
OpenVMS Command Definition,
Librarian, and Message Utilities
Manual
Order Number: AA–QSBDD–TE

April 2001

This manual describes how to use the Command Definition Utility to
modify OpenVMS DCL, how to use the Librarian utility to create and
maintain OpenVMS libraries, and how to use the Message utility to
supplement OpenVMS system messages with messages of your own.

Revision/Update Information: This manual supersedes the OpenVMS
Command Definition, Librarian, and
Message Utilities Manual, Version 7.1.

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS and Tru64 are trademarks of Compaq Information Technologies Group, L.P in the United
States and other countries.

Microsoft, MS-DOS, Visual C++, Windows, and Windows NT are trademarks of Microsoft
Corporation in the United States and other countries.

Intel, Intel Inside, and Pentium are trademarks of Intel Corporation in the United States and other
countries.

Motif, OSF/1, and UNIX are trademarks of The Open Group in the United States and other
countries.

All other product names mentioned herein may be the trademarks or registered trademarks of their
respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6100

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . vii

1 Command Definition Utility

CDU Description . CDU–3
1.1 Command Processing . CDU–3
1.1.1 Command String Components . CDU–3
1.1.2 System and Process Command Tables . CDU–4
1.2 Using CDU . CDU–4
1.3 Choosing a Table . CDU–4
1.3.1 Modifying Your Process Command Table . CDU–5
1.3.2 Adding a System Command . CDU–5
1.3.3 Creating an Object Module . CDU–6
1.4 Writing a Command Definition File . CDU–6
1.4.1 Defining Syntax . CDU–7
1.4.2 Defining Values . CDU–8
1.4.2.1 Built-In Value Types . CDU–8
1.4.2.2 User-Defined Keywords . CDU–9
1.4.3 Defining Command Verbs . CDU–10
1.4.4 Disallowing Entity Combinations . CDU–10
1.4.4.1 Specifying Expression Entities . CDU–11
1.4.4.2 Operators . CDU–14
1.4.5 Identifying Object Modules . CDU–15
1.5 Processing Command Definition Files . CDU–16
1.5.1 Adding Command Definitions to a Command Table CDU–16
1.5.2 Deleting Command Definitions . CDU–17
1.5.3 Creating Object Modules . CDU–17
1.5.4 Creating New Command Tables . CDU–17
1.6 Using Command Language Routines . CDU–18

CDU Usage Summary . CDU–19

CDU File Statements . CDU–20
DEFINE SYNTAX . CDU–21
DEFINE TYPE . CDU–29
DEFINE VERB . CDU–32
IDENT . CDU–37
MODULE . CDU–38

iii

CDU Qualifiers . CDU–39
/ALPHA . CDU–40
/DELETE . CDU–41
/LISTING . CDU–42
/OBJECT . CDU–43
/OUTPUT . CDU–44
/REPLACE . CDU–45
/TABLE . CDU–46
/VAX . CDU–47

CDU Examples . CDU–48

2 Librarian Utility

LIBRARIAN Description . LIB–3
2.1 Types of Libraries . LIB–3
2.2 Structure of Libraries . LIB–4
2.3 Character Case of Library Keys . LIB–4
2.4 Shareable Image Libraries . LIB–5
2.5 Help Libraries . LIB–5
2.5.1 Creating Help Files . LIB–6
2.5.2 Formatting Help Files . LIB–7
2.5.3 Help Text Example . LIB–8
2.5.4 Retrieving Help Text . LIB–9
2.6 Using the Librarian Utility to Save Disk Space . LIB–11
2.7 Librarian Utility (LBR) Routines . LIB–11

LIBRARIAN Usage Summary . LIB–12

LIBRARIAN Qualifiers . LIB–14
/ALPHA . LIB–15
/BEFORE . LIB–16
/COMPRESS . LIB–17
/CREATE . LIB–19
/CROSS_REFERENCE . LIB–21
/DATA . LIB–22
/DELETE . LIB–23
/EXTRACT . LIB–24
/FULL . LIB–25
/GLOBALS . LIB–26
/HELP . LIB–27
/HISTORY . LIB–28
/INSERT . LIB–29
/LIST . LIB–30
/LOG . LIB–31
/MACRO . LIB–32
/MODULE . LIB–33
/NAMES . LIB–34
/OBJECT . LIB–35
/ONLY . LIB–36

iv

/OUTPUT . LIB–37
/REMOVE . LIB–38
/REPLACE . LIB–39
/SELECTIVE_SEARCH . LIB–40
/SHARE . LIB–41
/SINCE . LIB–42
/SQUEEZE . LIB–43
/TEXT . LIB–44
/VAX . LIB–45
/WIDTH . LIB–46

3 Message Utility

MESSAGE Description . MSG–3
3.1 Message Format . MSG–3
3.2 Constructing Messages . MSG–4
3.2.1 The Message Source File . MSG–4
3.2.2 Compiling the Message Source File . MSG–5
3.2.3 Linking the Message Object Module . MSG–6
3.3 Using Message Pointers . MSG–6
3.4 The SET MESSAGE Command . MSG–8
3.5 Message Source Files . MSG–8

MESSAGE Usage Summary . MSG–10

MESSAGE Qualifiers . MSG–11
/ALPHA . MSG–12
/FILE_NAME . MSG–13
/LIST . MSG–14
/OBJECT . MSG–15
/SYMBOLS . MSG–16
/TEXT . MSG–17
/VAX . MSG–18

MESSAGE Commands . MSG–19
Base Message Number Directive . MSG–20
End Directive . MSG–21
Facility Directive . MSG–22
Identification Directive . MSG–24
Literal Directive . MSG–25
Message Definition . MSG–26
Page Directive . MSG–29
Severity Directive . MSG–30
Title Directive . MSG–31

v

MESSAGE Examples . MSG–32

Index

Examples

2–1 Help Text for LIBRARY Command . LIB–8
2–2 HELP LIBRARY Display . LIB–10

Figures

3–1 Message Code . MSG–4
3–2 Creating a Message Pointer . MSG–7

Tables

1–1 Summary of CDU Operators . CDU–15
1–2 How the DEFINE SYNTAX Statement Modifies the Primary DEFINE

Statement . CDU–21
2–1 LIBRARY Command Qualifier Compatibilities LIB–14

vi

Preface

Intended Audience
This manual is intended for programmers and general users of the OpenVMS
operating system.

Document Structure
This manual is divided into three parts.

Chapter 1 describes the Command Definition Utility (CDU) and consists of the
following sections:

• Description—Provides a full description of CDU.

• Usage Summary—Outlines the following information:

– Invoking the utility

– Exiting from the utility

– Directing output

– Restrictions or privileges required

• File Statements—Describes the statements used in building command
definition files, including statement formats, parameters, and examples.

• Qualifiers—Describes qualifiers, including format, parameters, and examples.

• Examples—Provides additional CDU examples.

Chapter 2 describes the Librarian utility (LIBRARIAN) and consists of the
following sections:

• Description—Provides a full description of LIBRARIAN.

• Usage Summary—Outlines the following information:

– Invoking the utility

– Exiting from the utility

– Directing output

• Qualifiers—Describes qualifiers, including format, parameters, and examples.

Chapter 3 describes the Message utility (MESSAGE) and consists of the following
sections:

• Description—Provides a full description of MESSAGE.

• Usage Summary—Outlines the following information:

– Invoking the utility

– Exiting from the utility

vii

• Qualifiers—Describes qualifiers, including format, parameters, and examples.

• Commands—Describes source file statements, including format, parameters,
and examples.

• Examples—Provides additional examples for using message files and pointer
files.

Related Documents
For related information about these utilities, refer to the following documents:

• OpenVMS DCL Dictionary

• OpenVMS Linker Utility Manual

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
Visit the following World Wide Web address for information about how to order
additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

viii

. . . Horizontal ellipsis points in examples indicate one of the
following possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

Vertical ellipsis points indicate the omission of items from
a code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose the choices
in parentheses.

[] In command format descriptions, brackets indicate optional
elements. You can choose one, none, or all of the options.
(Brackets are not optional, however, in the syntax of a directory
name in an OpenVMS file specification or in the syntax of a
substring specification in an assignment statement.)

[|] In command format descriptions, vertical bars separating
items inside brackets indicate that you choose one, none, or
more than one of the options.

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed.

bold text This text style represents the introduction of a new term or the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where device-name contains up to five alphanumeric
characters).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix

1
Command Definition Utility

CDU Description
The Command Definition Utility (CDU) creates, deletes, or changes command
definitions in a command table. Command tables are data structures created by
CDU and used by the command language interpreter (CLI) to parse and evaluate
DIGITAL Command Language (DCL) commands.

There are two types of command tables: system command tables used to parse
system commands and process command tables used to parse process-specific
commands. CDU creates command tables from command definition files, from
existing command tables, or from a combination of these sources. The new table
can be either executable code or an object module.

The following sections describe:

• How DCL processes commands

• How to write command definitions

• How to modify command tables

• How to process command definitions

• How to use command language routines in programs

1.1 Command Processing
To write command definitions and modify command tables, you must understand
how the DCL command interpreter processes commands. The process begins
when DCL prompts you for a command and you enter an appropriate command
string. Then DCL processes the command string from left to right using
definitions in your process command table. Your process command table contains
a list of valid commands and their attributes.

To parse a command string, DCL calls the CLI$DCL_PARSE routine to
check each entity in the command string. If each entity is valid, DCL sets
up an internal representation of the command string. Then DCL uses the
CLI$DISPATCH routine to invoke the image or routine that executes the
command. If the command string is not valid, DCL issues an error message.

The image or routine that executes a command must call the CLI$PRESENT
and CLI$GET_VALUE routines to get information about the entities that were
present in the command string. The image or routine uses this information to
determine how to execute the command.

1.1.1 Command String Components
A command string can contain a verb that specifies the command to be executed,
a parameter that specifies the verb object, and a qualifier that describes or
modifies the action taken by the verb.

The DCL command definitions describe the allowable parameter values for each
command. The command definitions also indicate whether or not qualifiers can
take values and the value types that can be specified. Examples of qualifier
values include file specifications, integer values, keywords, and character strings.
Some commands (SET and SHOW) accept keywords as parameters. A keyword
is a predefined string that can be used as a value for a parameter, qualifier, or
another keyword.

Command Definition Utility CDU–3

CDU Description

The following example illustrates the components of a DCL command string:

$ DIFFERENCES/MODE=ASCII MYFILE.DAT YOURFILE.DAT

DIFFERENCES is the verb and /MODE is a qualifier that has as its value the
keyword ASCII. MYFILE.DAT and YOURFILE.DAT are file specifications that
function as the command parameters.

The next example shows a command that uses a keyword as a parameter value:

$ SHOW DEFAULT

Here, SHOW is the verb and DEFAULT is a keyword used as a parameter.

1.1.2 System and Process Command Tables
When you log in, the system command table in SYS$LIBRARY:DCLTABLES.EXE
is copied to your process and DCL uses this process command table to parse
command strings. Changing your process command table does not affect
SYS$LIBRARY:DCLTABLES.EXE. To change the DCL tables, you need the
CMKRNL privilege.

The system command table is created from source files called command definition
files. A command definition file contains statements that name and describe
verbs. Compaq maintains the command definition files for DCL; they are not
shipped with your system.

1.2 Using CDU
To use CDU:

• Determine which table you want to create or modify. In general, you modify
your process command table or the DCL table in SYS$LIBRARY, or you
create an object module for a new table.

• Choose a name and syntax for the command you define. Use a text editor to
create a command definition file that defines the command.

• Use the DCL command SET COMMAND to add your command definition to
the appropriate command table. You can modify your process command table
or a specified command table file. You can also create an object module from
your command definition file.

• Write the code for the image or routine that is invoked by the command you
are adding to the command table.

Note that the foreign command facility is an alternate way to define command
verbs. The foreign command allows you to pass information about a command
string to an image. However, if you use the foreign command facility, your
program must parse the command string; DCL does not parse the command
string for you. For information about how to define a foreign command, see the
OpenVMS User’s Manual.

1.3 Choosing a Table
The type of table you are modifying or creating affects the way that you write a
command definition, process this definition, and write the code that executes your
command.

The most common tables that you modify or create include your process command
table, the DCL table in SYS$LIBRARY, and new tables that allow your programs
to process commands.

CDU–4 Command Definition Utility

CDU Description

1.3.1 Modifying Your Process Command Table
To add a command to your process command table, define the new command in
a command definition file, specifying the name of an image for the command to
invoke. Then use SET COMMAND to add the new command to your process
command table and to copy the new table back to your process. For example, the
following command adds a command in NEWCOMMAND.CLD to your process
command table:

$ SET COMMAND NEWCOMMAND.CLD

Now you can enter the new command after the DCL prompt. DCL will parse
the command and then invoke the image that executes the command. Note that,
when you write the source code for the new command, you must use the command
language routines CLI$PRESENT and CLI$GET_VALUE to obtain information
about the command string. Refer to the OpenVMS Utility Routines Manual for
additional information.

The first example in the CDU Examples section shows how to add a new
command to your process command table and how to write the program that
executes the new command.

To make the command in NEWCOMMAND.CLD available to you each time you
log in, include the SET COMMAND command in your LOGIN.COM file.

1.3.2 Adding a System Command
Following are the instructions to add a command to the DCL command table in
SYS$LIBRARY:

• Define the command in a command definition file, specifying the name of an
image for the command to invoke.

• Use SET COMMAND to add the new definition to the DCL command table
and copy the new table back to SYS$LIBRARY:

$ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES.EXE -
_$ /OUTPUT=SYS$COMMON:[SYSLIB]DCLTABLES.EXE NEWCOMMAND.CLD

• To make the new command available to other users, use the INSTALL utility:

$ INSTALL REPLACE SYS$LIBRARY:DCLTABLES.EXE

• To make the new command available to existing interactive processes, you
can log out and log in again, or execute the following command:

$ SET COMMAND/TABLE=SYS$LIBRARY:DCLTABLES.EXE

Note

To ensure that the modified tables are written to the cluster common root,
the output file specification is: SYS$COMMON:[SYSLIB]. This ensures
that the new command is available to all systems sharing the same
system disk. This also avoids potential problems with future changes to
the command tables due to copies of DCLTABLES being present in the
SYS$SPECIFIC:[SYSLIB] and SYS$COMMON:[SYSLIB] areas referenced
by SYS$LIBRARY:.

To locate potentially errant copies of the command tables, use the
following command:

$ DIR SYS$SPECIFIC:[SYSLIB]DCLTABLES.EXE

Command Definition Utility CDU–5

CDU Description

1.3.3 Creating an Object Module
To create an object module for a new command table, define the commands in
a command definition file, specifying the name of a routine in a program that
executes the command. Then use SET COMMAND with the /OBJECT qualifier
to create an object module from the command definition file. For example:

$ SET COMMAND/OBJECT NEWCOMMAND

Now link this object module with the program that uses the table. Note
that, when you link a command table with your program, the program must
perform the functions of a command interpreter. That is, the program must
obtain the command string and call the parsing routine CLI$DCL_PARSE to
verify and create an internal representation of it. The program must also call
CLI$DISPATCH to invoke the appropriate routine. Each command routine must
use the DCL interface routines CLI$PRESENT and CLI$GET_VALUE to get
information about the command string that invoked the routine.

The second example in the CDU Examples section shows how to write and
process command definitions for an object module and how to write a program
that parses commands and invokes routines.

1.4 Writing a Command Definition File
A command definition file contains information that defines a command and
its parameters, qualifiers, and keywords. In addition, the command definition
file provides information about the image or routine that is invoked after the
command string is successfully parsed.

Use a text editor to create a command definition file that contains the statements
you need to describe your new command; you can use clauses to specify additional
information for statements. The default file type for a command definition file is
.CLD.

Use exclamation points to delimit comments. An exclamation point causes all
characters that follow it on a line to be treated as comments.

Any statement and its clauses can be coded using several lines. No continuation
character is necessary. (However, you cannot split names across two lines.) If you
place a statement on one line, you can separate clauses in the statement with
either commas or spaces.

You cannot abbreviate statement or clause names in the command definition
language. All names (for example, DEFINE SYNTAX, PARAMETER, and so
forth) must be spelled out completely.

Most statements and clauses accept user-supplied information such as verb
names, qualifier names, image names, and so on. You can specify this information
as a symbol or as a string.

If the statement requires that a term be specified as a string, enclose the term in
quotation marks. A string can contain any alphanumeric or special characters.
To include quotation marks within a string, use two quotation marks (""). For
example, PARAMETER P1, LABEL=PORT, PROMPT="Enter ""one"" value"
produces the following:

CDU–6 Command Definition Utility

CDU Description

Enter "one" value

Note

To maintain compatibility with earlier releases, CDU accepts character
strings that are not enclosed in quotation marks. However, Compaq
recommends that you surround character strings in quotation marks. If
you do not enclose a string in quotation marks, all alphabetic characters
are converted to uppercase characters (capital letters).

If a statement requires that a term be specified as a symbol, do not enclose the
term in quotation marks. A symbol name must start with a letter or a dollar
sign. It can contain from 1 to 31 letters, numbers, dollar signs, and underscore
characters.

The Command Definition Language includes the following statements:

• DEFINE SYNTAX syntax-name [verb-clause[, . . .]]

• DEFINE TYPE type-name [type-clause[, . . .]]

• DEFINE VERB verb-name [verb-clause[, . . .]]

• IDENT ident-string

• MODULE module-name

The following sections provide an overview of each CDU statement. See the CDU
File Statements section for more detailed descriptions of each type of statement.

1.4.1 Defining Syntax
The DEFINE SYNTAX statement allows a command verb to use alternative
syntax depending on the parameters, qualifiers, and keywords that are present
in the command string. It redefines the syntax for a command verb previously
defined by a DEFINE VERB or DEFINE TYPE statement, or it can be used
to redefine the syntax for a command verb redefined by a previous DEFINE
SYNTAX statement.

To define a syntax change, you must provide two DEFINE statements: a
primary DEFINE statement and a secondary DEFINE statement. The primary
DEFINE statement defines the affected command verb and it must include a
SYNTAX=syntax-name verb clause to point to the secondary DEFINE statement.
The secondary DEFINE statement defines the alternate syntax.

For example, you can write a command definition that uses a different syntax
for a command verb when a particular qualifier is explicitly present, that is, not
by default. When you include the specified qualifier in the command string, the
syntax defined in the secondary DEFINE statement applies to the command verb
described by the primary DEFINE statement.

This is the format for the DEFINE SYNTAX statement:

DEFINE SYNTAX syntax-name [verb-clause,[,...]]

The syntax-name verb clause is the name of the alternate syntax definition. The
verb clause specifies additional information about the syntax. You can use the
same verb clauses in a DEFINE SYNTAX statement as are allowed in a DEFINE
VERB statement, with one exception: you cannot use the SYNONYM verb clause
with DEFINE SYNTAX.

Command Definition Utility CDU–7

CDU Description

The following example shows how a syntax change is used to specify an alternate
command syntax when the /LINE qualifier is specified:

DEFINE VERB ERASE
IMAGE "DISK1:[MYDIR]ERASE"
QUALIFIER SCREEN
QUALIFIER LINE, SYNTAX=LINE !

DEFINE SYNTAX LINE "
IMAGE "DISK1:[MYDIR]LINE"
QUALIFIER NUMBER, VALUE(REQUIRED)

! The DEFINE VERB statement defines the verb ERASE. This verb accepts
two qualifiers, /SCREEN and /LINE. The qualifier /LINE uses an alternate
syntax, specified with the SYNTAX=LINE clause. If you enter the command
ERASE/LINE, the definitions in the DEFINE SYNTAX LINE statement
override the definitions in the DEFINE VERB ERASE statement. However,
if you enter the command ERASE/SCREEN or if you do not specify any
qualifiers, the definitions in the DEFINE VERB ERASE statement apply.

" The DEFINE SYNTAX statement defines an alternate syntax called LINE.
If you enter the command ERASE with the /LINE qualifier, the image
DISK1:[MYDIR]LINE.EXE is invoked. The new syntax allows the qualifier
/NUMBER, which requires a value.

1.4.2 Defining Values
To define values for parameters, qualifiers, or keywords, use the VALUE clause.
When you use the VALUE clause, you can further define the value type with the
TYPE clause.

With the TYPE clause, you can specify that a value type must be a built-in
type (for example, a file specification), or you can specify that a value must be a
user-defined keyword. Section 1.4.2.1 lists the built-in value types; Section 1.4.2.2
describes how to specify a user-defined keyword.

When you use the VALUE clause and do not define a value type, DCL processes
the value in the following way. If the value is not enclosed in quotation marks,
then DCL converts letters to uppercase and compresses multiple spaces and
tabs to a single space. If the value is enclosed in quotation marks, then DCL
removes the quotation marks, preserves the case of letters, and does not compress
tabs and spaces. To include quotation marks within a quoted string, use two
contiguous quotation marks ("") in the place you want the quotation marks to
appear.

1.4.2.1 Built-In Value Types
The Command Definition Language provides the following built-in value types:

$ACL The value must be an access control list.

$DATETIME The value must be an absolute time or a combination time.
DCL converts truncated time values, combination time values,
and keywords for time values (such as TODAY) to absolute
time format. DCL fills blank date fields from the current
system date and fills omitted time fields with zeros.

$DELTATIME The value must be a delta time. DCL fills missing fields with
zeros.

$EXPRESSION The value must be a DCL-style expression. DCL evaluates the
expression and provides the results.

CDU–8 Command Definition Utility

CDU Description

$FILE The value must be a valid file specification.

$NUMBER The value must be an integer represented by either decimal,
octal, or hexadecimal numbers.

$PARENTHESIZED_
VALUE

The value must be enclosed in parentheses. Note that DCL
does not remove the parentheses.

$QUOTED_STRING The value must be a string enclosed in quotation marks. Note
that DCL does not remove the quotation marks.

$REST_OF_LINE DCL treats the rest of the line literally as the specified value,
ignoring spaces or punctuation marks. DCL does not remove
quotation marks when processing the string.

The following example shows a parameter that must be specified as a file
specification:

DEFINE VERB PLAY
IMAGE "DISK1:[MYDIR]PLAY"
PARAMETER P1, VALUE(TYPE=$FILE)

1.4.2.2 User-Defined Keywords
The DEFINE TYPE statement defines keywords that are acceptable for use as
values for various command entities, including parameters, qualifiers, or other
keywords.

To indicate that a command entity requires a keyword, use a VALUE clause of
the following form in a definition statement:

DEFINE SYNTAX VALUE(TYPE=type-name)

The type-name points to the DEFINE TYPE statement that specifies the
allowable keywords for the entity.

This is the format for the DEFINE TYPE statement:

DEFINE TYPE type-name [type-clause[,...]]

The type-name is the name of the keyword list, and the type-clause lists the
acceptable keywords. Each type clause begins with the keyword KEYWORD,
followed by one or more keywords that can be used with the parameter, qualifier,
or keyword that references the keyword list. The next example includes two
type-clauses in the DEFINE TYPE statement:

KEYWORD FAST, DEFAULT
KEYWORD SLOW

The following example illustrates the use of a DEFINE TYPE statement in
conjunction with a DEFINE VERB statement:

DEFINE VERB SKIM !
IMAGE "USER:[TOOLS]SKIM"
QUALIFIER SPEED, VALUE(TYPE=SPEED_KEYWORDS) "

DEFINE TYPE SPEED_KEYWORDS #
KEYWORD FAST, DEFAULT
KEYWORD SLOW

! The DEFINE VERB statement defines a verb, SKIM, which invokes the
image [TOOLS]SKIM.EXE and accepts the qualifier /SPEED.

" The VALUE clause indicates that the /SPEED qualifier accepts a list of
keywords as defined by the DEFINE TYPE SPEED_KEYWORDS statement.

Command Definition Utility CDU–9

CDU Description

The DEFINE TYPE statement lists the keywords that can be used
with the /SPEED qualifier; you can specify SKIM/SPEED=FAST or
SKIM/SPEED=SLOW. If you specify the /SPEED qualifier without a value,
the default is FAST.

1.4.3 Defining Command Verbs
The DEFINE VERB statement defines a new command verb and specifies
its characteristics. You can define any number of verbs in a single command
definition file.

The format for the DEFINE VERB statement is as follows:

DEFINE VERB verb-name [verb-clause[,...]]

The verb name is the name of the command. A verb clause specifies additional
information about the verb. Verb clauses can appear in any order in the command
definition file. Verb clauses are optional.

You can specify the following verb clauses:

DISALLOW Controls the use of an entity or a combination of entities.

NODISALLOWS Permits all entities and entity combinations.

IMAGE Specifies an image to be invoked by the verb.

PARAMETER Defines a command parameter.

NOPARAMETERS Disallows parameters.

QUALIFIER Defines a command qualifier.

NOQUALIFIERS Disallows qualifiers.

ROUTINE Specifies a routine to be invoked by the verb.

SYNONYM Specifies a verb synonym.

The following example illustrates a DEFINE VERB statement:

DEFINE VERB SEARCH !
IMAGE "SEARCH" "
PARAMETER P1, LABEL=SOURCE, PROMPT="File", VALUE(REQUIRED) #

! The DEFINE VERB statement names the verb SEARCH.

" The IMAGE verb clause identifies the image to be invoked at run time.

The PARAMETER verb clause defines the first parameter to appear after the
verb in the command string. LABEL, PROMPT, and VALUE are parameter
clauses that further define the parameter. LABEL defines a name that the
image uses to refer to the parameter. PROMPT indicates the prompt string to
be issued if you do not specify the parameter in the command string. VALUE
uses the REQUIRED clause to indicate that the parameter must be present
in the command string.

1.4.4 Disallowing Entity Combinations
When you define a verb, you can use the DISALLOW verb clause to selectively
disallow the use of one or more entities with the verb.

The DISALLOW verb clause has the following format:

DISALLOW expression

CDU–10 Command Definition Utility

CDU Description

The expression in the clause specifies the disallowed entities and you can use
any of the various logical operators (exclusive-OR, AND, OR, and so forth) to
define them. When a command string is parsed, each entity in the expression is
tested to determine if the entity is present (true) or absent (false). If an entity is
present by default but is not explicitly present in the command string, the entity
is evaluated as absent (false).

