provider may be required to enforce. If the initial ACL entry
provided by the caller contains values or permissions that are not supported by the service provider, then
the service provider can modify the initial ACL appropriately or can fail the request to create the new
resource. Service providers list their supported Aut hori zat i onTag values in their Module Directory
Services primary record.

NOTES

The KeyDat a fields of the CSSM_KEY structures are allocated by the CSP. The application is required to free
this memory using the CSSM Fr eeKey() (CSSM API), or CSP_Fr eeKey() (CSP SPI), function or with the
memory functions registered for the CSPHandl e.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CSP_KEY_LABEL_ALREADY_ EXI STS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

352

Online Help

Functions for the CSSM API:
CSSM_GenerateKey, CSSM_GenerateRandom
Functions for the CSP SPI:
CSP_GenerateKey, CSP_GenerateRandom

353

GenerateKeyPairP
NAME

GenerateKeyPairP — Generate an asymmetric key pair with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Gener at eKeyPai r P
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 Publ i cKeyUsage,

ui nt 32 Publ i cKeyAttr,

const CSSM DATA *Publ i cKeyLabel ,

CSSM KEY_PTR Publ i cKey,

ui nt 32 Privat eKeyUsage,

uint 32 Privat eKeyAttr,

const CSSM DATA *Privat eKeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM _KEY_PTR Pri vat eKey,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM_GenerateKeyPair.

DESCRIPTION

This function is similar to the CSSM Gener at eKeyPai r () function. It also accepts a USEE tag as a privilege
request parameter. CSSM checks that either its own privilege set or the application's privilege set (if the
application is signed) includes the tag. If the tag is found and the service provider privilege set indicates that

it is supported, the tag is forwarded to the service provider.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR CSP_KEY_LABEL_ALREADY_ EXI STS

354

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: CSSM_GenerateKeyPair

355

GenerateMac
NAME

GenerateMac: CSSM_GenerateMac, CSP_GenerateMac — Compute a message authentication code
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSNMVAPI CSSM Cener at eMac
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

CSSM_DATA_PTR Mac)

SPI :

CSSM_RETURN CSSMCSPI CSP_Cener at eiac
(CSSM _CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

CSSM_DATA_PTR Mac)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs.
Mac (out put)

A pointer to the CSSM_DATA structure for the Message Authentication Code.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

356

DESCRIPTION

This function computes a message authentication code for all data contained in the set of input buffers.

NOTES ON API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES ON SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_OUTPUT _LENGTH _ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_GenerateMaclnit, CSSM_GenerateMacUpdate, CSSM_GenerateMacFinal
Functions for the CSP SPI:

CSP_GenerateMaclnit, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

357

GenerateMacFinal
NAME

GenerateMacFinal: CSSM_GenerateMacFinal, CSP_GenerateMacFinal — Finalize the staged
message authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Gener at eMacFi nal
(CSSM_CC_HANDLE CCHandl e,

CSSM DATA_PTR Mac)

SPI :

CSSM_RETURN CSSMCSPI CSP_Gener at eMacFi nal
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

CSSM DATA_PTR Mac)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Mac (out put)
A pointer to the CSSM_DATA structure for the message authentication code.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged message authentication code function.

NOTES ON API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's

declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by

358

the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES ON SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_OUTPUT _LENGTH _ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_GenerateMac, CSSM_GenerateMaclnit, CSSM_GenerateMacUpdate
Functions for the CSP SPI:

CSP_GenerateMac, CSP_GenerateMaclnit, CSP_GenerateMacUpdate

359

GenerateMaclInit
NAME

GenerateMaclnit: CSSM_GenerateMaclnit, CSP_GenerateMaclnit — Initialize the staged message
authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Gener at eMacl ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Gener at eMacl ni t
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function initializes the staged message authentication code function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

360

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_GenerateMac, CSSM_GenerateMacUpdate, CSSM_GenerateMacFinal
Functions for the CSP SPI:

CSP_GenerateMac, CSP_GenerateMacUpdate, CSP_GenerateMacFinal

361

GenerateMacUpdate

NAME

GenerateMacUpdate: CSSM_GenerateMacUpdate, CSP_GenerateMacUpdate — Continue the
staged process of computing a message authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Gener at eMacUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

SPI :

CSSM_RETURN CSSMCSPI CSP_Gener at eMacUpdat e
(CSSM CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)
A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged process of computing a message authentication code over all data
contained in the set of input buffers. The authentication code will be returned as a result of the final code
generation step.

362

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_GenerateMac, CSSM_GenerateMaclnit, CSSM_GenerateMacFinal
Functions for the CSP SPI:

CSP_GenerateMac, CSP_GenerateMaclnit, CSP_GenerateMacFinal

363

GenerateRandom
NAME

GenerateRandom: CSSM_GenerateRandom, CSP_GenerateRandom function — Generate random
data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Gener at eRandom
(CSSM_CC_HANDLE CCHandl e,

CSSM _DATA_PTR RandomNunber)

SPI :

CSSM_RETURN CSSMCSPI CSP_Gener at eRandom
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,
CSSM_DATA_PTR RandomNunber)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

RandomN\unber (out put)

Pointer to CSSM_DATA structure used to obtain the random number and the size of the
random number in bytes.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function generates random data.

364

NOTES ON API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES ON SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

365

GetOperationalStatistics
NAME

GetOperationalStatistics: CSSM_CSP_GetOperationalStatistics, CSP_GetOperationalStatistics —
Get operational values of a subservice (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM CSP_Cet Oper ational Statistics
(CSSM CSP_HANDLE CSPHandl e,

CSSM_CSP_CPERATI ONAL_STATI STICS *Stati stics)

SPI :

CSSM_RETURN CSSMCSPI CSSM _CSP_GCet Operati onal Stati stics
(CSSM CSP_HANDLE CSPHandl e,

CSSM_CSP_COPERATI ONAL_STATI STICS *Stati stics)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

Handle of the Cryptographic Service Provider that will perform the operation.
Statistics (output)

Structure containing the subservice's current statistics.

DESCRIPTION

Obtain the current operational values of a subservice. The information is returned in a structure of type
CSSM_CSP_OPERATIONAL_STATISTICS. This information includes login status and available storage
space. The data structure to hold the returned results must be provided by the caller. The CSP does not
allocate memory on behalf of the caller.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

366

SEE ALSO

Books

Intel CDSA Application Developer's Guide

367

GetTimeValue

NAME
GetTimeValue: CSSM_GetTimeValue, CSP_GetTimeValue — Get a CSP time value (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM RETURN CSSMAPI CSSM Get Ti neVal ue
(CSSM_CSP_HANDLE CSPHandl e,
CSSM_ALGORI THVB Ti meAl gori thm

CSSM _DATA *Ti meDat a)

SPI :

CSSM RETURN CSSMCSPI CSP_Get Ti neVal ue
(CSSM CSP_HANDLE CSPHandl e,
CSSM_ALGORI THVB Ti meAl gori thm

kCSSM DATA *Ti neDat a)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

Handle of the Cryptographic Service Provider that will perform the operation.
Ti meAl gorit hm(i nput)

A CSSM algorithm type that indicates the method for fetching the time. The following
algorithm types are supported:

CSSM_ALGID_UTC Returns a time value in the form YYYYMMDDhhmmss (4 characters
for the year; 2 characters each for the month, the day, the hour, the minute, and the second).
The time returned is GMT.

CSSM_ALGID_RUNNING_COUNTER The current value of a running hardware counter
that operates while the device is in operation. This value can be read from a processor
counter provided by some platform architectures.

Ti meDat a (out put)

The time value of counter value returned in response to the request.

DESCRIPTION

This function returns a time value maintained by a CSP. This feature will be supported primarily by
hardware tokens with an onboard real time clock.

368

NOTES

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

Some tokens require authentication before returning a time value.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

369

MDS_Initialize

NAME
MDS_Initialize — Initiate service context with MDS (CDSA)
SYNOPSIS

include <cdsa/mds.h>

CSSM_RETURN CSSMAPI MDS Initialize

(const CSSM GUI D *pCall er Gui d,

const CSSM DATA *pcCal | er Mani f est,

const CSSM_MEMORY_FUNCS *pMenoryFuncti ons,
MDS_FUNCS_PTR pDl Functi ons,

MDS_HANDLE *hMls)

LIBRARY
Module Directory Services library (cdsa$nmis300_shr . exe)

PARAMETERS
pCal | er Qui d (input/optional)

The GUID of the module calling MDS.
pCal | er Mani f est (input/optional)

The Manifest of the module calling MDS.
pMenor yFunct i ons (i nput)

The memory-management routines MDS uses to allocate query results on behalf of the
caller.

pD Functi ons (out put)
The function table containing MDS programming interfaces for database access.
hMids (out put)

A new handle that can be used to interact with the MDS. The value will be set to
CSSM_INVALID_HANDLE if the function fails.

DESCRIPTION

This function initiates a service context with MDS and returns an opaque handle corresponding to that
context. The caller provides memory functions that MDS can use to manage memory in the caller's space on
behalf of the caller. The caller also provides input/output table pDIFunctions to get access to MDS databases.

If the caller is a CDSA service provider that will require write-access to an MDS database, (such as a module
that supports dynamic insertion and removal events), then the caller can provide the caller's GUID as input
parameter pCal | er Qui d. When provided as input, the GUID is associated with the MDS handle and is used
during DbQpen processing. If write-access is requested during DoCpen, MDS uses the associated GUID to
locate the service provider's signed manifest credentials in the DS Conmon relation. The service provider
module and its credentials are verified to ensure that write-access is permitted on this database by this
module.

370

The installers will have to provide the pCal | er Mani f est instead of pCal | er Gui d, as GUID cannot be used to
locate an application unless it is installed. Only one of the two parameters pCal | er Qui d and
pCal | er Mani f est should be non NULL inan MDS_I niti al i ze() call, otherwise an error will be returned.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_I NVALI D_POI NTER
CSSMERR DL_| NTERNAL_ERRCR
CSSMERR_DL_MEMORY_ERROR
CSSMERR_DL_FUNCTI ON_FAI LED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

371

MDS_Install

NAME
MDS_Install — Create the object directory database (CDSA)
SYNOPSIS

#include <cdsa/mds.h>

CSSM_RETURN CSSMAPI MDS I nstal |
(MDS_HANDLE MdsHandl e)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
MisHandl e (i nput)
The MDS handle identifying an MDS context.

DESCRIPTION

This function creates the Object Directory database containing the (bj ect relation, and the CDSA Directory
database containing the set of CDSA-specific relations defined in this specification. The MisHandl e identifies
an MDS context created by invoking MDS | niti al i ze(). The context contains information about the access
rights of the caller. Write-access is required to perform this operation.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D_DL_HANDLE
CSSMERR_DL_DATASTORE_ALREADY_EXI STS
CSSMERR_DL_I NVALI D_ACCESS_REQUEST
CSSMERR DL_| NVALI D_DB_LOCATI ON

CSSMERR DL_| NVALI D_DB_NAVE

CSSMERR DL_I NVALI D_OPEN_PARAMETERS
CSSMERR DL_| NVALI D_RECORD | NDEX
CSSMERR DL_| NVALI D_RECORDTYPE

CSSMERR DL_I NVALI D_FI ELD_NAVE
CSSMERR_DL_UNSUPPORTED_FI ELD_FORMAT
CSSMERR_DL_UNSUPPORTED_| NDEX_| NFO
CSSMERR_DL_UNSUPPORTED LOCALI TY
CSSMERR_DL_UNSUPPORTED NUM ATTRI BUTES
CSSMERR_DL_UNSUPPORTED_NUM | NDEXES
CSSMERR_DL_UNSUPPORTED_NUM RECORDTYPES
CSSMERR_DL_UNSUPPORTED RECORDTYPE

372

CSSMERR DL_FI ELD_SPECI FI ED_ MULTI PLE
CSSMERR _DL_| NCOVPATI BLE_FI ELD_FORVAT
CSSMERR_DL_| NVALI D_PARSI NG_MODULE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

373

MDS_Terminate
NAME

MDS_Terminate — Terminate the MDS service context (CDSA)
SYNOPSIS

include <cdsa/mds.h>

CSSM_RETURN CSSMVAPI MDS_Ter mi nat e
(MDS_HANDLE MdsHandl e)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
MisHandl e (i nput)
The MDS handle corresponding to the context being terminated.

DESCRIPTION

This function terminates the MDS service context identified by the opaque MisHandl e. The MDS handle is
invalidated and MDS frees all internal resources associated with the context.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR DL_| NVALI D DL_HANDLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

374

MDS_Uninstall

NAME
MDS_Uninstall — Delete the object directory database (CDSA)

SYNOPSIS

include <cdsa/mds.h>

CSSM_RETURN CSSMAPI MDS_Uni nst al |

(MDS_HANDLE MdsHandl e)

LIBRARY

Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
MisHandl e (i nput)
The MDS handle identifying a valid MDS context.

DESCRIPTION

This function deletes the Object Directory database containing the Cbj ect relation, and the CDSA Directory
database containing the set of CDSA-specific relations defined in this specification. The MisHandl e identifies
the MDS context created by invoking MDS | niti al i ze() . The context contains information about the access
rights of the caller. Write-access is required to perform this operation.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR DL_| NVALI D DL_HANDLE CSSMERR DL_DATASTORE | S_OPEN
CSSMERR DL_| NVALI D_DB_LOCATI ON CSSMERR DL_| NVALI D_DB_NAVE
CSSMERR_DL_DATASTORE_DOESNOT_EXI ST

SEE ALSO

Books

Intel CDSA Application Developer's Guide

375

MDSUTIL_FreeModulelnfo

NAME

MDSUTIL_FreeModulelnfo — Frees memory associated with the MDSUTIL_GetModulelnfo
function.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM _RETURN CSSMAPI MDSUTI L_Fr eeMbdul el nf o
(MDSUTI L_MODULE_I NFO_PTR Modul el nf 0)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
Modul el nf o (i nput)
A pointer to the data to be freed.

DESCRIPTION

This routine frees the list of module information that was returned by MDSUTIL_GetModulelnfo. All
substructures within the info structure are freed by this function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_POINTER
CSSMERR_CSSM_NOT_INITIALIZED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModuleL.ist,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerinfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

376

MDSUTIL_FreeModuleList
NAME

MDSUTIL_FreeModuleList — Frees the list of add-in modules that was returned by
MDSUTIL_ListModules.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI MDSUTI L_Fr eeMbdul eLi st
(MDSUTI L_LI ST_PTR Li st)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
Li st (i nput)
A pointer to a MDSUTIL_LIST pointer.

DESCRIPTION

This routine frees the list of add-in modules that was returned by MDSUTIL_ListModules.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR_CSSM_INVALID _POINTER

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerInfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

377

MDSUTIL_GetCredLocationFromGUID

NAME

MDSUTIL_GetCredLocationFromGUID — Returns the location of the add-in module, and the
associated credentials file for the add-in module.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSVAPI MDSUTI L_CGet CredLocat i onFr onGUI D
(const CSSM GUI D *Mbdul eGUI D,

CSSM _DATA * pModul ePat h,

CSSM _DATA *pModul eCr edenti al Pat h,

CSSM APl _MEMORY_FUNCS_PTR MenoryFuncs)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
Modul eGJ D (i nput)
A pointer to the module's Globally Unique ID.
pModul ePat h (out put)
A pointer to the module's full filespec location.
pModul eCr edent i al Pat h (out put)
A pointer to the module's credential full filespec location.
Menor yFuncs (i nput)

The memory-management routines MDS uses to allocate query results on behalf of the
caller.

DESCRIPTION

This function returns the location of the add-in module, and the associated credentials file for the add-in
module. The caller is responsible for freeing the memory in the output parameters.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_GUID
CSSMERR_CSSM_MDS_ERROR
CSSM_ERRCODE_INVALID_OUTPUT_POINTER

378

CSSM_ERRCODE_MEMORY_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_FreeModulelnfo, MDSUTIL_FreeModuleL.ist,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerInfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

379

MDSUTIL_GetModulelnfo

NAME
MDSUTIL_GetModulelnfo — Gets information from the MDS registry for the add-in module.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI MDSUTI L_Get Modul el nf o
(const CSSM GUI D *Mbdul eGUI D,

CSSM_SERVI CE_NMASK UsageMask,

ui nt 32 Subser vi cel D,

CSSM_USEE_TAG USEERequest,

MDSUTI L_MCDULE_| NFO_PTR *pMdul el nf o)

LIBRARY
Module Directory Services library (cdsa$nmis300_shr . exe)

PARAMETERS
Modul eGJ D (i nput)

A pointer to the CSSM_GUID structure containing the Globally Unique ID of the add-in
module.

UsageMask (i nput)

A bit mask specifying the module usage types used to restrict the capabilities information
returned by this function. An input value of zero specifies all usages for the specified
module.

Subser vi cel D(i nput)

A single subservice ID. Note that the operation may already be limited by a service mask. If
so, the subservice ID applies to all service categories selected by the service mask.

USEERequest (i nput)
United States Export Exemption tag; should be set to CSSM_USEE_NONE.
pModul el nf o (out put)

A pointer to the module information.

DESCRIPTION

This function gets a list of descriptive information from the MDS registry for the add-in module identified by
the ModuleGUID. The information returned can include all of the capability information for each of the
subservices for each of the service types implemented by the selected module. The request for information can
be limited to a particular set of services, as specified by the UsageMask. The request may be further limited to
one or all of the subservices implemented in one or all of the service categories. The
MDSUTIL_FreeModulelnfo function must be called to deallocate memory containing the list.

380

RETURN VALUE

NULL — Error in retrieving information from the MDS registry.

Not NULL — A pointer to a module info structure containing a pointer to an array of zero or more service
information structures. Each structure contains type information identifying the service description as
representing certificate library services, data storage library services, and so on. The service descriptions are
sub-classed into subservice descriptions that describe the attributes and capabilities of a subservice.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_POINTER
CSSMERR_CSSM_INVALID_GUID
CSSM_INVALID_SUBSERVICEID
CSSMERR_CSSM_MEMORY_ERROR
CSSMERR_CSSM_NOT_INITIALIZED
CSSM_ERRCODE_MDS_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo, MDSUTIL_FreeModuleL.ist,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerInfo, MDSUTIL_ModuleManagerinstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

381

MDSUTIL_GetModuleManagerinfo
NAME

MDSUTIL_GetModuleManageriInfo — Returns descriptive information about the elective module
manager identified by the GUID or the service mask.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSVAPI MDSUTI L_CGet Mbdul eManager | nf o
(const CSSM GUI D *Mbdul eGUI D,

CSSM_SERVI CE_NMASK Ser vi ceType,

MDSUTI L_MODULE_MANAGER_I NFO_PTR *Mbdul eManager | nf o)

LIBRARY
Module Directory Services library (cdsa$nmids300_shr . exe)

PARAMETERS
Modul eGJ D (i nput)

A pointer to a GUID identifying the module manager.
Ser vi ceType (i nput)

A unique service mask identifying the module manager.
Modul eManager | nf o (out put)

A pointer to the returned module manager information.

DESCRIPTION

This function returns descriptive information about the elective module manager identified by the GUID or
the service mask.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. NULL indicates that the routine was unable to get the module manager information.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_POINTER
CSSMERR_CSSM_INVALID_GUID
CSSM_ERRCODE_MDS_ERROR
CSSMERR_CSSM_INVALID_SERVICE_MASK
CSSM_ERRCODE_MEMORY_ERROR
CSSMERR_CSSM_MEMORY_ERROR

382

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_FreeModuleList, MDSUTIL_ListModuleManagers, MDSUTIL_ModuleManagerlInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

383

MDSUTIL_Init

NAME
MDSUTIL_Init — Initializes the MDS registry in preparation for a series of MDSUTIL operations.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI MDSUTI L_I ni t
(CSSM BOOL ReadW it e)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
ReadWi t e (i nput)

A Boolean flag indicating whether the MDS registry is to be enabled for writing as well as
reading. CSSM_TRUE indicates that the registry should be enabled for writing.

DESCRIPTION

This function initializes the MDS registry in preparation for a series of MDSUTIL operations.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values indicate an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_FreeModuleList, MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerlInfo,
MDSUTIL_ModuleManagerlInstall, MDSUTIL_ModuleManagerUninstall, MDSUTIL_Term

384

MDSUTIL_ListModuleManagers
NAME

MDSUTIL_ListModuleManagers — Returns the number of module managers and a list of GUIDs
associated with those module managers.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI NMDSUTI L_Li st Mbdul eManager s
(CSSM_GUI D_PTR *Modul eManager Gui ds,
ui nt 32 *Nunber Of Modul eManager s)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS

Modul eManager Qui ds (out put)
A pointer to a list of GUIDs.
Nunber O Modul eManager s (out put)

A pointer to the number of module managers.

DESCRIPTION

This function returns the number of module managers and a list of GUIDs associated with those module
managers. The caller is responsible for freeing the memory associated with the GUID list.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_POINTER
CSSM_ERRCODE_MEMORY_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

385

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_FreeModuleList, MDSUTIL_GetModuleManagerinfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

386

MDSUTIL_ListModules
NAME

MDSUTIL_ListModules — Returns a list containing the GUID/version/name for each of the currently
installed service provider modules that provide services in any of the CSSM functional categories
selected in the usage mask. The MDSUTIL_FreeModuleList function must be called to deallocate
memory containing the list.

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI NMDSUTI L_Li st Mbdul es
(CSSM_SERVI CE_MASK UsageMask,

CSSM _BOOL Mat chAl |,

MDSUTI L_LI ST_PTR *pLi st)

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS
UsageMask (i nput)

A bit mask selecting CSSM functional categories of interest for selecting information about
potential service provider modules.

Mat chAl | (i nput)

A Boolean value to indicate if the add-in has to match all of the conditions expressed in
UsageMask. TRUE means all conditions must be met. FALSE means one or more conditions
must be met.

pLi st (out put)

Pointer to a list of modules. Each item contains a CSSM_GUID, the module version, and a
descriptive string name of the module.

DESCRIPTION

This function returns a list containing the GUID/version/name for each of the currently installed service
provider modules that provide services in any of the CSSM functional categories selected in the usage mask.
The MDSUTIL_FreeModuleList function must be called to deallocate memory containing the list.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

387

CSSM_ERRCODE_MDS_ERROR
CSSMERR_CSSM_INVALID_POINTER
CSSM_ERRCODE_INVALID_OUTPUT_POINTER
CSSM_ERRCODE_MEMORY_ERROR
CSSMERR_NOT_INITIALIZED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_GetModulelnfo,
MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo, MDSUTIL_FreeModuleL.ist,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerInfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

388

MDSUTIL_Modulelnstall

NAME
MDSUTIL_Modulelnstall — Updates the MDS registry with information on the add-in module

SYNOPSIS
include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI MDSUTI L_Mbdul el nst al |
(const char *Mdul eNane,

const char *Modul eFi | eNanes,

const char *Modul ePat hNane,

const char *Modul eCredenti al Nane,

const char *Modul Credenti al Pat h,

const CSSM GUI D * GUI D,

const MDSUTI L_MODULE | NFO *Modul eDescri pti on,
const void *Reservedl,

const CSSM DATA *Reserved2)

LIBRARY
Module Directory Services utility API library (cdsa$mds_uti | _api . ol b)

PARAMETERS
Modul eNanre (i nput)

The name of the add-in module.
Modul eFi | eNarres (i nput)

The name of the file implementing the add-in module.
Modul ePat hNarre (i nput)

The path to the file implementing the add-in module.
Modul eCr edent i al Name (i nput)

The name of the credential file for the add-in module.
Modul eCr edenti al Pat h (i nput)

The path to the credential file for the add-in module.
QU D(i nput)

The Globally Unique ID of the add-in module.
Modul eDescri ption (i nput)

A pointer to a structure that describes the add-in module.
Reservedl (i nput)

Reserved data.
Reserved?2 (i nput)

Reserved data.

