|
HP Open Source Security for OpenVMS Volume 2: HP SSL for OpenVMS > CRYPTO Application
Programming Interface (API) Reference
PEM
Synopsis#include <openssl/pem.h> EVP_PKEY
*PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb
*cb, void *u); EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY
**x, pem_password_cb *cb, void *u); int PEM_write_bio_PrivateKey(BIO
*bp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int
klen, pem_password_cb *cb, void *u); int PEM_write_PrivateKey(FILE
*fp, EVP_PKEY *x, const EVP_CIPHER *enc, unsigned char *kstr, int
klen, pem_password_cb *cb, void *u); int PEM_write_bio_PKCS8PrivateKey(BIO
*bp, EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb
*cb, void *u); int PEM_write_PKCS8PrivateKey(FILE *fp,
EVP_PKEY *x, const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb
*cb, void *u); int PEM_write_bio_PKCS8PrivateKey_nid(BIO
*bp, EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb
*cb, void *u); int PEM_write_PKCS8PrivateKey_nid(FILE *fp,
EVP_PKEY *x, int nid, char *kstr, int klen, pem_password_cb *cb,
void *u); EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY
**x, pem_password_cb *cb, void *u); EVP_PKEY *PEM_read_PUBKEY(FILE
*fp, EVP_PKEY **x, pem_password_cb *cb, void *u); int
PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x); int PEM_write_PUBKEY(FILE
*fp, EVP_PKEY *x); RSA *PEM_read_bio_RSAPrivateKey(BIO
*bp, RSA **x, pem_password_cb *cb, void *u); RSA *PEM_read_RSAPrivateKey(FILE
*fp, RSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_RSAPrivateKey(BIO
*bp, RSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen,
pem_password_cb *cb, void *u); int PEM_write_RSAPrivateKey(FILE
*fp, RSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen,
pem_password_cb *cb, void *u); RSA *PEM_read_bio_RSAPublicKey(BIO
*bp, RSA **x, pem_password_cb *cb, void *u); RSA *PEM_read_RSAPublicKey(FILE
*fp, RSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_RSAPublicKey(BIO
*bp, RSA *x); int PEM_write_RSAPublicKey(FILE *fp, RSA
*x); RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x, pem_password_cb
*cb, void *u); RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA
**x, pem_password_cb *cb, void *u); int PEM_write_bio_RSA_PUBKEY(BIO
*bp, RSA *x); int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x, pem_password_cb
*cb, void *u); DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA
**x, pem_password_cb *cb, void *u); int PEM_write_bio_DSAPrivateKey(BIO
*bp, DSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen,
pem_password_cb *cb, void *u); int PEM_write_DSAPrivateKey(FILE
*fp, DSA *x, const EVP_CIPHER *enc, unsigned char *kstr, int klen,
pem_password_cb *cb, void *u); DSA *PEM_read_bio_DSA_PUBKEY(BIO
*bp, DSA **x, pem_password_cb *cb, void *u); DSA *PEM_read_DSA_PUBKEY(FILE
*fp, DSA **x, pem_password_cb *cb, void *u); int PEM_write_bio_DSA_PUBKEY(BIO
*bp, DSA *x); int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x); DSA
*PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void
*u); DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb
*cb, void *u); int PEM_write_bio_DSAparams(BIO *bp, DSA
*x); int PEM_write_DSAparams(FILE *fp, DSA *x); DH
*PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void
*u); DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb
*cb, void *u); int PEM_write_bio_DHparams(BIO *bp, DH
*x); int PEM_write_DHparams(FILE *fp, DH *x); X509
*PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void
*u); X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb
*cb, void *u); int PEM_write_bio_X509(BIO *bp, X509 *x); int
PEM_write_X509(FILE *fp, X509 *x); X509 *PEM_read_bio_X509_AUX(BIO
*bp, X509 **x, pem_password_cb *cb, void *u); X509 *PEM_read_X509_AUX(FILE
*fp, X509 **x, pem_password_cb *cb, void *u); int PEM_write_bio_X509_AUX(BIO
*bp, X509 *x); int PEM_write_X509_AUX(FILE *fp, X509 *x); X509_REQ
*PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x, pem_password_cb *cb,
void *u); X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x, pem_password_cb
*cb, void *u); int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ
*x); int PEM_write_X509_REQ(FILE *fp, X509_REQ *x); int
PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x); int
PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x); X509_CRL
*PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x, pem_password_cb *cb,
void *u); X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x, pem_password_cb
*cb, void *u); int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x); int
PEM_write_X509_CRL(FILE *fp, X509_CRL *x); PKCS7 *PEM_read_bio_PKCS7(BIO
*bp, PKCS7 **x, pem_password_cb *cb, void *u); PKCS7 *PEM_read_PKCS7(FILE
*fp, PKCS7 **x, pem_password_cb *cb, void *u); int PEM_write_bio_PKCS7(BIO
*bp, PKCS7 *x); int PEM_write_PKCS7(FILE *fp, PKCS7 *x); NETSCAPE_CERT_SEQUENCE
*PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE
**x, pem_password_cb *cb, void *u); NETSCAPE_CERT_SEQUENCE
*PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE **x,
pem_password_cb *cb, void *u); int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO
*bp, NETSCAPE_CERT_SEQUENCE *x); int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE
*fp, NETSCAPE_CERT_SEQUENCE *x); DESCRIPTIONThe PEM functions read or write structures in PEM format.