After each entity is evaluated, the logical operations are performed. If the result
is true, the command string is disallowed. If the result is false, the command
string is valid.

For example, a command definition might contain a DEFINE VERB statement
that defines the verb SPORTS with three qualifiers: /TENNIS, /BOWLING, and
/BASEBALL. However, you might want to make the qualifiers mutually exclusive.
The following example shows how to use the DISALLOW verb clause to put this
restriction into the command definition file:

DEFINE VERB SPORTS
IMAGE "DISK3:[WILSON]SPORTS"
QUALIFIER TENNIS
QUALIFIER BOWLING
QUALIFIER BASEBALL
DISALLOW ANY2(TENNIS, BOWLING, BASEBALL)

The DISALLOW verb clause indicates that a command string is invalid if it
contains more than one of the qualifiers /TENNIS, /BOWLING, or /BASEBALL.

Note that, when you specify any entity in a DISALLOW expression, the search
context is the entire command string. Therefore, local qualifiers are treated as if
they were global. The following example shows the global context of the search:

DEFINE VERB TEST
IMAGE "DISK3:[WORK]TEST"
PARAMETER P1
PARAMETER P2
QUALIFIER QUAL1
QUALIFIER QUAL2,PLACEMENT=LOCAL
QUALIFIER QUAL3,PLACEMENT=LOCAL
DISALLOW P1 AND QUAL1
DISALLOW QUAL2 AND QUAL3

Thus, the following two commands would be disallowed:

TEST P1 P2/QUAL1

TEST P1/QUAL2 P2/QUAL3

The global search context applied to local qualifiers is used only with DISALLOW
processing, not with normal command parsing.

1.4.4.1 Specifying Expression Entities
When you specify entities in an expression, you need to uniquely identify the
entities that are disallowed. You can specify an entity using one of the following:

• A parameter, qualifier, or keyword name or label

• A keyword path

• A definition path

Command Definition Utility CDU–11

CDU Description

Names and Labels
You can refer to a parameter or qualifier using its name or label if the entity is
defined in the current definition. To refer to a keyword, you can use its name or
label if the keyword is in a keyword path that starts from the current definition,
and if the keyword name or label is unique. (See the next subsection for more
information about keyword paths.)

If the LABEL=label-name keyword is used to assign a label to an entity, use the
label name to refer to the entity. Otherwise, use the entity name.

The following example disallows combinations of entities:

DEFINE VERB COLOR
IMAGE "WORK:[JUDY]COLOR"
QUALIFIER RED
QUALIFIER BLUE
QUALIFIER GREEN, VALUE(TYPE=GREEN_AMOUNT)
DISALLOW RED AND ALL
DISALLOW BLUE AND ALL

DEFINE TYPE GREEN_AMOUNT
KEYWORD ALL
KEYWORD HALF

In this example, you can use the qualifier names RED and BLUE in the
DISALLOW verb clause because both names are used in the current definition.
You can use the keyword ALL because it is in a keyword path that starts within
the current definition (the TYPE=GREEN_AMOUNT qualifier clause starts the
path) and the keyword name is unique.

The DISALLOW clauses indicate that the following command strings are not
valid:

$ COLOR/RED/GREEN=ALL
$ COLOR/BLUE/GREEN=ALL

To refer to a parameter or qualifier in another definition or to refer to a keyword
whose path begins in another DEFINE statement, you must use a definition
path.

Keyword Paths
A keyword path provides a way to uniquely identify a keyword. You can refer
to a keyword using a keyword path if the keyword is in a path that starts from
the current definition and if the keyword name or label is not unique. You can
also use a keyword path if the same keyword can be used with more than one
parameter or qualifier.

A keyword path contains a list of entity names or labels that are separated by
periods. The first name in a keyword path is the name (or label) of the first entity
that references the keyword’s value type definition. A keyword path can contain
up to eight names (the first parameter or qualifier definition, plus seven DEFINE
TYPE keyword definitions).

If a keyword is assigned a label name, use the label name in the keyword path.
Otherwise, use the keyword name. You can omit names that are not needed to
resolve a keyword reference from the beginning of a keyword path. However, you
must include enough names to uniquely reference the keyword.

CDU–12 Command Definition Utility

CDU Description

The following command string illustrates a situation that requires keyword paths
to uniquely identify keywords. In this command string, you can use the same
keywords with more than one qualifier. (In the command definition file, two
qualifiers refer to the same DEFINE TYPE statement.)

$ NEWCOMMAND/QUAL1=(START=5,END=10)/QUAL2=(START=2,END=5)

The keyword path QUAL1.START identifies the keyword START when it is used
with QUAL1; the keyword path QUAL2.START identifies the keyword START
when it is used with QUAL2. The name START is an ambiguous reference if used
alone.

To disallow use of the keyword QUAL1.START when a third qualifier (QUAL3) is
present, use the following line in the command definition file:

DISALLOW QUAL1.START AND QUAL3

Although you cannot use QUAL1.START when QUAL3 is present, you can still
use QUAL2.START with QUAL3.

The following example contains a keyword (ALL) that appears in two DEFINE
TYPE statements:

DEFINE VERB COLOR
IMAGE "WORK:[JUDY]COLOR"
QUALIFIER RED, VALUE(TYPE=RED_AMOUNT)
QUALIFIER GREEN, VALUE(TYPE=GREEN_AMOUNT)
DISALLOW RED AND GREEN.ALL
DISALLOW GREEN AND RED.ALL

DEFINE TYPE RED_AMOUNT
KEYWORD ALL
KEYWORD MIXED

DEFINE TYPE GREEN_AMOUNT
KEYWORD ALL
KEYWORD HALF

In this example, you must use the keyword path RED.ALL to refer to the ALL
keyword when it is used in the value type definition RED_AMOUNT; you must
use the keyword path GREEN.ALL to refer to the ALL keyword when it is used
in the value type definition GREEN_AMOUNT.

Definition Paths
A definition path links a syntax definition to an entity that is defined in another
DEFINE statement. For example, a definition path is needed when a syntax
definition provides new disallow clauses for parameters or qualifiers that are
defined in a primary definition.

A definition path has the following format:

<definition-name>entity-spec

The definition name is the name of the DEFINE statement where the entity is
defined or the keyword path begins. The entity specification can be an entity
name, a label, or a keyword path. The angle brackets are required.

For example:

DISALLOW <SKIP>FIRST

This clause disallows a command string if the entity FIRST (specified in the
DEFINE VERB statement for the command verb SKIP) is present.

Command Definition Utility CDU–13

CDU Description

The next example uses a keyword path and a definition path:

DISALLOW <FILE>BILLS.ELECT AND GAS

This clause disallows a command string if the entity described by the keyword
path BILLS.ELECT (which originates in the DEFINE VERB statement for the
command verb FILE) is present.

CDU does not check a definition path to determine whether the path refers to
an entity that is valid in a given context. If you use a definition path to specify
an entity that is not valid in a particular context, results are unpredictable. For
example, if you try to disallow the qualifier NOTES in the DEFINE SYNTAX
statement, the entity NOTES would not be recognized as valid because the path
to BILL_TYPES is not established in the DEFINE VERB statement for the
command verb READ.

DEFINE VERB FILE
QUALIFIER BILLS, SYNTAX=BILL_TYPES
QUALIFIER RECEIPTS

DEFINE VERB READ
QUALIFIER NOTES

DEFINE SYNTAX BILL_TYPES
DISALLOW <READ>NOTES

Although the DISALLOW clause correctly identifies an entity in the command
definition file, this entity is not valid in the DEFINE SYNTAX statement.
However, the clause DISALLOW <FILE>RECEIPTS is valid in the DEFINE
SYNTAX statement. The DEFINE SYNTAX statement inherits the qualifier
RECEIPTS from the primary DEFINE statement (FILE) because no qualifiers
are specified.

See the description of the DEFINE SYNTAX statement in the CDU File
Statements section for more information about how entities are inherited by
DEFINE SYNTAX statements.

1.4.4.2 Operators
A command definition can include one or more expressions of the relationship
between an action verb and one or more objects of the verb (entities) that can be
qualifiers, parameters, or keywords in various combinations. For example, the
following expression states that the command is disallowed if it contains both of
the previously defined qualifiers SINCE and BEFORE:

DISALLOW SINCE AND BEFORE

The logical operator AND stipulates that the command is invalid only when
both qualifiers are present. When an expression contains logical operators, the
operators are evaluated after the related command entities are determined to be
present (logical true) or absent (logical false). If the result of the expression
is true (that is, if both qualifiers are present), the command is disallowed.
Conversely, if the result is false (one or none of the qualifiers is present), the
command is accepted.

Table 1–1 shows the operators you can use in command definition expressions and
the order in which CDU evaluates these operators. The highest precedence value
is 1. When an expression contains two or more operators of equal precedence,
CDU evaluates the leftmost operator first.

CDU–14 Command Definition Utility

CDU Description

Table 1–1 Summary of CDU Operators

Operator Precedence Meaning

ANY2 1 True if any two or more of the entities listed are
present

NEG 1 True if the negated form of the entity is present

NOT 1 True if the entity is not present or if an entity is
present by default

AND 2 True if both entities are present

OR 3 True if either entity is present

The following example shows how to use the AND operator:

DISALLOW TERMINAL AND PRINTER

This statement disallows the command string if both entities (TERMINAL and
PRINTER) are present.

You can use parentheses to override the order in which operations are evaluated;
operations within parentheses are evaluated first. For example:

DISALLOW FAST AND (SLOW OR STILL)

The parentheses force the OR operator to be evaluated before the AND operator.
Therefore, if the result of SLOW OR STILL is true, and if FAST is present in the
command string, then the string is disallowed.

1.4.5 Identifying Object Modules
Use the MODULE and IDENT statements to provide identifying information
if your command definition file is to create an object module. (You can create
an object module from a command definition file with the command SET
COMMAND/OBJECT. The object module contains a command table that you
can link with your program.)

The MODULE statement assigns a symbolic name to the object module containing
the command table. This is the format for the MODULE statement:

MODULE module-name

The module-name is the symbolic name for the object module.

The IDENT statement provides additional information in a quoted string format
to identify the module. Typically, this might be the date the module was created
or the name of the creator. This is the format for the IDENT statement:

IDENT ident-string

The ident-string is a quoted string having up to 31 characters.

The following sample command definition file illustrates the use of the MODULE
and IDENT statements:

MODULE TABLE !
IDENT "Updated 4/15/92" "

DEFINE VERB SAVE #
ROUTINE SAVE_ROUT

Command Definition Utility CDU–15

CDU Description

DEFINE VERB GET #
ROUTINE GET_ROUT

! The MODULE statement assigns the name TABLE to the command table
that CDU creates when you use the command SET COMMAND/OBJECT to
develop an object module for the new command.

" The IDENT statement provides additional identifying information. In this
example, it shows the date when the command definition file was updated.

The DEFINE VERB statements define command verbs that can be used by
the main program to invoke appropriate routines.

1.5 Processing Command Definition Files
A command definition file must be translated into an executable command table
before the commands in the table can be parsed and executed. To perform this
translation, use the DCL command SET COMMAND to invoke the Command
Definition Utility.

The command SET COMMAND has the following modes:

SET COMMAND/DELETE Deletes command definitions from a command table

SET COMMAND/OBJECT Creates an object file from a command definition file

SET COMMAND/REPLACE Adds or replaces definitions in a command table using
definitions from a command definition file

The /DELETE, /OBJECT, and /REPLACE qualifiers are mutually exclusive; you
can use only one SET COMMAND mode in a command string. In addition to the
qualifiers that specify modes, SET COMMAND provides the following qualifiers:

/[NO]LISTING Controls whether an output listing is created

/[NO]OUTPUT Controls where the modified command table should be written

/TABLE Specifies the command table that is to be modified

See the CDU Qualifiers section for additional information.

1.5.1 Adding Command Definitions to a Command Table
Use the /REPLACE qualifier to add or replace verbs in the command table. By
default, SET COMMAND uses the /REPLACE mode to add commands to your
process command table and to return the modified command table to your process.

The following example shows how to add the new command SKIP to your process
command table:

$ SET COMMAND SKIP

In this example, SET COMMAND adds the definitions from the command
definition file SKIP.CLD to your process command table. The modified table
replaces your original process command table. The /REPLACE qualifier is
present by default, so you do not need to explicitly specify it in the command
string.

To modify a command table other than your process table, use the /TABLE
qualifier and the /OUTPUT qualifier.

CDU–16 Command Definition Utility

CDU Description

1.5.2 Deleting Command Definitions
Use the /DELETE qualifier to delete a command name from a command table. By
default, commands are deleted from your process command table. The following
example shows how to delete the command SKIP from your process command
table:

$ SET COMMAND/DELETE=SKIP

1.5.3 Creating Object Modules
Use the /OBJECT qualifier to create an object module from a command definition
file. When you enter the following sample command, CDU creates an object
module, NEWCOMS.OBJ, containing a command table with the verb definitions
from NEWCOMS.CLD:

$ SET COMMAND/OBJECT NEWCOMS

You can then link NEWCOMS.OBJ with a program that parses commands using
the new command table.

1.5.4 Creating New Command Tables
You cannot use the /OBJECT qualifier to create an object module from a command
definition file that contains the IMAGE clause. However, you can create an empty
command table to which you can add verbs that invoke images. The following is
a step-by-step example of how to do this:

1. Create an empty command table by developing a command definition file
that contains only a MODULE statement to define the module name and
an IDENT statement. In the following example, CDU creates the empty
command table, TEST_TABLE, from a command definition file named TEST_
TABLE.CLD:

MODULE TEST_TABLE
IDENT "New command table"

2. Create an object module (TEST_TABLE.OBJ) from TEST_TABLE.CLD:

$ SET COMMAND/OBJECT TEST_TABLE.CLD

3. Link TEST_TABLE.OBJ to create a shareable image, TEST_TABLE.EXE:

$ LINK/SHARE/NOTRACEBACK TEST_TABLE

4. Create a command definition file that defines verbs that invoke images. In
the following example, the command definition file VERBS.CLD includes two
statements that call existing images:

DEFINE VERB PASS
IMAGE "DISK4:[ROSEN]PASS"

DEFINE VERB THROW
IMAGE "DISK4:[ROSEN]THROW"

.

.

.

5. Add the new commands in VERBS.CLD to the empty command table in
TEST_TABLE.EXE and write the modified table back to the file TEST_
TABLE.EXE. The /TABLE and /OUTPUT qualifiers specify the input and
output table files. For example:

Command Definition Utility CDU–17

CDU Description

$ SET COMMAND/TABLE=TEST_TABLE.EXE/OUTPUT=TEST_TABLE.EXE VERBS

Note that the version number of the output file is one greater than the version
number of the input file. If you do not explicitly specify an output file using
the /OUTPUT qualifier, CDU replaces your process command table with the
modified command table.

1.6 Using Command Language Routines
A program invoked by a command that you have added to your process (or
system) command table needs information about the command string that
invoked it. The program can obtain this information by calling the appropriate
command language routine:

CLI$PRESENT Determines if an entity is present in the command string

CLI$GET_VALUE Gets the value of the next entity in the command string

CLI$DCL_PARSE Parses a command string

CLI$DISPATCH Invokes the routine that corresponds to the verb most recently
parsed

When you use CDU to add a new command, use the CLI$PRESENT and
CLI$GET_VALUE routines from the program invoked by the command to get
information about the command string that called the program.

When you use CDU to create and link an object module that includes a command
table, use the CLI$DCL_PARSE and CLI$DISPATCH routines to parse the
command string and to execute the command. Then use the CLI$PRESENT and
CLI$GET_VALUE routines within the routines that execute the command.

The CDU Examples section shows two programs that call these routines. For
more information about the command language routines, see the OpenVMS
Utility Routines Manual.

CDU–18 Command Definition Utility

CDU Usage Summary

The Command Definition Utility (CDU) creates, deletes, or changes command
definitions in a command table. CDU uses either an existing command table, a
file that contains command definitions, or a combination of these, to create a new
command table. The output table can be part of an executable image or an object
module.

You invoke CDU with the DCL command SET COMMAND together with the
appropriate qualifiers.

Format

SET COMMAND [filespec[, . . .]]

Command Parameter
filespec[, . . .]
Specifies the name of one or more command definition files (default file type
.CLD). If you specify two or more files, separate them with commas.

Wildcard characters are allowed in the file specification.

Usage Summary
Use the DCL command SET COMMAND to invoke CDU. SET COMMAND has
the following modes:

SET COMMAND/DELETE Deletes command definitions from a command table

SET COMMAND/OBJECT Creates an object module from a command
definition file

SET COMMAND/REPLACE Adds or replaces definitions in a command table
using definitions from a command definition file

The /DELETE, /OBJECT, and /REPLACE qualifiers establish the various SET
COMMAND modes and are mutually exclusive; that is, you can use only one of
these qualifiers in a command string.

The DCL prompt reappears on your screen when CDU finishes processing the
command definition file or table.

By default, SET COMMAND/DELETE and SET COMMAND/REPLACE modify
your process command table and return the modified table to your process. You
can modify a different input command table by using the /TABLE command
qualifier.

Note

You need CMKRNL privilege to modify the system command table in
SYS$LIBRARY:DCLTABLES.EXE.

You can write the command table to an output file by using the /OUTPUT
command qualifier along with the /TABLE qualifier.

SET COMMAND/OBJECT creates an object module with the same name as the
command definition file unless you specify an alternate file name.

Command Definition Utility CDU–19

CDU File Statements
This section provides complete information about the statements that can be used
in a command definition file. The statements are as follows:

DEFINE SYNTAX syntax-name [verb-clause[, . . .]]
DEFINE TYPE type-name [type-clause[, . . .]]
DEFINE VERB verb-name [verb-clause[, . . .]]
IDENT ident-string
MODULE module-name

CDU–20 Command Definition Utility

CDU File Statements
DEFINE SYNTAX

DEFINE SYNTAX

Defines a syntax change that replaces a command’s syntax (as defined in a
DEFINE VERB, DEFINE TYPE, or another DEFINE SYNTAX statement). A
syntax change allows a verb to use different syntax depending on the parameters,
qualifiers, and keywords present in the command string.

DEFINE statements that refer to changed syntax are called primary DEFINE
statements; DEFINE SYNTAX statements that define new syntax are called
secondary DEFINE statements.

When a command string is parsed, its components are scanned from left to right.
The string is parsed according to the current definition until CDU encounters an
entity that specifies a syntax change. The remainder of the string is parsed using
the new definition. DCL does not rescan the entities that appear before the entity
that specified the syntax change.

Table 1–2 shows how the DEFINE SYNTAX statement modifies the current
command definition if an entity specifies a syntax change. After parsing the
command string, DCL saves the command definition to determine if any entities
in the command string are not allowed. Then, DCL invokes the image or
routine specified by the command definition and uses the definition to process
CLI$PRESENT and CLI$GET_VALUE calls.

Table 1–2 How the DEFINE SYNTAX Statement Modifies the Primary DEFINE
Statement

DEFINE SYNTAX Specifies Result

An image An image overrides the image in the
primary DEFINE statement. DCL invokes
the new image after it parses the command
string.

A routine A routine overrides the routine in the
primary DEFINE statement. DCL invokes
the new routine when CLI$DISPATCH is
called.

One or more disallows One or more disallows are used during
command parsing and they override
disallows in the primary DEFINE
statement. This applies to all entities
in the command that have not been
invalidated by the new syntax definition.

No disallows Disallows from the primary DEFINE
statement are used during command
parsing.

The NODISALLOWS clause No disallows are permitted, regardless
of definitions in the primary DEFINE
statement.

(continued on next page)

Command Definition Utility CDU–21

CDU File Statements
DEFINE SYNTAX

Table 1–2 (Cont.) How the DEFINE SYNTAX Statement Modifies the Primary
DEFINE Statement

DEFINE SYNTAX Specifies Result

One or more parameters Parameters that were already parsed
are not reparsed according to the new
definitions. However, parameters to
the right of the entity that specified
the new syntax are parsed according to
the new definitions. DCL uses the new
parameter definitions when processing
CLI$PRESENT and CLI$GET_VALUE
calls.
Note that, in the DEFINE SYNTAX
statement, P1 refers to the first
parameter in the command string. To
define additional parameters, use the
PARAMETER clause in a secondary
DEFINE statement to first enter the
definitions for the original parameters
exactly as they appear in the primary
DEFINE statement. Then, enter the
definitions for the additional parameters.

No parameters Parameter definitions from the primary
DEFINE statement are used when
DCL parses the remainder of the
command string. DCL also uses these
parameter definitions when processing
CLI$PRESENT and CLI$GET_VALUE
calls.

The NOPARAMETERS clause Parameters previously parsed are not
reparsed to the new definitions. However,
no parameters are allowed when DCL
parses entities to the right of the entity
that specifies the new syntax. DCL uses
the NOPARAMETERS definition when
processing CLI$PRESENT and CLI$GET_
VALUE calls.

One or more qualifiers If any qualifiers have been previously
parsed, they are ignored, and DCL issues
an informational message. Qualifiers that
appear in the command string after the
entity specifies the new syntax are parsed
according to the new definition. DCL
uses the new qualifier definitions when
processing CLI$PRESENT and CLI$GET_
VALUE calls.

(continued on next page)

CDU–22 Command Definition Utility

CDU File Statements
DEFINE SYNTAX

Table 1–2 (Cont.) How the DEFINE SYNTAX Statement Modifies the Primary
DEFINE Statement

DEFINE SYNTAX Specifies Result

Note that the qualifier that causes the
syntax change cannot be retrieved from the
CLI routines. Compaq recommends the use
of either the IMAGE or ROUTINE clause
to determine which syntax is in use.

No qualifiers Qualifier definitions from the primary
DEFINE statement are used when
DCL parses the remainder of the
command string. DCL also uses these
qualifier definitions when processing
CLI$PRESENT and CLI$GET_VALUE
calls.

The NOQUALIFIERS clause Qualifiers previously parsed are ignored.
No qualifiers are allowed when DCL
parses entities to the right of the entity
that specifies the new syntax. DCL uses
the NOQUALIFIERS definition when
processing CLI$PRESENT and CLI$GET_
VALUE calls.

Format

DEFINE SYNTAX syntax-name [verb-clause[, . . .]]

syntax-name
The name of the syntax change. The name is required and must immediately
follow the DEFINE SYNTAX statement.

verb-clause[, . . .]
Optional verb clauses that define attributes of the command string.

DEFINE SYNTAX accepts the following verb clauses:

• DISALLOW, NODISALLOWS

• IMAGE

• PARAMETER, NOPARAMETERS

• QUALIFIER, NOQUALIFIERS

• ROUTINE

The following text describes these clauses. Note that, if the syntax list contains
only an IMAGE or ROUTINE clause, it affects only the specified clause in
the primary DEFINE statement. If the list contains any qualifiers or the
NOQUALIFIERS keyword, all qualifiers in the primary DEFINE statement
are replaced by the qualifiers in the syntax list. If the syntax list contains
neither qualifiers nor the NOQUALIFIERS keyword, the qualifiers in the primary
DEFINE statement apply. Similarly, if the syntax list contains any parameter
or the NOPARAMETERS keyword, all parameters in the primary DEFINE
statement are replaced.

Command Definition Utility CDU–23

CDU File Statements
DEFINE SYNTAX

DISALLOW expression
NODISALLOWS
Disallows a command string if the result of the expression is true. The
NODISALLOWS clause indicates that all entities and entity combinations
are allowed.

The expression specifies an entity or a combination of entities connected by
operators. Each entity in the expression is tested to see if it is present (true) or
absent (false) in a command string. If an entity is present by default but not
explicitly provided in the command string, the entity is false.

After each entity is evaluated, the operations indicated by the operators are
performed. If the result is true, the command string is disallowed. If the result is
false, the command string is valid.

You can specify entities in an expression using an entity name or label, a keyword
path, or a definition path. See Section 1.4.4.1 for more information about
entities. You can also specify the operators AND, ANY2, NEG, NOT, or OR. See
Section 1.4.4.2 for more information about these operators.

IMAGE image-string
Names an image to be invoked by the command. The image-string is the file
specification (a maximum of 63 characters) of the image DCL invokes when you
enter the command. The default device and directory is SYS$SYSTEM: and the
default file type is .EXE.

If you do not specify the IMAGE verb clause and you use SET
COMMAND/REPLACE to process the command definition file, the verb name
is used as the image name. At run time, DCL searches for an image whose file
name is the same as the verb name and whose device and directory names and
file type are SYS$SYSTEM: and .EXE, respectively.

PARAMETER param-name [,param-clause[, . . .]]
NOPARAMETERS
Can be used to specify up to eight parameters in the command string. The
NOPARAMETERS clause indicates that no parameters are allowed.

The param-name defines the position of the parameter in the command string.
The name must be in the form Pn, where n is the position of the parameter. The
parameter names must be numbered consecutively from P1 to P8. The name
must immediately follow the PARAMETER clause.

The param-clause specifies additional characteristics for the parameter. You can
use the following parameter clauses:

• DEFAULT

• LABEL=label-name

• PROMPT=prompt-string

• VALUE[(param-value-clause[, . . .])]

DEFAULT indicates that a user-defined parameter keyword is present by default.
You should use this clause only if you also use the VALUE clause to indicate
that a user-defined keyword must be specified as the parameter value. See the
description of the DEFINE TYPE statement for more information on defining a
keyword that is present by default.

To designate a default parameter that is not a keyword, use the
VALUE(DEFAULT=default-string) clause.

CDU–24 Command Definition Utility

CDU File Statements
DEFINE SYNTAX

LABEL=label-name defines a label for referring to a parameter at run time.
Specify the label name as a symbol. If you do not specify a label name, the
parameter name (P1 through P8) is used as the label name.

PROMPT=prompt-string supplies a prompt string (a maximum of 31 characters)
when a parameter is omitted from the command string. If you do not specify
a prompt string and a required parameter is missing, DCL uses the parameter
name as the prompt string.

When you define more than one parameter but only the first parameter is
required, DCL prompts for the first parameter until the user either enters a value
or aborts the command with Ctrl/Z. When the user enters a value for the first
parameter, DCL prompts for the optional parameters. If the user presses Return
without entering a value for an optional parameter, DCL executes the command.