389

DESCRIPTION

This function updates the MDS registry with information on the add-in module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_POINTER
CSSMERR_DL_OS_ACCESS_DENIED

CSSMERR_CSSM_INTERNAL_ERROR
CSSM_ERRCODE_INTERNAL_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_ModuleUninstall, MDSUTIL_ListModules, MDSUTIL_GetModulelnfo,
MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo, MDSUTIL_FreeModuleL.ist,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerinfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

390

MDSUTIL_ModuleManagerlinstall
NAME

MDSUTIL_ModuleManagerlinstall — Updates the MDS registry with information about the

Extensible Module Manager

SYNOPSIS
include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI NMDSUTI L_Mbdul eManager | nst al |

(const char *Mdul eManager Nane,

const char *Modul eManager Fi | eNane,

const char *Modul eManager Pat hNane,

const char *Modul eManager Credenti al Nane,

const char *Modul eManager Credenti al Pat h,

const CSSM GUI D * Mbdul eManager Cui d,

const MDSUTI L_MODULE MANAGER_I NFO *NMbdul eManager Descri pti on,
const void *Reservedl,

const CSSM DATA *Reserved?2)

LIBRARY
Module Directory Services utility API library (cdsa$mds_uti | _api . ol b)

PARAMETERS

Modul eManager Nane (i nput)

A pointer to the name of the Extensible Module Manager (EMM).
Modul eManager Fi | eNane (i nput)

A pointer to the filename of the Extensible Module Manager.
Modul eManager Pat hnane (i nput)

A pointer to the directory path to the file implementing the EMM.
Modul eManager Cr edent i al Nane (i nput)

A pointer to the name of the credential file of the EMM.
Modul eManager O edent i al Pat h (i nput)

A pointer to the directory path to the credential file of the EMM.
Modul eManager Qui d (i nput)

A pointer to the Globally Unique ID of the EMM.
Modul eManager Descri pti on (i nput)

A pointer to the structure that describes the EMM.

DESCRIPTION

This function updates the MDS registry with information about the Extensible Module Manager.

391

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_POINTER
CSSMERR_CSSM_INTERNAL_ERROR
CSSMERR_CSSM_FUNCTION_FAILED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_FreeModuleList, MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerlInfo,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

392

MDSUTIL_ModuleManagerUninstall
NAME

MDSUTIL_ModuleManagerUninstall — Removes from the MDS registry the information associated
with the Globally Unique ID of the EMM

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMVAPI MDSUTI L_Modul eManager Uni nst al |
(const CSSM GUI D *Mbdul eManager Gui d)

LIBRARY
Module Directory Services utility API library (cdsa$mds_uti | _api . ol b)

PARAMETERS
Modul eManager Qui d (i nput)
A pointer to the Globally Unique ID of the Extensible Module Manager.

DESCRIPTION

This function removes from the MDS registry the information associated with the Globally Unique ID of the
EMM.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition.The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSSM_INVALID_GUID
CSSMERR_CSSM_FUNCTION_FAILED
CSSM_ERRCODE_MDS_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

393

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_FreeModuleList, MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerlInfo,
MDSUTIL_ModuleManagerinstall, MDSUTIL_Init, MDSUTIL_Term

394

MDSUTIL_ModuleUninstall
NAME

MDSUTIL_ModuleUninstall — Removes from the MDS registry the information associated with
GUID

SYNOPSIS

include <mds_util_api.h>
include <mds_util_helper.h>

CSSM_RETURN CSSMAPI MDSUTI L_Mbdul eUni nst al |
(const CSSM GUI D *Mbdul eGUI D)

LIBRARY
Module Directory Services utility API library (cdsa$mds_uti | _api . ol b)

PARAMETERS
Modul eGJ D (i nput)
The Globally Unique ID of the add-in module.

DESCRIPTION

This function removes from the MDS registry the information associated with GUID.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR_CSSM_MEMORY_ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ListModules, MDSUTIL_GetModulelnfo,
MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo, MDSUTIL_FreeModuleL.ist,
MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerinfo, MDSUTIL_ModuleManagerInstall,
MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init, MDSUTIL_Term

395

MDSUTIL_Term
NAME

MDSUTIL_Term — Closes the MDS registry after a series of operations.
SYNOPSIS
include <mds_util_api.h>

include <mds_util_helper.h>
void CSSMAPI MDSUTIL_Term()

LIBRARY
Module Directory Services library (cdsa$nmds300_shr . exe)

PARAMETERS

None

DESCRIPTION

This function closes the MDS registry after a series of operations.

RETURN VALUE

None

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: MDSUTIL_Modulelnstall, MDSUTIL_ModuleUninstall, MDSUTIL_ListModules,
MDSUTIL_GetModulelnfo, MDSUTIL_GetCredLocationFromGUID, MDSUTIL_FreeModulelnfo,
MDSUTIL_FreeModuleList, MDSUTIL_ListModuleManagers, MDSUTIL_GetModuleManagerInfo,
MDSUTIL_ModuleManagerlInstall, MDSUTIL_ModuleManagerUninstall, MDSUTIL_Init

396

ObtainPrivateKeyFromPublicKey

NAME

ObtainPrivateKeyFromPublicKey: CSSM_CSP_ObtainPrivateKeyFromPublicKey,
CSP_ObtainPrivateKeyFromPublicKey — Convert public key to private key (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CSP_Obt ai nPri vat eKeyFr onPubl i cKey
(CSSM_CSP_HANDLE CSPHandl e

const CSSM KEY *Publ i cKey,

CSSM _KEY_PTR Pri vat eKey)

SPI :

CSSM_RETURN CSSMCSPI CSP_Onbt ai nPri vat eKeyFr omPubl i cKey

(CSSM_CSP_HANDLE CSPHandl e,

const CSSM KEY *Publ i cKey,

CSSM _KEY_PTR Pri vat eKey)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the module to perform this operation.
Publ i cKey (i nput)

The public key corresponding to the private key being sought.
Pri vat eKey (out put)

A reference to the private key corresponding to the public key.

DESCRIPTION

Given a public key this function returns a reference to the private key. The private key and its associated
passphrase can be used as an input to any function requiring a private key value.

NOTES

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() (CSSM API), or CSP_Fr eeKey() (CSP SPI), function or with the memory
functions registered for the CSPHandl e.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

397

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_PRI VATE_KEY_NOT_FOUND

SEE ALSO

Books

Intel CDSA Application Developer's Guide

398

PassThrough

NAME
PassThrough: CSSM_CSP_PassThrough, CSP_PassThrough — Extend crypto functionality (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM CSP_PassThr ough
(CSSM_CC_HANDLE CCHandl e,

ui nt 32 PassThroughl d,

const void *InData,

voi d **CQut Dat a)

SPI :

CSSM_RETURN CSSMCSPI CSP_PassThr ough
(CSSM_CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

ui nt 32 PassThroughl d,

const void *InData,

voi d **CQut Dat a)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)
The handle that describes the context of this cryptographic operation.
PassThr oughl d (i nput)
An identifier specifying the custom function to be performed.
I nDat a (i nput)
A pointer to a module, implementation-specific structure containing the input data.
Qut Dat a (out put)

A pointer to a module, implementation-specific structure containing the output data. The
service provider will allocate the memory for this structure. The application should free the
memory for the structure.

SPI PARAMETERS
CSPHandl e (i nput)

Handle of the CSP supporting the PassThr ough function.
Cont ext (i nput)

Pointer to CSSM_CONTEXT structure that describes the attributes with this custom
context structure.

399

DESCRIPTION

The CSSM CSP_PassThr ough() (CSSM API), or CSP_PassThr ough() (CSP SPI), function is provided to allow
CSP developers to extend the crypto functionality of the CSSM API.

NOTES

The CSP_Event Not i fy() function is used by the CSSM Core to interact with the CSP module.

Because this function is only exposed to CSSM as a function pointer, the function name internal to the CSP
can be assigned at the discretion of the CSP module developer. However, the parameter list and return value
types must match those defined for this function.

The error codes given in this section constitute the generic error codes, which may be used by all CSP
libraries to describe common error conditions. CSP module developers may also define their own
module-specific error codes.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_| NVALI D_PASSTHROUGH | D

SEE ALSO

Books

Intel CDSA Application Developer's Guide

400

QueryKeySizelnBits

NAME

QueryKeySizelnBits: CSSM_QueryKeySizelnBits, CSP_QueryKeySizelnBits — Get CSP logical and
effective sizes (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM QueryKeySi zel nBits
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM KEY *Key,

CSSM KEY_SI ZE_PTR KeySi ze)

SPI :

CSSM_RETURN CSSMCSPI CSP_QueryKeySi zel nBits
(CSSM_CSP_HANDLE CSPHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

const CSSM KEY *Key,

CSSM KEY_SI ZE_PTR KeySi ze)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CSPHandl e (input/optional)

The handle that describes the Cryptographic Service Provider module used to perform this
function.

For the API, this parameter is ignored if a valid cryptographic context handle is specified.
CCHandl e (input/optional)

A handle to a context that describes a cryptographic operation. The cryptographic context
should contain a handle to the CSP that is being queried and the key about which key-size
information is being requested.

Key (input/optional)

A pointer to a CSSM_KEY structure containing the key about which key-size information is
being requested. This parameter is ignored if a valid cryptographic context handle is
specified.

KeySi ze (out put)
Pointer to a CSSM_KEY_SIZE data structure. The logical and effective sizes (in bits) for the
key are returned in this structure.

For the API, if no context handle is provided, only the CSSM_KEY_SIZE
Logi cal KeySi zel nBi t s field is set.

401

SPI PARAMETERS
Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function queries a Cryptographic Service Provider (CSP) for the logical and effective sizes of a specified
key.

The Cryptographic Service Provider (handle) and the key can be specified either in the cryptographic context
or as parameters to the function call. If a valid cryptographic context handle parameter is specified, the CSP
handle and key parameters are ignored.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_QUERY_SI ZE_UNKNOWN

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_GenerateRandom, CSSM_GenerateKeyPair, CSSM_GenerateKey
Functions for the CSP SPI:

CSP_GenerateRandom, CSP_GenerateKeyPair, CSP_GenerateKey

402

QuerySize
NAME
QuerySize: CSSM_QuerySize, CSP_QuerySize — Get size of the output data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM QuerySi ze
(CSSM_CC_HANDLE CCHandl e,

CSSM BOOL Encrypt,

ui nt 32 QuerySi zeCount ,

CSSM_QUERY_SI ZE_DATA_PTR Dat aBl ockSi zes)
SPI :

CSSM _RETURN CSSMCSPI CSP_QuerySi ze

(CSSM_CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

CSSM BOOL Encrypt,

ui nt 32 QuerySi zeCount ,

CSSM_QUERY_SI ZE_DATA_PTR Dat aBl ockSi zes)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle for an encryption and decryption context.
Encrypt (i nput)

A boolean indicating whether encryption is the operation for which the output data size
should be calculated. If CSSM_TRUE, the operation is encryption. If CSSM_FALSE the
operation is decryption.

QuerySi zeCount (i nput)
The number of entries in the array of DataBlockSizes.
Dat aBl ockSi zes (input/output)

An array of data block input sizes and corresponding entries for the data block output sizes
that are returned by this function.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)

403

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function queries for the size of the output data for a cryptographic operation. If the context is an
encryption or decryption context type then the Encrypt parameter will determine which operation is being
performed. If Encrypt is set to CSSM_TRUE then it is an encrypt operation, otherwise it is a decrypt
operation. For all other context types the Encr ypt parameter is ignored. This function can also be used to
query the output size requirements for the intermediate steps of a staged cryptographic operation. There may
be algorithm-specific and token-specific rules restricting the lengths of data following data update calls.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR_CSP_QUERY_SI ZE UNKNOWN

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_EncryptData, CSSM_EncryptDataUpdate, CSSM_DecryptData, CSSM_DecryptDataUpdate,
CSSM_SignData, CSSM_VerifyData, CSSM_DigestData, CSSM_GenerateMac

Functions for the CSP SPI:

CSP_EncryptData, CSP_EncryptDataUpdate, CSP_DecryptData, CSP_DecryptDataUpdate, CSP_SignData,
CSP_VerifyData, CSP_DigestData, CSP_GenerateMac

404

RetrieveCounter
NAME

RetrieveCounter: CSSM_RetrieveCounter, CSP_RetrieveCounter — Get the value of a tamper
resistant clock (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM Ret ri eveCount er
(CSSM CSP_HANDLE CSPHandl e,

CSSM _DATA_PTR Count er)

SPI :

CSSM_RETURN CSSMCSPI CSP_Ret ri eveCount er
(CSSM CSP_HANDLE CSPHandl e,

CSSM _DATA_PTR Count er)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

Count er (out put)

Pointer to CSSM_DATA structure that contains data of the tamper resistant clock/counter
of the cryptographic device.

DESCRIPTION

This function returns the value of a tamper resistant clock/counter of the cryptographic device.

NOTES ON SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

405

SEE ALSO

Books

Intel CDSA Application Developer's Guide

406

RetrieveUniqueld
NAME

RetrieveUniqueld: CSSM_RetrieveUniqueld, CSP_RetrieveUniqueld — Get identifier (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ret ri eveUni quel d
(CSSM_CSP_HANDLE CSPHandl e,

CSSM _DATA_PTR Uni quel D)

SPI :

CSSM_RETURN CSSMCSPI CSP_Retri eveUni quel d
(CSSM_CSP_HANDLE CSPHandl e,

CSSM _DATA_PTR Uni quel D)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

Uni quel D (out put)

Pointer to CSSM_DATA structure that contains data that uniquely identifies the
cryptographic device.

DESCRIPTION

This function returns an identifier that could be used to uniquely differentiate the cryptographic device from
all other devices from the same vendor or different vendors.

NOTES ON SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

407

SEE ALSO

Books

Intel CDSA Application Developer's Guide

408

SignData

NAME
SignData: CSSM_SignData, CSP_SignData — Sign all buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM Si gnDat a
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

CSSM_ALGORI THVB Di gest Al gorithm
CSSM _DATA_PTR Si gnat ure)

SPI :

CSSM _RETURN CSSMCSPI CSP_Si gnDat a
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count,

CSSM_ALGORI THVB Di gest Al gorithm
CSSM _DATA_PTR Si gnat ure)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be signed.
Dat aBuf Count (i nput)

The number of DataBufs to be signed.
D gest Al gori t hm(i nput)

If signing just a digest, specifies the type of digest. In this case, the context should only
specify the encryption algorithm. If not signing just a digest, it must be
CSSM_ALGID_NONE. In this case, the context should specify the combination
digest/encryption algorithm.

Si gnat ur e (out put)
A pointer to the CSSM_DATA structure for the signature.

409

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function signs all data contained in the set of input buffers using the private key specified in the context.
The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

Signing can include digesting the data and encrypting the digest or signing just the digest (already calculated
by the application). If digesting the data and encrypting the digest, then the context should specify the
combination digest/encryption algorithm (for example, CSSM_ALGID_MD5WithRSA). In this case, the

D gest Al gori t hmparameter must be set to CSSM_ALGID_NONE. If signing just the digest, then the
context should specify just the encryption algorithm and the Di gest Al gori t hmparameter should specify the
type of digest (for example, CSSM_ALGID_MDS5). Also, Dat aBuf Count must be 1.

If the signing algorithm is not reversible or strictly limits the size of the signed data, then the algorithm can
specify signing without digesting. In this case, the sign operation is performed on the input data and the size
of the input data is restricted by the service provider.

NOTES ON API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures each, containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

NOTES ON SPI

The output is returned to the caller as specifed in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_OUTPUT_LENGTH_ERROR
CSSMVERR_CSP_| NVALI D_DI GEST_ALGORI THM

410

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyData, CSSM_SignDatalnit, CSSM_SignDataUpdate, CSSM_SignDataFinal
Functions for the CSP SPI:

CSP_VerifyData, CSP_SignDatalnit, CSP_SignDataUpdate, CSP_SignDataFinal

411

SignDataFinal

NAME

SignDataFinal: CSSM_SignDataFinal, CSP_SignDataFinal — Complete the final stage of the sign
data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Si gnDat aFi nal
(CSSM_CC_HANDLE CCHandl e,

CSSM _DATA_PTR Si gnat ure)

SPI :

CSSM_RETURN CSSMCSPI CSP_Si gnDat aFi nal
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

CSSM _DATA_PTR Si gnat ure)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Si gnat ur e (out put)
A pointer to the CSSM_DATA structure for the signature.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function completes the final stage of the sign data function.

NOTES ON API

The output is returned to the caller either by filling the caller-specified buffer or by using the application's
declared memory allocation functions to allocate buffer space. To specify a specific, preallocated output buffer,
the caller must provide an array of one or more CSSM_DATA structures, each containing a Length field value
greater than zero and a non-NULL data pointer field value. To specify automatic output buffer allocation by
the CSP, the caller must provide an array of one or more CSSM_DATA structures, each containing a Length
field value equal to zero and a NULL data pointer field value. The application is always responsible for
deallocating the memory when it is no longer needed.

412

NOTES ON SPI

The output is returned to the caller as specifed in Buffer Management for Cryptographic Services.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_OUTPUT_LENGTH _ERROR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataUpdate
Functions for the CSP SPI:

CSP_SignData, CSP_SignDatalnit, CSP_SignDataUpdate

413

SignDatalnit

NAME
SignDatalnit: CSSM_SignDatalnit, CSP_SignDatalnit — Initialize the staged sign data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM Si gnDat al ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Si gnbDat al ni t
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function initializes the staged sign data function.

For staged operations, a combination operation selecting both a digesting algorithm and a signing algorithm
must be specified.

The CSP can require that the cryptographic context include access credentials for authentication and
authorization checks when using a private key or a secret key.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

414

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_SignData, CSSM_SignDataUpdate, CSSM_SignDataFinal
Functions for the CSP SPI:

CSP_SignData, CSP_SignDataUpdate, CSP_SignDataFinal

415

SignDataUpdate

NAME

SignDataUpdate: CSSM_SignDataUpdate, CSP_SignDataUpdate — Continue the staged signing
process input buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM Si gnDat aUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

SPI :

CSSM_RETURN CSSMCSPI CSP_Si gnDat aUpdat e
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)
A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs to be signed.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged signing process over all data contained in the set of input buffers. Signing
is performed using the private key specified in the context.

416

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_SignData, CSSM_SignDatalnit, CSSM_SignDataFinal
Functions for the CSP SPI:

Funcitons: CSP_SignData, CSP_SignDatalnit, CSP_SignDataFinal

417

TP_ApplyCriToDDb

NAME
TP_ApplyCriToDb: CSSM_TP_ApplyCriToDb — Update persistent storage (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM TP_Appl yCrl ToDb
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM ENCODED _CRL *Cr| ToBeAppl i ed,

const CSSM CERTGROUP *Si gner Cert Gr oup,

const CSSM TP_VERI FY_CONTEXT *Appl yCrl Veri f yCont ext,
CSSM _TP_VERI FY_CONTEXT_RESULT_PTR Appl yCrl Veri f yResul t)
SPI :

CSSM _RETURN CSSMTPI TP_Appl yCr| ToDb

(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM ENCODED_CRL *Cr| ToBeAppl i ed,

const CSSM CERTGROUP *Si gner Cert Gr oup,

const CSSM TP_VERI FY_CONTEXT *Appl yCrl Veri f yCont ext,
CSSM _TP_VERI FY_CONTEXT_RESULT_PTR Appl yCrl Veri f yResul t)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module that can be used to
manipulate the CRL as it is applied to the data store and to manipulate the certificates
effected by the CRL, if required. If no certificate library module is specified, the TP module
uses an assumed CL module, if required.

CSPHandl e (input/optional)

The handle referencing a Cryptographic Service Provider to be used to verify signatures on
the CRL determining whether to trust the CRL and apply it to the data store. The TP
module is responsible for creating the cryptographic context structures required to perform
the verification operation. If no CSP is specified, the TP module uses an assumed CSP to
perform these operations. If optional, the caller will set this value to 0.

O | ToBeAppl i ed (i nput)

A pointer to a structure containing the encoded certificate revocation list to be applied to the
data store. The CRL type and encoding are included in this structure.

418

Si gner Cert G oup (i nput)

A pointer to the CSSM_CERTGROUP structure containing one or more related certificates
that partially or fully represent the signer of the certificate revocation list. The first
certificate in the group is the target certificate representing the CRL signer. Use of
subsequent certificates is specific to the trust domain. For example, in a hierarchical trust
model, subsequent members are intermediate certificates of a certificate chain.

Appl yCrl Veri fyCont ext (input/optional)

A structure containing credentials, policy information, and contextual information to be
used in the verification process. All of the input values in the context are optional. The
service provider can define default values or can attempt to operate without input for all the
other fields of this input structure. The operation can fail if a necessary input value is
omitted and the service module can not define an appropriate default value.

Appl yCr |l Veri fyResul t (output/optional)

A pointer to a structure containing information generated during the verification process.
The information can include:

Evi dence (output/optional)

Nurber Of Evi dences (output/optional)

DESCRIPTION

This function updates persistent storage to reflect entries in the certificate revocation list. The TP module
determines whether the memory-resident CRL is trusted, and if it should be applied to one or more of the

persistent databases. Side effects of this function can include saving a persistent copy of the CRL in a data
store, or removing certificate records from a data store.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE
CSSMERR _TP_I NVALI D_CSP_HANDLE
CSSMERR _TP_I NVALI D_CRL_TYPE
CSSMERR_TP_I NVALI D_CRL_ENCODI NG
CSSMERR _TP_I NVALI D_CRL_PO NTER
CSSMERR _TP_I NVALI D_CRL

CSSMERR_TP_I NVALI D_CERTGROUP_PQO NTER
CSSMERR_TP_I NVALI D_CERTGROUP
CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMERR _TP_I NVALI D_ACTI ON

CSSMERR _TP_I NVALI D_ACTI ON_DATA
CSSMERR _TP_VERI FY_ACTI ON_FAI LED
CSSMERR_TP_I NVALI D_CRLGROUP_POI NTER
CSSMERR_TP_| NVALI D_CRLGROUP

419

CSSMERR_TP_I NVALI D_CRL_AUTHORI TY
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMVERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR TP_I NVALI D DB LI ST PO NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_I NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR TP_CERT_NOT VALID_YET
CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR_TP_| NVALI D_NANE
CSSMERR_TP_CERTI FI CATE_CANT_OPERATE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_CL_CrlGetFirstltem, CSSM_CL_CrlGetNextltem, CSSM_DL_CertRevoke
Functions for the TP SPI:

CL_CrlGetFirstltem, CL_CrlGetNextltem, DL_CertRevoke

420

TP_CertCreateTemplate
NAME

TP_CertCreateTemplate: CSSM_TP_CertCreateTemplate — Allocate and initialize template memory
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM TP_Cert Creat eTenpl at e
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *CertFi el ds,

CSSM _DATA_PTR Cert Tenpl at e)

SPI :

CSSM_RETURN CSSMIPI TP_Cert Creat eTenpl at e
(CSSM_TP_HANDLE TPHandl e,

CSSM _CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *CertFi el ds,

CSSM _DATA_PTR Cert Tenpl at e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHandl e (i nput)

The handle that describes the certificate library module used to perform this function.
Nunber O Fi el ds (i nput)

The number of certificate field values specified in the Cert Fi el ds.
CertFiel ds (i nput)

A pointer to an array of OlD/value pairs that identifies the field values to initialize a new
certificate.