In this sense PEM format is simply base64 encoded data surrounded
by header lines. For more details about the meaning of arguments see the PEM
FUNCTION ARGUMENTS section. Each operation has four functions associated with it. For
clarity the term "foobar functions" will be
used to collectively refer to the PEM_read_bio_foobar(), PEM_read_foobar(),
PEM_write_bio_foobar() and PEM_write_foobar() functions. The PrivateKey functions read or write
a private key in PEM format using an EVP_PKEY structure. The write
routines use "traditional" private key format and can handle both
RSA and DSA private keys. The read functions can additionally transparently
handle PKCS#8 format encrypted and unencrypted keys too. PEM_write_bio_PKCS8PrivateKey() and PEM_write_PKCS8PrivateKey()
write a private key in an EVP_PKEY structure in PKCS#8 EncryptedPrivateKeyInfo
format using PKCS#5 v2.0 password based encryption algorithms. The cipher argument
specifies the encryption algoritm to use: unlike all other PEM routines
the encryption is applied at the PKCS#8 level and not in the PEM
headers. If cipher is NULL then no encryption
is used and a PKCS#8 PrivateKeyInfo structure is used instead. PEM_write_bio_PKCS8PrivateKey_nid() and PEM_write_PKCS8PrivateKey_nid()
also write out a private key as a PKCS#8 EncryptedPrivateKeyInfo
however it uses PKCS#5 v1.5 or PKCS#12 encryption algorithms instead.
The algorithm to use is specified in the nid parameter
and should be the NID of the corresponding OBJECT IDENTIFIER (see
NOTES section). The PUBKEY functions process a public
key using an EVP_PKEY structure. The public key is encoded as a SubjectPublicKeyInfo
structure. The RSAPrivateKey functions process an
RSA private key using an RSA structure. It handles the same formats
as the PrivateKey functions but an error occurs
if the private key is not RSA. The RSAPublicKey functions process an
RSA public key using an RSA structure. The public key is encoded using
a PKCS#1 RSAPublicKey structure. The RSA_PUBKEY functions also process
an RSA public key using an RSA structure. However the public key is
encoded using a SubjectPublicKeyInfo structure and an error occurs
if the public key is not RSA. The DSAPrivateKey functions process a
DSA private key using a DSA structure. It handles the same formats as
the PrivateKey functions but an error occurs
if the private key is not DSA. The DSA_PUBKEY functions process a DSA
public key using a DSA structure. The public key is encoded using
a SubjectPublicKeyInfo structure and an error occurs if the public
key is not DSA. The DSAparams functions process DSA parameters
using a DSA structure. The parameters are encoded using a foobar
structure. The DHparams functions process DH parameters
using a DH structure. The parameters are encoded using a PKCS#3
DHparameter structure. The X509 functions process an X509 certificate
using an X509 structure. They will also process a trusted X509 certificate
but any trust settings are discarded. The X509_AUX functions process a trusted
X509 certificate using an X509 structure. The X509_REQ and X509_REQ_NEW functions
process a PKCS#10 certificate request using an X509_REQ structure.
The X509_REQ write functions use CERTIFICATE
REQUEST in the header whereas the X509_REQ_NEW functions
use NEW CERTIFICATE REQUEST (as required by
some CAs). The X509_REQ read functions will
handle either form so there are no X509_REQ_NEW read
functions. The X509_CRL functions process an X509
CRL using an X509_CRL structure. The PKCS7 functions process a PKCS#7
ContentInfo using a PKCS7 structure. The NETSCAPE_CERT_SEQUENCE functions
process a Netscape Certificate Sequence using a NETSCAPE_CERT_SEQUENCE
structure. PEM FUNCTION ARGUMENTSThe PEM functions have many common arguments. The bp BIO parameter (if present) specifies
the BIO to read from or write to. The fp FILE parameter (if present) specifies
the FILE pointer to read from or write to. The PEM read functions all take an argument TYPE
**x and return a TYPE * pointer.
Where TYPE is whatever structure the function
uses. If x is NULL then the parameter is ignored.
If x is not NULL but *x is NULL
then the structure returned will be written to *x.