VALUE[(param-value-clause[, . . .])] specifies additional characteristics for
the parameter. When you specify parameter value clauses, enclose them in
parentheses and separate items with commas.

VALUE accepts the following parameter value clauses:

CONCATENATE Indicates that a parameter can be concatenated
to another parameter with a plus sign.

DEFAULT=default-string Specifies a default value to be used if a value
for the parameter is not explicitly given. The
DEFAULT clause and the REQUIRED clause
are mutually exclusive. Specify the default
string as a character string that does not
exceed 94 characters.
Do not use this clause to specify a default if the
value is a keyword. Specify keyword defaults in
the DEFINE TYPE statement and by using the
DEFAULT clause.

LIST Permits you to enter a list of parameters
separated by commas or plus signs.

NOCONCATENATE Indicates that the parameters cannot be
concatenated.

REQUIRED Indicates that the parameter is required. All
required parameters must precede optional
ones. If you use the REQUIRED clause,
you should also specify a prompt string. The
REQUIRED clause and the DEFAULT clause
are mutually exclusive.

TYPE=type-name Gives either a built-in value type or the name
of a DEFINE TYPE statement that defines a
list of keywords that can be specified for the
parameter. Specify the value type name as a
symbol.
See Section 1.4.2.1 for more information about
built-in value types.

Command Definition Utility CDU–25

CDU File Statements
DEFINE SYNTAX

QUALIFIER qual-name [,qual-clause[, . . .]]
NOQUALIFIERS
Specifies a qualifier that can be included in the command string. You can use
the QUALIFIER clause up to 255 times in a DEFINE SYNTAX statement. The
NOQUALIFIERS clause indicates that no qualifiers are allowed.

The qual-name is the name of the qualifier. Specify the qualifier name as a
symbol. The first four characters of the qualifier name must be unique.

The qual-clause specifies additional qualifier characteristics. You can use the
following qualifier clauses:

• BATCH

• DEFAULT

• LABEL=label-name

• NEGATABLE, NONNEGATABLE

• PLACEMENT=placement-clause

• SYNTAX=syntax-name

• VALUE[(qual-value-clause[, . . .])]

BATCH indicates that the qualifier is present by default if the command is used
in a batch job.

DEFAULT indicates that the qualifier is present by default in both batch and
interactive jobs.

LABEL=label-name defines a label for requesting information about the qualifier
at run time. Specify the label name as a symbol. If you do not specify a label
name, the qualifier name is used as the label name.

NEGATABLE and NONNEGATABLE indicate whether the qualifier can be
negated by adding NO to the qualifier name. The default is NEGATABLE; if you
do not specify either NEGATABLE or NONNEGATABLE, NO can be added to the
qualifier name to indicate that the qualifier is not present.

PLACEMENT=placement-clause indicates where the qualifier can appear in the
command string. PLACEMENT accepts the following placement clauses:

GLOBAL Indicates that the qualifier applies to the entire command
and can be placed after the verb or after a parameter. This
is the default if you do not specify the PLACEMENT clause.

LOCAL Indicates that the qualifier can appear only after a parameter
value and that it applies only to that parameter.

POSITIONAL Indicates that the qualifier can appear anywhere in the
command string, but the function of the qualifier depends on
its position: if the qualifier is used after a parameter value,
it applies only to that parameter; if it is used after the verb,
it applies to all parameters.

SYNTAX=syntax-name specifies an alternate syntax definition to be invoked
when the qualifier is present. The syntax name must correspond to the name
used in a DEFINE SYNTAX statement. Specify the syntax name as a symbol.

CDU–26 Command Definition Utility

CDU File Statements
DEFINE SYNTAX

VALUE[(qual-value-clause[, . . .])] specifies additional characteristics for the
qualifier. When you specify qualifier value clauses, enclose the list in parentheses
and separate items with commas. If you do not specify any qualifier value
clauses, DCL converts letters in qualifier values to uppercase.

VALUE accepts the following qualifier value clauses:

DEFAULT=default-string Specifies a default value to be used if a value
for the qualifier is not explicitly given. The
DEFAULT clause and the REQUIRED clause are
mutually exclusive. Specify the default string
as a character string that does not exceed 94
characters.
Do not use this clause to specify a default if the
value is a keyword. Specify keyword defaults in
the DEFINE TYPE statement and by using the
DEFAULT qualifier clause.

LIST Indicates that a list of values separated by
commas can be specified for the qualifier. This
list must be enclosed in parentheses, and the
items must be separated by commas. Note that
plus signs cannot be used to separate items in a
list of qualifier values.

REQUIRED Indicates that the qualifier must have an
explicitly specified value. No prompting is
performed for a required qualifier value. The
REQUIRED clause and the DEFAULT clause are
mutually exclusive.

TYPE=type-name Gives either a built-in value type or the name of
a DEFINE TYPE statement that defines a list of
keywords that can be specified for the parameter.
Specify the value type name as a symbol.
See Section 1.4.2.1 for more information about
built-in value types.

ROUTINE routine-name
Names a routine in syntax. Use the ROUTINE clause to create an object module
from the command definition file.

The routine-name provides the name of the routine to be executed when
CLI$DISPATCH is called. Specify the routine name as a symbol.

If you do not specify a routine, the routine from the primary DEFINE statement
is invoked, if applicable.

Examples

1. DEFINE VERB WRITER
IMAGE "WORK:[JONES]WRITER"
QUALIFIER LINE, SYNTAX=LINE
QUALIFIER SCREEN, SYNTAX=SCREEN

DEFINE SYNTAX LINE
IMAGE "WORK:[JONES]LINE"
QUALIFIER NUM

Command Definition Utility CDU–27

CDU File Statements
DEFINE SYNTAX

DEFINE SYNTAX SCREEN
IMAGE "WORK:[JONES]SCREEN"
QUALIFIER AUDIT

This example illustrates a command definition file (WRITER.CLD) containing
DEFINE SYNTAX statements that cause syntax changes depending upon the
qualifiers specified in the command string. The verb WRITER invokes a text
editor (WRITER.EXE). However, you can use the SCREEN and the LINE
qualifiers to invoke alternate text editors.

You can add the command definition to your process command table by
issuing the following command:

$ SET COMMAND WRITER

Then you can use the WRITER command to access different text editors. For
example, assume you specify the following command:

$ WRITER/LINE

Here you invoke the LINE editor instead of the default editor (WRITER).
Syntax redefinition is done from left to right because parsing of the string is
done from left to right. This order means that when you specify two qualifiers
that invoke different syntax lists, the leftmost qualifier takes precedence
(because it is parsed first).

2. DEFINE VERB DISPLAY
PARAMETER P1, LABEL=ITEM, VALUE(REQUIRED, TYPE=$FILE)
QUALIFIER SAVE, SYNTAX=SAVE

DEFINE SYNTAX SAVE
IMAGE "WORK:[NEWMAN]:SAVE_DISPLAY"
PARAMETER P1, LABEL=ITEM, VALUE(REQUIRED, TYPE=$FILE)
PARAMETER P2, LABEL=NAME

This example shows a syntax change that defines an additional parameter.
The command definition file defines the verb DISPLAY. If the DISPLAY
command is used without the /SAVE qualifier, then one parameter is required.
This parameter indicates the name of the file to be displayed. If the DISPLAY
command is used with the /SAVE qualifier, then two parameters are required:
the name of the file to be displayed and the name of the file where the
display should be saved. Note that you must repeat the definition of P1 in the
DEFINE SYNTAX statement.

CDU–28 Command Definition Utility

CDU File Statements
DEFINE TYPE

DEFINE TYPE

Describes the keywords referenced by the VALUE(TYPE=type-name) clause.
You can use the VALUE clause in a DEFINE VERB, DEFINE SYNTAX, or
DEFINE TYPE statement to indicate predefined values (keywords) for command
parameters, qualifiers, or keywords.

Format

DEFINE TYPE name [type-clause[, . . .]]

name
The name of the DEFINE TYPE statement. This name must match the name
used in the VALUE(TYPE=type-name) clause that references the DEFINE TYPE
statement.

type-clause[, . . .]
Defines a keyword that can be used as the value of the entity that referenced the
DEFINE TYPE statement. The DEFINE TYPE statement accepts the following
type clause:

KEYWORD keyword-name [,keyword-clause[,...]]

This clause specifies a keyword that can be used as the value type of the entity
that references the DEFINE TYPE statement. Repeat the KEYWORD value type
clause for each keyword that can be used. You can specify up to 255 keywords in
a DEFINE TYPE statement.

The keyword-name is the name of the keyword. The optional keyword-clause
specifies additional keyword characteristics.

You can use the following keyword clauses:

• DEFAULT

• LABEL=label-name

• NEGATABLE, NONNEGATABLE

• SYNTAX=syntax-name

• VALUE[(key-value-clause[, . . .])]

DEFAULT indicates that the keyword is present by default. For this keyword
to be recognized as present by default, the parameter, qualifier, or keyword
definition that references this DEFINE TYPE statement must also specify the
DEFAULT clause.

LABEL=label-name defines a label for referencing the keyword at run time. By
default, the keyword name is used as the label name.

NEGATABLE and NONNEGATABLE indicate whether the keyword can be
negated by adding NO to the keyword name (the default is NONNEGATABLE).
If you do not specify either NEGATABLE or NONNEGATABLE, NO cannot be
used to negate the keyword name. Note that this differs from qualifiers, which,
by default, are negatable.

SYNTAX=syntax-name specifies an alternate verb definition to be invoked when
the keyword is present. The syntax name must match the name used in the
corresponding DEFINE SYNTAX statement.

Command Definition Utility CDU–29

CDU File Statements
DEFINE TYPE

VALUE[(key-value-clause[, . . .])] specifies additional characteristics for the
keyword.

VALUE accepts the following keyword value clauses:

DEFAULT=default-string Specifies a default value to be used if a value
for the keyword is not explicitly given. The
DEFAULT clause and the REQUIRED clause
are mutually exclusive. Specify the default
string as a character string that does not
exceed 94 characters.
Do not use this clause to specify a default if the
value is a keyword. Specify keyword defaults in
the DEFINE TYPE statement and by using the
DEFAULT clause with the entity that uses the
keyword.

LIST Indicates that a list of values for the keyword
can be given. This list must be enclosed in
parentheses, and the items must be separated
by commas. Note that plus signs cannot be
used to separate items in a list of keyword
values.

REQUIRED Indicates that the keyword must have an
explicitly specified value. No prompting is
performed for a required keyword value. If the
keyword is specified without a value, an error is
automatically issued by DCL. The REQUIRED
clause and the DEFAULT clause are mutually
exclusive.

TYPE=type-name Symbolically equates either a built-in value
type or the name of a DEFINE TYPE statement
that defines keywords that can be specified as
the keyword value. The TYPE clause cannot be
specified if the DEFAULT clause is specified.
See Section 1.4.2.1 for more information about
built-in value types.

Examples

1. DEFINE VERB DISPLAY
PARAMETER P1, LABEL=OPTION, PROMPT="What"

VALUE(REQUIRED, TYPE=DISPLAY_OPTIONS)

DEFINE TYPE DISPLAY_OPTIONS
KEYWORD ANIMALS, SYNTAX=DISPLAY_ANIMALS
KEYWORD FLOWERS, SYNTAX=DISPLAY_FLOWERS

DEFINE SYNTAX DISPLAY_ANIMALS
IMAGE "USER:[JOHNSON]ANIMALS"
PARAMETER P1, LABEL=OPTION, VALUE(REQUIRED)
QUALIFIER SMALL
QUALIFIER LARGE
QUALIFIER ALL, DEFAULT

CDU–30 Command Definition Utility

CDU File Statements
DEFINE TYPE

DEFINE SYNTAX DISPLAY_FLOWERS
IMAGE "USER:[JOHNSON]FLOWERS"
PARAMETER P1, LABEL=OPTION, VALUE(REQUIRED)
NOQUALIFIERS

This example shows how to define keywords that can be specified as
parameters for the verb DISPLAY. Each keyword uses its own syntax
definition to invoke an image to execute the command.

After you add the command definition to your process command table, you
can enter the following DISPLAY commands:

$ DISPLAY ANIMALS
$ DISPLAY FLOWERS

In addition, the syntax definition DISPLAY_ANIMALS specifies three
qualifiers that can be used only with the command DISPLAY ANIMALS. No
qualifiers are allowed with the command DISPLAY FLOWERS.

2. DEFINE VERB DRAW
QUALIFIER COLOR, VALUE(TYPE=COLOR_NAMES)

DEFINE TYPE COLOR_NAMES
KEYWORD RED
KEYWORD BLUE

This example shows a verb definition that uses a DEFINE TYPE statement
to define keywords that can be used with a qualifier. After you add the
command definition for DRAW to your process command table, you can enter
the following DRAW commands:

$ DRAW/COLOR=RED
$ DRAW/COLOR=BLUE

3. DEFINE VERB RANDOM
PARAMETER P1, VALUE(TYPE=THINGS), DEFAULT

DEFINE TYPE THINGS
KEYWORD NUMBER, DEFAULT
KEYWORD LETTER

This example defines a verb, RANDOM. RANDOM accepts a parameter,
which must be one of the user-defined keywords NUMBER or LETTER. If
a parameter is not specified with the verb RANDOM, then the default is
NUMBER.

Note that, for the keyword NUMBER to be present by default, you must use
the DEFAULT clause in two places. You must specify DEFAULT when you
define the parameter in the DEFINE VERB statement, and you must also
specify DEFAULT when defining the NUMBER keyword in the DEFINE
TYPE statement.

Command Definition Utility CDU–31

CDU File Statements
DEFINE VERB

DEFINE VERB

Defines a new command, its parameters, its qualifiers, and the image or routine
it invokes.

Format

DEFINE VERB verb-name [verb-clause[, . . .]]

verb-name
The name of the command verb. This parameter is required and must
immediately follow the DEFINE VERB statement. The first four characters
of the verb name must be unique.

verb-clause[, . . .]
Optional verb clauses that define attributes of the command string.

DEFINE VERB accepts the following verb clauses:

• DISALLOW, NODISALLOWS

• IMAGE

• PARAMETER, NOPARAMETERS

• QUALIFIER, NOQUALIFIERS

• ROUTINE

• SYNONYM

The following text describes these verb clauses.

DISALLOW expression
NODISALLOWS
Disallows a command string if the result of the expression is true. The
NODISALLOWS clause indicates that all entities and entity combinations
are allowed.

The expression specifies an entity or a combination of entities connected by
operators. Each entity in the expression is tested to see if it is present (true) or
absent (false) in a command string. If an entity is present by default but not
explicitly provided in the command string, the entity is false.

After each entity is evaluated, the operations indicated by the operators are
performed. If the result is true, the command string is disallowed. If the result is
false, the command string is valid.

You can specify entities in an expression using an entity name or label, a keyword
path, or a definition path. See Section 1.4.4.1 for more information about
entities. You can also specify the operators AND, ANY2, NEG, NOT or OR. See
Section 1.4.4.2 for more information about these operators.

IMAGE image-string
Names an image to be invoked by the command. The image-string is the file
specification (a maximum of 63 characters) of the image DCL invokes when you
enter the command. The default device and directory is SYS$SYSTEM: and the
default file type is .EXE.

CDU–32 Command Definition Utility

CDU File Statements
DEFINE VERB

If you do not specify the IMAGE verb clause and you use SET
COMMAND/REPLACE to process the command definition file, the verb name
is used as the image name. At run time, DCL searches for an image whose file
name is the same as the verb name and whose device and directory names and
file type are SYS$SYSTEM: and .EXE.

PARAMETER param-name [,param-clause[, . . .]]
NOPARAMETERS
Can be used to specify up to eight parameters in the command string. The
NOPARAMETERS clause indicates that no parameters are allowed.

The param-name defines the position of the parameter in the command string.
The name must be in the form Pn, where n is the position of the parameter. The
parameter names must be numbered consecutively from P1 to P8. The name
must immediately follow the PARAMETER clause.

The param-clause specifies additional characteristics for the parameter. You can
use the following parameter clauses:

• DEFAULT

• LABEL=label-name

• PROMPT

• VALUE[(param-value-clause[, . . .])]

DEFAULT indicates that a user-defined parameter keyword is present by default.
You should use this clause only if you also use the VALUE clause to indicate
that a user-defined keyword must be specified as the parameter value. See the
description of the DEFINE TYPE statement for more information about defining
a keyword that is present by default.

To designate a default parameter that is not a keyword, use the
VALUE(DEFAULT=default-string) clause.

LABEL=label-name defines a label for referring to a parameter at run time.
Specify the label name as a symbol. If you do not specify a label name, the
parameter name (P1 through P8) is used as the label name.

PROMPT=prompt-string supplies a prompt string (a maximum of 31 characters)
when a parameter is omitted from the command string. If you do not specify
a prompt string and a required parameter is missing, DCL uses the parameter
name as the prompt string.

When you define more than one parameter but only the first parameter is
required, DCL prompts for the first parameter until the user either enters a value
or aborts the command with Ctrl/Z. When the user enters a value for the first
parameter, DCL prompts for the optional parameters. If the user presses Return
without entering a value for an optional parameter, DCL executes the command.

VALUE[(param-value-clause[, . . .])] specifies additional characteristics for
the parameter. When you specify parameter value clauses, enclose them in
parentheses and separate items with commas.

VALUE accepts the following parameter value clauses:

CONCATENATE Indicates that a parameter can be concatenated
to another parameter with a plus sign.

Command Definition Utility CDU–33

CDU File Statements
DEFINE VERB

DEFAULT=default-string Specifies a default value to be used if the value
for the parameter is not explicitly given. The
DEFAULT clause and the REQUIRED clause
are mutually exclusive. Specify the default
string as a character string that does not
exceed 94 characters.
Do not use this clause to specify a default if the
value is a keyword. Specify keyword defaults in
the DEFINE TYPE statement and by using the
DEFAULT parameter clause.

LIST Permits you to enter a list of parameters
separated by commas or plus signs.

NOCONCATENATE Indicates that the parameters cannot be
concatenated.

REQUIRED Indicates that the parameter is required. All
required parameters must precede optional
ones. If you use the REQUIRED clause,
you should also specify a prompt string. The
REQUIRED clause and the DEFAULT clause
are mutually exclusive.

TYPE=type-name Gives either a built-in value type or the name of
a DEFINE TYPE statement that lists keywords
for the parameter. Specify the value as a
symbol.
See Section 1.4.2.1 for more information about
built-in value types.

QUALIFIER qual-name [,qual-clause[, . . .]]
NOQUALIFIERS
Specifies a qualifier that can be included in the command string. You can use
the QUALIFIER clause up to 255 times in a DEFINE VERB statement. The
NOQUALIFIERS clause indicates that no qualifiers are allowed.

The qual-name is the name of the qualifier. The first four characters of the
qualifier name must be unique. Specify the qualifier name as a symbol.

The qual-clause specifies additional qualifier characteristics. You can use the
following qualifier clauses:

• BATCH

• DEFAULT

• LABEL=label-name

• NEGATABLE, NONNEGATABLE

• PLACEMENT=placement-clause

• SYNTAX=syntax-name

• VALUE[(qual-value-clause[, . . .])]

BATCH indicates that the qualifier is present by default if the command is used
in a batch job.

DEFAULT indicates that the qualifier is present by default in both batch and
interactive jobs.

CDU–34 Command Definition Utility

CDU File Statements
DEFINE VERB

LABEL=label-name defines a label for requesting information about the qualifier
at run time. Specify the label name as a symbol. If you do not specify a label
name, the qualifier name is used by default.

NEGATABLE and NONNEGATABLE indicate whether the qualifier can be
negated by adding NO to the qualifier name. The default is NEGATABLE; if you
do not specify either NEGATABLE or NONNEGATABLE, NO can be added to the
qualifier name to indicate that the qualifier is not present.

PLACEMENT=placement-clause indicates where the qualifier can appear in the
command string. PLACEMENT accepts the following placement clauses:

GLOBAL Indicates that the qualifier applies to the entire command
string and can be placed after the verb or after a parameter.
This is the default if you do not specify the PLACEMENT
clause.

LOCAL Indicates that the qualifier can appear only after a parameter
value and that it applies only to that parameter.

POSITIONAL Indicates that the qualifier can appear anywhere in the
command string, but the function of the qualifier depends
on its position: if the qualifier is used after a parameter value,
it applies only to that parameter; if it is used after the verb, it
applies to all parameters.

SYNTAX=syntax-name specifies an alternate syntax definition to be invoked
when the qualifier is present. The syntax name must correspond to the name
used in the related DEFINE SYNTAX statement. This alternate syntax is
useful for commands that invoke different images depending upon the particular
qualifiers that are present. Specify the syntax name as a symbol.

VALUE[(qual-value-clause[, . . .])] specifies additional characteristics for the
qualifier. When you specify qualifier value clauses, enclose the list in parentheses
and separate items with commas. If you do not specify any qualifier value
clauses, DCL converts letters in qualifier values to uppercase.

VALUE accepts the following qualifier value clauses:

DEFAULT=default-string Specifies a default value to be used if a value
for the qualifier is not explicitly given. The
DEFAULT clause and the REQUIRED clause are
mutually exclusive. Specify the default string
as a character string that does not exceed 94
characters.
Do not use this clause to specify a default if the
value is a keyword. Specify keyword defaults in
the DEFINE TYPE statement and by using the
DEFAULT qualifier clause.

LIST Indicates a list of values separated by commas
can be specified for the qualifier. This list must
be enclosed in parentheses, and the items must
be separated by commas. Note that plus signs
cannot be used to separate items in a list of
qualifier values.

Command Definition Utility CDU–35

CDU File Statements
DEFINE VERB

REQUIRED Indicates that the qualifier must have an
explicitly specified value. No prompting is
performed for a required qualifier value. The
REQUIRED clause and the DEFAULT clause are
mutually exclusive.

TYPE=type-name Gives either a built-in value type or a DEFINE
TYPE statement that defines a list of keywords
that can be specified for the parameter. Specify
the value type as a symbol.
See Section 1.4.2.1 for more information about
built-in value types.

ROUTINE routine-name
Symbol that specifies a routine the command calls to create an object module
from the command definition file.

The routine-name provides the name of a routine that is executed when
CLI$DISPATCH is called.

If you do not specify a routine, no default is provided.

SYNONYM synonym-name
Defines a synonym for the verb name. Specify the synonym name as a symbol.

Examples

1. DEFINE VERB ERASE
PARAMETER,P1 VALUE(DEFAULT=DISK3:[JONES]STATS.DAT)

This definition tells the command language interpreter that ERASE is a valid
verb and that it takes a parameter. If you do not enter a parameter value,
the default is DISK3:[JONES]STATS.DAT.

Because no image name is specified, the verb ERASE invokes the image
SYS$SYSTEM:ERASE.EXE.

2. DEFINE VERB SCATTER
IMAGE "WRKD$:[MORRISON]SCATTER"
PARAMETER P1, LABEL=INFILE, PROMPT="Input_file?", VALUE(REQUIRED)
PARAMETER P2, LABEL=OUTFILE, PROMPT="Output_file?", VALUE(REQUIRED)
QUALIFIER SLOW, DEFAULT
QUALIFIER FAST
DISALLOW SLOW AND FAST

This example shows a command definition file that defines a new
command called SCATTER that invokes the image WRKD$:[MORRISON]
SCATTER.EXE. It has two required parameters, an input file and an output
file. It has two mutually exclusive qualifiers, /SLOW and /FAST (the default
is /SLOW).

CDU–36 Command Definition Utility

CDU File Statements
IDENT

IDENT

Provides identifying information for an object module created from a command
definition file.

Format

IDENT ident-string

ident-string
A string containing identifying information. The string has a maximum length of
31 characters.

Example

MODULE COMMAND_TABLE
IDENT "V04-001"
DEFINE VERB SPIN

.

.

.

This command definition file uses the IDENT statement to identify the object
module file.

Command Definition Utility CDU–37

CDU File Statements
MODULE

MODULE

Provides a name for an object module and for a global symbol that refers to the
address of a command table within an image into which the object module is
linked.

Format

MODULE module-name

module-name
The module-name is used to create a global symbol that refers to the address of
the command table within the image into which the object module is to be linked.

By default, CDU uses the object file name specified with the /OBJECT command
qualifier. If no object file is explicitly specified, then CDU uses the name of the
first command definition file as the module name.

Example

$ CREATE TEST.CLD
MODULE TEST_TABLE
DEFINE VERB SEND

ROUTINE SEND_ROUT
PARAMETER P1

.

.

.
DEFINE VERB SEARCH

ROUTINE SEARCH_ROUT
PARAMETER P1

^Z
$ SET COMMAND/OBJECT=TEST.OBJ TEST
$ LINK PROG,TEST
$ RUN PROG

TEST.CLD defines two commands (SEND and SEARCH) that call routines in
PROG.EXE, a program that uses DCL to parse command strings and execute
routines.

The SET COMMAND command creates a command table object module that
is linked with the program object module (PROG.OBJ) to produce an image
(PROG.EXE) that includes the code for the program and for the command table.
TEST_TABLE refers to the address of the command table in the image.

When you run PROG.EXE, it calls DCL parsing routines to parse the command
string using the command table in module TEST_TABLE.

CDU–38 Command Definition Utility

CDU Qualifiers
The following pages describe the qualifiers that can be used with the DCL
command SET COMMAND. The qualifiers are as follows:

• /ALPHA

• /DELETE

• /LISTING

• /OBJECT

• /OUTPUT

• /REPLACE

• /TABLE

• /VAX

The /DELETE, /OBJECT, and /REPLACE qualifiers indicate SET COMMAND
modes; these qualifiers are mutually exclusive.

Command Definition Utility CDU–39

CDU Qualifiers
/ALPHA

/ALPHA

Causes CDU to create an OpenVMS Alpha object module when used with the
/OBJECT qualifier. The default is to create OpenVMS Alpha object modules
on OpenVMS Alpha systems and to create OpenVMS VAX object modules on
OpenVMS VAX systems.