Cer t Tenpl at e (out put)

A pointer to a CSSM_DATA structure that will contain the unsigned certificate template as
a result of this function.

421

DESCRIPTION

This function allocates and initializes memory for an encoded certificate template output in
Cer t Tenpl at e- >Dat a. The template values are specified by the input OlD/value pairs contained in
Cert Fi el ds. The initialization process includes encoding all certificate field values according to the
certificate type and certificate template encoding supported by the trust policy library module. The
Cer t Tenpl at e output is an unsigned certificate template in the format supported by the TP.

The memory for Cert Tenpl at e- >Dat a is allocated by the service provider using the calling application's
memory management routines. The application must deallocate the memory.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE
CSSMERR_TP_I NVALI D_FI ELD_POl NTER
CSSMERR_TP_UNKNOAN_TAG

CSSMERR _TP_I NVALI D NUMBER OF FI ELDS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_CertGetAllTemplateFields, CSSM_TP_CertSign
Functions for the TP SPI:

TP_CertGetAllTemplateFields, TP_CertSign

422

TP_CertGetAllTemplateFields

NAME

TP_CertGetAllTemplateFields: CSSM_TP_CertGetAllTemplateFields — Get CertTemplate field
values (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM TP_Cert Get Al | Tenpl at eFi el ds
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert Tenpl at e,

ui nt 32 *Nunber Of Fi el ds,

CSSM FI ELD_PTR *Cer t Fi el ds)

SPI :

CSSM_RETURN CSSMIPI TP_Cert Get Al | Tenpl at eFi el ds
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM DATA *Cert Tenpl at e,

ui nt 32 *Nunber Of Fi el ds,

CSSM FI ELD_PTR *Cer t Fi el ds)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHandl e (i nput)

The handle that describes the certificate library module used to perform this function.
Cert Tenpl at e (i nput)

A pointer to the CSSM_DATA structure containing the packed, encoded certificate
template.

Nunber O Fi el ds (out put)
The length of the output array of fields.
CertFi el ds (out put)

A pointer to an array of CSSM_FIELD structures which contains the OIDs and values of the
fields of the input certificate template.

DESCRIPTION

This function extracts and returns all field values from Cert Tenpl at e. The Cert Tenpl at e parameter is an
unsigned certificate template in the format supported by the TP. Fields are returned as a set of OID-value
pairs. The OID identifies the TP certificate template field and the data format of the value extracted from

423

that field. The Trust Policy module defines and uses a preferred data format for returning field values from
this function. Memory for the Cert Fi el ds output is allocated by the service provider using the calling
application's memory management routines. The application must deallocate the memory, by calling

CSSM CL_FreeFi el ds() (CSSM API), or CL_FreeFi el ds() (TP SPI).

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE
CSSMERR _TP_I NVALI D_FI ELD_POl NTER
CSSMERR_TP_UNKNOAN_FORVAT

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_CertCreateTemplate, CSSM_TP_CertSign
Functions for the TP SPI:

TP_CertCreateTemplate, TP_CertSign

424

TP_CertGroupConstruct

NAME
TP_CertGroupConstruct: CSSM_TP_CertGroupConstruct — Construct credential (CDSA)

SYNOPSIS

include <cssm.h>

CSSM RETURN CSSMAPI CSSM TP_Cert Gr oupConst r uct
(CSSM_TP_HANDLE TPHandl e,

CSSM_CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM DL_DB LI ST *DBLi st,

const void *Construct Parans,

const CSSM _CERTCGROUP *Cert G oupFr ag,

CSSM CERTGRQUP_PTR *Cer t Gr oup)

SPI :

CSSM_RETURN CSSMTIPI TP_Cert GroupConstruct
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM DL_DB LI ST *DBLi st,

const void *Construct Parans,

const CSSM CERTCGROUP *Cert G oupFr ag,

CSSM CERTGRQUP_PTR *Cer t Gr oup)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle to the trust policy module to perform this operation.
CLHand! e (input/optional)

The handle to the certificate library module that can be used to manipulate and parse
values in stored in the certgroup certificates. If no certificate library module is specified, the
TP module uses an assumed CL module.

CSPHandl e (input./optional)

A handle specifying the Cryptographic Service Provider to be used to verify certificates as
the certificate group is constructed. If the a CSP handle is not specified, the trust policy
module can assume a default CSP. If the module cannot assume a default, or the default
CSP is not available on the local system, an error occurs.

DBLi st (i nput)

A list of handle pairs specifying a data storage library module and a data store, identifying
certificate databases containing certificates (and possibly other security objects) that are
managed by that module. certificates (and possibly other security objects). The data stores
should be searched to complete construction of a semantically-related certificate group.

Const r uct Par ans (input/optional)

425

A pointer to data that can be used by the add-in trust policy module in constructing the
Cert G oup.Thesemanticsof thispar anet er aredef i nedby the trust policy and the credential
model supported by that policy. The input parameter can consist of a set of values, each
guiding some aspect of the construction process. Parameter values can:

= Limit the certificates that are added to the constructed set.
= ldentify other sources of certificates for inclusion in the constructed set.
Cert G oupFrag (i nput)

A list of certificates that form a possibly incomplete set of certificates. The first certificate in
the group represents the target certificate for which a group of semantically related
certificates will be assembled. Subsequent intermediate certificates can be supplied by the
caller. They need not be in any particular order.

Cert G oup (out put)

A pointer to a complete certificate group based on the original subset of certificates and the
certificate data stores. The CSSM_CERTGROUP and its sub-structure is allocated by the
service provider and must be deallocated by the application.

DESCRIPTION

This function builds a collection of certificates that together make up a meaningful credential for a given trust
domain. For example, in a hierarchical trust domain, a certificate group is a chain of certificates from an end
entity to a top level certification authority. The constructed certificate group format (such as ordering) is
implementation specific. However, the subject or end-entity is always the first certificate in the group.

A partially constructed certificate group is specified in Cert G oupFr ag. The first certificate is interpreted to
be the subject or end-entity certificate. Subsequent certificates in the Cert G oupFr ag structure may be used
during the construction of a certificate group in conjunction with certificates found in the data stores specified
in DBLi st. The trust policy defines the certificates that will be included in the resulting set.

The output set is a sequence of certificates ordered by the relationship among them. The result set can be
augmented by adding semantically-related certificates obtained by searching the certificate data stores
specified in DBLi st . The data stores are searched in order of appearance in DBLi st . If the TP supports a
hierarchical model of certificates, the function output is an uninterrupted, ordered chain of certificates based
on the first certificate as the leaf of the certificate chain. If the certificate is multiply-signed, then the ordered
chain will follow the first signing certificate. The function should also detect cross-certificate pairs and should
include both certificates without duplicating either certificate.

Extraneous certificates in the Cert G oupFr ag fragment or contained in the DBLi st data stores are ignored.
The certificate group returned by this function can be used as input to the function
CSSM TP_Cert G oupVeri fy() (CSSM API), or TP_Cert G oupVeri fy() (TP SPI).

The constructed certificate group can be consistent locally or globally. Consistency can be limited to the local
system if locally-defined points of trust are inserted into the group.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

426

CSSMERR _TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR _TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_I NVALI

DB
) CERTGROUP_POI NTER

D_CERTGROUP

D_CERTI FI CATE

CSSMERR_TP_CERTGROUP_I NCOVPLETE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_TP_CertGroupPrune, CSSM_TP_CertGroupVerify

Functions for the TP SPI:
TP_CertGroupPrune, TP_CertGroupVerify

427

TP_CertGroupPrune
NAME

TP_CertGroupPrune: CSSM_TP_CertGroupPrune — Remove locally issued anchor certificates
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Cert G oupPrune
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM DL_DB LI ST *DBLi st,

const CSSM CERTGROUP *Or deredCert Group,
CSSM_CERTGROUP_PTR *PrunedCert G- oup)

SPI :

CSSM_RETURN CSSMIPI TP_Cert G oupPrune
(CSSM_TP_HANDLE TPHandl e,

CSSM _CL_HANDLE CLHandl e,

const CSSM DL_DB LI ST *DBLi st,

const CSSM CERTGROUP *Or deredCert Group,
CSSM_CERTGROUP_PTR *PrunedCert G oup)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle to the trust policy module to perform this operation.
CLHand! e (input/optional)

The handle to the certificate library module that can be used to manipulate and parse the
certgroup certificates and the certificates in the specified data stores. If no certificate library
module is specified, the TP module uses an assumed CL module.

DBLi st (i nput)

A list of handle pairs specifying a data storage library module and a data store, identifying
certificate databases containing certificates (and possibly other security objects) that are
managed by that module. The data stores are searched for anchor certificates restricted to
have local scope. These certificates are candidates for removal from the subject certificate
group.

QO deredCert G oup (i nput)

The initial complete set of semantically-related certificates - for example, the result of a
CSSM TP_Cer t G oupConst ruct () (CSSM API), or TP_Cert G oupConstruct () (TP SPI),
call - from which certificates will be selectively removed.

PrunedCer t G oup (out put)

428

A pointer to a certificate group containing those certificates which are verifiable credentials
outside of the local system. The CSSM_CERTGROUP and its substructure is allocated by
the service provider and must be deallocated by the application.

DESCRIPTION

This function removes any locally issued anchor certificates from a constructed certificate group. The prune
operation can remove those certificates that have been signed by any local certificate authority, as it is
possible that these certificates will not be meaningful on other systems.

This operation can also remove additional certificates that can be added to the certificate group again using
the CSSM TP_Cert G oupConstruct () (CSSM API), or TP_Cert G oupConst ruct () (TP SPI), operation. The
pruned certificate group should be suitable for export to external hosts/entities, which can in turn reconstruct
and verify the certificate group.

The DBLi st parameter specifies a set of data stores containing certificates that should be pruned from the
group.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_CL_HANDLE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE

CSSMERR TP_I NVALI D DB_LI ST PO NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_I NVALI D_CERTGROUP_PO NTER
CSSMERR_TP_I NVALI D_CERTGROUP

CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMERR_TP_CERTGROUP_| NCOVPLETE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_CertGroupConstruct, CSSM_TP_CertGroupVerify
Functions for the TP SPI:

TP_CertGroupConstruct, TP_CertGroupVerify

429

TP_CertGroupToTupleGroup

NAME

TP_CertGroupToTupleGroup: CSSM_TP_CertGroupToTupleGroup — Create a set of authorization
tuples (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Cert G oupToTupl eGr oup
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM CERTGROUP *Cert G oup,
CSSM_TUPLEGROUP_PTR * Tupl eG oup)

SPI :

CSSM _RETURN CSSMIPI TP_Cert GroupToTupl eG oup
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM CERTGROUP *Cert G oup,
CSSM_TUPLEGROUP_PTR * Tupl eG oup)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the trust policy service module used to perform this function.
CLHand! e (input/optional)

The handle that describes the certificate library module that can be used to scan the
certificate fields for values. If no certificate library module is specified, the TP module uses
an assumed CL module.

Cert G oup (i nput)

A group of certificates in the native certificate format supported by the Trust Policy module.
The certificates carry authorizations for one or more certificate subjects.

Tupl eGr oup (out put)

A pointer to a structure containing references to one or more tuples resulting from the
translation process. Storage for structure and the tuples is allocated by the service provider
and must be deallocated by the application.

DESCRIPTION

This function creates a set of authorization tuples based on a set of input certificates. The certificates must be
of the type managed by the Trust Policy module. The trust policy module may require that the input
certificates be successfully verified before being translated to tuples. It is assumed that the certificates carry
authorizations. The trust policy service provider interprets the certificate authorization fields and generates
one or more tuples corresponding to those authorizations. The certificates of the type managed by the Trust

430

Policy module. The resulting tuples can be input to an authorization evaluation function, such as
CSSM AC_Aut hComput e() (CSSM API), or AC_Aut hConput e() (AC SPI), which determines whether a
particular action is authorized under a basic set of authorization assumptions.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE
CSSMERR_TP_I NVALI D_CERTGROUP_PO NTER
CSSMERR_TP_I NVALI D_CERTGROUP

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_TupleGroupToCertGroup, CSSM_AC_AuthCompute
Functions for the TP SPI:

TP_TupleGroupToCertGroup, AC_AuthCompute

431

TP_CertGroupVerify

NAME
TP_CertGroupVerify: CSSM_TP_CertGroupVerify — Determine if a certificate is trusted (CDSA)

SYNOPSIS

incl ude <cssm h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Cert GroupVerify
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM CERTGROUP *Cert GroupToBeVerifi ed,

const CSSM TP_VERI FY_CONTEXT *Veri fyCont ext,

CSSM TP_VERI FY_CONTEXT_RESULT_PTR Veri f yCont ext Resul t)
SPI :

CSSM_RETURN CSSMTIPI TP_Cert GroupVeri fy
(CSSM_TP_HANDLE TPHandl e,

CSSM _CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM CERTGROUP *Cert GroupToBeVerifi ed,

const CSSM TP_VERI FY_CONTEXT *Veri fyCont ext,

CSSM TP_VERI FY_CONTEXT_RESULT_PTR Veri f yCont ext Resul t)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module that can be used to
manipulate the subject certificate and anchor certificates. If no certificate library module is
specified, the TP module uses an assumed CL module, if required.

CSPHandl e (input/optional)

The handle that describes the add-in Cryptographic Service Provider module that can be
used to perform the cryptographic operations required to carry out the verification. If no
CSP handle is specified, the TP module allocates a suitable CSP.

Cert G oupToBeVerified (i nput)

A group of one or more certificates to be verified. The first certificate in the group is the
primary target certificate for verification. Use of the subsequent certificates during the
verification process is specific to the trust domain.

Veri fyCont ext (input/optional)

432

A structure containing credentials, policy information, and contextual information to be
used in the verification process. All of the input values in the context are optional except
Acti on. The service provider can define default values or can attempt to operate without
input for all the other fields of this input structure. The operation can fail if a necessary
input value is omitted and the service module can not define an appropriate default value.

Veri f yCont ext Resul t (output/optional)

A pointer to a structure containing information generated during the verification process.
The information can include:

Evi dence (output/optional)

Nunmber Of Evi dences (output/optional)

DESCRIPTION

This function determines whether the certificate is trusted. The actions performed by this function differ
based on the trust policy domain. The factors include practices, procedures and policies defined by the
certificate issuer.

Typically certificate verification involves the verification of multiple certificates. The first certificate in the
group is the target of the verification process. The other certificates in the group are used in the verification
process to connect the target certificate with one or more anchors of trust. The supporting certificates can be
contained in the provided certificate group or can be stored in the data stores specified in the Ver i f yCont ext
DBList. This allows the trust policy module to construct a certificate group and perform verification in one
operation. The data stores specified by DBL st can also contain certificate revocation lists used in the
verification process. It is also possible to provide a data store of anchor certificates. Typically the points of
Trust are few in number and are embedded in the caller or in the TPM during software manufacturing or at
runtime

The caller can select to be notified incrementally as each certificate is verified. The
Cal | backWt hVerifi edCert parameter (in the Veri f yCont ext) can specify a caller function to be invoked at
the end of each certificate verification, returning the verified certificate for use by the caller.

Anchor certificates are a list of implicitly trusted certificates. These include root certificates, cross certified
certificates, and locally defined sources of trust. These certificates form the basis to determine trust in the
subject certificate.

A policy identifier can specify an additional set of conditions that must be satisfied by the subject certificate
in order to meet the trust criteria. The name space for policy identifiers is defined by the application domains
to which the policy applies. This is outside of CSSM. A list of policy identifiers can be specified and the
stopping condition for evaluating that set of conditions.

The evaluation and verification process can produce a list of evidence. The evidence can be selected values
from the certificates examined in the verification process, entire certificates from the process or other
pertinent information that forms an audit trail of the verification process. This evidence is returned to the
caller after all steps in the verification process have been completed.

If verification succeeds, the trust policy module may carry out the action on the specified data or may return
approval for the action requiring the caller to perform the action. The caller must consult TP module
documentation outside of this specification to determine all module-specific side effects of this operation.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

433

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_CL_HANDLE
CSSMERR _TP_I NVALI D_CSP_HANDLE
CSSMERR_TP_I NVALI D_CERTGROUP_PO NTER
CSSMERR_TP_I NVALI D_CERTGROUP
CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMERR_TP_I NVALI D_ACTI ON
CSSMERR_TP_I NVALI D_ACTI ON_DATA
CSSMERR _TP_VERI FY_ACTI ON_FAI LED
CSSMERR_TP_I NVALI D_CRLGROUP_POI NTER
CSSMERR_TP_| NVALI D_CRLGROUP
CSSMERR_TP_I NVALI D_CRL_AUTHORI TY
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_| NVALI D_DL_HANDLE
CSSMERR _TP_| NVALI D_DB_HANDLE
CSSMERR _TP_I NVALI D DB_LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALI D_YET
CSSMERR_TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR_TP_| NVALI D_NANE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

434

TP_CertReclaimAbort
NAME

TP_CertReclaimAbort: CSSM_TP_CertReclaimAbort — Terminate the process of reclaiming
certificates (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Cert Recl ai mAbor t
(CSSM TP_HANDLE TPHandl e,

CSSM_LONG_HANDLE KeyCacheHandl e)

SPI :

CSSM_RETURN CSSMIPI TP_Cert Recl ai mAbort
(CSSM TP_HANDLE TPHandl e,

CSSM_LONG_HANDLE KeyCacheHandl e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the service provider module used to perform this function.
KeyCacheHandl e (i nput)

An opaque handle that identifies the cache of protected private keys reclaimed from a
certificate authority for potentially recovery on the local system.

DESCRIPTION

This function terminates the iterative process of reclaiming certificates and recovering their associated
private keys from a protected key cache. This function must be called even if all private keys are recovered
from the cache. This function destroys all intermediate state and secret information used during the
reclamation process. At completion of this function, the cache handle is invalid.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _TP_| NVALI D_KEYCACHE_HANDLE

435

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_CertReclaimKey
Functions for the TP SPI:
TP_CertReclaimKey

436

TP_CertReclaimKey

NAME

TP_CertReclaimKey: CSSM_TP_CertReclaimKey — Get private key associated with a certificate
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM TP_Cert Recl ai nKey
(CSSM_TP_HANDLE TPHandl e,

const CSSM CERTGROUP *Cert G oup,

ui nt 32 Cert | ndex,

CSSM_LONG_HANDLE KeyCacheHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry)
SPI :

CSSM_RETURN CSSMTIPI TP_Cert Recl ai nKey
(CSSM_TP_HANDLE TPHandl e,

const CSSM CERTGROUP *Cert G oup,

ui nt 32 Cert | ndex,

CSSM_LONG_HANDLE KeyCacheHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the service provider module used to perform this operation.
Cert G oup (i nput)

A pointer to a structure containing a reference to a group of certificates and the number of
certificates contained in that group. The certificate group contains all certificates that are
candidates for reclamation.

Cert | ndex (i nput)

An index value that identifies the certificate whose associated private key is to be recovered
and stored in the local CSP. This index value I references the I-th certificate in Cert G oup.

KeyCacheHandl e (i nput)

A reference handle that uniquely identifies the cache of protected private keys associated
with the reclaimed certificates contained in Cer t G oup. The structure of the cache is opague
to the caller.

CSPHandl e (i nput)

437

The handle that describes the CSP module where the private key is to be stored. Optionally,
the CA service provider can use this CSP to perform additional cryptographic operations or
may use another default CSP for that purpose.

O edAndAcl Ent ry (input/optional)

A structure containing one or more credentials authorized for creating a key and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the CSP to acquire the credentials and/or the ACL entry interactively. If
the CSP provides public access for creating a key, then the credentials can be NULL. If the
CSP defines a default initial ACL entry for the new key, then the ACL entry prototype can
be an empty list.

DESCRIPTION

This function recovers the private key associated with a certificate and securely stores that key in the
specified Cryptographic Service Provider. The key and its associated certificate are among a set of certificates
and private keys reclaimed from a certificate authority.

The particular private key to be recovered to the local system is identified by its associated certificate. The
certificate is identified by its Cert | ndex position within the Cert G oup.

The reclamation process associates the private key with the public key contained in the certificate, and
securely stores the private key in the specified Cryptographic Service Provider. The CSP can require that the
caller provide access credentials authorizing inserting a new key into the CSP through an Unw apKey
operation. The caller should also provide an initial Access Control List (ACL) entry for the newly inserted key.
The ACL entry is used to control future use of the recovered private key. These inputs are provided in

O edAndAcl Entry.

When all required private keys have been reclaimed, the key cache can be discarded using the function
CSSM TP_Cert Recl ai mAbort () (CSSM API), or TP_Cert Recl ai mAbort () (TP SPI). The caller must free the
Cer t G oup when it is no longer needed.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_CERTGROUP_PO NTER
CSSMERR_TP_I NVALI D_CERTGROUP

CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMERR_TP_I NVALI D_| NDEX

CSSMERR _TP_I NVALI D_KEYCACHE_HANDLE
CSSMERR _TP_I NVALI D_CSP_HANDLE
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS

438

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_TP_RetrieveCredResult, CSSM_TP_Cert_ReclaimAbort
Functions for the TP SPI:

TP_RetrieveCredResult, TP_Cert_ReclaimAbort

439

TP_CertRemoveFromCrilTemplate
NAME

TP_CertRemoveFromCriTemplate: CSSM_TP_CertRemoveFromCrlTemplate — Determine if the
revoking certificate group can remove the subject certificate group from the CRL template (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Cert RermoveFr onCrl| Tenpl at e
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM DATA *d dCrl Tenpl at e,

const CSSM CERTGROUP *Cert Gr oupToBeRenoved,

const CSSM CERTGROUP *Revoker Cert Group,

const CSSM TP_VERI FY_CONTEXT *Revoker Veri fyCont ext,
CSSM _TP_VERI FY_CONTEXT_RESULT_PTR Revoker Veri fyResul t,
CSSM _DATA_PTR NewCr | Tenpl at €)

SPI :

CSSM_RETURN CSSMIPI TP_Cert RenoveFronCr| Tenpl at e
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM _CSP_HANDLE CSPHandl e,

const CSSM DATA *d dCrl Tenpl at e,

const CSSM CERTGROUP *Cert Gr oupToBeRenpved,

const CSSM CERTGROUP *Revoker Cert Group,

const CSSM TP_VERI FY_CONTEXT * Revoker Veri fyCont ext,
CSSM TP_VERI FY_CONTEXT_RESULT_PTR Revoker Veri fyResul t,
CSSM _DATA_PTR NewCr | Tenpl at e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module used to perform this
function.

