NAME
EVP_MD_CTX_init, EVP_MD_CTX_create, EVP_DigestInit_ex, EVP_DigestUpdate, EVP_DigestFinal_ex, EVP_MD_CTX_cleanup, EVP_MD_CTX_destroy, EVP_MAX_MD_SIZE, EVP_MD_CTX_copy_ex, EVP_MD_CTX_copy, EVP_MD_type, EVP_MD_pkey_type, EVP_MD_size, EVP_MD_block_size, EVP_MD_CTX_md, EVP_MD_CTX_size, EVP_MD_CTX_block_size, EVP_MD_CTX_type, EVP_md_null, EVP_md2, EVP_md5, EVP_sha, EVP_sha1, EVP_dss, EVP_dss1, EVP_mdc2, EVP_ripemd160, EVP_get_digestbyname, EVP_get_digestbynid, EVP_get_digestbyobj — EVP digest routines
Synopsis
#include <openssl/evp.h>
void
EVP_MD_CTX_init(EVP_MD_CTX *ctx);
VP_MD_CTX *EVP_MD_CTX_create(void);
int
EVP_DigestInit_ex(EVP_MD_CTX *ctx, const EVP_MD *type, ENGINE *impl);
int
EVP_DigestUpdate(EVP_MD_CTX *ctx, const void *d, unsigned int cnt);
int
EVP_DigestFinal_ex(EVP_MD_CTX *ctx, unsigned char *md, unsigned
int *s);
int EVP_MD_CTX_cleanup(EVP_MD_CTX *ctx);
void
EVP_MD_CTX_destroy(EVP_MD_CTX *ctx);
int EVP_MD_CTX_copy_ex(EVP_MD_CTX
*out,const EVP_MD_CTX *in);
int EVP_DigestInit(EVP_MD_CTX
*ctx, const EVP_MD *type);
int EVP_DigestFinal(EVP_MD_CTX
*ctx, unsigned char *md, unsigned int *s);
int EVP_MD_CTX_copy(EVP_MD_CTX
*out,EVP_MD_CTX *in);
#define EVP_MAX_MD_SIZE (16+20)
/* The SSLv3 md5+sha1 type */
#define EVP_MD_type(e) ((e)->type)
#define
EVP_MD_pkey_type(e) ((e)->pkey_type)
#define
EVP_MD_size(e) ((e)->md_size)
#define EVP_MD_block_size(e) ((e)->block_size)
#define
EVP_MD_CTX_md(e) (e)->digest)
#define EVP_MD_CTX_size(e) EVP_MD_size((e)->digest)
#define
EVP_MD_CTX_block_size(e) EVP_MD_block_size((e)->digest)
#define
EVP_MD_CTX_type(e) EVP_MD_type((e)->digest) const EVP_MD
*EVP_md_null(void);
const EVP_MD *EVP_md2(void); const
EVP_MD *EVP_md5(void);
const EVP_MD *EVP_sha(void); const
EVP_MD *EVP_sha1(void);
const EVP_MD *EVP_dss(void); const
EVP_MD *EVP_dss1(void);
const EVP_MD *EVP_mdc2(void);
const EVP_MD *EVP_ripemd160(void);
const EVP_MD *EVP_get_digestbyname(const
char *name);
#define EVP_get_digestbynid(a) EVP_get_digestbyname(OBJ_nid2sn(a))
#define
EVP_get_digestbyobj(a) EVP_get_digestbynid(OBJ_obj2nid(a))
DESCRIPTION
The EVP digest routines are a high level interface to message
digests.
EVP_MD_CTX_init() initializes digest contet ctx.
EVP_MD_CTX_create() allocates, initializes and returns a digest
contet.
EVP_DigestInit_ex() sets up digest context ctx to
use a digest type from ENGINE impl. ctx must
be initialized before calling this function. type will
typically be supplied by a functionsuch as EVP_sha1(). If impl is
NULL then the default implementation of digest type is
used.
EVP_DigestUpdate() hashes cnt bytes of
data at d into the digest context ctx.
This function can be called several times on the same ctx to
hash additional data.
EVP_DigestFinal_ex() retrieves the digest value from ctx and
places it in md. If the s parameter
is not NULL then the number of bytes of data written (i.e. the length
of the digest) will be written to the integer at s,
at most EVP_MAX_MD_SIZE bytes will be written.
After calling EVP_DigestFinal_ex() no additional calls to EVP_DigestUpdate()
can be made, but EVP_DigestInit_ex() can be called to initialize
a new digest operation.
EVP_MD_CTX_cleanup() cleans up digest context ctx,
it should be called after a digest context is no longer needed.
EVP_MD_CTX_destroy() cleans up digest context ctx and
frees up the space allocated to it, it should be called only on
a context created using EVP_MD_CTX_create().
EVP_MD_CTX_copy_ex() can be used to copy the message digest
state from in to out.
This is useful if large amounts of data are to be hashed which only
differ in the last few bytes. out must be initialized
before calling this function.
EVP_DigestInit() behaves in the same way as EVP_DigestInit_ex()
except the passed context ctx does not have
to be initialized, and it always uses the default digest implementation.
EVP_DigestFinal() is similar to EVP_DigestFinal_ex() except
the digest contet ctx is automatically cleaned up.
EVP_MD_CTX_copy() is similar to EVP_MD_CTX_copy_ex() except
the destination out does not have to be initialized.
EVP_MD_size() and EVP_MD_CTX_size() return the size of the
message digest when passed an EVP_MD or an EVP_MD_CTX structure,
i.e. the size of the hash.
EVP_MD_block_size() and EVP_MD_CTX_block_size() return the
block size of the message digest when passed an EVP_MD or
an EVP_MD_CTX structure.