Format

SET COMMAND/ALPHA/OBJECT [=object-filespec] filespec

object-filespec
The file specification for the object file. If no file name is specified, default to the
name of the first input (command definition) file; the default file type is .OBJ.

filespec
The command definition file to be processed (wildcard characters are allowed).
The default type is .CLD.

Example

$ SET COMMAND /ALPHA /OBJECT=A TEST
MODULE TEST_TABLE

In this example, the command definition file TEST.CLD is processed and the
command table is written as an OpenVMS Alpha object module to a file named
A.OBJ.

CDU–40 Command Definition Utility

CDU Qualifiers
/DELETE

/DELETE

Used to delete verb names or synonym names from the command table. If a verb
name has synonyms, this qualifier deletes the specified verb or synonym name.
If any synonyms remain, or if you delete synonyms and the original verb name
remains, the remaining names still reference the verb definition.

You can use the /DELETE qualifier to delete a verb in either your process
command table or in a command table file specified with the /TABLE qualifier. If
you do not use the /TABLE qualifier to specify an alternate command table, the
default is to delete verbs from your process command table. If you do not use the
/OUTPUT qualifier to specify an output file, the default is to return the modified
command table to your process.

You cannot use the /LISTING, /OBJECT, or /REPLACE qualifier with /DELETE.

Format

SET COMMAND/DELETE= (verb[, . . .])

verb
A verb or verb synonym to be deleted from the specified command table. If you
specify two or more names, separate them with commas and enclose the list in
parentheses.

Examples

1. $ SET COMMAND/DELETE=DO

In this example, SET COMMAND deletes the verb DO from your process
command table.

2. $ SET COMMAND/DELETE=(PUSH,SHOVE)/TABLE=TEST_TABLE/OUTPUT=NEW_TABLE

The commands PUSH and SHOVE are deleted from the command table
TEST_TABLE.EXE. The /OUTPUT qualifier writes the modified table to the
file NEW_TABLE.EXE. If you do not include the /OUTPUT qualifier, CDU
uses the modified table to overwrite your process command table.

Command Definition Utility CDU–41

CDU Qualifiers
/LISTING

/LISTING

Controls whether an output listing is created and optionally provides an output
file specification for the listing file. A listing file contains a listing of the command
definitions along with any error messages. The listing file is similar to a compiler
listing.

If you specify the /LISTING qualifier and omit the file specification, output is
written to the default device and directory; the listing file has the same name as
the first command definition file and a file type of .LIS.

You can use the /LISTING qualifier only in /OBJECT or /REPLACE mode; you
cannot create a listing in /DELETE mode. In /OBJECT and /REPLACE modes,
the default is /NOLISTING.

Format

SET COMMAND/LISTING [=listing-filespec] [filespec[, . . .]]

SET COMMAND/NOLISTING

listing-filespec
The file specification for the listing file. The default file name is the name of the
first command definition file. The default file type is .LIS.

filespec
The name of the command definition file to be processed (wildcard characters are
allowed). The default file type is .CLD.

Examples

1. $ SET COMMAND/LISTING TEST

In this example, the command definition file TEST.CLD is processed by CDU,
and the new verbs are added to your process command table. (By default,
SET COMMAND uses /REPLACE mode.) The modified table is returned to
your process, and a listing file named TEST.LIS is created.

2. $ SET COMMAND/LISTING=A TEST

The command definition file TEST.CLD is processed by CDU, and the verb
definitions are added to your process command table. The modified table is
returned to your process, and a listing file named A.LIS is created.

3. $ SET COMMAND/LISTING/OBJECT GAMES

SET COMMAND is used to create an object module (GAMES.OBJ) that
contains the command definitions in GAMES.CLD. The output object module
can then be linked with a program. A listing file named GAMES.LIS is
created.

CDU–42 Command Definition Utility

CDU Qualifiers
/OBJECT

/OBJECT

Creates an object module from a command definition file and optionally provides
an object file specification. You cannot use the /OBJECT qualifier to create an
object module from a command definition that contains the IMAGE clause.

An object module containing a command table can be linked with the object
modules from your program. This enables the program to use its own command
table for parsing command strings and executing routines.

On OpenVMS VAX systems, the /OBJECT qualifier creates a VAX module by
default. Note that you cannot combine VAX modules and Alpha modules in the
same object file. For more information, see the description of the /VAX qualifier.

On OpenVMS Alpha systems, the /OBJECT qualifier creates an Alpha module
by default. Note that you cannot combine Alpha modules and VAX modules in
the same object file. For more information, see the description of the /ALPHA
qualifier.

You can specify only one command definition file when you use SET
COMMAND/OBJECT.

If you specify the /OBJECT qualifier and omit the file specification, output is
written to the default device and directory; the object file has the same name as
the input file and a file type of .OBJ.

You cannot use the /DELETE, /OUTPUT, /REPLACE, or /TABLE qualifier with
/OBJECT.

Format

SET COMMAND/OBJECT [=object-filespec]

filespec

object-filespec
The file specification for the object file. If no file name is specified, defaults to the
name of the first input (command definition) file; the default file type is .OBJ.

filespec
The command definition file to be processed (wildcard characters are allowed).
The default file type is .CLD.

Examples

1. $ SET COMMAND/OBJECT TEST

In this example, the command definition file TEST.CLD is processed and a
new command table is created. This table is written as an object module to a
file named TEST.OBJ. (If not explicitly given, the name of the object module
defaults to the name of the command definition file with a file type of .OBJ.)

2. $ SET COMMAND/OBJECT=A TEST

In this example, the command definition file TEST.CLD is processed and the
command table is written as an object module to a file named A.OBJ.

Command Definition Utility CDU–43

CDU Qualifiers
/OUTPUT

/OUTPUT

Controls where the modified command table should be placed. If you provide an
output file specification, the modified command table is written to the specified
file. If you do not provide an output file specification, the modified command table
is placed in your process. The /NOOUTPUT qualifier indicates that no output is
to be generated.

You can use the /OUTPUT qualifier only in /DELETE or /REPLACE mode; the
default is /OUTPUT with no file specification. You cannot use the /OUTPUT
qualifier in /OBJECT mode.

Format

SET COMMAND/OUTPUT [=output-filespec] [filespec[, . . .]]

SET COMMAND/NOOUTPUT

output-filespec
The specification of the output file that contains the edited command table. The
default file type is .EXE.

You can specify an output file only when you use the /TABLE=filespec qualifier to
describe an input table.

filespec
The name of the command definition file to be processed (wildcard characters are
allowed). The default file type is .CLD.

Examples

1. $ SET COMMAND/OUTPUT TEST

The file TEST.CLD is processed and the definitions are added to your process
command table. The modified table is returned to your process. (The result is
the same as if you had issued the command SET COMMAND TEST.)

2. $ SET COMMAND/TABLE=A/OUTPUT=A TEST

The definitions from TEST.CLD are added to command table A.EXE. CDU
writes the modified table to the new A.EXE, which has a version number one
greater than the input table file.

If you use the /TABLE qualifier and do not provide an output file specification,
the modified command table replaces your process command table.

3. $ SET COMMAND/NOOUTPUT TEST

The definitions from TEST.CLD are added to your process command table,
and the modified table is not written anywhere. You can use this command
string to test whether a command definition file is written correctly.

CDU–44 Command Definition Utility

CDU Qualifiers
/REPLACE

/REPLACE

Used to add or replace verbs in the command table.

You can use the /REPLACE qualifier to either modify the process command table
or, with the /TABLE qualifier, to modify a command table file.

You cannot use the /REPLACE qualifier with the /OBJECT or /DELETE qualifier.
If you do not explicitly specify /DELETE, /OBJECT, or /REPLACE, the default is
/REPLACE.

Format

SET COMMAND/REPLACE [filespec [, . . .]]

filespec
The file to be processed (wildcard characters are allowed). The default file type is
.CLD.

Examples

1. $ SET COMMAND SCROLL

This command adds the command definitions from the file SCROLL.CLD
to your process command table. The /REPLACE, /TABLE, and /OUTPUT
qualifiers are present by default. The /REPLACE qualifier indicates
/REPLACE mode; the /TABLE qualifier indicates that your process command
table is to be modified; and the /OUTPUT qualifier indicates that the modified
command table is to be written to your process.

2. $ SET COMMAND/TABLE/OUTPUT SCROLL

This command adds the command definitions from the file SCROLL.CLD to
your process command table and returns the modified table to your process.
(The /TABLE and /OUTPUT qualifiers, with no specified files, default to your
process command table.) This command is the same as the command SET
COMMAND SCROLL.

3. $ SET COMMAND/TABLE=COMMAND_TABLE/OUTPUT=NEW_TABLE TEST

CDU adds command definitions from TEST.CLD to the command table in the
file COMMAND_TABLE.EXE, and the modified command table is written to
NEW_TABLE.EXE.

If you use the /TABLE qualifier to provide an input command table, be sure
to provide an output file specification. Otherwise, CDU uses the modified
command table to replace your process command table.

4. $ SET COMMAND/TABLE=TEST_TABLE MYCOMS

In this example, the definitions from MYCOMS.CLD are added to the
command table in TEST_TABLE.EXE. The modified command table is
written to your process and replaces your process command table. You should
replace your process command table only if the new command table contains
all the commands you need to perform your work. DCL commands copied to
your process command table when you logged in are overwritten.

Command Definition Utility CDU–45

CDU Qualifiers
/TABLE

/TABLE

Specifies the command table to be modified. If you specify the /TABLE qualifier
and omit the file specification, the current process command table is modified.

Can be used with /DELETE or /REPLACE but not with /OBJECT; the default is
/TABLE with no input file specification.

If you include a file specification, the specified command table is modified.

If you use the /TABLE qualifier without the /OUTPUT qualifier, the modified
command table replaces your process command table.

Format

SET COMMAND/TABLE [=input-filespec]

[filespec [, . . .]]

SET COMMAND/NOTABLE

input-filespec
The input file that contains the command table to be edited. The default file type
is .EXE.

filespec
The command definition file to be processed (wildcard characters are allowed).
The default file type is .CLD.

Examples

1. $ SET COMMAND/TABLE TEST

The commands from TEST.CLD are added to your process command table
and the results are returned to your process. The /TABLE qualifier with no
file specification indicates that your process command table is to be modified.
This command is the same as the command SET COMMAND TEST.

2. $ SET COMMAND/TABLE=A/OUTPUT=B TEST

CDU adds the command definitions from TEST.CLD to the command table in
A.EXE and writes the modified command table to B.EXE.

If you use the /TABLE qualifier to provide an input command table, be sure to
provide an output file specification. Otherwise, the modified command table
replaces your process command table.

3. $ SET COMMAND/TABLE=A

In this example, the command table in A.EXE is written to your process
and replaces your process command table. You should replace your process
command table only if the new command table contains all the commands you
need to perform your work. DCL commands copied to your process command
table when you logged in are overwritten.

CDU–46 Command Definition Utility

CDU Qualifiers
/VAX

/VAX

Causes CDU to create an OpenVMS VAX object module when used with the
/OBJECT qualifier. The default is to create OpenVMS Alpha object modules
on OpenVMS Alpha systems and to create OpenVMS VAX object modules on
OpenVMS VAX systems.

Format

SET COMMAND/VAX/OBJECT [=object-filespec] filespec

object-filespec
The file specification for the object file. If no file name is specified, defaults to the
name of the first input (command definition) file; the default file type is .OBJ.

filespec
The command definition file to be processed (wildcard characters are allowed).
The default file type is .CLD.

Example

$ SET COMMAND/VAX/OBJECT=A TEST

In this example, the command definition file TEST.CLD is processed and the
command table is written as an OpenVMS VAX object module to a file named
A.OBJ.

Command Definition Utility CDU–47

CDU Examples
Adding a Command to Your Process Command Table
This example shows how to add a command to your process command table
and how to use command language routines in the image invoked by the new
command.

The following command definition file defines a new verb called SAMPLE:

DEFINE VERB SAMPLE
IMAGE "USERDISK:[MYDIR]SAMPLE"
PARAMETER P1,LABEL=FILESPEC
QUALIFIER EDIT

To process this command definition file, use the DCL command SET COMMAND:

$ SET COMMAND SAMPLE

This command string invokes CDU to process the command definition file
(SAMPLE.CLD) and to add the verb SAMPLE to your process command table.
The modified table is returned to your process.

The following program illustrates a program called SAMPLE.BAS. It uses the
CLI$PRESENT and CLI$GET_VALUE command language routines to obtain
information about a command string parsed by DCL.

1 EXTERNAL INTEGER FUNCTION CLI$PRESENT,CLI$GET_VALUE

10 IF CLI$PRESENT(’EDIT’) AND 1%
THEN

PRINT ’/EDIT IS PRESENT’,A$

20 IF CLI$PRESENT(’FILESPEC’) AND 1%
THEN

CALL CLI$GET_VALUE(’FILESPEC’,A$)
PRINT ’FILESPEC = ’,A$

30 END

This source program must be compiled and linked before it can be invoked by a
command verb. When you compile and link the source program, the output file
(SAMPLE.EXE) contains an executable image.

You can now use the SAMPLE command to invoke the image SAMPLE.EXE, as
follows:

$ SAMPLE

DCL processes this command in the same way it processes the DCL commands
provided by Compaq; that is, DCL checks the syntax and then invokes
SAMPLE.EXE to execute the command.

You can include in the command string any parameters and qualifiers defined for
the SAMPLE command verb. For example, you can enter the following command
string:

$ SAMPLE MYFILE

In this case, you receive the following display on your screen:

FILESPEC = MYFILE

CDU–48 Command Definition Utility

CDU Examples

You can also include the /EDIT qualifier in the command string. For example:

$ SAMPLE MYFILE/EDIT

In this case, you receive the following display on your screen:

/EDIT IS PRESENT
FILESPEC = MYFILE

If you include a qualifier that is not accepted by the command verb, you receive a
DCL error message. For example:

$ SAMPLE MYFILE/UPDATE
%DCL-W-IVQUAL, unrecognized qualifier - check validity, spelling, and placement
\UPDATE\

If you include two or more parameters in the command string for a verb that was
defined to accept only one parameter, you receive an error message. For example:

$ SAMPLE MYFILE INFILE
%DCL-W-MAXPARM, too many parameters - reenter command with fewer parameters
\INFILE\

Creating an Object Module Table for Your Program
This example shows how to create an object module table for your program. It
also shows how to use command language routines to parse a command string
and to invoke the correct program routine.

When you write a command definition file to create an object module table, specify
routines (not images) for each command verb. Your program calls these routines
when it processes command strings.

The following example illustrates a command definition file called TEST.CLD that
defines three verbs: SEND, SEARCH, and EXIT. Each verb invokes a routine in
the program USEREXAMP.BAS.

MODULE TEST_TABLE

DEFINE VERB SEND
ROUTINE SEND_COMMAND
PARAMETER P1, LABEL = FILESPEC
QUALIFIER EDIT

DEFINE VERB SEARCH
ROUTINE SEARCH_COMMAND
PARAMETER P1, LABEL = SEARCH_STRING

DEFINE VERB EXIT
ROUTINE EXIT_COMMAND

Process TEST.CLD by using SET COMMAND with the /OBJECT qualifier to
create object module TEST.OBJ:

$ SET COMMAND/OBJECT TEST

You can then link TEST.OBJ with an object module that was created from your
source program.

The following BASIC program, entitled USEREXAMP.BAS, invokes the routines
listed in the command table in TEST.OBJ. It uses the command language routines
CLI$DCL_PARSE and CLI$DISPATCH to parse command strings and to invoke
the routine associated with the command. The program also uses CLI$PRESENT
and CLI$GET_VALUE to obtain information about command strings.

Command Definition Utility CDU–49

CDU Examples

10 SUB SEND_COMMAND
EXTERNAL INTEGER FUNCTION CLI$PRESENT,CLI$GET_VALUE

PRINT ’SEND COMMAND’
PRINT ’’

20 IF CLI$PRESENT (’EDIT’) AND 1%
THEN

PRINT ’/EDIT IS PRESENT’

30 IF CLI$PRESENT (’FILESPEC’) AND 1%
THEN

CALL CLI$GET_VALUE (’FILESPEC’,A$)
PRINT ’FILESPEC = ’,A$

90 SUBEND

100 SUB SEARCH_COMMAND
EXTERNAL INTEGER FUNCTION CLI$PRESENT,CLI$GET_VALUE

PRINT ’SEARCH COMMAND’
PRINT ’’

110 IF CLI$PRESENT(’SEARCH_STRING’) AND 1%
THEN

CALL CLI$GET_VALUE(’SEARCH_STRING’,A$)
PRINT ’SEARCH_STRING = ’,A$

190 SUBEND

200 SUB EXIT_COMMAND
CALL SYS$EXIT(1% BY VALUE)

290 SUBEND

1 EXTERNAL INTEGER FUNCTION CLIDCL_PARSE,CLIDISPATCH
EXTERNAL INTEGER FUNCTION SEND_COMMAND,SEARCH_COMMAND,EXIT_COMMAND
EXTERNAL INTEGER TEST_TABLE,LIB$GET_INPUT

2 IF NOT CLI$DCL_PARSE(,TEST_TABLE,LIBGET_INPUT,LIBGET_INPUT,’TEST>’) AND 1%
THEN

GOTO 2

3 PRINT ’’
CALL CLI$DISPATCH
PRINT ’’
GOTO 2
END

This source program must be compiled before it can be linked with an object
module created from the SET COMMAND/OBJECT command. To compile this
program, invoke the VAX BASIC compiler:

$ BASIC USEREXAMP

You now have a USEREXAMP.OBJ file in addition to the original
USEREXAMP.BAS source file. Link USEREXAMP.OBJ with TEST.OBJ by
entering the following command:

$ LINK USEREXAMP,TEST

You now have a file containing an executable image (USEREXAMP.EXE). To
execute the image, enter the following command:

$ RUN USEREXAMP

CDU–50 Command Definition Utility

CDU Examples

USEREXAMP.EXE displays the following prompt on your screen:

TEST>

You can now enter any of the commands you defined in TEST.CLD. For example:

TEST> SEND

The program calls CLI$DCL_PARSE to parse the command string SEND.
SEND is a valid command, so CLI$DISPATCH transfers control to the SEND_
COMMAND routine. This routine displays the following text:

SEND COMMAND

TEST>

You can also include a parameter with the SEND command. For example:

TEST> SEND MESSAGE.TXT

DCL invokes the SEND_COMMAND routine, which displays the following text:

SEND COMMAND

FILESPEC = MESSAGE.TXT

TEST>

You can also enter the /EDIT qualifier with SEND. For example:

TEST> SEND/EDIT MESSAGE.TXT

SEND COMMAND

/EDIT is present

FILESPEC = MESSAGE.TXT

TEST>

You can enter other commands that your program accepts. For example:

TEST> SEARCH

The SEARCH command string invokes a different routine from the one defined by
SEND. In this case, the screen displays the following text:

SEARCH COMMAND

TEST>

Unlike the SEND command, the SEARCH command accepts no qualifiers. If you
attempt to include a qualifier (such as /EDIT) in the SEARCH command string,
CLI$DCL_PARSE signals the following error:

%CLI-W-NOQUAL, qualifier not allowed on this command

To exit from the USEREXAMP program and return to the DCL command level,
issue the EXIT command:

TEST> EXIT

Command Definition Utility CDU–51

2
Librarian Utility

LIBRARIAN Description
Libraries are files that you can use to store modules of code or text. This section
describes how to use the Librarian utility (LIBRARIAN) to create, access, and
maintain libraries.

2.1 Types of Libraries
You can use LIBRARIAN to maintain the following types of libraries:

• Object libraries—Contain the object modules of frequently called routines.
The OpenVMS Linker searches specified object module libraries when it
encounters a reference it cannot resolve in one of its input files. For more
information about how the linker uses libraries, see the OpenVMS Linker
Utility Manual.

An object library has a default file type of .OLB and defaults the file type of
input files to .OBJ.

• Macro libraries—Contain macro definitions used as input to the assembler.
The assembler searches specified macro libraries when it encounters a macro
that is not defined in the input file. See the VAX MACRO and Instruction Set
Reference Manual for information about defining macros.

A macro library has a default file type of .MLB and defaults the file type of
input files to .MAR.

• Help libraries—Contain modules of help text that provide user information
about a program. You can retrieve help text at DCL level by executing
the DCL command HELP or, in your program, by calling the appropriate
LIBRARIAN routines. For information about creating help modules for
insertion into help libraries, see Section 2.5.

A help library has a default file type of .HLB and defaults the file type of
input files to .HLP.

• Text libraries—Contain any sequential record files that you want to retrieve
as data for a program. For example, program source code can be stored in
text libraries. Each text file inserted into the library corresponds to one
library module. Your programs can retrieve text from text libraries by calling
the appropriate LIBRARIAN routines.

A text library has a default file type of .TLB and defaults the file type of input
files to .TXT.

• Shareable image libraries—Contain the symbol tables of shareable images
used as input to the linker. For information about how to create a shareable
image library, see Section 2.4.

A shareable image library has a default type of .OLB and defaults the file
type of input files to .EXE.

You can create library files that do not have the default file type. For example,
you can create the object library LIB.xxx by entering the following:

$ LIBRARY/CREATE/OBJECT LIB.xxx *.obj

You can then access the object library by entering the following:

$ LIBRARY/LIST LIB.xxx

Librarian Utility LIB–3

LIBRARIAN Description

2.2 Structure of Libraries
Every library contains a library header that describes the contents of the library;
for example, its type, size, version number, creation date, and number of indexes.

Similarly, each module in the library has a module header that contains
information about the module, including its type, attributes, and date of insertion
into the library.

All libraries contain an index called the module name table (MNT); the keys in
the MNT are the names of the modules in the library. Object module libraries
also contain an index called the global symbol table (GST); the keys in the GST
are the names of the global symbols defined in each of the library modules.

Note that the MNT catalogs modules by module name, rather than by the name
of the input file that contained the inserted module. The only exception to this
procedure occurs with text libraries, for which the file name of the input file
containing the text automatically becomes the module name (unless you use the
/MODULE qualifier).

For more information about the structure of libraries, see the OpenVMS Utility
Routines Manual.

2.3 Character Case of Library Keys
The character case of module names and global symbols in libraries depends on
the library type:

• Help libraries—Module names remain in the format they were entered; that
is, individual uppercase and lowercase characters are preserved. However, a
second, identically spelled module name (but of a different or mixed character
case) to the same library replaces the previous module name, and character
case is ignored for match operations. For example, help Sample and help
SAMPLE access the same module.

• Object libraries—Module names and global symbols are in the format in
which they were entered. A second, identical keyword (but of a different or
mixed character case) to the same library initiates a separate keyword; the
previous keyword is not replaced. Match operations require the character
case to be identical. For example, for SAMPLE, you must enter SAMPLE, not
Sample or sample.

• Text and macro libraries—By default, all module names are converted to
uppercase characters. For example, Sample becomes SAMPLE. Likewise, for
match operations, either Sample or sample matches SAMPLE.

You can override this default behavior by using the CASE_SENSITIVE
option to the /CREATE qualifier. If you specify CASE_SENSITIVE:YES,
module names remain in the format they were entered, individual uppercase
and lowercase characters are preserved, and match operations require the
character case to be identical.

To use the default behavior for macro and text libraries, do not include the
CASE_SENSITIVE option with the /CREATE qualifier, or specify CASE_
SENSITIVE:NO.

The CASE_SENSITIVE option works only for macro and text libraries. If you
try to use it for other library types, you will get an error message and the
library creation operation will abort (no library is created).

LIB–4 Librarian Utility

LIBRARIAN Description

2.4 Shareable Image Libraries
A shareable image library is made up of only the symbol tables of shareable
images, which serve as input to the linker. To create a shareable image library,
use the LIBRARY command with the /SHARE qualifier, as follows:

$ LIBRARY/CREATE/SHARE MYSHARLIB MYSHRIMG1,MYSHRIMG2,SHRIMG3

You can then specify the library in the LINK command exactly as if it were an
object library.

$ LINK/MAP/FULL MYPROG, MYSHARLIB/LIBRARY

The linker includes in the link operation whatever shareable images are needed
from references to MYSHARLIB.

To explicitly include a shareable image, use the /INCLUDE qualifier.

$ LINK/MAP/FULL MYPROG, MYSHARLIB/INCLUDE=(MYSHRIMG1)/LIBRARY

For each shareable image found that either contains a necessary symbol or was
specifically requested with the /INCLUDE qualifier, the linker looks up the image
file (default file type is .EXE) and processes it as if it had been specified in an
options file.

Unless the search is disabled with the /NOSYSSHR qualifier, the linker also
searches the library SYS$LIBRARY:IMAGELIB.OLB after processing any user
default libraries (LNK$LIBRARY). Modules found in IMAGELIB.OLB are opened
with a default file specification of SYS$LIBRARY:.EXE.

The default file type for the LIBRARY/SHARE command is .OLB for the
shareable image symbol table library and .EXE for the input shareable image
files.

LIBRARIAN uses the GSMATCH identification numbers (IDs) of the shareable
image as the module ID in the library. The linker issues a warning message
if the GSMATCH ID of the library module is not equal to the GSMATCH IDs
found in the corresponding shareable image. A warning message is also issued if
the creation date or times found in the library differ from the shareable image.
For more information about GSMATCH ID processing, see the description of the
linker in the OpenVMS Linker Utility Manual.

You should note that a module inserted into a shareable image library contains
only the module header and end-of-module record, which are extracted from the
global symbol table of the input shareable image. Consequently, although it is not
an illegal action, there is little reason to extract modules from a shareable image
library.

2.5 Help Libraries
Help text is a convenient means of providing specific information about a program
to an interactive user. The help text is stored as modules in help libraries. You
can access the help modules by using the DCL command HELP or by calling the
appropriate LIBRARIAN routines (described in the OpenVMS Utility Routines
Manual). In this way, a user can quickly retrieve relevant information about how
to use your program.

You create help libraries the same way you create object, macro, and text
libraries, using the LIBRARY/CREATE command. However, before you can insert
modules into a help library, you must format the input file so that LIBRARIAN

Librarian Utility LIB–5

LIBRARIAN Description

can catalog its individual modules. Section 2.5.1 and Section 2.5.2 describe how
to create input files containing help modules.