CSPHandl e (input/optional)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function.

A dO | Tenpl at e (input/optional)

A pointer to the CSSM_DATA structure containing an existing certificate revocation list. If
this input is NULL, a new list is created or the operation fails.

440

Cert @ oupToBeRenoved (i nput)
A group of one or more certificates to be removed from the the CRL template.
Revoker Cert Group (i nput)

A group of one or more certificates that partially or fully represent the revoking entity for
this operation. The first certificate in the group is the target certificate representing the
revoker. The use of subsequent certificates is specific to the trust domain.

Revoker Veri f yCont ext (i nput)

A structure containing policy elements useful in verifying certificates and their use with
respect to a security policy. Optional elements in the verify context left unspecified will
cause the internal default values to be used. Default values are specified in the TP module
vendor release documents. This context is used to verify the revoker certificate group.

Revoker Veri f yResul t (output/optional)

A pointer to a structure containing information generated during the verification process.
The information can include:

Evi dence (output/optional)

Nurber O Evi dences (output/optional)

NewCr | Tenpl at e (out put)

A pointer to the CSSM_DATA structure containing the updated certificate revocation list. If
the pointer is NULL, an error has occurred.

DESCRIPTION

The TP module determines whether the revoking certificate group can remove the subject certificate group
from the CRL template. The revoker certificate group is first authenticated and its applicability to perform
this operation is determined. Once the trust is established, the TP removes the certificates from the CRL
template.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE
CSSMERR _TP_I NVALI D_CSP_HANDLE
CSSMERR _TP_I NVALI D_CRL_PO NTER
CSSMERR _TP_I NVALI D_CRL
CSSMVERR_TP_UNKNOAN_FORVAT
CSSMERR_TP_CRL_ALREADY_SI GNED
CSSMERR_TP_I NVALI D_CERTGROUP_PQO NTER
CSSMERR_TP_I NVALI D_CERTGROUP
CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMERR _TP_I NVALI D_ACTI ON
CSSMERR_TP_I NVALI D_ACTI ON_DATA

441

CSSMERR _TP_VERI FY_ACTI ON_FAI LED
CSSMERR_TP_I NVALI D_CRLGROUP_POI NTER
CSSMERR_TP_| NVALI D_CRLGROUP
CSSMERR_TP_I NVALI D_CRL_AUTHORI TY
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMVERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR _TP_I NVALI D DB_LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT_VALI D_YET
CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR _TP_| NVALI D_NANE
CSSMERR_TP_CERTI FI CATE_CANT_OPERATE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlAddCert
Functions for the TP SPI:
CL_CrlAddcCert

442

TP_CertRevoke
NAME

TP_CertRevoke: CSSM_TP_CertRevoke — Determine if the revoking certificate group can revoke the
subject certificate group (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM RETURN CSSMAPI CSSM TP_Cert Revoke
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM DATA *d dCrl Tenpl at e,

const CSSM CERTGROUP *Cert Gr oupToBeRevoked,

const CSSM CERTGROUP *Revoker Cert Group,

const CSSM TP_VERI FY_CONTEXT *Revoker Veri fyCont ext,
CSSM _TP_VERI FY_CONTEXT_RESULT_PTR Revoker Veri fyResul t,
CSSM_TP_CERTCHANGE_REASON Reason,

CSSM _DATA_PTR NewCr | Tenpl at e)

SPI :

CSSM _RETURN CSSMTPI TP_Cert Revoke

(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM DATA *d dCrl Tenpl at e,

const CSSM CERTGROUP *Cert Gr oupToBeRevoked,

const CSSM CERTGROUP *Revoker Cert Group,

const CSSM TP_VERI FY_CONTEXT *Revoker Veri fyCont ext,
CSSM TP_VERI FY_CONTEXT_RESULT_PTR Revoker Veri fyResul t,
CSSM_TP_CERTCHANGE_REASON Reason,

CSSM _DATA_PTR NewCr | Tenpl at e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module used to perform this
function.

CSPHandl e (input/optional)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function.

A dO | Tenpl at e (input/optional)

443

A pointer to the CSSM_DATA structure containing an existing certificate revocation list. If
this input is NULL, a new list is created or the operation fails.

Cert G oupToBeRevoked (i nput)

A group of one or more certificates that partially or fully represent the certificate to be
revoked by this operation. The first certificate in the group is the target certificate. The use
of subsequent certificates is specific to the trust domain. For example, in a hierarchical trust
model subsequent members are intermediate certificates of a certificate chain.

Revoker Cert Group (i nput)

A group of one or more certificates that partially or fully represent the revoking entity for
this operation. The first certificate in the group is the target certificate representing the
revoker. The use of subsequent certificates is specific to the trust domain.

Revoker Veri f yCont ext (i nput)

A structure containing policy elements useful in verifying certificates and their use with
respect to a security policy. Optional elements in the verify context left unspecified will
cause the internal default values to be used. Default values are specified in the TP module
vendor release documents. This context is used to verify the revoker certificate group.

Revoker Veri f yResul t (output/optional)

A pointer to a structure containing information generated during the verification process.
The information can include:

Evi dence (output/optional)

Nunber O Evi dences (output/optional)

Reason (input/optional)
The reason for revoking the subject certificate.
NewCr | Tenpl at e (output/optional)

A pointer to the CSSM_DATA structure containing the updated certificate revocation list. If
the pointer is NULL, an error has occurred.

DESCRIPTION

The TP module determines whether the revoking certificate group can revoke the subject certificate group.
The revoker certificate group is first authenticated and its applicability to perform this operation is
determined. Once the trust is established, the TP revokes the subject certificate by adding it to the certificate
revocation list.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

444

CSSMERR_TP_I NVALI D_CL_HANDLE
CSSMERR _TP_I NVALI D_CSP_HANDLE
CSSMERR _TP_I NVALI D_CRL_PO NTER
CSSMERR _TP_I NVALI D_CRL
CSSMERR_TP_UNKNOAN_FORVAT
CSSMERR_TP_CRL_ALREADY_SI GNED
CSSMERR_TP_I NVALI D_CERTGROUP_PQO NTER
CSSMERR_TP_I NVALI D_CERTGROUP
CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMERR _TP_I NVALI D_ACTI ON

CSSMERR _TP_I NVALI D_ACTI ON_DATA
CSSMERR_TP_VERI FY_ACTI ON_FAI LED
CSSMERR_TP_I NVALI D_CRLGROUP_POI NTER
CSSMERR_TP_| NVALI D_CRLGROUP
CSSMERR_TP_I NVALI D_CRL_AUTHORI TY
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_| NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALID_YET
CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR_TP_| NVALI D_NANME
CSSMERR_TP_CERTI FI CATE_CANT_OPERATE
CSSMERR_TP_I NVALI D_REASON

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlAddcCert
Functions for the TP SPI:
CL_CrlAddCert

445

TP_CertSign

NAME
TP_CertSign: CSSM_TP_CertSign — Determine if signer certificate is trusted (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM TP_Cert Si gn

(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cert Tenpl at eToBeSi gned,

const CSSM CERTGROUP *Si gner Cert Gr oup,

const CSSM TP_VERI FY_CONTEXT *Si gner Veri f yCont ext,
CSSM TP_VERI FY_CONTEXT_RESULT_PTR Si gner Veri f yResul t,
CSSM _DATA_PTR Si gnedCert)

SPI :

CSSM _RETURN CSSMTPI TP_Cert Sign

(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Cert Tenpl at eToBeSi gned,

const CSSM CERTGROUP *Si gner Cert Gr oup,

const CSSM TP_VERI FY_CONTEXT *Si gner Veri f yCont ext,
CSSM _TP_VERI FY_CONTEXT_RESULT_PTR Si gner Veri f yResul t,
CSSM _DATA_PTR Si gnedCert)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module used to perform this
function.

CCHandl e (input/optional)

The handle that describes the cryptographic context for signing the certificate. This context
also identifies the Cryptographic Service Provider to be used to perform the signing
operation. If this handle is not provided by the caller, the trust policy module can assume a
default signing algorithm and a default CSP. If the trust policy module does not assume
defaults or the default CSP is not available on the local system, an error occurs.

Cer t Tenpl at eToBeSi gned (i nput)

A pointer to a structure containing a certificte template to be signed. The CRL type and
encoded are included in this structure.

446

Si gner Cert G oup (i nput)

A group of one or more certificates that partially or fully represent the signer for this
operation. The first certificate in the group is the target certificate representing the signer.
Use of subsequent certificates is specific to the trust domain. For example, in a hierarchical
trust model subsequent members are intermediate certificates of a certificate chain.

Si gner Veri f yCont ext (input/optional)

A structure containing credentials, policy information, and contextual information to be
used in the verification process. All of the input values in the context are optional. The
service provider can define default values or can attempt to operate without input for all the
other fields of this input structure. The operation can fail if a necessary input value is
omitted and the service module can not define an appropriate default value.

Si gner Veri f yResul t (output/optional)

A pointer to a structure containing information generated during the verification process.
The information can include:

Evi dence (output/optional)

Nunber O Evi dences (output/optional)

Si gnedCert (out put)

A pointer to the CSSM_DATA structure containing the signed certificate. The
Si gnedCert - >Dat a is allocated by the service provider and must be deallocated by the
application.

DESCRIPTION

The TP module decides whether the signer certificate is trusted to sign the Cert Tenpl at eToBeSi gned. The
signer certificate group is first authenticated and its applicability to perform this operation is determined.
Once the trust is established, this operation signs the entire certificate. The caller must provide a credential
that permits the caller to use the private key for this signing operation. The credential can be provided in the
cryptographic context CCHandl e. If CCHandl e is NULL, the credentials in the Si gner Veri f yCont ext specify
the credential value.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE

CSSMERR _TP_| NVALI D_CONTEXT_HANDLE
CSSMERR_TP_I NVALI D_CERTGROUP_PO NTER
CSSMERR_TP_I NVALI D_CERTGROUP

CSSMERR _TP_I NVALI D_CERTI FI CATE
CSSMVERR_TP_UNKNOAN_FORVAT

CSSMERR _TP_I NVALI D_ACTI ON

CSSMERR _TP_I NVALI D_ACTI ON_DATA
CSSMERR _TP_VERI FY_ACTI ON_FAI LED

447

CSSMERR_TP_I NVALI D_CRLGROUP_POI NTER
CSSMERR_TP_| NVALI D_CRLGROUP
CSSMERR_TP_I NVALI D_CRL_AUTHORI TY
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMERR_TP_| NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALI D_YET
CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR_TP_| NVALI D_NANE
CSSMERR_TP_CERTI FI CATE_CANT_OPERATE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_CertCreateTemplate, CSSM_TP_CrlISign
Functions for the TP SPI:

TP_CertCreateTemplate, TP_CrlSign

448

TP_ConfirmCredResult

NAME
TP_ConfirmCredResult: CSSM_TP_ConfirmCredResult — Confirm credentials (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Conf i r mCredResul t
(CSSM_TP_HANDLE TPHandl e,

const CSSM DATA *Referenceldentifier,

const CSSM TP_CALLERAUTH_CONTEXT *Cal | er Aut hCredenti al s,
const CSSM TP_CONFI RM_RESPONSE * Responses,

const CSSM TP_AUTHORI TY_I D *Pref erredAut hority)

SPI :

CSSM_RETURN CSSMTPI TP_Confi rnCr edResul t

(CSSM_TP_HANDLE TPHandl e,

const CSSM DATA *Referenceldentifier,

const CSSM TP_CALLERAUTH_CONTEXT *Cal | er Aut hCredenti al s,
const CSSM _TP_CONFI RM_RESPONSE * Responses,

const CSSM TP_AUTHORI TY_I D *Pref erredAut hority)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the certification authority module used to perform this function.
Ref erencel denti fier (i nput)

A reference identifier that uniquely identifies execution of the call sequence
CSSM TP_Subni t O edRequest () and CSSM TP_Retri eveQr edResul t () (or the equivalent
TP SPI call pair) to submit a set of requests and to retrieve the results of those requests.

Cal | er Aut hCredenti al s (input/optional)

This structure contains a set of caller authentication credentials. The authentication
information can be a passphrase, a PIN, a completed registration form, a certificate, or a
template of user-specific data. The required set of credentials is defined by the service
provider module and recorded in a record in the MDS Primary relation. Multiple credentials
can be required. If the local service provider module does not require credentials from a
caller, then the Or edent i al s field of this verification context structure can be NULL. The
structure optionally contains additional credentials that can be used to support the
authentication process. Authentication credentials required by the authority should be
included in the Request | nput . The local TP module can forward information from the

Cal | er Aut hCredent i al s to the authority, as appropriate, but is not required to do so.

Responses (i nput)

449

An ordered vector of acknowledges indicating the caller's acceptance or rejection of results.
The vector contains one acknowledgement per result returned by
CSSM TP_Ret ri eveCredResul t () (CSSM API), or TP_Retri eveCredResul t () (TP SPI).

Pr ef erredAut hori ty (input/optional)

The identifier which uniquely describes the Authority to receive the acknowledgements.
The structure can include:

= An identity certificate for the authority

= The location of the authority

DESCRIPTION

This function submits a vector of acknowledgements to a Certificate Authority for a set of requests and
corresponding results identified by Ref er encel denti fi er. The caller must execute the call sequence
CSSM TP_Submi t Cr edRequest () and CSSM TP_Ret ri eveCr edResul t () (or the equivalent TP SPI calls) to
submit a set of requests and to retrieve the results of those requests. Some Certificate Authority services
accessed through the request and retrieve functions require confirmation. The function

CSSM TP_Retri eveCr edResul t () (CSSM API), or TP_Retri eveQ edResul t () (TP SPI), returns a value
indicating whether the caller must invoke CSSM TP_Confi r nr edResul t (), (CSSM API), or
TP_ConfirnmdredResul t () (TP SPI), to successfully complete the service.

The Responses vector accepts or rejects each result independently. If the caller rejects a returned result, the
action taken by the authority depends on the requested type of service.

The Ref erencel denti fi er also identifies the authority process state associated with the function pair
CSSM TP_Submi t Cr edRequest () and CSSM TP_Retri eveQr edResul t () (or the equivalent TP SPI calls). The
Pref erredAut hori ty information can be used to further identify the authority to receive the
acknowledgement. After successful execution of this function, the value of the Ref er encel denti fi er is
undefined and should not be used in subsequent operations in the current module attach session.

This function fails if Ref er encel dent i fi er is invalid or the Authority process can not be located.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_| DENTI FI ER_POI NTER
CSSMERR _TP_I NVALI D_| DENTI FI ER

CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMVERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_| NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE

CSSMERR _TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED

450

CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALI D_YET
CSSMERR_TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR _TP_I NVALI D_NANE
CSSMERR_TP_I NVALI D_RESPONSE_VECTOR
CSSMERR_TP_I NVALI D_AUTHORI TY
CSSMERR_TP_NO_DEFAULT_AUTHORI TY
CSSMERR_TP_UNSUPPORTED_ADDR_TYPE
CSSMERR_TP_I NVALI D_NETWORK_ADDR

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

CSSM_TP_SubmitCredRequest, CSSM_TP_RetrieveCredResult, CSSM_TP_ReceiveConfirmation

Functions for the TP SPI:

TP_SubmitCredRequest, TP_RetrieveCredResult, TP_ReceiveConfirmation

451

TP_CriICreateTemplate
NAME

TP_CrlCreateTemplate: CSSM_TP_CrlCreateTemplate — Create an unsigned memory-resident CRL
template (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM TP_Cr | Creat eTenpl ate
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *Crl Fi el ds,

CSSM _DATA_PTR NewCr | Tenpl at e)

SPI :

CSSM RETURN CSSMTPI TP_Crl Creat eTenpl ate
(CSSM_TP_HANDLE TPHandl e,

CSSM _CL_HANDLE CLHandl e,

ui nt 32 Nunber O Fi el ds,

const CSSM FI ELD *Crl Fi el ds,

CSSM _DATA_PTR NewCr | Tenpl at e)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module used to perform this
function.

Nunber O Fi el ds (i nput)
The number of OID/value pairs specified in the O | Fi el ds input parameter.
Ol Fields (i nput)

Any array of field OID/value pairs containing the values to initialize the CRL attribute
fields

NewCr | Tenpl at e (out put)

A pointer to the CSSM_DATA structure containing the new CRL. The NewCr | - >Dat a is
allocated by the service provider and must be deallocated by the application.

452

DESCRIPTION

This function creates an unsigned, memory-resident CRL template. Fields in the CRL are initialized based on
the descriptive data specified by the OID/value input pairs in O | Fi el ds and the local domain policy of the
TP. The specified OlD/value pairs can initialize all or a subset of the general attribute fields in the new CRL,
though the module developer may specify a set of fields that must be or cannot be set using this operation.

The NewCr | Tenpl at e output is an unsigned CRL template in the format supported by the TP.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_CL_HANDLE
CSSMERR_TP_I NVALI D_FI ELD_POl NTER
CSSMERR_TP_UNKNOAN_TAG

CSSMERR _TP_I NVALI D NUMBER OF FI ELDS

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_CrlSignWithKey, CSSM_TP_CrlISignWithCert
Functions for the TP SPI:

TP_CrlISignWithKey, TP_CrlISignWithCert

453

TP_CrlVerity

NAME
TP_CrlVerify: CSSM_TP_CrlVerify — Verify integrity of the certificate revocation list (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM TP_Crl Verify

(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM ENCODED _CRL *Crl ToBeVerifi ed,

const CSSM CERTGROUP *Si gner Cert Gr oup,

const CSSM TP_VERI FY_CONTEXT *Veri fyCont ext,

CSSM TP_VERI FY_CONTEXT_RESULT_PTR Revoker Veri fyResul t)
SPI :

CSSM _RETURN CSSMTPI TP_Crl Veri fy

(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM_CSP_HANDLE CSPHandl e,

const CSSM ENCODED _CRL *Crl ToBeVerifi ed,

const CSSM CERTGROUP *Si gner Cert Gr oup,

const CSSM TP_VERI FY_CONTEXT *Veri fyCont ext,

CSSM TP_VERI FY_CONTEXT_RESULT_PTR Revoker Veri fyResul t)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module that can be used to
manipulate the certificates to be verified. If no certificate library module is specified, the TP
module uses an assumed CL module, if required.

CSPHandl e (input/optional)

The handle referencing a Cryptographic Service Provider to be used to verify signatures on
the signer's certificate and on the CRL. The TP module is responsible for creating the
cryptographic context structure required to perform the verification operation. If no CSP is
specified, the TP module uses an assumed CSP to perform the operations.

O | ToBeVeri fied (i nput)

A pointer to the CSSM_DATA structure containing a signed certificate revocation list to be
verified. The CRL type and encoding are included in this structure.

Si gner Cert G oup (i nput)

454

A pointer to the CSSM_CERTGROUP structure containing one or more related certificates
that paretially or fully represent the signer of the certificate revocation list. The first
certificate in the group is the target certificate representing the CRL signer. Use of
subsequent certificates is specific to the trust domain. For example, in a hierarchical trust
model subsequent members are intermediate certificates of a certificate chain - the caller
can specify additional points of trust represented by anchor certificates in the

Veri fyCont ext . The trust policy module can use these additional points of trust in the
verification process.

Veri fyCont ext (input/optional)

A structure containing credentials, policy information, and contextual information to be
used in the verification process. All of the input values in the context are optional. The
service provider can define default values or can attempt to operate without input for all the
other fields of this input structure. The operation can fail if a necessary input value is
omitted and the service module can not define an appropriate default value.

Revoker Veri f yResul t (output/optional)

A pointer to a structure containing information generation during the verification process.
The information can include:

Evi dence (output/optional)

Nunber O Evi dences (output/optional)

DESCRIPTION

This function verifies the integrity of the certificate revocation list and determines whether it is trusted. The
conditions for trust are part of the trust policy module. It can include conditions such as validity of the
signer's certificate, verification of the signature on the CRL, the identity of the signer, the identity of the
sender of the CRL, date the CRL was issued, the effective dates on the CRL, and so on.

The caller can specify additional points of trust represented by anchor certificates in the Veri f yCont ext . The
trust policy module can use these additional points of trust in the verification process.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR _TP_| NVALI
CSSMERR_TP_I NVALI
CSSMERR _TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR _TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_I NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI
CSSMERR_TP_| NVALI

D_CL_HANDLE
D_CSP_HANDLE
D_CRL_TYPE
D_CRL_ENCODI NG
D_CRL_PO NTER
D_CRL
D_CERTGROUP_POI NTER
D_CERTGROUP
D_CERTI FI CATE
D_ACTI ON

D_ACTI ON_DATA

CSSMERR _TP_VERI FY_ACTI ON_FAI LED

455

CSSMERR_TP_I NVALI D_CRLGROUP_POI NTER
CSSMERR_TP_| NVALI D_CRLGROUP
CSSMERR_TP_I NVALI D_CRL_AUTHORI TY
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR _TP_I NVALI D_CALLBACK
CSSMERR_TP_| NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALI D_YET
CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR_TP_| NVALI D_NANE
CSSMERR_TP_CERTI FI CATE_CANT_OPERATE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_CL_CrlVerify
Functions for the TP SPI:
CL_CrlVerify

456

TP_FormRequest

NAME
TP_FormRequest: CSSM_TP_FormRequest — Get form from authority (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_For nRequest
(CSSM_TP_HANDLE TPHandl e,

const CSSM TP_AUTHORI TY_I D *PreferredAut hority,
CSSM_TP_FORM_TYPE For nType,

CSSM _DATA_PTR BI ankForm

SPI :

CSSM_RETURN CSSMIPI TP_For nRequest
(CSSM_TP_HANDLE TPHandl e,

const CSSM TP_AUTHORI TY_I D *PreferredAut hority,
CSSM_TP_FORM_TYPE For nType,

CSSM _DATA_PTR Bl ankForm

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the certification authority module used to perform this function.
Pr ef erredAut hori ty (input/optional)

A CSSM_TP_AUTHORITY_ID structure containing either a certificate that identifies the
Authority process, or a network address directly or indirectly identifying the location of the
authority. If the input is NULL, the module can assume a default authority location. If a
default authority can not be assumed, the request can not be initiated and the operation
fails.

For nType (i nput)
Indicates the type of form being requested.

Bl ankFor m(out put)

A CSSM_DATA structure containing the requested form. The caller must have knowledge of
the structure of the form based on For niType.

DESCRIPTION

This function returns a blank form of type For nType from an Authority. If the Pref err edAut hori ty list is
NULL, the CA module can use a default authority name and location based on For nType. The CA module
must incorporate knowledge of the interface protocol for communicating with the authority.

