|
HP Open Source Security for OpenVMS Volume 2: HP SSL for OpenVMS > CRYPTO Application
Programming Interface (API) Reference
BN_add
NAMEBN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd — arithmetic operations
on BIGNUMs Synopsis#include <openssl/bn.h> int
BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int
BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); int
BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); int
BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); int BN_div(BIGNUM
*dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, BN_CTX *ctx); int
BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int
BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int
BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX
*ctx); int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b,
const BIGNUM *m, BN_CTX *ctx); int BN_mod_mul(BIGNUM *r,
BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx); int
BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); int
BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); int
BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
BN_CTX *ctx); int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM
*b, BN_CTX *ctx); DESCRIPTIONBN_add() adds a and b and places the result in r (r=a+b). r may be the same BIGNUM as a or b. BN_sub() subtracts b from a and places the result in r (r=a-b). BN_mul() multiplies a and b and places the result in r (r=a*b). r may be the same BIGNUM as a or b. For multiplication by powers of 2, use BN_lshift(3). BN_sqr() takes the square of a and places the result in r (r=a^2). r and a may be the same BIGNUM. This function
is faster than BN_mul(r,a,a). BN_div() divides a by d and places the result in dv and the remainder in rem (dv=a/d, rem=a%d). Either of dv and rem may be NULL, in which case the
respective value is not returned. The result is rounded towards
zero; thus if a is negative, the remainder will be zero or negative.
For division by powers of 2, use BN_rshift(3). BN_mod() corresponds to BN_div() with dv set to NULL. BN_nnmod() reduces a modulo m and places the non-negative remainder in r. BN_mod_add() adds a to b modulo m and places the non-negative result in r. BN_mod_sub() subtracts b from a modulo m and places the non-negative result in r. BN_mod_mul() multiplies a by b and finds the non-negative remainder respective to
modulus m (r=(a*b) mod m). r may be the same BIGNUM as a or b. For more efficient algorithms for repeated computations
using the same modulus, see BN_mod_mul_montgomery(3) and BN_mod_mul_reciprocal(3). BN_mod_sqr() takes the square of a modulo m and places the result
in r. BN_exp() raises a to the p-th power and places the result in r (r=a^p). This function is faster
than repeated applications of BN_mul(). BN_mod_exp() computes a to the p-th power modulo m (r=a^p % m). This function uses
less time and space than BN_exp(). BN_gcd() computes the greatest common divisor of a and b and places the result in r. r may be the same BIGNUM as a or b. For all functions, ctx is a previously allocated BN_CTX used
for temporary variables; see BN_CTX_new(3). Unless noted otherwise, the result BIGNUM must
be different from the arguments. RETURN VALUESFor all functions, 1 is returned for success, 0 on error.
The return value should always be checked (e.g., if (!BN_add(r,a,b))
goto err;). The error codes can be obtained by ERR_get_error(3). SEE ALSObn(3), ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3) HISTORYBN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(),
BN_mod_exp() and BN_gcd() are available in all versions of SSLeay
and OpenSSL. The ctx argument to BN_mul() was added in SSLeay 0.9.1b.
BN_exp() appeared in SSLeay 0.9.0. BN_nnmod(), BN_mod_add(), BN_mod_sub(),
and BN_mod_sqr() were added in OpenSSL 0.9.7.
|
|