2.5.1 Creating Help Files
The input files that you insert into help libraries are text files that you build with
a program or a text editor. Each input file can contain one or more help modules.
A help module is made up of the lines of help text that relate to the same topic,
or key.

Each module within a help library contains a group of related keys, or topics,
numbered key 1 through key 9. Each key represents a level within the hierarchy
of the module. The key-1 name identifies the main topic of help information; for
example, the name of a command in your program that requires explanation. The
key-2 through key-9 names identify subtopics that are related to the key-1 name;
for example, the command’s parameters or qualifiers or both. This organization
enables users of your program to find general information describing how to use
the command and then to select subtopics that provide additional information
about the command’s parameters and qualifiers. The maximum length of a key-1
name is determined by the key size option of the /CREATE qualifier.

Index keywords remain in the format they were entered, that is, uppercase
and lowercase characters. A second keyword to the same library, identically
spelled but of a different or mixed character case, replaces the previous preserved
keyword. However, character case is ignored for match operations. For example,
help Sample and help SAMPLE access the same file.

The key names for help topics and subtopics can include any printable ASCII
characters except those used by LIBRARIAN as either delimiters (space,
horizontal tab, and comma) or comments (exclamation point).

Compaq recommends that you restrict key names to the following characters:

• Uppercase and lowercase letters (A,a,B,b . . . Z,z)

• Digits (0,1,2 . . . 9)

• Dollar sign ($)

• Underscore (_)

• Hyphen (-)

Compaq also recommends that you avoid—especially as the first character of a
key name—certain characters that have special meaning to LIBRARIAN retrieval
routines. If you use these characters in key names, you might not be able to
specify them explicitly for retrieval.

The characters you should not use are as follows:

• Asterisk (*)

• Percent sign (%)

• Ellipsis (...)

• At sign (@)

• Slash (/)

• Question mark (?)

• Left parenthesis (() used as a first character

LIB–6 Librarian Utility

LIBRARIAN Description

• Apostrophe (’) and quotation marks (")

If a key contains any of these characters, you might be able to retrieve its help
text by abbreviating the key to avoid the special characters or by using wildcard
characters in their place. For information about using wildcard characters, see
the OpenVMS User’s Manual.

Also, note that you cannot abbreviate your retrieval key if it contains wildcard
characters.

2.5.2 Formatting Help Files
Each line in a help module consists of the key number in the first column,
followed by the name of the key. The subtopic lines that follow (key 2 through
key 9) consist of the subkey number followed by the name of the subkey. For
example, a help module for a command might have the following two key lines:

1 Command name
.
.
.
help text
.
.
.

2 Parameters

Each help source file can contain several modules. LIBRARIAN recognizes a
group of key-1 and subkey lines and their associated text as a module. A module
is terminated either by another key-1 line or by an end-of-file record.

A help source file has the following format:

1 key-1 name
.
.
.
help text
.
.
.

2 key-2 name
.
.
.
help text
.
.
.

n key-n name
.
.
.

1 key-1 name

LIBRARIAN stores the key-1 name in its module name table; therefore, the name
of the module is the same as the key-1 name. The subsequent numbers in the
first column indicate that the line is a subkey. A module can have several subkeys
with the same number. For example, a help module describing a command might
have the following key-2 lines:

2 parameters
2 arguments

Librarian Utility LIB–7

LIBRARIAN Description

You can insert comments anywhere in a module. When LIBRARIAN encounters
an exclamation point as the first character on a line, it assumes that the line
consists of comments. Comment lines that follow a key-1 line are included in the
module. However, when your program retrieves help text, LIBRARIAN does not
display the comments.

The help text can be any length; the only restriction to the text is that it cannot
contain a number or a slash (/) in the first column of any line. A number in the
first column of a line indicates that the line is a key. A slash in the first column
indicates a qualifier line.

A qualifier line is similar to a key line, except that LIBRARIAN returns a list of
all the qualifier lines when you request help either on a key-1 topic or on the key
containing the qualifiers (usually a key-2 topic named ‘‘Qualifiers’’). Therefore,
if your help module describes a command that has qualifiers, LIBRARIAN
provides a list of all the command’s qualifiers whenever you request help on the
command.

2.5.3 Help Text Example
The help module in Example 2–1 shows the organization of some of the help text
for the DCL command LIBRARY.

Example 2–1 Help Text for LIBRARY Command

1 LIBRARY
Invokes the Librarian utility to create, modify, or describe an
object, macro, help, text, or shareable image library.

Format:

LIBRARY library-file-spec [input-file-spec[,...]]
2 Command Parameters

library-file-spec

Specifies the name of the library you want to create or modify.

If the file specification does not include a file type, the LIBRARY
command assumes a default type of .OLB, indicating an object library.

input-file-spec[,...]

Specifies the names of one or more files that contain modules you
want to insert or replace in the specified library.

If you specify more than one input file, separate the file
specifications with commas. The input-file-spec parameter is
required when you specify /REPLACE, which is the LIBRARY command’s
default operation, or /INSERT, which is an optional qualifier.

When you use the /CREATE qualifier to create a new library, the
input-file-spec parameter is optional. If you include an input file
specification with /CREATE, the LIBRARY command first creates a new
library and then inserts the contents of the input files into the
library.

2 Command_Qualifiers

/BEFORE
/BEFORE[=time]

(continued on next page)

LIB–8 Librarian Utility

LIBRARIAN Description

Example 2–1 (Cont.) Help Text for LIBRARY Command

Used in conjunction with the /LIST qualifier to specify that only
those modules dated earlier than a particular time be listed. You
can specify an absolute time or a combination of absolute and delta
times.

If you omit the /BEFORE qualifier, all modules are listed regardless
of date. If you specify /BEFORE without a date or time, all modules
created before today are listed by default.

/COMPRESS
/COMPRESS[=(option[,...])]

Recovers space that had been occupied by modules deleted from the
library. When you specify /COMPRESS, the LIBRARY command by
default creates a new version of the library in your current default
directory. You can use options to the /COMPRESS qualifier to make
some specifications in the new version of the library different from
the original library.

/CREATE
/CREATE[=(option[,...])]

Creates a new library. When you specify /CREATE, you can optionally
specify a file or a list of files that contains modules to be placed
in the library.

By default, the LIBRARY command creates an object module library;
specify /SHARE, /MACRO, /HELP, or /TEXT to change the default
library type.

.

.

.

2.5.4 Retrieving Help Text
You can retrieve help text at DCL level by using the DCL command HELP or,
in your program, by calling the appropriate Librarian utility (LBR) routines (as
described in the OpenVMS Utility Routines Manual).

By default, the HELP command retrieves help text from the system help library
SYS$HELP:HELPLIB.HLB and from user help libraries associated with the
logical names HLP$LIBRARY, HLP$LIBRARY_1, HLP$LIBRARY_2, and so forth.
Using the /LIBRARY qualifier with the HELP command lets you search a library
other than the default libraries. For more information, see the description of the
HELP command in the OpenVMS DCL Dictionary.

When you retrieve help text, you specify the key-1 topic followed by any subtopics
that contain appropriate help information. LIBRARIAN returns the help text
associated with the key path you specify. For example, the help text for the
LIBRARY command is stored in the default system help library; thus, to retrieve
the LIBRARY command’s key-1 help information, you would enter the DCL
command HELP LIBRARY. LIBRARIAN would return the associated help text,
followed by the message ‘‘Additional information available:’’ and a list of all the
key-2 names in the module. In this case, LIBRARIAN also returns a list of all the
qualifiers specified in the qualifier lines. Example 2–2 displays the text returned
by the HELP LIBRARY command.

Librarian Utility LIB–9

LIBRARIAN Description

Example 2–2 HELP LIBRARY Display

LIBRARY

Invokes the Librarian utility to create, modify, or describe an
object, macro, help, text, or shareable image library.

Format:

LIBRARY library-file-spec [input-file-spec[,...]]

Additional information available:

Command_Parameters /ALPHA /BEFORE /COMPRESS /CREATE
/CROSS_REFERENCE /DATA /DELETE /EXTRACT /FULL /GLOBALS
/HELP /HISTORY /INSERT /LIST /LOG /MACRO /MODULE
/NAMES /OBJECT /ONLY /OUTPUT /REMOVE /REPLACE
/SELECTIVE_SEARCH /SHARE /SINCE /SQUEEZE /TEXT /VAX
/WIDTH

Note that you cannot retrieve the key-2 level ‘‘Parameters’’ by entering HELP
PARAMETERS. LIBRARIAN searches for a subkey only after finding the higher
level keys. In other words, if you want to retrieve key-3 text, you have to specify
the key-1 and key-2 lines that form a path to the key-3 line.

Also note that you can provide information about a qualifier that has more than
one form by associating two or more qualifier lines with the same help text. That
is, the text associated with the qualifiers follows the two or more qualifier lines.
For example:

$ HELP LIBRARY/GLOBALS

LIBRARY

/GLOBALS

/GLOBALS
/NOGLOBALS

Controls, for object module libraries, whether the names of global
symbols in modules being inserted in the library are included in the
global symbol table.

By default, the LIBRARY command places all global symbol names in
the global symbol table. Use /NOGLOBALS if you do not want the
global symbol names included in the global symbol table.

When LIBRARIAN successfully searches the key path to the requested key, it
displays all the key names in that path, followed by the help text associated with
the last specified key. For example:

$ HELP LIBRARY/HELP

LIBRARY

/HELP

Indicates that the library is a help library. When you
specify the /HELP qualifier, the library file type defaults
to .HLB and the input file type defaults to .HLP.

If you try to retrieve help text for a key that is not in the module name table,
LIBRARIAN issues a message. For example:

LIB–10 Librarian Utility

LIBRARIAN Description

$ HELP FIRE

Sorry, no documentation on FIRE

Additional information available:

This message is followed by a list of all the module names in the module name
table.

If you have correctly specified the key-1 line but have requested a subkey that
does not exist, LIBRARIAN issues a message. For example:

$ HELP LIBRARY/FIRE

Sorry, no documentation on LIBRARY/FIRE

Additional information available:

Parameters Command_Qualifiers
/BEFORE /COMPRESS

.

.

.

The message includes a list of all the subkeys associated with the last key that
was specified correctly.

2.6 Using the Librarian Utility to Save Disk Space
You can save disk space by using the Librarian utility to reduce data files. To
save disk space, create a library, copy the data files you want to reduce into the
library, and then use the LIBRARY/DATA=REDUCE command to reduce the size
of the files. When you subsequently want to use the files in their expanded form,
use the LIBRARY/DATA=EXPAND command and extract the expanded data files.

Large, infrequently accessed files are good candidates for this method when you
do not want to write a program that uses the callable interface to reduce and
expand data files.

See the description of the /DATA qualifier for more information.

2.7 Librarian Utility (LBR) Routines
Programs can call Librarian utility (LBR) routines to do the following:

• Initialize a library

• Open a library

• Look up a key in a library

• Insert a new key in a library

• Return the names of the keys

• Delete a key and its associated data

• Read and write records

The OpenVMS Utility Routines Manual describes in detail each LBR routine.

Librarian Utility LIB–11

LIBRARIAN Usage Summary

The Librarian utility (LIBRARIAN) gives you easy access to libraries. Libraries
are files in which you can store frequently used modules of code or text.

You can use the DCL command LIBRARY (or LBR routines) to create a library,
maintain the modules in a library, or display information about a library and its
modules.

Note that libraries are files, so you can use DCL commands to manipulate
libraries in their entirety; for example, you can use the DELETE, COPY, and
RENAME commands to delete, copy, and rename libraries. For more information
about file maintenance, see the OpenVMS DCL Dictionary.

Format

LIBRARY library-file-spec [input-file-spec[,...]]

Command Parameters
library-file-spec
The name of the library you want to create or modify. This parameter is required.
If you do not specify a library file, you are prompted for one, as follows:

_Library:

No wildcard characters are allowed in the library file specification.

If the file specification does not include a file type and if the command string
does not indicate one, the LIBRARY command assumes a default type of .OLB,
indicating an object library. You can change the default library file type by
specifying the appropriate qualifier, as follows:

Qualifier
Default
File Type

/HELP .HLB

/MACRO .MLB

/OBJECT .OLB

/TEXT .TLB

/SHARE .OLB

input-file-spec[,...]
The names of one or more files that contain modules you want to insert into
the specified library. If you specify more than one input file, separate the file
specifications with commas.

The input file specification is required when you specify /REPLACE, which is
the LIBRARY command’s default operation, or /INSERT, which is an optional
qualifier. If you do not specify an input file when you use these qualifiers, you are
prompted for it, as follows:

_File:

LIB–12 Librarian Utility

LIBRARIAN Usage Summary

When you use the /CREATE qualifier to create a new library, the input file
specification is optional. If you include an input file specification with the
/CREATE qualifier, LIBRARY first creates a new library and then inserts the
contents of the input files into the library.

Note that the /EXTRACT qualifier does not accept an input file specification.

If any file specification does not include a file type and if the command string
does not indicate one, LIBRARY assumes a default file type of .OBJ, designating
an object file. You can control the default file type by specifying the appropriate
qualifier, as follows.

Qualifier
Default
File Type

/HELP .HLP

/MACRO .MAR

/OBJECT .OBJ

/TEXT .TXT

/SHARE .EXE

Note also that the file type you specify with the library file specification
determines the default file type of the input file specification, provided that
you do not specify the /CREATE qualifier. For example, if the library file type
is .HLB, .MLB, .OLB, or .TLB, the input file type default will be .HLP, .MAR,
.OBJ, or .TXT, respectively. (If you specify the /CREATE qualifier and you are not
creating an object library, you must use the appropriate file type qualifier.)

Wildcard characters are allowed in the input file specifications.

Usage Summary
The DCL command LIBRARY invokes the Librarian utility. After the operations
specified by LIBRARY have completed, the Librarian utility exits.

If you use the /LIST qualifier to request information about a library, the output
is directed to the file specification associated with /LIST or, if you do not supply a
file specification, to SYS$OUTPUT.

Librarian Utility LIB–13

LIBRARIAN Qualifiers
When using LIBRARY, you can specify qualifiers that request more than one
function in a single command, with some restrictions. Generally, you cannot
specify multiple qualifiers that request incompatible functions. The qualifiers
that perform library functions, related qualifiers, and qualifier incompatibilities
are summarized in Table 2–1.

Table 2–1 LIBRARY Command Qualifier Compatibilities

Qualifier Related Qualifiers Incompatible Qualifiers

/COMPRESS /OUTPUT /CREATE, /EXTRACT

/CREATE1 /SQUEEZE,2 /GLOBALS,3

/SELECTIVE_SEARCH3
/COMPRESS, /EXTRACT

/CROSS_REFERENCE /ONLY /EXTRACT, /LIST

/DATA /COMPRESS —

/DELETE — /EXTRACT

/EXTRACT /OUTPUT /COMPRESS, /CREATE,
/DELETE, /INSERT,
/LIST, /REMOVE,
/REPLACE

/INSERT /SQUEEZE,2 /GLOBALS,3

/SELECTIVE_SEARCH3
/EXTRACT

/LIST /FULL, /NAMES,3 /ONLY,
/HISTORY, /BEFORE,
/SINCE

/EXTRACT,
/CROSS_REFERENCE

/REMOVE3 — /EXTRACT

/REPLACE /SQUEEZE,2 /GLOBALS,3

/SELECTIVE_SEARCH3
/EXTRACT

/MODULE4 /TEXT /EXTRACT, /DELETE,
/REMOVE

1The /CREATE, /INSERT, and /REPLACE qualifiers are compatible; however, if you specify more than one, /CREATE
takes precedence over /INSERT, and /INSERT takes precedence over /REPLACE. The related qualifiers for /CREATE are
applicable only if you enter one or more input files.
2This qualifier applies only to macro libraries.
3This qualifier applies only to object libraries and shareable image libraries.
4This positional qualifier applies only to text libraries.

Note that all the qualifiers are command qualifiers except for /MODULE, which
is a positional qualifier that modifies the input file specification parameter.

LIB–14 Librarian Utility

LIBRARIAN Qualifiers
/ALPHA

/ALPHA

Directs LIBRARIAN to work with an OpenVMS Alpha object library when used
with the /OBJECT qualifier or to work with an OpenVMS Alpha shareable image
library when used with the /SHARE qualifier. When used with the /CREATE
qualifier, LIBRARIAN creates an OpenVMS Alpha library of either an object or
shareable image type depending whether /OBJECT or /SHARE is specified.

The default is /ALPHA on OpenVMS Alpha systems and /VAX on OpenVMS VAX
systems.

Format

/ALPHA

Description

The /ALPHA qualifier is used to create and manipulate OpenVMS Alpha object
and shareable image libraries. Because the formats of macro, help, and text
libraries are identical on both system architectures, using the /ALPHA qualifier
with the /MACRO, /TEXT, and /HELP qualifiers has no effect.

Note that you cannot have both OpenVMS Alpha and OpenVMS VAX object
modules in one object library, nor can you have OpenVMS Alpha and OpenVMS
VAX shareable images in the same shareable image library.

Examples

1. $ LIBRARY/ALPHA/CREATE TESTLIB ERRMSG.OBJ,STARTUP.OBJ

This LIBRARY command creates an OpenVMS Alpha object library named
TESTLIB.OLB and places the files ERRMSG.OBJ and STARTUP.OBJ as
modules in the library.

2. $ LIBRARY/ALPHA/SHARE/CREATE SHARELIB.OLB

This LIBRARY command creates an OpenVMS Alpha shareable image library
called SHARELIB.OLB.

Librarian Utility LIB–15

LIBRARIAN Qualifiers
/BEFORE

/BEFORE

Specifies that only those modules inserted earlier than a particular time be listed.

Format

/BEFORE[=time]

time
Limits the modules to be listed to those inserted in the library before a specified
time.

You can specify an absolute time or a combination of absolute and delta times.
For details about specifying times, see the OpenVMS DCL Dictionary.

Description

This qualifier is used with the /LIST qualifier. If you omit the /BEFORE qualifier,
you obtain all the modules regardless of the dates. If you specify /BEFORE
without a date or time, the default is to provide the modules inserted before
today.

Example

$ LIBRARY/LIST/BEFORE=15-APR-:15 MATHLIB

This LIBRARY command lists the modules that were inserted into
MATHLIB.OLB before 3 p.m. on April 15.

LIB–16 Librarian Utility

LIBRARIAN Qualifiers
/COMPRESS

/COMPRESS

Recovers space that was occupied by modules deleted from the library. When
you specify /COMPRESS, LIBRARY creates a new library. You can use options to
the /COMPRESS qualifier to make some specifications in the new version of the
library different from the original library.

Format

/COMPRESS[=(option[,...])]

option
An option that alters the size or format of the library, overriding the values
specified when the library was created. Options are listed in the Description
section.

Description

When you specify /COMPRESS, LIBRARY creates a new library. By default, the
new library is created in your current default directory and has the same file
name as the existing library and a file type that is the default for the type of
library created. You can use the /OUTPUT qualifier to specify an alternate file
specification for the compressed library.

Specify one or more of the following options to alter the size or format of the
library, overriding the values specified when the library was created (for the
default values, see the description of the /CREATE qualifier):

BLOCKS:n Specifies the number of 512-byte blocks to be allocated for the
library. By default, LIBRARY allocates 100 blocks for a new
library.

GLOBALS:n Specifies the maximum number of global symbols the library
can contain initially. By default, LIBRARY sets a maximum
of 512 global symbols for an object module library. (Macro,
help, and text libraries do not have a global symbol directory;
therefore, the maximum for these libraries defaults
to 0.)

HISTORY:n Specifies the maximum number of library update history records
that the library is to maintain. The maximum number of library
update records you can specify is 32,767. The default is 20.

KEEP Copies library update history records and any additional user
data in the module header to the compressed library.

Librarian Utility LIB–17

LIBRARIAN Qualifiers
/COMPRESS

KEYSIZE:n Specifies the maximum name length of modules or global
symbols. The maximum length you can specify for these names
is 128 characters.
On VAX systems, LIBRARY assigns default name lengths of
15 characters for help modules, 31 characters for modules in
object or macro libraries, and 39 characters for modules in text
or shareable image libraries.
Also on VAX systems, when you specify a key size value,
remember that the MACRO compiler and the linker do not
accept module names or global symbol names in excess of 31
characters.
On Alpha systems, LIBRARY assigns default name lengths of 15
characters for help modules, 31 characters for modules in macro
libraries, 39 characters for modules in text libraries, and 128
characters for modules in object or shareable image libraries.
Also on Alpha systems, when you specify a key size value,
remember that the MACRO compiler does not accept module
names and global symbol names in excess of 31 characters,
and the linker does not accept module names in excess of 31
characters or global symbol names in excess of 64 characters.

MODULES:n Specifies the maximum number of modules the library can
contain. By default, LIBRARY sets an initial maximum of 128
modules for all library types.
A library’s size can grow past its initial allocation. However,
for optimum performance, it is best to allocate the maximum
number of modules you expect to use.

VERSION:n Specifies that the library is to be stored in VMS Version 2.0
library format, if n is 2; or VMS Version 3.0 library format, if n
is 3.

If you specify more than one option, separate them with commas and enclose the
list in parentheses.

Example

$ LIBRARY/COMPRESS=(KEYSIZE:40,MODULES:80)/TEXT SOURCE

This LIBRARY command creates a new version of the text library SOURCE.TLB.
Space left after modules were deleted from the old version is recovered in the new
version. The new version can contain up to 80 modules; the maximum length of
module names in the new version is 40.

LIB–18 Librarian Utility

LIBRARIAN Qualifiers
/CREATE

/CREATE

Requests the DCL command LIBRARY to create a new library. When you specify
/CREATE, you can optionally specify a file or a list of files that contains modules
to be placed in the library.

Format

/CREATE[=(option[,...])]

option
An option that overrides the system defaults to control the size or format of the
library. Options are listed in the Description section.

Description

By default, the /CREATE qualifier creates an object module library. To indicate
that the library is a macro, help, text, or shareable image library, specify
/MACRO, /HELP, /TEXT, or /SHARE.

On OpenVMS VAX systems, the /CREATE qualifier creates a VAX library by
default when used to create object and shareable image libraries. Note that you
cannot have VAX modules and Alpha modules in the same library. For more
information, see the description of the /VAX qualifier.

On OpenVMS Alpha systems, the /CREATE qualifier creates an Alpha library
by default when used to create object and shareable image libraries. Note that
you cannot have Alpha modules and VAX modules in the same library. For more
information, see the description of the /ALPHA qualifier.

Specify one or more of the following options to override the system defaults:

BLOCKS:n Specifies the number of 512-byte blocks to be allocated for the
library. By default, LIBRARY allocates 100 blocks for a new
library.

CASE_
SENSITIVE:
[YES/NO]

Specifies whether key operations on macro or text libraries are
case sensitive. The default, CASE_SENSITIVE:NO, causes
all module names to be converted to uppercase. CASE_
SENSITIVE:YES causes current and subsequent key operations
to behave as they do for object libraries. See Section 2.3 for a
full description.
This option is valid only for macro and text libraries.

GLOBALS:n Specifies the maximum number of global symbols the library
can contain initially. By default, LIBRARY sets a maximum
of 512 global symbols for an object module library. (Macro,
help, and text libraries do not have a global symbol directory;
therefore, the maximum for these libraries defaults
to 0.)

HISTORY:n Specifies the maximum number of library update history records
that the library is to maintain. The maximum number of library
update records you can specify is 32,767. The default is 20.

Librarian Utility LIB–19

LIBRARIAN Qualifiers
/CREATE

KEYSIZE:n Specifies the maximum name length of modules or global
symbols. The maximum length you can specify for these names
is 128 characters.
On VAX systems, LIBRARY assigns default name lengths of
15 characters for help modules, 31 characters for modules in
object or macro libraries, and 39 characters for modules in text
or shareable image libraries.
Also on VAX systems, when you specify a key size value,
remember that the MACRO compiler and the linker do not
accept module names or global symbol names in excess of 31
characters.
On Alpha systems, LIBRARY assigns default name lengths of
15 characters for help modules, 31 characters for modules in
macro libraries, 39 characters for modules in text libraries, and
128 characters for modules in object or shareable image symbol
table libraries.
Also on Alpha systems, when you specify a key size value,
remember that the MACRO compiler does not accept module
names and global symbol names in excess of 31 characters,
and the linker does not accept module names in excess of 31
characters or global symbol names in excess of 64 characters.

MODULES:n Specifies the maximum number of modules the library can
contain. By default, LIBRARY sets an initial maximum of 128
modules for all library types.
A library’s size can grow past its initial allocation. However,
for optimum performance, it is best to allocate the maximum
number of modules you expect to use.

VERSION:n Specifies that the library is to be stored in VMS Version 2.0
library format, if n is 2; or VMS Version 3.0 library format, if n
is 3.

If you specify more than one option, separate them with commas and enclose the
list in parentheses.

Examples

1. $ LIBRARY/CREATE TESTLIB ERRMSG,STARTUP

This LIBRARY command creates an object module library named
TESTLIB.OLB and places the files ERRMSG.OBJ and STARTUP.OBJ as
modules in the library.

2. $ LIBRARY/MACRO/CREATE=(BLOCKS:40,MODULES:100) MYMAC TEMP
$ MACRO MYMAC/LIBRARY,CYGNUS/OBJECT

This LIBRARY command creates a macro library named MYMAC.MLB from
the macros in the file TEMP.MAR. The new library has room for 100 modules
in a 40-block file. If the input file contains multiple macros, each macro is
entered in the new library.

LIB–20 Librarian Utility

LIBRARIAN Qualifiers
/CROSS_REFERENCE

/CROSS_REFERENCE

Requests a cross-reference listing of an object library.

Format

/CROSS_REFERENCE[=(option[,...])]

option
An option that produces a cross-reference listing that is not limited to only
symbols by name and symbols by value. Options are listed in the Description
section.

Description

If you omit this qualifier, cross-reference listings are not provided. If you specify
/CROSS_REFERENCE without specifying an option, you get cross-reference
listings that contain symbols by name and symbols by value. By default, the
listing file is created in your current default directory and has the same file
name as the library and a file type of .LIS. You can use the /OUTPUT qualifier to
specify an alternate file specification for the listing file.