457

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_AUTHORI TY
CSSMERR_TP_NO_DEFAULT_AUTHORI TY
CSSMERR_TP_UNSUPPORTED_ADDR_TYPE
CSSMERR_TP_I NVALI D_NETWORK_ADDR
CSSMERR_TP_I NVALI D_FORM TYPE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_FormSubmit
Functions for the TP SPI:
TP_FormSubmit

458

TP_FormSubmit

NAME
TP_FormSubmit: CSSM_TP_FormSubmit — Submit form to ClearanceAuthority (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_For nSubmi t
(CSSM_TP_HANDLE TPHandl e,

CSSM_TP_FORM_TYPE For nType,

const CSSM DATA *Form

const CSSM TP_AUTHORI TY_I D *d earanceAut hority,
const CSSM TP_AUTHORI TY_I D *Repr esent edAut hority,
CSSM_ACCESS_CREDENTI ALS_PTR Cr edenti al s)

SPI :

CSSM_RETURN CSSMIPI TP_For nSubni t

(CSSM_TP_HANDLE TPHandl e,

CSSM_TP_FORM_TYPE For nType,

const CSSM DATA *Form

const CSSM TP_AUTHORI TY_I D *d earanceAut hority,
const CSSM TP_AUTHORI TY_I D *Represent edAut hority,
CSSM_ACCESS_CREDENTI ALS_PTR Cr edenti al s)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)
A handle for the service provider module that will perform the operation.
For nType (i nput)
Indicates the type of form being submitted.
For m(i nput)

A pointer to the CSSM_DATA structure containing the completed form to be submitted to
the O ear anceAut hority.

d ear anceAut hori ty (input/optional)

A CSSM_TP_AUTHORITY_ID structure containing either a certificate that identifies the
clearance authority process, or a network address directly or indirectly identifying the
location of the authority. If the input is NULL, the service provider module can assume a
default authority based on the For nType and contents of For m If a default authority can not
be assumed, the request can not be initiated and the operation fails.

Repr esent edAut hori ty (input/optional)

A CSSM_TP_AUTHORITY_ID structure containing either a certificate that identifies the
authority represented by the A ear anceAut hori ty, or a network address directly or
indirectly identifying the location of the authority. If the input is NULL, the service provider

459

module can assume a default authority based on the For nType and contents of For m If a
default authority can not be assumed, the request can not be initiated and the operation
fails.

O edenti al s (output/optional)

A pointer to a structure containing one or more credentials issued in response to the
contents of the For m If the output is NULL, either no credentials were returned or an error
occurred.

DESCRIPTION

The completed Form is submitted to a A ear anceAut hori ty, who is acting on behalf of a
Repr esent edAut hori ty. Typically the submitted form is requesting an authorization credential required as
input to future service requests to the Repr esent edAut hority.

If the form is honored by the O ear anceAut hori ty, then a set of one or more Cr edent i al s is returned to the
requester. These credential can be used as the input credential in future service requests submitted to the
Repr esent edAut hori ty.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_FORM TYPE
CSSMERR_TP_| NVALI D_AUTHORI TY
CSSMERR_TP_NO_DEFAULT_AUTHORI TY
CSSMERR_TP_UNSUPPORTED_ADDR_TYPE
CSSMERR_TP_I NVALI D_NETWORK_ADDR
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_REJECTED_FORM

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_FormRequest
Functions for the TP SPI:
TP_FormRequest

460

TP_PassThrough

NAME
TP_PassThrough: CSSM_TP_PassThrough — Extend trust policy functionality

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_PassThr ough
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DL_DB LI ST *DBLi st,

ui nt 32 PassThroughl d,

const void *I| nput Parans,

voi d **Qut put Par ans)

SPI :

CSSM_RETURN CSSMIPI TP_PassThr ough
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DL_DB LI ST *DBLi st,

ui nt 32 PassThroughl d,

const void *I| nput Parans,

voi d **Qut put Par ans)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the add-in trust policy module used to perform this function.
CLHand! e (input/optional)

The handle that describes the add-in certificate library module that can be used to
manipulate the subject certificate and anchor certificates. If no certificate library module is
specified, the TP module uses an assumed CL module, if required.

CCHandl e (input/optional)

The handle that describes the context of the cryptographic operation. If the module-specific
operation does not perform any cryptographic operations, a cryptographic context is not
required

DBLi st (input/optional)

A list of handle pairs specifying a data storage library module and a data store, identifying
certificate databases containing certificates (and possibly other security objects) that may
be used by the pass-through function. If no DL and DB handle pairs are specified, the TP
module can use an assumed DL module and an assumed data store for this operation.

PassThr oughl d (i nput)

461

An identifier assigned by a TP module to indicate the exported function to be performed.
| nput Par ans (input/optional)

A pointer to a module, implementation-specific structure containing parameters to be
interpreted in a function-specific manner by the requested TP module.

Qut put Par ans (output/optional)

A pointer to a module, implementation-specific structure containing the output data. The
service provider allocates the memory for substructures. The application must free the
memory for the substructures.

DESCRIPTION

This function allows applications to call trust policy module-specific operations that have been exported. Such
operations may include queries or services specific to the domain represented by the TP module.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_CL_HANDLE
CSSMERR _TP_| NVALI D_CONTEXT_HANDLE
CSSMERR_TP_| NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR _TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST

CSSMERR _TP_I NVALI D_PASSTHROUGH | D

SEE ALSO

Books

Intel CDSA Application Developer's Guide

462

TP_ReceiveConfirmation
NAME

TP_ReceiveConfirmation: CSSM_TP_ReceiveConfirmation — Poll for confirmation (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Recei veConfi rmati on
(CSSM_TP_HANDLE TPHandl e,

const CSSM DATA *Referenceldentifier,

CSSM TP_CONFI RM _RESPONSE_PTR * Responses,
sint 32 *El apsedTi ne)

SPI :

CSSM_RETURN CSSMIPI TP_Recei veConfirnation
(CSSM_TP_HANDLE TPHandl e,

const CSSM DATA *Referenceldentifier,

CSSM TP_CONFI RM RESPONSE_PTR * Responses,
sint 32 *El apsedTi ne)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the certification authority module used to perform this function.
Ref erencel denti fier (i nput)

A reference identifier that uniquely identifies a set of service requests and the results
created in response to those requests.

Responses (out put)

An ordered vector of acknowledges indicating the caller's acceptance or rejection of results.
The vector contains one acknowledgement per result created by the certificate authority.

El apsedTi e (out put)

If the confirmation has not been received, this output value is the number of seconds
elapsed since the certificate authority created the results or
CSSM_ELAPSED_TIME_UNKNOWN. If the confirmation has been received, this output
value is CSSM_ELAPSED_TIME_COMPLETE.

DESCRIPTION

A certificate authority uses this function to poll for confirmation from a requester who has been served by the
authority. A requester sends a confirmation to the authority by successfully invoking the function
CSSM TP_Conf i rmOr edResul t () (CSSM API), or TP_Confi rmCredResul t () (TP SPI).

463

The Ref erencel denti fi er uniquely identifies the service request and corresponding results for which
confirmation is expected. This reference identifier need not be identical to the reference identifier used by the
requester, but a one-to-one mapping between the two name spaces must be well-defined.

Responses is an ordered vector of acknowledgements indicating, for each returned result, whether the result
was accepted or rejected by the original requester for whom the service was performed.

If a result is rejected by the receiver, then the authority process must undo the service if a reverse operation is
possible and available.

If a fatal error occurs, this function returns an error code, indicating that the function call can never be
completed. If confirmation has not been received, the function return value is CSSM_OK and the

El apsedTi e is returned to the caller of this function. The time represents elapsed seconds since the service
results were produced by the authority process. Note that there can be a difference between the time the
authority process produces the results and the time the results are actually received by the requester.
Elapsed time is relative and should increase with consecutive calls using the same Ref erencel denti fier. If
the TP module has no knowledge of the elapsed time, the value CSSM_ELAPSED_TIME_UNKNOWN must
be returned. If the service requester has confirmed receipt of the service results, this function returns
CSSM_OK and H apsedTi ne is CSSM_ELAPSED_TIME_COMPLETE.

This function can be invoked repeatedly until the confirmation is received or until the caller decides the
acknowledgement may be lost and chooses to undo the results of the original service request.

This function fails if the Ref er encel dent i fi er is invalid or does not match any requested service for which
confirmation is expected.

RETURN VALUE

A CSSM return value combined with elapsed time to indicate one of three results:

Conpl ete Function Function Return Ret ri eveQut put Esti nmat edTi ne
Result Value
Confirmation Received CSSM_OK CSSM_ELAPSED_TIME_
COMPLETE
Confirmation not received, @ CSSM_OK CSSM_ELAPSED_TIME_
but expected in the future UNKNOWN or <elapsed
seconds>
Fatal Error, Confirmation (ICSSM_OK) NA

is not expected

For a return value of (ICSSM_OK), the return value is an error code.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_| DENTI FI ER_POI NTER
CSSMERR _TP_I NVALI D_| DENTI FI ER

464

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_TP_ConfirmCredResult
Functions for the TP SPI:
CSSM_TP_ConfirmCredResult

465

TP_SubmitCredRequest

NAME
TP_SubmitCredRequest: CSSM_TP_SubmitCredRequest — Submit credential request (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMVAPI CSSM TP_Submi t Cr edRequest
(CSSM_TP_HANDLE TPHandl e,

const CSSM TP_AUTHORI TY_I D *PreferredAut hority,
CSSM_TP_AUTHORI TY_REQUEST_TYPE Request Type,

const CSSM TP_REQUEST_SET *Request | nput,

const CSSM TP_CALLERAUTH_CONTEXT *Cal | er Aut hCont ext ,
si nt 32 *Esti mat edTi ne,

CSSM _DATA_PTR Referenceldentifier)

SPI :

CSSM_RETURN CSSMIPI TP_Subm t Cr edRequest
(CSSM_TP_HANDLE TPHandl e,

const CSSM TP_AUTHORI TY_I D *PreferredAut hority,
CSSM_TP_AUTHORI TY_REQUEST_TYPE Request Type,

const CSSM TP_REQUEST_SET *Request | nput,

const CSSM TP_CALLERAUTH_CONTEXT *Cal | er Aut hCont ext ,
si nt 32 *Esti mat edTi ne,

CSSM _DATA_PTR Referenceldentifier)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
TPHandl e (i nput)

The handle that describes the certification authority module used to perform this function.
Pref erredAut hori ty (input/optional)

The identifier which uniquely describes the Certificate Service Authority to submit the
request to.

Request Type (i nput)
The identifier of the type of request to submit.
Request | nput (i nput)

A pointer to the input parameters to be submitted to the authority who will perform the
requested service.

Cal | er Aut hCont ext (input/optional)

This structure contains a set of caller authentication credentials. The authentication
information can be a passphrase, a PIN, a completed registration form, a certificate, or a
template of user-specific data. The required set of credentials is defined by the service
provider module and recorded in the MDS Primary relation. Multiple credentials can be

466

required. If the local service provider module does not require credentials from a caller, then
the Cal | er Credenti al s field of this verification context structure can be NULL. The
structure optionally contains additional credentials that can be used to support the
authentication process. Authentication credentials required by the authority should be
included in the Request | nput . The local service provider module can forward this
credential information to the authority, as appropriate, but is not required to do so.

Est i mat edTi e (out put)

The number of estimated seconds before the service results are ready to be retrieved. A
(default) value of zero indicates that the results can be retrieved immediately via the
corresponding CSSM TP_Ret ri eveCredResul t () (CSSM API), or

TP_RetrieveOredResul t () (TP SPI), function call. When the local service provider module
or the authority cannot estimate the time required to perform the requested service, the
output value for estimated time is CSSM_ESTIMATED_TIME_UNKNOWN.

Ref erencel denti fi er (out put)

A reference identifier, which uniquely identifies this specific request. The handle persists
across application executions and becomes undefined when all local processing of the
request has completed. Local processing is completed in one of two ways:

= For certificate services that do not require explicit confirmation by the requester, the
reference identifier is invalidated when the corresponding
CSSM TP_Ret ri eveCredResul t () (CSSM API), or TP_Retri eveCredResul t () (TP
SPI), function completes (by returning valid results or by failure, which blocks returned
results)

= For certificate services that require explicit confirmation by the requester, the reference
identifier is invalidated by successfully invoking the function
CSSM TP_Confi r nr edResu() (CSSM API), or CSSM TP_Conf i rmredResul t () (TP
SPI).

DESCRIPTION

If the caller is successfully authenticated, then this function submits a request to the Authority identified by
Pref erredAut hori ty. The authority service can be local or remote. If the Authority is not specified, then the
TP module can assume a default authority based on the Request Type and the Cal | er Aut hCont ext .

Request Type indicates the type of Authority request and Request | nput specifies the input parameters
needed by the authority to perform the request.

The request is submitted to the authority only if the TP module can successfully authenticate the caller. The
Cal | er Aut hCont ext presents the caller's credentials and a list of one or more policies under which the caller
should be authenticated. Caller credentials can be presented in several forms:

< Memory-resident credential values, directly referenced by the structure
= Data bases containing credentials
= Callback functions that can be invoked to obtain credentials from an active entity

The local service provider must select and forward the credentials required by the Authority. The caller must
provide all necessary credentials through the Cal | er Aut hCont ext parameter.

If the caller can not be authenticated by the local service provider, the function fails and the request is not
submitted to the selected authority.

467

This function returns a Ref erencel denti fi er and an Est i mat edTi ne (specified in seconds).

Ref erencel denti fi er isan ID for the submitted request. Est i mat edTi ne defines the expected time to
process the request. This time may be substantial when the request requires offline authentication
procedures by the Authority process. In contrast, the estimated time can be zero, meaning the result can be
obtained immediately using CSSM TP_Ret ri eveCQr edResul t () (CSSM API), or TP_Retri eveC edResul t ()
(TP SPI). After the specified time has elapsed, the caller must use the function

CSSM TP_Retri eveCr edResul t () (CSSMAPI), or TP_Retri eveCredResul t () (TP SPI), with the reference
identifier, to obtain the result of the request.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_| NVALI D_AUTHORI TY
CSSMERR_TP_NO_DEFAULT_AUTHORI TY
CSSMERR_TP_UNSUPPORTED_ADDR_TYPE
CSSMERR_TP_I NVALI D_NETWORK_ADDR
CSSMERR_TP_UNSUPPORTED_SERVI CE
CSSMERR _TP_I NVALI D_REQUEST | NPUTS
CSSMERR _TP_I NVALI D_CALLERAUTH_CONTEXT POl NTER
CSSMERR_TP_I NVALI D_POLI CY_I DENTI FI ERS
CSSMERR_TP_I NVALI D_TI MESTRI NG
CSSMERR_TP_I NVALI D_STOP_ON_PQOLI CY
CSSMERR_TP_I NVALI D_CALLBACK
CSSMERR_TP_I NVALI D_ANCHOR CERT
CSSMERR_TP_CERTGROUP_| NCOVPLETE
CSSMERR_TP_I NVALI D_DL_HANDLE
CSSMERR_TP_| NVALI D_DB_HANDLE
CSSMERR _TP_I NVALI D DB LI ST POl NTER
CSSMERR TP_I NVALI D DB LI ST
CSSMERR_TP_AUTHENTI CATI ON_FAI LED
CSSMERR_TP_| NSUFFI CI ENT_CREDENTI ALS
CSSMERR_TP_NOT_TRUSTED
CSSMERR_TP_CERT_REVOKED
CSSMERR_TP_CERT_SUSPENDED
CSSMERR_TP_CERT_EXPI RED

CSSMERR _TP_CERT_NOT VALI D_YET
CSSMERR _TP_I NVALI D_CERT_AUTHORI TY
CSSMERR_TP_I NVALI D_SI GNATURE
CSSMERR_TP_| NVALI D_NANE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help
Functions for the CSSM API:

468

CSSM_TP_RetrieveCredResult
Functions for the TP SPI:
TP_RetrieveCredResult

469

TP_TupleGroupToCertGroup

NAME

TP_TupleGroupToCertGroup: CSSM_TP_TupleGroupToCertGroup — Create a set of certificate
templates (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM TP_Tupl eGr oupToCer t Gr oup
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM TUPLEGROUP * Tupl eG oup,
CSSM_CERTGROUP_PTR *Cer t Tenpl at es)

SPI :

CSSM_RETURN CSSMIPI TP_Tupl eG oupToCer t Gr oup
(CSSM_TP_HANDLE TPHandl e,

CSSM CL_HANDLE CLHandl e,

const CSSM TUPLEGROUP * Tupl eG oup,
CSSM_CERTGROUP_PTR *Cer t Tenpl at es)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

DESCRIPTION

This function creates a set of certificate templates based on a set of input tuples. The tuples describe a set of
authorizations for one or more subjects. The trust policy service provider maps these authorizations to
appropriate template values for one or more certificates of the type managed by the Trust Policy module. The
resulting certificate templates can be input to a certificate creation function, such as CSSM CL_Cert Si gn(),
(CSSM API),or CL_Cert Sign(), (TP SPI). The signed certificates created by these functions should carry the
authorizations described in the input tuples.

PARAMETERS
TPHandl e (i nput)

The handle that describes the trust policy service module used to perform this function.
CLHand! e (input/optional)

The handle that describes the certificate library module that can be used to assist in the
creation of field values. If no certificate library module is specified, the TP module uses an
assumed CL module, if required.

Tupl eG oup (i nput)
A pointer to a group of CSSM_TUPLE describing authorizations for one or more subjects.
Cert Tenpl at es (out put)

A pointer to a structure containing references to one or more certificate templates resulting
from the translation process. Storage for the structure and certificate templates is allocated
by the service provider and must be deallocated by the application.

470

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_TP_I NVALI D_CL_HANDLE
CSSMERR _TP_I NVALI D_TUPLEGROUP_POI NTER
CSSMERR _TP_I NVALI D_TUPLEGROUP
CSSMERR_TP_I NVALI D_TUPLE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

For the CSSM API:

CSSM_TP_CertGroupToTupleGroup, CSSM_AC_AuthCompute
For the TP SPI:

TP_CertGroupToTupleGroup, AC_AuthCompute

471

Terminate
NAME

Terminate — Clean up module-manager-specific activities (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMVAPI Ter mi nat e
(voi d)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS

None.

DESCRIPTION

This function performs any module-manager-specific cleanup activities in preparation for unloading of the
elective module manager.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR_CSSM EMM AUTHENTI CATE_FAI LED

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: Initialize

472

UnwrapKey

NAME
UnwrapKey: CSSM_UnwrapKey, CSP_UnwrapKey — Unwrap the wrapped key (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM _Unwr apKey
(CSSM_CC_HANDLE CCHandl e,

const CSSM KEY *Publ i cKey,

const CSSM WRAP_KEY *W appedKey,

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM _KEY_PTR Unwr appedKey,

CSSM _DATA_PTR Descri pti veDat a)

SPI :

CSSM_RETURN CSSMCSPI CSP_Unwr apKey
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

const CSSM KEY *Publ i cKey,

const CSSM WRAP_KEY *W appedKey,

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM_KEY_PTR Unwr appedKey,

CSSM _DATA_PTR Descri pti veDat a,
CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation.
Publ i cKey (input/optional)

The public key corresponding to the private key being unwrapped. If a symmetric key is
being unwrapped, then this parameter must be NULL.

W appedKey (i nput)

A pointer to the wrapped key. The wrapped key may be a symmetric key or the private key
of a public/private key pair. The unwrapping method is specified as meta data within the
wrapped key and is not specified outside of the wrapped key.

KeyUsage (i nput)

473

A bit mask indicating all permitted uses for the unwrapped key. If no value is specified, the
CSP defines the usage mask for the unwrapped key.

KeyAttr (i nput)

A bit mask defining other attribute values to be associated with the unwrapped key.
KeyLabel (input/optional)

Pointer to a byte string that will be used as the label for the unwrapped key.
O edAndAcl Ent ry (input/optional)

A structure containing one or more credentials authorized for creating a key and the
prototype ACL entry that will control future use of the newly created key. The credentials
and ACL entry prototype can be presented as immediate values or callback functions can be
provided for use by the CSP to acquire the credentials and/or the ACL entry interactively. If
the CSP provides public access for creating a key, then the credentials can be NULL. If the
CSP defines a default initial ACL entry for the new key, then the ACL entry prototype can
be an empty list.

Unw appedKey (out put)
A pointer to a CSSM_KEY structure that returns the unwrapped key.
Descri pti veDat a (out put)

A pointer to a CSSM_DATA structure that returns any additional descriptive data that was
associated with the key during the wrapping operation. It is assumed that the caller
incorporated knowledge of the structure of this data. If no additional data is associated with
the imported key, this output value is NULL.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

CCHandl e (i nput)

The handle that describes the context of this cryptographic operation.
Cont ext (i nput)

Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Pri vil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function unwraps the wrapped key using the context. The wrapped key can be a symmetric key or a
private key. If the unwrapping algorithm is a symmetric algorithm, then a symmetric context must be
provided. If the unwrapping algorithm is an asymmetric algorithm, then an asymmetric context must be
provided. If the key is a private key, then an asymmetric context must be provide describing the unwrapping
algorithm. The CSP can require the caller to provide credentials authorizing the caller to store the
unwrapped key within the CSP. The CSP can also require that the caller provide an initial ACL entry to

474

control future access to the newly stored key. These credentials and the initial ACL entry value are provided
in O edAndAcl Ent ry parameter. If the unwrapping algorithm is CSSM_ALGID_NONE and the wrapped key
is actually a raw key (as indicated by its key attributes), then the key is imported into the CSP. Support for a
CSSM_ALGID_NONE unwrapping algorithm is at the option of the CSP. The unwrapped key is restored to
its original pre-wrap state based on the key attributes recorded by the wrapped key during the wrap
operation. These attributes must not be modified by the caller.

Authorization policy can restrict the set of callers who can create a new resource. In this case, the caller must
present a set of access credentials for authorization. Upon successfully authenticating the credentials, the
template that verified the presented samples identifies the ACL entry that will be used in the authorization
computation. If the caller is authorized, the new resource is created.

The caller must provide an initial ACL entry to be associated with the newly created resource. This entry is
used to control future access to the new resource and (since the subject is deemed to be the "Owner") exercise
control over its associated ACL. The caller can specify the following items for initializing an ACL entry:

= Subject - A CSSM_LIST structure, containing the type of the subject and a template value that can be
used to verify samples that are presented in credentials when resource access is requested.

< Delegation flag - A value indicating whether the Subject can delegate the permissions recorded in the
Aut hori zat i onTag. (This item only applies to public key subjects).

= Authorization tag - The set of permissions that are granted to the Subject.
= Validity period - The start time and the stop time for which the ACL entry is valid.
< ACL entry tag - A user-defined string value associated with the ACL entry.

The service provider can modify the caller-provided initial ACL entry to conform to any innate
resource-access policy that the service provider may be required to enforce. If the initial ACL entry
provided by the caller contains values or permissions that are not supported by the service provider, then
the service provider can modify the initial ACL appropriately or can fail the request to create the new
resource. Service providers list their supported Aut hori zat i onTag values in their Module Directory
Services primary record.

