|
HP Open Source Security for OpenVMS Volume 2: HP SSL for OpenVMS > CRYPTO Application
Programming Interface (API) Reference
bn_mul_words
NAMEbn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words, bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8, bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal, bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive, bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive, bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top, bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low — BIGNUM library internal functions SynopsisBN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG
*ap, int num, BN_ULONG w); BN_ULONG bn_mul_add_words(BN_ULONG
*rp, BN_ULONG *ap, int num, BN_ULONG w); void bn_sqr_words(BN_ULONG
*rp, BN_ULONG *ap, int num); BN_ULONG bn_div_words(BN_ULONG
h, BN_ULONG l, BN_ULONG d); BN_ULONG bn_add_words(BN_ULONG
*rp, BN_ULONG *ap, BN_ULONG *bp, int num); BN_ULONG bn_sub_words(BN_ULONG
*rp, BN_ULONG *ap, BN_ULONG *bp, int num); void bn_mul_comba4(BN_ULONG
*r, BN_ULONG *a, BN_ULONG *b); void bn_mul_comba8(BN_ULONG
*r, BN_ULONG *a, BN_ULONG *b); void bn_sqr_comba4(BN_ULONG
*r, BN_ULONG *a); void bn_sqr_comba8(BN_ULONG *r, BN_ULONG
*a); int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n); void
bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int
nb); void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a,
BN_ULONG *b, int n); void bn_mul_recursive(BN_ULONG *r,
BN_ULONG *a, BN_ULONG *b, int n2, int dna,int dnb,BN_ULONG *tmp); void
bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int
n, int tna,int tnb, BN_ULONG *tmp); void bn_mul_low_recursive(BN_ULONG
*r, BN_ULONG *a, BN_ULONG *b, int n2, BN_ULONG *tmp); void
bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
int n2, BN_ULONG tmp); void bn_sqr_normal(BN_ULONG *r,
BN_ULONG *a, int n, BN_ULONG *tmp); void bn_sqr_recursive(BN_ULONG
*r, BN_ULONG *a, int n2, BN_ULONG *tmp); void mul(BN_ULONG
r, BN_ULONG a, BN_ULONG w, BN_ULONG c); void mul_add(BN_ULONG
r, BN_ULONG a, BN_ULONG w, BN_ULONG c); void sqr(BN_ULONG
r0, BN_ULONG r1, BN_ULONG a); BIGNUM *bn_expand(BIGNUM
*a, int bits); BIGNUM *bn_wexpand(BIGNUM *a, int n); BIGNUM
*bn_expand2(BIGNUM *a, int n); void bn_fix_top(BIGNUM
*a); void bn_check_top(BIGNUM *a); void bn_print(BIGNUM
*a); void bn_dump(BN_ULONG *d, int n); void
bn_set_max(BIGNUM *a); void bn_set_high(BIGNUM *r, BIGNUM
*a, int n); void bn_set_low(BIGNUM *r, BIGNUM *a, int
n); DESCRIPTIONThis page documents the internal functions used by the OpenSSL BIGNUM implementation.
They are described here to facilitate debugging and extending the
library. They are not to be used by applications. The
BIGNUM structure typedef struct bignum_st { int top; /* index of last used d (most significant word) */ BN_ULONG *d; /* pointer to an array of 'BITS2' bit chunks */ int max; /* size of the d array */ int neg; /* sign */ } BIGNUM;
|
The big number is stored in d, a malloc()ed
array of BN_ULONGs, least significant first.
A BN_ULONG can be either 16, 32 or 64 bits
in size (BITS2), depending on the 'number of
bits' specified in openssl/bn.h. max is the size of the d array
that has been allocated. top is the 'last'
entry being used, so for a value of 4, bn.d[0]=4 and bn.top=1. neg is
1 if the number is negative. When a BIGNUM is 0,
the d field can be NULL and top == 0. Various routines in this library require the use of temporary BIGNUM variables
during their execution. Since dynamic memory allocation to create BIGNUMs
is rather expensive when used in conjunction with repeated subroutine
calls, the BN_CTX structure is used. This structure
contains BN_CTX_NUM BIGNUMs,
see BN_CTX_start(3). Low-level
arithmetic operationsThese functions are implemented in C and for several platforms
in assembly language: bn_mul_words(rp, ap, num, w)
operates on the num word arrays rp and ap.