You can specify one or more of the following options:

ALL All types of cross-references
MODULE Cross-reference listing of both the global symbol references in the

module and the global symbol definitions
NONE No cross-reference listing
SYMBOL Cross-reference listing by symbol name
VALUE Cross-reference listing of symbols by value

If you specify more than one option, separate the options with commas and
enclose the list in parentheses.

Example

$ LIBRARY/CROSS_REFERENCE=ALL/OUTPUT=SYS$OUTPUT LIBRAR

This LIBRARY command requests a cross-reference listing of the object library
LIBRAR.OLB. The cross-reference listing is displayed at the terminal. The listing
includes cross-references by symbol, by value, and by module.

Librarian Utility LIB–21

LIBRARIAN Qualifiers
/DATA

/DATA

Stores a library in data-reduced format or expands a library previously stored in
data-reduced format.

Format

/DATA=option

option
The option REDUCE, which stores a library in data-reduced format, or the option
EXPAND, which expands a library previously stored in data-reduced format.
There is no default; you must specify one of the options.

Description

When you specify /DATA, the DCL command LIBRARY creates a new library. By
default, the new library is created in your current default directory with the same
file name as the existing library and a file type that is the default for the type of
library created. You can use the /OUTPUT qualifier to specify an alternate file
specification for the library.

You use the /DATA qualifier to control how data is stored in the library. If you
specify /DATA=REDUCE, data in the library is stored in data-reduced format;
less disk space is required for the library, but access to the library generally is
slower.

If you omit this qualifier, data is stored in the library in standard, rather than
data-reduced, format. You can change a data-reduced library back to the standard
format by specifying /DATA=EXPAND.

When you use the /DATA qualifier (with either option), LIBRARIAN also recovers
space in the library that had been occupied by modules deleted from the library,
just as if you had specified /COMPRESS.

Example

$ LIBRARY/TEXT/DATA=REDUCE TEXTLIB

This LIBRARY command stores the data in the text library TEXTLIB.TLB in
data-reduced format.

LIB–22 Librarian Utility

LIBRARIAN Qualifiers
/DELETE

/DELETE

Requests the LIBRARY command to delete (physically remove) one or more
modules from a library.

Format

/DELETE=(module[,...])

module
The name of the module to be deleted.

Description

You must specify the names of the modules to be deleted. If you specify more
than one module, separate the module names with commas and enclose the list in
parentheses.

Wildcard characters are allowed in the module specification.

If you specify the /LOG qualifier with /DELETE, LIBRARY issues the following
message:

%LIBRAR-S-DELETED, MODULE module-name DELETED FROM library-name

Example

$ LIBRARY/DELETE=FREEZE/LOG THAW

This LIBRARY command physically removes the module FREEZE from the object
library THAW. A message is displayed to confirm that the module was deleted.

Librarian Utility LIB–23

LIBRARIAN Qualifiers
/EXTRACT

/EXTRACT

Copies one or more modules from a library into a file.

Format

/EXTRACT=(module[,...])

module
The name of the module to be copied.

Description

If you specify more than one module, separate the module names with commas
and enclose the list in parentheses.

Wildcard characters are allowed in the module specification.

If you specify the /OUTPUT qualifier with /EXTRACT, the LIBRARY command
writes the output into the file specified by the /OUTPUT qualifier. If you do not
specify a directory, the file is written to your current default directory. If you
specify /EXTRACT and do not specify /OUTPUT, the LIBRARY command writes
the file into a file that has the same file name as the library and a file type of
.OBJ, .EXE, .MAR, .HLP, or .TXT, depending on the type of library.

Example

$ LIBRARY/EXTRACT=(ALLOCATE,APPEND)/OUTPUT=MYHELP SYS$HELP:HELPLIB.HLB

This LIBRARY command specifies that the modules ALLOCATE and APPEND
are to be extracted from the help library HELPLIB.HLB and output to the file
MYHELP.HLP in your current default directory.

LIB–24 Librarian Utility

LIBRARIAN Qualifiers
/FULL

/FULL

Requests a full description of each module in the module name table.

Format

/FULL

Description

Use the /FULL qualifier with the /LIST qualifier to request a list of each library
module in the following format, where Ident nn is the identification number of
the module:

module-name [Ident nn] Inserted dd-mmm-yyyy hh:mm:ss [n symbols]

The identification number and the number of symbols appear only in object
libraries.

If an update history is maintained for the library, then /LIST/FULL/HISTORY
lists the module name in the update history records.

Example

$ LIBRARY/LIST=MYMAC.LIS/FULL MYMAC.MLB

This LIBRARY command requests a full listing of the macro library MYMAC; the
output is written to a file named MYMAC.LIS.

Librarian Utility LIB–25

LIBRARIAN Qualifiers
/GLOBALS

/GLOBALS

Controls, for object module libraries, whether the names of global symbols in
modules being inserted in the library are included in the global symbol table.

Format

/GLOBALS

/NOGLOBALS

Description

By default, the LIBRARY command places all global symbol names in the global
symbol table. Use /NOGLOBALS if you do not want the global symbol names
included in the global symbol table.

Example

$ LIBRARY/INSERT/NOGLOBALS TOOLS SPELL

This LIBRARY command inserts the modules in SPELL.OBJ into the object
library TOOLS, but global symbol names in the inserted modules are not included
in the library’s global symbol table.

LIB–26 Librarian Utility

LIBRARIAN Qualifiers
/HELP

/HELP

Indicates that the library specified is a help library.

Format

/HELP

Description

When you use the /HELP qualifier, the library file type defaults to .HLB and the
input file type defaults to .HLP.

Example

$ LIBRARY/HELP/CREATE ERRMSG EDITERRS

This LIBRARY command creates a help library called ERRMSG.HLB. Help text
from the file EDITERRS.HLP is inserted into the library.

Librarian Utility LIB–27

LIBRARIAN Qualifiers
/HISTORY

/HISTORY

Requests that update history record headers be listed (for libraries that contain a
history).

The operation referred to in the header has one of three values: replaced,
inserted, or deleted.

Format

username operation n modules on dd-mmm-yyy hh:mm:ss

Description

The /HISTORY qualifier is used with the /LIST qualifier. Use the /HISTORY
qualifier with /LIST/FULL to request that the names of updated modules be
listed in addition to the update history headers.

Example

$ LIBRARY/LIST/HISTORY/MACRO SETUP

This LIBRARY command lists the headers of the update history records in the
macro library SETUP.MLB.

LIB–28 Librarian Utility

LIBRARIAN Qualifiers
/INSERT

/INSERT

Requests the LIBRARY command to add the contents of one or more files to an
existing library.

Format

/INSERT

Description

If an object module input file consists of concatenated object modules, the
LIBRARY command creates a separate entry for each object module in the file;
each module name table entry reflects an individual module name. If a macro
or help file specified as input contains more than one definition, the LIBRARY
command creates a separate entry for each one, naming the module name table
entries according to the names specified in the .MACRO directives or in the key-1
name in the help format (see Section 2.5.1).

Unlike object, macro, and help libraries, the input file in text libraries contains
data records of undefined contents. Therefore, LIBRARIAN catalogs the entire
input file as a single module using the file name (not the directory or file type) as
the module name. If you want to rename the inserted module, use the /MODULE
qualifier.

When you use the /INSERT qualifier to insert modules into an existing library,
the Librarian utility checks the module name table before inserting each module.
If a module name or global symbol name already exists in the library, an error
message is issued and the module or symbol is not added to the library.

For OpenVMS VAX libraries, the maximum record size (established by
LBR$C_MAXRECSIZ) that can be inserted into a library is 2048 bytes.

For OpenVMS Alpha libraries, the maximum record size (established by
ELBR$C_MAXRECSIZ) that can be inserted into a library is 8192 bytes.

To insert or replace a module in a library, regardless of whether a current entry
exists with the same name, use the /REPLACE qualifier (the default operation).

Example

$ LIBRARY/INSERT TESTLIB SCANLINE
$ LINK TERMTEST,TESTLIB/LIBRARY

This LIBRARY command adds the module SCANLINE.OBJ to the library
TESTLIB.OLB. The library is specified as input to the linker by the /LIBRARY
qualifier on the LINK command. If the module TERMTEST.OBJ refers to any
routines or global symbols not defined in TERMTEST, the linker searches the
global symbol table of library TESTLIB.OLB to resolve the symbols.

Librarian Utility LIB–29

LIBRARIAN Qualifiers
/LIST

/LIST

Controls whether the LIBRARY command creates a listing that provides
information about the contents of the library.

Format

/LIST[=file-spec]

/NOLIST

file-spec
The file specification of the file to be listed.

Description

By default, LIBRARY does not produce a listing. If you specify /LIST without a
file specification, LIBRARY writes the output file to the current SYS$OUTPUT
device. If you include a file specification that does not have a file type, LIBRARY
uses the default file type .LIS.

If you specify /LIST with qualifiers that perform additional operations on the
library, the LIBRARY command creates the listing after completing all other
requests; thus, the listing reflects the status of the library after all changes have
been made.

When you specify /LIST, the LIBRARY command provides, by default, the
following information about the library:

Directory of OBJECT library _DBB0:[LIBRAR]LIBRAR.OLB;1 on 31-DEC-1993 10:08:28
Creation date: 12-DEC-1992 19:40:36 Creator: VAX-11 librarian V04-00
Revision date: 31-DEC-1992 16:04:58 Library format: 3.0
Number of modules: 15 Max. key length: 31
Other entries: 73 Preallocated index blocks: 35
Recoverable deleted blocks: 15 Total index blocks used: 12
Max. update history records: 10 Update history records: 5

Examples

1. $ LIBRARY/LIST=MYMAC.LIS/FULL MYMAC.MLB

This LIBRARY command requests a full listing of the macro library MYMAC;
the output is written to a file named MYMAC.LIS.

2. $ LIBRARY/LIST/NAMES/ONLY=$ONE/WIDTH=80 SYMBOLIB

This LIBRARY command requests a full listing of the module $ONE,
contained in the object library SYMBOLIB.OLB. The /WIDTH qualifier
requests that the global symbol display be limited to 80 characters per line.

3. $ LIBRARY/INSERT/LIST ALLOBJECTS *

This LIBRARY command inserts into ALLOBJECTS.OLB all object modules
from all object files in the current directory. If any of the modules to be
inserted have the same name as an existing module in the library, the
existing module is replaced. The LIBRARY command then lists the resulting
library on SYS$OUTPUT.

LIB–30 Librarian Utility

LIBRARIAN Qualifiers
/LOG

/LOG

Controls whether the LIBRARY command verifies each library operation.

Format

/LOG

/NOLOG

Description

If you specify /LOG, the LIBRARY command displays the module name, followed
by the library operation performed, followed by the library file specification.

Other applications of the /LOG qualifier appear in the descriptions of /DELETE
and /REPLACE.

Example

$ LIBRARY/REMOVE=(LIB_EXTRCT_MODS,LIB_INPUT_MAC)/LOG LIBRAR

This LIBRARY command requests the removal of the global symbols
LIB_EXTRCT_MODS and LIB_INPUT_MAC from the object library
LIBRAR.OLB. The /LOG qualifier requests that the removal of the symbols
be confirmed by messages.

Librarian Utility LIB–31

LIBRARIAN Qualifiers
/MACRO

/MACRO

Indicates that the library specified is a macro library.

Format

/MACRO

Description

When you specify the /MACRO qualifier, the library file type defaults to .MLB
and the input file type defaults to .MAR.

Example

$ LIBRARY/MACRO/INSERT MONTHS APRIL

This LIBRARY command inserts modules from APRIL.MAR into the macro
library MONTHS.MLB.

LIB–32 Librarian Utility

LIBRARIAN Qualifiers
/MODULE

/MODULE

Names a text module that you want to replace or insert into a text library. It also
modifies the input file specification parameter.

Format

/MODULE=module-name

module-name
The name of the module to be inserted in the library.

Description

When you insert text modules into a library, the input file you specify is assumed
to be a single module. Therefore, the file name of the input file specification
becomes the module name. If you want the file you are inserting to have a
module name different from its input file name, use the /MODULE qualifier to
name the added module.

You can also use the /MODULE qualifier to enter a text module interactively. If
you specify the logical name SYS$INPUT as the input file and use the /MODULE
qualifier, the LIBRARY command inserts the text you enter from the terminal
into the specified library module. To terminate the terminal input, press Ctrl/Z.

Remember that the /MODULE qualifier is an input file qualifier; it assumes that
you are either replacing or inserting a new text module. Therefore, the qualifiers
that remove modules—/EXTRACT, /DELETE, /REMOVE—are incompatible with
/MODULE.

Note that you must place the /MODULE qualifier after the input file you specify.

Example

$ LIBRARY/INSERT/TEXT TSTRING SYS$INPUT/MODULE=TEXT1

This LIBRARY command inserts a module named TEXT1 into the text library
TSTRING.TLB. The input is taken from SYS$INPUT.

Librarian Utility LIB–33

LIBRARIAN Qualifiers
/NAMES

/NAMES

When /LIST is specified for an object module library, controls whether the
LIBRARY command lists the names of all global symbols in the global symbol
table as well as the module names in the module name table.

Format

/NAMES

/NONAMES

Description

The default is /NONAMES, which does not list the global symbol names. If you
specify /NAMES, each module entry name is displayed in the following format:

module "module-name"

global-symbol global-symbol global-symbol global-symbol
. . . .
. . . .
. . . .

If you specify /NAMES and the library is a macro, help, or text library, no symbol
names are displayed.

Example

$ LIBRARY/LIST/NAMES/ONLY=$ONE/WIDTH=80 SYMBOLIB

This LIBRARY command requests a full listing of the module $ONE, contained
in the object library SYMBOLIB.OLB. The /WIDTH qualifier requests that the
global symbol display be limited to 80 characters per line.

LIB–34 Librarian Utility

LIBRARIAN Qualifiers
/OBJECT

/OBJECT

Indicates that the library specified is an object module library.

Format

/OBJECT

Description

Libraries are assumed to be object module libraries unless you specify the
/SHARE, /MACRO, /TEXT, or /HELP qualifier. The library file type for object
module libraries defaults to .OLB and the input file type defaults to .OBJ.

On OpenVMS VAX systems, the /OBJECT qualifier creates a VAX library by
default. Note that you cannot have VAX modules and Alpha modules in the same
library file. For more information, see the description of the /VAX qualifier.

On OpenVMS Alpha systems, the /OBJECT qualifier creates an Alpha library by
default. Note that you cannot have Alpha modules and VAX modules in the same
library file. For more information, see the description of the /ALPHA qualifier.

Example

$ LIBRARY/OBJECT/INSERT MONTHS APRIL

This LIBRARY command inserts modules from APRIL.OBJ into the object library
MONTHS.OLB. The /OBJECT qualifier is optional.

Librarian Utility LIB–35

LIBRARIAN Qualifiers
/ONLY

/ONLY

Specifies the individual modules on which the LIBRARY command can operate.

Format

/ONLY=(module-name[,...])

module-name
The module on which the LIBRARY command can operate.

Description

When you use the /ONLY qualifier, the LIBRARY command lists or cross-
references only those modules specified.

If you specify more than one module, separate the module names with commas
and enclose the list in parentheses.

The /ONLY qualifier must be used with the /LIST or /CROSS_REFERENCE
qualifier.

Wildcard characters are allowed in the module name specification.

Example

$ LIBRARY/LIST/NAMES/ONLY=$ONE/WIDTH=80 SYMBOLIB

This LIBRARY command requests a full listing of the module $ONE, contained
in the object library SYMBOLIB.OLB. The /WIDTH qualifier requests that the
global symbol display be limited to 80 characters per line.

LIB–36 Librarian Utility

LIBRARIAN Qualifiers
/OUTPUT

/OUTPUT

When used with the /EXTRACT, /COMPRESS, /CROSS_REFERENCE, or /DATA
qualifier, specifies the file specification of the output file.

Format

/OUTPUT=file-spec

file-spec
The file specification of the output file.

Description

For /EXTRACT, the output file contains the modules extracted from a library;
for /COMPRESS, the output file contains the compressed library; for /CROSS_
REFERENCE, the output file contains the cross-reference listing; for /DATA, the
output file contains the data-reduced or data-expanded library.

No wildcard characters are allowed in the file specification.

If you omit the file type in the file specification, a default is used depending on
the library function qualifier and, in some cases, the library type qualifier, as
follows:

Qualifier

Library
Type
Qualifier Default File Type

/COMPRESS or
/DATA

/HELP
/MACRO
/OBJECT
/TEXT
/SHARE

.HLB

.MLB

.OLB

.TLB

.OLB
/CROSS_REFERENCE — .LIS
/EXTRACT /HELP

/MACRO
/OBJECT
/TEXT
/SHARE

.HLP

.MAR

.OBJ

.TXT

.EXE

Examples

1. $ LIBRARY/EXTRACT=(ALLOCATE,APPEND)/OUTPUT=MYHELP SYS$HELP:HELPLIB.HLB

This LIBRARY command specifies that the modules ALLOCATE and
APPEND be extracted from the help library HELPLIB.HLB and output
to the file MYHELP.HLP.

2. $ LIBRARY/CROSS_REFERENCE=ALL/OUTPUT=SYS$OUTPUT LIBRAR

This LIBRARY command requests a cross-reference listing of the object
library LIBRAR.OLB. The cross-reference listing is displayed at the terminal.
The listing includes cross-references by symbol, by value, and by module.

Librarian Utility LIB–37

LIBRARIAN Qualifiers
/REMOVE

/REMOVE

Requests the LIBRARY command to delete one or more entries from the global
symbol table in an object library.

Format

/REMOVE=(symbol[,...])

symbol
The symbol to be deleted from the global symbol table.

Description

If you specify more than one symbol, separate the symbols with commas and
enclose the list in parentheses.

Wildcard characters are allowed in the symbol specification.

To display the names of the deleted global symbols, you must also specify the
/LOG qualifier.

Example

$ LIBRARY/REMOVE=(LIB_EXTRCT_MODS,LIB_INPUT_MAC)/LOG LIBRAR

This LIBRARY command requests the removal of the global symbols
LIB_EXTRCT_MODS and LIB_INPUT_MAC from the object library
LIBRAR.OLB. The /LOG qualifier requests that the removal of the symbols
be confirmed by messages.

LIB–38 Librarian Utility

LIBRARIAN Qualifiers
/REPLACE

/REPLACE

Requests the LIBRARY command to replace one or more existing library modules
with the modules specified in the input files.

Format

/REPLACE

Description

The LIBRARY command first deletes any existing library modules with the same
names as the modules in the input files. Then the new version of the module
is inserted in the library. If a module contained in an input file does not have
a corresponding module in the library, LIBRARY inserts the new module in the
library.

The /REPLACE qualifier is the LIBRARY command’s default operation. If you
specify an input file parameter, the LIBRARY command either replaces or inserts
the contents of the input file into the library. If you use the /LOG qualifier
with the /REPLACE qualifier, the LIBRARY command displays, in the following
format, the name of each module that it replaces or inserts:

%LIBRAR-S-REPLACED, MODULE module-name REPLACED IN library-file-spec

%LIBRAR-S-INSERTED, MODULE module-name INSERTED IN library-file-spec

Example

$ LIBRARY/REPLACE/HELP HELPLIB NEWTEXT

This LIBRARY command inserts into the help library HELPLIB.HLB the help
modules from the file NEWTEXT.HLP. If a help module in NEWTEXT.HLP
has the same name as an existing help module in the library, the module from
NEWTEXT.HLP replaces the existing module.

Librarian Utility LIB–39

LIBRARIAN Qualifiers
/SELECTIVE_SEARCH

/SELECTIVE_SEARCH

Defines the input modules being inserted into a library as candidates for selective
searches by the linker.

Format

/SELECTIVE_SEARCH

Description

If you specify /SELECTIVE_SEARCH and the library is specified as a linker
input file, the linker selectively searches the modules; the linker takes from the
library, for the symbol table of its output image file, only those global symbols
that have been referenced by other modules.

Note that the selective search operation applies only to those modules that were
inserted in the library by a LIBRARY command that included the /SELECTIVE_
SEARCH qualifier; it does not apply to the library itself.

Example

$ LIBRARY/SELECTIVE_SEARCH/INSERT MATHLIB TRIG

This LIBRARY command inserts the modules in TRIG.OBJ into the library
MATHLIB.OLB. The inserted modules are selectively searched when
MATHLIB.OLB is specified as an input file to the linker.

LIB–40 Librarian Utility

LIBRARIAN Qualifiers
/SHARE

/SHARE

Indicates that the library specified is a shareable image library.

Format

/SHARE

Description

This LIBRARY command assumes a file type of .OLB for the shareable image
library and .EXE for the input files. See Section 2.4 for additional information.

On OpenVMS VAX systems, the /SHARE qualifier creates a VAX shareable image
library by default. Note that you cannot have VAX modules and Alpha modules in
the same library. For more information, see the description of the /VAX qualifier.

On OpenVMS Alpha systems, the /SHARE qualifier creates an Alpha shareable
image library by default. Note that you cannot have Alpha modules and VAX
modules in the same library. For more information, see the description of the
/ALPHA qualifier.

SYS$LIBRARY:IMAGELIB.OLB is an example of a sharable image library.

Example

$ LIBRARY/SHARE/CREATE SHARELIB.OLB

This LIBRARY command creates a shareable image library called
SHARELIB.OLB.

Librarian Utility LIB–41

LIBRARIAN Qualifiers
/SINCE

/SINCE

Specifies that only those modules inserted later than a particular time be listed.

Format

/SINCE[=time]

time
Limits the modules to be listed to those inserted in the library since a specified
time.

You can specify an absolute time or a combination of absolute and delta times.
For details about specifying times, see the OpenVMS DCL Dictionary.

Description

This qualifier is used with the /LIST qualifier. If you omit the /SINCE qualifier,
you obtain all the modules regardless of the date. If you specify /SINCE without
a date or time, the default is to provide the modules inserted since today.

Example

$ LIBRARY/HELP/LIST/SINCE=:12 ERRMSG

This LIBRARY command displays information about help modules added to
ERRMSG.HLB since noon today.

LIB–42 Librarian Utility

LIBRARIAN Qualifiers
/SQUEEZE

/SQUEEZE

Controls whether the LIBRARY command compresses individual macros before
adding them to a macro library.

Format

/SQUEEZE

/NOSQUEEZE

Description

When you specify /SQUEEZE, which is the default, trailing blanks, trailing tabs,
and comments are deleted from each macro before its insertion in the library.

Use /SQUEEZE only with the /CREATE, /INSERT, and /REPLACE qualifiers to
conserve space in a macro library. If you want to retain the full macro, specify
/NOSQUEEZE.

Example

$ LIBRARY/MACRO/NOSQUEEZE/INSERT MYMACS MYMACS

This LIBRARY command inserts the macros in MYMACS.MAR into the library
MYMACS.MLB. Trailing blanks, trailing tabs, and comments are not deleted
from each macro before its insertion into the library.

Librarian Utility LIB–43

LIBRARIAN Qualifiers
/TEXT

/TEXT

Indicates that the library specified is a text library.

Format

/TEXT

Description

When you use the /TEXT qualifier, the library file type defaults to .TLB and the
input file type defaults to .TXT.

Examples

1. $ LIBRARY/INSERT/TEXT TSTRING SYS$INPUT/MODULE=TEXT1

This LIBRARY command inserts a module named TEXT1 into the text library
TSTRING.TLB. The input is taken from SYS$INPUT.

2. $ LIBRARY/INSERT/TEXT TSTRING TEXT2

This LIBRARY command inserts the contents of the file TEXT2.TXT into the
text library TSTRING.TLB. The name of the inserted module is TEXT2.

LIB–44 Librarian Utility

LIBRARIAN Qualifiers
/VAX

/VAX

Directs LIBRARIAN to work with an OpenVMS VAX object library when used
with the /OBJECT qualifier or to work with an OpenVMS VAX shareable image
library when used with the /SHARE qualifier. When used with the /CREATE
qualifier, LIBRARIAN creates an OpenVMS VAX library of either an object or
shareable image type depending whether /OBJECT or /SHARE is specified. The
default is /ALPHA on OpenVMS Alpha systems and /VAX on OpenVMS VAX
systems.

Format

/VAX

Description

On OpenVMS Alpha systems, use the /VAX qualifier to create and manipulate
OpenVMS VAX object and shareable image libraries. Because the formats of
macro, help, and text libraries on OpenVMS Alpha systems are identical to those
on OpenVMS VAX systems, using the /VAX qualifier with the /MACRO, /HELP,
and /TEXT qualifiers has no effect.

Note that you cannot have both OpenVMS Alpha and OpenVMS VAX object
modules in the same object library, nor can you have both OpenVMS Alpha and
OpenVMS VAX shareable images in the same shareable image library.

Examples

1. $ LIBRARY/VAX/CREATE TESTLIB ERRMSG.OBJ,STARTUP.OBJ

This LIBRARY command creates a VAX object module library named
TESTLIB.OLB and places the files ERRMSG.OBJ and STARTUP.OBJ as
modules in the library.

2. $ LIBRARY/VAX/SHARE/CREATE SHARLIB

This LIBRARY command creates a VAX shareable image library called
SHARLIB.OLB.

Librarian Utility LIB–45

LIBRARIAN Qualifiers
/WIDTH

/WIDTH

Controls the screen display width (in characters) for listing global symbol names.

Format

/WIDTH=n

n
The width of the screen display.

Description

Specify the /WIDTH qualifier with the /NAMES qualifier to limit the line length
of the /NAMES display.

The default display width is the width of the listing device. The maximum width
is 132.

Example

$ LIBRARY/LIST/NAMES/ONLY=$ONE/WIDTH=80 SYMBOLIB

This LIBRARY command requests a full listing of the module $ONE, contained
in the object library SYMBOLIB.OLB. The /WIDTH qualifier requests that the
global symbol display be limited to 80 characters per line.

LIB–46 Librarian Utility

3
Message Utility

MESSAGE Description
The Message utility (MESSAGE) lets you supplement OpenVMS system messages
with your own messages. Your messages can indicate that an error has occurred,
or they can indicate other conditions; for example, that a routine has run
successfully or that a default value has been assigned.