NOTES

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() (CSSM API), or CSP_Fr eeKey() (CSP SPI), function or with the memory
functions registered for the CSPHandl e.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR CSP_KEY_LABEL_ALREADY EXI STS
CSSMERR_CSP_PUBLI C_KEY_I NCONSI STENT
CSSMERR _CSP_PRI VATE_KEY_ALREADY_EXI ST

475

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_WrapKey

Functions for the CSP SPI:
CSP_WrapKey

476

UnwrapKeyP

NAME
UnwrapKeyP — Unwrap the wrapped keys with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM Unwr apKey P
(CSSM_CC_HANDLE CCHandl e,

const CSSM KEY *Publ i cKey,

const CSSM WRAP_KEY *W appedKey,

ui nt 32 KeyUsage,

ui nt 32 KeyAttr,

const CSSM DATA *KeylLabel ,

const CSSM_RESOURCE_CONTROL_CONTEXT *CredAndAcl Entry,
CSSM_KEY_PTR Unwr appedKey,

CSSM _DATA_PTR Descri pti veDat a,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM_UnwrapKey.

DESCRIPTION

This function is similar to CSSM Unw apKey() . It also accepts a USEE tag as a privilege request parameter.
CSSM checks that either its own privilege set or the Application's privilege set (if the Application is signed)
includes the tag. If the tag is found and the service provider privilege set indicates that it is supported, the tag
is forwarded to the service provider.

NOTES

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() function or with the memory functions registered for the CSPHandle.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

477

CSSMERR _CSP_KEY_LABEL_ALREADY EXI STS
CSSMERR_CSP_PUBLI C_KEY_I NCONSI STENT
CSSMERR _CSP_PRI VATE_KEY_ALREADY_EXI ST

SEE ALSO

Books

Intel CDSA Application Developer's Guide

478

VerifyData

NAME
VerifyData: CSSM_VerifyData, CSP_VerifyData — Verify input buffer data (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yDat a
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

CSSM_ALGORI THVB Di gest Al gorithm
const CSSM DATA *Si gnat ure)

SPI :

CSSM RETURN CSSMCSPI CSP_Ver i f yDat a
(CSSM_CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count,

CSSM_ALGORI THVB Di gest Al gorithm
const CSSM DATA *Si gnat ure)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of Dat aBuf s to be verified.
D gest Al gori t hm(i nput)

If verifying just a digest, specifies the type of digest. In this case, the context should only
specify the encryption algorithm. If not verifying just a digest, it must be
CSSM_ALGID_NONE. In this case, the context should specify the combination
digest/encryption algorithm.

Si gnat ure (i nput)

A pointer to a CSSM_DATA structure which contains the signature and the size of the
signature.

479

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function verifies all data contained in the set of input buffers based on the input signature.

Verifying can include digesting the data and decrypting the digest (from the signature) or verifying just the
digest (already calculated by the application). If digesting the data and decrypting the digest, then the context
should specify both digest and decryption algorithms (for example, CSSM_ALGID_MD5W:ithRSA). In this
case, the D gest Al gori t hmparameter must be set to CSSM_ALGID_NONE. If signing just the digest, then
the context should specify just the decryption algorithm and the D gest Al gori t hmparameter should specify
the type of digest (for example, CSSM_ALGID_MDS5). Also, Dat aBuf Count must be 1.

If the signing algorithm is not reversible or strictly limits the size of the signed data, then the algorithm can
specify verification without digesting. In this case, the verify operation is performed on the input data and the
size of the input data is restricted by the service provider.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_| NPUT_LENGTH_ERROR
CSSMERR _CSP_VERI FY_FAI LED
CSSMERR_CSP_| NVALI D_SI GNATURE
CSSMERR_CSP_| NVALI D_DI GEST_ALGORI THV

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_SignData, CSSM_VerifyDatalnit, CSSM_\VerifyDataUpdate, CSSM_VerifyDataFinal
Functions for the CSP SPI:

CSP_SignData, CSP_VerifyDatalnit, CSP_VerifyDataUpdate, CSP_VerifyDataFinal

480

VerifyDataFinal
NAME

VerifyDataFinal: CSSM_VerifyDataFinal, CSP_VerifyDataFinal — Finalize the staged verify data
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yDat aFi nal
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Si gnat ure)

SPI :

CSSM BOOL CSSMCSPI CSP_Ver i f yDat aFi nal
(CSSM _CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Si gnat ure)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Si gnat ure (i nput)

A pointer to a CSSM_DATA structure which contains the starting address for the signature
to verify against and the length of the signature in bytes.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged verify data function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

481

CSSMERR_CSP_| NPUT_LENGTH_ERROR
CSSMERR _CSP_VERI FY_FAI LED
CSSMERR_CSP_| NVALI D_SI GNATURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyData, CSSM_\VerifyDatalnit, CSSM_VerifyDataUpdate
Functions for the CSP SPI:

CSP_VerifyData, CSP_VerifyDatalnit, CSP_VerifyDataUpdate

482

VerifyDatalnit

NAME

VerifyDatalnit: CSSM_VerifyDatalnit, CSP_VerifyDatalnit — Initialize the staged verify data
(CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Veri f yDat al ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Veri f yDat al ni t
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function initializes the staged verify data function.

For staged operations, a combination operation selecting both a digesting algorithm and a verification
algorithm must be specified.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

483

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyDataUpdate, CSSM_VerifyDataFinal, CSSM_VerifyData
Functions for the CSP SPI:

CSP_VerifyDataUpdate, CSP_VerifyDataFinal, CSP_VerifyData

484

VerifyDataUpdate
NAME

VerifyDataUpdate: CSSM_VerifyDataUpdate, CSP_VerifyDataUpdate — Continue the staged
verification (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yDat aUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

SPI :

CSSM_RETURN CSSMCSPI CSP_Ver i f yDat aUpdat e
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)
A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs to be verified.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged verification process over all data contained in the set of input. Verification
will be based on the signature presented as input when finalizing the staged verification process.

485

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyData, CSSM_VerifyDatalnit, CSSM_VerifyDataFinal
Functions for the CSP SPI:

CSP_VerifyData, CSP_VerifyDatalnit, CSP_VerifyDataFinal

486

VerifyDevice
NAME

VerifyDevice: CSSM_VerifyDevice, CSP_VerifyDevice — Cause the cryptographic module to perform
a self verification and integrity check (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yDevi ce
(CSSM _CSP_HANDLE CSPHandl e,

const CSSM DATA *Devi ceCert)

SPI :

CSSM_RETURN CSSMCSPI CSP_Ver i f yDevi ce
(CSSM _CSP_HANDLE CSPHandl e,

const CSSM DATA *Devi ceCert)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform this function. If a NULL handle is specified, CSSM returns error.

Devi ceCert (i nput)

Pointer to CSSM_DATA structure that contains data that identifies the cryptographic
device.

DESCRIPTION

This function triggers the cryptographic module to perform self verification and integrity checking.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSP_DEVI CE_VERI FY_FAI LED

487

SEE ALSO

Books

Intel CDSA Application Developer's Guide

488

VerifyMac

NAME
VerifyMac: CSSM_VerifyMac, CSP_VerifyMac — Verify the message authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yMac
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

const CSSM DATA * Mac)

SPI :

CSSM_RETURN CSSMCSPI CSP_Ver i f yMac
(CSSM _CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM CONTEXT *Cont ext,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count

const CSSM DATA * Mac)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.
Dat aBuf Count (i nput)

The number of DataBufs.
Mac (i nput)

A pointer to the CSSM_DATA structure containing the MAC to verify.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

489

DESCRIPTION

This function verifies the message authentication code over all data contained in the set of input buffers
based on the input signature.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

CSSMERR_CSP_| NPUT_LENGTH_ERROR
CSSMERR _CSP_VERI FY_FAI LED
CSSMERR_CSP_| NVALI D_SI GNATURE

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyMaclnit, CSSM_VerifyMacUpdate, CSSM_VerifyMacFinal
Functions for the CSP SPI:

CSP_VerifyMaclnit, CSP_VerifyMacUpdate, CSP_VerifyMacFinal

490

VerifyMacFinal

NAME

VerifyMacFinal: CSSM_VerifyMacFinal, CSP_VerifyMacFinal — Finalize the staged message
authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yMacFi nal
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Mac)

SPI :

CSSM_RETURN CSSMCSPI CSP_Veri f yMacFi nal
(CSSM_CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Mac)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Mac (i nput)
A pointer to the CSSM_DATA structure containing the MAC to verify.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function finalizes the staged message authentication code verification function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

491

CSSMERR_CSP_| NPUT_LENGTH_ERROR
CSSMERR _CSP_VERI FY_FAI LED
CSSMERR_CSP_| NVALI D_SI GNATURE

COMMENTS FOR SPI

The output is returned to the caller as specified in Buffer Management for Cryptographic Services.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyMac, CSSM_\VerifyMaclnit, CSSM_VerifyMacUpdate
Functions for the CSP SPI:

CSP_VerifyMac, CSP_VerifyMaclnit, CSP_VerifyMacUpdate

492

VerifyMaclnit
NAME

VerifyMaclnit: CSSM_VerifyMaclnit, CSP_VerifyMaclnit — Initialize the staged message
authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Veri f yMacl ni t
(CSSM_CC_HANDLE CCHandl e)

SPI :

CSSM_RETURN CSSMCSPI CSP_Veri f yMacl ni t
(CSSM CSP_HANDLE CSPHandl e,
CSSM_CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.

DESCRIPTION

This function initializes the staged message authentication code verification function.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

493

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyMac, CSSM_\VerifyMacUpdate, CSSM_VerifyMacFinal
Functions for the CSP SPI:

CSP_VerifyMac, CSP_VerifyMacUpdate, CSP_VerifyMacFinal

494

VerifyMacUpdate
NAME

VerifyMacUpdate: CSSM_VerifyMacUpdate, CSP_VerifyMacUpdate — Continue the staged process

of verifying the message authentication code (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM_RETURN CSSMAPI CSSM Ver i f yMacUpdat e
(CSSM_CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

SPI :

CSSM_RETURN CSSMCSPI CSP_Veri f yMacUpdat e
(CSSM CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM DATA *Dat aBufs,

ui nt 32 Dat aBuf Count)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle that describes the context of this cryptographic operation used to link to the
CSP-managed information.

Dat aBuf s (i nput)

A pointer to a vector of CSSM_DATA structures that contain the data to be operated on.

Dat aBuf Count (i nput)

The number of DataBufs.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform calls to CSSM for the memory functions managed by CSSM.

DESCRIPTION

This function continues the staged process of verifying the message authentication code over all data in the
set of input buffers. Verification will be based on the authentication code presented as input when finalizing

the staged verification process.

495

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS
Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:

CSSM_VerifyMac, CSSM_VerifyMaclnit, CSSM_VerifyMacFinal
Functions for the CSP SPI:

CSP_VerifyMac, CSP_VerifyMaclnit, CSP_VerifyMacFinal

496

WrapKey
NAME
WrapKey: CSSM_WrapKey, CSP_WrapKey — Wrap a key using the context (CDSA)

SYNOPSIS

include <cssm.h>

API :

CSSM _RETURN CSSMAPI CSSM W apKey
(CSSM_CC_HANDLE CCHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM KEY *Key,

const CSSM DATA *Descri pti veDat a,

CSSM WRAP_KEY_PTR W appedKey)

SPI :

CSSM_RETURN CSSMCSPI CSP_W apKey

(CSSM_CSP_HANDLE CSPHandl e,

CSSM _CC_HANDLE CCHandl e,

const CSSM _CONTEXT *Cont ext,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM KEY *Key,

const CSSM DATA *Descri pti veDat a,

CSSM WRAP_KEY_PTR W appedKey,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

APl PARAMETERS
CCHandl e (i nput)

The handle to the context that describes this cryptographic operation.
AccessCred (i nput)

A pointer to the set of one or more credentials required to access the private or secret key to
be exported from the CSP. The credentials structure can contain an immediate value for the
credential, such as a passphrase, or the caller can specify a callback function the CSP can
use to obtain one or more credentials.

Key (i nput)
A pointer to the key to be wrapped.
Descri pti veDat a (input/optional)

A pointer to a CSSM_DATA structure containing additional descriptive data to be
associated and included with the key during the wrapping operation. The caller and the
wrapping algorithm incorporate knowledge of the structure of the descriptive data. If the
wrapping algorithm does not accept additional descriptive data, then this parameter must
be NULL. If the wrapping algorithm accepts descriptive data, the corresponding
unwrapping algorithm can be used to extract the descriptive data and the key.

W appedKey (out put)

497

A pointer to a CSSM_WRAP_KEY structure that returns the wrapped key.

SPI PARAMETERS
CSPHandl e (i nput)

The handle that describes the add-in Cryptographic Service Provider module used to
perform up-calls to CSSM for the memory functions managed by CSSM.

Cont ext (i nput)
Pointer to CSSM_CONTEXT structure that describes the attributes with this context.
Privil ege (i nput)

The export privilege to be applied during the cryptographic operation. This parameter is
forwarded to the CSP after CSSM verifies the caller and service provider privilege set
includes the specified PRIVILEGE.

DESCRIPTION

This function wraps the supplied key using the context. It allows a key to be exported from a CSP. Four types
of wrapping exist:

1. Wrap a symmetric key with a symmetric key.

2. Wrap a symmetric key with an asymmetric public key.

3. Wrap an asymmetric private key with a symmetric key.

4. Wrap an asymmetric private key with an asymmetric public key.

For types 1 and 3, a symmetric context should be provided. For types 2 and 4, an asymmetric context is
provided. If there isa CSSM_ATTRIBUTE_WRAPPED_KEY_FORMAT argument in the context represented
by the CCHandl e, the value of the attribute specifies the format of the wrapped key. If this argument is not
present, the symmetric key is wrapped according to CMS for types 1 and 3, and according to PKCS8 for types
2 and 4. If the wrapping algorithm in the context is CSSM_ALGID_NONE, then the key is returned in raw
format, if permitted and supported by the CSP (in this case the
CSSM_ATTRIBUTE_WRAPPED_KEY_FORMAT attribute is ignored). All significant key attributes are
incorporated into the KeyHeader of the returned W appedKey, such that the state of the key can be fully
restored by the unw ap process.

The CSP can require that the cryptographic context includes access credentials for authentication and
authorization checks when using the secret or private key.

NOTES

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() (CSSM API), or CSP_Fr eeKey() (CSP SPI) function, or with the memory
functions registered for the CSPHandl e.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

498

ERRORS

Errors are described in the CDSA Technical Standard.

None specific to this call.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions for the CSSM API:
CSSM_UnwrapKey
Functions for the CSP SPI:
CSP_UnwrapKey

499

WrapKeyP
NAME
WrapKeyP — Wrap a key with privilege (CDSA)

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI CSSM W apKey P
(CSSM_CC_HANDLE CCHandl e,

const CSSM ACCESS_CREDENTI ALS *AccessCred,
const CSSM KEY *Key,

const CSSM DATA *Descri pti veDat a,

CSSM WRAP_KEY_PTR W appedKey,

CSSM PRI VI LEGE Privil ege)

LIBRARY

Common Security Services Manager library (cdsa$i ncssnB800_shr . exe)

PARAMETERS
Privil ege (i nput)

The privilege to be applied during the cryptographic operation.
See CSSM_WrapKey.

DESCRIPTION

This function is similar to CSSM W apKey/() . It also accepts a USEE tag as a privilege request parameter.
CSSM checks that either its own privilege set or the application's privilege set (if the application is signed)
includes the tag. If the tag is found, and the service provider privilege set indicates that it is supported, the
tag is forwarded to the service provider.

NOTES

The KeyDat a field of the CSSM_KEY structure is allocated by the CSP. The application is required to free this
memory using the CSSM Fr eeKey() functon, or with the memory functions registered for the CSPHandl e.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

500

SEE ALSO

Books

Intel CDSA Application Developer's Guide

501

502

Elective Module Manager APIs

These functions are implemented by an Elective Module Manager and are made available to CSSM in a func-
tion table.

For a module attach of a service provider managed by an EMM, CSSM invokes
ModuleManagerAuthenticate(). Upon successful completion of this function, the elective module manager
returns its function table to CSSM with the following modules:

DeregisterDispatchTable
EventNotifyManager
Initialize
ModuleManagerAuthenticate
RefreshFunctionTable
RegisterDispatchTable

Terminate

503

DeregisterDispatchTable
NAME

DeregisterDispatchTable — Invalidate CSSM pointers to EMM

SYNOPSIS

include <cssm.h>
(voi d)

PARAMETERS

None.

DESCRIPTION

This EMM-defined function is invoked by CSSM once for each CSSM Mbdul eDet ach() operation issued
against a service provider of the type managed by the EMM. CSSM uses this function to inform the EMM
that the set of CSSM function pointers provided to the EMM when the session was attached are no longer
valid.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: RegisterDispatchTable

504

EventNotifyManager
NAME

EventNotifyManager — Receive an event notification

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI Event Not i f yManager
(const CSSM_MANAGER_EVENT_NOTI FI CATI ON *Event Descri pti on)

PARAMETERS

Event Descri ption

A structure containing the following fields:
Dest i nati onModul eManager Type (i nput)

The unique service mask identifying the destination module manager.
Sour ceMbdul eManager Type (i nput)

The unique service mask identifying the source module manager.
Event (i nput)

An identifier indicating the event that has or will take place.
Event | d (input/optional)

A unique identifier associated with this event notification. It must be used in any reply
notification that results from this event notification.

Event Dat a (input/optional)

Arbitrary data (required or informational) for this event.

DESCRIPTION

This function receives an event notification from another module manager. The source manager is identified
by its service mask. The specified event type is interpreted by the received and the appropriate actions must
be taken in response. Event | d and Event Dat a are optional. The Event | d is specified by the source module
manager when a reply is expected. The destination module manager must use this identifier when replying to
the event notification. The Event Dat a is additional data or descriptive information provided to the
destination manager.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSSM MODULE_MANAGER NOT_FOUND

505

SEE ALSO

Books

Intel CDSA Application Developer's Guide

506

Initialize
NAME

Initialize — Verify module version

SYNOPSIS

include <cssm.h>

CSSM _RETURN CSSMAPI [nitialize
(uint32 Ver Myj or,
ui nt 32 Ver M nor)

PARAMETERS
Ver Maj or (i nput)

The major version number of the CSSM that is invoking this module manager.

Ver M nor (i nput)

The minor version number of the CSSM that is invoking this module manager.

DESCRIPTION

This function checks whether the current version of the module is compatible with the CSSM version
specified as input and performs any module-manager-specific setup activities.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK

indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR _CSSM MODULE_MANAGER | NI TI ALI ZE_FAI L

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: Terminate

507

ModuleManagerAuthenticate
NAME

ModuleManagerAuthenticate — Module manager authentication

SYNOPSIS

include <cdsa/mds.h>

CSSM_RETURN CSSMAPI Modul eManager Aut henti cate
(CSSM_KEY_HI ERARCHY KeyHi er ar chy,

const CSSM GUI D *Cssnfaui d,

const CSSM GUI D *AppCui d,

CSSM_MANAGER REG STRATI ON_I NFO_PTR Functi onTabl e)

PARAMETERS
KeyH erar chy (i nput)

The CSSM_KEY_HIERARCHY flag indicating which embedded key(s) CSSM should use
when verifying the integrity of the module manager.

Cssmui d (i nput)

A CSSM_GUID value identifying the calling CSSM. The elective module manager can use
this value to locate the signed manifest credentials for CSSM.

AppQui d (input/optional)

A CSSM_GUID value identifying the application who invoked the calling CSSM. The
elective module manager can use this value to locate the signed manifest credentials for the
application.

Functi onTabl e (out put)

A set of function pointers for EMM-defined functions used by CSSM to communicate state
changes related to module attach and module detach operations.

DESCRIPTION

This function should perform the elective module manager's half of the bilateral authentication procedure
with CSSM. The Cssnui d is used to locate the CSSM's credentials to be verified. The credentials are a
zipped, signed manifest.

The KeyHi er ar chy indicates which public key should be used as the root when checking the integrity of the
module manager. The AppQui d is used to locate the application's signed manifest credentials. The elective
module manager must check the application's credentials to verify the application's authorization. If no
privileges are requested, then the application is not required to provide a GUID nor a set of signed manifest
credentials.

Upon successful completion, the elective module manager returns its function table to the calling CSSM. The
EMM function table contains the set of EMM entry points that CSSM uses to notify the module manager of
significant events such as module attach and module detach requests issued by an application, and event
notifications issued by other module managers.

This function symbol must be exported by the elective module manager, so CSSM can invoke this function
upon completion of the loading process.

508

This function is the first module manager interface invoked by CSSM after loading and invoking the main
entry point. In particular, the elective module manager's initialize function is invoked by CSSM after this
function has successfully completed execution.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

509

RefreshFunctionTable

NAME
RefreshFunctionTable — Gets EMM-defined API function

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI RefreshFunctionTabl e
(CSSM_FUNC_NAME_ADDR_PTR FuncNanmeAddr Ptr,
ui nt 32 NumOf FuncNanmeAddr)

PARAMETERS

FuncNaneAddr Pt r (input/output)
A pointer to a table mapping function names to EMM-defined APIs.
NunCY FuncNanmeAddr (i nput)

The number of entries in the table referenced by FuncNameAddr Ptr.

DESCRIPTION

CSSM invokes this function to obtain the EMM-defined API function. The table is returned to CSSM in
FuncNaneAddr Pt r and CSSM returns the table to the application. The application uses this table to invoke
the security services defined by the EMM's service category. CSSM must obtain and forward the API table to
the application on behalf of the EMM because the application is not aware of the optional nature of the EMM.
Applications use CSSM to obtain the API function table for basic module managers and elective module
managers, providing a uniform application programming model.

If the Elective Module Manager needs the service provider's SPI function table in order to initialize the API
function table, the EMM can obtain the SPI function table by invoking the CSSM-provided service

cssm Get At t achFuncti ons() . The service module may implement only a subset of the defined functions and
the EMM may wish to manage these functions in a particular manner through the APl mapping. The elective
module manager uses the SPI function table to dispatch application calls for service to attached modules.

Multiple applications and multiple instances of a service module can be concurrently active. The single
elective module manager is responsible for managing all of these concurrent sessions. After completing
initialization of the API function table, the EMM returns the refreshed API table to CSSM.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

510

SEE ALSO

Books

Intel CDSA Application Developer's Guide

511

RegisterDispatchTable

NAME
RegisterDispatchTable — Provide the EMM with CSSM function pointers

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMAPI Regi st er Di spat chTabl e
(CSSM_STATE_FUNCS_PTR Cssnft at eCal | Tabl e)

PARAMETERS
Cssnst at eCal | Tabl e (i nput)

A table of function pointers for the set of CSSM-defined functions the elective module
manager can use to query and control the state of an attach-session between an application
and a service provider managed by the module manager.

DESCRIPTION

This EMM-defined function is invoked by CSSM once for each CSSM Modul eAt t ach() , operation requesting a
service provider of the type managed by the EMM. CSSM uses this function to provide the EMM with a set of
CSSM function pointers. The EMM invokes these functions at anytime during the life cycle of the
attach-session to obtain information about the current state and to modify the current state of the attach
session.