If neither x nor *x is
NULL then an attempt is made to reuse the structure at *x (but
see Restrictions and EXAMPLES sections). Irrespective of the value
of x a pointer to the structure is always returned
(or NULL if an error occurred). The PEM functions which write private keys take an enc parameter
which specifies the encryption algorithm to use, encryption is done
at the PEM level. If this parameter is set to NULL then the private
key is written in unencrypted form. The cb argument is the callback to use
when querying for the pass phrase used for encrypted PEM structures (normally
only private keys). For the PEM write routines if the kstr parameter
is not NULL then klen bytes at kstr are
used as the passphrase and cb is ignored. If the cb parameters is set to NULL and
the u parameter is not NULL then the u parameter
is interpreted as a null terminated string to use as the passphrase.
If both cb and u are NULL
then the default callback routine is used which will typically prompt
for the passphrase on the current terminal with echoing turned off. The default passphrase callback is sometimes inappropriate
(for example in a GUI application) so an alternative can be supplied.
The callback routine has the following form: int cb(char *buf, int size, int rwflag, void *u);
|
buf is the buffer to write the passphrase
to. size is the maximum length of the passphrase
(i.e. the size of buf). rwflag is a flag which
is set to 0 when reading and 1 when writing. A typical routine will
ask the user to verify the passphrase (for example by prompting
for it twice) if rwflag is 1. The u parameter
has the same value as the u parameter passed
to the PEM routine. It allows arbitrary data to be passed to the
callback by the application (for example a window handle in a GUI
application). The callback must return the
number of characters in the passphrase or 0 if an error occurred. EXAMPLESAlthough the PEM routines take several arguments in almost
all applications most of them are set to 0 or NULL. Read a certificate in PEM format from a BIO: X509 *x; x = PEM_read_bio(bp, NULL, 0, NULL); if (x == NULL) { /* Error */ }
|
Alternative method: X509 *x = NULL; if (!PEM_read_bio_X509(bp, &x, 0, NULL)) { /* Error */ }
|
Write a certificate to a BIO: if (!PEM_write_bio_X509(bp, x)) { /* Error */ }
|
Write an unencrypted private key to a FILE pointer: if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL)) { /* Error */ }
|
Write a private key (using traditional format) to a BIO using
triple DES encryption, the pass phrase is prompted for: if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) { /* Error */ }
|
Write a private key (using PKCS#8 format) to a BIO using triple
DES encryption, using the pass phrase "hello": if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) { /* Error */ }
|
Read a private key from a BIO using the pass phrase "hello": key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello"); if (key == NULL) { /* Error */ }
|
Read a private key from a BIO using a pass phrase callback: key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key"); if (key == NULL) { /* Error */ }
|
Skeleton pass phrase callback: int pass_cb(char *buf, int size, int rwflag, void *u); { int len; char *tmp; /* We'd probably do something else if 'rwflag' is 1 */ printf("Enter pass phrase for \"%s\"\n", u); /* get pass phrase, length 'len' into 'tmp' */ tmp = "hello"; len = strlen(tmp); if (len <= 0) return 0; /* if too long, truncate */ if (len > size) len = size; memcpy(buf, tmp, len); return len; }
|
NOTESThe old PrivateKey write routines are
retained for compatibility. New applications should write private
keys using the PEM_write_bio_PKCS8PrivateKey() or PEM_write_PKCS8PrivateKey()
routines because they are more secure (they use an iteration count
of 2048 whereas the traditional routines use a count of 1) unless compatibility
with older versions of OpenSSL is important. The PrivateKey read routines can be used
in all applications because they handle all formats transparently. A frequent cause of problems is attempting to use the PEM
routines like this: X509 *x; PEM_read_bio_X509(bp, &x, 0, NULL);
|
this is a bug because an attempt will be made to reuse the
data at x which is an uninitialised pointer. PEM
ENCRYPTION FORMATThis old PrivateKey routines use a non
standard technique for encryption. The private key (or other data) takes the following form: -----BEGIN RSA PRIVATE KEY----- Proc-Type: 4,ENCRYPTED DEK-Info: DES-EDE3-CBC,3F17F5316E2BAC89 ...base64 encoded data... -----END RSA PRIVATE KEY-----
|
The line beginning DEK-Info contains two comma separated pieces
of information: the encryption algorithm name as used by EVP_get_cipherbyname()
and an 8 byte salt encoded as a set of hexadecimal
digits. After this is the base64 encoded encrypted data. The encryption key is determined using EVP_bytestokey(), using salt and
an iteration count of 1. The IV used is the value of salt and
*not* the IV returned by EVP_bytestokey(). RestrictionsThe PEM read routines in some versions of OpenSSL will not
correctly reuse an existing structure. Therefore the following: PEM_read_bio(bp, &x, 0, NULL);
|
where x already contains a valid certificate,
may not work, whereas: X509_free(x); x = PEM_read_bio(bp, NULL, 0, NULL);
|
is guaranteed to work. RETURN CODESThe read routines return either a pointer to the structure
read or NULL is an error occurred. The write routines return 1 for success or 0 for failure.
|
|