This section describes how to use the Message utility.

3.1 Message Format
Messages are displayed as a line of alphanumeric codes. The text of the message
explains the condition that caused the message to be displayed.

Messages are displayed in the following format:

%FACILITY-L-IDENT, message-text

FACILITY
Specifies the abbreviated name of the software component that issued the
message.

L
Shows the severity level of the condition that caused the message. The five
severity levels are represented by the following codes:

S Success

I Informational

W Warning

E Error

F Fatal or severe

IDENT
Identifies a symbol of up to 15 characters that represents the message.

message-text
Explains the cause of the message. The message text can include up to 255
formatted-ASCII-output (FAO) arguments. For example, an FAO argument can
be used to display the instruction where an error occurred or a value that you
should be aware of.

% and ,
Included as delimiters if any of the first three fields—FACILITY, L, or IDENT—
are present.

If you suppress FACILITY, L, and IDENT, the first character of the message text
is capitalized by the Put Message ($PUTMSG) system service.

The following is a typical message:

%TYPE !-W- "OPENIN #, error opening _DB0:[ROSE]STATS.FOR;$ as input %

! TYPE is the facility.

" W (Warning) is the severity level.

OPENIN is the IDENT.

$ _DBO:[ROSE]STATS.FOR is the FAO argument.

Message Utility MSG–3

MESSAGE Description

% ‘‘Error opening _DBO:[ROSE]STATS.FOR; as input’’ is the message text.

3.2 Constructing Messages
You construct messages by writing a message source file, compiling it using the
Message utility, and linking the resulting object module with your facility object
module. When you run your program, the Put Message ($PUTMSG) system
service finds the information to use in the message by using a message argument
vector.

The message argument vector includes the message code, a 32-bit value that
uniquely identifies the message. The message code, which is created from
information defined in the message source file, consists of the following:

• The severity level defined in the severity directive or message definition

• The message number assigned automatically by a message definition or
specified with the base message number directive

• The facility number defined in the facility directive

• Internal control flags

Figure 3–1 shows the arrangement of the bits in the message code.

Figure 3–1 Message Code

31 28 27 16 15 3 2 0

Control Facility Number Message Number Severity

ZK−0866−GE

You can refer to the message code in your programs by means of a global symbol
called the message symbol, which also is defined by information from the message
source file. The message symbol, which appears in the compiled message file,
consists of the following:

• The symbol prefix defined in the facility directive

• The symbol name defined in the message definition

3.2.1 The Message Source File
The message source file consists of message definition statements and directives
that define the message text, the message code values, and the message symbol.
The various elements that can be included in a message source file are as follows:

• Facility directive

• Severity directive

• Base message number directive

• Message definition

• Literal directive

• Identification directive

• Listing directives

MSG–4 Message Utility

MESSAGE Description

• End directive

Usually, the first statement in a message source file is a .TITLE directive, which
lets you specify a module name for the compiled message file. You must specify
a .FACILITY directive after the .TITLE directive. All the messages defined after
a .FACILITY directive are associated with that facility. A .END directive or a
new .FACILITY directive ends the list of messages associated with a particular
facility.

You must define a severity level for each message either by specifying a
.SEVERITY directive or by including a severity qualifier as part of the message
definition.

Each message defined in the message source file must have a facility and a
message definition associated with it. All other message source file statements
are optional. See the MESSAGE Commands section for a detailed description of
the format of each of these message source file statements.

The TESTMSG.MSG file that follows is a sample message source file. The
messages for the associated FORTRAN program, TEST.FOR, are defined in
TESTMSG.MSG with the following lines:

.FACILITY TEST,1 /PREFIX=MSG_

.SEVERITY ERROR
SYNTAX <Syntax error in string ’!AS’>/FAO=1
ERRORS <Errors encountered during processing>
.END

The FORTRAN program, TEST.FOR, contains the following lines:

EXTERNAL MSG_SYNTAX,MSG_ERRORS
CALL LIB$SIGNAL(MSG_SYNTAX,%VAL(1),’ABC’)
CALL LIB$SIGNAL(MSG_ERRORS)
END

In addition to defining the message data, TESTMSG.MSG also defines the
message symbols MSG_SYNTAX and MSG_ERRORS that are included as
arguments in the procedure calls of TEST.FOR. The function %VAL is a required
FORTRAN compile-time function. The first call also includes the string ABC as
an FAO argument.

3.2.2 Compiling the Message Source File
You must compile message source files into object modules before you can use the
messages defined in them. You compile your message source file by entering the
MESSAGE command followed by the file specification of the message source file.
For example:

$ MESSAGE TESTMSG

This command compiles the message source file TESTMSG.MSG and creates an
object module file TESTMSG.OBJ.

For your convenience, you can put message object modules into object module
libraries, which you can then link with facility object modules.

Message Utility MSG–5

MESSAGE Description

3.2.3 Linking the Message Object Module
After you compile the message file, you must link the message object module with
the facility object module (created when the source file was compiled) to produce
one executable image file.

For example, use the following command to link the message object module
TESTMSG.OBJ to the FORTRAN object module TEST.OBJ to create the
executable program TEST.EXE:

$ LINK/NOTRACE TEST+TESTMSG

At this point, you can execute the program, which contains both the message data
and the facility code, with the following command:

$ RUN TEST

If an error occurs when you execute the program, the following messages are
displayed:

%TEST-E-SYNTAX, Syntax error in string ABC
%TEST-E-ERRORS, Errors encountered during processing

3.3 Using Message Pointers
Message pointers are generally used when you need to provide different message
texts for the same set of messages; for example, a multilingual situation. When
you use message pointers, you do not link the message object module directly
with the facility object module. Consequently, you do not have to relink the
executable image file to change the message text included in it.

To use a pointer, you must create a nonexecutable message file that contains
the message text and a pointer file that contains the symbols and pointer to the
nonexecutable file.

You create the nonexecutable message file by compiling and linking a
message source file. For example, to create the nonexecutable message file
COBOLMF.EXE, you first create the object module by compiling the message
source file, COBOLMSG.MSG, with the following command:

$ MESSAGE/NOSYMBOLS COBOLMSG

You link the resulting object module with the following command:

$ LINK/SHAREABLE=SYS$MESSAGE:COBOLMF COBOLMSG.OBJ

By default, the linker places newly created images in your default device and
directory. In the preceding example, the nonexecutable image COBOLMF.EXE is
placed in the system message library SYS$MESSAGE.

You create the pointer file by recompiling the message source file with the
MESSAGE/FILE_NAME command. To avoid confusion, the pointer file should
have a different file name from the nonexecutable file.

The object module resulting from the MESSAGE/FILE_NAME command contains
only global symbols and the file specification of the nonexecutable message file.

For example, the following command creates the object module MESPNTR.OBJ,
which contains a pointer to the nonexecutable message file COBOLMF.EXE:

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

MSG–6 Message Utility

MESSAGE Description

In addition to the pointers, the object module MESPNTR.OBJ contains the global
symbols defined in the message source file COBOLMSG.MSG. If the destination
of the nonexecutable message file is not SYS$MESSAGE, you must specify the
device and directory in the file specification for the /FILE_NAME qualifier.

After you create the pointer object module, you can then link it with the facility
object module.

For example, the following command links the object module MESPNTR.OBJ to
the COBOL program COBOLCODE:

$ LINK COBOLCODE,MESPNTR

When you run the resulting facility image file, the Get Message ($GETMSG)
system service retrieves the message data from the message file COBOLMF.

Figure 3–2 illustrates the relationship of the files in this example.

Figure 3–2 Creating a Message Pointer

COBOLMF.EXE
SYS$MESSAGE:

File
Message

executable
Non−

MESPNTR
/OBJECT=
COBOLMF

/FILE_NAME=
Compiler
Message

COBOLMSG.MSG
File

Source
Message

COBOLMSG.OBJ
Module
Object

Message

COBOLMSG
/NOSYMBOLS

Compiler
Message

COBOLMF
SYS$MESSAGE:

/SHAREABLE=
Linker

MESPNTR.OBJ
Module
Object
Pointer
Message

Linker

Message Data
Pointer to
Including
Program,

Executable

COBOLCODE.OBJ
Module
Object
Facility

ZK−0868−GE

$GETMSG

On Alpha systems, by default, the message compiler creates OpenVMS Alpha
object modules from message source files. The /VAX qualifier causes the compiler
to produce OpenVMS VAX object modules from those same message source files.

Note that you must convert messages to OpenVMS VAX object format if you want
to link them against other OpenVMS VAX objects. For more information, see the
OpenVMS Linker Utility Manual.

Message Utility MSG–7

MESSAGE Description

3.4 The SET MESSAGE Command
The SET MESSAGE command allows you to do the following:

• Suppress or enable the various fields of the messages in your process

• Supplement the system message data with the message data in a
nonexecutable message image for your process

For example, the following SET MESSAGE command specifies that the message
information in MYMSG.EXE supplements the existing system messages:

$ SET MESSAGE MYMSG

In addition, the SET MESSAGE command used with one or more qualifiers
suppresses or enables one or more fields in a message. For example, the following
command suppresses the IDENT field in a message:

$ SET MESSAGE/NOIDENTIFICATION

For more information about the SET MESSAGE command, see the OpenVMS
DCL Dictionary.

3.5 Message Source Files
The message source file contains statements or directives and the information
included in the message, the message code, and the message symbol.

Source File Statements
Message source file statements are embedded within a message source file.
Generally, message source file statements help construct the message code
and the message symbol and control output listings. The message source file
statements are as follows:

• Facility directive (.FACILITY)

• Severity directive (.SEVERITY)

• Base message number directive (.BASE)

• Message definition message-name

• End directive (.END)

• Literal directive (.LITERAL)

• Identification directive (.IDENT)

• Listing directives

— Title directive (.TITLE)

— Page directive (.PAGE)

Many of these statements accept qualifiers and parameters. The specific format of
each of the message source file statements is described in detail in the MESSAGE
Commands section.

Any line in the message source file, except lines that contain the .TITLE directive,
can include a comment delimited by an exclamation point. You can insert extra
spaces and tabs in any line to improve readability.

MSG–8 Message Utility

MESSAGE Description

The listing title specified with the .TITLE directive and the message text specified
in the message definition must occupy only one line. All other statements in a
message source file can occupy any number of lines; text that continues onto the
next line must end with a hyphen.

Defining Symbols in the Message Source File
Symbols defined in the message source file can include any of the following
characters:

• Uppercase and lowercase letters (A,a,B,b . . . Z,z)

• Digits (1,2,3 . . . 9)

• Dollar sign ($)

• Underscore (_)

Using Expressions in the Message Source File
Expressions used in the message source file can include any of the following radix
operators:

^X Hexadecimal

^O Octal

^D Decimal

Radix operators specify the radix of a numeric value. The default radix is
decimal.

Expressions can include symbols and the plus sign (+), which assigns a positive
value, and minus sign (–), which assigns a negative value. Expressions can
include the following binary operators:

+ Addition

– Subtraction

* Multiplication

/ Division

@ Arithmetic shift

Expressions can also include parentheses as grouping operators. Expressions
enclosed in parentheses are evaluated first; nested parenthetical expressions are
evaluated from inside to outside.

Message Utility MSG–9

MESSAGE Usage Summary

The Message utility (MESSAGE) lets you supplement system messages with your
own messages. Your messages can indicate that an error has occurred, or they
can indicate other conditions; for example, that a routine has run successfully or
that a default value has been assigned.

Format

MESSAGE file-spec[,...]

Command Parameter
file-spec
Specifies the message source file to be compiled. If you do not specify a file type,
the default is .MSG. Wildcard characters are allowed in file specifications.

If you specify more than one message source file, separated by either commas or
plus signs, the files are concatenated and compiled as a single file.

If you specify SYS$INPUT, the message source files must immediately follow
the MESSAGE command in the input stream, and both the object module name,
identified by the /OBJECT qualifier, and the listing file name, identified by the
/LIST qualifier, must be stated explicitly.

Usage Summary
The DCL command MESSAGE invokes the Message utility. After compiling the
message source file, the Message utility returns you to DCL command level. For
details about message statements and directives, qualifiers, and parameters in
message source files, see the MESSAGE Commands section.

MSG–10 Message Utility

MESSAGE Qualifiers
MESSAGE command qualifiers let you specify the type and contents of output
files produced. In addition, MESSAGE command qualifiers let you create
nonexecutable message files that contain pointers to files that contain message
data. Output files produced by command qualifiers are named according to the
rules described in the OpenVMS DCL Dictionary.

Message Utility MSG–11

MESSAGE Qualifiers
/ALPHA

/ALPHA

Directs MESSAGE to create an OpenVMS Alpha message object file. The default
is to create OpenVMS Alpha message object files on OpenVMS Alpha systems
and to create OpenVMS VAX message object files on OpenVMS VAX systems.

Format

/ALPHA

Description

Directs the message compiler to create an OpenVMS Alpha object modules from
message source files.

Note that you must compile message source files using /ALPHA (default on
OpenVMS Alpha systems) to link with other OpenVMS Alpha object modules and
that you must compile using /VAX to link with OpenVMS VAX object modules.
For more information, see the OpenVMS Linker Utility Manual.

Example

$ MESSAGE/ALPHA TESTMSG

This MESSAGE command creates an OpenVMS Alpha message object module
named TESTMSG.OBJ by compiling the message source file TESTMSG.MSG.

MSG–12 Message Utility

MESSAGE Qualifiers
/FILE_NAME

/FILE_NAME

Specifies whether the object module contains a pointer to a file containing
message data.

Format

/FILE_NAME=file-spec

/NOFILE_NAME

file-spec
Identifies a nonexecutable message file. The default device and directory for the
file specification is SYS$MESSAGE and the default file type is .EXE. No wildcard
characters are allowed in the file specification.

Description

The /[NO]FILE_NAME qualifier specifies whether the object module contains a
pointer to a file containing message data. By default, the object module contains
only compiled message information and no pointers.

The /FILE_NAME and /TEXT qualifiers cannot be used together because a
message pointer file cannot contain message text. The message text is contained
in the nonexecutable message file, specified by the /FILE_NAME qualifier.

Examples

1. $ MESSAGE COBOLMSG

This MESSAGE command creates the message object module
COBOLMSG.OBJ by compiling the message source file COBOLMSG.MSG.
The default qualifier /NOFILE_NAME is implied.

2. $ MESSAGE/FILE_NAME=COBOLMF COBOLMSG

This MESSAGE command creates a message pointer file COBOLMSG.OBJ,
which contains a pointer to the nonexecutable message file
SYS$MESSAGE:COBOLMF.EXE.

Message Utility MSG–13

MESSAGE Qualifiers
/LIST

/LIST

Controls whether an output listing is created and, optionally, provides an output
file specification for the listing.

Format

/LIST[=file-spec]

/NOLIST

file-spec
Specifies an output file specification for the listing file. The default device and
directory are the current device and directory. The default file type is .LIS. No
wildcard characters are allowed in the file specification.

Description

The /LIST qualifier creates a listing file. If you do not specify a file specification,
the listing file has the same name as the first message source file being compiled
and a file type of .LIS. When you compile message source files in batch mode, the
output listing is created by default; however, in interactive mode, the default is to
produce no output listing.

Example

$ MESSAGE/LIST=MSGOUTPUT COBOLMSG

This MESSAGE command compiles the message source file COBOLMSG.MSG
and creates the output listing MSGOUTPUT.LIS in your current directory.

MSG–14 Message Utility

MESSAGE Qualifiers
/OBJECT

/OBJECT

Controls whether an object module is created by the message compiler and,
optionally, provides a file specification for the object module.

Format

/OBJECT[=file-spec]

/NOOBJECT

file-spec
Specifies a file specification for the object module. The default device and
directory are the current device and directory. No wildcard characters are
allowed in the file specification.

Description

By default, the message compiler creates an object module that contains the
message data. If you do not specify a file specification, the object module has the
same name as the first message source file being compiled and a file type of .OBJ.

Examples

1. $ MESSAGE COBOLMSG

This MESSAGE command creates the message object module
COBOLMSG.OBJ by compiling the message source file COBOLMSG.MSG.
The default qualifier /OBJECT is implied.

2. $ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

This MESSAGE command creates the object module MESPNTR.OBJ, which
contains a pointer to the nonexecutable message file COBOLMF.EXE.

Message Utility MSG–15

MESSAGE Qualifiers
/SYMBOLS

/SYMBOLS

Controls whether global symbols are present in the object module. By default,
object modules are created with global symbols.

Format

/SYMBOLS

/NOSYMBOLS

Description

By default, the message compiler creates an object module with global symbols.
The /SYMBOLS qualifier requires that the /OBJECT qualifier be in effect, either
explicitly or implicitly. If you are creating both a pointer object module and a
nonexecutable message image, you can compile the object module, which becomes
the nonexecutable image, with the /NOSYMBOLS qualifier. The symbols have to
be in the pointer object module only.

Example

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR/SYMBOLS COBOLMSG

This MESSAGE command creates the object module MESPNTR.OBJ, which
contains global symbols.

MSG–16 Message Utility

MESSAGE Qualifiers
/TEXT

/TEXT

Controls whether the message text is present in the object module.

Format

/TEXT

/NOTEXT

Description

By default, the message compiler creates an object module that contains message
text. The message text is obtained from the nonexecutable message file specified
by the /FILE_NAME qualifier. The /TEXT and /FILE_NAME qualifiers cannot be
used together because a message pointer file cannot contain message text.

The /TEXT qualifier requires that the /OBJECT qualifier be in effect, either
explicitly or implicitly.

You can use the /NOTEXT qualifier with the /SYMBOLS qualifier to produce an
object module containing only global symbols.

Example

$ MESSAGE/FILE_NAME=COBOLMF/NOTEXT /OBJECT=MESPNTR COBOLMSG

This MESSAGE command creates the object module MESPNTR.OBJ, which does
not contain text; instead, it contains a pointer to the nonexecutable message file
COBOLMF.EXE.

Message Utility MSG–17

MESSAGE Qualifiers
/VAX

/VAX

Directs MESSAGE to create an OpenVMS VAX message object file. The default is
to create OpenVMS Alpha message object files on OpenVMS Alpha systems and
to create OpenVMS VAX message object files on OpenVMS VAX systems.

Format

/VAX

Description

Directs the message compiler to create an OpenVMS VAX object modules from
message source files.

Note that you must compile message source files using /ALPHA to link with other
OpenVMS Alpha object modules and that you must compile using /VAX (default
on OpenVMS VAX systems) to link with OpenVMS VAX object modules. For more
information, see the OpenVMS Linker Utility Manual.

Example

$ MESSAGE/VAX TESTMSG

This MESSAGE command creates an OpenVMS VAX message object module
named TESTMSG.OBJ by compiling the message source file TESTMSG.MSG.

MSG–18 Message Utility

MESSAGE Commands
This section describes the message source file statements.

Message Utility MSG–19

MESSAGE Commands
Base Message Number Directive

Base Message Number Directive

Defines the value used in constructing the message code.

Format

.BASE number

Parameter

number
Specifies a message number to be associated with the next message definition or
an expression that is evaluated as the desired number.

Qualifiers

None.

Description

By default, all of the messages following a facility directive are numbered
sequentially, beginning with 1.

If you need to supersede this default numbering system (for example, if you want
to reserve some message numbers for future assignment), specify a message
number of your choice using the base message number directive. The message
number is used as a base for the sequential numbering of all messages that follow
until either another .BASE directive or the end of the messages belonging to the
facility is encountered. Note that the maximum number for any message cannot
exceed 4095.

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_ !

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10 "
SYNTAX < Invalid syntax in keyword>

.END

! The facility number (facnum) in the facility statement defines the first two
message numbers as 1 and 2.

" The base message number directive supersedes this sequential numbering by
assigning the message number 10 to the third message.

MSG–20 Message Utility

MESSAGE Commands
End Directive

End Directive

Terminates the entire list of messages for the facility.

Format

.END

Parameters

None.

Qualifiers

None.

Description

The .END directive terminates the entire list of messages for a facility. A
.FACILITY directive also terminates a list of messages.

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword>
.END !

! The .END directive terminates the list of messages for the SAMPLE facility.

Message Utility MSG–21

MESSAGE Commands
Facility Directive

Facility Directive

Specifies the facility to which the messages apply.

Format

.FACILITY [/qualifier,...] facnam[,]facnum [/qualifier,...]

Parameters

facnam
Specifies the facility name used in the facility field of the message and in the
symbol representing the facility number. The facility name can be up to 9
characters.

facnum
Specifies the facility number used to construct the 32-bit value of the message
code. A decimal value in the range 1 to 2047, or an expression that evaluates to
a value in that range, can be used. The system manager usually assigns facility
numbers so that no two facilities have the same number.

Qualifiers

/PREFIX=prefix
Defines an alternate symbol prefix to be used in the message symbol for all
messages referring to this facility. The default symbol prefix is the facility name
followed by an underscore (_). If the /SYSTEM qualifier is also specified, the
default prefix is the facility name followed by a dollar sign and an underscore
($_). The combined length of the prefix and the message symbol name cannot
exceed 31 characters. The maximum length of an alternate symbol prefix created
with the /PREFIX qualifier is 9 characters.

/SHARED
Inhibits the setting of the facility-specific bit in the message code. The /SHARED
qualifier is used only for system services and shared messages and is reserved for
use by Compaq.

/SYSTEM
Inhibits the setting of the customer facility bit in the message code. This qualifier
is reserved for use by Compaq.

Description

The .FACILITY directive is the first directive in a message source file. All of the
lines following a .FACILITY directive apply to that facility until a .END directive
or another facility statement is reached. You must specify the facility name and
the facility number in a .FACILITY directive. The facility name and facility
number are separated by a comma or by any number of spaces or tabs.

The .FACILITY directive creates a global symbol of the following form:

facnam$_FACILITY

You can use this symbol to refer to the facility number assigned to the facility.

MSG–22 Message Utility

MESSAGE Commands
Facility Directive

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_ !

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword>

.END

! The facility statement in this message source file defines the messages
belonging to the facility (facnam) SAMPLE with a facility number (facnum)
of 1. The message numbers begin with 1 and continue sequentially. The
/PREFIX=ABC_ qualifier defines the message symbols ABC_UNRECOG, ABC_
AMBIG, and ABC_SYNTAX.

Message Utility MSG–23

MESSAGE Commands
Identification Directive

Identification Directive

Identifies the object module the Message utility produces.

Format

.IDENT string

Parameter

string
Identifies the object module; for example, a string that identifies a version
number. If it is not delimited, the string is a 1- to 31-character string of
alphanumeric characters, underscores, and dollar signs. If other characters
are used, the string must be delimited with either apostrophes or quotation
marks.

Qualifiers

None.

Description

The .IDENT directive is used in addition to the name you assign to the module
with the .TITLE directive. You can label the object module by specifying a
character string with the directive. If a message source file contains more than
one identification directive, the last directive establishes the character string that
forms part of the object module identification.

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’ !

.FACILITY SAMPLE,1/PREFIX=ABC_

.SEVERITY ERROR

UNRECOG <Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG <Ambiguous keyword>

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword>

.END

! This IDENT directive identifies the object module that the Message utility
produces.

MSG–24 Message Utility

MESSAGE Commands
Literal Directive

Literal Directive

Defines global symbols in your message source file. You can either assign values
to these symbols or use the default values the directive provides.

Format

.LITERAL symbol[=value][,...]

Parameters

symbol
Specifies a symbol name.

value
Specifies any valid expression. If you omit the value, a default value is assigned.
The default value is 1 for the first symbol in the directive and 1 plus the last
value assigned for subsequent symbols.

Qualifiers

None.

Description

You can use the .LITERAL directive to define a symbol as the value of another
previously defined symbol, or as an expression that results from operations
performed on previously defined symbols.

Examples

1. .LITERAL A,B,C

The values of A, B, and C will be 1, 2, and 3.

2. .FACILITY SAMPLE,1/PREFIX=MSG$_
.SEVERITY ERROR
FIRST < first error>

.

.

.
LAST < last error>
.LITERAL LASTMSG=MSG$_LAST !

.LITERAL NUMSG=(MSG$_LAST@-3)-(MSG$_FIRST@-3) !number of messages "

In this example, symbols defined in the facility and message definition
statements are used to assign values to symbols created with the .LITERAL
directives.

! The first .LITERAL directive defines a symbol that has the value of the
last 32-bit message code defined.

" The second .LITERAL directive defines the total number of messages in
the source file.

Message Utility MSG–25

MESSAGE Commands
Message Definition

Message Definition

Defines the message symbol, the message text, and the number of FAO arguments
that can be printed with the message.

Format

name[/qualifier,...] <message-text>[/qualifier,...]

Parameters

name
Specifies the name that is combined with the symbol prefix (defined in the
.FACILITY directive) to form the message symbol. The combined length of the
prefix and the message symbol name cannot exceed 31 characters.

The name is used in the IDENT field of the message unless you specify the
/IDENTIFICATION qualifier in the message definition.

message-text
Defines the text explaining the condition that caused the message to be displayed.
The message text can be delimited either by angle brackets or by quotation
marks. The text can be up to 255 bytes long; however, you cannot continue the
delimited text onto another line. The message text can include FAO directives
that insert ASCII strings into the resulting message; the Formatted ASCII
Output ($FAO) system service uses these directives. If you include an FAO
directive, you must also use the /FAO_COUNT qualifier.

Qualifiers

/FAO_COUNT=n
Specifies the number of FAO arguments to be included in the message at
execution time. The number specified must be a decimal number in the range 0
to 255. The Put Message ($PUTMSG) system service, when constructing the final
message text, uses n to determine how many arguments are to be given to the
$FAO system service. The default value for n is 0.

/IDENTIFICATION=name
Specifies an alternate character string to be used as the IDENT field of the
message. The name can include up to nine characters. If you do not specify this
qualifier, the name defined in the message definition is used.

/USER_VALUE=n
Specifies an optional user value that can be associated with the message. The
value must be a decimal number in the range of 0 to 255. The default is 0. The
value can be retrieved by the Get Message ($GETMSG) system service for use in
classifying messages by type or by action to be taken.