When the attach-session is terminated, CSSM informs the module manager by invoking the EMM function
Der egi st er D spat chTabl e() . The corresponding set of CSSM state functions become invalid at that time.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: DeregisterDispatchTable

512

Terminate
NAME

Terminate — Clean up module-manager-specific activities

SYNOPSIS

include <cssm.h>

CSSM_RETURN CSSMVAPI Ter mi nat e
(voi d)

PARAMETERS

None.

DESCRIPTION

This function performs any module-manager-specific cleanup activities in preparation for unloading of the
elective module manager.

RETURN VALUE

A CSSM_RETURN value indicating success or specifying a particular error condition. The value CSSM_OK
indicates success. All other values represent an error condition.

ERRORS

Errors are described in the CDSA Technical Standard.
CSSMERR_CSSM EMM AUTHENTI CATE_FAI LED.

SEE ALSO

Books

Intel CDSA Application Developer's Guide

Online Help

Functions: Initialize

513

514

Open Source Notice
A Open Source Notice

IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. By downloading,
copying, installing or using the software you agree to this license. If you do not agree to this license, do not
download, install, copy or use the software.

Intel Open Source License for CDSA/CSSM Implementation
(BSD License with Export Notice)

Copyright (c) 1996-2000 Intel Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

= Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

= Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

= Neither the name of the Intel Corporation nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

EXPORT LAWS: THIS LICENSE ADDS NO RESTRICTIONS TO THE THE EXPORT LAWS OF YOUR
JURISDICTION. It is licensee's responsibility to comply with any export regulations applicable in licensee's
jurisdiction. Under CURRENT (July 2000) U.S. export regulations this software is eligible for export from the
U.S. and can be downloaded by or otherwise exported or reexported worldwide EXCEPT to U.S. embargoed
destinations which include Cuba, Iraq, Libya, North Korea, Iran, Syria, Sudan, Afghanistan and any other
country to which the U.S. has embargoed goods and services.

Copyright (c) 1996-2000 Intel Corporation. All rights reserved.
* Other brands and names are the property of their respective owners.

Appendix A 515

Open Source Notice

516 Appendix A

Glossary

AAL See Application Adaptation Layer (AAL).

AC Authorization Computation service provider
module. Synonymous with Authorization
Computation Module (ACM).

Accountability A mechanism whereby the action of
a user or a machine can be traced to that user or
machine. A user's action may be audited and stored
in a data bank called an audit trail. Subsequent
searching of the audit trail can match events to the
event instigator. In the commercial world,
accountability is important to establish accurate
billing procedures.

Application Adaptation Layer (AAL) An
interface between CDSA and applications designed
to use CDSA services.

Asymmetric Algorithms Cryptographic
algorithms using one key to encrypt and a second
key to decrypt. They are often called public-key
algorithms. One key is called the public key, and the
other is called the private key or secret key.

Attach A process whereby an application obtains a
service provider module handle, viaan ATTACH call
to CSSM. A service provider module can be a
dynamic load module added at runtime on demand
or a statically resident module.

Authentication A user or machine's identity must
be established before establishing a connection to a
computer. Authentication is the process of proving
identity to the satisfaction of the
permission-granting authority.

Authorization Permission for an entity to perform
an action upon an object. Authorization is evaluated
by a set of access control rules. Evaluation typically
includes authentication of the requesting entity. The
result of the evaluation should be conveyed to an
agent that can enable the requested action upon the
target object.

Biometric input The gathering of data from a
personal, unique source, such as fingerprints, retina
patterns, or human voice, for the purposes of
verification or authorization.

BSAFE A cryptographic toolkit from RSA Data
Security Incorporated.

CDSA See Common Data Security Architecture
(CDSA).

Certificate A combination of an asymmetric public
key and other identifying private information, which
is digitally signed by a private key so it can be
verified. See also Digital certificate.

Certificate chain The hierarchical chain of all
other certificates used to sign the current certificate.
This includes the Certificate Authority (CA) who
signs the certificate, the CA who signed that CA's
certificate, and so on. There is no limit to the depth
of the certificate chain.

Certificate signing The Certificate Authority (CA)
can sign certificates it issues or cosign certificates
issued by another CA. In a general signing model, an
object signs an arbitrary set of one or more objects.
Hence, any number of signers can attest to an
arbitrary set of objects. The arbitrary objects could
be, for example, pieces of a document for libraries of
executable code.

Certificate validity date A start date and a stop
date for the validity of a certificate. If a certificate
expires, the Certificate Authority (CA) may issue a
new certificate.

Certification Authority Anentity that guarantees
or sponsors a certificate. For example, a credit card
company signs a cardholder's certificate to ensure
that the cardholder is who he or she claims to be.
The credit card company is a certificate authority.
Certificate authorities issue, verify, and revoke
certificates.

CL Certificate Library service provider module.
Synonymous with Certificate Library Module
(CLM).

Common Data Security Architecture (CDSA) A
set of layered security services that address
communications and data security problems in the
emerging Internet and Intranet application space.
CDSA consists of three basic layers:

= A set of system security services

< The Common Security Services Manager
(CSSM)

e Add-in security modules (CSPs, TPs, CLs, DLs,
ACs)

Glossary

517

Glossary
Common Security Services Manager (CSSM)

Common Security Services Manager (CSSM)

The central layer of the Common Data Security
Architecture (CDSA) that defines the following
service components:

= Cryptographic Services Manager

= Trust Policy Services Manager

= Certificate Library Services Manager

< Data Storage Library Services Manager

« Authorization Computation Manager

« Elective Module Manager

= Integrity Services Manager

Security Context Manager

CSSM binds together all the security services
required by applications. In particular, it facilitates
linking digital certificates to cryptographic actions
and trust protocols.

Confidentiality Information is revealed only to
those who are authorized to see it. Confidentiality
can be provided through an authorization and access
control mechanism. It can also be provided through
encryption and decryption operations, which limit
data access to those who possess the cryptographic
keys required to decrypt the information.

Cryptographic algorithm A method or defined
mathematical process for implementing a
cryptography operation. A Cryptographic algorithm
may specify the procedure for encrypting and
decrypting a byte stream, digitally signing an object,
computing the hash of an object, or generating a
random number.

Cryptographic Service Providers (CSPs)
Modules that provide secure key storage and
cryptographic functions. The modules may be
software only or hardware with software drivers.
The cryptographic functions provided may include:
= Bulk encryption and decryption

= Digital signing

< Cryptographic hash

< Random number generation

< Key exchange

Cryptography The art and science of using
mathematics to secure information and create a high
degree of trust in the electronic media.

Cryptoki The name of the PKCS#11 Version 1.0
standard published by RSA Laboratories. The
standard specifies the interface for accessing
cryptographic services performed by a removable
device. For additional information, refer to
http://www.rsasecurity.com.

CSP See Cryptographic Service Providers (CSPs).

CSSM See Common Security Services Manager
(CSSM).

Digital certificate The binding of some
identification to a public key in a particular domain,
as attested to directly or indirectly by the digital
signature of the owner of that domain. A digital
certificate is an unforgeable credential in
cyberspace. The certificate is issued by a trusted
authority and covered by that party's digital
signature. The certificate may attest to the
certificate holder's identity or may authorize certain
actions by the certificate holder. A certificate may
include multiple signatures and may attest to
multiple objects or multiple actions.

Digital signature A data block that was created by
applying a cryptographic signing algorithm to some
other data using a secret key. Digital signatures may
be used to:

= Authenticate the source of a message, data, or
document.

= Verify that the content of a message has not been
modified since it was signed by the sender.

= Verify that a public key belongs to a particular
person.

Typical digital signing algorithms include RSA
signaturing and DSS, the Digital Signature
Standard defined by NIST FIPS Pub 186.

DL Database Library service provider module.

EISL Embedded Integrity Services Library.

518

Glossary

EMM Elective module manager.

ESW Electronic shrink-wrap. A term used to refer to
an aggregate collection of data files identified by a
manifest or bill of materials.

Generic Cryptographic Services (GCS) A set of
services and associated APIs designed to provide
key-based cryptographic operations to applications.
GCS predates CDSA. GCS requirements were based
on early hardware-based cryptographic devices
where cryptographic keys were retained within the
device. Some Internet applications require the
secured transmission of cryptographic keys. The
CDSA Cryptographic Service APls accommodate
both types of requirements.

Generic Security Services (GSS) A setof services
and associated APIs defined by the International
Engineering Task Force (IETF). The defined APIs
support concurrent applications in authenticating
each other, delegating rights and privileges to each
other, and using confidentiality and integrity
verification services to secure communications
between the applications.

GUID Globally unique identifier.

Hash algorithm A cryptographic algorithm used to
compress a variable-size input stream into a unique,
fixed-size output value. The function is one-way,
meaning the input value cannot be derived from the
output value. A cryptographically strong hash
algorithm is collision-free, meaning unique input
values produce unique output values. Hashing is
typically used in digital signing algorithms. Example
hash algorithms include MD and MD2 from RSA
Data Security. MD5, also from RSA Data Security,
hashes a variable-size input stream into a 128-bit
output value. SHA, a Secure Hash Algorithm
published by the U.S. Government, produces a
160-bit hash value from a variable-size input
stream.

HRS Human Recognition Services. HRS is a CSSM
Elective Module Manager intended to provide a
high-level generic authentication model suited for
any form of human authentication. Particular
emphasis has been made in the design on its
suitability for authentication using biometric
technology.

Glossary
Module Directory Services (MDS)

Integrity Information is said to have integrity if
that data has not been modified or altered since the
point in time when an authorized agent intended the
data to be static. Information integrity is important
for all data types including authorization data and
authentication credentials.

Key Management Public-private key pairs are
items that need to be securely managed. A key may
be lost, stolen, or compromised. If this happens, the
key (and in fact, the key pair) must be nulled.
Whatever task the key was used for, a new key must
be issued and used. In the case of the lost key, a
duplicate should be available. If not, the data
protected by the lost key may itself be lost. The null
public key must be advertised as invalid. It will be
listed in a data bank called a revocation list. The
new public key must be distributed to those entitled
to have it.

Leaf certificate The certificate in a certificate
chain that has not been used to sign another
certificate in that chain. The leaf certificate is signed
directly or transitively by all other certificates in the
chain.

Manifest A digital signature of a file, created using
certificates. The digital signature takes the form of
a separate file called a manifest. The manifest
contains the encrypted digest of the target file and
the X509 certificates of the signers. This data is
sufficient to guarantee the identity of the signer of a
file and the authenticity of the file's contents.

MDS See Module Directory Services (MDS).

Message Digest The digital fingerprint of an input
stream. A cryptographic hash function is applied to

an input message of arbitrary length and returns a

fixed-size output, which is called the digest value.

Meta-information Descriptive information
specified by a service provider module and stored in
MDS. This information advertises the module's
services. CSSM supports application queries for this
information. The information may change at
runtime.

Module Directory Services (MDS) A
platform-independent registration service for
managing executable code modules and their
associated signed integrity credentials.

Glossary

519

Glossary
Nonce

Nonce A nonrepeating value, usually but not
necessarily random.

OID Object identifier.

Owned certificate A certificate whose associated
private key resides in a local CSP. Digital signature
algorithms require the private key when signing
data. A system may supply certificates it owns along
with signed data to allow others to verify the
signature. A system uses certificates that it does not
own to verify signatures created by others.

PKI See Public Key Infrastructure (PKI).

Private key The cryptographic key used to
decipher or sign messages in public-key
cryptography. This key is kept secret by its owner.

Public key The cryptographic key used to encrypt
messages in public-key cryptography. The public key
is available to multiple users (for example, the
public).

Public Key Infrastructure (PKI) The agreed
infrastructure, ultimately to be applied worldwide,
in which secure electronic business (eCommerce,
banking, legal transactions) and secure electronic
welfare (medical welfare, state and government
provision for pensions, social security, and so forth)
can function securely using the private-public key
method of cryptography.

PVC Pointer validation checking.

Random number generator A function that
generates cryptographically strong random numbers
that cannot be easily guessed by an attacker.
Random numbers are often used to generate session
keys.

Root certificate The prime certificate, such as the
official certificate of a corporation or government
entity. The root certificate is positioned at the top of
the certificate hierarchy in its domain, and it
guarantees the other certificates in its certificate
chain. The root certificate's public key is the
foundation of signature verification in its domain.

RSA RSA Data Security, Incorporated, Bedford, MA.
Producers of the BSAFE toolkit.

Secret key A cryptographic key used with
symmetric algorithms, usually to provide
confidentiality.

Secure Electronic Transaction (SET) A
specification designed to utilize technology for
authenticating the parties involved in payment card
purchases on any type of online network, including
the Internet. SET focuses on maintaining
confidentiality of information, ensuring message
integrity, and authenticating the parties involved in
a transaction. More information about SET is
available at: http://www.setco.org/. See also Secure
Sockets Layer (SSL).

Secure Sockets Layer (SSL) Also known as Above
Transport Layer Security (TLS). A security protocol
that prevents eavesdropping, tampering, or message
forgery over the Internet. An SSL service negotiates
a secure session between two communicating
endpoints. Basic facilities include certificate-based
authentication, end-to-end data integrity, and
optional data privacy. SSL has been submitted to the
IETF as an Internet Draft for Transport Layer
Security (TLS).

Security context A control structure that retains
state information shared between a cryptographic
service provider and the application agent
requesting service from the CSP. A security context
specifies CSP and application-specific values, such
as required key length and desired hash functions.

Security infrastructure An agreed infrastructure
for the security of all electronic data transfer. Such
an infrastructure would, in theory, lessen the need
for organizations to construct trust domains. An
international security infrastructure would facilitate
the creation of a secure Internet. Presently, global
efforts are more focussed on an architecture for
Public Key Infrastructure, seen by many as the
blueprint for the infrastructure that will facilitate
eCommerce.

Security perimeter A conceptual perimeter or
boundary of a computer system or local area
network inside which the security is at a known
level of competence. If data is required to cross this
perimeter, it is prudent to pass all such data through
a firewall.

520

Glossary

Security-relevant event An event where a
CSP-provided function is performed, a security
service provider module is loaded, or a breach of
system security is detected.

Security risk assessment An exercise performed
by specialists to assess how vulnerable an enterprise
is to various forms of security attack. The ideal
outcome from this exercise is a recommended range
of security measures, hardware, software, and
procedural, which give a level of protection
commensurate with the value of the assets that need
to be protected.

Session key A cryptographic key used to encrypt
and decrypt data. The key is shared by two or more
communicating parties, who use the key to ensure
privacy of the exchanged data.

SET See Secure Electronic Transaction (SET).
Signature See Digital Signature.

Signature chain The hierarchical chain of signers,
from the root certificate to the leaf certificate, in a
certificate chain.

Signing and sealing The electronic equivalent to
the handwritten signature and the secure strong
room. Precise ways of performing these actions may
vary, but signing by digital signature and sealing
(for transport or storage) by encryption is evolving
towards internationally agreed protocols which will
be acceptable to the commercial world, the legal
profession, and governments.

Single sign-on A mechanism whereby a single
action of user authentication and authorization can
permit a user to access all computers and systems
where he has access permission, without the need to
enter multiple passwords. Single sign-on reduces
human error, a major component of systems failure.

SmartCard A card of the same dimensions as the
magnetic-stripe credit card, but containing
processing ability and memory storage space.
Because the card can contain storage credentials
and cryptographic keys and perform
encryption/decryption operations, its power as a
tamper-proof personal token for authentication
makes it very attractive to a whole range of
computer applications.

SPI Service provider interface.

Glossary
Verification

SPKI Simple public key infrastructure. Information
about SPKI can be found at
http://www.ietf.org/html.charters/spki-charter.html.

SSL See Secure Sockets Layer (SSL).

SSLeay A free implementation of the Secure
Sockets Layer. See also Secure Sockets Layer
(SSL).

Symmetric algorithms Cryptographic algorithms
that use a single secret key for encryption and
decryption. Both the sender and receiver must know
the secret key. Well known symmetric functions
include DES (Data Encryption Standard) and IDEA.
DES was endorsed by the U.S. Government as a
standard in 1977. It's an encryption block cipher
that operates on 64-bit blocks with a 56-bit key. It is
designed to be implemented in hardware, and works
well for bulk encryption. IDEA (International Data
Encryption Algorithm) uses a 128-bit key.

Token The logical view of a cryptographic device, as
defined by a CSP's interface. A token can be
hardware, a physical object, or software. A token
contains information about its owner in digital form
and about the services it provides for
electronic-commerce and other communication
applications. A token is a secure device. It may
provide a limited or a broad range of cryptographic
functions. Examples of hardware tokens are
SmartCards and PMCIA cards.

TP Trust Policy service provider module.
Synonymous with Trust Policy Module (TPM).

Trust domains A designated virtual area that has
a known and accepted level of security, and thus a
known and accepted level of trust. A local area
network is an example of a domain that is likely to
be trusted. Domains may be geographically wide
ranging, and may be made up of subdomains. A
domain is only as trustworthy as its weakest
component.

Verification A process performed to check the
integrity of a message, to determine the sender of a
message, or both. Different algorithms are used to
support different modes of verification.

A typical procedure supporting integrity verification
is the combination of a one-way hash function and a
reversible digital signaturing algorithm. A one-way
hash of the message is computed. The hash value is

Glossary

521

Glossary
Web of trust

signed by encrypting it with a private key. The
message and the encrypted hash value are sent to a
receiver. The recipient recomputes the one-way
hash, decrypts the signed hash value, and compares
it with the computed hash. If the values match, then
the message has not been tampered since it was
signed.

The identity of a sender can be verified by a
challenge-response protocol. The recipient sends the
message sender a random challenge value. The
original sender uses its private key to sign the
challenge value and returns the result to the
receiver. The receiver uses the corresponding public
key to verify the signature over the challenge value.
If the signature is valid, the sender is the holder of
the private key. If the receiver can reliably associate
the corresponding public key with the named/known
entity, then the identity of the sender is said to have
been verified.

Web of trust A trust network among people who
know and communicate with each other. Digital
certificates are used to represent entities in the web
of trust. Any pair of entities can determine the
extent of trust between the two, based on their
relationship in the web.

X509v3 X.509 Version 3. This standard defines the
contents and structure of a digital certificate. The
specification is ITU-T Recommendation X.509, Data
Networks and Open System Communications
Directory: Authentication Framework, 06/97. This
certificate format constitutes a widely accepted basis
for a public key infrastructure. To support the PKI,
certificates of this form are digitally signed and
issued by certification authorities (CAs).

522

Glossary

A

AC modules, 15
AC AuthCompute function, 52
AC_PassThrough function, 57
algorithms

asymmetric, 13

symmetric, 13
Application Adaptation Layer, 41
asymmetric algorithms, 13
Authorization Computation modules, 15

B
bilateral authentication, 36

C

CDSA
definition of, 9
CDSASINITIALIZE procedure, 20
Certificate Library modules, 15
CL modules, 15
CL_CertAbortCache function, 59
CL_CertAbortQuery function, 61
CL_CertCache function, 63
CL_CertCreateTemplate function, 65
CL_CertDescribeFormat function, 67
CL_CertGetAllFields function, 69
CL CertGetAIITempIateFleIds function, 71
CL_CertGetFirstCachedFieldValue functlon 73
CL_CertGetFirstFieldValue function, 75
CL_CertGetKeylnfo function, 77
CL_CertGetNextCachedFleIdVaIue function, 79
CL_CertGetNextFieldValue function, 81
CL_CertGroupFromVerifiedBundle function, 83
CL_CertGroupToSignedBundle function, 85
CL_CertSign function, 87
CL_CertVerify functlon 89
CL CertVerlny|thKey, 92
CSSM_CL_CertVerifyWithKey, 92
CL_CrlAbortCache function, 94
CL_CrlAbortQuery function, 96
CL_CrlAddCert function, 98
CL_CrlCache function, 101
CL_CrICreateTempIate function, 103
CL_CrlDescribeFormat function, 105
CL_CrlGetAllCachedRecordFields function, 107
CL_CrlGetAllFields function, 109
CL_CrlGetFirstCachedFieldValue function, 111
CL_CrlGetFirstFieldValue function, 114
CL_CrlGetNextCachedFieldValue functlon 116
CL_CrlGetNextFieldValue function, 118
CL_CrlIRemoveCert function, 120
CL_CrlSetFields function, 122
CL_CrlSign routine, 124
CL_CrlVerify function, 127
CL_CrlVerifyWithKey function, 129
CL_FreeFields function, 131
CL_FreeFieldVvalue function, 133
CL_IsCertinCachedCrl function, 135
CL_lIsCertInCrl function, 137
CL_PassThrough functlon 139
Common Security Services Manager, 11
cryptographic keys, 13

Index

Cryptographic Service Providers, 11
CSP_DecryptData function, 245
CSP_DecryptDataFinal funciton, 248
CSP_DecryptDatalnit function, 250
CSP_DecryptDataUpdate function, 256
CSP_DeriveKey function, 259
CSP_DigestData functlon 262
CSP_DigestDataClone functlon 264
CSP_DigestDataFinal function, 266
CSP_DigestDatalnit function, 268
CSP_EncryptData function, 326
CSP_EncryptDataFinal function, 329
CSP_EncryptDatalnit function, 331
CSP_EncryptDataUpdate function, 337
CSP_EventNotify function, 141
CSP_FreeKey function, 340
CSP_GenerateAlgorithmParams function, 342
CSP_GenerateKey function, 345
CSP_GenerateKeyPair function, 350
CSP_GenerateMac function, 356
CSP_GenerateMacFinal function, 358
CSP_GenerateMaclnit function, 360
CSP_GenerateMacUpdate function, 362
CSP_GenerateRandom, 364

CSP_ GetOperatlonaIStatlstlcs function, 366
CSP_GetTimeValue function, 368

CSP_ObtalnPrlvateKeyFromPubI|cKey function, 397

CSP_PassThrough function, 399
CSP_QueryKeySizelnBits function, 401
CSP_QuerySize function, 403
CSP_RetrieveCounter function, 405
CSP_RetrieveUniqueld function, 407
CSP_SignData function, 409
CSP_SignDataFinal functlon 412
CSP_SignDatalnit function, 414
CSP_SignDataUpdate functlon 416
CSP_UnwrapKey function, 473
CSP_VerifyData function, 479
CSP_VerifyDataFinal function, 481
CSP_VerifyDatalnit function, 483
CSP_VerifyDataUpdate function, 485
CSP_VerifyDevice function, 487
CSP_VerifyMac function, 489
CSP_VerifyMacFinal functlon 491
CSP_VerifyMaclnit function, 493
CSP_VerifyMacUpdate function, 495
CSP_WrapKey function, 497

CSPs, 11

CSSM, 11

CSSM_AC_PassThrough function, 57
cssm_CcToHandle function, 143
CSSM_ChangeKeyAcl functlon 144
CSSM_ChangeKeyOwner functlon 147
CSSM_CL_CertAbortCache functlon 59
CSSM_CL_CertAbortQuery, 61
CSSM_CL_CertCache function, 63
CSSM_CL_CertCreateTemplate function, 65
CSSM_CL_CertDescribeFormat function, 67
CSSM_CL_CertGetAllFields function, 69

CSSM_CL_ CertGetAIITempIateFleIds function, 71
CSSM_CL_CertGetFirstCachedFieldValue functlon