It computes ap * w, places
the result in rp, and returns the high word
(carry). bn_mul_add_words(rp, ap, num, w)
operates on the num word arrays rp and ap.
It computes ap * w + rp, places
the result in rp, and returns the high word
(carry). bn_sqr_words(rp, ap, n)
operates on the num word array ap and
the 2*num word array ap.
It computes ap * ap word-wise,
and places the low and high bytes of the result in rp. bn_div_words(h, l, d)
divides the two word number (h,l)
by d and returns the result. bn_add_words(rp, ap, bp, num)
operates on the num word arrays ap, bp and rp.
It computes ap + bp, places the
result in rp, and returns the high word (carry). bn_sub_words(rp, ap, bp, num)
operates on the num word arrays ap, bp and rp.
It computes ap - bp, places
the result in rp, and returns the carry (1
if bp > ap, 0
otherwise). bn_mul_comba4(r, a, b)
operates on the 4 word arrays a and b and
the 8 word array r. It computes a*b and places
the result in r. bn_mul_comba8(r, a, b)
operates on the 8 word arrays a and b and
the 16 word array r. It computes a*b and places
the result in r. bn_sqr_comba4(r, a, b)
operates on the 4 word arrays a and b and
the 8 word array r. bn_sqr_comba8(r, a, b)
operates on the 8 word arrays a and b and
the 16 word array r. The following functions are implemented in C: bn_cmp_words(a, b, n)
operates on the n word arrays a and b.
It returns 1, 0 and -1 if a is greater than,
equal and less than b. bn_mul_normal(r, a, na, b, nb)
operates on the na word array a,
the nb word array b and
the na+nb word array r.
It computes a*b and places
the result in r. bn_mul_low_normal(r, a, b, n)
operates on the n word arrays r, a and b.
It computes the n low words of a*b and
places the result in r. bn_mul_recursive(r, a, b, n2, dna, dnb, t)
operates on the word arrays a and b of
length n2+dna and n2+dnb (dna and dnb are
currently allowed to be 0 or negative) and the 2*n2 word
arrays r and t. n2 must
be a power of 2. It computes a*b and
places the result in r. bn_mul_part_recursive(r, a, b, n, tna, tnb, tmp)
operates on the word arrays a and b of
length n+tna and n+tnb and
the 4*n word arrays r and tmp. bn_mul_low_recursive(r, a, b, n2, tmp)
operates on the n2 word arrays r and tmp and
the n2/2 word arrays a and b. bn_mul_high(r, a, b, l, n2, tmp)
operates on the n2 word arrays r, a, b and l (?)
and the 3*n2 word array tmp. BN_mul() calls bn_mul_normal(), or an optimized implementation
if the factors have the same size: bn_mul_comba8() is used if they
are 8 words long, bn_mul_recursive() if they are larger than BN_MULL_SIZE_NORMAL and
the size is an exact multiple of the word size, and bn_mul_part_recursive() for
others that are larger than BN_MULL_SIZE_NORMAL. bn_sqr_normal(r, a, n, tmp)
operates on the n word array a and
the 2*n word arrays tmp and r. The implementations use the following macros which, depending
on the architecture, may use "long long" C operations or inline
assembler. They are defined in bn_lcl.h. mul(r, a, w, c)
computes w*a+c and
places the low word of the result in r and
the high word in c. mul_add(r, a, w, c)
computes w*a+r+c and
places the low word of the result in r and
the high word in c. sqr(r0, r1, a)
computes a*a and places
the low word of the result in r0 and the high
word in r1. Size
changesbn_expand() ensures that b has enough
space for a bits bit number. bn_wexpand() ensures
that b has enough space for an n word
number. If the number has to be expanded, both macros call bn_expand2(),
which allocates a new d array and copies the
data. They return NULL on error, b otherwise. The bn_fix_top() macro reduces a->top to
point to the most significant non-zero word when a has
shrunk. Debuggingbn_check_top() verifies that ((a)->top >=
0 && (a)->top E<= (a)->max)>.
A violation will cause the program to abort. bn_print() prints a to stderr. bn_dump()
prints n words at d (in
reverse order, i.e. most significant word first) to stderr. bn_set_max() makes a a static number
with a max of its current size. This is used
by bn_set_low() and bn_set_high() to make r a
read-only BIGNUM that contains the n low
or high words of a. If BN_DEBUG is not defined, bn_check_top(),
bn_print(), bn_dump() and bn_set_max() are defined as empty macros.
|
|