/SUCCESS
Specifies the level SUCCESS for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the SUCCESS level.

MSG–26 Message Utility

MESSAGE Commands
Message Definition

/INFORMATIONAL
Specifies the level INFORMATIONAL for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you must
use this qualifier to specify the INFORMATIONAL level.

/WARNING
Specifies the level WARNING for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you must
use this qualifier to specify the WARNING level.

/ERROR
Specifies the level ERROR for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the ERROR level.

/SEVERE
Specifies the level SEVERE for a message. This qualifier overrides any
.SEVERITY directive in effect. If no .SEVERITY directive is in effect, you
must use this qualifier to specify the SEVERE level.

/FATAL
Specifies the level FATAL for a message. This qualifier overrides any .SEVERITY
directive in effect. If no .SEVERITY directive is in effect, you must use this
qualifier to specify the FATAL level.

Description

The message definition statement specifies the message text that is to be
displayed and the name used in the IDENT field of the message. Additionally,
you can use the message definition statement to specify the number of FAO
arguments to be included in the message text. Any number of message definitions
can follow a .SEVERITY directive (or a .FACILITY directive if no .SEVERITY
directive is included).

You can place qualifiers in any order before or after the message text.

You can use the severity level qualifiers either to override the severity level
defined in a .SEVERITY directive or to replace .SEVERITY directives in your
message source file. Only one message definition qualifier can be included per
message definition.

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_ !

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1 "
AMBIG "Ambiguous keyword" #

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword> $

.END

This message source file contains a .FACILITY directive ! and three message
definitions " # $. The symbol names—UNRECOG, AMBIG, and SYNTAX—
specified in the message definitions are combined with a prefix, ABC_ (defined

Message Utility MSG–27

MESSAGE Commands
Message Definition

in the .FACILITY directive), to form the message symbols ABC_UNRECOG,
ABC_AMBIG, and ABC_SYNTAX.

The message text of the UNRECOG " and SYNTAX $ messages is delimited by
angle brackets (<>); the message text of the AMBIG message # is delimited by
quotation marks ("").

In addition, the first message definition statement in this example includes the
FAO directive !AS (which inserts an ASCII string at the end of the message text)
and the corresponding qualifier /FAO_COUNT.

MSG–28 Message Utility

MESSAGE Commands
Page Directive

Page Directive

Forces page breaks in the output listing.

Format

.PAGE

Parameters

None.

Qualifiers

None.

Description

The .PAGE directive lets you specify page breaks in the output listing. You can
specify only one page break per any one .PAGE directive; however, you can use
the .PAGE directive as often as you like.

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG < Ambiguous keyword>
.PAGE !

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword>

.END

! This .PAGE directive forces a page break in the output listing after the AMBIG
message definition.

Message Utility MSG–29

MESSAGE Commands
Severity Directive

Severity Directive

Specifies the severity level to be associated with the messages that follow the
.SEVERITY directive.

Format

.SEVERITY level

Parameter

level
Specifies the level of the condition that caused the message. The severity level
codes are as follows:

SUCCESS Produces an S code in a message.
INFORMATIONAL Produces an I code in a message.
WARNING Produces a W code in a message.
ERROR Produces an E code in a message.
SEVERE Produces an F code in a message.
FATAL Produces an F code in a message.

The SEVERE parameter is equivalent to the FATAL parameter; they can be used
interchangeably.

Qualifiers

None.

Description

Following the .FACILITY directive, the message source file generally contains
a .SEVERITY directive. If you do not specify the severity on each message
definition with one of the message definition severity qualifiers, you must include
a .SEVERITY directive. If you attempt to define a message without specifying a
severity level, an error results.

A new .FACILITY directive cancels the previous severity level in effect.

Example

.TITLE SAMPLE Error and Warning Messages

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_

.SEVERITY ERROR !

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG < Ambiguous keyword>

.SEVERITY WARNING "

.BASE 10
SYNTAX < Invalid syntax in keyword>

.END

! " The two .SEVERITY directives included in this message source file define
the severity levels for three messages. The first two messages have a severity
level of E; the third message has a severity level of W.

MSG–30 Message Utility

MESSAGE Commands
Title Directive

Title Directive

Specifies the module name and title text that is to appear at the top of each page
of the output listing file.

Format

.TITLE modname [listing-title]

Parameters

modname
Specifies a character string of up to 31 characters that is to appear in the object
module as the module name.

listing-title
Defines the text to be used as the title of the listing. The title begins with the
first nonblank character after the module name and continues through the next
28 characters. An exclamation point (!) within these 28 characters is treated as
part of the title and not as a comment delimiter. The listing title has a maximum
length of 28 characters and cannot be continued onto another line.

Qualifiers

None.

Example

.TITLE SAMPLE ! Error and Warning Messages "

.IDENT ’VERSION 4.00’

.FACILITY SAMPLE,1/PREFIX=ABC_

.SEVERITY ERROR

UNRECOG < Unrecognized keyword !AS>/FAO_COUNT=1
AMBIG < Ambiguous keyword>

.SEVERITY WARNING

.BASE 10
SYNTAX < Invalid syntax in keyword>

.END

! The module name of the object module produced by this file is SAMPLE.

" The title of the output listing is defined as ‘‘Error and Warning Messages.’’

Message Utility MSG–31

MESSAGE Examples
The following examples demonstrate the use of message files and pointer files.

Creating an Executable Image Containing Message Data
The following example illustrates the steps involved in incorporating a message
file within an executable image.

The message source file, TESTMSG.MSG, created with a text editor, contains the
following lines:

.FACILITY TEST,1 /PREFIX=MSG_

.SEVERITY ERROR
SYNTAX < Syntax error in string ’!AS’>/FAO_COUNT=1
ERRORS < Errors encountered during processing>
.END

You compile the message source file by entering the following command:

$ MESSAGE TESTMSG

You compile the FORTRAN source file by entering the following command:

$ FORTRAN TEST

You link the message object module TESTMSG.OBJ to the FORTRAN object
module TEST.OBJ by entering the following command:

$ LINK/NOTRACE TEST+TESTMSG

You execute the image by entering the following command:

$ RUN TEST

If an error occurs when you execute the program, the system displays the
following messages:

%TEST-E-SYNTAX, Syntax error in string ABC
%TEST-E-ERRORS, Errors encountered during processing

Creating an Executable Image Containing a Pointer
The following example demonstrates how to create an executable image that
contains a pointer to a nonexecutable message file.

You compile the message source COBOLMSG by entering the following command:

$ MESSAGE/NOSYMBOLS COBOLMSG

You link the object module COBOLMSG.OBJ to create the nonexecutable message
file by entering the following command:

$ LINK/SHAREABLE=SYS$MESSAGE:COBOLMF COBOLMSG.OBJ

You create the pointer object module MESPNTR.OBJ, which contains a pointer
to the nonexecutable message file COBOLMF.EXE, by entering the following
command:

$ MESSAGE/FILE_NAME=COBOLMF /OBJECT=MESPNTR COBOLMSG

You link the pointer object module MESPNTR.OBJ to the COBOL program object
module COBOLCODE.OBJ by entering the following command:

$ LINK COBOLCODE,MESPNTR

MSG–32 Message Utility

MESSAGE Examples

You execute the program by entering the following command:

$ RUN COBOLCODE

The system then displays the messages defined in COBOLMSG.

Message Utility MSG–33

Index

B
.BASE directive, MSG–20
Base message number directive

See .BASE directive
Binary operators, MSG–9
Built-in value types, CDU–8, CDU–25

C
CDU

See Command Definition Utility
Character case, LIB–4
Character strings

See Strings
Clauses, CDU–20
CLI (command language interpreter), CDU–3
CLI routines, CDU–3, CDU–18

CLI$DCL_PARSE, CDU–49
CLI$DISPATCH, CDU–49
CLI$GET_VALUE, CDU–48, CDU–49
CLI$PRESENT, CDU–48, CDU–49
sample programs, CDU–48

Command definition files, CDU–6
changing syntax, CDU–7 to CDU–8
creating, CDU–6 to CDU–16
defining verbs, CDU–10
for sample program, CDU–48, CDU–49
processing, CDU–16 to CDU–18
statements in, CDU–20 to CDU–38
TYPE clause

defining value types, CDU–8
VALUE clause

for defining parameters, qualifiers,
keywords, CDU–8

Command Definition Language statements,
CDU–7

Command Definition Utility (CDU), CDU–3
See also SET COMMAND command
changing syntax, CDU–7
defining values, CDU–8
defining verbs, CDU–10
examples, CDU–48 to CDU–51
exiting, CDU–19
invoking, CDU–19

Command language interpreter
See CLI

Command processing
See DCL

Command strings, CDU–3 to CDU–4
Command tables, CDU–4

adding commands to, CDU–16, CDU–45
creating, CDU–17
creating object modules for, CDU–6
deleting commands from, CDU–17, CDU–41
input files, CDU–46
listing files, CDU–42
object modules, CDU–17, CDU–43
output files, CDU–44

Comment lines
in help files, LIB–7

D
Data files

reducing and expanding, LIB–11
/DATA qualifier

using to save disk space, LIB–11
DCL (DIGITAL Command Language)

CLI routines, CDU–18
command processing, CDU–3 to CDU–4

DEFINE SYNTAX statement, CDU–21
changing syntax, CDU–7
DISALLOW clause, CDU–23
examples, CDU–8, CDU–28
format, CDU–7, CDU–23
IMAGE clause, CDU–24
PARAMETER clauses, CDU–22, CDU–24 to

CDU–25
QUALIFIER clauses, CDU–25 to CDU–27
ROUTINE clauses, CDU–27
SYNTAX keywords, CDU–29
table of syntax changes, CDU–21 to CDU–23

DEFINE TYPE statement, CDU–9, CDU–29
acceptable keyword clauses, CDU–29
acceptable type clauses, CDU–29
DEFAULT clauses, CDU–29
defining qualifier keywords, CDU–31
examples, CDU–9
format, CDU–9, CDU–29
keywords referenced by VALUE, CDU–29
LABEL clauses, CDU–29

Index–1

DEFINE TYPE statement (cont’d)
NEGATABLE clauses, CDU–29
SYNTAX clauses, CDU–29
VALUE clauses, CDU–29 to CDU–30
with DEFINE VERB statement, CDU–9
with VALUE clause, CDU–9

DEFINE VERB statement, CDU–32
DISALLOW clauses, CDU–10, CDU–32

definition paths, CDU–13 to CDU–14
keyword paths, CDU–12 to CDU–13
operators for, CDU–14 to CDU–15

examples, CDU–9, CDU–10, CDU–36
format, CDU–10, CDU–32
IMAGE clauses, CDU–32
PARAMETER clauses, CDU–33 to CDU–34
QUALIFIER clauses, CDU–34 to CDU–36
ROUTINE clauses, CDU–36
SYNONYM clauses, CDU–36
with DEFAULT clause, CDU–31
with DEFINE SYNTAX statement, CDU–8

Definition paths
for DISALLOW clause, CDU–13 to CDU–14

Definition statements, MSG–4
DIGITAL Command Language

See DCL
Directives

for MESSAGE, MSG–4
Disk space

saving, LIB–11

E
.END directive, MSG–21
End message directive

See .END directive
Expressions

in message source files, MSG–9

F
Facility directive

See .FACILITY directive
.FACILITY directive, MSG–22 to MSG–23

/PREFIX qualifier, MSG–22
/SHARED qualifier, MSG–22
/SYSTEM qualifier, MSG–22

Facility name
in .FACILITY directive, MSG–22

Facility number
in .FACILITY directive, MSG–22

Facility object modules, MSG–6
FAO argument, MSG–3, MSG–26, MSG–27
Files

inserting, LIB–29
File types

default for command definition files, CDU–6
default for libraries, LIB–12

File types
default for libraries (cont’d)

changing, LIB–12
default for object libraries, LIB–3

G
Global symbols

See Message symbols
GSTs (global symbol tables), LIB–4

H
Help files

comment lines in, LIB–7
creating, LIB–6, LIB–7
formatting, LIB–7
qualifier lines in, LIB–8
restrictions in, LIB–6

Help libraries, LIB–3, LIB–6
character case in, LIB–4
index keywords in, LIB–6
key names in, LIB–6, LIB–7

HELP LIBRARY command
display, LIB–9

Help modules
naming, LIB–6

Help text
example of, LIB–8
retrieving, LIB–9

I
.IDENT directive, MSG–24
Identification directive

See .IDENT directive
IDENT statements, CDU–15, CDU–37
Index keywords

in help libraries, LIB–6
Input files

default file types, LIB–13
Input file specifications, LIB–12
Inserting files/modules, LIB–29

See also LIBRARY command, /REPLACE
qualifier

K
Key lines

formatting, LIB–7
Key names

character restrictions in, LIB–6
in help libraries, LIB–6, LIB–7, LIB–10

Key numbers, LIB–7
See also Modules

Keys, LIB–4, LIB–6, LIB–7
See also Library keys

Index–2

Keyword paths
for DISALLOW clause, CDU–12 to CDU–13

Keywords, CDU–3, LIB–6
See also DEFINE TYPE statement
defining, CDU–9 to CDU–10, CDU–31

L
LBR routines, LIB–11
LIBRARIAN

See Librarian utility
Librarian utility (LIBRARIAN)

See also LIBRARY command
command qualifiers, LIB–14
compressing macro libraries, LIB–43
creating new libraries, LIB–19
cross-reference listings, LIB–21
deleting modules from libraries, LIB–23
directing output, LIB–13

history record headers, LIB–28
library list, LIB–30
specifying files, LIB–37

exiting, LIB–13
extracting files, LIB–24
global symbols, LIB–26, LIB–34, LIB–38,

LIB–46
help files, LIB–6, LIB–7
help libraries, LIB–6, LIB–7
HELP LIBRARY command display, LIB–9
help text example, LIB–8
inserting modules, LIB–29, LIB–33
invoking, LIB–13
key lines in help files, LIB–7
LIBRARY command format, LIB–12
library file specifications, LIB–12
linking modules, LIB–40
macro libraries, LIB–32
object module libraries, LIB–35
recovering storage space, LIB–17
replacing modules, LIB–39
restrictions, LIB–13
retrieving help text, LIB–9
selecting entries after date/time, LIB–42
sharing image libraries, LIB–41
specifying date/time, LIB–16
specifying input files, LIB–12, LIB–13
specifying library files, LIB–12
text libraries, LIB–44
using to save disk space, LIB–11

Libraries
character case in, LIB–19
macro, LIB–32
object module, LIB–3, LIB–35
reformatting, LIB–17, LIB–22
sizes of, LIB–17, LIB–19, LIB–29
structure of, LIB–4
text, LIB–44

Libraries (cont’d)
types of, LIB–3

LIBRARY command, LIB–12
See also Librarian utility
/ALPHA qualifier, LIB–15
/BEFORE qualifier, LIB–16
/COMPRESS qualifier, LIB–17 to LIB–18

using with /OUTPUT, LIB–37
/CREATE qualifier, LIB–12, LIB–19 to LIB–20
/CROSS_REFERENCE qualifier, LIB–21

using with /ONLY, LIB–36
using with /OUTPUT, LIB–37

/DATA qualifier, LIB–22
See also LIBRARY command, /COMPRESS

qualifier
using with /OUTPUT, LIB–37

/DELETE qualifier, LIB–23
/EXTRACT qualifier, LIB–12, LIB–24

using with /OUTPUT, LIB–37
/FULL qualifier, LIB–25

using with /HISTORY, LIB–28
/GLOBALS qualifier, LIB–26
/HELP qualifier, LIB–27
/HISTORY qualifier, LIB–28
/INSERT qualifier, LIB–12, LIB–29

maximum record size, LIB–29
/LIST qualifier, LIB–30

using with /BEFORE, LIB–16
using with /FULL, LIB–25
using with /HISTORY, LIB–28
using with /NAMES, LIB–34
using with /ONLY, LIB–36
using with /SINCE, LIB–42

/LOG qualifier, LIB–31
See also LIBRARY command, /DELETE

qualifier
See also LIBRARY command, /REPLACE

qualifier
/MACRO qualifier, LIB–32
/MODULE qualifier, LIB–33

using with /INSERT, LIB–33
/NAMES qualifier, LIB–34
/OBJECT qualifier, LIB–35
/ONLY qualifier, LIB–36
/OUTPUT qualifier, LIB–37

using with /COMPRESS, LIB–17
using with /CROSS_REFERENCE, LIB–21
using with /EXTRACT, LIB–24

/REMOVE qualifier, LIB–38
/REPLACE qualifier, LIB–12, LIB–39
/SELECTIVE_SEARCH qualifier, LIB–40
/SHARE qualifier, LIB–41
/SINCE qualifier, LIB–42
/SQUEEZE qualifier, LIB–43
/TEXT qualifier, LIB–44
/VAX qualifier, LIB–45
/WIDTH qualifier, LIB–46

Index–3

Library file specifications, LIB–12
default file types, LIB–12

Library keys, LIB–4
Linker, LIB–3, LIB–5
Listing directives, MSG–29, MSG–31
Literal directive

See .LITERAL directive
.LITERAL directive, MSG–25

M
Macro libraries, LIB–3, LIB–32

character case in, LIB–4
Match operations, LIB–4
MESSAGE

See Message utility
Message code, MSG–4
MESSAGE command, MSG–10

See also Message utility
/ALPHA qualifier, MSG–12
examples, MSG–32
/FILE_NAME qualifier, MSG–13
/LIST qualifier, MSG–14
/OBJECT qualifier, MSG–15
/SYMBOLS qualifier, MSG–16
/TEXT qualifier, MSG–17
using, MSG–5
/VAX qualifier, MSG–18

Message definitions
/ERROR qualifier, MSG–27
/FAO_COUNT qualifier, MSG–26
/FATAL qualifier, MSG–27
/IDENTIFICATION qualifier, MSG–26
/INFORMATIONAL qualifier, MSG–27
in message source files, MSG–26
qualifiers, MSG–26
/SEVERE qualifier, MSG–27
statements, MSG–4
/SUCCESS qualifier, MSG–26
/USER_VALUE qualifier, MSG–26
/WARNING qualifier, MSG–27

Message directive commands, MSG–19
Message files

See also Message source files and Message
object modules

listing, MSG–14
nonexecutable, MSG–6

creating, MSG–6
specifying, MSG–13

Message libraries, MSG–6
Message object modules

creating, MSG–5, MSG–15, MSG–24, MSG–31
file specifications, MSG–15
formatting, MSG–31
global symbols, MSG–16
linking, MSG–6
pointers, MSG–6, MSG–13

Message object modules (cont’d)
text, MSG–17

Message pointers
creating, MSG–7
example, MSG–32
using, MSG–6, MSG–7

Messages
constructing, MSG–4
example, MSG–3
format, MSG–3

Message source files, MSG–4
coding, MSG–19
comments in, MSG–8
compiling, MSG–5
elements of, MSG–4
expressions in, MSG–9
format, MSG–5, MSG–21, MSG–29
programming example, MSG–5
sample, MSG–22
symbols in, MSG–9, MSG–25, MSG–26

Message source file statements, MSG–8, MSG–19
.BASE directive, MSG–20
.END directive, MSG–21
.FACILITY directive, MSG–22
format, MSG–5
.IDENT directive, MSG–24
listing directives, MSG–29, MSG–31
.LITERAL directive, MSG–25
message definitions, MSG–26
.PAGE directive, MSG–29
.SEVERITY directive, MSG–30
.TITLE directive, MSG–9, MSG–31

Message symbols, MSG–4, MSG–8, MSG–26
Message utility (MESSAGE)

See also MESSAGE command
command qualifiers, MSG–11
controlling output, MSG–11
examples, MSG–32
exiting, MSG–10
invoking, MSG–10

Module headers, LIB–4
Module name tables (MNT), LIB–4
Modules

creating, LIB–6
formatting, LIB–7
key numbers in, LIB–7
terminating, LIB–7

MODULE statements, CDU–15, CDU–38

N
Naming help modules, LIB–6

Index–4

O
Object libraries, LIB–3, LIB–35

character case in, LIB–4
Object modules

See also Message object modules
creating, CDU–49
for command tables, CDU–6, CDU–17,

CDU–43
statements for, CDU–15

Operators
for DISALLOW clause, CDU–14 to CDU–15

Output
directing, LIB–13, LIB–17, LIB–37

P
Page directive

See .PAGE directive
.PAGE directive, MSG–29
Parameters

defining, CDU–24, CDU–33
Pointers

See Message pointers
Process command tables

adding commands to, CDU–48
deleting commands from, CDU–41

Processes
adding commands to, CDU–5
command tables, CDU–4

Programs
creating, MSG–6
example, MSG–5
executing, MSG–6

$PUTMSG routine, MSG–4

Q
Qualifier lines

help files, LIB–8
Qualifiers

for CDU, CDU–39
defining, CDU–25, CDU–34

for LIBRARY command, LIB–14
for MESSAGE, MSG–11

R
Radix operators, MSG–9
Routines

LBR, LIB–11

S
SET COMMAND command, CDU–19

/ALPHA qualifier, CDU–40
delete mode, CDU–17
/DELETE qualifier, CDU–41
input for, CDU–46
/LISTING qualifier, CDU–42
object mode, CDU–17
/OBJECT qualifier, CDU–43
/OUTPUT qualifier, CDU–44
processing modes, CDU–16
qualifiers for, CDU–39
replace mode, CDU–16
/REPLACE qualifier, CDU–45
/TABLE qualifier, CDU–46
/VAX qualifier, CDU–47

SET MESSAGE command
using, MSG–8

Severity directive
See .SEVERITY directive

.SEVERITY directive, MSG–30
Severity levels, MSG–3
Shareable images, LIB–3, LIB–5, LIB–41
Source files

See Message source files
Source file statements

See Message source file statements
Special characters, LIB–6
Statements

in command definition files, CDU–20
message definition, MSG–4

Strings, CDU–6
Subkeys, LIB–7
Symbols, CDU–6

in message source files, MSG–9
Syntax

See DEFINE SYNTAX statement
Syntax-name verb clauses, CDU–7
System command tables, CDU–4, CDU–5
System help library, LIB–9

T
Tables

See Command tables
Text libraries, LIB–3, LIB–44

character case in, LIB–4
Title directive

See .TITLE directive
.TITLE directive, MSG–31

in message source files, MSG–9
Types

See Built-in value types

Index–5

V
Values

See also Built-in value types
defining, CDU–8 to CDU–10

Verbs
See also DEFINE VERB statement
defining, CDU–10

W
Wildcard characters, LIB–7

Index–6

	OpenVMSCommandDefinition, Librarian, and Message Utilities Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How To Order Additional Documentation
	Conventions

	1 Command Definition Utility
	CDU Description
	1.1 Command Processing
	1.1.1 Command String Components
	1.1.2 System and Process Command Tables

	1.2 Using CDU
	1.3 Choosing a Table
	1.3.1 Modifying Your Process Command Table
	1.3.2 Adding a System Command
	1.3.3 Creating an Object Module

	1.4 Writing a Command Definition File
	1.4.1 Defining Syntax
	1.4.2 Defining Values
	1.4.3 Defining Command Verbs
	1.4.4 Disallowing Entity Combinations
	1.4.5 Identifying Object Modules

	1.5 Processing Command Definition Files
	1.5.1 Adding Command Definitions to a Command Table
	1.5.2 Deleting Command Definitions
	1.5.3 Creating Object Modules
	1.5.4 Creating New Command Tables

	1.6 Using Command Language Routines
	CDU Usage Summary
	CDU File Statements
	DEFINE SYNTAX
	DEFINE TYPE
	DEFINE VERB
	IDENT
	MODULE

	CDU Qualifiers
	/ALPHA
	/DELETE
	/LISTING
	/OBJECT
	/OUTPUT
	/REPLACE
	/TABLE
	/VAX

	CDU Examples

	2 Librarian Utility
	LIBRARIAN Description
	2.1 Types of Libraries
	2.2 Structure of Libraries
	2.3 Character Case of Library Keys
	2.4 Shareable Image Libraries
	2.5 Help Libraries
	2.5.1 Creating Help Files
	2.5.2 Formatting Help Files
	2.5.3 Help Text Example
	2.5.4 Retrieving Help Text

	2.6 Using the Librarian Utility to Save Disk Space
	2.7 Librarian Utility (LBR) Routines
	LIBRARIAN Usage Summary
	LIBRARIAN Qualifiers
	/ALPHA
	/BEFORE
	/COMPRESS
	/CREATE
	/CROSS_REFERENCE
	/DATA
	/DELETE
	/EXTRACT
	/FULL
	/GLOBALS
	/HELP
	/HISTORY
	/INSERT
	/LIST
	/LOG
	/MACRO
	/MODULE
	/NAMES
	/OBJECT
	/ONLY
	/OUTPUT
	/REMOVE
	/REPLACE
	/SELECTIVE_SEARCH
	/SHARE
	/SINCE
	/SQUEEZE
	/TEXT
	/VAX
	/WIDTH

	3 Message Utility
	MESSAGE Description
	3.1 Message Format
	3.2 Constructing Messages
	3.2.1 The Message Source File
	3.2.2 Compiling the Message Source File
	3.2.3 Linking the Message Object Module

	3.3 Using Message Pointers
	3.4 The SET MESSAGE Command
	3.5 Message Source Files
	MESSAGE Usage Summary
	MESSAGE Qualifiers
	/ALPHA
	/FILE_NAME
	/LIST
	/OBJECT
	/SYMBOLS
	/TEXT
	/VAX

	MESSAGE Commands
	Base Message Number Directive
	End Directive
	Facility Directive
	Identification Directive
	Literal Directive
	Message Definition
	Page Directive
	Severity Directive
	Title Directive

	MESSAGE Examples

	Index
	Examples
	Example 2–1 Help Text for LIBRARY Command
	Example 2–2 HELP LIBRARY Display

	Figures
	Figure 3–1 Message Code
	Figure 3–2 Creating a Message Pointer

	Tables
	Table 1–1 Summary of CDU Operators
	Table 1–2 How the DEFINE SYNTAX Statement Modifies the Primary DEFINE Statement
	Table 2–1 LIBRARY Command Qualifier Compatibilities