73
CSSM_CL_CertGetFirstFieldValue function, 75
CSSM_CL_CertGetKeylnfo function, 77

523

Index

CSSM_CL_CertGetNextCachedFieldValue function,
79
CSSM_CL_CertGetNextFieldValue function, 81
CSSM_CL_CertGroupFromVerifiedBundle function,
83
CSSM_CL_CertGroupToSignedBundle function, 85
CSSM_CL_CertSign function, 87
CSSM_CL_CertVerify functlon 89
CSSM_CL_CertVerlny|thKey, 92
CL_CertVerifyWithKey, 92
CSSM_CL_CrlAbortCache function, 94
CSSM_CL_CrlAbortQuery function, 96
CSSM_CL_CrlAddCert function, 98
CSSM_CL_CrlCache function, 101
CSSM_CL_CrlCreateTemplate function, 103
CSSM_CL_CrlIDescribeFormat function, 105
CSSM_CL_CrlGetAllCachedRecordFields function,
107
CSSM_CL_CrlGetAllFields function, 109
CSSM_CL_ CriGetFirstCachedFieldValue function,
111
CSSM_CL_CrlGetFirstFieldValue function, 114
CSSM_CL_CrlGetNextCachedFieldValue function,
116
CSSM_CL_CrlGetNextFieldVvalue function, 118
CSSM_CL_CrlRemoveCert function, 120
CSSM_CL_CrlSetFields function, 122
CSSM_CL_CrlSign routine, 124
CSSM_CL_CrlVerify functlon 127
CSSM_CL_CrlVerifyWithKey functlon 129
CSSM_CL_FreeFields function, 131
CSSM_CL _FreeFieldVvalue function, 133
CSSM_CL_IsCertInCachedCrl function, 135
CSSM_CL_IsCertInCrl function, 137
CSSM_CL_PassThrough function, 139
CSSM_CSP_ChangeLoginAcl functlon 149
CSSM_CSP_ChangeLoginOwner functlon 152
CSSM_CSP_CreateAsymmetricContext functlon
154
CSSM_CSP_CreateDeriveKeyContext function, 156,
165
CSSM_CSP_CreateDigestContext function, 158, 167
CSSM_CSP_CreateKeyGenContext function, 159,
168
CSSM_CSP_CreateMacContext function, 161, 170
CSSM_CSP CreatePassThroughContext functlon
163, 172
CSSM_CSP_CreateRandomGenContext function,
174
CSSM_CSP_CreateSignatureContext function, 176
CSSM_CSP_CreateSymmetricContext function, 178
CSSM_CSP_GetLoginAcl function, 180
CSSM_CSP_GetLoginOwner function, 182
CSSM_CSP GetOperatlonaIStatlstlcs function, 366
CSSM_CSP_Login function, 183
CSSM_CSP_Logout functlon 185
CSSM_CSP ObtalnPrlvateKeyFromPubI|cKey
function, 397
CSSM_CSP_PassThrough function, 399
CSSM_DecryptData function, 245
CSSM_DecryptDataFinal function, 248
CSSM_DecryptDatalnit function, 250
CSSM_DecryptDataUpdate functlon 256
CSSM_DeleteContext function, 186

CSSM_DeleteContextAttributes function, 187
cssm_DeregisterManagerServices function, 189
CSSM_DeriveKey function, 259
CSSM_DigestData function, 262
CSSM_DigestDataClone function, 264
CSSM_DigestDataFinal function, 266
CSSM_DigestDatalnit function, 268
CSSM_DigestDataUpdate function, 270
CSSM_DL_Authenticate function, 272
CSSM_DL_ChangeDbAcl function, 274
CSSM_DL_ChangeDbOwner function, 277
CSSM_DL_CreateRelation function, 279
CSSM_DL_DataAbortQuery function, 281
CSSM_DL_DataDelete function, 283
CSSM_DL_DataGetFirst functlon 285
CSSM_DL_ DataGetFromUnlqueRecordId function,
289
CSSM_DL_DataGetNext function, 292
CSSM_DL_Datalnsert function, 295
CSSM_DL_DataModify function, 298
CSSM_DL_DbClose function, 301
CSSM_DL_DbCreate function, 303
CSSM_DL_DbDelete function, 306
CSSM_DL_DbOpen function, 308
CSSM_DL_DestroyRelation functlon 310
CSSM_DL_FreeNameList function, 312
CSSM_DL_FreeUniqueRecord functlon 314
CSSM_DL_GetDbAcl function, 316
CSSM_DL_GetDbNameFromHandle function, 318
CSSM_DL_GetDbNames function, 320
CSSM_DL_GetDbOwner function, 322
CSSM_DL_PassThrough function, 324
CSSM_EncryptData function, 326
CSSM_EncryptDataFinal function, 329
CSSM_EncryptDatalnit function, 331
CSSM_EncryptDataUpdate function, 337
CSSM_FreeContext function, 190
CSSM_FreeKey function, 340
CSSM_GenerateAlgorithmParams function, 342
CSSM_GenerateKey function, 345
CSSM_GenerateKeyPair function, 350
CSSM_GenerateMac function, 356
CSSM_GenerateMacFinal functlon 358
CSSM_GenerateMaclnit function, 360
CSSM_GenerateMacUpdate functlon 362
CSSM_GenerateRandom function, 364
CSSM_GetAPIMemoryFunctions function, 191
cssm_GetAppMemoryFunctions function, 192
cssm_GetAttachFunctions function, 193
CSSM_GetContext function, 195
CSSM GetContextAttrlbute function, 196
CSSM_GetKeyAcl function, 198
CSSM_GetKeyOwner functlon 200
CSSM_GetModuIeGUIDFromHandIe, 202
cssm_GetModulelnfo function, 203
CSSM_GetPrivilege, 205
CSSM_GetSubserviceUIDFromHandle function, 206
CSSM_GetTimeValue function, 368
CSSM_Init function, 207
CSSM_Introduce function, 211
cssm_IsFuncCallVvalid functlon 213
CSSM LlstAttachedl\/IoduIel\/lanagers function, 215
CSSM_ModuleAttach function, 216
CSSM_ModuleDetach, 219

524

CSSM_ModulelLoad function, 220
CSSM_ModuleUnload function, 222
CSSM_QueryKeySizelnBits function, 401
CSSM_QuerySize function, 403
cssm_ReleaseAttachFunctions function, 224
CSSM_RetrieveCounter function, 405
CSSM_RetrieveUniqueld function 407
CSSM_SetContext function, 225
CSSM_SetPrivilege function 227
CSSM_SignData function, 409
CSSM_SignDataFinal function, 412
CSSM_SignDatalnit function, 414
CSSM_SignDataUpdate function, 416
CSSM_SPI_ModuleAttach function 229
CSSM_SPI_ModuleDetach function 232
CSSM_SPI_ModuleLoad function, 233
CSSM_SPI_ModuleUnload functlon 235
CSSM_Terminate function, 237
CSSM_TP_ApplyCriToDb function, 418
CSSM_TP_CertCreateTemplate function, 421
CSSM_TP_CertGetAllTemplateFields function, 423
CSSM_TP_CertGroupConstruct function, 425
CSSM_TP_CertGroupPrune function, 428
CSSM_TP_CertGroupToTupleGroup functlon 430
CSSM_TP_CertGroupVerify function, 432
CSSM_TP_CertReclaimAbort functlon 435
CSSM_TP_CertReclaimKey function, 437
CSSM_TP_CertRemoveFromCrITemplate function,
440
CSSM_TP_CertRevoke function, 443
CSSM_TP_CertSign function, 446
CSSM_TP ConflrmCredResuIt function, 449
CSSM_TP_CrlCreateTemplate function, 452
CSSM_TP_CrlVerify function, 454
CSSM_TP_FormRequest functlon 457
CSSM_TP_FormSubmit function, 459
CSSM_TP_PassThrough function, 461
CSSM_TP_ReceiveConfirmation function, 463
CSSM_TP_RetrieveCredResult function, 238
CSSM_TP_SubmitCredRequest function, 466
CSSM_TP_TupleGroupToCertGroup functlon 470
CSSM_Unintroduce function, 242
CSSM_UnwrapKey function, 473
CSSM UpdateContextAttrlbutes function, 243
CSSM_VerifyData function, 479
CSSM_VerifyDataFinal function, 481
CSSM_VerifyDatalnit function, 483
CSSM_VerifyDataUpdate function, 485
CSSM_VerifyDevice function, 487
CSSM_VerifyMac function, 489
CSSM_VerifyMacFinal function, 491
CSSM_VerifyMaclnit function, 493
CSSM_VerifyMacUpdate function, 495
CSSM_WrapKey function, 497

D

DecryptData function, 245
DecryptDataFinal function, 248
DecryptDatalnit function, 250
DecryptDatalnitP function, 252
DecryptDataP function, 254
DecryptDataUpdate function, 256
DeregisterDispatchTable function, 504
DeriveKey function, 259

Index

DigestData function, 262
DigestDataClone function, 264
DigestDataFinal function, 266
DigestDatalnit function, 268
DigestDataUpdate function, 270
DL_Authenticate function, 272
DL_ChangeDbAcl funct|on 274
DL_ChangeDbOwner funct|on 277
DL_CreateRelation function, 279
DL_DataAbortQuery function, 281
DL_DataDelete function, 283
DL_DataGetFirst function, 285
DL_DataGetFromUniqueRecordld function, 289
DL_DataGetNext function, 292
DL_Datalnsert function, 295
DL_DataModify functlon 298
DL_DbClose function, 301
DL_DbCreate functlon 303
DL_DbDelete function, 306
DL_DbOpen function, 308
DL_DestroyRelation function, 310
DL_FreeNameList function, 312
DL_FreeUniqueRecord function, 314
DL_GetDbAcl function, 316

DL_ GetDbNameFromHandIe function, 318
DL_GetDbNames, 320
DL_GetDbOwner funct|on, 322
DL_PassThrough function, 324

E

EncryptData function, 326
EncryptDataFinal function, 329
EncryptDatalnit function, 331
EncryptDatalnitP, 333
EncryptDataP, 335
EncryptDataUpdate function, 337
EventNotifyManager function, 505

F
FreeKey function, 340

G

GenerateAlgorithmParams function, 342
GenerateKey function, 345
GenerateKeyP function, 348
GenerateKeyPair function, 350
GenerateKeyPairP function, 354
GenerateMac function, 356
GenerateMacFinal function, 358
GenerateMaclnit function, 360
GenerateMacUpdate function, 362
GenerateRandom function, 364
GetOperationalStatistics function, 366
GetTimeValue function, 368

Initialize function, 507
Initializing CDSA

manual procedure required, 20
Installation

on V7.3o0r7.2-2, 22

on V7.3-1, 20

525

Index

warning against undoing (V7.3-1), 20

K

keys
cryptographic, 13

M

MDS _Initialize function, 370
MDS _Install function, 372
MDS_Terminate function, 374
MDS_Uninstall function, 375
MDSUTIL_FreeModulelnfo function, 376
MDSUTIL_FreeModuleList function, 377
MDSUTIL_GetCredLocationFromGUID function,
378
MDSUTIL_GetModulelnfo function, 380
MDSUTIL_GetModuleManagerInfo function, 382
MDSUTIL_Init function, 384
MDSUTIL_ListModuleManagers function, 385
MDSUTIL_ListModules function, 387
MDSUTIL_Modulelnstall function, 389
MDSUTIL_ModuleManagerlnstall function, 391
MDSUTIL_ModuleManagerUninstall function, 393
MDSUTIL_ModuleUninstall function, 395
MDSUTIL_Term function, 396
ModuleManagerAuthenticate function, 508

O]

ObtainPrivateKeyFromPublicKey function, 397
overview
CDSA, 9

P

PassThrough function, 399
pointer validation checking, 36
PVC, 36

Q

QueryKeySizelnBits function, 401
QuerySize function, 403

R

RefreshFunctionTable function, 510
RegisterDispatchTable function, 512
RetrieveCounter function, 405
RetrieveUniqueld function, 407

S

security context

defining, 13
SignData function, 409
SignDataFinal function, 412
SignDatalnit function, 414
SignDataUpdate function, 416
symmetric algorithms, 13

T

Terminate function, 472, 513
TP_ApplyCrlIToDb function, 418

TP_CertCreateTemplate function, 421
TP_CertGetAllTemplateFields function, 423
TP_CertGroupConstruct function, 425
TP_CertGroupPrune function, 428
TP_CertGroupToTupleGroup function, 430
TP_CertGroupVerify function, 432
TP_CertReclaimAbort function, 435
TP_CertReclaimKey function, 437
TP_CertRemoveFromCrlTemplate function, 440
TP_CertRevoke function, 443

TP_CertSign function, 446
TP_ConfirmCredResult function, 449
TP_CrlCreateTemplate function, 452
TP_CrlVerify function, 454
TP_FormRequest function, 457
TP_FormSubmit function, 459
TP_PassThrough function, 461
TP_ReceiveConfirmation function, 463
TP_SubmitCredRequest function, 466
TP_TupleGroupToCertGroup function, 470

U

UnwrapKey function, 473
UnwrapKeyP function, 477

\Y%

VerifyData function, 479
VerifyDataFinal function, 481
VerifyDatalnit function, 483
VerifyDataUpdate function, 485
VerifyDevice function, 487
VerifyMac function, 489
VerifyMacFinal function, 491
VerifyMaclnit function, 493
VerifyMacUpdate function, 495

W

WrapKey function, 497
WrapKeyP function, 500

526

	Preface
	Intended Audience
	Document Structure
	Related Documents
	How to Order Additional Documentation
	Conventions

	1 Introduction to CDSA
	What Is CDSA?
	CDSA Overview
	Common Security Services Manager (CSSM)
	Service Provider Modules
	Cryptographic Service Providers (CSPs)
	Establishing a Session
	Defining a Security Context
	Using Keys

	Trust Policy (TP) Modules
	Authorization Computation (AC) Modules
	Certificate Library (CL) Modules
	Data Storage Library (DL) Modules

	Elective Module Managers (EMMs)
	Module Directory Services (MDS)

	Maintaining CDSA Integrity
	Self-Check
	Bilateral Authentication
	Secure Linkage Check

	2 Installation and Initialization
	Installation of CDSA on OpenVMS Alpha Version 7.3-2
	Installation of CDSA on OpenVMS Alpha Version 7.3-1
	CDSA Version 2.0 Setup and Initialization
	CDSA Version 1.0 Setup and Initialization
	Warning Against Uninstalling CDSA from OpenVMS Alpha Version 7.3-1 or Higher

	Installation of CDSA on OpenVMS Alpha Version 7.3 or 7.2-2
	After Installation on OpenVMS Alpha Version 7.3 or 7.2-2

	Post-Installation Tasks
	Defining CDSA Symbols
	Backing up the CDSA Database

	3 CDSA Utility Programs
	CDSA$CERTGEN.EXE
	SYNOPSIS
	OPTIONS
	EXAMPLE

	CDSA$ISSUER.EXE
	SYNOPSIS
	OPTIONS
	EXAMPLE

	CDSA$MDS_INSTALL.EXE
	SYNOPSIS
	OPTIONS
	EXAMPLE

	CDSA$MOD_INSTALL.EXE
	SYNOPSIS
	OPTIONS
	EXAMPLE

	CDSA$OUTPUT_ERROR.EXE
	SYNOPSIS
	OPTIONS
	EXAMPLES

	CDSA$SIGN.EXE
	Integrity Signing
	SYNOPSIS
	OPTIONS
	EXAMPLE

	Export Signing
	SYNOPSIS
	OPTIONS
	EXAMPLE

	CDSA$X5092XML.EXE
	SYNOPSIS
	OPTIONS
	EXAMPLE

	4 CDSA Programming Concepts
	Overview of CDSA Programming on OpenVMS
	Compiling a CDSA Program
	Linking a CDSA Program
	CDSA Integrity Checking
	Bilateral Authentication
	Pointer Validation Checking

	Writing Signed Applications
	The Signing Environment
	The Signing Tools
	The Signing Process

	Deploying Signed Applications and Service Provider Modules
	CDSA Example Programs
	DES Encryption/Decryption Example Program
	MDS Example Program
	DES2 Encryption/Decryption Example Program
	DES3 Example Program
	ADDIN Example Program
	DUMMY Example Programs
	DUMMYEMM Example Program
	DUMMYEMMADDIN Example Program

	CDSA Error Resolution
	Decode_CDSA_Error()
	SYNOPSIS
	API:
	RETURN VALUE

	Print_CDSA_Error()
	SYNOPSIS
	API:
	RETURN VALUE

	API Functions
	AC_AuthCompute
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	AC_PassThrough
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertAbortCache
	LIBRARY
	PARAMETERS
	DECRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertAbortQuery
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertCache
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertCreateTemplate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertDescribeFormat
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetAllFields
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetAllTemplateFields
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetFirstCachedFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetFirstFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetKeyInfo
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetNextCachedFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGetNextFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGroupFromVerifiedBundle
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertGroupToSignedBundle
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertSign
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertVerify
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CertVerifyWithKey
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlAbortCache
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlAbortQuery
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlAddCert
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlCache
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlCreateTemplate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlDescribeFormat
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlGetAllCachedRecordFields
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlGetAllFields
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlGetFirstCachedFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlGetFirstFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlGetNextCachedFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlGetNextFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlRemoveCert
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlSetFields
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlSign
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlVerify
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_CrlVerifyWithKey
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_FreeFields
	LIBRARY
	PARAMETERS
	DEFINITIONS
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_FreeFieldValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_IsCertInCachedCrl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_IsCertInCrl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CL_PassThrough
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSP_EventNotify
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	cssm_CcToHandle
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_ChangeKeyAcl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_ChangeKeyOwner
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_CSP_ChangeLoginAcl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_CSP_ChangeLoginOwner
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_CSP_CreateAsymmetricContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateDeriveKeyContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateDigestContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateKeyGenContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateMacContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreatePassThroughContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateDeriveKeyContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateDigestContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateKeyGenContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateMacContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreatePassThroughContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateRandomGenContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateSignatureContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_CreateSymmetricContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	CSSM_CSP_GetLoginAcl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_CSP_GetLoginOwner
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_CSP_Login
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_CSP_Logout
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_DeleteContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_DeleteContextAttributes
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	cssm_DeregisterManagerServices
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_FreeContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetAPIMemoryFunctions
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	cssm_GetAppMemoryFunctions
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	cssm_GetAttachFunctions
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetContextAttribute
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetKeyAcl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetKeyOwner
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetModuleGUIDFromHandle
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	cssm_GetModuleInfo
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_GetPrivilege
	LIBRARY
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	CSSM_GetSubserviceUIDFromHandle
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_Init
	LIBRARY
	PARAMETERS
	DESCRIPTION
	PVC POLICY CONFIGURATION OPTIONS
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_Introduce
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	cssm_IsFuncCallValid
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_ListAttachedModuleManagers
	LIBRARY
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	CSSM_ModuleAttach
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_ModuleDetach
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_ModuleLoad
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_ModuleUnload
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	cssm_ReleaseAttachFunctions
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_SetContext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_SetPrivilege
	LIBRARY
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	CSSM_SPI_ModuleAttach
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_SPI_ModuleDetach
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_SPI_ModuleLoad
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_SPI_ModuleUnload
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_Terminate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_TP_RetrieveCredResult
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_Unintroduce
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	CSSM_UpdateContextAttributes
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DecryptData
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	DecryptDataFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	DecryptDataInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DecryptDataInitP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DecryptDataP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DecryptDataUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETER
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	DeriveKey
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	COMMENTS
	SEE ALSO

	DigestData
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	DigestDataClone
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	DigestDataFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	DigestDataInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DigestDataUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_Authenticate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_ChangeDbAcl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_ChangeDbOwner
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_CreateRelation
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataAbortQuery
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataDelete
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataGetFirst
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataGetFromUniqueRecordId
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataGetNext
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataInsert
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DataModify
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DbClose
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DbCreate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DbDelete
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DbOpen
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_DestroyRelation
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_FreeNameList
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_FreeUniqueRecord
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_GetDbAcl
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_GetDbNameFromHandle
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_GetDbNames
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_GetDbOwner
	LIBRARY
	PARAMETER
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	DL_PassThrough
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	EncryptData
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	EncryptDataFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	EncryptDataInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	EncryptDataInitP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	EncryptDataP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	EncryptDataUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	NOTES FOR API
	NOTES FOR SPI
	SEE ALSO

	FreeKey
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateAlgorithmParams
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES FOR API
	NOTES FOR SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateKey
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateKeyP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateKeyPair
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateKeyPairP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateMac
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES ON API
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateMacFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES ON API
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateMacInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateMacUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	GenerateRandom
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES ON API
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	GetOperationalStatistics
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	GetTimeValue
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDS_Initialize
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDS_Install
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDS_Terminate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDS_Uninstall
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_FreeModuleInfo
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_FreeModuleList
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_GetCredLocationFromGUID
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_GetModuleInfo
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_GetModuleManagerInfo
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_Init
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_ListModuleManagers
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_ListModules
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_ModuleInstall
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_ModuleManagerInstall
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_ModuleManagerUninstall
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_ModuleUninstall
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	MDSUTIL_Term
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	ObtainPrivateKeyFromPublicKey
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	PassThrough
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	QueryKeySizeInBits
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	QuerySize
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	RetrieveCounter
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	RetrieveUniqueId
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	SignData
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES ON API
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	SignDataFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES ON API
	NOTES ON SPI
	RETURN VALUE
	ERRORS
	SEE ALSO

	SignDataInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	SignDataUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TP_ApplyCrlToDb
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertCreateTemplate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertGetAllTemplateFields
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertGroupConstruct
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertGroupPrune
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertGroupToTupleGroup
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertGroupVerify
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertReclaimAbort
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertReclaimKey
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertRemoveFromCrlTemplate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertRevoke
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CertSign
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_ConfirmCredResult
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CrlCreateTemplate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_CrlVerify
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_FormRequest
	LIBRARY
	PARAMETERS
	DESCRIPTION
	ERRORS
	SEE ALSO

	TP_FormSubmit
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_PassThrough
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_ReceiveConfirmation
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_SubmitCredRequest
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TP_TupleGroupToCertGroup
	LIBRARY
	DESCRIPTION
	PARAMETERS
	RETURN VALUE
	ERRORS
	SEE ALSO

	Terminate
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	UnwrapKey
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	UnwrapKeyP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyData
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyDataFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyDataInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyDataUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyDevice
	LIBRARY
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyMac
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyMacFinal
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	COMMENTS FOR SPI
	SEE ALSO

	VerifyMacInit
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	VerifyMacUpdate
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	WrapKey
	LIBRARY
	API PARAMETERS
	SPI PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	WrapKeyP
	LIBRARY
	PARAMETERS
	DESCRIPTION
	NOTES
	RETURN VALUE
	ERRORS
	SEE ALSO

	Elective Module Manager APIs
	DeregisterDispatchTable
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	EventNotifyManager
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	Initialize
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	ModuleManagerAuthenticate
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	RefreshFunctionTable
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	RegisterDispatchTable
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	Terminate
	PARAMETERS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	A Open Source Notice
	Glossary