EVP_MD_type() and EVP_MD_CTX_type() return the NID of the
OBJECT IDENTIFIER representing the given message digest when passed
an EVP_MD structure. For example EVP_MD_type(EVP_sha1())
returns NID_sha1. This function is normally
used when setting ASN1 OIDs.
EVP_MD_CTX_md() returns the EVP_MD structure
corresponding to the passed EVP_MD_CTX.
EVP_MD_pkey_type() returns the NID of the public key signing
algorithm associated with this digest. For example EVP_sha1() is
associated with RSA so this will return NID_sha1WithRSAEncryption.
This "link" between digests and signature algorithms may not be
retained in future versions of OpenSSL.
EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(), EVP_mdc2() and
EVP_ripemd160() return EVP_MD structures for
the MD2, MD5, SHA, SHA1, MDC2 and RIPEMD160 digest algorithms respectively.
The associated signature algorithm is RSA in each case.
EVP_dss() and EVP_dss1() return EVP_MD structures
for SHA and SHA1 digest algorithms but using DSS (DSA) for the signature
algorithm.
EVP_md_null() is a "null" message digest that does nothing:
i.e. the hash it returns is of zero length.
EVP_get_digestbyname(), EVP_get_digestbynid() and EVP_get_digestbyobj()
return an EVP_MD structure when passed a digest
name, a digest NID or an ASN1_OBJECT structure respectively. The
digest table must be initialized using, for example, OpenSSL_add_all_digests()
for these functions to work.
RETURN VALUES
EVP_DigestInit_ex(), EVP_DigestUpdate() and EVP_DigestFinal_ex()
return 1 for success and 0 for failure.
EVP_MD_CTX_copy_ex() returns 1 if successful or 0 for failure.
EVP_MD_type(), EVP_MD_pkey_type() and EVP_MD_type() return
the NID of the corresponding OBJECT IDENTIFIER or NID_undef if none
exists.
EVP_MD_size(), EVP_MD_block_size(), EVP_MD_CTX_size(e), EVP_MD_size(),
EVP_MD_CTX_block_size() and EVP_MD_block_size() return the digest
or block size in bytes.
EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(),
EVP_dss(), EVP_dss1(), EVP_mdc2() and EVP_ripemd160() return pointers
to the corresponding EVP_MD structures.
EVP_get_digestbyname(), EVP_get_digestbynid() and EVP_get_digestbyobj()
return either an EVP_MD structure or NULL if
an error occurs.
NOTES
The EVP interface to message digests
should almost always be used in preference to the low level interfaces. This
is because the code then becomes transparent to the digest used
and much more flexible.
SHA1 is the digest of choice for new applications. The other
digest algorithms are still in common use.
For most applications the impl parameter
to EVP_DigestInit_ex() will be set to NULL to use the default digest
implementation.
The functions EVP_DigestInit(), EVP_DigestFinal() and EVP_MD_CTX_copy()
are obsolete but are retained to maintain compatibility with existing
code. New applications should use EVP_DigestInit_ex(), EVP_DigestFinal_ex()
and EVP_MD_CTX_copy_ex() because they can efficiently reuse a digest
context instead of initializing and cleaning it up on each call
and allow non default implementations of digests to be specified.
In OpenSSL 0.9.7 and later if digest contexts are not cleaned
up after use memory leaks will occur.
EXAMPLE
This example digests the data "Test Message\n" and
"Hello World\n", using the digest name passed on the command
line.
#include <stdio.h> #include <openssl/evp.h> main(int argc, char *argv[]) { EVP_MD_CTX mdctx; const EVP_MD *md; char mess1[] = "Test Message\n"; char mess2[] = "Hello World\n"; unsigned char md_value[EVP_MAX_MD_SIZE]; int md_len, i; OpenSSL_add_all_digests(); if(!argv[1]) { printf("Usage: mdtest digestname\n"); exit(1); } md = EVP_get_digestbyname(argv[1]); if(!md) { printf("Unknown message digest %s\n", argv[1]); exit(1); } EVP_MD_CTX_init(&mdctx); EVP_DigestInit_ex(&mdctx, md, NULL); EVP_DigestUpdate(&mdctx, mess1, strlen(mess1)); EVP_DigestUpdate(&mdctx, mess2, strlen(mess2)); EVP_DigestFinal_ex(&mdctx, md_value, &md_len); EVP_MD_CTX_cleanup(&mdctx); printf("Digest is: "); for(i = 0; i < md_len; i++) printf("%02x", md_value[i]); printf("\n"); }
|
Restrictions
The link between digests and signing algorithms results in
a situation where EVP_sha1() must be used with RSA and EVP_dss1()
must be used with DSS even though they are identical digests.
SEE ALSO
evp(3), hmac(3), md2(3), md5(3), mdc2(3), ripemd(3), sha(3), dgst(1)
HISTORY
EVP_DigestInit(), EVP_DigestUpdate() and EVP_DigestFinal()
are available in all versions of SSLeay and OpenSSL.
EVP_MD_CTX_init(), EVP_MD_CTX_create(), EVP_MD_CTX_copy_ex(),
EVP_MD_CTX_cleanup(), EVP_MD_CTX_destroy(), EVP_DigestInit_ex()
and EVP_DigestFinal_ex() were added in OpenSSL 0.9.7.
EVP_md_null(), EVP_md2(), EVP_md5(), EVP_sha(), EVP_sha1(),
EVP_dss(), EVP_dss1(), EVP_mdc2() and EVP_ripemd160() were changed
to return truely const EVP_MD * in OpenSSL 0.9.7.